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Abstract

This thesis presents a novel distributed control method which allows a collection

of independently mobile robotic units, with two or three dimensional movement, to

self-assemble into self-repairing hierarchical structures. The proposed method utilises

a simple model of the cellular adhesion mechanisms observedin biological cells, al-

lowing the robotic units to form virtually bonded aggregates which behave as predicted

by Steinberg’s differential adhesion hypothesis.

Simulated robotic units based on the design of the subaquatic HYDRON module

are introduced as a possible platform on which the model can be implemented. The

units are used to carry out a detailed investigation of the model behaviour and param-

eter space focusing on the two main tasks of rounding and sorting in both two and

three dimensions. These tasks assess the model’s ability toreach a thermodynamically

stable configuration when the aggregates consist of either asingle population of units

or multiple populations of units with differing adhesive properties. The results are

analysed in detail with particular attention given to the role of random movements in

determining the overall performance, and demonstrate thatthis model provides a very

robust solution to these complex tasks.

Finally, a possible extension of this work is presented in which the original model

is combined with a genetic regulatory network controller. The performance of this

composite is evaluated, and the benefits of this hybrid approach, in which a powerful

control system manipulates a robust self-organising behaviour, are discussed.
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Chapter 1

Introduction

In recent years there has been increasing interest in multi-robot systems, largely due to

the higher level of robustness and adaptability that they offer in comparison to tradi-

tional monolithic architectures. Most commonly, the envisaged systems are composed

of many simple homogeneous robots. Therefore, if any singlerobot fails any other

robot may take its place and the overall performance of the system remains unaffected.

However, the clear challenge in these systems is coordinating the whole population to

accurately assemble into the formation or structure required for a given task.

If the number of robots in a system is small, it is possible that some form of hi-

erarchical or central control may be suitable. However, as the number of robots in-

creases, the huge number of interactions that must be considered quickly make such

an approach infeasible. In addition, this type of approach reduces overall reliability by

introducing a single point of failure. Instead, to produce more scalable solutions some

method of distributed control is required.

In distributed solutions the individual robots all executethe same simple behaviour.

However, through the resulting complex series of dynamic interactions some global

pattern emerges. The problem is that designing this type of system is nontrivial as it

is often hard to determine the local interactions which willproduce the desired global

behaviour. Therefore, the vast majority of current approaches take their inspiration

from natural systems where distributed control is common (e.g. organisation of atoms,

social insects etc.).

The approach we present in this thesis, which is also inspired by nature, is to at-
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2 Chapter 1. Introduction

tempt to model some of the organisational properties of biological cells. Cells demon-

strate an ability to rearrange themselves in extremely complex ways to produce re-

markably complicated organisms. Furthermore, they achieve this through interactions

with only their local environment1. Therefore, the behaviours that cells employ should

provide a good basis for self-assembly in multi-robot systems.

The most basic organisational behaviour exhibited by cellsis generated by the ad-

hesion forces which exist between them. This behaviour can adequately be explained

by the ‘differential adhesion hypothesis’ (DAH) [54] whichshows how simple hier-

archical patterns can be formed simply due to the differences in the adhesion forces

between different cell types (see section 1.3). This thesispresents a novel model of

the cell structure and adhesive mechanisms which provide the basis for this robust

self-organising behaviour. The model is designed to operate on physically realistic

robotic units with only local sensing and communication abilities. In itself, this model

provides a mechanism for generating simple self-repairingconfigurations. However, a

biologically inspired control mechanism is also introduced to allow dynamic behaviour

where the population must reorganise in response to some environmental stimuli. Fi-

nally, it is proposed that this combined model provides a suitable framework to which

other cell behaviours may be added, thus increasing the level of organisation that can

be achieved.

1.1 Thesis Overview

This thesis concerns itself with the following four objectives:� Developing a robust distributed control method which utilises an abstracted model

of the cell adhesion mechanisms observed in biological cells.� Investigating the model’s ability to generate the full range of behaviours the

DAH predicts.

1Diffusing morphogens do allow a cell’s local environment tobe influenced by other distant cells.
However, this type of long range signalling can also be approximated by signal propagation which
requires only local communication (see section 1.4.1.2).



1.1. Thesis Overview 3� Investigating how the model’s performance relates to specific system parameters

and hardware configurations.� Integrating some higher level of control with the model to allow dynamic be-

haviour and provide a framework to which more complex cell behaviours may

be added.

The remainder of this chapter provides the necessary background to the problem.

The following two sections (see sections 1.2 & 1.3) introduce the properties of biolog-

ical cells and present the DAH in more more detail. The final section presents a review

of the literature which relates to the thesis, both in the field of self-organising robotic

systems and simulated cellular models.

Chapter 2 begins by identifying the main constraints of the problem. This is fol-

lowed by a detailed description of the proposed model. Each component of the model

is introduced individually and related back to the corresponding biological equivalent

where appropriate.

By implementing the model on simulated robotic modules (A-Cells) it has been

possible to carry out a wide variety of experiments. The results of these experiments

are analysed and discussed in chapters 3, 4 and 5. The chapters have been ordered

with respect to the complexity of the configurations that theA-Cells generate. Chapter

3 investigates 2D rounding where the A-Cells form approximate disc configurations.

Chapter 4 investigates the more complex 2D sorting case where the A-Cells are di-

vided into two distinct subsets with differing adhesive properties. More specifically

this chapter compares the performance of the model with the behaviour predicted by

the DAH. The final chapter in this experimental portion of thethesis (see section 5)

investigates the model’s performance when the A-Cells havefull 3D movement.

An identified failing of the basic cell adhesion model is the inability of the vir-

tual aggregates to change function over time or in response to some environmental

stimuli. In chapter 6 this issue is addressed by integratingthe model with a flexible

genetic regulatory network controller (GRN). The proposedapproach allows the GRN

to dynamically adjust the adhesive properties of the individual A-Cells. This chapter

introduces the GRN controller and describes the details of integration process. The
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Extra−Cellular
Matrix

Nucleus

Cell MembraneCytoplasm

Figure 1.1: The basic structure of a eukaryotic cell.

resulting hybrid model is then evaluated on a number of tasksand its performance is

compared with that of a GRN controller without the added celladhesion model.

A summary of the main achievements of this thesis is presented in chapter 7 along

with a brief discussion of future work which could be considered.

Details of a number of algorithms which have been developed to aid the initial-

isation and processing of the experiments carried out in this thesis are included in

appendix A. Appendix B presents a number results for experiments which are sum-

marised in the main body of the text. The final appendix includes publications which

accompany this work.

1.2 Introduction to Cells

Biological cells form the basic building blocks of every living thing2. Therefore, unsur-

prisingly they are extremely diverse and vary greatly in both shape and size (examples

range from human fibroblast cells at only 15µmto ostrich eggs [38, Chap. 1.]). How-

ever, despite this variation cells do share some similarities in structure and function.

2This excludes viruses which arguably may or may not be classed as living things.



1.2. Introduction to Cells 5

All cells are essentially watery sacs which are protected from the environment by

a semi-permeable membrane. This cell membrane3 allows the inside of the cell to

remain chemically distinct from the outside (extracellular matrix) while still allowing

certain molecules to pass between them. Therefore, it is possible for the cells to both

influence and be influenced by their environment.

The structure inside the membrane classifies cells as one of two types; prokaryotic

or eukaryotic. Prokaryotic cells, which include single celled bacteria, are the oldest

and simplest form of cell. These cells have little internal structure with all the internal

components mixing freely. However, despite this, there is sufficient organisation to

support all the bio-chemical reactions of life. Eukaryoticcells (see fig. 1.1) comprise

all members of the plant and animal kingdom (including fungi) [46, Chap. 4.], ex-

isting as unicellular yeasts or ‘glued’ together by cell adhesion molecules (CAMs) to

form the tissues of complex multi-cellular organisms. These cells are thought to be

more recent in origin [60, Chap 4.] and are both larger and more complex than the

prokaryotes. Their internal space contains numerous compartments called organelles

which create micro-climates within the semi-fluid matter (cytoplasm) contained within

the cell’s membrane. The organelles allow specialised chemical reactions to take place

and the nucleus, which is the largest organelle in eukaryotic cells, contains the cell’s

genetic material (DNA). In addition to these, the cytoplasmof eukaryotic cells also

contains a cytoskeleton. This is a network of three-dimensional protein fibres which

criss-cross their way through the cell’s internal space. Some of these fibres simply

provide reinforcement to the cell’s rather weak structure,while other more dynamic

fibres actively push or pull the cell membrane into particular shapes and also assist in

moving the contents of the cytoplasm.

Clearly, for either of these cell types to survive they must be able to perform var-

ious key functions. For example, all cells must be able to respond to changes in their

environment. Most cells must be able to divide and some cellsmust be able to move.

However, most importantly, cells must be able to produce energy from ingested foods

(respiration and fermentation) and recycle or expel the waste products. Without this

energy cells would not be able to combine simple amino acid building blocks into the

3Also known as the plasma membrane.



6 Chapter 1. Introduction

complex proteins on which most of the structural and functional properties of the cell

depend.

1.3 Differential Cellular Adhesion

It has been observed that when aggregates of certain cell types are mixed together the

cells do not remain distributed at random and instead a degree of sorting takes place,

causing the cells to form hierarchical patterns of coherenthomeotypic cells.

Steinberg [54] first demonstrated this sorting behaviour with three separate experi-

ments involving tissues obtained from a chick embryo.� Exp. 1: limb-bud cells intermixed with heart cells.

– Result: the limb-bud cells migrated centrally and became completely en-

gulfed by the heart cells.� Exp. 2: heart cells intermixed with liver cells.

– Result: the heart cells migrated centrally and became completely engulfed

by the liver cells.� Exp. 3: limb-bud cells intermixed with liver cells.

– Result: the limb-bud cells migrated centrally and became completely en-

gulfed by the liver cells.

These experiments showed a clear transitivity in the central migration of the cells.

However, the true significance of the result was that the hierarchical relationship which

had been demonstrated was the same type of relationship known to occur in non-living

immiscible liquids [17]. When such liquids are intermixed,the demixing that occurs

is driven by surface tension forces arising from the difference in adhesion between

the separate liquid molecules. This therefore led Steinberg to postulate that a similar

mechanism was driving the cell sorting process and thus he proposed the “differential

adhesion hypothesis” ([54], reviewed in [16, 55]).



1.3. Differential Cellular Adhesion 7

Steinberg’s hypothesis states that cells will rearrange toform the most thermody-

namically stable configuration. This means the cells will attempt to minimise their free

energy. To illustrate this, consider a single cell. The surface has a fixed size and thus a

fixed area available for bonding to other cells. As adhesionsare formed, the free bond-

ing area and thus the free energy that remains (unused energyin the form of adhesions

which haven’t been formed, but could be) will diminish.

With an aggregate of cells, those at the boundary of the aggregate will have the

highest unsatisfied bonding potential as they have neighbours only on one side. This

gives rise to the surface free energy of the aggregate or, alternatively, the surface ten-

sion, which is a measure of this energy per unit area or equally the reversible work

required to expand the surface by unit area. To minimise thissurface free energy, the

aggregate should round to form a shape with the lowest surface area to volume ratio –

a sphere.

This same notion of energy can also be used to explain the moreinteresting case

where two tissues are intermixed. If we name the cell types ‘a’ and ‘b’ then the possible

adhesions are a-a, a-b, b-b (discounting adhesions to any external medium) and the

work of adhesion, which is defined as the work done in the formation of an adhesion

over unit area4, for each of these can be expressed asWaa, Wab andWbb respectively.

The four equilibrium states that can be achieved are shown infigure 1.2.� (a)Wab= 0. In this case there is no adhesion between the different cell types and

thus each cell type will simply round independently of the other, forming two

separate spheres.� (b)Wab� (Waa+Wbb)=2. In this case the heterotypic (a-b) adhesions are stronger

than or as strong as the average of the homotypic (a-a or b-b) adhesions. There-

fore, the most thermodynamically stable pattern will be achieved when the ‘a’

and ‘b’ cells are arranged alternately.� (c) Wbb �Wab < (Waa+Wbb)=2. This is the typical cell sorting case often re-

ferred to as the onion configuration. The average of homotypic bonds is greater

4Throughout this thesis work of adhesion is used to refer to both homotypic and heterotypic adhe-
sions. Some early sources use the additional term ‘work of cohesion’ to refer to the former case.
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Figure 1.2: Four equilibrium states formed when aggregates of differently

adhering cells are combined. Blue = type a; pink = type b.

than or equal to the heterotypic bond strength and thus the cells segregate with

the more adhesive ‘a’ cells becoming centrally located.

As the centrally located ‘a’ cells round to maximise a-a adhesions and the ‘b’

cells form a shell around them in order to both maximise a-b adhesions and

reduce surface free energy, the resulting structure resembles one large sphere

with a smaller sphere located within.� (d) 0< Wab < Wbb �Waa. This case is similar to case (a). As the heterotypic

bond strength is the weakest, the cells will attempt to roundseparately. However,

as the heterotypic bond strength is greater than zero there will be some attraction

between both of the cell populations. The greater the heterotypic bond strength,

the greater the surface area of the ‘a’ cell aggregate that will be engulfed by type

‘b’ cells.

Simple aggregate rounding is clearly easy to demonstrate and has been shown ex-

perimentally many times [12, 16, 54]. However, until more recently [12, 17] it was not

possible to accurately determine the surface tension properties of real cell aggregates,

and thus validate that these properties alone were sufficient to explain the sorting out

of intermixed cells. This has now been shown to be the case [12]. In addition, more re-

cently still [16], it has been demonstrated that the surfacetensions which are observed
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are specified almost entirely by the number of CAMs as predicted in Steinberg’s origi-

nal work [54]. Foty and Steinberg [16] state “We regard this as the final verification of

the explanation of ‘tissue affinities’ proposed in the DAH.”.

1.4 Related Work

1.4.1 Robotic Models of Self-Organisation

Current work on self-organising robotic systems can easilybe divided into three main

categories:� Metamorphic robots� Collective robotics� Swarm robotics

Metamorphic robots are robots composed of many individual units which connect

together to form rigid structures. This simplifies some aspects of self-organisation as

the physical connections provide a reliable mechanism for inter-unit communication

and also ensure the exact positioning of units with respect to each other. However,

as the units must remain physically connected, repositioning units becomes more dif-

ficult. In most cases, the units are relatively simple with few actuated parts making

them cheap to replace. Therefore, any movement often involves cooperation between

neighbours [32, 34, 35, 42, 50, 62]. However, work by Kotay etal. [37] shows that

units capable of moving without assistance from the other modules (except as a surface

to connect to) can be constructed if unit complexity is not anissue.

Collective robotics is the term used to describe systems of independently mobile

agents which interact to achieve some coordinated behaviour. Unlike metamorphic

robots, in these systems the issue of mobility is not as central to the problem. Instead,

the more interesting issue is that of communication and sensing. Some systems assume

an infinite communication range and the ability to detect theexact distance and direc-

tion of every signal [58, 63]. However, as the number of agents and the distance they

span increases, implementing this type of system becomes problematic. To overcome
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this a number of systems assume only local sensing and communication [19, 39, 52].

However, coordinating behaviours across the population ofagents then becomes more

difficult.

The final category of swarm robotics is a broadly used term assigned to systems

which mimic behaviours observed in populations of social insects such as ants and

termites. Therefore, as in collective robotic systems, theagents are independently

mobile. However, the term is increasingly being used to describe systems where, like

the insects they model, the agents have the ability to connect and disconnect from each

other as they interact. This has clear advantages as the unconnected population can

explore areas efficiently and pass through small gaps. However, when faced with tasks

and obstacles a single agent cannot overcome, they can physically connect and increase

their size and strength. With these tasks in mind, in this area, work on self-organisation

has focused on simple behaviours of chain formation and aggregation [10, 27].

The control strategies employed in each of these areas are normally very specific

to the abilities of the agents involved. Therefore, as the work presented in this thesis

falls into the collective robotics category, the followingsections focus on some of the

most significant work in this area.

1.4.1.1 Local Force Based Approaches

In all physical systems a remarkable degree of organisationtakes place at an atomic

level, with atoms and molecules arranging themselves in response to short range attrac-

tive and repulsive forces. The models presented in this section aim to use similar forces

to create highly scalable distributed systems which require minimal communication to

operate.

Balch and Hybinette [3, 4] proposed a model which is inspiredby the molecular

bonding involved in natural crystal formation. Each agent in the system behaves like

a simple atom withn bonding sites arranged uniformly and extending some small dis-

tancer from its hull (see fig. 1.3 - (a) & (d)). To move into a formation, the agents

first determine the nearest available attachment site usingthe position and orientation

of their neighbours and their knowledge of the current bonding geometry. Once a site

has been determined, the agents generate an attractive vector, pulling them toward the
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(a) (b) (c) (d)

Figure 1.3: Attachment site geometries (a) Column (b) Line (c) Diamond (d)

Square.

chosen location. In this way the desired crystal formation emerges. In addition, to al-

low the orientation of the formation to be given with respectto the agents’ direction of

movement, an additional parameterθ is used to give an angular offset of the bonding

geometry from the front of the agent. Therefore, formationsincluding line and dia-

mond can also be generated (see fig. 1.3 - (a) & (d)). A similar approach is proposed

by Fredslund and Matarić [18] in which each agent has essentially a single bond with

a unique offset. Therefore, instead of lattice formations,the agents form connected

chains with specific angles between the links.

Balch and Hybinette demonstrate that this control method can operate successfully

on a small population of agents. When the agents encounter obstacles, the formation

deforms appropriately, reassembling once the obstacle haspassed. However, there

is no enforced global configuration. Therefore, the agents can reorganise into any

formation which satisfies the bonding geometry. For example, agents with the ‘square’

bonding geometry can equally form a line.

Fujibayashi et al. [19] propose an alternative approach in which agents within some

range of each other behave as though they are connected by virtual springs. In this way,

the attractive and repulsive forces between the agents force them into a hexagonal lat-

tice. However, unlike the previous approach, Fujibayashi et al. also propose a method

of controlling the global outline of the resulting lattice.This is achieved by probabilis-

tically breaking some of the springs5, which in turn causes some subset of the agents

to reorganise. Candidate springs are selected depending onthe number of connections

which have been made by the agents that they join. Combinations which exist in the

desired formation have a breaking probability of zero, while the probabilities for those

5The connections are actually broken by replacing them with larger springs which force the agents
apart until they are out of range, at which point the spring vanishes.
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Figure 1.4: A hexagonal lattice formed by the intersection of circular potential

wells (indicated by dashed lines).

which don’t tend to be high. Therefore, some agents will continue to move randomly

around the structure until the final stable configuration is achieved. The main disadvan-

tage with this approach is the difficulty of choosing the mostappropriate parameters for

each configuration, such that the agents converge as quicklyas possible while avoiding

any deadlock states.

A similar, but much more adaptable approach is proposed by Spears and Gordon

[52]. Spears and Gordon introduce a framework called ‘Artificial Physics’ (AP), more

recently named ‘Physicomimetics’ [53], in which agents react to virtual forces which

are motivated by natural physical laws. In the simplest example given, agents closer

than some specified distanceR repel each other, while agents further apart thanR but

within some visual range, are attracted closer together. Therefore, each agent has a cir-

cular potential well of radiusRaround itself, where neighbouring agents will be stable.

When a large number of agents interact, the potential wells intersect with each other,

creating nodes of low potential which form the basis of a hexagonal lattice (see fig.

1.4). Spears and Gordon demonstrate that this simple approach, which requires agents

with only basic sensing abilities to detect the distance anddirection of any neighbours,

can achieve reasonably good lattices starting from an initial randomly organised clus-

ter. However, the outline of the lattices remains irregularand occasionally multiple
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2R

R

Figure 1.5: The arrangement of agents in a square lattice. Agent colour

denotes spin.

agents get trapped together in tight clusters where only a single agent is expected.

Adding an attribute called ‘spin’ to the above system also allows the formation of

square lattices. In this case, half the agents are initialised as spin ‘up’ and the other half

spin ‘down’. The detected distancer between two agents with like spin can then be

modified tor=p2. This effectively creates a different potential well for agents of each

spin causing the formation of a square lattice where the spins are intermixed (see fig.

1.5). It has been shown that this approach does produce regions where the lattice is as

expected, but often results in global flaws and the same localclustering as the previous

example. However, many of these can be eliminated by adding noise to the system in

the form of ‘spin-flipping’. With this mechanism, any agentswhich are within some

threshold distance of their nearest neighbours (e.g. in a local cluster) probabilistically

change spin and are immediately repelled. In addition to fixing initial flaws, the in-

creased flow of agents provides a crude repair mechanism which will continue to fix

flaws as they arise.

A final adaption of this approach allows the formation of perfectly symmetrical

lattices by introducing a notion of sorting. Each agent is assigned an attribute(m;n)
wheremdefines the agent’s relative order to other agents in the samerow andn defines

the same for columns. As the ordering must have some direction, each agent requires

global information indicating its current orientation. The sorting takes place by in-

troducing a new attractive force between agents which are not ordered correctly with

respect to either them or n value. Therefore, the agents will be drawn past each other

and toward their correct position. It has been shown that this technique can produce

both perfect squares and hexagons. Also, if agents are initialised with both sets of
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attributes, it is possible for them to switch from one formation to the other in response

to some observable signal. However, the additional performance comes at the expense

of the agents’ simplicity.

1.4.1.2 Beacon/Gradient Models

Another approach to self-organisation, which has also beeninspired by nature, is the

use of virtual gradients. In biological systems cell fates are often determined by the

concentration of specific soluble molecules called ‘morphogens’. Morphogens diffuse

from the source region, producing concentration gradientsthrough the organism [20,

Chap. 3.]. The cells then react to the different concentrations and change their be-

haviour accordingly. Some gradients even trigger secondary gradients, allowing more

complex patterns to develop. This mechanism is particularly important in symmetry

breaking and establishing some degree of polarity in developing organisms.

In the simplest case, this type of system can be modelled by allowing agents to

broadcast signals over greater distances such that the strength of the signal deteriorates

the further it travels. In this way, the signal behaves like adiffusing protein with

some limited range and indicates the distance and directionof the source. This is the

approach taken bÿUnsal and Bay [63] who propose a system where certain agents

take on the role of beacons around which others arrange themselves. In the simplest

example, a single agent acts as a beacon and the others organise into a ring formation by

moving toward a region around the beacon where the signal strength falls within some

range. Once within this region, the agents are repelled by their neighbours, forcing

them to distribute themselves evenly. In this way, the system is behaving similarly to

the AP model [52] (see section 1.4.1.1) but utilises signalsand sensors with much

greater range.̈Unsal and Bay [63] also demonstrate that the model adapts easily to 3D

and show how a simple paraboloid structure can be formed withthe addition of only

one more beacon. However, the system assumes some method of initially getting the

beacons themselves accurately positioned. In a related work, Kondacs [36] propose

a method of accurately positioning reference (beacon) agents by using gradients from

specific neighbours to effectively triangulate their position. However, the described

system is aimed at networks of inaccurately positioned sensors and not mobile agents.
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The main drawback with this beacon signal approach is that itmay not be suit-

able for future technology where the size of agents is greatly reduced and issues of

scalability, battery consumption, and line of sight make long range communication in-

feasible. To overcome these problems, Nagpal et al. [43] proposed a system where the

gradient signal is simply propagated across a population ofagents using local hops.

The agents themselves have minimal sensor capabilities andonly detect the signals

and not the distance and direction of their source as in othermodels. To generate a

gradient, a seed agent broadcasts a signal containing the value zero. Each agent that

receives the signal then increments the value by one and forwards it on. However, to

prevent the signal from travelling backward, recipient agents only record the lowest

value they receive from all their neighbours. Therefore, a wave will spread out from

the source across the entire network. In addition, if the communication range of the

signal is known to be some valuer and an agenti indicates the minimum signal value

it has received ishi then it is known that the agent is no more thanrhi from the sig-

nal source. In a more recent work, Mamei et al. [39] demonstrate how this elegant

gradient propagation approach can be successfully appliedto mobile agents exhibiting

similar sensor capabilities allowing simple configurations such as filled circles, rings

and lobed circles (rough approximations of polygons) to form. The formation of each

configuration begins with the detection of the ‘barycentre’of an initially random cloud

of agents. This is achieved by each agent propagating a unique gradient such that the

agent which has the highest total of the signal values for allthe gradients is the one at

the centre of the cloud. Once the barycentre has been found, the simple filled circle

formation can be achieved by propagating a single gradient from the central point. As

in the beacon model proposed byÜnsal and Bay [63] the agents simply move toward

the source of the signal until they are within some predefinedrange. However, the

agents do not have the ability to detect the direction of the gradient and can only sense

whether the gradient increases or decreases as a result of their movement. Therefore,

the agents randomly choose a direction to move in and if it turns out that the gradient

actually increases, they invert the direction. The critical drawback of this technique

is that agents at the periphery of the cluster may wander awayfrom their neighbours

and lose all communication with the rest of the cluster. Therefore, the agents would
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Figure 1.6: Reulaux’s triangle.

essentially be lost.

1.4.1.3 Rule Based

Not all the control systems for collective robotics take their inspiration from nature.

Instead, some novel techniques have been designed where theagents follow simple

hand crafted algorithms to achieve a desired collective task. However, designing such

algorithms so that they are robust and scalable is complex asthe interactions between

individual units which will produce a desired global behaviour are difficult to deter-

mine.

In an early work Sugihara and Suzuki [58] proposed a selection of these algorithms

for producing circle (ring), filled circle, line, polygon and filled polygon configura-

tions. In each case it is assumed that the agents can sense thedistance and direction of

all the other agents, but have no ability to communicate directly.

To generate the circle configuration, Sugihara and Suzuki [58] propose the follow-

ing three rules for the agents to follow.8><>:d > D; move toward R’.

d < D�δ; move away from R’.

D�δ� d� D; move away from R”.

(1.1)

whereR0 is the furthest agent andR00 is the nearest agent, d is the distance toR0, D is

the diameter of the circle andδ is some small constant.

These rules are similar to those proposed byÜnsal and Bay [63]. However, by
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using the distance from the furthest agent, this method eliminates the need for a central

beacon. The drawback is that the final configuration can actually take the form of any

oval of constant width and a circle is only one possibility, Reulaux’s triangle is another

(see fig. 1.6).

The algorithm for forming more complex polygon configurations also begins with

formation of a circle. However, once it has formed, the agents split into two subsets.

The first subset of agents are those which form the vertices ofthe polygon and must

be moved to their desired locations manually. Although, it could also be possible that

they utilise some additional navigation ability the othersdo not posses. The remaining

agents simply execute the ‘CONTRACTION’ algorithm which moves them toward

the midpoint of the agent on their immediate left and right. In this way, the sections

between the vertices will flatten out forming linear sections.

The key drawback with this approach is that the decentralised behaviour is actually

only carrying out the simplest aspect of the task and the morecomplex operation of

positioning of the vertices is simply assumed.

1.4.2 Multicellular Models & Models of the DAH

Models of multicellular systems vary greatly in their representations of cell aggregates

and the mechanisms through which these aggregates reconfigure. This section presents

those categories of model which investigate differential adhesion and discusses the

positive and negative aspects of each.

1.4.2.1 Cellular Automata Models

In cellular automata (CA) models the world is divided into a regular lattice of discrete

sites. The particles or agents which inhabit the CA occupy some or all of these sites

and their state and position evolves over time in relation toa set of specific rules.

In general, these rules depend on both the current state of the agent and that of its

neighbours.

In early CA models of cell sorting (Cell Lattice Models), each cell is represented by

a single agent occupying a specific site on a regularly tessellated plane. Different cell

types are represented by agents with static predefined states, and mobility rules relating
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to the adhesions between these cell types control the cells’movements. Typically, for

convenience, the medium surrounding the aggregates is simply represented as another

distinct cell type with its own adhesive properties. In the intuitive model proposed by

Antonelli et al. [2], the energy of each hexagonal cell is calculated from the bonds it

makes with its six neighbours. These energy levels are compared and cells on neigh-

bouring tiles swap positions if the swap results in a greaterincrease in energy for one

cell than the corresponding decrease for the other. In practise, ‘0-moves’ (moves where

there is no change in the energy of either cell) were also allowed, with some proba-

bility, to provide some level of random exploration. This simple model resulted in the

rapid segregation of the two cell types. However, there was no trend toward the forma-

tion of a central cluster as predicted by the DAH. Improved performance was achieved

by Goel and Rogers who modified this approach to allow an exchange of position be-

tween any two cells on an interfacial border, not just between nearest neighbours as

before [23, 49]. The justification for this is that the effectof these movements could

instead result from a sequence of rearrangements in each aggregate, with cells only

actually moving to neighbouring spaces. Simulations revealed that this modification

allows some degree of engulfment [23], and sorting [49] to take place. However, the

best performance was only achieved when cell energies included some influence from

other cells up to four cell diameters away6, not just the local interactions predicted by

the DAH.

The main criticisms of this approach are that the rigid cellsfail to account for

any membrane or cytoplasm dynamics and the exchange of cell positions assumes the

cells have knowledge of how energetically favourable any position will be prior to

moving there. An alternative CA approach, first proposed by Glazier and Graner [21],

overcomes these limitations by using a Q Potts model to represent each cell as a subset

of agents each exhibiting a state, also known as spin, uniquely associated with the

particular cell7 (see fig. 1.7). Therefore, the total surface energy of any cell will be

a product of the adhesions resulting from all the interfacial boundaries of the agents

6On a lattice of squares, 8 cells are within 1 cell diameter of any given cell, 16 within two diameters,
24 within 3 etc.

7In a typical Potts model each site has one of two spins. A Q Potts model allows each site to exhibit
one of Q different spins.
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Figure 1.7: A section of the CA for a Q Potts model. Twelve different cells

are shown and notional boundaries are marked by thick blue lines.

at its perimeter. To provide some method of constraining thecells’ volumes (or areas

in two dimensions), each cell’s total energy (E) also includes some additional term

which relates its actual volume (v) with that of some predefined target volume (V).

Glazier and Graner [21] propose that this term (λ(Vc� vc)) provides a simple method

of encoding all the membrane and cytoplasm dynamics of the cell without explicitly

modelling the dynamics themselves. Thus:

Ec = λ(Vc�vc)+ ∑
ei j2B Ji j (1.2)

whereB is the set of all boundary edges (e) associated with a particular cellc, andJi j

the surface free energy of a contact between two membranes oftypesi and j. Once

more, the medium surrounding the cells is also modelled as anadditional cell type.

However, this additional cell type has no volume constraintand can, therefore, extend

indefinitely.

The update rule of the CA is dependent on the cellular energy defined above. An

agent in the CA is selected at random and its spin is convertedto that of one of its
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eight neighbours, also selected at random, with some probability relating to the change

in energy (∆E). In addition, a thermal noise factor (T) is included to account for any

random fluctuations in the cells’ membranes. Thus, the probability P of flipping any

site’s spin fromx to y is given by:

P(x! y) = �exp(�∆E=T); ∆E > 0

1; ∆E � 0
(1.3)

In this way, barring the random effects caused by noise, the cells tend to move in

such a way that the previous energy term is minimised (i.e. adhesions are maximised

and the cells’ volumes are at the target level).

It has been shown that these more flexible models are capable of recreating the

observed biological cell sorting dynamics in addition to some more subtle cell be-

haviours, in both two and three dimensions [21, 22, 41]. However, cells in the model

have the ability to fractionate and recombine over the course of a simulation. There-

fore, although they provide a useful approximation, the dynamics of the individual

cells don’t truly match those observed in the real biology. Proponents of the non-CA

approaches also argue that cell boundaries in these models will always be limited by

the structure of the lattice and thus smooth angled boundaries, which their models

allow, are not possible.

1.4.2.2 Cell Centric Models

Cell centric models make no attempt to explicitly define the geometric structure of the

cell membranes. Instead, the location of each cell is markedby only a single cen-

tre point and the cell membranes are determined by calculating the resulting Voronoi

tessellation (also referred to as the creation of Dirichletdomains in the literature). In

the 2D case, this subdivides the plane into convex polygons where the interior of each

polygon represents the set of all points closer to a particular centre point than any other

(see fig. 1.8). Honda [29] demonstrated that this type of tessellation very closely ap-

proximates the actual cell boundaries observed in a number of 2D aggregates of cells.

In addition, he showed that by replacing a specific point by two new ones and slowly

moving them apart it was possible to create behaviour resembling cell division. This
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Figure 1.8: Example of a Voronoi tessellation.

works because each centre point affects the geometry of any adjacent cells. Therefore,

as a centre point is moved, the length and number of cell-cellboundaries will change

appropriately (see fig. 1.8). These smooth changes in the cell-cell boundaries provide

the basis for the cell centric models presented by Sulsky et al. [59] and Graner and

Sawada [25].

The movements of the cells in these models depend on a calculated energy term.

This term combines the total adhesive energy produced by thevarious cell-cell bound-

aries and an additional component representing membrane elasticity or compressibility

which effectively constrains the area of the cells. At each time step, complex calcu-

lations are carried out to determine the force which should be applied to each centre

point to move the overall pattern along the steepest path of the energy landscape. These

forces can then be combined with an appropriate viscous dragforce and any additional

forces which have been incorporated into the model (e.g. random fluctuations).

In the model presented by Sulsky et al. [59] it was again necessary to represent

the medium by cells of a specified type thus allowing the cellsat the boundary of the

aggregate to take on a realistic shape. However, Graner and Sawada [25] enhanced

their model by placing a maximum radius around each centre point which the cell
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boundary cannot extend beyond. Therefore, there is no need to explicitly represent the

medium as membranes of cells at the boundary of the aggregateround up appropriately.

It can also be seen that using this limit, a single cell in isolation will realistically display

a circular boundary.

Cell centric models provide a simple representation of cellaggregates in which the

cell geometries can change smoothly over time and it has beenshown that they are

capable of recreating many of the observed cell sorting behaviours [25, 59]. However,

the main limitation of these models is that the cells are restricted to polygonal shapes

which can be appropriately represented by a Voronoi tessellation. Thus, cells with

anisotropic structures cannot be modelled.

1.4.2.3 Boundary Shortening Models

The boundary shortening model was initially developed to provide a method of es-

timating the level of tension which was thought to exist in microfilaments running

around the periphery of cells forming a particular tissue [30]. However, it is included

here for completeness as the later adaption, the weighted boundary shortening model

[31], provided a novel method of simulating differential adhesion between heterotypic

cells.

In complete contrast to the cell centric models, the boundary shortening models

explicitly define the membrane of each cell as a polygon with known vertices. Starting

from an initial configuration which is constructed by tracing an actual cell aggregate,

the algorithm proceeds by iteratively adjusting the membrane edges, shortening them

where possible, while conserving each cell’s area. This is achieved by exploiting some

simple geometry. At each time step a single edge (PQ) is selected at random and the

verticesP andQ are moved to reduce the total edge length,AP+BP+PQ+QC+QD

(see fig. 1.9). However,P is only moved along the linePP0 parallel toAB, thus conserv-

ing the area of the cell which includes verticesA, B, andP. Similarly Q is only moved

along the lineQQ0 which is parallel toCD. The final verticesP0 andQ0 are selected by

sequentially movingP0 further fromP by small distances (positive or negative), and in

each case movingQ a suitable amount in the opposite direction to conserve the area

of the remaining two cells, untilAP0+BP0+P0Q0+Q0C+Q0D is minimised. Once
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Figure 1.9: The iterative step in the boundary shortening model. Figure

adapted from [30].

the cells reach an equilibrium state, the algorithm is terminated and the total boundary

length is compared with the boundary length of the initial configuration to determine

the degree of boundary shortening that has taken place. The assumption is that if this

value is small it suggests that a contractile system is in operation and that the cell sheet

is likely to be in tension.

The modified version of this model allows differential adhesions to be simulated

by applying different weightings to edges between different cell types. Therefore, at

each step in the simulation, the term being minimised becomes kAP0AP0+ kBP0BP0+
kP0Q0P0Q0+ kQ0CQ0C+ kQ0DQ0D where thek values are determined by the cell types

meeting at the particular edge. If the k value is small, the edges will tend to elon-

gate thus approximating the effects of greater adhesion. Inaddition to this, to realise

smoother movements, a maximum value was placed on the distance that any vertex

could be moved in a given time step.

Clearly, in some instances this boundary shortening procedure will create edges

which have very short or almost null length. In such cases the‘neighbour change’

mechanism introduced in [30] is applied. This technique removes these short edges and

replaces them with a new interface between cells that were previously isolated from

each other (see fig. 1.10). Therefore, it is possible for muchlarger rearrangements to

take place within the aggregate.
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Figure 1.10: This figure demonstrates the ‘neighbour change’ mechanism.

(a) and (b) show the hypothetical situation where the edge separating cells

B and D is reduced in length. Once the edge length becomes smaller than

some critical value, the edge is removed and replaced by a new edge sepa-

rating cells A and C; (d). In this way, it is as though the rearrangement has

passed through the intermediate stage (c).

Honda et al. [31] have demonstrated that, when starting fromspecific initial con-

figurations, this simple approach can successfully generate the ‘checkerboard’ pattern

which results from strong heterotypic adhesions. However,the model has a number of

important limitations:� Unlike the lattice and cell-centric models, in the boundaryshortening model, the

cell membranes are strictly limited to their initial area. Thus, there is no concept

of elasticity or compressibility.� Rearrangements can only take place via very specific membrane changes.� The edge weightings cannot easily be translated to corresponding work of adhe-

sion or surface tension measures.

1.4.2.4 Finite Element Models

Finite element models are a relatively recent development and represent a new ap-

proach to modelling cells. Other models account for all the internal mechanics of the

cell using some general parameter which restricts the cell’s volume or area. However,

finite element models attempt to break each cell into its individual elements which can

then be described by relatively simple mathematical expressions (see fig. 1.11).
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Figure 1.11: The individual cell elements incorporated into the finite element

model proposed by Chen and Brodland [8]. Figure adapted from [7].

In the finite element model proposed by Chen and Brodland [6, 7, 8] cells are repre-

sented byn sided polygons which are broken inton triangular sections (see fig. 1.12).

Each of these sections contains an appropriate volume of cytoplasm with some prede-

fined viscosity valueµ, such that the cytoplasm will resist any deformation causedby

the other forces in the system. However, the cell description does allow cytoplasm to

flow between neighbouring sections to prevent the mesh from simply becoming locked

in a particular configuration [6]. The model proceeds by using the mathematical ex-

pressions identified for each of the cell’s mechanical elements to determine the forces

acting on the nodes associated with each triangular section. The resulting displace-

ments and velocities can then be calculated for each node in the model. Additionally,

as in the boundary shortening procedure, a ‘neighbour change’ mechanism is applied

to edges which fall below some minimum length, thus allowingthe quadruple junction

stage to be skipped (see fig. 1.10 - c).

The main advantage of these models is that they can accommodate any number of

mechanical elements and material properties, each of whichcan be assigned realistic

values. Therefore, it is possible to directly compare the simulation time scale with

that of the real system. Additionally, it is possible to modify these properties to allow

specific cell shapes to be modelled unlike other models whichassume an isotropic

structure. However, including all these details makes these models complex and they

require a great deal more computing power than the other approaches presented in this

chapter. It is also assumed that it is possible to accuratelyobtain appropriate values for
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Figure 1.12: The finite element model representation of a cell.

each of the cellular elements which are identified. However,this may not always be

the case.

In the simulations presented in [7] and [6], it can be seen that this model does pro-

duce intermixing and sorting behaviours when the model’s cells are assigned surface

tension values obtained from real aggregates of cells. However, the sorting which is

observed is only partial and no central clustering is observed. Brodland and Chen [7]

suggest that this points to failings in the DAH. However, their model does not appear

to include any form of random membrane fluctuations. Therefore, it is possible that

this could also be an explanation for the same behaviour.

1.4.2.5 Force Driven Model

In another recent work, Palsson [45] proposes that the main flaw with many of the

existing models is that they are limited to two dimensions and thus cannot accurately

describe the movements of cells in real multicellular environments. The exceptions to

this are the Q Potts models. However, Palsson [45] claims that these models do not

contain enough information about the forces between the cells or the individual cell

characteristics.

The model presented by Palsson [45] attempts to overcome these limitations by

representing each cell as a deformable 3D object with characteristics of cell stiffness,

cell adhesion, and active locomotion. To allow simulationsof large cell populations,

the actual cell structure is simplified to that of an ellipsoid with all deformations rep-
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resented by a change in the length of the semi-axes (e.g. the three axes which describe

the ellipsoid). The actual changes are controlled by a simple equation which mimics

the viscoelastic properties of single cells while conserving the total cell volume. The

cell movement is determined by the interaction of the passive, active, and drag forces

acting on each of the cells in the system.

The passive forces are those generated by the adhesive and elastic interactions be-

tween the neighbouring cells. To mimic real adhesion, as thedistance between the cells

(d) is reduced the adhesion increases (see fig. 1.13). However,when the cells get too

close, their resistance to deformation creates a repulsiveforce acting in the opposite

direction. Thus, the overall attractive force between two adhering cells will be zero at

some limiting distance, increase to some maximum and then reduce until it becomes

negative.

The drag forces are generated by the viscosity of the extra-cellular matrix and vis-

cosity due to cell-surface interactions. Therefore the total drag force is determined

from both the speed of the cell relative to its neighbours andits speed relative to the

global frame.

Finally, the active forces in the system are generated by thecells themselves. These

forces are included to allow the model to simulate chemotaxis in addition to general

cell sorting. The forces are based on the pseudopod formation exhibited by amoeboid

cells8. This involves extending part of the cell body which attaches to the surroundings,

allowing the cell to pull itself forward. In the model, the cells achieve this by orienting

the main axis of the cell body toward the direction of a signalif the signal’s gradient

is above some minimum threshold. Once the cell has reoriented it generates an active

force in the chosen direction.

Palsson [45] gives the details of a number of sorting experiments in which many

characteristics of the model, including cell stiffness andrandom motion, are examined.

The results show that when two tissues are initially intermixed, the DAH successfully

predicts the resulting engulfment behaviour. In addition,the random motion results

appear to agree with other models and indicate that increasing random motion does

have a beneficial effect on the sorting behaviour.

8In vertebrate cells, this type of movement is generated by the formation of similar structures called
lamellipodium [38, Chap. 19.].
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r
1

r2

d

Figure 1.13: Two adhering cells. The distance d is used to determine the

strength of the force between the cells and any resulting force is applied

along the line joining r1 and r2.

1.4.3 Summary

The work presented in this thesis spans two distinct research areas; collective robotics

and multicellular models. This section has presented a review of the related literature

in each of these fields.

The review of the collective robotics literature identifiesa number of distributed

control systems which allow populations of agents to organise into a variety of different

configurations. However, the vast majority of these systemsfail to consider how the

dynamics of the model will be affected by the noise (in both sensing and movement)

that would be inherent in any physical implementation. In addition, those systems

which are both scalable and robust are limited to a few simpleconfigurations and it is

unclear how additional behaviours could be incorporated toincrease their abilities.

The review of the literature relating to multicellular models, highlights the vari-

ety of different cell representations which have been explored. However, many of the

models which are presented require realistic but complex interactions between neigh-

bouring cells and abilities to rearrange which are only plausible in simulation. The

most significant approach, with respect to this work, is the force driven model pro-

posed by Palsson [45]. Palsson, greatly simplifies the structure of the individual cells

and models the interactions between them as a combination offorces. In this way Pals-

son’s approach is similar to that taken in this work. However, his virtual system still

incorporates dynamics which which would be very difficult tomodel with a physical

robotic system.
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Problem and Model

This chapter discusses the differential cellular adhesionproblem in more detail and

presents a simulated robotic model which, by adhering to allthe identified constraints,

attempts to reproduce the observed behaviour.

2.1 Problem Constraints

There are three sets of constraints that must be taken into consideration when con-

structing a physically realisable model of some biologicalphenomenon.

1. The intrinsic constraints of the phenomenon, without which the phenomenon

will not take place.

2. The physical and technical constraints of a physical embodiment (e.g. commu-

nication mechanism, size, etc.).

3. The biological constraints. The actual methods employedin the biological phe-

nomenon (e.g. cell membrane fluctuations).

Obviously, if the model is to perform at all it must conform tothe first set of con-

straints. Additionally, the second set of constraints mustbe adhered to, otherwise it

will not be possible to construct a physical realisation. Finally, if the model is to ac-

curately resemble the observed biology the third set of constraints must be realised.

29
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However, it is likely that the underlying biology will have to be greatly abstracted to

meet the limitations of the technical and physical constraints.

2.1.1 Intrinsic Constraints

In this work, as outlined earlier, we are interested in developing a physical realisa-

tion of the cell sorting behaviour observed in aggregates ofliving cells (see section

1.3). Steinberg [54] states that the only requirements necessary for sorting to occur

are that the units are both mobile and mutually adhesive. Anydifferences in adhesion

therefore drive the system to some equilibrium state. However, this only explains cell

sorting at a macroscopic level and does not presuppose the nature of the microscopic

dynamics that drive the cells. Mombach and Glazier [40] demonstrate that fluctuations

in the cell membrane appear to play a key role in the process and that blocking such

fluctuations prevents full sorting from taking place. This is also corroborated byQ

Potts modelsimulations [41] which demonstrate that only partial sorting occurs when

random boundary fluctuations are suspended. Furthermore, observing the movement

of individual cells in real aggregates, it can be shown that when these fluctuations are

present, the cells appear to perform an approximate random walk1 [40, 48]. It is pro-

posed that the reason this random motion is so vital is that itallows cells to interact

with their neighbours and explore their local area [40, 41].As a consequence, the ag-

gregates are less likely to become trapped in metastable states and can reach the true

energy minimum.

It is therefore possible to summarise the intrinsic constraints as follows:

1. The units must be mobile.

2. The units must be mutually adhesive. For sorting to take place, there must exist

some difference in this adhesion.

3. For global sorting to occur, the units must perform some local exploration.

1The random walk is biased by the surface energy minimisation.



2.1. Problem Constraints 31

2.1.2 Physical and Technical Constraints

In this work the ‘HYDRON’ module, developed by the HYDRA European Consor-

tium, was used as a rough guide to achievable structure and performance. However,

the model itself remains flexible enough to adapt to a multitude of possible hardware

solutions. The HYDRON modules were chosen as they replicatethe most basic ca-

pabilities of real biological cells, providing active movement in three dimensions and

local inter-unit communication.

The physical module consists of a near spherical semi-transparent hull, in which a

limited number of optical transmitter-receiver pairs can be fixed. The original design

allowed for eight such sensors, located on the corners of a cube inscribed inside the

hull, to provide full sensor coverage. As well as enabling data transfer, this system

provides approximate distance information through the intensity of the light signals

being received.

The locomotion apparatus, which constitutes the majority of the hull’s internal

space, consists of a syringe actuator and four jet-actuators. The syringe actuator con-

trols the module’s buoyancy (vertical motion), and the jet-actuators control the hori-

zontal motion. Such a system should therefore be capable of producing a force within

some range in any direction.

Finally, to allow the modules to operate autonomously, theycarry their own power

supply and processor board.

2.1.3 Biological Constraints

Mobility and mutual adhesion were highlighted as intrinsicconstraints of the DAH.

Therefore, the biological constraints will include the methods employed by the cells to

achieve these properties. In addition, the actual structure of the cells must be consid-

ered as this governs how cells interact with their neighbours.

Cell Structure:

Section 1.2 discusses the basic structure of both prokaryotic and eukaryotic cells.

However, in this work, the eukaryotic cells which make up multicellular organisms

are of the greatest interest. At a high level of abstraction,these cells consist of three
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distinct sections; nucleus, cytoplasm and cell membrane. The membrane behaves like

a deformable physical barrier which surrounds the viscous cytoplasm. As there is no

free flow of material through the membrane [60, Chap 4.], it must be strong enough

to withstand the fluid pressures exhibited by the contained cytoplasm. Clearly, all the

interaction between neighbouring cells must occur at this cell membrane, allowing the

central nucleus to remain protected within.

Adhesion Mechanisms

Steinberg [54] postulated that the simplest explanation for type specific differences

in the adhesion between cells was that a number of adhesion sites were abundantly

scattered across the surface of a cell’s membrane. Thus, thework of adhesion would

be proportional to the number of adhesion sites that are ableto bond per unit of surface

area. It is now known that such sites do exist in the form of CAMs (CAM = Cell

Adhesion Molecule)[20, Chap. 3]. Additionally, in their most recent work, Foty and

Steinberg [16] have validated this original hypothesis by demonstrating that alone, the

numbers of surface cadherins (the major group of CAMs) almost entirely specify the

surface tensions of cell aggregates.

There are many different forms of CAM. However, there are only three ways they

can interact, as summarised in [1, Chap. 19. Section: Cell-Cell Adhesion]:

1. Homophilic binding where molecules on a cell bond to the same kind of molecules

on another cell.

2. Heterophilic binding where molecules on a cell bond with molecules of a differ-

ent kind on another cell.

3. Secreted multivalent linker binding where cells bind through an extracellular

linker molecule.

Cell Motility:

There are two types of cell motion; long range active motion of the sort involved in

chemotaxis, where the cell extends and contracts in a very directed manner [38, Chap.

19] and passive motion, where random fluctuations of the cellmembrane cause it to

randomly explore [40, 48]. However, although it has been demonstrated that passive
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Figure 2.1: An A-Cell cross-section.

motion may play a key role (see section 2.1.1), the DAH explanation of cell sorting

requires no directed cell migration.

2.2 Cellular Adhesion Model

This section presents the proposed cellular adhesion model. The model is implemented

on abstracted HYDRON modules (see section 2.1.2), which were simulated using a

realistic physics engine2 to model their interactions with each other and the environ-

ment. An additional software component has also been added to provide a mechanism

for modelling the optical communication at a rather simplerlevel. By demonstrating

the model on this platform it can be shown that, at least to some extent, the physical

and technical constraints (see section 2.1) of such a systemhave been addressed.

The model has been separated into individual components which relate back to the

biological constraints raised in section 2.1.3. In the following sections each of these

components is discussed and the details of the A-Cell implementation are presented.

2.2.1 A-Cell Structure

As mentioned previously (see 2.1.2), the HYDRON module has been used as a guide to

a possible physical realisation of this model. Therefore, the following structure bears

many similarities to its design.

2The commercial ‘Vortex’ physics engine V2.0 produced by CM Labs was used for this purpose.
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Figure 2.2: Line of transmission between two A-Cells

Each A-Cell consists of a spherically shaped hull which encloses all the internal

components. It is assumed that the hull is weighted to provide a self-righting torque

keeping the A-Cell upright. Therefore, only free rotation around the vertical axis is

possible. A number of communication sites consisting of a local optical transmitter-

receiver pair are located on the hull’s surface (see fig. 2.1). However, although the

implementation presented here keeps such sites to a minimum, the model actually

allows complete flexibility in both their number and position. The optical signals are

modelled with a limited predefined range and the sensors themselves with limited field

of view. Therefore, a signal will only be detected if it is possible to draw an unocluded

line between the transmitter and detector, such that the line falls into their respective

fields of view and its magnitude does not exceed the signal range (see fig. 2.2). The full

complexities of signal reflection and interference have notbeen included in the model

as these would be specific to the sensor specification. However, it should be possible to

account for this type of disruption by careful selection of the communication protocol.
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Finally, the A-Cells do not presume any specific means of motility. Instead, for

generality, they only require that it is possible to generate a piecewise constant force

below some predefined maximum in a given direction. Such a force vector could be

further processed on real hardware to produce the mechanism-specific sequence of

actions that are required.

2.2.2 A-Cell Communication

The communication system used by the A-Cells is relatively simple. Each A-Cell

continually broadcasts a ‘transmission signal’, containing some uniquely identifying

attribute, which may be detected by any of the neighbouring units.

The transmission signal consists of two parts. The first partof the signal contains

information relating directly to the A-Cell from which it was broadcast. The second

part of the signal is a list containing information aimed at individual A-Cells in the

system.

In addition to this data transfer, the transmission signal also provides essential po-

sitional information. As discussed in section 2.1.2 it is possible to crudely estimate the

distance a signal has travelled by measuring its relative detected strength3. Therefore,

by comparing the distance values calculated at different detectors, it is possible to de-

termine an approximate direction vector and distance for the signal source. There are

a multitude of techniques, varying in complexity, which canbe used for this type of

source estimation. However, in the implementation presentin this work, the following

simple but fast approximation is used. Given a subset of communication sites which

detect the signal (C ), a direction vector of the source (Vs) is estimated by averaging the

direction vectors of the sites (Vd)4. Likewise, the distance estimate (Ds) is calculated

from the average of the signal strengths (S) detected at each site.

Vs= ∑
c2C Vd

c (2.1) Ds= 1jC j ∑
c2C Dist(Sc) (2.2)

3The current simulated model allows the accuracy of this measurement to be predefined (see section
3.5.2)

4The direction vector of a communication site is the vector from the centre of mass of the A-Cell to
the communication site.
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Figure 2.3: Schematic showing the virtual membranes of two colliding A-

Cells.

whereDist(S)determines the distance over which a signal with strengthShas travelled.

This type of approximation has the added benefit of scalability, as any number of

sensors may be added. In addition, section 3.5.3 demonstrates that not only is this ap-

proximation sufficient but also that the errors in the estimates can actually be beneficial

by indirectly causing random movements.

2.2.3 Membrane Model

Section 1.2 identifies the cell-membrane as one of the most important structural com-

ponents of the cell. For the purposes of this work, one of the key properties is its

ability to deform, allowing cells to move fluidly around one another. Clearly with-

out this property, the A-Cells would simply become locked inrigid configurations and

sorting would cease.

The model provides a very simple approximation of a membraneby using the A-

Cells’ communication system to create a virtual force field which extends some dis-
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tance from the actual A-Cell hull5. Like a fluid membrane, this force field behaves like

a viscous spring, resisting compression from similar forcefields generated by neigh-

bouring A-Cells with a force proportional to the speed of thecompression (see fig.

2.3). In practice, this viscous component prevents A-Cellsfrom oscillating when an

attraction force exists between them and, instead, allows them to settle quickly at some

equilibrium.

To model this membrane (virtual force field) using the simplecommunication sys-

tem, each A-cell transmits to its neighbours the radius of its physical hull and the dis-

tance its membrane extends from this hull. Therefore, by comparing the approximate

distance of neighbouring A-Cells with their relative sizes, an A-Cell can detect mem-

brane collisions and estimate the area of membrane that has been compressed. The

amount each membrane compresses will be a function of the individual membranes’

properties (imagine pressing a rubber ball against a steel one). However, in the cur-

rent model, it has been sufficient to keep the membrane properties constant for all the

A-Cells6. This means that the membrane of each A-Cell involved in a collision will

compress by an equal amount (see fig. 2.3).

If we make the simplifying assumption that the membrane is under constant hydro-

static pressure, the repulsive force developed when a membrane is compressed will be

proportional to the area of membrane under which the pressure acts. Therefore, it is

possible to define the repulsive force induced by the compression as:

R= a�m (2.3)

whereR is the repulsion force acting along the line joining the two A-Cell centres

(Kgms�2), a the area of membrane (m2) that has been compressed andm the repul-

sion factor (Kgm�1s�2, a system parameter to represent the pressure acting against the

membrane). The area of membrane that is compressed is proportional to to the square

of the compression distance (c). Therefore, as an optimisation this simple approxima-

tion is used.

5This provides maximum flexibility as it should allow any of the membrane properties to be changed
dynamically throughout the course of a simulation.

6For an expansion of this work this may not be the case, and additional computation will be required.
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Figure 2.4: Overlap of two A-Cell membranes. A – the actual radius of the

A-Cell hull, M – the extra distance the membrane extends from the hull.

R= c2�m (2.4)

To add a viscous component to this equation, it is necessary to estimate the relative

velocity with which any two A-Cells are travelling toward each other. As the A-Cells

are constantly broadcasting their transmission signal, from which an estimated dis-

tance is determined, the calculation of this relative velocity is reasonably trivial and

simply requires some comparison of the change in relative distance over some short

time period.

Using this average relative velocity, the total repulsive force exerted on another A-

Cell by the compression of an A-Cell’s membrane is given by the following equation:

R = (c2�m)+(d�v) (2.5)

whered is the damping coefficient (Kgs�1, another system parameter to scale the

velocity term appropriately) andv is the estimated relative velocity (ms�1) concerned

along the line joining their centres.
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Figure 2.5: An A-Cell membrane in contact with multiple other membranes.

As with any collision between two bodies, the A-Cells shouldexperience forces

which are equal in magnitude and opposite in direction (Newton’s third law of motion).

However, as each A-Cell is simply using its own estimate of the direction and distance

of the other, they might compute slightly different forces.To avoid this imbalance, the

cells communicate the value they have calculated to each other. They do this by placing

this value in the second part of their transmission signal with an identifier stating which

other A-Cell the information is for (see 2.2.2). The A-Cellscan then simply average

their own calculated value with the value communicated to them, thus ensuring both

A-Cells experience an equivalent force.

One flaw with this simple model is that each membrane collision is considered

separately. Therefore, it is possible for the same area of membrane to collide with

more than a single other membrane simultaneously. However,the principal repulsive

behaviours of the membrane remain consistent.
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Each A-CAM can only bond with a 
single specific A-CAM. 

Figure 2.6: A-CAM bonding.

2.2.4 A-Cell Adhesion Molecules (A-CAMs)

The membranes of real cells use Cellular Adhesion Molecules(CAMs) to form bonds

which are both reversible and selective (see section 2.1.3). We attempt to model these

key properties through the use of A-CAMs. Like CAMs, the A-CAMs are capable

of both homophilic or heterophilic binding. However, unlike some real CAMs each

A-CAM may only bond with a single type (see fig. 2.6). This greatly simplifies the

implementation, and as it should be possible to approximatethe multiple bonding some

CAMs exhibit by simply using several types of A-CAM, the power of the model is not

affected.

When the A-CAMs form bonds they produce a small attractive force pulling the

two areas expressing the A-CAMs closer together. Thus bonded A-Cell membranes are

pulled together until the attractive force is balanced by the repulsive force generated

by the compression (see fig. 2.7).

When two areas of real cell membrane come into contact, only some subset of

the CAMs on each membrane will be close enough to CAMs on the other membrane

to allow them to bond. The size of this subset is dependent on both the number of
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Figure 2.7: Schematic of two bonding A-Cells.

CAMs on each area of membrane and the strength of the bond between the CAMs.

Greater surface densities of CAMs (number of CAMs per unit area) will increase the

chance that any two are facing each other and a greater bond strength will allow the

CAMs to seek each other out more assiduously. To express these relationships with

the A-CAMs we constructed the following equation which satisfies all the observed

constraints when relating numbers of available A-CAMs to numbers that bond (N).

N = min(Aα1;Aβ2) sigmoid

 
m(α;β)k+ (Aα1�Aβ2)2

Aα1�Aβ2

!
(2.6)

whereAα1 is the number of A-CAMs of typeα on the contact area of membrane 1,

Aβ2 is the corresponding number of typeβ A-CAMs on contact area of membrane 2,

m(x;y) is the attractive force between A-CAMs of typex andy 7 andk is a system

parameter that controls the influence of the bonding strength on bonding numbers.

For simplicity the model does not restrict the number of A-CAMs to an integer

value.
7Each A-Cell is initialised with a table of the attraction values at the start of a simulation.
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Figure 2.8: Graph of Eqn. 2.6 with the scaling constant k set to 0.
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Figure 2.9: (a) Graph of Eqn. 2.6 with the scaling constant k set to 0 and

the number of A-CAMs on membrane 2 fixed to a value of 500. (b) Previous

graph with a larger x axis range.
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Figure 2.10: Graph of Eqn. 2.6 with the number of A-CAMs on membrane 2

fixed to a value of 500 and the scaling constant k set to 1
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Figures 2.8, 2.9, 2.10 and 2.11 illustrate the equation’s behaviour. The graphs

in figures 2.8 and 2.9 show the result of setting the scaling constantk to 0. This

would mean that the attraction between A-CAM bonds has no effect and the total

number of bonds formed depends only on the surface density ofA-CAMs. In this case

we should expect the equation to exhibit two behaviours. Firstly, if one membrane

(A ) has a fixed A-CAM surface density and the A-CAM surface density of the other

membrane (B ) increases, then the number of A-CAMs that bond should increase. This

behaviour is shown in figure 2.9 – a (the slight bump in the function is introduced by the

dynamics of the sigmoid term). Clearly, as the A-CAM surfacedensity of membraneB

approaches infinity, the number of A-CAM bonds formed shouldtend to the minimum

of the numbers of A-CAMs present on each area of membrane (seefig. 2.9 - b).

The second behaviour we would expect is that increasing the minimum of the num-

bers of A-CAMs present on the membranes should cause the number of A-CAMs that

form bonds to increase. This behaviour is visible in the graph shown in figure 2.8.

The graphs in figures 2.10 and 2.11 illustrate the equation’sbehaviour when the

scaling constantk is set to a positive value greater than zero8. As stated earlier, if

the force of attraction between two types of A-CAM increases, the number of A-

CAMs that form bonds should also increase. This behaviour isclearly depicted by

both graphs. Additionally, it can be seen that as the attraction value tends to infin-

ity, the sigmoid term tends to one. In this case, the number ofA-CAMs that form

bonds is equivalent to the minimum of the numbers of A-CAMs present on each area

of membrane.

2.2.5 Adhesion Sites

The A-Cell membrane model allows the same area of membrane tobe in contact with

more than a single other membrane simultaneously (see fig. 2.5). However, to achieve

more realistic selective bonding, the bonding of each area should be restricted to only

one of the membranes in contact.

This is achieved by dividing the surface area of the membraneinto a number of

8Actually the scaling constantk is set to exactly 1 in both figure 2.10 and figure 2.11, but they
illustrate the general case.
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equally sized patches or adhesion sites, such that each adhesion site can only bond

with a single membrane. Therefore, it can be seen that in order to determine the at-

tractive force which exists between two membranes, it is necessary to calculate firstly

the subset of adhesion sites that decide to bond with each membrane, and secondly the

number of A-CAMs this represents.

The second of these calculations is relatively straightforward as the A-CAMs are

considered to be evenly distributed across the membrane surface9. Therefore, the num-

ber of A-CAMs of typet present on the surface of each adhesion site (ACAMS
t ) is given

by:

ACAMS
t = ACAMT

t

n
(2.7)

where ACAMT
t is the total number of A-CAMs of typet which are expressed over the

whole membrane andn is the total number of adhesion sites. A simple multiplication

of ACAMS
t by the number of bonding adhesion sites gives the total number of A-CAMs

of typet that are able to bond.

Calculating which adhesion sites should bond to which othermembranes is a more

complex problem. Figure 2.12 outlines the algorithm used. The remainder of this

section describes some of the algorithm steps in more detail.

In order for the adhesion sites to decide which membrane theyshould bond to,

there needs to be some measure of the possible attraction they would have toward

each of them. In the algorithm this is referred to as the ‘estimated attraction value’

(AttE), and is equivalent to the total expected attraction force per unit area of bonded

membrane. To calculate this value, an A-Cell must determinethe surface density of

each type of A-CAM (α) present on its membrane10 (α 2 A ) and each type of A-CAM

(β) on the membrane in contact with it (β 2 B ). It is then possible to calculate the

number of bonds formed between each bonding pair of A-CAM types (N see equation

2.6). Finally, each of these calculated values is multiplied by the attraction value for

the respective pair of A-CAM types (m), and the calculated forces are summed to give

9This is a simplification and may not necessarily be true for the CAMs in real cells.
10This is simply the total number of each type of A-CAM divided by the surface area of the mem-

brane.
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1. For each membrane in contact with an A-Cell:

(a) Calculate the estimated attraction between the A-Cell’s

membrane and the membrane in contact.

(b) Calculate which of the A-Cell’s adhesion sites are in contact

with the other membrane.

(c) For each adhesion site in contact:

i. Store the A-Cell id associated with the other membrane and

its estimated attraction value.

2. For each of the A-Cells adhesion sites:

(a) Probabilistically decide which membrane to bond to, based on

their respective estimated attraction values.

3. For each membrane in contact with an A-Cell:

(a) Calculate the number of the A-Cell’s adhesion sites that have

decided to bond with this membrane.

4. END.

Figure 2.12: Adhesion Site decision algorithm
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the final estimate.

AttE = ∑
α2A ∑

β2B m(α;β)N(α;β) (2.8)

It can be seen that for the A-Cells to perform this calculation, they require knowl-

edge of the total number of each type of A-CAM present on each membrane making

contact. Therefore, these values are included in the information which is broadcast in

the first half of each A-Cell’s transmission signal and are, therefore, available to any

A-Cell in range.

After all the estimated attraction values have been calculated and stored with the

relevant adhesion sites, the adhesion sites must decide which A-Cell membrane to bond

to. There are two possible options:� Greedy – The membrane with the highest estimated attractionvalue is selected.� Probabilistic – A fitness proportional selection is made with the fitness deter-

mined by the estimated attraction value. Therefore, the probability that adhesion

sites attempts to bond with membranem is given by:

Pbond(s;m) = AttEm
∑

α2M AttEα
(2.9)

whereM is the set of all membraness must choose between.

If a greedy approach is applied, the bonding would be completely deterministic.

This is unlikely to be a good model given the indeterministicnature of real biological

processes. In addition, simply by considering the dynamicsof an A-Cell aggregate,

it can be seen that if this approach were to be used in circumstances where the het-

erotypic adhesion was only slightly less than the highest homotypic adhesion, there

would still be a clear bias toward the latter bonds forming. This would lead to partial

or possibly complete sorting even though the DAH suggests that the A-Cells should

remain evenly mixed. To overcome this, the more realistic probabilistic approach is
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used (see fig. 2.12 - step 2a). Therefore, when any two membranes have an equivalent

estimated attraction value each will have a fifty percent chance of bonding. As the

bonding between A-Cells is reevaluated at every cycle in thesimulation, over an ex-

tended period of time and excluding the other dynamics of themodel, each membrane

should bond for an equivalent time period.

Finally, the adhesion sites bonding to each membrane are counted, and the values

are used to help calculate the overall force of attraction the A-Cell should experience

toward each of the A-Cells making contact (see section 2.2.6).

2.2.6 A-Cell Bonding

The general algorithm for calculating the bonding between two A-Cells (that is the

force of attraction between them – see 2.2.4) is given in figure 2.13. This section

describes the whole process in more detail.

The algorithm cycles through each of the membranes that are making contact with

the A-Cell and determines the force of attraction experienced toward each of them11.

For each membrane, the A-Cell first has to determine what number of each of its A-

CAM types will be available to bond to the membrane. This stepis discussed in full in

section 2.2.5. It is then necessary to determine the number of A-CAMs on the mem-

brane in contact which are available to bond. In our implementation this is achieved by

placing the available A-CAM numbers and the ID of the cell they can bond with in the

second half of the ‘transmission signal’. Therefore, when any two membranes collide,

the A-Cells will each have access to the relevant information.

Once the numbers of each type of A-CAM on the respective membranes have been

calculated, it is possible to calculate a total force of attraction. This involves cycling

through each pair of A-CAM types and first checking if there isa non-zero attraction

force between them12. If there is a non-zero attraction between two A-CAM types,

the algorithm proceeds by first establishing the number of each type of A-CAM that

will actually form bonds (see section 2.2.4), and then multiplying this value by the

attraction value of a single bond. This gives a force of attraction that will be generated

11The details of how these forces are applied are covered in section 2.2.7.
12A zero attraction force indicates that the two A-CAM types donot bond, and therefore there is no

point in carrying out any further calculations relating to them.
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1. Determine which of an A-Cell’s adhesion sites are bonding to each of

the membranes in contact with the A-Cell (see fig 2.12).

2. For each membrane in contact with an A-Cell:

(a) Calculate the number of each type of A-CAM that is available to

bond to the other membrane.

(b) Communicate each of these calculated values to the A-Cell that

the membrane belongs to.

(c) Wait until the numbers of each type of A-CAM the other A-Cell

has available to bond are received.

(d) For each pair of A-CAM types:

i. If there is a non-zero attraction force between the two

types:

A. Calculate the number of bonds that will be formed (see

eqn. 2.6).

B. Multiply the calculated value by the attraction value.

C. Store the computed force.

3. END.

Figure 2.13: A-Cell Bonding Algorithm
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Adhesion sites
that are
available to
bond with the

membrane.
other

Area of Membrane

Figure 2.14: Figure showing a positional miss-match between bonding ad-

hesion sites.

by each bonding pair of A-CAM types and thus, by summing all these values, the total

force of attraction that the A-Cells should experience toward each other.

At this point it is important to highlight two big simplifications the algorithm

makes: The first of these is that it is assumed that the adhesion sites on each mem-

brane that wish to bond will be facing areas on the other membrane that also wish to

bond. However, it is clear that this might not be the case (seefig. 2.14). One reason for

this simplification is that each membrane in contact is considered independently of the

others. Therefore, the position that the adhesion sites should actually be in is not clear

as the same area of membrane may be compressed by different amounts for each of

the membranes it is in contact with. Also, calculating whether specific adhesion sites

did face areas of membrane that are also available to bond would be computationally

expensive, and would require far more inter-A-Cell communication.

The second simplification is that A-CAMs that an A-Cell allocates to bond with

another membrane are not reallocated if they are unused in the bonding process. For

example, if certain numbers of each type of A-CAM on an A-Cell’s membrane are

allocated to bond with another A-Cell and that A-Cell allocates nothing, then those

A-CAMs will not take part in any bond for that time step.

These simplifications have been made as they do not break any of the intrinsic

constraints of the problem (see 2.1.1), but they do prevent the model from becoming

overly complex.
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Figure 2.15: Example of the forces acting on an A-Cell. (a) Schematic show-

ing the membrane collisions made by an A-Cell (A-Cell 1). (b) A representa-

tion of all the forces acting on the A-Cell (A-Cell 1). The direction of forces

due to membrane compression and the forces due to A-CAM bonds will de-

pend on the estimated position of the neighbouring A-Cells not their actual

position.

2.2.7 A-Cell Movement

In this model the movement of the A-Cells is completely passive and is simply gov-

erned by the forces they experience. At each time step the membrane contacts are

determined and any attractive forces generated by bonding (see section 2.2.6) or re-

pulsive forces generated by membrane compression (see section 2.2.3), are calculated.

These forces are then combined to produce a single force vector using the algorithm

outlined in figure 2.16 and this is applied until the force is updated at the following

time step (see fig. 2.15). Therefore, the A-Cells are driven by a piecewise constant
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force with each step corresponding to a single time step. However, section 2.1.1 pro-

posed that for full sorting to take place, this passive movement must also include some

random component allowing local exploration. In real cellsthis random movement is

a result of membrane ruffling[40, 48], localised expansionsand contractions of the cell

membrane (see section 2.1.3). As our simple model of the cellmembrane is a uniform

sphere, the exact nature of the ruffling cannot easily be reproduced. However, the result

of this phenomena is simply that the cells make small random movements. Therefore,

an equivalent behaviour can be achieved by adding some random component directly

to the A-Cell movements. In the proposed model this component consists of an ad-

ditional random movement force, the magnitude of which is scaled by a predefined

system parameter. Therefore, both active and inactive membranes can be modelled.

To add accuracy to the physical simulation of the A-Cells, the properties of the

fluid environment they operate in also has to be considered. This is achieved by adding

realistic drag forces to the A-Cell hulls (see section 2.3.2) and allowing some level of

turbulence to be introduced.

Clearly, some aspect of the turbulence present in the fluid can be accounted for by

the random movement forces outlined previously. However, small random rotations

of the A-Cells also have to be considered. As the A-Cells can only rotate around the

vertical axis this can be achieved by adding appropriately directed random torques.

Once more, in the actual model this is scaled by a predefined system parameter.

2.3 Model Implementation

This section begins with specific details of the implementation of the model used for

the experiments which are discussed throughout this thesis. The final part of this sec-

tion validates the implemented model, showing that it behaves in accordance with the

theoretical behaviour discussed in section 2.2.

2.3.1 Application of Forces

The only forces the A-Cells produce are the movement forces determined by the virtual

adhesions and repulsions they experience (see section 2.2.7). Each force is maintained
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1. Create an accumulated force vector of strength 0.

2. For each membrane in contact with the A-Cell:

(a) Normalise the direction vector associated with the A-Cell

producing the other membrane.

(b) Calculate the repulsive force generated by the membrane

collision.

(c) Multiply the normalised direction vector by the repulsion value

to produce a force vector.

(d) Subtract this force vector from the accumulated force vector.

(e) For each A-CAM pair that produce an attractive force:

i. Multiply the normalised direction vector by the attraction

value to produce a force vector.

ii. Add this force vector to the accumulated force vector.

3. Apply the accumulated force vector to the A-Cell (that is, apply

a force such that the A-Cell experiences a force equivalent to the

force vector).

4. END.

Figure 2.16: A-Cell Movement Algorithm



54 Chapter 2. Problem and Model

for a single time step of the simulation and is then replaced by the newly calculated

force which reflects the A-Cell’s new state.

This behaviour is implemented by applying the respective piecewise constant force

to each A-Cell’s centre of mass via function calls to the physics engine13. The physics

engine’s internal integrator then ensures that these forces are realistically modelled

such that, in the absence of turbulence or drag, the A-Cells behave as predicted by the

standard equations of motion.

Each step of the integrator corresponds to a single time stepin the simulation.

2.3.2 Fluid Drag

To ensure the behaviour of the A-Cells is as realistic as possible, some of the additional

effects of fluid dynamics have been included in the simulation. This section gives the

full details of the drag calculations. However, a simple model of turbulence is also

included as discussed in section 2.2.7.

The implementation of the calculations presented in this section was carried out by

Timothy Taylor as part of his work on the E.U. funded Hydra project [61].

All the calculations are based on a fluid environment with theproperties of water as

this is the likely operating environment of any physical implementation of the model.

More specifically, the values are based on room temperature conditions (20ÆC).� Water Density: 1000kg=m3� Water Viscosity: 0:001kg=ms

The calculation of the main drag force (Fd) acting on an object is based on the

following accepted equation:

Fd = 0:5ρv2ACd (2.10)

where an object with a projected (cross-sectional) area ofA (m2) moves through a fluid

of densityρ (kg=m3) with a velocity ofv (ms�1). Therefore, for the spherical A-Cells

with radiusr the drag is given by:

13The commercial ‘Vortex’ physics engine V2.0 produced by CM Labs
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Fd = 0:5ρv2πr2Cd (2.11)

The parameterCd is the dimensionless drag coefficient. However, as it accounts for

all the complexities of the flow around an object, it does not remain constant. Instead,

another dimensionless number called the Reynolds number (Re) is used to characterise

theCd of an object based on its relative velocity:

Re = Lρv
η

(2.12)

where an object with lengthL (m) along the direction of flow, moves through a fluid of

densityρ (kg=m3) and viscosityη (kg=ms) with a velocity ofv (ms�1) (relative to the

fluid).

For the calculation of theCd of a sphere the following three regions of distinct

behaviour have been identified [57]:

Re

8><>:< 1; Cd = 24=Re (laminar flow)> 1 and< 1000; Cd = 18R�0:6
e (transition)> 1000 and< 2x105; Cd = 0:44 (turbulent flow)

(2.13)

These regions were used to dynamically determine the appropriateCd and thus the

appropriate drag force acting on the A-Cells during each simulation.

An additional drag force which must also be considered isadded mass. This is the

additional volume of fluid that must be accelerated with a body when it experiences

non laminar flow (Re > 1, see 2.13). For a sphere with volumeV, the additional mass

(ma) is equal to half that of the displaced volume [11]. Therefore,

ma = 0:5Vρ (2.14)

whereρ is the density of the fluid.

This additional mass is included in the simulation by adjusting the actual mass of

the A-Cells (mr ) accordingly:
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mt = mr +ma (2.15)

wheremt is the total mass associated with each A-Cell in the simulation.

Both the drag force and the added mass are applied to the A-Cells through the

physics engine’s callback mechanism. This ensures they areupdated at each stage of

the integration carried out by the physics engine between any two time steps[9].

2.3.3 Validation

The previous sections in the chapter have presented the celladhesion model in some

detail. In this section, the behaviour predicted by this model is compared with the

behaviour observed in the actual software implementation used throughout the thesis.

This comparison aims to show that the implementation of the model is valid and thus

that the following experiments demonstrate genuine behaviour.

The comparison is based on a simple two A-Cell simulation which was carried out

in the absence of turbulence. As there are only two A-Cells, resulting in a single mem-

brane overlap, the adhesion sites are not required to make any probabilistic decisions.

Therefore, the simulation is completely deterministic andshould converge to the stable

state where the A-Cells are the equilibrium distance apart.

As in the following chapter, the A-Cell movements were restricted to the horizontal

plane. However, this restriction only affects the placement of the sensors and adhesion

sites, which can then be distributed around the respective equators of the hull and

membrane. The implementation of the model is unaffected (see Chapter 3 for details).

For consistency, the default simulation parameters discussed in Chapter 3 (see sec-

tion 3.1.3) were also used. Of these, the values which are significant to the calculations

presented in this section are:� A-Cell Physical Hull Radius (Rh) = 0:05m� Membrane Size (Ms) = 0:5m� Number of Adhesion Sites (At ) = 64 distributed around the equator of each A-

Cell’s membrane.
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The A-Cells in the simulation were initially placed 1m apart, such that their mem-

branes were only just in contact. In addition, their sensorswere aligned to position two

sensors on each A-Cell along the line formed by the A-Cell centres. The simulation

was then executed until the A-Cell positions converged to a stable state.

The following calculations demonstrate how the theoretical number of A-CAMs

that will result in a required equilibrium distance can be determined. This calculated

value is then used in the actual simulation and the resultingbehaviour is presented. For

this comparison a required equilibrium distance (De) of 0:55m is used.

The first step in the calculation is to determine the total repulsive force (Fr ) that

will result from the membrane compression when the two A-Cells are the equilibrium

distance apart. As the forces are balanced this value shouldequal the attractive force

generated by bonds between the A-CAMs on the areas of membrane which are in

contact.

The repulsive force is calculated from the compression distance (Dc) using equa-

tion 2.5. However, by assuming that the two A-Cells will be stationary at the equilib-

rium distance, the viscous component can be ignored.

Dc = 2Rv�De

2
(2.16)= (2�0:55�0:55)=2 (2.17)= 0:275m (2.18)

Fr = (D2
c �m) (2.19)= 0:2752�2 (2.20)= 0:15125N (2.21)

The number of A-CAM bonds required to balance this force (Br ) can easily be

calculated from the A-CAM types that are expressed by each A-Cell. For simplicity,

in this simple simulation each A-Cell expresses only a single type of A-CAM and the

attractive force formed by a single bond (Fb) is set to 0:0001N. Therefore:

Br = Fr

Fb
(2.22)= 0:15125

0:0001
(2.23)
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To calculate the actual number of A-CAMs that must be in contact (ACAMc for

the required number of bonds to be formed, equation 2.6 is reorganised as follows:

min(Aα1;Aβ2) = Br

sigmoid
�

m(α;β)k+ (Aα1�Aβ2)2
Aα1�Aβ2

� (2.25)

wherem(α;β) = Fb.

If each A-Cell simply expresses an equal amount of the A-CAM this can then be

simplified to give:

ACAM c = Br

sigmoid(kFb) (2.26)= 1512:5=0:500025 (2.27)= 3024:84876 (2.28)

Finally, it is necessary to calculate the number of A-CAMs that must be expressed

across each whole membrane (ACAMt), such that the required number will be present

on the areas that are in contact. As the bonding between A-Cells is approximated by

using adhesion sites, this value must be obtained by first calculating the number of

A-CAMs that will be associated with each site. This value canbe calculated by using

a simple geometric test to determine how many adhesion siteswill be on the contact

area (Ac)14. In this simple simulation at the equilibrium distance of 0:55m, twenty one

of the sixty four adhesion sites are present on the contact area. Therefore:

ACAM t = ACAM c

Ac
�At (2.29)= (3024:84876=21)�64 (2.30)= 9218:5867 (2.31)

14In this implementation, the plane perpendicular to the linethrough the A-Cell centres which passes
through the A-Cell membrane at the compression distance is calculated. Each adhesion site is then
tested to determine which side of the plane it lies on.
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Figure 2.17: The calculated distance between two adhering A-Cells.

The results of the simple simulation using this value are shown in figure 2.17. It

can be seen that the A-Cells initially oscillate. However, the viscous component of

the membrane repulsion in conjunction with the fluid friction, damps the oscillation

allowing the A-Cells to achieve a steady state at the required equilibrium distance of

(0:55m).

These results demonstrate that the implementation behavesas the theoretical model

predicts.

2.4 Summary

This chapter has presented a robust distributed control method which is based on the

cell adhesion mechanisms employed by biological cells. To ensure the model behaves

as predicted by the DAH, the key constraints have been identified and incorporated

into the model’s design. Furthermore, to demonstrate the feasibility of the model as

a control mechanism for populations of mobile robots and to provide a testbed for

experimentation, the model has been implemented on simulated robotic units (A-Cells)

with physically realistic abilities.

The critical component of the model is the membrane which surrounds each of the

A-Cells. The membrane takes the form of a virtual force field which extends some

distance from the actual A-Cell hull and interactions between neighbouring A-Cells
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only occur when their membranes collide. These collisions result in two distinct forces:

1. A repulsive force which models the restorative force thatis generated by the

compression of a real cell membrane.

2. An attractive force which models the adhesions that occurwhen two cell mem-

branes come into contact.

The repulsive force is simply proportional to the area of membrane which would

have been compressed by the collision. However, the attractive force depends on the

number of adhesive elements (A-CAMs) which appose each other on the areas of mem-

brane that are in contact. The combination of these forces means that any two A-Cells

will be attracted closer together until they reach some equilibrium distance, where the

repulsive force balances the attraction.

It was highlighted that one drawback of this simple membranemodel is that the

same area of membrane on one A-Cell may be in contact with multiple other mem-

branes simultaneously. However, a novel approach was introduced where the mem-

brane is divided into a number of individual adhesion sites.These sites then record

which membranes they are in contact with and probabilistically choose which one to

bond to. In this way, the bonding remains realistic.



Chapter 3

Exploration of 2D Rounding

In section 1.3 we discussed how the behaviour of an aggregateof cells can be described

in terms of the minimisation of free energy. In the simplest case this results in the

rounding of an aggregate as it attempts to form the most compact structure.

In this chapter, the rounding behaviour of the cell adhesionmodel is investigated

for the simplified case where A-Cell movements are restricted to the horizontal plane.

The basic measures and techniques are presented, followed by a detailed investigation

of some key model parameters.

3.1 Methodology

3.1.1 Measures

3.1.1.1 Measure of Rounding

Rounding is the process whereby the structure formed by an aggregate of cells ap-

proaches that of a sphere (disc in two dimensions), thus maximising the adhesions

between the cells (see section 1.3). Throughout this chapter and later in section 5.2

we will examine our model’s ability to replicate this behaviour and determine the ef-

fects of modifying its various parameters. For this purposewe therefore require some

measure of ‘roundness’, and more specifically one which satisfies the following three

constraints:

61
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Figure 3.1: Sphericity measure - inscribing and circumscribing circles.

1. The measure should represent the compactness of an A-Cell aggregate.

2. The measure should be applicable to both two and three dimensional ob-

jects.

This will allow the same measure to be used for both the initial two dimensional

experiments and the later three-dimensional experiments (see section 5.1.1), thus

enabling comparisons between them.

3. The measure should be scale invariant.

As both the size of individual A-Cells and the number of A-Cells in a given

aggregate are variable, it is essential that the rounding measure is independent of

the overall aggregate size.

Two measures which meet these constraints are outlined below. Both measures

produce an intuitive index which varies between zero and one, such that a perfect

sphere or disc gives the maximum value.
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S= Ri

Rc
(3.1)

whereRi andRc give the radius of the inscribing and circumscribing circles or

spheres which are concentric at the object’s centre of massCOM (see fig. 3.1).� Compactness:

C= 4�π�a
p2 (3.2)

wherea is the area of the aggregate (m2) andp its perimeter (m).

It should be noted that one failing of both these measures is that they ignore any

empty space present in an object. Thus, a ring configuration will receive the same

compactness index as a disk. However, the dynamics of our model mean that it is

extremely unlikely that aggregates containing empty spacewill arise except through

introduction in the initial configuration. Additionally, any empty space which is in-

troduced will be rapidly eroded. Therefore, it was thought that the extra complexity

involved in identifying this space in these rare instances would be of little benefit.

Each of the proposed measures require properties which involve first calculating

an A-Cell aggregate’s boundary. One approach to this is to consider such an aggregate

as a collection of discrete vertices with each vertex located at the centre of an A-Cell.

It is then possible to simply calculate the convex hull1 (see fig. 3.2 - a). However, as

the convex hull smooths out many of the irregularities present in the actual aggregate

boundary, this would produce very biased results. An alternative possibility is to use

additional information about the contacts between the A-Cells to calculate a connected

graph of the aggregate. Then, using the algorithm describedin appendix A.1, the more

accurate concave hull2 (see fig. 3.2 - b) of the graph can be calculated.

The graphs in figure 3.3 show how the indices calculated from the two roundness

measures and the two boundary approaches vary over a small section of a complete

1The smallest convex shape that contains all the vertices.
2We define the concave hull of a connected graph as the smallestshape containing all the graph

nodes that can be constructed from the edges of the graph
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(a) (b)

Figure 3.2: (a) Convex hull of an A-Cell aggregate; (b) Concave hull of an

A-Cell aggregate

simulation. As expected, the convex hull boundary producesa higher estimate of the

aggregate roundness than that indicated by the concave hullboundary, most notably

during the early part of the simulation when the aggregate’sboundary is most irreg-

ular. The sphericity graph, however, produces a lower estimate with more extreme

fluctuations. This behaviour is most likely to be caused by the sphericity measure’s

reliances on the position of only two of an aggregate’s A-Cells relative to its centre of

mass. Therefore, any small fluctuation in only these positions will have a large effect

on the calculated index.

By comparing the graphs with the actual simulation data it ispossible to observe

further failings with the sphericity measure. Firstly, as the initial state of the simulation

is a perfect line (see fig. 3.4) we would expect the initial index to be zero. However,

as our implementation of this measure only considers inscribing and circumscribing

spheres which pass through the A-Cell centres, when the aggregate consists of an even

number of A-Cells the initial centre of mass will fall between two of them. Therefore,

the radius of the inscribing sphere and thus the calculated index will be non-zero.

Secondly, the simulation clearly shows that the aggregate rounds rapidly during the

first 1000 seconds (see fig. 3.4). However, although this behaviour is shown clearly in

the compactness graph, there is no observable increase in the sphericity graph during

the same time period. Finally, the sphericity measure showsseveral large peaks which

do not represent any significant events in the simulation (e.g. at approximately 1800

seconds).

Contrary to this, the compactness measure based on the concave hull boundary

appears to closely follow observed changes in the aggregate’s structure and shows the
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Figure 3.3: A graph of different roundness measures.

steady increase in the aggregate’s roundness as time progresses. Therefore, it is this

more representative measure which is used throughout this work.

3.1.1.2 Compacting Rate, Converged Compactness, and Compa ctness Variance

Simply comparing all the compactness versus time graphs discussed in 3.1.1.1 would

make it very difficult to observe how changes in parameter values affect the model’s

rounding ability. Instead, it is necessary to decompose these results into their key

values which can then be plotted in a single graph, thus revealing any general trends.

It can be seen from longer simulations that the A-Cell aggregates tend to round very

rapidly at first before converging at some maximum value (seefig. 3.5). Therefore, it

is possible to summarise this behaviour with the following two measures.

1. The rate at which the A-Cell aggregates round.

2. The convergence value achieved.

When calculating the rate at which the A-Cells round, we are only interested in

the rate until the roundness value converges. An efficient method for estimating this
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Figure 3.4: Simulation of the A-Cell Model
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Figure 3.5: A-Cell rounding with an aggregate of 36 A-Cells initially config-

ured in a straight line: sample size = 100.

rate is to use a variation of the ‘rise time’ which estimates the time it takes signals to

change from a specified low value to a specified high value (typically 10% and 90% of

the final value) (see fig. 3.6). This can be modified to give the ‘convergence time’ by

taking the full time it takes until the value has reached 90% of the convergence value

(see fig. 3.6). As this is a conservative estimate of the full convergence time, this

period should only include the initial rounding stage of thesimulation. The average

compacting rate (CR ) until convergence can then be calculated by dividing the 90%

limit by the convergence time.

The method we employ to calculate the converged compactness(CC ) is to sim-

ply take the mean of the compactness indices for the lastn seconds. By selecting a

sufficiently large value forn, any minor fluctuations in compactness will be ignored.

Obviously, if the simulation terminates before the compactness index has converged

this value will only give some lower bound on the true convergence value. However,

the average rate of rounding until convergence should remain reasonably accurate. In

addition, as a relatively long simulation time will be used (see section 3.1.3), these
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Figure 3.6: The rise time and convergence time of a graph.

cases should be rare and will at least be indicative that the chosen parameter set is very

poor.

An additional measure which can also be calculated from the original data is the

variance in compactness values. This variance gives an impression of the stability of

an aggregate’s shape. Therefore, calculating the varianceof those compactness values

from which the convergence value is derived (i.e. when the major rearrangements in

the aggregate’s structure have ceased) indicates how vigorously the individual A-Cells

are moving. Figure 3.16 calculated from the random force results show how this value

increases as the A-Cells make increasingly large random movements.

3.1.2 Initial Configurations

To give a lower bound on the model’s performance, we use the worst case starting

configuration in each of the simulations. As the experimentsare designed to inves-

tigate the performance of the model with respect to rounding, the worst case starting

configuration is a perfect line which has a compactness indexof 0 (see section 3.1.1.1).

To generate this configuration each of the A-Cells is placed in a line such that the
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distance between any pair of A-Cells is equal to the equilibrium distance3. In addition,

each A-Cell is positioned with a similar initial orientation.

In each set of experiments three different aggregate sizes are investigated. The

sizes that were selected are 16, 36 and 64. These values provide good coverage of the

range of aggregate sizes which can be simulated in a reasonable period of time. Also,

each of these values has an integer square root to allow similar aggregate sizes to be

used for simulations where the initial configuration is a grid.

To save resources the 16 and 64 A-Cell aggregates are investigated over less de-

tailed ranges. However, their inclusion should still indicate if any trends are specific to

a particular aggregate size.

3.1.3 Base Parameter Set

As it is not possible to carry out an exhaustive exploration of the model’s complete

parameter space, it is necessary to choose some sensible base parameter set from which

small sets of parameters can be investigated at a time.

The values that have been selected are a combination of estimates from the HY-

DRON prototype design and reasonable values which have beendetermined by a ‘pep-

per pot’ exploration of the parameter space.� Simulation Time = 20000s

The measures that will be used to evaluate the A-Cell aggregates assume that the

aggregate has achieved its maximum compactness by the end ofthe simulation

(see section 3.1.1.2). Therefore, to ensure that this is true even for poor parame-

ter sets, a relatively long simulation time has been selected. This has the added

benefit of indicating which parameter sets produce the most stable aggregates

(i.e. aggregates which remain intact for this whole time period).� Simulator Time Interval = 0:1s� A-Cell Mass = 1kg

3The point where adhesive and repulsive forces are balanced (see section 2.2.3).
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The mass of the HYDRONs was not known at the time the followingexperiments

were carried out. Therefore, this parameter was set to a default value of 1kg.

Thus, all forces which act on the A-Cells are simply converted to accelerations.� A-Cell Physical Hull Radius = 0:05m� Maximum Signal Range = 1:1m� Membrane Size = 0:5m� Equilibrium Distance = 0:55m� Number of Sensors = 4

As the A-Cells are limited to movement in only two dimensionsit is sufficient to

evenly distribute the sensors around the equator of the A-Cell hull. Four sensors

provide near complete coverage around the entire hull.� Number of Adhesion Sites = 64

Again, as these simulations are limited to two-dimensionalmovements the ad-

hesion sites are simply evenly distributed around the equator of each A-Cell’s

membrane. Therefore, each adhesion site represents a smallsegment of the

membrane.� Membrane Damping = 0:4Kgs�1� Membrane Repulsion = 2Kgm�1s�2� Attraction at Equilibrium Distance = 1:525

This specific value is derived from the other parameters.� Detector and Transmitter Field of View =π2� Bonding Equation Scaling Constant (see equation 2.6) = 1� Maximum Random Force = 0N
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Number of A-Cells 16 36 64

Mean Time Per Simulation 1h 45m 5h 30m 17h 30m

Figure 3.7: Mean time per simulation for the different aggregate sizes.� Maximum Random Torque = 0:001N

This low torque is sufficient to break the symmetry of sensor alignments in the A-

Cell aggregates. Without this the model’s performance would be greatly affected

in all the simulations (see section 3.3).� Maximum A-Cell Force = 0:01N

This parameter limits the maximum force that any of the A-Cells is able to pro-

duce. The value shown was determined in the initial aggregate stability experi-

ments (see section 3.2).

3.1.4 Frequency Distribution and Sample Size

The A-Cell simulator is a very processor intensive application (see table 3.7). There-

fore, as the resources available for this work are limited, there is a trade off between

the sample size (the number of runs per experiment) and the number of experiments

that may be carried out. In this case to allow adequate exploration of the model we

have limited the sample size to 15.

To determine how best to estimate the variance of the sample it is necessary to

examine the distribution of the value being calculated. To this effect, 100 simulations

were carried out for each of the 16, 36 and 64 A-Cell aggregates. Each simulation

started with the base parameter set and straight line initial configuration outlined pre-

viously in this section. TheCC andCR were then calculated for each simulation.

The resulting histograms (see fig. 3.8) revealed that for each measure the distri-

bution is slightly negatively skewed and in some cases appears to be multi-modal in

nature.

As the distribution of the two measures is non-normal and thesample size is small,

the best estimate of the variance of the sample mean can be achieved bybootstrapping
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Figure 3.8: Frequency distributions for both the CR measure and the CC

measure. The best fit normal curve has been superimposed on each plot.

(see Efron and Gong [14]).

Bootstrapping is a method of empirically assessing the uncertainty of a small sam-

ple without making any assumptions about its distribution.The process works by

applying some statistic, in this case the mean, to a large number of pseudo-replicate

samples created from the original data set. These subsamples are generated by ran-

domly resampling the initial data, with replacement, to produce new samples the same

size as the original. Therefore, each original piece of datamay appear in a new sub-

sample multiple times or not at all.

The values calculated for the statistic form an estimate of its sampling distribution

and the standard deviation of this distribution then provides an approximation of the

real standard error.

To calculate the standard error of samples used in this chapter, each sample is

resampled 5000 times4. This standard error estimate is then used to determine the

confidence error which provides the range of the error bars.

4This number should be large enough to produce stable values.
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3.2 Aggregate Stability

It has been observed from initial experiments that if a number of A-Cells experience a

force in a similar direction, the whole aggregate will beginto rotate. However, instead

of stabilising, occasionally this rotational movement accelerates until the aggregate

pulls itself apart.

Once the aggregate begins to rotate, the A-Cells nudge each other around in the

same direction as they attempt to maintain an equilibrium distance apart. A build up

develops when the forces generated by the A-Cells accumulate faster than they are

cancelled out by the resistance of the fluid. The result is that the rotation becomes

self-perpetuating and in fact self-accelerating until theforces involved reach the point

where they begin to break the adhesive bonds, causing the aggregate to split.

There are three possible solutions which will prevent this build up of forces:

1. The resistance of the fluid can be increased.

2. The magnitude of the forces generated by the A-Cells can besufficiently limited.

3. The A-Cells can coast for a period of time producing no movement force.

Clearly, increasing the resistance of the fluid assumes a level of control over the en-

vironment. As this may not always be the case, this is not considered. Of the remaining

options, the latter coasting approach has the additional advantage of conserving the A-

Cells’ energy. However, it should also be noted that it wouldbe a further abstraction

from the real biology where the forces between cells are continuous.

In the experiments which were carried out, the rotational stability of the aggregate

is measured by calculating each A-Cell’s speed of rotation around the aggregate’s cen-

tre of mass5. The mean of these values gives an estimate of the speed of rotation of

the entire aggregate, which can then be used to estimate the mean rotational speed of

the aggregate for the entire simulation.

Figure 3.9 shows the combined results of both increasing thecoasting period and

placing a maximum limit on the forces produced by the A-Cells. In each simulation,

5The magnitude of the rotational velocity.
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Figure 3.9: Mean rotational speed of A-Cell aggregates for both when the

maximum A-Cell force is limited and the coasting period is increased.

the base parameter set was used and the A-Cells were also exposed to small random

movement forces (0:0001N).

These results show that maximum force limits which exceed 0:1N result in almost

identical behaviour, suggesting that these values are too high to impose any sufficiently

large limiting effect on the forces which are being produced. There is a notable differ-

ence for these results when the coasting period increases to0:6s. However, the sudden

drop in rotational speed which is exhibited by the two highest force limits is simply an

artifact of the aggregates failing to remain intact. This rather dramatic effect is a result

of the very slightly higher forces and a longer coasting period allowing the A-Cells to

drift apart. The remainder of the results show the expected behaviour with both ap-

proaches causing a noticeable reduction in the rotational speed. However, figure 3.10

demonstrates that as either value becomes too extreme, the performance of the model

deteriorates with both theCC andCR values dropping.

From these results a maximum force limit of 0.01N and 0s coasting period were

selected for the base parameters of the following experiments. These values provide

a suitably large decrease in mean rotational speed without adversely affecting the per-

formance of the model. In addition, the lack of coasting period provides a better match

to the observed biology.
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Figure 3.10: The CR and CC plot for A-Cell aggregates for both when the

maximum A-Cell force is limited and the delay between forces is increased.

(a) CR (b) CC

3.3 Random Forces

The purpose of this section is to investigate how robust the rounding behaviour exhib-

ited by our model is to small random movements and torques. Such forces could either

be the result of environmental perturbations or, in the caseof the random movements,

could be generated by the A-Cells themselves (see section 2.2.7). These results are

summarised in Ottery and Hallam [44].

The first two sets of experiments investigate the effects of random movements and

random torques independently of each other. Therefore, in each case, when one pa-

rameter is varied, the other is set to zero.

The random movements are generated by adding a small force ina random direc-

tion to each A-Cell, such that the magnitude of the force is a random value between

zero and some predefined maximum limit. It is this maximum limit that is varied in

these experiments. Figure 3.11 shows the histograms of the number of simulations

where the main A-Cell aggregate did not remain intact6. There is nothing surprising

about these results; they simply indicate that as the magnitude of the random move-

ments increases, so does the chance that this random force will outweigh the attractive

forces between the A-Cells, causing the aggregate to split.

6At least one A-Cell lost communication with the others.
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Figure 3.11: Histograms showing the number of aggregate that did not re-

main intact over a range of random movement force limits. (a) 36 A-Cell

aggregate (b) Less detailed range for 16, 36 and 64 A-Cell aggregates.
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Figure 3.12: CC values of A-Cell aggregates over a range of random move-

ment force limits. The x axis shows the complete range. However, only

values from samples where all the aggregates remained intact are shown.

(a) 36 A-Cell aggregate (b) Less detailed range for 16, 36 and 64 A-Cell

aggregates.
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Figure 3.13: CR and CC values for A-Cell aggregates over a range of random

torque limits. The x axis shows the complete range. However, only values

from samples where all the aggregates remained intact are shown. (a) CR

(b) CC

Figure 3.12 shows theCC plots of the results. The more detailed plot for the 36

A-Cell aggregate shows a slight increase in theCC measure as the magnitude of the

random movement forces increases, a result which is also reflected in the combined

plot. This is expected, as larger random movements should increase the exploration

performed by the A-Cells, thus increasing the chance that they will encounter A-Cells

they can bond with more strongly.

The second of this first set of experiments investigates the effect of random torques.

In this case, a small torque was applied to each A-Cell, generating a spin around the A-

Cells’ vertical axes7. The direction of the spin is selected at random and the magnitude

is a random value between zero and some predefined maximum limit. Again, it is this

maximum limit that is varied in this set of experiments.

Unlike the forces present in previous experiments, random torques do not directly

cause the A-Cells to make random movements. However, as the A-Cells rotate, their

sensors become misaligned, making the aggregate less rigid. Figure 3.13 shows the

combined plot for both theCR measure and theCC measure. These graphs show that

the level of torque has little effect on the performance of the model and that in fact,

regardless of the level of torque, the aggregate remains intact. However, by adding

7This is the only axis around which the A-Cell can freely rotate (see section 2.2.1).
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Figure 3.14: CC values of A-Cell aggregates with a fixed random torque

limit of 0:01N over a range of random movement force limits. The x axis

shows the complete range. However, only values from samples where all

the aggregates remained intact are shown. (a) 36 A-Cell aggregate (b) Less

detailed range for 16, 36 and 64 A-Cell aggregates.

some torque the more flexible aggregates have achieved a significant increase in the

compactness index that is obtained.

The second set of experiments investigate the combined effect of these parameters.

As the previous results show that the level of torque is not significant, in this set it

remains fixed whilst the movement force is varied. The torquewas set to a low value as

this is likely to be more representative of the slight torques which would be caused by

any environmental perturbations. However, the choice of the specific value of 0:01Nm

is relatively arbitrary.

The combination of these two parameters produced the best results. Figure 3.14

shows that each aggregate size achieved similarly highCC compactness measures of

just below 0:9. It is also clear from the error bars that they achieved thishigh com-

pactness far more consistently than in the previous set of experiments. In addition, the

more detailed plot for the 36 A-Cell aggregate also shows an initial slight improve-

ment as the magnitude of the random movement forces increases. This slight increase

in performance is also present in theCR plot (see fig. 3.15).

Overall, it appears that by applying the random movement forces to a less rigid

aggregate, the rounding process can be significantly improved. There is also an indi-
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Figure 3.15: CR values of A-Cell aggregates with a fixed random torque

limit of 0:01N over a range of random movement force limits. The x axis

shows the complete range. However, only values from samples where all

the aggregates remained intact are shown. (a) 36 A-Cell aggregate (b) Less

detailed range for 16, 36 and 64 A-Cell aggregates.

cation that larger magnitudes of random movement produce better results for both the

CR andCC up to the point where the aggregate begins to split.

The exception to this is the 16 A-Cell aggregate which, although intact for the

highest magnitude of random movement force, shows a sudden drop in theCC measure

(see fig. 3.14). The most likely hypothesis that explains this is that the magnitude of the

random movements becomes so large that the aggregate cannotmaintain any compact

configuration. Figure 3.16 supports this interpretation bydemonstrating a clear link

between the size of the random movement force limit and the level of compactness

variance that the aggregates exhibit.

In summary, these results show that the model is reasonably robust to both types of

random force. More specifically, they indicate that the presence of each type improves

the overall performance of the model. In particular, highermagnitudes of random

movement increase performance up to the point were the random movements outweigh

the attractive forces between the A-Cells, causing the aggregate to become unstable and

possibly break apart.
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Figure 3.16: Compactness variance for a 36 A-Cell aggregate over a range

of random movement force limits.

3.4 Membrane Properties

The following sections investigate how the performance of our model relates to the

choice of specific membrane properties.

3.4.1 Adhesion Force

The experiments presented in this section investigate how the model’s performance

is affected by the level of the adhesion and thus attraction between the A-Cells. As

the attraction between the A-Cells increases, the equilibrium distance will be reduced.

Therefore, to control for this, the repulsion factor of the A-Cells’ membranes (see

equation 2.5) is adjusted such that the equilibrium distance will remain constant. Ad-

ditionally, the attraction the A-Cells experience for any amount of membrane com-

pression depends on many parameters. Therefore, for clarity, the attraction values pre-

sented here are given in terms of the actual attraction experienced when two A-Cells

are the equilibrium distance apart.

The actual force that an A-Cell generates is dependent on both the attractive and

repulsive forces it experiences. Figure 3.17 shows how the resulting generated force

changes as two A-Cells move increasingly close together. Itis clear from the two

dimensional plot (see fig. 3.17 - b) that the magnitude of the forces generated by the
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Figure 3.17: Calculation of the force experienced by an A-Cell adhering to

a single other A-Cell as both the force at the equilibrium distance and its

membrane compression distance are increased.

A-Cells, for any amount of membrane compression, increasesas the force of attraction

at the equilibrium distance rises. Also, even small forces of attraction at the equilibrium

distance result in generated forces which are greater then the maximum force limit of

0:01N (see section 3.2) for the majority of situations. However, any single A-Cell in an

aggregate will bond with many others and thus experience forces in many directions

which will, to some extent, cancel each other out. Additionally, once the aggregate

reaches a reasonably stable configuration with the A-Cells in some equilibrium state,

the forces being generated will also be reduced.

Figure 3.18 shows how the forces generated by the A-Cells in the actual simulations

change as the force at the equilibrium distance rises. Theseresults show that the forces

being generated rapidly converge toward the maximum limit.This trend is reflected

in the CC andCR graphs of the same simulations (see fig. 3.19 & 3.20) which show

a rapid initial change, after which the values stabilise. However, theCC graph then

shows a gentle decrease as the force at the equilibrium distance continues to rise, and

some small percentage of the aggregates also fail to remain intact (see fig. 3.22). The

compactness variance graph (see fig. 3.21) provides an explanation for this behaviour

by showing a steady increase in the instability of the aggregates as the forces generated

by the A-Cells become increasingly limited.
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Figure 3.18: The mean forces generated by the A-Cells of a 36 A-Cell ag-

gregate as the force at the equilibrium distance is increased. (a) Mean of the

minimum force generated at each cycle in the simulation. (b) Mean of all the

forces generated in the simulation.
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Figure 3.19: CR values of A-Cell aggregates over a range of forces at equi-

librium values. The x axis shows the complete range. However, only values

from samples where all the aggregates remained intact are shown. (a) 36 A-

Cell aggregate (b) Less detailed range for 16, 36 and 64 A-Cell aggregates.
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Figure 3.20: CC values of A-Cell aggregates over a range of force at equilib-

rium distance values. The x axis shows the complete range. However, only

values from samples where all the aggregates remained intact are shown.

(a) 36 A-Cell aggregate (b) Less detailed range for 16, 36 and 64 A-Cell

aggregates.
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Figure 3.21: Compactness variance for a 36 A-Cell aggregate over a range

of ’force at equilibrium distance’ values.
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Figure 3.22: Histograms showing the number of aggregate that did not re-

main intact over a range of ’force at equilibrium distance’ values. (a) 36 A-

Cell aggregate (b) Less detailed range for 16, 36 and 64 A-Cell aggregates.

3.4.2 Number of Adhesion Sites

When two membranes are in contact, the number of A-CAMs that may form bonds

will be some multiple of the total number of A-CAMs divided bythe total number of

adhesion sites (see section 2.2.5). Therefore, the number of adhesion sites determine

to what level of detail the number of A-CAMs, and consequently the number of bonds,

can be calculated.

In this set of experiments, aggregates of A-Cells with numbers of adhesion sites

ranging from eight to one hundred and sixty were simulated. The results show that

there is no noticeable effect on theCR . However, although this is also largely true

for the CC values, there is a slight peak in performance for all the aggregate sizes

when only eight adhesion sites are used (see fig. 3.23). To investigate this low end

of the range in more detail, a further series of simulations were carried out with only

the 36 A-Cell aggregate (see fig. 3.24). The results of these simulations show that a

minimum of five adhesion sites are required to prevent A-Cells from breaking away

from the aggregate. Also, although there is still no effect on the rounding rate, the

results show a rise inCC as the number of adhesion sites increases to eight. At this point

theCC plateaus before dropping slightly when the number of adhesion sites increases

to twelve. TheCC then appears to remain relatively constant, with the exception of an
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isolated peak when fourteen adhesion sites are used.

Calculating the compactness variance of the latter set of simulations reveals that as

the number of adhesion sites drops below approximately ten,the compactness variance

increases rapidly (see fig. 3.25). When the number of adhesion sites is higher than

this, the compactness variance, like theCC , remains relatively constant. More specif-

ically, comparing these results with theCC values suggests that there is a window of

compactness variance between 1�10�4 and 2�10�4 where the best performance is

achieved.

This change in compactness variance can be explained by considering how the

number of adhesion sites on an adhering area of membrane can change as an A-Cell

rotates. For example, figure 3.26 shows that in one orientation only a single adhesion

site will be considered to be on the adhering area of membrane. However, if the A-

Cell rotates, this can increase to two. The figures shown in 3.27 were generated by

determining this maximum and minimum number of adhesion sites and calculating the

percentage of the total membrane that they represent. The graphs were calculated for

an A-Cell which is 0:6943m from a single neighbour it is adhering to. This is the mean

distance between neighbouring A-Cells calculated from a sample of 15 simulations of a

36 A-Cell aggregate with the base configuration8. The graphs show that the two values

differ most for small numbers of adhesion sites, with the difference dropping very

quickly at first, then asymptotically approaching zero as the number of sites continues

to increase. These results match the corresponding drop in the compactness variance,

indicating that this fluctuation in the number of A-CAMs which are available to bond

causes the resulting fluctuations in the A-Cells’ positions, and thus, the aggregate’s

shape.

3.4.3 Equilibrium Distance

The equilibrium distance is the distance at which the forcesof attraction and repulsion

generated by two adhering A-Cells are balanced. In this set of experiments this dis-

tance is varied by adjusting both the membrane repulsion multiple (see equation 2.5)

8This value is greater than the calculated equilibrium distance which is estimated from only two
A-Cells as the A-Cells in an aggregate have many neighbours.Therefore, some areas of an A-Cells
membrane will be shared.
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Figure 3.23: CC values of A-Cell aggregates with a range of adhesion site

numbers. The x axis shows the complete range. However, only values from

samples where all the aggregates remained intact are shown. (a) 36 A-Cell

aggregate (b) Less detailed range for 16, 36 and 64 A-Cell aggregates.
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Figure 3.24: CR and CC values for a 36 A-Cell aggregate over a range of

adhesion site numbers. The x axis shows the complete range. However, only

values from samples where all the aggregates remained intact are shown.
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Figure 3.25: Compactness variance for a 36 A-Cell aggregate over a range

of adhesion site numbers.

(a)

(b) (c)

Figure 3.26: Orientation effects on number of adhesion sites in contact.
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Figure 3.27: Values calculated for A-Cells with a range of numbers of adhe-

sion sites. (a) The maximum and minimum percentage of the total bonding

area that is available to bond, calculated from the maximum and minimum

number of adhesion sites on the area of contact between two A-Cells. (b)

The difference between the maximum and minimum percentages of the total

area available to bond.

and the number of A-CAMs produced by the A-Cells. In this manner, it is possible to

change the equilibrium distance while keeping the adhesionat this distance constant.

The equilibrium distances that were considered cover the entire possible range from

the point where the A-Cells are just in contact to the point where their membranes

almost fully overlap. The results from these simulations (see fig. 3.28 & 3.29) show

that very highCR andCC values are achieved when the equilibrium distance is small.

However, as the equilibrium distance increases, both thesevalues drop and once the

equilibrium distance exceeds 0:7m, the aggregates no longer remain intact.

It is also clear from the results that a significant change in the model’s performance

occurs when the equilibrium distance drops below the virtual radius of the A-Cells

(e.g. hull radius plus membrane size) which is, in these simulations, 0:55m. When the

equilibrium distance is below this threshold, both theCC and rounding rate values that

are achieved are higher than those obtained during all the other experiments presented

in this chapter. However, as soon as the equilibrium distance exceeds this threshold,

theCC drops very rapidly.

Both these features are linked with the probability of A-Cells in an aggregate dis-

covering new neighbours to bond with. If the A-Cells have a high equilibrium distance,

they will be much further apart. Therefore, this probability is low, and the aggregate
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Figure 3.28: CC values of A-Cell aggregates with a range of equilibrium dis-

tances. The x axis shows the complete range. However, only values from

samples where all the aggregates remained intact are shown. (a) 36 A-Cell

aggregate (b) Less detailed range for 16, 36 and 64 A-Cell aggregates.
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Figure 3.29: CR values of A-Cell aggregates with a range of equilibrium dis-

tances. The x axis shows the complete range. However, only values from

samples where all the aggregates remained intact are shown. (a) 36 A-Cell

aggregate (b) Less detailed range for 16, 36 and 64 A-Cell aggregates.
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which is formed will be much more rigid. However, as the equilibrium distance is de-

creased this probability will rise, making the aggregate much more fluid and allowing

it to break out of locally optimal configurations. The dramatic change in performance

occurs when the equilibrium distance becomes small enough for the A-Cells to form

bonds through another A-Cell’s membrane, effectively allowing them to see past their

immediate neighbours. Although this causes a significant improvement, it does deviate

further from the biological model in which the membrane forms a physical barrier.

3.5 Hardware Specificity

The following sections investigate how the performance of our model relates to the

specification of the different hardware components.

3.5.1 Hull Size

The virtual nature of the A-Cell membrane means that it is possible to change the size

of the physical hull while keeping the virtual size of the A-Cell constant. Therefore,

such a change should have no direct impact on the performanceof the model. However,

it is still possible for any change to have an indirect effectthrough the following:

1. The level of fluid drag acting on the A-Cells.

2. The probability of physical collisions between the A-Cells’ hulls.

3. The level of error in the distance and direction estimates.

To investigate these more subtle effects, simulations werecarried out covering a

broad range of possible hull sizes. As discussed above, the membrane size of the A-

Cells in these simulations was adjusted to maintain a constant virtual size. The results

of these simulations show several clear features. Firstly,theCR results (see fig. 3.30)

show an initial drop as the hull size increases, most predominantly in the more detailed

graph for the 36 A-Cell aggregate. This is most likely to be caused by the increase

in drag which results from the larger hull sizes. Secondly, the CC results (see fig.

3.31) show a slight improvement as the hull’s radius becomeslarger. However, once
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Figure 3.30: CR values of A-Cell aggregates over a range of hull sizes. The

x axis shows the complete range. However, only values from samples where

all the aggregates remained intact are shown. (a) 36 A-Cell aggregate (b)

Less detailed range for 16, 36 and 64 A-Cell aggregates.

the hull’s radius reaches approximately 0:13m theCC drops and becomes increasingly

erratic. The compactness variance (see fig. 3.32) suggests that this trend is caused

by the aggregates becoming increasingly volatile. As in section 3.4.2, initially as the

compactness variance increases, theCC value also increases. However, after a certain

threshold is reached, theCC values drop as the aggregate becomes increasingly unsta-

ble. Figure 3.33 demonstrates that once the hull radius reaches approximately 0:2m

this then results in a reasonably steady increase in the number of aggregates which fail

to remain intact.

The increase in compactness variance will be partly due to anincrease in the num-

ber of collisions between the A-Cell hulls as the hull size approaches half the equilib-

rium distance (0:275m). However, it is unlikely that this is solely responsible particu-

larly when the hull radius is reasonably low.

To determine what part the error in the distance and direction estimates might be

playing in this increasing compactness variance, an artificial two A-Cell model was

created. In this simple model the position of the A-Cells wasfixed while they were ro-

tated anti-clockwise around their vertical axis. The errorin the distance and direction

estimates were then calculated for a large number of orientation pairs (see fig. 3.34).

As the A-Cells are rotationally symmetrical, only rotations of less thanπ
2 were con-
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Figure 3.31: CC values of A-Cell aggregates over a range of hull sizes. The

x axis shows the complete range. However, only values from samples where

all the aggregates remained intact are shown. (a) 36 A-Cell aggregate (b)

Less detailed range for 16, 36 and 64 A-Cell aggregates.
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Figure 3.32: Compactness variance for a 36 A-Cell aggregate over a range

of hull sizes.
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Figure 3.33: Histograms showing the number of aggregate that did not

remain intact over a range of hull sizes. (a) 36 A-Cell aggregate (b) Less

detailed range for 16, 36 and 64 A-Cell aggregates.

sidered. Also, the distance between the two A-Cells in the model was set to 0:6943m

which is more representative of the distance between neighbouring A-Cells in an actual

aggregate9.

The results obtained by running this simple model for the same range of A-Cell hull

sizes as were used in the main simulations, show that the meanerror in the direction

estimate changes very little (see fig. 3.35). However, thereis a clearly linear increase

in both the mean and maximum distance error estimates. Figure 3.36 shows how this

increase relates to the simple distance estimate algorithm. The estimate is calculated as

the mean of all the distance estimates for the same signal, each of which consists of the

estimate of how far the signal has travelled between the transmitter and detector plus

the additional distance between the sensors and the A-Cell centres (r). In the worst case

situation shown in figure 3.36, when the two A-Cells rotate very slightly toward each

other, the distance estimate of signal path (b) will be approximately correct. However,

signal path (a) will be out by approximately 2r, where r is the radius of the A-Cell hull.

Therefore, the average and thus the final distance estimate will be r greater than the

actual distance.

9This distance is the mean distance between neighbouring A-Cells calculated from a sample of
fifteen 36 A-Cell aggregates with the base configuration.
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Figure 3.34: Example estimate error grids calculated from a simple two A-

Cell model. (a) Distance estimate error for a hull radius of 0:05m. (b) Dis-

tance estimate error for a hull radius of 0:1m. (c) Direction estimate error for

a hull radius of 0:05m. (d) Direction estimate error for a hull radius of 0:1m.
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Figure 3.37: CC values of A-Cell aggregates with a range of signal distance

estimate accuracies. The x axis shows the complete range. However, only

values from samples where all the aggregates remained intact are shown.

(a) 36 A-Cell aggregate (b) Less detailed range for 16, 36 and 64 A-Cell

aggregates.

The most interesting discovery from these results is that some error in the distance

estimate can actually be beneficial to the model as it naturally increases the fluctuations

in the A-Cell’s positions, causing them to explore more of their neighbouring space.

3.5.2 Signal Accuracy

In our implementation of the model, the simple but crude method used by the A-Cells

to estimate the distance of their neighbours relies, to someextent, on how accurately

the distance travelled by any signal can be calculated.

In this set of experiments, the signal distance estimate wasrounded to the nearest

multiple of a specified value. Thus, as the specified value is increased, the accuracy

of the estimate is reduced. To cover a much broader range, thevalues considered

were increased in powers of 10 from 10�6m to 1m. The 36 A-Cell aggregate was also

evaluated for 0:2mmultiples between 0:2mand 1m to provide additional detail.

The results shown in figures 3.37 and 3.38 indicate that the rounding behaviour

of the model is tolerant of even very coarse distance estimates upto 0:2m, after which

the aggregates fail to remain intact. Also, the compactnessvariance graph of the same
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Figure 3.38: CR values of A-Cell aggregates over a range of signal distance

estimate accuracies. The x axis shows the complete range. However, only

values from samples where all the aggregates remained intact are shown.

(a) 36 A-Cell aggregate (b) Less detailed range for 16, 36 and 64 A-Cell

aggregates.

results (see fig. 3.39) shows that when the signal estimate is0:01m and below, the

stability of the aggregates changes very little. These results match those given in sec-

tion 3.5.1. As the mean distance estimate error of A-Cells with a hull radius of 0:05m

was already calculated as just under 0:05m, the accuracy of the signal distance estimate

should have little additional effect as long as it is greaterthan this value.

The two interesting results are obtained for the lower accuracies of 0:1mand 0:2m.

Unexpectedly, theCC results show that rounding to the nearest 0:2mproduced a slightly

more compact aggregate. However, the compactness varianceis also higher for this

value and, in particular, it is in the same range that has produced the best results in pre-

vious experiments (see section 3.4.2). Therefore, it is likely that the extra fluctuations

introduced by the error in the distance estimate have resulted in the better performance.

Rounding to the nearest 0:1mactually resulted in a higher mean compactness vari-

ance without affecting either theCC or theCR . However, the confidence error of the

value is very large indicating that this value might not be representative of the actual

population.
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Figure 3.39: Compactness variance for a 36 A-Cell aggregate over a range

of signal distance estimate accuracies.

3.5.3 Sensor Fields of View

In this chapter the A-Cells use a very basic sensor layout with only four transmitter-

receiver pairs equally distributed around each A-Cell’s hull. As discussed previously

(see section 3.5.1), the orientation of the A-Cells and the distance between them can

affect the accuracy of both their distance and direction estimates. In this section we

investigate the additional property of sensor field of view (FOV).

In this set of experiments, a range of transmitter and detector FOVs are considered

simultaneously to reveal any combined effects. Also, in addition to the main simula-

tions, an additional two A-Cell model similar to that described in section 3.5.1 was

evaluated to investigate the respective distance and direction estimate errors in more

detail.

The histograms of the main simulations, showing the number of runs where the

main A-Cell aggregate did not remain intact, are shown in figure 3.40. These graphs

clearly indicate that there is a very distinct threshold, with aggregates of A-Cells with

sensor FOVs underπ4 failing to remain intact in almost 100% of the simulations. Cru-

cially, this angle is the point below which the sensor coverage will diverge with range,

thus increasing the number of situations where any two A-Cells will be out of contact

(see fig. 3.42). To illustrate this, the simple two A-Cell model was also used to calcu-

late the percentage of orientation pairs where the A-Cells could not communicate (see
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Figure 3.40: Histograms showing the number of aggregate that did not re-

main intact. (a) 16 A-Cell aggregate (b) 64 A-Cell aggregate (c) 36 A-Cell

aggregate
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Figure 3.43: CR values of A-Cell aggregates over a range of transmitter and

detector FOVs. The x axis shows the complete range. However, only values

from samples where all the aggregates remained intact are shown. (a) 16

A-Cell aggregate (b) 64 A-Cell aggregate (c) 36 A-Cell aggregate

fig. 3.41). As expected these results closely match the actual simulation results and

demonstrate the same sudden change atπ
4. More specifically these results also show a

subtle increase in the time out of contact when both the transmitter and detector FOVs

are equal toπ
4, a feature which is also mirrored by an equivalent rise in thenumber of

16 A-Cell aggregates which failed to remain intact.

TheCC andCR graphs for this set of experiments are shown in figure 3.43 and3.46

respectively. One of the clearest trends in these results isthe drop inCC values when the

detector FOV is equal to 1:1781rads, regardless of the transmitter FOV (see fig. 3.47).

A comparison of these results with the mean direction estimate errors (see fig. 3.44)
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Figure 3.44: Estimate errors calculated from a simple two A-Cell model over

a range of transmitter and detector FOVs (a) Mean error in the distance

estimate. (b) Mean error in the direction estimate.

calculated from the two A-Cell model shows that this featureactually corresponds

to the lowest direction errors. Calculating the compactness variance results (see fig.

3.45) also reveals that this drop corresponds with a low level of fluctuations in the A-

Cells’ positions. In combination, these results suggest that increasing the accuracy of

the direction estimate increases the stability of the aggregate. However, by eliminating

the random fluctuations in the A-Cells’ positions it becomesmore difficult for the

aggregate to break out of locally minimal configurations.

3.6 Summary

The results of the experiments presented in this chapter demonstrate that the cell ad-

hesion model is capable of robust self-aggregation. More specifically, the structures

that are formed actively minimise their exposed perimeter while maintaining a stable

configuration of units in what is approximate hexagonal close pack (e.g. the optimal

packing of spheres on a plane). These behaviours are a directresult of the simple dy-

namics resulting from the mutual adhesion exhibited by the A-Cells and match those

predicted by the DAH.

One of the most significant results that was obtained from thepresented simula-

tions relates to the observed effect of random forces. In line with evidence from other
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Figure 3.45: Compactness variance for a range of transmitter and detector

FOVs.

models [40, 45], it has been shown that random fluctuations inthe A-Cells’ positions

directly relate to the aggregate’s ability to escape from locally minimal configurations

(see section 3.3). This can be seen in the form of a significantincrease in the com-

pactness of the final aggregates that are achieved in the presence of higher random

movement forces. In addition, the resulting increase in local exploration has the addi-

tional effect of increasing the rate at which the aggregatesconverge to their equilibrium

state. However, more specifically to the robotic structure of the A-Cells, the simula-

tions revealed the importance of breaking the symmetry of the alignment between the

A-Cells’ sensors. This can be achieved by simply exploitingslight turbulence in the

environment which randomly rotate the A-Cells around theirvertical axis10.

The other simulations investigated the specificity of various parameter choices,

both in the model and the A-Cell’s physical structure. In each case the model demon-

strated a high tolerance to the exact values chosen, achieving reasonably high perfor-

mance in most cases where the aggregate was able to remain intact. In addition, the

robust nature of this type of model was repeatedly highlighted by the fact that the

inherent errors present in the system simply led to slight fluctuations in the A-Cell

movements which ultimately helped drive the system to its equilibrium state.

The following general results are of particular significance:

10The HYDRON module the A-Cells were modelled on actually has anatural rotation around this
axis introduced by the force generated between the module’scentral impeller and the surrounding fluid.
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Figure 3.46: CC values of A-Cell aggregates over a range of transmitter and

detector FOVs. The x axis shows the complete range. However, only values

from samples where all the aggregates remained intact are shown. (a) 16

A-Cell aggregate (b) 64 A-Cell aggregate (c) 36 A-Cell aggregated
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selection of detector FOVs (FOVd) and a transmitter FOV of 0.7854 (rads).



106 Chapter 3. Exploration of 2D Rounding� Equilibrium distance should be less than or equal to the A-Cell virtual radius

(see section 3.4.3).� Sensor FOV should be sufficient to prevent coverage from diverging with dis-

tance from the A-Cell hull (see section 3.5.3).

The other simulations did reveal particular optimum values. However, these are

most likely to be a consequence of the base parameter set which was chosen. Despite

this, the general trends that were revealed should still be informative for fine tuning the

performance of any parameter set.



Chapter 4

Exploration of 2D Sorting

In this chapter we investigate the more complex case where two A-Cell types are in-

termixed. Again the A-Cells should move toward the most thermodynamically stable

configuration. However, in addition to the rounding behaviour, this also causes the

distinct A-Cell types to form one of four possible hierarchical relationships. The full

details of this are discussed in section 1.3.

As in chapter 3, the A-Cell movements in the following experiments are restricted

to the horizontal plane.

4.1 Methodology

4.1.1 Measures

The experiments in this chapter are concerned with the hierarchical relationship be-

tween two A-Cell types in an aggregate and more specifically,the level of mixing or

sorting that occurs between them. The most appropriate method of measuring this is to

observe the total area of A-Cell membranes which bond between the different A-Cell

types and additionally any area of the membranes which remains unbonded. In total,

this gives five values which can be considered in an aggregateof two A-Cell types

(aandb).

1. Bonded area of membrane between typeaA-Cells (a! a ).

107
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2. Bonded area of membrane between typeaand typebA-Cells (a! b ).

3. Bonded area of membrane between typebA-Cells (b! b ).

4. The area of membrane on typeaA-Cells which is unbonded.

5. The area of membrane on typebA-Cells which is unbonded.

As the A-Cells in the aggregate move toward some stable configuration, these val-

ues should increase and decrease respectively, clearly indicating the state of the aggre-

gate at any point.

There are two possible methods of measuring this bonded areaof membrane. Either

the information communicated between the A-Cells during a simulation can be used to

show the area of membrane each A-Cell makes available for bonding with its various

neighbours or, alternatively, the position of the A-Cells and their membrane size can be

used to calculate the actual areas of an A-Cell’s membrane which overlap with those

of its neighbours.

Each of these approaches has advantages and disadvantages.For example, the

A-Cells can only use estimates of their neighbours’ positions when determining the

areas of membrane they make available for bonding. Therefore, these values may not

represent the true configuration of the aggregate. However,it is possible to simply

strip these values from the transmission signals passed between the A-Cells without

carrying out any further computation. Conversely, calculating the actual overlaps from

the A-Cells’ positions and membrane sizes does require extra processing and, unlike

the former approach, this will not account for areas of membrane which are overlapped

by multiple other membranes1.

Figures 4.1, 4.2, 4.3 and 4.4 show the results that were calculated by applying each

of the approaches to a simulation where the A-Cells sort froman evenly mixed grid

into the typical ‘onion’ configuration (see fig. 4.5). Two general observations of these

results relate to the methods by which they were calculated.Firstly, it can be seen

that the area of bonded membrane results calculated from thevalues communicated

between the A-Cells (see fig. 4.1) all start at zero and immediately jump to a much

1This could be accounted for, but would add considerable complexity and consume additional pro-
cessing time. In addition, the results that are presented show that the simpler approach is adequate.
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Figure 4.1: The areas of bonded membrane for the three combinations of

the two A-Cell types aand bobtained using position estimates. (a) Bonded

area of membrane for a! a . (b) Bonded area of membrane for a! b . (c)

Bonded area of membrane for b! b .
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Figure 4.2: The unbonded areas of membrane for the two A-Cell types a

and b obtained using position estimates. (a) Unbonded area of membrane

for type a A-Cells. (b) Unbonded area of membrane for type b A-Cells.
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Figure 4.3: The areas of bonded membrane for the three combinations of the

two A-Cell types aand bobtained using known positions. (a) Bonded area of

membrane for a! a . (b) Bonded area of membrane for a! b . (c) Bonded

area of membrane for b! b .
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Figure 4.4: The unbonded areas of membrane for the two A-Cell types aand

bobtained using known positions. (a) Unbonded area of membrane for type

aA-Cells. (b) Unbonded area of membrane for type bA-Cells.
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higher value (the area of unbonded membrane results show a corresponding drop).

However, this is simply due to the fact that the A-Cells in thesimulation start with no

knowledge of their neighbours. Therefore, initially they have no bonds even though

their membranes are in contact. Secondly, the area of unbonded membrane calculated

using the actual A-Cell positions show some negative values(see fig. 4.4). In this

case the cause is the failure to account for multiple membrane overlaps. Therefore, the

area of bonded membrane may appear larger than the actual area available and thus the

unbonded area appears negative.

The two approaches can be compared in more detail by considering how well they

reflect the observed changes in the aggregate’s configuration as the simulation pro-

gresses. The screen shots from the simulation (see fig. 4.5) show that during the first

200 seconds there is a very rapid change with the more strongly adhering typeaA-

Cells rapidly sorting into two clusters. These then round upslightly before merging

at approximately 600 seconds into the simulation. Finally,after almost 900 seconds

the aggregate is completely sorted with both the central cluster of typeaA-Cells and

the whole aggregate rounding up as expected. In each set of results, the two largest

changes in the aggregate configuration which occur when the initial clusters of type

aA-Cells form and finally merge are marked by significant changes in each type of

bonding. However, it can be seen that these are most clearly defined in the results

calculated from the A-Cell positions (see fig. 4.3 & 4.4). In addition, only this set

of results show the more subtle changes, as initially both the typeaA-Cell clusters

and finally the single typeaA-Cell cluster rounds up (see fig. 4.3 - (a) 200s–600s &

600s–900s). There is also a clear difference between the twoapproaches in the results

showing the unbonded area of membrane. The results calculated from the communi-

cated values show no significant changes. However, the results calculated from the

A-Cell positions show both the decrease in the area of unbonded membrane for the

typeaA-Cells as they round up and form a central engulfed cluster and also the corre-

sponding increase for the typebA-Cells as they are forced out to the external boundary

of the aggregate.

This comparison shows quite clearly that the latter approach of calculating the

actual areas of overlapped membrane from the A-Cell positions produces the most
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Figure 4.5: Screen shots from the simulation of an aggregate consisting

of two A-Cell types. The simulation shows the sorting case where the A-

Cells form the onion configuration (see section 1.3). Waa >Wab�Wbb and

Wab � (Waa+Wbb)=2, type a= blue (dark) A-Cells, type b= orange (light)

A-Cells, W = the work of adhesion
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detailed results which very closely match the observed changes in the configuration of

the A-Cells. Therefore, it is this method which is used when evaluating the experiments

presented in the chapter. However, as the equilibrium distance between the A-Cells is

dependent on the relative adhesions between them (see section 4.1.5.2), if the A-Cells

have a greater level of adhesion more of their membrane area will bond. Therefore,

to fairly compare the bonded membrane area values between A-Cells with differing

levels of adhesion, the values must first be normalised.

The approach taken in this work is to divide the values by the estimated maximum

area of membrane which could bond for A-Cells with a specific level of adhesion.

B= O
E

(4.1)

whereO is the observed area of bonded membrane (m2), E the estimated maximum

area of membrane that could bond (m2), andB the bonding index.

This maximum value will occur when the specific A-Cells roundup to form a disc.

Therefore, it is possible to calculate these estimates by simply carrying out additional

simulations consisting of only the required number of A-Cells with the specific level

of adhesion. Thus in the previous example, three additionalsimulations would be

required with the following properties:

1. 18 A-Cells with the same adhesion asa! a .

2. 36 A-Cells with the same adhesion asa! b .

3. 18 A-Cells with the same adhesion asb! b .

The convergence value for the area of bonded membrane can be calculated for

each simulation, giving the estimated maximum area of membrane which can bond.

In practice, to improve the accuracy of the estimate, the simulations are carried out in

samples of 15 and the maximum value from each sample is used.

Unfortunately, it is not possible to normalise the unbondedarea of membrane val-

ues in a similar way, as the areas of membrane which are unbonded ultimately depend

on all the bonds made by an A-Cell. For example, if one type of A-Cells form a single
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Figure 4.6: The normalised areas of bonded membrane for the three com-

binations of the two A-Cell types aand b. (a) Bonded area of membrane

for a! a . (b) Bonded area of membrane for a! b . (c) Bonded area of

membrane for b! b .

rounded cluster, their level of homotypic bonded membrane will remain the same. This

applies whether they are engulfed by another type of A-Cell which adheres strongly

or weakly with them. The area of unbonded membrane on the other hand, will be

different in each case. However, it can be seen from the previous simulation that it is

possible to tell the configuration of the A-Cells using only the bonding information.

Therefore, the areas of unbonded membrane can be safely ignored.

Figure 4.6 shows the normalised results from the previous simulation. These ad-

justed results make the state of the aggregate much clearer.For example, it can be

seen from thea! a bonding index (see fig. 4.6 - (a)) that the typeaA-Cells have

formed a single rounded cluster. On the contrary, the lowerb! b index indicates that

this is not the case for the typebA-Cells. This in conjunction with the presence of

some heterotypic bonding indicates that the typebA-Cells have at least partially en-

gulfed the typeaA-Cells, the level of engulfment relating directly to the level of the
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Figure 4.7: The convergence time of an A-Cell bonding index.

a! b bonding index.

4.1.2 Convergence Time and Converged Bonding Indices

In this chapter, to help highlight any trends which result from parameter changes in the

model, the individual sets of bonding indices are decomposed into two key values:� The Convergence Time (CT )� The Converged Bonding Indices (CBI )

As the bonding indices converge when an aggregate reaches some equilibrium con-

figuration, theCBI can be calculated by simply averaging the values for the lastn sec-

onds of a simulation (wheren is large enough to account for any minor fluctuations).

As with the measures described in section 3.1.1.2 this assumes that the simulation

time is sufficient for convergence to occur. However, in the following experiments the

accompanyingCT measure should indicate any cases where this is not the case.

The CT measure, like theCR (see section 3.1.1.2), uses a variation of ‘rise time’.

However, unlike the compactness measure theCR is calculated from, the bonding in-
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dices can either increase or decrease over the course of a simulation. Therefore, in this

case, theCT is defined as the length of time for a value to change by ninety percent of

the total difference between the initial value and the converged value (see fig. 4.7).

Additionally, during the first seconds of a simulation, the A-Cell bonding can change

rapidly as the A-Cells quickly move from the initial configuration to reach an equilib-

rium distance with their neighbours. It is only after this point that the values actually

begin to converge. Therefore, it is necessary to allow some period of time for this to

occur. Thus, when theCT is calculated, the first minute of the simulation is ignored.

This extra time is then added on to the calculated value to determine the final result.

Bonding a! a a! b b! b

CT (s) 680 610 590

Table 4.1: The CT values calculated for an example simulation (see fig. 4.6).

Table 4.1 shows the results of using this approach to calculate theCT values for

the example simulation presented in section 4.1.1. These results could be summarised

using either the maximum, mean, or median (see table 4.2). However, as the measure

should show the total convergence time for the whole aggregate, the maximum value

is most suitable. Therefore, it is this value that is used in the results presented in this

chapter.

Max Median Mean

CT (s) 680 610 626.6667

Table 4.2: Statistics calculated for the results shown table 4.1.

4.1.3 Sample Size

As in chapter 3 the sample size used is 15. Again, this lower value has been chosen

to allow adequate exploration of the model, making best use of available resources

and time. However, as before, the accuracy of the confidence error estimates has been

improved through the use of bootstrapping2.

2The original sample was resampled 5000 times to determine the error estimates. Full details of this
procedure are given in chapter 3.
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4.1.4 Initial Configurations

When evaluating aggregates of two A-Cell types there are twoextreme configurations

which can be considered. Either the A-Cells can be evenly mixed or alternatively

they can be sorted into two homotypic clusters. In the following sections, the model’s

performance is evaluated for both these situations by usingtwo contrasting grid for-

mations as the initial configuration:

1. An evenly mixed grid

2. A sorted grid

The main behaviours which are investigated are A-Cell sorting, where the A-Cells

should form the typical ‘onion’ configuration, and A-Cell mixing, where the A-Cells

should form an evenly mixed aggregate. In the mixing case, these configurations test

the model for conditions which are near and far from the goal state. However, in

the sorting case, these two configurations allow two distinct types of sorting to be

evaluated. In the first case with an evenly mixed grid, the A-Cell types will reach

the equilibrium state through dramatic rearrangements which cause one A-Cell type

to migrate centrally, while in the latter case, the more weakly adhering A-Cells will

slowly envelop the existing other cluster until it is fully engulfed.

As in the rounding experiments, each set of simulations are carried out on aggre-

gates of 36 and 64 A-Cells. However, the smaller 16 A-Cell aggregate size was not

considered for these experiments, as sorting and intermixing in such a small aggregate

should be reasonably trivial.

4.1.5 Base Parameter Set

The base parameter set presented in section 3.1.3 is again used throughout this chapter

with a few additions to account for two A-Cells types.

4.1.5.1 A-CAM Relationships

In the cell adhesion model there are two possibilities for creating different adhesions

between different A-Cell types:
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fore, the different densities of A-CAMs will result in the different homotypic and

heterotypic adhesions (see section 2.2.4).� The A-Cell types can express different types of A-CAM. Therefore, the bonding

relationships between the A-CAM types will influence the different adhesions.

In this chapter the latter of these approaches is used such that the A-Cells express

the following types of A-CAM:� Type a A-Cells – A-CAM cam1 and A-CAM cam2� Type b A-Cells – A-CAM cam3 and A-CAM cam4

with the following bonding relationships:� cam1 bonds with itself� cam2 bonds with cam3� cam4 bonds with itself

However, for simplicity, the numbers of cam2 and cam3 bonds are kept at equiva-

lent levels. This allows the actual adhesion for each of the three bonds (a! a , a! b ,

andb! b ) to be very precisely specified.

In addition, the purpose of the following experiments is to demonstrate that only

differences in the adhesion between the A-Cells are necessary to create the required

sorting dynamics. Therefore, all other membrane properties are kept constant. The

consequence of this is that the more strongly adhering A-Cells will have a slightly

shorter equilibrium distance (e.g. the adhesion has been increased while the repulsion

factor has been kept constant). However, where this obscures the results, additional

experiments have been carried out to control for any effects(see section 4.2.2).

The alternative approach would be to adjust the repulsion factor of the membranes

for each A-Cell type independently, such that a particular equilibrium distance is

achieved. However, this would only specify the equilibriumdistance for homotypic
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bonds and the equilibrium distance for the heterotypic bonds would still be determined

by the interaction between the different membranes. In addition, a more complex

membrane collision model would also be required as it could no longer be assumed

that each membrane would compress equally (see section 2.2.3).

4.1.5.2 Homotypic and Heterotypic Work of Adhesion

In the traditional sense, work of adhesion refers to the the work done in the formation

of an adhesion over unit area (see section 1.3). However, this assumes that all the units

have an equal capability of forming a unit area of bonded surface. This is not the case

with the A-Cells because of the force field nature of the membrane (i.e. stronger ad-

hering A-Cells can overcome more of the repulsive force generated by the membranes

and form a larger area of bonded surface) (see section 2.2.3). Therefore, the actual

measure used is the attraction force which exists between the A-Cells when they are

at an equilibrium distance, as this relates directly to the overall strength of bond which

the A-Cells may actually form.

The default homotypic adhesion values which are consideredthroughout this chap-

ter areb! b 0:15125N anda! a 0:3025N (2�0:15125). However, a comparison of

various differences in homotypic adhesion is given in section 4.2.2. These specific

values were chosen for several reasons. The lower of the two values was selected pri-

marily as this was the adhesion used throughout the roundingexperiments. Therefore,

appropriate levels of random movement forces and torques for this level of adhesion

were already established (see section 4.1.5.3). Additionally, in conjunction with the

other membrane properties, this level of adhesion producesan equilibrium distance of

0:55m and the experiments carried out in section 3.4.3 show that the performance of

the model drops off rapidly when the equilibrium distance increases above this. The

higher value of 0:3025N was selected as it creates a reasonable level of difference be-

tween the two adhesion values and the equilibrium distance it produces (0:322183m)

is still relatively large.

The heterotypic adhesion has two default values. These havebeen selected such

that the equilibrium state is either the onion configurationor intermixed. The actual

values used are:
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These values were chosen as they lie exactly half way betweenthe homotypic ad-

hesion values and their average. In the sorting case, as thisis half way between two

different states it should result in the best performance (see fig. 4.8).

4.1.5.3 Random Forces

The final difference between this configuration and that outlined in the previous round-

ing experiments is that random movement forces with a maximum of 0:02N are also

applied by default. These are included as it has been established that random move-

ments are beneficial to the dynamics of the model and it has already been established

that aggregates of A-Cells with the lowest homotypic adhesion outlined above are eas-

ily able to remain intact for this level (see section 3.3).

4.2 Differential Adhesion

The experiments presented in this section evaluate how wellthe model’s behaviour

corresponds with that predicted by the DAH. It is clear from the adhesion relationships

presented in section 1.3 that if the homotypic adhesions arefixed such thata! a >
b! b then the final configuration is dictated by only the heterotypic adhesion. In

particular, there are three key values of heterotypic adhesion which border changes in

behaviour (see fig. 4.8).

1. Wab= 0

2. Wab=Wbb

3. Wab= (Waa+Wbb)=2

whereWaa, Wab andWbb represent the work of adhesion between the cell types, or the

attraction at equilibrium values for the model.
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Figure 4.8: The effect of heterotypic adhesion on the final configuration of an

aggregate consisting of two cell types (aand b, Waa > Wbb).

The experiments presented in this section consist of two sets. In the first set, a

detailed range of heterotypic adhesions covering all the key values are considered. In

the second set, a smaller range of heterotypic adhesions areused to evaluate the effect

of increasing or decreasing the difference between the homotypic adhesions.

4.2.1 Heterotypic Adhesion

In the following experiments, the two A-Cell types used havethe same properties as

those defined in the base parameter set (see section 4.1.5). In particular the homotypic

adhesions are fixed at:� b! b – attraction at equilibrium of 0:15125N� a! a – attraction at equilibrium of 0:3025N

The range of heterotypic attraction at equilibrium values,0N to 0:45375N(3�a! a ),

has been selected to cover all the key values discussed at thebeginning of this section.

The range also extends above thea! a value to investigate whether there is any signif-

icant change in the level of intermixing when the strength ofa! b adhesions exceeds

both homotypic values.

Figures 4.10, and 4.15 show theCBI results that were obtained using 36 and 64

A-Cell aggregates starting from intermixed grids. In general it can be seen that theCBI

for both aggregate sizes differ very little, especially when thea! b adhesion reaches
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at least 0:15125N. In addition, in both cases the error bars indicate that there is very

little variance, which suggests that the aggregates are consistently achieving the same

equilibrium state. There is one clearly erroneous value forthe a! b CBI of the the

64 A-Cell aggregate results when thea! b adhesion is 0N. However, this is simply

a result of normalising the values. As there is noa! b adhesion, the maximum area

of bonded membrane (the normalisation value) should be 0. However, as these values

were determined by simulation, and areas of overlapping membrane are considered

to be bonded (see section 4.1.1), the calculated results although very small were non-

zero due to chance collisions. Therefore, although the actual area of bonded membrane

which was calculated was very small, the normalised value appears exceptionally large.

More specifically, the results closely match the expected behaviour, with the

a! b CBI steadily increasing to a maximum value when thea! b adhesion becomes

greater than the average of the homotypic adhesions. This increase initially corre-

sponds with a decrease in theb! b CBI as the typebA-Cells increasingly engulf the

type aA-Cells. However, both homotypicCBIs then drop as the aggregates begin to

form intermixed equilibrium states. These changing equilibrium states can be clearly

seen in figure 4.14 which shows some of the final configurationsobserved in the sim-

ulations.

The only results which had a slightly different outcome fromthat predicted by the

DAH were those whena! b adhesions were below 0:1134375N. In these few cases

the DAH suggests that the A-Cells should round to form two clusters with one partially

engulfing the other. However, the simulations show that these lowa! b adhesions are

not sufficient to hold the clusters together and the random forces eventually cause them

to break away from each other. Also, the simulations for adhesions of 0:075625N and

0N show that these lower values cause the aggregate to split into many unconnected

clusters. The cause of this is the rapid formation of small homotypic clusters as the

initially intermixed A-Cells begin to sort out. These smallclusters then break away

from each other before they have time to merge. However, the results show that there

is an initial increase in the homotypicCBIs as thea! b adhesion increases, indicating

that the increasinga! b adhesion allows the clusters to remain bonded for longer, and

thus increases the chance that they will merge.
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Figure 4.9: The pattern formed by intermixed A-Cells. (a) Low heterotypic

adhesion. (b) Higher heterotypic adhesion pulling the A-Cells closer to-

gether.

Another interesting trait which can be observed in the results is the linear in-

crease in the homotypicCBIs as thea! b adhesion increases above 0:2646875N. The

a! b CBI and the screenshots in figure 4.14 show that the aggregates are remaining

fully intermixed so the rise is not caused by a change in equilibrium state. Instead,

figure 4.9 shows that this is simply an artifact of the increasing a! b adhesion pulling

all the A-Cells closer together. This causes an increase in the overlap of the homotypic

A-Cells’ membranes, and thus a corresponding increase in their CBIs . No increase can

be observed in thea! b CBI as the normalisation values also increase and scale the

results appropriately.

The CT results for these simulations are shown in figures 4.11 and 4.16. Again,

there is a reasonably close correspondence between the results obtained for each size

of aggregate. In addition, these results also show several interesting features. Most

significantly, the largest peak inCT occurs at the boundary value which separates the

cases where the A-Cells form intermixed equilibrium statesand those where they form

sorted equilibrium states. At this boundary value the A-Cells become partially sorted

with some typebA-Cells remaining trapped in the central cluster. This explains the

intermediate values occur in theCBI . The cause of this is that there is no great pref-

erence for one equilibrium state over the other. In the simulations this results in type

bA-Cells occasionally passing in either direction between the central cluster and the

outer shell.

There is a second peak when thea! b adhesion is just less than or equal to the

b! b adhesion. In this case, particularly for the lower value ofa! b adhesion, the

type aA-Cells very quickly form into a few clusters. However, as the typebA-Cells
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have no preference for heterotypic bonds they do not fully engulf these smaller clusters

and instead act as an obstacle which prevents them merging. The smaller clusters then

only fully merge when the random forces in the simulation eventually cause them to

make contact. This explains both the largeCT and the high variance as indicated by

the error bars.

The results also show that theCT is much lower for the well defined cases where

the equilibrium state is either the onion or intermixed configuration. In the latter case,

this is expected as the initial configuration is already mixed. However, the graph does

show that there is still a slight decrease in theCT, reaching a minimum only when the

heterotypic adhesions become dominant.

The only anomalous result occurs when there is noa! b adhesion. As discussed

previously, when thea! b adhesion is below 0:1134375N the aggregate tends to split

quickly into smaller homotypic clusters. As these then change very little, theCT should

be low. However, ana! b adhesion of zero produces a much higherCT than the other

values shown, even though the aggregate should actually split up more quickly. The

cause of this is the higher number of small clusters which areformed when there is

no a! b adhesion. Viewing the actual simulations revealed that although these small

clusters are formed rapidly, the high number of them increases the chance that any two

will randomly collide later in the simulation, causing a distinct change in theCBI . The

random nature of these collisions also explains the high variance shown for theCT .

Figures 4.12 and 4.13 show theCBI andCT results of simulations of the 36 A-Cell

aggregates. These were carried out for a more detailed rangeof a! b adhesions which

covers the change in equilibrium state from onion to the intermixed configuration. The

CBI results show two definite states either side of the boundary value where theCBI

remains reasonably constant while thea! b adhesion increases. In addition, these

results also suggest that only a slight change is required toflip the equilibrium state

from one configuration to the other.

Figures 4.17, 4.21, 4.18 and 4.22 show theCBI andCT results of similar simulations

carried out with the alternative initial configuration of a sorted grid. It is clear that

theCBI results share many similarities with the same simulations carried out from the

intermixed initial configuration. However, there are two significant differences. Firstly,
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Figure 4.10: CBI for a range of heterotypic attraction at equilibrium values.

The results were obtained from 36 A-Cell aggregates with the initial configu-

ration of an intermixed grid. (a) a! a (b) a! b (c) b! b
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Figure 4.11: CT for a range of heterotypic attraction at equilibrium values.

The results were obtained from 36 A-Cell aggregates with the initial configu-

ration of an intermixed grid
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Figure 4.12: CBI for a range of heterotypic attraction at equilibrium values.

The results were obtained from 36 A-Cell aggregates with the initial configu-

ration of an intermixed grid. (a) a! a (b) a! b (c) b! b
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Figure 4.13: CT for a range of heterotypic attraction at equilibrium values.

The results were obtained from 36 A-Cell aggregates with the initial configu-

ration of an intermixed grid
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0.15125N 0.1890625N 0.226875N

0.2646875N 0.3025N 0.45375N

Figure 4.14: Screen shots showing the final configuration of aggregates con-

sisting of two A-Cell types with various heterotypic attraction at equilibrium

values. The aggregates consisted of 36 A-Cells and started with the initial

configuration of an intermixed grid.
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Figure 4.15: CBI for a range of heterotypic attraction at equilibrium values.

The results were obtained from 64 A-Cell aggregates with the initial configu-

ration of an intermixed grid. (a) a! a (b) a! b (c) b! b
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Figure 4.16: CT for a range of heterotypic attraction at equilibrium values.

The results were obtained from 64 A-Cell aggregates with the initial configu-

ration of an intermixed grid
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theCBI results for the aggregates witha! b adhesions less than or equal to 0:15125N,

show behaviour which corresponds better with the behaviourpredicted by the DAH.

The homotypicCBI for these values remain reasonably constant with values just below

one, which indicates that as expected they are rounding intohomotypic clusters. In

addition thea! b CBI shows a slight rise indicating the typebA-Cells are increasingly

engulfed. However, it is clear that the lowa! b adhesions below 0:1134375N are

still too low to hold the clusters together in the presence ofthe random forces. This

results in the two consecutive peaks which can be seen in theCT results. Initially,

the increasinga! b adhesion increases the length of time until the two homotypic

clusters split apart. However, once thea! b adhesion is strong enough to hold the

clusters together, theCT drops sharply as the aggregate quickly reaches an equilibrium

state. This is followed by a second rise as the increasinga! b adhesion causes an

increase in the final level of engulfment.

The second noticeable difference occurs at the boundary value of 0:226875N. In

the previous results theCBI at this boundary value are intermediate between theCBI for

the onion equilibrium state and the intermixed equilibriumstate. However, although

this is still the case for the 64 A-Cell aggregate, the results for the 36 A-Cell aggre-

gate remain at approximately the same levels as when full sorting occurs. Again, this

appears to be a result of the initial configuration. In aggregates starting from an inter-

mixed grid, it is easy for the typebA-Cells to become trapped in the cluster of type

aA-Cells as it forms. Therefore, the final configuration is more intermixed. However,

when the aggregates start from a sorted grid, the typeaA-Cells are quickly engulfed so

intermixing can only occur at the border between the A-Cell types. This also explains

the difference in behaviour for the two aggregate sizes. In the 36 A-Cell aggregate this

boundary is smaller and thus the opportunity for intermixing is lower, resulting inCBI

which are closer to those of the fully sorted onion configuration.

The same simulations were, as before, carried out for the 36 A-Cell aggregate with

a more detailed range ofa! b adhesions covering the change in equilibrium state

from the onion to the intermixed configuration (see fig. 4.19 &4.20). In this instance

the CT results show that there is again a decease inCT for the intermixing case as

the a! b adhesion increases. However, in contrast to the previous results there is
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Figure 4.17: CBI for a range of heterotypic attraction at equilibrium values.

The results were obtained from 36 A-Cell aggregates with the initial configu-

ration of a sorted grid. (a) a! a (b) a! b (c) b! b
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Figure 4.18: CT for a range of heterotypic attraction at equilibrium values.

The results were obtained from 36 A-Cell aggregates with the initial configu-

ration of a sorted grid
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also a decrease inCT for the sorting case as thea! b adhesion increases. This can be

explained by considering figure 4.23. This figure shows a massof typebA-Cells which

should engulf the stronger adhering typeaA-Cells. If random movements cause a type

bA-Cell (A), which previously had no heterotypic adhesion, to come into contact with a

typeaA-Cell (D) then the stronger heterotypic adhesion should help pull it closer. The

net effect of this will be that the A-Cells on either side (B and C) will be pushed left

and right respectively, helping move the typebA-Cells further round. If the strength of

the heterotypic adhesion increases, A-Cell (A) would experience a greater pull toward

the typeaA-Cells helping to speed up the engulfment.

When the sorted onion configuration is achieved from an initially intermixed popu-

lation, the stronger homotypic adhesion will help drive thesorting through the creation

of new bonds between the stronger adhering A-Cells. Therefore, the slight rise in het-

erotypic adhesion shouldn’t have the same positive impact.This matches the trends

observed in the actual results.

4.2.2 Difference Between Homotypic Adhesions

In this section, simulations were carried out for aggregates in which a range of homo-

typic adhesion pairs were investigated. In each case, the weakest adhesion (b! b )

was kept constant at 0:15125N and the strongera! a adhesion was varied. The fol-

lowing four a! a adhesions were chosen to provide a good coverage of the possible

magnitudes of difference.

1. a! a = 0:1890625N

2. a! a = 0:226875N

3. a! a = 0:3025N (from section 4.2)

4. a! a = 0:45375N

For each pair of homotypic adhesions, simulations were carried out for heterotypic

adhesions which increased in range from the weakest homotypic adhesion to the

strongest. This range covers the transition in equilibriumstate from the onion to the
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Figure 4.19: CBI for a range of heterotypic attraction at equilibrium values.

The results were obtained from 36 A-Cell aggregates with the initial configu-

ration of a sorted grid. (a) a! a (b) a! b (c) b! b
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Figure 4.20: CT for a range of heterotypic attraction at equilibrium values.

The results were obtained from 36 A-Cell aggregates with the initial configu-

ration of a sorted grid
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Figure 4.21: CBI for a range of heterotypic attraction at equilibrium values.

The results were obtained from 64 A-Cell aggregates with the initial configu-

ration of a sorted grid. (a) a! a (b) a! b (c) b! b
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Figure 4.22: CT for a range of heterotypic attraction at equilibrium values.

The results were obtained from 64 A-Cell aggregates with the initial configu-

ration of a sorted grid
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Figure 4.23: An example of A-Cell engulfment. Type bA-Cells are shown in

blue (black), type aA-Cells are shown in yellow (grey).

intermixed configuration. In addition, the simulations were carried out for both 36 and

64 A-Cell aggregates starting from initial configurations of an intermixed and sorted

grid. Only summaries of these results are presented in this chapter. However, the full

range of results for these simulations are included in Appendix B.

TheCBI results of the simulations demonstrate that for the majority of the consid-

ered homotypic adhesion pairs, the aggregates behaved as expected. The exception to

this is the pair with the smallest magnitude of difference (see fig. 4.24 & 4.25). In

this case, theCBI results show that the change in the configuration of the aggregates

is quite subdued. Furthermore, when thea! b adhesion is low, the aggregates seem

to depart very little from the configurations they begin with. This difference in perfor-

mance is highlighted by the summary figures (see figures 4.26,4.27, 4.28 and 4.29).

These figures show theCBI results for each homotypic adhesion pair with the following

a! b adhesion values:� Wbb+((Waa�Wbb)=4) where the aggregates should form the onion configura-

tion.� Wbb+3((Waa�Wbb)=4) where the aggregates should become intermixed.

It can be seen that the difference in performance is particularly clear in the cases

where the aggregates should form the sorted onion configuration.

The CT results for the simulations are shown in figure 4.34. These results also

appear to indicate some link with the model’s performance and the difference between
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Figure 4.24: CBI for a range of heterotypic attraction at equilibrium values.

The results were obtained from 36 A-Cell aggregates with the initial configu-

ration of an intermixed grid and a! a and b! b adhesions of 0:1890625N

and 0:15125N respectively. (a) a! a (b) a! b (c) b! b
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Figure 4.25: CBI for a range of heterotypic attraction at equilibrium values.

The results were obtained from 36 A-Cell aggregates with the initial configu-

ration of a sorted grid and a! a and b! b adhesions of 0:1890625N and

0:15125N respectively. (a) a! a (b) a! b (c) b! b



4.2. Differential Adhesion 139

0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

0.2

0.4

0.6

0.8

1

Type a Homotypic Adhesion (N)

(c)

0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

0.2

0.4

0.6

0.8

1

A
re

a 
of

 B
on

de
d 

M
em

br
an

e 
(N

or
m

al
is

ed
)

(b)

0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

0.2

0.4

0.6

0.8

1

(a)

Figure 4.26: CBI results for 36 A-Cell aggregates which should form the

onion configuration from an initially mixed grid. In each graph 4 homotypic

adhesion pairs are shown. The b! b adhesion of each pair is fixed at

0:15125N while the a! a adhesion increases along the x axis. Therefore,

the magnitude of difference between the homotypic adhesions increases

from left to right.
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Figure 4.27: CBI results for 36 A-Cell aggregates which should form an inter-

mixed configuration from an initially mixed grid. In each graph 4 homotypic

adhesion pairs are shown. The b! b adhesion of each pair is fixed at

0:15125N while the a! a adhesion increases along the x axis. Therefore,

the magnitude of difference between the homotypic adhesions increases

from left to right.
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Figure 4.28: CBI results for 36 A-Cell aggregates which should form the

onion configuration from an initially sorted grid. In each graph 4 homotypic

adhesion pairs are shown. The b! b adhesion of each pair is fixed at

0:15125N while the a! a adhesion increases along the x axis. Therefore,

the magnitude of difference between the homotypic adhesions increases

from left to right.
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Figure 4.29: CBI results for 36 A-Cell aggregates which should form an inter-

mixed configuration from an initially sorted grid. In each graph 4 homotypic

adhesion pairs are shown. The b! b adhesion of each pair is fixed at

0:15125N while the a! a adhesion increases along the x axis. Therefore,

the magnitude of difference between the homotypic adhesions increases

from left to right.
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the homotypic adhesion, and in each case there is a noticeable drop as the magnitude

of the difference increases.

As proposed in section 4.1.5.1, it is possible that instead of relating to the difference

in the magnitude of the homotypic adhesions, these observations might simply be a by-

product of the decreasing equilibrium distance betweena! a anda! b combinations

of A-Cells. To control for this, the experiment was repeated. However, this time the

a! a adhesion was kept constant at 0:45375N while theb! b adhesion was varied

as follows:

1. b! b = 0:15125N

2. b! b = 0:3025N

3. b! b = 0:378125N

4. b! b = 0:4159375N

In this way, the same four magnitudes of difference in the homotypic adhesions

were considered. However, in contrast to the previous run, the pair with the smallest

magnitude of difference have the smallesta! a anda! b equilibrium distances. The

CBI results for these experiments (see figures 4.30, 4.31, 4.32 and 4.33) show that de-

spite this the homotypic adhesion pair with the smallest magnitude of difference still

results in the poor performance. Again, this is most notablein the two cases where

the aggregates should form the onion configuration. However, in theCT results (see

fig. 4.35), excluding the values for the homotypic adhesion pair where the aggregates

failed to reach the desired final configurations, the increase is significantly reduced.

This suggests that although the increase in the magnitude ofdifference between the

homotypic adhesions causes some increase in theCT , the effects are reduced by a gen-

eral improvement in performance caused by greater aggregate fluidity resulting from

the general reduction in the equilibrium distances3. This increase in the fluidity of the

aggregates is reflected in theCBI where aggregates starting from the initial configu-

ration of a sorted grid should achieve the onion configuration. In the original exper-

iments, the more rigid aggregates remained very segregated. However, in the second

3This matches the earlier rounding results which show that aggregates with smaller equilibrium
distances are more fluid (see section 3.4.3).
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Figure 4.30: CBI results for 36 A-Cell aggregates which should form the

onion configuration from an initially mixed grid. In each graph 4 homotypic

adhesion pairs are shown. The a! a adhesion of each pair is fixed at

0:45375N while the b! b adhesion increases along the x axis. Therefore,

the magnitude of difference between the homotypic adhesions decreases

from left to right.

set of experiments, although the adhesive differences still prevented the aggregate from

achieving the expected configuration there is clearly much more interaction between

the two A-Cell types as indicated by the highera! b and lowera! a CBIs .
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Figure 4.31: CBI results for 36 A-Cell aggregates which should form an in-

termixed configuration from an initially mixed grid. In each graph 4 homo-

typic adhesion pairs are shown. The a! a adhesion of each pair is fixed at

0:45375N while the b! b adhesion increases along the x axis. Therefore,

the magnitude of difference between the homotypic adhesions decreases

from left to right.



146 Chapter 4. Exploration of 2D Sorting

0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45
0

0.2

0.4

0.6

0.8

1

Type b Homotypic Adhesion (N)

(c)

0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45
0

0.2

0.4

0.6

0.8

1

A
re

a 
of

 B
on

de
d 

M
em

br
an

e 
(N

or
m

al
is

ed
)

(b)

0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45
0

0.2

0.4

0.6

0.8

1

(a)

Figure 4.32: CBI results for 36 A-Cell aggregates which should form the

onion configuration from an initially sorted grid. In each graph 4 homo-

typic adhesion pairs are shown. The a! a adhesion of each pair is fixed at

0:45375N while the b! b adhesion increases along the x axis. Therefore,

the magnitude of difference between the homotypic adhesions decreases

from left to right.
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Figure 4.33: CBI results for 36 A-Cell aggregates which should form an in-

termixed configuration from an initially sorted grid. In each graph 4 homo-

typic adhesion pairs are shown. The a! a adhesion of each pair is fixed at

0:45375N while the b! b adhesion increases along the x axis. Therefore,

the magnitude of difference between the homotypic adhesions decreases

from left to right.
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Figure 4.34: CT results for 36 A-Cell aggregates starting from both an initially

mixed grid and a sorted grid. In each graph 4 homotypic adhesion pairs are

shown. The b! b adhesion of each pair is fixed at 0:15125N while the

a! a adhesion increases along the x axis. Therefore, the magnitude of

difference between the homotypic adhesions increases from left to right.
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Figure 4.35: CT results for 36 A-Cell aggregates starting from both an initially

mixed grid and a sorted grid. In each graph 4 homotypic adhesion pairs are

shown. The a! a adhesion of each pair is fixed at 0:45375N while the

b! b adhesion increases along the x axis. Therefore, the magnitude of

difference between the homotypic adhesions decreases from left to right.
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4.3 Random Forces

The following experiments investigate how small random forces, either actuated or

environmental, affect the sorting and mixing ability of themodel. The experiments

which were carried out follow the same structure as those described in section 3.3. The

first two sets of experiments investigate the effects of random movements and random

torques independently of each other, while the last set considers their combined effect.

In all the described experiments the homotypic adhesion were kept constant

(a! a 0:3025N, b! b 0.15125N see 4.1.5). However, each set of experiments was

carried out starting from both intermixed and sorted grid configurations and in each

of these instances the two default heterotypic adhesions were used to investigate both

sorting and intermixing behaviours (see section 4.1.5). The simulations were also car-

ried out for the two aggregate sizes consisting of 36 and 64 A-Cells. However, as these

results show a very high correspondence, only the results for the 36 A-Cell aggregates

are presented here. The remaining results can be found in appendix B.

Figures 4.36, 4.37, 4.38 and 4.39 show the results obtained for the aggregates with

only random movement forces acting on the A-Cells. TheCBI results show that, as

expected, an increase in the size of the random forces does improve the performance

of the model, with the aggregates getting closer to the expected equilibrium states. This

is particularly clear for the transitions which require greater levels of rearrangement;

intermixed grid! ‘onion’ (see fig. 4.36) and sorted grid! intermixed (see fig.

4.39). However, in most cases, theCBIs only get close to the expected levels when the

random force limit is at the tested maximum of 0:05N.

Conversely, theCT results for these experiments show the opposite of the expected

trend and in the cases highlighted above, theCT actually rises as the random force

limit increases. Comparing these results with theCBIs reveals that the rises correspond

closely with improvements in the model’s performance. The reason for this corre-

spondence is that the regular alignment of the A-Cells’ sensors (as there are no torque

forces) makes the aggregates more rigid. Therefore, when the random movement force

limits are low, the aggregates very quickly become trapped in poor configurations. In-

creasing the size of the limits means that through increasedexploration the aggregates

can eventually break out of some of these configurations and move closer to the equi-
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librium state before becoming trapped again. However, as a result of this, it takes

longer for theCBIs to converge. Once the size of the random movement force limits

is high enough for the aggregate to actually reach the equilibrium state, it can be seen

that further increases do result in the expected decrease inCT (see fig. 4.39).

The results from the random torque experiments are shown in 4.40, 4.41, 4.42

and 4.43. It is clear that although the presence of some random torque is beneficial,

the actual level of torque has no observable effect on the performance of the model.

In addition, in the majority of the cases it appears that onlytorque is sufficient to

allow the aggregates to reach the final equilibrium state. The exceptions to this are the

simulations of aggregates which should reach an intermixedequilibrium state from an

initially sorted grid (see fig. 4.43). In these cases the aggregates only partially mix

and become trapped in poor configurations.

The final set of results, which investigate the combined effect of random torque

in conjunction with random movement forces are shown in figures 4.44, 4.45, 4.46,

and 4.47. As in the similar rounding experiments the random torque limit was fixed at

0:01N (see section 3.3). Again, theCBI results show no noticeable effect and remain

at the same high level. However, in this case it is likely thatthis is simply because the

aggregates have reached the equilibrium states. Therefore, it is not possible for them

to improve further. TheCT results, on the other hand, tend to show a drop as the ran-

dom movement force is increased. The only exception is for the 36 A-Cell aggregates

starting from an intermixed grid which should achieve an intermixed equilibrium state

(see fig. 4.42) where theCT has no clear trend. However, this is most likely because

very little rearrangement is required for the aggregate to obtain the final configuration.

Thus, any improvements inCT will be very small and may be obscured by noise.

All of these results match those obtained for earlier rounding experiments (see

section 3.3) and suggest that the increased exploration caused by small random forces

improves the model’s performance. In addition, the resultsagain emphasise the im-

portance of random torque and show that aggregates where theA-Cells remain aligned

are far more likely to become trapped in poor configurations,preventing them from

reaching the desired equilibrium state.

In contrast to the earlier rounding results, none of the simulations that were carried
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CBI Results: (a)a! a (b) a! b (c) b! b
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Figure 4.36: Results for 36 A-Cell aggregates over a range of random move-

ment force limits. The aggregates started from the initial configuration of an

intermixed grid and should move toward the onion equilibrium state. The re-

sults show that an increase in the magnitude of the random forces causes a

significant improvement in the aggregate’s ability to sort.
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CBI Results: (a)a! a (b) a! b (c) b! b
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Figure 4.37: Results for 36 A-Cell aggregates over a range of random move-

ment force limits. The aggregates started from the initial configuration of a

sorted grid and should move toward the onion equilibrium state. The results

show that an increase in the magnitude of the random forces has little effect

on the engulfment process with the CBI values only improving slightly when

the random force limit is at the top of the range.



154 Chapter 4. Exploration of 2D Sorting

CBI Results: (a)a! a (b) a! b (c) b! b
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Figure 4.38: Results for 36 A-Cell aggregates over a range of random move-

ment force limits. The aggregates started from the initial configuration of

an intermixed grid and should move toward the intermixed equilibrium state.

The results show that the magnitude of the random forces has little effect on

the aggregate’s ability to remain intermixed.
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CBI Results: (a)a! a (b) a! b (c) b! b
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Figure 4.39: Results for 36 A-Cell aggregates over a range of random move-

ment force limits. The aggregates started from the initial configuration of a

sorted grid and should move toward the intermixed equilibrium state. The

results show that an increase in random exploration causes a significant im-

provement in the aggregate’s ability to increase the level of intermixing. For

low random force limits the aggregate remains sorted.
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CBI Results: (a)a! a (b) a! b (c) b! b
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Figure 4.40: Results for 36 A-Cell aggregates over a range of random torque

limits. The aggregates started from the initial configuration of an intermixed

grid and should move toward the onion equilibrium state. The results show

that any amount of random torque is sufficient to allow the aggregate to fully

sort.
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CBI Results: (a)a! a (b) a! b (c) b! b
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Figure 4.41: Results for 36 A-Cell aggregates over a range of random torque

limits. The aggregates started from the initial configuration of a sorted grid

and should move toward the onion equilibrium state. The results show that

any amount of random torque is sufficient to allow the aggregate to sort.
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CBI Results: (a)a! a (b) a! b (c) b! b
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Figure 4.42: Results for 36 A-Cell aggregates over a range of random torque

limits. The aggregates started from the initial configuration of an intermixed

grid and should move toward the intermixed equilibrium state. The results

show that the presence of some random torque has a very small effect on

the results. However, the aggregate is able to remain intermixed over the

whole range of values.
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CBI Results: (a)a! a (b) a! b (c) b! b
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Figure 4.43: Results for 36 A-Cell aggregates over a range of random torque

limits. The aggregates started from the initial configuration of a sorted grid

and should move toward the intermixed equilibrium state. The results show

that the presence of random torque allows some level of sorting to take place.

However, despite the magnitude of the random torques the aggregate fails

to reach the fully sorted configuration.
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out resulted in A-Cells breaking away from the aggregate. This is despite the fact

that the weakest homotypic adhesion matches the adhesion between the A-Cells in the

earlier rounding simulations where random movement force limits greater than 0:04N

resulted in aggregate splits. However, this is simply because the A-Cells with the low

homotypic adhesion have additional heterotypic adhesionswhich are strong enough to

prevent them from breaking away from the main aggregate.
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CBI Results: (a)a! a (b) a! b (c) b! b
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Figure 4.44: Results for 36 A-Cell aggregates with a fixed random torque limit

of 0:01N over a range of random force limits. The aggregates started from

the initial configuration of an intermixed grid and should move toward the

onion equilibrium state. The CBI results show that the aggregate reaches the

equilibrium configuration in every case. In addition, there is a slight decrease

in the CT as the magnitude of the random forces increases.
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CBI Results: (a)a! a (b) a! b (c) b! b
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Figure 4.45: Results for 36 A-Cell aggregates with a fixed random torque

limit of 0:01N over a range of random force limits. The aggregates started

from the initial configuration of a sorted grid and should move toward the

onion equilibrium state. The CBI results show that the aggregate reaches

the equilibrium configuration in every case. In addition, there is a significant

decrease in the CT as the magnitude of the random forces increases.
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CBI Results: (a)a! a (b) a! b (c) b! b
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Figure 4.46: Results for 36 A-Cell aggregates with a fixed random torque limit

of 0:01N over a range of random force limits. The aggregates started from

the initial configuration of an intermixed grid and should move toward the

intermixed equilibrium state. The CBI results show that the initially intermixed

aggregate remains intermixed. In addition, the CT shows no clear trend.
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CBI Results: (a)a! a (b) a! b (c) b! b
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Figure 4.47: Results for 36 A-Cell aggregates with a fixed random torque

limit of 0:01N over a range of random force limits. The aggregates started

from the initial configuration of a sorted grid and should move toward the in-

termixed equilibrium state. The CBI results show that the aggregate reaches

the equilibrium configuration in every case. In addition, there is a slight de-

crease in the CT as the magnitude of the random forces increases.
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4.4 A-Cell Ratios

Up until now, the experiments discussed have always involved equal numbers of each

A-Cell type. However, the ratio of the two A-Cell types should have a great impact

on the performance of the model. For example, if the density of one A-Cell type is

very low, the chance of any two of those A-Cells coming into contact will be greatly

reduced and thus it is less likely that the A-Cells will successfully sort.

The experiments presented in this chapter aim to investigate how the ratio of the

A-Cell types affects the overall performance of the model. In total, seven different ra-

tios were considered, ranging from 8:56 to 56:8 such that thetotal number of A-Cells

remained constant at 64. These unbalanced aggregates present an interesting problem

of choosing initial configurations which allow the results to be compared fairly. Aggre-

gates with a small number of a particular type of A-Cell have many more configurations

in which the initial distance between these A-Cells will be large than aggregates where

the same type is in the majority. To minimise this effect, theresults should represent

the median case where the A-Cells are neither fully sorted orintermixed. This could

be achieved by simply simulating a very large number of random configurations for

each ratio. If the sample is large enough it should representthe full range of possible

configurations, thus giving the mean and expected distribution of results. However,

this brute force approach would require considerable resources. To avoid this we have

taken an alternative approach where only three small sets ofconfigurations are used to

represent the entire range. However, these are carefully selected such that they cover

both the extremes and the median case for a particular ratio.

The configurations were selected from the set of all possibleconfigurations of the

A-Cell types on an eight by eight grid. 10000 of these configurations were generated at

random and, in each case, two indices were calculated from the mean distance between

neighbours (the mean distance between A-Cells and theirn nearest neighbours of the

same type4) of each A-Cell type.

Using these measures the configurations were then sorted andfive were selected

4The actual number of neighbours considered was 6.
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Figure 4.48: The distance between neighbours measures for each set of ini-

tial configurations and each ratio of A-Cells. Set 1 – low type bdistance be-

tween neighbours measure, high type adistance between neighbours mea-

sure. Set 2 – median between neighbours measures. Set 3 – high type

bdistance between neighbours measure, low type adistance between neigh-

bours measure.
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from the extremes and middle of the sorted list5. The most obvious way of sorting

the configurations is to use a single index. However, this makes the assumption that

configurations which represent one extreme for one A-Cell type represent the other

extreme for the other A-Cell type and this is not always the case. Therefore, using

this approach, twice as many experiments would be required;those in which the con-

figurations are ordered for one measure and those in which theconfigurations were

ordered by the other. To avoid this, a compromise ordering was made by subtracting

one measure from the other. This means that although the extreme configurations are

not necessarily the most extreme values for either measure,they do generally provide

a good approximate for each (see fig. 4.50). The changes in thetwo measures for the

selected configurations are shown in figure 4.48.

Choosing the normalisation values used when calculating the CBIs for these un-

balanced aggregates also requires more consideration. Theestimated maximum area

of bonded membrane for the homotypic bonds can still be determined by simulating

the relative numbers of A-Cells with the appropriate adhesion. However, when the

A-Cell numbers are unequal, the estimated maximum area of bonded membrane can

no longer be determined by simply simulating an aggregate whose size is equivalent to

the combined total of A-Cells of each type. Instead, as the area of heterotypic bonded

membrane will be limited by the smallest population of A-Cells out of the two types,

it makes more sense to use double this value. The drawback with this approach is that

it ignores any bonds that may be formed with the excess of A-Cells from the larger

population (see fig. 4.51). This underestimate of the true maximum means that the

heterotypicCBI will appear higher in such cases. However, it should still provide a

reasonable approximation.

The results for the ratio experiments where the equilibriumstate is the onion con-

figuration are shown in 4.54, 4.55, and 4.56. In this case the following trends in the

CBIs should be observed.

1. The typeaA-Cells should always form the central aggregate. Therefore, the

a! a CBI should remain constant at a value close to 1 (e.g. the A-Cellsalways

5In practice, the selected configurations were also checked to verify that they contained no mirrored
or rotated copies.
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Figure 4.49: Screen shots showing example initial configurations from the

three chosen sets and for different A-Cell ratios (type b:type a). Set 1 – low

type bdistance to neighbours index, high type adistance to neighbours index.

Set 2 – median distance to neighbours indices. Set 3 – high type bdistance

to neighbours index, low type adistance to neighbours index.
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Figure 4.50: Neighbourhood indices calculated for 10000 random grid con-

figurations consisting of 32 two A-Cells of one A-Cell type and 32 A-Cells of

the another. The points for the 15 selected configurations representing the

extreme and median values of Index2� Index1 are highlighted
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Figure 4.51: Aggregate sizes used to approximate the area of heterotypic

bonded membrane in an aggregate consisting of two A-Cell types.
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maximise theira! a adhesions).

2. When the ratio of typebA-Cells is too low for them to completely surround the

central aggregate, they should evenly distribute themselves around its surface.

This will result in a reduction in theb! b CBI and a corresponding increase in

thea! b CBI .

3. As the ratio of typeaA-Cells drops, the central aggregate will decrease in size.

Therefore, the shell the typebA-Cells form will increasingly approximate a solid

disc where theb! b adhesions are maximised. This will result in a steady

increase in theb! b CBI .

The actual results largely match these predictions. However, there is a notable

exception, with thea! a CBI actually showing a significant drop in all three sets of

results once the ratio of typeaA-Cells drops below fifty percent. In each case the

results show that this drop corresponds with an equivalent rise in thea! b CBI .

Observation of the simulations revealed that in those simulations with a predominance

of the weaker typebA-Cells, the position of the typeaA-Cells within the aggregate

was reasonably fixed. However, in the aggregates with the converse distribution, the

typebA-Cells wandered over far greater distances. This matches earlier results which

demonstrate that aggregates with smaller equilibrium distances between the A-Cells

demonstrate a greater degree of fluidity (see section 3.4.3)and implies that the lack

of exploration prevents the typeaA-Cells from fully clustering together. This also

explains the difference in the observed change in thea! a CBI between the three sets

of results. In the set of results where the index for the distance between typeaA-

Cells was maximised, the drop is much greater as the typeaA-Cells must travel over a

greater distance before they will encounter each other. However, at the other extreme,

where the index for the distance between type a A-Cells was minimised, the drop is

much more subtle.

In the CT results for this set of experiments, the main trend should bean approx-

imate ‘V’ shape with theCT increasing as either A-Cell type becomes increasingly

sparse. The reason for this is that the minority A-Cells willhave a larger number of the

other A-Cell type to migrate through when reaching their final destination (either the
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centre of the aggregate or the perimeter). However, the actual results show a definite

skew, with a much higher increase when the ratio of the stronger adhering typeaA-

Cells drops. This matches the observations from theCBI results which suggested that

in such situations the aggregates are more rigid, and suggests that it results in slower

aggregation of the typeaA-Cells. There is one divergent value where the typeaA-

Cells are most sparsely distributed and their distance between neighbours index was

maximised. However, this is a result of the A-Cells frequently failing to cluster at all.

Therefore, theCBIs remain quite constant and theCT appears low.

The results for the other set of experiments where the equilibrium state is the in-

termixed configuration are shown in figures 4.57, 4.58, 4.59.In this case, theCBIs

should show a clear relationship between the ratio of an A-Cell type and the amount

of homotypic adhesion it forms. The reason for this is that the A-Cells in the minority

will be surrounded, to some degree, by the excess of A-Cells from the other type as

they attempt to maximise the heterotypic adhesions. This should result in contrasting

slopes in the homotypicCBIs and ana! b CBI which is symmetrical about the middle

ratio (32:32).

Once more, the actual results match the prediction very closely. However, the ex-

treme ratios of the typebA-Cells (8:56 and 16:48) result in a lowera! b CBI than

expected. The screenshots of the final aggregate configurations for the four most un-

balanced aggregates reveal why this is the case (see fig. 4.52). In the aggregates where

the typebA-Cells are in the minority, the slight preference of thea! a adhesions over

the a! b adhesions results in a slow migration of the typebA-Cells to the perime-

ter where they become evenly distributed. Clearly this results is lessa! b adhesion

than the aggregate could potentially form. In the converse ratios, the preference of the

a! b adhesions over theb! b adhesions prevents this from happening. Therefore

thea! b adhesions are at their expected levels.

TheCT results for these experiments should be affected by the level of intermixing

in the initial aggregate (aggregates which are initially more intermixed should have

a lowerCT ). Therefore, they should follow similar trends as the distance-between-

neighbours indices for the A-Cell type which is in the minority (see fig. 4.53). This

suggests that in each of the extreme cases, theCT should decrease rapidly as the ra-
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Figure 4.52: Screen shots showing the final configurations from the three

chosen configuration sets and for different A-Cell ratios (type b:type a). Set 1

– low type bdistance to neighbours index, high type adistance to neighbours

index. Set 2 – median distance to neighbours indices. Set 3 – high type

bdistance to neighbours index, low type adistance to neighbours index.



4.4. A-Cell Ratios 173

 8:56 16:48 24:48 32:32 48:24 48:16 56:8 
1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

Ratio (type b:type a)

D
is

ta
nc

e 
to

 N
ei

gh
bo

ur
s 

In
de

x

set 1
set 2
set 3

Figure 4.53: The distance between neighbours measure of the A-Cells in the

minority of each ratio. The vales for the 32:32 ratio are given as the aver-

age of the two measures. Set 1 – low type bdistance between neighbours

measure, high type adistance between neighbours measure. Set 2 – me-

dian between neighbours measures. Set 3 – high type bdistance between

neighbours measure, low type adistance between neighbours measure.

tio of A-Cells with the high distance between neighbours measure drops below fifty

percent. In addition, when the ratio of the same A-Cells increases above seventy five

percent, there should also be a very slight decrease inCT . However, theCTs for the

median configurations should be symmetrical about the 32:32ratio and decrease as the

aggregates become more unbalanced.

In the actual results these trends are not very clear. However, it is likely that they

have been obscured, to some extent, by the effects which havealready been high-

lighted. For example, when the typebA-Cells are in the minority, their migration to

the perimeter will increase theCT by an amount relating to their initial distance from

it. Therefore, in the simulations where the distance to neighbours index is higher (i.e.

the A-Cells are further apart and thus more likely to be closer to the perimeter), this

effect will be worse. When this is not the case, these sparse aggregates should be able

to reach an equilibrium very quickly.
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CBI Results: (a)a! a (b) a! b (c) b! b
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Figure 4.54: Results for 64 A-Cell aggregates over a range of different ratios

of A-Cell types aand b. The aggregates started from five different initial

configurations in which the type bdistance to neighbours index was low and

the type adistance to neighbours index was high. The aggregate should

move toward the onion equilibrium state.
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CBI Results: (a)a! a (b) a! b (c) b! b
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Figure 4.55: Results for 64 A-Cell aggregates over a range of different ra-

tios of A-Cell types aand b. The aggregates started from five different initial

configurations in with median values for both the type band type adistance

to neighbours indices. The aggregate should move toward the onion equilib-

rium state.
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CBI Results: (a)a! a (b) a! b (c) b! b
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Figure 4.56: Results for 64 A-Cell aggregates over a range of different ratios

of A-Cell types aand b. The aggregates started from five different initial

configurations in which the type bdistance to neighbours index was high and

the type adistance to neighbours index was low. The aggregate should move

toward the onion equilibrium state.
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CBI Results: (a)a! a (b) a! b (c) b! b
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Figure 4.57: Results for 64 A-Cell aggregates over a range of different ratios

of A-Cell types aand b. The aggregates started from five different initial

configurations in which the type bdistance to neighbours index was low and

the type adistance to neighbours index was high. The aggregate should

move toward the intermixed equilibrium state.
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CBI Results: (a)a! a (b) a! b (c) b! b
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Figure 4.58: Results for 64 A-Cell aggregates over a range of different ratios

of A-Cell types aand b. The aggregates started from five different initial

configurations in with median values for both the type band type adistance

to neighbours indices. The aggregate should move toward the intermixed

equilibrium state.
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CBI Results: (a)a! a (b) a! b (c) b! b
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Figure 4.59: Results for 64 A-Cell aggregates over a range of different ratios

of A-Cell types aand b. The aggregates started from five different initial

configurations in which the type bdistance to neighbours index was high and

the type adistance to neighbours index was low. The aggregate should move

toward the intermixed equilibrium state.
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4.5 Summary

The results presented in this chapter demonstrated that thebehaviour exhibited by the

cell adhesion model can be clearly predicted by the DAH (see section 4.2.2). This

allows simple hierarchical patterns to be encoded solely byspecifying the adhesions

which exist between populations of units. When the encoded configuration is well de-

fined, the model appears to reach an equilibrium relatively quickly. However, in the

specific border cases which are discussed, the convergence time is more variable. It

was also demonstrated that there appears to be some minimum threshold in the mag-

nitude of difference in the homotypic adhesions below whichonly partial sorting can

occur. This is in line with simulations carried out by Palsson [45] which indicate a

similar result. Once this limit is exceeded, further increases lead to some observable

reduction in the required convergence time.

Once more, the experiments also highlighted the important role that local explo-

ration appears to play in the convergence of the model. This was explicitly shown in

section 4.3, where increases in the random forces, and thus the level of exploration,

were directly linked with improvements in performance. However, it was also shown

that, specific to this model, a similar effect can be achievedby reducing the equilibrium

distance between the A-Cells thus increasing aggregate fluidity.



Chapter 5

Exploration of 3D Movement

The cell adhesion model presented in this work was designed and implemented to

operate in 3D (see section 2.2.1). However, in the precedingchapters, the A-Cell

movement was restricted to only two dimensions, allowing a more in depth exploration

of the model parameters to be carried out. In this chapter we present a brief analysis of

the model’s performance without this restriction, rerunning a subset of the experiments

from both the rounding and sorting tasks.

5.1 Methodology

5.1.1 Measures

In the earlier chapters (see chapters 3 & 4), the measures that were used to evaluate

the adhesion model were selected on the basis that they couldbe applied to both two

and three-dimensional aggregates. The primary measures, from which the others are

derived, are the compactness index (used to evaluate A-Cellrounding) and the bonding

indices (used to evaluate A-Cell Sorting). However, although the bonding indices can

be calculated for two and three-dimensional aggregates using the same technique, in

3D the calculation of the compactness index is slightly different.

In 2D, the compactness equation (see equation 3.2) relates the area of a two-

dimensional object with that of a circle which has the same perimeter. To calculate the

same measure (C) for three-dimensional objects, it is necessary to calculate the ratio

181
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between the volume of an object (Vob j) and the volume of a sphere (Vsphere) with the

same surface area (Ssphere):

C= Vob j

Vsphere
= 24π

1
2Vob j

4S
3
2
sphere

(5.1)

where:

Vsphere= 4
3

πr3 (5.2)
Ssphere = 4πr2 (5.3)

r = r
Ssphere

4π
(5.4)

In addition, in section 3.1.1.1 it was established that to best approximate the ac-

tual behaviour of an aggregate, the compactness index should be calculated from its

concave hull (as opposed to the smoother convex hull). In appendix A.1.2, an algo-

rithm for calculating the concave hull of an arbitrary 3D cluster of connected points

is presented and discussed. However, in some aggregates, the hull that is determined

using this approach may contain single edges which do not form part of a triangular

face (e.g. where an A-Cell is connected to only one other A-Cell) (see fig. A.8). As

these edges do not contribute to the surface area they will not be accounted for by the

compactness index, making the aggregate appear more compact than it actually is. To

overcome this, each of these edges is actually treated as a flat rectangular surface with

the length of the edge and some small pre-defined width. In this way, aggregates with

more of these edges will be suitably punished.

Figures 5.1 and 5.2 show how the new compactness measure relates a typical sim-

ulation of a 64 A-Cell aggregate without the restricted movement to the actual aggre-

gate structure. The results show the same characteristic trend observed in early 2D

simulations, with an initial rapid rise in compactness as the A-Cells quickly aggregate

together followed by a slower convergence to some upper bound.

5.1.2 Initial Configurations

In the 2D rounding experiments (see section 3) the A-Cell aggregates started from a

simple linear configuration. This configuration was chosen as it represents the worst
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Figure 5.1: Simulation of the A-Cell model with 3D movement. The concave

hulls that are shown were calculated using the algorithm outlined in appendix

A.1.2.
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Figure 5.2: The compactness versus time graph for a simulation of a 64

A-Cell aggregate initially configured in a straight line.

case starting configuration and thus gives a lower bound on the model’s performance.

This is still true when considering 3D aggregates. Therefore, the same configuration

was used in the similar work presented in this chapter.

In the 2D sorting experiments, two initial configurations were chosen which repre-

sent the two extremes of intermixing; an evenly mixed grid and a sorted grid. However,

when considering 3D aggregates, the same extremes are more clearly represented by

equivalent lattice structures where the A-Cells are arranged in a cube. Therefore, as

the purpose of the sorting experiments is to evaluate the changing organisation of the

two cell types as opposed to changes in the aggregate shape, the lattice configurations

were used in the appropriate experiments presented in this chapter (see fig. 5.3).

Finally, throughout this chapter only aggregates of 64 A-Cells are considered.

Smaller numbers were disregarded as the diameter of the 3D aggregates that would

be formed would make both rounding and sorting reasonably trivial. In addition, the

length of time required for simulations of larger populations would have greatly limited

the range of experiments which could be carried out.
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Figure 5.3: Initial configurations used for the 3D simulations. (a) Sorted

lattice (b) Intermixed lattice.

5.1.3 Base Parameter Set

The base parameter sets used for the three-dimensional simulations are largely the

same as those used for their two-dimensional counterparts (see sections 3.1.3 & 4.1.5).

The main exceptions to this are in the number and position of sensors and adhesion

sites. Obviously, as the A-cells are no longer fixed to the same horizontal plane it is

not sufficient to simply place these around the equator of their hull and membrane.

Instead, they should be appropriately distributed across the surface of the respective

spheres. In the case of the sensors, as the number which are used should be kept to

a minimum, the problem is reasonably trivial. In fact, a reasonable coverage can be

provided with only eight sensors arranged at the corners of acube inscribed inside an

A-Cell hull (as per the original HYDRON design, see section 2.1.2). Therefore, this is

the number used throughout this chapter.

In the case of the adhesion sites, the problem is more complexas it should be pos-

sible to generate a suitable arrangement for any number of sites, such that the sites are

evenly distributed. This equates to the general problem of distributingn points on a

unit sphere. The problem has a long history and has raised much interest. However,

excluding certain special values ofn, the solutions proposed are limited to approxima-

tions which optimise specific criteria [51]. For the purposeof the adhesion sites it is
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possible to consider the area of membrane represented by each site as a disc of radius

r centred at the location of the site. Therefore, the problem is to maximiser such that

no two disks overlap (e.g. minimise the area of membrane which is not covered). This

is, in effect, maximising the distance between the two closest points on the sphere. In

keeping with the self-organising aspect of the cell adhesion model, in this work this is

achieved by using a charged particle model1. This involves representing each of the

n points as a unique charged particle with its movement restricted to the surface by a

unit sphere. The particles are first placed on the sphere at random, then for successive

cycles the repulsive charges between the particles are calculated and applied. In this

way the points slowly move toward some equilibrium state where the distance between

any two particles will be maximised.

To determine the adhesion site positions used in this chapter, the charged parti-

cle model was started from 5 random positions and stopped when the largest particle

movement dropped below 0:00001. Of these five, the configuration which maximised

the distance between the two closest points was selected. The points were then scaled

appropriately to ensure that they lie on the surface of each A-Cell’s membrane. An

example distribution for 300 points is shown in figure 5.4.

As a default value, each A-Cell used 100 adhesion sites. However, a range of

possible values were also explored in section 5.2.2.

5.2 Rounding

5.2.1 Random Forces

The following experiments aim to investigate how small random movements and ran-

dom torques affect the 3D aggregates. The method which is used replicates the previ-

ous 2D work presented in sections 3.3 and 4.3. Again, as the A-Cells are assumed to

be weighted such that a self righting torque will keep them upright (see section 2.2.1),

only random torques around the vertical (y) axis are considered. However, as the A-

Cells are no longer restricted to movement in two dimensionsneither are the random

1The code used was ‘diffuse’ which was implemented by Jonathan D. Lettvin (Copyrightc2003)
and offered under the GPL.
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Figure 5.4: A configuration of 300 points determined by the charged particle

model. The points on the rear facing hemisphere have been removed from

this view.

forces (see fig. 5.5).

Figures 5.6, 5.7, 5.8, 5.9 and 5.10 show the results of the simulations where the

separate forces were considered independently2. The results showing the combined

effect of the forces (varying random movement force limit, fixed random torque limit)

are given in figures 5.11, 5.12 and 5.13.

These results demonstrate some of the familiar traits exhibited in the earlier 2D

simulations.� In the absence of random torques, increasing the random movement force limit

causes a steady rise in theCC , until the point where A-Cells begin to break away

from the main aggregate.� The level of random torque has little effect on either theCR or CC .

2No histogram is given for the torque experiments as the aggregates remained intact for all the
considered values.
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Figure 5.5: The random forces and random torques acting on the A-Cells.� The best results are achieved with a combination of random torques and random

movement forces.

However, there are a couple interesting observations whichcan also be made.

Firstly, we would expect the two-dimensional aggregates toexhibit less robustness

to the random movement forces than similar 3D aggregates. The reason for this as-

sumption is that A-Cells at the extremities of a 2D aggregateonly have neighbours

in the same plane to bond with, whereas, similarly placed A-Cells in a 3D aggregate

may have additional neighbours positioned above or below which they can also bond

with, and thus increase the force required to split them fromthe main aggregate. De-

spite this, the results for the simulations exposed to combined random movement and

random torque forces (see fig. 5.11 & 3.14) show that, in both two and three dimen-

sions, similarly sized aggregates lose the ability to remain intact when exposed to the

same random movement force limits. In addition, when exposed to random movement

forces in the absence of random torques (see fig. 5.6 & 3.12), the 2D aggregates ac-

tually appear slightly more robust. However, examining thesimulation logs it is clear

that the aggregates actually break apart very early in the simulations (e.g. within the

first few hundred seconds), where both the 2D and 3D aggregates are still very linear

in structure. Therefore, the 3D aggregates are unlikely to have any true advantage. In

fact, with the additional dimension of movement, the 3D aggregates should actually be

at more risk of breaking apart, as observed in the results.

The second observation relates to theCC results obtained when the 3D aggregates
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were exposed only to random torque forces. In each case, the aggregates still form

reasonably compact structures. However, in the 2D case, theCC values tend to fluctuate

above 0:7 while the 3D results appear to be consistently lower. Thereare two possible

explanations for this. Firstly, it could simply be the case that the rounding task is more

difficult in 3D. However, this is not backed up by the other results in which neither

model outperforms the other in all cases. The second possibility is that the poorer

performance is linked to the fact that the random movements generated by the random

torques will mainly be horizontal rather than vertical in nature. The reason for this is

that the torques will cause the sensors to rotate around the vertical axis, changing the

distance and direction estimates (see sections 3.5.1 & 3.5.3). In theory this should

result in a slower vertical spread of the A-Cells.

To test the latter hypothesis, the three sets of simulationswere reprocessed to de-

termine the mean vertical displacement of the A-Cells in an aggregate’s final configu-

ration from the aggregate’s centre of mass. As in the calculation of theCC (see section

3.1.1.2) this was achieved by calculating the values for thelastn seconds of the simula-

tion and taking the average. The results that were obtained (see fig. 5.14, 5.15 & 5.16)

show that, as predicted, the mean vertical displacement achieved when only torque is

applied is consistently lower than in either case where random movement forces are

also provided. To confirm that this was not simply a result of the aggregates producing

less random movement in all directions, the same displacement measure was calcu-

lated for the z axis (given that the initial configuration is aline parallel to the x axis)

(see fig. 5.14, 5.15 & 5.16). These results show that the simulations with only torque

have a considerably higher displacement along the z axis. Ifthere was an equal amount

of random movement in all directions, the displacement fromeither of the axes should

be equivalent. Therefore, this cannot be the case.
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Figure 5.6: Histograms showing the number of aggregates that did not re-

main intact over a range of random movement force limits.
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Figure 5.7: CR values of A-Cell aggregates over a range of random move-

ment force limits. The x axis shows the complete range. However, only

values from samples where all the aggregates remained intact are shown.
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Figure 5.8: CC values of A-Cell aggregates over a range of random move-

ment force limits. The x axis shows the complete range. However, only

values from samples where all the aggregates remained intact are shown.
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Figure 5.9: CR values of A-Cell aggregates over a range of random torque

limits.
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Figure 5.10: CC values of A-Cell aggregates over a range of random torque

limits.
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Figure 5.11: Histograms showing the number of aggregates that did not re-

main intact with a fixed random torque limit of 0:01N over a range of random

movement force limits.
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Figure 5.12: CR values of A-Cell aggregates with a fixed random torque

limit of 0:01N over a range of random movement force limits. The x axis

shows the complete range. However, only values from samples where all

the aggregates remained intact are shown.
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Figure 5.13: CC values of A-Cell aggregates with a fixed random torque

limit of 0:01N over a range of random movement force limits. The x axis

shows the complete range. However, only values from samples where all

the aggregates remained intact are shown.
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Figure 5.14: The mean displacement of A-Cells from an aggregate’s centre

of mass along either the z or y axis for a range of random movement force

limits.
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Figure 5.15: The mean displacement of A-Cells from an aggregate’s centre

of mass along either the z or y axis given a range of random torque limits.
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Figure 5.16: The mean displacement of A-Cells from an aggregate’s centre

of mass along either the z or y axis given a range of random movement force

limits and a fixed random torque limit of 0:01N.
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5.2.2 Adhesion Sites

The number of adhesion sites effectively determines the resolution (granularity) at

which the numbers of bonded A-CAMs can be calculated (see section 2.2.5). The

following experiments were carried out to determine how this affects the 3D aggre-

gates and in particular, as a larger number of adhesion sitesrequire more of each A-

Cell’s processing time, what the minimum number of adhesionsites must be to achieve

reasonable performance.

TheCR andCC results shown in figures 5.20 and 5.21 cover a large range of adhe-

sion site numbers (50! 300). However, as in the earlier 2D results (see section 3.4.2)

it appears that over this range of higher values, the specificnumber of adhesion sites

has no discernible effect on either measure.

An additional set of experiments covering a range of smalleradhesion site numbers

in more detail were also carried out and the results are shownin figures 5.17, 5.18 and

5.19. In this case, as one might expect, when using many of thesmaller values, A-Cells

simply broke away from the main aggregate (see fig. 5.17). However, a minimum of

only 12 adhesion sites allowed the majority of the aggregates to remain intact for the

duration of the simulation and once this value was increasedto 16 all the aggregates

remained intact.

The 2D simulations demonstrated that the smaller values cause the aggregates to

break apart because the number of sites on the overlapping areas of membrane between

two A-Cells will fluctuate as each A-Cell rotates. As the number of sites drops, these

fluctuations increase. Calculating the mean compactness variance of the simulation

carried out in this section (see fig. 5.22) indicates that thesame behaviour is taking

place in the 3D aggregates. In addition, the trends show thatin both the 2D and 3D,

the compactness variance graphs correspond very closely (see fig. 3.25 & 5.22). The

key difference between the results is in the scale, which is significantly larger in the

3D case. However, this is unsurprising as, in the 3D simulations, the adhesion sites

are distributed across the entire membrane, thus only a subset of these will ever be

involved in the overlap between two neighbouring A-Cells.
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Figure 5.17: Histograms showing the number of aggregates that did not re-

main intact over a range of adhesion site numbers.
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Figure 5.18: CR values of A-Cell aggregates with a range of adhesion site

numbers. The x axis shows the complete range. However, only values from

samples where all the aggregates remained intact are shown.
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Figure 5.19: CC values of A-Cell aggregates with a range of adhesion site

numbers. The x axis shows the complete range. However, only values from

samples where all the aggregates remained intact are shown.
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Figure 5.20: CR values of 64 A-Cell aggregates with a range of adhesion site

numbers.
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Figure 5.21: CC values of 64 A-Cell aggregates with a range of adhesion site

numbers.
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range of adhesion site numbers
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Relative Vertical
Positions

A−Cell’s Vertical
Axis

Transmitter/
Detector Estimated

Separation

Figure 5.23: The arc of relative vertical positions that were considered for

each orientation pair in the simple 2 A-Cell model.

5.2.3 Sensor Field of View

The experiments presented in this section investigate how the performance of the

model is affected by varying the FOV of the available transmitters and detectors. As

discussed in section 5.1.3, to account for the 3D movement, agreater number of sen-

sors are used. However, these must cover the whole A-Cell hull, unlike the earlier 2D

simulations where all signals were simply transmitted on the same plane.

Once more, the experimental results are presented alongside estimates obtained

from a simple two A-Cell model. The model is essentially the same as the one pre-

sented in section 3.5.1. However, to account for the addition of 3D movement, each

orientation pair must also be considered in a number of relative vertical positions (see

fig. 5.23). In addition, a slightly larger experimentally determined separation distance

of 0:7597mwas used3.

As in the 2D simulations, the histogram results show the mostsignificant data and

demonstrate the same sudden change in performance when either the transmitter or

detector FOV drops belowπ4 (see fig. 5.24). Unexpectedly, the results also show

3This distance was calculated as the mean distance between neighbouring A-Cells for a sample of
15 simulations with the base configuration.
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Figure 5.24: Histograms showing the number of aggregates that did not re-

main intact over a range of sensor fields of view.

that the aggregates remain intact for one hundred percent ofthe simulations when

either FOV is onlyπ
8. However, in this case the explanation is simply that the FOV

is too small to allow any communication between neighbouring A-Cells in the linear

starting configuration. Therefore, although the A-Cells spin due to the random torques,

as they are not exposed to any random movement forces, they remain in their initial

configuration and, thus, the aggregates appear to remain intact.

In section 3.5.3 this sudden change is linked to the value below which the sensor

coverage diverges with distance from the A-Cell hull. This should also be the case in

the 3D aggregates and explains the results obtained from thetwo A-Cell model (see

fig. 5.27 - a). As predicted, when this value is crossed, thereis a rapid increase in the

number of configurations where any two A-Cells will be out of contact. In addition, the

rate of change is significantly higher which reflects the factthat the effect is magnified

in the 3D case (see fig. 5.27 - b).

TheCC andCR results which were calculated from the simulations are shown in fig-

ures 5.25 and 5.26. However, although the results show that the model’s performance

was good when the aggregates were able to remain intact, there are too few results to

reveal any trends. Despite this, the mean distance and direction estimate errors were
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Figure 5.25: CR values of A-Cell aggregates over a range of sensor fields of

view.

still calculated using the simple two A-Cell model. The distance estimate errors show

the same basic trend as the similar 2D results (see fig. 5.28 - a). However, comparing

the two sets reveals that in the 3D case, the errors are slightly worse (see fig. 5.28 - b).

The direction errors that were calculated are also reasonably similar to the 2D results

(see fig. 5.29). However, they don’t show the same local minima (see fig. 3.44).
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Figure 5.26: CC values of A-Cell aggregates over a range of transmitter and

detector FOVs.
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Figure 5.27: (a) The percentage of orientation pairs when two A-Cells with

3D movement cannot communicate over a range of detector and transmitter

FOVs. (b) The difference between the 3D and 2D results (2D subtracted

from 3D).
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Figure 5.28: (a) Mean error in the distance estimate calculated from a simple

two A-Cell model over a range of transmitter and detector FOVs. (b) The

difference between the 3D and 2D results (2D subtracted from 3D).
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Figure 5.29: Mean error in the direction estimate calculated from a simple

two A-Cell model over a range of transmitter and detector FOVs.
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5.3 Sorting

In this section, reruns of the earlier 2D differential adhesion experiments (see section

4.2) are presented. As before, two sets of experiments were carried out investigating

the model’s response to ranges of both heterotypic and homotypic adhesions.

5.3.1 Heterotypic Adhesion

In the following experiments, the homotypic adhesions are fixed at the original values

discussed in section 4.1.5:� b! b – attraction at equilibrium of 0:15125N� a! a – attraction at equilibrium of 0:3025N

In addition, the heterotypic adhesion is varied between 0N and 0:45375N. There-

fore, the key values in heterotypic adhesion which should border changes in the final

configuration of the aggregate will remain at 0:15125N, 0:226875N, and 0:3025N (see

section 4.2.1).

Figures 5.30 and 5.34 show the results that were obtained when starting the aggre-

gates from either a sorted or intermixed lattice. It can be seen that in the extremes of

the graph (0! 0:1134375 and 0:3403125! 0:45375), where the aggregates should

achieve either a partially sorted or completely intermixedconfiguration, the results

quite closely match those that were obtained for the similar2D simulations (see fig.

4.10 & 4.15). However, in the central section of the graph (see fig. 5.32), where the

final configuration changes from sorted to intermixed, instead of the expected sudden

change the results show a much more gradual transition.

Investigating this range in more detail (see fig. 5.32 & 5.37)reveals that in both

instances only partial sorting is achieved. In addition, when starting from an intermixed

lattice, the aggregates only achieve this when thea! b adhesion is lowest. However,

when starting from the sorted lattice, the level of sorting slowly increases until the

central boundary is reached and then intermixing starts to occur (see fig. 5.38).

One possible explanation for this behaviour is that the cubic close packing observed

in the A-Cell aggregates (see section 5.4) is too rigid and limits local exploration, thus
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Figure 5.30: CBI for a range of heterotypic attraction at equilibrium values.

The results were obtained from 64 A-Cell aggregates with the initial configu-

ration of an intermixed lattice. (a) a! a (b) a! b (c) b! b
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Figure 5.31: CT for a range of heterotypic attraction at equilibrium values.

The results were obtained from 64 A-Cell aggregates with the initial configu-

ration of an intermixed lattice
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Figure 5.32: CBI for a range of heterotypic attraction at equilibrium values.

The results were obtained from 64 A-Cell aggregates with the initial configu-

ration of an intermixed lattice. (a) a! a (b) a! b (c) b! b
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Figure 5.33: CT for a range of heterotypic attraction at equilibrium values.

The results were obtained from 64 A-Cell aggregates with the initial configu-

ration of an intermixed lattice
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Figure 5.34: CBI for a range of heterotypic attraction at equilibrium values.

The results were obtained from 64 A-Cell aggregates with the initial configu-

ration of a sorted lattice. (a) a! a (b) a! b (c) b! b
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Figure 5.35: CT for a range of heterotypic attraction at equilibrium values.

The results were obtained from 64 A-Cell aggregates with the initial configu-

ration of a sorted lattice
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Figure 5.36: CBI for a range of heterotypic attraction at equilibrium values.

The results were obtained from 64 A-Cell aggregates with the initial configu-

ration of a sorted lattice. (a) a! a (b) a! b (c) b! b
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Figure 5.37: CT for a range of heterotypic attraction at equilibrium values.

The results were obtained from 64 A-Cell aggregates with the initial configu-

ration of a sorted lattice
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0.1134375N 0.15125N 0.17015625N

0.1890625N 0.20796875N 0.226875N

0.24578125N 0.2646875N 0.28359375N

Figure 5.38: Screen shots showing the final configuration of aggregates con-

sisting of two A-Cell types with various heterotypic attraction at equilibrium

values. The aggregates consisted of 64 A-Cells and started with the initial

configuration of a sorted lattice.
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preventing the aggregates from achieving the final configurations. However, if this

were the case, there should be also be some noticeable effectwhen thea! b adhesion

is at either extreme and this is not observed in the actual results. Instead, it appears

that the actual cause relates to level of difference betweenthe homotypic adhesions.

Some evidence for this is provided by the earlier 2D experiments presented in section

4.2.2. These experiments compared the effect of reducing orincreasing the level of

difference between the homotypic adhesions and demonstrated the existence of a min-

imum threshold below which the expected sorting can no longer take place. The results

obtained for the simulations with magnitudes of differencein the homotypic adhesion

below this threshold very closely match those presented in this section. In addition, the

results presented in the following section (see section 5.3.2), which carries out a simi-

lar comparison of differences in homotypic adhesion, reveals that when the difference

in homotypic adhesion is increased to 0:3025N, the behaviour of the 3D aggregates

more closely resembles that predicted by the DAH.

This raises the question: why does the required minimum difference in homotypic

adhesion appear to increase when moving from two to three dimensional aggregates?

A likely explanation simply relates to the number of neighbours each A-Cell has. The

reason for this is that the model is partially driven by the A-Cells randomly discovering

other A-Cells they can produce stronger bonds with. When such an encounter occurs,

the new bond should produce some small force which will help pull the two A-Cells

together. However, clearly this force will act against the existing bonds between the

A-Cells and their neighbours. Therefore, if the number of neighbours the A-Cells have

increases, the effect of any new bonds will be reduced.

5.3.2 Difference Between Homotypic Adhesions

The experiments presented in this section replicate the earlier 2D simulations presented

in section 4.2.2. The same four magnitudes of difference in the homotypic adhesions

were considered, again fixing the weakerb! b adhesion at 0:15125N while increas-

ing the highera! a adhesion as follows:

1. a! a = 0:1890625N
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2. a! a = 0:226875N

3. a! a = 0:3025N (from section 5.3.1)

4. a! a = 0:45375N

The results of these experiments are summarised in figures 5.39, 5.40, 5.41 and

5.42. It is clear from these graphs that, excluding the case where the aggregates should

achieve an intermixed configuration starting from an intermixed lattice, only the ho-

motypic adhesion pair with the highest magnitude of difference actually gets close to

achieving the expected configurations. In each of the other three cases, the aggre-

gates converge on states which deviate less from their original configurations (see fig.

5.45)4. More specifically, there is an approximately linear relationship between the

deviation of theCBIs from those which are expected and the magnitude of difference

in the homotypic adhesion.

Figures 5.43 and 5.44 show the full range ofCBIs that were obtained for the pair

with the highest magnitude of difference. Screenshots of the example final configu-

rations are also shown in figure 5.46. These results demonstrate that in this case the

behaviour of the model is a much closer approximation of DAH.The typebA-Cells

still struggle to fully engulf the central aggregate when starting from a sorted lattice.

However, it is possible that increasing the random movementforces from the low de-

fault value may allow full engulfment to take place.

Overall, these experiments confirm the earlier 2D results (see section 4.2.2) and

demonstrate a strong link between the difference in the homotypic adhesion of the A-

Cells and their ability to successfully sort or intermix. A discussion of the difference

between the magnitude of difference required for 2D and 3D aggregates is included in

the previous section 5.3.1.

4The convergence is not quite as rapid in some of the engulfment simulations. Therefore, it is
possible that an extended time period may allow some slight additional improvement.
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Figure 5.39: CBI results for 64 A-Cell aggregates which should form the

onion configuration from an initially mixed grid. In each graph 4 homotypic

adhesion pairs are shown. The b! b adhesion of each pair is fixed at

0:15125N while the a! a adhesion increases along the x axis. Therefore,

the magnitude of difference between the homotypic adhesions increases

from left to right.
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Figure 5.40: CBI results for 64 A-Cell aggregates which should form an inter-

mixed configuration from an initially mixed grid. In each graph 4 homotypic

adhesion pairs are shown. The b! b adhesion of each pair is fixed at

0:15125N while the a! a adhesion increases along the x axis. Therefore,

the magnitude of difference between the homotypic adhesions increases

from left to right.
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Figure 5.41: CBI results for 64 A-Cell aggregates which should form the

onion configuration from an initially sorted grid. In each graph 4 homotypic

adhesion pairs are shown. The b! b adhesion of each pair is fixed at

0:15125N while the a! a adhesion increases along the x axis. Therefore,

the magnitude of difference between the homotypic adhesions increases

from left to right.
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Figure 5.42: CBI results for 64 A-Cell aggregates which should form an inter-

mixed configuration from an initially sorted grid. In each graph 4 homotypic

adhesion pairs are shown. The b! b adhesion of each pair is fixed at

0:15125N while the a! a adhesion increases along the x axis. Therefore,

the magnitude of difference between the homotypic adhesions increases

from left to right.
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Figure 5.43: CBI for a range of heterotypic attraction at equilibrium values.

The results were obtained from 64 A-Cell aggregates with the initial configu-

ration of an intermixed lattice. The homotypic adhesions of the two cell types

were b! b 0:15125N and a! a 0:45375N. (a) a! a (b) a! b (c) b! b
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Figure 5.44: CBI for a range of heterotypic attraction at equilibrium values.

The results were obtained from 64 A-Cell aggregates with the initial config-

uration of an sorted lattice. The homotypic adhesions of the two cell types

were b! b 0:15125N and a! a 0:45375N. (a) a! a (b) a! b (c) b! b
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Figure 5.45: Screen shots showing the final configuration of aggregates from

several simulations. The aggregates consisted of 64 A-Cells and started

from either a sorted lattice or mixed lattice initial configuration. In each case

the b! b adhesion was 0:15125N.
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Figure 5.46: Screen shots showing the final configuration of aggregates con-

sisting of two A-Cell types with different heterotypic adhesion values and

initial configurations. a! a adhesion was 0:45375N, b! b adhesion was

0:15125N.
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5.4 Summary & Conclusions

The work presented in this chapter demonstrates that the cell adhesion model translates

well from 2D to 3D space. This translation results in near spherical aggregates which

retain the same type of approximate close packing that was observed in the earlier 2D

simulations (see fig. 5.47 & 5.48)5.

More specifically, the rounding experiments demonstrated that, as one might ex-

pect, random forces are still fundamental to the performance of the model. However,

the natural fluctuations in position generated by the rotation of the A-Cells’ sensors

are no longer sufficient to drive the aggregates to their equilibrium state and, instead,

at least some random movement forces are required to allow sufficient exploration of

the vertical space.

In addition, it was shown that the sensor FOV limits identified in section 3.5.3

still apply. Furthermore, the debilitating effects of divergent sensor coverage actually

increase when the A-Cells are no longer fixed to the same plane.

The sorting experiments which were carried out also revealed some interesting

behaviours. In particular, it was shown that although the model still behaves as pre-

dicted by the DAH, the minimum threshold on the difference between the homotypic

adhesions increases significantly. Therefore, it is not necessarily possible to use 2D

simulations as a direct predictor of expected 3D behaviour.

5The cubic close packing which is observed only differers from hexagonal close packing in the
positioning of the top layer 5.47.
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(a) (b) (c)

Figure 5.47: An example of the layers found in cubic close pack.
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All Layers Layer 1

Layer 2 Layer 3

Layer 4 Layer 5

Figure 5.48: An example of the cubic close pack layering found in a real

A-Cell aggregate.





Chapter 6

Dynamic Control

The previous chapters in this thesis demonstrate that the cell adhesion model can gen-

erate robust self-organisational dynamics. However, the A-Cells’ membrane properties

remain fixed and thus, more complex patterns of behaviour which require aggregates

to change function over time or react to environmental stimuli are not possible.

In this section we present a hybrid system which combines therobustness of the cell

adhesion model with the flexibility of a genetic regulatory network controller (GRN)

to create a single robust controller which overcomes these limitations. The integration

of these two systems and the accompanying experimentation and analysis were carried

jointly with Taylor [61].

6.1 Genetic Regulatory Network Controller

Genetic regulation is the process responsible for the dynamic behaviour of living cells.

In each cell, active genes cause the production of specific proteins in the cell’s cyto-

plasm and in turn certain regulatory proteins control the activity of individual genes.

Therefore, complex patterns of regulation can arise allowing the function of cells to

change over time. In addition, some proteins diffuse between cells and the extra cellu-

lar matrix and thus, a cell’s function may also be determinedby its local environment.

The majority of artificial GRN systems use these dynamics to grow static structures

[5, 15]. The major benefit of this approach is the ease with which suitable genomes can

225
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Figure 6.1: Summary of the GRN Controller design. Figure originally pub-

lished in [61].

be evolved. However, more recent work has shown that GRNs canalso be successfully

adapted for use as control systems by coupling specific proteins with the sensors and

actuators of the system [47]. In this section we present a brief outline of Taylor’s GRN

controller which develops this idea further, such that a single genome controls a group

of agents to produce some desired collective behaviour [61].

In Taylor’s system, the main components of the GRN controller for each agent

consist of a unique region of cytoplasm and a copy of the common genome (see

fig. 6.1). The cytoplasm represents the internal space of an agent and is divided into

significant areas corresponding to the location of its sensors or actuators. The genome

is a variable length string which may encode any number of individual genes and any

inhibiting or enhancing proteins which regulate them.

When a gene becomes active, the protein it produces is deposited in a specific area

of the cytoplasm. However, in addition to simply controlling further gene expression,

some subsets of proteins can be assigned more specific roles.For example, some

motility proteins can cause particular actuators to becomeactive depending on the

area of the cytoplasm they are produced in. Alternatively, sensory proteins may be
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added to areas of the cytoplasm as a result of detected environmental conditions (e.g.

light levels, distance to obstacles etc.). Finally, it is also possible for some proteins

to diffuse between neighbouring agents if they are producedor detected at particular

communication sites. This means that the expression of genes in each agent will be a

result of both the neighbouring agents and the local environment.

To develop GRNs which are capable of producing specific behaviour, a genetic

algorithm (GA) is used to evolve a population of genomes. At each cycle in the GA,

every genome is evaluated by inserting it into a collection of simulated agents and

comparing the resulting behaviour with the requirements ofthe given task. Crossover

and mutation operators are then applied to generate the population for the following

cycle.

6.2 Combination Controller

It is possible to combine the GRN controller with the cell adhesion model without

greatly affecting the design of either system. The main change is that the motility

proteins no longer interface directly with the actuation system and instead control the

expression of A-CAMs on an A-Cell’s membrane (see fig. 6.2). In this way, the dy-

namics of the cell adhesion model are still responsible for the low level A-Cell control

and the GRN controller manipulates these dynamics to produce a desired collective

behaviour.

To further combine the two systems, some of the sensory proteins of the GRN

were also linked with the formation of particular A-CAM bonds, such that the number

of bonds were directly proportional to the level of the proteins. This provides a crude

method to allow the differentiation of gene expression in the A-Cells from both the

number of membranes they are in contact with and the A-CAMs expressed on those

membranes.

In addition, during these initial experiments, the desire was to keep the combined

controller as simple as possible and thus the diffusion of proteins between A-Cells was

not implemented. Therefore, the only interaction between the A-Cells was as a direct

result of A-CAM expression.
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Figure 6.2: Schematic of the combined GRN-CAM controller design. Figure

produced by Taylor.

6.3 Experiments

In this section we present a series of experiments which compare the performance of

the GRN-only controller with that of the combined GRN and cell adhesion model con-

troller. For consistency, both controllers were evaluatedusing the A-Cell simulator. In

addition, for simplicity and speed, the movement forces of the A-Cells were restricted

to the the horizontal plane.

The experiments consist of three different tasks of varyingdegrees of difficulty

and are carried out in two sets. In the first set, the controllers are evaluated based on

the ease with which they can be evolved and the quality of the final solutions. In the

second set, the robustness of the evolved controllers is then evaluated by placing them

in unseen environments.

6.3.1 Implementation Details

Sections 6.1 and 6.2 describe the general properties of the controllers. Here we present

the more specific details of their implementation for the experiments presented in this

section.

Many of the specific dynamics of the GRN match Taylor’s original design.



6.3. Experiments 229

6.3.1.1 Protein and Cytoplasm Dynamics

Both controllers provide each A-Cell in a simulation with a unique region of cytoplasm

in which proteins from a predefined list may be expressed. Furthermore, within this

cytoplasm four equally spaced ‘diffusion sites’ are specified (see fig. 6.1 & 6.2). These

diffusion sites act as locations were proteins can be introduced into the cytoplasm

and where the concentration of the proteins being expressedin the cytoplasm can be

measured.

The proteins themselves are represented by a concentrationvalue which ranges

from 0 to 1 (giving a maximum value of 4 for the summed concentration of a specific

protein across all diffusion sites). As genes in the GRN become active, they introduce

more of their product protein into the cytoplasm at one or more diffusion sites (see

section 6.1) causing an increase in the protein’s concentration 1. However, underlying

dynamics of attenuation and diffusion are also modelled such that the protein concen-

trations naturally change over time.

The attenuation mechanism causes the concentration (Cp(t)) of any protein (p) at

any diffusion site to decay over time:

Cp(t+1) = kCp(t) (6.1)

where k is the attenuation constant (0< k< 1).

The diffusion process allows proteins to spread through thecytoplasm from the site

were they are initially introduced (i). This causes a decrease in the concentration of

the protein ati and an associated increase at each of theN neighbouring sitesj:

Cp(i; t+1) = (1�d)Cp(i; t) (6.2)

Cp( j; t+1) =Cp( j; t)+ dCp(i; t)
N

(6.3)

where d is the internal diffusion constant (0< d < 1).

1The increase in concentration is directly linked to the level of activation of the gene. For example,
a gene with an activation level of 0.5 will cause a 0.5 increase in the product protein’s concentration
value.
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Figure 6.3: A section of an example base 4 genome. In the example gene 1

is inhibited by protein 7 (013 in base 4) and enhanced by proteins 50 (302)

and 9 (021). The specification of the gene shows that it produces protein 48

(300) when expressed. It has a Gradient Above Zero output function (2) with

gradient 3 (03). In addition, the product is deposited at a specific diffusion

site (3), which is site number 2 (02).

6.3.1.2 Genome and Gene Structure

In both controllers the GRN which governs the A-Cell behaviour is encoded by a vari-

able length string of base 4 integers. To construct the GRN the string is first divided

into individual genes and their associated regulatory region. This is achieved by iden-

tifying a specific sequence in the genome known as the gene promoter sequence (see

fig. 6.3). The gene itself is represented by a fixed number of digits immediately fol-

lowing the promoter sequence and its regulatory region extends from the end of the

previous gene up to, and including, the digit preceding the promoter sequence.

A gene’s regulatory region identifies those proteins which affect the activation of

the gene. This includes enhancer proteins, whose presence in the cytoplasm increases

the gene’s activation, and inhibitor proteins, whose presence have the opposite effect.

The proteins are encoded by a fixed number of digits which immediately follow either

an enhancer or inhibitor promoter sequence. Therefore, by scanning the region from
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Step above zero Step below zero

Gradient above zero Gradient below zero

Figure 6.4: The four possible activation functions.

beginning to end a full list of the gene’s regulatory proteins can be constructed.

The substring of digits representing the gene are used to encode its specific char-

acteristics. This includes the relationship between the total concentration of the gene’s

regulators and its level of activation (the output function), the type of protein the gene

manufactures, and where this product protein is introducedinto the cytoplasm (the

product placement scheme).

In this work the following four output functions are made available (see fig. 6.4)
2.

1. Step above zero

Ag

�= 1; if Rg > Pg= 0; if Rg <= Pg
(6.4)

2. Step below zero

Ag

�= 1; if Rg >�Pg= 0; if Rg <=�Pg
(6.5)

3. Gradient above zero

Ag

8><>:= 0; if Rg <= 0= 1; if Rg >= Pg= Rg
Pg
; if 0 < Rg < Pg

(6.6)

2As the string consists of base 4 integers this allows the output function to be defined by a single
digit.



232 Chapter 6. Dynamic Control

4. Gradient below zero

Ag

8><>:= 0; if Rg <=�Pg= 1; if Rg >= 0= 1+ Rg
Pg
; if �Pg < Rg < 0

(6.7)

whereAg is the level of activation of geneg (0<=Ag<= 1)andRg is the concentration

of its enhancer proteins (Eg) minus the concentration of its inhibitor proteins (Ig),

summed across all diffusion sites (D ).

Rg = ∑
d2D ∑

e2Eg

Conc(e;d)� ∑
i2IgConc(i;d) (6.8)

The parameterP is the output function parameter which is used to refine the out-

put function’s behaviour. This parameter is encoded in the gene alongside the output

function (see fig. 6.3).

Similarly, four placement placement schemes are also available:

1. place the product at the diffusion site with the highest concentration of a specific

marker protein;

2. place the product at the diffusion site with the lowest concentration of a specific

marker protein;

3. place the product at a specific diffusion site;

4. distribute the product evenly across all the diffusion sites.

Once more an additional parameter (the product placement parameter) (see fig.

6.3), is used to refine the overall behaviour, in this case specifying the specific site or

marker protein as appropriate.

6.3.1.3 Protein Actions

To provide a rich environment for the GRNs to operate on 64 different proteins are

specified3. Each of these proteins is free to participate in gene regulation. However,

3This allows each protein in the genome to be encoded with 3 digits.
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Diffusion Site

Associated Movement
Vector

Axes
A−Cell Principle

Figure 6.5: Movement vectors associated with the diffusion sites in the GRN-

only controller.

as discussed in section 6.1, subsets of the proteins are alsoassociated with the specific

sensing and actuation mechanisms that are available to the controllers.

The GRN-only controller interfaces directly with the A-Cell sensors and actua-

tors as in Taylor’s original design [61]. For actuation, each diffusion site is linked

with movement in a specific direction along the principle axes of the A-Cell (see fig.

6.5). These movement vectors (M) are then scaled by the summed concentration of

16 predefined actuation proteins (A ) at the respective diffusion site giving a desired

movement in each direction. A final movement vector (F) is then calculated as the

average of these 4 scaled values:

F = ∑
d2D Md ∑

a2AConc(a;d) (6.9)

The sensing mechanisms made available to the GRN-only controller include exter-

nal protein diffusion and a local neighbours sensor. The external diffusion mechanism

provides crude information about the distance and direction of neighbouring A-Cells

by using the local communication system to allow a specific protein (p) to diffuse

between them. This is achieved by associating each diffusion site with one of the 4

transmitter/receiver pairs located on the A-Cell hull. When the externally diffusing

protein is expressed at one of the sites (i), a signal is broadcast from the associated

transmitter to indicate the amount of the protein that is diffusing from the site (E). The

local concentration of the protein (Cp) is also adjusted accordingly:
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Cp(i; t+1) = (1�e)Cp(i; t) (6.10)

Ep(i; t) = eCp(i; t) (6.11)

wheree is the external diffusion constant (0< e< 1).

Likewise, when one of the sensors detects an incoming signalfrom a neighbouring

A-Cell, the level of the protein is increased at the sensor’sassociated diffusion site

( j). The increase is a function of the concentration value encoded in the signal and the

distance (d) that the signal has travelled:

Cp( j; t+1) =Cp( j; t)+ kt

d2Ep(i; t) (6.12)

wherekt is the predefined transmission coefficient (0.0009 in these experiments).

The local neighbours sensor increases the concentration ofa specific protein at all

the diffusion sites, by an amount proportional to the numberof A-Cells (n) within

communication range:

Cp(t+1) =Cp(t)+ n
N

(6.13)

whereN scales the value appropriately4. This sensor is included to help approximate

the sensing abilities of the combined controller such that both controllers have reason-

ably equivalent abilities.

As discussed in section 6.2 in the combined GRN and cell adhesion model con-

troller the GRN is not responsible for the low level A-Cell control. Instead, 12 proteins

are associated with the level of expression of unique A-CAMson the A-Cell’s mem-

brane. Therefore, the GRN actually varies the adhesion between neighbouring A-Cells

and any real actuation is generated as a result of modelling the adhesions. The bonding

relationships between the A-CAMs are predefined such that 4 of them are capable of

homotypic bonding while the remaining 8 are capable of heterotypic bonding. This

provides 8 different bonding relationships for the GRN to exploit.

4This value can be manually tuned to adjust the sensitivity. Avalue of 4 was used in these experi-
ments.
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GRN-Only Controller Combined Controller

Proteins Description Proteins Description

0 External diffusion protein

32-47 Actuation proteins 36-47 A-CAM expression proteins

48 Local neighbours sensor 48-59 A-CAM bonding proteins

Figure 6.6: Summary of the specific protein actions in each controller.

To map each protein (p) to some level of A-CAM expression (Ap), its average con-

centration is calculated across all 4 diffusion sites (as A-CAMs are distributed evenly

across the whole membrane). This gives a value between 0 and 1which is then multi-

plied by the maximum level of A-CAM expression that is allowed (m)5.

L(Ap; t) = m
1jDj ∑

d2D Cp(t) (6.14)

In a similar fashion, sensing in the combined model is achieved by linking the 12

A-CAM types to the concentration of 12 unique proteins. Whenone of the A-CAM

types bonds with an A-CAM expressed on another A-Cell’s membrane, the protein’s

concentration is increased by a level proportional to the number of bonds:

Cp(t+1) =Cp(t)+ B(Ap)
m

(6.15)

whereB(Ap) is the number of bonds formed by the A-CAM linked to proteinp.

The specific protein actions for each controller have been summarised in table 6.6.

6.3.1.4 Genetic Algorithm

The controllers were evolved using a standard generationalGA. The initial populations

consisted of 60 random genomes with a string size of 1000 and subsequent generations

were generated by using tournament selection and elitism with group sizes of 3 and 1

5Given two A-Cells each expressing a single type of A-CAM, such that the two A-Cells adhere, the
maximum level of expression was calculated as the lowest value which, if expressed on both A-Cells,
would cause them to physically collide.
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respectively. The offspring genomes were formed by using both crossover and muta-

tion. The crossover operator was simple two-point crossover and different crossover

points were selected on each parent to allow the size of the genomes to evolve over

time. The mutation operator was applied to each digit in the resulting genomes with

some fixed probabilityPTM (= 0:002 in the reported experiments), replacing the digit

with a random value. However, instead of simply relying on chance mutations of gene

regulators and output functions, an additional form of smart mutation was also used6.

After traditional crossover and mutation this new operatorwas applied to each genome

with a fixed probabilityPGenome
SM (= 0:75).

The main principle of the smart mutations is that by using knowledge about the

GRN (recorded during each simulation), mutations can be made which are more likely

to have some observable effect. In total, three different types of smart mutation were

applied:

1. mutation of the regulators to ensure each regulator could potentially affect the

gene’s activation: if the observed maximum concentration of a regulator was

zero, the regulator is replaced with another chosen at random from a list of those

known to have non-zero concentration during the controller’s operation.

2. mutation of the output function to align the gene’s range of sensitivity with

the sum of the regulators: if the gene has an “above zero” output function (Step

above zero or Gradient above zero) and the maximum observed sum of the regu-

latorsRMax
obs is less than zero, the output function is switched to the corresponding

“below zero” function. However, ifRMax
obs is greater than the threshold specified

in the gene, it is replaced with a random value between zero and RMax
obs . The

reverse procedure is used for genes with “below zero” outputfunctions.

3. mutation of marker proteins (used in product placement) to ensure that

marker proteins which achieve non-zero concentrations areused: if the product

placement scheme specifies that the product protein should be placed at a dif-

fusion site specified by another protein’s concentration and that protein’s max-

imum concentration does not exceed zero, the signal proteinis replaced with

6This idea was developed by Tim Taylor who is currently investigating it further.
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one randomly chosen from a list of those known to have non-zero concentration

during the controller’s operation.

When the smart mutation operator is applied to a genome each of its genes are

considered in turn and the different forms of mutation are applied with probability

PGene
SM (= 0:75).

6.3.2 Tasks

The tasks outlined below are presented in order of difficulty. In each case, a sample

of five evolutionary runs were carried out for both the GRN-only controller and the

combined controller. Unfortunately, the evaluation time required for each individual

run (several days when running in parallel on a dedicated cluster) meant that a larger

sample was not feasible. However, once more, bootstrappingwas applied to improve

the error estimates.

During the execution of each task it is clearly desirable that, at the very least, the A-

Cells maintain a single connected aggregate7. Therefore, the fitness value awarded to

each controller (Ft) was divided into two separate components. The first of these(F1),

simply reflects the proportion of the simulation during which the connected aggregate

was maintained:

F1 = TM

TE
(6.16)

whereTE is the total evaluation time andTM is the time the connected aggregate was

maintained for. The second (F2), was the fitness score achieved in relation to the spe-

cific task, and therefore was only awarded when the aggregatewas maintained for the

entire simulation period. These components were combined with the relative weight-

ings of 0:1 and 0:9 respectively, giving the two following scenarios.

1. Aggregate not maintained:

Ft = 0:1F1 (6.17)
7In the combined controller a connection is achieved throughmembrane contact whereas in the

GRN-only controller it implies that A-Cells are within communication range. During these experiments
the two distances are equivalent.
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2. Aggregate maintained for the duration of the simulation (F1 = 1):

Ft = 0:1+0:9F2 (6.18)

In addition, to determine a more general fitness value, each controller was evaluated

from three different initial configurations. Each of these was selected from a population

of randomly generated configurations in which the aggregates were fully connected

(see appendix A.2), such that they had compactness values 0.4, 0.5 and 0.6. Once all

three fitness values were calculated, the average result wastaken.

6.3.2.1 Clustering

The first task tests the controllers’ ability to perform simple aggregation or rounding.

As in previous chapters (see section 3.1.1.1), this is measured using the compact-

ness indexC (see equation 3.2)8. However, to encourage the controllers to achieve

maximum compactness as soon as possible, the final fitness is calculated as the mean

compactness of the aggregate over the entire 100sevaluation period (TE).

F2 = 1
TE

TE

∑
i=0

Ci (6.19)

6.3.2.2 Response to External Signal

This task was designed to investigate whether the controllers could easily switch be-

tween different functions in response to some environmental trigger. In practise, such

a trigger could take the form of a change in any environmentalcondition that the A-

Cells are able to detect and would result in a corresponding change in the their relative

sensory proteins. Therefore, this was represented in the simulations by increasing the

concentration of a small number of proteins in each A-Cell’scytoplasm at some ran-

dom timeTS, within a predefined period. The fitness value for the task wasbased on

the A-Cell aggregate’s ability to demonstrate different behaviours before and after the

8In the case of the GRN-only controller, the concave hull is calculated using the communication
range as a measure of connectivity.
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signal was introduced. In this case, initially the aggregate was rewarded for maintain-

ing a constant minimum enclosed area. However, once the signal was introduced, it

was instead rewarded for maintaining a constant maximum enclosed area9. The fit-

ness function therefore had two components relating to the difference between the area

valuesD and the varianceV of each period of the simulation.

ma = 1
TS

TS

∑
i=0

ai (6.20) mb = 1
TE�TS

TE

∑
i=TS+1

ai (6.21)

D = mb

ma+mb
(6.22)

whereai is the area of the aggregate’s concave hull at timei andTE is the full evaluation

time of the simulation.

v2
a = 1

TS

TS

∑
i=0
(ai �ma)2 (6.23) v2

b = 1
TE�TS

TE

∑
i=TS+1

(ai�mb)2 (6.24)

V = min(vavb;kvmamb)
kvmamb

(6.25)

where the constantkv is used to control the maximum level of variance that impacts

on the reward (0.25 in these experiments). As bothD andV have different levels of

importance the final fitness is defined as:

F2 = kf D+(1�kf )(1�V) (6.26)

wherekf determines the relative weighting.

In the simulations presented in this work the evaluation period was set to 100sand

the signal was introduced at a random time in the period 50� 20s. In addition, the

control parameterkf was set to 0:75 to add extra weight to the level of change in the

aggregate’s behaviour.

9If there is no notion of maintaining a constant configuration, the controllers tend to exploit the
dynamics of the simulation to produce solutions where the behaviour is fine tuned to the evaluation
periodTE.
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6.3.2.3 Differentiation of Function

Differentiation is the process which allows a collection ofinitially homogeneous agents

to divide into a number of distinct subsets, each of which is capable of performing a

more specific function. This aim of this task was to determinewhether the controllers

could achieve this by splitting an aggregate of A-Cells intotwo equally sized sets (A

andB ), each exhibiting a unique pattern of protein expression. In the actual simula-

tions, the patterns that were selected involved two ranges of 16 proteinsα andβ, such

that one pattern was achieved by maximising the concentration of theα proteins while

minimising the concentration of theβ proteins and the second pattern was achieved

by performing the converse. To encourage the population to differentiate as quickly as

possible, the mean difference between these concentrations during the entire evalua-

tion period was used to calculate the final fitness value. Therefore, it was possible to

determine the degree to which any single A-Cell was a member of eitherA or B using

the followingdr values:

ga = 1
U jαj TE

∑
t=0

∑
i2α

ct
i (6.27) gb = 1

U jβj TE

∑
t=0

∑
i2β

ct
i (6.28)

dr = 1
2
(ga+(1�gb)) (6.29)

wherect
i is the cytoplasmic concentration of proteini at timet, andU is a normalisation

constant representing the maximum summed concentration ofa single protein over the

entire evaluation period. Therefore, bothga andgb and thusdr will be in the rangef0! 1g, with:

dr

8><>:> 0:5; if there are more setα proteins than setβ= 0:5; if both sets of proteins are equal< 0:5; if there are more setβ proteins than setα
(6.30)

Thus, the A-Cells can be assigned toA andB , such thatA consists of those with

the highest 50% of thedr values. The overall fitness is then defined as:
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F2 = 1
n

 
∑
i2A di + ∑

j2B (1�d j)! (6.31)

Therefore, if the A-Cells are completely undifferentiated(all thedr values are the

same),F2 = 0:5. However, if as desired the A-Cells inA express more of the set

α proteins than setβ proteins and the reverse is true for the A-Cells inB , F2 > 0:5
indicating that the A-Cells have partially differentiated.

6.3.3 Controller Evolution

The controller evolution results for both controllers are shown in figure 6.7. In each

case, the mean and maximum fitness values are given for each generation of a full

evolutionary run. Most significantly, the results show thatthe combined controller

achieved better final fitness values for each of the three tasks. In addition, it also

appears far easier to find solutions for the combined controller which often starts at

generation 0 with a higher fitness than the best controllers evolved for the GRN by

itself. Additionally, the performance of the combined controller is more consistent, as

indicated by the smaller error bars.

The difference in performance is most clearly marked in the initial clustering task.

In this case, the combined controller can solve the task, to some degree, by simply

expressing any two A-CAMs which adhere. The only real challenge for the GA is

to find a GRN which sets the levels of A-CAM expression that generate the most

appropriate level of adhesion for the environment10. This is particularly visible in the

results which show that even at generation 0 the best individual achieved a very high

fitness which was then increased only slightly over the remainder of the run.

In the signal response task, the combined controller again finds a solution relatively

quickly. However, the benefit of combining the controllers is more obvious as the

GA is able to find progressively better solutions during the course of the run. The

introduction of the signal can clearly be identified on the protein trace (see fig. 6.8)

10In practise, as the combined controller does not require anydynamic behaviour to achieve this task,
the GRN actually adds unnecessary complexity. Instead, a GAcould simply be used to directly set the
levels of A-CAM expression which could remain fixed for the duration of the simulation.
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as the sudden production of the signal proteins (protein numbers 1-15) 40 seconds into

the simulation. This signal causes a change in gene expression and the GRN quickly

settles into a new stable state. In this new state, there is a clear change in the expression

of proteins, particularly those proteins involved in the production of A-CAMs (protein

numbers 36-47). Figure 6.10 shows screen shots taken at regular intervals during the

simulation the traces were taken from. Viewing a simulationof the best solution for

the GRN-only controller, no noticeable change in behaviouris apparent and in many

cases the aggregate even fails to remain connected. The traces do show a momentary

change in behaviour as a result of the signal (see fig. 6.9). However, the GRN quickly

reverts to its earlier pattern of expression.

Finally, in the differentiation task, it can be seen that thecombined controller

rapidly achieves differentiation, as indicated by the fitness in excess of 0:55 11. How-

ever, the GRN-only controller fails to find any solution. In addition, the results show

that although the combined controller does continue to improve, the overall increase

in fitness is actually very small. This is mainly due to the very large upper bound (U )

used in the fitness calculation (see section 6.3.2.3). In actual fact, due to an error, the

U value that was used while the results were recorded was double the size of the true

maximum. Therefore, the maximum achievable fitness in the task was actually 0:775.

6.3.4 Controller Quality

To evaluate the robustness of the evolved controllers, the best combined controller and

the best GRN-only controller obtained for each of the previous tasks (see section 6.3.3)

were then subjected to the following three scenarios. For each scenario, each of the

controllers was again evaluated for its respective task while the simulation setup was

modified as described. A sample of 20 runs were carried out foreach of the parameter

values.

1. Scalability: To determine whether the evolved controllers were scalable, they

were tested with a number of aggregate sizes consisting of 12-60 A-Cells. In

11Using only the differentiation fitness function a value of> 0:5 indicates differentiation. However,
in the final fitness value this increases to 0:55 (e.g.(0:5�0:9)+0:1 (see equation 6.18)).
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Figure 6.7: Mean and maximum fitness over time for each of the six evolution condi-

tions.
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Figure 6.8: Traces obtained from a genetic regulatory network which was

evolved to carry out the signal response task with the combined controller.

 20  40  60  80 100

5

10

15

20

25

30

G
en

e 
N

um
be

r

Time (seconds)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 20  40  60  80 100

8

18

28

38

48

58

P
ro

te
in

 N
um

be
r

Time (seconds)

0

0.5

1

1.5

2

Gene Activation Trace Protein Level Trace

Figure 6.9: Traces obtained from a genetic regulatory network which was

evolved to carry out the signal response task with the GRN-only controller.
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5s 15s 25s

30s 35s 40s

45s 50s 55s

60s 65s 70s

75s 85s 95s

Figure 6.10: Screen shots of the combined controller carrying out the signal

response task. The signal was introduced at exactly 40s.
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each case, a random initial configuration was selected such that the compactness

was equal to 0:5�0:01 (the mid-range of those used during evolution).

2. Specificity of Initial Configuration : This scenario evaluated the controllers

using unseen initial configurations with a wide range of compactness values

0! 0:8, to determine if their performance was specific to the configurations

used during evolution.

3. Random Forces: In this final scenario, the controllers were tested in a variety of

environmental conditions which differed from those used during evolution. As in

the earlier cell adhesion model experiments (see section 3.3), three different tests

were carried out: (1) Small random movement forces only, (2)small random

torque forces only, (3) small random movement forces in the presence of a fixed

random torque.

The results of these robustness experiments are shown in figures 6.11, 6.12 and

6.13. Again, the combined controller outperformed the GRN-only controller and in

most cases it is clear that the scenarios had a significantly smaller effect on its per-

formance. In addition, the combined controller still showsfar greater consistency,

significantly so for both the clustering and differentiation tasks.

The results show most clearly that the significant difference between the models

appears to be their ability to cope with environmental changes. The different conditions

have very little effect on the combined controller. However, when the level of the

random movement forces increases above those that were present during evolution,

the GRN-only controller’s performance begins to deteriorate. In addition, the presence

of any torque appears to reduce the performance of the GRN-only controller (as can

be seen by the difference between the simulations with only random movement forces

and random movement forces with a small fixed torque) and an increase in torque has

a disastrous effect. This is possibly due to a time lag in the GRN between the detection

of externally diffusing proteins and the production of actuation proteins. For example,

if an A-Cell detects a neighbour in one direction and it rotates before the appropriate

actuation proteins are produced, it will head off in the wrong direction.
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There is also a significant effect on both types of clusteringcontroller when the

initial configuration is changed. However, this is understandable given the task as the

robots will require a longer time to cluster from an initially less compact configuration.

6.3.5 Discussion

It has been demonstrated that by combining the GRN controller with the cell adhe-

sion model, it is possible to improve upon each individual system’s performance. By

adding the cell adhesion model (which already implements a robust self-organising be-

haviour) to the GRN controller, it removes the need for the GRN to interface directly

with the robot’s sensors and actuators. This appears to makethe evolution of effec-

tive controllers easier and improves the overall robustness of the controllers that are

evolved (in particular their ability to cope with environmental perturbations). In the-

ory this would also make it possible to transfer the same controller to any robot which

implements the cell adhesion model.

Additionally, adding the GRN controller to the CAM controller allows both tem-

poral and spatial differentiation of A-CAM expression across the population of robots.

This allows more complex tasks to be performed with a population of (initially) purely

homogeneous robots.
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Figure 6.11: Robustness experiments carried out with the clustering controllers.
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Figure 6.12: Robustness experiments carried out with the signal response controllers.
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Figure 6.13: Robustness experiments carried out with the differentiation controllers.

The results for the GRN-only controller cannot be seen as the mean values were gen-

erally below the lower bound of the scale .



Chapter 7

Summary

7.1 Achievements

This thesis has demonstrated the possibility of harnessingthe behaviours exhibited by

multicellular biological systems to create robust self-organising dynamics in popula-

tions of mobile robots. In this section some of the main achievements of this work are

presented and discussed.� Use of cell adhesion mechanisms to generate interesting global behaviour in

a population of mobile robots:

The main achievement of this work has been the novel use of abstract cell ad-

hesion mechanisms to robustly control a population of mobile robots. More

specifically, this work has demonstrated how this distributed control mechanism

can be use to achieve interesting global behaviour where thepopulation move

toward some stable configuration.� Abstract model of cell adhesion mechanisms:

A significant achievement of this work was the development ofan abstracted

model of the cell adhesion mechanisms which give aggregatesof cells their basic

structure and layering. The model was developed to accommodate the physical

limitations imposed by current technology and was implemented on realistically
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simulated robotic modules to demonstrate the potential forphysical embodiment

and to provide a testbed for experimentation.� Distributed self-organisation and self-repair:

The proposed model requires only local communication and sensing to gener-

ate an extremely robust level of self-organisation in modules with either two or

three dimensional movement. In the simplest case, the modelcan generate effec-

tive aggregation behaviour where the modules actively minimise their exposed

surface area and form approximate disc or sphere configurations with the mean

separation between the modules determined by the system parameters. However,

it is also possible to define more complex hierarchical relationships between pre-

selected subsets of the population, causing varying degrees of sorting and mixing

in the final configuration. Both these behaviours have demonstrated robustness

to environmental perturbations which actively move or rotate the individual mod-

ules. Furthermore, it has been shown that this type of turbulence actually helps

drive the system toward its final equilibrium state. In addition, as the individual

modules are constantly driven toward the same equilibrium state, the model has

inherent self-repair allowing it to recover from even largedisruptions which may

reorganise the whole population.� Behaviour consistent with the DAH:

The simulation work has shown that the model behaves as predicted by the DAH

which inspired its development. This allows the final configuration of any ag-

gregate to be predicted from the adhesive relationships between the subsets of

modules in a population. More importantly, the reverse is also true, and given a

final configuration, the appropriate adhesions can be calculated.� Integration of a powerful dynamic control mechanism:

As a final exercise, the basic model’s main weakness in its lack of dynamic con-

trol was addressed through a collaborative work where the cell adhesion model

was combined with a biologically inspired genetic regulatory network (GRN)

controller. This introduces a mechanism for dynamically increasing or decreas-

ing the levels of expression of particular A-CAMs (which control the adhesions
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between the modules) in response to environmental stimuli.It was demonstrated

that the GRN can successfully manipulate the dynamics of thecell adhesion

model to achieve a number of more complex tasks. In addition,it is shown that

this hybrid model easily outperforms a pure GRN controller in every case.� Framework for further development:

The final hybrid model provides a basic cellular system whichaffords the in-

clusion of additional cellular behaviours. These behaviours would provide addi-

tional dynamics for the evolved controllers to exploit, thus allowing increasingly

complex patterns of behaviour to be produced.

7.2 Future Work

7.2.1 Examination of Scalability

The distributed nature of the model which has been presentedin this work means that

each module in the system runs the same algorithm regardlessof the total population

size. Therefore, in a physical implementation, no additional overhead is generated

when extra modules are added. However, in simulation, the interactions between all

the modules must be considered. Therefore, larger population sizes have far greater

computational requirements.

To allow a thorough exploration of the model parameters the population sizes

which could be effectively investigated in this work had to be limited. Therefore,

an obvious continuation of this work could examine the true scalability of the model.

Larger population sizes would also allow the investigationof more complex hierarchi-

cal relationships and should help reveal any limitations ofthis approach.

7.2.2 Expansion of the Combined controller

7.2.2.1 Morphogen Gradients & Chemotaxis

Morphogen gradients are a key element of morphogenesis and provide a robust mech-

anism for differentiating cells and breaking the symmetry of developing organisms



254 Chapter 7. Summary

(see section 1.4.1.2). In addition, through the phenomenonknown as chemotaxis, cells

are able to follow even weak gradients toward their source and successfully migrate

over long distances. Section 1.4.1.2 introduces the existing work in collective robotics

where virtual gradients are used to create simple 2D geometric structures. In the most

promising work, presented by Mamei et al. [39], the agents generate the gradients

using only local communication by propagating signals through the population.

This elegant approach could easily be integrated into the GRN-controlled cell ad-

hesion model by simply adding an extra category of diffusingproteins which the GRN

can detect and produce. These values could then be propagated using the existing A-

Cell communication mechanism. As the A-Cells have the additional ability to sense

the direction the signals originate from, they could also generate additional attrac-

tive forces which drive them up or down the gradient to generate chemotaxis-like

behaviour. However, unlike the pure gradient approach proposed by Mamei et al.

[39], the underlying adhesive forces should prevent the A-Cells from simply wander-

ing away from the main aggregate and thus increase the overall robustness.

7.2.2.2 Cell Division & Cell Death

Cell division and cell death both play a crucial role during morphogenesis and control

the growth and development of every structure. In addition,in developed organisms

these functions are critical for both general maintenance and repair. Therefore, it is

clear that these functions could also be beneficial in the creation and maintenance of

complex self-organising structures.

It is possible to envisage a potential method where the A-Cells presented in this

thesis could mimic these complex cellular behaviours by using the inherent space be-

tween the modules to transport units to and from the structure. Such an approach would

require each structure to maintain a reservoir of unused A-Cells. Therefore, a single

cell division would require the recruitment of one of these free A-Cells, while a single

cell death (retirement) would assign an A-Cell back to the reservoir. The complex task

is to successfully transport these A-Cells to their destination without disrupting the

existing structure. It is this task which could exploit the design of the A-Cell model.

If an A-Cell fails to broadcast a communication signal it is effectively invisible to the



7.2. Future Work 255

other A-Cells in the aggregate. However, it can still detectthe signals being broadcast

and thus avoid any collisions. Therefore, it is theoretically possible for A-Cells to nav-

igate through the empty space of an existing structure, whilst having minimal effect on

the A-Cells that they pass. This leaves the problem of successfully navigating to the

destination. However, gradients like those proposed in section 7.2.2.1 could provide

a solution. In a similar approach to the system employed by Stoy and Nagpal [56],

dividing A-Cells could generate a diffusing gradient whichwould guide a recruit from

the reservoir to the desired position. Once there the A-Cellcould start broadcasting

a communication signal and slowly increase the size of its virtual membrane. In this

way, it would appear as though the A-Cell had slowly grown at that location. Simi-

larly, through a reverse procedure, A-Cells could die and follow a gradient back to the

reservoir.

Clearly the described process omits many of the details thatsuch behaviours would

require. However, it is simply intended to provide a basic illustration of a possible

approach that could be employed when considering this problem.





Appendix A

Complementary Algorithms

A.1 Concave Hull Algorithm

This appendix describes the details of the two algorithms that were developed for cal-

culating the concave hull of a connected set of points in two and three dimensions1.

Considering the points and connections as vertices and edges, the concave hull is de-

fined as the smallest polygon/polyhedron enclosing all the vertices which can be con-

structed from the available edges.

A.1.1 2D Concave Hull

The convex hull of a set of points is often described as the boundary which would be

created if a rubber band was stretched around the points and released. More specifically

this is the smallest polygon which encloses all the points. From this definition it is

clear that the convex hull is simply a less constrained polygon which must enclose any

concave hull which exists.

This concept forms the basis of the algorithm presented here. In summary, starting

with a convex hull, edges are simply pushed into the polygon splitting the edge at some

previously enclosed point until the desired concave hull isformed.

As mentioned above, the first step of the algorithm involves calculating the convex

1For the purposes of this work, where the points represent A-Cells, a connection exists between the
two A-Cells if their membranes were in contact.

257



258 Appendix A. Complementary Algorithms

x
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Figure A.1: The subdivision of edge Eab to form two new edges Eax and Exb.

hull of the set of points. There are many standard algorithmswhich can be used for

this purpose [24, 26, 33]. However, their individual characteristics vary greatly. In

this work the Jarvis’s March approach[33] was used as it can be implemented in such

a way that it is more tolerant of near-linear datasets2. Once the convex hull has been

determined, the algorithm proceeds by recursively subdividing the edges of the hull

whose vertices are not connected. An edge (Eab) is subdivided by forming two new

edges,Eax andExb, with the vertex (x) which is on the left hand side ofEab and has the

shortest perpendicular distance to it (see fig. A.1). If an edge between two unconnected

points cannot be subdivided (i.e. there are no vertices which form a perpendicular line

with the edge), then it is not possible to form a single concave hull around the points.

Once all the edges of the polygon are formed by two connected points, the algorithm

ends. Figure A.2 shows the algorithm in action.

A.1.2 3D Concave Hull

In 3D, concave hull construction is unsurprisingly more complex. In this case the

problem is similar to a more common image processing problem– explicit surface

reconstruction from unorganised points. Typically, this involves the reconstruction of

a surface given a collection of points obtained by laser range scanning the original.

However, critically, the final surface contains only pointsfrom the original data. In the

alternative approach, implicit reconstruction, the surface is approximated by a func-

2Jarvis’s March only requires a simple check to determine which side of a line a point lies on.
Other approaches require points to be ordered by the angle they form with some reference point[24].
Therefore, near linear datasets require very high precision in the angle measurement.
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(a) (b)

(c) (d) (e)

(f) (g) (h)

(i) (j) (k)

Figure A.2: The 2D concave hull algorithm applied to a test dataset. (a) the

points and the connections between them (b) the convex hull of the dataset

(c)–(k) the intermediate stages in the algorithm.
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Figure A.3: Selecting a new face fn given the current face fc.

tion and a polygon mesh is fitted to the approximate surface using some optimisation

criteria.

Our concave hull construction problem has two key differences from this traditional

problem:

1. The dataset contains internal points in addition to thosewhich lie on the surface.

2. There is additional information in the form of the connections which exist be-

tween the vertices.

As it was not possible to find an existing technique which could cope with this type

of data the novel algorithm presented in the section was developed. Initially, some

attempts were made to modify the existing 2D algorithm. However, it did not adapt

well to 3D.

Instead of modifying an existing watertight hull3, the 3D algorithm starts with only

a seed face, which is known to be on the hull, and progressively builds the hull one

face at at time. The main assumption this progressive construction is based on is:

Given an edge (e1) of a face (fc) known to be on the concave hull and a set of faces

(F ) which are connected toe1, the facefn 2 F which makes the smallest clockwise

angleα with fc is also on the concave hull (see fig. A.3).

The clear problem with this assumption is that it requires knowledge of all the valid

faces which can be constructed from a given edge. Therefore,for the progressive stage

to operate efficiently, the algorithm must begin by first calculating all the valid faces

which can be constructed. This is a very expensive step involving three nested loops

(see fig. A.4) which, despite modifications to improve efficiency, will still be On3,

3A fully connected hull with no gaps or holes.
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greatly limiting the scalability of the algorithm. However, for datasets of the size used

in this work, this is still manageable.

for(i=0; i < n-2; ++i)

for(j=i+1; j < n-1; ++j)

if( connected(point[i], point[j]) ) then

for(k=j+1; j < n; ++j)

if( connected(point[i], point[k]) and connected(point[j],

point[k]) ) then

face(point[i], point[j], point[k]) is valid.

Figure A.4: Pseudo-code showing the nested loops required for generating

the list of valid faces, where n is the number of points in the dataset.

Having calculated the valid faces, the algorithm proceeds by finding a seed face

known to be on the concave hull. This can be determined by finding the face furthest

along some random direction vector. The algorithm then proceeds by placing the three

edges which form the seed face on to a stack (E ) along with details of the facefei they

were associated with. The seed is then added to a list of final faces (H ) which form

the concave hull. At this point, the main loop of the algorithm begins by popping the

first edge (et) off the top ofE . The valid faces connected to this edge are then retrieved

and the one which makes the smallest clockwise angle withfet (i.e. the face associated

with the edge), is selected. If this new face (fn) is already contained inH (i.e. it has

been processed previously) nothing more is done and the loopreturns. However, if

fn is not contained inH , it is added and the remaining edges of the face, notet , are

pushed ontoE . In this way the hull slowly grows over the dataset untilE is empty

thenH can simply be returned.

Unfortunately, although the above algorithm has an appealing simplicity there are

certain cases where it breaks down. These cases relate to theinstances where growing

sections of the hull intermesh. Figure A.5 shows a clear example of the problem. At

this point, some of the faces belonging to the hull have already been determined by the

algorithm, includingfe. Therefore, the facef1, which makes the smallest clockwise
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fc

f2

f1

Current Face

Existing Face

Figure A.5: The intermeshing faces problem.

angle with fc, cannot also be selected as a face on the hull, as it is known tointersect

fe4. The solution to this problem is to selectf2, the face which makes the second

smallest clockwise angle withfc instead. To summarise; instead of selecting the face

which simply makes the smallest clockwise angle, it is necessary to select the face

which makes the smallest clockwise angle and additionally does not intersect any of

the faces already determined to be on the hull (H ).

Even using efficient triangle intersection code[28], this is another expensive op-

eration, with the number of possible checks growing as facesare added to the hull.

However, again this overhead is sufficiently small for the datasets used in this work.

Figure A.6 shows various stages of the algorithm’s progressfor an example dataset

taken from a simulation of the cell adhesion model. In this example, all the vertices

are well connected. However, in some cases it could be that two sections of the dataset

are connected by only a single vertex (see fig. A.7). It is alsoequally possible that

an isolated edge (i.e. not part of a valid face) might join twosections of the dataset

or alternatively link a single vertex with the remainder of the dataset (see fig. A.8).

These features would cause problems for the concave hull algorithm as it only moves

between faces which share an edge. Therefore, in the situations shown in figures A.7

and A.8, the concave hull would only be built over one sectionof the dataset. To avoid

this complication, the datasets can very easily be segmented into clusters of points

which are connected to each other by valid faces. Once the algorithm has been applied

to each of these clusters, the individual hulls can then be combined (see fig. A.9).

4Clearly, faces on a valid watertight hull cannot intersect.
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25 Faces 34 Faces 64 Faces

95 Faces 100 Faces Edges & Surface Normals

Figure A.6: The 3D concave hull algorithm applied to a test dataset.

Single Vertex

Figure A.7: A single vertex joining two sections of a dataset.
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A single edge
joining two 
sections of
the dataset.

A single edge
connecting a
vertex to the
rest of the
dataset.

Figure A.8: Isolated edges in a dataset.

Figure A.9: The combination of the two hulls calculated for the separate

segments of the dataset.

The design of the concave hull algorithm means that it can be applied to any con-

nected point cloud. Therefore, it can also be used to generate hulls for datasets contain-

ing only points from an objects surface (including range data) (see fig. A.10). How-

ever, this involves assigning some arbitrary connection distance to the points which

is likely to result in a much worse approximation of the actual surface than could be

achieved with current image processing techniques [13].

A.2 Generating Random Configurations

This section proposes a method for generating random initial configurations for A-

Cell aggregates which require a specific separation distance between the A-Cells. It

is assumed that each A-Cell must be the required distance from at least one of its

neighbours, to ensure the aggregate is well connected. However, to prevent repulsive

forces between the A-Cells simply causing the aggregate to immediately disintegrate,

no two A-Cells are placed closer together than this distance.
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Figure A.10: The concave hull calculated from surface points of a noisy torus.
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Current Positions
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Random Direction Vector

(a) (b)

Candidate Position Valid Candidate

(c) (d)

Figure A.11: Selecting a new position for a random configuration.

The algorithm starts with the origin as an initial seed position. New positions are

then added one at a time until the desired aggregate size is achieved. To create a new

position, a random direction vector (d) is generated. This can be either 2D or 3D,

depending on the desired dimensionality of the random configuration (see fig. A.11 -

b). A line is then created from the origin in directiond to some point well outside the

bounding box of the current set of positions. A list of new candidate positions can then

be generated by calculating the intersection between this line and a sphere of radiusm,

wherem is the separation distance, around each of the current positions (see fig. A.11

- c). These are then processed to remove those which are within distancem of any of

the other current positions (see fig. A.11 - d) and one of the remaining candidates is

selected.

Figure A.12 shows an example random configuration generatedfor a 64 A-Cell

aggregate using the algorithm outlined above.
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Figure A.12: An example 2D random configuration generated for a 64 A-Cell

aggregate.





Appendix B

Additional Results from the 2D Sorting

Experiments

This appendix contains full results from some of the experiments summarised in chap-

ter 4.
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Figure B.1: CT results for 36 A-Cell aggregates starting from both an initially

mixed grid and a sorted grid. In each graph 4 homotypic adhesion pairs

are shown. The b! b adhesion of each pair is fixed at 0:15125N while

the a! a adhesion increases along the x axis. Therefore, the magnitude of

difference between the homotypic adhesions increases from left to right.
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Figure B.2: CT results for 64 A-Cell aggregates starting from both an initially

mixed grid and a sorted grid. In each graph 4 homotypic adhesion pairs

are shown. The b! b adhesion of each pair is fixed at 0:15125N while

the a! a adhesion increases along the x axis. Therefore, the magnitude of

difference between the homotypic adhesions increases from left to right.
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CBI Results: (a)a! a (b) a! b (c) b! b
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Figure B.3: Results for a range of heterotypic attraction at equilibrium values. The

results were obtained from 36 A-Cell aggregates with the initial configuration of an

intermixed grid. a! a adhesion = 0:1890625N and b! b adhesion = 0:15125N
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CBI Results: (a)a! a (b) a! b (c) b! b
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Figure B.4: Results for a range of heterotypic attraction at equilibrium values. The

results were obtained from 64 A-Cell aggregates with the initial configuration of an

intermixed grid. a! a adhesion = 0:1890625N and b! b adhesion = 0:15125N
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CBI Results: (a)a! a (b) a! b (c) b! b
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Figure B.5: Results for a range of heterotypic attraction at equilibrium values. The

results were obtained from 36 A-Cell aggregates with the initial configuration of a sorted

grid. a! a adhesion = 0:1890625N and b! b adhesion = 0:15125N
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CBI Results: (a)a! a (b) a! b (c) b! b
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Figure B.6: Results for a range of heterotypic attraction at equilibrium values. The

results were obtained from 64 A-Cell aggregates with the initial configuration of a sorted

grid. a! a adhesion = 0:1890625N and b! b adhesion = 0:15125N
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CBI Results: (a)a! a (b) a! b (c) b! b
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Figure B.7: Results for a range of heterotypic attraction at equilibrium values. The

results were obtained from 36 A-Cell aggregates with the initial configuration of an

intermixed grid. a! a adhesion = 0:226875N and b! b adhesion = 0:15125N
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CBI Results: (a)a! a (b) a! b (c) b! b
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Figure B.8: Results for a range of heterotypic attraction at equilibrium values. The

results were obtained from 64 A-Cell aggregates with the initial configuration of an

intermixed grid. a! a adhesion = 0:226875N and b! b adhesion = 0:15125N
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CBI Results: (a)a! a (b) a! b (c) b! b
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Figure B.9: Results for a range of heterotypic attraction at equilibrium values. The

results were obtained from 36 A-Cell aggregates with the initial configuration of a sorted

grid. a! a adhesion = 0:226875N and b! b adhesion = 0:15125N
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CBI Results: (a)a! a (b) a! b (c) b! b
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Figure B.10: Results for a range of heterotypic attraction at equilibrium values. The

results were obtained from 64 A-Cell aggregates with the initial configuration of a sorted

grid. a! a adhesion = 0:226875N and b! b adhesion = 0:15125N
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CBI Results: (a)a! a (b) a! b (c) b! b
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Figure B.11: Results for a range of heterotypic attraction at equilibrium values. The

results were obtained from 36 A-Cell aggregates with the initial configuration of an

intermixed grid. a! a adhesion = 0:45375N and b! b adhesion = 0:15125N
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CBI Results: (a)a! a (b) a! b (c) b! b
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Figure B.12: Results for a range of heterotypic attraction at equilibrium values. The

results were obtained from 64 A-Cell aggregates with the initial configuration of an

intermixed grid. a! a adhesion = 0:45375N and b! b adhesion = 0:15125N
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CBI Results: (a)a! a (b) a! b (c) b! b

0.2 0.25 0.3 0.35 0.4 0.45
0

0.2

0.4

0.6

0.8

1

Heterotypic Adhesion (N)

(c)

0.2 0.25 0.3 0.35 0.4 0.45
0

0.2

0.4

0.6

0.8

1

A
re

a 
of

 B
on

de
d 

M
em

br
an

e 
(N

or
m

al
is

ed
)

(b)

0.2 0.25 0.3 0.35 0.4 0.45
0

0.2

0.4

0.6

0.8

1

(a)

CT Results.

0.2 0.25 0.3 0.35 0.4 0.45
0

5000

10000

15000

Heterotypic Adhesion (N)

C
on

ve
rg

en
ce

 T
im

e 
(s

)

Figure B.13: Results for a range of heterotypic attraction at equilibrium values. The

results were obtained from 36 A-Cell aggregates with the initial configuration of a sorted

grid. a! a adhesion = 0:45375N and b! b adhesion = 0:15125N
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CBI Results: (a)a! a (b) a! b (c) b! b
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Figure B.14: Results for a range of heterotypic attraction at equilibrium values. The

results were obtained from 64 A-Cell aggregates with the initial configuration of a sorted

grid. a! a adhesion = 0:45375N and b! b adhesion = 0:15125N



284 Appendix B. Additional Results from the 2D Sorting Experiments

CBI Results: (a)a! a (b) a! b (c) b! b
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Figure B.15: Results for 64 A-Cell aggregates over a range of random move-

ment force limits. The aggregates started from the initial configuration of an

intermixed grid and should move toward the onion equilibrium state.
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CBI Results: (a)a! a (b) a! b (c) b! b
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Figure B.16: Results for 64 A-Cell aggregates over a range of random move-

ment force limits. The aggregates started from the initial configuration of a

sorted grid and should move toward the onion equilibrium state.
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CBI Results: (a)a! a (b) a! b (c) b! b

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05
0

0.2

0.4

0.6

0.8

1

Random Force: Max Size (N)

(c)

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05
0

0.2

0.4

0.6

0.8

1

A
re

a 
of

 B
on

de
d 

M
em

br
an

e 
(N

or
m

al
is

ed
)

(b)

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05
0

0.2

0.4

0.6

0.8

1

(a)

CT Results.

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05
0

5000

10000

15000

Random Force: Max Size (N)

C
on

ve
rg

en
ce

 T
im

e 
(s

)

Figure B.17: Results for 64 A-Cell aggregates over a range of random move-

ment force limits. The aggregates started from the initial configuration of an

intermixed grid and should move toward the intermixed equilibrium state.
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CBI Results: (a)a! a (b) a! b (c) b! b
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Figure B.18: Results for 64 A-Cell aggregates over a range of random move-

ment force limits. The aggregates started from the initial configuration of a

sorted grid and should move toward the intermixed equilibrium state.
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CBI Results: (a)a! a (b) a! b (c) b! b
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Figure B.19: Results for 64 A-Cell aggregates over a range of random move-

ment torque limits. The aggregates started from the initial configuration of

an intermixed grid and should move toward the onion equilibrium state.
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CBI Results: (a)a! a (b) a! b (c) b! b
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Figure B.20: Results for 64 A-Cell aggregates over a range of random move-

ment torque limits. The aggregates started from the initial configuration of a

sorted grid and should move toward the onion equilibrium state.
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CBI Results: (a)a! a (b) a! b (c) b! b
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Figure B.21: Results for 64 A-Cell aggregates over a range of random move-

ment torque limits. The aggregates started from the initial configuration of

an intermixed grid and should move toward the intermixed equilibrium state.
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CBI Results: (a)a! a (b) a! b (c) b! b
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Figure B.22: Results for 64 A-Cell aggregates over a range of random move-

ment torque limits. The aggregates started from the initial configuration of a

sorted grid and should move toward the intermixed equilibrium state.
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CBI Results: (a)a! a (b) a! b (c) b! b

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05
0

0.2

0.4

0.6

0.8

1

Random Force: Max Size (N)

(c)

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05
0

0.2

0.4

0.6

0.8

1

A
re

a 
of

 B
on

de
d 

M
em

br
an

e 
(N

or
m

al
is

ed
)

(b)

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05
0

0.2

0.4

0.6

0.8

1

(a)

CT Results.

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05
0

5000

10000

15000

Random Force: Max Size (N)

C
on

ve
rg

en
ce

 T
im

e 
(s

)

Figure B.23: Results for 64 A-Cell aggregates with a fixed random torque

limit over a range of random force limits. The aggregates started from the

initial configuration of an intermixed grid and should move toward the onion

equilibrium state.
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CBI Results: (a)a! a (b) a! b (c) b! b
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Figure B.24: Results for 64 A-Cell aggregates with a fixed random torque

limit over a range of random force limits. The aggregates started from the

initial configuration of a sorted grid and should move toward the onion equi-

librium state.
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CBI Results: (a)a! a (b) a! b (c) b! b
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Figure B.25: Results for 64 A-Cell aggregates with a fixed random torque

limit over a range of random force limits. The aggregates started from the

initial configuration of an intermixed grid and should move toward the inter-

mixed equilibrium state.
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CBI Results: (a)a! a (b) a! b (c) b! b
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Figure B.26: Results for 64 A-Cell aggregates with a fixed random torque

limit over a range of random force limits. The aggregates started from the

initial configuration of a sorted grid and should move toward the intermixed

equilibrium state.
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Steps Toward Self-reconfigurable Robot
Systems by Modelling Cellular Adhesion

Mechanisms
Peter Ottery & John Hallam

IPAB, School of Informatics, The University of Edinburgh
peter.ottery@ed.ac.uk jhallam@inf.ed.ac.uk

Abstract.
This paper presents a distributed control method for a collection of ho-

mogeneous robotic modules. We propose that by modelling simple cellular
adhesion mechanisms, collections of these modules can self-assemble into
virtually bonded aggregates which behave as predicted by Steinberg’s ‘dif-
ferential adhesion hypothesis’. This allows simple self-repairing hierarchi-
cal structures to be formed, the exact properties of which can be controlled
by varying the adhesive properties of the individual modules. Finally we
present the results of some initial simulations which demonstrate that this
model responds positively to small amounts of turbulence.

1 Introduction

Self-reconfigurable robotic systems have the ability to adapt to the needs of various
tasks or operating environments. They consist of many independent modules which
can reconfigure to change the overall geometric structure ofthe system. This shape
changing ability allows these systems to perform many complex, yet desirable func-
tions such as self-repair and self-assembly.

Many of the existing systems [1, 2, 3, 4] are composed ofhomogeneousunits,
making it possible for any unit in the system to replace any other unit. However,
in some cases the control systems that guide the units are still based on centralised
planning. If instead, the control is distributed then no individual unit is critical to
the system, adding a higher level of robustness.

Much of the inspiration for these fully distributed systemshas been derived from
naturally occurring phenomena. At the lowest level the forces between individual
molecules are modelled allowing the “artificial physics” todrive the units into sim-
ple geometric structures [5]. At the other end of the spectrum systems are based on
the simple interactions between social insects which allowthe formation of various
connected and unconnected structures [6].
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Our approach to self-reconfiguration, which is also inspired by nature, is to at-
tempt to model some of the organisational properties of biological cells. These cells
rearrange themselves in extremely complex ways to produce remarkably compli-
cated organisms and they achieve this with an extremely highdegree of accuracy.

The most basic organisational behaviour exhibited by cellsis due to the adhesion
forces generated between them. This behaviour can adequately be explained by the
‘differential adhesion hypothesis’ (DAH) [7] which shows how simple hierarchical
patterns can be formed simply due to the differences in the adhesion forces between
different cell types.

In this paper we present a model of some of the interaction properties of biolog-
ical cells. The model we propose provides a mechanism for controlling a collection
of robotic modules in a complex fluid environment, allowing them to create and
maintain simple hierarchical structures. This is achievedby making the modules
behave like simple artificial cells which attempt to model cellular membranes and
adhesions between those membranes, such that they behave aspredicted by the dif-
ferential adhesion hypothesis.

2 Differential Cellular Adhesion

The ’differential adhesion hypothesis’, proposed by Steinberg[7], suggests that cells
rearrange to minimise their free energy and thus form the most thermodynamically
stable configuration.

Considering an aggregate of cells from the same tissue, heldin suspension, this
minimisation of free energy is demonstrated by the roundingthat occurs. The cells
attempt to maximise the adhesions they make and thus form themost compact struc-
ture - a sphere.
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Figure 1:Two equilibrium states proposed by the DAH.

The more interesting case occurs when two or more tissues areintermixed. For
example, if two cell types (A and B) are mixed, initially the bonding between the
cells will be random. However, if there exists a difference in the strength of the
bonds then a gradual selection of the strongest bonds will cause the cells to rear-
range into a more stable configuration. For example if homogeneous (A-A, B-B)
bonds are stronger than heterogeneous bonds (A-B) the cellswill attempt to sort
into pure populations of the different types (fig. 1(a)). If,however, the A-A bonds
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are stronger than the A-B bonds which are in turn stronger than the B-B bonds, then
the A cells will migrate centrally while the B cells form a shell around them (fig.
1(b)).

Although, Steinberg proposes that the above behaviours aredriven by surface
energies he does not clarify the mechanism that allows them to drive the cells. There
is now growing evidence that small random movements of the cells caused by mem-
brane ruffling could be an essential ingredient [8]. These movements allow the cells
to explore their neighbourhood and thus select stronger bonds.

3 Adhesion Model

Our model provides a control method for a collection of robotic modules. As these
modules represent an extremely simplified model of a biological cell we refer to
them throughout this paper as A-Cells (Artificial Cells).

The A-Cells are based on the design of the HYDRON module whichis a small,
near spherical, sub-aquatic robot currently being designed by the HYDRA consor-
tium1. The module is capable of independent three dimensional movement. Ad-
ditionally, neighbouring modules will be able to communicate using eight optical
transmitter, receiver pairs located on the HYDRON’s hull atthe corners of a cube.

3.1 Communication

The A-Cells rely on a relatively simple communication system. Each A-Cell con-
tinually broadcasts a single ‘transmission signal’, with alimited range, from each
of its transmitters. This signal contains both informationrelating directly to the
broadcasting A-Cell and a list carrying information aimed at individual cells in the
system.

In addition to data transfer the transmission signal also allows A-Cells to deter-
mine an approximate position of their neighbours. The intensity of the signal gives
a crude indication of the distance it has travelled while theset of detectors that are
receiving the signal indicate the general direction of the source.

3.2 Membrane Model

One of the most important structures in living cells is the deformable membrane
which surrounds the cell nucleus. Our model provides a very simple approximation
of such a membrane by using the A-Cells’ communication system to create a virtual
force field which extends some distance from the actual A-Cell hull. Like a fluid
membrane this force field behaves like a viscous spring, resisting compression from

1The HYDRA consortium home page is available at ‘http://www.hydra-robot.com/’.
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similar force fields generated by neighbouring A-Cells witha force proportional to
the speed of the compression.R = (a �m) + (d � v) (1)

whereR is the repulsion force acting along the line joining the two A-Cell centres
(Kgms�2), a the area of membrane (m2) that has been compressed,m the repulsion
factor (Kgm�1s�2, a system parameter),d the damping coefficient (Kgs�1, also a
system parameter) andv is the estimated relative velocity (ms�1) concerned along
the line joining their centres.

Each A-cell transmits to its neighbours the radius of its physical hull and the dis-
tance its membrane (virtual force field) extends from this hull. Therefore, by com-
paring the approximate distance of neighbouring A-Cells with their relative sizes,
an A-Cell can detect membrane collisions and estimate the area of membrane that
has been compressed. Also, by monitoring how the distance ofeach neighbouring
A-Cell changes over time it is possible to calculate their relative speeds, and thus
the viscous component of the repulsive force.

To ensure that two colliding A-Cells experience an equal andopposite repulsive
force some further communication is required. Each of the colliding A-Cells add
the repulsive force they calculated to their transmission signal along with the ID of
the A-Cell involved in the collision. Each A-Cell can then simply average its own
calculated value with that of the other giving equivalent results.

One flaw with this simple model is that each membrane collision is considered
separately. Therefore, it is possible for the same area of membrane to collide with
more than a single other membrane simultaneously. However,the principal repul-
sive behaviours of the membrane remain consistent.

3.3 A-CAMs

The membranes of real cells use Cellular Adhesion Molecules(CAMs) to form
bonds which are both reversible and selective. We attempt tomodel these key prop-
erties through the use of A-CAMs. Like CAMs, the A-CAMs are capable of both
homophilic or heterophilic binding. However, unlike some real CAMs each A-CAM
may only bond with a single type. This greatly simplifies the implementation with-
out restricting the power of the model.

When the A-CAMs form bonds they produce a small attractive force pulling
the two areas expressing the A-CAMs closer together. Thus bonded A-Cell mem-
branes are pulled together until the attractive force is balanced by the repulsive force
generated by the compression.

Clearly when two areas of real cell membrane come into contact only some
subset of the CAMs present on each membrane will be apposed and thus able to
bond. The size of this subset is dependent on both the number of CAMs on each area
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of membrane and the strength of the bond between the CAMs. Greater densities of
CAMs will increase the chance that any two are apposed and a greater bond strength
will allow the CAMs to seek each other out more assiduously.

To express these relationships with the A-CAMs we use the following equa-
tion which exhibits the necessary properties when relatingnumbers of available
A-CAMs to numbers that bond.N = min(An1; An2) sigmoid�m(n1; n2)k + (An1 � An2)2An1 � An2 �

(2)

whereAn1 is the number of A-CAMs of typen1 on membrane 1,An2 is the cor-
responding number of typen2 A-CAMs on membrane 2,m(x; y) is the attractive
force between A-CAMs of typex andy andk is a system parameter that controls
the influence of the bonding strength on bonding numbers.

3.4 Adhesion Sites

The A-Cell membrane model allows the same area of membrane tobe in contact
with more than a single other membrane simultaneously (seex3.2). However, to
achieve more realistic selective bonding, the bonding of each area should be re-
stricted to only one of the membranes in contact.

This is achieved by dividing the membrane surface into a number of equally
sized patches or adhesion sites, such that each adhesion site can only bond with a
single membrane. If an adhesion site comes into contact withmore than a single
membrane it makes a probabilistic decision as to with which it should bond. This
decision is based on the estimated bond strength of a bond between a unit area of
each membrane. To calculate this value, each A-Cell includes in its transmission
signal the surface density of every A-CAM it is expressing. These values can then
be compared with those of any A-Cell in contact and the estimated bond strength
can be calculated.

Having established which adhesion sites wish to bond on eachmembrane it is
then necessary to calculate the number of A-CAMs this represents. As we assume
that any A-CAMs being expressed are evenly distributed across the membrane sur-
face this is relatively straight forward. Once calculated these values are communi-
cated between the colliding A-Cells by including them in their respective transmis-
sion signals. Each A-Cell then compares each pair of bondingA-CAMs in turn and
calculates the total attractive force that will be produced.

This algorithm makes the following two simplifications:

1. It is assumed that adhesion sites that decide to bond on twocolliding membranes
appose each other. However, it is clear that this might not bethe case.

2. Adhesion sites which decide to bond to a specific membrane are not reallocated
if unused.
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Avoiding these simplifications would require far more complexity and would
greatly increase the communication required between A-Cells.

3.5 Random Motion

In x2 we mentioned that random cell movements may play an important role in cell
rearrangement. Although turbulence present in the environment may be sufficient,
this has also been accommodated in our model by allowing the A-Cells to add some
small random force, below some predefined maximum, to each force they produce.

3.6 Model Summary

Each A-Cell repeatedly cycles through the procure of detecting membrane colli-
sions and calculating the associated forces they generate.This has been summarised
in figure 2.

4 Simulation Results - 2D Rounding

In this section we present some of our initial results which show the rounding be-
haviour of the model for simulations carried out in a water like fluid with A-Cell
movements constrained to two dimensions.

In each simulation the actual A-Cell hull has a radius of 0.05m and the virtual
membrane extends a further 0.5m. The A-Cell mass has been setto 1Kg. Addi-
tionally, every A-Cell has been allocated the same membraneproperties such that
the equilibrium distance (the point where the attractive forces are balanced by the
repulsive forces) is 0.55m and the attraction between two cells at this distance is
0.15125N. Finally the membrane’s damping coefficient has been set to 0.4Kgs�1
and 64 adhesion sites have been used (in two dimensions the adhesion sites divide
the equator of the A-Cell membrane).

To investigate the rounding behaviour of an A-Cell aggregate we have used the
following compactness measure:C = 4 � � � ap2 (3)

wherea is the area of the aggregate (m2) andp its perimeter (m). This intuitive
measure gives an index between 0 and 1, with 1 the most compact(spherical) and
0 the least compact (linear). Figure 3 shows how this measurechanges during a
typical run of the simulator with 36 A-Cells starting in a perfect line such that they
are the equilibrium distance apart. This demonstrates the common pattern where
the A-Cell aggregate quickly increases in compactness before converging to some
maximum value.
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1. Check which signals can be detected and calculate the
approximate distance and direction of their source.

2. Determine if there are any membrane collisions.

3. For each A-Cell in contact:

(a) Compare the values in the A-Cell’s transmission
signal with the values being broadcast from this
A-Cell and calculate any repulsive or attractive
forces.

4. Sum any repulsive or attractive forces to calculate a
single force vector.

5. Add any random force to the force vector.

6. For each A-Cell in contact:

(a) Calculate the repulsive force generated by com-
pressing the membranes.

(b) Calculate the estimated bond strength.

7. For each adhesion site:

(a) Probabilistically decide which membrane to bond
to.

8. Construct the new transmission signal.

9. Generate the final force.

Figure 2:A summary of the procedure employed by the adhesion model.

4.1 Rotational Stability

An interesting observation of this model is the emergence ofa global rotation of
the aggregate. In the presence of small random forces such asthose discussed in
following section, the virtual aggregates can slowly beginto rotate around their
centre of mass and in some cases a slow build up of forces can cause the rotation to
accelerate until the aggregate pulls itself apart.

To prevent this build up of forces we investigated both increasing the time delay
between which the A-Cells produce each force and placing a maximum limit on the
size of the forces that could be produced. As expected, the results showed that both
reducing the maximum force limit and increasing the time delay reduces the average
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Figure 3: Compactness evolution over time for an example runwith parameters discussed in the text.
The images on the right show stages in the convergence of the aggregate.

angular speed of the A-Cells. However, each of these optionsalso reduce the rate
at which the A-Cells round. A sensible choice of values whichgreatly reduce the
angular speed of the A-cells with minimal impact on their rounding ability are a
maximum force of 0.01N and a delay between forces of 0.1s.

4.2 Random

As we have discussed, random movements are thought to aid cell rearrangements
(seex2. Here we show the result of adding either small random forces or small
amounts of random torque to the A-Cells. Each of these could be caused by the
environment or, in the case of the random forces, by the A-Cells themselves. Again
the starting formation for each simulation was a perfect line, such that the A-Cells
are the equilibrium distance apart. Additionally, to reduce the rotational behaviour
of the aggregate, a maximum force of 0.01N and a delay betweenforces of 0.1s
were used. The rounding ability of the simulations is measure by the mean rate
at which the A-Cell aggregates round (Compactness/Time) until the compactness
value converges (see fig. 4(left)) and the convergence valueitself (see fig. 4(right)).

Adding larger random forces should allow the A-Cells to explore more and thus
improve their rounding ability. Figure 4 shows there is a slight increase in the com-
pactness of the resulting aggregates as the random forces increase. However, ran-
dom forces greater than 0.035N caused some A-Cells to break away from the main
aggregate.

Random torque, on the other hand, does not directly cause theA-Cells to make
random movements. However, by causing the A-Cells’ sensorsto become mis-
aligned it allows them to form less rigid structures. Figure5 shows that the level
of torque has little effect on the performance of the A-Cells. However, the presence
of some torque allows the aggregates to become far more compact.
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Figure 4: The effect of random forces on the model’s roundingability.
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Figure 5: The effect of random torque on the model’s roundingability
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Figure 6: The effect of random forces in addition to 0.01Nm random torque on the model’s rounding
ability.

The best performance is achieved by a combination of both random torque and
random forces. In figure 6 the maximum size of the random torque has been set to
0.01Nm. In this case the resulting aggregates are the most compact, with the rate at
which they compact increasing with the level of the random forces being applied.
Again, once the random forces become too large (>0.04N), A-Cells begin to break
away from the main aggregate.

5 Summary

This paper proposed a distributed control method based on the DAH which allows
a collection of homogeneous robotic modules to self-assemble into simple hierar-
chical structures. By allowing the units to continue to search for the most stable
configuration, even after these structures are formed, thismethod also has a degree
of self-repair built in. Additionally, we have presented initial results which suggest
that our model does not require perfect conditions to operate. In fact small random
forces and small amounts of random torque appear to aid the model allowing it to
form more compact structures in a shorter time period.
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Glossary

A-CAM A-Cell Adhesion Molecule: A-CAMs are expressed on the virtual

membrane of the A-Cells. They approximate the Cellular Adhesion

Molecules (CAMs) expressed on real cell membranes and are capable

of both homophilic or heterophilic binding. When the membranes of

two A-Cells collide, some subset of the A-CAMs on the areas incon-

tact will bond generating an attractive force which pulls the two A-Cells

toward each other.

A-Cell A simple simulated robotic module used throughout this thesis as a

testbed for the proposed cellular adhesion model. Each A-Cell con-

sists of a spherically shaped hull and is capable of movementin three

dimensions. A number of transmitter/receiver pairs located on the A-

Cell’s hull allow local communication between neighbouring units.

Adhesion Site An adhesion site controls a region of an A-Cell’s virtual membrane and

all the A-CAMs present on that region. When the adhesion sitecomes

into contact with other membranes it probabilistically selects which one

the A-CAMs will be able to bond with based on the estimated attrac-

tion that could be generated. In this way, adhesion sites provide a sim-

ple mechanism which prevents the same area of an A-Cell’s membrane

from forming multiple bonds simultaneously.

Bootstrapping A method of empirically assessing the uncertainty of a smallsample

without making assumptions about its distribution.
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CAM Cell Adhesion Molecule: CAMs are proteins located on the membrane

of biological cells. These proteins generate adhesions between the cells,

allowing them to form more complex tissues.

CBI Converged Bonding Indices: A scaled measure of the level of bond-

ing which is observed between two of the A-Cell types presentin an

aggregate once the aggregate reaches an equilibrium configuration.

CC Convergence Compactness: A measure of the compactness value calcu-

lated for the equilibrium configuration that is achieved by an aggregate

of A-Cells.

Compactness A measure of the ‘roundness’ of an aggregate.

CR Compacting Rate: The average change in the compactness value of an

A-Cell aggregate as it converges to a stable configuration.

CT Convergence Time: A measure of the total time required for anaggre-

gate of A-Cells to reach an equilibrium configuration.

DAH Differential Adhesion Hypothesis: The hypothesis proposed by Stein-

berg [54] to explain how differences in the adhesion betweencells from

different tissues can cause simple hierarchical patterns to form when

the tissues are mixed.

FOV Field of View: The cone describing the portion of the world that a sen-

sor observes.

GRN Genetic Regulatory Network: A GRN describes the complex interac-

tion between the proteins found in a cell and level of expression of the

cell’s genes.
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Heterotypic A term which describes adhesions formed between cells of different

types.

Homotypic A term which describes adhesions formed between cells of thesame

type.
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