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A b s tr a c t

A highly desirable technique sought after by cosmology is one which enables the accu­

rate mass measurement of rich galaxy clusters. From observations of their abundance 

and primarily their mass, clusters give strong constraints on the density param eter of 

the Universe, models of structure formation and normalisation of the power spectrum  

of density fluctuations. Gravitational lensing provides such a technique. Prevailing 

over X-ray tem perature and virial velocity methods known to be problematic, lensing 

permits determination of cluster masses independent of dynamical state.

This thesis concentrates mainly on the exploitation of the magnification properties 

of lenses rather than those of shear analysis which relies upon the quantification of 

galaxy image distortions. Magnification allows absolute mass measurements, breaking 

the slieet-mass degeneracy experienced by shear. To this extent, a theoretical analysis 

of the geometrical magnification of angular separations between galaxies lying behind 

a lensing cluster is performed. This sees application to the cluster Abell 1689 using 

V and I band observations to select background galaxies based on their V-I colour. 

The distribution of source number counts in the observed field of view results in the 

determination of a radial mass profile and a mass map for Abell 1689. This predicts 

a projected mass interior to 0.24/?,_1Mpc of M (<  0.24/i_1Mpc) =  (0.50 ±  0.09) x 

1O15/i_1M0 .

A new method of directly determining accurate, self-consistent lens mass and shear 

maps in the strong lensing regime from magnification is presented. The method relies 

upon pixellization of the surface mass density distribution which generates a simple, 

solvable set of equations. The concept of pixellization is also directed at shear analysis 

to give rise to a simplified method of application. Through use of cluster models,
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the method is verified before the magnification data from the colour-selected number 

counts is input to compute a self-consistent mass map of Abell 1689.

The property of lens magnification to amplify observed background source fluxes is 

investigated. Using an independent set of observations in nine optimally chosen filters, 

photometric redshifts of objects lying in the field of Abell 1689 are calculated. In ad­

dition to providing an unambiguous distinction between cluster members, foreground 

objects and background sources this also enables computation of the source luminos­

ity function. Comparison of this with the distribution of luminosities in an observed 

offset field quantifies the lens-induced flux magnification to arrive at an independent 

mass profile measurement of Abell 1689. A projected mass interior to 0.25/?,-1 Mpc of 

M (<  0.25/i-1 Mpc) =  (0.48 ±  0.16) x 1015/»_1Mo is found.
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C h a p te r  1

In trod u ction

The nature and origin of the Universe has been the subject of much speculation since 

intelligent, reasoning human beings first inhabited the E arth ’s surface and began to 

look up into the sky. The route to the development of a successful theory capable 

of explaining observed cosmological phenomena has proved to be a tortuous one with 

many pitfalls along the way. It is only in this century tha t mankind has achieved 

the bulk of its understanding of our cosmos, largely aided by the rapid development 

of technology. Only now are we equipped with a sufficiently advanced arsenal of 

instrum entation to begin to satisfy the questions tha t have been left unanswered all 

this time.

This chapter is divided into two main parts. The first gives a review of modern 

physical cosmology, mainly emphasising those areas relied upon by later chapters. 

A short summary on the notion of dark m atter is given. The second part of this 

chapter discusses the importance of studying galaxy clusters, namely the way in which 

they provide constraints on various cosmological parameters and structure formation 

models. A brief outline and comparison of mass derivation methods alternative to 

those of gravitational lerising is presented.
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1.1 C o sm o lo g y

Cosmology is the branch of astronomy concerned with the origin, properties and evo­

lution of our Universe. Unlike the apparatus of a laboratory experiment which allows 

direct interaction, astronomers are forced into the more passive role of relying upon 

observations of the Universe for the formulation of physical laws which govern it.

The currently accepted Big Bang model of the Universe owes its reputation to 

several supporting observations. Two of the most im portant astronomical discoveries 

of this century which have provided the strongest evidence in favour of the Big Bang 

are the discovery of the cosmic microwave background radiation (CMBR) by Penzias 

and Wilson in 1965 and the discovery of Universal expansion by Hubble in 1929. The 

validity of Hubble’s law (see Section 1.1.3) supports the case of an expanding Universe 

whereas the CMBR is almost indisputable evidence of a hot, dense beginning. Mea­

surements by the COBE (COsmic microwave Background Explorer) satellite launched 

in 1989 showed tha t the CMBR. is isotropic to one part in 105. This is in excellent 

agreement with inflation (Gutli 1981) which predicts a highly isotropic universe on 

scales far larger than the size of regions in causal contact.

The Copernican Principle asserts that we are not privileged observers. Assuming 

this holds true, our isotropic Universe must therefore be a homogeneous one. The con­

dition of homogeneity and isotropy on large scales is a statem ent of the Cosmological 

Principle; a fundamental concept in cosmology which gave rise to the development 

of the Robertson-Walker metric in 1935 (see Section 1.1.2). Modern observations of 

the distribution of mass from redshift surveys certainly seem to validate this state­

ment (eg. Tadros et, al 1999). In the light of this and similar evidence gathered by 

astronomers over the years, cosmology has proceeded by extrapolating the properties 

and laws of the observable Universe to the Universe as a whole.

1.1 .1  N e w t o n ’s Law  o f  G r a v ity

The strongest force of nature on large scales is that due to gravity. It is therefore not 

surprising that gravity plays a central role in any theory used to model the evolution 

and dynamics of the Universe. Sir Isaac Newton in the 17th Century was responsible



for the first description of gravity with his ‘law of universal gravitation’. This quan­

tified the attractive force between two objects with masses m i and m 2 separated by 

a distance r =  ]r| as
G m \m 2r

r 3
(1.1)

Newton also established a framework for mechanics, one of the most im portant 

results of which was his ‘second law of motion’ which stated tha t a body of ‘inertial 

mass’ m  feels an acceleration a =  F / m  if acted upon by a force F.  This inertial mass 

turns out to be exactly the same as the gravitational mass affecting the magnitude 

of the gravitational pull; a fact known as the ‘weak equivalence principle’. Using this 

as the basis for his ‘strong equivalence principle’ which postulates tha t physics in 

freely falling and inertial frames is identical, Einstein developed his General Theory of 

Relativity. The General Theory of Relativity provides the best description of gravity 

to date.

1 .1 .2  T h e  F r ied m a n n  E q u a tio n s

In the special theory of relativity, the interval between two points in space-time with 

co-ordinates (t , x, y, z) and (t +  di, x  +  dx, y  +  dy, z +  dz) is defined as

ds2 =  c2d i2 -  (dx2 +  dy2 +  dz2). (1.2)

This quantity is invariant under a co-ordinate transformation and equals zero if the

two co-ordinates it spans are linked by a ray of light. The interval may be w ritten in

terms of the metric tensor, inj, such that

d.s2 =  gl:jd x ldxJ (1.3)

where x° =  ct and x l , x 2, x i are the spatial co-ordinates x ,y ,z .  The metric tensor 

completely describes the geometry of space-time. For the flat geometry described by 

special relativity (referred to as Minkowski space-time), the metric is evidently the 

diagonal matrix diag[l, —1, —1. —1]. To allow for a description of curved space-times, 

a more general metric is needed. It can be shown from simple geometric considerations 

(Weinberg 1972) that the most general space-time metric describing a homogeneous
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and isotropic universe is that of the Robertson-Walker (RW) metric,

(1.4)

where the spherical polar, co-ordinates (r, 0, </>) have been used. These co-ordinates 

are ‘coinoving co-ordinates’ which, as the name implies, move with the expansion of 

the Universe. Physical distances are decomposed into a time-independent comoving 

co-ordinate and a time-dependent, dimensionless scale factor, aft). This is defined by 

the ratio of proper distances (see Section 1.1.8),

where to is the current epoch. The co-ordinate r is referred to as the ‘comoving 

angular diameter distance’. K  is a free param eter which controls the space curvature 

of the Universe depending on its acquired value. The comoving co-ordinates can be 

arbitrarily scaled such tha t K  takes on one of three values:

• K  =  1 Space is ‘closed’, meaning tha t a trajectory of fixed 6 and r/> will always 

end where it started from. Geometry is described by the surface of a 3-sphere1 

and thus the internal angles of a triangle add up to > 180°.

• K  — 0 Space is flat in which case Euclidean geometry applies.

• K  =  — 1 Space is ‘open’ and infinite in extent. The geometry of such a space

is described by the 4 dimensional equivalent of the surface of a saddle in 3 

dimensions. The internal angles of a triangle add up to < 180°.

The geometry of space-time is determined by m atter in the Universe. The fun­

damental equation resulting from Einstein’s General Theory of Relativity relates the 

curvature of space to the energy density and momentum of m atter in the Universe

though the energy--momentum tensor, T rj (eg. Peacock 1999),

Here, R., j is the Ricci tensor which holds spatial curvature information and R  is the 

Ricci scalar formed from the contraction of the metric tensor and the Ricci tensor.

-R g i j  -  Afjij. (1.6)

1 A 3-sphere is the four dimensional equivalent of the surface of a sphere in 3 dimensions.
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A is the cosmological constant which, if greater than zero, corresponds to a repulsive 

force acting against the pull of gravity 011 the Universe and vice versa if negative.

Using the RW metric, the solutions to Einstein’s equation (1.6) are given by the 

Friedmann equations-.

In these equations, a is the scale param eter of equation (1.5), p is the volume density 

of m atter in the Universe and p is the m atter ‘pressure’. This pressure is effectively a 

correction for relativistic particles and is negligible in the Newtonian limit. It origi­

nates from the thermal motion of particles in the same way tha t the classical definition 

of pressure stems from the collision of gas molecules with a surface, p can be thought 

of as a flux density of momentum2.

The Friedmann equations govern the dynamics of the Universe given its m atter 

content and the contribution from A. They are not independent of each other; equation

(1.8) can be derived from equation (1.7) by taking into consideration the evolution of 

density and therefore pressure.

A similar result can be obtained from Newtonian arguments. By considering the 

acceleration of a test particle 011 the boundary of a sphere due to the mass it en­

closes, an analogous form of equation (1.8) can be derived3. Integrating this gives 

the Newtonian equivalent of equation (1.7). The difference between the ‘Newtonian 

Friedmann’ and the full Friedmann equations is the A term, the relativistic pressure 

term in equation (1.8) and the interpretation of K  as Universal curvature which do 

not arise from Newtonian considerations.

T he relativistic correction for density is p —> p( 1 + v2/ c 2) which com bined w ith p — pv2 / 3 gives 

p -> p + 3p/c2.
This only holds true if spherical sym m etry is assumed. If the collapsing region is ellipsoidal for 

example, GR. predicts a different result from th a t predicated by N ewtonian gravity.

8nG 2 T.r 2 Ac2a2-— par — Kc +  
3

(1.7)

(1.8)



1 .1 .3  T h e  H u b b le  P a r a m e te r

The uniform expansion of the Universe as a result of the Big Bang has the consequence 

that, in the absence of gravitational influences, any two galaxies in the Universe recede 

from each other. Because the expansion is uniform, larger separations give rise to 

larger recession velocities. This was first discovered by Edwin Hubble in 1929. In 

plotting galaxy recession velocities (away from us) against their distance (determined 

from Ceplieid variable stars which vary on a timescale dependent on their intrinsic 

brightness), he noticed a correlation characterised by

v = H qR  (1.9)

This is Hubble’s Law which relates an object’s proper distance B. (see Section 1.1.8) 

with its recession velocity v. H q is referred to as the Hubble constant. As the Universe 

evolves, this changes as the rate of expansion changes and so the subscript ‘0’ denotes 

its value at the current epoch (this is a convention adopted hereafter). More generally, 

equation (1.9) is expressed as,

R(t) = H (t)R (t)  (1.10)

where H(t)  is the Hubble parameter and the dot denotes time differentiation. Using 

the result of equation (1.5), H(t)  in terms of the scale factor is

H(t) = ^ r .  (1.11)a{t)

The value of the Hubble constant is presently a m atter of much debate although 

recent estimates seem to scatter about a value of H q ~  65kms- i Mpc-1 with an 

uncertainty of about 30% (eg Freedman et al 1998). Knowledge of the Hubble constant 

is required for the calculation of many cosmological quantities and so to compensate 

for its uncertainty, it is parameterised by the dimensionless quantity h defined as

h = --------- — -------- p. (1.12)
lOOkms Mpc

1 .1 .4  R e d sh if t

Just as acoustic waves experience a Doppler-shift when a source moves with respect 

to an observer, the light from objects receding from us due to Universal expansion is



shifted to lower frequencies. Objects further away which recede more quickly therefore

appear more red and are said to be ‘redshifted’. Redshift is defined by

^  (1.13)
Ae

where X„ and AP is the observed and emitted wavelength respectively.

An object’s redshift can be expressed in terms of its recession velocity. Suppose 

a light-emitting object moves with a velocity v  relative to an observer. If, in the rest 

frame of the body, wavecrests are separated by a time t, measured to be t' in the rest 

frame of the observer, the Lorentz transformation for time stipulates tha t

„  _  t- ( - « W c 2 (114) 
\J \  — v2 /  c2

where x  is the vector in the body’s rest frame between wavecrests. The magnitude 

of x  is simply the emitted wavelength of light, Xe — ct. Similarly, Xa = ct' so tha t 

equation (1-14) becomes

A, _  1 + (p/c) c o , .  (115)
Ae y/1 -  V / C

If the body recedes radially, x  and v are parallel so that equation (1.15) gives

—  ( £ $ f -

Cosmological Redshift

Using the RW metric, redshift due to the expansion of the Universe can be expressed 

in terms of the scale parameter. Consider a light ray em itted from a source with 

constant comoving co-ordinates such tha t two subsequent wavecrests are em itted at 

proper times t e and t e +  A te and observed at times ta and t.0 +  A tQ. As stated in 

Section 1.1.2, the interval for a light ray equals identically zero so tha t the RW metric 

for a radially travelling beam is therefore integrated to give

r  d r - ,
j-to+Ato C([f

k  «(*) j o y / \ -  K r 2 Jte+Atc a(t.)

1 The radial direction is chosen for simplicity, w ithout loss of generality.
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The right hand side of this expression is equal to the left hand side since the object 

has constant comoving co-ordinates. If A t 0 and At,,, are small, then one can write

A t ,  A  ta
a(t,r) a(t0)

and because A t n/At,r = \ G/\< =  1 + z, this can be written

(1.18)

1 +  . =  ^ -  (L19) a(te)

This is believed to be the main contribution to redshifts measured in practice; ie. 

tha t due to the recession of objects from us owing to Universal expansion. Superim­

posed on top of these cosmological redshifts are perturbations due ‘peculiar velocities’ 

which result from the action of local gravitational fields on objects. Gravitational 

fields also cause redshifts in another, more direct way. Einstein’s general theory of 

relativity describes how light undergoes a change in wavelength if observed at a lo­

cation at a different gravitational potential than the location it started from. If this 

change in gravitational potential is A <•/>, then the redshift is

z = ^ .  (1.20)
c

This effect becomes more im portant at larger distances. An appreciation of this comes 

from realising that from the point of view of a photon travelling towards us, we sit at 

the centre of a sphere containing mass and hence at the bottom  of a potential well. 

Ignoring the mass outside this sphere means that the measured redshift of the photon 

is lessened by the increase in energy it experiences in falling into the potential well 

(see Bondi 1947).

1 .1 .5  T h e  D e n s i ty  P a r a m e te r

The Friedmann equation (1.7) can be written such tha t p allows for all contributions 

to the density, in which case the term involving the cosmological constant no longer 

explicitly appears:
a2 SnGp K c 2

=  (L21) u~ 6 a,

This is often referred to as the energy equation of the Universe since, broadly speaking, 

it describes the relationship between the Universe’s kinetic and potential energy. Using
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the result of equation (1-11) this becomes

a2 \ p c

where,

P. -  £ £ .  (1-23)

pc is called the critical density of the Universe for reasons now explained.

If p = pc, then equation (1.22) implies tha t K  = 0 and therefore tha t space is 

flat (see Section 1.1.2). Ignoring the contribution to p from A means tha t the density 

evolves like p cx a -3 (lengths oc a -1 ) and hence from equation (1.21), a oc a -1 . This 

means tha t the the rate of expansion of the Universe tends asymptotically to zero. 

If p < pc then K  < 0 and equation (1.21) predicts tha t a, is always positive; the 

Universe expands forever. If p > pc then K  > 0 and the Universe initially expands 

before collapsing back on itself. Including the effects of A confuses m atters since its 

contribution to p does not evolve with time.

Clearly, the ratio of p /p c determines whether the Universe is closed, open or crit­

ical. This is an im portant ratio and thus is given the status of a fundamental cosmo­

logical param eter called the density parameter,

< - >

Since this quantity depends on H  and p which both evolve with time, so too does U. 

Its value at the current epoch is denoted as usual with the suffix ‘O’. Recent estimates 

show a relatively wide range of values although most suggest a sub-critical universe 

with 0.2 < S2q < 1.0 (eg. Coles & Ellis 1997).

1 .1 .6  E v o lu t io n  o f  il and  H

Contributions to p in equation (1.21) come from m atter (prn oc a,“ 3), radiation (pr oc 

a -4 ) and A (p\  constant). Since these three contributions evolve differently, their 

combination to form the overall density is

P =  PA + Pm +  Pr =  PAO +  PmO +  PrQ (1-25)
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where ao =  a(to). Two manipulations now need to be made in order to determine the 

evolution of H . The first is brought about by defining

^[A0,m0,r0] — 7nj2P[AO,mO,rO] (1.26)

to give from equation (1-25) 

8nGp
— H q ^2a0 +  ̂ m o ( l  +  2r)3 +  ̂ ro(l +  z ) 4 ■ (1-27)

The second involves taking the current epoch version of equation (1.22) and rescaling 

with the scale factor to give

K c 2
= H 2{n  -  1) =  H'2{no -  1)(1 +  z )2. (1.28)

a.

The time evolution of the Hubble param eter is then given by substituting equations 

(1.27) and (1.28) into equation (1.21);

H 2 = H i Pag +  fImO (1 +  z)  ̂ +  flj-o (l +  z)* +  (l — f2o) (1 +  .z)’" • (1.29)

This is an im portant relationship. As the next section shows, equation (1.29) is used 

to form the connection between distance and redshift.

Evolution of i2 is simply determined by substituting for H  in equation (1.28) using 

the result of equation (1.29);

Pao(1 +  z)~ 2 +  f2mo(l +  z) +  fir0(l +  z )2 — f2o +  1

Inspection shows tha t as z —¥ oo. the right hand side of this equation -> 0 and so at 

early times il —> 1. If a cosmological constant exists, then at late times when a —> oo 

(in which case z effectively —> —1), if tends towards 1.

1 .1 .7  T h e  D e c e le r a t io n  P a r a m e te r

A useful param eter in cosmology is the deceleration parameter, ry, which provides a 

measure of the rate of change of the Universe’s expansion at a given epoch. This is 

defined in terms of the scale factor as

da
(l = ~ l 2' i1-31)
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From the Friedmann equation (1.8) and the result of equation (1.11), this can be 

w ritten in terms of the contributions to

* rG £  4^ , _ A c l  =  ! U  2)
1 3H 2 c2H 2 m 2 2 ' A { 1

Determinations of the current epoch value go have mainly come from the use of super- 

novae as standard candles. The latest estimates seem to indicate tha t go is negative 

(eg. Riess et al 1998, Perlm utter et al 1998) which implies an accelerating Universe. 

Some refinement to these measurements may still be necessary however.

1.1 .8  C o sm o lo g ic a l  D is ta n c e s  an d  V o lu m e s

A useful definition of distance is essential in any cosmological theory. This is especially 

true of gravitational lensing which is based on geometrical arguments as Section 2.1 

shows. For this reason, a careful consideration of the notion of distance in our Universe 

is presented here for the particular cases of proper, comoving, luminosity and angular 

diameter distances.

Proper D istance

The proper distance between two points is the distance simultaneously measured by a 

chain of rulers spanning both points at time t. Taking one point as the origin of the 

co-ordinate system so that only the r co-ordinate need be considered means th a t from 

the KW metric with d t =  0 for simultaneity, the proper distance is

a(t)dr

where

f ( r )  =

dpr(t) —

dr

■Io v l  — K r 2

sin_1(r) for K  =  +1

(1.33)

Jo V l  -  K r 2
= (1.34)r for K  = 0

sinh“ 1 (r) for K  =  — 1 

To express this in terms of redshift for practicality, the radial part of the RW metric 

is combined with equations (1.19) and (1.11) to give

dr c dz
(1.35)

\ / l  -  K r 2 a0H  ' 
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Substituting for I i using equation (1.29) and then integrating shows that

a0f ( r )  = —  r.O.*n 4- fb .n il -t- z l3 4- M -  QnVl 4- z l2l ‘ 2 dz = — S  (1.36)/'
./o

which is clearly the proper distance at the current epoch. S  is defined for later use. The 

contribution from i lr has been neglected here since it is only significant at very early 

times when the energy content of the Universe was mainly in the form of radiation. 

This so called ‘radiation dominated era’ soon changed to a ‘m atter dominated era’ as 

the Universe expanded and cooled. This change-over happened at a very high redshift 

(it;. 2 ~  1000's), much higher than the redshifts considered in this thesis and so f2r is 

ignored hereafter. The cosmological model which assumes tha t the Universe contains 

a critical density of only dust so that p = Ua — 0 and Qm =  1 is referred to as the 

‘Einstein-de-Sitter model’.

The following analytical solution for equation (1.36) exists in the case of Q,\ =  6 :

This is Mattig’s equation (M attig 1958).

C om oving D istance

Using the result of equations (1.28), (1-34) and (1.36), the comoving radial distance 

D(z) may be written:

Note that equation (1.28) ensures a physical solution by forcing the argument of 

all square roots above to be positive through the value of K.

Lum inosity  D istance

«of{ r )
Ho
2c i i m QZ +  ( O m Q —  2)(y/l +  f i m QZ —  1) 

Ho O2l0(l +
(1.37)

/
/W sti- i sin ^  -  1) for i i0 > 1

for Qq =  1 ■ (1.38)

. H  o v/1 —

c sinli (S \ / l  — Uq) for U0 < 1

The proper distance is of little practical interest since it is impossible to simultaneously 

measure the distance elements between two points. A more useful definition of distance
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is tha t of the luminosity distance chosen to obey the Euclidean result tha t an object’s 

flux scales as the inverse square of its distance from the observer. Denoting L  as the 

power of a source em itted at time t and I as the flux received at time to, the luminosity 

distance is defined as
(  L  \  1!2

A = ( t - 7) • (L39),4 n l ,

If the source lies at a eomoving radial co-ordinate r then the surface area of the sphere 

which passes the observer at time t 0 is 47r(a0r )2. The em itted photons experience the 

dual effect of being redshifted by the Universe’s expansion and having their arrival 

rate reduced due to time dilation. These two effects combine to give an observed 

source power of (a/ao)2 times the power output at, time t and hence I in terms of L  is

( i - 4 0 )AttD'2 Vg'O /

with D  as defined by equation (1.38). Combining equations (1.39) and (1.40) therefore 

gives the luminosity distance as

Di = — D (z) — D (z)( l  +  z). (1.41)
a

Angular D iam eter Distance

Instead of the requirement that fluxes adhere to the inverse square law, an alternative 

distance can be defined which preserves the Euclidean behaviour that an object’s 

angular size varies as the inverse of its separation from an observer. Such a distance 

is called an angular diameter distance.

Suppose an object lying at the comoving radial co-ordinate r at time t has a proper 

diameter of Dpr. If the angle subtended by Dpr in the 9 direction is A 9 then the KW 

metric, gives

Dpr = arA  9. (1.42)

Using the definition above, the angular diameter distance of the source is then given

as
^  D vr D ( z )
D " =  a s  = ar = <L43)

Angular diameter distances are the distances used in gravitational lensing for rea­

sons made apparent in Chapter 2. Depending on the cosmological param eters chosen,
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z

Figure 1.1: Variation of angular diameter distance with redshift for four different cosmological 

models. Dashed lines indicate an open universe.

angular diameter distances do not necessarily increase with increasing redsliift. Fig­

ure 1.1 illustrates this for four different cosmological models. In a universe with 

fim0 =  1,£2ao =  0, D a begins increasing with redshift but then reaches a maximum 

at z ~  1.2 before falling off. Equation (1.42) shows tha t this therefore implies that 

the angular size of an object can appear to increase with distance beyond z ~  1.2. 

This unintuitive behaviour is a result of gravitational focusing of light rays due to 

the curvature of space induced by the Universe’s mass content. Figure 1.1 shows that 

stronger focussing occurs in a universe with a higher value of S2mo-

C om oving Volume

Calculation of comoving volumes is necessary for many cosmological applications. One 

such application is the determination of luminosity functions such as that of Section 

5 .3 .

The comoving volume element of an observed solid angle A lo is given by

dV' =  Aw(ao'r)2d(aor). (1-44)
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From equation (1.36), the comoving volume between the redshifts z i and z^ in a m atter

dominated universe (ilr =  0) is therefore,

c [~2 D 2{z)dz  /1
V  — Alu —— /    ■ ~ r r j . (1.4o)

Ho Jz\ [f̂ AO +  ^m o(l +  •z)'3 +  (1 — fio)(l +  z )“]

1.1 .9  T h e  P o w er  S p e c tr u m  o f  D e n s i ty  F lu c tu a t io n s

The power spectrum is relied upon at several points throughout the work presented 

here. This section is therefore included entirely for completeness.

The variation in density at a given point x  in a volume V  is commonly parame- 

terisecl by the ‘density contrast’, 5, defined as

Six )  = f ^ I  (1.46)
P

where p is the mass density at x  and p is the average density in V . The autocorrelation 

function  of the density contrast is

f ( r )  = (5(x)6(x + r)) (1-47)

where the angular brackets denote the average over all positions in V. For a distrib­

ution of discrete objects, f( r )  is interpreted as the excess probability of a randomly 

chosen object having a neighbour at r  from it.

It is beneficial to consider mass fluctuations as a superposition of plane waves 

since they evolve independently of each other while the fluctuations are still linear. 

It is therefore advantageous to work in Fourier space. The density contrast can be 

expressed as a Fourier series,

5(x) = ^ 2  (h  exp(ifc.cc) =  22  exp (—ik .x )  (1-48)
k k

with k  acquiring only discrete values due to the periodic boundary conditions of the

finite volume V. Substituting both normal and complex conjugate versions of 5 into

equation (1.47) gives

=  ( 2 2 2 2 ^ ^ e i{k' - k )x e - l k r )  . (1.49)
\  fc k' /

The fact that

< e^k~k')-x P>= 5D(k -  k 1) (1.50)
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where SD is the Dirac delta function gives, in passing to the limit where V  -» oo so 

tha t the summation in (1.49) becomes an integral,

(1.51)

This defines the power spectrum

P(k) = ( | 4 | 2) (1.52)

which in taking the inverse Fourier transform of equation (1.51) shows that

P(k) = /  £(r)eik'r dr.
r

(1.53)

The power spectrum is evidently the Fourier transform of the autocorrelation function, 

a result known as the Wiener-Khintchine theorem. For convenience, P[k) is typically 

parameterised as a power law (over certain ranges of A;) such tha t P{k) oc k n with the 

spectral index n, often a function of k.

1 .1 .10  M a g n itu d e s  & T h e  K -co r rec t io n

The apparent magnitude of an object is defined as

where c is a constant of normalisation and I is the measured flux defined as the power 

received per unit area in a given bandwidth. Since I is inversely proportional to the 

square of luminosity distance (Section 1.1.8), one can define an absolute magnitude 

M  as being the apparent magnitude an object would have at a distance of lOpe;

Determination of M  for nearby stars and galaxies is a straightforward process 

once 771 and D\ have been measured, however for more distant objects, the effects

affects the measured flux within a given bandwidth. The first two were mentioned in

777, =  C -  2.5 lg I (1.54)

(1.55)

ot redshift must be taken into consideration. There are four ways in which redshift
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stretched by a factor of (1 +  z) so that if L (A) is the power output at wavelength A, 

L (A) —> L(A/(1 +  z)). This stretching means tha t the number of photons per unit 

wavelength interval is reduced by a factor of (1 +  z). If photons are selected within a 

certain bandwidth then the total number received is less by a factor of (1 +  z) than 

tha t which would have been detected in the absence of redshift. This is the fourth 

effect and is clearly not applicable if the total or bolometric flux is considered.

Consider the emission of photons from a source at time t lying at the comoving 

radial co-ordinate r. From Section 1.1.8, the surface of the sphere described by the 

photons at time to when they are detected is AttD 2. Allowing for all four redshift effects 

above, the measured flux lrn in a waveband described by a filter with transmission T(A) 

is therefore,

_  /0°° T(A)L(A/(1 +z))dA  _  Jo°° T(A)L(A/(1 +  z))dA 
4ttD 2(1 +  z)3 4:nDf(l + z)

using the result of equation (1.41). In order to calculate the absolute m agnitude of 

the source in the rest frame, the following flux is required:

,/n°° T(A)£(A)dA
req 47rD2 • ( • )

From equation (1.54), the difference between the measured and required absolute 

magnitude is

Mreg -  M m =  2.5 lg 

This correction is referred to as the K-correction, usually w ritten as

k a_

1'req
=  K (z).  (1.58)

K (z)  = 2.5 lg
/0° ° r (A ) ¿ ( A / ( l + z ) ) d A  

f o °  T (A)L(A)dA
— 2.5 lg(l +  z). (1.59)

Equation (1.59) shows that both the redshift and the form of L(A) must be known 

in order to correctly calculate an object’s K (z).  In many cases, the form of L (A) is 

unknown however as Section 5.3.1 discusses, a good approximation is tha t K  oc z.

1.2 D a r k  M a t t e r

Determ ination of the m atter content of the Universe is vital for the evaluation of its 

contribution to Uq. One only has to look as far as the planets to conclude tha t not
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all mass is luminous. Studies must therefore rely upon indirect means of detecting 

mass, such as its gravitational influence on luminous mass or, as the main theme oi 

this thesis, light itself.

1.2 .1  E v id e n c e  o f  D ark  M a t te r

From the careful observation of stars in the solar neighbourhood in the 1920’s, Jan 

Oort predicted tha t more mass than that visible was required to explain the large 

stellar motions perpendicular to the galactic plane. At the time, this ‘missing mass’ 

was attributed  to the distribution of interstellar gas and dust (although doubts still 

remain as to whether this completely explains the phenomenon). Using a similar 

approach except with galaxies (see Section 1.4.1), Zwicky (1933) calculated a mass to 

light ratio (M/L) of ~  50/iM q/L(:, for the Coma cluster. Given tha t galaxies were then 

thought to consist mainly of stars with a M /L of ~  I/iM ^/L q, this implied tha t the 

Coma cluster must be about 50 times the summed mass of the galaxies themselves.

Zwicky’s result is often regarded as the first evidence of dark matter. Although on 

a smaller scale, a later measurement of the rotation curve of our neighbouring galaxy 

M31 by Rubin & Ford (1970) supported this result. They found that the orbital 

velocity of stars at a large radius did not fall off as r -1 /2, but remained constant out 

to the largest radius they were able to observe. This was confirmed in other spiral 

galaxies and thus immediately gave rise to the notion that spirals must be embedded 

in a dark m atter halo.

Modern observations seem to indicate that M /L ratios and hence the abundance of 

dark m atter, increase with increasing object scale. For example, recent measurements 

of the Coma cluster give a M /L of close to 400/iM q/Lq in comparison to our local 

group with a M /L of ~  100/iM.,/L.. (Binney & Tremaine 1987). On the scale of 

galaxies, typical estimates for spirals he at M /L ~  30/i.M ,,/L . . The orbital motion of 

stars in ellipticals is somewhat less ordered than that in spirals and so masses must 

be determined from the dispersion of measured galaxy velocities. This gives a M /L 

for the central regions in ellipticals of ~  10/iM(;,/L,.>.
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1 .2 .2  C o n tr ib u t io n s  to

The critical M /L of the Universe (ie. tha t required to give Qq = 1 from mass con­

tributions only) can be deduced from knowledge of the local luminosity density, jo- 

Denoting the M /L of the local Universe as T enables the mass density to be w ritten

as

PmO=joY- (1.60)

From the definition of the density param eter with Do =  U this gives a critical M /L  of

T c =  rr.  (1.61)
Jo

Loveday et al (1992) measure a luminosity density from nearby galaxies of jo =  (1.2 ±  

0.3) x 108hLoM pc~3 which therefore means that,

T c =  (2200 ±  500)/z,Mq /L q . (1.62)

W ith a typical M /L of ~  4OO/iM0 /L q , this rough calculation shows th a t rich 

clusters are insufficiently massive to provide a critical density. Assuming for an instant 

tha t the M /L of rich clusters is a fair representation of the M /L of the Universe5 

means tha t m atter makes a contribution of fimo =  400/2200 ~  0.2 to the total density 

parameter.

1 .2 .3  T h e  N a tu r e  o f  D a rk  M a t te r

Comparison of the observed abundance of light elements (Deuterium, Helium, Lithium) 

with the predictions made from the theory of big bang nucleosynthesis (Alplier et al 

1948) constrain the amount of baryonic material in the Universe to be

o .o n / r 2 < nbaryon < 0.015/ r 2. (1.63)

(Coles & Lucehin 1997). Given the abundance of m atter from observations of rich 

clusters, this clearly implies the existence of non-baryonic material.

5O ue could argue th a t given the observed trend  indicating an increasing M /L  on larger scales, this 

is actually an underestim ation.
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There are currently several postulates as to the nature of this non-baryonic mate­

rial and these fall into one of two categories:

• Hot Dark M atter  (H D M ) The term ’hot’ refers to the fact tha t the particles 

which make up the dark m atter are relativistic and therefore have a substantial 

pressure. Their velocities, being close to the speed of light, prevent them from 

clumping together and they are expected to be distributed smoothly throughout 

the Universe. The gravitational effect of this smooth distribution is to smooth 

out baryonie fluctuations by pulling them apart. This has the consequence of a 

‘top-down’ formation history in which the largest structures formed first. The 

most common candidate particle for HDM is the massive neutrino with a mass 

of ~  10 eV.

• Cold Dark M atter  (C D M ) This type of m atter is referred to as ‘cold’ since 

its constituent particles are non-relativistic. Their relatively low speeds allow 

them to coagulate to form large amounts of small scale structure. This gives 

rise to a ‘bottom -up’ formation scenario in which larger structures form later. 

A typical example of a CDM particle is the axion, not present in the standard 

model of particle physics.

Determinations of the power spectrum of density fluctuations in the Universe (see 

Section 1.1.9) indicate that neither type of dark m atter completely explains the ob­

served fluctuations on all scales. HDM fails to predict a large enough power on small 

scales whereas CDM has trouble accounting for the observed large scale fluctuations. 

This has led to models which involve a mixture of hot and cold m atter types, often 

called ‘warm dark m atter’ models (see for example Borgani et al 1996). Observations 

of large scale structure such as galaxy clusters can constrain this mixture (Kofinan et 

al 1996). A more detailed discussion of clusters now follows.

1.3 G a la x y  C lu s te r s

Galaxies are not randomly distributed across the sky. Their positions are correlated 

and there exist regions where their surface number density is noticeably higher than
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average. This is clearly seen in the APM galaxy survey (Maddox et al 1990) of ~  3 

million optically selected galaxies shown in Figure 1.2. Such groups consist of a wide 

ranging number of galaxies from a few up to anywhere from a hundred to a thousand 

closely separated members forming galaxy clusters, seen here as the darkest patches.

Figure 1.2: The APM survey of ~  3 million optically selected galaxies contained within an 

area of ~  4300 square degrees centred on the south galactic pole (Maddox et al 1990). Empty 

patches occur where foreground stars, dwarf galaxies and globular clusters are masked out. A 

darker shading represents a higher number density. Observations were carried out in the blue 

band in the magnitude range 17 < bj < 20.5.

The most prominent galaxy cluster seen is the Virgo cluster. Its central region has 

a diameter of ~  7° with its main body extending over an area of roughly 15° x 40°. 

Even in as early as the 18th century, Sir William Herschel noted tha t l /3 rd  of the 

galaxies observed at the time were contained in the Virgo cluster despite it only 

covering 1 /8 th  of the sky.

1.3 .1  P r o p e r t ie s  o f  C lu s te rs

Having established that a duster is some sort of galactic congregation, the question, 

'How is a galaxy cluster defined V immediately arises. The answer is tha t there is not a
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standard definition although criteria are usually based upon similar characteristics. In 

terms of physical properties, a rough guide is that clusters are gravitationally bound, 

virialised systems with a mass of ~  101 * M,. within a region of l/f,_1Mpc in radius. In 

terms of their identification from optical observations, clusters are typically defined 

as being regions where the number density of galaxies within a particular aperture 

exceeds some threshold value above the mean.

A widely cited example of a cluster catalogue is that of Abell (1958). The Abell 

catalogue contains 4076 clusters, 2712 of which are north of —20° declination and 

away from the galactic plane. Abell defined clusters by three criteria:

• The cluster must contain at least 50 galaxies within a magnitude range m 3 < 

m  < m 3 +  2 , where m 3 is the magnitude of the third brightest galaxy in the 

cluster.

• These galaxies must all lie within a radius of B.a = 1.5/i- 1Mpc, R.a being referred 

to as the Abell radius.

• The estimated cluster redsliift (see Section 1.1.4) must be within a range of 

0.02 < 2 < 0.2.

Clusters were also assigned a ‘richness’ depending 011 the number of galaxies the cluster 

contained. The poorest clusters were assigned a richness of 0 with richer clusters being 

assigned higher numbers. A similar, yet more relaxed set of criteria were used by 

Zwicky et al (1961-1968) to identify 9134 clusters in the same area of sky as Abell, 

although this catalogue is not as widely used.

I11 the late 1960’s when X-ray telescopes became available, it was discovered that 

clusters are powerful emitters of X-ray radiation. Typical X-ray luminosities are found 

to he between 1()43 — 1045 erg s“ 1 making them the most luminous X-ray sources in 

the sky (see the review by Sarazin 1986). As the resolution of telescopes improved, 

it became apparent that X-ray emission from clusters is extended rather than point­

like and that the spectra are best described by the bremsstrahlung process6 from a

"B rem sstrahlnng radiation occurs when energetic electrons are decelerated in passing close to 

atomic nuclei.
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hot, dilute plasma typically 107 — 108K in tem perature with a density of ~  10~3 

particles per cm3. Making the assumption tha t this intracluster gas is in hydrostatic 

equilibrium with the gravitational potential of the cluster enables estim ation of the 

total mass (see Section 1.4.2). Mass estimations made in this way agree reasonably 

well (ie. within a factor of ~  2, see Lubin & Bahcall 1993) with those from masses 

derived from galaxy velocity dispersions discussed in Section 1.4.1.

1.3 .2  T h e  C o sm o lo g ic a l  I m p o r ta n c e  o f  C lu s ters

Estim ation of the cosmological parameters tha t best describe our Universe is a funda­

mental challenge to modern observational cosmology. Galaxy clusters provide not only 

an extremely useful tool for the study of these parameters, but also a unique means 

of attem pting to understand the formation of large scale structure. Their im portance 

stems largely from their youth, having formed relatively late in the formation history 

of the Universe.

C luster Form ation R ates  as a Constraint on fl

As Richstone et al (1992) noted, the rate of formation of clusters heavily depends on 

the density of the Universe. In a low density universe, the expectation is tha t cluster 

formation and indeed growth of structure begins earlier than in a high density universe. 

This has the dual consequence tha t in a low density universe, a higher abundance of 

clusters is anticipated and that their present day rate of formation should be lower.

Observed abundances of clusters, or more specifically, knowledge of the cluster 

mass function7 can therefore provide a strong constraint on the m atter density of 

our Universe (eg. Fan et al 1997, Viana & Liddle 1996, Eke et al 1996). Accurate 

measurement of cluster masses thus plays a crucial role in the application of these

abundance arguments. For example, Eke et al (1996) predict tha t the number of

clusters per comoving volume with a mass greater than 3.5 x 1014/i,“ 1Mq in a universe 

with i l0 =  0.3 should be 15 times the number in a universe with S2o =  1-

'ie. the comoving num ber density of clusters of a given mass
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Clusters as a D iagnostic  for Structure Formation

The current belief concerning the formation of structure in the Universe is tha t tiny 

perturbations in the density field of the early Universe gave rise to gravitational in­

stabilities causing those perturbations to grow. These small perturbations continued 

growing and coalescing to form clouds of m atter which condensed to form stars in 

turn  forming galaxies and the larger structures observed today8. In this so called 

‘hierarchical formation model’, clusters are expected to form at the highest peaks of 

the early density field. Their large separations of typically 10-30 times tha t of galaxy 

separations make them prime candidates for tracing large scale structure since a rel­

atively small sample can be used to probe large distances. This combines with the 

fact tha t the positions of clusters in the present day Universe are probably close to 

their initial formation positions enabling application of linear structure formation the­

ory. The findings of Watkins (1997), who measured the peculiar velocities of several 

clusters to be typically 500 kms-  or less, supports this view.

Mapping the distribution of m atter contained within a cluster, such as tha t consid­

ered in Section 3.2.6 also lends valuable information to theories of structure formation. 

The ability to measure a cluster’s dark m atter content (see Section 1.2) enables investi­

gation into the phenomenon of ‘biassing’, that is, how stringently luminous mass traces 

the distribution of dark m atter (see Mann et, al 1998 and references contained therein). 

Detection of substructures in clusters gives an indication of their age (Riehstone et 

al 1992). The argument used here is tha t once a cluster has collapsed, low contrast 

substructures of at least ~  20% of the total cluster mass with a density comparable 

to tha t of the cluster will be mixed away in a time scale of ~  1 dynamical time9. The 

existence of substructure in a cluster therefore suggests that a cluster has recently 

formed. Measurement of the fraction of clusters which exhibit such structures can 

therefore uncover their formation history and put constraints on cosmological models.

MThis is iii contrast, to a fragm entation model in which the  largest structures form first.
A dynam ical tim e is defined as being one quarter of an ob ject’s orbital period about some central 

mass (Binney & Tremaine 1987).
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N o rm a lis a t io n  o f  th e  P ow er S p e c t ru m  from  C lu s te r  A b u n d a n c e

A great volume of work lias focussed on using the abundance of clusters to constrain 

the power spectrum of density fluctuations in the Universe (see Section 1.1.9). Various 

observations of large scale structure give the shape of the power spectrum  on different 

scales (eg. Landy et al 1996, Peacock & Dodds 1994) but its am plitude is difficult, 

to obtain (Tadros et al 1999 show one particular means of achieving this). Clusters 

provide an ideal means of normalising the power spectrum as the following discussion 

shows.

The theory of inflation predicts tha t large scale structure seen today was seeded by 

quantum fluctuations in the density field of the very early Universe. Q uantum  theory 

states that these fluctuations are Gaussian-distributed which leads to the conclusion 

that fluctuations in the density field measured today on a large enough scale should 

also be distributed in a Gaussian fashion. The probability distribution function for the 

density contrast, 6 (see Section 1.1.9), averaged over some volume with a characteristic 

scale R  on large scales can therefore be written as,

This becomes a poor approximation on smaller scales where the distribution of mass is 

less smooth causing the distribution to be skewed to smaller values of 5. Of course, the 

scale at which the Gaussian nature of the distribution becomes inappropriate increases 

as one looks further back into the Universe by virtue of the simple fact tha t m atter 

was more homogeneously distributed at earlier times. The variance ajf is determined 

by windowing the power spectrum with W R(k)\ the Fourier transform of the volume 

within which S is averaged in equation (1.64),

Clearly, the value of rrR is directly proportional to the power spectrum  P{k). If a R 

can therefore be measured via an independent method then the am plitude of P{k)  is 

known.

Consider the gravitational collapse of a spherically over-dense region to form a rich 

cluster. In an expanding universe, this collapse can only occur if the average density

(1.64)

4  =  /  d3kP (k )W U k) .I (1.65)
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contrast in tha t spherical region is greater than a critical value ol Sc — 1.68 (eg. 

W hite et al 1993). According to the Press-Schechter formalism of structure formation 

(Press & Schecliter 1974), the fraction of mass in the Universe contained in objects 

characterised by their linear scale R  is

with p given by equation (1.64). From the measurement of cluster masses and the 

number density of clusters, Fc can lie independently determined from

where M c is the mass of a typical cluster characterised by its linear scale i?., n c is 

the measured spatial number density of clusters and p is the average density of the 

Universe. Equating equations (1.66) and (1.67) shows that o R can be determined in 

terms of terms of p if the quantities M c and n c are known. Accurate cluster mass and 

abundance determinations are therefore im portant to constrain the am plitude of P(k)  

through equation (1.64).

The fact that R. in the Press-Schechter formalism is the linear scale means tha t 

clusters probe scales comparable to their initial collapse size. In the early Universe 

when m atter was much more homogeneously distributed, this means tha t a typical 

cluster must have had to collect material from a much larger volume. Making the 

assumption tha t such a cluster collapsed from a spherical volume of homogeneous 

material to form a mass typically seen today of say ~ 6  x 1014/i-1 Mq (eg. W hite et 

al 1993) within an Abell radius gives R ;

where pcr is the critical density of the Universe parameterised by the mass density 

param eter (see Section 1.1.5). Evidently, clusters therefore provide a means of 

normalising the power spectrum on a scale of 8 Mpc via the mis of density fluctuations 

on this scale, a , F a n  et al (1997) show that if the power law ctr oc M ~ a is adopted, 

then the integrated cluster mass function n (>  M )  behaves like

( 1 .6 6 )

P
(1.67)

Mr = R ?p„ nm0 ~  6 x 1014h~ 1 M(7) 

=> R  ~  8/i_1n^oM pc. ( 1 .6 8 )

In n (>  M ) oc a8 2M  '2n (1.69)



Expressed more qualitatively, this states that determination of erg is far more reliant 

upon accurate knowledge of mass than  the number density of clusters and thus pro­

vides further motivation for the work carried out in this thesis.

As a quick exercise, a value for n c can be readily estimated from Abell’s catalogue. 

The redshift range within which all Abell clusters lie is 0.02 < z < 0.2 encompassing a 

volume of ~  3.5 x 108/t~3Mpc3 (Bartelmann 1996). W ith such a small upper redshift 

limit, this volume is relatively insensitive to cosmological param eters (see Section 

1.1.8). Of the 2712 Abell clusters, there are 1894 with a richness of > 1. Considering 

only these, this yields a value of

n c = r1894 8h3M pc-3 ~  5 x 10_6h3Mpc~3. (1.70)
3.o x 10

Using the value of M (, in equation (1.68) allows the observed cluster mass fraction to 

be calculated from equation (1-67) to give

Fc ~  8 x 10_3O~{, (1.71)

This shows tha t clusters are rare objects in a universe where — 1- Equating this 

observed fraction with tha t from equation (1.66) therefore gives tha t

a  s =
0.68 (ilm0 =  1)

. (1.72)
1.38 (ilm0 =  0.2)

This rough calculation is consistent with the more detailed analysis considered in 

Viana & Liddle (1996), Eke et al (1996) and Pen (1998).

1.4 C lu s te r  M a sse s  f ro m  V ir ia l  a n d  X -R a y  T e m p e r a t u r e  

M e a s u r e m e n t s

Section 1.3.2 explained the importance of clusters as large scale structures and hence 

justified the motivation behind measurement of their mass. This section discusses 

the two main methods of obtaining cluster mass other than tha t of lensing which is 

postponed for a more detailed discussion in Chapter 2.
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1.4 .1  V ir ia l  M a sses

The virial theorem asserts that for a system of self-gravitating masses to be in dynam­

ical equilibrium, the time average of twice the total kinetic energy of all the masses 

with respect to the centre of mass of the system must equal the time average of the 

negative of the gravitational potential energy for the system (eg. Tremaine & Lee 

1987). The dynamical time of a cluster of galaxies is far too large for a time averaged 

kinetic and potential energy to be calculated and thus galaxy motions can only ever be 

observed at a particular epoch. The virial theorem must therefore be more correctly 

written,

where T  and U are the kinetic and potential energy respectively. This becomes less 

of an approximation when more galaxies are involved in the calculation (Limber & 

Mathews 1960).

Making the assumption that clusters are in a state of dynamical equilibrium en­

ables com putation of their mass through measurement of the dispersion of galaxy 

velocities. The total kinetic and total potential energy can be written as

where the ith  galaxy has mass ?m, velocity t>.,; with respect to the cluster centre of 

mass and lies a distance r-vj from galaxy j .  The double summation in the relation for 

the potential energy here acts over all galaxy pair combinations. Defining the mass 

weighted velocity dispersion as

2T +  U ~  0 (1.73)

(1.74)

(1.75)

where M  is the total cluster mass in galaxies shows that the virial theorem in equation 

(1.73) may be written as

Here, the gravitational radius R;I has been defined as

(1.77)
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In practice, observations can only directly allow projected velocities and galaxy 

separations to be measured. To take this into account, the velocity dispersion in 

equation (1.76) must be replaced with the dispersion of projected velocities, avr and 

the inter-galaxy separation with its projected quantity r'ir  Limber and Mathews 

(1960) showed that assuming spherical symmetry,

3 N
t  = 5  ! > , » ? ,

i= 1
n  N  Nv  =
7r — — r- ■¿ = l j#  u

so tha t equation (1.76) becomes

3ttR' a^n.
M  =  2 G  (L 7 9 )

with R! given by equation (1.77) evaluated with the projected inter-galaxy separation.

Equation (1.79) therefore gives the virial mass of the cluster in galaxies once ovr 

and R! are known. avr is directly measurable. Studies show (eg. Sarazin 1986) that 

the distribution of velocities in a typical cluster is roughly Gaussian. R! however, 

requires knowledge of the galaxy masses (or at least their relative mass). One means 

of calculating R\ is to assume that a cluster galaxy’s luminosity is proportional to its 

mass. However, studies of galactic rotation curves do not show a strong correlation 

between luminosity and mass (eg. Rubin et al 1982). An even simpler alternative is 

to assume that all galaxies have the same mass (Giradi et al 1997, Heisler et al 1985) 

so that,
/  N  N  \

E E 1/ ^  ■ u -80)R'g ~  2 N 2
\ i =L j f r

Through N-body simulations, Heisler et al (1985) have shown tha t this approximation 

continues to give reasonably accurate cluster mass estimations when galaxy masses 

are dispersed according to realistic mass distributions.

The reliability of the virial theorem was tested by Bahcall & Tremaine (1981) 

who found it to be both inefficient and biassed towards under-predicting masses of 

gravitationally bound systems by factors of up to 10 or more. As spherical symmetry 

is assumed in the allowance for projection effects, their findings indicated tha t virial 

based mass determinations become less accurate, the more elliptical galaxy orbits
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become. As an alternative, they conceived the ‘projected mass estim ator’ (see Heisler 

et al 1985 for details) which was found to give more accurate mass measurements;

M  = ^ <  v2y  > (1.81)
7rG

where vr signifies the radial velocity.

The calculations shown in this section, however, assume tha t a cluster’s mass lies 

solely in its galaxies. The fact that clusters are observed to have a hot inter-galactic 

plasma, thought to originate from young stars in a cluster’s galaxies, shows tha t this 

is not the case. Furthermore, gravitational lensing analyses of clusters such as that 

discussed later in this thesis, show evidence of inter-galactic dark matter. Another 

limitation to the virial theorem conies from the assumption that clusters are in a state 

of equilibrium. The existence of substructure, known to be present in most clusters 

from optical and X-ray measurements (eg. Bird 1993, 1994), has the consequence 

that equilibrium assumptions are not valid. In fact, investigations show that even low 

levels of contamination from substructure can cause severe effects on estimations of a 

cluster’s kinematical properties (Bird 1994, Beers et al 1990).

1 .4 .2  X -R a y  T e m p e r a tu r e  M asses

As Section 1.3.1 noted, clusters typically harbour a hot and yet dilute inter-galactic 

plasma, thought to originate as ejected gas from stars in their galaxies. This gas is 

most likely heated by supernovae to high temperatures which results in the emission 

of X-rays due to the bremsstrahlung process. Assuming that this gas is in hydrostatic 

equilibrium so that the inward pull on the gas due to its self-gravity is exactly balanced 

by the force due to outward pressure, p, gives for the radial gradient of this pressure 

(eg. Binney & Tremaine f 987),

dV _  GM(r)p(r)  
^2 • (1.82)

where M(r)  is the mass of gas contained within a sphere of radius r and p is the gas 

density. Using the ideal gas law,

pkgT
V = 1.83

m
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with T  and m  being the gas temperature and molecular mass respectively allows 

equation (1.82) to be written as

Here, fn  is the mean molecular mass of the gas. The X-ray tem perature T  is measured 

by fitting the observed spectrum to a bremsstrahlung spectrum. Its radial profile is 

particularly difficult to measure with the limited resolution of current X-ray detec­

tors10 although evidence suggests tha t cluster cores are approximately isothermal. 

This allows the tem perature gradient term in equation (1.84) to be omitted for the 

determination of core masses.

The next step usually taken is to assume a radial mass and gas density profile, prn 

and p respectively, in accordance with the King (I960) model for a self gravitating 

isothermal sphere,

The cluster core radius rc and the param eter ¡3 are obtained by fitting the observed 

flux profile to (Sarazin 1986),

which is expected if the gas density follows the form in equation (1.85). Physically, (3 

corresponds to the ratio of the specific kinetic energy of the total mass to the specific 

kinetic energy of the gas in a cluster (Cavaliere & Fuseo-Femiano 1976),

where rr„ is the velocity dispersion of the previous section. Values of f3 obtained by 

fitting the flux profile in this way are typically — 2/3 (eg. Lewis et al 1999, Edge & 

Stewart 1991, Jones & Forman 1984) which implies tha t the gas is more energetic than 

the m atter in clusters. This is in disagreement with determinations of ¡3 calculated

" ’This should be possible however w ith the X M M  space-borne X-ray telescope due to  be launched 

a t the end of 1999

(1.84)

(1.85)

( 1.86 )

(1.87)
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directly from equation (1.87) using the measured tem perature and velocity dispersion. 

The problem is referred to as the /3 discrepancy since for equilibrium conditions to 

hold true, a value of (3 = 1 should be observed. One simple suggestion by Bahcall & 

Lubin (1994) is that the discrepancy is due to an inadequately assumed mass profile.

Making the assumption that isothermal conditions do hold true in the cluster gives 

the mass profile from substitution for p in equation (1.85) into equation (1.84),

\ 3/3kBT  r3/ r 2c
M(r)  = -2 (1.88)

m  G 1 + r z /?;:

1 .4 .3  X -R a y ,  V ir ia l  & L en s in g  M a ss  C o m p a r iso n s

The details of measuring cluster mass by exploiting the phenomenon of gravitational 

lensing are left until Chapter 2. For the purposes of comparison however, a discussion 

of the results of such evaluations is presented in this section.

The determination of cluster mass using virial and X-ray methods, as the previous 

sections have shown, make assumptions based on spherical symmetry and equilibrium 

conditions within clusters. Studies have shown not only that substructure is present 

within most observed clusters, but that this substructure can give rise to severe dis­

tortions in a cluster’s assumed kinematical properties (Bird 1994, Beers et al 1990). 

X-ray measurements are also limited to probing only relatively small central regions 

of clusters which host the X-ray emitting gas.

Another complication is that of cooling flows which act to destroy hydrostatic 

equilibrium. The rate of gas cooling through the bremsstrahlung process in a cluster 

is proportional to the local electron density (Binney & Tremaine 1987). This means 

that gas can cool quicker than it is heated at small radii where the electron density 

is higher and hence flow into the cluster centre. This How is usually sufficiently 

slow in comparison to the sound speed that hydrostatic equilibrium is approximately 

maintained, however in some circumstances it may not be (Allen 1998). Clusters 

which exhibit cooling flows however are generally virialized systems. Compensating 

lor the effects of cooling flows often means that reasonable agreement between X-ray 

and lensing mass can be acheived.
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The technique of measuring cluster mass with gravitational lensing has the advan­

tage tha t it assumes nothing about the internal conditions of a cluster. As C hapter 

2 explains, masses are inferred from the amount of deflection a light ray experiences 

in passing a cluster; a measure that is independent of its internal motions. T hat is 

not to say tha t lensing goes completely without its own set of assumptions however. 

In order to calculate the size of light deflections, one typically measures distributions 

of the ellipticities or the flux of galaxies lying behind a lens. Assumptions therefore 

have to be formed about the intrinsic distribution of these properties. In measur­

ing ellipticities, the assumption usually taken is that the average intrinsic ellipticity of 

galaxies over a large enough sample is zero whereas the distribution of intrinsic galaxy 

fluxes must be determined by other means. Unlike the assumptions associated with 

X-ray and virial mass measurements, those required by lensing are readily verifiable 

by observing areas of sky in which there is a lack (or at least a negligible amount) of 

lensing. Furthermore, any deviations from or uncertainties in these assumptions can 

be unambiguously quantified and encompassed in an error analysis of the mass result.

Studies into the comparison of cluster mass determination methods show tha t in 

general, X-ray and virial mass measurements tend to give consistent results (eg. Lewis 

et al 1999, who found that M„.,;r / M x- ray — 0.96 ±  0.07 with a sample of 14 clusters). 

This is reflected in findings which confirm the behaviour that

a o t V T  (1.89)

as predicted by equation (1.87). Alternatively, lensing tends to give larger masses 

than those due to X-ray or virial predictions on average. Consistency could be argued, 

however, given the relatively large uncertainties involved. For example, the analysis 

of ~  30 clusters by Wu & Fang (1997) found that

M lens =  (1.42 ±  0.99)M,nr =  (2.23 ±  1.15)fiJ^Mx- ray. (1.90)

where flfu  is the value of /3 obtained by fitting the X-ray flux profile in equation

(1.86). A later result by the same author (Wu et al 1998) made the conclusion tha t

in fact mass calculations from weak lensing are in agreement with X-ray and virial 

masses whereas strong lensing tends to predict masses larger by factors of ~  2 —4 (the 

distinction between weak and strong lensing is clarified in Section 2.1.5).



Such arguments of course depend on the specific structure of the cluster under 

scrutiny. A cluster composed of two masses lying along the line of sight for example, 

would be expected to give a larger virial mass than the lensing mass which would 

be in turn expected to be larger than the X-ray temperature mass due to projection 

effects (Reblinsky & Bartelmann 1999, Giradi et al 1997, Miralda-Escude &: Babul 

1995). Other differences might arise from the possibility of clusters being supported 

by a noil-thermal pressure such as that due to magnetic fields (Ensslin et al 1998, 

Loeb & Mao 1994).

The debate as to which is the most effective means of estimating cluster masses is 

an ongoing one. The method provided by gravitational lensing is the most recent, mo­

tivated strongly by modern developments in telescope and computational technology 

to enable both observation of deeper, clearer images and more complex image analysis. 

As the work of Reblinsky & Bartelmann (1999) using N-body simulations distinctly 

demonstrates, gravitational lensing predicts cluster masses far more accurately than 

those from virial estimates. Opinions seem to be converging on the fact that given its 

non-parametric approach and limited, quantifiable assumptions, gravitational lensing 

is the strongest contender for the accurate measurement of cluster mass.

1.5 T h e s is  L a y o u t

The primary aim of this PhD has been to develop and apply mass reconstruction 

techniques to lensing clusters. In particular, this work has concentrated on the ex­

ploitation of the lens magnification effect described in Chapter 2, first discussed as a 

serious contender for mass reconstruction by Broadhurst et al (1995).

The work presented here naturally falls into three separate areas. Following on 

lrom Chapter 2 which details the theory of gravitational lensing and current mass 

reconstruction techniques, Chapter 3 sees the application of one of these methods. In 

this chapter, the gravitational effect of the cluster Abell 1G89 on the number density of 

observed background galaxies is investigated and a mass measurement is made (Taylor 

fc Dye et al 1998). Chapter 4 looks at a new approach to mass reconstruction. This 

new method, which relies upon pixellization of the observed field of view, allows very
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accurate, self-consistent mass determinations (Dye & Taylor 1998). Finally, C hapter 5 

studies the lens induced effect 011 the luminosity function of galaxies lying behind Abell 

1689. T11 collaboration with the Max Planck Institute for Astronomy in Heidelberg, 

this work utilises the powerful technique of photometrically evaluating object redshifts 

to provide an independent mass measure of the cluster (Dye et al 1999).
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C h a p te r  2

M ass R e co n stru ctio n  T h e o r y

Before beginning a detailed account of the lens mass reconstruction techniques used 

in this thesis, an appreciation of the underlying theory of gravitational lensing is 

required. This chapter therefore lays down the key elements of lensing theory in the 

first half as a foundation for the mass reconstruction methods covered in the latter 

half.

The latter half is broken down into two further sections to coincide with the fact 

that reconstruction techniques are generally divided into two categories; those using 

shear information and those using magnification data. Section 2.2 gives an account of 

two different shear methods. Although the second half of Chapter 4 uses measurements 

of shear, Section 2.2 is presented more for reasons of completeness than because it sees 

application in this thesis.

Section 2.3 contains a more detailed discussion concerning mass reconstruction 

using magnification data since this is the main theme throughout the PhD work pre­

sented here. Two independent ways of measuring magnification are given in this 

section, each of which are applied in the separate Chapters 3 and 5.
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2.1 L e n s in g  T h e o r y

Interest in lensing dates back as far as 1919 when Eddington (1919) first confirmed 

Einstein’s prediction that the gravitational influence of m atter deflects light. By 

measuring the positions of stars close to the Sun during the eclipse of 1919, Eddington 

showed tha t its mass caused a deflection of ~  1 arcsec. The first bona fide gravitational 

lens was discovered by Walsh et al (1979) who showed from spectral measurements tha t 

the quasar Q0957+561 exhibited a double image. Since then, a m ultitude of lensed 

systems have been discovered (eg. see the review by Narayan 1998), dem onstrating the 

use of gravitational lensing as an im portant and highly versatile cosmological probe.

2 .1 .1  L en s in g  b y  P o in t  M a sses

The propagation of light in arbitrary curved spacetiines is a complicated theoretical 

problem. Fortunately, for most cases of astrophysical interest, it can be assumed tha t 

the geometry of the Universe is closely described by the Robertson-Walker metric and 

that m atter inhomogeneities which cause lensing are no more than local perturbations. 

It therefore follows that in the majority of lensing scenarios studied, the path of 

light from a distant source is well approximated by unperturbed source-lens and lens- 

observer photon paths with the deflection occurring in the vicinity of the lens.

This is depicted for the ideal case of a point mass in Figure 2.1 which shows a 

photon path  subject to a deflection with an overall bend angle a. This bend angle is 

calculated by evaluating the integral of the acceleration perpendicular to the photon 

path given by the perpendicular gradient of the lens gravitational potential <F:

The integral here acts along the unperturbed photon path, an approximation called 

the Dorn Approximation. W ith <I> = G M /\x \ ,  x  being the vector from the point mass 

to a position on the photon path, the result of equation (2.1) is (Schneider 1992),

where M  is the mass of the point mass and £ is the impact parameter defined in Figure 

2.1. Note that the deflection angle is twice the inverse of the impact param eter in units

(2 .1)



Figure 2.1: Deflection of light, through angle a by a point mass.

of the Schwartzscliild radius R s. Equation (2.2) holds true provided £ R s- This 

result from general relativity, predicting a deflection angle twice tha t derived from 

Newtonian considerations, was verified by Eddington during the 1919 solar eclipse.

2 .1 .2  T h e  T h in  S creen  A p p r o x im a t io n

If light deflection occurs over a distance which is short in comparison to the total 

length of the photon path then the deflecting mass distribution is said to be a thin 

lens. In such circumstances, the geometrical depth of the mass distribution will be 

a small fraction of the observer-source distance. This allows application of the thin 

screen approximation in which the mass is considered to effectively lie in a sheet, 

orthogonal to the line of sight.

Thick lenses prove to be much more complicated to analyse although can often be 

separated into two or more thin lenses. Further complications arise in practice due to 

multiple deflections along the line of sight. Fortunately, evidence such as the results 

of studies into the lensing of the CMBR (eg. Bernardeau 1998) show tha t this is not a 

major concern when measuring the lensing effects of massive objects such as clusters. 

The large scale deflection caused by a typical rich cluster on the whole, completely 

dominates any small scale deflections due to intervening mass.
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The relatively compact nature of most, clusters means that the thin screen ap­

proximation may he applied. This is advantageous since a simple generalisation of 

the deflection angle due to a point mass can he made. Projecting the volume mass 

density p onto an orthogonal sheet which lies in the lens plane gives the projected 

surface mass density £  at a point £ in the lens plane as

X(t )  = I  p(£, z)dz  (2.3)

where z is a co-ordinate along the line of sight. The deflection angle at £ now becomes 

the sum of all deflections due to individual mass elements in the plane, namely,

= E (^ )(5 sj 2° d V  (2.4)

which is a two component vector.

2 .1 .3  T h e  L ens E q u a t io n

The formal description of a gravitationally lensed system is based on simple geometry. 

Consider Figure 2.2 which illustrates an observer O at a distance Dd from the lens 

plane L which in turn  lies a distance DdK from a source S. Defining the line OSo as the 

optical axis, the position of the source in the source plane is described by the vector 

77 from the optical axis. Similarly, the position of the intersection of the light from 

the source with the lens plane is given by the vector £. It is assumed, as before, that 

a  is the deflection seen at the lens plane by the light ray.

The geometry in Figure 2.2 shows that the vector £ can be expressed as,

£ =  77 +  (d  -  6>)Dds. (2.5)

Noting that 0 = £/D,i, equation (2.5) becomes,

V = -  Ddsa(£)- (2.6)
Dd

While equation (2.6) has been derived using Euclidean geometry, it can also hold

true in curved spacetimes. This is the case if the distances used in its derivation

satisfy the Euclidean result that two objects with a physical separation s subtending 

an observed angle 0 are a distance sfl away. Distances which adhere to this condition
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O  a  Observer

D,

D,

ds

d

D,s

Figure 2.2: A typical leasing geometry with the observer at 0 , source at S and lens at L. 

The path taken by the light ray is shown by the solid line which undergoes deflection a.

are angular diameter distances (see Section 1.1.8). Of course this result uses the 

approximation tha t sin0 ~  0 for small 0. In a typical leasing scenario with a lens of 

diameter ~  5Mpc at a redshift, of z - 0.2. this works out to be in error by less than 

one part in 106.

Simplification to equation (2.6) can be made if the physical lengths £ and rj are 

replaced by the angular variables,

p = l  • e = k  ( 2 -7 )

so tha t the deflection angle may be replaced by its scaled counterpart,

(2 .8)

The dimensionless surface mass density or convergence, k , is given by,

(2.9)
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which defines the critical surface mass density E cr . In a very qualitative sense, E cr is 

a characteristic value which distinguishes strong lensing from weak lensing. Although 

complicated by the effects of lens shear, it is generally true that surface mass densities 

with E ~  E cr dem onstrate strong lensing behaviour. The term ’strong lensing’ here 

and indeed throughout the rest of this thesis is taken to describe the lensing which 

occurs in the vicinity of a critical line (see Section 2.1.6).

Re-writing equation (2.6) in terms of the scaled deflection angle and the quantities 

¡3 and 9 gives,

0  = d - a { d ) .  (2 .10 )

This im portant equation is commonly referred to as the lens equation. It describes 

the mapping between positions of objects in the source plane and observed image 

positions in the lens plane. If the deflection angle is small, an invertible, one-to-one 

mapping between the lens and source co-ordinates exists in which case the lensing

is weak. Strong lensing occurs when the deflection angle is larger and a non-unique

mapping results in the formation of multiple images.

2 .1 .4  D e f le c t io n  P o te n t ia l

Using the identity V ln |x | =  x / |x |2 enables equation (2.8) to be w ritten in terms of 

the deflection potential i/;, such that

a(0) = V iHO), iK0) = -  I d2d'n{0 ' )h i \ e  -  9'\ (2 .1 1 )
7T ./len.s

Furthermore, application of the identity

V 2 ln |x | =  27rr)2(x) (2.12)

to equation (2.11) shows that i/> and k. are related via Poisson’s equation:

V 2,0  =  2 k , (2.13)

For this reason, lensing is often regarded as a two dimensional potential theory.
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2 .1 .5  I m a g e  M a g n i f i c a t i o n  a n d  D i s t o r t i o n

Section 2.1.3 made the distinction that strong lensing occurs in the near vicinity of 

critical lines. Strong lensing is responsible for the arcs and multiple images observed 

in many lensed systems. Less dram atic image distortions form due to weak lensing 

effects. Weak shear introduces a bias into the distribution of image ellipticities and 

orientations which can be calculated in the statistical mean (see Section 2.2.2). Image 

distortion is an inevitable consequence of lensing and one which plays a vital role in 

all lens-mass reconstruction techniques.

Image distortion can be quantified by the Jacobian m atrix A  of the mapping 

obtained from the lens equation,

A  = dfk
d0i — ^¡j  — “ÿij (2.14)

where '0 ij =  <92VVdOjddj and the result of equation (2 .1 1 ) has been implemented. 

Since the Laplaeian o f '0 from equation (2.13) is twice the convergence, k in terms of

0  is

' ' (2.15)K =

There are two other linear combinations of 0 ^  which are im portant. These are the 

components of the shear tensor-.

7i =  2 Whi ~  022), 72 =  '012 =  '021-

The Jacobian m atrix in equation (2.14) can be consequently w ritten as

(  1 \1 -  k  -  71  - 7 2
A  =

y -72 1 -  K + 71 j

(2.16)

(2.17)

Realizing tha t the above matrix is a rotation from a diagonal frame, the effect 

of this mapping on the image of a circular source may be investigated. The rules 

governing the transformation of cartesian tensors (eg. Goodbody 1982) allow A  to be 

w ritten as a rotation of this diagonal frame through an angle 0 :

A  =
(  1 ■ ^COS (p —sill (j) \  f  I ■ A \cos cp sm cp

 ̂ — sin 0 cos 0  j

( 1 o l
/ cos 20 sin 20

\

-  7
v u 1 I sin 20 — cos 20

/

(2.18)
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The meaning of shear and convergence is now made intuitively clear. Convergence 

alone causes an isotropic focusing of light rays leading to an isotropic magnification 

of the source. Shear introduces anisotropy into the mapping with magnitude 7  =  

(7 12 +  72 2) 1/2 causing the image of a circular source to be distorted into an ellipse 

with orientation r/j. The value 2r/> appears as a trigonometric argument due to the 

fact that the two orthogonal states of the shear, whose magnitudes are 71 and 7 2 , are 

separated by an angle of 45 degrees (see Figure 2.3). This is a direct consequence 

of the quadrupolar nature of gravitational fields. The elongation, e, of this ellipse is 

given by the ratio of eigenvalues of A:

major axis length 1 — re +  7
e =  — 1--------------------- = ---------------- . (T19)

minor axis length 1 — re — 7

Source object Lensed image

Figure 2.3: The effect of convergence and shear on the lensed image of an intrinsically circular 

object. Top: Separated contributions from re and the components of shear to the distortion. 

B o ttom :  The combined effect of re and 7 .

The overall magnification, //,, resulting from this mapping is given by the inverse 

of the determinant of the Jacobian matrix which from equation (2.17) is

1

(1 - k )2 - 7 2| ' 
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Elliptical distortion oi a circular image holds true for any type of lens mass dis­

tribution apart from a sheet mass distribution in which all material lies in a sheet of 

constant surface density. Since k  in this case is therefore constant, it must be true tha t 

7  =  0 from equations (2.15) and (2.16) and hence the image of a circularly shaped 

background galaxy would remain circular. The size of such a galaxy (its solid angle 

subtended on the sky), however, would be magnified by a factor of (1 — k )~ 2 as seen 

from equation (2 .20).

S u rface  B rig h tn e ss  C o n se rv a tio n

The fact tha t gravitational lensing is an achromatic process and tha t photons are 

neither created nor destroyed signifies tha t the surface brightness of a lensed object 

remains unchanged. The surface brightness, S', of an object relates to its flux /  as

S = -  (2.21)
LO

where u> is the solid angle it subtends on the sky. It therefore follows tha t in a lensing 

process in which the solid angle of an object is increased by a factor p, the observed 

flux of the object must also be increased by the same factor to keep the surface 

brightness constant. Although at first sight this appears to defy energy conservation, 

integration of the flux measured at all points on a sphere encompassing the source and 

lens would give exactly the same value as if no lens were present. Flux magnification 

is an im portant result of lensing and forms a key role in the work outlined in this 

thesis.

2 .1 .6  C a u s t ic s  and  C r it ica l  L ines

The magnification equation (2.20) predicts tha t infinite magnification results if the 

condition 1 — k = ± 7  holds true for any given point in the lens plane. W hilst this is 

true in theory, real magnifications remain finite because real sources are extended and 

the magnification averaged over an extended source is always finite. Infinite magni­

fication never exists in practice because the geometrical arguments used in deriving 

the magnification equation break down in this limit. One therefore has to employ the 

results of wave optics which always yields finite magnifications.
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The closed curves lying in the lens plane defined by |*4| =  0 are known as critical 

lines. These curves may also be mapped back onto the source plane via the lens 

equation to form another set of curves referred to as caustics. Source objects lying 

close to caustics generally have greatly magnified images. Sources which lie within the 

region bounded by caustics are observed to have multiple images. In the hypothetical 

scenario of an extended source moving across a caustic towards the centre of a lens, 

three stages are observed: 1) The source brightens as it approaches the caustic. 2) 

As the source crosses the caustic, another image appears at some point on the critical 

line. 3) The newly formed second image splits into two images, one of opposite parity, 

as the source continues moving and the original image of the source dims considerably 

(see Schneider, Elders & Falco 1992 for further discussion). This process forms the 

basis of the ‘odd number theorem’ which states that the number of images formed by a 

lens is always odd, provided that the surface mass density is bounded and non-singular 

so that the deflection angle is continuous and does not diverge. An odd number of 

images is not seen in reality if two images are merged into one or if one of the images 

is dimmed to make it undetectable.

Figure 2.4 demonstrates the odd number theorem graphically for an arbitrary 

circularly symmetric lens. In this graph, the deflection angle a(0) is plotted against 

the radial co-ordinate 6  from the lens centre. The lens equation stipulates tha t images 

form when 6  — /3 = n ( 6 ). Values of 6  at intersections of a  with the straight line 

9 — (3 therefore correspond to the radial co-ordinates of the image positions. The mass 

distribution in Figure 2.4 shows that a source at the radial co-ordinate (3 in the source 

plane has three images at the radii 6 ¡, 0-2 and 93. This source lies inside the critical 

lines at 6  = 6 ,..

2 .1 .7  E in s te in  R a d iu s

One final noteworthy definition is that of the Einstein radius. Consider a circularly 

symmetric lens with an arbitrary mass profile M ( 6 ). The lens equation gives

,, „ Dds 4GM(6)H = 6  — —  (0 22)
1 D,,DS c29 [ ’

Due to the rotation symmetry of such a lens system, a source lying exactly on the
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Figure 2.4: The three intersections at 0i, 0-2 and 63 between the curve a(0) and the straight 

line 0 — fj correspond to the radii of images resulting from a source placed at a radius (3. 

Sources placed beyond the critical lines at 0C are not multiply imaged as the straight line 0 — (i 

makes only one intersection with a.

optical axis (ie. ft = 0) is imaged as a ring centred on 9 =  0 if the lens is supercritical 

(ie. E > Ecr. somewhere in the lens). Setting (3 = 0  in equation (2 .22) gives the 

radius of the ring:

W ith the necessary aspects of the fundamental theory of lensing now detailed, 

the following section explains their use in the development of mass reconstruction 

techniques.

2.2 L en s  M a s s  R e c o n s t r u c t i o n  u s in g  I m a g e  S h e a r

Observational attem pts to obtain k and hence lens mass can be crudely divided into 

two categories: those utilizing shear information and those directly measuring mag­

nification. Although not strictly independent of each other (as they are both directly

1/2

(2.23)

This is the Einstein radius of the lens which scales as M 1/2.
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obtained from the deflection potential discussed in Section 2.1.5), they are commonly 

treated so in practice. The information obtained from each is generally complemen­

tary and recent work has seen a hybridisation of both in an attem pt to improve mass 

estimates (see for example Bartelmann et al 1996).

The following discussion and indeed that of the next chapter refers in particular to 

the mass reconstruction of clusters. These represent the largest known gravitationally 

bound objects in the Universe and therefore ease the practical difficulties associated 

with detecting mass in this way. This short section specifically details mass recon­

struction using lens induced image distortions. Reconstruction from magnification is 

left until the following section.

2 .2 .1  M a ss  C o n ta in e d  w ith in  a G ian t A rc

A simple means of estimating a lower bound on the mass of a supercritical cluster is 

provided by calculating the projected mass within a circle traced out by a giant arc. 

Giant arcs form when a source lies very close to the optical axis of the lens system. 

The Einstein radius of the system is therefore approximately equal to the radius of the 

arc. By combining equations (2.9) and (2.23), the mass contained within one Einstein 

radius and hence a good approximation to the mass contained within the arc is given

by

M ( 6 e ) = =  7r(0EDd)2£ CR. (2-24)Dds

Expressed more qualitatively, the average surface density within a radius of 

iroin the cluster centre is simply equal to the critical surface density. If the redshift 

ot the cluster and the source object are known then M (0E) can be evaluated. This 

technique of course is only applicable to supercritical clusters with nearly circularly 

symmetric mass distributions. Although knowledge of the mass is limited to the inner 

arc region, Fort and Mellier (1994) note tha t this mass shows a robust agreement with 

the mass calculated from the cluster’s internal velocity dispersion.
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2 .2 .2  S h ear  A n a ly s is

Lens shear introduces a bias to the distribution of orientations and ellipticities of 

background galaxy images. The intrinsic variation of individual galaxy orientations 

and ellipticities produces a random element which can be statistically removed by 

averaging over a large enough sample. Fortunately, the scale over which typical cluster 

lensing potentials vary is much larger than the average separations of background 

galaxies readily observed and so this is quite easily achieved.

The shear held is related to the potential held through equation (2.16). Using this 

and equation (2 .1 1 ) shows that the relationship between k and 7  is:

1 /' 9 , , (8v -  6v)'2 ~  i°x -  O')2
*<•> ^

72(9) =  -  I~ y . 1* ;,-  *’L r a  P -25>
7T ./lens [{Ox ~  0'x )2 +  {0y ~  0'y )2}2

where 9X and 6 y are the x  and y components of 9 respectively. Defining a complex

shear,

7 c(0 ) = 7 i ( 0 ) +  i72(0) (2-26)

and the function
el -  9l -  2i9,.9V 

V{9) = ' 4 " (2.27)

shows th a t the relationship between convergence and shear is a convolution:

7c(0) =  -  [  d29'V{9 -  0')k(0')  (2.28)
// Jlens

This may be inverted via, for example, Fourier methods to give (Kaiser & Squires 

1993)

K(0 ) =  -  I d29'Re[V*{9 -  6»/)7 c(0/)] +  k 0 (2.29)
J le n s

where R.e[] takes the real part of 7c and the complex conjugate V*. The constant k0 

illustrates the im portant effect that using shear, only differential lens mass may be 

determined. In other words, k can only be calculated up to an overall constant. This 

phenomenon is commonly referred to as the sheet mass degeneracy. It is a direct result 

of the fact stated in Section 2.1.5 tha t homogeneous sheets of mass produce 110 shear. 

As will be discussed in later Sections concerning magnification analysis, this problem
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can be circumvented to allow an absolute measure of k and hence determ ination of 

K0-

Equation (2.29) forms the crux of wliat has become known as the ‘Kaiser-Squires’ 

mass reconstruction method. In order to proceed, the shear field must be measured. 

Several elaborate techniques exist to do this (Bonnet & Mellier 1995, Kaiser, Squires 

& Broadhurst 1995). Essentially, the background galaxies in an image are gridded into 

bins and their average ellipticity is calculated for each bin. Using equation (2.19), a 

quantity g called the reduced shear can be defined,

where < >  denotes taking the average in a particular bin. The fact tha t only this ratio 

of 7 / ( 1  — k) can be obtained from measuring ellipticities re-iterates the point tha t the 

method is insensitive to isotropic image expansions. This is seen by multiplying the 

Jacobian in equation (2.17) by some constant A so that the resulting transformation 

in k and 7  is

which has 110 effect 011 the measured quantity in equation (2.30). Ideally of course, 

the direct shear is required if the Kaiser-Squires method is to be used. In the weak 

lensing limit such that k 1, equation (2.30) shows tha t the observed, reduced shear 

is approximately equal to the direct shear required in equation (2.29).

In general, 7  in equation (2.29) can be replaced by the term ry(1 — k) which then 

yields an iterative equation for k . A s  shown in Seitz and Schneider (1995), this 

integral equation can be solved in a few iteration steps. W ith this correction taken 

into account, k is then no longer only determined up to an overall constant as in 

equation (2.29) but becomes subject to the degeneracy shown in equation (2.31). 

Although in theory A can take 011 any value, it is restricted in practice to ensure that 

k is always positive. This similarly provides a lower limit 011 the mass.

(2.30)

1 — k —> A(1 — /«), 7  —> A7 (2.31)

50



2.3 L e n s  M a s s  R e c o n s t r u c t i o n  u s in g  M a g n i f i c a t io n

The use of flux magnification as a tool for the reconstruction of lens mass forms the 

underlying theme of this thesis. First suggested by Broadlmrst, Taylor and Peacock 

(1995, BTP hereafter) in the weak leasing regime, they showed tha t the sheet mass 

degeneracy can be broken by measuring the leased distortioa of the joint magnitude- 

redshift distributioa of background galaxies. Clustering of these background galaxies 

introduces correlations in redshift space, unlike magnitude space. Separation of this 

joint distribution into a redsliift and a magnitude distribution is therefore necessary 

for a treatm ent by maximum likelihood analysis. In light of this, the section presented 

here distinguishes mass reconstruction using redshift from tha t using magnitude.

The effect of magnification to cause a geometrical amplification may also provide a 

means of mass reconstruction. Although not considered in this thesis, one possibility 

involves measurement of the shift in the distribution of galaxy sizes. The amplification 

of inter-source spacing forms the second possibility in which a dilution of the projected 

background number density can be directly related to the mass. In all cases of mag­

nification analysis, measurements must be compared with the observed properties of 

unlensed held galaxies.

Section 2.3.1 quantifies the effect of lens magnification on the redshift distribution 

of background source galaxies. This is not directly applied in this thesis but leads to 

the integrated number count technique of Section 2.3.2 which is applied in Chapter 3. 

Magnification of galaxy magnitudes, or more specifically their luminosity function, is 

presented in Section 2.3.3. This is applied in Chapter 5. Finally, several methods to 

convert magnification to k, are covered in Section 2.3.4.

2 .3 .1  R e c o n s tr u c t io n  from  L en sed  R e d sh if t  D is tr ib u t io n s

Representing the observed number density of galaxies in the magnitude-redshift space 

interval drndz by the bivariate distribution N (m ,  z), the effect of placing a lens in front 

of such a distribution is twofold. Firstly, flux magnification produces a translation in 

the magnitude distribution (see Section 2.1.5). Secondly, a dilution of the surface 

number density of objects at a particular magnitude occurs as a result of the isotropic
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expansion of not only image sizes, but also their angular separation. Labelling this 

translated distribution as N'(m. z), its relation to the untranslated distribution is thus

=  W(m + 2.51k ,, (z M )  (2 32)

The observed function N ( m ,z )  is related to the luminosity function c¡){L,z) via

r/)(L, z)dTdT7 (2 ) =  jV(m, z )dmdz  (2.33)

where L  is the luminosity and dV(z)  is the redshift dependent volume interval. In­

tegrating over apparent magnitude, the number density of objects at a particular

redshift, tiq(z ), is obtained:

/• OO
n 0 {z)dz =  dV(z)  / 4>{L,z)dL = d>[Lmin, z]dV{z) (2.34)

Lm in

where L min is the lower limit 011 the luminosity set by the flux limit of the survey and 

the integral of the luminosity function is denoted by <I>. Lensing effectively reduces 

Ljnin via ff'lx magnification so that the effect 011 the redshift distribution through 

equation (2.32) gives the lensed redshift distribution:

n \ z ) d z  = i r xd>[Lmin/ii,,z\dV(z).  (2.35)

Approximating T as a power law,

<I>oc L-OW  , f3(z) = - cUn®[L' Z] (2.36)
d In L

allows equation (2.35) to be expressed as,

n!{z)dz = / {Z)- In 0 (z)dz  (2.37)

Ecpiation (2.37) demonstrates the fact that the magnification effect is a competitive 

one. Geometric magnification (ie. amplification of galaxy image size and spacing) 

competes with flux magnification which results in the detection of extra galaxies as 

faint objects are made brighter and brought into the survey flux limits. The winning 

effect is determined by the value of ¡3. Three possibilities exist: 1) ft < 1 in which case 

the geometric effect dominates and the surface number density of galaxies is reduced

relative to the expected number. 2) (3 — 1 so that ??/ =  no and 110 lensing effect is

seen. 3) [i > 1 in which case the flux magnification effect dominates and more galaxies 

arc' observed.
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Ill tlieir analysis, BTP use the R, band counts of Metcalf et al (1994) via a model 

luminosity function to generate the functions

no(z) =  11.7zLC3 exp[— (z/0.51)1'79]

P(z) =  0.15 + O.Gz +  l . l z 3'2. (2.38)

Using these functions in conjunction with equation (2.37) for background galaxies 

shows the effect of lensing on the redshift distribution n(z).  Figure 2.5 plots the 

quantity d P {z)/dz  =  n ' ( z ) / J0°° n'(z)dz  for five different magnifications with a lens 

redshift of zi =  0.2. The plot shows tha t at small redsliifts, angular scattering of 

images by the lens dominates and the number of objects drops. At large redshifts 

however, the increase in the total number of observable galaxies dominates. Notice 

that a node exists where these effects cancel.

R e d s h i f t  ( z )

Figure 2.5: The expected lens distortion of a redshift distribution given by (2.38) for a lens 

redshift of z/ = 0.2. Five magnifications are shown ranging from 1 to 2 in steps of (J.25. Higher 

magnifications produce a deficit of objects at low z and an increase at high z.

Having detailed the effects a lens has on a redshift distribution, the next step is 

to devise a means of extracting the characteristics of the lens causing such effects. In 

the considerations taken thus far, several assumptions have been made which must be 

addressed for practical purposes.
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The first assumption is that knowledge of the intrinsic redshift distribution of 

objects behind the lens has been obtained to enable comparison with the measured 

lensed distribution. Obviously, the intrinsic background object distribution cannot 

be measured directly. The Cosmological Principle must therefore be relied upon to 

assert tha t the universe is homogeneous and isotropic. This implies that a redshift 

distribution measured from regions of sky in which 110 lensing is present will necessarily 

be the same (once corrections such as our motion with respect to the microwave 

background are allowed for) as the intrinsic distribution of the objects lying behind the 

lens. I11 other words, from a practical point of view, the observed lensed distribution 

must be compared with the average obtained from a set of unlensed observed areas of 

sky.

This leads to the second assumption that the effect can be measured and is not 

overwhelmed by noise. Several sources of noise must be allowed for: 1 ) Shot noise from 

the limited number objects available for analysis. 2) Measurement errors 011 object 

redshifts. 3) Galaxy clustering. The first two sources of noise rely upon the the depth 

of the observations made and the accuracy and sensitivity of the instrum ents used. 

The third is a cosmological source of uncertainty and can be estimated relatively easily 

if the clustering power spectrum at the redshift of interest is known. The required 

rms, a  is then just the following integral in Fourier space (BTP):

A (/,:) =  (27t2) lP ( k ) k \  P(k:) being the clustering power spectrum of Section 1.1.9. 

L ike lihood  A nalysis

Armed with information about the practicalities of performing such redshift distribu­

tion measurements, a method of estimating a lens’ surface density can now be tailored. 

The obvious choice of tactic is the maximum-likelihood method. Dividing the redshift 

axis up into q bins, the required likelihood function is

(2.39)

where IF (A;) is the Fourier transform of the spatial bin containing the objects and

'i
£(//.) oc JJP[n |A (/r,z)] (2.40)
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where P[n|A] is the probability of measuring n objects given an expected content of A.

An estimate of the lens magnification fi and hence its surface density (see Section 2.3.4 

or Chapter 4) is therefore obtained by maximizing C with respect to /;,. A measure 

of the uncertainty in this maximum is also readily obtained from the width of the 

likelihood curve between the two points corresponding to

a single maximum likelihood parameter as is the case here, 1 er errors correspond to 

A y 2 =  1)- Another estimate of the la  errors can be obtained by assuming tha t the 

likelihood distribution is Gaussian or at least near-Gaussian so that

The size of the redshift bins must be chosen so that the statistical independence 

assumed in equation (2.40) is valid. If it were the case that the redshift distribution of

iiifinitesimally small and have only one object per bin. Because of galaxy clustering 

however, this is not the case. It is therefore necessary to choose a bin w idth which 

is larger in radial extent than the coherence length of clustering. Adjacent bins are 

always subject to the effects of clustering, although this effect is reduced by using 

larger bin sizes. Very large bins however, produce a large uncertainty in the likelihood 

analysis and therefore an optimum bin size is one which reduces likelihood errors as 

much as possible whilst ensuring tha t the correlation coefficient, between adjacent bins 

is a negligible value.

In order to carry out the likelihood analysis, it is necessary to define the probability 

P[n |A(/i, z)] in equation (2.40). A useful model to adopt for this is the lognormal 

model (see for example, Coles & Jones 1991). Justification of the lognormal model 

not only comes from observations dating back to Hubble, who realised tha t the surface 

density of galaxies was lognormally distributed, but also from the fact that it modifies 

the canonical Gaussian density distribution to correct the inaccurate assignment of 

positive probabilities to negative densities.

The lognormal model works by constructing a new density contrast, S', from a

hi C = hi Cmax -  0.5Ay2 (2.41)

where A y 2 is the change in y 2 appropriate for the desired confidence level (eg. for

1/2

(2.42)

background objects was purely Poissonian, then it would be possible to make the bins



density contrast, S, described by the Gaussian distribution.

2 (T̂
(2.43)

such that,

1 +  S' = A  exp S (2.44)

The normalisation coefficient A is calculated by imposing mass conservation such that,

To incorporate finite numbers of galaxies, the assumption is made tha t the observed 

number of galaxies, n, is Poisson distributed with an expected number, A(//, z) which is 

in turn  subject to the lognormal fluctuations described. The probability P[n|A(/i, z)] 

required by the likelihood analysis is then expressed in terms of the Gaussian and 

Poisson distributions by the compound distribution,

The expected number ot objects in each bin, A, is the number anticipated given a 

particular magnification. From equation (2.37) this is therefore simply

— OO
(2.45)

Since

(2.46)

the normalisation factor is therefore

(2.47)

and hence the lognormal density perturbation is given by,

1 + S' = exp(<5 — cr2/ 2). (2.48)

— OO
(2.49)

where the Poisson distribution is.

(2.50)

(2.51)
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Here, Az is the redshift bin width and the normalisation factor appears explicitly 

for simplification of equation (2.49) upon substitution. The quantity A0 is therefore 

defined as

A0 =  n 0(z)exp (2.52)

so tha t the complete expression for P(n|A(/q z)\ is,

P[«|A(,qz)] =
n\

1171
d<5 exp

ri2
2<7 2(z)

A0/ / (z) V  +  Sn (2.53)

The integral in this expression must be evaluated numerically. Once a suitable 

model or fit for rto(z), j3(z) and a(z)  has been achieved for the unlensed galaxy popula­

tion, equation (2.53) can be used with equation (2.40) to find the maximum-likelihood 

magnification. The surface mass density may then be derived by using one of the m eth­

ods detailed in Section 2.3.4 or by the pixellized reconstruction method described in 

Chapter 4.

2 .3 .2  I n te g r a te d  N u m b e r  C o u n ts

In practice, it is not always possible or feasible to measure a sufficient number of 

redshifts for galaxies behind a lensing cluster in order to obtain a reliable n'(z)  required 

by equation (2.37). Observations will only typically give the integrated number of 

objects visible behind the lens in which case modifications to the analysis detailed so 

far must be made.

The modification comes in the form of an approximation. By observing objects 

in more than  one optical pass-band, it is possible to apply colour selection criteria to 

choose objects known to lie beyond a particular redshift (see chapter 3). The m ajority 

of objects selected in this fashion will also be subject to an upper redshift limit owing 

to the flux limit of the observation. If the redshift limits are chosen in such a way to 

ensure tha t (3(z) varies slowly over this interval, integration of equation (2.37) over z 

can be performed by assuming /3 is constant to give,

■n! =  / / - 1n 0. (2.54)

These integrated number densities are subsequently used to replace their redshift 

dependent versions in equation (2.53) for the likelihood determination of /r.
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Observations show that the value of ft is dependent on the colour classification of 

galaxies observed (Broadliurst 1995). As equation (2.54) shows, (3 controls whether 

the number of objects observed behind a lens is enhanced or decreased relative to 

the intrinsic number expected. From observations of far field galaxies in the V and 

1 passbands, Broadliurst notes that the luminosity function of objects selected with 

the criterion V — I < 1.0 yields a value of ft ~  1.0. The magnification effect would 

therefore not be noticed in such galaxies. Alternatively, Broadhurst finds tha t faint 

blue far field galaxies selected by V — I > 1.5 give a value of ft ~  0.4 and hence would 

show a clear depletion in numbers, relative to the expected number (see Section 3.2.1).

A prediction of this effect can be made for an isothermal sphere, characterised by

k oc -  , 7  =  k (2.55)

(see Appendix A.2) where 9 is the radial distance from the centre of the sphere. 

Substituting this into equation (2 .20) gives

/'■ =
-i

(2.56)

where 0C is the radius of the critical line. Using this with equation (2.54) shows how 

n ' / hq varies with 9:
_  L _  9c 

n 0 I 9

1 -/3

(2.57)

Counting the number of lensed galaxies in annuli centred on a cluster and com­

paring with the expected number would therefore show the behaviour described by 

equation (2.57). Figure 2.6 illustrates this for different values of ft.

2 .3 .3  R e c o n s tr u c t io n  from  L en sed  L u m in o s ity  F u n ct io n s

In a similar fashion to the way in which magnification can be obtained from redshift 

distributions, the maximum-likelihood methodology may be applied to luminosity 

functions. Because of the effects of galaxy clustering, a sufficiently large bin size 

was chosen to obtain the statistical independence required by the formation of the 

likelihood function in equation (2.40). In the case of magnitude space, each galaxy 

is assumed to be drawn at random from the luminosity distribution. Assuming that 

galaxy luminosities arc' independent, of environment, each galaxy magnitude therefore
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Figure 2.6: Prediction of radial variation of number counts of objects in annuli centred 011 

an isothermal sphere for different values of /3. 6C is the critical line radius.

has complete independence from the others in the sample. The bins in magnitude 

space can be subsequently made infinitesimally small so tha t each bin contains only 

one galaxy. Equation (2.40) is therefore modified to the following:

(2.58)

where M t is the absolute magnitude and z, is the redshift of the ith  galaxy observed. 

The index i runs from 1 to the total number of galaxies. Similar to equation (2.32) in 

Section 2.3.1, the shift in the absolute magnitude distribution at each redshift com­

pared with the intrinsic luminosity function c/)(M, z) can be modeled by the probability 

density
((>{M +  2.51g/ i{z),z)

P[M\n,z] = T (2.59)
f  (j){M + 2.5 lg i-i(z), z )dM  

which allows the likelihood equation (2.58) to be evaluated once a form for (f>(M,z) 

has been obtained. In practice, the redshift dependency of//, is brought about directly 

by the redshift dependence of k  (see equation 5.34). As was the case with redshift 

distributions, the luminosity function or magnitude distribution must be determined 

from observations of unlensed regions of the sky. The usual functional form chosen 

for (¡)(M,z) is the Schechter function (Schechter 1976), a result derived directly from
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111(! Press-Schecliter (1974) model for mass formation in the Universe:

z ) =  e x p  j _ 1 0 0 . 4 ( M , - M ) j  ^ . 6 0 )

where (/>*, M* and a  are determined by fitting to the observed magnitude distribution 

(see Section 5.3.3). The maximum likelihood magnification and its error are evaluated 

in exactly the same maimer discussed in Section 2.3.1.

M

Figure 2.7: Maximum likelihood determination of lens magnification using luminosity func­

tions. Top: A Schechter function (M, =  -21, a  =  1.5, solid line) is lensed with p  = 2.5 

(dashed line). B o tto m :  Maximum likelihood analysis calculates // = 2.5llg':y{.

Figure 2.7 shows the results of maximum likelihood determination of /i using a

(10



simulated luminosity function. The solid line in the top half of the figure is the 

intrinsic luminosity function from which 500 objects all lying at a fixed redshift are 

randomly associated magnitudes. As a simple proof of concept, this distribution is 

then lensed by a sheet-like distribution of mass. Since all objects lie at the same 

redsliift and the magnification of the sheet is constant across it, all object fluxes are 

amplified by the same factor. This results in a simple translation of the luminosity 

function shown by the dashed line in the top plot of Figure 2.7. Of course in reality, 

the distribution of source redshifts gives a noil-trivial transformation of magnitudes 

and hence a simple translation such as this is unlikely.

In practice, the form of the intrinsic luminosity function of galaxies lying behind the 

lens is known from independent observations of un-lensed regions of sky. Calculation of 

the probability in equation (2.59) required by the likelihood analysis is then possible, 

assuming t his form also holds true for the lensed galaxies. In this dem onstration, the 

form of the intrinsic luminosity function is already defined as the Schechter function 

described by M* =  —21 and a  =  —1.5 and so the maximum likelihood estim ator is 

completely defined.

The bottom  half of Figure 2.7 shows the maximum likelihood curve formed by 

plotting equation (2.58) against p. The input amplification applied by the sheet lens 

of p = 2.5 is calculated by the likelihood as p. =  2 .5 l l 0'24- These errors are determined 

from the width of the curve at In[CmaxjC)  =  0.5 (see Section 2.3.1). This serves to 

dem onstrate the point made in Section 2.3.1 that likelihood distributions are generally 

not Gaussian but may be approximated so.

2 .3 .4  C o n v e r s io n  o f  p. to  k

Having obtained a measure of magnification, the next step is to determine the surface 

mass density responsible for the lensing. Rather than work with the real surface mass 

density, it is more convenient to work with the scaled quantity k . This can be easily 

transformed to its equivalent real value using equation (2.9).

Transforming magnification data into k is a non-trivial exercise. Equation (2.20) 

in Section 2.1.5 shows why. In order to calculate k from p, the shear field must lie
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known. There are several ways in which this problem may be dealt with. Some of 

these are listed here. Only the last two. are used in this thesis; that of the k estimator 

and that employing the axially symmetric solution.

D ire c t M e a su re m e n t of S hear

The most obvious way is by simply measuring the shear held through observations of 

galaxy ellipticities as described in Section 2.2.2. Although using this measured shear 

held directly with magnification information in equation (2 .20) would yield k, this 

is not the most efficient means of doing so. This is because as equations (2.15) and 

(2 .1G) show, k, and 7  are not completely independent quantities, but are fundamentally 

related via the deflection potential. This fact can be exploited to considerably improve 

the signal to noise of the reconstruction as shown by Bartelmann et al (1996). Their 

method determines the least-x 2 h t to the values of the potential measured in bins 011 

a rectangular grid by minimizing the quantity

a 2 =  “ 7 T T  H ( i )  ~  9 i U ) ] 2 +  - ¿ A  H i )  “  f ' ( i ) l 2 (2 -6 1 )i H u )

where gr are the two components of the reduced shear given in equation (2.30), with 

summation being implied over index i and r = p.-1 . The quantities with hats are 

calculated from the potential held being ht and those without are the measured quan­

tities. The summation here is over all grid bins and is weighted by the variances of g 

and r from the data.

Bartelmann et al (1996) have applied this technique to simulated galaxy clusters 

and typically find that they can reconstruct their cluster mass to within ± 10% of the 

correct value. While this method clearly works, it requires measurement of the shear 

held which is not always possible with images observed for the purpose of extracting 

magnification information. This is because poor seeing acts to smooth away the 

coherent lens-induced elliptieities of images of especially faint galaxies but does not 

drastically alter the ability to detect and measure a galaxy’s brightness.
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Iterative  Techniques

Another technique which can be used to overcome the lack of shear information is 

the iterative method illustrated in Figure 2.8 (see also, for example vaxr Kampen 

1998). Starting with an initial guess for k (by the estimator method described later 

for example), an initial estimate of the deflection potential is formed. This is achieved 

by using either equation (2.11) or more efficiently, in Fourier space using the Fourier 

transform of equation (2.15) to give1,

=  - n
2«(fc)

(2.62)
k \  +  k\

where k\ and /t’2 are the components of k. ip(k) is then used to calculate the compo­

nents of shear in Fourier space by using the Fourier transform of equation (2.16),

1
7i(*o =

7 2  (fc) =  —kik 2 'l/j(k) (2.63)

Fourier transforming back into real space, 7  is then used with equation (2.20) to 

form a new estimate of n which completes the iterative cycle. This is repeated until 

sufficient convergence has been reached. Unfortunately, the iterative technique only 

works for lenses which are sub-critical (Dye & Taylor 1998). The method is extremely 

unstable when critical lines are introduced and divergence occurs as a result.

Figure 2.8: Iterative procedure to calculate k given only information about /¿.

Chapter 4 demonstrates a more sophisticated iterative technique developed by 

Dye & Taylor (1998) which does not suffer from divergence and does not require shear 

information.

‘Here, the result th a t the Fourier transform  of d f ( x ) / d x  is - i k f ( k )  is used.
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k  E s t im a to r s

A very quick and simple means of estimating k is by use of the k estimator (Taylor et 

al 1998, T98 hereafter and also van Kampen 1998). The principle elaborates 011 the 

idea first presented by DTP that in weak lensing regimes where n <C 1 and 7  «  1, 

the terms k2 and y '2 can be neglected in the magnification equation (2 .20) so tha t a 

weak estimation of k is given by

«vieafc =  1 ( 1  -  M)- (2-64)

Because this approximation is extremely inaccurate for values of approximately k > 

0.1, T98 introduced two estimators for k which can be used in the strong lensing 

regime.

The idea relies upon the fact that realistic cluster mass distributions lie somewhere 

between tha t of an isothermal sphere and tha t of a homogeneous sheet of m atter. 

Sheet-mass distributions were discussed in Section 2.1.5 and shown to be characterised

by

k =  constant , 7  =  0. (2.C5)

The mass distribution of an isothermal sphere as covered in Section 2.3.1 is similarly

characterised by equation (2.55). Using these two results for 7  in equation (2.20) 

therefore produces two estimates for k ,

k+ =  (7  =  0) =  1 — 'P/r“ 1/2

' k_ =  k (7  =  «) =  1(1 - V , r {) (2.66)

where V  is a parity which flips from being +1 outside regions bounded by a critical 

line to —1 inside. The sheet, estimator. k+, provides an upper bound 011 k and a lower 

bound is provided by the isothermal estimator. Before a critical line is crossed, it 

is generally true that Kweak 2> «+ > «true > «-•

Figure 2.9 shows a scatter plot of inverse magnification against k for a simulated 

cluster in a cold dark m atter universe (van Kampen & Katgert 1997). The Kweah 

estimator demonstrates its inaccuracy after k > 0.1 , overestimating k by up to a 

factor of 2. The k+ estimator is seen to act as a strong upper bound until the critical 

line is crossed. This is as expected since in a real cluster, 7  > 0 always holds true so
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that the upper limit provided by /i+ =  k (7  =  0) cannot be crossed. only provides 

a reliable lower limit for k > 0.2 however, van Kampen (1998) finds tha t for the most 

massive simulated clusters, this limit must be extended to k >  0.4. This stems from 

substructure in the outskirts of clusters where k can be low enough to result in the 

condition tha t k < 7 . This exceeds the lower limit set by k._ =  « ( 7  =  k).

K

Figure 2.9: Variation of inverse magnification with k for each pixel of a simulated cluster. 

Superimposed onto the plot are shown the estimators k+ (solid), k_ (dash), nweak (dot) and 

Kc with c = 0.7 (dot-dash).

The fourth estimator, kc, shown in Figure 2.9 is a parabolic approximation moti­

vated by cluster simulations and the fact that it has an invertible /j(k) relation (van 

Kampen 1998). Behaving essentially as an average of k+ and nc is chosen to vary 

as 7  ex >/k. It is convenient to express the constant of this proportionality as

so tha t the inverse magnification is simply given by

t r l = \{kc - c){k c - 1 / c)\. (2 .68)
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The constant c, can be adjusted to vary the two critical lines which occur when k =  c 

and k =  1 /c.

Figure 2.1(1 graphically illustrates how the introduction of a second critical line 

has the consequence that four solutions to equation (2.68) for k exist. This is only 

true for values of /¿-1  which give real solutions. The possibility can arise that when 

attem pting to estimate k in the region between both critical lines (the shaded area in 

the plot) /i ~ l is larger than the maximum value perm itted by the parabolic estimator 

in this region. If the critical line region has been incorrectly defined or if ft,~[ is in 

error, this can occur. In this case, the estimator breaks down and the estimators k+ 

and k_ must be used instead to provide an upper and lower bound on n.

1C

Figure 2.10: The estimator k.c showing parities V and S. The grey area between the two 

critical lines can give non-physical results for k if //_1 is too large.

The four solutions for ay from equation (2.68) are given by

=  y c ( ( c'2 +  ! ) -  •5^/(i:a +  l ) 2 -4 c :2( l - - P / i - 1) j  (2.69)

I he parity P has the same function as in equation (2 .66) except now, it can flip twice 

as the outer and them the inner critical lines are crossed. P  appears as a result of
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the modulus operator in equation (2.68). The second parity S  is due to the parabolic 

nature of equation (2.68) and is the sign of (c2 +  l)/2 c  -  k . Figure 2.10 shows the 

various parity flips described. Note tha t kc becomes k+ when c =  1 .

A xially  Sym m etric  Lens R econstruction

If one makes the assumption tha t a lens is axially symmetric, then a non-local func­

tional relationship between k and 7  is fixed. Armed with magnification information, 

a self-consistent k and 7  profile can be calculated with an iterative procedure.

Axial symmetry allows the geometry described in Section 2.1.3 to be simplified 

to one dimension. This is explicitly seen by considering the scaled deflection angle 

in equation (2.8). By symmetry, the impact vector 9 may be restricted to lie along 

the positive 9\ axis in the lens plane such tha t 9 = [9,0). Similarly, using the polar 

co-ordinates 9' and c/> to write

with 9 > 0 and 9' > 0 shows that the components of the deflection angle may be 

w ritten as,

The restriction enforced 011 the direction of the impact vector combined with the 

axial symmetry means that a 2 vanishes. The inner integral of equation (2.71) for oq 

adheres to

centre of mass contributes to the deflection angle at 9 as if it were all located at tha t 

centre. M atter outside this disk has 110 influence 011 the deflection in a similar manner 

to the effect of gravitational forces from spherical mass distributions. Equation (2.71) 

therefore becomes

9' =  [9' cos <•/>, 9' sin (¡6) (2.70)

1

I I

9 — 9' cos cj)

a 2[9) 9'd 9'k [9')
dV  +  9'2 -  299' cos r/>

(2.71)
7T ./()

(2.72)

(see Appendix A .l) and thus the m atter contained within a disk of radius 9 about the
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where n(0) is the mean value of k within a circle of radius 0.

To arrive at an expression which relates k to 7 , the lens equation of Section 2.1.3 

must be employed. Combining equation (2.10) with the result of equation (2.73) gives

/3 =  0(1 -77(0)) 

so tha t the Jacobian of the transformation is

A  =

(2.74)

d/3 _ ( l - K 0 N 1 ds: '  0\ 0!02

(10
{ 0

! - K y _  0 d0 v O1O2 01 )
(2.75)

Comparing the components in equation (2.75) with those in equation (2.17) shows 

tha t the components of 7  are therefore

72
0102 dK 
~0~  d0

and hence

From equation (2.73),

2 2 2 e2 / d s '2
7 =  7, + 72 =  T  ( ^

dK 2

m  =  ë {K -  K)

which upon substitution into equation (2.77) relates 7  and k via

7 2 =  (s;-77)2.

(2.76)

(2.77)

(2.78)

(2.79)

The next step is to include amplification. This is simply achieved by substituting 

equation (2.79) into equation (2.20) to give

//. — |(1 — k )(1  — 2k +  k ) (2.80)

The surface mass density and shear can now be solved through series solution by 

dividing the surface mass density into consecutive annuli of equal width. Labelling 

the innermost annulus (a disk) with the index n  =  1 and segregating k into an inner 

term, ?/„_ 1, and a surface' term gives,

K;i — f]n- 1 + n + 1
-K„. (2.81)
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2 n ~  ^
Vn—i = —,— —T V  mKm. (2.82)n(n  +  1) “v ' m = 1

W riting equation (2.80) in terms of quantities relating to the n th shell and using the 

parity of Section 2.3.4 gives

Vii~1 =  ( 1 -  Kn)(1 -  2kh +  77.,,.). (2.83)

Using this with equation (2.81) gives, upon rearrangement,

Kn =  ^  { n  + 1  (n  i  —

K[(n -  1 -  (n +  l ) ^ - ! ) 2 +  d n P /r-1]172}- (2.84)

This is the axially symmetric series solution for k . As in Section 2.3.4, the image 

parity V  flips about critical lines. 77. is a parity similar in nature to the parity S  of 

Section 2.3.4 which permits higher solutions of k .

The freedom of choice for both parities in equation (2.84) is usually constrained

in practice by the observed position of critical lines. This leaves only one degree of 

freedom; choice of the parameter 770 ■ This is in fact limited to some degree by the 

requirement tha t non-physical solutions should be avoided. Expressed mathematically, 

this means that the condition 7;q >  T5//-1 must be satisfied for a given magnification 

profile. Combination of equation (2.79) and equation (2.81) shows tha t 770 =  71 so 

tha t the freedom is 011 the shear within the first, annulus. The choice of 71 has ordy 

a small effect 011 the overall k profile obtained. This is dem onstrated in Section 3.2.5 

where the axially symmetric solution is applied to Abell 1689.

r/n_i is given by the discretisation of equation (2.73),
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C h a p te r  3

M a g n ifica tio n  o f  Source N u m b e r 

C o u n ts  b y  A b e ll  1689

This chapter sees application of the integrated number count technique of Section

2.3.2 to the cluster Abell 1689 (RA,Dec.[J2000]: 13/ll l m34s, -01°2T 54//). The work 

presented here forms the predominant result of the publication by Taylor & Dye et 

al (1998). Studies into the mass of the cluster Abell 1689 from X-ray tem perature 

measurements (Yamashita 1994), virial velocity determinations (Teague et al 1990, 

TCG hereafter) and shear analysis (Tyson & Fischer 1995, Kaiser 1996) all conclude 

that it is one of the most massive clusters in the known Universe. This therefore 

makes it a prime target for the verification of the magnification method.

3.1 D a t a  A c q u is i t io n

Observation and basic reduction of the data contained in this Chapter was performed 

by T .J. Broadhurst and N. Benitez of the University of California, Berkeley in collab­

oration with the Institu te for Astronomy, Edinburgh.
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3 .1 .1  O b s e r v a t io n  o f  A 1 6 8 9

Images of A1(I8!J were taken in the V and I bands during a run in February 1994 at 

ESO’s NTT 3.6m telescopes Each band was observed for a total integration time of 

6000 seconds in a field of view covering ~  35 square arcminutes centred on the cluster 

(see figure 3.1). Seeing was similar in both bands, with FWHM of 0.8” and a CCD 

pixel scale of 0.34". The passbands and exposures were chosen such tha t the cluster 

E/S0 galaxies would be bluer than a good fraction of the background, requiring much 

deeper imaging in the bluer passband for detection. The cluster was observed to a 

limiting magnitude of 1=24.

The images were de-biased and flattened with skyflats using standard IRAF pro­

cedures. Large scale gradients in brightness of a few percent remained after the flat- 

fielding process. These were removed by correcting with a flat, field obtained from 

the images themselves by masking objects and smoothing the result. This gave a 

homogeneous photometry across the field with a lcr deviation of 0.1 magnitudes.

3 .1 .2  O b je c t  D e te c t io n

Determination of object magnitudes in each of the co-added V and I band images was 

made possible through use of software called SExtractor (Berlin & Arnouts 1996). 

SExtractor is essentially an object extraction algorithm which operates on FITS im­

ages to produce a catalogue of detections. An object in SExtractor is defined as a set 

of connected pixels which exceed a user-defined threshold above the background. By 

calculating the second order moments of the light distribution in these pixels, SEx­

tractor fits an ellipse to every detected object and outputs elongation and orientation 

to the catalogue.

The integrated fluxes within the fitted ellipses of all detected objects are then 

calculated and converted to magnitudes. A calibration offset must usually be applied 

to these magnitudes since SExtractor makes the assumption that the images were 

observed in photometric conditions, that instrument transmission is 100% and that 

the detector gain is unity (ie. the number of electrons output by the CCD circuitry is 

equal to the number of photons striking the CCD). Calibration was not necessary in
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Figure 3.1: Post-reduction I band image of Abell 1689. The cluster centre lies in the north­

west quadrant. Note that all stars, determined from their high brightness and low FWHM, 

have had their centres and vertical leaking removed. A logarithmic grey scale is used to 

highlight faint objects relative to the bright cluster members.

this case since only the difference between the V — I colour of the background objects 

and the V — I colour of the cluster galaxies was required for the purpose of object 

selection (see Section 3.1.3).

Objects (consisting of 8 or more connected pixels) in the V and I band images 

of A 1689 were detected with a threshold of 2a above the background noise to yield 

a total number of approximately 4000 objects in each. The inevitable consequence 

of choosing a threshold as low as 2cr means that roughly 5% of background pixels 

are above this limit and hence several spurious objects are detected. The majority 

of these spurious objects were removed from the object catalogue of each frame by 

performing a co-incidence match between the V and I object catalogues. By comparing



the catalogue of matched objects to the images, an optimal separation tolerance of 

about 2 pixels was chosen. Several spurious objects still remained after the coincidence 

match however. As Figure 3.2 shows, a large number oi noisy objects were detected 

around the edges of large extended objects, these areas being above the detection 

threshold. These remaining objects were removed by hand by comparing with the 

images in each band.

Figure 3.2 shows the central parts of A1689 in both bands and the objects detected 

in each. The matched objects in this part of the cluster are shown in the bottom  part 

of Figure 3.2, each having an associated V and I magnitude. Approximately 3000 

objects in total were matched, demonstrating that ~  25% of the objects detected at 

the 2rr threshold were spurious.

3 .1 .3  O b je c t  S e le c t io n

To measure the lensing effect on the number density of background objects, distinc­

tion of cluster and foreground objects was necessary. This was achieved through the 

identification of objects on a colour-magnitude diagram formed by plotting the V — I 

colour against I magnitude for every object.

Figure 3.3 shows the colour-magnitude diagram obtained for the 3000 objects 

detected in the held of A1689. The cluster objects were identified by their strong E/SO  

colour sequence which forms the well defined horizontal band across the diagram at 

roughly V —I =  1.5. The sharp upper edge of this band represents the reddest galaxies 

in the cluster. Assuming that the cluster galaxies are of a similar nature to the held 

galaxies, this means tha t objects which he redward of the cluster E /SO  sequence must 

be redder because they lie at higher redshifts. In other words, objects which lie in this 

part of the colour-magnitude diagram represent a population of background objects. 

These will be referred to as the red background galaxy population.

The red background galaxy population is used throughout this chapter to measure 

the lensing effect of A1689. The reasons for this are twofold. Firstly, as explained 

immediately above, one can unambiguously separate the population from the cluster 

galaxies and hence minimal contamination of the sample is expected. The second
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Figure 3.2: V and I band images and object detections of the central region of A1689. The 

V and I objects were matched using a position coincidence test with an optimal separation 

tolerance of 2 pixels to produce the bottom plot.
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reason, given in Chapter 2, is that field galaxies with V — I > 1.5 have a shallow 

number count slope which maximises the lensing signal detected.

Figure 3.3: Colour-magnitude diagram of the 3000 matched objects around A1689. Note the 

well defined horizontal cluster sequence. Although not strictly necessary, a rough calibration 

was provided from the cluster magnitudes of Gudehus & Hegyi (1991).

Figure 3.3 shows the limits used to identify objects. The value of V — 1=1.6 was 

selected as the lower cut-off for the red background galaxies. The 1 band magnitude 

was limited to 20 <  I <  24 and the V band magnitude limit of V <  28.0 was enforced 

to ensure completeness of the sample. A further colour cut of V — I <  3.5 was applied 

where the reddest galaxies are expected to cut off given the survey magnitude limits. 

Anything redward of this limit was considered unreliable (possibly a bad magnitude 

determination by the extraction software or incorrect association of objects between 

the both bands during the matching process).

To isolate the bright cluster members and foreground contaminants, all objects 

with V — I <  1.6 and I < 22 were selected. Isolation of the faint cluster objects 

is made impossible by the fact that these objects are located in the same region of
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colour-magnitude space as the expected location of faint blue background galaxies (ie. 

roughly I > 22 and V — I < 1.0). Fortunately, this is not a major concern because 

the cluster and foreground identified objects are ultimately only used to estim ate the 

obscuration of the red background objects (see Section 3.1.4). The faint and hence

with the larger and brighter members.

Since the identification of cluster members is im portant to remove contamination 

of the background sample, the colour selected candidates were cross-checked with the 

photometric redshift data presented in Chapter 5. The photometrically identified 

cluster objects were in good agreement with the colour selection.

3 .1 .4  M a sk in g

Having identified the various populations on the colour-magnitude diagram, a mask 

to eliminate areas obscured by cluster and foreground objects (the mask objects) was 

produced. This was necessary to quantify the effects of obscuration bias in the surface 

density of background object counts.

Some experimentation was required to choose the most suitable param eters output 

by SExtractor for creation of the mask. Although SExtractor outputs the semi-major 

and semi-minor axes of detected objects, these are computed from the maximum and 

minimum FWHM of the object profiles and as such are typically too small to represent 

the true obscuration (see Figure 3.4). Attempts at scaling these to m atch image object 

sizes proved unfeasible due to the lack of a global scale factor. An alternative means 

of obtaining ellipse sizes was achieved from using the detected number of pixels lying 

inside an object’s lowest isophote. Representing this quantity as np and setting it as 

the area of an ellipse with semi-major and semi-minor axes a and b respectively gives

where the ellipticity, e, is defined here as

(Note tha t this definition used by SExtractor differs from the more common definition:

small cluster objects therefore only play a small part in the obscuration compared

(3.1)
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c =  (a — b)/(a +  b).) The ellijjses generated in this way were found to be far more 

reliable as demonstrated in the bottom  right-hand section of Figure 3.4.

Mask objects determ ined 
with a and b calculated via 
FWHM.

Mask objects determ ined 
with a and b calculated from 
lowest isophote area.

Figure 3.4: Comparison of objects defined using semi-major and semi-minor axis informa­

tion directly output from SExtractor with that calculated from the area contained within an 

object’s lowest isophote. The latter allows the most accurate mask definition.

Figure 3.5 shows the final mask used together with the red background galaxies 

plotted as open circles. Some of the larger stars not properly accounted for by SEx­

tractor were manually added. The concentric rings shown here are the annular bins 

used in Section 3.2.1 to measure the radial background number counts.

3.2 R e s u l t s

3 .2 .1  N u m b e r  co u n ts

In Section 2.3.2, it was noted that the luminosity function of field galaxies selected 

by V — I > 1.5 is sufficiently flat to cause the number density of such objects under 

magnification to be reduced. It is therefore expected that a plot of the radial variation 

in number counts about the centre of A1689 will show a larger depletion in areas where 

the magnification is higher as predicted by equation (2.54).
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Figure 3.5: A1689 field showing mask (grey ellipses), red background galaxies (open red 

circles) and annular bins used to measure radial number counts (green).

Counting the number of red background sources in each of the annuli shown in 

Figure 3.5 enables the plot shown in Figure 3.6 to be drawn. As anticipated, the 

number of galaxies is reduced in comparison with the number of field galaxies expected 

in the absence of lensing. Section 3.2.2 describes how the intrinsic background number 

density is derived to enable the expected number in a given bin, no to be calculated 

taking obscuration by mask objects into account. In the second bin from centre, there 

are no detected galaxies at all which suggests tha t infinite magnification and hence a 

critical line exists at this radius. This is in agreement with several faint arcs present 

in the image in this area.

The dashed line plotted in Figure 3.6 shows the variation in number counts pre­

dicted for an isothermal lens adjusted so tha t the critical line radius matches the 

position of the second radial bin. As the plot shows, near-isothermal behaviour is 

exhibited by A1689, apart from a large depletion in counts at a radius of 2.4 arcmin 

and an over dense region at a radius of approximately 3.75 arcmin. The over-dense 

region is most likely a result of clustering of the background objects. The error bars



plotted are based purely on Poisson statistics of the expected number and therefore 

do not take clustering into account (unlike the mass plots which follow).

o
PJ
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6 (arcm in)

Figure 3.6: Radial number counts of objects around A1689 expressed as a fraction of the 

expected number. The error bars are derived from Poisson statistics. The dashed line shows 

the behaviour of an isothermal lens adjusted to match the critical line position.

One explanation for the depletion of counts seen at 6 ~  2.4 is tha t the cluster has 

an extended structure with a large mass at this radius. Referring to the image shown 

in Figure 3.1, this is vaguely reflected in the distribution of light from the cluster 

galaxies with an above average contribution coming from the large concentration of 

objects to the north-east of the cluster centre. An alternative hypothesis is tha t this 

is the first glimpse of a second critical line (see Taylor & Dye et al 1998 for a more 

detailed account). Since the critical radius of a given cluster scales the same way as 

the radius of an Einstein ring, ie. proportional to Dds/D s, a population of background 

galaxies lying at a high redshift would have a larger critical radius than  a population 

at a low redshift. If there are two distinct populations of galaxies, one at low redshift 

and the other at high redshift, there could in principle be two critical lines. This 

phenomenon is thought to have been observed with the lensing cluster C10024+1654
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(Fort, Mellier & Dantel-Fort 1997). In the absence of further evidence for a second 

high redshift population, only the single critical line model is considered here.

3 .2 .2  N o r m a l is a t io n  o f  B a c k g ro u n d  N u m b e r  C o u n ts

Of major importance to the lens magnification method is the normalisation of the 

background galaxy population. One means of providing this normalisation is to as­

sume negligible cluster mass at the edge of the observed field and normalise to the 

number density of objects there. This defeats one of the main advantages of the 

magnification method in enabling the computation of absolute masses. One would be 

effectively using the same normalisation as the shear method such tha t the estimated 

mass could only ever be determined relative to the mass at the edges of the field.

Instead, the normalisation adopted in this work, that being the same normalisation 

used to provide the ratio of n ' /no in Figure 3.6, comes from the data  of Smail et al

(1995). These deep observations in the V, R and I passbands with the Keck telescope 

have a limiting magnitude of B. ss 27. A x 2 straight line fit to the total corrected1 

differential galaxy count rate in the I-band gives

log10 n = (0.271 ±  0.009)1 -  1.45 (3.3)

over the range 20 < I < 24, where n  is per magnitude per square degree. Applying 

the colour criteria used in Section 3.1.3 to this data, one finds that the red galaxy 

population with V -  I > 1.6, can be well approximated by

log10 n(red) =  (0.0864 ±  0.0187)1 +  (2.12 ±  0.41) (3.4)

over the range 20 < I < 24. Figure 3.7 shows the magnitude distribution for the full 

dataset and for the red-selected galaxy population and the best-fit lines. Integrating 

the fit for the red galaxies yields a total count rate of n = 12.02 ±  3.37 galaxies per 

square arcminute in the range 20 < I < 24. Re-writing equation (2.36) in terms of 

magnitudes, the slope param eter ¡5 is

=  2 5 d lo g .o t tM  
din

1 Smail et al corrected for completeness of their num ber counts using M onte Carlo sim ulations in 

which artificial galaxies were added to the d a ta  for re-application of their object detection algorithm.
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which from equation (3.4) implies tha t /? =  0.216 ±0.047. This is the value of (3 which 

is used in the subsequent analysis. Section 3.2.8 discusses the impact on the final mass 

estimate due to this uncertainty in (3.

CO

I

Figure 3.7: Magnitude distribution of all I-band galaxies (black dots), the red selected galaxies 

(red dots) and the blue background galaxies (blue open dots) from the Keck data of Smail et 

al. (1995). The lines are the best fits to the data.

The blue galaxies in the Keck sample, selected by V — I <  1.0, were also counted 

to verify the results of Broadhurst (1995) discussed in Chapter 2. The number counts, 

over the same range as the red counts, were found to be fitted by

log10 n(blue) «  0.351 -  3.49 (3.6)

resulting in ¡3 = 0.88. This is close to the lens invariant (3 = 1 and in good agreement 

with the findings of Broadhurst. W ithin the magnitude range 23 <  I <  24, chosen to 

minimize cluster contamination when applied to the S1689 data (see Figure 3.3), the 

number density of blue galaxies was found to be no(blue) =  15.5 galaxies per square 

arcminute.

Using this value of no (blue), the radial variation in number counts of blue galaxies
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in the cluster field was plotted. Figure 3.8 shows the counts measured in the same 

annular bins illustrated in Figure 3.5. As anticipated, the blue galaxy counts do not 

show any obvious signs of a magnification signal. Deviations from the invariant value 

of n/n.Q = 1 mainly arise from contamination by faint cluster members (see Section 

3.1.3). This suspicion is strengthened by the fact that the largest deviation occurs at 

a low radius where there is a higher number density of cluster objects. The lack of a 

significant change in radial blue counts also rules out the possibility tha t the depletion 

seen in the red counts is an effect of obscuration by dust.

0  ( a r c m i n )

Figure 3.8: The radial profile of blue galaxy counts behind A1689. The background count 

density is no = 15.5 galaxies per square arcminute. Deviations from the invariant value (shown 

by the dashed line) arise mainly from contamination by faint blue cluster members.

3 .2 .3  C lu s te r in g  p r o p e r t ie s  o f  th e  b ack grou n d  p o p u la t io n

W ith the number density and slope of the background galaxies established, the final 

piece of information required for the likelihood analysis of Chapter 2 is the am plitude 

of clustering of the background galaxies, ie. cr(z) in equation (2.53).
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The am plitude of clustering of I-band galaxies and its dependence 011 redshift 

was estim ated from the results of Le Fevre et al (1996) using the Canada-France 

Redsliift Survey (CFRS). Le Fevre et al. find that there is little difference between 

the clustering properties of red and blue populations of galaxies for z > 0.5, implying 

tha t the populations were well mixed at this epoch. Their findings lead to the result 

tha t the clustering variance of I-band galaxies scales according to (Taylor & Dye 1998),

a 2(z) = lO-2z - 2-8(0/l ' ) -°-8 (3-7)

within an observed circular area of radius 0(arcmin). To calculate the variance in a 

given annulus, 0 is simply chosen to be the radius of a circle with the same area as 

the annulus.

Since the likelihood analysis in this chapter is concerned only with quantities 

integrated over redshift, a value of a(z)  averaged over the redshift distribution of 

background sources must be obtained. In practice, the range of values of a calculated 

for a realistic range of redshifts has a negligible effect on the maximum likelihood 

result for k . The error 011 k  however is affected although only a weak dependence is 

exhibited; the change in width of the likelihood curves for k in each annulus of Figure 

3.5 over the redshift range z =  0.4 — 1.0 was found to be less than 15% in every case.

Cram pton et al (1995), again using CFRS data, show that galaxies selected by 

V — I > 1.6 have a median redshift of z «  0.8. In light of the above findings, this 

redshift was used in equation (3.7) to provide the value of a  in the subsequent analysis.

3 .2 .4  R e c o n s tr u c t io n  o f  radia l k. profile

From the radial number counts presented in Section 3.2.1, application of the like­

lihood analysis in Chapter 2 allowed calculation of the radial variation of A1689’s 

magnification shown in Figure 3.9.

The errors in Figure 3.9 correspond to a confidence level of la  and are derived 

from the width of the likelihood curve as described by equation (2.41). Shot noise 

and background galaxy clustering are therefore incorporated. The dashed line is the 

behaviour of the same isothermal sphere model as that used in Figure 3.6. The under- 

density at 0 = 2.4 in t,h(' number counts is manifested as the peak seen at the same
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Figure 3.9: Radial variation of Al689’s maximum-likelihood-derived magnification. The 

errors correspond to a confidence level of la  and allow for clustering and shot-noise. The 

dashed line shows the behaviour of the isothermal model in Figure 3.6.

radius in the magnification. It can be seen tha t this peak is approximately 2cr above 

the magnification predicted by the isothermal sphere. The bin at 9 ~  0.7 which 

coincides w ith A1689’s critical line radius has an infinite magnification as expected 

(in fact, the analysis returns an arbitrarily large value which explains why the lines 

drawn from neighbouring data points are not completely vertical).

Application of the k estimators in equation (2.66) enables an upper and lower 

bound for k to be plotted. The parity required by both estimators was flipped about 

the bin at 9 ~  0.7 (the party in this bin is not a concern since «;+ =  1 and =  0.5 

regardless of parity when the magnification is infinite). The resulting profile is shown 

in Figure 3.10 where the red shaded area represents the region in which k is bounded. 

Shot noise and clustering contribute to the uncertainty which corresponds to the area 

shaded in orange. The solid curve shows the same isothermal model.

Away from the cluster centre, the isothermal and sheet estimators give a consistent

85



6 (arcmin)

Figure 3.10: Radial profile of k for A1689. The area shaded in red is the region in which k 

is bounded while the orange area represents 1<7 uncertainties from shot noise and clustering. 

The blue curve is the isothermal sphere model normalised to the critical line at 6 — 0.75'.

result for k although this becomes dominated by noise after 0 ~  3'. W ithin the region 

0 <  2.8', a significant mass detection is measured. The peak at 6 ~  2.4' again comes 

from the peak found in the magnification at this radius. No evidence of this peak 

is found in the data of Kaiser (1996); correlation introduced by the shear method 

may have suppressed such a structure. Repeating the procedure for annuli centred on 

different positions about the peak of the cluster light distribution gave a weaker, less 

significant mass profile in each case. This would be expected if the peak of the mass 

density were associated with that of the light.

3 .2 .5  A x ia l ly  S y m m e tr ic  L ens S o lu t io n  for A b e l l  1689

W ith the radial magnification data of the previous section, the axially symmetric 

(non-local) solution for n was computed. The parities in equation (2.84) were set to 

TZ =  V  = 1 in every annulus except the first which, lying inside the critical line, was

86



assigned V  =  —i. WitR an initial sRear cRosen as 71 =  0.3, tRe profile plotted in 

Figure 3.11 was obtained.

6 (arcmin)

6 (arcmin)

Figure 3.11: Radial profiles of k and 7  calculated by solving the axially symmetric lens 

equation (2.84. In both plots, 1 a errors are represented by the orange area, the blue curve is 

the isothermal model and the green line is the local parabolic estimator, kc, with c = 0.7.

TRe cRoice of 7  =  0.3 for tRe first annulus Ras a fairly insensitive effect on tRe
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resulting profiles, only affecting the first two annuli. The uncertainty on the first shell 

is small because the result is chosen a priori. The act of averaging in the series solution 

means that errors do not strongly propagate to higher annuli. Again, a peak in the k 

distribution is seen at 8 = 2.4', this time with the shear accounted for.

Estimation of 7  shows a somewhat flat profile with 7  ~  0.25 ±  0.15 over most of 

the range. A slight increase beyond 0 = 2.4' is due to the spike in the k profile at 

that radius. This increase is not measured in the angle averaged measurements of 7  

by Kaiser (1996), where the mean shear is 7  =  0.15 ±  0.05. Errors in both profiles 

were derived from the propagation of errors from the magnification data.

3 .2 .6  R e c o n s tr u c t io n  o f  k in 2D

Instead of binning the red background galaxies in annuli to obtain a radial profile, one 

can apply a rectangular grid to the field and count the number of galaxies in each grid 

bin. Using the same likelihood analysis, the magnification can be determined for every 

bin in the field. Applying one of the k estimators then allows the two dimensional 

distribution in k to be visualised.

The choice of grid dimensions determine the overall resolution and signal to noise 

of the k distribution. Grid bins which are too small give rise to shot noise domination 

whereas grid bins which are too large produce a poor resolution. For the data  presented 

here, an optimal size of 10 x 10 bins was chosen. The two dimensional distribution of 

red background galaxy number counts is shown in Figure 3.12. The underlying 10 x 10 

resolution was Gaussian smoothed with a scale length of 0.35 arcmin onto a finer grid. 

The figure shows that a readily apparent lack of counts is seen in the vicinity of the 

critical line located by the white dashes.

The corresponding k distribution produced with the sheet estimator is shown in 

the top half of Figure 3.13. Reversing the parity of bins lying interior to the critical 

line shown in Figure 3.12, the 10 x 10 grid was Gaussian smoothed onto a finer grid 

wit h a smoothing scale of 0.35 arcmin. In the lower half of Figure 3.13, the distribution 

of Trr’ maximum likelihood errors is shown. These are reasonably constant across the 

field.
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Figure 3.12: Distribution of red background galaxies behind A1689 smoothed with a smooth­

ing scale of 0.35 arcmin. Darker shading signifies a lower density of counts. The contours are 

linearly spaced by An = 1.45 objects per square arcminute with a maximum and minimum 

number density of 23.0 and 1.1 obj/sq. arcmin respectively. The dashes show the approximate 

position of the critical line. Orientation is the same as that in Figure 3.1.

The peak in k located at the cluster centre has a value of k ~  1.4, slightly less 

than  tha t predicted from the local radial profile due to the effects of smoothing. The 

structure seen extending from the cluster centre to the south-west has a value of 

k ~  0.9 which when compared to the same vicinity in the error map shows tha t it is 

at least a 3cr detection.

Given tha t X-ray observations of A1689 with the ROSAT satellite in the 0.5 — 2 

keV band (Wang & Ulmer 1997, Daines et al 1998) show a relatively compact and 

smooth 2D flux distribution, this mass extension is a little surprising. There are several 

possible explanations for this. One is tha t the lens detected structure truly is a clump 

of dark m atter, not followed by the X-ray emitting cluster gas. An alternative might 

be tha t the source number counts attributed to the structure are simply a particularly 

rare underdensity occurring as a result of clustering. Deeper observations would clearly
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answer this conundrum. A shear analysis performed by Kaiser (1996) on the same 

data used in this chapter also hints at a substructure towards the south-west although 

this is a little tenuous. Claims of a consistent detection of substructure are therefore 

withheld.

3 .2 .7  T ra n sfo rm in g  k to  M a ss  S urface  D e n s i ty

The definition of k in equation (2.9) indicates tha t in order to obtain the real mass 

surface density E, the value of E c r  is required. The angular diameter distance to the 

lens and source galaxies must therefore be known.

Spectroscopic measurements of Abell 1689 indicate tha t the mean redshift of clus­

ter members is z = 0.184 (TCG). In converting this to an angular diameter distance, 

a particular cosmology must be assumed. Fortunately, this does not pose much of a 

dilemma since as BTP have shown, the cosmological model chosen has only a small 

effect on the final derived surface mass density. An Einstein-de-Sitter universe is 

therefore assumed for simplicity so tha t the angular diameter distance of an object is 

related to its redshift using equations (1.36) and (1.43) to give

- 1 ■ <*»
The angular diameter distance between two objects at redshifts z\  and z2 in this case 

is

1 +  z\ . . 2c / ( I  +  z \ )~ xl2 — (1 +  z2)~ll 2\
D a(zu z2) = D a{z2) -  — — Daizx) = —   — ----------------- . 3.9

1 + z2 Ho \  I + z2 J

Substituting these relations into equation (2.9) shows tha t the mass surface density is

y  =  ... c H o ___________(1 -  (1 +  zg)~1/2)(l + z L)___________
87rG (1 -  (1 +  zL) - ^ ) ( ( l  + zL) - V 2 -  (1 +  zs )~ 1/2) UJ

where zs  and z i  are the redshifts of the background galaxies and the cluster respec­

tively. The redshift of the background galaxies is again taken to be z  ~  0.8 from

the work by Crampton et al (1995). Equation (3.10) with zl =  0.184 and z$ =  0.8

therefore yields

E =  5.9 x 1015/i[hMGM pc-2]. (3.11)
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Figure 3.13: Top: Reconstructed surface mass density of Abell 1689 from the red background 

galaxy population using the sheet estimator. Light regions are high density. A parity flip about 

the critical line in Figure 3.12 has been applied. The maximum surface mass density is re =  1.4, 

at (4.02', 3.41'), consistent with the peak in the light distribution. The minimum is re — —0.4. 

A linear spacing of Are = 0.12 separates the 15 contours. The map is Gaussian smoothed with 

a smoothing length of 0.35 arcmin. Bottom: la  error distribution on re.
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3 .2 .8  P r o j e c t e d  M a ss

Figure 3.14 shows the cumulative mass profile of A1689 calculated from the axi- 

symmetric solution. Errors are derived from propagation of the 1er uncertainty on 

the k profile shown in Figure 3.11. The green line is the cumulative mass calculated 

using the parabolic estimator with c =  0.7. Clearly, good agreement is seen.

6 (arcm in )

Figure 3.14: The cumulative mass profile of Abell 1689, calculated from the axi-symmetric 

solution. Orange shading shows the ler uncertainty propagated from errors in the k profile of 

Figure 3.11. The green line shows the cumulative mass estimated from the parabolic estimator 

with c = 0.7. The isothermal fit to the critical line, similar to the shear results of Kaiser (1996)

and Tyson & Fischer (1995) is plotted as the blue line.

Using the axi-symmetric solution, a projected mass interior to 0.24/i-1 Mpc (=  2.1' 

at the cluster redshift) of

M 2d{< 0.24/i-1 Mpc) =  (0.50 ±  0.09) x lO15h_ 1M0 (3.12)

is predicted. Furthermore, this mass scales as

M 2d{< R ) ~  3.5 x 1015( ii // i_ 1Mpc)1 '3/i_ 1Mo (3.13)
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for R  <  0.32//. ^Mpc, similar to tha t lor an isothermal sphere which scales as Ad oc R. 

Beyond R. = 0.32/i_ iMpc, noise begins to dominate and hence the only obtainable 

result is the upper bound that k < 0.1 .

Error Analysis

Excluding errors computed from the likelihood analysis, three other sources of error 

must be taken into consideration. These are the uncertainty on the number count 

slope, /?, the background count normalisation, no and the redshift assumed for the red 

background galaxy population.

Error propagation shows that the combined fractional uncertainty in E is

The uncertainty in source redshift may be estimated from the width of the CFRS red 

galaxy distribution by Lilly et al (1995). This gives a value of oZs ~  0.4. Using the 

value of k. — 0.5, when combined with the errors for ¡i and no gives

« 0 . 2 4 .  (3.15)

Including the errors due to shot noise and clustering from the likelihood analysis, the 

total uncertainty in the projected mass estimate above is therefore 30%.

3 .2 .9  C o m p a r iso n  an d  D is c u ss io n  o f  R e s u lt s

The work of Tyson fe Fischer (1995) using shear analysis concludes tha t out to a 

radius of R. — 0.4h- 1Mpc, the projected mass of A1689 follows an isothermal profile 

given by,

M 2D{< R ) = (1-8 ±  0.1) x 10 15( E / / r 1M pc)//rtMQ. (3.16)

The mass contained within R. =  0.24/i_1Mpc they therefore predict as

M 2D{< 0 .2 4 /r1Mpc) = (0.43 ±  0.02) x 1O15/i_ 1M0 . (3.17)

Kaiser (1996), using shear information measured from the images presented in this

chapter finds again tha t A1689 is well fitted by an isothermal profile, very similar to
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tha t by Tyson & Fischer, to give

M -2 d { <  0.24/i-1 Mpc) =  (0.43 ±  0.04) x 10 15/i_ iMQ. (3.18)

These results are in good agreement with the projected mass interior to R  = 0.24/r-1 Mpc 

of M ‘2d = (0.50 ±  0.09) x 1 O15/i_ 1M0 calculated in this chapter.

Using the CDM (O0 =  U 08 =  0.54) N-body cluster simulations of van Kampen 

(in preparation), projected mass can be transformed to an equivalent 3D mass, line 

of sight velocity dispersion and X-ray temperature. These transformations allow ap­

proximate comparison of the result of this work with the results from methods of mass 

determination other than lensing.

A measurement of the line of sight velocity dispersion of A1689 is made by TCG 

who find

av{< 1.5/i_ 1Mpc) =  2355^83 kms“ 1. (3.19)

From the simulations, the projected mass of this chapter transforms to a dispersion 

of

ov{< 1.5/i- 1Mpc) = 2200 ±  500 kms“ 1, (3.20)

in good agreement with the results of TCG. This is most likely an overestimate of 

the true dispersion since the simulations take into consideration the effects of super­

position of clusters, infall along filaments and interlopers, den Hartog k  Katgert

(1996) attem pt to remove contamination from interlopers using the TCG data  and 

arrive at a velocity dispersion of av = 1860kms_1. This agrees with av calculated 

from the projected mass assuming an isothermal sphere which from equation (A.5) is 

<r„ =  1645±150kms . An explanation for this discrepancy is that A1689 is composed

of two or more clumps of m atter along the line of sight, a possibility hinted towards 

by the TCG data. Taylor k  Dye et al (1998) note that A1689 is well fitted by two 

isothermal spheres, one at a redshift oi z = 0.18 with civ = 1500kms_1 and one at 

z =  0.20 with av = 750kms-1 to give a total projected dispersion of 2300kms_ i .

A final comparison may be made with X-ray temperature studies of A1689. Mushotzky 

k  Scliarf (1997), using the ASCA X-ray satellite measure the X-ray tem perature of 

A 1689 as T\- = 9.01t[J;:Jk('V. This compares with the results of Yamasliita (1994) who 

measures a temperature of 8.7keV and 7.2keV from the ASCA and Ginga satellites
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respectively. These tem peratures may be transformed into the quantity M 500 using 

the following relationship derived by Evrard et al (1996) from cluster simulations,

where Mr,00 is the 3D mass within a radius defined by an over-density of 500p(;. Taking 

the result by Mushotzky & Scharf, this predicts a mass of

Transforming the projected lensing mass of this chapter to M r>oo using the simulations 

by van Kampen gives

implying an X-ray tem perature of T x  =  12.7 ±3.4keV. This is somewhat higher than 

the directly measured quantities.

The overall measured temperature of a system of clumps superimposed along the 

line of sight tends to be dominated by the temperature of the hottest clump. If the 

velocity dispersion of the largest isothermal sphere in the two-clump model for A1689 

proposed by Taylor & Dye et al is taken, this transforms to an X-ray tem perature of 

T x  — 7.0keV, consistent with the lower measurement by Yamashita. This provides 

further evidence tha t A1689 is not an isolated mass. Bartehnann & K olatt (1998) 

proceed a step further and suggest tha t such discrepancies between X-ray and lensing 

measurements enable calculation of cluster morphology.

3.3 S u m m a r y

This chapter has demonstrated the viability of cluster mass reconstruction using the 

integrated number count technique of Section 2.3.2. By applying colour cuts to V and 

I band data of objects in the field of Abell 1689, the background population of red 

galaxies has been selected. These sources are shown to exhibit a dilution in surface 

number density in regions of high magnification due to their relatively flat number 

count slope. The effects of non-linear source clustering and shot noise have been taken 

into consideration for the computation of a projected mass profile and 2D mass map

(3.21)

M 500 =  (0.95 ±0.16) x 1O15/i- 1M0 . (3.22)

M 500 =  (1-00 ±  0.65) x 1O15/i- 1M0i (3.23)

of A1689.
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Having derived an analytical relationship to provide a self-consistent mass and 

shear profile by assuming an axially symmetric mass distribution, a projected mass 

interior to /?. =  0.24/i- I Mpc of

M 2D{< 0.24//,“ ' Mpc) =  (0.50 ±  0.09) x 1015/i_ 1Mq (3.24)

has been calculated. This is in good agreement with mass estimates resulting from 

shear analysis. A comparison with X-ray tem perature and virial measurements sug­

gests that A1689 is not isolated but probably composed of two or more structures 

along the line of sight.
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C h a p te r  4

Self-C on sisten t M ass 

R eco n stru ctio n

4.1 I n t r o d u c t io n

The production of self-consistent mass and shear maps is the ultim ate aim of mass 

reconstruction using magnification information. Stated more quantitatively, the re­

quirement is to devise a method which enables the calculation of mass and shear 

maps given an observed map of magnification such that at any point in the lens plane, 

equation (2 .20) is satisfied.

The method of reconstruction using re estimators in Section 2.3.4 dealt with this 

issue by assuming tha t the mass distribution of a real lens lies somewhere between 

tha t of a homogeneous sheet and an isothermal sphere. Since both of these mass 

distributions have analytical forms which relate 7  in terms of re, equation (2 .20) allowed 

re to be expressed in terms of magnification alone. The two relationships obtained in 

this way, (the re estimators), provided an upper and lower bound 011 the mass value 

in a given area of the lens plane to produce either radial profiles or 2D distributions.

Section 2.3.4 showed that if a lens can be assumed to be axially symmetric, then 

a self-consistent solution can be obtained but only to arrive at a radial mass profile. 

A ttem pts to calculate a self-consistent 2D mass distribution using an iterative tech­
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nique based on the derivation of k and 7  from the deflection potential only converge 

for snb-eritical distributions. As section 2.3.4 discussed, rapid divergence occurs if 

critical lines are present.

The first half of this Chapter describes a method capable of computing a self- 

consistent solution for 7  and k in 2D with the presence of critical lines using only 

magnification data (see Dye & Taylor 1998). The second half demonstrates how 

the m ethod’s underlying theme can Ire applied to galaxy ellipticity measurements to 

provide a simplification to shear analysis.

4.2 S e lf -C o n s is te n t  M a g n if ic a t io n  A n a ly s is

The method is based 011 pixellization of the k distribution as suggested by AbdelSalam 

et al (1998) who used it to estimate the mass of the cluster Abell 370. Their technique 

necessitates the measurement of multiple image positions of lensed objects which act 

as constraints 011 their mass solution. This proves to be a robust method but is 

limited to clusters which exhibit multiple image systems and requires good quality 

data. Furthermore, without knowledge of object redshifts, identification of matching 

multiple objects is difficult.

The basic, underlying pixellization methodology used by AbdelSalam et al is mod­

ified here for the incorporation of magnification data. The use of magnification data 

with this method ensures that its application is not limited to clusters which exhibit 

multiple images and can be used with data observed under poorer conditions.

4 .2 .1  T h e o r y

Derivation of the method begins by dividing up the deflection potential in the lens 

plane into a rectangular grid of pixels. The continuous deflection potential of equation 

(2. LI) is then pixellized such that

~  J > m ( 0 ) ,  V>m(0) =  *mr m(0) (4.1)
m

whore the summation acts over all pixels, ip7ri(9) is the contribution to the potential at 

6 from pixel m and k,u is the moan value of k  in that pixel. Comparison of equation
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(4.1) with equation (2.11) shows that the term Fm(0) is therefore given by

r m(0) =  -  / d 0; in \ o -  e'\.
TT J m.

(4.2)

The integral here only acts over pixel m,  explaining the origin of the approximation 

in equation (4.1). In order to arrive at this result, it has been assumed tha t k varies 

only slowly over the pixel so tha t it may be treated as a constant and taken outside 

of the integral in equation (2.11). In practice, this condition is enforced anyway by 

the resolution of the gridded magnification data.

The next step is to derive a relationship for the pixellized shear. This is straight­

forwardly achieved through application of equation (2.16) to the pixellized potential 

in equation (4.1):

7i(0) =  ! ( a ? - f l g ) £ * m r m(0 )
rn

72(0) =  dxd2 ] > > mr m(0) (4.3)

where di =  d / d 0j. For the purpose of simplification, the following quantities are 

defined,

ûm(0 ) =  \ { 9 l - d l )  r m(0)

bm(0) = did2r m {0) (4.4)

and the summation convention is adopted so tha t the shear components may be writ­

ten as

7i (#) =  Kmam (0), 7 2(0 ) =  Kmbm{d). (4.5)

Equation (4.5) is an im portant result which demonstrates the main advantage of 

pixellization. The shear is now expressed in terms of the pixellized k distribution and 

the quantities am and brn which are readily evaluated. For square pixels, arn and brn 

have the following analytical form (see Appendix A.3):

am{Q) = — arctan
7T

r 2 _  „2 
r 2 r l

bm{0) = — In

{rl + r l Y - l / A
( r 2 +  r 2 + i / 2)2 _ ( r i + r 2 ) 2

(4.6)
(rf +  r |  +  1 /2 )2 -  (ri -  r2)2 

where r\ and r 2 are the components of the vector r  =  0 — 0m from position 0 to the 

centre of pixel m  at 0m. Figure 4.1 shows the geometry for clarification.
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Origin

Figure 4.1: Clarification of the geometry used to calculate the contribution of the potential 

at point P from pixel m. The centre of pixel m  is described by the vector 6m from the origin 

and by the vector r from point P. Integration over the pixel is carried out with respect to the 

variable vector 0' (or 0 -  0'). The units of length are chosen such that pixels measure 1 unit 

on a side.

The current formalism allows the determination of individual pixel contributions 

towards quantities at any continuous point P in the lens plane described by 0. This is 

a more general treatm ent than typically required in practice. Knowledge of quantities 

such as the shear or the potential are only usually required at points on the grid. The 

quantity 0 can therefore be pixellized in the same fashion as 0m such tha t 0 =*■ 0n 

with 0n locating only pixel centres. This means tha t the quantities am(0) and 5m(0) 

in equation (4.4) can be represented as the square matrices amn and hmn with each 

index running from 1 to the total number of pixels.

In analogy with the quantities amn and bmn for 7 , one might expect to derive 

a similar result for k. This can be attem pted by applying equation (2.13) to the 

pixellized potential in equation (4.2):

Cmn — b~ V 2 f  d20 'ln |0 n - 0 ' |  (4.7)
Jm

where V 2 acts on 0„. The identity V 2 ln |x | =  2 7 t5 2 ( x ) used in section 2.1.4 means



Iii other words, cmn is simply the Kronecker delta function. This is exactly as one 

would have hoped since the value of k in any given pixel should not depend upon k 

in any other pixel.

To bring magnification into the derivation, the pixellized versions of k and 7  are 

substituted into equation (2 .20) so that,

'P^n1 =  (1 -  «n )2 -  7n

=  (1 -  «n )2 -  («mO'mn)2 ~  ( ^ L )2 (4.9)

with summation implied over index m.  Defining N  as the total number of pixels in the 

grid means that equation (4.9) represents a set of N  simultaneous equations which can 

be alternatively expressed as a vector equation. This is more readily seen by defining 

the N  x N  x  N  matrix G whose elements are given by

Gpqn — fipn^qn Q’pnQqn bpn bqn (4.10)

to enable equation (4.9) to be written as

1 — 2k  +  k G k 1 — =  0. (4.11)

Here, p  ' 1 is the IV-dimcnsional vector of pixellized inverse magnification parity-signed 

values, k 1 is the transpose of the vector k  of pixellized values of k and 1  is the vector

(1,1,1, ■ ■ ■). Once again, V  is the image parity of Section 2.3.4.

Equation (4.11) is the first main result of this chapter. Given a measured dis­

tribution of inverse magnification values, k can now be solved without the need for 

any assumptions concerning 7  or the lens mass distribution. Having solved for k, the 

corresponding shear distribution can be subsequently calculated from equation (4.5).

4 .2 .2  A p p l ic a t io n  to  C lu s ter  M o d e ls

Verification of the method is obtained in this section through its application to two 

idealised cluster models. Starting with a predetermined k, distribution, the corre­

sponding shear distribution is derived using the Fourier methods discussed in Section



2.3.4. To remove the effects of the Fourier transform’s implicitly assumed periodic 

boundary conditions, the 7  distribution is windowed to select only the relatively unaf­

fected central region. The size of this window is determined by the accuracy required; 

a smaller window removes more of the boundary and hence a more accurate distribu­

tion remains.

Applying the same window to the initial k distribution then allows the magnifica­

tion distribution to be calculated using equation (2.20). The magnification is used in 

equation (4.11) which is then solved for k . This solution for the k distribution is finally 

used to determine the shear distribution from equation (4.5) so tha t a comparison can 

be made between the initial, predetermined k and 7  and the k and 7  computed using 

the pixellated method.

For both the truncated isothermal sphere and dumb-bell models which follow, suf­

ficient accuracy was obtained using an initial Fourier grid of 512 x 512 pixels windowed 

to a grid size of 32 x 32 pixels.

Truncated Isotherm al Sphere M odel

The initial pixellated mass was distributed according to

« =  (4.12)
r +  7-0

where r is the radial distance from the centre of the sphere, r'o is the degree of trun ­

cation and c is a constant. The value of c determines the size of the critical line and 

indeed whether one exists. A larger value of c essentially gives a larger critical line 

radius. If c is smaller than a certain value dependent on the value of vq, 110 critical 

line is present. (This is not true of a pure isothermal sphere in which case rcrit =  2c.)

Choosing c to result in a critical line which encompassed a central 2 x 2 pixel 

region, the distributions of k and 7  in the top third of Figure 4.2 were generated. 

After calculation of the inverse magnification from these and a reversal of parity in 

the inner critical line pixels, a solution for k was obtained. The solved k distribution 

together with the associated 7  distribution is shown in the middle third of Figure 4.2. 

Both the predetermined and solved distributions shown here were Gaussian smoothed 

onto a finer grid from their underlying 32 x 32 grid of pixels with a smoothing scale
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of one pixel width. This is purely to aid visual comparison. The residuals plotted 

in the bottom  third of Figure 4.2 show the difference between the predetermined and 

the solved distributions as percentages of («¡nit ~ ^solved)Aunit- The contours were 

generated directly from the unsmoothed grid.

The residuals show tha t k has been solved to an accuracy of less than one percent 

over most of the grid1. This is a negligible error in comparison to the noise typically 

encountered in practice from background clustering of objects, shot noise (Taylor & 

Dye et al 1998) and the uncertainties resulting from use of the k, estim ator method (see 

van Kampen 1998). The recovered shear distribution is more affected although still 

fares better than 7  calculated from uncorrected Fourier techniques which is typically

30% worse.

The main contribution to these residuals is from boundary effects which arise from 

attem pting to recover a nonlocal shear in a finite area. Much work has been carried out 

into the removal of such effects (see Squires & Kaiser 1996 and Seitz &; Schneider 1995 

for example) which, as has been demonstrated, have little impact on the recovered k . 

In light of this, treatm ent of these boundary effects has not been considered in this 

work.

D um b -bell M odel

To test the method with a more general, asymmetric mass distribution, a dum b­

bell model consisting of two offset, truncated isothermal spheres of different mass 

was used. Proceeding in exactly the same manner as with the isothermal model, 

the inverse magnification distribution was computed from the predetermined k and 7  

distributions shown in the top third of Figure 4.3. After reversal of parity in the inner 

critical line regions, equation (4.11) was solved for a. The solved k and 7  distributions 

are shown together with their residuals in the lower two thirds of Figure 4.3. As in 

the case of the isothermal model, the residuals between the predetermined and solved 

k are typically less than one percent over most of the field. Once again, 7  fares worse 

with a central two thirds of the field yielding residuals smaller than  10%.

1 Analysis shows th a t this is true regardless of the grid dimensions.
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In itia l k . In itia l 7

( ( § ) )

/  ^  - - - - - v

Solved k  Solved 7

R e s i d u a l s  =  1 0 0 * (/ c to ll -  ^ 1 / ^ ,  R e s i d u a l s  =  1 0 0 * ( 7 i l l l l  -

Figure 4.2: Truncated Isothermal Sphere Model: The predetermined (initial) k and 7  used 

to form the magnification distribution from which the solved k and 7  are derived. The dis­

tributions are smoothed from the 32 x 32 grid onto a 128 x 128 grid. White dashes show the 

position of the critical line. Contours are linearly spaced and set at the same levels in both k 

plots and in both 7  plots. Residuals are expressed as percentages of (mn\t ~ «solved )/>timt-

4 .2 .3  P r a c t ic a l  C o n s id e ra t io n s

The set of N  simultaneous equations represented by equation (4.11) were solved itera­

tively using the Powell method as provided by the :C05PCF’ NAG library routine. A
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I n it ia l k In itia l 7

Solved k  Solved 7

Figure 4.3: Dumb-bell Model: Predetermined (initial) k constructed from two offset, trun­

cated isothermal spheres of different mass. The critical lines are shown as white dashes. 

Distributions are smoothed from the 32 x 32 grid onto a 128 x 128 grid. Linearly spaced 

contours are set at the same levels for k and at the same levels for 7 .

solution for particularly fine grids can prove computationally intensive, especially on 

the amount of CPU memory used which scales as N ‘l. For typical grid resolutions used 

in practice however, this tends not to be a major concern. Figure 4.4 illustrates the
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convergence of the solution to the isothermal model in Section 4.2.2 with N  =  1024. 

Plotted against each iterative step is the RMS of equation (4.11). As the figure shows, 

rapid convergence occurs in the first few cycles of the iteration. The 30 steps shown 

took approximately one minute of CPU time on a 400Mhz DEC-Alpha workstation.

Ite ra tiv e  step

Figure 4.4: Convergence of k solution for the isothermal lens in Section 4.2.2. Plateaus are 

attributed to the inner workings of the ’C05PCF’ NAG library routine.

Since the Powell algorithm is an iterative process, an initial estimate of the solu­

tion is required to start from. The choice of this initial estimate proves to play no 

noticeable part in the solution obtained which acts to demonstrate the robust nature 

of this method. Distributions from all three k estimators of Section 2.3.4 and even 

a completely flat distribution were used as initial estimates, all four giving the same 

converged result.

One feature of this method is that correct choice of pixel parity (especially for 

low grid resolutions) is im portant in order to achieve a sensible solution. The inap­

propriate assignment of parities to pixels manifests itself in a manner dependent on 

whether a pixel is wrongly assumed to he inside or outside a critical line. If a pixel 

is assumed to lie inside a critical line when in actual fact it does not, k in that pixel 

is overestimated. In the reverse situation, n is either underestimated or the pixels 

immediately surrounding the incorrectly assigned pixel are overestimated.
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Figure 4.5 demonstrates the effect of incorrect parity assignment for an isothermal 

sphere. The left hand side of this figure shows the consequence of attem pting to recon­

struct a sub-critical distribution assuming tha t the central pixel lies inside a critical 

line. The reconstructed value of re =  1.0 in this central pixel compared to the value of 

re = 0.7 in the predetermined central pixel shows tha t re has been overestimated. The 

value of re in the surrounding pixels is within one percent of the solution for re which 

would have been obtained if the critical line was assumed absent.

The right hand side of Figure 4.5 shows the reverse situation. The predetermined 

distribution has a critical line which encompasses the central pixel with re =  1.3. The 

pixels immediately to the north, south, east and west of this pixel have the value 

k =  1.1. Attem pting to reconstruct re assuming the absence of a critical line results 

in the overestimated value of re — 1.2 in these surrounding pixels. In this case, the 

reconstructed central pixel has re =  1.3, agreeing with the predetermined value and 

hence the solved distribution is flatter than it should be.

The error in re resulting from bad pixel parity assignment depends, as one would 

expect, on the severity of the mismatch. In situations where mass distributions are 

very nearly critical or only just critical, the incorrect assumption of the presence 

or absence of a critical line does not dramatically modify the reconstructed results. 

More extreme mismatches however, give larger discrepancies which could in principle 

be used to determine the accuracy of critical line positions. This would inevitably 

prove too ambiguous with real data and so critical line positions should always be 

determined from the observed image directly.

To ensure that the method does not break down with noisy data, Gaussian noise 

was added to the amplification. Errors in re resulting from noise in the inverse ampli­

fication were found to propagate as one would expect from equation (4.11). For an 

isothermal lens, the expected result derived from simple error propagation of equation 

( 2 .2 0 ) ,

5k = ^  (4.13)
2 p-

was recovered, indicating tha t pixellization does not lead to spurious noise properties.
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Sub-critical

I n i t i a l  k

Super-critical

I n i t i a l  k

Figure 4.5: Effects of incorrect pixel parity assignment. Reconstruction of the predetermined, 

sub-critical isothermal sphere model on the left hand side results in an overestimation of k by 

40% in the central pixel under the incorrect assumption that this central pixel lies within a 

critical line. On the right hand, k has been overestimated in the pixels immediately north, 

south, east and west by 10% due to the incorrect assumption that the central pixel is not 

inside a critical line.

4 .2 .4  A p p l ic a t io n  to  A b e l l  1689

The method was applied to the magnification data presented in Chapter 3 for the 

lensing cluster A1689. Using the same 10 x 10 grid of pixels and the same parity 

change in the 2 x 2 inner critical line region as before, the k and 7  distribution shown 

in Figure 4.6 was obtained.

Comparison with the mass density map illustrated in Figure 3.13 which was pro­

duced with the sheet k estimator shows very similar structure as one would have 

expected. The value of k at the peak calculated here is approximately 10% lower than
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Solved  A1689 tc S olved  A 1689 7

X (arcm in ) X (a rcm in )

Figure 4.G: Self-consistent reconstruction of k and 7  for Abell 1689 using the magnification 

data presented in Chapter 3. The critical line is shown by the white dashes. Both distributions 

are Gaussian smoothed onto a finer grid. Maximum k and 7  values are Kmax = 1.2 and 

7 max =  0.5 respectively. The 10 contours are linearly spaced by Ak = 0.15, A7  = 0.15.

the peak value in Figure 3.13 since the sheet estimator over-estimates k as discussed 

in Section 2.3.4. This result has little effect on the total integrated mass of A1689 

presented in Section 3.2.8 obtained with the axially symmetric ID solution. The 7  

distribution is shown for completeness although undoubtedly suffers from boundary 

effects typically encountered in the models of Section 4.2.2.

4.3 S h e a r  A n a ly s is

Having shown tha t pixellization enables the accurate reconstruction of surface mass 

density from magnification data, the next logical step is to attem pt to obtain a similar 

success with shear data. This section details how this is achieved by providing a 

simplified and pixellized alternative to the ellipticity equation presented by Kaiser 

(1995, K95 hereafter).

109



4 .3 .1  D e r i v a t i o n  o f  P ix e l l i z e d  E l l i p t i c i t y  E q u a t i o n

Section 2.2.2 discussed how shear analysis extracts information about the mass dis­

tribution of an intervening lens from the measurement of lens-induced distortion of

could be measured in bins across the field of view through knowledge of the average 

ellipticity of galaxies contained within those bins. These ellipticities are in practice 

obtained by calculating the quadrupole moments of individual galaxy images to arrive 

at the ellipticity parameters (Valdes, Tyson & Jarvis 1983). K95 showed tha t the 

ellipticity parameters are related to surface mass density and shear via,

of Kaiser Hi Squires (1993) as outlined in Section 2.2.2 or the generalization of this to 

the strong regime by K95. It might be expected that an alternative way of proceeding 

would be to pixellize equation (4.14) and use the result of equation (4.5) to give,

where e/^ =  J i / ( 1  — k) and summation is shown for clarity. Equations (4.15) are 

essentially m atrix equations which can therefore be rearranged using m atrix inversion 

to give

In this equation, ep) and e (2) are the vectors formed from the ellipticity param eters 

and the elements of the square matrix H  are given by

Unfortunately, this does not prove to be a viable means of reconstructing k . In 

calculating matrix condition numbers, one finds that the matrix H (q is singular and 

tin' matrix H q) is ill-conditioned. It is perhaps not too surprising tha t this is the 

case. As equation (4.16) shows, this method allows determination of k independently 

horn each ellipticity parameter. The shape and orientation of a galaxy can only be

background galaxy images. In particular, it was noted how only the ratio 7 / ( 1  — n)

Hj
ei j  —  , > 7 i j1 — K

(4.14)
^  7 2  - 7 1

One way of solving this for k in the weak lensing regime is to follow the approach

'mn  K m (4.15)
m  m.

k -  -  e(2)H (2|. (4.16)

inn ■ (4.17)
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uniquely described by both ellipticity parameters and so one would expect th a t the 

same should follow for the determination of k .

The criterion tha t both ellipticity parameters should be used for a determ ination 

of s; can be satisfied by applying the result of K95 that

diK =  djj i j ,  (4.18)

to equation (4.14) instead of its direct pixellization. This gives

diK =  eijdj( 1 -  k) +  (1 -  K)<)je.jj (4-19)

and making the substitution tha t d{K = —d.L{ 1 — k) and dj =  Sijdi allows this to be 

written,

(Sij +  eij)dj ln (l — k) +  djSij — 0. (4.20)

Since />’,, H;j = 6kj  for any square matrix B, multiplying the equation above by 

(Ski + e/ci) - 1  yields

dk ln (l -  k) +  {5kl +  eki)~l djCij = 0. (4.21)

Relabelling indices and using the fact that the right hand side of this equation is the 

derivative of a logarithm gives the result that

di ln(l — k) +  dj ln{5ij + e7;7) =  0. (4.22)

The logarithm of the matrix in this equation is interpreted using the result tha t for a 

square m atrix B and the identity m atrix I, the following Taylor expansion holds true

ln(I +  B) =  B - ^ B 2 +  ^ B 3 ------  (4.23)

in analogy with the result if B and I had been scalar quantities. Applying this Taylor 

expansion to the logarithm in equation (4.22) and noting from the definition of the 

ellipticity param eters in equation (4.14) that

(e*i)2 =  (e? +  4)Sij  = e2 Sij i (eij)3 =  e2ey, ■ • • (4.24)

gives

In {Sij + eij) = -  - e  Sij + - e  eZJ3
' OO 2 J ! + I \ e .. /  oo 2n\
V      ] -  [ T  ^  Sij



The logarithmic substitutions made here for the infinite series are only valid pro­

vided tha t e < 1 . Inserting equation (4.14) into the magnification equation (2.20) 

shows that

M_1 =  |(1 -  «)2(1 -  e2)|. (4.26)

Hence the parity changes when e2 > 1. Since e l;j and e~jl are observationally indis­

tinguishable and flip from one to another whenever there is a parity change (Kaiser 

1995), the requirement that e < 1 is satisfied by simply inverting the ellipticity m atrix 

when a critical line is crossed.

Substituting the result of equation (4.25) into equation (4.22) and rearranging 

then gives

ln (l -  «) =  I  ln(l -  e2) -  \ d ~ 2d ^  In ( .  (4.27)
2 2 e \ i  — e j

where d~2 is the inverse Laplacian in 2D. An expression for the term  d~2dld./elj  in 

this equation is derived directly by operating on equation (4.14):

cT 2()j()j(\jj =  d~2(d2 - d2)e\ +  2d~2d\d‘2e2

=  {d2 — d2)d~2e\ +  2did2d~2e2■ (4.28)

The next step is to apply pixellization so that as in Section 4.2.1 the following 

transformations take place:

{d{ -  d2)d~2e^d)  =  (d'f -  d i ) ~  I  d 20 'e i (0 ' )  i n \e -  e'\ ->

e(i)m(dj I d20' In \0n -  6'\ =  e{l)mamn (4.29)
^  Jm

and

dvd2d~2e2{0) = d {d2 —  I d20'e2(0') I n \0 -  0'\ ->■
27T J

e{2)m9\d2—  I  d2 O' 111\0n -  0'\ = - e (2)mbmn- (4.30)

where again, summation over index m  is implied in both. Inserting these results into 

the pixellized version of equation (4.27) and then rearranging gives the final result:

1
Kn = 1 — (1 — e2 ) 1/2 exp

where.

e4’ (1 ) m a 7nn ^  (2 ) m  ^ ra n ) (4.31)

- 1 , 2 .  (4.32)
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Equation (4.31) is the second main result of this chapter, k is now expressed 

entirely in terms of the measured ellipticity parameters and arnn and bmn of Section

4.2.1. As with other shear reconstruction methods however, the surface mass density 

obtained in this way is not absolute. Section 2.2.2 discussed how this is a result of the 

fact tha t the ellipticity parameters, or more specifically, the quantity 7 / ( 1  — k) is in­

variant to isotropic magnification resulting from homogeneous sheet-like distributions 

of mass. It is readily seen tha t if reconstruction of such a sheet mass distribution is 

attem pted using equation (4.31), then since e =  0 everywhere, Kn = 0 for any pixel n.

I11 practice, normalization comes from stipulating tha t k > 0 everywhere. Obser­

vations in which clusters are larger than the field of view therefore only offer a lower 

bound to the absolute quantity of mass present. Of course, the results of magnification 

analysis can be employed to provide an absolute normalization of mass.

4 .3 .2  A p p l ic a t io n  to  D u m b -b e l l  M o d e l

This section sees the application of the pixellated ellipticity reconstruction technique 

to a dumb-bell cluster model similar to that presented in Section 4.2.2. In the exact 

same fashion as in Section 4.2.2, 7  is calculated using Fourier methods from the 

generated k distribution. The distribution of ellipticity param eters is then calculated 

from equation (4.14) which is subsequently used in equation (4.31) to reconstruct k .

Figure 4.7 shows the generated mass distribution and the distortion field. Each 

ellipse in this distortion plot represents the observed shape tha t an intrinsically circular 

object would have if its image were to lie at that point in the lens plane. Combination 

of equation (4.14) with the result from Section 2.1.5 tha t 71 =  7  cos 2</; and 72 =  

7  sin 20  shows tha t the orientation of each ellipse is given by

The ratio of semi-major to semi-minor axis or the elongation of each ellipse is given 

by equation (2.19) which in terms of e is

Results of the reconstruction of k are shown in Figure 4.8. Normalization of k

(4.33)
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Figure 4.7: Generated dumb-bell model: The k distribution is constructed from two truncated 

isothermal spheres of different mass. The distortion field is illustrated by plotting the apparent 

shape of an intrinsically circular background object.

was provided by setting the average of the two peak values to the average of both 

peaks in the generated distribution. In this plot, the contours are set at the same 

levels as those in Figure 4.7. The residuals show the reconstruction errors are again 

dominated by boundary effects. These spread further into the distribution than the 

boundary effects encountered with the pixellated magnification solution. This results 

in the reconstruction being limited to an accuracy of approximately 10% across most 

of the field of view.

4.4 S u m m a r y

A method for directly calculating accurate, self-consistent surface mass density and 

shear distributions from the lens amplification and critical line positions has been pre­

sented. This has been demonstrated with the isothermal sphere and dumb-bell cluster 

models in reconstructing the surface density to within a percent over most of the field 

of view. Reconstruction of the shear pattern has a lower fractional accuracy of a few 

tenths due to boundary effects. The method has been applied to the magnification 

data of Chapter .'1 to enable computation of the 2D surface mass density and shear 

distribution of Abell 1689.

114



S o lved  k Residu als  =  100*(/cinit -

Figure 4.8: Reconstructed k from the ellipticity parameters. Contours are at the same 

levels as in Figure 4.7. The residuals show that reconstruction is limited to an accuracy of 

approximately 10% across most of the field of view.

A simplified solution to the problem of estimating surface mass density from galaxy 

ellipticities has also been presented. This approach puts the calculation of surface 

mass from shear and magnification on an equal footing. Investigation of the combined 

analysis is left for future work.
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C h a p te r  5

T h e  M ass o f  A b e l l  1689 from  

L u m in o sity  Function A n a ly s is

The technique of reconstructing cluster mass by measuring its lensing effect on the 

intrinsic distribution of background object luminosities is applied to Abell 1689 in 

this chapter. Using an independent set of observations of the cluster, photom etric 

redshifts and magnitudes determined for all objects detected in the field of view enable 

calculation of the source luminosity function. By comparing this to observations of an 

unlensed offset field, the method outlined in Section 2.3.3 gives a mass measurement 

of A1689.

The work in this chapter was carried out in collaboration with the Max-Planck 

Institu te for Astronomy in Heidelberg (referred to hereafter as ‘the M PIA ’). Through­

out this chapter, all reduction and photometric analysis was performed using the 

‘M PIA PH O T’ software package (Meisenheimer & Reiser 1996). M PIAPHOT was 

w ritten at the MPIA as an extension to ESO’s image reduction and analysis soft­

ware, MIDAS (Munich D ata and Analysis Software).
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5.1 Observations of A1689

5 .1 .1  D a t a  A c q u is i t io n

Observations of Abell 1689 were made in 9 different filters over a combined period of 

19 nights at the Calar Alto 3.5m telescope in Spain. These 19 nights were divided 

between 4 separate observing runs as listed below:

Dates Observer(s)

28/05/95 - 04/06/95 K. Meisenheimer1, E.M. Thommes1,2 & A.N. Taylor2

22/02/96 - 24/02/96 K. Meisenheimer1 & J.A. Peacock2

14/06/96 - 16/06/96 A.N. Taylor2 & S. Dye2

01/06/97 - 05/06/97 S. Dye2

1 MPIA, Heidelberg. 2 If A, Edinburgh.

A total of 12 hours worth of data with sufficiently good seeing was observed during 

this time. Table 5.1 lists the total integration time observed with each filter. The I 

band filter (826 nm) data is the data observed with ESO’s 3.5m NTT presented in 

Chapter 3. Figure 5.1 shows the transmission of all filters used.

Filter: XC/A X  (nm) tmi(s) No. Filter Subsets Use

826/137 (I-band) 6000 1 Global SED

774/13 6800 2 Hn. at z — 0.18

703/34 4100 2 Background z

614/28 7700 2 Background 2

572/21 6300 2 Background z

530/35 3300 1 Background z

480/10 4200 1 4000Àat z = 0.18

466/8 4800 1 Ca H.K at z =  0.18

457/96 (B-baud) 6000 2 Global SED

table 5.1: L he observations of Abell 1689 in all 9 filters detailing the total integration 

time in each filter, lmt. The number of filter subsets gives the number of different 

nights observed with that filter.
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Figure 5.1: Transmission curves of filters used for observations of Abell 1689 at Calar Alto. 

The uncalibrated spectrum of the central dominant elliptical galaxy in A1689 is plotted for 

reference (see Section 5.2.3).

To clarify the terminology used throughout this chapter, a set of images of Abell 

1689 observed on the same night in a particular filter will be referred to as a ‘filter 

subset’. The term  ‘filter set’ refers to the total collection of cluster images observed in 

a specific filter. As Table 5.1 shows, observations of A1689 were comprised of either 

one or two filter subsets.

This specific range of filters was chosen to optimize distinction between foreground, 

cluster and background objects. The specific use of each filter is listed in Table 5.1. 

The known redshift of A1689 of z ~  0.18 allowed the narrow band filters to identify 

cluster objects by searching for spectral features such as the 4000Abreak, the HQ 

line and the Ca H&K lines. The filters 530/35, 572/21, 614/28 and 703/34 enabled 

division of the background galaxies into redshift bins between z — 0.2 and z  =  0.8 . 

Discrimination of background and foreground objects was provided by measurement 

of the global spectral energy distribution (SED) in the I and B broadband filters.
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5 .1 .2  I m a g e  R e d u c t i o n

Flat fields for each filter subset were constructed from typically four or five dusk sky 

fiats observed specifically for tha t subset. Cosmic rays and stars were eliminated 

from the combined fiat fields by median filtering the individual flats. Each image 

belonging to a particular filter subset was then bias-subtracted and flattened with its 

corresponding fiat field according to

where /¿(x, y) is the flux of the raw A1689 image i in the pixel at (x , y) and f f i at ix , y) is 

the flux in the same pixel in the flat field. The flat field is normalised by dividing it by 

the mean flux per fiat field pixel < f j i at >. The bias, 6,;, is calculated as the mean value 

of flux in pixels in the overscan region of the image (generated by the CCD hardware 

by reading out extra lines of pixels which are not physically present on the chip). Use 

of fiat fields specific to each night ensured that optimal flat fielding was achieved. All 

images were flattened to an accuracy of ± 1 % variation in background flux across the 

field of view. After the initial stage of flat fielding, some images exhibited a large scale 

gradient in flux. These images were subsequently more accurately flattened using a 

fitted second order 2D polynomial provided by the MIDAS function ‘F IT /F L A T ’.

W ith anywhere from 4 to 9 images per filter subset, cosmic ray removal was per­

formed using the pixel rejection algorithm built into the M PIAPHOT command ‘COS­

MIC/MEDIAN'. Prior to application of this algorithm, all images within a filter subset 

required alignment with each other. Alignment was obtained using two M PIAPHOT 

functions. The first, ‘F IN D /O B J’, was used to detect objects in each image and 

create a table of positions and integrated fluxes. Having generated tables for every 

image in the filter subset, the second function ‘FIND/M OVE’ was used to match ob­

jects between each table and calculate the translation required to align the images. 

Translations were then recorded in the header of each image for the pixel rejection 

algorithm.

The pixel rejection algorithm works by first calculating a median image M  from 

all images /, within a filter subset such that for every pixel (x,y) ,

(5.1)

A-I(x.y) =  m ed ian j/,(;/:. y)\i = l.n } . (5.2)
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The variance of pixel values within a circle centred on every pixel (xo,yo) in tliis 

median image is then calculated via,

is used as a threshold for the rejection of pixels in each filter subset image. Denoting 

cosmic-corrected images as Cj, every pixel (x , y ) in each image is a ttributed  a value 

according to

If a pixel in a particular image is affected by a cosmic ray causing the value of that 

pixel to lie a user defined standard deviations away from its median value, then 

it is replaced by its median value. If such a pixel replacement occurs, surrounding 

pixels contained within the same radius R  as used in the variance calculation above 

are checked and replaced with the value c s i ( x , y )  according to,

This allows for any influence the cosmic ray may have had on surrounding pixels. 

Setting the user defined quantity ni0 lower than nyt allows the less affected surround­

ing pixels to be detected and replaced with the median value. For the cosmic ray 

replacement of the Calar Alto images, the values n/^ =  4.0 and n /0 =  2.5 were used.

Figure 5.2 shows an almost true colour image of the post-reduced observations 

of A1689. This image was constructed by superimposing data from the 614nm (red), 

530nm (green) and 457nm (blue) filters. The intensity scale is logarithmic to highlight 

faint structures such as the faint arc, just visible to the lower left of the cluster centre.

5.2 P h o t o m e t r i c  A n a ly s is

5 .2 .1  F lu x  C o n v e rs io n

°~2{x o,yo) = — ~  -  M { x 0, y 0))2, (5.3)
m  (x,y)\x2+y2<R2

where m  is the number of pixels contained within the circle of radius R.  This variance

fi{x , y ) if f i{x , y) -  M{x,  y) < n hia ( x , y)

M (x , y )  if f i {x,y)  -  M {x ,y )  > n hia(x ,y )
(5.4)

Ci{x,y) if Ci(x, y) — M (x,  y) < ni0a(x,  y)
csi{x, y) = i

M (x ,  y) if Ci(x,y) -  M {x ,y )  > ni0cr(x,y)
(5.5)

Construction of the luminosity function which follows later in this chapter required 

object fluxes in terms of the number of photons per unit time per unit area. The
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Figure 5.2: Post-reduced colour image of Abell 1689 observed with the 3.5m CA telescope. 

A logarithmic intensity scale highlights faint structures such as the faint arc to the lower left 

of the cluster centre.

‘fluxes’ assigned to pixels in the raw Calar Alto images were simply the values output 

by the telescope’s analogue to digital conversion hardware.

The electric charge stored in each CCD pixel as a result of incident photons during 

an image exposure is read at the end of an exposure as a voltage. The CCD hardware 

converts these analogue voltages into digital units (DUs) which are the values assigned 

to pixels in the raw image. Since DUs are directly proportional to the number of 

photons which have struck a given pixel, a simple conversion factor enables the number 

of incident photons at that pixel to be calculated. This conversion factor typically



changes between detectors. Of the four separate observing runs made at Calar Alto, 

three different detectors and hence three different conversion factors with a value of 

around 2 — 3 were in operation.

Clearly, knowledge of the number of incident photons per DU for a given detector 

is essential for the correct calculation of object fluxes. To obtain fluxes in terms of 

the number of photons per unit time per unit area, once DUs are converted to the 

number of photons, the total integration time for each image is used to calculate the 

rate of photon arrival. The last step is to calculate the area within which the photons 

in each pixel are collected. This is a function of the size of the telescope mirror, the 

optics in the instrum ent used to focus the image onto the CCD and the area covered 

by one CCD pixel.

Using the M PIA PIiO T function ‘P R E P /C C D ’, image fluxes were automatically 

converted from units of DUs to units of number of photons per unit time per unit area. 

This command was configured specifically for the FR.EDUK (prime focal reducer) 

instrum ent used to obtain all of the A1689 images observed at Calar Alto.

5 .2 .2  O b je c t  T ab les

Instead of summing together images in each filter set, photometric evaluation was 

carried out 011 images individually. I11 this way, the mean weighted flux /U ’m) of an 

object rn observed in a filter set b was calculated as,

£* rdv»)

E i
1 (5.6)

(b,m)

with an error given by
- 1/2

E
v

(5.7)

/

The quantity o f ' " 1'* is the standard deviation of background pixel values surrounding 

object rn in image i. Background pixels are segregated by applying a cut to the 

histogram of fluxes in pixels which he within a box centred on the object. This cut 

removes the high flux pixels belonging to the object itself and any other neighbouring
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objects within the box.

The method of obtaining object fluxes with M PIAPHOT involves integrating the 

flux of all pixels inside a fixed aperture centred on each object (see Section 5.2.3). 

The centre of each object is provided by a ‘mark table’ of object co-ordinates which 

accompanies each image. The integrated flux of each object is then systematically 

w ritten into this accompanying table. Since fluxes of a given object between all images 

in a particular filter set are ultimately combined, the identity of objects between 

images must be maintained. This is ensured by simply listing the same objects in the 

same order in every mark table.

The production of a mark table for each image would not be viable using the 

MIDAS ‘F IN D /O B J’ command independently on images simply because a different 

number of objects would be detected in each (due to, for example, the random variation 

between objects with brightnesses close to the detection thresholds and image offsets) 

and objects would also be ordered differently. Ideally, a mark table produced by 

detecting objects in a deeper image would solve these problems if it were used for all 

images.

Fortunately, the I band data used in this Chapter is deeper than all filters observed 

at Calar Alto. The table of objects generated by SExtractor in Chapter 3 was therefore 

used as the underlying mark table for every image. The depth of the I band image 

meant that there were more objects in the mark table than  the number detectable in 

the Calar Alto images. In cases where I band objects were too faint to be detected in 

the Calar Alto images, the photometric analysis of the Calar Alto data (which follows 

later in this chapter) returned fluxes integrated over blank image regions. These ‘null 

objects’ were easily removed from the final object catalogue by virtue of their large 

flux scatter and approximately zero fluxes.

Im ag e  D is to r tio n

A complication with using the I band SExtracted data table was that images observed 

with the Calar Alto 3.5m telescope are radially distorted, unlike the I band images 

taken with the NTT. In order to obtain correct alignment with the Calar Alto images,

124



the I band mark table therefore had to be radially distorted in the same fashion as 

the Calar Alto image distortion.

Previous work by the MPIA has shown that this radial distortion can be fitted by,

A r = ar2 + brA (5.8)

where A r is the radial outward shift experienced by an object lying in the image at a 

radius r  from the optical axis. The parameters a and b are obtained in the following 

way:

• The I band mark table is first scaled, rotated and translated to overlay a typ­

ical Calar Alto image. This is done using the ‘FIND/M OVE’ command which 

compares a table of positions of objects in the Calar Alto image provided by 

the ‘F IN D /O B J’ command with the mark table. At this stage, the align­

ment is only approximate since the radial distortion cannot be accounted for 

b y ‘FIND/M OVE’. , . fa- , .

• Objects in the I band mark table are matched with objects in the Calar Alto 

table. The translations required to shift each I band object onto its matching 

Calar Alto object are recorded in the I band mark table.

• Values of A r versus r calculated as

A r =  yj(x'  -  x0)2 +  (y' ~  yo)2 -  r 

r = sj{x -  xq)2 + (y -  y0)2 (5.9)

are plotted for each object where (x,y) , {x',y') and (xo,yo) are the co-ordinates 

of the original position of the object in the I band mark table, the shifted position 

and the optical axis respectively. A plot something similar to tha t in the top 

half of Figure 5.3 is obtained.

• The co-ordinates of the optical axis and the global scaling of object positions 

are adjusted manually until the plot of A r versus r  exhibits a minimum at r  =  0 

and a minimal spread of points along the curve as shown in the bottom  half 

of Figure 5.3. An inaccurate global scaling of object positions has the effect of 

producing a m i n i m u m  in A r versus r  away from r  =  0. Tjjhiŝ  is also true of an 

inaccurately located optical axis which causes the increased spread of points.
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Finally, the parameters a and b are calculated by manually fitting equation (5.8) 

to the plot of A r versus r.

r (arcsec)

r (arcsec)

Figure 5.3: Distortion fitting of the Calar Alto 3.5m telescope images. Ar is calculated for 

every object as the radial distance of the object from the optical axis in the I band mark 

table subtracted from its radial distance in the image. If the I band mark table is over-scaled 

and not centred correctly on the optical axis, a minimum and a large scatter of points occurs 

in a plot of Ar vs r as shown in the top plot. The bottom plot shows how correct scaling 

and positioning of the mark table minimizes the scatter of points and removes the minimum 

for manual fitting of equation (5.8). The dashed line was plotted with the manually fitted 

parameters a = 3.5 x 10-5  and b = 1.8 x 10-9 .

W ith values of a ~  10-5  and b ~  10-9  being typical for the Calar Alto 3.5m images, 

equation (5.8) shows tha t at the edge of the field of view corresponding to r  ~  200
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arcsec w ith the FREDUK instrument, a distortion of A r ~  5 arcsec occurs. Correct 

distortion compensation was therefore essential to achieve a trustworthy photometric 

analysis.

After applying the distortion to the I band mark table, copies were made for 

other images regardless of filter as long as location of the cluster centre was roughly 

the same for each (with a tolerance of ~  30 arcsec). In some images, the cluster 

centre was located too far away from the majority to give good alignment with the 

distorted table. Separate distorted I band mark tables were produced for each of 

these. To ensure optimal alignment, each distorted table was finely scaled, rotated 

and translated onto its corresponding image, again using the ‘FIN D /M O V E’ and 

‘F IN D /O B J’ facilities.

5 .2 .3  P h o t o m e t r y

As Section 5.2.2 discussed, M PIAPHOT calculates object fluxes by summing the fluxes 

of pixels within a fixed aperture centred on each object. Using a fixed aperture means 

tha t the seeing in all images must be the same to determine the correct colours. 

Since image seeing can vary considerably even between two images observed on the 

same night, this requirement can only be realistically met by degrading the seeing of 

each image to the worst seeing measured among all images. Rather than inefficiently 

degrade the seeing of an entire image, M PIAPHOT degrades only inner aperture 

regions by Gaussian convolution. The FWHM of the convolving Gaussian is therefore 

dependent on the original seeing of the image and is calculated automatically from 

this.

The seeing of each image was determined with M PIAPHOT by averaging the 

FWHM of all stars in the image (selected by their low FWHM and high brightness). 

The worst seeing was found in the 466/8 filter image set with an average measured 

seeing of 2.10 arcsec. Flux integrations for every object in every frame across all fil­

ters were then performed by M PIAPHOT which degraded each image to a seeing of

2.10 arcsec. The local background sky count was automatically subtracted from each 

integrated object by the same histogram technique used for the flux error estimation 

detailed in Section 5.2.2. In the central parts of the cluster, this autom atic back­
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ground removal proved to overestimate background counts due to the high number 

density of objects there. For this reason, a circular region of 80 arcsec in diameter 

centred 011 the cluster was defined within which the average background count was 

manually determined for each image. M PIAPHOT was then instructed to subtract 

this manually determined constant background level from all flux integrations within 

this area instead of executing an automatic subtraction.

To allow for changing weather conditions, images within each filter set were nor­

malised to an arbitrarily chosen image in that filter set. Normalisation was conducted 

by scaling the object fluxes of each image, apart from the reference image, so tha t the 

average flux of the same stars in each image was equal. This ensured correct calcula­

tion of the weighted flux and flux error from equation (5.6) and (5.7). The weighted 

fiux and its error were later scaled to their calibrated photometric values.

In order to obtain photometric fluxes, the usual line of approach is to observe 

‘standard objects’ with known, calibrated spectra. Integration of a standard’s spec­

trum , multiplied with the transmission efficiency of the filter and instrum ents used in 

the observation, allows calculation of the expected photometric flux for tha t standard 

in that filter. Comparing this with the actual flux measured for the standard gives 

the conversion factor required to scale the flux of all objects to their photometric 

values. Under ideal circumstances, a calibrated spectrum of either a cluster member 

or another object in the held of view would enable direct photometric calibration of 

each image. Unfortunately, such a calibrated spectrum was unavailable although an 

uncalibrated spectrum of the large central elliptical galaxy in A1689 was obtained 

(Pickles Hi van der Kruit 1991). Calculation of the relative flux of objects between 

filters was therefore possible, but not calculation of the photometric flux. These fluxes 

were later calibrated using observations of a standard star located in another held (see 

Section 5.2.4).

The spectrum of Pickles & van der Kruit (1991) is shown in Figure 5.4. The 

range of wavelengths covered by the filters exceeded the wavelength range covered by 

this spectrum and so between the wavelengths 124 11111 to 316 11111 and 690 11111 to 990 

11111. a standard elliptical spectrum was used. This was redshifted to the measured 

redshift of z =  0.183 of the central elliptical galaxy (Teague. Carter & Gray 1990).
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Figure 5.4: The uncalibrated spectrum of the large central elliptical galaxy in Abell 1689.

For comparison, this standard elliptical spectrum is also drawn in grey between 316 

nm and 690 nm in Figure 5.4.

Denoting the spectral energy of the large central elliptical galaxy in A1689 at 

wavelength A in units of energy per unit area per unit time per unit wavelength as 

Fs(A) allows its observed count rate expressed as the number of photons per unit 

time per unit area in a given filter b to be written (eg. Thommes, 1996)

In this relation, the function Tf,(A) describes the transmission efficiency of thte filter (see 

Figure 5.1) while E ( A) is the combined filter-independent efficiency of the detector 

and telescope optics. Figure 5.5 shows how the efficiency of the Calar Alto optics 

and the TEK7 CCD used on two of the observing runs depend on wavelength. The 

photometric scale factor, kb is a quantity which relates the predicted value of /¿,,s

Between 3160A< A <6900A, the published spectrum of Pickles & van der Kruit was used. 

The regions A <3160A and A >6900A were taken from a standard elliptical galaxy spectrum 

(which is also shown between 3160A< A <6900A as a grey line).

(5.10)
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calculated from the integral on the right hand side of equation (5.10) to the measured 

value of Ifj'S. W ithout the transmission characteristics of the atmosphere being taken 

into consideration in equation (5.10), kb absorbs the wavelength dependent nature of 

the weather at the time of observation across the wavelength range spanned by filter b. 

For this reason, under rapidly changing weather conditions, the value of kb is strictly 

only applicable to the time the observation was made and the filter it was observed 

with. Since the functions Tb{A), E(A) and Fs(A) are known and i&jS is measured, kb 

can be directly calculated. W ithout correct calibration of Fs(A), only the relative 

values of kb for each filter are im portant.

Figure 5.5: The reflectivity of the Calar Alto 3.5m telescope plotted with the efficiency of 

the TEK7 CCD chip used during two of the observing runs.

Suppose an object m  with a known spectrum Fm (A) is observed in filter b to have 

a count rate Ib,m- If the spectrum is calibrated, the photometric intensity of the 

object in tha t filter can be calculated by evaluating,

Since none of the objects observed have known spectra however, calculation of the

oo

A (A)

(5.11)
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photometric intensity directly using equation (5.11) is not possible. The equivalent of 

equation (5.10) for object m  shows that only the quantity

I d \E (X)T b(X)Fm (X)X = (5.12)
J kb

is known if kb has been determined. If the filter is sufficiently narrow such that the

spectrum of an object, the detector efficiency and the efficiency of the telescope optics

do not vary considerably across the filter width, then the following approximation

from equation (5.12) and (5.11) can be made,

Fb,m -  Tb(Xbo)Fm (Xbo)AXb = . (5.13)
k b* b  o F { A bo)

where A X b and Xbo is the width and central wavelength of the filter respectively. 

P h o to m e tr ic  R e d sh if ts

Table 5.1 shows tha t not all of the observed filters were narrow band filters. The 

approximation in equation (5.13) was therefore not used. An alternative means of 

obtaining photometric intensities was employed by using software w ritten and devel­

oped as part of the PhD work by C. Wolf (Wolf 1998) at the MPIA. The primary 

motivation for using this approach, outlined below, was tha t photometric redshifts 

were provided in addition to intensities.

The software functions by fitting model spectra to the set of calibrated photon 

count rates measured for each galaxy across all filters. Expressed more quantitatively, 

equation (5 .1 1 ) was applied for each filter to a library of template spectra to arrive at 

a set of scaled filter counts for each spectrum. Galaxies were then allocated library 

spectra by finding the set of library colours which best fit the measured galaxy colours.

The spectral library was formed from the template galaxy spectra of Kinney et al. 

(1996). A regular grid of galaxy templates was generated, varying in redshift along 

one axis from z =  0 to z =  1.6 in steps of Az =  0.002 and ranging over 100 spectral 

types from ellipticals, through spirals to starbursts along the other.

The set of photometric errors given by equation (5.7) for an individual galaxy 

across all filters gives rise to an error ellipsoid in colour space. Using the size and lo­

cation of these error ellipsoids, probabilities of each library entry causing the observed
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sets of colours for each galaxy were then calculated as

1
p{q\z,s)  = ; exp 1 ^  “  Q j{z ,sV2

Oi
(5.14)

x / W m  v - j=1 ^

where n  is the number of colours, Gj comes from propagation of the error given 

by equation (5.7) and V  = diag(cr^,..., u^). Each galaxy’s position vector in colour 

space, q = (qi, ..., qn) is compared with the colour vector Q  of the library spectrum 

with a given redshift z  and type s. Finding the maximum probability corresponding 

to the closest set of matching colours therefore immediately establishes redshift and 

galaxy type. An assessment of the uncertainty in this redshift is subsequently obtained 

directly from the distribution of the probabilities associated with neighbouring library 

spectra.

0.2 0.4 0.6

Figure 5.6: Redshift distribution of the 958 objects photometrically evaluated in the field of 

A1689. The red histogram plots all 958 redshifts whereas the black histogram plots only the 

470 redshifts with a ler error in redshift of less than 0.05. The peak at z ~  0.18 is due to the 

cluster galaxies.

Determination of the photometric redshifts and magnitudes for the data presented 

in this chapter was carried out by C. Wolf at the MPIA. The analysis successfully 

returned the redshifts together with the apparent and rest-frame absolute magnitudes
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(assuming an Einstein-de-Sitter universe) of 958 correctly classified objects in the ob­

served field of view of Abell 1689. Figure 5.6 shows the distribution of these 958 

objects. 470 of these objects have a l a  error in redshift of less than 0.05. W ith the 

chosen range of filters, only redsliifts within 0.05 < z <  0.80 could be considered reli­

able and hence only this range is plotted1. The cluster galaxies are clearly discernable 

as the peak at z  ~  0.18.

The feature at z  ~  0.4 is most likely real and not an artifact of the photom et­

ric method. Such artifacts occur due to ‘redshift focusing’ when particular redshifts 

are measured more accurately than others. Where the uncertainty is larger, galaxies 

can be randomly scattered out of redshift bins, producing under-densities and corre­

sponding over-densities where the redshift measurement is more accurate. This effect 

depends on the details of the filter set, being more common when fewer filters are 

used, but can be modelled by Monte Carlo methods.

The top half of Figure 5.7 shows the results of one realisation of such a Monte Carlo 

test for redshift focusing. The plot indicates how accurately the method reproduces 

redshifts of spectra scaled to I =  20 with photometric noise levels taken from the 

A1689 filter set. Each point represents a single library spectrum. Reproduced spectral 

redshifts, Zphot, were determined by calculating colours through application of equation

(5.11) to the library spectra with redshifts zy^. These colours were then randomly 

scattered by an amount determined from the filter-specific photometric error measured 

in the A1689 data before application of the redshift estimation method outlined above. 

The bottom  half of Figure 5.7 shows the same plot generated using spectra scaled to 

I =  21 with the same photometric error taken from the A1689 data.

The accuracy of reproduced redshifts at I =  20 is clearly better than those at I =  21 

where photometric noise is more dominant. There is a lack of any sign of redshift 

focusing in the vicinity of z ~  0.4 leading to the statem ent made previously tha t the 

feature seen in the A1689 data is probably real. The I =  21 plot which corresponds 

approximately to the sample magnitude cut of B =  23.7 (see Section 5.4.1) shows tha t 

input library redshifts of z < 0.05 begin to be pushed beyond z =  0.05. This only

’This upper redshift lim it is decided by the stipulation th a t the 4000Abreak m ust lie in or blue-ward 

of the second reddest filter in the set.
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Figure 5.7: A single Monte Carlo realisation showing the accuracy of the photometric redshift 

evaluation method. Input library spectra with redshifts z\\b are scaled to I = 20 (top) and 

1 = 21 (bottom) and subsequently used to calculate sets of colours using the A1689 filterset. 

These colours are randomly scattered by the filter-specific photometric errors measured in the 

A1689 data before calculating the reproduced redshifts z p i,ot-

marginally affects the overall redshift distribution and yet partly explains the lack of 

galaxies at 2 < 0.05 in the A1689 redshifts of Figure 5.6. It is worth emphasising here 

that the significance of the peak at z ~  0.18 attributed to the cluster galaxies is far 

in excess of any effects of redshift focusing.
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Figure 5.8: Comparison of the photometric redshifts estimated in the cluster Abell 1689 with 

spectroscopically determined redshifts. The distribution shows slight non-Gaussianity in the 

error distribution. The mean redshift of the cluster determined spectroscopically is z = 0.185 

(Teague, Carter & Gray 1990), while the mean photometric redshift is z = 0.189 ±  0.005.

Figure 5.8 shows a comparison of the photometrically determined redshifts around 

the peak of the redshift distribution of Abell 1689, with spectroscopically determined 

redshifts (Teague, Carter & Gray, 1990). The filter set was selected primarily to 

distinguish the cluster members, hence at higher redshift Monte Carlo estimates of 

the redshift uncertainty must be relied upon (see Section 5.4.2).

Abell 1689 lies in a region of sky where there is a very low level of galactic dust. 

The redshifts are therefore not affected by this source of contamination. However, 

dust in the cluster itself is another concern. The effects of reddening by cluster dust 

were modeled by the MPIA who found tha t although magnitudes are slightly affected, 

the redshifts experience only an insignificant difference.

5 .2 .4  I n te n s i ty  C a lib ra t io n

The magnitudes returned from the photometric redshift analysis were not calibrated 

since as mentioned in the previous section, an uncalibrated spectrum  of the central 

galaxy in A1689 was used to obtain only the correct relative flux between filters.
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Calibration of these magnitudes was made possible using the Oke (1990) standard 

star ‘G60-54’ which was observed during each night at the Calar Alto telescope.

In order to obtain calibrated magnitudes, absolute photometric scale factors were 

required for each filter. These absolute values were provided in exactly the same 

manner as the relative values obtained from the uncalibrated spectrum of the large 

elliptical galaxy in the centre of A1689. Using the M PIAPHOT software, the inte­

grated flux IbyH of the standard in each filter was evaluated from the observations. 

M PIAPHOT was then used to calculate the expected photometric flux using the in­

tegral on the right hand side of equation (5.10) with the calibrated spectrum of the 

standard shown in Figure 5.9. This enabled determination of absolute photometric 

scale factors for the filters the standard was observed with.

X (A)

Figure 5.9: The calibrated spectrum of the standard star G60-54 (Oke 1990) used for mag­

nitude calibration.

The uncalibrated photometric intensities Fb̂ n were calculated from equation (5.11) 

which used a fitted spectrum Fm(A) scaled according to the value of the uncalibrated 

photometric scale factors. Calibrated intensities were therefore simply obtained by 

multiplying the uncalibrated intensities by the ratio of the uncalibrated to the absolute
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photometric scale factor. The correctly calibrated magnitudes were subsequently 

obtained using,

where k'h is the absolute photometric scale factor. Equation (5.15) defines the calibra­

tion magnitude offset A M b required in each filter.

The standard star was observed in 6 filters. Values of kb/ k b and the required 

magnitude calibration offset A M  defined in equation (5.15) for these 6 filters is shown 

in Table 5.2. The ler error <tam hi this table was calculated using

derived from propagation of the errors and a on k and k!. The errors ak and 

ct¡¿I are in tu rn  the result of propagation of the uncertainty in flux as prescribed by 

equation (5.7) of the standard star and the large elliptical galaxy in the centre of 

A1689. As discussed in Section 5.2.3, the photometric scale factor depends on the 

weather conditions at the time of the observation and so to minimise the inaccuracy 

of the calculated magnitude offsets, the uncalibrated photometric scale factors were 

taken from A1689 images observed as near in time as possible to the standard star 

observations. This difference in time is also listed in Table 5.2.

The fact tha t the six filters in Table 5.2 required approximately the same calibra­

tion offsets in magnitude demonstrates tha t both the original uncalibrated and the 

calibrated photometry was carried out correctly and tha t the spectra used in each were 

also accurate. The small deviations from the average magnitude offset arise due to 

changing weather conditions and slight differences in the position of the object mark 

tables between filters. The two magnitude offsets for the 466/8 filter were calculated 

using the same A1689 image and two different standard star images observed at differ­

ent times. Although a time of over 1.5 hours elapsed between these observations, the 

magnitude offsets are in close agreement with each other suggesting steady weather 

conditions. Comparing this with the 572/21 filter however shows tha t the converse 

is true; a standard star image observed a mere 4 minutes later results in a pair of 

offsets differing more than in the case of the 466/8 filter. This could be due to more 

unsettled weather conditions during the 572/21 observations although it is difficult to 

distinguish this from a slightly misaligned object mark table.

M g  -  M btm + 2.5 lg(k 'Jkb) = M b,m + A M b (5.15)

(5.16)
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Filter: A,/AA (mil) K / k h A M O'AM A tobs (min)

774/13 7.66 2.21 0.05 3

703/34 7.05 2.12 0.02 6

014/28 6.98 2.11 0.02 2

572/21 6.67 2.06 0.03 3

7.52 2.19 0.04 7

480/10 6.31 2.00 0.04 3

466/8 7.24 2.15 0.04 4

7.31 2.16 0.06 93

Table 5/2: Photometric scale factor ratios and magnitude offsets required for calibra­

tion of images observed in 6 of the 9 filters. The magnitude offset A M  is defined in 

equation (5.15). A t 0(is gives the elapsed time between observations of the standard 

star and the A1689 image used to determine ki,. The l a  error a am  is calculated using 

equation (5.10).

Despite these small discrepancies, the calibration offset was deemed sufficiently 

precise to calculate an average value and apply it to the apparent and absolute mag­

nitudes returned from the photometric analysis. An average magnitude offset of

A M  =  2.11 ± 0.01 (5.17)

calculated by weighting the 8 offsets in Table 5.2 with their associated errors was 

applied to the magnitudes of all objects throughout all of the 9 filters. The error here 

was calculated as a standard error on the mean.

Using the fact from equation (2.32) that a lens induced magnification //, translates 

magnitudes according to M  —» M  +  2.51g/i, shows through error propagation tha t 

tlu' error on the magnitude offset corresponds to an error in magnification of ± 0.0 1 /i. 

Later sections in this chapter show that this is a negligible source of error.



5.3 L u m in o s i ty  F u n c t io n  A n a ly s is

Section 2.3.3 discussed how application of maximum likelihood theory to an observed 

distribution of object magnitudes enables the determination of lens induced magnifi­

cation. As equation (2.59) shows, this can only be accomplished once the distribution 

of the unlensed magnitudes of those objects is known. A similar predicament to that 

of the number count analysis in Section 3.2.2 is again encountered. In the same way 

tha t an offset field was used to gain knowledge of the unlensed number density of back­

ground objects in the number count analysis, an offset field was used in this analysis 

to determine the unlensed magnitude distribution of objects behind A1689.

The offset field was observed to a depth of B  ~  24.5 as part of the Calar Alto 

Deep Imaging Survey (CADIS) conducted by the MPIA (Thomrnes et al 1999). D ata 

for this survey was observed in 16 filters from the B to the K band with the 2.2m 

telescope at Calar Alto. Using exactly the same methods outlined above, photometric 

redshifts and apparent and rest-frame absolute magnitudes were determined for all 

objects in all filters. To ensure a fair comparison with the A1689 data however, only 

the CADIS B band observations were considered in this analysis.

Although evolutionary traits of the luminosity function could have been investi­

gated in principle (see for example, Lilly et al 1995, Ellis et al 1996), this was not 

considered in the work presented here. Instead, all galaxies between the redshift limits 

of interest were used to calculate a total luminosity function. This was prim arily to 

ensure a sufficiently large number of objects in the A1689 sample which must have the 

same redshift selection as that of the offset field for a fair comparison in the likelihood 

analysis (Section 5.4.2).

5 .3 .1  T h e  C A D I S  B  B a n d  L u m in o s ity  F u n ct io n

An estim ate of the luminosity function of galaxies in the CADIS B band was provided 

initially using the canonical l /V max method introduced by Schmidt (1968) for the 

study of quasar evolution. The quantity Vmax is computed for each galaxy as the 

comoving volume within which the galaxy could lie and still remain in the redshift 

and magnitude limits of the survey. For an Einstein-de-Sitter universe, this volume is
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where 5u> is the solid angle of the observed field of view and D(z)  is the comoving 

radial distance defined in equation (1.38). The upper limit of this integral is set by 

the minimum of the upper limit of the redshift interval chosen, zu, and the redshift 

at which the galaxy would have to lie to have an apparent magnitude of the faint 

limit of the survey, znhnax. Similarly, the maximum of the lower limit of the chosen 

redshift interval, zi, and the redshift at which the galaxy would have to lie to have an 

apparent magnitude of the bright limit of the survey, zmmin, forms the lower limit of 

the integral. This lower integral limit plays a noil-crucial role when integrating over 

large volumes originating close to the observer where the volume element makes only 

a relatively small contribution to Vrnax.

The redshifts zmmax and zVhnin are calculated for each object by finding the roots

of

M  -  rn[max/min} — 5 lg hQ +  5 lg[D{z){l + z)] -  K { z ) +  42.39 =  0 (5.19)

where M  is the absolute magnitude of the object, m [max/min] is the appropriate survey 

limit and K(z)  is the K-correction (see Section 1.1.10). Although the K-correction 

for each object at its actual redshift was known from its apparent magnitude and 

absolute rest-frame magnitude, the redshift dependence of this K-correction was not. 

In principle, this redshift dependence could have been calculated directly for each 

object using its best fit spectrum returned from the photometric analysis, however 

these spectra were unfortunately not available. As such, an approximated K-correction 

was used instead.

To dem onstrate the validity of this approximation, the K-correction for the stan­

dard elliptical galaxy spectrum plotted in grey in Figure 5.4 was calculated. Using a 

hypothetical top hat B band filter centred on A =  650nm and 170nm in width, the 

K-correction plotted in Figure 5.10 was computed through application of equation

(1.59). This plot shows that K ( z ) is approximately proportional to z and so a good



m  =
zo

where K(zo)  is the K-correction of the object at its actual redshift z q .

approximation to K(z )  is obtained using

Z

Figure 5.10: K-correction calculated using the standard elliptical galaxy spectrum plotted in 

Figure 5.4 with a top hat B band filter centred 011 A = 650nm and 170nrn in width.

Of course, the proportionality observed in equation (5.20) has only been proven to 

be applicable to standard elliptical galaxies observed in the B band. Coinciding with 

the redshift range 0 <  z  < 0.8 forced upon the A1689 observations here, Lilly et al 

(1995) find that the K-correction in the B band for elliptical galaxies is also roughly 

proportional to redshift. Furthermore, they show that this is also the case for spiral 

and irregular galaxies. Based 011 this evidence, the approximation in equation (5.20) 

was therefore adopted for K{z).

Once Vmax has been calculated for all objects, the luminosity function r/j at the 

rest-frame absolute magnitude M  in bins of width dM  is then computed from,

<f>(M)dM = £  — i—  (5.21)
■ V max  ,z

where the sum acts over all objects having magnitudes between M  — dM /2  and M  + 

dAf/2.
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Figure 5.11 shows the luminosity function of B band magnitudes from the CADIS 

offset field which has a solid viewing angle of Soj = 100 arcmin2. To match the selection 

of objects lying behind A1689, only objects within the redshift range 0.3 < z < 0.8 

were chosen. A further restriction on the apparent B magnitude of m g < 24.5 was 

applied for completeness of the sample (see Section 5.3.2), yielding a total of 371 

objects. The data points in Figure 5.11 are centred on bins chosen to m aintain an 

equal number of objects in each. The lcr errors shown here were calculated using 

Monte Carlo simulations. 1000 realisations were performed by randomly scattering 

individual object redshifts in accordance with their associated errors provided in the 

CADIS dataset (the NAG routine G05DDF was used to generate normally distributed 

errors). For each realisation, the Vmax of each object was recalculated using the re­

sampled redshift. The resultant standard deviation of the distribution of values of c/> 

for each bin given by equation (5.21) was then taken as the error. In this particular 

case, no consideration was given to the magnitude errors or the propagation of the 

redshift error into object magnitudes. Section 5.3.3 discusses this further. Finally, the 

solid curve in Figure 5.11 shows the Schechter function determined with the maximum 

likelihood technique discussed in Section 5.3.3.

5 .3 .2  S a m p le  In c o m p le te n e s s

Determination of the faint magnitude limit beyond which a sample becomes incom­

plete is essential for the correct calculation of any luminosity function. It is self evident 

from the previous section that an incorrect evaluation of the limiting magnitude m max 

would result in larger values of Vmax and hence a biassed luminosity function. As Sec­

tion 5.5.4 details, this affects calculation of the lens mass.

An estimation of the incompleteness of the CADIS B band sample can be obtained 

using the V/Vmax statistic (Schmidt 1968). In this ratio, Vmax is calculated as before 

whereas V is the comoving volume described by the observer’s field of view from the 

same lower redshift limit in the integral of equation (5.18) to the redshift of the object. 

II a sample of objects is unclustered, exhibits no evolution (ie. a systematic change 

in intrinsic luminosity with redshift.) and is complete, the position of each object in 

its associated volume I \nax will be completely random. If this is the case, then the



Figure 5.11: The CADIS B band object luminosity function calculated with the 1 /V niax 

formalism. Errors account only for errors in redshift. Points lie at bin centres, the widths of 

each chosen to hold the same number of objects. There are 371 objects in total selected by 

the redshift limits 0.3 < z < 0.8 and the apparent B magnitude tub < 24.5. The solid line is 

the Schechter function determined in Section 5.3.3.

distribution of the V / Vrnax statistic over the range 0 to 1 will be uniform and the 

average value of V /V max across all objects will be equal to 0.5.

If the sample is affected by evolution such tha t more intrinsically bright objects lie 

at the outer edges of the Vmax volume, then V /V niax is biassed towards values larger 

than 0.5. The reverse is true if a larger number of brighter objects lie nearby. If the 

sample is incomplete at the limiting apparent magnitude chosen, estimations of V,nax 

will be on average too large and will cause V  /V inax to be biassed towards values less 

than 0.5 as shown by the histogram in the top left hand corner of Figure 5.12.

The requirement that the average V /V Tnax should have a value of 0.5 subject to 

the conditions outlined above is of course only applicable in the large number limit. 

In practice, shot noise combines with the effect of clustering to confuse the situation.
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An estimation of the error in the average V/Vrnax value is therefore im portant for the 

purposes of estimating the limiting apparent magnitude of a sample. Consider the 

theoretical variance cr'yn- of one V/Vmax measurement,

a l ,
roc

v/v„ui.y i v  ) v v  \  y  /  / v v•/() \  v m a x  /  \  v m a x  \  v m a x  / /  \ v i

where P  is the normalised distribution of values of V/Vmax and angular brackets 

denote the mean value. For an ideal sample with 110 evolution or clustering, P  is a 

uniform distribution over the range 0 to 1 and < V/Vrnax > =  0.5 which gives

1 , (  V  \  (  V  1\ 2 1
aV/Vma* J d ( v  J i v  2) 12'

The standard deviation, a <V/\-niaT>, average < V/Vrnax >■ is then calculated

from the combination of errors on each of the V/Vmax measurements. In this hypo­

thetical case, these are all ecpial and are given by equation (5.23) so that

_  y -  / 9  <  V / V m a x  > \  2 _  1 /r  24)
<V/Vmax> 2 ^ ^  d{V/Vmax)i )  (r/v" ' - )' 12N'  j

In order to arrive at an apparent magnitude limit for the CADIS field, values of 

< V/V max > were calculated for different applied limiting magnitudes and plotted 

as shown in Figure 5.12. The grey region in this plot corresponds to the ler errors 

described by equation (5.24) which lessen at the fainter limiting magnitudes due to 

the inclusion of more objects. Clustering in the CADIS field adds extra noise and so 

these errors are an underestimate of the true errors.

W ithout knowledge of the effects of clustering, a limiting magnitude of m g < 24.5 

gives a value of < V/Vmax > ~  0.5. This is in agreement with the apparent magnitude 

limit at which the number counts begin to fall beneath that measured by deeper 

surveys. The histogram in Figure 5.13 shows how the number of objects varies with 

magnitude for the CADIS B band. The solid curve plotted over this shows the scaled B 

band counts measured by Lilly et al (1991) to a depth of m B — 26. This clearly begins 

to depart from the histogram at — 24.5 which is thus taken to be the limiting 

magnitude for the CADIS observations. Effects due to this choice are investigated 

later.
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Figure 5.12: The main graph shows the variation of the mean V¡Vmax with limiting apparent 

B magnitude for the CADIS field. The grey region corresponds to the lcr errors described by 

equation (5.24) which are an underestimate due to the unconsidered effects of galaxy clustering. 

The top left plot shows the distribution of V/Vmax for too faint a limiting magnitude of 

niB < 25 which results in a bias towards values less than 0.5. The top right plot is the 

distribution with the chosen m s  < 24.5

5 .3 .3  P a r a m e te r is a t io n  o f  th e  L u m in o s ity  F u n ct io n

To perform the likelihood analysis outlined in Section 2.3.3, a param etric form of the 

luminosity function was required. This parametric form was provided by a Schecliter
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Figure 5.13: Variation of CADIS galaxy counts with apparent B band magnitude shown by 

the histogram. The curve shows the deeper B band counts of Lilly et al (1991) scaled for the 

CADIS field of view.

luminosity function (Schechter 1976):

=  0*100 M M . - M ) ( y + a )  e x p  f_ 1 0 0 .4 ( M ,—M) (5.25)

The param eters M* and rv were determined using the maximum likelihood method 

of Sandage, Tammann & Yahil (1979, referred to as STY hereafter). In much the 

same way as the probability in equation (2.59) was formed, the STY method forms 

the probability p,; that a galaxy i has an absolute magnitude M,;,

m i ) (5.26),■ nun (M ma,x (.z ; ),.M 2 ) 1 / a * \  i j \ r
Jrn.ax(Mmin(zi),Mi) 9 \1V1 )aM 

where M viax(z i) ail(l Mminimi) ai"e the absolute magnitude limits corresponding to 

the apparent magnitude limits of the survey at a redshift of Zj. Conversion of these 

apparent magnitude limits includes the K-correction by use of equation (5.19) with 

z  set to zt . A further restriction is placed upon the integration range by imposing 

another set of magnitude limits M\ < M  < M 2 which for the CADIS data were set 

at the maximum and minimum absolute magnitudes found in the sample.

The likelihood function in this case is a two dimensional function of the Schechter 

parameters M , and rv formed from the product of all probabilities pj. The best fit, M*
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and a  are therefore found by maximizing the likelihood function,

m a x ( M rnin (2,),M i )

rmin  (Mmax (zi),M-2
4>(M)dM  ̂ +  Cp (5.27)

with the constant cv arising from the proportionality in equation (5.26). An estimate 

of the errors 011 M , and a  are calculated by finding the contour in a , M* space which 

encompasses values of a  and M* lying within a particular confidence level from values 

giving the maximum likelihood Crnax ■ In log-likelihood space as described by equation

(5.27), this contour lies at In £ max — 0.5A;y2 where Ay;2 depends upon the desired 

confidence level.

The top left hand plot of Figure 5.14 shows these l a  and 2cr confidence regions for 

the CADIS sample, which for two degrees of freedom correspond to a Ay;2 of 2.30 and 

6.17 respectively. This plot highlights the degeneracy typically encountered between 

values of M* and a  (see for example, Lin et. al, 1997). For any given Schechter-like 

distribution of magnitudes, any uncertainty in the magnitude at which the ‘knee’ of 

the distribution lies as characterised by M*, is compensated by a change in the slope 

of the Schechter function at fainter magnitudes. If this knee is forced to brighter 

magnitudes, a steeper faint magnitude slope is required to maximize the likelihood 

function and hence a more negative value of a  results.

The errors on M* and a  obtained from the likelihood contours only represent a 

level of uncertainty to the fit of the Schechter function to the absolute magnitudes. 

W ith this method, no consideration is given to the error in each object’s magnitude or 

redshift. These uncertainties were taken into account using Monte Carlo simulations. 

In this case, both object redshifts and magnitudes were randomly scattered in 1000 

realisations. Redshift and apparent magnitude errors were available from the CADIS 

dataset as derived by the photometric analysis software. Errors in absolute magnitude 

were then calculated from the propagation of uncertainties in redshift and apparent 

magnitude through equation (5.19) to give,

for each object with redshift Z{ and apparent magnitude mj. Here, the K-correction 

given by equation (5.20) has been used such that the quantity K r =  K(zi)  is calculated 

from equation (5.19) using mi, M t and Zi as they appear in the CADIS dataset. The

(5.28)
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typical ratio of apparent magnitude to redshift error was found to be amJ a Zi ~  1 % 

due to the relatively imprecise nature of photometric redshift determination.

After scattering magnitudes and redshifts in this way, each of the 1000 re-sampled 

realisations of the original data set produced were then used to generate individual 

likelihood distributions. The scatter of maximal values of M* and a  for each of these 

distributions is shown in the plot at the top right corner of Figure 5.14. It is not 

surprising that a similar degeneracy to that seen in the original likelihood contours 

is also seen here. To include the effects of this scatter in the likelihood contours, 

the log likelihood distributions were then co-added to form one, effectively convolved 

distribution.

The lower section of Figure 5.14 shows the contours obtained as a result of this 

convolution. As expected, inclusion of the redshift and magnitude errors to the original 

likelihood errors has resulted in enlargement of the lcr and 2a confidence regions. To 

obtain the overall errors on M* and a, projections of the contours are made onto their 

respective axes. As seen in Figure 5.14, the resulting maximum likelihood M* and « 

together with their errors were found to be

M, = —20.941^64 , «  =  — l-45± g ;||. (5.29)

The Schechter function described by these parameters is shown in Figure 5.11 by 

the solid line. (As a note of interest, x 2 fitting of the l /V max data points in Figure

5.11 predicts a slightly less steep faint-end slope than that determined with the STY 

method. This is in disagreement with the work of Willmer (1997) who showed that 

fitting Schechter functions to simulated data using the l / V max method generally gives 

a steeper faint-end slope.)

Unlike the 1/Vmnx method of estimating luminosity functions, the STY method is 

incapable of yielding absolute quantities since the ratio of terms in equation (5.26) is 

independent of the normalisation constant r/j*. Although not essential for the likelihood 

analysis here, (f>* was calculated by normalising to the l / V max luminosity function over 

the range of magnitudes M\ < M  < M 2,

</>* =  1 / V (5. 30)
j £ '2 c/>(M)dM

The summation in the numerator here runs over all galaxies in the sample. Using the
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Figure 5.14: Determination of the Schechter parameters M* and a  for the CADIS data. The 

top left plot shows the maximum likelihood contours corresponding to ler and 2a confidence 

levels without regard for redshifts or magnitude errors. The scatter in the maximum likelihood 

M* and a resulting from these errors is shown in the top right plot. Convolving the top two 

plots gives the overall la  and 2cr confidence levels shown in the bottom plot.

values of M* and a  from (5.29) for the CADIS data gives a normalisation constant of

(/>* =  2.05 x 10 - 3 (5.31)
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5.4 L en s  M a s s  D e te r m in a t io n

W ith knowledge of the distribution of absolute object magnitudes over the redshift 

range 0.3 < z < 0.8, the statistical search for a sign of lens-induced magnitude bright­

ening was made possible. In a similar manner to the case of the number count analysis 

in Chapter 3, the CADIS luminosity function was assumed and used as a fair measure 

of the intrinsic source magnitude distribution.

5.4 .1  A 1 6 8 9  S a m p le  I n c o m p le te n e s s

Obtaining a complete sample of background objects in the A1689 field of view is of 

the same importance as ensuring completeness of the CADIS sample. As Section 5.5.4 

shows, the limiting faint magnitude chosen for the sample noticeably influences lens 

mass determinations.

Estim ation of the incompleteness of the A1689 sample was carried out in exactly 

the same fashion as with the CADIS sample. The < VjVmax > statistic for all 

galaxies lying within 0.3 < z < 0.8 was plotted with limiting apparent B magnitude. 

The upper plot in Figure 5.15 shows this variation with the errors given by equation 

(5.24) plotted in grey. Once again, these errors are an underestimate of the true 

errors and so a limiting magnitude of rn.R <  23.7 was chosen to give a total of 152 

background objects with < V/Vmax > =  0.478. This limit was also in agreement with 

tha t predicted directly from the number counts in a similar fashion to tha t of Section

5.3.2. The lower plot in Figure 5.15 shows the magnitude-redshift distribution of all 

958 objects in the overall A1G89 dataset. The selected 152 background objects used 

for the analysis which follows are highlighted by the dashed box. Cluster members 

are again clearly discernable as the peak at z ~  0.18

5 .4 .2  D e te r m in a t io n  o f  k

In the number count analysis of Chapter 3, the lack of redshift data forced the ap­

proximation that all objects were assumed to lie at the same redshift. W ith a fixed 

lens and source redshift. the surface mass density k , being effectively independent of
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Apparent Magnitude

Figure 5.15: The top plot shows variation of the < V/Vmax > statistic with limiting apparent 

B band magnitude for the A1689 sample. 152 objects were selected by the redshift and 

apparent magnitude limits highlighted by the dashed box in the bottom plot.

redshift, could therefore be used as a likelihood param eter for the real lens surface 

mass density S  in equation (2.9). The situation here is changed however since the 

redshift of all objects is known, n must therefore be replaced by its redshift dependent 

form, k (z s ) where z$ refers to the source redshift.

Evidently, k (z s ) can not be used directly as a likelihood param eter for £ . It is
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therefore necessary to separate n(zs)  into two parts, one containing all zs  dependency 

and the other containing only lens redshift terms. This is easily accomplished from 

rearrangement of equation (3.10) to give

I \ 87r6v
cHn

'( i  +  *i ) i/ 2 _ r (1 +  z s ) l / 2  -  (1 +  zL ) y! 2

(1 +  zl , ) 2 (1 +  z s ) 1!'2 -  1
=  i^oof{zS ) (5.32)

where z i  is the fixed lens redshift and f ( z s )  is a function which simplifies the notation 

by defining,
Tn -u vr U/2 _  1 "

(5.33)
_ BvrG

h'DC) --  ̂T Z-l
cH0

(i + ZLy / 2 - i
(1  +  Z l ) 2

This param eterisation of k(zs)  conveniently defines the quantity k,00 (BTP) which is 

used as the likelihood estimator for £  in this case.

Maximum likelihood determination of was therefore performed using equation

(2.59) of Section 2.3.3 with 4>{M) described by the Schechter function stipulated by the

parameters in (5.29) above. Instead of using the amplification /j , a redshift dependent

version of the k estimators in equations (2.6G) and (2.68) were used by writing 
/

11 — 2k,oof  (z, s') | ~ 1 isothermal

\ { ^ o o f{ z s ) - c ) {n 00f { z s ) - l / c ) \~ 1 parabolic • (5.34)

( l - « o o  f { z s ) )~ 2 sheet

Note tha t the likelihood estimator formed from the probability in equation (2.59) in­

volves the bivariate function </>(M, z). Only the magnitude dependence of this function 

is considered here of course since no consideration has been given to the evolutionary 

aspects of the CADIS luminosity function (see the introduction to Section 5.3).

li(zs ) = <

Error Sources

Three sources of error on the value of k0q were taken into consideration:

1 The maximum likelihood error obtained as the width of the likelihood distrib­

ution at In Cmax — 0.5A x2- All object magnitudes and redshifts were taken as 

presented directly in the A1689 data while assuming the Schechter parameters 

from (5.29).

2 The uncertainty of the Schechter parameters M* and « from the likelihood 

analysis of the CADIS offset field.
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3 The redshift and magnitude uncertainties of individual objects in the A1689 

data, derived from the photometric analysis.

The latter two items in this list were dealt with simultaneously using Monte Carlo 

simulations once again. 1000 realisations were performed in which values of M* and 

a  were drawn at random from the convolved likelihood distribution shown in the 

lower part of Figure 5.14. For each realisation, redshifts and absolute magnitudes of 

objects were scattered in accordance with their associated photometric errors. The 

standard deviation of the scattered values of k produced in this way was then added 

in quadrature to the uncertainty of the maximum likelihood error obtained from item 

one of the list above to give the overall error.

The magnitude calibration error of A M  =  0.01 discussed in Section 5.2.4 was 

ignored. Inspection of the form of the Schechter function in equation (2.60) shows 

that a systematic magnitude offset is exactly equivalent to an error in M*. As (5.29) 

shows, the lcr error in M* is ~  0.6 which completely overwhelms any uncertainty in 

magnitude calibration.

Source Parity

Interpretation of the results returned from the likelihood analysis requires a careful 

consideration of parity before Kqo can be evaluated. Since all source objects were 

assumed to lie at a fixed redshift in the work of Chapter 3, the critical line position 

about which parities were flipped remained fixed. Parity must be dealt with differently 

when a distribution of source redshifts exists since the critical line radius scales with 

source redshift as 9C oc D a(zi,  z s ) / D a(z s ) (see Section 2.1.7). Each source has its own 

critical radius and therefore a different critical value of k ^  about which its likelihood 

distribution is reflected. This is seen from inspection of the estimators in equation

(5.34).

The contribution to the maximum likelihood distribution of in a given region 

of the field of view from each source was thus determined in the following manner:

• The critical line radius for the source was calculated from its redshift. This was
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achieved using the proportionality noted above, normalised to the arc observed

to the south-east of the cluster (lower left of cluster centre in Figure 5.2). W ith

a radius of 0 ~  0.85' and a redshift oi z = 0.8 (Tyson Sz Fischer 1995), this arc

gives the critical line radius as

, „ ,0 . 9 2 ( 1  +  *,)>/* -  1 
c (1 +  z.s) 1/2 -  1 ( '

for Abell 1689 using the results of equations (3.8) and (3.9) for an Einstein-de-

Sitter universe.

The source parity was determined from the spatial location of the object with 

respect to the region enclosed by its critical line.

Applying equation (2.59) with the fitted CADIS Schechter function, the proba­

bility distribution for was calculated. Being reflected about its critical Kqo, 

this distribution typically has two equal peaks. Depending on the source parity 

chosen, one of the peaks is taken as the correct solution and extrapolated over 

the whole /too range searched by the likelihood analysis (see Figure 5.16).

2

Figure 5.16: Illustration of an extrapolated probability distribution peak for a source at 

redshift z s • The extrapolated curve is the source’s contribution to the overall likelihood 

distribution. The vertical dashed line locates the critical Kqo.

Each source probability distribution calculated in this way was combined with the 

distribution obtained for all of the other sources in the region under consideration to 

arrive at the overall likelihood distribution for tha t region. The final mass calculated 

proves to have a negligible sensitivity to the normalisation given by the arc redshift.
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All masses in the following section were calculated assuming a range of arc redshifts 

from z  =  0.8 — 1.2  and no noticeable change in the results occurred.

5.5 R e s u l t s

5 .5 .1  R a d ia l  M a ss  P ro fi le

The annular binning of objects about the cluster centre seen in the number count 

analysis of Section 3.2.4 was applied to the luminosity function method of this chapter. 

The relatively small number of background objects contained in the A1689 sample 

however was unfortunately insufficient to allow calculation of a profile of the same 

resolution as the number count profile.

A part from the effects of shot noise, this lim itation results from the simple fact 

that bins which are too narrow do not typically contain a large enough number of 

intrinsically bright objects. This has the effect that the knee of the Scheclxter function 

assumed in the likelihood analysis is poorly constrained. As equation (2.59) shows, 

a large uncertainty in M* directly results in a large error on the magnification and 

hence on Kqq. Experimentation with a range of bin widths quickly showed tha t in 

order to achieve a tolerable precision for Hqq, bins had to be at least ~  1 .1  arcmin in 

width. W ith the observed field of view, this gave a limiting number of merely three 

bins, illustrated in the lower half of Figure 5.17.

The upper half of Figure 5.17 shows the k profile of Section 3.2.4 overlaid by data 

points calculated in the three bins using the luminosity function method. The upper 

data points correspond to the sheet estimator while the lower points are due to the 

isothermal estimator. The lcr error bars plotted here were calculated taking all three 

contributions listed in Section 5.4.1 into account (with 1000 Monte Carlo simulations). 

Values of Kqo were converted to values of k for the purpose of comparison with the 

results of Section 3.2.4 using,

k Nb
K = ~Tj~ ^  ] /  (zi) — Koo < fb (5.36)

7Vb i =  1
where Nt, is the number of galaxies in bin b and < /(, > denotes the average value of 

f ( z )  in the bin which was consistently found to be ~  0.57.
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Figure 5.17: Top: Comparison of radial k profiles. Data points show isothermal (lower) and 

sheet (upper) estimated k obtained from the luminosity analysis, lcr error bars are plotted. 

The solid and dashed lines indicate the profile obtained in Chapter 3 with the number count 

method. Bottom: Spatial location of the annular bins on the A1689 field of view. Open red 

dots are objects selected by z > 0.2 and solid blue dots by z < 0.2 .

Despite the relatively large errors, the data points from the luminosity function 

analysis show a fall off with radius, in good agreement with the profile derived from
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the number count study. It is noticeable however tha t the profile they indicate is 

perhaps a little flatter than tha t derived from the number counts. It appears that 

more mass is detected at larger radii although this is not particularly significant.

5 .5 .2  A p e r tu r e  k

In addition to the radial profile, the variation of average surface mass density contained 

within a given radius was calculated. By applying the likelihood analysis to the objects 

contained within an aperture of varying size, a larger signal to noise was perm itted at 

larger radii where more objects are encompassed. W ith a small aperture, the same low 

galaxy count problem is encountered as Figure 5.18 shows by the large uncertainty in 

this vicinity. In this plot, the parabolic estimator of equation (5.34) is used to obtain 

Kqo which is scaled to k using equation (5.36). The orange region depicts the lcr 

errors, again taking all 3 sources of uncertainty from Section 5.4.2 into account. The 

solid black line shows the variation of aperture k calculated by averaging the parabolic 

estimator profile of Section 3.2.5. The errors on this are shown by the dashed lines 

but account only for clustering and shot noise without inclusion of the uncertainty of 

background count normalisation or redshift.

As expected from the results of Section 5.5.1, generally more mass than that 

predicted from the number counts is seen, especially at large radii. The following 

section quantifies this for a comparison with the projected mass result of Chapter 3.

5 .5 .3  P r o j e c t e d  M a ss

From the values of Kqo used to generate the k profile in Section 5.5.1 and the result of 

equation (5.33), the cumulative projected masses in Table 5.3 were calculated. Errors 

were derived from propagation of the errors on the binned values of k^ .

These projected masses are in excellent agreement with those of Chapter 3. Since 

1 ' =  0.117/r_1Mpc in the cluster frame, the second cumulative mass listed in Table

5.3 gives

M 2d(<  0.25/i-1 Mpc) =  (0.48 ±  0.16) x 1015h _1Mo (5.37)
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Figure 5.18: Variation of average surface mass density contained within a given radius R (red 

line), lcr errors are shown by the orange region. The black solid and dashed lines show the 

average surface mass density and la errors (due to likelihood analysis only) of the parabolic 

estimated profile of Section 3.2.5.

Aperture Radius (arcsec) Aperture Area (Mpc2) M 2d(< R)

65 0.050 (0.16 ±0.09) x lO^/T^M©

130 0.202 (0.48 ±0.16) x lO ^h^M ©

195 0.454 (1.03 ±0.27) x 1015/i_ 1M0

Table 5.3: Cumulative projected masses at the radii given by the profile of Section

5.5.1.

which is perfectly consistent with the result from the number count study. The error 

here is also essentially the same as the 30% error quoted on the result of Chapter 3 in 

allowing for the effects of uncertainty in the background number count slope, redshift 

distribution and surface number density. The projected mass contained within 195 

arcsec is a little higher than that from the number count work although given the 

errors involved, this can still be regarded consistent.
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5 .5 .4  E ffec ts  o f  S a m p le  I n c o m p le te n e s s

One final uncertainty not taken into consideration thus far is that due to sample 

incompleteness. Changing the limiting apparent B magnitude m rnax in the determi­

nation of the CADIS luminosity function directly affects the fitted values of M*, a  

and hence the maximum likelihood Similarly, the differing numbers of objects 

included in the A1689 sample from variations in nimax also has an influence on Koq.

Table 5.4 quantifies this effect for the CADIS objects. It can be seen tha t increasing 

rrimax (ic- including fainter objects) has little effect 011 k>00 until the limit inmax ~  24.5 

is reached. Beyond this limit, starts to fall. Two implications can therefore 

be made. Firstly, this suggests tha t the magnitude limit in Section 5.3.2 from the 

V/Vmax test, being consistent with the limit here, was correctly chosen. Secondly, 

k,oo is relatively insensitive to the choice of rnmax if the sample is complete (and not 

smaller than the limit at which shot noise starts to take effect).

in,,. M* a n,Qo (iso) ^00 (p<4i k oo (sheet)

25.5

25.0

24.5

24.0

23.5

-20.57 -0.80

-20.76 -1.10

-20.94 -1.45

-21.49 -1.87

-20.75 -1.53

0  61 + ° -03 — 0.04

0 fi5+0-04 
U' OO-0.04

0  7 f )+ 0-06 
u - ‘ u -0 .04

0.74+0.03
-0 .04

n 7^+0.04 u. (0 — 0,04

0.69 +0.04
-0 .06

n 7 7+O.O6 
u - ‘ 1 —0.06

0 « 7 0-08U .0 0 - 0  08

0 Q1+ 013 
— 0.12

0.90+0.06
-0 .07

0-76i°;°8

0.84±8;8|

0.96 +0.10
- 0.10

l.OSiS+y

1.10,+0.10
-0 .09

Table 5.4: Variation of limiting apparent B magnitude rnmax of the CADIS field and 

its effect 011 the Schechter parameters and the resulting value of Kqo. The appar­

ent magnitude limit of b = 23.7 was assumed for the A1689 data in calculating the 

maximum likelihood Kqo- Errors are taken only from the width of the likelihood curves.

The effect of varying the magnitude limit of the A1689 sample is quantified in 

Table 5.5. A clear trend is also seen here; as rnmax is reduced, falls. Assuming 

linearity, a rough estimate of the uncertainty of k,00 given the uncertainty of the sample 

m agnitude limit is given by:

0.1 A m maX isothermal

0.2A m max parabolic (5.38)

0 A A m niax sheet
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Koo(iso) Kqo (para) (sheet)

24.5 

24.0

23.5

n  7 7 +O.O3 | r io + O . l l  | on+0.15 
m ‘ ‘ —0.03 1 -Uc>—0.11 —0.13
f) 7C+0-04 04+0.10 i 10+0.13 

— 0.04 l,' J4-0.10 i -iz -0.12
0  fiQ + 0 -06 () 7 0 + 0 - 10 n  0 2 + 0 -1 3LI.DJ_o.07 U-‘J - 0.11 U-J / - 0.12

Table 5.5: Variation of the maximum likelihood determined ki0O with limiting apparent 

B magnitude rnmax of the A1689 data. The Scliechter parameters of Section 5.3.3 were 

assumed in the likelihood analysis.

Referring to Figure 5.15, a suitable uncertainty in m rnax of the A1689 sample of 

say ± 0.2 magnitudes might be argued. If this were the case, the projected masses 

of the previous section calculated with the parabolic estimator would have a further 

error of ~  5%.

5.6 S igna l  t o  N o ise  P r e d i c t i o n s

Including all possible contributions of uncertainty in the calculation of mass, the 

previous section has shown that even with relatively few galaxies, a significant cluster 

mass profile can be detected. One can make predictions of the sensitivity of the 

method with differing input parameters potentially obtained by future measurements. 

This exercise also serves as an optimisation study, enabling identification of quantities 

requiring more careful measurement and those which play an insignificant part.

The most convenient means of carrying out this investigation is by application of 

the reconstruction method to simulated galaxy catalogues. Catalogues were therefore 

constructed by randomly sampling absolute magnitudes from the Schechter function 

fitted to the CADIS offset field in Section 5.3.3. Redsliifts were assigned to each mag­

nitude by randomly sampling the distribution parameterised by T98 (their equation 

2 2) from the Canada France Redsliift Survey (Lilly et al. 1995). A range of catalogues 

were produced, varying by the number of objects they contained and their distribution 

of galaxy redshift errors modeled from the A1689 data.

Figure 5.19 shows how the distribution of photometric redshift error, az , correlates 

with the A1689 B-band apparent magnitude. No significant correlation between az 

and redshift was found. Catalogue objects were thus randomly assigned redshift errors
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Figure 5.19: Correlation of photometric redshift error with apparent B-band magnitude for 

the A1689 data. No significant correlation between az and 2 exists.

in accordance with their apparent magnitude, given by the correlated distribution 

in Figure 5.19. Different catalogues were generated from different scalings of this 

distribution along the az axis.

Each catalogue was then lensed with a sheet, mass characterised by — 1 before 

applying the reconstruction. 1000 Monte Carlo realisations were performed for each 

reconstruction, scattering object redshifts according to their assigned errors in the 

same manner as in the reconstruction of A1689. Furthermore, to model the uncertainty 

associated with the offset field, assumed values of the Schechter param eters M* and a  

were once again subject to Monte Carlo realisations. All catalogues were reconstructed 

assuming sets of Schechter parameters drawn from a range of scaled versions of the 

distribution shown in Figure 5.14.

The resulting scatter measured in the reconstructed value of for each catalogue 

and assumed a-M* scaling was combined with the average maximum likelihood error 

across all realisations of that catalogue to give an overall error. This to tal error was 

found to be well described by,

1 + (2f7^  + (0.12aM, f  +  (0.37ct,v)2 -  0.1 UcraM

where n  is the number of galaxies, az is the sample average redshift error and aMm and 

aa are the projected errors 011 M* and a  respectively as quoted in equation (5.29).
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The quantity <JaM, is the covariance of a  and iff, defined by

/  £(M*, a)(M* -  (M *))(a -  (« »  dM *da
(5.40)

f  C(M*, a) dM *da

where the likelihood distribution C is given by equation (5.27). We find tha t aaMt = 

0.039 for the CADIS offset field. Equation (5.39) is valid for n  > 20 and 0.0 > az > 0.3.

Equation (5.39) shows that when the number of objects is low, shot noise dom­

inates. W ith n ~  200 however, uncertainties from the calibration of the offset field 

s ta rt to become dominant. The factor of 2 in the photometric redshift error term 

stems from the fact that redshift errors also translate directly into absolute magni­

tude errors through equation (5.28). Another discrepancy arises when comparing this 

redshift error with the redshift error contribution of 25% claimed for the A 1689 data 

in Section 5.4.2. This is accounted for by the fact that K-corrections were present in 

the A1689 data whereas in the simulated catalogues there were not. Equation (5.28) 

quantifies the increase in magnitude error with the inclusion of K-corrections. This 

translates to an approximate increase of 20% in the overall error with an average 

K-correction of —1.0 for the A1689 data.

Emphasis should be placed on the criteria for which equation (5.39) is valid. The 

predicted overall error rises dramatically when fewer than ~  20 objects are included 

in the analysis. Simulations with 15 objects resulted in maximum likelihood errors 

rising to beyond twice that predicted by simple shot noise. This stems mainly from 

the effect mentioned in Section 5.5.1, namely the failure of the likelihood method when 

the knee of the Schechter function is poorly constrained.

Section 6.3 discusses possible measures to take based on the predictions of these 

simulations in order to optimise a multi-colour study such as this.

5.7 S u m m a r y

Photometric redshifts and magnitudes have been determined for objects in the field 

of Abell 1689 from multi-waveband observations. This has allowed calculation of 

the luminosity function of source galaxies lying behind the cluster. Comparison of 

this with the luminosity function obtained from a similar selection of objects in an



unlensed offset field lias resulted in the detection of a bias in the A1689 background 

object magnitudes attributed to lens magnification by the cluster. After a careful 

consideration of all possible sources of uncertainty, calculation of a significant radial 

mass profile for A1689, consistent with that obtained in the number count study of 

Chapter 3 has been calculated. This predicts a projected mass interior to 0.25/i_1Mpc. 

of

M 2(l{< 0.25/i-1 Mpc) =  (0.48 ±  0.16) x 1015h_ 1MQ (5.41)

in excellent agreement with the number count result.

This chapter has been primarily devoted to demonstrating the viability of mass 

reconstruction using the luminosity function method of BTP. The technique is limited 

mainly by shot noise arising from limited numbers of background galaxies, as the 

signal-to-noise analysis of Section 5.6 has shown, but is independent of their clustering. 

Section 6.3 discusses ways of improving the efficiency of the method.
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C h a p te r  6

S u m m a ry

This thesis has focussed on the development and application of several gravitational 

lens mass reconstruction techniques. In particular, attention has been given to those 

methods which exploit the property of lens magnification since this allows measure­

ment of absolute mass. This is in contrast to methods based upon quantifying image 

shear which are plagued by the sheet-mass degeneracy (Falco, Gorenstein & Shapiro 

1985) limiting determination of lens mass to differential values.

The purpose of this short chapter is to summarize the results and conclusions made 

in Chapters 3, 4 and 5 in addition to providing a prediction of the role of lensing in 

the future. The following short section gives a history of the development of methods 

seen in this work. Section 6.2 compares and contrasts the main results of this thesis 

with those obtained via alternative methods employed by other researchers in the 

field. In Section 6.3, consideration is given not only to work which could follow tha t 

presented in this thesis but also new lines of research which lensing is beginning to 

evolve towards.

6.1 A  S h o r t  H i s to r y

Several different approaches have been taken throughout the work of Chapters 3, 4 

and 5. There are benefits and disadvantages to each.
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Reconstruction using the projected number density dilution of background red 

galaxies as applied to Abell 1089 in Chapter 3 is a simple and an efficient method. 

However, prior knowledge of the limits 011 a cluster’s shear field must be assumed 

before mass estimations can be made. While this was shown via agreement with other 

methods not to pose any major problems, it has the consequence of obtaining less 

accurate solutions being able to provide essentially only an upper and lower bound. 

Although this was circumvented in ID by providing a self-consistent axial solution, a 

self-consistent solution for 7  and k in 2D remained undiscovered.

The lack of a self-consistent solution in 2D provided motivation for the work in 

Chapter 4. Previous attem pts at generating a self-consistent solution by direct itera­

tion from a measured magnification field (see Section 2.3.4) were known to fail upon 

introduction of critical lines. By pixelizing the magnification data so that the problem 

could be interpreted as a m atrix inversion calculation, a method for producing self- 

consistent 2D solutions with the presence of critical lines was derived. This method 

does not provide an alternative means of measuring magnification but relies upon its 

measurement prior to application.

A11 alternative method of measuring magnification came in Chapter 5; the so-called 

luminosity function method. By determining the increase in observed background 

source flux, the amplification by Abell 1689 was measured. This im portant piece of 

work is the first ever investigation into the flux magnification by lensing. In addition 

to providing a proof of concept, it enabled verification of the measurements of mag­

nification made in Chapter 3. The method requires measurement of intrinsic source 

brightnesses and as Chapter 5 showed, this involves a relatively large amount of obser­

vation even using more efficient photometric redshift techniques (although see Section 

6.3). This disadvantage aside, the method boasts independence of source clustering, 

unlike the more simplistic number count approach of Chapter 3.

In summary, choice of the most suitable method should be decided by the amount 

of available observing time. A quick yet less accurate study can be performed with two- 

filter observations using the number count method whereas a more detailed, clustering 

noise independent result can 1»' acheived with several filters using the luminosity 

function method.
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The main results oi Chapters 3, 4 and 5 are now summarised in the next section.

6.2 C o n c lu s io n  of  R e s u l t s

6 .2 . 1  N u m b e r  C o u n t  S tu d y

In chapter 3, the viability of cluster mass reconstruction using the integrated galaxy 

number counts technique of Section 2.3.2 was demonstrated. By applying colour cuts 

to V and I band data of objects in the field of Abell 1689, the background population 

of red galaxies was selected. These sources were shown to exhibit a dilution in surface 

number density in regions of high magnification due to their relatively flat number 

count slope. The effects of non-linear source galaxy clustering and shot noise were 

taken into consideration for the computation of a projected mass profile and 2D mass 

map of A 1689.

The derived 2D mass distribution of A1689 was shown to exhibit an extended 

structure to the south-west of the cluster. Allowing for shot noise and source cluster­

ing, the significance of this peak was calculated to be at a 3cr level. Given tha t X-ray 

observations of A1689 with the ROSAT satellite in the 0.5 — 2 keV band (Wang & 

Ulmer 1997. Dailies et. al 1998) show a relatively compact and smooth 2D flux distrib­

ution without such an extension, this is a little surprising. Two possible explanations 

were given. The first was that this truly is a clump of dark m atter not followed by the 

X-ray em itting cluster gas. The second was simply attributed to a rare underdensity 

of background galaxy counts. Curiously, a shear analysis by Kaiser (1996) on the 

same data as tha t of Chapter 3 hinted at this structure although caution is taken in 

claiming a consistent detection.

Chapter 3 also derived an analytical relationship to provide a self-consistent mass 

and shear profile by assuming an axially symmetric mass distribution. Using this 

relationship with the radial magnification distribution, a projected mass interior to 

R = 0.24/W1 Mpe of

M 2d{<  0.24/U1 Mpc) =  (0.50 ±  0.09) x 1015/i- 1Mq (6 .1 )

was calculated. The errors here account for the effects of shot noise and source clus­
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tering. Systematic« due to number count normalisation from the offset field and the 

uncertainty of background object redshifts increases this total error to ~  30%.

Comparison with mass estimates from shear analysis confirms tha t this result is 

in good agreement. The shear analysis of A1689 by Kaiser (1996) calculates tha t 

M 2d{<  0.24h_1Mpc) =  (0.43 ±  0.04) x 101o/i_ 1Mq while that predicted by Tyson & 

Fischer (1995) is M2D{< 0.24/i_1Mpc) =  (0.43 ±0 .02) x lQir>l r [M&. Section 3.2.9 

provides more details and includes a comparison with X-ray and virial measurements.

6 .2 .2  P ix e l l iz a t io n  o f  M a g n if ic a t io n  and  Shear

Chapter 4 derived a method for directly calculating accurate, self-consistent surface 

mass density and shear distributions from gridded lens amplification values and critical 

line positions. This was demonstrated with the isothermal sphere and dumb-bell 

cluster models in reconstructing the surface density to within 1 % over most of the 

field of view. Reconstruction of the shear pattern was demonstrated to have a lower 

fractional accuracy of a few tenths due to boundary effects. The method was applied 

to the magnification data of Chapter 3 to enable computation of the 2D surface mass 

density and shear distribution of Abell 1689. The resulting surface mass density 

distribution produced by this novel new technique was found to be somewhere between 

that calculated by the isothermal estimator and that derived by the sheet estimator 

in the number count study. This is exactly as one would have expected, given tha t 

the mass profile deduced in Chapter 3 showed evidence of A1689 being somewhere 

between tha t of an isothermal sphere and a sheet mass.

A simplified solution to the problem of estimating surface mass density from galaxy 

ellipticities was also presented in Chapter 4. This approach puts the calculation of 

mass from shear and magnification on an equal footing, essential for a reconstruction 

technique which encompasses both (see Section 6.3.1).

6 .2 .3  M a g n if ic a t io n  o f  th e  Sou rce  L u m in o s ity  F u n ct io n

The effect of lens magnification by Abell 1689 to enhance the flux of background source 

galaxies and hence distort their luminosity function was investigated in Chapter 5.
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This work (see Dye et al 1999) is the first ever application of the luminosity function 

reconstruction method suggested by Broadhurst, Taylor and Peacock (1995).

Photom etric redshifts and magnitudes were determined for all objects in the field 

of view from a set multi-waveband observations observed with the Calar Alto 3.5m 

telescope in Spain. Comparison of the background source galaxy luminosity function 

with th a t obtained from a similar selection of objects in an unlensed offset field resulted 

in the detection of a magnification bias in the A1689 background object magnitudes. 

After a careful consideration of all possible sources of uncertainty, calculation of a 

significant radial mass profile for A1689, consistent with that obtained in the number 

count study of Chapter 3 was calculated. This predicted a projected mass interior to 

0.25/i“ 'M pc of

M u {< 0.25/i_ iMpc) =  (0.48 ±  0.16) x 1015h~ l MQ (6.2)

perfectly consistent with the number count result.

The luminosity function method is independent of background galaxy clustering 

since it can be assumed tha t luminosities are a random sampling of luminosity space. 

Section 5.6 showed how the method is limited by the number of background galaxies 

observed although this is easily rectified with deeper observations or use of larger 

telescopes (see Section 6.3).

6 .2 .4  C o n s tr a in ts  on  t h e  S tr u c tu r e  o f  A 1 6 8 9

A comparison of measurements of A1689 using X-ray and virial methods suggests tha t 

A1689 is not an isolated cluster. This is reflected in the fact, tha t X-ray tem perature 

measurements of the cluster indicate a lower mass than the lensing mass and tha t 

virial analyses measure a larger velocity dispersion than  expected from the lensing 

mass (Giradi et al 1997). This is consistent with the notion of A1689 being comprised 

of clumps of mass aligned along the line of sight. If this were the case, cluster galaxy 

velocity measurements would yield a higher spread in their distribution and the X-ray 

tem perature would be dominated by the tem perature of only the larger clump.

Miralda-Escude & Babul (1995) point out that X-ray and lensing mass discrepan­

cies seen in clusters in general cannot be accounted for by cluster gas inhomogeneity,
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non-thermal pressure support of the gas or non-isothermality alone. They hypothesise 

that a combination of all three of these effects could be the cause of such discrepan­

cies. While it is certainly plausible that this may be the explanation in the majority 

of cases, the largest contribution possible from all three of these effects still falls some­

what short of explaining particularly large mass disagreements.

Section 3.2.9 demonstrated how decomposing A1689 into two aligned clumps ap­

proximately explained the relatively small X-ray mass and the large virial mass. 

Dailies et al (1998) lend further support to the ’multi-clump’ idea by pointing out 

that in fact three substructures are required to bring the mass measurements of A1689 

into agreement with each other. This, they claim, is supported by the cluster redshift 

measurements of Teague, Carter & Gray (1990) which shows tentative evidence of 

three distinct groups of redshift detections. A more detailed spectral study of the 

cluster would undoubtedly clear this ambiguity.

6.3 F u t u r e  W o r k

Lensing is an area of research still very much in its youth. Much of the work carried 

out in the held serves only to prove the viability of lensing and much of it is devoted 

to devising new techniques. There are several areas in need of attention. This section 

aims to highlight some of those and predict the future roles lensing will take.

6 .3 .1  O p t im a l  C o m b in a t io n  o f  M a g n if ica t io n  and  Sh ear

Magnification and shear measurements complement one another. This is apparent 

by virtue of the simple fact that magnification unlike shear provides absolute mass 

measurements whereas shear analysis generally allows better image resolution. A 

method which optimally combines both is therefore a very powerful one.

Attem pts to form a hybrid reconstruction method using combined shear and mag­

nification information has received some attention in the last few years although there 

is much room for improvement. Work by Bartelmann et al (1996, see Section 2.3.4) 

approach this hybridisation using a least squares method. They use an iterative ap­
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proach with quantities being calculated from a grid of values of the underlying lens 

deflection potential. Another promising means of combining shear and magnification 

data is via the maximum entropy method (MEM). The MEM was first applied to 

lensing by Wallington, Narayan & Koclianek (1994) who used it for the reconstruc­

tion of ID image flux profiles. The method has the advantage tha t it performs well 

w ith noisy data. As noted by Bridle et al (1998) who use it to calculate 2D mass 

distributions, MEM can reproduce cluster structures slightly beyond the field of view.

These efforts are only a start however. A hybrid technique which enables the inclu­

sion of critical lines remains elusive. Another reason for concern is the correlation of 

errors between shear and magnification data. For example, the uncertainty from shot 

noise affects both magnification and shear measurements in the same way. Regions 

with a large number density of background galaxies give rise to a small shot noise 

contribution to both. Clearly there must exist an optimal way of combining the two 

measurements. Ideally, inclusion of the other error sources for each method would 

give rise to complementary errors such that a noisy measurement from one would be 

compensated for by an accurate measurement from the other. A study to investigate 

this is required.

6 .3 .2  O p t im is a t io n  o f  L u m in o s ity  F u n ct io n  M e th o d

Section 5.6 dem onstrated tha t the dominant source of error on the mass determ ination 

of Chapter 5 was shot noise. The most immediate improvement to a multi-colour 

study such as this would therefore be to increase galaxy numbers. Also noted in 

Section 5.6 was the fact that only when bins contain ~  200 objects do offset field 

uncertainties become important. Observing in broader filters is one way to combat 

the limit presented by galaxy numbers. The final number of 958 galaxies classified 

by the photometric redshift analysis of Section 5.2.3 was limited mainly by the data 

observed in the narrow 466/8 filter. Despite being observed to approximately the same 

integration time as the 466/8 filter, the much broader I band filter enabled detection 

of ~  3000 galaxies. Using broader filters will also inevitably give rise to less accurate 

photom etric redsliifts. However as the analysis of the signal-to-noise simulations of 

Section 5.6 showed, one can afford to sacrifice redshift accuracy quite considerably
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Deeper observations provide another obvious means of increasing the number of 

galaxies. The error predictions of Section 5.6 indicate that the expected increase in 

galaxy numbers using an 8 metre class telescope with the same exposure times as 

those in Chapter 5 work should reduce shot noise by a factor of ~  3. Since deeper 

observations would also reduce redshift and offset field calibration uncertainties to 

negligible levels, the only source of error would be shot noise. In this case, the signal 

to noise for from equation 5.39 becomes simply Kqqy/n and hence the mass estimate 

for A1689 could be quoted with a 9a certainty.

6 .3 .3  W ea k  L en s in g  S u rveys

In exactly the same manner that a foreground cluster gravitationally deflects light 

from background sources, large scale mass fluctuations can weakly distort the images 

of distant galaxies. Blandford & Jaroszynski (1981) first gave a quantitative estimate 

of the am plitude of this effect. Valdes, Tyson & Jarvis (1983) were the first to attem pt 

to measure it although their results were inconclusive due to technical limitations. 

More recently, Kaiser et al (1998) proved that weak lensing by large scale structure 

can indeed be detected by analysing the shear pattern  of background galaxies in a 

15' x 15' image of the supercluster MS0302+17.

In a more statistical approach, Blandford (1990) and Miralda-Escude (1991) com­

puted the two-point shear correlation function and established how it depends on the 

power spectrum of density fluctuations in an Einstein-de-Sitter universe. This was 

generalised to allow for any value of 0  by Villumsen (1996). Bernardeau, van Waer- 

beke & Mellier (1997) showed how the second and third order moments of k, depend 

on the cosmological parameters. This provides a mechanism to enable determination 

of Q and A from observations of cosmic shear. All studies agree tha t the effects are 

small; the rms amplitude of distortions is expected to be ~  1 % with a correlation 

length of ~  1°. W ith the advent of new surveys such as that which will be produced 

by the proposed VISTA telescope, this weak signal will be easily detected. Lensing 

will thus place valuable constraints on the cosmological parameters which describe 

our Universe for comparision with the results of NASA’s CMBR surveying satellite,

before its contribution becomes comparable to that of shot noise.



MAP, due for launch in 2000. Both of these will provide excellent foundations for 

ESA’s highly awaited and more ambitious Planck satellite to be launched in 2007.

6 .3 .4  O u t lo o k

Lensing is fast beginning to establish itself as a valuable and reliable tool. The next 

few years will more than likely see greater application of lens mass reconstruction 

methods such as those presented in this thesis. More numerous and more accurate 

cluster mass measurements are still required to gain a deeper knowledge of large scale 

structures. These methods will be progressively applied to higher redshift clusters as 

attem pts are made to understand cluster formation in realms where the equilibrium 

assumptions of X-ray and virial mass techniques become even more invalid. As well 

as studying highly dense mass fluctuations such as clusters, investigations into weaker 

large scale mass fluctuations will begin to adorn the pages of various research journals 

in an attem pt to construct a more complete picture of our Universe.
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A p p en d ix  A

M a th e m a tic a l  P roofs

A . l  A x ia l ly  S y m m e t r i c  L ens

The inner integral in equation (2.71) may be re-written as

r'l'K
dr/j

0 - 6 1 cos <j)
0 2  +  0 1 2 _  2 0 0 '  COS r/j

1 / , , 1 
26 Jo ' 2 ,y0

tr 6>2 -  0 '2
= +

27T 6>2 -  0'2

0 2 (03 +  66'2) Jo

d(l} 6 3 + 6 6 '2 -  2626' cos 0

(̂ i  2020' j, (A-l)
— 0:i+()0r2 C0S ^

Using the identity

27T
dr/)

27T

1 +acosr/) y i  -  a2 ’
a2 < 1 (A-2)

allows the integral in equation (A.l) to be evaluated to give

'37r 6  -  O' cos r/>
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7T o2 -  e12 2 tt
62 + 0 '2  _  2 0 0 ' cos r/) 0 2{9*+6012)

2 n
~0 '

1 -
AO'2 O'2

0 )2 + ()f 2 ) 2
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If > 0 then the integral in equation (A.l) evaluated between 0 < r/j < n is equal to 

exactly the opposite of its evaluation between n < c/> < 2 -n and hence in total equals 

zero.
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A . 2 I s o t h e r m a l  S p h e r e  L ens  M o d e l

A . 2.1 P r o o f  th a t  k  oc 0 1

The volume mass density of an isothermal sphere is given by (see for example Binney 

& Tremaine 1997),

( a -4)

where a is the velocity dispersion and the radius 0fd =  Of + 0f +  0 In order to obtain 

the surface mass density, the volume mass density must be integrated along the line 

of sight. Taking the line of sight to be 6 3 , the surface mass density is therefore,

r 00

E (0 ) =  2 /  p(0 :id)d0 :i
Jo

d {03/0)
nGO Jo l  +  0 |/0 2

h  
0

a 1 r /f l 0\i  o-i/o=+co

ttGO

a 2

t 1 0:5 arctan —
o3/ 8=o

2 GO

where 0l =  Of +  Of. Since k  =  E /E c r  from equation (2.9),

(A.5)

2E c r GO' ^A'6^

A . 2.2  P r o o f  th a t  k =  7

This proof is quite trivial having done most of the derivation in Section 2.3.4. One 

begins by using the result of equation (2.79),

7T\27  2 = ( k - k Y .  (A.7)

71 is the mean value of k  within a circle of radius 0 given by,

«(0) =  I t  f  O'dO'K(O'). (A.8)r/- ./o

Since the previous section showed that

h = O' C= 2E Cr G'  (A'9)
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one can calculate an expression for k

2

I
(A.10)

Substitution into equation (A.7) then gives the required result:

7 2 =  (k -  2k ) 2 (A.11)

A . 3 P ix e l l iz e d  k

A . 3.1 A n a ly t ic a l  form  for am

Derivation of the equation in question for arn requires evaluation of the following:

O perating on the integral with the partial derivatives and defining x  =  (91 — 9[) and

The integral here acts over pixel m.  Two assumptions have been made:

• It is assumed tha t pixels are square. Of course the derivation here may be 

generalised to account for rectangular pixels but this is rarely needed in practice.

• The units of length have been scaled so tha t pixels measure one unit on a side. 

This is purely to simplify the derivation and again can be generalised if necessary.

The vector r  locates the centre of the pixel from the position 6  hence the integral 

is evaluated between —0.5 <  rq <  0.5 and —0.5 < r'2 < 0.5 (see Figure 4.1 for 

clarification).

(A.12)

y = {9 -2 - 9!2) gives

(A.13)



arctan (a:) ±  arctan(y) =  arctan (    — ) (A. 15)
V 1 T xy  }

and grouping together the first and third terms and the second and fourth terms in 

equation (A. 14) enables simplification to,

am (0) = — (a rc tan  (  +  arctan (  +  .j- -} • (A. 16)
’ Tr I \ 2 { r { + r l - r y ) )  \ 2  (r2 + r 2 + n )  J j

Using the identity,
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7T

Using the identity in equation (A.15) again produces the required result,

{r2 +  r | ) 2 — 1/4 y 

A .3 .2  A n a ly t ic a l  fo rm  fo r bm

To calculate the relationship for brn, one needs to evaluate the following:

- (  d\ ■ | I d20'\n\O -  e'\. (A.18)
7r \ d 6 1 dd2 )  Jm

As in the derivation for am, simplification is achieved by defining x = (9\ — 9[) and 

y = (92 — 9'2). Equation (A.18) may then be re-written as,
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Again, as in the derivation for am, it has been assumed that pixels are square and 

the units of length are chosen such that pixels measure one unit on a side. Further 

simplification gives the final result,
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2 n
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A B S T R A C T

We present a new method for directly determining accurate, self-consistent cluster lens mass 
and shear maps in the strong lensing regime from the magnification bias of background 
galaxies. The method relies upon pixellization of the surface mass density distribution which 
allows us to write down a simple, solvable set of equations. We also show how pixellization can 
be applied to methods of mass determination from measurements of shear and present a 
simplified method of application. The method is demonstrated with cluster models and applied 
to magnification data from the lensing cluster Abell 1689.

Key words: galaxies: clusters: general -  cosmology: theory -  gravitational lensing -  large- 
scale structure of Universe.

1 I N T R O D U C T I O N

The possibility o f reconstructing cluster lens mass distributions 
from the magnification bias of background galaxies was first 
suggested by Broadhurst, Taylor & Peacock (1995) and first 
demonstrated by Taylor et al. (1998, T98 hereafter). They showed 
how a direct, local measure o f the lens convergence, k  =  L IEL., 
where L  is the mass surface density and Ec is the critical surface 
density, could be obtained from knowledge o f the lens 
magnification. In this way, one could measure absolute surface 
mass densities, thereby breaking the ‘sheet-mass’ degeneracy found 
in methods based on distortions o f background galaxies (Tyson, 
Valdes & Wenk 1990: Kaiser &. Squires 1993; Seitz &  Schneider 
1995).

Van Kampen (1998) and T98 have shown how one can extend 
magnification analysis into the strong lensing regime. By making 
reasonable assumptions about y , the lens shear, they showed that 
one could place quite stringent bounds on k .  In addition, T98 found 
an exact solution for the profile o f axisymmetric lenses, although 
not for more general 2D cases.

Inverse reconstruction methods based on maximum likelihood 
(Bartelmann el al. 1996) and maximum entropy (Seitz, Schneider & 
Bartelmann 1998; Bridle et al. 1998) have gone some way towards 
providing a unification o f both shear and magnification informa­
tion. Until now, however, no direct method using only magnifica­

tion has existed.
In this letter, we show how to directly compute an accurate, self- 

consistent 2D distribution of k and y  in the strong lensing regime 
from magnification. This direct approach has the advantage over 
indirect alternatives that uncertainties can easily be determined 
and the application is much quicker. The method is based on 
pixellization of the k distribution, suggested by AbdelSalam, Saha

‘ E-mail: sd@roe.ac.uk (SD); ant@roe.ac.uk (AT)

& Williams (1998), who used it to estimate the mass o f Abell 370 
from multiple images. We generalize the method further and also 
derive a simplified solution to the problem o f estimating mass from 
shear, based on the approach o f Kaiser & Squires (1993).

2 R E C O N S T R U C T I O N  O F x A N D T

T98 showed how to estimate cluster surface mass using the 
magnification measured from the distortion in background galaxy 
number counts. Here our problem is to find an accurate method for 
reconstructing the surface mass density, given the magnification by 
an arbitrary lens. The inverse magnification factor at a given 
position in the lens plane is

A -1  =  |(1 — k)2 — y2|, ( I )

where k is the lens convergence and y  is the shear. The shear can be 
decomposed into two orthogonal polarization states, 71 and y 2, 
which are related to the lens convergence by

7i =  jd A d j —  dl)K, Y2 =  3~23|3;>k. (2)

where 3/ =  3/30, and 3-2 is the 2D inverse Laplacian. The total 
shear is given by 7 “ =  7 , +  7 5 . One might expect that equation (1) 
could be solved iteratively by first estimating k, using this to 
calculate 7  and then updating the estimate o f k  using equation ( I ) 
again. This proves to be highly unstable in the strong lensing 
regime, however, rapidly diverging after only a few iterations 
(Seitz & Schneider 1995).

To find a stable solution to equation (1), we first pixellize 
the image. Following AbdelSalam et al. (1998), we can now 
write

7 / =  i — 1,2 (3)

with summation implied over index m  and where k,„ and 7 " are the 
pixellized convergence and shear distributions respectively. The
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transformation matrices, I)"" ', are

=  I ( 3 i  -  £ ) J d20 ' In \B„ -  0 '|

(at +  .n)- -  1/4
(4)

and

=  d20 ' In |0„ — 0 I

=  o- 1 "7T
(,vj -F x 2)~ -  2.V|.v, +  1/4

(5)
( 1/2 +  .v f + A T ) ‘  — (-VI -  x 2)~

with the integration acting over the in'1' pixel, x  =  0rl — 6,„ is the 
difference between pixels m  and n which are assumed to be square 
in calculating these analytic expressions. Equation ( I )  can now be 
written as the vector equation,

1 - 2  K + kGk pa =0 (6)

where A ~ 1 is the /V-dimensional vector o f pixellized inverse 
magnification values, k is the transpose o f the vector k o f pixellized 
convergence values and 1 is the vector (1 ,1 ,1 ,...). The matrix G is 
the N  x N  x N  matrix

G„. D>:"DV -  D>"'Dq" (7)

where is the Kronecker delta, and summation is only over indices 
/; and q. The parity o f the measured inverse amplification A _ l (0) is 
handled by P  which Ilips from being + 1  outside regions bounded 
by critical lines to — 1 within such regions.

The amplification equation in the form o f equation (6 ) is the first 
main result o f this letter. We can now solve for k numerically (see 
Section 4) given a measured inverse amplification. Having solved 
for k. the corresponding shear distribution can then be calculated 
from equation (3).

3 A P P L I C A T I O N  T O  C L U S T E R  M O D E L S

We apply the method to two types o f idealized cluster models. 
Starting with a predetermined cluster mass density distribution, the 
corresponding shear distribution is derived using Fourier methods 
(see, for example, Bartelmann & Weiss 1994). From these, the 
resulting magnification is calculated from equation 1 1 ) and then 
windowed to remove boundary effects. Using equation (6 ), we solve 
for k. 7  is then solved using equation (3). A grid o f 32 by 32 pixels is 
used in both models.

3.1 T ru n cated  iso th erm a l sp h ere  m odel

We first test the method with a simple truncated isothermal lens 
model. The pixellated mass distribution is laid down using 
k *  (r  +  /(|) . where r is the radial distance from the centre of 
the sphere and r(l is a constant.

Fig. 1 shows the k and 7  distribution from which the magnifica­
tion distribution was calculated, the solved k  and 7  distribution, and 
the difference between them. The plotted distributions are 
smoothed from the underlying grid and the white dashes highlight 
the critical line o f the lens. The residuals are shown as percentage 
deviations from the true distribution. These are less than one per 
cent for k  over most o f the grid, which is negligible in comparison to 
the errors typically found in practice from background clustering, 
shot noise (T9X) and the uncertainties resulting from the use o f local 
k estimators (see van Kampen 1998). The recovered shear distribu­
tion is more affected, although it still fares better than 7  calculated 
Irom uncorrected Fourier techniques. The main contribution to

these residuals is from boundary effects arising from trying to 
recover a non-local shear in a finite area. Since much work has been 
carried out in the removal of such effects (see Squires & Kaiser 
1996 and Seitz & Schneider 1995, for example) which have little 
impact on the recovered x. we shall address the problem elsewhere.

3.2 D u m b -b ell m ass m od el

The method was also tested with a more general dumb-bell model. 
Magnification was determined in the same fashion as for the 
isothermal model, setting a negative parity inside the critical 
lines, shown by the white dashes in Fig. 2. Once again the residuals 
between the initial and solved k are typically less than one per cent, 
while those for 7  are typically 10 per cent and again come mainly 
from boundary effects.

4 P R A C T I C A L  C O N S I D E R A T I O N S

We solve equation (6 ) with the hybrid Powell method (NAG routine 
C05PCF). The number o f equations needed to solve lor k is equal to 
the total number o f grid pixels, which can prove computationally 
intensive for especially fine grids. We find that this is not a problem 
for grid resolutions used to measure magnification bias in practice. 
The 32 x 32 grid o f pixels used for the models in Section 3 was 
solved in approximately one minute on an average workstation. The 
residuals exhibit no noticeable dependence on grid size.

The Pow'ell algorithm is an iterative process and therefore 
requires an initial estimate o f the solution to start from. The 
choice of the initial estimate turns out to be irrelevant. We have 
tried a wide range of initial distributions, and even starting from a 
uniform distribution we arrived at the same final solution.

We have found, however, that the correct choice o f pixel parity 
(especially for low grid resolutions) is essential in order to achieve a 
sensible result. Inappropriate assignment o f parities to pixels 
manifest themselves, as one would expect, by x being overestimated 
when a pixel is wrongly assumed to lie inside a critical line, and 
underestimated in the reverse situation. This provides a means o f 
checking whether critical line positions have been properly defined 
by looking for large discontinuities in the k distribution. Models 
with dual critical lines requiring dual parity Hips have also been 
tested and we find that k  can be recovered just as well.

Finally, to ensure that the method does not break down with noisy 
data, we introduced a random noise term to the amplification. Errors 
in x resulting from noise in the inverse amplification propagate as 
one would expect from equation (6 ). For an isothermal lens we 
recovered the expected result, 5k  =  5A I2A ", indicating that pixelli­
zation does not lead to spurious noise properties.

5 A P P L I C A T I O N  T O  A B E L L  1 6 8 9

We apply the method to the magnification data presented in T98 for 
the lensing cluster A1689. A 12x12 grid is used as the best 
compromise between shot noise in galaxy counts per bin and the 
resolution o f the derived k  map. Identification o f the critical line was 
achieved by locating giant arc positions in the observed image.

Fig. 3 shows the solved mass density and shear distribution. 
Comparison with the mass density map illustrated in T98 (their fig. 
6 ). which was produced with the sheet k estimator, shows very 
similar structure. We find that the value o f k at the peak calculated 
here is approximately 10 per cent lower than the peak value in T98, 
since the sheet estimator over-estimates k  inside critical line 
regions. This has little effect on the total integrated mass o f
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Solved k. Solved 7

Residuals = 100*(<clnit -  Ksolved)A fait Residuals = 100*(7init -  7solved) / 7 inil

Figure 1. Truncated isothermal sphere model. The initial k  and 7  used to form the magnification distribution from which the solved k  and 7  are derived. 
Underlying grid dimensions are .32 x 32. White dashes show the position of the critical line. Contours are linearly spaced and are set at the same levels in both k 
plots and in both 7  plots. Residuals are expressed as percentages of Vri.,.;.

A 1689 found in T98. The 7  distribution is shown for completeness, 
although it undoubtedly suffers from boundary effects typically 
found in the models.

6 S H E A R  A N A L Y S I S

Having shown that pixellization allows us to accurately 
reconstruct surface mass densities from magnification data, we

now apply it to shear analysis. Shear analysis exploits the idea that 
a given distribution o f images o f galaxies lying behind a 
lensing cluster will, in the statistical mean, have regions o f lens- 
induced correlations in image orientation and ellipticity. 
Measuring the quadrupole moments o f individual galaxy 
images enables the construction o f a map o f the ellipticity 
parameters, e,y (Valdes. Tyson &  Jarvis 1983). The ellipticity 
parameters relate to the surface mass density and shear via

©  1998 RA S. M N RA S 300. L 23 -L 2S
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in i t ia l  7

Figure 2. Dumb-bell model: critical lines iire shown as white dashes. Underlying grid dimensions are 32 x 32. Linearly spaced contours are set at the same levels 
tor k and at the same levels for 7 .

(Kaiser 199.3, hereafter K95):

( )ne wav o f solving this for k in the weak lensing regime is to follow 
the approach o f Kaiser & Squires ( 1993). Generalizations of this to 
the strong regime have been made by K95. One would have hoped 
that an alternative to such approaches would be to pixellize equation

(8 ) and use equation (3) to solve it by matrix inversion. However, 
the resulting matrix equation is ill-conditioned, since the matrix 
D"'" is singular and D'"" is itself ill-conditioned. Instead, we show a 
new, simplified expression for the solution to Kaiser’s ellipticity 
equation and then pixellize it.

Starting with the equation (K95),

rJ,K =  dj-y ij (9)

<c) 1998 RAS. MNRAS 300, L23-L28
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S o l v e d  A 1 6 8 9  k S o l v e d  A 1 6 8 9  7

0 2  4  0  2  4

X  ( a r c m i n )  X  ( a r c m i n )

Figure 3. Abell 1689 solved convergence and shear distributions. Darker areas represent a higher distribution density. White dashes show the observed critical 
line. The plots are smoothed from a 12 x 12 grid with north up and east to the left.

and using equation ( 8 ), one can show that jn(| g )  _  g  q_ i g 2 _j_ ig3 + ... ( 1 1 )

dj ln(l — k )  =  — dj ln(5|4- e , j ) .  (10) where I is the identity matrix and B is an arbitrary square
matrix. Using this expansion and collecting even and odd terms

The term on the right hand side is obtained from the definition.

I n i t i a l  k D i s t o r t i o n  f i e l d  o v e r l a y

S o l v e d  k R e s i d u a l s  =  1 0 0 ' ( k K  s o lv e d

Figure 4. Reconstruction of k  from the ellipticity parameters. Contours are at the same levels in both k  plots. The distortion field is illustrated by plotting the 
apparent shape of an intrinsically circular background object.
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we find 

ln(6„
I -T c\ c,

( 1 2 )

where c ~  =  r ]  - T  c T  and c ,  =  7 , 7 ( 1  —  k ) .  This result requires that 
c < I . Inserting equation ( 8 ) into the magnification equation (1) we 
find

A 1 =  |(1 — k )2 ( 1 - c 1) |. (13)

Hence the parity changes when ¿ '>1 . Since ey and C y1 are 
observalionally indistinguishable and Hip from one to another 
whenever there is a parity change, we can satisfy the criterion 
c < I just by noting the critical line positions and inverting the 
ellipticity matrix when one is crossed.

Finally, inserting equation (12) into equation (10), and solving 
lor k  we find the pixellized solution is

= I -  (I ' exp i in , I aim til.■V, + /J: ,v2 ) ( 14)

where

models. We find that it reconstructs the surface density to within one 
per cent over most o f the field o f view. The reconstruction o f the 
shear pattern only has a fractional accuracy o f a few tenths because 
of boundary effects. We have applied the method to magnification 
data from Abell 1680, and have reconstructed its surface mass and 
shear distribution.

We have also found a simplified solution to the problem of 
estimating surface mass density from galaxy ellipticities. This 
approach puts the calculation o f surface mass from shear and 
from magnification on an equal footing, and we shall investigate 
the combined analysis elsewhere.
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■v, = — III /=  1,2. (15)

Equation (14) is the second main result o f this letter. We can 
directly calculate k given a measured ellipticity field. Fig. 4 shows 
the results o f reconstructing k using equation (14) for the dumb-bell 
model. The ellipticity parameters are calculated from equation ( 8 ) 
using the k  and y  distribution. We normalize the reconstructed k  to 
both peaks in the initial k  distribution. The residuals, again being 
dominated by boundary effects, show that reconstruction is possible 
to within approximately 10 per cent across the field o f view. This 
can be alleviated by a larger field o f view.

7 S U M M A R Y

We have outlined a method for directly calculating accurate, self- 
consistent surface mass density and shear distributions from the 
lens amplification and critical line positions. The method has been 
demonstrated with the isothermal sphere and dumb-bell cluster
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ABSTRACT
We present the first application of lens magnification to measure the absolute mass of a galaxy cluster: 

Abell 1689. The absolute mass of a galaxy cluster can be measured by the gravitational lens magnifi­
cation of a background galaxy population by the cluster gravitational potential. The lensing signal is 
complicated by the intrinsic variation in number counts resulting from galaxy clustering and shot noise 
and by additional uncertainties in relating magnification to mass in the strong lensing regime. Clustering 
and shot noise can be dealt with using maximum likelihood methods. Local approxim ations can then be 
used to estimate the mass from magnification. Alternatively, if the lens is axially symmetric we show that 
the amplification equation can be solved nonlocally for the surface mass density and the tangential 
shear. In this paper we present the first maps of the total mass distribution in Abell 1689, measured from 
the deficit of lensed red galaxies behind the cluster. Although noisier, these reproduce the main features 
of mass maps made using the shear distortion of background galaxies, but have the correct norm al­
ization, finally breaking the “ sheet-mass” degeneracy that has plagued lensing m ethods based on shear. 
Averaging over annular bins centered on the peak of the light distribution, we derive the cluster mass 
profile in the inner 4' (0.48 h ~ 1 Mpc). These show a profile with a near-isothermal surface mass density 
k  «  (0.5 +  O.l)(0/l')_1 out to a radius of 2!4 (0.28 h _1 Mpc), followed by a sudden drop into noise. We 
find that the projected mass interior to 0.24 h~ 1 Mpc is M (<0.24 h ~ l Mpc) =  (0.50 ±  0.09) x 1015 h~l 
M q . We compare our results to masses estimated from X-ray temperatures and line-of-sight velocity 
dispersions, as well as to weak shear and lensing arclets. We find that the masses inferred from X-ray, 
line-of-sight velocity dispersions, arclets, and weak shear are all in fair agreement for Abell 1689.
Subject headings: galaxies: clusters: individual (Abeil 1689) —  gravitational lensing

1. INTRODUCTION

The m agnitude and distribution of m atter in galaxy clus­
ters should in principle provide a strong constraint on 
cosmological models of structure formation and the mean 
mass density of the universe. In addition, a direct image of 
the mass density will tell us much about the relationship 
between gas, galaxies, and dark matter, and whether light is 
indeed a fair— if biased— tracer of mass.

Early techniques for estimating the mass in clusters 
include dynamical methods, from the line-of-sight velocity 
dispersion of member galaxies, and X-ray temperature mea­
surements. However, these estimates make some strong 
assumptions about equilibrium conditions in the cluster.

Kaiser & Squires (1993) circumvented this problem by 
showing that a more direct method of estimating the mass, 
with no underlying assumptions about the dynamical or 
thermodynamical state of the cluster, was to measure the 
shear field in the source distribution of the cluster back­
ground (Kaiser & Squires 1993; Tyson, Valdes, & Wenk 
1990; Schneider & Seitz 1995). On average, the shear 
pattern of a population of unlensed galaxies should be ran­
domly distributed. But in the presence of a massive gravita­
tional lensing cluster, the shear field is polarized. Since the 
shear field is related (nonlocally) to the surface mass density, 
the shear can be used to estimate the mass distribution— up 
to an arbitrary constant. The presence of this arbitrary con­

stant, referred to as the “ sheet-m ass” degeneracy, means 
that only differential masses can be measured. Shear maps 
are conventionally normalized to the edge of the observed 
field, or such that the inferred mass density is everywhere 
positive, and so represent a lower limit on the mass.

Soon after, Broadhurst, Taylor, & Peacock (1995, here­
after BTP) showed that the sheet-mass degeneracy could be 
broken by use of the gravitational lens magnification effect. 
The number and magnitude-redshift distribution of back­
ground galaxies is distorted by the gravitational field of the 
lensing cluster, and in the weak lensing regime this distor­
tion provides a straightforward estimate of the surface mass 
density. With calibration from offset fields the cluster mass 
distribution can be properly normalized.

BTP also suggested that a degraded, but much quicker, 
estimate of the magnification effect could be made from the 
distortion of angular number counts of background 
sources. Broadhurst (1995) found evidence for this distor­
tion in the background counts of the cluster Abell 1689, as 
did Fort, Mellier, & D antel-Fort (1997) for C10024. In this 
work we apply the m ethods developed by BTP and 
extended by Taylor & Dye (1998) in estimating the surface 
mass density from the distortion of angular counts, includ­
ing the effects of shot noise and galaxy clustering, and those 
of van Kampen (1998) in estimating the surface mass 
density in the strong lensing regime to Abell 1689,
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The layout of the paper is as follows. In § 2 we describe 
the magnification effect itself. In § 3 we describe the effects of 
shot noise and clustering on estimates of the surface mass 
density. In § 4 we describe how to estimate the surface mass 
density in the strong lensing regime using local approx­
imations and introduce a new self-consistent nonlocal solu­
tion for axially symmetric lenses. We apply these methods 
to m ap out the mass in the cluster Abell 1689 in § 5 and find 
its profile. O ur mass estimate is compared to other esti­
mates in § 6, and our conclusions are presented in § 7.

2. THE M AGNIFICATION EFFECT

The observed number of galaxies seen in projection on 
the sky is (BTP; Taylor & Dye 1998)

ri =  n0 A "” '(1 +  0 )  , (1)

where n0 is the expected mean number of galaxies in a given 
area at a given magnitude. Variations in this mean arise 
from the angular perturbation in galaxy density 0  as a 
result of galaxy clustering and from gravitational lens mag­
nification. The lens amplification factor is

where

A = |( l-K )2 - y 2r

y

(2)

(3)

is the surface mass density in units of the critical surface 
mass £ cril. The am plitude of the shear field is given by y, and 
the background galaxy luminosity function is locally 
approximated by

n(L) ~  L -i> (4)
The amplification index ft — I accounts for the expansion of 
the background image and for the increase in number as 
faint sources are lensed above the flux limit.

In the absence of galaxy clustering and finite sampling 
effects, the background galaxy distribution can simply be 
inverted, via equation (1), to find the amplification. One can 
then solve equation (2) to find the surface density, with some 
realistic assumptions about the shear. In § 4 we discuss 
various approxim ations that allow us to do this.

However, given a small resolution scale for the surface 
amplification, galaxy clustering and finite sampling will in 
general be an im portant effect. In § 3 we discuss the effects of 
intrinsic variation in the distribution of the background 
galaxy sources.

3. G A LA X Y  CLUSTERING NOISE

The main sources of uncertainty in lens magnification are 
a result of shot noise, finite sampling, and the intrinsic clus­
tering of the background source population that introduce 
correlated fluctuations in the angular counts. As we are 
viewing small angles, the clustering properties of the back­
ground source galaxies are not in general linear, unless the 
depth of background is sufficient to wash out the clustering 
pattern. As a result, it is not sufficient to make the usual 
assumption that galaxy clustering can be modeled by a 
Gaussian distribution.

We can account for the effects of shot noise and nonlinear 
clustering by modeling the angular counts by a lognormal- 
Poisson model (Coles & Jones 1991; BTP; Taylor & Dye

1998)— a random point-process sampling of a lognormal 
density field. The distribution function of source counts is 
then

P(n) =  -  < r e - ;-> 
n\

n\
dx

— 00 JlTio
exp

x
2c2

Xn ex — nx

(5)

(6)

where X =  X0 ex is the local mean density, x is a Gaussian 
random  variable of zero mean and variance <r2, and X0 = 
n0 A/,_‘e - "2'2 correctly normalizes the counts. The linear 
clustering variance a2 is related to the nonlinear variance by 
a 2 =  ln (l +  <72,). We have tested this distribution against 
available data and find that it is an excellent fit to the 
distribution of counts in the deep fields. The only param ­
eters are the observed count per pixel n and the variance of 
the lognormal field. The amplitude of clustering of the 
density field and its dependence on redshift can be esti­
mated from, e.g., the /-band-selected galaxies in the 
Canada-France Redshift Survey in the range 
17.5 <  I  < 22.5 (Le Fevre et al. 1996; see § 5.2.3). The quan­
tity required is the variance in a given area of sky, which can 
be estimated by averaging the observed angular correlation 
function cv(8) over a given area :

d28'o>(d') (7)

where 0.(8) is the area.
Our method of approach is then that discussed by BTP. 

At each pixel in a map of the source counts, one uses the 
distribution equation (6) as a likelihood function, Pl\A \ n, 
c) = P(n | (r, A), assuming a uniform prior for the amplifica­
tion. The surface density is then found from the amplifica­
tion by making some realistic assumption about the shear 
and maximizing the likelihood. In § 4 we discuss a number 
of ways of transforming from the amplification to k  in the 
strong lensing regime.

4. THE STRONG LENSING REGIME

Transforming from amplification to the surface mass 
density is potentially nontrivial, as we have no shear infor­
mation. One could incorporate this from independent mea­
surements of the shear field, but for the present discussion 
we are interested in developing a completely independent 
lensing approach. We shall discuss combining shear and 
magnification elsewhere. In principle, one could generate a 
first guess for the surface mass density and iterate the ampli­
fication equation toward a solution of both surface density 
and shear. However, given the small field of view and uncer­
tainties introduced by parity changes, this can be an 
unstable problem. In addition, as the solutions are in 
general multivalued, we would hope to start from as near to 
the correct solution as possible. In this section we discuss a 
number of reasonable approximations for solving the 
amplification equation (2). These can be regarded as solu­
tions in their own right, or as the first best guess to an 
iterated solution. We begin by discussing the local approx­
imation methods suggested and tested on simulated clusters 
by van Kampen (1998). Then, in § 4.2 we present a new 
self-consistent solution to the amplification equation for k 
and y for an axially symmetric lens.
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4.1. Local Approximations to the Surface M ass Density
There exist only two local relations between y and k that 

result in a single caustic solution .of the amplification 
equation (2) that is easily invertible (van Kampen 1 9 9 8 ) : 
y =  0, corresponding to a sheet of matter, and y = k, for an 
isotropic lens. These two relations have corresponding esti­
m ators for k as a function of amplification:

k0 =  ;c(y =  0) =  1 — i^ A ~ 112 , (8)

Ki = K(y = K) = l ( l - . ^ A ~ 1) ,  (9)

where =  +  1 is the image parity.
Let us assume that the surface mass density of the lens is 

sm ooth over some scale. In this case, for a sufficiently 
sm ooth lens, y <  k (BTP). The equality holds in the case of 
an isotropic lens, for instance the isothermal lens. The 
inequality holds for any anisotropic lens, with the sheet 
mass at the extreme. For a smooth lens these two estimates 
bound the true value, jq <  k < ;c0. Before caustic crossing 
it can also be shown that k x <  k0 < Kwcak holds, where A  =
1 +  2Kwcak is the weak lensing limit (BTP). Hence the weak
lensing approxim ation will overestimate the cluster mass in 
the strong regime, usually by a factor of 2 (van Kampen 
1 9 9 8 ).

In practice, substructure and asphericity of the cluster 
will induce extra shear (e.g., Bartelmann, Steinmetz, & 
Weiss 1 9 9 5 ), especially in the surrounding 1ow -jc neighbor­
hood, where substructure is relatively more dominant, and 
filaments m ake the cluster most aspherical. This means that 
the lens will not be smooth for small k, and therefore jq is a 
lower limit for the true k only for the central parts of the 
cluster, in the case where the lens parity is known. Van 
Kampen (1 9 9 8 )  found it to be a good lower limit only for 
k > 0.4 (for the most massive clusters), while for k < 0.2, jq 
is usually fairly close to the true value. For angle-averaged 
re-profiles, jq  is a good lower limit for <;c>„ >  0.2. All this 
has no bearing on ;c0, which remains a strong upper limit 
until the first caustic crossing.

A heuristic approximation, motivated by numerical 
cluster models, that tries to take these cluster lens features 
into account while still giving an invertible A ( k ) relation is 
(van Kampen 1 9 9 8 )

y = 11 — c\ (10)

which results in an amplification relation that admits the 
full four solutions:

A ~ ' = \ ( k -  c)(k -  1/c)| , (11)

with caustics at k = c and 1/c. The solution for k is then

K,  =  r r  [ (c 2 +  ! ) -  y V ( c 2 +  l )2 - 4 c 2( l - P A - lJ] . 2c

(12)

We shall refer to this as the parabolic approximation. Solu­
tions are set by choosing the parities 3a, •'/' =  +  1, where .J? 
is the image parity, and .'/' is the sign of [(c2 +  l)/2c -  re]. 
N ote that the sheetlike solution is recovered by setting 
c =  1.

Figure 1 shows a plot of k versus the inverse amplifica­
tion A ~ ' for the three estimators. Also shown is the weak 
field approxim ation. The points are taken from a simulated

Fig. 1.— Scatter plot of the surface mass density k v s .  the inverse ampli­
fication A~ 1 for a simulated cluster in a CDM universe (see van Kampen 
1998 for details). The cluster is at a redshift of 0.183, and the background 
population is at z  =  0.8. Solid line: y = 0 ( K l ) ) h strong lensing approx­
imation. Before caustic crossing this is a hard bound on the locus of points. 
Dashed line: y = k{k l)h approximation, which is a good lower bound for 
k > 0.2 for this cluster. The weak lensing approximation (dotted line) is 
seen to be a very bad approximation for k  > 0.1. The dot-dashed line is a 
good fit to the simulation for the parabolic approximation y =  1 1 — c \ ( k /  

c)1/2, withe =  0.7.

lensing cluster (van Kampen & K atgert 1997) that is of 
comparable size to A1689. It is clear that k0 is a strong 
bound, at least until a caustic is crossed, and that jq pro­
vides a very good bound for k > 0.2. The weak field approx­
imation, however, is extremely bad, except in the very weak 
regime (k <  0.1). The parabolic approxim ation behaves as it 
is designed to do: it is a good fit between the other two 
strong lensing estimators for the central parts of the cluster, 
while also modeling the y > k behavior for small k. These 
results are fairly robust over a wide range of clusters and for 
all realistic values of the cosmological density parameter 
£20 .

4.2. A Nonlocal Approximation to the Surface M ass Density
An alternative approach is to assume axial symmetry for 

the lens. Because this fixes a nonlocal functional relation­
ship between ic and y (eq. [15]), we can solve the amplifica­
tion equation (2) for a self-consistent k and y profile. 
Although we shall apply our results to  circularly averaged 
data, these results hold for any self-similar embedded set of 
contours.

We define a mean surface density interior to a contour by 
integration over the interior area £2(0),

k(6) =
1

£2(0 )
d2Q'K(Q')

The deflection angle for the axisymmetric lens is

A 0 =  0 k ,

and the shear is given by

y = y, = I k — k | ,

(13)

(1 4 )

(15)
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where the tangential term y, is the only component of shear 
that is generated. The amplification factor is given by

A~  1 =  | (1 — ic)(l — 2k +  ic) | (16)

One can now simultaneously solve for the surface mass 
density, shear, and amplification by series solution. First, we 
divide the surface mass into consecutive shells with equal 
separation (any arbitrary separation can be used; we have 
chosen a regular separation for convenience). If we split k 
into an interior term, and a surface term, then for the 
nth shell we have

(U)

where we have defined

1n-i =- I
1 »(»+!)„,= .

The surface mass density in the nth shell is then given by

(» + 1)

(18)

4n
n +  1 — (n — l )»/,,-1 — V  {[n — 1

(« +  1)4m-  i ] 2 +  4n/A4„ ‘}1/2 (19)

where .'/’ =  ±  1 are again the image parities. The only 
freedom that we have, for a given amplification profile, is 
the choice of the shear on the first shell yi =  tj0 and the 
parity. It should be noted that given the amplification and 
having fixed the parities, one has to ensure that the first y 
satisfies y2 > .'PA-1 , in order to avoid unphysical solutions. 
The nonlocal approxim ation contains both the sheet and 
isothermal solutions as specific solutions. The uncertainty 
on k  and y can be found by simple error propagation of the 
uncertainty on the measurement of the amplification.

Having shown in §§ 2, 3, and 4 how, in principle, one can 
measure the surface mass density from angular number 
counts, in § 5 we exploit these methods to measure the mass 
distribution in the lensing cluster Abell 1689.

itself, obtained after masking out the cluster and other 
bright objects. Following this, we had homogeneous photo­
metry across the field. (A further discussion of the reduction 
procedure can be found in Benitez et al. 1998.) The zero 
point was found to be good to 0.1 mag. High humidity on a 
few nights meant that some of the data were not photo­
metric, so we calibrated with the photom etric data. The 
object detection and classification was performed with SEx- 
tractor.

5.1.2. S ep a ra tio n  o f  C lu ster  and  B a c kg ro u n d

To measure the distortion in background counts, we 
must first separate the background from cluster members 
and mask off the area that they obscure. Cluster galaxies 
were identified from the strong cluster E/SO color sequence, 
which forms a horizontal band across the color-magnitude 
diagram, shown in Figure 2. The sharp upper edge of this 
band represents the reddest galaxies in the cluster. Galaxies 
redder than this are cosmologically redshifted, and hence 
they represent a background population. As well as iso­
lating cluster members, this selection should also ensure 
that any foreground galaxies are removed. Anything redder 
than V — I  = 1.6 was selected as a background galaxy. 
Further color cuts where imposed to ensure completeness of 
the sample. The range of magnitudes was restricted to 
20 <  I < 24, and the V band was limited to V < 28. Finally, 
we also cut at V — I  < 3.5, where the reddest galaxies cut off.

Since the identification of cluster members is im portant 
for removing contamination of the background sample, we 
also checked our color-selected candidates with new data 
from a photometric redshift survey of the same field (Dye et 
al. 1998). We found general agreement with the simpler 
color selection.

Having identified foreground and cluster members, we 
produced a mask to eliminate those areas obscured by 
cluster members that would otherwise bias the mass esti­
mate. To isolate the cluster members for the mask, we selec­
ted all the galaxies in the color-magnitude diagram lower 
than V — I = 1.6 and less than I  = 22. This isolated most of

5. APPLICATIO N  TO A1689

In this section we apply the methods discussed in §§ 2, 3, 
and 4 to observational data. We begin by describing the 
data.

5.1. The Data
5.1.1. D a ta  A c q u is itio n  an d  R ed u c tio n

The data were obtained during a run in 1994 February at 
ESO’s NTT 3.6 m telescope, with 104 s integration in the V 
and I bands and covering 70 arcmin2 on the cluster. Seeing 
was similar in both bands, with FW HM  of 078 and a CCD 
pixel scale of 0'.'34. The EM MI instrument was used 
throughout. The passbands and exposures were chosen 
such that the cluster E/S0 galaxies would be bluer than a 
good fraction of the background, requiring much deeper 
imaging in the bluer passband for detection. The cluster was 
observed down to a limiting magnitude of I = 24.

The images were debiased and flattened with skyflats 
using standard I RAF procedures. After this, there remained 
some large-scale gradients of a few percent, probably caused 
by some rotation of the internal lens. We additionally cor­
rected each separate exposure with a smoothed version of

1>

I
Fig. 2.—Color-magnitude diagram for A1689, overlaid with color cuts 

used to isolate the cluster members from the background population: 
20 < / < 24. 1.6 < V  — I < 3.5, and V < 26.8. The strong horizontal band 
of galaxies is the cluster E/S0 sequence.
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the cluster sequence. We identified the remaining galaxies in 
the region V — 1 < 1.6 and I  > 22, V < 26.8 as the faint blue 
background population. It is clear from Figure 2 that the 
distinction between faint cluster member and faint blue 
background galaxy is rather vague. However, since the faint 
cluster members are also the smallest, the masked area is 
fairly insensitive to the exact division. Figure 3 shows the 
distribution of cluster galaxies and the red background 
population. The concentric circles are centered on the peak 
in the cluster light distribution and show the position of the 
annuli used to calculate the radial profile in § 5.4.

5.1.3. S e lec tio n  b y  C o lor

Once the cluster galaxies have been isolated, the back­
ground galaxies may be subdivided into a red and blue 
population, separated by V — I  =  1.6. The observed slope of 
the luminosity function for these two populations for I  > 20 
is /¡R — 0.38 and [1B = 1 (Broadhurst 1995; we shall do a 
more accurate fit using our color cuts in § 5.2.2). From 
equation (1) we expect that the surface density of red gal­
axies will be suppressed because of the dilation effect, while 
magnification of the faint blue galaxy population will com­
pensate for the dilation. Hence, selecting by color allows us 
to identify a population of galaxies with a very flat lumi­
nosity function to boost the lensing signal, at the expense of 
a reduction in galaxy numbers. Simple error analysis shows

that the signal-to-noise ratio varies as (Taylor & Dye 1998)

S/N =  2 | /S -  1 1 kA (î -  j c  +  y ' / O v ^ l  +  n a 2y 112 , (20)

where ' =  d/dR. While the signal-to-noise ratio is a 
linear function of the slope of the luminosity function, it 
only grows with the square root of the galaxy numbers, 
assuming Poisson statistics. Hence one can get a better 
signal-to-noise ratio by preselection of the red background 
population to boost the signal, at the expense of numbers. 
Equation (20) also shows that one can get a better signal by 
observing to fainter magnitudes to enhance the surface 
number density and reduce the contribution from intrinsic 
clustering simultaneously (see Taylor & Dye 1998 for a 
more detailed discussion of observing strategies).

There is also a practical reason for favoring the red 
galaxy population. While the cluster members are unlikely 
to be redder than the cluster E/SO sequence, the distinction 
between faint blue galaxies and cluster members, based on 
selection from the color-magnitude diagram alone, is some­
what vague. There may be blue cluster members that will 
contaminate the sample of blue background galaxies. In the 
absence of redshift information, the blue background popu­
lation is clearly harder to isolate.

As we have noted, the red population has relatively few 
faint counts, so that the expansion term in equation (1) 
dominates, and there is a net underdensity of red galaxies

X (arcm m )
Pig, 3.— Masked region of A1689 (gray area). Cluster members were selected using color information (see text) and then masked over so that these regions 

do not affect the surface density estimate of background sources. The total region masked is about 10% of the area. The background galaxies are also shown 
as open circles. Superposed are the concentric bins used to calculate the radial profile, centered on the peak in the light distribution. North is up, and east is to 
the left.
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behind the cluster (see Figs. 4 and 7). Conversely, faint blue 
galaxies are numerous and cancel the expansion effect. As 
expected, we found that the blue galaxies were uniform 
across the A 1689 field (see Fig. 8). This is a good indicator 
that it is the magnification effect at work and not some 
spurious contam inant, for example color gradients across 
the field or large-scale variations caused by clustering. In 
addition, it also indicates that the deficit in the red popu­
lation is not due to dust obscuration or reddening in the 
cluster, as this would affect both red and blue populations 
in equal measure.

5.2. The Distribution o f Background Galaxies 
In Figure 4 we show the surface distribution of the red 

population behind A1689, Gaussian smoothed on a scale of 
0!35. There are 268 background galaxies. The cluster 
members have been masked out and the masked areas inter­
polated over. The masked region contributes to only »  10% 
of the total field. Figure 3 shows the masked region. The 
cluster center, identified as the peak of the light distribution, 
is at (411, 316).

The angular size of the cluster scales as

R(8) =  Q.SlDA(zc)(d/V) / r 1 Mpc , (21)

where DA(z) = 2[1 -  (1 +  z)_1/2] /( l -I- z) is the comoving, 
dimensionless angular distance in an Einstein-de Sitter uni­
verse. Hence, at the redshift of Abell 1689, zc =  0.183 
±0.001 (Teague, Carter, & Gray 1990), and 1' is about 
0.117 /i-1 Mpc.

Figure 4 clearly shows a deficit of galaxies about the 
central peak in the light distribution at (4!1, 316). At 8 =  0175 
there is an arc of very underdense number counts to the 
southwest of the cluster center, marked by a dashed line 
(The background is somewhat obscured by the cluster mask 
to the northeast of the cluster center.) This is clear indica­
tion of a caustic feature in the background number counts, 
where the number density drops to zero because of dilation. 
This exactly corresponds to the radius of the blue arcs 
observed by Tyson & Fischer (1995) at 8 = 0185 (see also the 
radial number counts in § 5.4). This is strong evidence that 
we have detected the magnification effect in the background 
counts.

O

vfS
>H C\2

0 2 4 6

X (arcm in)
Fic;. 4. D istribution  of red /-band  background sources for Abell 1689. D arker gray areas indicate an underdensity of source counts. The image is 

G aussian sm oothed with a sm oothing scale of 0!35. The peak of the light d istribution is at (4' 1, 3'.6). The maxim um  density of objects is 23.0 arcm in - 2, and  the 
m inim um  is 1.1 arcm in -. There are 15 contour lines spaced by An  =  1.46 galaxies a rcm in-2 . A strong caustic feature is seen0!75 from the peak (inner dashed  
line), m ore visible to  the southw est, as the o ther side of the peak is m asked over. A second feature is found in the radial profile at 2'.2 (ou ter do tted  line). The 
image is oriented with east to the left and north  to the top.
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tao<D

c

Fig. 5.— M agnitude d istribution  of all /-b an d  galaxies (solid dots), the 
red-selected galaxies (gray dots), and the blue background galaxies (open  
dots). T he lines are the best fits to the data.

5.2.1. The Redshift Distribution of Background Galaxies 
The efficiency of lensing varies with the redshift of the 

background source (BTP). Therefore it is im portant to esti­
m ate the background redshift distribution. Cram pton et al. 
(1995) find that Canada-France Redshift Survey (CFRS) has 
a median redshift of z =  0.56 for galaxies in the range 
17.5 < I < 22.5. They also show a color-redshift diagram 
that indicates that the red galaxy population (V — I >  1.6) 
has a median redshift of about z «  0.8 (Crampton et al. 
1995, their Fig. 5). More accurately we can integrate the 
best-fit Schechter function found by Lilly et al. (1995) for 
the CFRS red galaxy population. This has param ­
eters r/>* =  0.0031 ±  0.00095, a =  1.03 ±  0.15, and 
M*(B) =  —21, where M(B) = 1  — 5 log10 (D J 10 pc) +  2.5 
log10 (1 +  z) +  k-correction, where the k-correction is dis­
cussed in their paper, and D, =  (1 +  z)2DA(z) is the lumi­
nosity distance. Lilly et al. found no detectable evolution of 
the luminosity function of the CFRS red population, and we 
assume no evolution. Extrapolating to the magnitude range 
20 < I < 24, we find that the redshift distribution can be 
well fitted by the function

: F(3/a)
exp (22)

with a =  1.8 and z* =  0.78 to about 5% accuracy over a 
redshift range of 0.25 <  z <  1.5. The moments of this dis­
tribution are

<z"> =  z'i
r[(3 +  n)/«J 

r(3/a)
(23)

Hence, for the red galaxy population we find that 
<z> =  0.96 and a, =  0.42. To simplify the analysis of the 
lensing properties of the cluster, we shall assume hereafter 
that the background distribution is at a single redshift of 
z =  0.8 (the mode of the distribution) and has an uncer­
tainty of 5z =  0.4.

As the caustic indicated by the blue arcs coincides with 
the magnification caustic, we can presume that the galaxy

forming the arcs lies at the same redshift as the magnified 
red background galaxies, z «  0.8. At present we do not 
know the redshift of this arc.

5.2.2. N u m b e r  C o u n ts  o f  th e  B a c k g ro u n d  G a la x y  P o p u la tio n  

Of major importance to the lens magnification m ethod is 
the normalization of the background galaxy population. 
The CFRS is not adequate for this, since their color cuts 
were in the rest frame U — V, rather than in the observed 
V — I. Instead, we have used the Keck data of Smail et al. 
(1995), who observed deep V R I  images down to a limiting 
magnitude of R w 27. The total differential galaxy count 
rate in the I  band can be approxim ated by

logio n = (0.271 ±  0.009)/ -  1.45 (24)

over the range 20 <  I  < 24, where n is in m a g " 1 deg-2 . We 
have applied our color criteria (see § 5.1) to the Keck data 
and find that the red galaxy population V — I  > 1.6 can be 
well approxim ated by

log10 n(red) =  (0.0864 ±  0.0187)/ +  (2.12 ±  0.41) (25)

over the range 20 <  /  <  24. Figure 5 shows the magnitude 
distribution for the full data set and for the red-selected 
galaxy population and the best-fit fines. Integrating the fit 
for the red galaxies yields a to tal count rate of 
n =  12.02 ±  3.37 galaxies arcm in-2 in the range 
20 < I  <  24. Since [i = 2.5 d  log10 n/dm, we find that the 
Keck data imply /?R =  0.216 +  0.047. This is the value of /f 
that we shall use in the subsequent analysis.

An alternative, although less exact, m ethod of norm al­
ization is to assume negligible cluster mass at the edge of the 
field and to normalize the cluster to this. In general, this 
would put a lower limit on the mass and is similar to the 
method used to normalize shear mass maps. In fact, if we do 
this for A 1689, we find a background count rate that is very 
similar to that given by the Keck data. The error introduced 
into the final mass estimate by uncertainties in /f scales as 
S k / k  x  5)3 / |  1 — P \ , which for the Keck data results in a 
fractional error of around 5%.

We have also fitted the blue counts in the Keck sample 
(Fig. 5). Over the same range as the red counts, we find that 
log10 n(blue) «  0.35/ — 3.49, resulting in /?„ =  0.88, close to 
the lens invariant /? =  1, and a count density between 
23 <  /  <  24 of n0(blue) = 15 .5  galaxies arcm in-2 .

5.2.3. C lu ster in g  P ro p ertie s  o f  th e  B a c k g ro u n d  P o p u la tio n  

The amplitude of clustering of /-band galaxies and its 
dependence on redshift can be estimated from the CFRS (Le 
Fevre et al. 1996). Le Fevre et al. (1996) find that there is 
little difference between the clustering properties of red and 
blue populations of galaxies for z >  0.5, implying that the 
populations were well mixed at this epoch. We therefore 
apply their clustering results directly to our red galaxy 
population. They fitted their results to a power-law model 
for the evolving correlation function, £(r) =  (r/r0)~y, where

r0(z) =  ro(0)(l + z )-< 3 + ̂ ,  (26)

where e =  1 ±  1, and r0(z =  0.53) =  1.33 ±  0.09 h~ 1 Mpc, 
and y =  1.64 +  0.05 is in this section the slope of the corre­
lation function.

The quantity that we require is the variance in a given 
area of sky, which can be estimated by averaging the 
observed angular correlation function w(0) over a given
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X (arcm in)
Fig. 6.— Reconstruction of the surface mass density of Abell 1689 from the red background galaxy population, using the nonlinear local sheet approx­

imation (y =  0) and a full likelihood analysis in two dimensions. Light regions are high density. Only one caustic line is assumed, at 0 =  0175 from the peak ol 
the light distribution. The maximum surface density is k  = 1.35, at (4102, 3141), consistent with the peak in the light distribution. The minimum surface mass 
density is k = —0.47. There are 15 linearly spaced contours, separated by Arc =  0.12, and the map is Gaussian smoothed with a smoothing length of 
0S =  0135. North is up and east is to the left.

area (eq. [7]). The clustering variance for /-band galaxies 
then scales roughly as (Taylor & Dye 1998)

<t2, =  K T 2z - 2'8( 0 / l ' r 0'8 , (27)

where the sampled area is a circle of radius 6, and we have 
assumed unbiased linear evolution of the density field. The 
background galaxies are assumed to all lie a t z »  1.

5.3. Reconstructing the Surface Mass Density 
In Figure 6 we plot the reconstructed surface mass 

density of Abell 1689 using the nonlinear local sheet 
approximation k0 (see § 4.1), changing parity on the caustic 
line at 0 =  0175 (see Fig. 4). The uncertainty on the peak of 
the mass distribution is somewhat large (see § 5.2), but sig­
nificant features can be seen around the cluster core. There 
appears to be an extension to the southwest that is not seen 
in the cluster galaxy distribution. Interestingly, there also 
appears to be a loosely connected ridge, about 2(4 from the 
peak. We shall discuss this feature further below, but note 
that the shear mass map derived by Kaiser (1996, Fig. 2) 
shows similar extensions and ridge, although the extension

to the west is not apparent in the shear map. Two under- 
dense regions are also seen to the south and to the east in 
both maps. While the comparison is only qualitative and 
the maps are noisy, we find this very encouraging, as these 
maps are derived from completely independent methods, 
although the underlying data set is the same.

5.4. The Mass Profile o f Abell 1689 
While the mass maps are suggestive, a more quantitative 

measure can be made by angle averaging the counts and 
calculating the mass profile. Figure 7 shows the radial 
counts about the peak in the fight distribution, normalized 
to the Keck data. The plotted error bars result from only 
Poisson statistics, although in the mass analysis below we 
shall take into account the effects of clustering. A general 
trend is clear and lies close to the prediction for an isother­
mal lens normalized to the blue arc caustic. This has a 
surface mass density of k  = 0.375(0/1')“ \  corresponding to 
a virial velocity of 1600 km s _ '. Again, it is worth em pha­
sizing that the zero of the number counts at 8 =  0175 corre­
sponds to the caustic inferred from the blue arcs. The 
second dip will be discussed in more detail in § 5.4.4. The
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6 ( a r c m i n )

F ig .  7 .— Radial profile of red counts behind Abell 1689. The back­
ground count density is n„ =  12  objects arcmin-2. Superposed is the 
profile for an isothermal model, normalized at the caustic radius 0 =  0175 
(dashed line).

increase in counts at 6 — 3!7 is likely to be the result of a 
clustering effect. Table 1 contains the shell radii, red galaxy 
counts, and total and obscured area of the annuli.

In Figure 8 we show that radial profile for the blue galaxy 
population, normalized with the Keck data in § 5.2.2. As 
expected, there is no lensing signal. The slight increase 
toward the cluster center is caused by contamination from 
the blue cluster members.

5.4.1. L o c a l A p p r o x im a tio n s  f o r  th e  S u r fa ce  M a s s  D e n sity  

Figure 9 shows the radial mass profile of the cluster Abell 
1689 assuming a single caustic at 6 = 0!75. The inner two

0 ( a r c m i n )

Fig. 8.— Radial profile of blue counts behind Abell 1689. The back­
ground count density is n0 =  22 objects arcmin-2. As expected from the 
nearly lens-invariant slope =  0.88, the number counts are nearly flat 
and at large radii tend toward n/n0 =  1. The slight increase toward the 
cluster center probably results from contamination of the counts by blue 
cluster members.

solid lines are calculated using the lognormal-Poisson like­
lihood estimator (eq. [6]) with each of the two single caustic 
strong lensing approxim ations (eqs. [8] and [9]). The light 
shaded region indicates the 1 o uncertainty owing both to 
shot noise and to the effects of clustering. The dark shaded 
region indicates the region between the two extreme estima­
tors. Away from the cluster center these agree and are equal 
to the weak lensing estimator, but noise effects become 
dominant. Closer to the cluster center the uncertainty due 
to the shear increases and becomes dom inant at 9 < 1'. 
However, the cluster mass profile is significantly detected 
between 1' <  6 < 216. We also appear to see a deviation 
from an isothermal profile, which is also plotted. W hen the 
procedure was repeated with the center of the annuli offset 
from the peak of the fight distribution, the mass profile was 
weaker and less significant, as one would expect if the peak 
of the mass density was associated with that of light.

5.4.2. N o n lo c a l A p p r o x im a tio n  fo r  th e  M a s s  D e n s ity  a n d  S h ea r

In Figures 10 and 11 we assume axisymmetry and 
equation (19) to calculate the surface mass density and shear 
simultaneously. We set y 1 = 0 .3  for the first shell. The 
resulting profile is fairly insensitive to this choice, only 
affecting the first two shells. The uncertainty on the shear in 
the first shell is small, because this m ust be chosen a priori. 
However, averaging over shells means that the errors do 
not strongly propagate through to higher radii. Again, a 
mass detection is found between 1' and 218, this time with 
the shear being accounted for. In this region k x  0.4 ±  0.15, 
which is somewhat higher than that found by the shear 
estimate of ic =  0.2 +  0.1 (Kaiser 1996). (Note that we quote 
Kaiser’s color-selected sample, where cluster members that 
may contaminate the shear estimate have been removed. 
This corresponds to combining our red and blue back­
ground populations. This will change the redshift distribu­
tion of the background and include some residual blue 
cluster contam ination that may account for the discrep­
ancy.) Also, for the single caustic solution, we see a large 
spike at 2(2, which is not seen in the Kaiser (1996) results. 
However, the shear method correlates points, which may 
lead both to the suppression of features and to underesti­
mation of the errors.

Our estimate of the shear field is far m ore uncertain, with 
y, =  0.2 ±  0.3 over most of the range. There is a slight 
increase beyond 2(4 owing to the spike in the surface mass 
profile at that radius, but the profile is dominated by noise. 
This increase is not reflected in the angle-averaged measure­
ments of Kaiser (1996), where the mean shear is 
y =  0.15 ±  0.05.

5.4.3. L o c a l A p p r o x im a tio n  fo r  th e  S u r fa ce  M a s s  D e n s ity  an d  S h e a r

Figures 10 and 11 also show k  and y estimated from the 
parabolic solution of § 4.1. We find good agreement 
between the local and nonlocal approxim ations for k ,  but 
the the shear profiles are somewhat different, reflecting that 
one estimator is local and one nonlocal. However, the large 
uncertainties produced by each estimator mean that we 
cannot predict the shear profile with much certainty from 
the available data.

5.4.4. T w o  B a c k g ro u n d  P o p u la tio n s?

An interesting feature of the counts in Figure 7 is the 
appearance of two pronounced dips, one at 0175 and 
another one at 2(2. While the inner dip has already been
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F ig .  9 .— Radial profile of surface mass density of cluster Abell 1 689. Dark solid region: Uncertainty caused by the strong lensing estimators. Lighter 

shaded region: Uncertainty caused by clustering and shot-noise uncertainty in the background population. Solid line: A singular isothermal profile, 
normalized to the caustic feature at I) =  0!75.

identified with a caustic line, the outer dip is somewhat 
anomalous. A number of possibilities could account for this. 
The feature was noted in the mass plot as a low signal-to- 
noise ridge in the density and can be seen in the number 
counts as a loosely connected ring about the cluster center. 
One possibility is that this results from clustering in the 
background population, combined with a large mass con­
centration to the southeast of the peak in the light distribu­
tion. There are few cluster members in the region of the 
ridge or the bump, so the effect is not caused by masking.

An alternative is that this is the first glimpse of a second 
caustic line. In principle, a second caustic can be created by 
placing the background galaxies at two redshifts, one at low 
redshift, and one at high redshift (e.g., Fort et al. 1996). The 
observed number counts would then be given by

n'/n0 =  1 +  1 -  A \~  ‘) . (28)

where A, =  A ( f f  with f  =  k(z,.)/k„, =  [(1 +  z ,-)1/2 — 
(1 +  z ,.)1/2]/ [ ( l  +  Z;)1/2 — 1] (BTP), and i — 1, 2 for the two 
galaxy populations. Here, v is the fraction of galaxies at 
redshift z2. An outer caustic fine must be produced by the 
high-redshift population. If we make this population lie at 
z =  0.8, then the low-redshift population must lie at z =  0.3. 
Both populations are reflecting the same arc: the difference 
in projected radii is wholly a result of their relative redshifts.

However, this would double the predicted mass from lens 
magnification, making Abell 1689 a very extreme cluster. In

addition, it seems hard to make a caustic line from the 
high-redshift population for such a massive cluster without 
forming a second, inner radial caustic. As the strongest arc 
is tangential and is seen near the inner arc, one would have 
to conspire to have a nearby galaxy, at z =  0.3, lensed and 
lying at the same projected radii as the radial arc produced 
by the high-redshift population. This seems highly unlikely.

One could also keep the mass roughly constant and place 
a second population at z >  0.8. This is a possibility, but it 
does not strongly affect our mass estimate assuming a single 
caustic solution. In the absence of further evidence for a 
second high-redshift population, we shall only consider the 
single caustic model.

5.5. Mass Estimate o f Abell 1689
5.5.1. From k to Mass Surface Density 

Assuming that the background galaxies all lie at the same 
redshift of z =  0.8, and given that the surface density scales 
as

x - I l . « -  +  , (29)
(% /l  +  Z L —  1 X V  1 +  Z — y j l  +  Z , j

where Z0 =  8.32 x 1014 h M 0 M pc-2 is the mean mass per 
unit area in the universe, then we find that the surface mass 
density is

Z =  5.9 x 1 0 1 5 k(/ i M q M p c '2) . (30)
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F ig .  10.— Radial profiles of surface mass density k  for A1689 (solid line with dots), calculated by solving the axially symmetric lens equation (19). Shaded 

regions: 1 a errors calculated via error propagation from the uncertainty on the measured amplification profile. Solid dark line: A singular isothermal profile 
normalized to the caustic feature at 0 = 0'.15. Lighter solid line: Local parabolic estimator k c.

Although we have assumed an Einstein-de Sitter universe, 
these results only depend weakly on cosmology (BTP).

5.5.2. U n c er ta in ty  in th e  R e d s h ift  D is tr ib u tio n

The error introduced by assuming that the background 
galaxies he at the same redshift can be estimated by error 
propagation and by assuming Sz =  0.4 (see § 5.2.1). Hence, 
81. =  [ 8~L/dz | 8z and the fractional uncertainty on the 
surface mass density owing to the uncertainty in redshift 
distribution of the background galaxies is <5Z/E = 0.37 
b z  = 0.148. The same error is also found in mass estimates 
based on the shear pattern.

5.5.3. U n c er ta in ty  A r is in g  fr o m  N o rm a liz a tio n  o f  
B a c kg ro u n d  C oun ts

Assuming a sheet mass solution (k0 in § 4.1), we find that 
the uncertainty arising from the normalization of the back­
ground counts is 8 k  = ( |  1 — k  |/21 P — 1 1 )5n0/n0. For 
A1689 and the red galaxy population, this is 
5 k  =  0.15 11 — k  1. For an average k  = 0.5, the uncertainty 
is around die = 0.07.

5.5.4. T h e  C u m u la tiv e  M a s s  D is trib u tio n

Figure 12 shows the cumulative mass interior to a shell, 
calculated from both the nonlocal approximation (§ 4.2) and 
the local parabolic approxim ation allowing only a single 
caustic solution (§ 4.1). The uncertainties are treated by 
error propagation. We find that the two-dimensional pro-

jected mass interior to 0.24 h 1 Mpc is 

M 2D(<  0.24 / T 1 Mpc) =  (0.50 ±  0.09) x 1015 / T 1 M 0 ,

(31)

and that the two estimators are in good agreement. We find 
that the projected mass scales as

M 2D(< R ) a  3.5 x 1015(R/h~ 1 M pc)1'3 h ~ l A i0 , (32)

for R  <  0.32 h ~ ‘ Mpc, similar to that for an isothermal 
sphere, M  ~  R. Hence it appears that A1689 has a near- 
isothermal core. Beyond R = 0.32 Mpc the lensing 
signal is lost in background noise, and we can only say that
k  <  0 .1

Including the uncertainty from the background redshift 
distribution and the normalization of background counts 
increases the error to about 30%.

6 . COMPARISON W ITH  OTHER MASS ESTIMATES OF A 1689 

AND  INFERRING THE THREE-DIMENSIONAL MASS 

DISTRIBUTION

In this section we compare the mass derived from lens 
magnification to that found from a num ber of other inde­
pendent measurements. First, we com pare our results to 
estimates of the mass based on the shear pattern found 
around A1689 (§ 6.1). The magnification and shear com­
plement each other in that the shear pattern has a higher
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Fig. 11.— R adial profiles of tangential shear y, for A1689 (solid line w ith dots), calculated by solving the axially sym m etric lens equation  (19). Shaded  

regions: 1 a  errors calculated via e rror p ropagation  from the uncertainty on the measured amplification profile. Solid dark line: A singular isotherm al profile 
norm alized to the caustic feature at 0 =  0175. L ig h te r  solid line: Local parabolic estim ator tcc.

signal-to-noise ratio, since it is not affected by clustering 
noise (although with redshift information, the magnification 
can also be measured free from clustering noise; see BTP), 
but suffers from the “ sheet-m ass” degeneracy. We shall 
combine the magnification and shear pattern elsewhere.

While the lens magnification mass is vital for fixing the 
total two-dimensional projected mass distribution indepen­
dently of any assumptions about the dynamical state of the 
cluster, much information can be gained by combining this 
with other mass estimates, assuming that these are not 
strongly biased by their reliance on thermodynamical equi­
librium. In this section we describe a method for trans­
forming from the two-dimensional lens mass to other 
cluster characteristics, such as the Iine-of-sight velocity dis­
persion (§ 6.3) and the X-ray temperature (§ 6.4). Discrep­
ancies that arise between these predicted characteristics and 
the actual measurements can be used to infer information 
about the mass distribution along the line of sight 
(Bartelmann & Kolatt 1997). We find that while there is fair 
agreement between all of the mass estimates when projec­
tion effects are taken into account, the agreement is better if 
the cluster A 1689 is composed of two clusters superposed 
along the line of sight and separated by about Az =  0.02.

The transformation from a two-dimensional projected 
lensing mass to a three-dimensional mass, Iine-of-sight 
velocity dispersion and X-ray temperature can be made 
using either the isothermal model or by using relations 
found in JV-body simulations of clusters. While the former

provides a simpler method, one has more freedom with 
simulations to include or exclude the various projection 
effects that contaminate measurements of these quantities. 
In this section we shall use the relations found by van 
Kampen (1998) from an ensemble of CD M  cluster simula­
tions, all with f l0 =  1 aiQd °8 =  0-54. These relations are 
model dependent, but serve to aid comparison between the 
various mass measurements. We have also provided a table 
of quantities (Table 2) in which the uncertainties have been 
calculated by combining the error on the cluster mass with 
the dispersion found in the deprojection relations.

We begin by comparing the lens magnification mass to 
the mass determined from the shear field around A 1689.

6.1. Comparison with Arclets and Weak Shear 
Tyson & Fischer (1995) provide mass profiles of A1689 

from arclets, another independent estimator of the mass, 
normalized to the caustic line indicated by the blue arcs. 
They find that the two-dimensional projected mass within 
R  =  0.1 h~ 1 Mpc is

M 2d( < 0.1) =  (0.18 ±  0.01) x 1015 h ~ 1 M e  . (33)

They also find that the mass scales like an isothermal sphere 
out to 0.4 h~ 'M pc, before turning over to an R ~ lA profile. 
This implies that in the regime that we probe with the m ag­
nification the cumulative mass scales like

M( <R)  =  (1.8 ±  0.1) x 1015( R / / r ‘ Mpc) / T 1 Ai0 . (34)
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F ig .  12.— Cumulative mass profile of Abell 1689. Solid dark line and shaded uncertainties: Estimated using the axisymmetric nonlocal estimator described 

in § 4.2 . Lighter gray line: Cumulative mass estimated from the local parabolic approximation icc, described in § 4.1 . Also plotted is the isothermal fit to the 
blue arc caustic (dotted line), similar to the shear results of Kaiser (1996) and Tyson & Fischer (1995).

This is very close to the profile that we find from lens mag­
nification (eq. [32]). Using this, we scale their results, giving

M 2D(<0.24) =  (0.43 ±  0.02) x 1015 I T 1 M 0 , (35)

in good agreement with the mass from magnification.
Kaiser (1996) has also calculated ic based on the weak 

shear method (Kaiser & Squires 1993), using the same data

TABLE 1

P a r a m e t e r  V a l u e s  a t  V a r i o u s  A n g u l a r  R a d ii

r
(arcmin) N N/ N„

Annulus Area 
(arcmin2)

Obscured Area 
(arcmin2)

0.33....... 1 1.19 0.35 0.21
0.67....... 0 0.00 1.08 0.25
1.01....... 4 0.24 1.79 0.40
1.35....... 13 0.51 2.51 0.39
1.69....... 20 0.59 3.23 0.40
2.03....... 23 0.57 3.62 0.26
2.36....... 11 0.28 3.46 0.23
2.70....... 26 0.77 3.08 0.26
3.04....... 32 0.94 3.01 0.16
3.38....... 34 0.95 3.14 0.17
3.72....... 45 1.25 3.18 0.20
4.06 31 1.06 2.49 0.06

N o t e s .— Angular radius ( r  in arcminutes), number of red galaxies 
IN), ratio of galaxies to background (At/TV,,), the total area of the 
annuii, and the area obscured by the mask. The unobscured area is 
total area — obscured area. The expected number of galaxies in an 
annuii is N„ = n„ x  unobscured area.

that we have used here for A1689. We noted above that 
there are qualitative similarities between the weak shear 
maps and those presented by Kaiser, which is significant, 
since the methods are independent. The mass density profile 
found from the shear pattern is also well fitted by an iso­
thermal profile:

M 2d(< R )  =  1.8 x 1015(R//j_ ’Mpc) h ' 1 M 0 , (36)

with a 10% statistical uncertainty and further 10% system­
atic error owing to the uncertainty in the redshift distribu-

TABLE 2 

M a s s  E s t i m a t e s  f o r  A 1689

Quantity
( 1)

This Work 
(2)

Other
(3)

M,„(<0.24)...

AT,d(<0.5) ....
Ai5„o ............
ff. (< 1-5)........

0.50 ±  0.09

0.72 ±  0.25 
1.6 + 0.65 

2200 + 500

0.43 + 0.02 (Tyson & Fischer 1995) 
0.43 ±  0.04 (Kaiser 1996)

0.95 + 0.16 (Yamashita 1994)
2355î Î h? (Teague et al. 1990)

N o t e s .— Mass estimates for A1689 based on lens magnification (col. 
[2]) and from other measurements (col. [3]). Masses are given in units of 
1015 h~ 1 M e , and velocities are quoted in units of km s" ‘ . Distance are 
given in h~ 1 Mpc. The other measurements are based on arclets (Tyson & 
Fischer 1995), the shear pattern (Kaiser 1996), X-ray temperatures 
(Yamashita 1994), and line-of-sight velocity dispersion (Teague et al. 1990). 
Also given are the three-dimensional mass estimates from lens magnifi­
cation.
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tion (ij 5.5.2). Compared to our two-dimensional mass, 
Kaiser’s analysis suggests that

Ai2„ ( < 0.28) =  (0.43 ±  0.04) x 10ls h ~ 1 M Q , (37)

again in good agreement with that found by the magnifi­
cation method.

6.2. The T  hree-dimensional Mass Estimated from  
Lensintj Alone

The three-dimensional mass inferred from the two- 
dimensional projected mass inside a sphere of radius 
r =  0.5 h~ 1 Mpc is

M 3D( < 0.5) =  (0.72 ±  0.25) x 1015 h ' 1 M 0 , (38)

while the mass inside an Abell radius, r =  1.5 h~ 1 Mpc, is

M 3D(<  1.5) =  (1.6 ±  0.6) x 1015 / r 1 M 0 . (39)

These estimates are probably an overestimate of the true 
three-dimensional mass, since the dispersion in the simula­
tions includes the effect of the alignment of the clusters’ 
principle axis along the line of sight. Given that the inferred 
three-dimensional mass is so high, A 1689 is probably lying 
at the extreme of such a distribution. In such cases, the 
three-dimensional mass may be much lower than mass 
inferred from a two-dimensional projection. We discuss this 
possibility in the next few sections.

6.3. Velocity Dispersion o f Abell 1689 
The predicted line-of-sight velocity dispersion estimated 

from the simulations includes the effects of superposition of 
clusters, infall along filaments, and interlopers, and so tends 
to predict larger velocities and larger uncertainties than for 
an isolated cluster. Including these effects into our esthnate 
for Abell 1689, we find

o f<  1.5 ID ' Mpc) =  2200 ±  500 km s ' 1 (40)

for the line-of-sight velocity dispersion inferred from the 
two-dimensional lensing mass. A measurement that may 
also include these effects is given by Teague et al. (1990), 
who find

cr,,(<1.5 h~ ' Mpc) =  2355i is“ km s '  1 , (41)

in good agreement with our model. However, both of these 
values are very high, much higher than the estimate for an 
isolated isothermal sphere, which for A 1689 gives a velocity 
dispersion of 1645 ±  148 km s ' 1. This discrepency between 
lensing mass and the velocity dispersion suggests that 
A 1689 is not a single isolated cluster, but a superposition of 
smaller clumps that contribute to the total measured veloc­
ity dispersion. Den H artog & Katgert (1996) have tried to 
take into account interlopers in A1689 and, using the 
Teague et al. data, find a value o faL. =  1861 km s '

Following a suggestion of Miralda-Escude & Babul 
(1995), we shall assume that A 1689 is composed of two 
superposed isothermal spheres. Placing one cluster at 
z =  0.18 with a velocity dispersion of 1500 km s “ 1 and a 
second at z =  0.20 with a velocity dispersion of 750 km s ' 1, 
we find that we can reproduce a total projected velocity 
dispersion of around 2300 km s ' 1, in agreement with both 
observed and simulated values. Figures 4 and 5 ofTeague et 
al. (1990) also provide marginal evidence for a second con­
centration of galaxies at z =  0.2. Furthermore, if we esti­
mate the integrated surface mass of these two clusters,

M 2d( <R)  = 7.38 x 1014̂ 000( /;- i RM pc)  h ~ ‘ M © ’

(42)

where cr1000 =  crt./1000 km s ' 1, we reproduce a lensing 
mass of M 2p(<R ) =  2 x  1015(R//!-1 Mpc) / T 1 M Q, in 
agreement with what we see from lensing. Hence it seems 
plausible that the lensing mass and velocity dispersion of 
A1689 can both be explained by a superposition of a rich 
and a poor cluster.

6.4. X -R ay Mass Estimates o f Abell 1689
Evrard, Metzler, & N avarro (1996) have found that the 

mass within the radius defined where the mean cluster 
density is 500 times the critical density is strongly correlated 
with the cluster temperature. They fitted this relation from 
simulations with

/  T  \  3/2

M 50o =  1 - 1 1  x  1 0 1 5 ( j o " k ^ y j  ( « )

where Tx is the broad-beam temperature, and M 500 is the 
three-dimensional mass within a radius defined by an over­
density 500pcril. This radius is roughly given by r , 00 =  
1.175 h ' 1 Mpc.

X-ray temperatures of A1689 have been measured by 
both Ginga and ASCA. Yamashita (1994) has analyzed 
these data and finds T  = 9 + 1  keV, while M ushotzky & 
Scharf (1997) find T  =  9.02Tg;t keV. Daines et al. (1997) 
have also recently reanalyzed R O SA T  PSPC observations 
and find a mean temperature of T x =  10.2 ±  4 keV. Note 
that we are quoting the mean tem perature and incorpor­
ated the 40% uncertainty in the error estimate, rather than 
quoting upper limits as Daines et al. do. The major uncer­
tainty in measuring X-ray temperatures here is instrum en­
tal, as 10 keV is approaching the limit of R O S A T ’s 
sensitivity.

Taking the result of Yamashita and the relation found by 
Evrard et al., we find that

M 500 =  (0.95 ±  0.16) x 1015 / r 1 M 0 . (44)

Using the simulated scaling relations, we find

M 500 =  (1-6 ±  0.65) x 1015 / i ' 1 M e  (45)

for Abell 1689, implying an X-ray tem perature of Tx =  12.7
+  3.4 keV, within the 1 a uncertainty of the measured 
X-ray temperature. Again, if we consider A1689 as a double 
cluster, the nearer, larger mass concentration would be 
detected in X-ray, lowering the expected X-ray temperature. 
From  the velocity dispersions we can infer a temperature 
nearer to Tx =  0.7 keV, slightly below, but again in agree­
ment with observations.

In conclusion, although we find a high mass, there is a 
general consistency between the mass of A1689 estimated 
from lens magnification and shear. In addition, we find a 
fair agreement between the lens mass and the line-of-sight 
velocity dispersion if we take into account projection effects. 
Modeling A1689 as a double cluster, we find that the veloc­
ity dispersion can be much lower, implying two smaller 
clusters, with the lensing mass a superposition of cluster 
masses. This hypothesis might also help explain the m argin­
al discrepancy with X-ray temperature.

Finally, A1689 is in projection a highly spherical cluster, 
in contrast with the majority of clusters, which appear
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extended. While this may be a result of its high mass, it is 
also possible that A 1689 has its major axis aligned along the 
line of sight, pointing toward a second cluster. While much 
of the evidence on the mass distribution along the line of 
sight is circumstantial, all of these effects would conspire to 
give A 1689 its impressively massive appearance.

7. DISCUSSION

The absolute surface mass density of a galaxy cluster can 
be estimated from the magnification effect on a background 
population of galaxies, breaking the “ sheet-mass ” degener­
acy. To apply this in practice, we have taken into account 
the nonlinear clustering of the background population and 
shot noise, both of which contribute to uncertainties in the 
lensing signal (Taylor & Dye 1998). A further complication 
is the contribution of shear to the magnification in the 
strong lensing regime, where the magnification signal is 
stronger. We have argued that this can be circumvented by 
approxim ate methods that can be local, where a relation­
ship between surface mass and shear is assumed (van 
Kampen 1998), or by a nonlocal approximation where only 
the shape of the cluster is assumed. Both approximations 
seem to work well on simulated data.

We have applied these methods to the lensing cluster 
Abell 1689, using Keck data of Smail et al. (1995) to norm al­
ize the background counts and the CFRS results to infer the 
redshift distribution and clustering properties of our data. 
Using a y =  0 approxim ation of the surface density in the 
strong lensing regime, we have reconstructed a two- 
dimensional mass m ap for A1689 in the innermost 27 
arcm in2, from where a substantial part of the lensing signal 
comes. The two-dimensional map has general features that 
are similar to those seen from shear maps (Kaiser 1996). 
This is encouraging for both methods, as they are indepen­
dent determinations of the mass distribution.

For a more quantitative measure, we have binned the 
data in annuli around the peak in the fight distribution and 
found a significant (5 oj drop in the number counts, drop­
ping to zero where a caustic is inferred from arcs. Local and 
nonlocal approxim ations were used to find the k  profile 
from the num ber counts and estimate the shear field. We 
found these to be quantitatively similar to that found by the 
shear method.

We have also discussed the possibility of a second popu­
lation of background galaxies, creating a second dip in the 
radial number counts and a spike in the mass profile. 
However, we argued that it is unlikely that there is a second 
low-z population, as the cluster mass would be improbably 
high, and if there is a high-z population, it has little effect on 
our results.

We have calculated a cumulative mass profile for A1689 
and find a projected two-dimensional cumulative mass of

M 2d(<0.24 h - '  Mpc) =  (0.50 ±  0.09) x 1015 h~ ' M e  .

(46)

Such a large mass is very rare in a CD M  universe norm al­
ized to the observed cluster abundance, and may indicate 
that A1689 is composed of two large masses along the line 
of sight and/or filaments connected to the cluster and 
aligned along the line of sight. This is also implied by the 
high line-of-sight velocity dispersion, which would be 
enhanced by merging clusters (M iralda-Escude & Babul 
1995) or by infall from aligned filaments.

We have compared our mass estimates to other estimates 
available in the literature and find that the lens magnifi­
cation, shear, arclets, line-of-sight velocity dispersions, and 
the X-ray temperature mass estimates are all in reasonable 
agreement, to within the uncertainties at this time.

The results presented here are from 3 hours integration 
on the 3.6 m NTT. Longer integration times have the com­
bined benefit of increasing the num ber of background gal­
axies, and so reducing shot noise, and of reducing the 
contribution from cosmic variance (eq. [20]; § 5.1.3). Hence, 
by increasing the exposure time, we can expect to reduce the 
uncertainty from lens magnification by a factor of 2 or so.

One drawback of this analysis is the contribution of clus­
tering noise to the background counts. This can be removed 
using redshift information, either from spectroscopy or 
more efficiently, using photometric redshift information 
(BTP). We shall explore this elsewhere (Dye et al. 1998).

If our results are extended to other clusters, we can hope 
to have a good representation of the total mass distribution, 
gas, and galaxy contents with which to make strong sta­
tistical arguments about the m atter content of the largest 
gravitationally collapsed structures in the universe.
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