GRAVITATIONAL LENS
MASS RECONSTRUCTION

Simon Dye

Presented for the degree of Doctor of Philosophy at
The University of Edinburgh
1999



This thesis is solely my own
composition, except where
specifically indicated in the

text.

Simon Dye,
July 1999.







Contents

1 Introduction 1
LI Cosoolegy ..csorswcsoimiism sssp Hein 180 8E0@ys 2
1.1.1  Newton’s Law of Gravity . . . . . . . . ... ... .. ..... 2

1.1.2 The Friedmann Equations . . . . . . ... ... ... ...... 3

180 Ths Habble Parsiieier. » v s s s ammea m wom e o w w6 an w8 s 6

Lddk Bedshit v o vv v on s mva ame s w @ g s s s n e e 56 o s 6

1.1.5 'TheDensity Parameter . . : o s ss s auswens s aaih 654 8

1.1.6 Evolutionof Qand H . . . ... ... .. ... .. ....... 9

1.1.7  The Deceleration Parameter . . . . . . . . .. .. .. ... ... 10

1.1.8  Cosmological Distances and Volumes . . . . . . .. ... .. .. 11
1.1.9  The Power Spectrum of Density Fluctuations . . . . . . .. .. 15
1.1.10 Magnitudes & The K-correction . . . .. .. .. .. ... ... 16

L2 Daxlk Mabter o v ov oo mav s ma s 35 6655 60 a bn o s e 17
1.2.1  Evidence of Dark Matter . . ... .. ... ... ........ 18

1.2.2  Contributions to Qg . . . . . . . . ... 19

1.2.3  The Nature of Dark Matter . . . . . . . ... ... ....... 19



13 Calaxy /CIusters ¢ « s o v s s e 0 v 5 @ @ s m a5 8 B B e w85 N @ E 8w s 20
1.3.1 Properties 6P CIuSEers . .« o o cvw v o s wowwn maen oo 21
1.3.2  The Cosmological Importance of Clusters . . . . . . .. .. .. 23

1.4 Cluster Masses from Virial and X-Ray Temperature Measurements . . 27

14 Wirlal Mas§ss : s v v sss mes v mosa @ v ann FaE s 8 28

1.4.2  X-Ray Temperature Masses . . . . . .. . ... 30

1.4.3 X-Ray, Virial & Lensing Mass Comparisons . . . . . . . .. .. 32

15 TRl bayoit s s s s o v e e i 9 s oSN RS IS D EES D EES W B 8 & 34
2 Mass Reconstruction Theory 37
2.1 Lensing Theory . . . . . . 0 o 0 e 38
2.1.1 Lensing by Point Masses . . . . . . . . .. . ... ... ... .. 38
2.1.2 The Thin Screen Approximation . . . . . .. . o v v v v 39
218 e Lens Boiahighie: « o s s e n ww w s e s n a s e s e » 5 40
214 Deflection POEHEIal - o » < 5w w m v w w5 o o omoe or 5 0o s 5w 42
2.1.5  Image Magnification and Distortion . . . . . . . .. ... ... 43
2.1.6 Caustics and Critical Lines . . <« . o o0 oo v v s woan 45
ZLT EihnSteitRadiug': « w v u s v aunn saus S uu 0w e e 46

2.2 Lens Mass Reconstruction using Image Shear . . . . . . ... ... .. 47
2.2.1 Mass Contained within a Giant Ave . . . . . .. ... ... .. 48

222 Ohear AREWSIS v v esv w s n i s % v aa a5 a o a8 49
2.3 Lens Mass Reconstruction using Magnification . . . . . . . .. .. .. ol
2.3.1  Reconstruction from Lensed Redshift Distributions . . . . . . . 51



2.3.2 Integrated Number Counts . . . « v v« v v o v oo v s o v s om0 - :

2.3.3  Reconstruction from Lensed Luninosity Functions . . . . . . . 58

234 Conversion of 0w + » ¢ 53 i o536 B danicss &8558 61

3 Magnification of Source Number Counts by Abell 1689 71
3.1 Data Acquisition . . . . . . . ... 71

o 9 10 T O 115125 22 ) oo o 0 E 57 . N T T 72

FL2 Objedt Detethon « « v vn sew s e w s o w0 e e 0 @ w8 72

313 Object Selection. v v s v weraw sy s e g @595 74

SI1d Wagking ; cisn s iR B R RS A C AR S e e 7

3.2 Results. . . . . o 0 e e e e 78
321 NUMBEFEHMIEE « o v o s oomo 0w o8 60 o & ms 5 5 w8 o8 s 78

3.2.2  Normalisation of Background Number Counts . . . . . . . . .. 81

3.2.3  Clustering properties of the background population. . . . . . . 83

3.2.4  Reconstruction of radial w profile . . . . . . ... ... ... .. 84

3.2.5  Axially Symmetric Lens Solution for Abell 1689 . . . . . . . . . 86

226 Reconstrastion et ®ii2D ooz 4 v vs s wonamusn @ aw . 88

3.2.7 Transforming & to Mass Surface Density . . . . . .. ... ... 90

3.2.8 Projected Mass . . . .. .ot i e e e e e e e 92

3.2.9  Comparison and Discussion of Results . . . . . .. ... . ... 93

3.3 Smmmary ... e e e 95

4 Self-Consistent Mass Reconstruction 97

i



4.2

4.3

;1_.’_’

The

|
—

.3

Introduction . . . . . . L e

Self-Consistent, Magnification Analysis . . . o . . ..o 0oL L.
I T 1 1 -l e T Tl I YT
4.2.2 Application to Cluster Models . . . . . ... ... .00
4.2.3 Practical Considerations . . . . . . . . . .00
4.2 Application torAbell 1689 & ¢ s s v wnsm w s wa g 5w s @ s
Shear ARalysis <o wmossmepssmw am ek a0 m s s RS e 58S &8 R
4.3.1  Derivation of Pixellized Ellipticity Equation . . . . . . . . . ..
4.3.2 Application to Dumb-bell Model . . . . . .. ... .. ... ..
SURMINEIY s ovs o s 2@ neim U8l CREN S Ve M8 @ 882

Mass of Abell 1689 from Luminosity Function Analysis

Observations of AI68Y . . . . . . . . . . ...
L5700 65 I 5 1 - VI e 5 06 ) () AU AP A
512 Dnage Bedieion: o o v oo w0 s m m oo won g o s 5 os 8o 6w @ e
PHOtOmETie Aalyais. « s o vow 5 5 0w s e @ 5 6% 0 & 5 555 2 5 5 & ©
521 TFlux COmversion oo oe e oo ww s e s 5 s &6 50 0 & 5 505 6 o
022 DbjectTableg . . v wvisw veva veos ey e m e s e L
523 PHOOHEEY v so s snmsssn sosa Ss08ma s &5 205
524 Titerisity CaliBraian - « v v c e v w oo w0 w55 %6 5§ 4

Luminosity Function Analysis

5.3.1 The CADIS B Band Luminosity Function . . . . . ... . ...

5.3.2  Sample Incompleteness

98

101

104

108

109

110

113

114

121

123



5.3.3  Parameterisation of the Luminosity Function . . . . . . . . .. 145

5.4 Lens Mass Determination . . . . .. ..o 0oL 150
541 A1689 Sample Incompleteness . . . . . . . ... 150
.42 Determination of v . . 0 o0 Lo Lo oL 150

5.5 Results. . . o oo o e 155
581 ‘RaQial Mass Proble: .o v wvmasmmenm v s aonm s 5 m s w s 155
5.5.2 Aperture K . . .. . e e e e e e 157
5.5.3  Projected Mass . . . . . . Lo 157
5.5.4 Effects of Sample Incompleteness . . . ...« v vv v v s 159

58 Signal S NoEEPredietienl « s o vas mo s wons ma s @ 5w 160

B DUHIEEY + oo o 5 now @ 0 & 5 60 G 8 5 % P B R E B A A S NS § R 162

Summary 165

Ol BAeohorbHisStorY s : s s s o s s a0 88 0 rn ¥ 5@ v 8 5@ 85 iy &5 5 165

6.2 Conclusion of Results . . . . . . .. ... .. ... 167
6.2.1 Number Count Study . . . . . . . . . i i v vt i e 167
(.2.2  Pixellization of Magnification and Shear . . . . . . ... .. .. 168
6.2.3  Magnification of the Source Luminosity Function . . . . . . . . 168
6.2.4 Constraints on the Structure of A1689 . . . . .. ... .. ... 169

6.3 Pubure WOrk . . o oo o s s e m e e n e e m e e e e e 170
6.3.1  Optimal Combination of Maguification and Shear . . . . . . . . 170
0.3.2  Optimisation of Luminosity Function Method . . . . . . . . . . 171
6.3.3  Weak Lensing Surveys . . . . . ... ... ... ... 172

v



038 OOEEOK . o v s v v v s o mam E 8 W s S S S 173

A Mathematical Proofs 175
A.l Axially Symmetric Lens . . . . .. ..o 175
A2 Isothermal Sphere Lens Model . . . . . . ... ... 176

A21 Proofthat koc €' . . 0 ..o 176
A22 Proofthat k=7 . . .. . .. ... .. ... . 176
A3 Pixellized w ..o o o 177
A.3.1 Analytical form for a,, . . . . . . ... 177
A.3.2 Analytical form for b, . . . . ... ... ... 178

Vi



h

}llb’

Mpe

eV

Constants and Units used in this Thesis

Newton'’s gravitational constant
Speed of light i a vacuum
Hubble's constant

Solar mass

Solar luminosity

Planck’s constant

Boltzmann’s constant

Mega parsec

Electron Volt

Vil

6.67 x 10~
3.0 x 108
100h

1.99 x 1030
3.88 % 10%
6.63 x 10734
1.38 x 1016
3.1 x 10
1.60 x 10719

i
Nm?kg ™
1

ms

kms™'Mpc™

1

J

1



viii



ACKNOWLEDGEMENTS

Attempting to thank everyone who has contributed to this work is almost an
impossibility. T apologise now for the uncountable number of people who inevitably I

cannot mention through lack of space (or lack of a good memory !).

My first acknowledgement undoubtedly goes to my supervisor Andy Taylor. Cho-
sen some six weeks after first arviving at the IfA in January 1996 only to discover the
iimminent and permanent departure of my intended supervisor Lance Miller, Andy
quickly began to impress me with his sharp intellect, unwavering and sanguine jovial-
ity and his sink-like Guinness drinking capability. He has made my stay at Edinburgh
both an enlightening and an entertaining one. Not once has he turned me away from
his office claiming a lack of time, not once has he failed to conjure up some piece of
wizardry from his bag of mathematical tricks to solve any problem I've ever presented
him with and not once has his level of interest or enthusiasm in iy work dwindled.

Andy, I thank you.

Secondly, T would like to thank Eduard Thommes for his assistance towards the
photometric work presented in Chapter 5. Without Eduard’s help either in Edinburgh
or during my stay at the MPIA in Heidelberg, circumventing the deluge of problems
this work constantly presented would have been an even more arduous task. So long

Eduard and thanks for all the rice (I jest not).

Staying on the academic side of things, [ must thank all members of staff at the
IfA who have helped me in one way or another. Thanks also to Klaus Meisenheimer
at the MPIA for his support throughout my stay there and during composition of our
A 1689 paper. I would also like to extend my gratitude to Eelco van Kampen for being
generally helpful and a source of amusing yet surreal humour. Finally, thanks to Alan

Heavens and Richard Ellis for trawling through this thesis prior to my viva.

On a less academic level, I send a huge thank you to my parents for their moral
(and financial 1) support. Its nice to know there’s always someone looking out for
you, be it in the form of ensuring you've consumed a sufficient volume of greens or

the occasional sending of a tenner through the post. Hugs and thanks to Charlie for



not only providing me with additional moral support. but also her cottage which 1
used as an idyllic writer’s retreat during the composition of some of this work. I must
mention my uncle, Roy Jackson, for his probing questions and general interest in my

work throughout its duration.

Last but probably not least, thanks to those who provided my social (and some-
times office) entertainment. Most notably, T refer to the original lower terminal room
posse comprising Richard Knox, Alison Stirling and Elese Archibald who collectively
and patiently bore the brunt of my perhaps over zealous supply of practical jokes.
A quick acknowledgement to Peter Watts and Rob Smith, both of whom I have had
the priviledge of sharing a Hat and an office with and both of whom have caused me
a mixture of emotions with their guitar playing. Finally, hi to Matthew Horrobin
who never seems short of ideas or tenacity when it comes to going for a drink, Jo
MecAllister who on numerous occasions made me run around a squash court until T
nearly collapsed and Kenton D'Mellow who never seemed to know what day it was

(and probably still doesn’t - its Tuesday today Kent!). May the force be with you all.



Abstract

A highly desirable technique sought after by cosmology is one which enables the accu-
rate mass measurement of rich galaxy clusters. From observations of their abundance
and primarily their mass, clusters give strong constraints on the density parameter of
the Universe, models of structure formation and normalisation of the power spectrum
of density fluctnations. Gravitational lensing provides such a technique. Prevailing
over X-ray temperature and virial velocity methods known to be problematic, lensing

permits determination of cluster masses independent of dynamical state.

This thesis concentrates mainly on the exploitation of the magnification properties
of lenses rather than those of shear analysis which relies upon the quantification of
galaxy immage distortions. Magnification allows absolute mass measurements, breaking
the sheet-mmass degeneracy experienced by shear. To this extent, a theoretical analysis
of the geometrical magnification of angular separations between galaxies lying behind
a lensing cluster is performed. This sees application to the cluster Abell 1689 using
Voand I band observations to select background galaxies based on their V-I colour.
The distribution of source number counts in the observed field of view results in the
determination of a radial mass profile and a mass map for Abell 1689. This predicts
a projected mass interior to 0.24h™'Mpc of M(< 0.24h~'Mpc) = (0.50 + 0.09) x
10 A~ "M,

A new method of directly determining accurate, self-consistent lens mass and shear
maps in the strong lensing regime from magnification is presented. The method relies
upon pixellization of the surface mass density distribution which generates a simple,
solvable set of equations. The concept of pixellization is also directed at shear analysis

to give rise to a simplified method of application. Through use of cluster models,

xi



the method is verified before the magnification data from the colour-selected nmumnber

counts is input to compute a self-consistent mass map of Abell 1689.

The property of lens magnification to amplify observed background source fluxes is
investigated. Using an independent set of observations in nine optimally chosen filters,
photometric redshifts of objects lying in the field of Abell 1689 are calculated. In ad-
dition to providing an unambiguous distinction between cluster members, foreground
objects and background sources this also enables computation of the source luminos-
ity function. Comparison of this with the distribution of luminosities in an observed
offset field quantifies the lens-induced flux magnification to arrive at an independent
mass profile measurement of Abell 1689. A projected mass interior to 0.25h~ ' Mpc of

M (< 0.25h='Mpc) = (0.48 4 0.16) x 10°h~ M, is found.
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Chapter 1

Introduction

The nature and origin of the Universe has been the subject of much speculation since
intelligent, reasoning human beings first inhabited the Earth’s surface and began to
look up into the sky. The route to the development of a successful theory capable
ol explaining observed cosmological phenomena has proved to be a tortuous one with
wany pitfalls along the way. It is only in this century that mankind has achieved
the bulk of its understanding of our cosmos, largely aided by the rapid development
of technology. Only now are we equipped with a sufficiently advanced arsenal of
instrumentation to begin to satisty the questions that have been left unanswered all

this time.

This chapter is divided into two main parts. The first gives a review of modern
physical cosmology, mainly emphasising those areas relied upon by later chapters.
A short summary on the notion of dark matter is given. The second part of this
chapter discusses the importance of studying galaxy clusters, namely the way in which
they provide constraints on various cosmological parameters and structure formation
models. A brief outline and comparison of mass derivation methods alternative to

those of gravitational lensing is presented.



1.1 Cosmology

Cosmology is the branch of astronomy concerned with the origin. properties and evo-
lution of our Universe. Unlike the apparatus of a laboratory experitnent which allows
direct interaction, astronomers are forced into the more passive role of relying upon

observations of the Universe for the formulation of physical laws which govern it.

The currently accepted Big Bang model of the Universe owes its reputation to
several supporting observations. Two of the most important astronomical discoveries
of this century which have provided the strongest evidence in favour of the Big Bang
are the discovery of the cosmic microwave background radiation (CMBR) by Penzias
and Wilson in 1965 and the discovery of Universal expansion by Hubble in 1929. The
validity of Hubble’s law (see Section 1.1.3) supports the case of an expanding Universe
whereas the CMBR is almost indisputable evidence of a hot, dense beginning. Mea-
surements by the COBE (COsmic microwave Background Explorer) satellite launched
in 1989 showed that the CMBR. is isotropic to one part in 10°. This is in excellent
agreement with imflation (Guth 1981) which predicts a highly isotropic universe on

scales far larger than the size of regions in causal contact.

The Copernican Principle asserts that we are not privileged observers. Assuming
this holds true, our isotropic Universe must therefore be a homogeneous one. The con-
dition of homogeneity and isotropy on large scales is a statement of the Cosmological
Principle; a fundamental concept in cosmology which gave rise to the development
of the Robertson-Walker metric in 1935 (see Section 1.1.2). Modern observations of
the distribution of mass from redshift surveys certainly seem to validate this state-
ment (eg. Tadros et al 1999). In the light of this and similar evidence gathered by
astronomers over the years, cosmology has proceeded by extrapolating the properties

and laws of the observable Universe to the Universe as a whole.

1.1.1 Newton’s Law of Gravity

The strongest force of nature on large scales is that due to gravity. It is therefore not
surprising that gravity plays a central role in any theory used to model the evolution

and dynamics of the Universe. Sir Isaac Newton in the 17th Century was responsible



for the first description of gravity with his ‘law of universal gravitation’. This quan-
tified the attractive force between two objects with masses m; and mo separated by
a distance r = |r| as

B EOOHE (0]

=

Newton also established a framework for mechanics, one of the most important
results of which was his ‘second law of motion” which stated that a body of ‘inertial
mass’ m feels an acceleration @ = F/m if acted upon by a force F'. This inertial mass
tnrns out to be exactly the same as the gravitational mass affecting the magnitude
of the gravitational pull; a fact known as the ‘weak equivalence principle’. Using this
as the basis for his ‘strong equivalence principle’ which postulates that physics in
freely falling and inertial frames is identical, Einstein developed his General Theory of
Relativity. The General Theory of Relativity provides the best description of gravity

to date.

1.1.2 The Friedmann Equations

In the special theory of relativity, the interval between two points in space-time with

co-ordinates (£, x,y,z) and (f + df,z + dz,y + dy, z + dz) is defined as
ds? = c*dt? — (dz? + dy? + d2?). (1.2)

This quantity is invariant under a co-ordinate transformation and equals zero if the
two co-ordinates it spans are linked by a ray of light. The interval may be written in

terms of the metric tensor, g;;, such that

(1.‘»‘2 — ‘rh'l‘,'(\l.'J'}I*.'.l.’!.."‘ll (13)

where 2" = ot and 2!, 2%, 27 are the spatial co-ordinates z,y, z. The metric tensor
completely describes the geometry of space-time. For the flat geometry described by
special relativity (referred to as Minkowski space-time), the metric is evidently the
diagonal matrix diag[l. —1, —1. —1]. To allow for a description of curved space-times,
amore general metric is needed. It can be shown from simple geometric considerations

(Weinberg 1972) that the most general space-time metric describing a homogeneous



and isotropic universe is that of the Robertson- Walker (RW) metric.

2
dr®

ds* = ¢*dt* — a(t)* 12
— K2

+ 72 (d6% + sin® 6dg) | | (1.4)

where the spherical polar, co-ordinates (r.6. ¢) have been used. These co-ordinates
are ‘comoving co-ordinates” which, as the name implies, move with the expansion of
the Universe. Physical distances are decomposed into a time-independent comoving
co-ordinate and a time-dependent, dimensionless scale factor, a(t). This is defined by
the ratio of proper distances (see Section 1.1.8),

R(t)
R(to)

a(t) = (1.5)

where tg 1s the current epoch. The co-ordinate ¢ is referred to as the ‘comoving
angular diameter distance’. K is a free parameter which controls the space curvature
of the Universe depending on its acquired value. The comoving co-ordinates can be

arbitrarily scaled such that K takes on one of three values:

e K = 1 Space is ‘closed’, meaning that a trajectory of fixed 6 and ¢ will always
end where it started from. Geometry is described by the surface of a 3-sphere!

and thus the internal angles of a triangle add up to > 180°.
e K = 0 Space is flat in which case Euclidean geometry applies.

e KK = —1 Space is ‘open’ and infinite in extent. The geometry of such a space
is described by the 4 dimensional equivalent of the surface of a saddle in 3

dimensions. The internal angles of a triangle add up to < 180°.

The geometry of space-time is determined by matter in the Universe. The fun-
damental equation resulting from Einstein’s General Theory of Relativity relates the
curvature of space to the energy density and momentum of matter in the Universe

though the energy-momentum tensor, Tj; (eg. Peacock 1999),

I C 1 .
—1 Lij = Rij — 5 Rgij — Agij. (1.6)

Here, R;j is the Ricei tensor which holds spatial curvature information and R is the

Riced scalar formed from the contraction of the metric tensor and the Ricel tensor.

A 3=sphere is the four dimensional equivalent of the surface of a sphere in 3 dimensions.



A is the cosmological constant which, if greater than zero, corresponds to a repulsive

[orce acting against the pull of gravity on the Universe and vice versa if negative.

Using the RW metric, the solutions to Einstein’s equation (1.6) are given by the

Friedmann cquations:

, 877G - s NAetg®
g¥ = Tr pa’ — K + i (1.7)
3 3
3) Ags
i@ = ——7G ({) + —1:) o+ {3 2 (1.8)

In these equations, a is the scale parameter of equation (1.5), p is the volume density
of matter in the Universe and p is the matter ‘pressure’. This pressure is effectively a
correction for relativistic particles and is negligible in the Newtonian limit. It origi-
nates from the thermal motion of particles in the same way that the classical definition
of pressure stems from the collision of gas molecules with a surface. p can be thought

. . . 3
of as a flux density of momentum-=.

The Friedmann equations govern the dynamics of the Universe given its matter
content and the contribution from A. They are not independent of each other; equation
(1.8) can be derived fromn equation (1.7) by taking into consideration the evolution of

density and therefore pressure.

A similar result can be obtained from Newtonian arguments. By considering the
acceleration of a test particle on the boundary of a sphere due to the mass it en-
closes, an analogous form of equation (1.8) can be derived®. Integrating this gives
the Newtonian equivalent of equation (1.7). The difference between the ‘Newtonian
Friedmann’ and the full Friedmann equations is the A term, the relativistic pressure
ferm in equation (1.8) and the interpretation of K as Universal curvature which do

not arise from Newtonian considerations.

“The relativistic correction for density is p — p(1 + v*/¢?) which combined with p = pv*/3 gives
p— p+3ple.
“This only holds true if spherical symmetry is assumed. If the collapsing region is ellipsoidal for

example, GR predicts a different result from that predicated by Newtonian gravity.



1.1.3 The Hubble Parameter

The uniform expansion of the Universe as a result of the Big Bang has the consequence
I 2 B
that, in the absence of gravitational influences, any two galaxies in the Universe recede
from cach other. Because the expansion is uniform, larger separations give rise to
larger recession velocities. This was first discovered by Edwin Hubble in 1929. In
plotting galaxy recession velocities (away from us) against their distance (determined
from Cepheid variable stars which vary on a timescale dependent on their intrinsic
I :

brightness), he noticed a correlation characterised by
V= JH{}R (19)

This is Hubble’s Law which relates an object’s proper distance R (see Section 1.1.8)
with its recession velocity v. Hy is referred to as the Hubble constant. As the Universe
evolves, this changes as the rate of expansion changes and so the subscript ‘0" denotes
its value at the current epoch (this is a convention adopted hereafter). More generally,

equation (1.9) is expressed as,
R(t) = H(t)R(t) (1.10)

where H(t) is the Hubble parameter and the dot denotes time differentiation. Using

the result of equation (1.5), H(t) in terms of the scale factor is

H(t) = —=. (1.11)

The value of the Hubble constant is presently a matter of much debate although
. e . N " B ——y . . - e ._1 _l . .
recent estimates seem to scatter about a value of Hy ~ 65kms™ Mpe™' with an
uncertainty of about 30% (eg Freedman et al 1998). Knowledge of the Hubble constant,
is required for the calculation of many cosmological quantities and so to compensate
for its uncertainty, it is parameterised by the dimensionless quantity h defined as

Hy
= 3
100kms ™ "Mpe ™!

(1.12)

1.1.4 Redshift

Just as acoustic waves experience a Doppler-shift when a source moves with respect

to an observer, the light from objects receding from us due to Universal expansion is



shifted to lower frequencies. Objects further away which recede more quickly therefore

appear more red and are said to be ‘redshifted’. Redshift is defined by
P = A (1.13)

where A, and A, is the observed and emitted wavelength respectively.

An object’s redshift can be expressed in terms of its recession velocity. Suppose
a light-emitting object moves with a velocity v relative to an observer. If, in the rest
frame of the body, wavecrests are separated by a time ¢, measured to be ¢’ in the rest

frame of the observer, the Lorentz transformation for time stipulates that

o t—(—v).x/c? (1.14)

where @ is the vector in the body’s rest frame between wavecrests. The magnitude
of x is simply the emitted wavelength of light, A, = c¢f. Similarly, A, = ct' so that

equation (1.14) becomes

Ao 14+ (v/c)cosl

Ae V1—wv¢/c?

If the body recedes radially, & and v are parallel so that equation (1.15) gives

1+w/c LR ’
1+z=(m%) | (1.16)

1+ 2 (1.15)

Cosmological Redshift

Using the RW metric, redshift due to the expansion of the Universe can be expressed
in terms of the scale parameter. Consider a light ray emitted from a source with
constant comoving co-ordinates such that two subsequent wavecrests are emitted at
proper times t. and t, + At, and observed at times ¢, and t, + At,. As stated in
Section 1.1.2, the interval for a light ray equals identically zero so that the RW metric

for a radially travelling beam? is therefore inteprated to give
; g g g

/""“ (.'(_H. . /.:. (l’}" - totAto (:dt (1 17)
D at) " Jo VI=Kr2  Ji+as at)’ .

"The radial direction is chosen for simplicity, without loss of generality.



The right hand side of this expression is equal to the left hand side since the object

has constant comoving co-ordinates. If Af, and Af, are small, then one can write

At. At
_— (1.18)
f!'{il") fi'(f:l’l)
and because At,/At, = A\,/A. = | + z, this can be written
a(ty)
l+2z=——. 1.19
* alt,) ( )

This is believed to be the main contribution to redshifts measured in practice; ie.
that due to the recession of objects from us owing to Universal expansion. Superim-
posed on top of these cosmological redshifts are perturbations due ‘peculiar velocities’
which result from the action of local gravitational fields on objects. Gravitational
ficlds also cause redshifts in another, more direct way. Einstein’s general theory of
relativity describes how light undergoes a change in wavelength if observed at a lo-
cation at a different gravitational potential than the location it started from. If this

change in gravitational potential is A¢, then the redshift is

i % (1.20)

2
=

This effect becomes more important at larger distances. An appreciation of this comes
from realising that from the point of view of a photon travelling towards us, we sit at
the centre of a sphere containing mass and hence at the bottom of a potential well.
Ignoring the mass outside this sphere means that the measured redshift of the photon
is lessened by the increase in energy it experiences in falling into the potential well

(see Bondi 1947).

1.1.5 The Density Parameter

The Friedmann equation (1.7) can be written such that p allows for all contributions
to the density, in which case the term involving the cosmological constant no longer
explicitly appears:

a” B 8nGp Kc?

(1.21)

3 _ ;
(- 3 *
This is often referred to as the energy equation of the Universe since, broadly speaking,

it deseribes the relationship between the Universe’s kinetic and potential energy. Using



the result of equation (1.11) this becomes

e . g (ﬁ = ) (1.22)
a? Pe
where,
3H?
§— ; 1.23
Pe= $nG ( )

pe is called the eritical density of the Universe for reasons now explained.

If p = pe. then equation (1.22) implies that K = 0 and therefore that space is
flat (see Section 1.1.2). Ignoring the contribution to p from A means that the density
evolves like p oc a™ (lengths o< ¢™1) and hence from equation (1.21), @ a~!. This
means that the the rate of expansion of the Universe tends asymptotically to zero.
If p < pe then K < 0 and equation (1.21) predicts that a is always positive; the
Universe expands forever. If p > p. then K > 0 and the Universe initially expands
before collapsing back on itself. Including the effects of A confuses matters since its

coutribution to p does not evolve with time.

Clearly, the ratio of p/p. determines whether the Universe is closed, open or crit-
ical. This is an important ratio and thus is given the status of a fundamental cosmo-

logical parameter called the density parameter,

Q= P 8rGp
T pe  3H?T

(1.24)

Since this quantity depends on H and p which both evolve with time, so too does 2.
[ts value at the current epoch is denoted as usual with the suffix ‘0’. Recent estimates
show a relatively wide range of values although most suggest a sub-critical universe

with 0.2 < €y < 1.0 (eg. Coles & Ellis 1997).

1.1.6 Evolution of {2 and H

Contributions to p in equation (1.21) come from matter (p,, o a=*), radiation (pr x
—4 s v . s .
a ") and A (py constant). Since these three contributions evolve differently, their

combination to form the overall density is

(l [y

3 4
0
P=pA+ P+ 0r = pao+ P (——) + pro ({—) (1,25)
L
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where ag = a(ty). Two manipulations now need to be made in order to determine the

evolution of H. The first is brought about by defining

L€ e
Qaomor0) = 32 PA0m0.r0] (1.20)
SH )
to give from equation (1.25)
Stlip 2 . 3 1 '
= H [ Qa0+ Quo(1 +2)° + Qo1 +2)']. (1.27)

The second involves taking the current epoch version of equation (1.22) and rescaling

with the scale factor to give

K 20— 1) = HA(Qo — 1)(1 + 2)2. (1.28)

[ 2o

The time evolution of the Hubble parameter is then given by substituting equations

(1.27) and (1.28) into equation (1.21);
H? = H? [sz,.m Qs+ 2+ Qi+ + (-0 + z)z] . (1.29)

This is an important relationship. As the next section shows, equation (1.29) is used

to form the connection between distance and redshift.

Evolution of §2 is simply determined by substituting for A in equation (1.28) using
the result of equation (1.29);

Og—1

—-1= - . ;
.(.2_\[](]_ o 'Z)_z o i -Qmﬂ(l -+ Z) + Qi{](l + Z)z = QD +1

(1.30)

Inspection shows that as z — oo, the right hand side of this equation — 0 and so at
carly times Q — 1. If & cosmological constant exists. then at late times when o — o

(in which case z effectively — —1), Q tends towards 1.

1.1.7 The Deceleration Parameter

A useful parameter in cosmology is the deceleration parameter. ¢, which provides a
measure of the rate of change of the Universe’s expansion at a given epoch. This is

defined in terms of the scale factor as

qg=—-=. (1.31)



From the Friedmann equation (1.8) and the result of equation (1.11), this can be

written in terins of the contributions to {2:

B dnGp . dnGp  Ac? 8y
1= 32 T @2H? T 3H? T 2

+Q, —Qn. (1.32)

Determinations of the current epoch value gy have mainly come from the use of super-
novae as standard candles. The latest estimates seem to indicate that go is negative
(eg. Riess et al 1998, Perlmutter et al 1998) which implies an accelerating Universe.

Some refinement to these measurements may still be necessary however.

1.1.8 Cosmological Distances and Volumes

A useful definition of distance is essential in any cosmological theory. This is espetially
true of gravitational lensing which is based on geometrical argumeuts as Section 2.1
shows. For this reason, a careful consideration of the notion of distance in our Universe
is presented here for the particular cases of proper, comoving, luminosity and angular

diameter distances.

Proper Distance

The proper distance between two points is the distance siimultaneously measured by a
chain of rulers spanning both points at time £. Taking one point as the origin of the
co-ordinate system so that only the » co-ordinate need be considered means that from

the RW metric with dt = 0 for siimultaneity, the proper distance is

Talt)dr

i) = | g )

(1.33)
where
sin~!(r) for K =41

i dr
(=] —— 1 or K=0 (1.34)
sinh™'(r) for K =—1
To express this in terms of redshift for practicality, the radial part of the RW metric

15 combined with equations (1.19) and (1.11) to give

dr cdz

- 5 35
Vv1—Kr?  agH (1.35)
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Substituting for H using equation (1.29) and then integrating shows that

=1/2

aof(r) = E /“" (20 + Qo1+ 27 + (1 = Qo)1 +2)2] " dz = }}}‘“ (1.36)
} i

which is clearly the proper distance at the current epoch. S is defined for later use. The
contribution from €2, has been neglected here since it is only significant at very early
times when the energy content of the Universe was mainly in the form of radiation.
This so called ‘radiation dominated era’ soon changed to a ‘matter dominated era’ as
the Universe expanded and cooled. This change-over happened at a very high redshift
(ie. z ~ 1000's), much higher than the redshifts considered in this thesis and so €, is
ignored hereafter. The cosmological model which assumes that the Universe contains
a critical density of only dust so that p = Q, = 0 and €2, = 1 is referred to as the

‘Einstein-de-Sitter model’.

The following analytical solution for equation (1.36) exists in the case of 24 =0 :

- ESZ,“‘{)Z + (Slm(] = 2)(\.-" Lo SZ.,-,;[]Z = 1)
~ 0Z,(1+2) ‘

apf(r) (1.37)

This is Mattig’s equation (Mattig 1958).

Comoving Distance
Using the result of equations (1.28), (1.34) and (1.36), the comoving radial distance
D(z) may be written:

W sin (S\,.-" QU . 1) for Q[} =1

D(z) =agr=4q 58§ for Q=1 - (1.38)
Hg
m sinh (Sv/1—Qp) for Q<1

Note that equation (1.28) ensures a physical solution by forcing the argument of

all square roots above to be positive throngh the value of K.

Luminosity Distance

The proper distance is of little practical interest since it is impossible to simultancously

measure the distance elements between two points. A more useful definition of distance

12



is that of the luminosity distance chosen to obey the Euclidean result that an object’s
flux scales as the inverse square of its distance from the observer. Denoting L as the

power of a source emitted at time ¢ and [ as the flux received at time #g, the luminosity

L 1/2
D, = (:m) , (1.39)

distance is defined as

[f the source lies at a comoving radial co-ordinate » then the surface area of the sphere
. ; - 3 . . _ .

which passes the observer at time #g is 47 (agr)®. The emitted photons experience the

dual effect of being redshifted by the Universe’s expansion and having their arrival

rate reduced due to time dilation. These two effects combine to give an observed

source power of (a/ag)* times the power output at time # and hence [ in terms of L is

L a\?
f= — ] . 1.40
; -’-I'ETZL",)2 ((J.(J ) ( )

with D as defined by equation (1.38). Combining equations (1.39) and (1.40) therefore

cives the huninosity distance as

Di= 2 D(z) = D(2)(1 + 2). (1.41)

[#3

Angular Diameter Distance

Iistead of the requirement that Huxes adhere to the inverse square law, an alternative
distance can be defined which preserves the Euclidean behaviour that an object’s
angular size varies as the inverse of its separation from an observer. Such a distance

is called an angular diameter distance.

Suppose an object lying at the comoving radial co-ordinate r at time t has a proper
diameter of Dp,. If the angle subtended by D), in the € direction is Af then the RW
metric gives

D;m‘ = arAb. (1’12)

Using the definition above, the angular diameter distance of the source is then given

as

(1.43)

Angular diameter distances are the distances used in gravitational lensing for rea-

sous mwade apparent in Chapter 2. Depending on the cosmological parameters chosen,
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Figure 1.1: Variation of angular diameter distance with redshift for four different cosmological

models. Dashed lines indicate an open universe.

angular diameter distances do not necessarily increase with increasing redshift. Fig-
ure 1.1 illustrates this for four different cosmological models. In a universe with
Qo = 1, Q40 = 0, D, begins increasing with redshift but then reaches a maximuun
al. z ~ 1.2 before falling off. Equation (1.42) shows that this therefore implies that
the angular size of an object can appear to increase with distance beyond z =~ 1.2.
This unintuitive behaviour is a result of gravitational focusing of light rays due to
the curvature of space induced by the Universe’s mass content. Figure 1.1 shows that

stronger focussing occurs in a universe with a higher value of €.

Comoving Volume

Calculation of comoving volues is necessary for many cosmological applications. One
such application is the determination of lnminosity functions such as that of Section

53
The comoving volume element of an observed solid angle Aw is given by
- 53
dV = Aw(agr)=d(agr). (1.44)
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From equation (1.36), the comoving volume between the redshifts z; and z; in a matter

dominated universe (€2, = 0) is therefore,

. (33
- =, R
| Aw o .

/,3._, D%(z) dz (1.45)

2 (a0 + Qo (L +2)3 + (1 = Qo) (1 +2)2]/*
1.1.9 The Power Spectrum of Density Fluctuations

The power spectrum is relied upon at several points throughout the work presented

here. This section is therefore included entirely for completeness.

The variation in density at a given point & in a volume V' is commonly parame-

terised by the ‘density contrast’, d, defined as

oy = EEL=E (1.46)

where p is the mass density at  and p is the average density in V. The autocorrelation

function of the density contrast is
E(r) = (0(z)d(x + 7)) (1.47)

where the angular brackets denote the average over all positions in V. For a distrib-
ution of discrete objects, £(7) is interpreted as the excess probability of a randomly

chosen object having a neighbour at » from it.

It is beneficial to consider mass fluctuations as a superposition of plane waves
since they evolve independently of each other while the fluctuations are still linear.
[t 15 therefore advantageous to work in Fourier space. The density contrast can be
expressed as a Fourier series,

flz) = Z dg exp(ik.x) = Z{TZ exp(—ik.z) (1.48)
k k

with k acquiring only discrete values due to the periodic boundary conditions of the
finite volume V. Substituting both normal and complex conjugate versions of § into

equation (1.47) gives

£(r) = <Z 3. rskfsg,f».*?““‘—k)%—'*’“-*"> ; (1.49)

kB

The fact that

< elb=k)z 5 - 5D _ k') (1.50)



where 7 is the Dirac delta function gives, in passing to the limit where V' — oo so

that the summation in (1.49) becomes an integral,

1 i .
£(r) = W/ Pk).c™ T Ak (1.51)
This defines the power spectriun
P(k) = (1ok[*) (1.52)

which in taking the inverse Fourier transform of equation (1.51) shows that
POk = /5(7»)(#“(1“ (1.53)

The power spectrum is evidently the Fourier transform of the autocorrelation function.,
a result known as the Wiener-Khintehine theorem. For convenience, P(k) is typically
parameterised as a power law (over certain ranges of k) such that P(k) oc £ with the

spectral index nooften a function of k.

1.1.10 Magnitudes & The K-correction

The apparent magnitude of an object is defined as
m=c—25lgl (1.54)

where ¢ is a constant of normalisation and [ is the measured flux defined as the power
received per unit area in a given bandwidth. Since [ is inversely proportional to the
square of luminosity distance (Section 1.1.8), one can define an absolute magnitude

M as being the apparent magnitude an object would have at a distance of 10pc;

=

m—M =5lg [————

Determination of M for nearby stars and galaxies is a straightforward process
once m and D; have been measured, however for more distant objects. the effects
of redshift must be taken into consideration. There are four ways in which redshift
affects the measured Hux within a given bandwidth. The first two were mentioned in
Section LIS and these are that time dilation and photon reddening reduce the flux

by a factor of (1 + 2)?. The third is that an object’s spectral energy distribution is
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stretched by a factor of (1 + z) so that if L(A) is the power output at wavelength A,
L(A) = L(A/(1 4 z)). This stretching means that the nmunber of photons per unit
wavelength interval is reduced by a factor of (1 + z). If photons are selected within a
certain bandwidth then the total number received is less by a factor of (1 + z) than
that which would have been detected in the absence of redshift. This is the fourth

effect and is clearly not applicable if the total or bolometric flux is considered.

Counsider the emission of photons from a source at time ¢ lying at the comoving
radial co-ordinate r. From Section 1.1.8, the surface of the sphere described by the
photons at time ty when they are detected is 4w D?. Allowing for all four redshift effects
above, the measured flux [, in a waveband described by a filter with transmission T'(\)
is therefore,

JoZ TA)L(A/(1 + 2))dA B jme[)\)L(/\/(l + z))dA
47 D2%(1 + z)3 B 47 D{ (1 + z) '

L = (150)

using the result of equation (1.41). In order to calculate the absolute magnitude of
the source in the rest frame, the following flux is required:

J5 T(A)L(A)dA
4?er ’

"fr'f'r; =

From equation (1.54), the difference between the measured and required absolute

magnitude is

'}'I'Hi,
Myeq = My = 2.51g L } ~ K}, (1.58)

‘e
This correction is referred to as the K-correction, usually written as

[5° T(A)L(A/(1 + 2))dA
JoZ T(A)L(A)dA

Ku):zsm{ ]—ng1+ﬂ. (1.59)

Equation (1.59) shows that both the redshift and the form of L(A\) must be known
in order to correctly calculate an object’s K(z). In many cases, the form of L(\) is

unknown however as Section 5.3.1 discusses, a good approximation is that K o z.

1.2 Dark Matter

Determination of the matter content of the Universe is vital for the evaluation of its

contribution to £2g. One only has to look as far as the planets to conclude that not
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all mass is huninous. Studies must therefore rely upon indirect means of detecting
mass, such as its gravitational influence on luminous mass or, as the main theme of

this thesis, light itself.

1.2.1 Evidence of Dark Matter

From the careful observation of stars in the solar neighbourhood in the 1920s, Jan
Oort predicted that more mass than that visible was required to explain the large
stellar motions perpendicular to the galactic plane. At the time, this ‘missing mass’
was attributed to the distribution of interstellar gas and dust (although doubts still
remain as to whether this completely explains the phenomenon). Using a similar
approach except with galaxies (see Section 1.4.1), Zwicky (1933) calculated a mass to
light ratio (M/L) of ~ 50hM,, /L, for the Coma cluster. Given that galaxies were then
thought to consist mainly of stars with a M/L of ~ 1AM /L, this implied that the

Coma cluster must be about 50 times the summed mass of the galaxies themselves.

Zwicky's result is often regarded as the first evidence of dark matter. Although on
a smaller scale, a later measurcment of the rotation curve of our neighbouring galaxy
M31 by Rubin & Ford (1970) supported this result. They found that the orbital
velocity of stars at a large radius did not fall off as »~'/2, but remained constant out
fo the largest radius they were able to observe. This was confirmed in other spiral
ealaxies and thus immediately gave rise to the notion that spirals must be embedded

in a dark matter halo.

Modern observations seem to indicate that M/L ratios and hence the abundance of
dark matter, increase with increasing object scale. For example, recent measurements
of the Coma cluster give a M/L of close to 400hM,., /L., in comparison to our local
group with a M/L of ~ 100AM,., /L. (Binney & Tremaine 1987). On the scale of
galaxies, typical estimates for spirals lie at M/L~ 30hM ., /L... The orbital motion of
stars in ellipticals is somewhat less ordered than that in spirals and so masses must
be determined from the dispersion of measured galaxy velocities. This gives a M/L

for the central regions in ellipticals of ~ 10AM... /L....
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1.2.2 Contributions to ()

The critical M/L of the Universe (ie. that required to give ¢ = 1 from mass con-
tributions only) can be deduced from knowledge of the local luminosity density, jo.
Denoting the M/L of the local Universe as T enables the mass density to be written
as

pmo = Jo . (1.60)

From the definition of the density parameter with §2g = 1. this gives a critical M/L of
Vo

i, 22 (1.61)
Jo

Loveday et al (1992) measure a luminosity density from nearby galaxies of jy = (1.2 4

0.3) x 108hLoMpe™ which therefore means that,

Y. = (2200 + 500)hM, /L. (1.62)

With a typical M/L of ~ 400hMg, /L, this rough calculation shows that rich
clusters are insufficiently massive to provide a critical density. Assuming for an instant
that the M/L of rich clusters is a fair representation of the M/L of the Universe’
means that matter makes a contribution of €2,,,0 = 400/2200 =~ 0.2 to the total density

parameter.

1.2.3 The Nature of Dark Matter

Comparison of the observed abundance of light elements (Deuterium, Helium, Lithium)
with the predictions made from the theory of big bang nucleosynthesis (Alpher et al

1948) constrain the amount of baryonic material in the Universe to be
GOLLA™* & Qg < 0018072, (1.63)

(Coles & Lucchin 1997). Given the abundance of matfer from observations of rich

clusters, this clearly implies the existence of non-baryonic material.

*One could argue that given the observed trend indicating an increasing M/L on larger scales, this

15 actually an underestimation.
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There are currently several postulates as to the nature of this non-baryonic mate-

riand and these fall into one of two categories:

e Hot Dark Matter (HDM) The term "hot’ refers to the fact that the particles
which make up the dark matter are relativistic and therefore have a substantial
pressure. Their velocities, being close to the speed of light, prevent them from
clumping together and they are expected to be distributed smoothly throughout
the Universe. The gravitational effect of this smooth distribution is to smooth
out baryonic fluctuations by pulling them apart. This has the consequence of a
‘top-down’ formation history in which the largest structures formed first. The
most common candidate particle for HDM is the massive neutrino with a mass

ol ~ 10 eV.

¢ Cold Dark Matter (CDM) This type of matter is referred to as ‘cold’ since
its constituent particles are non-relativistic. Their relatively low speeds allow
them to coagulate to form large amounts of small scale structure. This gives
rise to a ‘bottom-up’ formation scenario in which larger structures form later.
A typical example of a CDM particle is the axion, not present in the standard

model of particle physies.

Determinations of the power spectrum of density fluctuations in the Universe (see
Section 1.1.9) indicate that neither type of dark matter completely explains the ob-
served fluctuations on all scales. HDM fails to predict a large enough power on small
scales whereas CDM has trouble accounting for the observed large scale Huctuations.
This has led to models which involve a mixture of hot and cold matter types, often
called ‘warm dark matter’ models (see for example Borgani et al 1996). Observations
of large scale structure such as galaxy clusters can constrain this mixture (Kofman et

al 1996). A more detailed discussion of clusters now follows.

1.3  Galaxy Clusters

Galaxies are not randomly distributed across the sky. Their positions are correlated

and there exist regions where their surface number density is noticeably higher than
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average. This is clearly seen in the APM galaxy survey (Maddox et al 1990) of ~ 3
million optically selected galaxies shown in Figure 1.2. Such groups consist of a wide
ranging number of galaxies from a few up to anywhere from a hundred to a thousand

closely separated members forming galazy clusters, seen here as the darkest patches.

[Figure 1.2: The APM survey of ~ 3 million optically selected galaxies contained within an
area of ~ 4300 square degrees centred on the south galactic pole (Maddox et al 1990). Empty
patches oceur where foreground stars, dwarf galaxies and globular clusters are masked out. A
darker shading represents a higher number density. Observations were carried out in the blue

band in the magnitude range 17 < b; < 20.5.

The most prominent galaxy cluster seen is the Virgo cluster. Its central region has
a diameter of ~ 79 with its main body extending over an area of roughly 15 x 40°.
Even in as early as the 18th century, Sir William Herschel noted that 1/3rd of the
galaxies observed at the time were contained in the Virgo cluster despite it only

covering 1/8th of the sky.

1.3.1 Properties of Clusters

Having established that a cluster is some sort of galactic congregation, the question,

‘How 1s a galaxy cluster defined 7 immediately arises. The answer is that there is not a
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standard definition although criteria are usually based upon similar characteristics. In
terms of physical properties. a rough guide is that clusters are gravitationally bound.
virialised systems with a mass of ~ 10"M. within a region of 1A~ 'Mpec in radius. In
terms of their identification from optical observations, clusters are typically defined
as being regions where the number density of galaxies within a particular aperture

exceeds some threshold value above the mean.

A widely cited example of a cluster catalogue is that of Abell (1958). The Abell
catalogue contains 4076 clusters, 2712 of which are north of —20° declination and

away from the galactic plane. Abell defined clusters by three criteria:

e The cluster must contain at least 50 galaxies within a magnitude range ms <
m < 1y + 2, where mgy is the magnitude of the third brightest galaxy in the

cluster.

e These galaxies must all lie within a radius of R, = 1.5h~'Mpc, R, being referred

to as the Abell radius.

e The estimated cluster redshift (see Section 1.1.4) must be within a range of

0.02<2<0.2.

Clusters were also assigned a ‘richness” depending on the number of galaxies the cluster
contained. The poorest clusters were assigned a richness of 0 with richer clusters being
assigned higher numbers. A similar, yet more relaxed set of criteria were used by
Zwicky et al (1961-1968) to identify 9134 clusters in the same area of sky as Abell,

although this catalogue is not as widely used.

In the late 1960's when X-ray telescopes became available, it was discovered that
clusters are powerful emitters of X-ray radiation. Typical X-ray lhuninosities are found
to lie between 10" — 10" erg s7! making them the most luminous X-ray sources in
the sky (see the review by Sarazin 1986). As the resolution of telescopes improved.
it became apparent that X-ray emission from clusters is extended rather than point-

like and that the spectra are best described by the bremsstrahlung process® from a

Bremsstrahlung radiation occurs when energetic clectrons are decelerated in passing close to
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hot, dilute plasma typically 107 — 10%K in temperature with a density of ~ 1073
particles per em®. Making the assumption that this intracluster gas is in hydrostatic
equilibrinm with the gravitational potential of the cluster enables estimation of the
total mass (see Section 1.4.2). Mass estimations made in this way agree reasonably
well (ie. within a factor of ~ 2, see Lubin & Bahcall 1993) with those from masses

derived from galaxy velocity dispersions discussed in Section 1.4.1.

1.3.2 The Cosmological Importance of Clusters

Estimation of the cosmological parameters that best describe our Universe is a funda-
mental challenge to modern observational cosmology. Galaxy clusters provide not only
an extremely useful tool for the study of these parameters, but also a unique means
of attempting to understand the formation of large scale structure. Their importance
stems largely from their youth, having formed relatively late in the formation history

ol the Universe.

Cluster Formation Rates as a Constraint on (2

As Richstone et al (1992) noted, the rate of formation of clusters heavily depends on
the density of the Universe. In a low density universe, the expectation is that cluster
formation and indeed growth of structure begins earlier than in a high density universe.
This has the dual consequence that in a low density universe, a higher abundance of

clusters is anticipated and that their present day rate of formation should be lower.

Observed abundances of clusters, or more specifically, knowledge of the cluster
mass function’ can therefore provide a strong constraint on the matter density of
omwr Universe (eg. Fan et al 1997, Viana & Liddle 1996, Eke et al 1996). Accurate
measurement. of cluster masses thus plays a crucial role in the application of these
abundance arguments. For example, Eke et al (1996) predict that the number of
clusters per comoving volume with a mass greater than 3.5 x 10" A~ 'M, in a universe

with Qy = 0.3 should be 15 times the number in a universe with €y = 1.

ie. the comoving number density of clusters of a given mass
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Clusters as a Diagnostic for Structure Formation

The current belief concerning the formation of structure in the Universe is that tiny
perturbations in the density field of the early Universe gave rise to gravitational in-
stabilities causing those perturbations to grow. These small perturbations continued
erowing and coalescing to form clouds of matter which condensed to form stars in
turn forming galaxies and the larger structures observed today®. In this so called
‘hierarchical formation model’, clusters are expected to form at the highest peaks of
the early density field. Their large separations of typically 10-30 times that of galaxy
separations make them prime candidates for tracing large scale structure since a rel-
atively small sample can be used to probe large distances. This combines with the
fact that the positions of clusters in the present day Universe are probably close to
their initial formation positions enabling application of linear structure formation the-
ory. The findings of Watkins (1997), who measured the peculiar velocities of several

clusters to be typically 500 kms™" or less, supports this view.

Mapping the distribution of matter contained within a cluster, such as that consid-
ered in Section 3.2.6 also lends valuable information to theories of structure formation.
The ability to measure a cluster’s dark matter content (see Section 1.2) enables investi-
gation into the phenomenon of *biassing’, that is, how stringently luminous mass traces
the distribution of dark matter (see Mann et al 1998 and references contained therein).
Detection of substructures in clusters gives an indication of their age (Richstone et
al 1992). The argument used here is that once a cluster has collapsed, low contrast
substructures of at least ~ 20% of the total cluster mass with a density comparable
to that of the cluster will be mixed away in a time scale of ~ 1 dynamical time?. The
existence of substructure in a cluster therefore suggests that a cluster has recently
formed. Measurement of the fraction of clusters which exhibit such structures can

therefore uncover their formation history and put constraints on cosmological models.

Fhis s i contrast to a fragmentation model in which the largest structures form first.
A dynamical time is defined as being one quarter of an abject’s orbital period about some central

mass (Binney & Tremaine 1987)



Normalisation of the Power Spectrum from Cluster Abundance

A great volume of work has focussed on using the abundance of clusters to constrain
the power spectrum of density fluctuations in the Universe (see Section 1.1.9). Various
observations of large scale structure give the shape of the power spectrum on different
scales (eg. Landy et al 1996, Peacock & Dodds 1994) but its amplitude is difficult
to obtain (Tadros et al 1999 show one particular means of achieving this). Clusters
provide an ideal means of normalising the power spectrum as the following discussion

shows.

The theory of inflation predicts that large scale structure seen today was seeded by
quantuim fluetuations in the density field of the very early Universe. Quantum theory
states that these fluctuations are Gaussian-distributed which leads to the conclusion
that fluctuations in the density field measured today on a large enough scale should
also be distributed in a Gaussian fashion. The probability distribution function for the
density contrast, § (see Section 1.1.9), averaged over some volume with a characteristic
scale R on large scales can therefore be written as,
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R

3 1
j")(h, R) = m
i

This becomes a poor approximation on smaller scales where the distribution of mass is
less smooth causing the distribution to be skewed to smaller values of . Of course, the
scale at which the Gaussian nature of the distribution becomes inappropriate increases
as one Jooks further back into the Universe by virtue of the simple fact that matter
was more homogeneously distributed at earlier times. The variance o is determined
by windowing the power spectrum with Wi (k); the Fourier transform of the volume

within which ¢ is averaged in equation (1.64),
o = /(131;17(&:)%*;{,(&), (1.65)

Clearly, the value of rrf? is directly proportional to the power spectrum P(k). If o‘fﬁ
can therefore be measured via an independent method then the amplitude of P(k) is

known.

Counsider the gravitational collapse of a spherically over-dense region to form a rich

cluster. In an expanding universe, this collapse can only occur if the average density



contrast in that spherical region is greater than a critical value of §. = 1.68 (eg.
White et al 1993). According to the Press-Schechter formalism of structure formation
(Press & Schechter 1974). the fraction of mass in the Universe contained in objects

characterised by their lincar scale IR is
F, = / A6p(6, R) (1.66)
J5e

with p given by equation (1.64). From the measurement of cluster masses and the
munber density of clusters, F,. can be independently determined from

M.,

Fo=—<
P

: (1.67)

where M, is the mass of a typical cluster characterised by its linear scale R, n. is
the measured spatial number density of clusters and 7 is the average density of the
Universe. Equating equations (1.66) and (1.67) shows that o can be determined in
terms of terms of p if the quantities M, and 7, are known. Accurate cluster mass and
abundance determinations are therefore important to constrain the amplitude of P(k)

through equation (1.64).

The fact that R in the Press-Schechter formalism is the linear scale means that
clusters probe scales comparable to their initial collapse size. In the early Universe
when matter was much more homogeneously distributed, this means that a typical
cluster must have had to collect material from a much larger volume. Making the
assumption that such a cluster collapsed from a spherical volume of homogeneous
material to form a mass typically seen today of say ~ 6 x 10"h~ M, (eg. White et

al 1993) within an Abell radius gives R;

dr .
M, = %12-5,),.,.53.,,,,,~6x 104 p= 1M,
=R ~ 8h'Q/Mpe. (1.68)

where pg., is the critical density of the Universe parameterised by the mass density
parameter 2,0 (see Section 1.1.5). Evidently, clusters therefore provide a means of
normalising the power spectrum on a scale of 8 Mpc via the rms of density fiuctuations
on this scale, ox. Fan et al (1997) show that if the power law ap x M~ is adopted.

then the integrated cluster mass function 7(> M) behaves like
Inn(> M) o og 2M 2, (1.69)
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Expressed more qualitatively, this states that determination of og is far more reliant
upon accurate knowledge of mass than the number density of clusters and thus pro-

vides further motivation for the work carried out in this thesis.

As a quick exercise, a value for n,. can be readily estimated from Abell’s catalogue.
The redshift range within which all Abell clusters lie is 0.02 < z < (.2 encompassing a
volume of ~ 3.5 x 1030 *Mpe? (Bartelmann 1996). With such a small upper redshift
limit, this volmne is relatively insensitive to cosmological parameters (see Section
1.1.8). Of the 2712 Abell clusters, there are 1894 with a richness of > 1. Considering
ouly these, this yields a value of

1894

3 -3 —-61.3 g
—fy e b ) T 1.70
35 x 108 h>Mpc 5 x 1077 A" Mpc (1.70)

Tp =

Using the value of M. in equation (1.68) allows the observed cluster mass fraction to

he calenlated from equation (1.67) to give

F,~8x107°Q ¢ i)

i)

This shows that clusters are rare objects in a universe where 0y ~ 1. Equating this

observed fraction with that from equation (1.66) therefore gives that

0.68 (0 =1)
By = . (1.72)
1.38 (200 = 0.2)

This roneh caleulation is consistent with the more detailed analysis considered in
g .

Viana & Liddle (1996), Eke et al (1996) and Pen (1998).

1.4 Cluster Masses from Virial and X-Ray Temperature

Measurements

Section 1.3.2 explained the importance of clusters as large scale structures and hence
justified the motivation behind measurement of their mass. This section discusses
the two main methods of obtaining cluster mass other than that of lensing which is

postponed for a more detailed discussion in Chapter 2.
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1.4.1 Virial Masses

The virial theorem asserts that for a syvstem of self-gravitating masses to be in dynam-
ical equilibrium. the time average of twice the total kinetic energy of all the masses
with respect to the centre of mass of the system must equal the time average of the
negative of the gravitational potential energy for the system (eg. Tremaine & Lee
1987). The dynamical time of a cluster of galaxies is far too large for a time averaged
kinetic and potential energy to be calculated and thus galaxy motions can only ever be
observed at a particular epoch. The virial theorem must therefore be more correctly
written,

2T + U ~ 0 (1.73)

where 7" and U are the kinetic and potential energy respectively. This becomes less
of an approximation when more galaxies are involved in the calculation (Limber &

Mathews 1960).

Making the assumption that clusters are in a state of dynamical equilibrium en-
ables computation of their mass through measurement of the dispersion of galaxy

velocities. The total kinetic and total potential energy can be written as

J\b
- 1 2
T = = Z m;v;

i=1
. @ B MM
o _Egg—m : (1.74)
=1 JF1 E

where the ith galaxy has mass m;, velocity v; with respect to the cluster centre of
mass and lies a distance 7;; from galaxy j. The double summation in the relation for
the potential energy here acts over all galaxy pair combinations. Defining the mass
weighted velocity dispersion as

Z;\;l miv?
M i

boF =€ b® = (1.75)

where M is the total cluster mass in galaxies shows that the virial theorem in equation

(1.73) may be written as
Ryo: 7
M = ( . (1.76)

Here. the gravitational radins R, has been defined as

N N
2y = 2M° Z Z i v ; (1.77)

=1 j#i
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In practice, observations can only directly allow projected velocities and galaxy
separations to be measured. To take this into account, the velocity dispersion in
equation (1.76) must be replaced with the dispersion of projected velocities, o, and
the inter-galaxy separation with its projected quantity r:j Limber and Mathews
(1960) showed that assuming spherical symmetry,

N

3 i
T = 3 g'm..,;'uf?:
G N o
U = —== _— 78
™ Z Z i LL7E]
1=1 j#1 )
so that equation (1.76) becomes
3nR! o2,
M=—L= (1.79)

2G

with It} given by equation (1.77) evaluated with the projected inter-galaxy separation.

Equation (1.79) therefore gives the virial mass of the cluster in galaxies once o,
and R; are known. oy, is directly measurable. Studies show (eg. Sarazin 1986) that
the distribution of velocities in a typical cluster is roughly Gaussian. R_'q however,
requires knowledge of the galaxy masses (or at least their relative mass). One means
of calculating R; is to assume that a cluster galaxy’s luminosity is proportional to its
mass. However, studies of galactic rotation curves do not show a strong correlation
between luminosity and mass (eg. Rubin et al 1982). An even simpler alternative is
to assimne that all galaxies have the same mass (Giradi et al 1997, Heisler et al 1985)

s0 that.

N N =

R,~2N* > > 1/rl| . (1.80)

i=1 j#i
Through N-body simulations, Heisler et al (1985) have shown that this approximation
continues to give reasonably accurate cluster mass estimations when galaxy masses

are dispersed according to realistic mass distributions.

The reliability of the virial theorem was tested by Bahcall & Tremaine (1981)
who found it to be both inefficient and biassed towards under-predicting masses of
eravitationally bound systems by factors of up to 10 or more. As spherical symmetry
1s assumed in the allowance for projection effects, their findings indicated that virial

based mass determinations become less accurate, the more elliptical galaxy orbits
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become. As an alternative. they conceived the “projected mass estimator’ (see Heisler

et al 1985 for details) which was found to give more accurate mass measureinents;

M = e < vir' > (1.81)

where v, signifies the radial velocity.

The caleulations shown in this section. however, assume that a cluster’'s mass lies
solely in its galaxies. The fact that clusters are observed to have a hot inter-galactic
plasma, thought to originate from young stars in a cluster’s galaxies, shows that this
is not the case. Furthermore, gravitational lensing analyses of clusters such as that
discussed later in this thesis, show evidence of inter-galactic dark matter. Another
limitation to the virial theorem comes from the assumption that clusters are in a state
of equilibrium. The existence of substructure, known to be present in most clusters
from optical and X-ray measurements (eg. Bird 1993, 1994). has the consequence
that equilibrium assumptions are not valid. In fact, investigations show that even low
levels of contamination from substructure can cause severe effects on estimations of a

cluster’s kinematical properties (Bird 1994, Beers et al 1990).

1.4.2 X-Ray Temperature Masses

As Section 1.3.1 noted, clusters typically harbour a hot and yet dilute inter-galactic
plasma, thought to originate as ejected gas from stars in their galaxies. This gas is
most likely heated by supernovae to high temperatures which results in the emission
of X-rays due to the bremsstrahlung process. Assuming that this gas is in hydrostatic
equilibrium so that the inward pull on the gas due to its self-gravity is exactly balanced
by the force due to outward pressure, p, gives for the radial gradient of this pressure
(eg. Binney & Tremaine 1987),

dp e Gﬂf(?"))p('f‘) . (1.82)

dr e

where M (r) is the mass of gas contained within a sphere of radius r and p is the gas
density. Using the ideal gas law,

h T
p= frge (1.83)

i
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with 7" and rm being the gas temperature and molecular mass respectively allows

equation (1.82) to be written as

M(r) = (1.84)

kpTr fdlnp dlnT
- Gm ((i Inr 1117')'
Here, 772 is the mean molecular mass of the gas. The X-ray temperature T' is measured
by fitting the observed spectrum to a bremsstrahlung spectrum. Its radial profile is
particularly difficult to measure with the limited resolution of current X-ray detec-
tors'’ although evidence suggests that cluster cores are approximately isothermal.

This allows the temperature gradient term in equation (1.84) to be omitted for the

determination of core masses.

The next step usually taken is to assume a radial mass and gas density profile, p,,

and p respectively, in accordance with the King (1966) model for a self gravitating

pm(r) o (1 - (:_{)5) —3/2
plr) o (1 - (:_c)i) _3-’-”!2. .

The cluster core radius 7. and the parameter [ are obtained by fitting the observed

isothermal sphere,

flux profile to (Sarazin 1986),

g -38+1/2
S} o (1 4 (’—)2) (1.86)

Te

which is expected if the gas density follows the form in equation (1.85). Physically,
corresponds to the ratio of the specific kinetic energy of the total mass to the specific
kinetic energy of the gas in a cluster (Cavaliere & Fusco-Femiano 1976),

T 2
me,

g G
l{ !\.HT

(1.87)

where o, is the velocity dispersion of the previous section. Values of  obtained by
fitting the flux profile in this way are typically ~ 2/3 (eg. Lewis et al 1999, Edge &
Stewart 1991, Jones & Forman 1984) which implies that the gas is more energetic than

the matter in clusters. This is in disagreement with determinations of 4 calculated

T his should be possible however with the XMM space-borne X-ray telescope due to be launched

at the end of 1999
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directly from equation (1.87) using the measured temperature and velocity dispersion.
The problem is referred to as the [ discrepancy since for equilibrium conditions to
hold true, a value of 4 = 1 should be observed. One simple suggestion by Bahceall &

Lubin (1994) is that the discrepancy is due to an inadequately assumed mass profile.

Making the assumption that isothermal conditions do hold true in the cluster gives

the mass profile from substitution for p in equation (1.85) into equation (1.84),

30kpT ,’_3/?_'%
M (r) = £
Mir) mG  1+12[12

(1.88)

1.4.3 X-Ray, Virial & Lensing Mass Comparisons

The details of measuring cluster mass by exploiting the phenomenon of gravitational
lensing are left until Chapter 2. For the purposes of comparison however, a discussion

of the results of such evaluations is presenfed in this section.

The determination of cluster mass using virial and X-ray methods, as the previous
sections have shown, make assumptions based on spherical symmetry and equilibrivm
conditions within clusters. Studies have shown not only that substructure is present
within most observed clusters. but that this substructure can give rise to severe dis-
tortions in a cluster’s assumed kinematical properties (Bird 1994, Beers et al 1990).
Neray measurements arve also limited to probing only relatively small central regions

of clusters which host the X-ray emitting gas.

Another complication is that of cooling flows which act to destroy hydrostatic
equilibrinm. The rate of gas cooling through the bremsstrahlung process in a cluster
is proportional to the local electron density (Binney & Tremaine 1987). This means
that gas can cool quicker than it is heated at small radii where the electron density
is higher and hence flow into the cluster centre. This fHow is usunally sufficiently
slow in comparison to the sound speed that hydrostatic equilibrinun is approximately
maintained. however in some circumstances it may not be (Allen 1998). Clusters
which exhibit cooling flows however are generally virialized systems. Compensating
for the effects of cooling Hows often means that reasonable agreement between X-ray

and lensing mass can be acheived.



The technique of measuring cluster mass with gravitational lensing has the advan-
tage that it assumes nothing about the internal conditions of a cluster. As Chapter
2 explains, masses are inferred from the amount of deflection a light ray experiences
in passing a cluster; a measure that is independent of its internal motions. That is
not to say that lensing goes completely without its own set of assumptions however.
In order to calculate the size of light deflections, one typically measures distributions
of the ellipticities or the flux of galaxies lying behind a lens. Assumptions therefore
have to be formed about the intrinsic distribution of these properties. In measur-
ing ellipticities, the assumption usually taken is that the average intrinsic ellipticity of
galaxies over a large enough sample is zero whereas the distribution of intrinsic galaxy
fluxes must be determined by other means. Unlike the assumptions associated with
X-ray and virial mass measurements, those required by lensing are readily verifiable
by observing areas of sky in which there is a lack (or at least a negligible amount) of
lensing. Furthermore, any deviations from or uncertainties in these assumptions can

be unambiguously quantified and encompassed in an error analysis of the mass result.

Studies into the comparison of cluster mass determination methods show that in
general, X-ray and virial mass measurements tend to give consistent results (eg. Lewis
et al 1999, who found that M, /M, ey = 0.96 £ 0.07 with a sample of 14 clusters).

This is reflected in findings which confirm the behaviour that
oo VT (1.89)

as predicted by equation (1.87). Alternatively, lensing tends to give larger masses
than those due to X-ray or virial predictions on average. Consistency could be argued,
however, given the relatively large uncertainties involved. For example, the analysis

of ~ 30 clusters by Wu & Fang (1997) found that
Miens = (1.42 £ 0.99) My = (2.23 + 1.15) 87 My _ray. (1.90)

where fi; is the value of # obtained by fitting the X-ray flux profile in equation
(1.86). A later result by the same author (Wu et al 1998) made the conclusion that
in fact mass calculations from weak lensing are in agreement with X-ray and virial
masses whereas strong lensing tends to predict masses larger by factors of ~ 2—4 (the

distinction between weak and strong lensing is clarified in Section 2.1.5).
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Such arguments of comrse depend on the specific structure of the cluster under
serutiny. A cluster composed of two masses lying along the line of sight for example,
would be expected to give a larger virial mass than the lensing mass which would
be in turn expected to be larger than the X-ray temperature mass due to projection
effects (Reblinsky & Bartelmann 1999, Giradi et al 1997, Miralda-Escudé & Babul
1995). Other differences might arise from the possibility of clusters being supported
by a non-thermal pressure such as that due to magnetic fields (Ensslin et al 1998,

Loeb & Mao 1994).

The debate as to which is the most effective means of estimating cluster masses is
an ongoing one. The method provided by gravitational lensing is the most recent, mo-
tivated strongly by modern developments in telescope and computational technology
to enable both observation of deeper, clearer images and more complex image analysis.
As the work of Reblinsky & Bartelmann (1999) using N-body simulations distinctly
demonstrates, gravitational lensing predicts cluster masses far more accurately than
those from virial estimates. Opinions seem to be converging on the fact that given its
noun-parametric approach and limited, quantifiable assumptions, gravitational lensing

is the strongest contender for the accurate measurement of cluster mass.

1.5 Thesis Layout

The primary aim of this PhD has been to develop and apply mass reconstruction
techniques to lensing clusters. In particular, this work has concentrated on the ex-
ploitation of the lens magnification effect described in Chapter 2, first discussed as a

serious contender for mass reconstruction by Broadhurst et al (1995).

The work presented here naturally falls into three separate arcas. Following on
from Chapter 2 which details the theory of gravitational lensing and current mass
reconstruction techniques, Chapter 3 sees the application of one of these methods. In
this chapter. the gravitational effect of the cluster Abell 1689 on the number density of
observed background galaxies is investigated and a mass measurement is made (Taylor
& Dye et al 1998). Chapter 4 looks at a new approach to mass reconstruction. This

new method, which relies upon pixellization of the observed field of view. allows very

BE



accurate, self-consistent mass determinations (Dye & Taylor 1998). Finally, Chapter 5
studies the lens induced effect on the lnminosity function of galaxies lying behind Abell
1689. In collaboration with the Max Planck Institute for Astronomy in Heidelberg,
this work utilises the powerful technique of photometrically evaluating object redshifts

to provide an independent mass measure of the cluster (Dye et al 1999).
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Chapter 2

Mass Reconstruction Theory

Before beginning a defailed account of the lens mass reconstruction techniques used
m this thesis, an appreciation of the underlying theory of gravitational lensing is
required. This chapter therefore lays down the key elements of lensing theory in the
first half as a foundation for the mass reconstruction methods covered in the latter

half.

The latter half is broken down into two further sections to coincide with the fact
that reconstruction techniques are generally divided into two categories; those using
shear information and those using magnification data. Section 2.2 gives an account of
two different shear methods. Although the second half of Chapter 4 uses measurements
of shear, Section 2.2 is presented more for reasons of completeness than because it sees

application in this thesis.

Section 2.3 contains a more detailed discussion concerning mass reconstruction
using magnification data since this is the main theme throughout the PhD work pre-
sented here. Two independent ways of measuring magnification are given in this

section, cach of which are applied in the separate Chapters 3 and 5.



2.1 Lensing Theory

luterest in lensing dates back as far as 1919 when Eddington (1919) first confirmed
Einstein’s prediction that the gravitational influence of matter deflects light. By
measuring the positions of stars close to the Sun during the eclipse of 1919, Eddington
showed that its mass caused a deflection of ~ 1 arcsec. The first bona fide gravitational
lens was discovered by Walsh et al (1979) who showed from spectral measurements that
the quasar Q09574561 exhibited a double image. Since then. a multitude of lensed
systems have been discovered (eg. see the review by Narayan 1998), demonstrating the

use of gravitational lensing as an important and highly versatile cosmological probe.

2.1.1 Lensing by Point Masses

The propagation of light in arbitrary curved spacetimes is a complicated theoretical
problem. Fortunately, for most cases of astrophysical interest, it can be assumed that
the geometry of the Universe is closely deseribed by the Robertson-Walker metric and
that matter inhomogeneities which canse lensing are no more than local perturbations.
[t therefore follows that in the majority of lensing scenarios studied, the path of
light from a distant source is well approximated by unperturbed source-lens and lens-

observer photon paths with the deflection occurring in the vicinity of the lens.

This is depicted for the ideal case of a point mass in Figure 2.1 which shows a
photon path subject to a deflection with an overall bend angle &. This bend angle is
calculated by evaluating the integral of the acceleration perpendicular to the photon
path given by the perpendicular gradient of the lens gravitational potential @:

5 2 f
H:Z/V@M (2.1)

(
The integral here acts along the unperturbed photon path, an approximation called
the Born Approximation. With & = GM /|z|,  being the vector from the point mass
to a position on the photon path. the result of equation (2.1) is (Schneider 1992).

_ AGM 2R,
0= == (2.2)

2L &
(E s S

where M is the mass of the point mass and € is the impact parameter defined in Figure

2.1. Note that the deflection angle is twice the inverse of the impact parameter in units
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Figure 2.1: Deflection of light through angle & by a point mass.

of the Schwartzschild radius R;. Equation (2.2) holds true provided £ > R,. This
result from general relativity, predicting a deflection angle twice that derived from

Newtonian considerations, was verified by Eddington during the 1919 solar eclipse.

2.1.2 The Thin Screen Approximation

If light deflection occurs over a distance which is short in comparison to the total
length of the photon path then the deflecting mass distribution is said to be a thin
lens. In osuch circumstances, the geometrical depth of the mass distribution will be
a small fraction of the observer-source distance. This allows application of the thin
sereen approzimation i which the mass is considered to effectively lie in a sheet,

orthogonal to the line of sight.

Thick lenses prove to be much more complicated to analyse although can often be
separated into two or more thin lenses. Further complications arise in practice due to
multiple deflections along the line of sight. Fortunately, evidence such as the results
of studies into the lensing of the CMBR (eg. Bernardeau 1998) show that this is not a
major concern when measuring the lensing effects of massive objects such as clusters.
The large scale deflection caused by a typical rich cluster on the whole, completely

dominates any small scale deflections due to intervening mass.
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The relatively compact nature of most clusters means that the thin screen ap-
proximation may be applied. This is advantageous since a simple generalisation of
the deflection angle due to a point mass can be made. Projecting the volume mass
density p onto an orthogonal sheet which lies in the lens plane gives the projected

surface mass density 2 at a point £ in the lens plane as

£(6) = [ ple.2)dz (2.3)

where z is a co-ordinate along the line of sight. The deflection angle at £ now becomes

the sum of all deflections due to individual mass elements in the plane. namely,

1G B¢ ' — 2t
ae) -5 [ HE S

(

(2.4)

which 15 a two component vector.

2.1.3 The Lens Equation

The formal description of a gravitationally lensed systein is based on simple geometry.
Consider Figure 2.2 which illustrates an observer O at a distance Dy from the lens
plane L which in turn lies a distance D4 from a source S. Defining the line OSy as the
optical axis, the position of the source in the source plane is described by the vector
n from the optical axis. Similarly, the position of the intersection of the light from
the source with the lens plane is given by the vector €. It is assumed, as before, that

a 1s the deflection seen at the lens plane by the light ray.
The geometry in Figure 2.2 shows that the vector € can be expressed as.
E=n+(a—0)Dy,. (2.5)

Noting that 8 = £/Dy . equation (2.5) becomes.

[ ) 5 R
N = ]—)‘lé . D(tﬁa(‘E)- (2.6)

While equation (2.6) has been derived using Euclidean geometry. it can also hold
true in curved spacetimes. This is the case if the distances used in its derivation
satisfy the Euclidean result that two objects with a physical separation s subtending

an observed angle # are a distance sf away. Distances which adhere to this condition
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Figure 2.2: A typical lensing geometry with the observer at O, source at S and lens at L.

The path taken by the light vay is shown by the solid line which undergoes deflection é.

are angular diameter distances (see Section 1.1.8). Of course this result uses the
approximation that sin@ ~ @ for small #. In a typical lensing scenario with a lens of
diameter ~ 5Mpc at a redshift of z = 0.2, this works out to be in error by less than

oue part in 10°,

Simplification to equation (2.6) can be made if the physical lengths £ and n are

replaced by the angular variables,

£

=— . == 2.7
so that the deflection angle may be replaced by its scaled counterpart,
Dige. 1 [ o 60
0) = 'anoz—/ P 9.8
)=, AP0 = S g ep )
The dimensionless surface mass density or conwvergence, s, is given by,
S(Dtlg) vy Dy
i) = ———, Zer=-—5 2:9
(6) Zen S 4m G DgsDy ( )

41



which defines the critical surface mass density Log. Ina very qualitative sense, Zog is
a characteristic value which distinguishes strong lensing from weak lensing. Although
complicated by the effects of lens shear. it is generally true that surface mass densities
with 2 =~ Yo demonstrate strong lensing behaviour. The term ‘strong lensing” here
and indeed thronghout the rest of this thesis is taken to describe the leusing which

occurs in the vicinity of a critical line (see Section 2.1.6).

Re-writing equation (2.6) in terms of the scaled deflection angle and the quantities

B and 6 gives,

B=0-ad). (2.10)

This important equation is commonly referred to as the lens equation. It describes
the mapping between positions of objects in the source plane and observed image
positions in the lens plane. If the deflection angle is small, an invertible, one-to-one
mapping between the lens and source co-ordinates exists in which case the lensing
is weak. Strong lensing occurs when the deflection angle is larger and a non-unique

mapping results in the formation of multiple images.

2.1.4 Deflection Potential

Using the identity V ln|x| = x/|x|? enables equation (2.8) to be written in terms of

the deflection potential b, such that

a(8) = Vip(8). (@) =+ / 20'5(6') 1n |6 — 6 (2.11)
lens

T .
Ifurthermore, application of the identity
V2 In x| = 276%(x) (2.12)
to equation (2.11) shows that 4/ and » are related via Poisson’s equation:
Vih = 2k (2.13)

For this reason, lensing is often regarded as a two dimensional potential theory.



2.1.5 Image Magnification and Distortion

Section 2.1.3 made the distinction that strong lensing occurs in the near vicinity of
critical lines. Strong lensing is responsible for the arcs and multiple images observed
in many lensed systems. Less dramatic image distortions form due to weak lensing
effects. Weak shear introduces a bias into the distribution of image ellipticities and
orientations which can be calculated in the statistical mean (see Section 2.2.2). Image
distortion is an inevitable consequence of lensing and one which plays a vital role in

all lens-mass reconstruction techniques.

Image distortion can be quantified by the Jacobian matrix A of the mapping
obtained from the lens equation,

op;

AEM

= Aij = 045 — i (2.14)

where 1;; = 9%4p/90;00; and the result of equation (2.11) has been implemented.
Since the Laplacian of 4 from equation (2.13) is twice the convergence, £ in terms of
118
1 -
= P11 + 1pes). (2.15)
There are two other linear combinations of ;; which are important. These are the

components of the shear tensor:

N = 5 (%1 — P22), Y2 = P12 = Par. (2.16)

B | =

The Jacobian matrix in equation (2.14) can be consequently written as

]_ — e = =]
A _ F 71 8 2] (2-1?)

v l—k+m

Realizing that the above matrix is a rotation from a diagonal frame, the effect
of this mapping on the image of a circular source may be investigated. The rules
governing the transtormation of cartesian tensors (eg. Goodbody 1982) allow A to be

written as a rotation of this diagonal frame through an angle ¢:

A cos¢p —sing 1l —kH—7y 0 cos¢  sing
sing  cos ¢ 0 1l —&+7 —sing  cos
1 0 cos2¢p s _
= (1 —=k) - : (2.18)
0 1 sin2¢ —cos2¢
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The meaning of shear and convergence is now made intuitively clear. Convergence
alone causes an isotropic focusing of light rays leading to an isotropic magnification
of the source. Shear introduces anisotropy into the mapping with magnitude v =
(712 4+ 122 ? cansing the image of a circular source to be distorted into an ellipse
with orientation ¢. The value 2¢ appears as a trigonometric argument due to the
fact that the two orthogonal states of the shear, whose magnitudes are v, and 9, are
separated by an angle of 45 degrees (see Figure 2.3). This is a direct consequence
of the quadrupolar nature of gravitational fields. The elongation, e, of this ellipse is

given by the ratio of eigenvalues of A:

ajor axis lengtl l—k+vy
. 111‘1_]01 1.‘.\.1% ength . K+ . (2.19)
minor axis length 1 —# —7
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alone

a=r(l-x+y) b=r(l-x—y)

Figure 2.3: The effect of convergence and shear on the lensed image of an intrinsically circular
object. Top: Separated contributions from s and the components of shear to the distortion.

Bottom: The combined effect of & and ~.
The overall magnification, y, resulting from this mapping is given by the inverse
of the determinant of the Jacobian matrix which from equation (2.17) is

1
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Elliptical distortion of a circular image holds true for any type of lens mass dis-
tribution apart from a sheet mass distribution in which all material lies in a sheet of
constant surface density. Since s in this case is therefore constant, it must be true that
v = 0 from equations (2.15) and (2.16) and hence the image of a circularly shaped
background galaxy would remain circular. The size of such a galaxy (its solid angle
subtended on the sky), however, would be magnified by a factor of (1 — x)~2 as seen

from equation (2.20).

Surface Brightness Conservation

The fact that gravitational lensing is an achromatic process and that photons are
neither created nor destroyed signifies that the surface brightness of a lensed object
remains unchanged. The surface brightness, S, of an object relates to its flux f as

8=

I (2:21)
w

where w is the solid angle it subtends on the sky. It therefore follows that in a lensing
process in which the solid angle of an object is increased by a factor p, the observed
flux of the object must also be increased by the same factor to keep the surface
brightness constant. Although at first sight this appears to defy energy conservation,
integration of the flux measured at all points on a sphere encompassing the source and
lens would give exactly the same value as if no lens were present. Flux magnification

is an important result of lensing and forms a key role in the work outlined in this

thesis.

2.1.6 Caustics and Critical Lines

The magnification equation (2.20) predicts that infinite magnification results if the
condition 1 — x = 4+ holds true for any given point in the lens plane. Whilst this is
true in theory, real magnifications remain finite because real sources are extended and
the magnification averaged over an extended source is always finite. Infinite magni-
fication never exists in practice because the geometrical arguments used in deriving
the magnification equation break down in this limit. One therefore has to employ the

results of wave optics which always yields finite magnifications.



The closed curves lying in the lens plane defined by |A| = 0 are known as eritical
lines. These curves may also be mapped back onto the source plane via the lens
equation to form another set of curves referred to as causfics. Source objects lying
close to caustics generally have greatly magnified images. Sources which lie within the
region bounded by caustics are observed to have multiple images. In the hypothetical
scenario of an extended source moving across a caustic towards the centre of a lens,
three stages are observed: 1) The source brightens as it approaches the caustic. 2)
As the source crosses the caustic, another image appears at some point on the critical
line. 3) The newly formed second image splits into two hmages, one of opposite parity,
as the source continues moving and the original image of the source dims considerably
(see Schneider, Ehlers & Falco 1992 for further discussion). This process forms the
basis of the ‘odd number theorem’ which states that the number of images formed by a
lens is always odd, provided that the surface mass density is bounded and non-singular
so that the deflection angle is continuous and does not diverge. An odd number of
hmages is not seen in reality if two images are merged into one or if one of the images

is dimmed to make it undetectable.

Figure 2.4 demonstrates the odd munber theorem graphically for an arbitrary
circularly symmetric lens. In this graph. the deflection angle «(#) is plotted against
the radial co-ordinate 6 from the lens centre. The lens equation stipulates that images
form when # — 3 = «(#). Values of # at intersections of o with the straight line
) — (3 therefore correspond to the radial co-ordinates of the image positions. The mass
distribution in Figure 2.4 shows that a source at the radial co-ordinate 4 in the source
plane has three images at the radii 6, 65 and 64. This source lies inside the critical

lines at 8 = 0,..

2.1.7 Einstein Radius

One final noteworthy definition is that of the Einstein radius. Consider a circularly

symmetric lens with an arbitrary mass profile M (). The lens equation gives

Das 4GM(0)

1=6- -
DyDe 20

(2.22)

Due to the rotation symmetry of such a lens systen. a source lying exactly on the
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Figure 2.4: The three intersections at #,, > and @5 between the curve a(f) and the straight
line # — A3 correspond to the radii of images resulting from a source placed at a radius /.
Sources placed beyond the critical lines at . are not multiply imaged as the straight line 8 — /3

makes only one intersection with e.

optical axis (ie. 4 = 0) is imaged as a ring centred on # = 0 if the lens is supercritical
(ie. ¥ > Zep somewhere in the lens). Setting # = 0 in equation (2.22) gives the

radius of the ring:

AGM(05) Dgys \ '/
9,.1:( GM (%) D ) . (2.23)

o DyDg

This is the Einstein radius of the lens which scales as M /2.

With the necessary aspects of the fundamental theory of lensing now detailed,

the following section explains their use in the development of mass reconstruction

techniques.

2.2 Lens Mass Reconstruction using Image Shear

Observational attempts to obtain £ and hence lens mass can be crudely divided into
two categories: those utilizing shear information and those directly measuring mag-

nification. Although not strictly independent of each other (as they are both directly
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obtained from the deflection potential discussed in Section 2.1.5). they are commonly
treated so in practice. The information obtained from each is generally complemen-
tary and recent work has seen a hybridisation of both in an attempt to improve mass

estimates (see for example Bartelmann et al 1996).

The following discussion and indeed that of the next chapter refers in particular to
the mass reconstruction of clusters. These represent the largest known gravitationally
bound objects in the Universe and therefore case the practical difficulties associated
with detecting mass in this way. This short section specifically details mass recon-
struction using lens induced image distortions. Reconstruction from magnification is

left. until the following section.

2.2.1 Mass Contained within a Giant Arc

A simple means of estimating a lower bound on the mass of a supercritical cluster is
provided by calculating the projected mass within a circle traced out by a giant arc.
Giant arcs form when a source lies very close to the optical axis of the lens system.
The Einstein radius of the system is therefore approximately equal to the radius of the
arc. By combining equations (2.9) and (2.23), the mass contained within one Einstein
radius and hence a good approximation to the mass contained within the arc is given

by

3 I

M () = o

0f = m(0Da)*Scr- (2.24)

Expressed more qualitatively. the average surface density within a radius of 65
from the cluster centre is simply equal to the critical surface density. If the redshift
of the cluster and the source object are known then M (65:) can be evaluated. This
technique of course is only applicable to supercritical clusters with nearly circularly
symmetric mass distributions. Although knowledge of the mass is limited to the inner
arc region, Fort and Mellier (1994) note that this mass shows a robust agreement with

the mass caleulated from the cluster’s internal velocity dispersion.
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2.2.2 Shear Analysis

Lens shear introduces a bias to the distribution of orientations and ellipticities of
background galaxy images. The intrinsic variation of individual galaxy orientations
and ellipticities produces a random element which can be statistically removed by
averaging over a large enough sample. Fortunately, the scale over which typical cluster
lensing potentials vary is much larger than the average separations of background

galaxies readily observed and so this is quite easily achieved.

The shear field is related to the potential field through equation (2.16). Using this

and equation (2.11) shows that the relationship between k and 7 is:

. 1 I 200 .l (63‘} - 9:;)2 - (6-'1-' - 92)2
'}1{9) N ; -/“'“5 . h'(g )[(93-‘ - 9:!:.-)2 + ('(}y - 9;})2]2
g (6, — 6.)(8; — 6.)?
- - = 2 2 ! Y iy o . 995
@) = [ )t AEE (2.25)

where 6, and 0, are the z and y components of 8 respectively. Defining a complex
shear,

Ye(0) = 71(0) + iv2(8) (2.26)

and the function |
02 — 02 — 20,0,

Do) = 227
shows that the relationship between convergence and shear is a convolution:
E
) == / d20'D(0 — 6')1(6") (2.28)
T Jlens

This may be inverted via, for example, Fourier methods to give (Kaiser & Squires
1993)
I 7 e
K] = = / d20'Re[D* (8 — 8')7(6")] + #o (2.29)
lens

T .

where Re[] takes the real part of 4, and the complex conjugate D*. The constant g
illustrates the important effect that using shear, only differential lens mass may be
determined. In other words. £ can only be calculated up to an overall constant. This
phenomenon is commonly referred to as the sheet mass degeneracy. It is a direct result
of the fact stated in Section 2.1.5 that homogeneous sheets of mass produce no shear.

As will be discussed in later Sections concerning magnification analysis, this problem
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can be circumvented to allow an absolute measure of x and hence determination of

Higy-

Equation (2.29) forms the crux of what has become known as the ‘Kaiser-Squires’
mass reconstruction method. In order to proceed, the shear field must be measured.
Several elaborate techniques exist to do this (Bonnet & Mellier 1995, Kaiser, Squires
& Broadhurst 1995). Essentially. the background galaxies in an image are gridded into
bins and their average ellipticity is calculated for each bin. Using equation (2.19), a

quantity g called the reduced shear can be defined,

<g = <:i>=<ljh> (2.30)

where <> denotes taking the average in a particular bin. The fact that only this ratio
of v/(1 — k) can be obtained from measuring ellipticities re-iterates the point that the
method is insensitive to isotropic image expansions. This is seen by multiplying the
Jacobian in equation (2.17) by some constant A so that the resulting transformation

in #oand v is

l—w = AMl—8), 7= Ay (2.31)

which has no effect on the measured quantity in equation (2.30). Ideally of course,
the direct shear is required if the Kaiser-Squires method is to be used. In the weak
lensing limit such that & << 1, equation (2.30) shows that the observed, reduced shear

is approximately equal to the direct shear required in equation (2.29).

In general, v in equation (2.29) can be replaced by the term (1 — ) which then
vields an iterative equation for x. As shown in Seitz and Schueider (1995). this
integral equation can be solved in a few iteration steps. With this correction taken
into account. w is then no longer only determined up to an overall constant as in
equation (2.29) but becomes subject to the degeneracy shown in equation (2.31).
Although i theory A can take on any value, it is restricted in practice to ensure that

ris always positive. This similarly provides a lower limit on the mass.
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2.3 Lens Mass Reconstruction using Magnification

The use of flux magnification as a tool for the reconstruction of lens mass forms the
underlying theme of this thesis. First suggested by Broadhurst, Taylor and Peacock
(1995, BTP hereafter) in the weak lensing regime, they showed that the sheet mass
degeneracy can be broken by measuring the lensed distortion of the joint magnitude-
redshift distribution of background galaxies. Clustering of these background galaxies
introduces correlations in redshift space, unlike magnitude space. Separation of this
joint distribution into a redshift and a magnitude distribution is therefore necessary
for a treatment by maximum likelihood analysis. In light of this, the section presented

here distinguishes mass reconstruction using redshift from that using magnitude.

The effect of magnification to cause a geometrical amplification may also provide a
means of mass reconstruction. Although not considered in this thesis, one possibility
involves measurement of the shift in the distribution of galaxy sizes. The amplification
of inter-source spacing forms the second possibility in which a dilution of the projected
backeground number density can be directly related to the mass. In all cases of mag-
nification analysis, measurements must be compared with the observed properties of

unlensed field galaxies.

Section 2.3.1 quantifies the effect of lens magnification on the redshift distribution
of background source galaxies. This is not directly applied in this thesis but leads to
the integrated number count technique of Section 2.3.2 which is applied in Chapter 3.
Magnification of galaxy magnitudes, or more specifically their luminosity function, is
presented in Section 2.3.3. This is applied in Chapter 5. Finally, several methods to

convert magnification to x are covered in Section 2.3.4.

2.3.1 Reconstruction from Lensed Redshift Distributions

Representing the observed nunber density of galaxies in the magnitude-redshift space
mterval dimdz by the bivariate distribution N (1, z). the effect of placing a lens in front
of such a distribution is twofold. Firstly, flux magnification produces a translation in
the magnitude distribution (see Section 2.1.5). Secondly, a dilution of the surface

number density of objects at a particnlar magnitude occurs as a result of the isotropic

ol



expansion of not only image sizes, but also their angular separation. Labelling this
translated distribution as N'(1mn. z), its relation to the untranslated distribution is thus

N (1 2.51g pu(z). 2
K E) = N(m+25lgp(z),z) (2.32)
/i

The observed function N (m. z) is related to the luminosity function ¢(L. z) via
(L, 2)A LAV (z) = N(m, z)dmdz (2.33)

where L is the luminosity and dV(z) is the redshift dependent volume interval. In-
tegrating over apparent magnitude, the number density of objects at a particular
redshift, ng(z), is obtained:

ng(z)dz = dV (z) /'x (L, z)dL = ®[Lpin, z]dV (2) (2.34)

where L,y,in is the lower limit on the lnmninosity set by the flux limit of the survey and
the integral of the luminosity function is denoted by ®. Lensing effectively reduces
Lynin via flux magnification so that the effect on the redshift distribution through

equation (2.32) gives the lensed redshift distribution:
w(2)dz = = (Lo s 21V (2). (2.35)

Approximating ¢ as a power law,

B 1In®[L, ]
b L) | ) =SS0 2.36
. P2 dlnL (2.36)
allows equation (2.35) to be expressed as.

n'(2)dz = g (2)dz (2.37)

Equation (2.37) demonstrates the fact that the magnification effect is a competitive
one. Geometric magnification (ie. amplification of galaxy image size and spacing)
competes with flux magnification which results in the detection of extra galaxies as
faint objects are made brighter and brought into the survey flux limits. The winning
effect is determined by the value of 4. Three possibilities exist: 1) 4 < 1 in which case
the geometric effect dominates and the surface number density of galaxies is reduced
relative to the expected number. 2) 4 = 1 so that n' = ng and no lensing effect is
seen. 3) > 1 in which case the flux magnification effect dominates and more galaxies

are observed.



In their analysis, BTP use the R band counts of Metcalf et al (1994) via a model

luminosity function to generate the functions
ng(z) = 11,72”53(3}([)[—(2/(_}.5].)"?”]

,II('; ( Z }

0.15 4+ 0.6z + 1.12%2, (2.38)

Using these functions in conjunction with equation (2.37) for background galaxies
shows the effect of lensing on the redshift distribution n(z). Figure 2.5 plots the
quantity dP(z)/dz = n/(z)/ [ n/(z)dz for five different magnifications with a lens
redshift of z = 0.2. The plot shows that at small redshifts, angular scattering of
images by the lens dominates and the munber of objects drops. At large redshifts
however, the increase in the total number of observable galaxies dominates. Notice

that a node exists where these effects cancel.

C\Z T T T T T T T T T T T T T T T

dP(z)/dz

0 0.5 1 1.5
Redshift (z)

Figure 2.5: The expected lens distortion of a redshift distribution given by (2.38) for a lens
redshift of z; = 0.2. Five magnifications are shown ranging from 1 to 2 in steps of 0.25. Higher

magnifications produce a deficit of objects at low z and an increase at high z.

Having detailed the effects a lens has on a redshift distribution, the next step is
to devise a means of extracting the characteristics of the lens causing such effects. In
the considerations taken thus far, several asswinptions have been made which must be

addressed for practical purposes.



The first assumption is that knowledge of the intrinsic redshift distribution of
objects behind the lens has been obtained to enable comparison with the measured
lensed distribution. Obviously, the intrinsic background object distribution cannot
be measured directly. The Cosmological Principle must therefore be relied upon to
assert that the universe is homogencous and isotropic. This implies that a redshift
distribution measured from regions of sky in which no lensing is present will necessarily
be the same (once corrections such as our wmotion with respect to the microwave
background are allowed for) as the intrinsic distribution of the objects lying behind the
lens. In other words, from a practical point of view, the observed lensed distribution
must be compared with the average obtained from a set of unlensed observed areas of

sky.

This leads to the second assumption that the effect can be measured and is not
overwhelmed by noise. Several sonrces of noise must be allowed for: 1) Shot noise from
the limited number objects available for analysis. 2) Measurement errors on object
redshifts. 3) Galaxy clustering. The first two sources of noise rely upon the the depth
of the observations made and the accuracy and sensitivity of the instruments used.
The third is a cosmological source of uncertainty and can be estimated relatively easily
if the clustering power spectrum at the redshift of interest is known. The required

ris, o is then just the following integral in Fourier space (BTP):
5 : o dk )
o = [ A(E)|W (k)| T (2.39)
where W (k) is the Fourier transform of the spatial bin containing the objects and

A(k) = (272)~ ' P(k)K?, P(k) being the clustering power spectrum of Section 1.1.9.

Likelihood Analysis

Armed with information about the practicalities of performing such redshift distribu-
tion measurements. a method of estimating a lens” surface density can now be tailored.
The obvious choice of tactic is the maximum-likelihood method. Dividing the redshift

axis up into ¢ bins. the required likelihood function is
q
L) x H Pln|A(y1. 2)] (2.40)
!
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where P[n|A] is the probability of measuring n objects given an expected content of A.
An estimate of the lens magnification g and hence its surface density (see Section 2.3.4
or Chapter 4) is therefore obtained by maximizing £ with respect to p. A measure
of the uncertainty in this maximum is also readily obtained from the width of the

likelihood curve between the two points corresponding to
InL = In Lypay — 0.5A%3 (2.41)

where Ax? is the change in x? appropriate for the desired confidence level (eg. for
a single maximum likelihood parameter as is the case here, lo errors correspond to
Ax? = 1). Another estimate of the 1o errors can be obtained by assuming that the

likelihood distribution is Gaussian or at least near-Gaussian so that
&?InL =i
O 22 { ——5 (2.42)
i

The size of the redshift bins must be chosen so that the statistical independence
assumed in equation (2.40) is valid. If it were the case that the redshift distribution of
background objects was purely Poissonian, then it would be possible to make the bins
infinitesimally small and have only one object per bin. Because of galaxy clustering
however. this is not the case. It is therefore necessary to choose a bin width which
is larger in radial extent than the coherence length of clustering. Adjacent bins are
always subject to the effects of clustering, although this effect is reduced by using
larger bin sizes. Very large bins however, produce a large uncertainty in the likelihood
analysis and therefore an optimum bin size is one which reduces likelihood errors as
much as possible whilst ensuring that the correlation coefficient between adjacent bins

is a negligible value.

In order to carry out the likelihood analysis, it is necessary to define the probability
Pln|A(je. z)] in equation (2.40). A useful model to adopt for this is the lognormal
model (see for example, Coles & Jones 1991). Justification of the lognormal model
not only comes from observations dating back to Hubble, who realised that the surface
density of galaxies was lognormally distributed, but also from the fact that it modifies
the canonical Gaussian density distribution to correct the inaccurate assignment of

positive probabilities to negative densities.

The lognormal model works by constructing a new density contrast, ¢, from a

n
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density contrast, 4, described by the Gaussian distribution.

o)
Pu(d) = J exp (—lh—z) (2.43)

V2o 20
such that,

1+6" =Aexpd (2.44)

The normalisation coefficient A is calculated by imposing mass conservation such that,
- ~ = - -
(1+d8)=1=A(expd) = A/ do Pg(d) expd (2.45)
-0

Since

o ) i a?
/ dd P (d) exp d = exp 5 (2.46)

J—oa

the normalisation factor is therefore,

and hence the lognormal density perturbation is given by,

146" = exp(d — 0?/2). (2.48)

To incorporate finite muubers of galaxies, the assumption is made that the observed
number of galaxies, n, is Poisson distributed with an expected munber, A(j2, z) which is
in turn subject to the lognormal fluctuations described. The probability Pn|A(u, )]
vequired by the likelihood analysis is then expressed in terms of the Gaussian and
Poisson distributions by the compound distribution,

dd Ppln|Xexp(s — a2/2)] P () (2.49)

Pln|A(p, 2)] = /_%

where the Poisson distribution is.

“—}\/\n

7!

Ppln|A] = (2.50)

The expected number of objects in each bin, A, is the munber anticipated given a

particular magnification. From equation (2.37) this is therefore simply

" ! a2 .
e T E AT e /\”‘u.'i["l_l exp ( . (2.51)

£y
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Here, Az is the redshift bin width and the normalisation factor appears explicitly
for simplification of equation (2.49) upon substitution. The quantity A is therefore
defined as

o2

Ao = no(z) exp s Az (2:52)

&

so that the complete expression for Pn|A(su, z)] is,

Pln|A(p, 2)] déexp | —=—— — AguPP e + 6n (2.53)

n! I s 20%(z)

_Duerp o 5

The integral in this expression must be evaluated numerically. Once a suitable
model or fit for ng(z), f#(z) and o(z) has been achieved for the unlensed galaxy popula-
tion, equation (2.53) can be used with equation (2.40) to find the maximum-likelihood
magnification. The surface mass density may then be derived by using one of the meth-
ods detailed in Section 2.3.4 or by the pixellized reconstruction method described in

Chapter 4.

2.3.2 Integrated Number Counts

In practice, it is not always possible or feasible to measure a sufficient number of
redshifts for galaxies behind a lensing cluster in order to obtain a reliable n'(z) required
by equation (2.37). Observations will only typically give the infegrated number of
objects visible behind the lens in which case modifications to the analysis detailed so

far must be made.

The modification comes in the form of an approximation. By observing objects
in more than one optical pass-band, it is possible to apply colour selection criteria to
choose objects known to lie beyond a particular redshift (see chapter 3). The majority
of objects selected in this fashion will also be subject to an upper redshift limit owing
to the flux limit of the observation. If the redshift limits are chosen in such a way to
ensure that [4(z) varies slowly over this interval, integration of equation (2.37) over z

can be performed by assuming /4 is constant to give,
n' = = ng. (2.54)

These integrated number densities are subsequently used to replace their redshift

dependent versions in equation (2.53) for the likelihood determination of p.
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Observations show that the value of 4 is dependent on the colour classification of
galaxies observed (Broadhurst 1995). As equation (2.54) shows. 3 controls whether
the number of objects observed behind a lens is enhanced or decreased relative to
the intrinsic mumber expected. From observations of far field galaxies in the V and
[ passbands, Broadhurst notes that the huninosity function of objects selected with
the criterion V. — 1 < 1.0 yields a value of 4 >~ 1.0. The magnification effect would
therefore not be noticed in such galaxies. Alternatively, Broadhurst finds thaf faint
blue far field galaxies selected by V —1 > 1.5 give a value of # =~ 0.4 and hence would

show a clear depletion in numbers, relative to the expected number (see Section 3.2.1).
A prediction of this effect can be made for an isothermal sphere, characterised by
KX = , Y=k (2.55)

(see Appendix A.2) where # is the radial distance from the centre of the sphere.
Substituting this into equation (2.20) gives

.|""
ey TRk ER
= ‘l 7 (2.56)

where . is the radius of the critical line. Using this with equation (2.54) shows how
n'[ng varies with :

= |1 — =% (2.57)

n' 9. 11—#
-

1

Counting the munber of lensed galaxies in annuli centred on a cluster and com-
paring with the expected number would therefore show the behaviowr described by

equation (2.57). Figure 2.6 illustrates this for different values of f3.

2.3.3 Reconstruction from Lensed Luminosity Functions

In a similar fashion to the way in which magnification can be obtained from redshift
distributions, the maximumm-likelihood methodology may be applied to huninosity
functions.  Because of the effects of galaxy clustering. a sufficiently large bin size
was chosen fo obtain the statistical independence required by the formation of the
likelihood function in equation (2.40). In the case of magnitude space. each galaxy
is assumed to be drawn at random from the luminosity distribution. Assuming that

galaxy luminosities are independent of environment, each galaxy magnitude therefore
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Figure 2.6: Prediction of radial variation of number counts of objects in annuli centred on

an isothermal sphere for different values of /3. . is the critical line radius.

has complete independence from the others in the sample. The bins in magnitude
space can be subsequently made infinitesimally small so that each bin contains only

one galaxy. Equation (2.40) is therefore modified to the following:
L(p) o [ [ P[Mi|p, 2] (2.58)

where M; is the absolute magnitude and z; is the redshift of the ith galaxy observed.
The index 7 runs from 1 to the total number of galaxies. Similar to equation (2.32) in
Section 2.3.1, the shift in the absolute magnitude distribution at each redshift com-
pared with the intrinsic huninosity function ¢(M, z) can be modeled by the probability
density

d(M + 2.51g pu(z), z)

2 A/ — =
FiMlgel [H(M + 251g u(z), z)dM (2-59)

which allows the likelihood equation (2.58) to be evaluated once a form for ¢(M, z)
has been obtained. In practice, the redshift dependency of p is brought about directly
by the redshift dependence of x (see equation 5.34). As was the case with redshift
distributions. the huninosity function or magnitude distribution must be determined
from observations of unlensed regions of the sky. The usual functional form chosen

for ¢p(M, z) is the Schechter function (Schechter 1976), a result derived directly from



the Press-Schechter (1974) model for mass formation in the Universe:
H(M, z) = ¢*(z) 1001 M- =M)(1+a) o, [—10”-"“‘*’-‘-“”} (2.60)

where ¢b'. M, and v are determined by fitting to the observed magnitude distribution
(see Section 5.3.3). The maximum likelihood magnification and its error are evaluated

in exactly the same manner discussed in Section 2.3.1.
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Figure 2.7: Maximum likelihood determination of lens magnification using luminosity func-

tions. Top: A Schechter function (M, = =21, o = 1.5, solid line) is lensed with p = 2.5
{dashed line). Bottom: Maximum likelihood analysis calculates i = RALT

Figure 2.7 shows the results of maximum likelilhood determination of [ using a
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simulated luminosity function. The solid line in the top half of the figure is the
intrinsic luminosity function from which 500 objects all lying at a fixed redshift are
randomly associated magnitudes. As a simple proof of concept, this distribution is
then lensed by a sheet-like distribution of mass. Since all objects lie at the same
redshift and the magnification of the sheet is constant across it, all object fluxes are
amplified by the same factor. This results in a simple translation of the luminosity
function shown by the dashed line in the top plot of Figure 2.7. Of course in reality,
the distribution of source redshifts gives a non-trivial transformation of magnitudes

and hence a simple translation such as this is unlikely.

In practice, the form of the intrinsic luminosity function of galaxies lying behind the
lens is known from independent observations of un-lensed regions of sky. Calculation of
the probability in equation (2.59) required by the likelihood analysis is then possible,
assuming this form also holds true for the lensed galaxies. In this demonstration, the
form of the intrinsic linninosity function is already defined as the Schechter function
described by M, = =21 and o = —1.5 and so the maximum likelihood estimator is

completely defined.

The bottom half of Figure 2.7 shows the maximum likelihood curve formed by
plotting equation (2.58) against . The input amplification applied by the sheet lens
of p = 2.5 is calculated by the likelihood as ;@ = QDITE‘;; These errors are determined
from the width of the curve at In(L,,4./L) = 0.5 (see Section 2.3.1). This serves to

demonstrate the point made in Section 2.3.1 that likelihood distributions are generally

not Gaussian but may be approximated so.

2.3.4 Conversion of it to &

Having obtained a measure of magnification, the next step is to determine the surface
mass density responsible for the lensing. Rather than work with the real surface mass
density, it is more convenient to work with the scaled quantity x. This can be easily

transformed to its equivalent real value using equation (2.9).

Transforming magnification data into s is a non-trivial exercise. Equation (2.20)

in Section 2.1.5 shows why. In order to calculate s from g, the shear field must be

61



known. There are several ways in which this problem may be dealt with. Some of
these are listed here. Only the last two, are used in this thesis: that of the x estimator

and that employing the axially symmetric solution.

Direct Measurement of Shear

The most obvious way is by simply measuring the shear field through observations of
ealaxy ellipticities as described in Section 2.2.2. Although using this measured shear
field directly with magnification information in equation (2.20) would yield s, this
is not the most efficient means of doing so. This is because as equations (2.15) and
(2.16) show, x and v are not completely independent quantities, but are fundamentally
related via the deflection potential. This fact can be exploited to considerably improve
the signal to noise of the reconstruction as shown by Bartelmann et al (1996). Their
method determines the least-y? fit to the values of the potential measured in bins on

a rectangular grid by minimizing the quantity

(2.61)

where g; are the two components of the reduced shear given in equation (2.30), with
summation being implied over index i and r = p~'. The quantities with hats are
calculated from the potential field being fit and those without are the measured guan-
tities. The summation here is over all grid bins and is weighted by the variances of g

and r from the data.

Bartelmann et al (1996) have applied this technique to simulated galaxy clusters
and typically find that they can reconstruct their cluster mass to within £10% of the
correct value. While this method clearly works. it requires measurement of the shear
field which is not always possible with images observed for the purpose of extracting
magnification information.  This is because poor seeing acts to smooth away the
coherent lens-induced ellipticities of images of especially faint galaxies but does not

drastically alter the ability to detect and measure a galaxy’s brightness.
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Iterative Techniques

Another technique which can be used to overcome the lack of shear information is
the iterative method illustrated in Figure 2.8 (see also, for example van Kampen
1998). Starting with an initial guess for x (by the estimator method described later
for example), an initial estimate of the deflection potential is formed. This is achieved
by using either equation (2.11) or more efficiently, in Fourier space using the Fourier
transform of equation (2.15) to give!,

2k(k)

"1 2

where ky and ko are the components of k. (k) is then used to calculate the compo-

nents of shear in Fourier space by using the Fourier transform of equation (2.16),

nk) =~k ~ Kybik)
vo(k) = —kikop(k) (2.63)

Fourier transforming back into real space, v is then used with equation (2.20) to
form a new estimate of x which completes the iterative cycle. This is repeated until
sufficient convergence has been reached. Unfortunately, the iterative technique only
works for lenses which are sub-critical (Dye & Taylor 1998). The method is extremely

unstable when critical lines are introduced and divergence occurs as a resulf.

Calculate ¥ Calculate Y
from from W

Input x
estimate

Calculate new ¥ from
i 2 3
p=(l-x)-v

Figure 2.8: Iterative procedure to calculate & given only information about fu.

Chapter 4 demonstrates a more sophisticated iterative technique developed by
Dye & Taylor (1998) which does not suffer from divergence and does not require shear

information.

"Here, the result that the Fourier transtorm of df(x)/de is —ikf(k) is used.
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r Estimators

A very quick and simple means of estimating x is by use of the k estimator (Taylor et

al 1998, TY8 hereafter and also van Kampen 1998). The principle elaborates on the

idea first presented by BTP that in weal lensing regimes where v < 1 and v < 1,
2

the termms £2 and % can be neglected in the magnification equation (2.20) so that a

weak estimation of s is given by
1 .
Nweak = 5(1 - 1“) (2()4)

Because this approximation is extremely inaccurate for values of approximately ~ >
0.1, T98 introduced two estimators for x which can be used in the strong lensing

regime.

The idea relies upon the fact that realistic cluster mass distributions lie somewhere
between that of an isothermal sphere and that of a homogeneous sheet of matter.
Sheet-mass distributions were discussed in Section 2.1.5 and shown to be characterised
by

k= constant , v =0. (2.65)

The mass distribution of an isothermal sphere as covered in Section 2.3.1 is similarly
characterised by equation (2.55). Using these two results for v in equation (2.20)

therefore produces two estimates for s,

hy =h(y=0) = 1—Pu'/?

1
e =k(y=r) = 5{_1 — P (2.66)

where P is a parity which flips from being +1 outside regions bounded by a critical
line to —1 inside. The sheet estimator, ki, provides an upper bound on x and a lower
bound is provided by #_. the isothermal estimator. Before a critical line is crossed, it

is generally true that Kpeer > Ko > e > F_.

Figure 2.9 shows a scatter plot of inverse magnification against s for a simulated
cluster in a cold dark matter universe (van Kampen & Katgert 1997). The Boiveds
estimator demonstrates its inaccuracy after x> 0.1, overestimating & by up to a
factor of 2. The wy estimator is seen to act as a strong upper bound until the critical

line 1s crossed. This is as expected since in a real cluster. v > 0 always holds true so
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that the upper limit provided by x4 = k(y = 0) cannot be crossed. k_ only provides
a reliable lower limit for £ > 0.2 however. van Kampen (1998) finds that for the most
massive simulated clusters, this limit must be extended to & > 0.4. This stems from

substructure in the outskirts of clusters where s can be low enough to result in the

condition that s < . This exceeds the lower limit set by k_ = s(y = k).
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Figure 2.9: Variation of inverse magnification with s for each pixel of a simulated cluster.
Superimposed onto the plot are shown the estimators sy (solid), s (dash), Kyeqar (dot) and

ti. with ¢ = 0.7 (dot-dash).

The fourth estimator, s, shown in Figure 2.9 is a parabolic approximation moti-
vated by cluster simulations and the fact that it has an invertible p(x) relation (van
Kampen 1998). Behaving essentially as an average of s and r_., r. is chosen to vary

as v x /K. It is convenient to express the constant of this proportionality as

== {1 —(:]\/g (2.67)

50 that the inverse magnification is simply given by

p b = (ke — ) (ke — 1/€)] . (2.68)



The constant ¢, can be adjusted to vary the two critical lines which occur when s = ¢

and k= /e

Figure 2.10 graphically illustrates how the introduction of a second critical line
has the consequence that four solutions to equation (2.68) for w~ exist. This is only
true for values of ! which give real solutions. The possibility can arise that when
attempting to estimate » in the region between both critical lines (the shaded area in
the plot) p~ ! is larger than the maximum value permitted by the parabolic estimator
in this region. If the critical line region has been incorrectly defined or if x=! is in

error, this can occur. In this case, the estimator breaks down and the estimators s

and x_ must be used instead to provide an upper and lower bound on k.

N\ S=+1 S=+1 | S=— S=—-1

Figure 2.10: The estimator #, showing parities P and S. The grey area between the two

critical lines can give non-physical results for # if g~ is too large.

The four solutions for r,. from equation (2.68) are given by

= l z 2] £ 2 ) E 2] ¢ .
o = 5 ((r' +1) — b\/(r— +1)2 —de2(1 — Pu )) (2.69)

The parity P has the same function as in equation (2.66) except now, it can fip twice

as the outer and then the inner critical lines are crossed. P appears as a result of
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the modulus operator in equation (2.68). The second parity S is due to the parabolic
nature of equation (2.68) and is the sign of (¢* + 1)/2¢ — k. Figure 2.10 shows the

various parity flips described. Note that x, becomes k. when ¢ = 1.

Axially Symmetric Lens Reconstruction

If one makes the assumption that a lens is axially symmetric, then a non-local func-
tional relationship between & and « is fixed. Armed with magnification information,

a self-consistent x and « profile can be calculated with an iterative procedure.

Axial symmetry allows the geometry deseribed in Section 2.1.3 to be simplified
to one dimension. This is explicitly seen by considering the scaled deflection angle
in equation (2.8). By symmetry, the impact vector @ may be restricted to lie along
the positive #; axis in the lens plane such that 8 = (#,0). Similarly, using the polar

co-ordinates 6" and ¢ to write
0' = (0' cos ¢, 0’ sin ) (2.70)

with 0 > 0 and 6" > 0 shows that the components of the deflection angle may be

written as,

1 00 2T g — 9’ Ccos r/)
= = 9! 19! % 9!‘ ] 1 - y
1 (0) - /D d6'r(6") § "”92 + 62 — 200’ cos ¢
—0' sin ¢

1 00 2T
as(0) = -?l;/n 0'do' k(6" /“ d¢ (2.71)

02 + 02 — 200" cos ¢

The restriction enforced on the direction of the impact vector combined with the
axial symmetry means that oy vanishes. The inner integral of equation (2.71) for «

adheres to

27 9 — 8 cos 2r/0 for 0 <6
/ (l(p 7l Cos (/} . / (272)
0

02 + 62 — 200 cos (/) N 0 for 6 >0
(see Appendix A.1) and thus the matter contained within a disk of radius 6 about the
centre of mass contributes to the deflection angle at 8 as if it were all located at that
centre. Matter outside this disk has no influence on the deflection in a similar manner
to the effect of gravitational forces from spherical mass distributions. Equation (2.71)

therefore becomes

9 )
a(0) = () = 5 A 0'd0'k(0") = 07(0) (2.73)
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where %(#0) is the mean value of x within a cirele of radius 6.

To arrive at an expression which relates # to 4. the lens equation of Section 2.1.3

must be employed. Combining equation (2.10) with the result of equation (2.73) gives

B =6(1—-7%(@0)) (2.74)

so that the Jacobian of the transformation is

d
o

1-% O Ldr [ 62 6,0,
_ . pHE | M 1 (2.75)
0 1-r) 949\ 96, 62

@

A=

=]

Comparing the components in equation (2.75) with those in equation (2.17) shows

that the components of v are therefore

1 v 9\ dE
Moo= 2—9(91 —92) T
9|92 dm
9 = o — 2.76
W 0 o (2.76)
and hence
¢ rdw\*
2 _ 2 9 UV~ (OK
V=% FTBp= 1 (cl()) (2.77)
From equation (2.73).,
drn 2
—_—= - s — R 278
a6 =g (2.78)
which upon substitution into equation (2.77) relates v and s via
v = (k= R)% (2.79)

The next step is to include amplification. This is simply achieved by substituting

cquation (2.79) into equation (2.20) to give
p=1-R)(l-26+7)"". (2.80)

The surface mass density and shear can now be solved through series solution by
dividing the surface mass density into consecutive annuli of equal width. Labelling
the iumermost annulus (a disk) with the index n = 1 and segregating % into an inner

tern, 7, — 1. and a surface term gives,

2

;‘-IH - ”H- | T "‘-u‘ (281}

n+1
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-1 18 given by the discretisation of equation (2.73),

2 n—1
m Z T, - (2.82)

m=1

-1 =

Writing equation (2.80) in terms of quantities relating to the n'” shell and using the

parity of Section 2.3.4 gives
Pzt =1 =81 — 2% 4 Fa): (2.83)

Using this with equation (2.81) gives, upon rearrangement,

n+1
Ky = L@f)‘{“ +1—(n-1)np-1 —
Rl(n—1—(n+ Dn.—1)*+ 4?:.?;;:,}‘]”2}. (2.84)

This is the axially symmetric series solution for x. As in Section 2.3.4, the image
parity P flips about critical lines. R is a parity similar in nature to the parity S of

Section 2.3.4 which permits higher solutions of &.

The freedom of choice for both parities in equation (2.84) is usually constrained
in practice by the observed position of critical lines. This leaves only one degree of
freedom: choice of the parameter 7g. This is in fact limited to some degree by the
requirement that non-physical solutions should be avoided. Expressed mathematically,
this means that the condition 72 > Pp~! must be satisfied for a given magnification
profile. Combination of equation (2.79) and equation (2.81) shows that 7y = v so
that the freedom is on the shear within the first annulus. The choice of v, has only
a small effect on the overall k profile obtained. This is demonstrated in Section 3.2.5

where the axially symmetric solution is applied to Abell 1689.
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Chapter 3

Magnification of Source Number

Counts by Abell 1689

This chapter sees application of the integrated number count technique of Section
2.3.2 to the cluster Abell 1689 (RA,Dec.[J2000]: 13"11™34%, —01°21'54"). The work
presented here forms the predominant result of the publication by Taylor & Dye et
al (1998). Studies info the mass of the cluster Abell 1689 from X-ray temperature
measurenents (Yamashita 1994), virial velocity determinations (Teague et al 1990,
TCG hereafter) and shear analysis (Tyson & Fischer 1995, Kaiser 1996) all conclude
that it is one of the most massive clusters in the known Universe. This therefore

makes it a prime target for the verification of the magnification method.

3.1 Data Acquisition

Observation and basic reduction of the data contained in this Chapter was performed
by T.J. Broadhurst and N. Benitez of the University of California, Berkeley in collab-

oration with the Institute for Astronomy, Edinburgh.
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3.1.1 Observation of A1689

Images of A168Y were taken in the V and I bands during a run in February 1994 at
[ESO’s NTT 3.6m telescope. Bach band was observed for a total integration time of
6000 seconds in a field of view covering ~ 35 square arcminutes centred on the cluster
(see figure 3.1). Seeing was similar in both bands, with FWHM of 0.8"” and a CCD
pixel scale of 0.34”. The passbands and exposures were chosen such that the cluster
[£/S0 galaxies would be bluer than a good fraction of the background, requiring much
deeper imaging in the bluer passband for detection. The cluster was observed to a

limiting magnitude of 1=24.

The images were de-biased and flattened with skyflats using standard IRAF pro-
cedures. Large scale gradients in brightness of a few percent remained after the flat-
fielding process. These were removed by correcting with a flat field obtained from
the images themselves by masking objects and smoothing the result. This gave a

homogeneous photometry across the field with a lo deviation of 0.1 magnitudes.

3.1.2 Object Detection

Determination of object magnitudes in each of the co-added V and I band images was
made possible through use of software called SExztractor (Bertin & Arnouts 1996).
SExtractor is essentially an object extraction algorithm which operates on FITS im-
ages to produce a catalogue of detections. An object in SExtractor is defined as a set
of connected pixels which exceed a user-defined threshold above the background. By
calculating the second order moments of the light distribution in these pixels, SEx-
tractor fits an ellipse to every detected object and outputs elongation and orientation

to the catalogne.

The integrated fluxes within the fitted ellipses of all detected objects are then
calculated and converted to magnitudes. A calibration offset must usually be applied
to these magnitudes since SExtractor makes the assumption that the images were
observed in photometrie conditions. that instrument transmission is 100% and that
the detector gain is unity (ie. the number of electrons output by the CCD circuitry is

equal to the mumber of photons striking the CCD). Calibration was not necessary in
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Figure 3.1: Post-reduction I band image of Abell 1689. The cluster centre lies in the north-
west uadrant. Note that all stars, determined from their high brightness and low FWHM,
have had their centres and vertical leaking removed. A logarithmic grey scale is used to

highlight faint objects relative to the bright cluster members.

this case since only the difference between the V — I colour of the background objects
and the V — I colour of the cluster galaxies was required for the purpose of object

selection (see Section 3.1.3).

Objects (consisting of 8 or more connected pixels) in the V and I band images
of A1689 were detected with a threshold of 2o above the background noise to yield
a total number of approximately 4000 objects in each. The inevitable consequence
of choosing a threshold as low as 20 means that roughly 5% of background pixels
are above this limit and hence several spurious objects are detected. The majority
of these spurious objects were removed from the object catalogue of each frame by

performing a co-incidence match between the V and I object catalogues. By comparing
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the catalogue of matched objects to the images, an optimal separation tolerance of
about 2 pixels was chosen. Several spurious objects still remained after the coincidence
match however. As Figure 3.2 shows, a large number of noisy objects were detected
around the edges of large extended objects, these areas being above the detection
threshold. These remaining objects were removed by hand by comparing with the

images in each band.

Figure 3.2 shows the central parts of A1689 in both bands and the objects detected
in ecach. The matched objects in this part of the cluster are shown in the bottom part
of Figure 3.2, each having an associated V and I magnitude. Approximately 3000
objects in total were matched, demonstrating that ~ 25% of the objects detected at

the 20 threshold were spurious.

3.1.3 Object Selection

To measure the lensing effect on the number density of background objects, distinc-
tion of cluster and foreground objects was necessary. This was achieved through the
identification of objects on a colour-magnitude diagram formed by plotting the V —1

colour against T magnitude for every object.

Figure 3.3 shows the colour-magnitude diagram obtained for the 3000 objects
detected in the field of A1689. The cluster objects were identified by their strong E/SO
colour sequence which forms the well defined horizontal band across the diagram at
roughly V—1 = 1.5. The sharp upper edge of this band represents the reddest galaxies
in the cluster. Assuming that the cluster galaxies are of a similar nature to the field
galaxies. this means that objects which lie redward of the cluster E/SO sequence must
be redder because they lie at higher redshifts. In other words, objects which lie in this
part of the colour-magnitude diagram represent a population of background objects.

These will be referred to as the red background galazy population.

The red background galaxy population is used throughout this chapter to measure
the lensing effect of A1689. The reasons for this are twofold. Firstly, as explained
immediately above, one can unambiguously separate the population from the cluster

galaxies and hence minimal contamination of the sample is expected. The second
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Figure 3.2: V and I band images and object detections of the central region of A1689. The
V and I objects were matched using a position coincidence test with an optimal separation

tolerance of 2 pixels to produce the bottom plot.
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reason, given in Chapter 2, is that field galaxies with V —1 > 1.5 have a shallow

number count slope which maximises the lensing signal detected.
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Figure 3.3: Colour-magnitude diagram of the 3000 matched objects around A1689. Note the
well defined horizontal cluster sequence. Although not strictly necessary, a rough calibration

was provided from the cluster magnitudes of Gudehus & Hegyi (1991).

Figure 3.3 shows the limits used to identify objects. The value of V — I=1.6 was
selected as the lower cut-off for the red background galaxies. The I band magnitude
was limited to 20 < I < 24 and the V band magnitude limit of V < 28.0 was enforced
to ensure completeness of the sample. A further colour cut of V—1 < 3.5 was applied
where the reddest galaxies are expected to cut off given the survey magnitude limits.
Anything redward of this limit was considered unreliable (possibly a bad magnitude
determination by the extraction software or incorrect association of objects between

the both bands during the matching process).

To isolate the bright cluster members and foreground contaminants, all objects
with V. —1 < 1.6 and I < 22 were selected. Isolation of the faint cluster objects

is made impossible by the fact that these objects are located in the same region of
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colour-magnitude space as the expected location of faint blue background galaxies (ie.
roughly I > 22 and V —1 < 1.0). Fortunately, this is not a major concern because
the cluster and foreground identified objects are ultimately only used to estimate the
obscuration of the red background objects (see Section 3.1.4). The faint and hence
small cluster objects therefore only play a small part in the obscuration compared

with the larger and brighter members.

Since the identification of cluster members is important to remove contamination
of the background sample, the colour selected candidates were cross-checked with the
photometric redshitt data presented in Chapter 5. The photometrically identified

cluster objects were in good agreement with the colour selection.

3.1.4 Masking

Having identified the various populations on the colour-magnitude diagram, a mask
to eliminate areas obscured by cluster and foreground objects (the mask objects) was
produced. This was necessary to quantify the effects of obscuration bias in the surface

density of background object counts.

Some experimentation was required to choose the most suitable parameters output
by SExtractor for creation of the mask. Although SExtractor outputs the semi-major
and semi-minor axes of detected objects, these are computed from the maximum and
minimum FWHM of the object profiles and as such are typically too small to represent
the true obscuration (see Figure 3.4). Attempts at scaling these to match iiage object
sizes proved unfeasible due to the lack of a global scale factor. An alternative means
of obtaining ellipse sizes was achieved from using the detected number of pixels lying
inside an object’s lowest isophote. Representing this quantity as n, and setting it as

the area of an ellipse with semi-major and semi-minor axes a and b respectively gives

b= ﬁ(1 —e) (3.1)

where the ellipticity, e, is defined here as

@ —b

e =

- (3.2)

(Note that this definition used by SExtractor differs from the more common definition:
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¢ = (a—b)/(a+Db).) The ellipses generated in this way were found to be far more

reliable as demonstrated in the bottom right-hand section of Figure 3.4.

- [ ] [ ]
) @
- . . .
! . e ° - Mask objects determined
P * . with a and b calculated via

” - 8 . ® FWHM.

Mask objects determined
with a and b calculated from

Portion of A1689 lowest isophote area.

Figure 3.4: Comparison of objects defined using semi-major and semi-minor axis informa-
tion directly output from SExtractor with that calculated from the area contained within an

object’s lowest isophote. The latter allows the most accurate mask definition.

Figure 3.5 shows the final mask used together with the red background galaxies
plotted as open circles. Some of the larger stars not properly accounted for by SEx-
tractor were manually added. The concentric rings shown here are the annular bins

used in Section 3.2.1 to measure the radial background number counts.

3.2 Results

3.2.1 Number counts

[n Section 2.3.2, it was noted that the luminosity function of field galaxies selected
by V.—1 > L5 is sufliciently flat to cause the number density of such objects under
magnification to be reduced. It is therefore expected that a plot of the radial variation
in number counts about the centre of A1689 will show a larger depletion in areas where

the magnification is higher as predicted by equation (2.54).
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Figure 3.5: A1689 field showing mask (grey ellipses), red background galaxies (open red

circles) and annular bins used to measure radial number counts (green).

Counting the number of red background sources in each of the annuli shown in
Figure 3.5 enables the plot shown in Figure 3.6 to be drawn. As anticipated, the
number of galaxies is reduced in comparison with the number of field galaxies expected
in the absence of lensing. Section 3.2.2 describes how the intrinsic background number
density is derived to enable the expected number in a given bin, ng to be calculated
taking obscuration by mask objects into account. In the second bin from centre, there
are no detected galaxies at all which suggests that infinite magnification and hence a
critical line exists at this radius. This is in agreement with several faint arcs present

in the image in this area.

The dashed line plotted in Figure 3.6 shows the variation in number counts pre-
dicted for an isothermal lens adjusted so that the critical line radius matches the
position of the second radial bin. As the plot shows, near-isothermal behaviour is
exhibited by A1689, apart from a large depletion in counts at a radius of 2.4 arcmin
and an over dense region at a radius of approximately 3.75 arcmin. The over-dense

region is most likely a result of clustering of the background objects. The error bars
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plotted are based purely on Poisson statistics of the expected number and therefore

do not take clustering into account (unlike the mass plots which follow).

M
—

n'/n,

0.5

6 (arcmin)

Figure 3.6: Radial number counts of objects around A1689 expressed as a fraction of the
expected number. The error bars are derived from Poisson statistics. The dashed line shows

the behaviour of an isothermal lens adjusted to match the critical line position.

One explanation for the depletion of counts seen at # =~ 2.4 is that the cluster has
an extended structure with a large mass at this radius. Referring to the image shown
in Figure 3.1, this is vaguely reflected in the distribution of light from the cluster
galaxies with an above average contribution coming from the large concentration of
objects to the north-east of the cluster centre. An alternative hypothesis is that this
is the first glimpse of a second critical line (see Taylor & Dye et al 1998 for a more
detailed account). Since the critical radius of a given cluster scales the same way as
the radius of an Einstein ring, ie. proportional to Dgs/Ds, a population of background
galaxies lying at a high redshift would have a larger critical radius than a population
at a low redshift. If there are two distinct populations of galaxies, one at low redshift
and the other at high redshift, there could in principle be two critical lines. This

phenomenon is thought to have been observed with the lensing cluster C10024+1654
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(Fort, Mellier & Dantel-Fort 1997). In the absence of further evidence for a second

high redshift population, only the single critical line model is considered here.

3.2.2 Normalisation of Background Number Counts

Of major importance to the lens magnification method is the normalisation of the
background galaxy population. One means of providing this normalisation is to as-
sume negligible cluster mass at the edge of the observed field and normalise to the
munber density of objects there. This defeats one of the main advantages of the
magnification method in enabling the computation of absolute masses. One would be
effectively using the same normalisation as the shear method such that the estimated

mass could only ever be determined relative to the mass at the edges of the field.

Instead, the normalisation adopted in this work, that being the same normalisation
used to provide the ratio of n'/ng in Figure 3.6, comes from the data of Smail et al
(1995). These deep observations in the V, R and I passbands with the Keck telescope
have a limiting magnitude of R ~ 27. A x? straight line fit to the total corrected!

differential galaxy count rate in the I-band gives
log;gn = (0.271 £ 0.009)I — 1.45 (3.3)

over the range 20 < I < 24, where n is per magnitude per square degree. Applying
the colour criteria used in Section 3.1.3 to this data, one finds that the red galaxy

population with V —1 > 1.6, can be well approximated by
log o n(red) = (0.0864 & 0.0187)I + (2.12 £ 0.41) (3.4)

over the range 20 < I < 24. Figure 3.7 shows the magnitude distribution for the full
dataset and for the red-selected galaxy population and the best-fit lines. Integrating
the fit for the red galaxies yields a total count rate of n = 12.02 & 3.37 galaxies per
square arcminute in the range 20 < I < 24. Re-writing equation (2.36) in terms of
magnitudes, the slope parameter 3 is

dlogyn(m)

B=25 (3.5)

cr

dm

'Smail et al corrected for completeness of their number counts using Monte Carlo simulations in

which artificial galaxies were added to the data for re-application of their object detection algorithm.
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which from equation (3.4) implies that 3 = 0.216 £0.047. This is the value of 3 which
is used in the subsequent analysis. Section 3.2.8 discusses the impact on the final mass

estimate due to this uncertainty in f.
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Figure 3.7: Magnitude distribution of all I-band galaxies (black dots), the red selected galaxies
(red dots) and the blue background galaxies (blue open dots) from the Keck data of Smail et
al. (1995). The lines are the best fits to the data.

The blue galaxies in the Keck sample, selected by V — I < 1.0, were also counted
to verify the results of Broadhurst (1995) discussed in Chapter 2. The number counts,

over the same range as the red counts, were found to be fitted by
log,o n(blue) ~ 0.35I — 3.49 (3.6)

resulting in # = 0.88. This is close to the lens invariant 8 = 1 and in good agreement
with the findings of Broadhurst. Within the magnitude range 23 < I < 24, chosen to
minimize cluster contamination when applied to the A1689 data (see Figure 3.3), the
number density of blue galaxies was found to be ng(blue) = 15.5 galaxies per square

arcminute.
Using this value of ng(blue), the radial variation in number counts of blue galaxies
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in the cluster field was plotted. Figure 3.8 shows the counts measured in the same
annular bins illustrated in Figure 3.5. As anticipated, the blue galaxy counts do not
show any obvious signs of a magnification signal. Deviations from the invariant value
of n/ng = 1 mainly arise from contamination by faint cluster members (see Section
3.1.3). This suspicion is strengthened by the fact that the largest deviation occurs at
a low radius where there is a higher number density of cluster objects. The lack of a
significant change in radial blue counts also rules out the possibility that the depletion

seen in the red counts is an effect of obscuration by dust.
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Figure 3.8: The radial profile of blue galaxy counts behind A1689. The background count
density is g = 15.5 galaxies per square areminute. Deviations from the invariant value (shown

by the dashed line) arise mainly from contamination by faint blue cluster members.

3.2.3 Clustering properties of the background population

With the mumber density and slope of the background galaxies established, the final
piece of information required for the likelihood analysis of Chapter 2 is the amplitude

of clustering of the background galaxies, ie. o(z) in equation (2.53).
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The amplitude of clustering of I-band galaxies and its dependence on redshift
was estimated from the results of Le Févre et al (1996) using the Canada-France
Redshift Survey (CFRS). Le Févre et al. find that there is little difference between
the clustering properties of red and blue populations of galaxies for z > 0.5, implying
that the populations were well mixed at this epoch. Their findings lead to the result

that the clustering variance of I-band galaxies scales according to (Taylor & Dye 1998),
()= W%~ 28 (3.7)

within an observed circular arca of radius #(arcmin). To calculate the variance in a
eiven annulus, # is simply chosen to be the radius of a circle with the same area as

the annulus.

Since the likelihood analysis in this chapter is concerned only with quantities
integrated over redshift, a value of o(z) averaged over the redshift distribution of
background sources must be obtained. In practice, the range of values of o calculated
for a realistic range of redshifts has a negligible effect on the maximum likelihood
result for x. The error on k& however is affected although only a weak dependence is
exhibited; the change in width of the likelihood curves for # in each annulus of Figure

3.5 over the redshift range z = 0.4 — 1.0 was found to be less than 15% in every case.

Crampton et al (1995). again using CFRS data. show that galaxies selected by
V — 1 > 1.6 have a median redshift of z = 0.8. In light of the above findings, this

redshift was used in equation (3.7) to provide the value of ¢ in the subsequent, analysis.

3.2.4 Reconstruction of radial » profile

From the radial number counts presented in Section 3.2.1, application of the like-
lihood analysis in Chapter 2 allowed calculation of the radial variation of A16897s

magnification shown in Figure 3.9.

The errors in Figure 3.9 correspond to a confidence level of 1o and are derived
from the width of the likelihood curve as described by equation (2.41). Shot noise
and background galaxy clustering are therefore incorporated. The dashed line is the
behaviour of the same isothermal sphere model as that used in Figure 3.6. The under-

density at ¢ = 2.4 in the number counts is manifested as the peak seen at the same
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Figure 3.9: Radial variation of A1689’s maximum-likelihood-derived magnification. The
errors correspond to a confidence level of 1o and allow for clustering and shot-noise. The

dashed line shows the behaviour of the isothermal model in Figure 3.6.

radius in the magnification. It can be seen that this peak is approximately 20 above
the magnification predicted by the isothermal sphere. The bin at 8 ~ 0.7 which
coincides with A1689’s critical line radius has an infinite magnification as expected
(in fact, the analysis returns an arbitrarily large value which explains why the lines

drawn from neighbouring data points are not completely vertical).

Application of the k estimators in equation (2.66) enables an upper and lower
bound for & to be plotted. The parity required by both estimators was flipped about
the bin at € ~ 0.7 (the party in this bin is not a concern since k4 = 1 and k_ = 0.5
regardless of parity when the magnification is infinite). The resulting profile is shown
in Figure 3.10 where the red shaded area represents the region in which x is bounded.
Shot noise and clustering contribute to the uncertainty which corresponds to the area

shaded in orange. The solid curve shows the same isothermal model.
Away from the cluster centre, the isothermal and sheet estimators give a consistent
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Figure 3.10: Radial profile of & for A1689. The area shaded in red is the region in which &
is bounded while the orange area represents lo uncertainties from shot noise and clustering,.

The blue curve is the isothermal sphere model normalised to the critical line at 8 = 0.75".

result for s although this becomes dominated by noise after 6 ~ 3'. Within the region
6 < 2.8, a significant mass detection is measured. The peak at  ~ 2.4’ again comes
from the peak found in the magnification at this radius. No evidence of this peak
is found in the data of Kaiser (1996); correlation introduced by the shear method
may have suppressed such a structure. Repeating the procedure for annuli centred on
different positions about the peak of the cluster light distribution gave a weaker, less
significant mass profile in each case. This would be expected if the peak of the mass

density were associated with that of the light.

3.2.5 Axially Symmetric Lens Solution for Abell 1689

With the radial magnification data of the previous section, the axially symmetric
(non-local) solution for £ was computed. The parities in equation (2.84) were set to

R =P =1 in every annulus except the first which, lying inside the critical line, was
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assigned P = —1. With an initial shear chosen as y; = 0.3, the profile plotted in

Figure 3.11 was obtained.
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Figure 3.11: Radial profiles of k and 7 calculated by solving the axially symmetric lens
equation (2.84. In both plots, 1o errors are represented by the orange area, the blue curve is

the isothermal model and the green line is the local parabolic estimator, k., with ¢ = 0.7.

The choice of v = 0.3 for the first annulus has a fairly insensitive effect on the
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resulting profiles, only affecting the first two annuli. The uncertainty on the first shell
is siall because the result is chosen a priori. The act of averaging in the series solution
means that errors do not strongly propagate to higher annuli. Again. a peak in the &

distribution is seen at @ = 2.4', this time with the shear accounted for.

Estimation of v shows a somewhat flat profile with v ~ 0.25 £ 0.15 over most of
the range. A slight increase beyond # = 2.4" is due to the spike in the s profile at
that radins. This increase is not measured in the angle averaged measurements of
by Kaiser (1996), where the mean shear is v = 0.15 £+ 0.05. Errors in both profiles

were derived from the propagation of errors from the magnification data.

3.2.6 Reconstruction of x in 2D

Instead of binning the red background galaxies in annuli to obtain a radial profile, one
can apply a rectangular grid to the field and count the number of galaxies in each grid
bin. Using the same likelihood analysis, the magnification can be determined for every
bin in the field. Applying one of the x estimators then allows the two dimensional

distribution in & to be visualised.

The choice of grid dimensions determine the overall resolution and signal to noise
of the w distribution. Grid bins which are too small give rise to shot noise domination
whereas grid bins which are too large produce a poor resolution. For the data presented
hiere, an optimal size of 10 x 10 bins was chosen. The two dimensional distribution of
red background galaxy number counts is shown in Figure 3.12. The underlying 10 x 10
resolution was Gaussian smoothed with a scale length of 0.35 arcmin onto a finer grid.
The figure shows that a readily apparent lack of counts is seen in the vicinity of the

critical line located by the white dashes.

The corresponding # distribution produced with the sheet estimator is shown in
the top half of Figure 3.13. Reversing the parity of bins lying interior to the critical
line shown in Figure 3.12, the 10 x 10 grid was Gaussian smoothed onto a finer grid
with asmoothing scale of 0.35 aremin. In the lower half of Figure 3.13, the distribution
of "I maxinnun likelihood errors is shown. These arve reasonably constant across the
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Figure 3.12: Distribution of red background galaxies behind A1689 smoothed with a smooth-
ing scale of 0.35 arcmin. Darker shading signifies a lower density of counts. The contours are
linearly spaced by An = 1.45 objects per square arcminute with a maximum and minimum
number density of 23.0 and 1.1 obj/sq. arcmin respectively. The dashes show the approximate

position of the critical line. Orientation is the same as that in Figure 3.1.

The peak in k located at the cluster centre has a value of kK ~ 1.4, slightly less
than that predicted from the local radial profile due to the effects of smoothing. The
structure seen extending from the cluster centre to the south-west has a value of
% ~ 0.9 which when compared to the same vicinity in the error map shows that it is

at least a 3o detection.

Given that X-ray observations of A1689 with the ROSAT satellite in the 0.5 — 2
keV band (Wang & Ulmer 1997, Daines et al 1998) show a relatively compact and
smooth 2D flux distribution, this mass extension is a little surprising. There are several
possible explanations for this. One is that the lens detected structure truly is a clump
of dark matter, not followed by the X-ray emitting cluster gas. An alternative might
be that the source number counts attributed to the structure are simply a particularly

rare underdensity occurring as a result of clustering. Deeper observations would clearly
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answer this conundrum. A shear analysis performed by Kaiser (1996) on the same
data used in this chapter also hints at a substructure towards the south-west although
this is a little tenuous. Claims of a consistent detection of substructure are therefore

withheld.

3.2.7 Transforming x to Mass Surface Density

The definition of £ in equation (2.9) indicates that in order to obtain the real mass
surface density X, the value of Xcg is required. The angular diameter distance to the

lens and source galaxies must therefore be known.

Spectroscopic measurements of Abell 1689 indicate that the mean redshift of clus-
ter members is Z = 0.184 (T'CG). In converting this to an angular diameter distance,
a particular cosmology must be assumed. Fortunately, this does not pose much of a
dilemma since as BTP have shown, the cosmological model chosen has only a small
effect on the final derived surface mass density. An Einstein-de-Sitter universe is
therefore assumed for simplicity so that the angular diameter distance of an object is
related to its redshift using equations (1.36) and (1.43) to give

_ 2 (1-(1 4-z) =142
Dq(z) = Ho (T) : (3-8)

The angular diameter distance between two objects at redshifts z; and z9 in this case

18

1+2 2¢ [((L+2)"Y2 = (14 29) /2
Da(zl-.ZQ)zpa(zZ)_1+Z;Da(zl)zgo'({ 1) 1+z(2 2) . (3.9)

Substituting these relations into equation (2.9) shows that the mass surface density is

_ .cHo (1= (1+25)""%)(1 + 21)
C8nG(1-(1+ 20)"V2)((1 4 2)~ Y2 — (1 + z5)~1/2)

(3.10)

where zg and zj, are the redshifts of the background galaxies and the cluster respec-
tively. The redshift of the background galaxies is again taken to be z ~ 0.8 from
the work by Crampton et al (1995). Equation (3.10) with z;, = 0.184 and 25 = 0.8

therefore yields

T = 5.9 x 10"°k[AMgMpc2]. (3.11)
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Figure 3.13: Top: Reconstructed surface mass density of Abell 1689 from the red background
galaxy population using the sheet estimator. Light regions are high density. A parity flip about
the critical line in Figure 3.12 has been applied. The maximum surface mass density is & = 1.4,
at (4.02',3.41'), consistent with the peak in the light distribution. The minimum is K = —0.4.
A linear spacing of Ak = 0.12 separates the 15 contours. The map is Gaussian smoothed with

a smoothing length of 0.35 arcmin. Bottom: 1o error distribution on k.
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3.2.8 Projected Mass

Figure 3.14 shows the cumulative mass profile of A1689 calculated from the axi-
symmetric solution. Errors are derived from propagation of the lo uncertainty on
the x profile shown in Figure 3.11. The green line is the cumulative mass calculated

using the parabolic estimator with ¢ = 0.7. Clearly, good agreement is seen.
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Figure 3.14: The cumulative mass profile of Abell 1689, calculated from the axi-symmetric
solution. Orange shading shows the 1o uncertainty propagated from errors in the & profile of
Figure 3.11. The green line shows the cumulative mass estimated from the parabolic estimator
with ¢ = 0.7. The isothermal fit to the critical line, similar to the shear results of Kaiser (1996)
and Tyson & Fischer (1995) is plotted as the blue line.

Using the axi-symmetric solution, a projected mass interior to 0.24h~'Mpc (= 2.1/

at the cluster redshift) of
My4(< 0.24h~'Mpc) = (0.50 £ 0.09) x 105A~ Mg (3.12)
is predicted. Furthermore, this mass scales as
Msq(< R) =~ 3.5 x 10"°(R/h~"Mpc)*h~ M, (3.13)
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for R < 0.32h~'Mpe, similar to that for an isothermal sphere which scales as M « R.
Beyond R = 0.32h~'Mpc, noise begins to dominate and hence the only obtainable

vesult is the upper bound that x < 0.1.

Error Analysis

Excluding errors computed from the likelihood analysis, three other sources of error
must be taken info consideration. These are the uncertainty on the number count
slope. 3, the background count normalisation, ng and the redshift assumed for the red

background galaxy population.

Error propagation shows that the combined fractional uncertainty in ¥ is

GEN? 1.— 1 %% . (111(1—”.)(1—1/3-\:))2 5 ,
(E) = 0.1402, + (“__—Q(ﬁ- 1)”0) ol + 71 5. (3.14)

The uncertainty in source redshift may be estimated from the width of the CFRS red

galaxy distribution by Lilly et al (1995). This gives a value of o,, ~ 0.4. Using the

value of x = 0.5, when combined with the errors for ¢ and ng gives

5
‘f = 0.24. (3.15)

Including the errors due to shot noise and clustering from the likelihood analysis, the

total uncertainty in the projected mass estimate above is therefore 30%.

3.2.9 Comparison and Discussion of Results

The work of Tyson & Fischer (1995) using shear analysis concludes that out to a
radius of R = 0.4h~'Mpe, the projected mass of A1689 follows an isothermal profile
given by,

Myp(< R) = (1.8 £0.1) x 10*(R/h™ Mpc)h ™' M. (3.16)
The mass contained within R = 0.24h7'Mpc they therefore predict as
Myp(< 0.24h~*Mpe) = (0.43 £ 0.02) x 10"°h~ ' M, (3.17)

Kaiser (1996), using shear information measured from the images presented in this

chapter finds again that A1689 is well fitted by an isothermal profile, very similar to
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that by Tyson & Fischer. to give
Msp(< 0.24h~'Mpe) = (0.43 £ 0.04) x 101~ M. (3.18)

These results are in good agreement with the projected mass interior to R = 0.24h~ 'Mpe

of Myp = (0.50 £ 0.09) x 104~ 'M., calculated in this chapter.

Using the CDM (Qy = 1, oy = 0.54) N-body cluster simulations of van Kampen
(in preparation), projected mass can be transformed to an equivalent 3D mass, line
of sight velocity dispersion and X-ray temperature. These transformations allow ap-
proximate comparison of the result of this work with the results from methods of mass

determination other than lensing.

A measurement of the line of sight velocity dispersion of A1689 is made by TCG
who find

ou(< 1.5~ 'Mpc) = 23557238 kms™. (3.19)

From the simulations, the projected mass of this chapter transforms to a dispersion
ol
o,(< 1.5h~"Mpe) = 2200 + 500 kms ™', (3.20)

in good agreement with the results of TCG. This is most likely an overestimate of
the true dispersion since the simulations take into consideration the effects of super-
position of clusters, infall along filaments and interlopers. den Hartog & Katgert
(1996) attempt to remove contamination from interlopers using the TCG data and

arrive at a velocity dispersion of o, = 1860kms ™'

This agrees with o, calculated
from the projected mass assuming an isothermal sphere which from equation (A.5) is
o, = 16454 150kms ™. An explanation for this discrepancy is that A1689 is composed
of two or more clumps of matter along the line of sight, a possibility hinted towards
by the TCG data. Taylor & Dye et al (1998) note that A1689 is well fitted by two

isothermal spheres, one at a redshift of z = 0.18 with o, = 1500kms™' and one at

z = 0.20 with g, = 750kms ' to give a total projected dispersion of 2300kms™".

A linal comparison may be made with X-ray temperature studies of A1689. Mushotzky
& Schart (1997). nusing the ASCA X-ray satellite measure the X-ray temperature of
AL689 as T'y = 9.0 keV. This compares with the results of Yamashita (1994) who

measures a temperature of 8.7keV and 7.2keV from the ASCA and Ginga satellites
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respectively. These temperatures may be transformed into the quantity Msgp using
the following relationship derived by Evrard et al (1996) from cluster simulations,

rin.\, 3/2 1 ‘

ﬂ’ﬁf,-’,[:.{} =111 5% 1015 (
where M5 is the 3D mass within a radius defined by an over-density of 500p,.. Taking

the result by Mushotzky & Scharf, this predicts a mass of
Mspo = (0.95 & 0.16) x 10%A~ M. (3.22)

Transforming the projected lensing mass of this chapter to Msoo using the simulations

by van Kampen gives
Msgo = (1.60 +0.65) x 1080~ M, (3.23)

implying an X-ray temperature of Ty = 12.7 £ 3.4keV. This is somewhat higher than

the directly measured quantities.

The overall measured temperature of a system of clumps superimposed along the
line of sight tends to be dominated by the temperature of the hottest clump. If the
velocity dispersion of the largest isothermal sphere in the two-clump model for A1689
proposed by Taylor & Dye et al is taken, this transforms to an X-ray temperature of
Ty ~ 7.0keV, consistent with the lower measurement by Yamashita. This provides
further evidence that A1689 is not an isolated mass. Bartelmann & Kolatt (1998)
proceed a step further and suggest that such discrepancies between X-ray and lensing

measurements enable caleulation of cluster morphology.

3.3 Summary

This chapter has demonstrated the viability of cluster mass reconstruction using the
integrated number count technique of Section 2.3.2. By applying colour cuts to V and
I band data of objects in the field of Abell 1689, the background population of red
ealaxies has been selected. These sources are shown to exhibit a dilution in surface
munber density in regions of high magnification due to their relatively flat number
count slope. The effects of non-linear source clustering and shot noise have been taken
into consideration for the computation of a projected mass profile and 2D mass map

of A1689.



Having derived an analytical relationship to provide a self-consistent mass and
shear profile by assmming an axially symmetric mass distribution. a projected mass

interior to R = 0.24h~'Mpc of
Mayp(< 0.24h"Mpe) = (0.50 = 0.09) x 10"°h~ "M, (3.24)

has been calenlated. This is in good agreement with mass estimates resulting from
shear analysis. A comparison with X-ray temperature and virial measurements sug-
gests that A1689 is not isolated but probably composed of two or more structures

along the line of sight.
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Chapter 4

Self-Consistent Mass

Reconstruction

4.1 Introduction

The production of self-consistent mass and shear maps is the ultimate aim of mass
reconstruction using magnification information. Stated more quantitatively, the re-
quirement is to devise a method which enables the calculation of mass and shear
maps given an observed map of magnification such that at any point in the lens plane,

equation (2.20) is satisfied.

The method of reconstruction using s estimators in Section 2.3.4 dealt with this
issue by assuming that the mass distribution of a real lens lies somewhere between
that of a homogeneous sheet and an isothermal sphere. Since both of these mass
distributions have analytical forms which relate  in terns of x, equation (2.20) allowed
i to be expressed in terms of magnification alone. The two relationships obtained in
this way, (the s estimators), provided an upper and lower bound on the mass value

in a given area of the lens plane to produce either radial profiles or 2D distributions.

Section 2.3.4 showed that if a lens can be assumed to be axially symmetric, then
a self-consistent solution can be obtained but only to arrive at a radial mass profile.

Attempts to calculate a self-consistent 2D mass distribution using an iterative tech-



nique based on the derivation of x and ~ from the deflection potential only converge
for sub-critical distributions. As section 2.3.4 discussed, rapid divergence occurs if

critical lines are present.

The first half of this Chapter describes a method capable of computing a self-
consistent solution for v and s in 2D with the presence of critical lines using only
magnification data (see Dye & Taylor 1998). The second half demonstrates how
the method’s underlying theme can be applied to galaxy ellipticity measurements to

provide a simplification to shear analysis.

4.2 Self-Consistent Magnification Analysis

The method is based on pixellization of the s distribution as suggested by AbdelSalam
et al (1998) who used it to estimate the mass of the cluster Abell 370, Their technique
necessitates the measurement of multiple iimage positions of lensed objects which act
as constraints on their mass solution. This proves to be a robust method but is
limited to clusters which exhibit multiple image systems and requires good quality
data. Furthermore, without knowledge of object redshifts, identification of matching

multiple objects is difficult.

The basic, underlying pixellization methodology used by AbdelSalam et al is mod-
ified here for the incorporation of magnification data. The use of magnification data
with this method ensures that its application is not limited to clusters which exhibit

multiple images and can be used with data observed under poorer conditions.

4.2.1 Theory

Derivation of the method begins by dividing up the deflection potential in the lens
plane into a rectangular grid of pixels. The continuous deflection potential of equation

(2.11) is then pixellized such that

'fr-'l"{e) i Z P (9) 'ff'r"m(e) = h‘.,,,F”,(g) (41)

rr

where the summation acts over all pixels. 4,,,(0) is the contribution to the potential at

6 from pixel i and w,,, is the mean value of # in that pixel. Comparison of equation
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(4.1) with equation (2.11) shows that the term I',,,(8) is therefore given by
1 .
P )= = / 420" n |0 — 0. (4.2)
T Jm

The integral here only acts over pixel m, explaining the origin of the approximation
in equation (4.1). In order to arrive at this result, it has been assumed that & varies
only slowly over the pixel so that it may be treated as a constant and taken outside
of the integral in equation (2.11). In practice, this condition is enforced anyway by

the resolution of the gridded magnification data.

The next step is to derive a relationship for the pixellized shear. This is straight-
forwardly achieved through application of equation (2.16) to the pixellized potential
i equation (4.1):

1(0) = %(6?—8&)an,,,r,,,_(e)

m

72(9) = dl 0‘2 Z "'i-'m]-—"m(e) (43)

m
where 0; = 9/00;. For the purpose of simplification, the following quantities are

defined,

/o o
an(8) = 5 (6f - 3)Tw(0)
bn(0) = 0102I',(0) (4.4)

and the summation convention is adopted so that the shear components may be writ-

ten as

'}‘1(9) = ""mﬂrm(g): 72(9) — ﬁmbm(g)- (45)

Equation (4.5) is an important result which demonstrates the main advantage of
pixellization. The shear is now expressed in terms of the pixellized & distribution and
the quantities a,, and b,, which are readily evaluated. For square pixels, a,, and b,

have the following analytical form (see Appendix A.3):

b 1 ) s — 13
”"m.( ) - ; Ll (7? + T':_‘f)Q — 1/4
1 [ +73+1/2)2 — (1 +79)? -
o o 1o T . ._ 4.6
li)m.(g) D u (;T) + ',"% + 1/2)2 = ('—*'I = '-"2)2 ( J

where 7; and ry are the components of the vector » = 6 — 8,,, from position @ to the

centre of pixel m at 8,,. Figure 4.1 shows the geometry for clarification.
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Pixel 'm’

Origin
Figure 4.1: Clarification of the geometry used to calculate the contribution of the potential
at point P from pixel m. The centre of pixel m is described by the vector 8,, from the origin
and by the vector  from point P. Integration over the pixel is carried out with respect to the

variable vector @ (or @ — 8'). The units of length are chosen such that pixels measure 1 unit

on a side.

The current formalism allows the determination of individual pixel contributions
towards quantities at any continuous point P in the lens plane described by €. This is
a more general treatment than typically required in practice. Knowledge of quantities
such as the shear or the potential are only usually required at points on the grid. The
quantity @ can therefore be pixellized in the same fashion as @, such that 8 = 6,
with @,, locating only pixel centres. This means that the quantities a,,(@) and b,,(8)
in equation (4.4) can be represented as the square matrices a,,, and by, with each

index running from 1 to the total number of pixels.

In analogy with the quantities a,,, and b, for v, one might expect to derive
a similar result for x. This can be attempted by applying equation (2.13) to the

pixellized potential in equation (4.2):

1
emn = 5V fﬂ 06,6 (4.7)

where V2 acts on 8,. The identity V?In|x| = 276%(x) used in section 2.1.4 means
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that
1 ifm=n )
Cin = — f}m.n‘ (48)
0 iftm+#mn
In other words, ¢, is simply the Kronecker delta function. This is exactly as one

would have hoped since the value of & in any given pixel should not depend upon

in any other pixel.

To bring magnification into the derivation, the pixellized versions of x and v are
substituted into equation (2.20) so that,
D, =1 2 2
PJ”"H. = (1 - h"ﬂ-) — Tn
= - V2 . 2 : 2
e (1 = f"n} — (ﬁ'm"-"mu) = (h-'.ru,b'.'n,u) (49)
with summation implied over index . Defining N as the total nuinber of pixels in the
grid means that equation (4.9) represents a set of N simultaneous equations which can
be alternatively expressed as a vector equation. This is more readily seen by defining

the N x N x N matrix G whose elements are given by
Gpgn = 0pndgn — Gpngn — bpnbym (4.10)
to enable equation (4.9) to be written as
1-2k+KGr! —p~1=0. (4.11)

Here, p~ ' is the N-dimensional vector of pixellized inverse magnification parity-signed
values, &' is the transpose of the vector s of pixellized values of k and 1 is the vector

(1,1,1,--+). Once again, P is the image parity of Section 2.3.4.

Equation (4.11) is the first main result of this chapter. Given a measured dis-
tribution of inverse magnification values, & can now be solved without the need for
any assumptions concerning v or the lens mass distribution. Having solved for &, the

corresponding shear distribution can be subsequently calculated from equation (4.5).

4.2.2 Application to Cluster Models

Verification of the method is obtained in this section through its application to two
idealised cluster models. Starting with a predetermined s distribution, the corre-

sponding shear distribution is derived using the Fourier methods discussed in Section
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2.3.4. To remove the effects of the Fourier transform’s implicitly assumed periodic
boundary conditions, the v distribution is windowed to select only the relatively unaf-
fected central region. The size of this window is determined by the accuracy required:
a smaller window removes more of the boundary and hence a more accurate distribu-

tion remains.

Applying the same window to the initial £ distribution then allows the magnifica-
tion distribution to be calculated using equation (2.20). The magnification is used in
equation (4.11) which is then solved for . This solution for the x distribution is finally
nsed to determine the shear distribution from equation (4.5) so thaf a comparison can
be made between the initial, predetermined s and 4 and the x and v computed using

the pixellated method.

For both the truncated isothermal sphere and dumb-bell models which follow. suf-
ficient accuracy was obtained using an initial Fourier grid of 512 x 512 pixels windowed

to a grid size of 32 x 32 pixels.

Truncated Isothermal Sphere Model

The initial pixellated mass was distributed according to

(
;= — 4.12
i A o ) ( )

where 7 is the radial distance from the centre of the sphere, 1 is the degree of trun-
cation and ¢ is a constant. The value of ¢ determines the size of the critical line and
indeed whether one exists. A larger value of ¢ essentially gives a larger critical line
radins. If ¢ is smaller than a certain value dependent on the value of 7, no critical

line is present. (This is not true of a pure isothermal sphere in which case r..;; = 2¢.)

Choosing ¢ to result in a critical line which encompassed a central 2 x 2 pixel
region, the distributions of £ and « in the top third of Figure 4.2 were generated.
After calculation of the inverse magnification from these and a reversal of parity in
the iner critical line pixels. a solution for x was obtained. The solved # distribution
together with the associated « distribution is shown in the middle third of Figure 4.2.
Both the predetermined and solved distributions shown here were Gaussian smoothed

onto a finer grid from their underlying 32 x 32 grid of pixels with a smoothing scale
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of one pixel width. This is purely to aid visual comparison. The residuals plotted
in the bottom third of Figure 4.2 show the difference between the predetermined and
the solved distributions as percentages of (Kinit — Fsolved)/Finit- The contours were

generated directly from the unsmoothed grid.

The residuals show that « has been solved to an accuracy of less than one percent
over most of the grid'. This is a negligible error in comparison to the noise typically
encountered in practice from background clustering of objects, shot noise (Taylor &
Dye et al 1998) and the uncertainties resulting from use of the x estimator method (see
van Kampen 1998). The recovered shear distribution is more affected although still
fares better than v calculated from uncorrected Fourier techniques which is typically

~ 30% worse.

The main contribution to these residuals is from boundary effects which arise from
attempting to recover a nonlocal shear in a finite area. Much work has been carried out
into the removal of such effects (see Squires & Kaiser 1996 and Seitz & Schneider 1995
for example) which, as has been demonstrated, have little impact on the recovered &.
In light of this, treatment of these boundary effects has not been considered in this

work.

Dumb-bell Model

To test the method with a more general, asymmetric mass distribution, a dumb-
bell model consisting of two offset, truncated isothermal spheres of different mass
was used. Proceeding in exactly the same manner as with the isothermal model,
the inverse magnification distribution was computed from the predetermined s and vy
distributions shown in the top third of Figure 4.3. After reversal of parity in the inner
critical line regions, equation (4.11) was solved for x. The solved s and « distributions
are shown together with their residuals in the lower two thirds of Figure 4.3. As in
the case of the isothermal model, the residuals between the predetermined and solved
t are typically less than one percent over most of the field. Once again, v fares worse

with a central two thirds of the field yielding residuals smaller than 10%.

' Analysis shows that this is true regardless of the grid dimensions,
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Figure 4.2: Truncated Isothermal Sphere Model: The predetermined (initial) x and 5 used
to form the magnification distribution from which the solved x and ~ are derived. The dis-
tributions are smoothed from the 32 x 32 grid onto a 128 x 128 grid. White dashes show the
position of the critical line. Contours are linearly spaced and set at the same levels in both »

plots and in both 5 plots. Residuals are expressed as percentages of (k4 — Keslved) / Sinit:
4.2.3 Practical Considerations

The set of NV simultancous equations represented by equation (4.11) were solved itera-

tively using the Powell method as provided by the *CO5PCF’ NAG library routine. A
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Figure 4.3: Dumb-bell Model: Predetermined (initial) s constructed from two offset, trun-
cated isothermal spheres of different mass. The critical lines are shown as white dashes.
Distributions are smoothed from the 32 x 32 grid onto a 128 x 128 grid. Linearly spaced

contours are set at the same levels for £ and at the same levels for .

solution for particularly fine grids can prove computationally intensive, especially on
the amount of CPU memory used which scales as N*. For typical grid resolutions used

in practice however, this tends not to be a major concern. Figure 4.4 illustrates the
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convergence of the solution to the isothermal model in Section 4.2.2 with N = 1024.
Plotted against each iterative step is the RMS of equation (4.11). As the figure shows,
rapid convergence occurs in the first few cycles of the iteration. The 30 steps shown

took approximately one minute of CPU time on a 400Mhz DEC-Alpha workstation.

Pu' D)

1

K—

(RMS[1-2x+x G

Log

i " N L 1 L L I i . N 1
10 20 30
Iterative step

Figure 4.4: Convergence of & solution for the isothermal lens in Section 4.2.2. Plateaus are

attributed to the inner workings of the 'COS5PCF’ NAG library routine.

Since the Powell algorithm is an iterative process, an initial estimate of the solu-
tion is required to start from. The choice of this initial estimate proves to play no
noticeable part in the solution obtained which acts to demonstrate the robust nature
of this method. Distributions from all three s estimators of Section 2.3.4 and even
a completely flat distribution were used as initial estimates, all four giving the same

converged result.

One feature of this method is that correct choice of pixel parity (especially for
low grid resolutions) is important in order to achieve a sensible solution. The inap-
propriate assignment of parities to pixels manifests itself in a manner dependent on
whether a pixel is wrongly assumed to lie inside or outside a critical line. If a pixel
is assumed to lie inside a critical line when in actual fact it does not. & in that pixel
15 overestimated. Tn the reverse situation, & is either underestimated or the pixels

immediately surrounding the incorrectly assigned pixel are overestimated.
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Figure 4.5 demonstrates the effect of incorrect parity assignment for an isothermal
sphere. The left hand side of this figure shows the consequence of attempting to recon-
struct a sub-critical distribution assuming that the central pixel lies inside a critical
line. The reconstructed value of £ = 1.0 in this central pixel compared to the value of
i = 0.7 in the predetermined central pixel shows that x has been overestimated. The
value of £ in the surrounding pixels is within one percent of the solution for x which

would have been obtained if the critical line was assumed absent.

The right hand side of Figure 4.5 shows the reverse situation. The predetermined
distribution has a critical line which encompasses the central pixel with & = 1.3. The
pixels immediately to the north, south, east and west of this pixel have the value
ro= 1.1. Attempting to reconstruct s assuming the absence of a critical line results
in the overestimated value of & = 1.2 in these surrounding pixels. In this case, the
recoustructed central pixel has k = 1.3, agreeing with the predetermined value and

hence the solved distribution is Hatter than it should be.

The error in # resulting from bad pixel parity assignment depends, as one would
expect, on the severity of the mismatch. In situations where mass distributions are
very nearly critical or only just critical, the incorrect assumption of the presence
or absence of a critical line does not dramatically modify the reconstructed results.
More extreme mismatches however, give larger discrepancies which could in principle
be used to determine the accuracy of critical line positions. This would inevitably
prove too ambiguous with real data and so critical line positions should always be

determined from the observed image directly.

To ensure that the method does not break down with noisy data, Gaussian noise
was added to the amplification. Errors in £ resulting from noise in the inverse ampli-
fication were found to propagate as one would expect from equation (4.11). For an
isothermal lens, the expected result derived from simple error propagation of equation
(2.20),

) A
Ok = !

(4.13)

21

was recovered, indicating that pixellization does not lead to spurious noise properties.
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Super-critical

Initial < Initial «
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Figure 4.5: Effects of incorrect pixel parity assignment. Reconstruction of the predetermined,
sub-critical isothermal sphere model on the left hand side results in an overestimation of & by
40% in the central pixel under the incorrect assumption that this central pixel lies within a
critical line. On the right hand. x has been overestimated in the pixels immediately north,
south, east and west by 10% due to the incorrect assumption that the central pixel is not

inside a critical line.

4.2.4 Application to Abell 1689

The method was applied to the magnification data presented in Chapter 3 for the
lensing cluster A1689. Using the same 10 x 10 grid of pixels and the same parity
change in the 2 x 2 inner critical line region as before, the x and ~ distribution shown

in Figure 4.6 was obtained.

Comparison with the mass density map illustrated in Figure 3.13 which was pro-
duced with the sheet o estimator shows very similar structure as one would have

expected. The value of # at the peak calculated here is approximately 10% lower than
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Figure 4.6: Self-consistent reconstruction of £ and « for Abell 1689 using the magnification
data presented in Chapter 3. The critical line is shown by the white dashes. Both distributions
are Gaussian smoothed onto a finer grid. Maximum & and v values are fnax = 1.2 and

Ymax = 0.5 respectively. The 10 contours are linearly spaced by Ax = 0.15, Ay = 0.15.

the peak value in Figure 3.13 since the sheet estimator over-estimates x as discussed
in Section 2.3.4. This result has little effect on the total integrated mass of A1689
presented in Section 3.2.8 obtained with the axially symmetric 1D solution. The v
distribution is shown for completeness although undoubtedly suffers from boundary

effects typically encountered in the models of Section 4.2.2.

4.3 Shear Analysis

Having shown that pixellization enables the accurate reconstruction of surface mass
density from magnification data, the next logical step is to attempt to obtain a similar
success with shear data. This section details how this is achieved by providing a
simplified and pixellized alternative to the ellipticity equation presented by Kaiser

(1995, K95 hereafter).
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4.3.1 Derivation of Pixellized Ellipticity Equation

Section 2.2.2 discussed how shear analysis extracts information about the mass dis-
tribution of an intervening lens from the measurement of lens-induced distortion of
background galaxy images. In particular, it was noted how only the ratio /(1 — &)
could be measured in bins across the field of view through knowledge of the average
ellipticity of galaxies contained within those bins. These ellipticities are in practice
obtained by calculating the quadrupole moments of individual galaxy images to arrive
at the ellipticity parameters ¢;; (Valdes, Tyson & Jarvis 1983). K95 showed that the
ellipticity parameters are related to surface mass density and shear via,
Yij Y2

Y2 N

G =
4 11—k

One way of solving this for & in the weak lensing regime is to follow the approach
of Kaiser & Squires (1993) as outlined in Section 2.2.2 or the generalization of this to
the strong regime by K95. It might be expected that an alternative way of proceeding

would be to pixellize equation (4.14) and use the result of equation (4.5) to give,

Cyn = C(1yntin + Z Umnkms  €(2)n = €@2)nfin + Z brnntim (4.15)

T m
where e;) = v;/(1 — &) and summation is shown for clarity. Equations (4.15) are
essentially matrix equations which can therefore be rearranged using matrix inversion
to give

i3 -1 i
K = E[I)H(” — e{g}H{E], (41(})

[n this equation, ey and e, are the vectors formed from the ellipticity parameters

and the elements of the square matrix H are given by

H{I]nm = ""(i}n(imn + s H(E}mu = C(2)n ‘jm‘H F b‘:mr' (41?)

Unfortunately, this does not prove to be a viable means of reconstructing x. In
caleulating matrix condition numbers, one finds that the matrix H,) is singular and
the matrix Hyyy is ill-conditioned. It is perhaps not too surprising that this is the
case. As equation (4.16) shows. this method allows determination of # independently

from each ellipticity parameter. The shape and orientation of a galaxy can only be
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uniquely described by both ellipticity parameters and so one would expect that the

same should follow for the determination of &.

The criterion that both ellipticity parameters should be used for a determination

of 1 can be satisfied by applying the result of K95 that
U-;_H. - (r)_.,"]/i_?', (418)

to equation (4.14) instead of its direct pixellization. This gives

dilk = (:I'jaj(l = h.) + (1 = H‘.)Z)_?'H,'__j (419)
and making the substitution that dix = —0;(1 — &) and 9; = 6;;0; allows this to be
written,

(05 + €i5)0; In(1 — k) + Oje;; = 0. (4.20)
Since B,;.'B,;j = 0y; for any square matrix B, multiplying the equation above by
(Oki + ep;) ™! yields

Ok In(1 — &) + (Spi + exi) "' djei; = 0. (4.21)

Relabelling indices and using the fact that the right hand side of this equation is the

derivative of a logarithm gives the result that
0; In(1 — k) + 0; In(d;5 + €;;) = 0. (4.22)

The logarithm of the matrix in this equation is inferpreted using the result that for a
square matrix B and the identity matrix I, the following Taylor expansion holds true

1. ...
In(I+B)=B - 532 +- qB" — (4.23)

in analogy with the result if B and I had been scalar quantities. Applying this Taylor
expansion to the logarithm in equation (4.22) and noting from the definition of the

ellipticity parameters in equation (4.14) that

{rf;:_j)z = ((‘..f + 63)51}' = (':.'25,'..‘;, (ff;:_j):j = (’.2(&-,;_;,', v (424)
gives
L 5 1 :
In(d;; +eij) = eij— 5(426?;_; 4 g(‘f'gff-;fj‘ =
20 (.J."n-i—] € oo {Zu
= . g,
(r‘g} 2Zn+1/ e “z::] o | 9
1 L +e\ e;; 1
= §lll(l—ﬁ (—f—glu(l—( )0i; (4.25)



The logarithmic substitutions made here for the infinite series are only valid pro-
vided that ¢ < 1. Inserting equation (4.14) into the magnification equation (2.20)
shows that

p~ =1 = K)%(1 - €?)). (4.26)

Hence the parity changes when ¢ > 1. Since ¢;; and r;z;_j-] are observationally indis-
tinguishable and Hip from one to another whenever there is a parity change (Kaiser
1995), the requirement that ¢ < 1 is satisfied by simply inverting the ellipticity matrix

when a critical line is crossed.

Substituting the result of equation (4.25) into equation (4.22) and rearranging
then gives
1 1+

In(l — k) = éln(l —e%) — Ed—éd,d’,f:—’ In (:) ; (4.27)

where 07 is the inverse Laplacian in 2D. An expression for the term 8_201-0_?'6.,;_.;- in

this equation is derived directly by operating on equation (4.14):

O0720,05ei; = 0720} — 03)er + 20720 0e2

= (8% — 92)07%e; + 20,0,0 2es. (4.28)

The next step is to apply pixellization so that as in Section 4.2.1 the following

transformations take place:
2 o2y = sy 4 il
(0% — 0D %e1(8) = (07 — 03)— | d°0'¢,(0")In|0 — €'] —
1 1 2 %t

“(I}m(dr - ()j)_ / ngl’ In |9?1 - e.fl = e(l)m.a"mn. (429)
¥

27 Jm

and

01020™2¢2(8) = D15 [m e2(6')1n]6 — 6| —

/ d?0' In 1911 - 9!| = %{:U)m."}mu- (46[))

n

b
“[2)-”1 ()] ()-_3 .)—’

A [

where again, summation over index m is implied in both. Inserting these results into

the pixellized version of equation (4.27) and then rearranging gives the final result:

s 1
hp = = (l . {';.J}I'u CXp [”5(3{!}”;("?:!” =+ H{Z)'(Hb?”?l) (431)
where,
Claym 1 + Cin . )
Hyin = In ) i 1= 12 {4;2)
in L— Cin
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Equation (4.31) is the second main result of this chapter. s is now expressed
entirely in terms of the measured ellipticity parameters and a,,, and b, of Section
4.2.1. As with other shear reconstruction methods however, the surface mass density
obtained in this way is not absolute. Section 2.2.2 discussed how this is a result of the
fact that the ellipticity parameters, or more specifically, the quantity /(1 — ) is in-
variant to isotropic magnification resulting from homogeneous sheet-like distributions
of mass. It is readily seen that if reconstruction of such a sheet mass distribution is

attempted using equation (4.31), then since e = 0 everywhere, r, = 0 for any pixel n.

In practice, normalization comes from stipulating that £ > 0 everywhere. Obser-
vations in which clusters are larger than the field of view therefore only offer a lower
bound to the absolute quantity of mass present. Of course, the results of magnification

analysis can be employed to provide an absolute normalization of mass.

4.3.2 Application to Dumb-bell Model

This section sees the application of the pixellated ellipticity reconstruction technique
to a dumb-bell cluster model similar to that presented in Section 4.2.2. In the exact
same fashion as in Section 4.2.2, v is calculated using Fourier methods from the
generated s distribution. The distribution of ellipticity parameters is then calculated

from equation (4.14) which is subsequently used in equation (4.31) to reconstruct k.

Figure 4.7 shows the generated mass distribution and the distortion field. Each
ellipse in this distortion plot represents the observed shape that an intrinsically circular
object would have if its image were to lie at that point in the lens plane. Combination
of equation (4.14) with the result from Section 2.1.5 that v, = ycos2¢ and vy =

v sin 2¢) shows that the orientation of each ellipse is given by

di= %ar(:tan (r_z) , (4.33)

(&)
The ratio of semi-major to semi-minor axis or the elongation of each ellipse is given
by equation (2.19) which in terms of e is

(0 1+e
E = —— 4.34
: ] 1—e (4.34)

Results of the reconstruction of £ are shown in Figure 4.8. Normalization of &
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Figure 4.7: Generated dumb-bell model: The & distribution is constructed from two truncated
isothermal spheres of different mass. The distortion field is illustrated by plotting the apparent

shape of an intrinsically circular background object.

was provided by setting the average of the two peak values to the average of both
peaks in the generated distribution. In this plot, the confours are set at the same
levels as those in Figure 4.7. The residuals show the reconstruction errors are again
dominated by boundary effects. These spread further into the distribution than the
boundary effects encountered with the pixellated magnification solution. This results
in the reconstruction being limited to an accuracy of approximately 10% across most

of the field of view.

4.4 Summary

A method for directly calculating accurate, self-consistent surface mass density and
shear distributions from the lens amplification and critical line positions has been pre-
sented. This has been demonstrated with the isothermal sphere and dumb-bell cluster
models in reconstructing the surface density to within a percent over most of the field
of view. Reconstruction of the shear pattern has a lower fractional accuracy of a few
tenths due to boundary effects. The method has been applied to the magnification

data of Chapter 3 to enable computation of the 2D surface mass density and shear

distribution of Abell 1689,
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Figure 4.8:
levels as in Figure 4.7. The residuals show that reconstruction is limited to an accuracy of

approximately 10% across most of the field of view.
A simplified solution to the problem of estimating surface mass density from galaxy

ellipticities has also been presented. This approach puts the calculation of surface

mass from shear and magnification on an equal footing. Investigation of the combined

analysis is left for future work.
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Chapter 5

The Mass of Abell 1689 from

Luminosity Function Analysis

The technique of reconstructing cluster mass by measuring its lensing effect on the
intrinsic distribution of background object luminosities is applied to Abell 1689 in
this chapter. Using an independent set of observations of the cluster, photometric
redshifts and magnitudes determined for all objects detected in the field of view enable
calculation of the source lnminosity function. By comparing this to observations of an
unlensed offset field, the method outlined in Section 2.3.3 gives a mass measurement

of A1689.

The work in this chapter was carried out in collaboration with the Max-Planck
Institute for Astronomy in Heidelberg (referred to hereafter as ‘the MPIA’). Through-
out. this chapter, all reduction and photometric analysis was performed using the
‘MPIAPHOT’ software package (Meisenheimer & Roser 1996). MPIAPHOT was
written at the MPIA as an extension to ESO’s image reduction and analysis soft-

ware, MIDAS (Munich Data and Analysis Software).
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5.1 Observations of A1689

5.1.1 Data Acquisition
Observations of Abell 1689 were made in 9 different filters over a combined period of
19 nights at the Calar Alto 3.5m telescope in Spain. These 19 nights were divided

between 4 separate observing runs as listed below:

Dates Observer(s)

28/05/95 - 04/06/95 K. Meisenheimer!, E.M. Thommes'? & A.N. Taylor?
22/02/96 - 24/02/96 K. Meisenheimer! & J.A. Peacock?®
14/06/96 - 16/06/96  A.N. Taylor® & S. Dye?

01/06/97 - 05/06/97  S. Dye?
' MPIA, Heidelberg. 2 IfA, Edinburgh.

A total of 12 hours worth of data with sufficiently good seeing was observed during
this time. Table 5.1 lists the total integration time observed with each filter. The I
band filter (826 nm) data is the data observed with ESO’s 3.5m NTT presented in

Chapter 3. Figure 5.1 shows the transmission of all filters used.

Filter: A./AX (nm) | t;¢(s) | No. Filter Subsets Use

826/137 (I-band) 6000 1 Global SED
774/13 6800 2 H, at z =0.18
703/34 4100 2 Background z
614/28 7700 2 Background z
572/21 6300 2 Background z
530/35 3300 1 Background z
480/10 | 4200 1 4000Aat z = 0.18
166/8 4800 1 | Ca HK at z =0.18

457/96 (B-band) G000 2 Global SED

Table 5.1: The observations of Abell 1689 in all 9 filters detailing the total integration
time in ecach filter, t;,,. The number of filter subsets gives the number of different

nights observed with that filter.
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Figure 5.1: Transmission curves of filters used for observations of Abell 1689 at Calar Alto.
The uncalibrated spectrum of the central dominant elliptical galaxy in A1689 is plotted for

reference (see Section 5.2.3).

To clarify the terminology used throughout this chapter, a set of images of Abell
1689 observed on the same night in a particular filter will be referred to as a ‘filter
subset’. The term ‘filter set’ refers to the total collection of cluster images observed in
a specific filter. As Table 5.1 shows, observations of A1689 were comprised of either

one or two filter subsets.

This specific range of filters was chosen to optimize distinction between foreground,
cluster and background objects. The specific use of each filter is listed in Table 5.1.
The known redshift of A1689 of z ~ 0.18 allowed the narrow band filters to identify
cluster objects by searching for spectral features such as the 4000Abreak, the H,
line and the Ca H&K lines. The filters 530/35, 572/21, 614/28 and 703/34 enabled
division of the background galaxies into redshift bins between z = 0.2 and z = 0.8.
Discrimination of background and foreground objects was provided by measurement

of the global spectral energy distribution (SED) in the I and B broadband filters.
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5.1.2 Image Reduction

Ilat fields for cach filter subset were constructed from typically four or five dusk sky
flats observed specifically for that subset. Cosmic rays and stars were eliminated
from the combined flat fields by median filtering the individual flats. Each image
belonging to a particular filter subset was then bias-subtracted and flattened with its

corresponding flat field according to

filz,y) = b;
R Fria(z,y)/ < friae >

filx,y) (5.1)

where fi(x,y) is the flux of the raw A1689 image i in the pixel at (z,y) and ffjq (2, y) is
the flux in the same pixel in the flat field. The flat field is normalised by dividing it by
the mean flux per flat field pixel < fr1,; >. The bias, b;, is calculated as the mean value
of flux in pixels in the overscan region of the image (generated by the CCD hardware
by reading out extra lines of pixels which are not physically present on the chip). Use
of flat ficlds specific to each night ensured that optimal flat fielding was achieved. All
images were flattened to an accuracy of £1% variation in background flux across the
field of view. After the initial stage of flat fielding, some images exhibited a large scale
eradient in flux. These images were subsequently more accurately flattened using a

fitted second order 2D polynomial provided by the MIDAS function ‘FIT/FLAT".

With anywhere from 4 to 9 images per filter subset, cosmic ray removal was per-
formed using the pixel rejection algorithm built into the MPIAPHOT command ‘COS-
MIC/MEDIAN'. Prior to application of this algorithm, all images within a filter subset
required alignment with each other. Alignment was obtained using two MPTAPHOT
functions. The first, "FIND/OBJ". was used to detect objects in each image and
create atable of positions and integrated fluxes. Having generated tables for every
image in the filter subset. the second function ‘FIND/MOVE’ was used to match ob-
jects between each table and caleulate the translation required to align the images.
Translations were then recorded in the header of each image for the pixel rejection

aleorithin.

The pixel rejection algorithm works by first calculating a median image M from

all images f, within a filter subset such that for every pixel (2. y).

M(r.y) = mediand fi(x.y)|i = 1.n}. (5.

o
[a)
o,
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The variance of pixel values within a circle centred on every pixel (zg,yo) in this

median image is then calculated via,

o) = —— Y (M)~ M(zop0))* (53)
' (zy)|a?+y2<R?

where m is the number of pixels contained within the circle of radius R. This variance

is used as a threshold for the rejection of pixels in each filter subset image. Denoting

cosmic-corrected images as ¢;, every pixel (z,y) in each image is attributed a value

according to

filz,y) it fi(z,y) — M(z,y) < npio(z,y)
cila,y) = o S (64

M(z,y) it fi(z,y) — M(z,y) > npo(z,y)
If a pixel in a particular image is affected by a cosmic ray causing the value of that
pixel to lie a user defined ny,; standard deviations away from its median value, then
it is replaced by its median value. If such a pixel replacement occurs, surrounding

pixels contained within the same radius R as used in the variance calculation above

are checked and replaced with the value cs;(z,y) according to,

ci(z,y) if ci(z,y) — M(z,y) < noo(z,y)
esilz,y) = ' (5.
M(z,y) if ci(z,y) — M(z,y) > no(z,y)

b

(]
o
e

This allows for any influence the cosmic ray may have had on surrounding pixels.
Setting the user defined quantity n, lower than n,; allows the less affected surround-
ing pixels to be detected and replaced with the median value. For the cosmic ray

replacement of the Calar Alto images, the values n,; = 4.0 and ny, = 2.5 were used.

Figure 5.2 shows an almost true colour image of the post-reduced observations
of A1689. This image was constructed by superimposing data from the 614nm (red),
530nm (green) and 457nm (blue) filters. The intensity scale is logarithmic to highlight

faint structures such as the faint arc, just visible to the lower left of the cluster centre.

5.2 Photometric Analysis

5.2.1 Flux Conversion

Construction of the luminosity function which follows later in this chapter required

object fluxes in terms of the number of photons per unit time per unit area. The
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Figure 5.2: Post-reduced colour image of Abell 1689 observed with the 3.5m CA telescope.

A logarithmic intensity scale highlights faint structures such as the faint arc to the lower left

of the cluster centre.

‘fluxes’ assigned to pixels in the raw Calar Alto images were simply the values output

by the telescope’s analogue to digital conversion hardware.

The electric charge stored in each CCD pixel as a result of incident photons during
an image exposure is read at the end of an exposure as a voltage. The CCD hardware
converts these analogue voltages into digital units (DUs) which are the values assigned
to pixels in the raw image. Since DUs are directly proportional to the number of
photons which have struck a given pixel, a simple conversion factor enables the number

of incident photons at that pixel to be calculated. This conversion factor typically
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changes between detectors. Of the four separate observing runs made at Calar Alto,
three different detectors and hence three different conversion factors with a value of

around 2 — 3 were in operation.

Clearly, knowledge of the number of incident photons per DU for a given detector
is essential for the correct calculation of object fluxes. To obtain fluxes in terms of
the number of photons per unit time per unit area, once DUs are converted to the
number of photons, the total integration time for each image is used to calculate the
rate of photon arrival. The last step is to calculate the area within which the photons
in each pixel are collected. This is a function of the size of the telescope mirror, the
optics in the instrument used to focus the image onto the CCD and the area covered

by one CCD pixel.

Using the MPIAPHOT function ‘PREP/CCD’, image fluxes were automatically
converted from units of DUs to units of number of photons per unit time per unit area.
This command was configured specifically for the FREDUK (prime focal reducer)

instrument used to obtain all of the A1689 images observed at Calar Alto.

5.2.2 Object Tables

Instead of summing together images in each filter set, photometric evaluation was
carried out on images individually. In this way, the mean weighted flux 7™ of an

object m observed in a filter set b was calculated as,

(boan)
Z-;' f[-! z
o J.f“_’l
I(b,?ﬂ) — o ( ! ) (5.6)
L (ﬂ;h_ru])‘
with an error given by
~1/2
FUJ,'{?L) = Z ‘I' (5‘?)

(07m) 46 the standard deviation of background pixel values surrounding

The quantity o,
object m in image 7. Background pixels are segregated by applying a cut to the
histogram of Huxes in pixels which lie within a box centred on the object. This cut

removes the high flux pixels belonging to the object itself and any other neighbouring



objects within the box.

The method of obtaining object fluxes with MPIAPHOT involves integrating the
flux of all pixels inside a fixed aperture centred on each object (see Section 5.2.3).
The centre of each object is provided by a ‘mark table’ of object co-ordinates which
accompanies each image. The integrated flux of each object is then systematically
written into this accompanying table. Since fluxes of a given object between all images
in a particular filter set are ultimately combined, the identity of objects between
images must be maintained. This is ensured by simply listing the same objects in the

same order in every mark table.

The production of a mark table for each image would not be viable using the
MIDAS ‘FIND/OBJ’ command independently on images simply because a different
munber of objects would be detected in each (due to, for example, the random variation
between objects with brightnesses close to the detection thresholds and image offsets)
and objects would also be ordered differently. Ideally, a mark table produced by
detecting objects in a deeper image would solve these problems if it were used for all

lnages.

Fortunately, the I band data used in this Chapter is deeper than all filters observed
at Calar Alto. The table of objects generated by SExtractor in Chapter 3 was therefore
used as the underlying mark table for every nnage. The depth of the I band lmage
meant that there were more objects in the mark table than the number detectable in
the Calar Alto images. In cases where I band objects were too faint to be detected in
the Calar Alto images, the photometric analysis of the Calar Alto data (which follows
later in this chapter) returned fluxes integrated over blank image regions. These ‘null
objects” were easily removed from the final object catalogue by virtue of their large

flux scatter and approximately zero fluxes.

Image Distortion

A complication with using the I band SExtracted data table was that images observed
with the Calar Alto 3.5m telescope are radially distorted. unlike the I band limages

taken with the NTT. In order to obtain correct alignment with the Calar Alto images,
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the I band mark table therefore had to be radially distorted in the same fashion as

the Calar Alto image distortion.

Previous work by the MPIA has shown that this radial distortion can be fitted by,
Ar = ar® + brt (5.8)

where Ar is the radial outward shift experienced by an object lying in the image at a
radius 7 from the optical axis. The parameters a and b are obtained in the following

way:

e The I band mark table is first scaled, rotated and translated to overlay a typ-
ical Calar Alto image. This is done using the ‘FIND/MOVE’ command which
compares a table of positions of objects in the Calar Alto image provided by
the ‘FIND/OBJ’ command with the mark table. At this stage, the align-
ment is only approximate since the radial distortion cannot be accounted for

by ‘FIND/MOVE’. e vl

e

e Objects in the I band mark table are matched with objects in the Calar Alto
table. The translations required to shift each I band object onto its matching

Calar Alto object are recorded in the I band mark table.

e Values of Ar versus r calculated as

Ar = (@ —20)? + (¢ —y0)? 7

ro= /(@ —20) + (y —y0)? (5.9)

are plotted for each object where (z,y), (2',3') and (z¢,yo) are the co-ordinates
of the original position of the object in the I band mark table, the shifted position
and the optical axis respectively. A plot something similar to that in the top

half of Figure 5.3 is obtained.

e The co-ordinates of the optical axis and the global scaling of object positions
are adjusted manually until the plot of Ar versus r exhibits a minimum at 7 = 0
and a minimal spread of points along the curve as shown in the bottom half
of Figure 5.3. An inaccurate global scaling of object positions has the effect of
producing & minimum in Ar versus r away from r = 0. Fhis is also true of an

inaccurately located optical axis which causes the increased spread of points.
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e Finally, the parameters a and b are calculated by manually fitting equation (5.8)

to the plot of Ar versus r.

Ar (arcsec)

Ar (arcsec)

i
;b ey
. .- - .:.:“ ‘.;':.:-"I‘?:".:‘.
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» sy .
A T N ‘"--J'--..'I..,.
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Figure 5.3: Distortion fitting of the Calar Alto 3.5m telescope images. Ar is calculated for

every object as the radial distance of the object from the optical axis in the I band mark

table subtracted from its radial distance in the image. If the I band mark table is over-scaled

and not centred correctly on the optical axis, a minimum and a large scatter of points occurs

in a plot of Ar vs r as shown in the top plot. The bottom plot shows how correct scaling

and positioning of the mark table minimizes the scatter of points and removes the minimum

for manual fitting of equation (5.8). The dashed line was plotted with the manually fitted

parameters @ = 3.5 x 107° and b = 1.8 x 1079.

With values of @ ~ 1075 and b ~ 10~? being typical for the Calar Alto 3.5m images,

equation (5.8) shows that at the edge of the field of view corresponding to r ~ 200
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arcsec with the FREDUK instrument, a distortion of Ar ~ 5 arcsec occurs. Correct
distortion compensation was therefore essential to achieve a trustworthy photometric

analysis.

After applying the distortion to the I band mark table, copies were made for
other iimages regardless of filter as long as location of the cluster centre was roughly
the same for each (with a tolerance of ~ 30 arcsec). In some images, the cluster
centre was located too far away from the majority to give good alignment with the
distorted table. Separate distorted I band mark tables were produced for each of
these. To ensure optimal alignment, each distorted table was finely scaled, rotated
and translated onto its corresponding image, again using the ‘FIND/MOVE’ and

‘FIND/OBJ’ facilities.

5.2.3 Photometry

As Section 5.2.2 discussed, MPTAPHOT calculates object fluxes by summing the fluxes
of pixels within a fixed aperture centred on each object. Using a fixed aperture means
that the seeing in all images must be the same to determine the correct colours.
Since image seeing can vary considerably even between two images observed on the
same night, this requirement can only be realistically met by degrading the seeing of
each image to the worst seeing measured among all images. Rather than inefficiently
degrade the seeing of an entire image, MPIAPHOT degrades only inner aperture
regions by Gaussian convolution. The FWHM of the convolving Gaussian is therefore
dependent on the original seeing of the image and is calculated automatically from

this.

The seeing of each image was determined with MPIAPHOT by averaging the
FWHM of all stars in the image (selected by their low FWHM and high brightness).
The worst seeing was found in the 466/8 filter image set with an average measured
seeing of 2.10 arcsec. Flux integrations for every object in every frame across all fil-
ters were then performed by MPTAPHOT which degraded each image to a seeing of
2.10 aresec. The local background sky count was automatically subtracted from ecach
integrated object by the same histogram technique used for the flux error estimation

detailed in Section 5.2.2. In the central parts of the cluster, this automatic back-
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ground removal proved to overestimate background counts due to the high mumber
density of objects there. For this reason. a circular region of 80 arcsec in diameter
centred on the cluster was defined within which the average background count was
manually determined for each image. MPIAPHOT was then instructed to subtract
this mannally determined constant background level from all flux integrations within

this area instead of executing an automatic subtraction.

To allow for changing weather conditions, images within each filter set were nor-
malised to an arbitrarily chosen image in that filter set. Normalisation was conducted
by scaling the object fluxes of each image, apart from the reference image. so that the
average flux of the same stars in each image was equal. This ensured correct calcula-
tion of the weighted flux and flux error from equation (5.6) and (5.7). The weighted

flux and its error were later scaled to their calibrated photometric values.

In order to obtain photometric fluxes, the usual line of approach is to observe
‘standard objects” with known, calibrated spectra. Infegration of a standard’s spec-
trum, multiplied with the transmission efficiency of the filter and instruments used in
the observation, allows calculation of the expected photometric flux for that standard
in that filter. Comparing this with the actual flux measured for the standard gives
the conversion factor required to scale the flux of all objects to their photometric
values. Under ideal circuumstances, a calibrated spectrum of either a cluster member
or another object in the field of view would enable direct photometric calibration of
cach image. Unfortunately, such a calibrated spectrum was unavailable although an
uncalibrated spectrum of the large central elliptical galaxy in A1689 was obtained
(Pickles & van der Kruit 1991). Calculation of the relative flux of objects between
filters was therefore possible, but not calculation of the photometric flux. These fluxes
were later calibrated using observations of a standard star located in another field (see

Seetion 5H.2.4).

The spectrum of Pickles & van der Kruit (1991) is shown in Figure 5.4. The
range of wavelengths covered by the filters exceeded the wavelength range covered by
this spectrum and so between the wavelengths 124 nm to 316 nm and 690 nm to 990
nn. a standard elliptical spectrum was used. This was redshifted to the measured

redshift of z = 0.183 of the central elliptical galaxy (Teague. Carter & Gray 1990).
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Figure 5.4: The uncalibrated spectrum of the large central elliptical galaxy in Abell 1689.
Between 3160A< A <6900A, the published spectrum of Pickles & van der Kruit was used.
The regions A <3160A and A >6900A were taken from a standard elliptical galaxy spectrum
(which is also shown between 3160A< A <6900A as a grey line).

For comparison, this standard elliptical spectrum is also drawn in grey between 316

nm and 690 nm in Figure 5.4.

Denoting the spectral energy of the large central elliptical galaxy in A1689 at
wavelength A in units of energy per unit area per unit time per unit wavelength as
Fy(\) allows its observed count rate I 5, expressed as the number of photons per unit
time per unit area in a given filter b to be written (eg. Thommes, 1996)

Fisiihs f D2 (A)T"(h’gF s(AA (5.10)

]
i’

In this relation, the function T, ()\) describes the transmission efficiency of the filter (see
Figure 5.1) while E()) is the combined filter-independent efficiency of the detector
and telescope optics. Figure 5.5 shows how the efficiency of the Calar Alto optics
and the TEK7 CCD used on two of the observing runs depend on wavelength. The

photometric scale factor, kj is a quantity which relates the predicted value of I
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calculated from the integral on the right hand side of equation (5.10) to the measured
value of I, ;. Without the transmission characteristics of the atmosphere being taken
into consideration in equation (5.10), k; absorbs the wavelength dependent nature of
the weather at the time of observation across the wavelength range spanned by filter b.
For this reason, under rapidly changing weather conditions, the value of k; is strictly
only applicable to the time the observation was made and the filter it was observed
with. Since the functions Tj(\), E(A) and Fs(\) are known and I, ; is measured, kj
can be directly calculated. Without correct calibration of Fg()), only the relative

values of k; for each filter are important.
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Figure 5.5: The reflectivity of the Calar Alto 3.5m telescope plotted with the efficiency of
the TEK7 CCD chip used during two of the observing runs.

Suppose an object m with a known spectrum Fj, (1)) is observed in filter b to have
a count rate Iy . If the spectrum is calibrated, the photometric intensity Fy,, of the

object in that filter can be calculated by evaluating,
Fypm = / ATy (V) Fr (V). (5.11)
Since none of the objects observed have known spectra however, calculation of the
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photometric intensity directly using equation (5.11) is not possible. The equivalent of
equation (5.10) for object m shows that only the quantity

' i he 1y,
[ BT () )2 = 222
. b
is known if k; has been determined. If the filter is sufficiently narrow such that the
spectrum of an object, the detector efficiency and the efficiency of the telescope optics
do not vary considerably across the filter width, then the following approximation

from equation (5.12) and (5.11) can be made,

he Iy

Fypn 2 Ty(Apo) Fon (Apo) ANy = ————
by b( 50} n(Abo) b kb/\b{)E{)\bU)

(5.13)

where A\, and Ay is the width and central wavelength of the filter respectively.

Photometric Redshifts

Table 5.1 shows that not all of the observed filters were narrow band filters. The
approximation in equation (5.13) was therefore not used. An alternative means of
obtaining photometric intensities was employed by using software written and devel-
oped as part of the PhD work by C. Wolf (Wolf 1998) at the MPIA. The primary
motivation for using this approach, outlined below, was that photometric redshifts

were provided in addition to intensities.

The software functions by fitting model spectra to the set of calibrated photon
count rates measured for each galaxy across all filters. Expressed more quantitatively,
equation (5.11) was applied for each filter to a library of template spectra to arrive at
a set of scaled filter counts for each spectrum. Galaxies were then allocated library

spectra by finding the set of library colours which best fit the measured galaxy colours.

The spectral library was formed from the template galaxy spectra of Kinney et al.
(1996). A regular grid of galaxy templates was generated, varying in redshift along
one axis from z = 0 to z = 1.6 in steps of Az = 0.002 and ranging over 100 spectral

types from ellipticals, through spirals to starbursts along the other.

The set of photometric errors given by equation (5.7) for an individual galaxy
across all filters gives rise to an error ellipsoid in colour space. Using the size and lo-

cation of these error ellipsoids, probabilities of each library entry causing the observed
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sets of colours for each galaxy were then calculated as

T e ’ 2
rglz,s) = —TQ_::)“T exp (—% ¥, [%—Q;g(i’ﬁ]—) (5.14)

j=1 J
where n is the number of colours, ¢; comes from propagation of the error given
by equation (5.7) and V = diag(e?,...,02). Each galaxy’s position vector in colour
space, ¢ = (q1,...,qn) is compared with the colour vector Q of the library spectrum
with a given redshift z and type s. Finding the maximum probability corresponding
to the closest set of matching colours therefore immediately establishes redshift and
galaxy type. An assessment of the uncertainty in this redshift is subsequently obtained

directly from the distribution of the probabilities associated with neighbouring library

spectra.
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Figure 5.6: Redshift distribution of the 958 objects photometrically evaluated in the field of
A1689. The red histogram plots all 958 redshifts whereas the black histogram plots only the
470 redshifts with a 1o error in redshift of less than 0.05. The peak at z ~ 0.18 is due to the

cluster galaxies.

Determination of the photometric redshifts and magnitudes for the data presented
in this chapter was carried out by C. Wolf at the MPIA. The analysis successfully

returned the redshifts together with the apparent and rest-frame absolute magnitudes
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(assuming an Einstein-de-Sitter universe) of 958 correctly classified objects in the ob-
served field of view of Abell 1689. Figure 5.6 shows the distribution of these 958
objects. 470 of these objects have a 1o error in redshift of less than 0.05. With the
chosen range of filters, only redshifts within 0.05 < z < 0.80 could be considered reli-
able and hence only this range is plotted!. The cluster galaxies are clearly discernable

as the peak at z =~ 0.18.

The feature at z ~ 0.4 is most likely real and not an artifact of the photomet-
ric method. Such artifacts occur due to ‘redshift focusing” when particular redshifts
are measured more accurately than others. Where the uncertainty is larger, galaxies
can be randomly scattered out of redshift bins, producing under-densities and corre-
sponding over-densities where the redshift measurement is more accurate. This effect
depends on the details of the filter set, being more common when fewer filters are

used, but can be modelled by Monte Carlo methods.

The top half of Figure 5.7 shows the results of one realisation of such a Monte Carlo
test for redshift focusing. The plot indicates how accurately the method reproduces
redshifts of spectra scaled to I = 20 with photometric noise levels taken from the
A1689 filter set. Each point represents a single library spectrum. Reproduced spectral
redshifts, 2,0, were determined by calculating colours through application of equation
(5.11) to the library spectra with redshifts zj;,. These colours were then randomly
scattered by an amount determined from the filter-specific photometric error measured
in the A1689 data before application of the redshift estimation method outlined above.
The bottom half of Figure 5.7 shows the same plot generated using spectra scaled to

I = 21 with the same photometric error taken from the A1689 data.

The accuracy of reproduced redshifts at I = 20 is clearly better than those at I = 21
where photometric noise is more dominant. There is a lack of any sign of redshift
focusing in the vicinity of z =~ 0.4 leading to the statement made previously that the
feature seen in the A1689 data is probably real. The I = 21 plot which corresponds
approximately to the sample magnitude cut of B = 23.7 (see Section 5.4.1) shows that

input library redshifts of z < 0.05 begin to be pushed beyond z = 0.05. This only

'This upper redshift limit is decided by the stipulation that the 4000Abreak must lie in or blue-ward

of the second reddest filter i the set.
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Figure 5.7: A single Monte Carlo realisation showing the accuracy of the photometric redshift
evaluation method. Input library spectra with redshifts zj;, are scaled to I = 20 (top) and
[ = 21 (bottom) and subsequently used to calculate sets of colours using the A1689 filterset.
These colours are randomly scattered by the filter-specific photometric errors measured in the

A1689 data before calculating the reproduced redshifts zppec-

marginally affects the overall redshift distribution and yet partly explains the lack of
ealaxies at z < 0.05 in the A1689 redshifts of Figure 5.6. It is worth emphasising here
that the significance of the peak at z =~ 0.18 attributed to the cluster galaxies is far

in excess of any effects of redshift focusing.
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Figure 5.8: Comparison of the photometric redshifts estimated in the cluster Abell 1689 with
spectroscopically determined redshifts. The distribution shows slight non-Gaussianity in the
error distribution. The mean redshift of the cluster determined spectroscopically is z = 0.185

(Teague, Carter & Gray 1990), while the mean photometric redshift is z = 0.189 4 0.005.

Figure 5.8 shows a comparison of the photometrically determined redshifts around
the peak of the redshift distribution of Abell 1689, with spectroscopically determined
redshifts (Teague, Carter & Gray, 1990). The filter set was selected primarily to
distinguish the cluster members, hence at higher redshift Monte Carlo estimates of

the redshift uncertainty must be relied upon (see Section 5.4.2).

Abell 1689 lies in a region of sky where there is a very low level of galactic dust.
The redshifts are therefore not affected by this source of contamination. However,
dust in the cluster itself is another concern. The effects of reddening by cluster dust
were modeled by the MPIA who found that although magnitudes are slightly affected.

the redshifts experience only an insignificant difference.

5.2.4 Intensity Calibration

The magnitudes returned from the photometric redshift analysis were not calibrated
since as mentioned in the previous section, an uncalibrated spectrum of the central

galaxy in A1689 was used to obtain only the correct relative flux between filters.
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Calibration of these magnitudes was made possible using the Oke (1990) standard

star ‘G60-54" which was observed during each night at the Calar Alto telescope.

In order to obtain calibrated magnitudes, absolute photometric scale factors were
required for cach filter. These absolute values were provided in exactly the same
manner as the relative values obtained from the uncalibrated spectrum of the large
elliptical galaxy in the centre of A1689. Using the MPIAPHOT software, the inte-
grated flux I, 5 of the standard in each filter was evaluated from the observations.
MPIAPHOT was then used to calculate the expected photometric flux using the in-
tegral on the right hand side of equation (5.10) with the calibrated spectrum of the
standard shown in Figure 5.9. This enabled determination of absolute photometric

scale factors for the filters the standard was observed with.
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Figure 5.9: The calibrated spectrum of the standard star G60-54 (Oke 1990) used for mag-

nitude calibration.

The uncalibrated photometric intensities Fy, ,,, were calculated from equation (5.11)
which used a fitted spectrum F,(A) scaled according to the value of the uncalibrated
photometric scale factors. Calibrated intensities were therefore simply obtained by

multiplying the uncalibrated intensities by the ratio of the uncalibrated to the absolute
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photometric scale factor. The correctly calibrated magnitudes M ,:‘;:, were subsequently

obtained using,

ﬂ/ffi,r:fr = Jl'Mb‘u't +2.5 lg('ii:;;/‘f':b) - ﬁ’ff),m 2 AIVI:‘) (

o
—
cn

where & is the absolute photometric scale factor. Equation (5.15) defines the calibra-

tion magnitude offset AM, required in each filter.

The standard star was observed in 6 filters. Values of kj/ky and the required
magnitude calibration offset AM defined in equation (5.15) for these 6 filters is shown

in Table 5.2. The lo error oa ) in this table was calculated using

rasr= 25 L (Vo
AM = T n10\ k W) Ok

derived from propagation of the errors o) and o) on k and k'. The errors o and

(5.16)

ae are in turn the result of propagation of the uncertainty in flux as prescribed by
equation (5.7) of the standard star and the large elliptical galaxy in the centre of
A1689. As discussed in Section 5.2.3, the photometric scale factor depends on the
weather conditions at the time of the observation and so to minimise the inaccuracy
of the calculated magnitude offsets, the uncalibrated photometric scale factors were
taken from A1689 images observed as near in time as possible to the standard star

observations. This difference in time is also listed in Table 5.2.

The fact that the six filters in Table 5.2 required approximately the same calibra-
tion offsets in magnitude demonstrates that both the original uncalibrated and the
calibrated photometry was carried out correctly and that the spectra used in each were
also accurate. The small deviations from the average magnitude offset arise due to
changing weather conditions and slight differences in the position of the object mark
tables between filters. The two magnitude offsets for the 466/8 filter were calculated
using the same A1689 image and two different standard star images observed at differ-
ent times. Although a time of over 1.5 hours elapsed between these observations, the
magnitude offsets are in close agreement with each other suggesting steady weather
conditions. Comparing this with the 572/21 filter however shows that the converse
is true:; a standard star image observed a mere 4 minutes later results in a pair of
offsets differing more than in the case of the 466/8 filter. This could be due to more
unsettled weather conditions during the 572/21 observations although it is difficult to

distinguish this from a slightly misaligned object mark table.
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Filter: A./AN (nm) | kj/ky | AM | oan | Atgps (min)
774/13 7.66 | 2.21 | 0.05 3
703/34 7.06 | 2.12 | 0.02 (i
614 /28 6.98 | 2.11 | 0.02 2
572/21 6.67 | 2.06 | 0.03 3

7.52 | 2.19 | 0.04 T
480/10 6.31 | 2.00 | 0.04 3
466/8 7.24 | 2.15 | 0.04 4
7.31 | 2.16 | 0.06 93

able 5.2: Photometric scale factor ratios and magnitude offsets required for calibra-
tion of images observed in 6 of the 9 filters. The magnitude offset AM is defined in
equation (5.15). Al gives the elapsed time between observations of the standard
star and the A1689 image used to determine k. The Lo error oa s is calculated using

equation (5.16).

Despite these small discrepancies, the calibration offset was deemed sufficiently
precise to calculate an average value and apply it to the apparent and absolute mag-

nitudes returned from the photometric analysis. An average magnitude offset of

AM = 2.11 + 0.01 (5.17)

calculated by weighting the 8 offsets in Table 5.2 with their associated errors was
applied to the magnitudes of all objects throughout all of the 9 filters. The error here

was calculated as a standard error on the mean.

Using the fact from equation (2.32) that a lens induced magnification ¢ translates
magnitudes according to M — M + 2.51gpu shows through error propagation that
the error on the magnitude offset corresponds to an error in magnification of +0.01p.

Later sections in this chapter show that this is a negligible source of error.
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5.3 Luminosity Function Analysis

Section 2.3.3 discussed how application of maximum likelihood theory to an observed
distribution of object magnitudes enables the determination of lens induced magnifi-
cation. As equation (2.59) shows, this can only be accomplished once the distribution
of the unlensed magnitudes of those objects is known. A similar predicament to that
of the number count analysis in Section 3.2.2 is again encountered. In the same way
that an offset field was used to gain knowledge of the unlensed number density of back-
ground objects in the number count analysis, an offset field was used in this analysis

to determine the unlensed magnitude distribution of objects behind A1689.

The offset field was observed to a depth of B ~ 24.5 as part of the Calar Alto
Deep Imaging Survey (CADIS) conducted by the MPIA (Thommes et al 1999). Data
for this survey was observed in 16 filters from the B to the K band with the 2.2m
telescope at Calar Alto. Using exactly the same methods outlined above, photometric
redshifts and apparent and rvest-frame absolute magnitudes were determined for all
objects in all filters. To ensure a fair comparison with the A1689 data however, only

the CADIS B band observations were considered in this analysis.

Although evolutionary traits of the luminosity function could have been investi-
gated in principle (see for example, Lilly et al 1995, Ellis et al 1996), this was not
considered in the work presented here. Instead, all galaxies between the redshift limits
of interest were used to calculate a total luminosity function. This was primarily to
ensure a sufficiently large number of objects in the A1689 sample which must have the
same redshift selection as that of the offset field for a fair comparison in the likelihood

analysis (Section 5.4.2).

5.3.1 The CADIS B Band Luminosity Function

An estimate of the luminosity function of galaxies in the CADIS B band was provided
initially using the canonical 1/V,4, method introduced by Schmidt (1968) for the
study of quasar evolution. The quantity V., is computed for each galaxy as the
comoving volume within which the galaxy could lie and still remain in the redshift

and magnitude limits of the survey. For an Einstein-de-Sitter universe, this volume is
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calculated as,
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where dw is the solid angle of the observed field of view and D(z) is the comoving
radial distance defined in equation (1.38). The upper limit of this integral is set by
the minimum of the upper limit of the redshift interval chosen, z,, and the redshift
at which the galaxy would have to lie to have an apparent magnitude of the faint
limit of the survey, z,,,.,. Similarly, the maximum of the lower limit of the chosen
redshift interval, z, and the redshift at which the galaxy would have to lie to have an
apparent magnitude of the bright limit of the survey, z,,, ., forms the lower limit of
the integral. This lower integral limif plays a non-crucial role when integrating over
large volumes originating close to the observer where the volume element makes only

a relatively small contribution to V.-

The redshifts z,,, ., and z,,,, ., are calculated for each object by finding the roots

of

M = Miyaz fmin] — 51 ho + 51g[D(2)(1 + 2)] — K (2) +42.39 = 0 (5.19)

where M is the absolute magnitude of the object, m{4. /min) 18 the appropriate survey
limit and K(z) is the K-correction (see Section 1.1.10). Although the K-correction
for each object at its actual redshift was known from its apparent magnitude and
absolute rest-frame magnitude, the redshift dependence of this K-correction was not.
In principle, this redshift dependence could have been calculated directly for each
object using its best fit spectrum returned from the photometric analysis, however
these spectra were unfortunately not available. As such, an approximated K-correction

was used instead.

To demonstrate the validity of this approximation, the K-correction for the stan-
dard elliptical galaxy spectrum plotted in grey in Figure 5.4 was calculated. Using a
hypothetical top hat B band filter centred on A = 650nm and 170nm in width, the
K-correction plotted in Fignre 5.10 was computed through application of equation

(1.59). This plot shows that /K (z) is approximately proportional to z and so a good
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approximation to K(z) is obtained using

K(z) = K=, (5.20)

()

where K (zy) is the K-correction of the object at its actnal redshift z.

B band K(z)

Figure 5.10: K-correction caleulated using the standard elliptical galaxy spectrum plotted in

Figure 5.4 with a top hat B band filter centred on A = 650nm and 170nm in width.

Of course, the proportionality observed in equation (5.20) has only been proven to
be applicable to standard elliptical galaxies observed in the B band. Coinciding with
the redshift range 0 < z < (0.8 forced upon the A1689 observations here, Lilly et al
(1995) find that the K-correction in the B band for elliptical galaxies is also roughly
proportional to redshift. Furthermore, they show that this is also the case for spiral
and irregular galaxies. Based on this evidence, the approximation in equation (5.20)

was therefore adopted for K(z).

Once Ve has been calculated for all objects, the luminosity function ¢ at the

rest-frame absolute magnitude M in bins of width dM is then computed from,
1
HM)AM =) —— (5.21)

FrLeEt

where the sum acts over all objects having magnitudes between M — dM/2 and M +

dM /2.
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Figure 5.11 shows the luminosity function of B band magnitudes from the CADIS
offset field which has a solid viewing angle of dw = 100 arcmin®. To match the selection
of objects lying behind A1689. only objects within the redshift range 0.3 < z < 0.8
were chosen. A further restriction on the apparent B magnitude of mp < 24.5 was
applied for completeness of the sample (see Section 5.3.2), yielding a total of 371
objects. The data points in Figure 5.11 are centred on bins chosen to maintain an
equal number of objects in each. The lo errors shown here were calculated using
Monte Carlo simulations. 1000 realisations were performed by randomly scattering
individual object redshifts in accordance with their associated errors provided in the
CADIS dataset (the NAG routine GOS5DDF was used to generate normally distributed
errors). For each realisation, the V., of each object was recalculated using the re-
sampled redshift. The resultant standard deviation of the distribution of values of ¢
for each bin given by equation (5.21) was then taken as the error. In this particular
case, no consideration was given to the magnitude errors or the propagation of the
redshift error into object magnitudes. Section 5.3.3 discusses this further. Finally. the
solid curve in Figure 5.11 shows the Schechter function determined with the maximum

likelihood technique discussed in Section 5.3.3.

5.3.2 Sample Incompleteness

Determination of the faint magnitude limit beyond which a sample becomes incom-
plete is essential for the correct caleulation of any luminosity function. It is self evident
from the previous section that an incorrect evaluation of the Ilhmiting magnitude 4,
would result in larger values of V,,,,, and hence a biassed luminosity function. As Sec-

tion 5.5.4 details, this affects calculation of the lens mass.

An estimation of the incompleteness of the CADIS B band sample can be obtained
using the V/Vj, ., statistic (Schmidt 1968). In this ratio, V.. is calculated as before
whereas V' is the comoving volume described by the observer’s field of view from the
same lower redshift limit in the integral of equation (5.18) to the redshift of the object.
If a sample of objects is unclustered, exhibits no evolution (ie. a systematic change
i mtrinsic luminosity with redshift) and is complete. the position of each object in

its associated vohmne 1, will be completely random. If this is the case, then the
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Figure 5.11: The CADIS B band object luminosity function calculated with the 1/V,,..
formalism. Errors account only for errors in redshift. Points lie at bin centres, the widths of
cach chosen to hold the same number of objects. There are 371 objects in total selected by
the redshift limits 0.3 < z € 0.8 and the apparent B magnitude mp < 24.5. The solid line is

the Schechter function determined in Section 5.3.3.

distribution of the V/Vj,,. statistic over the range 0 to 1 will be uniform and the

average value of V/V,,.» across all objects will be equal to (0.5.

If the sample is affected by evolution such that more intrinsically bright objects lie
at the outer edges of the V., volume, then V/Vinas s biassed towards values larger
than 0.5. The reverse is true if a larger number of brighter objects lie nearby. If the
sample is incomplete at the limiting apparent magnitude chosen, estimations of Vi,
will be on average too large and will cause V/V,4, to be biassed towards values less

than 0.5 as shown by the histogram in the top left hand corner of Figure 5.12.

The requirement that the average V/Vi,.. should have a value of 0.5 subject to
the conditions outlined above is of course only applicable in the large mumber limit.

In practice, shot noise combines with the effect of clustering to confuse the situation.
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An estimation of the error in the average V/V,,, value is therefore important for the
purposes of estimating the limiting apparent magnitude of a sample. Counsider the

theoretical variance nf.“, of one V/V,, 4, measurement,

: - v 14 Vo2 14
2 - . 5 99
= Wmaz ™ ,/!I . ( 1';111:1.:‘ ) ( Vrr:ra:r' < I";,m_.;. >> d ( 'rm.u.,r ) (d.zu)

where P is the normalised distribution of values of V/Vj,4, and angular brackets

denote the mean value. For an ideal sample with no evolution or clustering, P is a

uniform distribution over the range 0 to 1 and < V/V,0. >= 0.5 which gives

. 1 17 1% 5. 1
2 - _m N A = — 52
ﬂr{l,“””l N »/” (1 ( Vmu.i: ) ( I’:’H.ﬂ..‘f' 2) 12 ( ) 25)

The standard deviation, oy,

i -

. of the average < V/V,,0r >, is then calculated
from the combination of errors on each of the V/V,,,, measurements. In this hypo-
thetical case, these are all equal and are given by equation (5.23) so that

N

3 0 < V/Vinax >)2 " 1 .
2 s = 5 e oy e 24
0y Vo e ( U(V/V}na.,-,.-);r U{'I {Vinas )i 12N (0 )

In order to arrive at an apparent magnitude limit for the CADIS field, values of
< V/Viar > were calculated for different applied limiting magnitudes and plotted
as shown in Figure 5.12. The grey region in this plot corresponds to the lo errors
described by equation (5.24) which lessen at the fainter limiting magnitudes due to
the inclusion of more objects. Clustering in the CADIS field adds extra noise and so

these errors are an underestimate of the true errors.

Without knowledge of the effects of clustering. a limiting magnitude of mp < 24.5
gives a value of < V/V,,, >~ 0.5. This is in agreement with the apparent magnitude
limit at which the number counts begin to fall beneath that measured by deeper
surveys. The histogram in Figure 5.13 shows how the number of objects varies with
magnitude for the CADIS B band. The solid curve plotted over this shows the scaled B
band counts measured by Lilly et al (1991) to a depth of mp =~ 26. This clearly begins
to depart from the histogram at mp =~ 24.5 which is thus taken to be the limiting
magnitude for the CADIS observations. BEffects due to this choice are investigated

later.
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Figure 5.12: The main graph shows the variation of the mean V[ Vinae with limiting apparent,
B magnitude for the CADIS field. The grey region corresponds to the lo errors described by
equation (5.24) which are an underestimate due to the unconsidered effects of galaxy clustering.
The top left plot shows the distribution of V/V),.. for too faint a limiting magnitude of
mp < 25 which results in a bias towards values less than 0.5. The top right plot is the

distribution with the chosen mpg < 24.5

5.3.3 Parameterisation of the Luminosity Function

To perform the likelihood analysis outlined in Section 2.3.3, a parametric form of the
Inminosity function was required. This parametric form was provided by a Schechter
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Figure 5.13: Variation of CADIS galaxy counts with apparent B band magnitude shown by
the histogram. The curve shows the deeper B band counts of Lilly et al (1991) scaled for the

CADIS field of view.
luminosity function (Schechter 1976):
(f)(ﬂ/f) . {/’*H]U,-l(i\l’.—;’\”fl+n] exp [_l[]U.-l{JU.-PN} ) (525)

The parameters M, and « were determined using the maximum likelihood method
of Sandage, Tammann & Yahil (1979, referred to as STY hereafter). In much the
same way as the probability in equation (2.59) was formed, the STY method forms
the probability p; that a galaxy 7 has an absolute magnitude M;.

d(M;)

SeIe] J"“rrrur.i' i vn‘r
/ mt:_-i-(( Miin {{:, ))._nnz)) P(M)dM

pi = p(M;|z;) (5.26)

where M., (z;) and M,,;,(z) are the absolute magnitude limits corresponding to
the apparent maguitude limits of the survey at a redshift of z;. Conversion of these
apparent magnitude limits includes the K-correction by use of equation (5.19) with
z set to z. A further restriction is placed upon the integration range by imposing

another set of magnitude lhinits M, < M < M, which for the CADIS data were set

at the maxinmum and minimum absolute magnitudes found in the sample.

The likelihood function in this case is a two dimensional function of the Schechter

parameters M. and o formed from the product of all probabilities p;. The best fit M.,
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and a are therefore found by maximizing the likelihood function,

InL(M,,a) = Z In¢p(M;) — In

f

i Moo (2;),M2)
/ S(M)AM § + ¢, (5.27)

N
—| (M (2:) .My )

with the constant ¢, arising from the proportionality in equation (5.26). An estimate
of the errors on M, and « are calculated by finding the contour in «, M, space which
encompasses values of av and M, lying within a particular confidence level from values
giving the maximun likelihood £,,,4,. In log-likelihood space as described by equation

(5.27), this contour lies at In L, — 0.5Ax* where Ay? depends upon the desired

confidence level.

The top left hand plot of Figure 5.14 shows these 1o and 20 confidence regions for
the CADIS sample. which for two degrees of freedom correspond to a Ay? of 2.30 and
6.17 respectively. This plot highlights the degeneracy typically encountered between
values of M, and « (see for example, Lin et al, 1997). For any given Schechter-like
distribution of magnitudes, any uncertainty in the magnitude at which the ‘knee’ of
the distribution lies as characterised by M,, is compensated by a change in the slope
of the Schechfer function at fainter magnitudes. If this knee is forced to brighter
magnitudes. a steeper faint magnitude slope is required to maximize the likelihood

function and hence a more negative value of « results.

The errors on M, and « obtained from the likelihood contours only represent a
level of uncertainty to the fit of the Schechter function to the absolute magnitudes.
With this method, no consideration is given to the error in each object’s magnitude or
redshift. These uncertainties were taken into account using Monte Carlo simulations.
In this case, both object redshifts and magnitudes were randomly scattered in 1000
realisations. Redshift and apparent magnitude errors were available from the CADIS
dataset as derived by the photometric analysis software. Errors in absolute magnitude
were then calculated from the propagation of uncertainties in redshift and apparent

magnitude through equation (5.19) to give,

i K; 5 1-—0.5(142)"2 ) "
iy — —— - o im + ? r‘28
oM; zi In10 14 2z — (14 z)1/2 T Tm, (5.28)

for each object with redshift z; and apparent magunitude m;. Here, the K-correction
given by equation (5.20) has been used such that the quantity K; = K(z;) is calculated

from equation (5.19) using m;, M; and z; as they appear in the CADIS dataset. The
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typical ratio of apparent magnitude to redshift ervor was found to be oy, /o, ~ 1%

due to the relatively unprecise nature of photometric redshift determination.

After scattering magnitudes and redshifts in this way, each of the 1000 re-sampled
realisations of the original data set produced were then used to generate individual
likelihood distributions. The scatter of maximal values of M, and « for each of these
distributions is shown in the plot at the top right corner of Figure 5.14. It is not
surprising that a similar degeneracy to that seen in the original likelihood contours
is also seen here. To include the effects of this scatter in the likelihood contours,
the log likelihood distributions were then co-added to form one, effectively convolved

distribution.

The lower section of Figure 5.14 shows the contours obtained as a result of this
convolution. As expected, inclusion of the redshift and magnitude errors to the original
likelihood errors has resulted in enlargement of the lo and 20 confidence regions. To
obtain the overall errors on M, and «, projections of the contours are made onto their
respective axes. As seen in Figure 5.14, the resulting maximumn likelihood M, and «

together with their errors were found to be
M, = 209408 . ai=—145102. (5.29)

The Schechter function described by these parameters is shown in Figure 5.11 by
the solid line. (As a note of interest, x? fitting of the 1/V,,,. data points in Figure
5.11 predicts a slightly less steep faint-end slope than that determined with the STY
method. This is in disagreement with the work of Willmer (1997) who showed that
fitting Schechter functions to simulated data using the 1/V,,, method generally gives

a steeper faint-end slope.)

Unlike the 1/V},, method of estimating luminosity functions, the STY method is
incapable of yielding absolute quantities since the ratio of terms in equation (5.26) is
independent of the normalisation constant ¢*. Although not essential for the likelihood
analysis here, ¢" was calculated by normalising to the 1/V,,q, luminosity function over

the range of magnitudes M, < M < M,,

N &
hY 1= ! lmu_r..- )
ik Z‘%/___ (5.30)
T d(M)AM

The summation in the munerator here runs over all galaxies in the sample. Using the
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Figure 5.14: Determination of the Schechter parameters M, and « for the CADIS data. The
top left plot shows the maximumn likelihood contours corresponding to 1o and 20 confidence
levels withont regard for redshifts or magnitude ervors. The scatter in the maximum likelihood
M, and o resulting from these errors is shown in the top right plot. Convolving the top two

plots gives the overall 1o and 20 confidence levels shown in the bottom plot.

values of M, and « from (5.29) for the CADIS data gives a normalisation constant of

$* =2.05 x 107, (5.31)
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5.4 Lens Mass Determination

With knowledge of the distribution of absolute object magnitudes over the redshift
range (0.3 < z < (.8, the statistical search for a sign of lens-induced magnitude bright-
ening was made possible. In a similar manner to the case of the number count analysis
in Chapter 3, the CADIS huminosity function was assumed and used as a falr measure

of the intrinsic source magnitude distribution.

5.4.1 A1689 Sample Incompleteness

Obtaining a complete sample of background objects in the A1689 field of view is of
the same importance as ensuring completeness of the CADIS sample. As Section 5.5.4
shows, the limiting faint magnitude chosen for the sample noticeably influences lens

mass determinations.

Estimation of the incompleteness of the A1689 sample was carried out in exactly
the same fashion as with the CADIS sample. The < V/V,,0. > statistic for all
galaxies lying within 0.3 < z < (.8 was plotted with limiting apparent B magnitude.
The upper plot in Figure 5.15 shows this variation with the errors given by equation
(5.24) plotted in grey. Once again, these errors are an underestimate of the true
errors and so a limiting magnitude of mp < 23.7 was chosen to give a total of 152
background objects with < V/V,,,, >= 0.478. This limit was also in agreement with
that predicted divectly from the number counts in a similar fashion to that of Section
5.3.2. The lower plot in Figure 5.15 shows the magnitude-redshift distribution of all
958 objects in the overall A1689 dataset. The selected 152 background objects used
for the analysis which follows are highlighted by the dashed box. Cluster members

are again clearly discernable as the peak at z = 0.18

5.4.2 Determination of »

[n the nmumber count analysis of Chapter 3, the lack of redshift data forced the ap-
proximation that all objects were assumed to lie at the same redshift. With a fixed

lens and source redshift. the surface mass density s, being effectively independent of
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Figure 5.15: The top plot shows variation of the < V/V},,4, > statistic with limiting apparent
B band magnitude for the A1689 sample. 152 objects were selected by the redshift and

apparent magnitude limits highlighted by the dashed box in the bottom plot.

redshift. could therefore be used as a likelihood parameter for the real lens surface
mass density ¥ in equation (2.9). The situation here is changed however since the
redshift of all objects is known. x must therefore be replaced by its redshift dependent

form. x(zg) where zg refers to the source redshift.
Evidently. #(zg) can not be used directly as a likelihood parameter for X. It is
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therefore necessary to separate r(zg) into two parts, one containing all zg dependency
and the other containing only lens redshift terms. This is easily accomplished from
rearrangement of equation (3.10) to give

87 l(l +zp) V2 — 1] l(i 4+ zg)V2 — (1 + 2;)V/?

wlzs) = TH, (1 + 21)? (14 25)/2-1

j| = koo f(2g) (5.32)
where zg is the fixed lens redshift and f(zg) is a function which simplifies the notation
by defining,

(5.33)

L8G4z -1
e cHy - (1 + ZL)Q

This parameterisation of r(zg) conveniently defines the quantity t. (BTP) which is

used as the likelihood estimator for ¥ in this case.

Maximum likelihood determination of so was therefore performed using equation
(2.59) of Section 2.3.3 with ¢(M) described by the Schechter function stipulated by the
parameters in (5.29) above. Instead of using the amplification 2. a redshift dependent

version of the k estimators in equations (2.66) and (2.68) were used by writing

|1 = 2660 f (25)] isothermal
11(zs) = 9 (Koo f(25) — €) (Koo f(2s) = 1/¢)|”! parabolic . (5.34)
(1 — Kosf(25)) 2 sheet

Note that the likelihood estimator formed from the probability in equation (2.59) in-
volves the bivariate function ¢(M, z). Only the magnitude dependence of this function
is considered here of course since no consideration has been given to the evolutionary

aspects of the CADIS Iuminosity function (see the introduction to Section 5.3).

Error Sources

Three sources of error on the value of ko were taken into consideration:

I The maxinnun likelihood error obtained as the width of the likelihood distrib-
. ~ / ) . . s

ution at I L,,,, — 0.5Ayv*. All object magnitudes and rvedshifts were taken as

presented directly in the A1689 data while assuming the Schechter parameters

from (5.29).

2 The uncertainty of the Schechter parameters M, and « from the likelihood

analysis of the CADIS offset field.



3 The redshift and magnitude uncertainties of individual objects in the A1689

data, derived from the photometric analysis.

The latter two items in this list were dealt with simultaneously using Monte Carlo
simulations once again. 1000 realisations were performed in which values of M, and
a were drawn at random from the convolved likelihood distribution shown in the
lower part of Figure 5.14. For each realisation, redshifts and absolute magnitudes of
objects were scattered in accordance with their associated photometric errors. The
standard deviation of the scattered values of x produced in this way was then added
in quadrature to the uncertainty of the maximum likelihood error obtained from item

one of the list above to give the overall error.

The magnitude calibration error of AM = 0.01 discussed in Section 5.2.4 was
ignored. Inspection of the form of the Schechter function in equation (2.60) shows
that a systematic magnitude offset is exactly equivalent to an error in M,. As (5.29)
shows, the lo error in M, is ~ 0.6 which completely overwhelms any uncertainty in

magnitude calibration.

Source Parity

Interpretation of the results returned from the likelihood analysis requires a careful
consideration of parity before ks can be evaluated. Since all source objects were
assmmed to lie at a fixed redshift in the work of Chapter 3, the critical line position
about which parities were flipped remained fixed. Parity must be dealt with differently
when a distribution of source redshifts exists since the critical line radius scales with
source redshift as 0. < D,(z1,zs)/Da(zs) (see Section 2.1.7). Each source has its own
critical radius and therefore a different critical value of ko about which its likelihood
distribution is reflected. This is seen from inspection of the estimators in equation

(5.34).

The contribution to the maximum likelihood distribution of k4 in a given region

of the field of view from each source was thus determined in the following manner:

e The critical line radius for the source was calculated from its redshift. This was



achieved using the proportionality noted above, normalised to the arc observed
to the south-east of the cluster (lower left of cluster centre in Figure 5.2). With
a radius of 0 ~ 0.85" and a redshift of 2 = 0.8 (Tyson & Fischer 1995), this arc
gives the critical line radius as

0.92(1 + z5)Y/2 —1

00 =124 ==t

(5.35)

for Abell 1689 using the results of equations (3.8) and (3.9) for an Einstein-de-

Sitter universe.

The source parity was determined from the spatial location of the object with

respect to the region enclosed by its critical line.

Applying equation (2.59) with the fitted CADIS Schechter function, the proba-
bility distribution for k., was calculated. Being reflected about its critical ks,
this distribution typically has two equal peaks. Depending on the source parity
chosen, one of the peaks is taken as the correct solution and extrapolated over

the whole ko range searched by the likelihood analysis (see Figure 5.16).

log P[Mlu(xz5)]

Figure 5.16: Illustration of an extrapolated probability distribution peak for a source at

redshift zg. The extrapolated curve is the source’s contribution to the overall likelihood

distribution. The vertical dashed line locates the critical Kuo.

Each source probability distribution calculated in this way was combined with the

distribution obtained for all of the other sources in the region under consideration to

arrive at the overall likelihood distribution for that region. The final mass calculated

proves to have a negligible sensitivity to the normalisation given by the arc redshift.
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All masses in the following section were calculated assuming a range of arc redshifts

from z = 0.8 — 1.2 and no noticeable change in the results occurred.

5.5 Results

5.5.1 Radial Mass Profile

The annular binning of objects about the cluster centre seen in the number count
analysis of Section 3.2.4 was applied to the luminosity function method of this chapter.
The relatively small number of background objects contained in the A1689 sample
however was unfortunately insufficient to allow calculation of a profile of the same

resolution as the number count profile.

Apart from the effects of shot noise, this limitation results from the simple fact
that bins which are too narrow do not typically contain a large enough number of
intrinsically bright objects. This has the effect that the knee of the Schechter function
assumed in the likelihood analysis is poorly constrained. As equation (2.59) shows,
a large uncertainty in M, directly results in a large error on the magnification and
hence on Ke. BExperimentation with a range of bin widths quickly showed that in
order to achieve a tolerable precision for k.., bins had to be at least ~ 1.1 arcmin in
width. With the observed field of view, this gave a limiting number of merely three

bins, illustrated in the lower half of Figure 5.17.

The upper half of Figure 5.17 shows the x profile of Section 3.2.4 overlaid by data
points calculated in the three bins using the luminosity function method. The upper
data points correspond to the sheet estimator while the lower points are due to the
isothermal estimator. The 1o error bars plotted here were calculated taking all three
contributions listed in Section 5.4.1 into account (with 1000 Monte Carlo simulations).
Values of rs were converted to values of s for the purpose of comparison with the

results of Section 3.2.4 using,
Ny

P %VXT Y Pl =t € > (5.36)

i=1

where N, is the number of galaxies in bin b and < f;, > denotes the average value of

f(z) in the bin which was consistently found to be ~ 0.57.
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Figure 5.17: Top: Comparison of radial k profiles. Data points show isothermal (lower) and
sheet (upper) estimated & obtained from the luminosity analysis. 1o error bars are plotted.
The solid and dashed lines indicate the profile obtained in Chapter 3 with the number count
method. Bottom: Spatial location of the annular bins on the A1689 field of view. Open red

dots are objects selected by z > 0.2 and solid blue dots by z < 0.2.

Despite the relatively large errors, the data points from the luminosity function

analysis show a fall off with radius, in good agreement with the profile derived from
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the number count study. It is noticeable however that the profile they indicate is
perhaps a little flatter than that derived from the number counts. It appears that

more mass is detected at larger radii although this is not particularly significant.

5.5.2 Aperture &

In addition to the radial profile, the variation of average surface mass density contained
within a given radius was calculated. By applying the likelihood analysis to the objects
contained within an aperture of varying size, a larger signal to noise was permitted at
larger radii where more objects are encompassed. With a small aperture, the same low
galaxy count problem is encountered as Figure 5.18 shows by the large uncertainty in
this vicinity. In this plot, the parabolic estimator of equation (5.34) is used to obtain
Koo Which is scaled to x using equation (5.36). The orange region depicts the lo
errors, again taking all 3 sources of uncertainty from Section 5.4.2 into account. The
solid black line shows the variation of aperture x calculated by averaging the parabolic
estimator profile of Section 3.2.5. The errors on this are shown by the dashed lines
but account only for clustering and shot noise without inclusion of the uncertainty of

background count normalisation or redshift.

As expected from the results of Section 5.5.1, generally more mass than that
predicted from the number counts is seen, especially at large radii. The following

section quantifies this for a comparison with the projected mass result of Chapter 3.

5.5.3 Projected Mass

From the values of ks used to generate the & profile in Section 5.5.1 and the result of
equation (5.33), the cumulative projected masses in Table 5.3 were calculated. Errors

were derived from propagation of the errors on the binned values of k.

These projected masses are in excellent agreement with those of Chapter 3. Since
1" = 0.117h~'Mpc in the cluster frame, the second cumulative mass listed in Table
5.3 gives

Moy(< 0.25h~ 'Mpc) = (0.48 £ 0.16) x 10"°h~'M,, (5.37)
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Figure 5.18: Variation of average surface mass density contained within a given radius R (red
line). leo errors are shown by the orange region. The black solid and dashed lines show the
average surface mass density and 1o errors (due to likelihood analysis only) of the parabolic

estimated profile of Section 3.2.5.

Aperture Radius (arcsec) | Aperture Area (Mpc?) Ms4(< R)
65 0.050 (0.16 £ 0.09) x 105A~ Mg
130 0.202 (0.48 £ 0.16) x 10r~ Mg
195 0.454 (1.03 £ 0.27) x 10'°h~'Mj

Table 5.3: Cumulative projected masses at the radii given by the profile of Section

5.5.1.

which is perfectly consistent with the result from the number count study. The error
here is also essentially the same as the 30% error quoted on the result of Chapter 3 in
allowing for the effects of uncertainty in the background number count slope, redshift
distribution and surface number density. The projected mass contained within 195
arcsec is a little higher than that from the number count work although given the

errors involved, this can still be regarded consistent.
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5.5.4 Effects of Sample Incompleteness

One final uncertainty not taken into consideration thus far is that due to sample
incompleteness. Changing the limiting apparent B magnitude 7,,,, in the determi-
nation of the CADIS luminosity function directly affects the fitted values of M., «
and hence the maximum likelihood k4. Similarly, the differing numbers of objects

included in the A1689 sample from variations in 1, also has an influence on k-

Table 5.4 quantifies this effect for the CADIS objects. It can be seen that increasing
Mumaee (1€. including fainter objects) has little effect on ke until the limit my,q, >~ 24.5
is reached. Beyond this limit, s starts to fall. Two lhmplications can therefore
be made. Firstly, this suggests that the magnitude limit in Section 5.3.2 from the
V/Viar test, being consistent with the limit here, was correctly chosen. Secondly,
ling 18 relatively insensitive to the choice of mypq. if the sample is complete (and not

smaller than the limit at which shot noise starts to take effect).

R M, o Keo(iS0)  Keo(para) Koso(sheet)

25.5 |-20.57 -0.80 | 0.617303 0.6912% 0.7610:0%
950 |<2006 <110 | 0650 OITTHL 084t

945 |-2094 <1.45 | 0.702008 [p.gstl08  p.96*00

24.0 |-21.49 -1.87 |0.74700% 0911313 1.087913

95 |05 <188 |0yeigdy OOUD Lavthes

Table 5.4: Variation of limiting apparent B magnitude 71,4, of the CADIS field and
its effect on the Schechter parameters and the resulting value of r. The appar-
ent magnitude limit of b = 23.7 was assumed for the A1689 data in calculating the

maximum likelihood kag. Errors are taken only from the width of the likelihood curves.

The effect of varying the magnitude limit of the A1689 sample is quantified in
Table 5.5. A clear trend is also seen here; as 1m0, 18 veduced, roe falls. Assuming
linearity, a rough estimate of the uncertainty of ko given the uncertainty of the sample

magnitude limit is given by:

~ 0.1AM e 1sothermal
Ak = ~ 0.2Am,,: parabolic (5.38)

~ 0.4AM,,  sheet
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Table 5.5: Variation of the maximum likelihood determined # with limiting apparent
B magnitude 11, of the A1689 data. The Schechter parameters of Section 5.3.3 were

asstmed in the likelihood analysis.

Referring to Figure 5.15, a suitable uncertainty in my,,., of the A1689 sample of
say +0.2 magnitudes might be argued. If this were the case, the projected masses
of the previous section calculated with the parabolic estimator would have a further

error of ~ 5%.

5.6 Signal to Noise Predictions

Including all possible contributions of uncertainty in the calculation of mass, the
previous section has shown that even with relatively few galaxies. a significant cluster
mass profile can be detected. One can make predictions of the sensitivity of the
method with differing input parameters potentially obtained by future measurements.
This exercise also serves as an optimisation study, enabling identification of quantities

requiring more careful measurement and those which play an insignificant part.

The most convenient means of carrying out this investigation is by application of
the reconstruction method to simulated galaxy catalogues. Catalogues were therefore
constructed by randomly sampling absolute magnitudes from the Schechter function
fitted to the CADIS offset field in Section 5.3.3. Redshifts were assigned to each mag-
nitude by randomly sampling the distribution parameterised by T98 (their equation
22) from the Canada France Redshift Survey (Lilly et al. 1995). A range of catalogues
were produced, varying by the munber of objects they contained and their distribution

of galaxy redshift errors modeled from the A1689 data.

Figure 5.19 shows how the distribution of photometric redshift error, o.. correlates
with the A1689 B-band apparent magnitude. No significant correlation between .

and redshift was found. Catalogne objects were thus randomly assigned redshift errors
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Figure 5.19: Correlation of photometric redshift error with apparent B-band magnitude for

the A1689 data. No significant correlation between o. and z exists.

in accordance with their apparent magnitude, given by the correlated distribution
in Figure 5.19. Different catalogues were generated from different scalings of this

distribution along the o, axis.

Bach catalogue was then lensed with a sheet mass characterised by s = 1 before
applying the reconstruction. 1000 Monte Carlo realisations were performed for each
reconstruction, scattering object redshifts according to their assigned errors in the
same manner as in the reconstruction of A1689. Furthermore, to model the uncertainty
associated with the offset field, assumed values of the Schechter parameters M, and o
were once again subject to Monte Carlo realisations. All catalogues were reconstructed
assuming sets of Schechter parameters drawn from a range of scaled versions of the

distribution shown in Figure 5.14.

The resulting scatter measured in the reconstructed value of ko for each catalogue
and assumed a-M, scaling was combined with the average maximum likelihood error
across all realisations of that catalogue to give an overall error. This total error was

found to be well described by,

| + (20, F 9 :
L+ Q0" | (0120, )2 + (0.3704)% = 0.1804s, (5.39)

= b

T

where 7 is the munber of galaxies, o, is the sample average redshift error and o, and

o, are the projected errors on M, and « respectively as quoted in equation (5.29).
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The quantity o,,,. is the covariance of «v and M, defined by

[ L(M., ) (M, — (M,))(x — (cv)) dM,de
| L(M,, ) dM d

(5.40)

Toenr. =

where the likelihood distribution £ is given by equation (5.27). We find that o4, =

0.039 for the CADIS offset field. Equation (5.39) is valid for n > 20 and 0.0 > o. > 0.3.

Equation (5.39) shows that when the number of objects is low, shot noise dom-
inates. With n =~ 200 however, uncertainties from the calibration of the offset field
start to become dominant. The factor of 2 in the photometric redshift error term
stems from the fact that redshift errors also translate directly into absolute magni-
tucde errors through equation (5.28). Another discrepancy arises when comparing this
redshift error with the redshift error contribution of 25% claimed for the A1689 data
in Section 5.4.2. This is accounted for by the fact that K-corrections were present in
the A1689 data whereas in the simulated catalogues there were not. Equation (5.28)
quantifies the increase in magnitude error with the inclusion of K-corrections. This
translates to an approximate increase of 20% in the overall error with an average

[K-correction of —1.0 for the A1689 data.

Emphasis should be placed on the criteria for which equation (5.39) is valid. The
predicted overall error rises dramatically when fewer than ~ 20 objects are included
in the analysis. Simulations with 15 objects resulted in maximun likelihood errors
rising to beyond twice that predicted by simple shot noise. This stems mainly from
the effect mentioned i Section 5.5.1. namely the failure of the likelihood method when

the knee of the Schechter function is poorly constrained.

Section 6.3 discusses possible measures to take based on the predictions of these

simulations in order to optimise a multi-colour study such as this.

5.7  Summary

Photometric redshifts and magnitudes have been determined for objects in the field
of Abell 1689 from multi-waveband observations. This has allowed caleulation of
the Tuminosity function of sonrce galaxies lying behind the cluster. Comparison of

this with the luminosity function obtained from a similar selection of objects in an
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unlensed offset field has resulted in the detection of a bias in the A1689 background
object magnitudes attributed to lens magnification by the cluster. After a careful
consideration of all possible sources of uncertainty, calculation of a significant radial
mass profile for A1689, consistent with that obtained in the number count study of
Chapter 3 has been calculated. This predicts a projected mass interior to 0.254~ ' Mpc
of

Myg(< 0.25h~'Mpc) = (0.48 £ 0.16) x 10~ M,, (5.41)

in excellent agreement with the number count result.

This chapter has been primarily devoted to demonstrating the viability of mass
reconstruction using the luminosity function method of BTP. The technique is limited
mainly by shot noise arising from limited numbers of background galaxies, as the
signal-to-noise analysis of Section 5.6 has shown. but is independent of their clustering.

Section 6.3 discusses ways of improving the efficiency of the method.
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Chapter 6

Summary

This thesis has focussed on the development and application of several gravitational
lens mass reconstruction techniques. In particular. attention has been given to those
methods which exploit the property of lens magnification since this allows measure-
ment of absolute mass. This is in contrast to methods based upon guantifying image
shear which are plagued by the sheet-mass degeneracy (Falco, Gorenstein & Shapiro

1985) limiting determination of lens mass to differential values.

The purpose of this short chapter is to summarize the results and conclusions made
in Chapters 3. 4 and 5 in addition to providing a prediction of the role of lensing in
the future. The following short section gives a history of the development of methods
seen in this work. Section 6.2 compares and contrasts the main results of this thesis
with those obtained via alternative methods employed by other researchers in the
field. In Section 6.3, consideration is given not only to work which could follow that
presented in this thesis but also new lines of research which lensing is beginning to

evolve towards.

6.1 A Short History

Several different approaches have been taken throughout the work of Chapters 3, 4

and 5. There are benefits and disadvantages to each.
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Reconstruction using the projected number density dilution of background red
valaxies as applied to Abell 1689 in Chapter 3 is a simple and an efficient method.
However, prior knowledge of the limits on a cluster’'s shear field must be assumed
before mass estiimations can be made. While this was shown via agreement with other
mwethods not to pose any major problems, it has the consequence of obtaining less
accurate solutions being able to provide essentially only an upper and lower bound.
Although this was circumvented in 1D by providing a self-consistent axial solution, a

self-consistent solution for v and s in 2D remained undiscovered.

The lack of a self-consistent solution in 2D provided motivation for the work in
Chapter 4. Previous attempts at generating a self-consistent solution by direct itera-
tion from a measured magnification field (see Section 2.3.4) were known to fail upon
introduction of critical lines. By pixelizing the magnification data so that the problem
could be interpreted as a matrix inversion calculation, a method for producing self-
consistent 2D solutions with the presence of critical lines was derived. This method
does not provide an alternative means of measuring magnification but relies upou its

measurement prior to application.

An alternative method of measuring magnification came in Chapter 5; the so-called
luminosity function method. By determining the increase in observed background
source flux, the amplification by Abell 1689 was measured. This important piece of
work is the first ever investigation into the flux magnification by lensing. In addition
to providing a proof of concept, it enabled verification of the measurements of mag-
nification made in Chapter 3. The method requires measurement of intrinsic source
brightnesses and as Chapter 5 showed, this involves a relatively large amount of obser-
vation even using more efficient photometric redshift techniques (although see Section
6.3). This disadvantage aside. the method boasts independence of source clustering,

unlike the more simplistic munber count approach of Chapter 3.

In summary, choice of the most suitable method should be decided by the amount,
of available observing time. A quick yet less accurate study can be performed with two-
lilter observations using the munber count method whereas a more detailed, clustering
noise independent result can be acheived with several filters using the luminosity

function method.
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The main results of Chapters 3, 4 and 5 are now summarised in the next section.

6.2 Conclusion of Results

6.2.1 Number Count Study

In chapter 3, the viability of cluster mass reconstruction using the integrated galaxy
munber counts technique of Section 2.3.2 was demonstrated. By applying colour cuts
to V and I band data of objects in the field of Abell 1689, the background population
of red galaxies was selected. These sources were shown to exhibit a dilution in surface
number density in regions of high magnification due to their relatively flat number
count slope. The effects of non-linear source galaxy clustering and shot noise were
taken into consideration for the computation of a projected mass profile and 2D mass

map of A1689.

The derived 2D mass distribution of A1689 was shown fo exhibit an extended
structure to the south-west of the cluster. Allowing for shot noise and source cluster-
ing. the significance of this peak was calculated to be at a 3o level. Given that X-ray
observations of A1689 with the ROSAT satellite in the 0.5 — 2 keV band (Wang &
Ulmer 1997, Daines et al 1998) show a relatively compact and smooth 2D flux distrib-
ution without such an extension. this is a little surprising. Two possible explanations
were given. The first was that this truly is a clump of dark matter not followed by the
X-ray emitting cluster gas. The second was simply attributed to a rare underdensity
of background galaxy counts. Curiously, a shear analysis by Kaiser (1996) on the
same data as that of Chapter 3 hinted at this structure although caution is taken in

claiming a consistent detection.

Chapter 3 also derived an analytical relationship to provide a self-consistent mass
and shear profile by assuming an axially symmetric mass distribution. Using this
relationship with the radial magnification distribution, a projected mass interior to

R = 0.24h~'Mpc of
Moy (< 0.24h"Mpe) = (0.50 £ 0.09) x 1054 M,, (6.1)
was calculated. The errors here account for the effects of shot noise and source clus-
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tering. Systematics due to number count normalisation from the offset field and the

uncertainty of background object redshifts increases this total error to ~ 30%.

Comparison with mass estimates from shear analysis confirms that this result is
in good agreement. The shear analysis of A1689 by Kaiser (1996) calculates that
Myp(< 0.24h~ 'Mpe) = (0.43 £ 0.04) x 10"°h~ M, while that predicted by Tyson &
Fischer (1995) is Myp(< 0.24h~'Mpec) = (0.43 £+ 0.02) x 100~ 'M,. Section 3.2.9

provides more details and includes a comparison with X-ray and virial measurements.

6.2.2 Pixellization of Magnification and Shear

Chapter 4 derived a method for directly calenlating accurate. self-consistent surface
mass density and shear distributions from gridded lens amplification values and critical
line positions. This was demonstrated with the isothermal sphere and dwunb-bell
cluster models in reconstructing the surface density to within 1% over most of the
field of view. Reconstruction of the shear pattern was demonstrated to have a lower
fractional accuracy of a few tenths due to boundary effects. The method was applied
to the magnification data of Chapter 3 to enable computation of the 2D surface mass
density and shear distribution of Abell 1689. The resulting surface mass density
distribution produced by this novel new technique was found to be somewhere between
that calculated by the isothermal estimator and that derived by the sheet estimator
in the number count study. This is exactly as one would have expected, given that
the mass profile deduced in Chapter 3 showed evidence of A1689 being somewhere

between that of an isothermal sphere and a sheet mass.

A simplified solution to the problem of estimating surface mass density from galaxy
ellipticities was also presented in Chapter 4. This approach puts the calculation of
mass from shear and magnification on an equal footing, essential for a reconstruction

technique which encompasses both (see Section 6.3.1).

6.2.3 Magnification of the Source Luminosity Function

The effect of lens magnification by Abell 1689 to enhance the flux of background source

galaxies and hence distort their lmminosity function was investigated in Chapter 5.
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This work (see Dye et al 1999) is the first ever application of the luminosity function

reconstruction method suggested by Broadhurst, Taylor and Peacock (1995).

Photometric redshifts and magnitudes were determined for all objects in the field
of view from a set multi-waveband observations observed with the Calar Alto 3.5m
telescope in Spain. Comparison of the background source galaxy luminosity function
with that obtained from a similar selection of objects in an unlensed offset field resulted
in the detection of a magnification bias in the A1689 background object magnitudes.
After a careful consideration of all possible sources of uncertainty, calculation of a
significant radial mass profile for A1689, consistent with that obtained in the number
count study of Chapter 3 was calculated. This predicted a projected mass interior to

0.25h~ ' Mpec of
Moyy(< 0.25h""Mpe) = (0.48 +0.16) x 101°h~ M, (6.2)

perfectly consistent with the number count result.

The luninosity function method is independent of background galaxy clustering
since it can be assumed that luminosities are a random sampling of luminosity space.
Section 5.6 showed how the method is limited by the number of background galaxies
observed although this is easily rectified with deeper observations or use of larger

telescopes (see Section 6.3).

6.2.4 Constraints on the Structure of A1689

A comparison of measurements of A1689 using X-ray and virial methods suggests that
A1689 is not an isolated cluster. This is reflected in the fact that X-ray temperature
measurements of the cluster indicate a lower mass than the lensing mass and that
virial analyses measure a larger velocity dispersion than expected from the lensing
mass (Giradi et al 1997). This is consistent with the notion of A1689 being comprised
of clumps of mass aligned along the line of sight. If this were the case, cluster galaxy
velocity measurements would yield a higher spread in their distribution and the X-ray

temperature would be dominated by the temperature of only the larger clump.

Miralda-Escudé & Babul (1995) point out that X-ray and lensing mass discrepan-

cies seen in clusters in general cannot be accounted for by cluster gas inhomogeneity,
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non-thermal pressure support of the gas or non-isothermality alone. They hypothesise
that a combination of all three of these effects could be the cause of such discrepan-
cies. While it is certainly plausible that this may be the explanation in the majority
of cases, the largest contribution possible from all three of these effects still falls some-

what short of explaining particularly large mass disagreements.

Section 3.2.9 demonstrated how decomposing A1689 into two aligned clumps ap-
proximately explained the relatively small X-ray mass and the large virial mass.
Daines et al (1998) lend farther support to the 'multi-clump’ idea by pointing ouf
that in fact three substructures are required to bring the mass measurements of A1689
into agreement with each other. This, they claim, is supported by the cluster redshift
measurements of Teague, Carter & Gray (1990) which shows tentative evidence of
three distinct groups of redshift detections. A more detailed spectral study of the

cluster would undoubtedly clear this ambiguity.

6.3 Future Work

Lensing is an area of research still very much in its youth. Much of the work carried
out in the field serves ouly to prove the viability of lensing and much of it is devoted
to devising new techniques. There are several areas in need of attention. This section

alms to highlight some of those and predict the future roles lensing will take.

6.3.1 Optimal Combination of Magnification and Shear

Magnification and shear measurements complement one another. This is apparent
by virtue of the simple fact that magnification unlike shear provides absolute mass
measurements whereas shear analysis generally allows better hnage resolution. A

method which optimally combines both is therefore a very powerful one.

Attempts to form a hybrid reconstruction method using combined shear and mag-
nification information has received some attention in the last few years although there
is much room for improvement. Work by Bartelmann et al (1996, see Section 2.3.4)

approach this hybridisation using a least squares method. They use an iterative ap-
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proach with quantities being calculated from a grid of values of the underlying lens
deflection potential. Another promising means of combining shear and magnification
data is via the maximum entropy method (MEM). The MEM was first applied to
lensing by Wallington, Narayan & Kochanek (1994) who used it for the reconstruc-
tion of 1D image flux profiles. The method has the advantage that it performs well
with noisy data. As noted by Bridle et al (1998) who use it to calculate 2D mass

distributions, MEM can reproduce cluster structures slightly beyond the field of view.

These efforts are only a start however. A hybrid technigque which enables the inclu-
sion of critical lines remains elusive. Another reason for concern is the correlation of
errors between shear and magnification data. For example, the uncertainty from shot
noise affects both magnification and shear measurements in the same way. Regions
with a large nmmber density of background galaxies give rise to a small shot noise
contribution to both. Clearly there must exist an optimal way of combining the two
measurements.  Ideally, inclusion of the other error sources for each method would
eive rise to complementary errors such that a noisy measurement from one would be
compensated for by an accurate measurement from the other. A study to investigate

this is required.

6.3.2 Optimisation of Luminosity Function Method

Section 5.6 demonstrated that the dominant source of error on the mass determination
of Chapter 5 was shot noise. The most immediate improvement to a multi-colour
study such as this would therefore be to increase galaxy numbers. Also noted in
Section 5.6 was the fact that only when bins contain ~ 200 objects do offset field
uncertainties become important. Observing in broader filters is one way to combat
the limit presented by galaxy numbers. The final number of 958 galaxies classified
by the photometric redshift analysis of Section 5.2.3 was limited mainly by the data
observed in the narrow 466 /8 filter. Despite being observed to approximately the same
integration time as the 466/8 filter, the much broader I band filter enabled detection
of ~ 3000 galaxies. Using broader filters will also inevitably give rise to less accurate
photometric redshifts. However as the analysis of the signal-to-noise simulations of

Section 5.6 showed, one can afford to sacrifice redshift accuracy quite considerably
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before its contribution becomes comparable to that of shot noise.

Deeper observations provide another obvious means of increasing the number of
galaxies. The error predictions of Section 5.6 indicate that the expected increase in
egalaxy munbers using an 8 metre class telescope with the same exposure times as
those in Chapter 5 work should reduce shot noise by a factor of ~ 3. Since deeper
observations would also reduce redshift and offset field calibration uncertainties to
negligible levels, the only source of error would be shot noise. In this case, the signal
to noise for ro from equation 5.39 becomes simply ko /7 and hence the mass estimate

for A1689 could be quoted with a 9o certainty.

6.3.3 Weak Lensing Surveys

In exactly the same manner that a foreground cluster gravitationally deflects light
from background sources. large scale mass fluctuations can weakly distort the images
of distant galaxies. Blandford & Jaroszynski (1981) first gave a quantitative estimate
of the amplitude of this effect. Valdes, Tyson & Jarvis (1983) were the first to attempt
to measure it although their results were inconclusive due to technical limitations.
More recently, Kaiser et al (1998) proved that weak lensing by large scale structure
can indeed be detected by analysing the shear pattern of background galaxies in a

15" x 15" image of the supercluster MS0302+17.

In a more statistical approach. Blandford (1990) and Miralda-Escudé (1991) com-
puted the two-point shear correlation function and established how it depends on the
power spectrum of density fluctuations in an Einstein-de-Sitter universe. This was
generalised to allow for any value of ©Q by Villumsen (1996). Bernardeau, van Waer-
beke & Mellier (1997) showed how the second and third order moments of £ depend
on the cosmological parameters. This provides a mechanism to enable determination
of 2 and A from observations of cosmic shear. All studies agree that the effects are
small; the rms amplitude of distortions is expected to be ~ 1% with a correlation
length of ~ 190 With the advent of new surveys such as that which will be produced
by the proposed VISTA telescope, this weak signal will be easily detected. Lensing
will thus place valuable constraints on the cosmological parameters which describe

our Universe for comparision with the results of NASA’s CMBR surveying satellite.
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MAP, due for launch in 2000. Both of these will provide excellent foundations for

ESA’s highly awaited and more ambitions Planck satellite to be launched in 2007.

6.3.4 Outlook

Lensing is fast beginning to establish itself as a valuable and reliable tool. The next
few years will more than likely see greater application of lens mass reconstruction
methods such as those presented in this thesis. More numerous and more accurate
cluster mass measurements are still required to gain a deeper knowledge of large scale
structures. These methods will be progressively applied to higher redshift clusters as
attempts are made to understand cluster formation in realms where the equilibrium
assumptions of X-ray and virial mass techniques become even more invalid. As well
as studying highly dense mass fluctuations such as clusters, investigations into weaker
large scale mass fluctuations will begin to adorn the pages of various research journals

i an attempt to construct a more complete picture of our Universe.
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Appendix A

Mathematical Proofs

A.1 Axially Symmetric Lens

The inner integral in equation (2.71) may be re-written as
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allows the integral in equation (A.1) to be evaluated to give
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If ¢ > 6 then the integral in equation (A.1) evalnated between 0 < ¢ < 7 is equal to
exactly the opposite of its evaluation between m < ¢ < 27 and hence in total equals

ACro.



A.2 Isothermal Sphere Lens Model

A.2.1 Proof that » x 6!

The volume mass density of an isothermal sphere is given by (see for example Binney

& Tremaine 1997),
e
Oyy) = ——— A4
1”( -H) ZTL'GO‘,,)'d { )

where ¢ is the velocity dispersion and the radius 63, = 67 + 635 +603. In order to obtain
the surface mass density, the volume mass density must be integrated along the line
of sight. Taking the line of sight to be 03, the surface mass density is therefore,
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where 6% = 02 + 03. Siuce k = 2/S¢k from equation (2.9),
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i 28 opGo ( )

A.2.2 Proof that x =+

This proof is quite trivial having done most of the derivation in Section 2.3.4. One

begins by using the result of equation (2.79).
¥ D
¥4 = (k — F)~. (A.7)
& is the mean value of £ within a circle of radius 6 given by,
2] 7
R(0) = — [ 0d0'x(6"). (A.8)
A= Jo
Since the previous section showed that

= — ¢ = ——— (;'\.f_])
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one can calculate an expression for &:
. 2 g ¢ 2¢
o Ody = = = = 95, {Al{])

Substitution into equation (A.7) then gives the required result:

2

7% = (K = 28)* = K*. (A.11)

A.3 Pixellized «

A.3.1 Analytical form for a,,

Derivation of the equation in question for a,, requires evaluation of the following:

1 (2 &\ .,
i 9 — e I Y -HI - f »
an(0) = 5 (ayf aaj) / 420’ 1n|6 — '] (A.12)

Operating on the integral with the partial derivatives and defining = (6; — 6]) and

y = (6, — 65) gives

. 1 y=ra24+0.5 pr=r;+0.5 ,{}2 _ :1:2
am(0) = — / / ———— duz dy. A.13
" ( ) M. y=ra—0.5 Jr=r—-0.5 (”:). + yi).'.‘ ‘ ( )

The integral here acts over pixel m. Two assumptions have been made:
e It is assumed that pixels are square. Of course the derivation here may be
generalised to account for rectangular pixels but this is rarely needed in practice.
o i : e s ; e A *
e The units of length have been scaled so that pixels measure one unit on a side.

This is purely to simplify the derivation and again can be generalised if necessary.

The vector 7 locates the centre of the pixel from the position @ hence the integral
is evaluated between —0.5 < r; < 0.5 and —0.5 < ry < 0.5 (see Figure 4.1 for

clarification).
Integrating equation (A.13) gives

|: ( Yy ) ] y=ra2+0.5, w=r+0.5

arctan | —
& y=r2—0.5, x=r;—0.5
r9 — 0.5 ry + 0.5

arctan { ——— | +arctan [ ————

ry — 0.5 1 4+ 0.5

Ty + 0.5 Ty — 0.5
— arctan (f_)“f‘id) — arctan (fzid)} (A.14)

71 — 0.5 r + 0.5

”’m(e) =

N 3]
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Using the identity,

o
arctan(z) £ arctan(y) = arctan ( et ) (A.15)
1 F @y

and grouping together the first and third terms and the second and fourth terms in

equation (A.14) enables simplification to,

1 1 -—-2?‘; ( 1 +2'-"| )} e
b 0) = — < arct: ————— | +ar A T e i A.16
,,(0) = { wetan (2(?‘12 e . ”)> wetan Z(T'f T rﬁ 0 ( )

Using the identity in equation (A.15) again produces the required result,

am(8) = -?lj'(l,l-('.tél,ll ((?2 ' ) : (A.17)
' |

A.3.2 Analytical form for 0,,

To calculate the relationship for b,,, one needs to evaluate the following:

1 02 2 r
- (un . ) / d%0'In|0 — ']. (A.18)

As in the derivation for a,,, simplification is achieved by defining = = (6, — 6}) and

y = (02 — 0,). Equation (A.18) may then be re-written as,

1 02 y=ra+0.5 pr=r+0.5
P} = 5 l 1z ds
i (6) or \ dzdy ./Hzr__'_“”_,’ _/m:rl_ﬂ"__) n(z? +y?) dx dy

1 y=ra+0.5, x=r +0.5
=i ~ {111{ + y° )} ”

2 y=ra=0.5, r=r;=0.5

| [(r1 — 0.5)2 + (12 — 0.5) —0.5)%2 + (1o — 0.5)? _
= 5 ln{ i 5 (r (s 5) T2 0;2} } (A.19)

(
[(r1 — 0.5)% + (r2 + 0.5)?][(r1 + 0.5)% + (r2 — 0.5
Again, as in the derivation for a,,, it has been assmmed that pixels are square and
the units of length are chosen such that pixels measure one unit on a side. Further
simplification gives the final result.,

| (12 + 13+ 1/2)? — (| +12)*
{I;‘ 9 = _l > . .‘
i (6) 27 “[('-]-—I—:,—!—l/? (ry —73) e

(3%
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ABSTRACT

We present a new method for directly determining accurate, self-consistent cluster lens mass
and shear maps in the strong lensing regime from the magnification bias of background
galaxies. The method relies upon pixellization of the surface mass density distribution which
allows us to write down a simple, solvable set of equations. We also show how pixellization can
be applied to methods of mass determination from measurements of shear and present a
simplified method of application. The method is demonstrated with cluster models and applied
to magnification data from the lensing cluster Abell 1689.

Key words: galaxies: clusters: general — cosmology: theory — gravilational lensing — large-

scale structure of Universe.

I INTRODUCTION

The possibility of reconstructing cluster lens mass distributions
from the magnification bias of background galaxies was first
suggested by Broadhurst, Taylor & Peacock (1995) and first
demonstrated by Taylor et al. (1998, T98 hereafter). They showed
how a direct, local measure of the lens convergence, k = E/T,,
where I is the mass surface density and E, is the critical surface
density. could be obtained from knowledge of the lens
magnification. In this way, one could measure absolute surface
mass densities. thereby breaking the “sheet-mass” degeneracy found
in methods based on distortions of background galaxies (Tyson.
Valdes & Wenk 1990; Kaiser & Squires 1993; Seitz & Schneider
1995).

Van Kampen (1998) and T98 have shown how one can extend
magnification analysis into the strong lensing regime. By making
reasonable assumptions about -y, the lens shear. they showed that
one could place quite stringent bounds on . In addition, T98 found
an exact solution for the profile of axisymmetric lenses, although
not for more general 2D cases.

Inverse reconstruction methods based on maximum likelihood
(Bartelmann etal. 1996) and maximum entropy (Seitz, Schneider &
Bartelmann 1998; Bridle et al. 1998) have gone some way towards
providing a unification of both shear and magnification informa-
tion. Until now, however, no direct method using only magnifica-
tion has existed.

In this letter, we show how to directly compute an accurate, self-
consistent 2D distribution of & and v in the strong lensing regime
from magnification. This direct approach has the advantage over
indirect alternatives that uncertainties can easily be determined
and the application is much quicker. The method is based on
pixellization of the k distribution, suggested by AbdelSalam, Saha

*E-mail: sd@roe.ac.uk (SD): ant@roe.ac.uk (AT)

© 1998 RAS

& Williams (1998), who used it to estimate the mass of Abell 370
from multiple images. We generalize the method further and also
derive a simplified solution to the problem of estimating mass from
shear, based on the approach of Kaiser & Squires (1993).

2 RECONSTRUCTION OF x AND v

T8 showed how to estimate cluster surface mass using the
magnification measured from the distortion in background galaxy
number counts. Here our problem is to find an accurate method for
reconstructing the surface mass density, given the magnification by
an arbitrary lens. The inverse magnification factor at a given
position in the lens plane is
i} 1 5

AT =1 =)y =7, ()
where « is the lens convergence and « is the shear. The shear can be
decomposed into two orthogonal polarization states. v, and .,
which are related to the lens convergence by

v =400 - Bk, 1y = 070,05k 2)

where d; = d/dfl; and o s the 2D inverse Laplacian. The total
shear is given by '}'1 = Tf -+ 'Yi- One might expect that equation (1)
could be solved iteratively by first estimating «. using this to
calculate  and then updating the estimate of & using cquation (1)
again. This proves to be highly unstable in the swrong lensing
regime, however, rapidly diverging after only a few iterations
(Seitz & Schneider 1995).

To find a stable solution to cquation (1), we first pixellize
the image. Following AbdelSalam et al. (1998), we can now
write

‘Y‘lf’ — lJIJJIH"KFN' i = I' 2 (3)

with summation implied over index m and where «,,, and ! are the
pixellized convergence and shear distributions respectively. The
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transformation matrices, D7, are

| i s /
Dy = =(dj —~ lelI do8 In|f, — 0|

= —lian ()
™
and
Dy = 0,0, [ d*0 e, — 0|
Jm
Bl t.ﬁ‘ - .v._%J2 — x4 4 114 i
=—In ; — - (5)
|{l!2 + a7+ a5 =y = AT

with the mtegration acting over the ™ pixel. x =40, — 0, is the
difference between pixels moand n which are assumed to be square
in calculating these analytic expressions. Equation (1) can now he
written as the vector equation,

1 -2+ xGr' = PA ' =0 (6)

where A s the N-dimensional vector of pixellized mnverse
magnification values, &' is the transpose of the veetor & of pixellized
convergence values and Lis the vector (1, 1, 1....). The matrix G is
the N N < N matrix

G =By — DD

s

“pm i DYDY M
where 6, 1s the Kronecker delta, and summation is only over indices
pand ¢. The parity of the measured inverse amplification A ") is
handled by P which flips from being <1 outside regions bounded
by critical lines to — | within such regions.

The amplification equation in the form of equation (6) is the first
main result of this letter. We can now solve for & numerically (see
Section 4) given a measured inverse amplification. Having solved
ribution can then be caleulated

[or &, the corresponding shear dis
[rom equation (3).
3 APPLICATIONTO CLUSTER MODELS

We apply the method 1o two types ol idealized cluster models.
Starting with a predetermined cluster mass density dis

‘ibution, the
corresponding shear distribution is derived using Fourier methods
ple, Bartelmann & Weiss 1994). From these, the
resulting magnificaton is caleulated from equation (1) and then

(see, for ex

windowed to remove boundary effects. Using equation (6), we solve
for &y 15 then solved using equation (3). A grid of 32 by 32 pixels is
used 1 both models.

3.1 Truncated isothermal sphere model

We first test the method with a simple runcated isothermal lens
maodel. The pixellated mass distribution 1s laid - down using
K (r 4+ oyt L where rois the radial distance from the centre ol
the sphere and #; 15 2 constant.

Fig. 1 shows the x and 5 distribution from which the magnilica-
ton d

bution was caleulated, the solved k and y distribution, and
crence between them. The  plotted  distributions  are
smoothed from the underlyimg grid and the white dashes highlight
the crincal e of the lens, The residuals are shown as percentage

the i

deviatons from the true distribution. These are less than one per

cent tor k over most ol the grid, which s neghgible in comparison to

the errors typreally found m pracuace from backzround clustering.
shot nose (CTY8 Y and the uncertunues resulting from the use of local
Kestimators (see van Kampen 19980, The recovered shear distibu-
tion 1s more atlected, although it sull fares better than y caleulated

trom uncorrected Fourter wechniques. The man contribution 1o

these residuals 1s from boundary effects arising from trying o
recover a non-local shear in a finite area. Since much work has been
carried out in the removal of such effects (see Squires & Kaiser
1996 and Seitz & Schneider 1995, for example) which have linle
impact on the recovered k. we shall address the problem elsewhere.

3.2 Dumb-bell mass model

The method was also tested with a more general dumb-bell model.
Magnification was determined in the same fashion as for the
isothermal model, setting a negative parity inside the critical
lines, shown by the white dashes in Fig. 2. Once again the residuals
between the initial and solved k are typically less than one per cent,
while those for v arve typically 10 per cent and again come mainly
from boundary effects.

4 PRACTICAL CONSIDERATIONS

We solve equation (6) with the hybrid Powell method (NAG routine
COSPCF). The number of equations needed 1o solve for « is equal to
the total number of grid pixels, which can prove computationally
intensive for especially fine grids. We find that this is not a problem
for grid resolutions used to measure magnification bias in practice,
The 32 x 32 grid of pixels used for the models in Scction 3 was
‘kstation. The
id size.

solved in approximately one minute on an aver:
residuals exhibit no noticeable dependence on g

The Powell algorithm is an iterative process and therefore
requires an initial estimate of the solution to start from. The
choice of the initial estimate turns out o be irrelevant. We have
tried o wide range of initial disuibutions, and even starting from a
uniform distribution we arrived at the same final solution.

We have found. however. that the correct choice of pixel parity
(especially for low grid resolutions) is essential in order to achieve a
sensible result. Inappropriate assignment of parities (o pixels
manifest themselves, as one would expect, by « being overestimated

when a pixel is wrongly assumed to lie inside a critical line, and
underestimated in the reverse situation. This provides a means of
checking whether eritical line positions have been properly defined
by looking for large discontinuities in the & distribution. Models
with dual eritical lines requiring dual parity fips have also been
tested and we find that & can be recovered just as well.

Finally. to ensure that the method does not break down with noisy
data, we introduced a random noise term to the amplification. Errors
& resulting from noise in the inverse amplification propagate as
one would expeet from equation (6). For an isothermal lens we
recovered the expected result, 8k = 84/2A°, indicating that pixelli-
zation does not lead to spurious noise properties.

5 APPLICATIONTO ABELL 1689

We apply the method to the magnification data presented in TYS for
the lensing cluster AI68Y. A 1212 grid is used as the best
compromise between shot noise in galaxy counts per bin and the
resolution of the derived k map. Identification of the ¢

ical line was
achieved by locating giant arc positions in the observed image.
Fig. 3 shows the solved mass density and shear distribution.
Comparison with the mass density map illustrated in TYS (their fig.
6). which was produced with the sheet & estimator, shows very
similar structure. We find that the value of & at the peak calculated
here is approximately 10 per cent lower than the peak value in T98,
since the sheet estimator over-estimates & inside critical line
regions. This has hude effect on the ol integrated mass of

o[98 RAS, MNRAS 300, 1.23-1.28
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Figure 1. Truncated isothermal sphere model. The initial & and 5 used to form the magniication distribution from which the solved & and 5 are derived.
Underlying grid dimensions are 32 x 32, White dashes show the position of the eritical line. Contours are linearly spaced and are set at the same levels i both &

plots and in both 5 plots. Residuals are expressed as percentages of (K = Kot WK -

A1689 found in TY8. The v distribution is shown for completeness.
although it undoubtedly suffers from boundary effects typically
found i the models,

6 SHEAR ANALYSIS

Having shown that pixellization allows us to accurately
reconstruct surface mass densitics from magnification data, we

€ 1998 RAS, MNRAS 300, L.23-1.28

now apply it to shear analysis, Shear analysis exploits the idea that
a given distribution of images of galaxies lying behind a
lensing cluster will, in the statistical mean, have regions of lens-
mnduced  correlations i image  orientation  and  ellipticity.
Measuring  the  quadrupole  moments  of individual  galaxy
images enables the construction of a map of the cllipticity
parameters, ¢, (Valdes, Tyson & Jarvis 1983). The ellipticity
parameters relate o the surface mass density and shear via
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Figure 2. Dumb-bell model: crineal lines are shown as white dashes. Underlving grid dimensions are 32 x 32, Linearly spaced contours are set at the same levels

for & and at the same levels tor 5.

(Kaiser 1995, herealter KYS):

= TL’ ¥ji = (T‘ - ) (8
A T i

One way of solving this for & i the weak lensing regime is 1o follow
the approach of Kaiser & Squires (1993), Generalizations of this o
the strong regime have been made by KUS. One would have hoped
thatan alternative to such approaches would be o pixelhze equation

(8) and use equation (3) to solve it by matrix inversion. However,
the resulting matrix equation is ill-conditioned, since the matrix
D™ is singular and D3 is itself ill-conditioned. Instead, we show a
new, simplified expression for the solution to Kaiser's ellipticity
equation and then pixellize it

Starting with the equation (KY5),

A= d,y, (9)

v 1998 RAS. MNRAS 300, L23-128
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and using equation (8), one can show that

diIn(l = k) = —é{,—ln(é,; + e;).

I11(|+B}=B+§Bl+%33 s

(10)

(1

where | is the identity matrix and B is an arbitrary square

matrix. Using this expansion and collecting even and odd terms

The term on the right hand side is obtained from the definition,
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apparent shape of an intrinsically circular background object.

1998 RAS, MNRAS 300, 1.23-1.28

Contours are at the same levels in both x plots. The distortion field is ilustrated by plotting the
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we find
| ] I | 42X ey

% T s S, — T e k. A 8
Inté, +¢,) = lln!l )y, 2In(—I — :') . (12)
where ¢ = ¢ 4¢3 and ¢, = ,/(1 — x). This resull requires that
e < | Insertng equation (8) into the magnification equation (1) we
find
A7 =11 =P = (13)

Hence the parity changes when e > . Since ¢, and t',),l are
observationally indistinguishable and flip from one to another
whenever there is a parity change, we can satisfy the criterion
e < | just by noting the critical line positions and verting the
ellipucity mawix when one is crossed.

Finally, nserting equation (12) into equation (10), and solving
for & we find the pixellized solution is

(D77 4 D" (14)

2 -

212
Ky =1 = (1 —ep)""exp|-

where

_s-,=‘--f|u(-—'—), =12 (15)
e \l—¢

Equation (14} is the second main result of this letwer. We can
direetly caleulate & given a measured ellipticity lield. Fig. 4 shows
the results of reconstructing  using equation (14) for the dumb-bell
maodel The ellipticity parameters are calculated from equation (8)
using the & and v distribution. We normalize the reconstructed & to
both peaks in the initial k distribution. The residuals, again being
dominated by boundary effects, show that reconstruction is possible
to within approximately 10 per cent across the field of view. This
can be alleviated by a larger field of view.

7 SUMMARY

We have outlined a method for directly caleulating accurate. sell-
consistent surface mass density and shear distributions from the
lens amplification and critical line positions. The method has been
demonstrated with the isothermal sphere and dumb-bell cluster

maodels. We find that it reconstructs the surface density to within one
per cent over most of the lield of view. The reconstruction of the
shear pattern only has a fractional accuracy of a few tenths because
of boundary effects. We have applied the method o magnification
data from Abell 1689, and have reconstructed its surface mass and
shear distribution.

We have also found a simplified solution to the problem of
estimating surface mass density from galaxy cllipticities. This
approach puts the calculation ol surface mass from shear and
from magnification on an equal footing, and we shall investigate
the combined analysis elsewhere.
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ABSTRACT

We present the first application of lens magnification to measure the absolute mass of a galaxy cluster:
Abell 1689. The absolute mass of a galaxy cluster can be measured by the gravitational lens magnifi-
cation of a background galaxy population by the cluster gravitational potential. The lensing signal is
complicated by the intrinsic variation in number counts resulting from galaxy clustering and shot noise
and by additional uncertainties in relating magnification to mass in the strong lensing regime. Clustering
and shot noise can be dealt with using maximum likelihood methods. Local approximations can then be
used to estimate the mass from magnification. Alternatively, if the lens is axially symmetric we show that
the amplification equation can be solved nonlocally for the surface mass density and the tangential
shear. In this paper we present the first maps of the total mass distribution in Abell 1689, measured from
the deficit of lensed red galaxies behind the cluster. Although noisier, these reproduce the main features
of mass maps made using the shear distortion of background galaxies, but have the correct normal-
ization, finally breaking the “sheet-mass”™ degeneracy that has plagued lensing methods based on shear.
Averaging over annular bins centered on the peak of the light distribution, we derive the cluster mass
profile in the inner 4’ (0.48 h™' Mpc). These show a profile with a near-isothermal surface mass density
k&~ (0.5 + 0.1)(6/1)" " out to a radius of 24 (0.28 h™' Mpc), followed by a sudden drop into noise. We
find that the projected mass interior to 0.24 h~! Mpc is M(<0.24 h~' Mpc) = (0.50 + 0.09) x 10'5 h~!
M. We compare our results to masses estimated from X-ray temperatures and line-of-sight velocity
disi;:crsions, as well as to weak shear and lensing arclets. We find that the masses inferred from X-ray,

line-of-sight velocity dispersions, arclets, and weak shear are all in fair agreement for Abell 1689.
Subject headings: galaxies: clusters: individual (Abell 1689) — gravitational lensing

1. INTRODUCTION

The magnitude and distribution of matter in galaxy clus-
ters should in principle provide a strong constraint on
cosmological models of structure formation and the mean
mass density of the universe. In addition, a direct image of
the mass density will tell us much about the relationship
between gas, galaxies, and dark matter, and whether light is
indeed a fair—if biased—tracer of mass.

Early techniques for estimating the mass in clusters
include dynamical methods, from the line-of-sight velocity
dispersion of member galaxies, and X-ray temperature mea-
surements. However, these estimates make some strong
assumptions about equilibrium conditions in the cluster.

Kaiser & Squires (1993) circumvented this problem by
showing that a more direct method of estimating the mass,
with no underlying assumptions about the dynamical or
thermodynamical state of the cluster, was to measure the
shear field in the source distribution of the cluster back-
ground (Kaiser & Squires 1993; Tyson, Valdes, & Wenk
1990; Schneider & Seitz 1995). On average, the shear
pattern of a population of unlensed galaxies should be ran-
domly distributed. But in the presence of a massive gravita-
tional lensing cluster, the shear field is polarized. Since the
shear field is related (nonlocally) to the surface mass density,
the shear can be used to estimate the mass distribution—up
to an arbitrary constant. The presence of this arbitrary con-
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stant, referred to as the *sheet-mass” degeneracy, means
that only differential masses can be measured. Shear maps
are conventionally normalized to the edge of the observed
field, or such that the inferred mass density is everywhere
positive, and so represent a lower limit on the mass.

Soon after, Broadhurst, Taylor, & Peacock (1995, here-
after BTP) showed that the sheet-mass degeneracy could be
broken by use of the gravitational lens magnification effect.
The number and magnitude-redshift distribution of back-
ground galaxies is distorted by the gravitational field of the
lensing cluster, and in the weak lensing regime this distor-
tion provides a straightforward estimate of the surface mass
density. With calibration from offset fields the cluster mass
distribution can be properly normalized.

BTP also suggested that a degraded, but much quicker,
estimate of the magnification effect could be made from the
distortion of angular number counts of background
sources. Broadhurst (1995) found evidence for this distor-
tion in the background counts of the cluster Abell 1689, as
did Fort, Mellier, & Dantel-Fort (1997) for C10024. In this
work we apply the methods developed by BTP and
extended by Taylor & Dye (1998) in estimating the surface
mass density from the distortion of angular counts, includ-
ing the effects of shot noise and galaxy clustering, and those
of van Kampen (1998) in estimating the surface mass
density in the strong lensing regime to Abell 1689,
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The layout of the paper is as follows. In § 2 we describe
the magnification effect itself. In § 3 we describe the effects of
shot noise and clustering on estimates of the surface mass
density. In § 4 we describe how to estimate the surface mass
density in the strong lensing regime using local approx-
imations and introduce a new self-consistent nonlocal solu-
tion for axially symmetric lenses. We apply these methods
to map out the mass in the cluster Abell 1689 in § 5 and find
its profile. Our mass estimate is compared to other esti-
mates in § 6, and our conclusions are presented in § 7.

2. THE MAGNIFICATION EFFECT

The observed number of galaxies seen in projection on
the sky is (BTP; Taylor & Dye 1998)

n=ny, A" (14+0), (1)

where ny, is the expected mean number of galaxies in a given
area at a given magnitude. Variations in this mean arise
from the angular perturbation in galaxy density © as a
result of galaxy clustering and from gravitational lens mag-
nification. The lens amplification factor is

A=|(1—-xP-y*"", 2
where
z
K='z— (3]

erit

is the surface mass density in units of the critical surface
mass £ _,;,. The amplitude of the shear field is given by y, and
the background galaxy luminosity function is locally
approximated by

n(L)~L"". (4)

The amplification index f# — | accounts for the expansion of
the background image and for the increase in number as
faint sources are lensed above the flux limit.

In the absence of galaxy clustering and finite sampling
effects, the background galaxy distribution can simply be
inverted, via equation (1), to find the amplification. One can
then solve equation (2) to find the surface density, with some
realistic assumptions about the shear. In § 4 we discuss
various approximations that allow us to do this.

However, given a small resolution scale for the surface
amplification, galaxy clustering and finite sampling will in
general be an important effect. In § 3 we discuss the effects of
intrinsic variation in the distribution of the background
galaxy sources.

3. GALAXY CLUSTERING NOISE

The main sources of uncertainty in lens magnification are
a result of shot noise, finite sampling, and the intrinsic clus-
tering of the background source population that introduce
correlated fluctuations in the angular counts. As we are
viewing small angles, the clustering properties of the back-
ground source galaxies are not in general linear, unless the
depth of background is sufficient to wash out the clustering
pattern. As a result, it is not sufficient to make the usual
assumption that galaxy clustering can be modeled by a
Gaussian distribution.

We can account for the effects of shot noise and nonlinear
clustering by modeling the angular counts by a lognormal-
Poisson model (Coles & Jones 1991; BTP; Taylor & Dye
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1998)—a random point-process sampling of a lognormal
density field. The distribution function of source counts is
then

P(n) = ni' me™*y (3)

(e dx x? .

- J\_ ) \/ﬂg cxp( 252 Age mc) , (6)
where 1 = 1,¢" is the local mean density, x is a Gaussian
random variable of zero mean and variance ¢7, and 1, =
ng A? ~'e™ ™2 correctly normalizes the counts. The linear
clustering variance ¢* is related to the nonlinear variance by
6? = In(l + o). We have tested this distribution against
available data and find that it is an excellent fit to the
distribution of counts in the deep fields. The only param-
eters are the observed count per pixel n and the variance of
the lognormal field. The amplitude of clustering of the
density field and its dependence on redshift can be esti-
mated from, e.g, the I-band-selected galaxies in the
Canada-France Redshift Survey in the range
17.5 < I < 22.5 (Le Févre et al. 1996; see § 5.2.3). The quan-
tity required is the variance in a given area of sky, which can
be estimated by averaging the observed angular correlation
function w(f) over a given area:

1
ol =) = — | d*0'w(@), 7
3= a(0) Q{H]J; (©) ™
where Q(0) is the area.

Our method of approach is then that discussed by BTP.
At each pixel in a map of the source counts, one uses the
distribution equation (6) as a likelihood function, (4 |n,
a) = P(n| s, A), assuming a uniform prior for the amplifica-
tion. The surface density is then found from the amplifica-
tion by making some realistic assumption about the shear
and maximizing the likelihood. In § 4 we discuss a number
of ways of transforming from the amplification to « in the
strong lensing regime.

4. THE STRONG LENSING REGIME

Transforming from amplification to the surface mass
density is potentially nontrivial, as we have no shear infor-
mation. One could incorporate this from independent mea-
surements of the shear field, but for the present discussion
we are interested in developing a completely independent
lensing approach. We shall discuss combining shear and
magnification elsewhere. In principle, one could generate a
first guess for the surface mass density and iterate the ampli-
fication equation toward a solution of both surface density
and shear. However, given the small field of view and uncer-
tainties introduced by parity changes, this can be an
unstable problem. In addition, as the solutions are in
general multivalued, we would hope to start from as near to
the correct solution as possible. In this section we discuss a
number of reasonable approximations for solving the
amplification equation (2). These can be regarded as solu-
tions in their own right, or as the first best guess to an
iterated solution. We begin by discussing the local approx-
imation methods suggested and tested on simulated clusters
by van Kampen (1998). Then, in § 4.2 we present a new
self-consistent solution to the amplification equation for x
and y for an axially symmetric lens.
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4.1. Local Approximations to the Surface Mass Density

There exist only two local relations between y and r that
result in a single caustic solution .of the amplification
equation (2) that is easily invertible (van Kampen 1998):
y = 0, corresponding to a sheet of matter, and y = x, for an
isotropic lens. These two relations have corresponding esti-
mators for « as a function of amplification:

Ko=k(y=0)=1—24""2, (8)
K)=3(1— 247", 9)

where .# = + 1 is the image parity.

Let us assume that the surface mass density of the lens is
smooth over some scale. In this case, for a sufficiently
smooth lens, y < k (BTP). The equality holds in the case of
an isotropic lens, for instance the isothermal lens. The
inequality holds for any anisotropic lens, with the sheet
mass at the extreme. For a smooth lens these two estimates
bound the true value, k, < k < k. Before caustic crossing
it can also be shown that x; <k, < K, holds, where A =
1 + 2., 18 the weak lensing limit (BTP). Hence the weak
lensing approximation will overestimate the cluster mass in
the strong regime, usually by a factor of 2 (van Kampen
1998).

In practice, substructure and asphericity of the cluster
will induce extra shear (e.g., Bartelmann, Steinmetz, &
Weiss 1995), especially in the surrounding low-x neighbor-
hood, where substructure is relatively more dominant, and
filaments make the cluster most aspherical. This means that
the lens will not be smooth for small «, and therefore x, is a
lower limit for the true x only for the central parts of the
cluster, in the case where the lens parity is known. Van
Kampen (1998) found it to be a good lower limit only for
k > 0.4 (for the most massive clusters), while for x < 0.2, k,
is usually fairly close to the true value. For angle-averaged
K-profiles, Kk, is a good lower limit for (i), > 0.2. All this
has no bearing on k,, which remains a strong upper limit
until the first caustic crossing.

A heuristic approximation, motivated by numerical
cluster models, that tries to take these cluster lens features
into account while still giving an invertible A(x) relation is

(van Kampen 1998)
}.=|1_C|\/E‘ (10
c

which results in an amplification relation that admits the
full four solutions:

A7 =|(k =)k — 1/e)], (11)

with caustics at x = ¢ and 1/¢c. The solution for x is then

ik, = kly

K, = zl_c [(c® + 1) — £ S + 1) —4c* (1 — 247 )] .

&

(12)

We shall refer to this as the parabolic approximation. Solu-
tions are set by choosing the parities .#, /' = + 1, where #
is the image parity, and ./ is the sign of [(¢* + 1)/2¢ — x].
Note that the sheetlike solution is recovered by setting
E="],

Figure 1 shows a plot of x versus the inverse amplifica-
tion A~ ' for the three estimators. Also shown is the weak
field approximation. The points are taken from a simulated
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F16. 1.—Scatter plot of the surface mass density x vs. the inverse ampli-
fication A~ ' for a simulated cluster in a CDM universe (see van Kampen
1998 for details). The cluster is at a redshift of 0.183, and the background
population is at z = 0.8. Selid line: y = Ox,), strong lensing approx-
imation. Before caustic crossing this is a hard bound on the locus of points.
Dashed line: y = x(1,), approximation, which is a good lower bound for
% > 0.2 for this cluster. The weak lensing approximation (dotted line) is
seen to be a very bad approximation for x > 0.1. The dot-dashed line is a
good fit to the simulation for the parabolic approximation y = |1 — ¢|(x/
)" withe =0.7.

lensing cluster (van Kampen & Katgert 1997) that is of
comparable size to A1689. It is clear that x, is a strong
bound, at least until a caustic is crossed, and that x, pro-
vides a very good bound for x > 0.2. The weak field approx-
imation, however, is extremely bad, except in the very weak
regime (k < 0.1). The parabolic approximation behaves as it
is designed to do: it is a good fit between the other two
strong lensing estimators for the central parts of the cluster,
while also modeling the y > i behavior for small x. These
results are fairly robust over a wide range of clusters and for
all realistic values of the cosmological density parameter
..

4.2. A Nonlocal Approximation to the Surface Mass Density

An alternative approach is to assume axial symmetry for
the lens. Because this fixes a nonlocal functional relation-
ship between x and 7 (eq. [15]), we can solve the amplifica-
tion equation (2) for a self-consistent x and y profile.
Although we shall apply our results to circularly averaged
data, these results hold for any self-similar embedded set of
contours.

We define a mean surface density interior to a contour by
integration over the interior area Q(0),

i(0) = %9) J;dla’x(ﬂ*) . (13)
The deflection angle for the axisymmetric lens is
A6 = 07 (14)
and the shear is given by
y=n=Ilk—Kl, (15)
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where the tangential term v, is the only component of shear
that is generated. The amplification factor is given by

A = (1 = &)1 =2k + &) (16)

One can now simultaneously solve for the surface mass
density, shear, and amplification by series solution. First, we
divide the surface mass into consecutive shells with equal
separation (any arbitrary separation can be used; we have
chosen a regular separation for convenience). If we split i
into an interior term, 4, _,, and a surface term, then for the
nth shell we have

2
Ky = Myey +— K, 17
where we have defined
2 n—1
oy = — ; 18
=1 n(n + 1) ,,,Z‘l ¥m 13

The surface mass density in the nth shell is then given by

(n+1)
KH =
4n

(n +1—=m—11,- —F{[n—1

=+ Oy, J* + 4?!-¢'°A.,'1}"'1), (19)

where .#, /"= +1 are again the image parities. The only
freedom that we have, for a given amplification profile, is
the choice of the shear on the first shell y, = 5, and the
parity. It should be noted that given the amplification and
having fixed the parities, one has to ensure that the first y
satisfies y* = 24", in order to avoid unphysical solutions.
The nonlocal approximation contains both the sheet and
isothermal solutions as specific solutions. The uncertainty
on k and y can be found by simple error propagation of the
uncertainty on the measurement of the amplification.

Having shown in §§ 2, 3, and 4 how, in principle, one can
measure the surface mass density from angular number
counts, in § 5 we exploit these methods to measure the mass
distribution in the lensing cluster Abell 1689,

5. APPLICATION TO Al1689

In this section we apply the methods discussed in §§ 2, 3,
and 4 to observational data. We begin by describing the
data.

5.1. The Data

5.1.1. Data Acquisition and Reduction

The data were obtained during a run in 1994 February at
ESO’s NTT 3.6 m telescope, with 10* s integration in the V
and I bands and covering 70 aremin® on the cluster. Seeing
was similar in both bands, with FWHM of 078 and a CCD
pixel scale of 0734, The EMMI instrument was used
throughout. The passbands and exposures were chosen
such that the cluster E/SO galaxies would be bluer than a
good fraction of the background, requiring much deeper
imaging in the bluer passband for detection. The cluster was
observed down to a limiting magnitude of [ = 24.

The images were debiased and flattened with skyflats
using standard IRAF procedures. After this, there remained
some large-scale gradients of a few percent, probably caused
by some rotation of the internal lens. We additionally cor-
rected each separate exposure with a smoothed version of
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itself, obtained after masking out the cluster and other
bright objects. Following this, we had homogeneous photo-
metry across the field. (A further discussion of the reduction
procedure can be found in Benitez et al. 1998.) The zero
point was found to be good to 0.1 mag. High humidity on a
few nights meant that some of the data were not photo-
metric, so we calibrated with the photometric data. The
object detection and classification was performed with SEx-
tractor.

5.1.2. Separation of Cluster and Background

To measure the distortion in background counts, we
must first separate the background from cluster members
and mask off the area that they obscure. Cluster galaxies
were identified from the strong cluster E/SO color sequence,
which forms a horizontal band across the color-magnitude
diagram, shown in Figure 2. The sharp upper edge of this
band represents the reddest galaxies in the cluster. Galaxies
redder than this are cosmologically redshifted, and hence
they represent a background population. As well as iso-
lating cluster members, this selection should also ensure
that any foreground galaxies are removed. Anything redder
than V—1I = 1.6 was selected as a background galaxy.
Further color cuts where imposed to ensure completeness of
the sample. The range of magnitudes was restricted to
20 < I < 24, and the V band was limited to V' < 28, Finally,
we also cut at ¥ —I < 3.5, where the reddest galaxies cut off.

Since the identification of cluster members is important
for removing contamination of the background sample, we
also checked our color-selected candidates with new data
from a photometric redshift survey of the same field (Dye et
al. 1998). We found general agreement with the simpler
color selection.

Having identified foreground and cluster members, we
produced a mask to eliminate those areas obscured by
cluster members that would otherwise bias the mass esti-
mate. To isolate the cluster members for the mask, we selec-
ted all the galaxies in the color-magnitude diagram lower
than V' —I = 1.6 and less than I = 22. This isolated most of

18 20

o
o

24

n
(2]

I

FiG. 2.—Color-magnitude diagram for A1689, overlaid with color cuts
used to isolate the cluster members from the background population:
W<l=2416<V—]<35 and V < 268, The strong horizontal band
of galaxies is the cluster E/S0 sequence.
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the cluster sequence. We identified the remaining galaxies in
theregion V—1I < 1.6 and I > 22, V < 26.8 as the faint blue
background population. It is clear from Figure 2 that the
distinction between faint cluster member and faint blue
background galaxy is rather vague. However, since the faint
cluster members are also the smallest, the masked area is
fairly insensitive to the exact division. Figure 3 shows the
distribution of cluster galaxies and the red background
population. The concentric circles are centered on the peak
in the cluster light distribution and show the position of the
annuli used to calculate the radial profile in § 5.4.

5.1.3. Selection by Color

Once the cluster galaxies have been isolated, the back-
ground galaxies may be subdivided into a red and blue
population, separated by ¥ —I = 1.6. The observed slope of
the luminosity function for these two populations for I > 20
is fr=0.38 and B, =1 (Broadhurst 1995; we shall do a
more accurate fit using our color cuts in § 5.2.2). From
equation (1) we expect that the surface density of red gal-
axies will be suppressed because of the dilation effect, while
magnification of the faint blue galaxy population will com-
pensate for the dilation. Hence, selecting by color allows us
to identify a population of galaxies with a very flat lumi-
nosity function to boost the lensing signal, at the expense of
a reduction in galaxy numbers. Simple error analysis shows
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that the signal-to-noise ratio varies as (Taylor & Dye 1998)
S/N =2|f — L|kA(L — x + y'/K)\/n(l + na?) ™2, (20)

where ' = J/0R. While the signal-to-noise ratio is a
linear function of the slope of the luminosity function, it
only grows with the square root of the galaxy numbers,
assuming Poisson statistics. Hence one can get a better
signal-to-noise ratio by preselection of the red background
population to boost the signal, at the expense of numbers.
Equation (20) also shows that one can get a better signal by
observing to fainter magnitudes to enhance the surface
number density and reduce the contribution from intrinsic
clustering simultaneously (see Taylor & Dye 1998 for a
more detailed discussion of observing strategies).

There is also a practical reason for favoring the red
galaxy population. While the cluster members are unlikely
to be redder than the cluster E/S0O sequence, the distinction
between faint blue galaxies and cluster members, based on
selection from the color-magnitude diagram alone, is some-
what vague. There may be blue cluster members that will
contaminate the sample of blue background galaxies. In the
absence of redshift information, the blue background popu-
lation is clearly harder to isolate.

As we have noted, the red population has relatively few
faint counts, so that the expansion term in equation (1)
dominates, and there is a net underdensity of red galaxies

Y (arcmin)
&

X (arcmin)

FiG. 3.—Masked region of A1689 (gray area). Cluster members were selected using color information (see text) and then masked over so that these regions
do not affect the surface density estimate of background sources. The total region masked is about 10% of the area. The background galaxies are also shown
as open circles. Superposed are the concentric bins used to calculate the radial profile, centered on the peak in the light distribution. North is up, and east is to

the left.
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behind the cluster (see Figs. 4 and 7). Conversely, faint blue
galaxies are numerous and cancel the expansion effect. As
expected, we found that the blue galaxies were uniform
across the A1689 field (see Fig. 8). This is a good indicator
that it is the magnification effect at work and not some
spurious contaminant, for example color gradients across
the field or large-scale variations caused by clustering. In
addition, it also indicates that the deficit in the red popu-
lation is not due to dust obscuration or reddening in the
cluster, as this would affect both red and blue populations
in equal measure.

5.2. The Distribution of Background Galaxies

In Figure 4 we show the surface distribution of the red
population behind A1689, Gaussian smoothed on a scale of
0:35. There are 268 background pgalaxies. The cluster
members have been masked out and the masked areas inter-
polated over. The masked region contributes to only = 10%
of the total field. Figure 3 shows the masked region. The
cluster center, identified as the peak of the light distribution,
isat(4.1, 3.6).
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The angular size of the cluster scales as
R(6) = 0.87D 4(z.)(6/1) h~* Mpc, (21)

where D 4(z) = 2[1 — (1 + z)~'*]/(1 + z) is the comoving,
dimensionless angular distance in an Einstein—de Sitter uni-
verse. Hence, at the redshift of Abell 1689, z_ = 0.183
+0.001 (Teague, Carter, & Gray 1990), and 1’ is about
0.117 h~* Mpe.

Figure 4 clearly shows a deficit of galaxies about the
central peak in the light distribution at (4.1, 3.6). At 0 = 0.75
there is an arc of very underdense number counts to the
southwest of the cluster center, marked by a dashed line
(The background is somewhat obscured by the cluster mask
to the northeast of the cluster center.) This is clear indica-
tion of a caustic feature in the background number counts,
where the number density drops to zero because of dilation.
This exactly corresponds to the radius of the blue arcs
observed by Tyson & Fischer (1995) at 8 = 085 (see also the
radial number counts in § 5.4). This is strong evidence that
we have detected the magnification effect in the background
counts.

4 6

X (arcmin)

Fic. 4.—Distribution of red I-band background sources for Abell 1689. Darker gray areas indicate an underdensity of source counts. The image is
[‘;'Till_.'i.'ililll smoothed \.\"ilh‘:l smoothing scale of 0035, The peak of the light distribution is at (4.1, 3:6). The maximum density of objects is 23.0 arcmin ~*, and the
minimum is L1 aremin™~ There are 15 contour lines spaced by An = 1.46 galaxies aremin ~*. A strong caustic feature is seen 0.75 from the peak (inner dashed
line), more visible to the southwest, as the other side of the peak is masked over. A second feature is found in the radial profile at 2:2 (ourer dotted line). The

image is oriented with east to the left and north to the top.
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Fig. 5.—Magnitude distribution of all [-band galaxies (solid dots), the
red-selected galaxies (gray dots), and the blue background galaxies (open
dots). The lines are the best fits to the data.

5.2.1. The Redshift Distribution of Background Galaxies

The efficiency of lensing varies with the redshift of the
background source (BTP). Therefore it is important to esti-
mate the background redshift distribution. Crampton et al.
(1995) find that Canada-France Redshift Survey (CFRS) has
a median redshift of z = 0.56 for galaxies in the range
17.5 < I < 22.5. They also show a color-redshift diagram
that indicates that the red galaxy population (V' —1I > 1.6)
has a median redshift of about z = 0.8 (Crampton et al.
1995, their Fig. 5). More accurately we can integrate the
best-fit Schechter function found by Lilly et al. (1995) for
the CFRS red galaxy population. This has param-
eters  ¢* = 0.0031 + 0.00095, «=1.03+0.15, and
M*(B) = —21, where M(B) = I — 5 log,, (D;/10 pc) + 2.5
log,, (1 + z) + k-correction, where the k-correction is dis-
cussed in their paper, and D, = (1 + z)2D (z) is the lumi-
nosity distance. Lilly et al. found no detectable evolution of
the luminosity function of the CFRS red population, and we
assume no evolution. Extrapolating to the magnitude range
20 < I < 24, we find that the redshift distribution can be
well fitted by the function

oz’ 2o\
W=t =[G e

with & = 1.8 and z, = 0.78 to about 5% accuracy over a
redshift range of 0.25 < z < 1.5. The moments of this dis-
tribution are

I'[(3 + n)/e]
I'(3/x)

Hence, for the red galaxy population we find that
{z» =096 and o.= 0.42. To simplify the analysis of the
lensing properties of the cluster, we shall assume hereafter
that the background distribution is at a single redshift of
z = 0.8 (the mode of the distribution) and has an uncer-
tainty of 6z = 0.4,

As the caustic indicated by the blue arcs coincides with
the magnification caustic, we can presume that the galaxy

(23)

(") =z
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forming the arcs lies at the same redshift as the magnified
red background galaxies, z =~ 0.8. At present we do not
know the redshift of this arc.

5.2.2. Number Counts of the Background Galaxy Population

Of major importance to the lens magnification method is
the normalization of the background galaxy population.
The CFRS is not adequate for this, since their color cuts
were in the rest frame U— V, rather than in the observed
V' —1I. Instead, we have used the Keck data of Smail et al.
(1995), who observed deep VRI images down to a limiting
magnitude of R = 27. The total differential galaxy count
rate in the I band can be approximated by

log;o n = (0.271 + 0.009)] — 1.45 (24)

over the range 20 < I < 24, where nis in mag ™' deg 2. We
have applied our color criteria (see § 5.1) to the Keck data
and find that the red galaxy population ¥ —1 > 1.6 can be
well approximated by

log, o n(red) = (0.0864 + 0.0187) + (2.12 + 0.41) (25)

over the range 20 < I < 24, Figure 5 shows the magnitude
distribution for the full data set and for the red-selected
galaxy population and the best-fit lines. Integrating the fit
for the red galaxies yields a total count rate of
n=12.02+ 337 pgalaxies arcmin~? in the range
20 < I < 24. Since fi = 2.5 d log,, n/dm, we find that the
Keck data imply fi, = 0.216 + 0.047. This is the value of f§
that we shall use in the subsequent analysis.

An alternative, although less exact, method of normal-
ization is to assume negligible cluster mass at the edge of the
field and to normalize the cluster to this. In general, this
would put a lower limit on the mass and is similar to the
method used to normalize shear mass maps. In fact, if we do
this for A1689, we find a background count rate that is very
similar to that given by the Keck data. The error introduced
into the final mass estimate by uncertainties in f scales as
o/ =~ 6f/|1 — B|, which for the Keck data results in a
fractional error of around 5%.

We have also fitted the blue counts in the Keck sample
(Fig. 5). Over the same range as the red counts, we find that
log,, n(blue) =~ 0.35I — 3.49, resulting in ff; = 0.88, close to
the lens invariant f =1, and a count density between
23 < I < 24 of ng(blue) = 15.5 galaxies arcmin 2.

5.2.3. Clustering Properties of the Background Population

The amplitude of clustering of I-band galaxies and its
dependence on redshift can be estimated from the CFRS (Le
Févre et al. 1996). Le Févre et al. (1996) find that there is
little difference between the clustering properties of red and
blue populations of galaxies for z > 0.5, implying that the
populations were well mixed at this epoch. We therefore
apply their clustering results directly to our red galaxy
population. They fitted their results to a power-law model
for the evolving correlation function, &(r) = (r/r,) 7, where

rolz) = r(0)(1 + Z)-Uﬂl."; s (26)

where e =1 4 1, and ry(z = 0.53) = 1.33 + 0.09 h™! Mpc,
and y = 1.64 + 0.05 is in this section the slope of the corre-
lation function.

The quantity that we require is the variance in a given
area of sky, which can be estimated by averaging the
observed angular correlation function w(fl) over a given
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FiG. 6.—Reconstruction of the surface mass density of Abell 1689 from the red background galaxy population, using the nonlinear local sheet approx-
imation (y = 0) and a [ull likelihood analysis in two dimensions. Light regions are high density. Only one caustic line is assumed, at # = 0075 from the peak of
the light distribution. The maximum surface density is x = 1.35, at (402, 3!41), consistent with the peak in the light distribution. The minimum surface mass
density is & = —0.47. There are 15 linearly spaced contours, separated by Ax = 0.12, and the map is Gaussian smoothed with a smoothing length of

Iy = 0035, North is up and east is to the left.

area (eq. [7]). The clustering variance for I-band galaxies
then scales roughly as (Taylor & Dye 1998)

n,l?‘.l = 10—22—.’..8(9)‘;14] ~0.8 , {2?)

where the sampled area is a circle of radius 0, and we have
assumed unbiased linear evolution of the density field. The
background galaxies are assumed to all lieatz ~ 1.

5.3. Reconstructing the Surface Mass Density

In Figure 6 we plot the reconstructed surface mass
density of Abell 1689 using the nonlinear local sheet
approximation x, (see § 4.1), changing parity on the caustic
line at 0 = 0175 (see Fig. 4). The uncertainty on the peak of
the mass distribution is somewhat large (see § 5.2), but sig-
nificant features can be seen around the cluster core. There
appears to be an extension to the southwest that is not seen
in the cluster galaxy distribution. Interestingly, there also
appears to be a loosely connected ridge, about 24 from the
peak. We shall discuss this feature further below, but note
that the shear mass map derived by Kaiser (1996, Fig. 2)
shows similar extenstons and ridge. although the extension

to the west is not apparent in the shear map. Two under-
dense regions are also seen to the south and to the east in
both maps. While the comparison is only qualitative and
the maps are noisy, we find this very encouraging, as these
maps are derived from completely independent methods,
although the underlying data set is the same.

5.4. The Mass Profile of Abell 1689

While the mass maps are suggestive, a more quantitative
measure can be made by angle averaging the counts and
calculating the mass profile. Figure 7 shows the radial
counts about the peak in the light distribution, normalized
to the Keck data. The plotted error bars result from only
Poisson statistics, although in the mass analysis below we
shall take into account the effects of clustering. A general
trend is clear and lies close to the prediction for an isother-
mal lens normalized to the blue arc caustic. This has a
surface mass density of k = 0.375(6/1')" ', corresponding to
a virial velocity of 1600 km s~ '. Again, it is worth empha-
sizing that the zero of the number counts at # = 0.75 corre-
sponds to the caustic inferred from the blue arcs. The
second dip will be discussed in more detail in § 5.4.4. The
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Fic. 7.—Radial profile of red counts behind Abell 1689. The back-
ground count density is n, = 12 objects arcmin™?. Superposed is the
profile for an isothermal model, normalized at the caustic radius ¢ = 075
(dashed ling).

increase in counts at # = 3'7 is likely to be the result of a
clustering effect. Table 1 contains the shell radii, red galaxy
counts, and total and obscured area of the annuli.

In Figure 8 we show that radial profile for the blue galaxy
population, normalized with the Keck data in § 5.2.2. As
expected, there is no lensing signal. The slight increase
toward the cluster center is caused by contamination from
the blue cluster members.

5.4.1. Local Approximations for the Surface Mass Density

Figure 9 shows the radial mass profile of the cluster Abell
1689 assuming a single caustic at 8 = 0.75. The inner two

1.5

N/N,
1
——
.

0.5

6 (arcmin)

FiG. 8.—Radial profile of blue counts behind Abell 1689. The back-
ground count density is n, = 22 objects arcmin”*. As expected from the
nearly lens-invariant slope f,,,. = 0.88, the number counts are nearly flat
and at large radii tend toward n/n, = 1. The slight increase toward the
cluster center probably results from contamination of the counts by blue
cluster members.
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solid lines are calculated using the lognormal-Poisson like-
lihood estimator (eq. [6]) with each of the two single caustic
strong lensing approximations (eqgs. [8] and [9]). The light
shaded region indicates the 1 ¢ uncertainty owing both to
shot noise and to the effects of clustering. The dark shaded
region indicates the region between the two extreme estima-
tors. Away from the cluster center these agree and are equal
to the weak lensing estimator, but noise effects become
dominant. Closer to the cluster center the uncertainty due
to the shear increases and becomes dominant at 6 < 1'.
However, the cluster mass profile is significantly detected
between 1' < 0 < 2!6. We also appear to see a deviation
from an isothermal profile, which is also plotted. When the
procedure was repeated with the center of the annuli offset
from the peak of the light distribution, the mass profile was
weaker and less significant, as one would expect if the peak
of the mass density was associated with that of light.

5.4.2. Nonlocal Approximation for the Mass Density and Shear

In Figures 10 and 11 we assume axisymmetry and
equation (19) to calculate the surface mass density and shear
simultaneously. We set y, = 0.3 for the first shell. The
resulting profile is fairly insensitive to this choice, only
affecting the first two shells. The uncertainty on the shear in
the first shell is small, because this must be chosen a priori.
However, averaging over shells means that the errors do
not strongly propagate through to higher radii. Again, a
mass detection is found between 1’ and 2!8, this time with
the shear being accounted for. In this region x ~ 0.4 + 0.15,
which is somewhat higher than that found by the shear
estimate of xk = 0.2 + 0.1 (Kaiser 1996). (Note that we quote
Kaiser’s color-selected sample, where cluster members that
may contaminate the shear estimate have been removed.
This corresponds to combining our red and blue back-
ground populations. This will change the redshift distribu-
tion of the background and include some residual blue
cluster contamination that may account for the discrep-
ancy.) Also, for the single caustic solution, we see a large
spike at 2!2, which is not seen in the Kaiser (1996) results.
However, the shear method correlates points, which may
lead both to the suppression of features and to underesti-
mation of the errors.

Our estimate of the shear field is far more uncertain, with
7, = 0.2 £ 0.3 over most of the range. There is a slight
increase beyond 24 owing to the spike in the surface mass
profile at that radius, but the profile is dominated by noise.
This increase is not reflected in the angle-averaged measure-
ments of Kaiser (1996), where the mean shear is
y = 0.15 + 0.05.

5.4.3. Local Approximation for the Surface Mass Density and Shear

Figures 10 and 11 also show x and y estimated from the
parabolic solution of § 4.1. We find good agreement
between the local and nonlocal approximations for i, but
the the shear profiles are somewhat different, reflecting that
one estimator is local and one nonlocal. However, the large
uncertainties produced by each estimator mean that we
cannot predict the shear profile with much certainty from
the available data.

5.4.4. Two Background Populations?
An interesting feature of the counts in Figure 7 is the
appearance of two pronounced dips, one at 075 and
another one at 2:2. While the inner dip has already been
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FiG. 9—Radial profile of surface mass density of cluster Abell 1689. Dark solid region: Uncertainty caused by the strong lensing estimators. Lighter
shaded region: Uncertainty caused by clustering and shot-noise uncertainty in the background population. Solid line: A singular isothermal profile,

normalized to the caustic feature at {# = 0:75.

identified with a caustic line, the outer dip is somewhat
anomalous. A number of possibilities could account for this.
The feature was noted in the mass plot as a low signal-to-
noise ridge in the density and can be seen in the number
counts as a loosely connected ring about the cluster center.
One possibility is that this results from clustering in the
background population, combined with a large mass con-
centration to the southeast of the peak in the light distribu-
tion. There are few cluster members in the region of the
ridge or the bump, so the effect is not caused by masking.

An alternative is that this is the first glimpse of a second
caustic line. In principle, a second caustic can be created by
placing the background galaxies at two redshifts, one at low
redshift, and one at high redshift (e.g., Fort et al. 1996). The
observed number counts would then be given by

Wing = A{~ 4 y(dl~ — Al Y | (28)

where 4, = A(f), with f; = «(z)/x, = [(1 + z)"* —
(1 +z)"*1/[(1 + z)"* — 1] (BTP), and i = 1, 2 for the two
galaxy populations. Here, v is the fraction of galaxies at
redshift z,. An outer caustic line must be produced by the
high-redshift population. If we make this population lie at
z = 0.8, then the low-redshift population must lie at z = 0.3,
Both populations are reflecting the same arc: the difference
in projected radii is wholly a result of their relative redshifts.

However, this would double the predicted mass from lens
magnification, making Abell 1689 a very extreme cluster. In

addition, it seems hard to make a caustic line from the
high-redshift population for such a massive cluster without
forming a second, inner radial caustic. As the strongest arc
is tangential and is seen near the inner arc, one would have
to conspire to have a nearby galaxy, at z = 0.3, lensed and
lying at the same projected radii as the radial arc produced
by the high-redshift population. This seems highly unlikely.

One could also keep the mass roughly constant and place
a second population at z > 0.8. This is a possibility, but it
does not strongly affect our mass estimate assuming a single
caustic solution. In the absence of further evidence for a
second high-redshift population, we shall only consider the
single caustic model.

5.5. Mass Estimate of Abell 1689
5.5.1. From i to Mass Surface Density
Assuming that the background galaxies all lie at the same

redshift of z = 0.8, and given that the surface density scales
as

/

I . (V1 +z— 1)1+ z,)*
T+z -0 1+2-S1+32)
where , = 832 x 10'* h M, Mpc™* is the mean mass per
unit area in the universe, then we find that the surface mass
density is

(29)

L =159 x 10%k(h My Mpc™?). (30)
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FiG. 10.—Radial profiles of surface mass density « for A1689 (solid line with dots), calculated by solving the axially symmetric lens equation (19). Shaded
regions: | merrors calculated via error propagation from the uncertainty on the measured amplification profile. Solid dark line: A singular isothermal profile
normalized to the caustic feature at f = 0.75. Lighter solid line: Local parabolic estimator k..

Although we have assumed an Einstein—de Sitter universe,
these results only depend weakly on cosmology (BTP).

5.3.2. Uncertainty in the Redshift Distribution

The error introduced by assuming that the background
galaxies lie at the same redshift can be estimated by error
propagation and by assuming dz = 0.4 (see § 5.2.1). Hence,
0¥ = |JZ/dz|dz and the fractional uncertainty on the
surface mass density owing to the uncertainty in redshift
distribution of the background galaxies is 0Z/Z = (.37
dz = 0.148. The same error is also found in mass estimates
based on the shear pattern.

5.5.3. Uncertainty Arising from Normalization of
Background Counts

Assuming a sheet mass solution (x, in § 4.1), we find that
the uncertainty arising from the normalization of the back-
ground counts is dx = (|1 —«|/2[f — 1])dny/n,. For
A1689 and the red galaxy population, this is
81 = 0.15]1 — k|. For an average k = 0.5, the uncertainty
1s around ox = 0.07.

5.5.4. The Cumulative Mass Distribution

Figure 12 shows the cumulative mass interior to a shell,
calculated from both the nonlocal approximation (§ 4.2) and
the local parabolic approximation allowing only a single
caustic solution (§ 4.1). The uncertainties are treated by
error propagation. We find that the two-dimensional pro-

jected mass interior to 0.24 h™' Mpcis
Mp(<024 h~! Mpc) = (0.50 + 0.09) x 10'° h~* M,
(31)

and that the two estimators are in good agreement. We find
that the projected mass scales as

M,p(<R)~ 3.5 x 10'*(R/h™! Mpe)!'* h™!' My, (32)

for R <0.32 h™! Mpc, similar to that for an isothermal
sphere, M ~ R. Hence it appears that A1689 has a near-
isothermal core. Beyond R = 0.32 h~' Mpc the lensing
signal is lost in background noise, and we can only say that
<01

Including the uncertainty from the background redshift
distribution and the normalization of background counts
increases the error to about 30%.

6. COMPARISON WITH OTHER MASS ESTIMATES OF A1689
AND INFERRING THE THREE-DIMENSIONAL MASS
DISTRIBUTION

In this section we compare the mass derived from lens
magnification to that found from a number of other inde-
pendent measurements. First, we compare our results to
estimates of the mass based on the shear pattern found
around A1689 (§ 6.1). The magnification and shear com-
plement each other in that the shear pattern has a higher
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Fi6. 11.—Radial profiles of tangential shear y, for A1689 (solid line with dots), calculated by solving the axially symmetric lens equation (19). Shaded
regions: | o errors calculated via error propagation from the uncertainty on the measured amplification profile. Solid dark line: A singular isothermal profile
normalized to the caustic feature at ¢/ = 0.75. Lighter solid line: Local parabolic estimator x_.

signal-to-noise ratio, since it is not affected by clustering
noise (although with redshift information, the magnification
can also be measured free from clustering noise; see BTP),
but suffers from the “sheet-mass” degeneracy. We shall
combine the magnification and shear pattern elsewhere.
While the lens magnification mass is vital for fixing the
total two-dimensional projected mass distribution indepen-
dently of any assumptions about the dynamical state of the
cluster, much information can be gained by combining this
with other mass estimates, assuming that these are not
strongly biased by their reliance on thermodynamical equi-
librium. In this section we describe a method for trans-
forming from the two-dimensional lens mass to other
cluster characteristics, such as the line-of-sight velocity dis-
persion (§ 6.3) and the X-ray temperature (§ 6.4). Discrep-
ancies that arise between these predicted characteristics and
the actual measurements can be used to infer information
about the mass distribution along the line of sight
(Bartelmann & Kolatt 1997). We find that while there is fair
agreement between all of the mass estimates when projec-
tion effects are taken into account, the agreement is better if
the cluster A1689 1s composed of two clusters superposed
along the line of sight and separated by about Az = 0.02.
The transformation from a two-dimensional projected
lensing mass to a three-dimensional mass, line-of-sight
velocity dispersion and X-ray temperature can be made
using either the isothermal model or by using relations
found in N-body simulations of clusters. While the former

provides a simpler method, one has more freedom with
simulations to include or exclude the various projection
effects that contaminate measurements of these quantities.
In this section we shall use the relations found by van
Kampen (1998) from an ensemble of CDM cluster simula-
tions, all with Q, = 1 and o4 = 0.54. These relations are
model dependent, but serve to aid comparison between the
various mass measurements. We have also provided a table
of quantities (Table 2) in which the uncertainties have been
calculated by combining the error on the cluster mass with
the dispersion found in the deprojection relations.

We begin by comparing the lens magnification mass to
the mass determined from the shear field around A1689.

6.1. Comparison with Arclets and Weak Shear

Tyson & Fischer (1995) provide mass profiles of A1689
from arclets, another independent estimator of the mass,
normalized to the caustic line indicated by the blue arcs.

They find that the two-dimensional projected mass within
R=0.1h""Mpcis

Myp(<0.1) = (0.18 £ 0.01) x 10" b~ ' Mg . (33)

They also find that the mass scales like an isothermal sphere
out to 0.4 ™ 'Mpc, before turning over to an R ™' profile.
This implies that in the regime that we probe with the mag-
nification the cumulative mass scales like

M(<R) = (1.8 + 0.1) x 10'5(R/h~* Mpc) h™! M, . (34)
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F1G. 12.—Cumulative mass profile of Abell 1689. Solid dark line and shaded uncertainties: Estimated using the axisymmetric nonlocal estimator described
in & 4.2. Lighter gray line: Cumulative mass estimated [rom the local parabolic approximation k., described in § 4.1. Also plotted is the isothermal fit to the
blue arc caustic (dotted line), similar to the shear results of Kaiser (1996) and Tyson & Fischer (1995).

This is very close to the profile that we find from lens mag-
nification (eq. [32]). Using this, we scale their results, giving

M,p(<0.24) = (043 + 0.02) x 105 h™! Mg, (35)

in good agreement with the mass from magnification.
Kaiser (1996) has also calculated x based on the weak
shear method (Kaiser & Squires 1993), using the same data

TABLE 1
PARAMETER VALUES AT VARIOUS ANGULAR RADI

r Annulus Area Obscured Area
{arcmin) N NIN, (aremin®) (arcmin?)
033,400 2 1.19 0.35 0.21
0.67...... ( 0.00 1.08 0.25
| 5.1 ) Ep— 4 0.24 1.79 0.40
| B o 13 0.51 251 0.39
F69 3 20 0.59 3.23 0.40
2030 23 0.57 362 0.26
236000 11 0.28 3.46 0.23
7. | I 26 0.77 3.08 0.26
304...... 32 0.94 301 0.16
338...... 34 0.95 314 0.17
c 1 1 S— 45 1.25 318 0.20
4.06...... 3l 1.06 2.49 0.06

Notes.—Angular radius (r in areminutes), number of red galaxies
(N), ratio of galaxies to background (N/N,), the total area of the
annuli, and the area obscured by the mask. The unobscured area is
total area — obscured area. The expected number of galaxies in an
annuli is N, = n, x unobscured area.

that we have used here for A1689. We noted above that
there are qualitative similarities between the weak shear
maps and those presented by Kaiser, which is significant,
since the methods are independent. The mass density profile
found from the shear pattern is also well fitted by an iso-
thermal profile:

Myp(<R) =18 x 10'5(R/h™'Mpe) h™! Mg, (36)

with a 10% statistical uncertainty and further 10% system-
atic error owing to the uncertainty in the redshift distribu-

TABLE 2
Mass ESTIMATES ¥OR A1689

Quantity This Work Other
(1 (2) (3)
M, (<0.24)... 0.50 + 0.09 0.43 + 0.02 (Tyson & Fischer 1995)
0.43 + 0.04 (Kaiser 1996)
M, (<05).... 0.72 + 0.25
e R 1.6 + 0.65 0.95 + 0.16 (Yamashita 1994)
wi{<18) i 2200 + 500 23551 73% (Teague et al. 1990)

Notes—Mass estimates for A1689 based on lens magnification (col.
[2]) and from other measurements (col. [3]). Masses are given in units of
10" k™' M, and velocities are quoted in units of km s~ '. Distance are
given in h™ ' Mpe. The other measurements are based on arclets (Tyson &
Fischer 1995), the shear pattern (Kaiser 1996), X-ray temperatures
(Yamashita 1994}, and line-ol-sight velocity dispersion (Teague et al. 1990).
Also given are the three-dimensional mass estimates from lens magnifi-
cation.
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tion (§ 5.5.2). Compared to our two-dimensional mass,
Kaiser’s analysis suggests that

M,(<0.28) = (043 + 0.04) x 10'5 h™' My, (37)

again in good agreement with that found by the magnifi-
cation method.

6.2. The Three-dimensional Mass Estimated from
Lensing Alone

The three-dimensional mass inferred from the two-
dimensional projected mass inside a sphere of radius
r=05h""'Mpcis

Myp(<0.5) = (0.72 + 0.25) x 10'S ™' My, (38)
while the mass inside an Abell radius, r = 1.5 h™'Mpc, is
M,yp(<1.5) = (1.6 £ 0.6) x 10"° h™!' M . (39)

These estimates are probably an overestimate of the true
three-dimensional mass, since the dispersion in the simula-
tions includes the effect of the alignment of the clusters’
principle axis along the line of sight. Given that the inferred
three-dimensional mass is so high, A1689 is probably lying
at the extreme of such a distribution. In such cases, the
three-dimensional mass may be much lower than mass
inferred from a two-dimensional projection. We discuss this
possibility in the next few sections.

6.3. Velocity Dispersion of Abell 1689

The predicted line-of-sight velocity dispersion estimated
from the simulations includes the effects of superposition of
clusters, infall along filaments, and interlopers, and so tends
to predict larger velocities and larger uncertainties than for
an isolated cluster. Including these effects into our estimate
for Abell 1689, we find

o (<1.5h™' Mpc) = 2200 + 500 km s ™' (40)

for the line-of-sight velocity dispersion inferred from the
two-dimensional lensing mass. A measurement that may
also include these effects is given by Teague et al. (1990),
who find

o(<1.5h™! Mpc) =2355 3 kms™', (41)

in good agreement with our model. However, both of these
values are very high, much higher than the estimate for an
isolated isothermal sphere, which for A1689 gives a velocity
dispersion of 1645 4 148 km s~ '. This discrepency between
lensing mass and the velocity dispersion suggests that
A 1689 1s not a single isolated cluster, but a superposition of
smaller clumps that contribute to the total measured veloc-
ity dispersion. Den Hartog & Katgert (1996) have tried to
take into account interlopers in A1689 and, using the
Teague et al. data, find a value of o, = 1861 kms ™ '

Following a suggestion of Miralda-Escudé & Babul
(1995), we shall assume that A1689 is composed of two
superposed isothermal spheres. Placing one cluster at
z = 0.18 with a velocity dispersion of 1500 km s ' and a
second at z = 0.20 with a velocity dispersion of 750 km s ™!,
we find that we can reproduce a total projected velocity
dispersion of around 2300 km s ', in agreement with both
observed and simulated values. Figures 4 and 5 of Teague et
al. (1990) also provide marginal evidence for a second con-
cenfration of galaxies at z = 0.2, Furthermore. if we esti-
mate the integrated surface mass of these two clusters,
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R =
M:D({Rl = 7.38 x ].ON'G'%:,“[,(W) h! M@ 5

(42)

where ¢,400 = 0,/1000 km s~ ', we reproduce a lensing
mass of M,p(<R)=2 x 10'3(R/h™" Mpc) h™! Mg, in
agreement with what we see from lensing. Hence it seems
plausible that the lensing mass and velocity dispersion of
A1689 can both be explained by a superposition of a rich
and a poor cluster.

b |

6.4. X-Ray Mass Estimates of Abell 1689

Evrard, Metzler, & Navarro (1996) have found that the
mass within the radius defined where the mean cluster
density is 500 times the critical density is strongly correlated
with the cluster temperature. They fitted this relation from
simulations with

T
10 keV

where Ty is the broad-beam temperature, and M s, is the
three-dimensional mass within a radius defined by an over-
density 500p,,;,. This radius is roughly given by rspq =
1.175 h~* Mpe.

X-ray temperatures of A1689 have been measured by
both Ginga and ASCA. Yamashita (1994) has analyzed
these data and finds T = 9 + 1 keV. while Mushotzky &
Scharf (1997) find T = 9.02%5% keV. Daines et al. (1997)
have also recently reanalyzed ROSAT PSPC observations
and find a mean temperature of Ty = 10.2 + 4 keV. Note
that we are quoting the mean temperature and incorpor-
ated the 40% uncertainty in the error estimate, rather than
quoting upper limits as Daines et al. do. The major uncer-
tainty in measuring X-ray temperatures here is instrumen-
tal, as 10 keV is approaching the limit of ROSAT’s
sensitivity.

Taking the result of Yamashita and the relation found by
Evrard et al., we find that

32
M= 1.11 % 10‘-‘( ) h™ ' Mg,  (43)

Moo = (0.95 4+ 0.16) x 10*3 h™! M, . (44)
Using the simulated scaling relations, we find
Moo = (16 + 0.65) x 10'S h™' M (45)

for Abell 1689, implying an X-ray temperature of Ty = 12.7
+ 3.4 keV, within the 1 ¢ uncertainty of the measured
X-ray temperature. Again, if we consider A1689 as a double
cluster, the nearer, larger mass concentration would be
detected in X-ray, lowering the expected X-ray temperature,
From the velocity dispersions we can infer a temperature
nearer to Ty, = 0.7 keV, slightly below, but again in agree-
ment with observations.

In conclusion, although we find a high mass, there is a
general consistency between the mass of A1689 estimated
from lens magnification and shear. In addition, we find a
fair agreement between the lens mass and the line-of-sight
velocity dispersion if we take into account projection effects.
Modeling A1689 as a double cluster, we find that the veloc-
ity dispersion can be much lower, implying two smaller
clusters, with the lensing mass a superposition of cluster
masses. This hypothesis might also help explain the margin-
al discrepancy with X-ray temperature.

Finally, A1689 is in projection a highly spherical cluster,
in contrast with the majority of clusters, which appear
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extended. While this may be a result of its high mass, it is
also possible that A1689 has its major axis aligned along the
line of sight, pointing toward a second cluster. While much
of the evidence on the mass distribution along the line of
sight is circumstantial, all of these effects would conspire to
give A1689 its impressively massive appearance.

7. DISCUSSION

The absolute surface mass density of a galaxy cluster can
be estimated from the magnification effect on a background
population of galaxies, breaking the “sheet-mass” degener-
acy. To apply this in practice, we have taken into account
the nonlinear clustering of the background population and
shot noise, both of which contribute to uncertainties in the
lensing signal (Taylor & Dye 1998). A further complication
1s the contribution of shear to the magnification in the
strong lensing regime, where the magnification signal is
stronger. We have argued that this can be circumvented by
approximate methods that can be local, where a relation-
ship between surface mass and shear is assumed (van
Kampen 1998), or by a nonlocal approximation where only
the shape of the cluster is assumed. Both approximations
seem to work well on simulated data.

We have applied these methods to the lensing cluster
Abell 1689, using Keck data of Smail et al. (1995) to normal-
ize the background counts and the CFRS results to infer the
redshift distribution and clustering properties of our data.
Using a y = 0 approximation of the surface density in the
strong lensing regime, we have reconstructed a two-
dimensional mass map for A1689 in the innermost 27
arcmin?, from where a substantial part of the lensing signal
comes. The two-dimensional map has general features that
are similar to those seen from shear maps (Kaiser 1996).
This is encouraging for both methods, as they are indepen-
dent determinations of the mass distribution.

For a more quantitative measure, we have binned the
data in annuli around the peak in the light distribution and
found a significant (5 ¢) drop in the number counts, drop-
ping to zero where a caustic is inferred from arcs. Local and
nonlocal approximations were used to find the x profile
from the number counts and estimate the shear field. We
found these to be quantitatively similar to that found by the
shear method.

We have also discussed the possibility of a second popu-
lation of background galaxies, creating a second dip in the
radial number counts and a spike in the mass profile.
However, we argued that it is unlikely that there is a second
low-z population, as the cluster mass would be improbably
high, and if there is a high-z population, it has little effect on
our results.

We have calculated a cumulative mass profile for A1689
and find a projected two-dimensional cumulative mass of
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Myp(<0.24 h™' Mpc) = (0.50 + 0.09) x 10'5 h™' M, .
(46)

Such a large mass is very rare in a CDM universe normal-
ized to the observed cluster abundance, and may indicate
that A1689 is composed of two large masses along the line
of sight and/or filaments connected to the cluster and
aligned along the line of sight. This is also implied by the
high line-of-sight velocity dispersion, which would be
enhanced by merging clusters (Miralda-Escudé & Babul
1995) or by infall from aligned filaments.

We have compared our mass estimates to other estimates
available in the literature and find that the lens magnifi-
cation, shear, arclets, line-of-sight velocity dispersions, and
the X-ray temperature mass estimates are all in reasonable
agreement, to within the uncertainties at this time.

The results presented here are from 3 hours integration
on the 3.6 m NTT. Longer integration times have the com-
bined benefit of increasing the number of background gal-
axies, and so reducing shot noise, and of reducing the
contribution from cosmic variance (eq. [20]; § 5.1.3). Hence,
by increasing the exposure time, we can expect to reduce the
uncertainty from lens magnification by a factor of 2 or so.

One drawback of this analysis is the contribution of clus-
tering noise to the background counts. This can be removed
using redshift information, either from spectroscopy or
more efficiently, using photometric redshift information
(BTP). We shall explore this elsewhere (Dye et al. 1998).

If our results are extended to other clusters, we can hope
to have a good representation of the total mass distribution,
gas, and galaxy contents with which to make strong sta-
tistical arguments about the matter content of the largest
gravitationally collapsed structures in the universe.
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