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Abstract 

 

Analyzing regions in the genome with low levels of recombination helps understand 

the prevalence of sexual reproduction. Here, I show that variability in regions of 

reduced recombination in Drosophila can be explained by interference among 

strongly deleterious mutations; selection becomes progressively less effective in 

influencing the behaviour of neighbouring sites as the number of closely linked sites 

on a chromosome increases. I also show that the accumulation of loss-of-function 

mutations on the neo-Y chromosome of Drosophila miranda is compatible with a 

model of selection against such mutations alone, without the need to invoke the 

action of selective sweeps. I describe the discovery of two new sex-linked genes in 

the plant Silene latifolia, SlCyt and SlX9/SlY9. SlCyt has been recently translocated 

from an autosome to the X and shows signs of a selective sweep. Its possible role in 

having caused recombination arrest between the evolving X and Y chromosome is 

discussed. SlX9 still has an intact Y-linked copy that is presumably functional. 

Nucleotide diversity at SlY9 is very low, whereas SlX9 has an unusually high 

diversity and shows signs of introgression from S. dioica into S. latifolia, but the 

effect of this seems very localized. 
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1 Introduction 

 

 1.1.1 Evolutionary consequences of reduced recombination 

Recombination, the exchange of genetic material between homologous sites or 

chromosomes, occurs in most prokaryotic and eukaryotic organisms. However, it is 

still not fully understood why recombination is so prevalent, given that there are 

major costs associated with it (BARTON and CHARLESWORTH 1998; WEST et al. 

1999). Most importantly, recombination leads to the loss of beneficial allele 

combinations in each generation, and, in organisms where recombination is linked to 

sexual reproduction, it is associated with a “two-fold cost of sex” since females also 

need to produce male offspring (MAYNARD SMITH 1978). Mechanistic explanations 

for the existence of recombination, such as the proper disjunction of homologous 

chromosomes during meiosis, cannot explain its universal prominence since some 

organisms, such as male Drosophila, can undergo meiosis without recombination 

(GETHMANN 1988), and some organisms do indeed reproduce without sex - even 

though these lineages tend to be short-lived on an evolutionary time scale 

(MAYNARD SMITH 1978). Instead, research has focused on describing the population 

genetics consequences of the absence of sex and recombination, and relating these 

models to observations from systems in which sex or recombination is indeed absent. 

 

A fundamental fact is that, without recombination, evolution at any one site in the 

genome is not independent of evolution at other, linked sites. In particular, assuming 

that selection is acting to either remove deleterious mutations from the population, or 

to increase the frequency of beneficial alleles, selective processes acting on different 

variants simultaneously will not be independent. These processes of selective 

interference are collectively called Hill-Robertson Interference (HILL and 

ROBERTSON 1966). They occur because a single chromosome will necessarily not 

contain all advantageous variants that are segregating in the population at any one 

time and, without recombination, associations between good and bad alleles cannot 

be broken up. Without recombination, two advantageous mutations that occurred in 

different individuals cannot be united onto the same chromosome, nor can 

deleterious mutations be brought together and eliminated from the population 
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simultaneously (FISHER 1930; MORGAN 1913; MULLER 1932); this increases the time 

of their segregation within the population and leads to the build-up of negative 

linkage disequilibrium among selected sites (an overrepresentation of good-bad 

associations) (FELSENSTEIN 1974; HILL and ROBERTSON 1966). Depending on the 

type and strength of selection, we need to deal with different models of the general 

Hill-Robertson effect. 

 

1.1.2 Models of interference among selected sites 

Selective sweeps occur when a beneficial mutation becomes fixed in a population 

due to strong positive selection (KAPLAN et al. 1989; MAYNARD SMITH and HAIGH 

1974). If there is no recombination, a sweep will drag to fixation all linked variants 

that were present on the same chromosome. Hence, deleterious variants can become 

fixed by a sweep, provided that the selected mutation’s positive impact on fitness 

outweighs the cost of all deleterious mutations linked to it (HADANY and FELDMAN 

2005; JOHNSON and BARTON 2002). On the other hand, any beneficial mutation that 

was also present in the population before the sweep will be lost. 

Another model describes the removal of strongly deleterious mutations from 

the population: background selection (CHARLESWORTH 1994; CHARLESWORTH et al. 

1993; NORDBORG et al. 1996). In this model, strongly deleterious mutations entering 

the population are constantly removed by selection, and, when there is no 

recombination, all neutral or weakly selected sites which are linked to the deleterious 

mutation will be eliminated, too. In this respect, background selection is very much 

like a selective sweep, only that variants are being removed by selection instead of 

becoming fixed. 

A third model, Muller’s ratchet, describes the successive loss of the least-

loaded mutational class from an asexual population (FELSENSTEIN 1974; MULLER 

1964). Since mutations occur randomly, individuals vary in the number of 

deleterious mutations that they carry. If the population size is small, the class of 

individuals that carries the fewest number of deleterious mutations may become lost 

by chance. Without recombination, this class cannot be restored, i.e. the ratchet has 

made one “click”, and there will be a new best class of individuals that can become 
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lost again. Since, in this model, all mutations are assumed to be deleterious and 

irreversible, the fitness of the population decays continuously.  

Finally, the “weak selection Hill-Robertson effect” describes interference 

among weakly selected alleles, which spend a long time segregating within the 

population before they become fixed or lost (COMERON et al. 2008; HILL and 

ROBERTSON 1966; MCVEAN and CHARLESWORTH 2000). Since two beneficial 

mutations cannot be combined onto the same chromosome, they will segregate 

simultaneously and impede each other’s fixation.   

 

1.1.3 The concept of effective population size  

In the context of Hill-Robertson interference, the concept of the effective population 

size, Ne, plays a fundamental role: The effective population size is defined as the size 

of an idealized Wright-Fisher population that experiences the same amount of 

genetic drift, i.e. the same amount of random sampling of alleles, as the real 

population (CHARLESWORTH 2009; FISHER 1930; WRIGHT 1931). In a Wright-Fisher 

population, N = Ne diploid hermaphrodites reproduce by random mating; gametes are 

produced “with replacement”, i.e. each individual produces a Poisson number of 

offspring, there is free recombination, and discrete generations. Due to its finite size, 

the population experiences random fluctuations in allele frequencies (i.e. drift), and 

the rate of change in allele frequency is a function of 1/(2N). The effective 

population size is a very important concept because it determines levels of variability 

within a population, as well as the efficacy of selection: Neutral diversity, the 

average pairwise difference between nucleotide sites, is directly proportional to Ne (! 

= 4 Ne") (KIMURA 1983), where " is the neutral mutation rate per nucleotide site. 

The chance of fixation of a beneficial or deleterious mutation is also a function of Ne. 

In particular, the product of Ne times the selection coefficient (Ne s) determines the 

efficacy of selection as opposed to drift. When Ne s > 1, the fate of a mutation is 

largely determined by selection, whereas for Ne s << 1, it is mainly determined by 

drift, i.e. it is effectively neutral (CROW and KIMURA 1970; EWENS 2004). Hence, 

measuring neutral diversity in a natural population also gives information about the 

efficacy of selection because low levels of diversity indicate a lower Ne. 
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The effective population size varies between species, but also within a genome, since 

it is affected by selection at neighbouring sites. All sub-categories of Hill-Robertson 

interference have in common the property that they reduce the Ne of the surrounding 

genomic region (FELSENSTEIN 1974; HILL and ROBERTSON 1966). With reduced 

recombination, variants associated with a selected allele have an increased or 

decreased chance of contributing to the next generation compared to random 

sampling, increasing the variance in their reproductive success. Accordingly, fewer 

gametes will, on average, contribute to the next generation. Since the efficacy of 

selection depends on Nes, a reduction in Ne has the consequence that the chance for a 

beneficial mutation to go to fixation is reduced, whereas deleterious mutations have 

an increased chance of fixation (BIRKY and WALSH 1988; KIMURA 1983; ORR and 

KIM 1998). Hence, we expect lower levels of adaptation when recombination is 

reduced or absent, and regions of the genome that do not recombine are expected to 

degenerate over time. 

 

Not only the type, but also the strength of selection differs in the different models of 

Hill-Robertson interference: selective sweeps and background selection occur when 

selection at the sites in question is strong (Nes > 1), so that there is a negligible 

chance for deleterious mutations to go to fixation (CHARLESWORTH 1994; 

CHARLESWORTH et al. 1993), whereas beneficial mutations become rapidly fixed 

during a sweep. Muller’s ratchet works when selection against deleterious mutations 

is sufficiently strong to keep mutations in mutation-selection equilibrium, but weak 

enough to allow the occasional loss of the least-loaded class by drift (HAIGH 1978). 

“Weak selection” Hill-Robertson interference occurs when (positive or negative) 

selection is of the order of Nes ~ 0 to 1.0, so that alleles spend a long time 

segregating in the population before they become fixed or lost (MCVEAN and 

CHARLESWORTH 2000). Also the rate of occurrence of new mutations plays a role in 

the different models: for example, weak-selection interference will only occur if 

mutations are segregating simultaneously, setting a lower limit for their rate of 

mutation. Similarly, the rate at which Muller’s ratchet leads to mutational meltdown 

crucially depends on the rate of mutation. 

 



 5 

1.1.4 Evidence of a reduction in Ne due to interference effects 

In the real world, rates of recombination vary and do so at different scales: the whole 

genome is inherited as a single linkage group in asexual species and in organelles (LYNCH 

and BLANCHARD 1998; MORAN 1996; SPRATT and MAIDEN 1999); in Drosophila, 

recombination is restricted to females and the fourth chromosome does not cross over at 

all (even though gene conversion might take place) (JENSEN et al. 2002; WANG et al. 

2002); the evolution of sex chromosomes is characterized by the lack of recombination 

between the X and Y (CHARLESWORTH and CHARLESWORTH 2000; CHARLESWORTH 2002; 

CHARLESWORTH et al. 2005); recombination rates also vary along single chromosomes, 

generally being reduced near the centromere, and the study of mutational hotspots in 

humans showed that recombination rates evolve quickly and even show high within-

species variation (MYERS et al. 2005). In line with theory, there is evidence for a reduction 

in diversity in regions of reduced recombination in Drosophila (ANDOLFATTO 2001; 

BEGUN and AQUADRO 1992; PRESGRAVES 2005), though the evidence is less clear-cut in 

other organisms (HELLMANN et al. 2005; WRIGHT et al. 2006). There is also evidence for 

reduced levels of adaptation when recombination is infrequent; for example, in 

Drosophila, there are reduced levels of codon usage bias and a higher rate of fixation of 

deleterious variants in regions of low recombination (BETANCOURT et al. 2009; HADDRILL 

et al. 2007). In Bdelloid rotifers, an ancient asexual clade, deleterious alleles segregate at 

higher frequencies compared to facultative sexual Daphnia or monogonont rotifers 

(BARRACLOUGH et al. 2007); similarly, the rate of amino acid to silent substitution (KA/KS) 

is increased in obligate asexual lineages compared to sexual lineages of Daphnia (PALAND 

and LYNCH 2006). The degeneration of non-recombining Y chromosomes, which will be 

discussed in more detail below, is a prime example of degeneration due to lack of 

recombination. Furthermore, theoretical studies have shown that a short-term evolutionary 

advantage of a modifier of recombination can exist under a variety of different scenarios 

where the lack of recombination reduces population mean fitness (BARTON and OTTO 

2005; KEIGHTLEY and OTTO 2006; OTTO and BARTON 1997; ROZE and BARTON 2006). 

  

1.1.5 Are deleterious mutations the main cause of degeneration? 

Given the evidence for a reduction in diversity and adaptation in regions of low 

recombination, this still leaves the question of which processes have led to the 
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situation. A reasonable assumption is that most organisms are well-adapted to their 

environment, and hence most new mutations at functional sites are likely to be 

deleterious. However, our knowledge of the rates of occurrence of beneficial and 

deleterious mutations, and their associated fitness effects, is still rather limited, 

making quantitative predictions difficult. Furthermore, positive or negative selection 

can leave similar traces in the genome by distorting the frequency spectrum of 

segregating sites in similar ways, making it hard to distinguish between the two 

causes (BACHTROG 2004; CHARLESWORTH and CHARLESWORTH 2000; 

CHARLESWORTH et al. 1995; KAPLAN et al. 1989).  

Efforts have been made to better understand spontaneous rates of selected 

mutations as well as their effects on fitness. Mutation rates can be measured either 

directly in mutation-accumulation experiments, or by between-species comparisons 

of divergence at putatively neutral sites. Using divergence data, the amount of 

nonsynonymous changes that did not become fixed between species, relative to the 

amount of change at putative neutral sites, can be considered as the deleterious 

component. Typically, the vast majority of nonsynoymous changes are deleterious; 

there is on average more than one new deleterious mutation per individual in each 

generation in Drosophila and humans, especially if non-coding sequences are taken 

into account (EYRE-WALKER and KEIGHTLEY 1999; HAAG-LIAUTARD et al. 2007). 

 

Deleterious mutations must vary in the effects that they have on fitness. One method 

to investigate the distribution of mutational effects is to compare patterns of 

polymorphisms and divergence between two closely related species that differ in 

their effective population sizes. Depending on the shape of the distribution of 

mutational effects, a different proportion of mutations will be effectively neutral or 

deleterious in the two species. Neutral diversity will be directly proportional to Ne, 

whereas variants under sufficiently strong selection will not differ much in 

abundance. This approach has led to the conclusion that, at least in Drosophila, the 

vast majority (about 90%) of nonsynonymous mutations are strongly deleterious, 

whereas a few percent are effectively neutral (LOEWE et al. 2006). Furthermore, the 

distribution of fitness effects that best incorporates silent diversity estimates and the 

frequency of lethal mutations in Drosophila is the log-normal distribution (LOEWE 
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and CHARLESWORTH 2006), though this might not hold for other species (EYRE-

WALKER and KEIGHTLEY 2007). For example, a gamma distribution of fitness effects 

is a good fit to the frequency spectrum of segregating nonsynonymous mutations in 

humans (EYRE-WALKER et al. 2006). 

 

1.2.1 Using sex chromosomes to study the effects of the absence of 

recombination 

Sex chromosomes are the ultimate test grounds for studying degenerative processes 

acting in regions of reduced recombination. In particular, in systems in which  the X 

and the Y chromosome evolved from a pair of autosomes, it is possible to make a 

direct comparison between homologous genes situated in non-recombining regions 

on the Y versus those that still recombine on the X. In this section, I will refer to 

male heterogamety (males being XY and females XX), even though the same 

processes occur in female heterogamety (ZW/ZZ systems). 

 

There seems to be a common route for most incipient sex chromosomes, irrespective 

of whether males or females are the heterogametic sex. Starting with a species that is 

entirely hermaphroditic or in which sex is determined by environmental cues, the 

evolution of separate sexes under genetic sex determination requires the presence of 

two primary sex-determining loci: one dominant female-suppressor, and one 

recessive male sterility locus (CHARLESWORTH and CHARLESWORTH 1978), both of 

which need to be  polymorphic for sexually antagonistic alleles, i.e. alleles that are 

beneficial for one sex function and/or deleterious for the other (RICE 1984). 

Recombination between these sex-determining genes is then restricted to prevent the 

production of maladapted or infertile offspring (CHARLESWORTH and 

CHARLESWORTH 1978; NEI 1969), creating the first region on the sex chromosomes 

that only recombines in the homogametic sex (i.e. XX females). This region may 

expand due to the accumulation of sexually antagonistic, male-benefiting genes on 

the Y and/or chromosomal rearrangements (CHARLESWORTH and CHARLESWORTH 

2000; CHARLESWORTH et al. 2005; RICE 1987). Eventually, recombination between 

the X and Y becomes restricted to the pseudoautosomal region or is completely 

absent. The non-recombining part of the Y chromosome tends to undergo a process 
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of degeneration, typically retaining only few genes specific to male function 

(CHARLESWORTH and CHARLESWORTH 2000). The accumulation of transposable 

elements and non-coding sequence, such as and heterochromatin, is a further 

common feature of Y chromosome evolution (ERLANDSSON et al. 2000; 

STEINEMANN and STEINEMANN 2005), possibly to reduce the expression of non-

functional genes. Dosage compensation may evolve to compensate for gene loss 

from the Y, equalizing expression levels between the X and the autosomes 

(CHARLESWORTH 1996). 

 

The degeneration of evolving Y chromosomes can occur due to any types of 

interference among selected sites, though the relative contributions of positive versus 

negative selection are still under debate. Apart from models involving selection, the 

effective population size of the Y is also reduced, simply because there are only 1/4 

as many Y chromosomes in the populations compared to the autosomes, and 1/3 as 

many compared to the X. Furthermore, if a deleterious mutation on the Y is 

recessive, it will be masked in males as it never occurs in the homozygous state, 

which increases its chance of fixation.  

 

1.2.2 Examples of sex chromosomes  

Sex chromosomes can be found throughout the animal and plant kingdom, where 

they emerged independently numerous times, e.g. in plants (CHARLESWORTH 2002), 

birds (LAWSON-HANDLEY et al. 2004), fish (PEICHEL et al. 2004), insects (SANCHEZ 

2008) or mammals (SKALETSKY et al. 2003; VEYRUNES et al. 2008; WATERS et al. 

2001), though not in fungi (which have mating-type loci with similar properties to 

sex chromosomes (FRASER et al. 2004), reviewed in BERGERO and CHARLESWORTH 

(2009)). The evolution of sex chromosomes is remarkably similar in different 

organisms and a reduction in recombination between the sex determining loci and 

subsequent Y chromosome degeneration usually plays a role. The age of a sex 

chromosome system can be estimated by comparing X- and Y-linked homologues, 

calculating their sequence divergence, and using a molecular clock to calibrate their  

time of divergence; alternatively, a phylogenetic comparison with related species that 
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have different breeding systems can provide information on the age of the sex 

chromosomes. 

 

The  sex chromosomes of eutherian mammals evolved from an ordinary pair of 

autosomes about 170 MYA, and Y degeneration is very advanced (LAHN and PAGE 

1999); whereas the X carries about 2000 genes, only 78 functional genes are left on 

the heterochromatic Y (SKALETSKY et al. 2003), some of which were translocated 

onto the Y from the autosomes, possibly because they are specifically advantageous 

to male function (RICE 1984). On the other extreme, sex chromosomes in papaya still 

recombine along most of their length, and recombination between the X and Y is 

only restricted in a small region where the sex determination loci are located (LIU et 

al. 2004). However, also in papaya, there are early signs of Y degeneration, such as 

the accumulation of repetitive sequences in Y-linked introns. There is recent 

evidence of an even younger pair of sex chromosomes in the wild strawberry, where 

recombination between the sex determining genes is reduced but not yet fully 

suppressed, so that, apart from hermaphrodites, neuter individuals are also produced; 

this must be very costly, and we anticipate strong selection to reduce recombination 

in the region. There are also very ancient sex chromosome systems, such as the Emu, 

where the W and Z still recombine along most of their length (OGAWA et al. 1998; 

SHETTY et al. 1999), even though the sex chromosomes are very old, having 

presumably arisen before the radiation of birds, about 120 MYA (VAN TUINEN and 

HEDGES 2001), and different stages of W degeneration can be found within snakes 

(MATSUBARA et al. 2006).  

 

In Drosophila melanogaster, the Y chromosome is very small and heterochromatic, 

containing only about 20 genes (CARVALHO et al. 2009). Since there is no 

recombination between homologues in Drosophila males, there is no 

pseudoautosomal region on Drosophila sex chromosomes. The origin of the D. 

melanogaster Y is not fully known because there is no apparent homology with the 

X, and all genes identified on the Y seem to have arisen by duplication from the 

autosomes (BROSSEAU 1960; CARVALHO 2002). Hence, the original Y might have 

been completely lost, and replaced by a new Y chromosome, derived from an 
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unrelated genetic element that acquired male function genes as well as the ability to 

segregate with the X (CARVALHO et al. 2009). Within the genus of Drosophila, 

several other large-scale changes of sex chromosomes have been identified, such as 

autosomal additions to existing X and Y chromosomes, creating neo-sex 

chromosome systems (CHARLESWORTH and CHARLESWORTH 2005). In one such case 

(D. miranda), an autosome arm became fused to the existing Y chromosome about 

1.75 MYA, creating a neo-Y chromosome that stopped recombining instantaneously 

(because of the lack of  recombination in Drosophila males) (BARTOLOME and 

CHARLESWORTH 2006; STEINEMANN and STEINEMANN 1998). The corresponding X 

chromosome did not fuse with the neo-X, but segregates from the neo-Y. Genes on 

the neo-Y and neo-X are clear homologues, and the neo-Y chromosome is currently 

undergoing a process of degeneration, having lost about half of its genes within a 

very short evolutionary time-scale (BACHTROG et al. 2008). Explaining the very high 

rate of accumulation of loss-of function mutations on the neo-Y will be the topic of 

chapter 3.   

 

Additions of autosomal sequences onto sex chromosomes have also occurred in the 

history of the human sex chromosomes, possibly contributing to the evolution of 

evolutionary strata, i.e. regions with differential X-Y divergence. For example, one 

region of the human sex chromosomes, which shows very low X-Y divergence, is 

still autosomal in marsupials, suggesting that this region was added less than ~ 166 

MYA (VEYRUNES et al. 2008; WATSON et al. 1991). Evolutionary strata might also 

be caused by chromosomal inversions or other mechanisms that lead to a cessation of 

recombination between the X and the Y, as discussed in chapter 4.  

 

1.2.3 The model sex chromosome system of Silene latifolia  

Most well-studied systems are old (Drosophila, mammals, birds), with degenerated 

and gene-poor Y (or W) chromosomes. When studying these older systems, it is hard 

to infer the evolutionary processes that occurred in the initial stages of X-Y 

differentiation, i.e. the mechanisms of how recombination suppression might have 

evolved, and the consequences of loss of recombination. 
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In chapters four and five, I use empirical methods to study the sex chromosomes of 

the plant species Silene latifolia (Caryophyllaceae), the white campion. S. latifolia 

has comparatively young sex chromosomes; dioecy, the state of having separate 

sexes, evolved only about 5-10 MYA (BERGERO et al. 2007; FILATOV 2005). Most of 

S. latifolia’s close relatives are hermaphrodites that do not have sex chromosomes, 

and divergence between S. latifolia and the hermaphroditic S. conica and 

gynodioecious S. vulgaris (which contains both female and hermaphroditic 

individuals) is low (silent divergence values of about 15% or 20% respectively 

(FILATOV 2008; FILATOV and CHARLESWORTH 2002), setting an upper limit for the 

age of the system. In line with this, the maximal divergence between X-and Y-linked 

gene pairs that have been identified in S. latifolia is about 20% (BERGERO et al. 

2007; FILATOV 2005; NICOLAS et al. 2005). The fact that the latter value is seemingly 

greater than the autosomal divergence from S. conica is most likely due to 

uncertainties in these estimates. 

 

S. latifolia occurs throughout Europe and commonly grows in sunny fields and open 

vegetation, forming fertile hybrids with its sister species, S. dioica, which carries the 

same sex chromosome system and has a similar but more northerly distribution 

within Europe, and grows in more shady areas and woodlands (BAKER 1947; BAKER 

1948; KARRENBERG and FAVRE 2008).  

 

Synteny between sex-linked genes in S. latifolia and their homologues in S. vulgaris  

suggests that sex chromosomes in S. latifolia have evolved from an ordinary pair of 

autosomes, i.e. all of the eleven sex-linked genes described in S. latifolia map to a 

single autosome in S. vulgaris (BERGERO et al. 2007; FILATOV 2005). 

The Silene system provides grounds to explore the early stages of de novo sex 

chromosome evolution, i.e. the period when recombination between the X and Y is 

already restricted, but degeneration of the Y may not be as advanced as in mammals 

or birds. 

 

The Silene Y is the largest of n = 12 chromosomes, containing roughly 570 MB of 

sequence (LIU et al. 2004). In contrast to systems such as mammals or Drosophila, 
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the Y chromosome is about 1.4 times larger than the X and largely euchromatic 

except for centromeric and subtelomeric DNA (MATSUNAGA 2006). Its mere size 

suggests that many (functional) genes may still be present; it also suggests that the 

accumulation of repetitive sequences and transposable elements may be the first 

process which occurs when selection against insertions is weakened (STEINEMANN 

and STEINEMANN 2005). However, a lot of this accumulation might have occurred in 

non-coding sequence, e.g. in introns, and the coding sequence may still be intact. 

 

1.2.4 Deletion mapping 

Functionally, the Silene Y has been studied using deletion mapping, i.e. chunks of 

the chromosome were deleted using Y-irradiation and the resulting mutant phenotype 

studied. Based on these studies, the chromosome can be divided into three functional 

regions: a female suppressor and an early anther maturation/stamen promoting locus 

on the p-arm, as well as a male fertility region on the q-arm (DONNISON et al. 1996; 

FARBOS et al. 1999; LARDON et al. 1999; ZLUVOVA J et al. 2007). Since S. latifolia 

plants lacking an X chromosome are not viable (VEUSKENS et al. 1992), some 

essential genes must have been deleted or are non-functional on the Y, suggesting 

that some degeneration has already occurred.  

 

To study sex chromosomes and Y degeneration in S. latifolia, it is necessary to 

obtain and study genetical markers on the X and Y; only genes provide information 

about selectively disadvantageous mutations that may have become fixed on the Y, 

such as frameshift mutations or mutations that alter the amino acid composition of 

the gene product. Also expression studies comparing transcription levels from the X 

and Y are only possible using gene products; these are necessary, for example, to 

study the evolution of dosage compensation. Finding sex-linked genes in S. latifolia, 

however, is not that easy since the genome is huge (the haploid size is about 2,800 

mb (LIU et al. 2004)), and there is no sign of it being sequenced in the near future. 

 

1.2.5 Characteristics of known genes on the S. latifolia sex chromosomes 

Previous studies have identified eleven sex-linked genes in S. latifolia. 
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Except for SlssY, all other Y-linked genes in S. latifolia seem to be functional: they 

do not contain frame-shift mutations in their coding sequences, KA is generally lower 

than KS, and all genes are expressed as mRNAs. Nevertheless, they do show some 

signs of degeneration: the rate of change at nonsynonymous sites, relative to changes 

at synonymous sites, KA/KS, is generally higher for Y-linked genes compared to their 

X-linked homologues (except for Cyp-Y (MARAIS et al. 2008)), possibly reflecting 

the fixation of deleterious amino acid variants. All of the six Y-linked genes tested 

by MARAIS et al. (2008) had a clear tendency to be expressed at lower levels than the 

X-linked genes, and some show signs of non-adaptive codon usage changes. In at 

least three cases, SlCyp-Y, DD44-Y and SlY3, transposable element sequences have 

accumulated in the introns of genes (BERGERO et al. 2008b; MARAIS et al. 2008). 

Segregating MITE elements are also found at higher frequency on the Y compared to 

the autosomes or the X, suggesting that selection is generally acting to reduce the 

number of these elements, but that selection against such insertions is reduced on the 

Y (BERGERO et al. 2008b). Similarly, the non-recombining part of the Papaya Y and 

the D. miranda neo-Y have accumulated non-coding sequences (BACHTROG et al. 

2008; LIU et al. 2004), so this might be a general feature of evolving Y 

chromosomes. 

 

The gene MROS3-X was first suggested to have a degenerated homologue on the 

Silene Y (GUTTMAN and CHARLESWORTH 1998); however, as MROS3-X belongs to a 

multi-gene family, it is not clear whether the degenerated copy identified on the Y is 

actually the original homologue of the X or a paralogue translocated from an 

autosome, especially since divergence between the two copies is very high, about 

30%. The spermidine synthase gene, SlssX, is the only gene identified on the X that 

might have a degenerating Y-linked copy: SlssY has undergone several amino acid 

changes that presumably impair spermidine synthase activity, even though the gene 

is still expressed in males. Recently, FILATOV (2008) showed that SlssX underwent a 

selective sweep, possibly as a response to the degeneration of its Y-linked 

homologue, even though the selection coefficient associated with the sweep was 

presumably less than 1%. Of the eleven X-linked genes, which have been discovered 

until now, only SlAp3 has no counterpart on the Y, being a duplication from an 
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autosome onto the X (MATSUNAGA et al. 2003). None of the genes identified until 

now are directly involved in sex determination, but are classified as class I sex-linked 

genes, i.e. genes with presumably house-keeping functions.  

 

1.2.6 Diversity of Y-linked genes 

Theory predicts that interference among selected sites (discussed above) should lead 

to a reduction in diversity and adaptation of evolving Y chromosomes. Due to the 

size of the Silene Y chromosome, we expect many intact genes to be still present, 

and, with many sites under selection, we expect these interference effects to be 

considerable. Indeed, in Silene, all Y-linked genes that have been investigated show 

reduced levels of polymorphism, i.e. diversity is about 20 times lower compared to 

the X (MARAIS et al. 2008). Recent studies suggest that this is indeed due to a 

reduction in diversity on the Y, and not due to an unusually high diversity on the X 

since autosomal diversity is also high (BERGERO et al., unpublished data). For older, 

gene-poor, Y chromosomes (Drosophila, mammals, birds), little interference among 

sites due to lack of recombination is expected to occur.  

 

1.2.7 Evolutionary strata 

In S. latifolia, recombination between X and the Y is confined to the chromosomal 

ends, the pseudoautosomal region (PSA), which locates to the p arm on the X and the 

q arm on the Y. Silent divergence data between X-and Y-linked genes suggests that 

recombination ceased in a gradual or step-wise manner, with genes close to the 

pseudoautosomal region being the least diverged (BERGERO et al. 2007; FILATOV 

2005; NICOLAS et al. 2005). This is similar to the situation in birds or mammals, 

where genes fall into different “evolutionary strata” (LAHN and PAGE 1999; NAM and 

ELLEGREN 2008), though the time-scales involved in Silene are much smaller.  

Hence, all differences that we observe between the Silene X and Y today occurred in 

the relatively short time-frame after recombination between the sex chromosomes, or 

parts thereof, became restricted. More genes need to be studied to determine if 

recombination cessation in Silene has occurred in a truly step-wise manner, whether 

it is continuous, or whether the pattern disappears once more genes have been added. 

This might give insights into the mechanisms involved – which are currently 
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unknown - and whether it was a selective process.  So far, two Y inversions have 

been inferred, but they seem to have occurred after recombination was already absent 

from the regions involved, since the inversions span genes of different X-Y 

divergence levels (BERGERO et al. 2008a).  It is possible that other rearrangements on 

the Y or modifiers of recombination, such as DNA methylation, might have lead to 

suppression of recombination between the X and the Y, or that the accumulation of 

sexually antagonistic genes might have played a role (see chapter 4).  

Clearly, more genes need to be mapped on both the X and Y to test for a causal link 

between gene movements, chromosomal rearrangements and recombination 

cessation. 

 

1.3 Results of this study 

Assuming that most new mutations that change the composition of a protein are 

strongly deleterious, large regions of reduced recombination are expected to show 

very low levels of variability. However, the observed levels of diversity on the D. 

melanogaster fourth chromosome and the D. miranda neo-Y chromosome do not fit 

the predictions of the background selection model, which predicts much lower levels 

of diversity for these chromosomes. In chapter 2, I describe computer simulations to 

show that, with very large regions of tight linkage, strongly deleterious mutations do 

not act independently. Instead, interference among strongly selected sites leads to 

their maintenance in the population for longer than predicted by the background 

selection model. This increases variability at linked neutral sites, to levels as 

observed in region of low recombination in Drosophila.  Also the strong distortion in 

the frequency spectrum at segregating sites on the neo-Y is compatible with selection 

against deleterious mutations alone. 

 

The observed high rate of accumulation of major loss-of function mutations on the 

D. miranda neo-Y is a puzzle, given that the effects on fitness associated with such 

mutations are expected to be large. In chapter 3, I describe computer simulations to 

show that the rate of degeneration of the neo-Y chromosome can be explained by 

interference effects among loss-of function mutations alone, without the need to 

invoke the action of selective sweeps. The rate of accumulation of loss-of function 
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mutations is accelerated by the presence of mutations at nonsynonymous sites and 

their effects on Ne, but the impact of these mutations depends on the size of the non-

recombining region and the level of Y chromosome degeneration. 

 

In chapter 4 and 5, I describe the investigation of the evolution of sex chromosomes 

in Silene latifolia. I have isolated two new sex-linked genes in this species, Sl-cyt and 

SlX9/Y9, and analyzed them with respect to Y-chromosome degeneration and 

divergence from their X-linked chromosomal counterpart. I found evidence for the 

first X-linked gene in S. latifolia that has been translocated from an autosome to the 

X, and it shows signs of a selective sweep. Its possible role in having caused 

recombination arrest between the evolving X and Y is discussed. The second gene 

identified in this study, SlX9/Y9, still has an intact Y-linked copy that is presumably 

functional. Nucleotide diversity at SlY9 is very low, whereas SlX9 has an unusually 

high diversity. SlX9 shows signs of introgression from S. dioica into S. latifolia, but 

the effect of this seems very localized. 
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2 The effects of deleterious mutations on evolution in non-

recombining genomes 
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2.1 Abstract 

 

Under tight linkage, evolution at any one site is not independent of evolution at other 

sites, leading to a reduction in effective population size, Ne. There is, however, a 

discrepancy between the observed levels of nucleotide diversity in regions of low 

recombination of Drosophila, and those predicted under the background selection 

model: with many linked sites under selection, the reduction in Ne is consistently 

overestimated. To investigate if Hill-Robertson interference among strongly selected 

sites undermines the effects of background selection, computer simulations were 

carried out using parameters of mutation, selection and recombination, appropriate 

for deleterious amino-acid mutations in Drosophila melanogaster populations. The 

results show that genetic variability in regions of low recombination in Drosophila 

can be explained by interference among strongly deleterious mutations and that 

selection becomes progressively less effective in influencing the behaviour of 

neighbouring sites as the number of closely linked sites on a chromosome increases. 

 

2.2 Introduction 

 

When recombination rates are low, evolution does not behave according to the rules of 

single site models; selection acting on some sites of a chromosome will also affect 

measures of diversity and the efficacy of selection at linked neutral or weakly selected 

sites. This phenomenon, which is known as Hill-Robertson interference (HRI), is thought 

to play a major role in the advantage of sex and recombination (COMERON et al. 2008; 

FELSENSTEIN 1974) . 

 

2.2.1 The background selection model  

Background selection is one type of HRI, acting when selection against deleterious 

mutations is strong (Nes >1), so that mutations entering the population are rapidly 

eliminated (HALDANE 1927). Under this model, mutations are in mutation-selection 

equilibrium, i.e. the frequency, qi, of a strongly deleterious mutation at the ith site in an 

infinite randomly mating population is solely determined by the rate of mutation from 

wild-type to mutant, µi, and the (heterozygous) selection coefficient, si, so that 
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qi = µi/si   (2.1) 

 

(ORR 2000) 

If all sites affect fitness independently and are in linkage equilibrium, the fraction of the 

population that is free of deleterious mutations at all sites under selection is equal to  
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which can be approximated by  

 

f0 ! exp(-(U/s))  (2.3) 

 

where U is the net deleterious mutation rate over all sites ("!i), and s is the harmonic 

mean selection coefficient against deleterious mutations (NORDBORG et al. 1996). Note 

that, in the corresponding diploid model, f0 ! exp(-(2U/2hs)), where U is the mutation rate 

per haploid genome and h is the dominance coefficient. In this classical model of 

background selection, only gametes falling into the mutation-free class of chromosomes 

will ultimately contribute to future generations because deleterious alleles are eliminated 

from the population with certainty. This selection regime has consequences for the fate of 

neutral alleles that are linked to a locus under selection because only those variants that 

are found on chromosomes free of deleterious mutations can survive. All others are 

eliminated along with the mutations found in their genomic background (hence the term 

“background selection”) - unless they can unhitch themselves from their genomic 

background by recombination (HILL and ROBERTSON 1966; MCVEAN and 

CHARLESWORTH 2000).  

 

2.2.2 Weak selection Hill-Robertson interference 

If selection is less strong (Nes  < 1), deleterious mutations will spend a longer time 

segregating at intermediate frequencies before they get lost or - more rarely - become 

fixed. This is the “weak selection” Hill-Robertson effect (HILL and ROBERTSON 1966). 
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Under weak selection, neutral sites linked to a locus under selection are not eliminated 

from the population in a deterministic fashion, but variants linked to a deleterious 

mutation have a reduced chance of long-term survival. If two chromosomes in the 

population carry a beneficial variant at different selected sites, selection will increase the 

frequency of both haplotypes simultaneously. The mutations segregating at the two loci 

will impede each other’s fixation and will be found less often on the same chromosome 

than expected from random sampling, leading to a build-up of negative linkage 

disequilibrium (CHARLESWORTH et al. 1993a). Ultimately, only one of the two 

advantageous variants can become fixed, unless recombination brings them together onto 

a single chromosome (KIMURA 1983).   

 

2.2.3 Consequences of reduced levels of recombination 

Under both background selection and “weak selection”, the effective population size, Ne, 

of the genomic region is reduced. Under Hill-Robertson interference, any site linked to a 

locus under selection experiences a higher variance in reproductive success than under 

random sampling, i.e. the (variance) effective population size is reduced (BIRKY and 

WALSH 1988). In particular, under background selection, the effective population size is 

reduced to the fraction of the population that is free of deleterious mutations, f0Ne 

(KIMURA 1983). Assuming semi-dominance such that the selection coefficient against 

homozygotes is 2s, the fixation probability, u, of a selected allele at frequency p is given 

by the following equation: 

 

u(p) = (1-e
-Sp

)/(1-e
-S

)  (2.4) 

 

where S = 4Nes (NORDBORG et al. 1996).  

Accordingly, the relative strength of selection depends on the scaled parameter Nes, and a 

decrease in the effective population size is expected to lead to reduced levels of 

adaptation. As confirmed in computer simulations (HUDSON and KAPLAN 1995; 

NORDBORG et al. 1996), with reduced levels of recombination, the chance for a deleterious 

mutations to become fixed is increased, whereas the fixation probability for beneficial 

mutations is reduced.  
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An important consequence of a reduction in Ne is a reduction in neutral nucleotide 

diversity, !, given by the standard formula ! = 4Neµ (LOEWE and CHARLESWORTH 2007).  

The reduction in neutral variability due to background selection in the presence of 

recombination can be calculated using a simple equation that takes into account the effect 

of multiple, partially linked loci on a neutral focal site (ANDOLFATTO 2001; SHELDAHL et 

al. 2003). This assumes that each selected site acts independently with multiplicative 

fitness, and nonsynonymous sites are at mutation-selection equilibrium (LOEWE and 

CHARLESWORTH 2007).The expected level of neutral nucleotide diversity, ", relative to the 

level of diversity under free recombination, "0, is estimated as 
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where ui is the mutation rate at the ith selected site; ri is the recombination frequency 

between the focal site and the selected ith site. The latter can be calculated as 

r  = 0.5* (1-e -2Z), where Z is the respective map distance in Morgans (Haldane mapping 

function), assuming no interference between crossovers. 

 

2.2.4 How does the model fit Drosophila data? 

Using estimates of the frequency of deleterious mutations and the selection 

coefficients acting upon them, predictions can be made about levels of neutral 

diversity. Drosophila polymorphism data indicate that most newly arising 

nonsynonymous mutations have selection coefficients that are large enough to fall 

into the parameter space of background selection; for regions of normal levels of 

recombination, the predicted value of B is consistent with Drosophila genomic data 

(BARTOLOMÉ and CHARLESWORTH 2006). However, the reduction in neutral 

diversity observed in regions of low recombination is not as great as expected under 

the background selection model. For example, the fourth chromosome of Drosophila 

melanogaster still harbours about 6% of the silent diversity compared to the 

autosomes (LOEWE and CHARLESWORTH 2007), whereas the background selection 

model predicts a relative level of diversity of about 0.1% (CHARLESWORTH et al. 
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1993a; NORDBORG et al. 1996).  Similarly, silent diversity on the D. miranda neo-Y 

chromosome is about 1/100th of that of the neo-X (CHARLESWORTH et al. 1993b; 

PALSSON 2004) - which is much larger than expected under complete linkage 

(CHARLESWORTH et al. 1992). In other words, the BGS model greatly over-predicts 

the reduction in Ne caused by many linked sites under selection.  

 

2.2.5 Can interference among strongly selected sites explain these patterns? 

A possible explanation is that Hill-Robertson interference among strongly selected sites 

undermines the effects of background selection: if stretches of non-recombining DNA are 

long (and mutation rates are sufficiently high), many deleterious mutations will enter the 

population in each generation. Under these conditions, it will be harder for natural 

selection to purge the population of these mutations since a) many individuals will carry at 

least one mutation in the non-recombining part of the genome and b) without 

recombination, beneficial alleles cannot be combined, leading to an increased number of 

sites segregating in the population. Under these conditions, a chromosome carrying a 

limited number of deleterious mutations may have a selective advantage compared to the 

population as a whole and can survive for longer, a scenario already indicated in earlier 

studies (CHARLESWORTH et al. 1992). 

 

To explore whether interference among strongly deleterious mutations can quantitatively 

explain the increase in neutral diversity relative to the expectation under the background 

selection model, computer simulations were carried out modelling sequence evolution in 

long regions with reduced recombination, using parameter estimates of mutation, selection 

and recombination as estimated for a typical D. melanogaster gene. Selection coefficients 

were relatively large, reflecting selection acting at non-synonymous sites. The simulations 

show that interference among strongly selected sites does occur if regions of reduced 

recombination are sufficiently long; interference leads to a relative increase in neutral 

diversity compared to the expectation under background selection, as observed for the 

Drosophila fourth chromosome and the Drosophila miranda neo-Y chromosome; 

modifications to the current model of background selection are thus necessary to describe 

the reduction in neutral diversity caused by many linked sites under strong selection.   
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2.3 Methods 

 

2.3.1 The simulation model 

The model consisted of a Wright-Fisher population of 1,000 haploid individuals, 

corresponding to a diploid population size of N = 500 (haploids were used to avoid the 

complications of extreme associative overdominance that can arise with strong selection in 

a small population (MCVEAN and CHARLESWORTH 2000). Each individual contained a 

single chromosome with L biallelic sites (“basepairs”), where L ranged from 3.2kb to 

1.28Mb in the different runs. A chromosome was represented by a set of computer words, 

with the state of a given bit in a word representing the state of a nucleotide site (LOEWE 

and CHARLESWORTH 2007). 

Two adjacent, selected (“nonsynonymous”) sites alternated with one neutral 

(“synonymous”) site along the whole length of each chromosome, roughly reflecting 

codon structure. Each site could be either in state “0” or “1”; for the selected sites, 

representing the preferred and unpreferred states respectively. Mutation, gene conversion 

and crossing over were simulated using bit manipulation procedures (LOEWE and 

CHARLESWORTH 2006), which change the state at a given position from “0” to “1” and 

vice versa (Figure 2.1).  

 

2.3.2 Parameters 

Rates of mutation, selection and recombination for “free recombination”, multiplied by N, 

were chosen to match estimates of the corresponding parameter estimates from 

Drosophila, multiplied by the effective population size, Ne, which we set to 1.3 million 

(NORDBORG et al. 1996). To a good approximation, the outcome of the evolutionary 

process is determined by these scaled parameters (KEIGHTLEY and EYRE-WALKER 2007; 

LOEWE and CHARLESWORTH 2006).  In this way, simulations of small populations can be 

run that represent the behaviour of much larger populations. 

 The selection coefficient, s, against a deleterious mutation at a given site was 

drawn from a log-normal distribution with a shape and location parameter of "g = 3.022 

and µg = 0.0368, respectively; these correspond to the exponentials of the standard 

deviation and mean of ln(s) (CHARLESWORTH et al. 1992). The log-normal distribution is 

not defined for values of s = 0 (i.e. neutral nonsynonymous mutations are not included in 
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the model), so that the harmonic mean selection coefficient, sh, can be calculated. sh is the 

dominant term in a Taylor expansion of equation 2.5 for low  rates of recombination, 

determining the reduction in diversity under background selection (HILLIKER et al. 1994; 

LOEWE and CHARLESWORTH 2007). With N = 500, the chosen values of "g and µg give a 

harmonic mean selection coefficient, such that Nsh = 10. This corresponds approximately 

to the mean selection coefficient for mutations that are segregating in the population 

(LOEWE and CHARLESWORTH 2007). In our model, all sites for which s ! 1 were re-

assigned a selection coefficient of one (“lethal” mutations). The fraction of 

nonsynonymous sites where lethal mutations occurred was 0.142%, and the fraction of 

effectively neutral nonsynonymous mutations (for which Ns < 1) was less than 0.5%. 

Hence, the vast majority of selection coefficients lay within the range for which 

background selection formulae are expected to apply (MCVEAN and CHARLESWORTH 

1999). This is somewhat stronger selection than indicated by analyses of Drosophila 

polymorphism data (TAJIMA 1989), so that we are probably slightly underestimating the 

reduction in intensity of BGS caused by HRI. 

 The sequence of events in each generation consisted of i) mutations entering the 

population, ii) selection on “adult” individuals and iii) reproduction. The number of 

mutations in each generation was drawn from a Poisson distribution, with an average per 

base pair mutation rate of µ = 1.04 x 10-5 (Neµ  = 5.2 x 10-3). Rates of mutation were 

constant along the chromosome, with the probabilities that 1 mutates to 0 and 0 to 1 being 

equal.  

 To avoid handling extremely small absolute fitness values with long chromosomes, 

relative fitness values were determined by a log-transformation: the log to the base e 

fitness, ln(wi), of an individual who did not carry any lethal mutations was calculated as: 
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i
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where si is the selection coefficient at site i. Selection was thus multiplicative across sites. 

The value of ln(wi) was compared to the expected equilibrium mean fitness of the 

population (SCHAEFFER 2002): 
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where U is the genomic mutation rate to deleterious alleles, i.e. the total number of 

nonsynonymous sites times the mutation rate per site, µ. Each 

! 

˜ w 
i
 was divided by the 

maximum value of 
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i
 of the respective generation, to give the relative fitness of the 

individual. If the individual carried one or more lethal mutations, the relative fitness was 

set to zero. In each generation, 1,000 pairs of surviving haploid individuals were chosen 

(sampling with replacement), with the chance of being chosen being proportional to the 

relative fitness of the individual.   

Three different scenarios for recombination were modelled: (a) no recombination 

(b) gene conversion only and (c) crossing over and gene conversion. Under scenario (a), 

the chromosome was treated as a single unit, i.e. the population reproduced asexually. 

Under scenarios (b) and (c), recombination events occurred in the diploid zygotes, and the 

products were used to form the pool of haploids from which the next generation was 

formed. 

Nrg, the scaled probability of initiation of a gene conversion event between two 

homologous chromosomes, was set to 9.23 x 10-3, corresponding to a per base pair gene 

conversion frequency of 0.25 x 10-5 for an effective population size of 1.3 x 106. The tract 

length t was drawn from an exponential distribution with a mean of 352bp, as estimated 

for the rosy locus of D. melanogaster (MCVEAN and CHARLESWORTH 2000). The number 

of gene conversion events per generation was drawn from a Poisson distribution, and their 

locations placed randomly on the chromosome. Gene conversion was simulated by 

replacing t/2 bits on either side of the locus of initiation with bits from the homologous 

chromosome, and vice versa. If a gene conversion tract extended beyond the end of a 

chromosome, this end was fully converted and the tract length was accordingly shorter 

(see Figure 2.1 for schematic view of methods). 

 Under scenario (c), reciprocal crossover events between adjacent bases occurred 

with a constant frequency along the chromosome, where Nrc = 0.013, corresponding to the 

value for regions with normal rates of crossing over in D. melanogaster (see (LOEWE and 

CHARLESWORTH 2007) for details).  The number of crossover events was drawn from a 

Poisson distribution, and each event was simulated by exchanging the strands of the two 

homologous chromosomes at a random site on the chromosome. 
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Figure 2.1:  Schematic view of methods. Two selected sites (red) alternate with one 

neutral site (white) along each chromosome. Sites can be in state “0” or “1”. For the 

selected sites, the different intensities of red colour reflect possible different 

strengths of selection at each site. Shown here: a crossover event between two 

chromosomes. The breakpoint is chosen randomly along the sequence and strands 

are exchanged from the breakpoint onwards. 

 

 

At the start of each run, the population was set to be in mutation-selection balance 

at each ith nonsynonymous site, i.e. qi= µi/si. For each nonsynonymous site on each 

chromosome in the population, a random number between zero and one was drawn; if this 

number was smaller than the value of µi/si, the particular site was set to “1”.  Because 

mutations were assigned randomly, the population was initially at linkage equilibrium. 

Neutral sites were either fixed for “0” or “1”, which both occurred with a frequency of (2 

+ 2N(4µ(1+ln[2N]))-1 = 0.429 (MCVEAN and CHARLESWORTH 1999), or they were 

polymorphic.  

 

2.3.3 Testing the predictions of the background selection model 

Sequence evolution was simulated using a program written in FORTRAN 95 and run on 

the computer cluster provided by the Edinburgh Compute and Data Facility (ECDF) 
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(http://www.ecdf.ed.ac.uk), which is partially supported by the eDIKT initiative 

(http://www.edikt.org). The code can be found in the appendix of this thesis. 

 It was confirmed that the summary statistics describing variation at both selected 

and neutral sites were in equilibrium after 10,000 generations of mutation, selection, and 

reproduction. For each parameter combination of recombination and chromosome length, 

four runs of 10,000 generations were performed and the average values of population 

statistics were calculated. 

 The summary statistics included Tajima’s statistic, DT, (MCVEAN and 

CHARLESWORTH 1999) and Drel (MCVEAN and CHARLESWORTH 2000), the value of DT 

relative to its maximum possible magnitude given the number of segregating sites (S). 

Using Drel allows us to compare the bias in the frequency spectrum of polymorphic sites in 

the different runs, since the absolute value of DT, is biased upwards when S is low. Other 

statistics that were calculated included linkage disequilibrium (D) between adjacent 

selected sites (MCVEAN and CHARLESWORTH 1999); the average selection coefficient at 

fixed nonsynonymous sites that carried the deleterious allele; neutral and nonsynonymous 

diversity. 

 Levels of neutral diversity were compared to those expected under BGS; the 

expected reduction in neutral variability was calculated using equation 2.5.  

 Each chromosome was divided into 10 bins of equal length; B(expected), i.e. the 

expected level of neutral diversity, relative to the free recombination case, was calculated 

for a focal neutral site in the middle of each bin (equation 2.5). This was done taking into 

account all nonsynonymous sites along the chromosome as well as the rates of 

recombination between the focal neutral site and the sites under selection; the mean of this 

was used for the results presented in the Figures of the Results section. For this purpose, 

the net map distance, zi, taking gene conversion and reciprocal crossing over events into 

account, was calculated as: 

 

                                                       zi = dirc+ 2rg(1 - exp[-di/dg])                     (2.8)  

 

where di is the distance between the neutral site and the selected site in terms of numbers 

of sites, rc is the rate of crossing over between two adjacent bases, rg is the probability of a 

gene conversion event including a particular site, and dg is the mean tract length of a gene 
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conversion event (2002). The observed ratio of neutral diversity relative to "0 , 

B(observed) = "S/(4Nµ), can then be compared to B(expected). 

 A reduction in Ne is expected to have two opposing effects on nonsynonymous 

diversity (!A); on the one hand, diversity is reduced as fewer individuals contribute to 

variability (4Neµ is reduced). On the other hand, a reduction in the efficacy of selection 

(reduced Nes) increases nonsynonymous diversity because a larger fraction of deleterious 

mutations become effectively neutral.  The approximate expected value of !A for a given 

selection coefficient can be calculated using the following equation (2003): 

 

)1(

)1(2

Ss

S

A

+

!
"

µ
#   (2.9) 

                                                                

where S = exp (4Nes).  

Equation (2.9) was used to calculate the expected levels of nonsynonymous 

diversity, given the effective population size estimated from neutral diversity, and the 

integral over the log-normal distribution of s. A good match of the predicted and observed 

values of !A implies that the estimate of Ne based on neutral diversity predicts the 

equilibrium nonsynonymous diversity. 

 

2.4 Results  

 

2.4.1 Test runs 

It was confirmed that the average linkage disequilibrium (D’ = D/|Dmax|) over all adjacent 

segregating sites was about zero in sample runs with no selection and high recombination 

rates, and that measures of nucleotide diversity and Tajima’s D were in equilibrium after 

10,000 generations when selection operated without recombination (Figure 2.2). 
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Figure 2.2: Testing for equilibrium. (a) Synonymous diversity, !S (b) nonsynonymous 

diversity, !A (c) Tajima’s D (DT) at synonymous sites. Statistics are plotted against the 

number of generations for simulations without recombination and a chromosome length of 

32kb. Equilibria are reached almost immediately. 
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Note that, depending on the length of the chromosome, deleterious mutations could still be 

accumulating in the population when statistics of nucleotide diversity were sampled after 

10,000 generations. The decline in population mean fitness was log-linear a long time, as 

expected under a Muller’s Ratchet-like process of accumulation of deleterious mutations 

(Figure 2.3). However, an equilibrium state in fitness was reached eventually, i.e. with 

back mutations, fitness did not decline indefinitely. 
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Figure 2.3: The decline in average fitness with no recombination, relative to the 

expected fitness under free recombination, plotted against the number of generations 

for simulations without recombination and a chromosome length of 32kb. 

 

 

2.4.2 The effects of strong selection on neutral diversity at linked sites 

When there was no crossing over, relative levels of neutral diversity, B = "/"0 = "/(4Neµ), 

initially decreased rapidly with an increasing number of sites, but B levelled off, reaching 

an asymptotic relative value of about 1.5 % for > 640,000 sites (Figure 2.4 a) To 

investigate how the observed reduction in diversity agreed quantitatively with the 

predictions under the background selection model, the expected values of B were 

calculated, averaging over each chromosome. With an increasing number of sites, neutral 

diversity is expected to decline exponentially, and this decline is more pronounced if 

recombination rates are low (Figure 2.4 b).  Next, the observed values of B were compared 
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with the expected reduction in diversity using equation 2.5: If both crossing over and gene 

conversion were allowed for, the observed strength of background selection was similar to 

the expected strength for all values of L. However, under the scenarios of complete 

linkage or gene conversion only, levels of neutral diversity increased exponentially 

relative to their expected values (Figure 2.4.c). In other words, with low recombination, 

the reduction in neutral diversity due to background selection levelled off, so that adding 

more selected sites to the chromosome did not reduce diversity any further. 

Gene conversion generally had little effect on measures of diversity and other 

population statistics sampled (see below). As equation 2.8 shows, adding more sites 

to a chromosome does not increase the map length very much under gene conversion 

only; this is because the term (1 - exp[-di/dg]) increases very slowly with an increase 

in di; in contrast, the map length increases linearly with L if recombination is caused 

by crossing overs. 

 

2.4.3 Nonsynonymous sites under strong selection 

Interference among nonsynonymous mutations also changed summary statistics on the 

deleterious mutations themselves. Deleterious mutations had an increased chance of 

fixation (Figure 2.5 ), and the ratio of nonsynonymous over synonymous diversity, !A/!S, 

increased with an increasing number of sites, and the effect was more pronounced if 

recombination rates were low, as shown in Figure 2.6. These results reflect the fact that 

deleterious mutations were less efficiently removed from the population when interference 

became more pronounced. In contrast to this, under the classical background selection 

model, these statistics are unaffected by the number of sites on the chromosome, and the 

average frequency of the unpreferred state, q, is given by equation (2.1).  
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Figure 2.4: Neutral diversity is increased due to HRI among strongly selected mutations. 

Symbols: triangles, dotted line: crossing over and gene conversion; squares, dashed line: 

only gene conversion; diamonds, solid line: no recombination.  a) Levels of neutral 

diversity (!S), relative to their expected value under free recombination (4Nµ). The red 

circle indicates the expected levels of diversity on the D. melanogaster 4th chromosome 

under the classical BGS model, assuming independent effects of deleterious mutations, a 

distribution of selection coefficients and gene conversion as the only mechanism of 

genetic exchange (Loewe and Charlesworth 2007); the red diamond indicates the observed 

levels of diversity on the D. melanogaster 4th chromosome; these two values are plotted at 

82kb, the approximate length of coding sequence on the 4th chromosome (see Discussion) 

b) The expected reduction in neutral diversity. B(expected) was calculated using equation 

2.5. c) The observed reduction in neutral diversity (B(observed) = !S /(4Nµ)), relative to 

B(expected). Under low recombination, B(observed) / B(expected) increases exponentially. 

If recombination rates are sufficiently high, the expected and observed values of B 

correspond reasonably well. 

 

 

 

 



 34 

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0 500 1,000 1,500

Number of sites (kb)

p
ro

p
o
rt

io
n

 n
o
n

s
y
n

o
n

y
m

o
u

s
 s

it
e
s
 f

ix
e
d
 

fo
r
 d

e
le

te
r
io

u
s
 v

a
r
ia

n
t

 

Figure 2.5: The proportion of nonsynonymous sites fixed for the deleterious variant after 

10,000 generations. Symbols: triangles, dotted line: crossing over and gene conversion; 

squares, dashed line: only gene conversion; diamonds, solid line: no recombination. 
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Figure 2.6: Nonsynonymous diversity relative to neutral diversity. !A over !S is plotted 

against the number of sites. The ratio increases with L as selection against deleterious 

mutations becomes less efficient. The increase is highest with lower recombination and is 

apparently reaching an asymptotic value. Symbols: triangles, dotted line: crossing over 

and gene conversion; squares, dashed line: only gene conversion; diamonds, solid line: no 

recombination. 
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Nonsynonymous diversity decreases as interference becomes stronger because the 

absolute number of variants maintained in the population decreases with decreasing Ne 

(2007). Estimates of nonsynonymous diversity agree very well with their predicted levels 

based on equation (2.9), given the effective population size estimated from synonymous 

diversity and the integral over the distribution of selection coefficients (Figures 2.7 a) and 

2.7 b)). Hence, estimates of Ne based on either "A or "S are very similar; both statistics 

indicate that Ne is larger than expected under the background selection model if many 

selected sites are relatively closely linked. Note that, since the observed values of "A are 

averages of only four simulation runs, fluctuations in Figure 2.7a are most likely due to 

random chance; the apparent increase in diversity at 64kb for the no recombination case is 

due to an outlier of "A = 0.00133, giving a standard error of 30% for this data point.  

 

2.4.4 Distorted genealogies, linkage disequilibrium and reduced efficacy of selection 

Selection distorts gene genealogies as shown by a negative Tajima’s D (Figure 2.8 a) that 

was generally lower when recombination was reduced or absent. Hence, interference does 

not only lead to a simple reduction in the effective population size, but it also has an 

impact on the frequency distribution of segregating sites. For the neutral sites, Drel values 

were decreased to nearly minus one with an increasing number of sites, suggesting that 

most variants were in fact singletons at this stage (Figure 2.8 b) 
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Figure 2.7: a) Nonsynonymous diversity, "A, as observed in the simulations. Symbols: 

triangles, dotted line: crossing over and gene conversion; squares, dashed line: only gene 

conversion; diamonds, solid line: no recombination. b) The expected levels of "A 

calculated from equation (2.9). Symbols: Open triangles: crossing over and gene 

conversion; open squares: only gene conversion; open diamonds: no recombination. 
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a 

 

b 

 

Figure 2.8: The skew in the frequency distribution of polymorphic sites.  a) Tajima’s D 

values and b) Drel for neutral sites. Symbols: triangles, dotted line: crossing over and gene 

conversion; squares, dashed line: only gene conversion; diamonds, solid line: no 

recombination. 
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As shown in Figure 2.9, the average selection coefficient at nonsynonymous sites that 

were fixed for the unpreferred state increased with an increasing number of sites on the 

chromosome: with very short chromosomes (3.2 kb) and no recombination, the arithmetic 

average Nes for fixed deleterious mutations was about 1; for 1.28Mb of completely linked 

sites, this value increased to about 18, reflecting the fact that selection against deleterious 

mutations was less efficient with increasing interference. 
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Figure 2.9: The average selection coefficient at nonsynonymous sites that were fixed for 

the deleterious variant, plotted against the number of sites on the chromosome. Symbols: 

triangles, dotted line: crossing over and gene conversion; squares, dashed line: only gene 

conversion; diamonds, solid line: no recombination. 

 

 

Linkage disequilibrium (D’) between adjacent selected segregating sites was always 

negative (Figure 2.10), suggesting the existence of repulsion haplotypes – a general 

characteristic of Hill-Robertson interference; this effect did not seem to increase with an 

increasing number of sites. 
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Figure 2.10: Linkage disequilibrium (measured as D´ (2006)) between adjacent selected 

segregating sites, plotted against the number of sites on the chromosome. Symbols: 

triangles, dotted line: crossing over and gene conversion; squares, dashed line: only gene 

conversion; diamonds, solid line: no recombination. 

 

 

There was no evidence that sites in the middle of the chromosome experienced stronger 

effects of background selection that those at the ends (results not shown), as expected 

from equation 2.5. However, given the large number of sites on each chromosome, the 

effect that was expected was only very weak: the maximum difference for the reduction of 

neutral diversity of sites in the centre of the chromosome versus those at the ends was 

expected for the shortest chromosomes (3.2 kb) undergoing crossing over and gene 

conversion. But even for this parameter combination, the difference between B(predicted) 

in the middle vs. the ends  of the chromosome was only 3%; for 320kb, the expected 

difference was less than one percent. 

 

In contrast to the simulations with reduced recombination, in runs that included both 

crossing over and gene conversion at normal rates, the observed reduction in neutral 

diversity was actually greater than expected under the background selection model 

(Figure 2.11); this effect is not eminent in Figure 2.4c where the data are plotted on a 

log-scale. 
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Figure 2.11: The observed reduction in neutral diversity (triangles, solid line) and 

the expected values of B under the background selection model (diamonds, dotted 

line), plotted against the number of sites on the chromosome. 

 

 

2.5 Discussion 

 

The simulations show that the predictions of the background selection model break down 

if many strongly selected sites are relatively tightly linked. With a reduction in Ne, 

deleterious variants behave as if they were subject to weaker selection and are removed 

from the population less efficiently. This maintains them in the population for longer and 

increases variability at linked neutral sites. In other words, interference among segregating 

selected variants is not confined to weakly selected sites - such as synonymous sites that 

are selected for optimal codon usage  (2006)- but can also occur among amino acid sites.  

 

How do our results relate to observations from genomic regions with low recombination? 

The fourth chromosome of D. melanogaster contains roughly 85 genes; it does not cross 

over under normal conditions, although it can experience gene conversion (BACHTROG et 

al. 2008). Assuming an average length of 965 coding sites per gene (as given for 82 genes 

at http://flybase.bio.indiana.edu/), the chromosome contains roughly 82,000 partially 

linked coding sites. For chromosome 4, mean values of #silent of 1.28 x 10-3 for 18 loci and 

1.32 x 10-3 for four loci were obtained for worldwide collections by WANG et al.  and 
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SHELDAHL (1974), giving an overall mean of approximately 1.3 x 10-3. The data of 

SHAPIRO et al. (LOEWE and CHARLESWORTH 2007) on autosomal variation for genes with 

normal levels of recombination gave a mean of 0.023 for silent sites. The ratio of # values 

for chromosome 4 to genes with normal recombination is thus about 0.06. This level of 

diversity is very similar to the value obtained in the simulations, but much larger than 

predicted under the background selection model (Figure 2.4).  

 

The neo-Y chromosome of Drosophila miranda lacks recombination, and contains 

roughly 3.7 Mb of coding sequence (3087 genes of about 1,200 sites), although about half 

of the genes have lost their function and are thus unlikely to cause HRI. Even though 

neutral diversity on the neo-Y chromosome is strongly reduced, it is still detectable; 

BARTOLOMÉ and CHARLESWORTH (1996) observed an average silent diversity of 4 x 10-5 

for 20 genes on the D. miranda neo-Y. The confidence interval on this value can be 

estimated approximately as follows. The high degree of distortion of the genealogy of this 

chromosome (CHARLESWORTH 1996; LOEWE and CHARLESWORTH 2007) means that the 

standard equilibrium coalescent approach cannot be used. Instead, we assume that the 

genealogy is a star phylogeny, which is close to what is suggested by the data. A minimum 

width on the confidence interval of the estimated nucleotide site diversity, !, is then 

provided by a Poisson distribution of the number of segregating sites in the sample (this 

ignores any stochastic variation in the depth of the genealogy). If all variants are 

singletons, ! is estimated as 2S/(nm), where S is the number of segregating sites, n is the 

number of alleles in the sample, and m is the number of sites sequenced (for any given 

site, n – 1 of the alleles in the sample differ from the allele with the variant, and there are 

n(n – 1)/2 pairs of alleles). Pooling all the sites in the data of BARTOLOMÉ and 

CHARLESWORTH , we have S = 9, n = 18 and m= 23,064, giving an estimate of 4.35 x 10-5 

for !. This is very close to the ! value obtained directly (there is no difference between 

diversities for nonsynonymous and silent sites, reflecting the lack of effective selection on 

the nonsynonymous sites). The lower and upper 2.5 percentile values for the mean of the 

Poisson from the Poisson distribution for 9 observed events are 4.78 and 17.1, 

respectively, corresponding to ! values of 2.30 x 10-5 and 8.26 x 10-5. The corresponding 

95% confidence interval ratio of the neo-Y ! to the mean silent site ! (3.91 x 10-3) for the 

same genes on the neo-X is 0.0059 to 0.021. Given that there are three times as many neo-
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X as neo-Y chromosomes, the corresponding interval for the ratio of effective population 

sizes is 0.018 and 0.063. In practice, the interval must be substantially wider than this, 

since the value for the neo-Y is broader than our estimate, and we have ignored the error 

for the neo-X (assuming independence among loci, the mean for the neo-X has an s.e. of 

1.0 x 10-4 .  

In the simulations, relative levels of diversity for complete linkage relative to the expected 

value under free recombination were about 0.015 for the longest chromosomes simulated 

(L = 1.28 Mb); these sequences were not much shorter than the total length of coding 

sequence that is presumably still functional on the neo-Y . We conclude that HRI among 

amino acid sites can explain diversity on regions of low recombination in Drosophila, such 

as the fourth chromosome or the neo-Y.  

 

BACHTROG (2004) argued that the reduction in diversity on the D.miranda neo-Y 

chromosome was most likely to be explained by positive, rather than negative selection, 

based on coalescent simulations, which suggested that the observed Tajima’s D value of 

about -2 was more likely to occur under a selective sweep scenario rather than background 

selection. However, her BGS simulations assumed independent effects among sites and 

did not take interference into account. In our forward simulations, on the other hand, 

frequency spectra of segregating sites were very strongly skewed towards low frequency 

variants, giving Tajima’s D values as low as -2.5. This suggests that selection against 

deleterious mutation may indeed result in Tajima’s D values as low as observed for the 

neo-Y chromosome. 

 

With a harmonic mean Nes of 10, interference can occur even with realistic levels of 

recombination as estimated for D. melanogaster autosomes: as shown in Figure 2.5, the 

proportion of sites fixed for the deleterious allele also increased with increasing 

chromosome length in simulations that had crossing over and gene conversion. This might 

imply that a substantial number of deleterious amino acid mutations could become fixed 

also in regions of normal recombination, i.e. a substantial fraction of nonsynonymous 

substitutions between species could be deleterious. MARUYAMA and KIMURA (1974) 

showed that the time to fixation, conditional on fixation, is the same for a deleterious and a 

positively selected mutation that have selection coefficients of equal magnitude. 
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Accordingly, deleterious mutations that are destined to go to fixation will leave traces in 

adjacent genomic regions resembling selective sweeps, and this phenomenon may be more 

common that previously thought.  Note, however, that we did not allow for spacing 

between genes, whereas the D. melanogaster genome has an average spacing of 6kb; this 

is likely to decrease interference effects among selected sites in regions of normal levels of 

recombination . 

 
With recombination, background selection was more efficient than predicted by the 

model (Figure 2.11), similar to the results of NORDBORG et al. (1996), who simulated 

much shorter chromosomes and observed less marked effects. This might be a result 

of simulating small populations in which negative linkage disequilibrium builds up 

among deleterious mutations at closely linked sites, as shown in Figure 2.10. 

Equation (2.5) assumes independence between sites under selection, and this 

assumption is clearly often violated. Negative linkage disequilibrium implies that the 

total frequency of haplotypes carrying at least one deleterious mutation is higher than 

with linkage equilibrium, for the same allele frequencies at each site. If selection 

against deleterious mutations is sufficiently strong that a neutral variant associated 

with a single closely-linked deleterious mutation has a high chance of elimination 

before it recombines away, this means that the efficacy of BGS will be increased. 

The true value of B for regions of normal recombination on a Drosophila chromosome 

is likely to be close to 1, and the discrepancy with the simulations is possibly caused 

by the lack of intergenic sequence simulated.   
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3 The rate of gene loss on the Drosophila miranda neo-Y 

chromosome can be explained by the process of Muller’s ratchet 
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3.1 Abstract 

 

Since its formation about 1.75MYA, the Drosophila miranda neo-Y chromosome 

has undergone a rapid process of degeneration, having lost approximately half of the 

genes that it originally contained. Using estimates of mutation rates and selection 

coefficients against loss-of-function mutations, I show that the high rate of 

accumulation of these mutations can be explained by the process of Muller’s ratchet, 

the stochastic loss of the least-loaded mutational class from a small asexual 

population. I show that selection at nonsynonymous coding sites can accelerate the 

process of gene loss, and that this effect varies with the number of genes still present 

on the degenerating neo-Y chromosome. 

 

3.2 Introduction 

 

Without recombination, sites in the genome do not evolve independently of each 

other (FELSENSTEIN 1974; FISHER 1930; MULLER 1932), which leads to reduced 

levels of nucleotide diversity and adaptation, such as non-optimal codon usage or a 

high rate of amino acid changes (BACHTROG 2003; 2005; BARTOLOMÉ and 

CHARLESWORTH 2006; BETANCOURT and PRESGRAVES 2002; BETANCOURT et al. 

2009; CHARLESWORTH and CHARLESWORTH 2000). It is, however, still an open 

question how large-scale re-arrangements and the loss of whole open reading frames 

can become fixed in non-recombining regions of the genome, leading to structures 

such as the small and degenerate Y chromosome of humans or the W chromosome in 

chicken (FRIDOLFSSON et al. 1998; SKALETSKY et al. 2003).   

 

The neo-Y chromosome of D. miranda is an example of a large non-recombining 

region that is relatively young and has only partially degenerated (BACHTROG et al. 

2008; BARTOLOMÉ and CHARLESWORTH 2006; STEINEMANN and STEINEMANN 

1998), enabling us to study the time-frame over which degeneration can occur - as 

well as its possible causes. The neo-Y arose when an autosome (corresponding to 

chromosome arm 2R in D. melanogaster) became fused to the Y chromosome, 
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containing about 3,000 genes with a total of about 3.7 Mb coding sequence 

(STEINEMANN and STEINEMANN 1998). Since there is no recombinational exchange 

between homologues in Drosophila males (GETHMANN 1988), recombination 

between the neo-X and neo-Y became immediately restricted; within a short 

evolutionary time-frame of only ~ 1.75 MY (BARTOLOMÉ and CHARLESWORTH 

2006), about half of the genes originally present on the neo-Y have lost their function 

(BACHTROG et al. 2008).  

In order to quantify the rate of accumulation of loss-of-function mutations on 

the neo-Y chromosome, which we will denote by r, it is convenient to consider the 

base-line rate of fixation for neutral mutations (which is equal to the mutation rate), 

and compare this to the observed rate of fixation of “major” mutations. BACHTROG et 

al. (2008) showed that 55/118 genes present on the ancestral neo-Y contain at least 

one frame-shift mutation, stop codons, or deletion, while these genes have remained 

intact in the neo-X lineage. Accordingly, with an average length of neo-Y linked 

coding sequence of 1188bp in this dataset (BACHTROG et al. 2008), the divergence 

per basepair with respect to loss-of-function mutations (KD) is given by KD = 

(55/118)/1188 = 3.9 x 10-4. These mutations have all occurred along the neo-Y 

branch of the tree connecting the neo-Y and neo-X chromosomes to their common 

ancestor. The corresponding synonymous site divergence, KS, is about 1% 

(BARTOLOMÉ and CHARLESWORTH 2006). To estimate the neutral level of divergence 

along this branch with respect to indel mutations – which probably are the main 

cause of loss of gene function (see below) - we multiply the value of KS by 0.44, i.e. 

the amount of new mutations that cause indels in Drosophila, relative to those 

causing transitions and transversions (HAAG-LIAUTARD et al. 2007). If U is the rate 

of origination of major deleterious mutations on the neo-Y, the data thus suggest that 

r/U on the neo-Y, given by KD/0.44KS, is about 9%, a rather high value. This 

approach has the advantage of being independent of the number of generations per 

year in D. miranda, although it might lead to an underestimate of r/U since it ignores 

the possibility of multiple loss-of function mutations within the same open reading 

frame (see Discussion). 

We do not know what processes have driven the rapid accumulation of loss-

of function mutations. We expect the selection coefficients associated with the 
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heterozygous carriers of such mutations to be rather large (CROW and SIMMONS 

1983), and deleterious mutations for which Nes >> 1 (where Ne is the effective 

population size and s is the selection coefficient) have a very low probability of 

fixation (KIMURA 1983). Accordingly, one or more forces must be acting to severely 

reduce the Ne of the neo-Y. Positive selection, causing selective sweeps (KAPLAN et 

al. 1989; MAYNARD SMITH and HAIGH 1974), can drag to fixation deleterious, linked 

variants, provided that selection at the beneficial sites is strong enough to overcome 

the cumulative effect of selection against deleterious mutations in the background 

(CHARLESWORTH 1994; HADANY and FELDMAN 2005; JOHNSON and BARTON 2002). 

However, an unrealistically high incidence of strong positive selection is probably 

necessary to explain the neo-Y data on this basis (see Discussion). 

 

In this chapter, I therefore examine an alternative “null” model that does not invoke 

selective sweeps. Assuming that deletions, frameshift mutations and insertions of 

transposable elements are irreversible, I will examine the process of Muller’s ratchet 

as a means for fixing major mutational lesions (FELSENSTEIN 1974; HAIGH 1978; 

MULLER 1964), as previously proposed for the evolution of Y chromosomes by 

CHARLESWORTH (1978). Under this model, selection against deleterious mutations is 

sufficiently strong (Nes >1) so that mutations in the freely recombining, ancestral 

population are close to mutation-selection equilibrium. With multiplicative fitness 

effects and a Poisson distribution of the number of mutations per haploid genome, 

the equilibrium size of the mutation-free class in a Wright-Fisher population is given 

by N0 = N exp(-U/s), where N is the population size in terms of number of haploid 

genomes, U the genomic mutation rate for deleterious mutations for the chromosome 

in question, and s the selection coefficient (HAIGH 1978). If the population size is 

finite, genetic drift will eventually lead to the stochastic loss of this class of 

individuals; without recombination, it cannot be restored (the ratchet has made one 

“click”). The process of repeated loss of the least-loaded class of individuals leads to 

the constant accumulation of deleterious mutations within the population, and with 

each “click” of the ratchet, one deleterious mutation becomes fixed (CHARLESWORTH 

and CHARLESWORTH 1997). The rate of fixation of deleterious mutations, r, is thus 
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greatly increased over that for mutations with the same selection coefficients in a 

freely recombining population.  

We can reasonably assume that major mutations are irreversible and that Nes 

for such mutations is much larger than one. However, we do not know a priori 

whether the ratchet can explain the neo-Y data, since it cannot operate if N0s is too 

large (GORDO and CHARLESWORTH 2000b). One factor that might speed up the 

ratchet is the presence of deleterious mutations caused by base substitutions at 

amino-acid sites in coding sequences. We will call these sites “background selection” 

or “BGS” sites. As shown in chapter 2, selection at BGS sites can drastically reduce 

the Ne value for a non-recombining genomic region, but the reduction in Ne levels off 

as the number of nonsynonymous sites under selection increases. For very long 

chromosomes such as the neo-Y, neutral diversity, which is directly proportional to 

Ne (KIMURA 1983), asymptotes at a level of about 1.5% of the value with free 

recombination. We expect the reduction in Ne caused by the BGS sites to accelerate 

the rate of the ratchet, since GORDO and CHARLESWORTH (2001) have shown that 

background selection can have such an effect, but the expected magnitude of the 

effect is unknown for realistic parameters.  

In this chapter, I show that a high rate of fixation of strongly deleterious loss-

of-function mutations on the neo-Y chromosome of D. miranda is compatible with a 

“null” model of selection acting against deleterious mutations alone. I also show that 

selection against amino acid mutations, which are under weaker selection than loss-

of-function mutations, has a significant effect on the rate at which major mutations 

can accumulate.  

 

3.3 Methods 

 

3.3.1 Theoretical background 

Analytical and numerical results are available for the speed of the ratchet in a non-

recombining, Wright-Fisher haploid population of size N, where the rate of origin of 

new deleterious mutations per generation is U, the selection coefficient against a 

single mutation is s, and fitness effects of different mutations combine 
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multiplicatively (GESSLER 1995; GORDO and CHARLESWORTH 2000a; b; 2001; 

HAIGH 1978; HIGGS and WOODCOCK 1995; JAIN 2008; PAMILO et al. 1987; ROUZINE 

et al. 2008; STEPHAN et al. 1993). 

 We will make use of some of these results for interpreting the rate of 

movement of the ratchet. We first consider the case when N0 > 1, where  

N0 = N exp(-U/s) – see above. Following a click of the ratchet, the population will 

approach a new equilibrium after time, TA, with the number of individuals carrying 

just one mutation being equal to N exp(-U/s). TA has been estimated (GORDO and 

CHARLESWORTH 2000a) as 
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Recently, JAIN (2008) has derived an analytic expression for the average time, TC, 
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where ! = cN0s. As pointed out by JAIN (2008), with c = 0.6, the integral used to 

derive equations (2) is identical to the one described in GORDO and CHARLESWORTH 

(2000b), which is why we will use c = 0.6 here. 

The net expected rate of fixation of deleterious mutations, r, is thus given by 1/(TA + 

TC). This can be compared with the value for a freely recombining haploid 

population of size N 
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The significance of N0 and N0s for driving the ratchet has been previously discussed 

(BELL 1988; GESSLER 1995; GORDO and CHARLESWORTH 2000b; HAIGH 1978; 

STEPHAN et al. 1993). Equations (2) imply that the rate of the ratchet scales linearly 

with N. This means that r/U, (i.e. the rate relative to the neutral rate) is expected to 

be constant if the products Ns and NU are held constant, as would be expected from 

the fact that these results are derived from a diffusion equation approximation 

(EWENS 2004). 

In some cases that we studied, the condition N0 > 1 is violated. We then used 

numerical solutions of equations (1) – (5) of  GESSLER (1995) to compute r. 

 

3.3.2 The model 

To simulate the accumulation of major deleterious mutations by the ratchet in the 

presence of more weakly selected deleterious mutations, we used forward 

simulations of sequence evolution, similar to those described in chapter 2. Briefly, 

we used a Wright-Fisher model consisting of a population of 1,000 haploid 

individuals, each of which carry a single non-recombining chromosome of length L, 

where L varies from 32kb to 1.28Mb. Two-thirds of all the sites on a chromosome 

are “background selection sites” (BGS sites), representing sites at which non-

synonymous mutations can occur. The selection coefficients for these sites are drawn 

from a log-normal distribution with a harmonic mean Ns for the corresponding 

diploid population of size 500 (i.e. the coalescent N (CHARLESWORTH 2009; HUDSON 

1990)) equal to 10. At the remaining sites on the chromosome, major knock-out 

mutations can occur that have very large fitness effects on the individual. These sites 

will be called “major” sites. Selection is multiplicative across all sites. Note that, 

since we do not allow recombination, the exact position of the “major” sites on our 

simulated chromosomes is irrelevant. 

 

At the start of each run, all BGS sites are in mutation-selection equilibrium, whereas 

there are no mutations at the major sites. The rate of mutations at BGS sites is 

constant per site, i.e. adding more sites to the chromosome increases the 

chromosome-wide mutation rate for the BGS sites. In contrast, we keep the 

chromosome-wide mutation rate, U, at the major sites constant, i.e. we measure the 
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effect of increasing or decreasing BGS, without changing the influx of major 

mutations. Mutations at major sites are irreversible and are thus expected to 

accumulate via a Muller’s ratchet-type process; the BGS sites are reversible, and 

initially accumulate at a constant rate, until an equilibrium between forward and 

backward mutation is reached (chapter 2). The reduction in Ne caused by the BGS 

sites, however, reaches a steady state almost immediately (chapter 2). 

10,000 generations of mutation, selection and reproduction were performed, and the 

rate, r, of fixation of major mutations was estimated by calculating the slope of the 

regression line for the number of sites fixed against time.  

 

3.3.3 Tests of equations (1) and (2) 

In test-runs, I checked whether I obtained similar rates of r/U for the “major” 

mutations from the simulations as suggested by equations (1) and (2), using a range 

of parameters for U and s. To calculate the expected rate, I used equation (2a) or (2b) 

respectively, depending on the value of !, and added the term TA (equation 1) to 

obtain the total expected time between clicks of the ratchet. I performed simulations 

with or without selection at the BGS sites, as shown in Table 3-1.  

Whenever we allowed BGS to occur at nonsynonymous sites, I calculated the 

reduction in Ne caused by the BGS sites alone, calculated from the formula for 

expected neutral diversity, " = 4Ne#, as obtained from the simulations described in 

chapter 2. The expected rate of accumulation of major mutations, r/U, was then 

calculated by replacing the term N in equations (2) and the equations of GESSLER 

(1995) with the estimate of Ne. 

 

3.3.4 Mutational parameters and scaling by population size 

In order to be able to compare our simulation results with the r/U value of 0.04 that 

we estimated for the D. miranda neo-Y chromosome, I have used scaled values of 

mutation and selection parameters. According to diffusion theory, it is possible to 

infer the behaviour of the system in a much larger population than assumed in the 

simulations by keeping the products of NeU and Nes constant (EWENS 2004; HILL and 

ROBERTSON 1966; MCVEAN and CHARLESWORTH 2000), if time is measured in units 

of Ne generations. Without interference effects, the effective population size for the 
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D. miranda neo-Y is likely to be one quarter of the diploid Ne, which has been 

estimated to be about 840,000 (LOEWE et al. 2006). Mutation and selection 

parameters for use in our simulations with a haploid number of 1,000 are thus 

obtained by multiplying the biologically realistic values by 4.2 x 105/1,000 = 420.  

We will assume here that the main two causes of loss of function of a gene 

are insertion-deletion (indel) mutations or TE insertions. Both types of mutations are 

likely to contribute equally to fitness loss, and are hence treated as a single process 

from the point of view of the ratchet. The rate of origination of indel mutations in D. 

melanogaster is about 2.6 x 10-9 per bp per generation (HAAG-LIAUTARD et al. 

2007). With an estimated 3.67 million coding sequence sites on the neo-Y before 

degeneration (the size of the homologous region in D. pseudoobscura), this gives a 

per chromosome mutation rate of approximately 0.0095. We further assume that the 

observed frequency of TE insertions into intronic sequences in the D. miranda neo-Y 

chromosome reflects the insertion rate into coding sequences, without selective 

constraints. No TEs were found within coding sequence by BACHTROG et al.(2008), 

but 13 out of 118 genes that were present on the ancestral neo-Y carry new TE 

insertions in introns. The total length of intron sequence in the sample of genes 

studied by BACHTROG et al. (2008) is about 70.2kb, so that the number of putatively 

neutral TE insertions per bp is 13/(70.2 x 103) = i.e. 1.85 x 10-4. The predicted rate of 

accumulation of neutral indels per bp on the neo-Y branch is about 44% of the value 

for base substitutions (HAAG-LIAUTARD et al. 2007), i.e. 0.01/2.3 = 0.0044, so that 

we estimate that the rate of insertion of new TEs into coding sequence relative to the 

rate for indels is 1.85 x 10-4/0.0044 = 0.042, which can be neglected. We will use a 

slightly conservative estimate of the rate of “major” mutations on the neo-Y in D. 

miranda, before degeneration of U = 0.009. If we scale this value to a haploid 

population size of 1,000, keeping NU constant, this gives a U value of 3.78 for our 

simulations.  

Note that the point mutation rate of N# = 0.0052 at the BGS sites that we 

used in our simulations was obtained by combining the above estimate of the 

mutation rate per basepair with the D. melanogaster estimate of Ne, which is about 

1.3 million (LOEWE and CHARLESWORTH 2007; LOEWE et al. 2006); this enabled us 

to estimate the reduction in Ne caused by the BGS sites alone, since data were 
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available from previous simulations (chapter 2). A realistic value for D. miranda 

would be about one-quarter less than this, if current estimates of neutral diversity for 

D. miranda are used (LOEWE et al. 2006). It seems likely, however, that D. miranda 

has undergone a recent reduction in effective population size (BACHTROG 2007; 

BACHTROG and ANDOLFATTO 2006; YI et al. 2003), so that use of this larger value is 

probably realistic as far as the history of the neo-Y chromosome is concerned.  In 

any case, having an increased # per BGS site is roughly equivalent to having more 

sites in the simulations and hence should not affect the results substantially, 

especially since the reduction in Ne due to background selection levels off as the 

number of BGS sites increases. 

 

3.3.5 Estimates of the selection coefficients against major mutations 

About one-quarter of loss of function mutations in Drosophila are lethal in the 

homozygous state, but lead to a mean reduction in fitness of only 1-2% when 

heterozygous (CHARLESWORTH and CHARLESWORTH 1998; CHARLESWORTH and 

HUGHES 1999; CROW and SIMMONS 1983). Since mutations on the neo-Y are nearly 

always masked by functional alleles on the neo-X, we need here to consider only the 

heterozygous selection coefficients. Knock-out mutations are all not expected to 

have the same effects (i.e. losing a gene that is part of a gene family might be less 

deleterious than losing a single-copy gene). However, the arithmetic mean selection 

coefficient against mutations that are segregating in a randomly mating population 

can be used as an estimate for the harmonic mean, sh, of a distribution of s values 

(LOEWE et al. 2006), because segregating mutations tend to be less deleterious than 

the average of all new mutations. We can assume that this distribution of selective 

effects does not include s = 0 because gene loss is unlikely to be completely neutral; 

hence, sh is always defined. The heterozygous selection coefficient of segregating 

knock-out mutations for enzyme loci in D. melanogaster has been estimated to be 

about s = 0.0015 (LANGLEY et al. 1981). For a haploid population of N = 1,000, this 

corresponds to a scaled s value of 0.63.  

To circumvent the problem of using a wide distribution of scaled s values, 

which can generate unrealistically large heterozygous selection coefficients (>> 1), 

we tested whether simulations with a single selection coefficient for all major sites 
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gives quantitatively similar results compared to using a distribution of s values, 

provided that the fixed s value is equal to the harmonic mean of the distribution of s 

values. Runs were performed for 10,000 generations, and r/U was calculated and 

compared between runs. 

 

3.3.6 Tests of scaling 

Scaling of parameters of mutation and selection by the population size produces 

coherent results when the s values are relatively small (MCVEAN and 

CHARLESWORTH 2000), but the diffusion approximations might break down for 

stronger selection, such as the parameter space assumed for selection at the major 

sites. We therefore tested whether the scaling of s by the population size works, i.e. 

we tested whether r/U is constant if the population size is changed, and parameters of 

mutations and selection are scaled appropriately. Runs using a population size of N = 

1,000, 10,000, 20,000 or 40,000 individuals were performed. In these runs, all BGS 

sites were assigned a fixed selection coefficient that corresponds to a (diploid) Ns of 

10, and the (diploid) Ns at the major sites was equal to 315. (This corresponds to a 

heterozygous s value of 0.63 for a haploid population size of N = 1,000, i.e. the 

scaled neo-Y value). We measured r/U for the major mutations, using a chromosome 

length of 32kb, with four runs performed per population size.  

 

3.3.7 Testing how r/U behaves when the length of the chromosome increases 

Runs using scaled neo-Y parameters of mutation and selection were performed, with 

different lengths of chromosomes (32 kb to 1.28 Mb), and the average r/U was 

measured for each run. Four runs were performed for each parameter combination. 

To compare these results to the expected rates, assuming that N is reduced to the Ne 

suggested by the BGS simulations of chapter 2, we cannot use equations (2) because 

the equilibrium size of the least- loaded class, N0 = N exp(-U/s) is less than 1; in 

other words, the least-loaded class is never present (GESSLER 1995; JAIN 2008; 

ROUZINE et al. 2008). Hence, we used the approach of GESSLER (1995) to calculate 

the expected rates whenever N0 <1. 
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3.4 Results 

 

The question that we wish to explore is whether the estimated value for the D. 

miranda neo-Y chromosome of r/U, the rate of fixation of major mutations relative 

to their mutation rate, can be accounted for by Muller’s ratchet, using the parameter 

values and simulation methods described above. We first examine how well the 

theoretical formulae and rescaling by population size perform, and then describe the 

major results of interest for interpreting the D. miranda results. Results shown in 

Figures 3-1 and 3-4 are averages of 4 runs; all other results are from single 

simulation runs.  

 

3.4.1 Tests of the theoretical formulae 

Table 3-1 presents the results of testing the theoretical predictions describe above, 

using a single selection coefficient s for the major mutations. It can be seen that 

equations (1) and (2) often tend to overestimate r, sometimes quite badly, but can be 

used as a rough guideline for the expected rate of the ratchet when there is no 

selection at the BGS sites (upper part of Table 3-1). The first two rows of Table 3-1 

show parameter combinations used by GORDO and CHARLESWORTH (2000b), who 

obtained rates that were very similar to ours, suggesting that our simulations produce 

comparable results (r/U ! 0.131 and r/U ! 0.035 from Figure 1 in GORDO and 

CHARLESWORTH (2000b), compared to our r/U-values of 0.129 and 0.040 

respectively). 

With selection at the BGS sites, we observe a large increase in the rate of the 

ratchet (lower part of Table 3-1); the observed rate is now substantially larger than 

expected from equations (1) and (2) when ignoring BGS, and the effect is more 

pronounced when selection at the “major” sites is not very strong (s = 0.2). However, 

the observed rate is more similar to the expected rate when the latter is calculated 

using the “background selection Ne” instead of N in the theoretical predictions, at 

least for the first two parameter combinations shown in Table 3-1, for which s = 0.2. 
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3.4.2 Tests of the scaling and selection parameters used in the simulations 

Using the approach described in the Methods section, the procedure of scaling the 

mutation and selection parameters by the population size N produced very similar 

results for simulated values of r/U. Differences in N had almost no effect when the 

products of Ns and N# were held constant for both the BGS sites and the “major” 

sites (Figure 3-1). Hence, we can be reasonably confident that our simulations of 

small populations can be used to predict the behaviour of the ratchet in a much larger 

population, such as that of D. miranda. 
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Figure 3-1: r/U scales with the population size N. At the “major” sites, Ns (diploids) 

= 315, as estimated for “major” mutations occurring on the D. miranda neo-Y. At 

the BGS sites, selection occurs with a constant selection coefficient, so that Ns of the 

corresponding diploid population = 10. The mutation rates at all sites are also scaled 

by the population size. L = 32 kb in all cases.  

 

 

We also found that r/U remains largely unchanged if a fixed s value is used, 

instead of a log-normal distribution of s values, provided that the fixed s value 

corresponds to the harmonic mean of the respective distribution (Table 3-2). Hence, 

we can reasonably assume that our simulations using scaled values of U with a fixed 

selection coefficient produce results comparable to those of a much larger population 

where s values are drawn from a distribution of values. 
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Table 3-1: Testing equation 3, with corrections for TA (equation 1). The first part of the Table gives results for simulation runs without selection at 

the BGS sites, i.e. considering Muller’s ratchet only. The second part shows results with selection at the BGS sites combined with Muller’s ratchet. 

In the last column, the expected rate, r(exp, with BGS), was calculated assuming that N is reduced to the Ne suggested by the BGS simulations 

(chapter 2). 

1.)No Background selection 

U s U/s N0 ! r/U (observed) r (obs)/r (exp) r(obs)/r(exp, with BGS)  

0.0240 0.015 1.60 202 1.82 0.040 0.86 N.A. 

0.0585 0.015 3.90 20 0.18 0.129 0.97 N.A. 

0.1200 0.05 2.40 91 2.72 0.005 0.36 N.A. 

0.0220 0.01 2.20 111 0.66 0.080 0.75 N.A. 

0.0010 0.001 1.00 368 0.22 0.436 0.69 N.A. 

0.1000 0.02 5.00 7 0.08 0.129 0.88 N.A. 

0.025 0.0063 4.00 18 0.07 0.197 0.90 N.A. 

0.69 0.20 3.45 32 3.81 0.002 0.48 N.A. 

3.78 0.63 6.0 2.5 0.94 0.021 0.78 N.A. 

2.) Background selection at nonsynonymous sites 

0.69
1
 0.20 3.45 32 3.81 0.071 16.79 0.61 

0.69
2
 0.20 3.45 32 3.81 0.297 70.57 1.28 

3.78
2
 0.63 6.0 2.5 0.94 0.032 1.14 0.19 

1
 BGS with L = 32 kb; Ne (BGS simulations) = 108   

2
 BGS with L = 320 kb; Ne (BGS simulations) = 2 
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Table 3-2: r/U is given for a range of s-values at the “major” sites. In all runs, BGS occurs at the first and second codon position, with Ns(harmonic) 

= 10 at the BGS sites (L = 320 kb; U = 3.78) 

1.) Distribution of s-values at “major” sites. s is drawn from a log-normal distribution with mean !g and standard deviation "g. The fraction of lethal 

mutations, as well as the arithmetic and harmonic mean s is given, considering either only non-lethal mutations or all mutations at “major” sites. The 

fraction of “major” sites where s takes values in the interval 0-0.2, 0.2-0.4, 0.4-0.6, 0.6-0.8 and 0.8-1.0 is indicated. 

2.) All “major” sites are assigned a fixed selection coefficient s. This s-value equals the harmonic mean s of a distribution in part 1.) of the Table. 

The r/U-values of part 1.) and part 2.) of the Table are very similar. 

1.) s from a log-normal distribution: 

 

!g = -1.0 

"g = 0.4 

!g = -1.0 

"g = 0.1 

!g = -0.7 

"g = 0.4 

!g = -0.7 

"g = 0.1 

!g = -0.35 

"g = 0.2 

!g = -0.35 

"g = 0.1 

!g = -0.2 

"g = 0.1 

fraction (lethal mutations) 0.005 0.000 0.040 0.000 0.040 0.0002 0.022 

s (arithmetic) non-lethal 0.394 0.370 0.511 0.499 0.704 0.708 0.818 

s (harmonic) nonlethal 0.338 0.366 0.447 0.494 0.681 0.701 0.811 

s (arithmetic) total 0.398 0.370 0.531 0.499 0.716 0.708 0.822 

s (harmonic) total 0.339 0.366 0.457 0.494 0.689 0.701 0.814 

        

fraction (0 # s # 0.2) 0.064 0.000 0.011 <0.001 <0.001 <0.001 <0.001 

fraction (0.2 < s # 0.4) 0.518 0.796 0.285 0.015 0.002 <0.001 <0.001 

fraction (0.4 < s # 0.6) 0.306 0.204 0.385 0.956 0.211 0.054 0.001 

fraction (0.6 < s # 0.8) 0.086 0.000 0.201 0.029 0.521 0.843 0.408 

fraction (0.8 < s # 1.0) 0.026 0.000 0.118 0.000 0.265 0.103 0.591 
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Table 3-2, continued 

        

r/U 0.144 0.135 0.089 0.077 0.018 0.015 0.001 

        

2.)  s fixed : 

        

s 0.339 0.366 0.457 0.494 0.689 0.701 0.814 

        

r/U 0.149 0.135 0.091 0.077 0.017 0.014 0.001 
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3.4.3 The effects of BGS on the speed of the ratchet 

Our simulations show that selection at the BGS sites increases the rate of fixation at 

major sites, but the magnitude of the effect depends on the relative strengths of 

selection at the BGS and major sites, as well as on the number of BGS sites. As 

shown in Figure 3-2, r/U is consistently higher when there are more sites under 

background selection (L = 1.28 Mb versus L = 320 kb). Here, the expected values for 

r/U were calculated taking the reduction in Ne due to the BGS sites into account; 

both the observed and the expected rate decrease with increasing s (because more 

strongly deleterious mutations accumulate more slowly), but the observed rate 

decreases faster than the expected rate. Accordingly, when s at the “major” sites – 

and hence the difference between the two types of selection coefficients – becomes 

larger, the effect of the BGS sites becomes increasingly less pronounced. The 

expected r/U values calculated without the reduction in Ne caused by the BGS sites 

are about two orders of magnitude lower than the observed r/U values in Figure 3-2 

(Table 3-3). 

Longer chromosomes (more BGS) lead to higher rates of fixation at the 

“major” sites (Figure 3-3). Note that, if the parameter ! (a major determinant of the 

rate of the ratchet in the absence of BGS (GORDO and CHARLESWORTH 2000b; JAIN 

2008)) is held constant, the ratio r/U decreases with increasing U/s, whereas the 

actual rate, r, increases (this is simply due to the non-linearity of U, s, ! and the fact 

that U increases faster than r) (Figure 3-3). For the smallest s value at the “major 

sites” simulated (s = 0.06), the increase in r/U with increasing L is most pronounced 

(r/U increases from 3% to 78%), suggesting that BGS can have a very large effect on 

r, provided that s values at the two types of sites are similar.   

Figure 3-4 shows the effect of selection at BGS sites on the rate of fixation of 

major mutations, with parameters estimated as realistic for the neo-Y chromosome of 

D. miranda, and scaled appropriately by the population size (N = 1,000; s = 0.63; U 

= 3.78). As in Figure 3, the rate r/U increases with the amount of background 

selection at nonsynonymous sites. Note, however, that for these parameter 

combinations, the background selection effect is not very large: even when there is 

no selection at BGS sites (dotted line), r/U is about 2%. The ratio r/U increases to  
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Figure 3-2: The effect of varying s at the “major sites”, with different levels of  

background selection, i.e. different values of L. ! (not taking the BGS effect into 

account) is held constant at 6.9. Since ! = Nexp(-U/s)0.6s , U also varies with s; 

values of U are listed in Table 3-3.  The plot shows the observed and expected r/U 

for two lengths of chromosomes (L = 320 kb and L = 1.28 Mb respectively). The 

expected r/U values were calculated assuming that N in equation 3 is reduced to the 

Ne suggested by the BGS simulations described in chapter 2. The corresponding 

expected r/U values without the BGS effect are listed in Table 3-3.  

Symbols: Left-hand axis: red squares (filled symbols), solid line: observed r/U for L 

= 320 kb; red squares (open symbols), dotted line: expected r/U for L = 320 kb; blue 

diamonds (filled symbols), solid line: observed r/U for L = 1,280 kb; blue diamonds 

(open symbols), dotted line: expected r/U for L = 1,280 kb. 

Right-hand axis: black squares, dashed line: N0 (without the BGS effects) 
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Figure 3-3: Dependence of r/U on U/s and L. As in Figures 1 and 2, ! (not taking 

the BGS effect into account) is held constant at 6.9; Symbols: filled symbols, solid 

lines: r (right-hand Y axis); open symbols, dotted lines: r/U (left-hand axis).  

Blue diamonds: U = 0.099, s = 0.06, U/s = 1.65; red triangles: U = 0.216, s = 0.10, 

U/s = 2.16; green crosses: U = 0.385, s = 0.15, U/s = 2.57; purple asterisks: U = 

0.978, s = 0.30, U/s = 3.26. 
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Table 3-3: Expected rates of the ratchet for “major” mutations for a range of U and s values when ! is held constant. Due to the non-linearity of U, s 

and !, with an increase in s, U has to increases more, and the ratio U/s becomes larger, and hence N0 becomes smaller. The expected rate increases 

with decreasing N0, but r/U actually decreases due to the relatively higher increase in U.  

 

U 

s U/s 

 

N ! (noBGS) N0 (no BGS) 

r (expected, no BGS) r/U (expected, no BGS) 

0.099 0.06 1.65 1,000 6.9 192 5.38 x 10
-05

 5.42 x 10
-04

 

0.155 0.08 1.94 1,000 6.9 144 7.17 x 10
-05

 4.62 x 10
-04

 

0.216 0.10 2.16 1,000 6.9 115 8.96 x 10
-05

 4.14 x 10
-04

 

0.281 0.12 2.35 1,000 6.9 96 1.08 x 10
-04

 3.82 x 10
-04

 

0.385 0.15 2.57 1,000 6.9 77 1.34 x 10
-04

 3.49 x 10
-04

 

0.571 0.20 2.86 1,000 6.9 58 1.79 x 10
-04

 3.14 x 10
-04

 

0.770 0.25 3.08 1,000 6.9 46 2.24 x 10
-04

 2.91 x 10
-04

 

0.978 0.30 3.26 1,000 6.9 38 2.69 x 10
-04

 2.75 x 10
-04
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Table 3-4: The expected rates for simulations using scaled parameters as estimated for the D. miranda neo-Y, calculated using the 

approach of GESSLER (1995). The expected rates based on equation 3 (with the correction of TA) are also shown for comparison. The 

corresponding rates observed in the simulations are shown in Figure 4. 

L (kb)  32 192 320 640 1280 

       

U = 3.78 & s = 0.63 N0 0.27 0.10 0.06 0.05 0.03 

 r/U (Gessler) 0.00 0.17 0.17 0.50 0.33 

 r/U equation 3 with TA  0.11 0.15 0.17 0.18 0.19 

 correction      

       

U = 2.5 & s = 0.63 N0 2.04 0.76 0.49 0.40 0.26 

 r/U (Gessler) N.A. 0.17 0.17 0.17 0.33 

 r/U equation 3 with TA  0.05 0.10 0.13 0.15 0.18 

 correction      

       

U = 1.89 & s = 0.63 N0 5.38 1.99 1.29 1.05 0.67 

 r/U (Gessler) N.A. N.A. N.A. N.A. 0.17 

 r/U equation 3 with TA  0.03 0.07 0.09 0.11 0.15 

 correction      
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about twice this value for the longest chromosomes simulated (L = 1.28 Mb) and 

could be even higher for chromosomes of the size of the ancestral neo-Y 

chromosome (over twice as much coding sequence).  Hence, the r/U obtained from 

the simulations with the value of U/s  that we have proposed as plausible is similar to 

the value for the D. miranda neo-Y (r/U of about 9%). Table 3-4 shows the expected 

rates for the neo-Y data, taking the BGS effect into account. The expected rates are 

clearly higher than the observed rates, i.e. the Ne driving the ratchet is much larger 

than suggested by neutral diversity. 

 

 

Figure 3-4 

The effect of increasing the number of sites subject to BGS on the rate of fixation of 

“major” mutations. Symbols: Diamonds: U = 3.78 and s = 0.63, which correspond 

to the scaled values of U = 0.009 and s = 0.0015 as estimated for the D. miranda 

neo-Y. Selection at the BGS sites is drawn from a log-normal distribution with 

Ns(harmonic mean) = 10. The dashed line indicates the observed r/U when there is 

no BGS for U = 3.78, s = 0.63. 

Squares: U = 2.50, s = 0.63; triangles: U = 1.89, s = 0.63.  
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3.5 Discussion 

 

3.5.1 Plausibility of the model 

The importance of Muller’s ratchet in driving the degeneration of Y chromosomes 

(CHARLESWORTH and CHARLESWORTH 1978; GORDO and CHARLESWORTH 2000a, b 

and 2001) has been questioned, mainly because the time-scales involved were 

inferred to be too large to be biologically significant (CHARLESWORTH 1996). In 

addition, ENGELSTÄDTER (2008) showed that, under some circumstances, the 

presence of deleterious mutations on X-linked homologues of the Y chromosome can 

greatly slow down the ratchet, compared with what is found in haploid simulations of 

the type used here.  

We first consider this technical problem, and then discuss the question of the 

rate of the ratchet in relation to Y chromosome evolution. The selection coefficients 

used in our models of major mutations is the harmonic mean selection coefficient 

against major mutations on the evolving neo-Y chromosome, which we obtained 

from LANGLEY et al. (1981), who used data on the frequencies of null alleles at 

autosomal loci in D. melanogaster populations together with the rate of mutation to 

null alleles with the the standard formula for mutation-selection equilibrium 

(HALDANE 1927). Since frequencies of null alleles are very low, this estimate can be 

equated to the harmonic mean of hs´+ q*s´, where h is the dominance coefficient, s´ 

is the homozygous selection coefficient, and q* is the equilibrium frequency of a null 

allele at a locus; the latter term takes into account the contribution of the occasional 

homozygote to the net fitness of a null allele. Under the assumptions of our model, 

this quantity should be the same as the harmonic mean selection coefficient 

experienced by a major mutation on the neo-Y chromosome, taking into account the 

presence of rare allelic mutations on the neo-X chromosome, so that our haploid 

model should accurately represent the early evolution of the D. miranda neo-Y 

chromosome.  

Our simulation results show that a high rate of accumulation of strongly 

deleterious mutations on an evolving Y chromosome in a Drosophila population can 

be achieved with biologically reasonable parameters, due to Hill-Robertson 
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interference effects among sites subject to purifying selection. Under free 

recombination, the expected rate of fixation of strongly deleterious loss-of-function 

mutations (equation 3) is virtually zero when s = 0.63, U = 3.78 and N = 1,000. 

When rescaled to a haploid population size of 210,000, these correspond to a 

harmonic mean selection coefficient against major mutations of 0.0015, and a 

mutation rate to major mutations of 0.009, which we have argued are plausible 

values for the neo-Y chromosome of D. miranda. However, with no recombination, 

such mutations can become fixed in our simulations, at a rate that is similar to the 

rate observed for the neo-Y, especially when we take the effect of weak selection 

against amino acid mutations in the background (“BGS sites”) into account.  

Given the exponential dependence of the rate of the ratchet, r, on U, a 

reduction in U has a large effect on r (equations 1 and 2). As about half of the genes 

originally present on the D. miranda neo-Y have lost their function since the origin 

of the chromosome (BACHTROG et al. 2008), the maximum reduction in U we can 

assume is 50%. Figure 3.4 shows that, when U is reduced to 2/3 or 1/2 of its original 

value, r/U is indeed reduced, probably below the observed value of 9%. 

It is important to note in this context that the relative effect of selection at 

BGS sites on the speed of the ratchet is actually larger when U is smaller: for U = 

2.5, r/U increases by a factor of about 160 when the number of BGS sites increases 

from 32 kb to 1.28 Mb, as opposed to a factor of only about 2-4 for U = 3.78. When 

U = 1.89, the ratchet has stalled for short chromosomes (L = 32 kb), but is going at a 

relative rate of 0.4% for L = 1.28Mb.  

As previously suggested (BACHTROG 2008b; ENGELSTÄDTER 2008), the 

speed of the ratchet is likely to vary at different stages of Y degeneration: when the 

overall occurrence of major mutations is still high, interference among very strongly 

selected mutations alone leads to their fast accumulation, and the process is 

accelerated (about 2-4 fold) by the presence of BGS sites. With the erosion of genes 

from the neo-Y, U decreases and the ratchet slows down, but the effect of mutations 

at nonsynonymous sites starts to increase, until U becomes so low that the BGS 

effect cannot greatly increase the ratchet any longer (eventually the BGS effect will 

disappear as well). This process might lead to a stable situation, i.e. once the Y 
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chromosome contains few enough genes, selection will be able to purge the 

occasional loss-of-function mutations that hit it.   

Indeed, most old non-recombining chromosomes, such as the Y chromosome 

in humans or D. melanogaster, or the chicken W are very small (CARVALHO et al. 

2009; SKALETSKY et al. 2003), and Muller’s ratchet may no longer be driving the 

fixation of knock-out mutations. However, the process leading to this stage from a 

large non-recombining region of the genome may well have been driven by a ratchet. 

The effects of the ratchet could also be a factor limiting the size of non-recombining 

regions of the genome, and, consistent with this, major gene content expansion of a 

non-recombining region has not yet been reported, although small numbers of genes 

have been added to the highly degenerated Y chromosomes of Drosophila and 

mammals (CARVALHO et al. 2009; SAXENA et al. 1996). (The successive expansion 

of the non-recombining regions of evolving Y chromosomes, resulting in 

“evolutionary strata” (LAHN and PAGE 1999), is a quite different process from this, 

since it involves a succession of events that create newly non-recombining genomic 

regions from previously recombining ones.) 

 

3.5.2 The effects of dosage compensation 

In an evolving sex chromosome system, gene loss from the Y chromosome is 

expected to lead to the evolution of dosage compensation (CHARLESWORTH 1978) 

since there is a selective advantage to increase the expression of functional alleles on 

the neo-X relative to their inactivated counterparts on the neo-Y. Even though the 

exact mechanisms are still unknown, there is evidence for partial dosage 

compensation of the D. miranda neo-X/neo-Y (BACHTROG 2006; BONE and KURODA 

1996; MARIN et al. 1996; STEINEMANN and STEINEMANN 1999)  

There is no clear relationship between the rate of amino acid evolution on the 

neo-Y and the relative expression levels of neo-Y versus neo-X genes (BACHTROG 

2006), which generally but not always have lower expression than their X-linked 

counterparts. It is not in fact clear that this reduction in neo-Y gene expression 

reflects dosage compensation; the fact that a minority of neo-Y genes are more 

highly expressed than their counterparts on the neo-X suggests that mutations in 

regulatory sequences that disturb expression in either direction may well be 
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accumulating (BACHTROG 2006). Such mutations could increase interference effects 

relative to the scenario where loss-of-function mutations are only occurring in coding 

regions, and hence speed up the ratchet. Similarly, genes that are recruited onto the Y 

chromosome (and hence not present on the X) will be under strong purifying 

selection and contribute to U. The overall impact of these factors seems, however, 

unlikely to change the parameter space to such an extent that the ratchet would come 

to a halt during the early stages of neo-Y evolution, although the ratchet may well 

not account for the full degeneration of Y chromosomes (BACHTROG 2008b).  

 

3.5.3 The effect of BGS sites on the rate of the ratchet 

When the difference in mean s between the two types of selected sites (BGS sites 

and major sites) is very large, the model based on the reduction in Ne deduced from 

neutral sites subject to BGS performs poorly in predicting the rate of the ratchet, i.e. 

the ratchet clicks a lot more slowly than expected. In other words, the pool of 

individuals from which the population is ultimately derived, the “least-loaded class”, 

is larger than that predicted from the effective number of individuals that determines 

levels of nucleotide diversity in the BGS simulations (chapter 2) (Figures 3-3 and 3-

4). This makes intuitive sense, because the important factor determining transmission 

to the next generation is fitness relative to the population average. The relative 

fitness reduction due to “major” mutations is about 30 times larger than that 

mutations at BGS sites for the parameters used in Figures 3-4; hence, a few 

mutations at BGS sites in a chromosome will not make much of a difference for an 

individual that is otherwise free of “major” mutations– its overall fitness will still be 

high compared to the rest of the population. However, when the s values at the two 

types of sites are similar (as in Figure 3-2), mutations at BGS sites can reduce the 

chance of reproduction considerably. In addition, the movement of a ratchet is 

associated with a substantial reduction in Ne at neutral or weakly selected sites 

(GORDO et al. 2002). This means that the Nes values at the BGS sites in our 

simulations will be greatly reduced relative to their values in the absence of the 

major mutations, thereby undermining their ability to cause Hill-Robertson 

interference. When U at the “major” sites is reduced, the relative effect of BGS 

mutations becomes larger, increasing the impact of BGS on the ratchet (Figure 3-4). 
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The idea that that the extent of interference with other sites on the speed of the 

ratchet is affected by the relative magnitudes of the selection coefficients at the sites 

concerned has previously been discussed in a somewhat different context (GORDO 

and CHARLESWORTH 2001; SÖDERBERG and BERG 2007).  

 

3.5.4 Can selective sweeps alone explain the neo-Y data? 

In principle, selective sweeps can drag to fixation deleterious mutations, as long as 

the fitness benefit due to the advantageous mutation outweighs the cost of carrying 

deleterious mutations in the genomic background (CHARLESWORTH 1994; HADANY 

and FELDMAN 2005; JOHNSON and BARTON 2002; RICE 1987). Recent studies of 

DNA sequence evolution in D. melanogaster and D. simulans have suggested that 

around 50% of fixed differences between species in protein sequences and some 

types of non-coding sequences such as UTRs are the result of positive selection (e.g. 

(ANDOLFATTO 2007). If this applies to D. miranda and its relatives, as is suggested 

by recent data ((BACHTROG 2008a); HADDRILL et al., unpublished data), then there 

has been ample opportunity for numerous selective sweeps on the evolving neo-Y 

chromosome lineage, given the size of this chromosome (around 3,000 genes) and its 

time of origin (1.75 million years ago, corresponding to KS = 0.01). For example, 

with KA / KS = 0.08 and assuming 1000 nonsynonymous nucleotide sites per gene, as 

is typical for Drosophila proteins (CLARK et al. 2007), we would expect 

approximately 0.5 x 0.08 x 0.01 x 1000 x 3000 = 1200 sweeps to have occurred if 

the neo-Y protein sequences were evolving at the standard rate. With 10 generations 

a year, this would correspond to 1 sweep every 14,600 generations on the neo-Y 

lineage, a relatively modest rate.  

Given this low rate, it is reasonable to assume that each sweep is followed by 

a period of recovery, after which mutation-selection balance for major mutations 

would be approximately re-established (ignoring the ratchet). The estimates for 

mutation and selection against loss-of function mutations on the neo-Y (see above) 

suggest that each ancestral neo-Y would have carried, on average, U/s = 6 major 

deleterious mutations. Hence, an advantageous mutation will, on average, arise on a 

genomic background that carries six such mutations. Assuming that there were 

originally about 3,000 genes on the neo-Y, about half of which now carry “major” 
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mutations, this suggests that the number of sweeps necessary to explain the data is 

about 1,500/6 = 250, much smaller than the above estimate. 

This is, however, likely to be a conservative estimate for several reasons. 

First, even though an advantageous mutation will, on average hit a chromosome 

carrying six major deleterious mutations, the chance of fixation of the beneficial 

mutation will be higher when it happens to hit a chromosome with fewer mutations, 

decreasing the average number of “major” mutations fixed with each sweep. Second, 

with a decline in U over time, the number of “major” mutations segregating in the 

population will also decline, and with it the number of deleterious mutations fixed 

with each sweep. (On the other hand, the chance of fixation of the beneficial 

mutation will increase when there are fewer deleterious mutations in the background, 

so these effects might weigh each other out).  

Third, the fixation probability of a beneficial mutation can be greatly reduced 

by selection acting against linked deleterious mutations, unless the selection 

coefficient of the beneficial mutation is larger than U (Figure 2 and equation C9 in 

JOHNSON and BARTON (2002)). In the present case, this result suggests that only 

beneficial mutations with selective advantages of the order of 1% would have a 

reasonable chance of fixation. The two methods that have been used to estimate these 

selection coefficients in Drosophila yield very different values: 1% versus 10-5 

(SELLA et al. 2009). The latter value would clearly not be compatible with the 

fixation of beneficial mutations in the presence of the major mutations we have been 

considering, in contrast to the former value. However, the method giving an estimate 

of 1% for the selection coefficient of beneficial mutations gives an estimate of the 

rate of sweeps that is 10% of the value we are using here (SELLA et al. 2009), 

corresponding to only 120 sweeps since the origin of the neo-Y chromosome.  It thus 

seems unlikely that we can ascribe the fixation of all major mutations to the effects 

of sweeps, but we cannot exclude the possibility that selective sweeps have 

contributed to some of the observed fixations, although patterns of neutral diversity 

on the neo-Y are consistent with the action of purifying selection alone (chapter 2). It 

is also worth mentioning that a recent analysis of the non-crossing over dot 

chromosome of D. americana, which has only 80 genes on it, found no evidence for 

adaptive fixations of amino acid mutations, in contrast to the large fraction of 
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fixations on other chromosomes that appeared to have been driven by positive 

selection (BETANCOURT et al. 2009). This strongly suggests that the reduction in 

effective population size associated with reduced recombination greatly reduces the 

efficacy of positive selection, which would undermine the ability of selective sweeps 

to contribute to the degeneration of Y chromosomes. 
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4 Slcyt, a newly identified sex-linked gene, has recently moved onto 

the X chromosome in Silene latifolia (Caryophyllaceae) 
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4.1 Abstract 

 

The sex chromosomes of the plant species Silene latifolia (white campion) are very 

young (only 5-10 My old), and all eleven X-linked genes so far described have Y-

linked homologues. Theory predicts that X chromosomes should accumulate a non-

random set of genes. However, little is known about the importance of gene 

movements between the X and the autosomes in plants, or in any very young sex 

chromosome system. Here, we isolate from cDNA a new gene, Slcyt, on the S. 

latifolia X, which encodes a cytochrome B protein. We genetically mapped SlCyt 

and found that it is located ~1cM from the pseudoautosomal region. Genes in this 

region of the X chromosome have low divergence values from their homologous Y-

linked genes, indicating that the X only recently stopped recombining with the Y. 

Genetic mapping in S. vulgaris suggests that Slcyt originally belonged to a different 

linkage group from that of the other S. latifolia X-linked genes. S. latifolia has no Y-

linked homologue of Slcyt, and also no autosomal paralogues seem to exist. Slcyt 

moved from an autosome to the X very recently, as the Cyt gene is also X-linked in 

S. dioica, the sister species to S. latifolia, but is probably autosomal in S. diclinis, 

implying that a translocation to the X probably occurred after the split between S. 

diclinis and S. latifolia/S.dioica. Diversity at Slcyt is extremely low (!syn = 0.16%), 

and we find an excess of high-frequency derived variants and a negative Tajima’s D, 

suggesting that the translocation was driven by selection. 

 

4.2 Introduction 

 

In the evolution of animal sex chromosomes, gene movements occur both from and 

to the X chromosome. There are grounds to believe that this is not random, but that 

selection acts to enrich the X (or Z in ZW systems) for genes with sex-specific 

functions, especially sexually antagonistic genes, i.e. genes that increase fitness in 

one sex but are deleterious in the other sex (RICE 1984). In mammals and 

Drosophila, the X chromosome has a non-random gene content, having an 

overrepresentation of male-specific genes in mammals (KHIL et al. 2004; LERCHER et 

al. 2003; MUELLER et al. 2008; WANG et al. 2001), and an under-representation in 
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Drosophila (OLIVER and PARISI 2004; PARISI et al. 2003; VICOSO and 

CHARLESWORTH 2006); in the chicken, female-specific genes are underrepresented 

on the Z chromosome (KAISER and ELLEGREN 2006). Non-random distributions of 

sex-biased genes could evolve through the evolution of biased expression of initially 

non-biased genes that were already located on the X. Alternatively, genes could be 

recruited onto the X from the autosomes. For instance, the Drosophila melanogaster 

Y carries mainly male function genes, none of which has an X-linked homologue 

(BROSSEAU 1960; CARVALHO 2002). It could be advantageous for a female-

beneficial antagonistic gene to move to the X if the amount of gene product is 

directly related to its copy number, since such a movement would lead to lower 

average expression in males. However, this will depend on several factors, including 

details of the dosage compensation system. If dosage compensation occurs, and it 

acts on the whole chromosome or large X regions, such a change could be either 

selectively neutral or deleterious. If, however, expression in the two sexes is 

equalized by up-regulating the X chromosome in males, as in Drosophila (GUPTA et 

al. 2006), genes moved onto the X will not gain increased relative female expression. 

Finally, if dosage compensation occurs in females, for example by inactivating one 

X, and increasing expression from the other X, as in mammals (NGUYEN and 

DISTECHE 2006), translocating female-beneficial genes to compensated regions of 

the X might be disfavoured in females, because expression relative to autosomal 

genes will often be reduced. 

Both mammals and Drosophila have genetically degenerated Y 

chromosomes, and gene movements to and from their X chromosomes have been 

documented (BETRAN et al. 2002; EMERSON et al. 2004). These movements occurred 

over long evolutionary times, during most of which dosage compensation operated 

for at least some X-linked genes. The mammalian sex chromosomes evolved about 

170 MYA, after the marsupial and Eutherian mammal lineages split from the 

ancestor of the platypus (VEYRUNES et al. 2008), consistent with the very high X-Y 

sequence divergence of a few genes (LAHN and PAGE 1999; ROSS et al. 2005). In 

Drosophila, the XY system is at least 39MY old, and in D. melanogaster the X is 

Muller’s chromosome element A, the ancestral Drosophila X chromosome 
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(ASHBURNER et al. 2005; CARVALHO 2002). The bird sex chromosomes also stopped 

recombining very long ago (reviewed in NAM and ELLEGREN (2008)). 

Studying the evolution of the X gene content in younger sex chromosome systems 

should shed light on how this content evolves, and plants are of interest for such 

studies. The highest silent site divergence values between homologous X- and Y-

linked genes of Silene latifolia (Caryophyllaceae) are just over 20%, suggesting that 

the sex chromosomes evolved only about 5-10 MYA (BERGERO et al. 2007; FILATOV 

2005; NICOLAS et al. 2005). Recombination in the regions nearest to the 

pseudoautosomal region (PAR) ceased much more recently than in other regions, and 

several genes near the S. latifolia PAR have X-Y silent site divergence below 5% 

(BERGERO et al. 2007; NICOLAS et al. 2005). Similarly, in mammals, genes on the X 

and Y fall into four or five “strata” of diminishing evolutionary ages as their 

locations get closer to the PAR, suggesting step-wise or gradual recombination 

suppression, though on a time-scale much longer than in S. latifolia (LAHN and PAGE 

1999; NAM and ELLEGREN 2008). These findings are consistent with the hypothesis 

that, in both these X chromosomes, sexually antagonistic genes may have 

accumulated over time, leading to selective pressure for suppressed recombination in 

regions where recombination formerly occurred, to maintain associations between 

such genes and the sex-determining genes. 

However, this is indirect evidence, as is all other currently available evidence 

for sexually antagonistic genes on evolving sex chromosomes (ELLEGREN and 

PARSCH 2007; MANK and ELLEGREN 2009; MANK et al. 2008). One reason for 

studying plant sex chromosomes is the hope that such genes may be discovered. 

Dioecious plants have few secondary sexual differences, but flowers and 

inflorescences of males and females often differ (LLOYD and WEBB 1977). In S. 

latifolia, the two sexes differ in their optimum numbers and sizes of flowers, leading 

to a genetic conflict, and females with fewer, larger flowers produce sons that have 

fewer, larger flowers than the average male (DELPH et al. 2004; DELPH et al. 2002; 

PRASAD and BEDHOMME 2006). In other dioecious plants, traits not associated with 

flower morphology also differ between the sexes, e.g. leaf resin content, leaf and 

stem morphology, senescence patterns and plant-herbivore interactions 

(CORNELISSEN and STILING 2005; KRISCHIK and DENNO 1990; MERZOUKI et al. 
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1996), suggesting that genes expressed differentially in males and females may be 

common in dioecious plants. Currently, however, sex-specific expression in plants is 

known only for genes expressed exclusively in reproductive tissue (SATHER et al. 

2005; YU et al. 2008).  

The gene content of plant sex chromosomes is also currently largely unknown, 

except for the Y chromosomes of the moss Marchantia polymorpha (ISHIZAKI et al. 

2002) and S. latifolia. In S. latifolia, eleven Y-linked genes have now been described, 

all apparently functional, except for the incomplete MROS3-Y gene (GUTTMAN and 

CHARLESWORTH 1998), and possibly SlssY (FILATOV 2008). Here, we describe the 

first case of a movement to the S. latifolia X. The gene, Slcyt, was recently 

translocated from an autosome in S. latifolia, and inserted close to the 

pseudoautosomal region of the X chromosome. This rearrangement could have led to 

suppressed recombination in the region, and, as we discuss below, the movement 

might have been driven by sexual antagonism. The Slcyt gene seems to have been 

affected by a recent selective sweep. The only other gene movement known in a 

plant sex chromosome system is the duplicative transposition of a gene to the Y, and 

the Y copy has increased expression in stamens, compared with the autosomal one, 

suggesting that this was probably also an advantageous gene movement 

(MATSUNAGA et al. 2003). Recently, it has also been discovered by cytogenetic 

studies that S. diclinis has an X-autosome translocation not present in S. latifolia 

(HOWELL et al. 2009). No genes in the added region have yet been studied. Our 

present study suggests that the X-autosome translocation involving the Slcyt gene is a 

separate event from that in S. diclinis. It has so far been generally accepted that no 

additions to this sex chromosome pair had occurred during its evolution, but that it 

evolved from a single ancestral autosome which can be identified by its gene content 

(FILATOV 2005), but these new results show that at least part of the X near the PAR 

has recently been added to one or both of the XY chromosome pair. 
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4.3 Methods  

 

4.3.1 Silene DNA samples 

The study used S. latifolia, S. dioica, S. diclinis and S. vulgaris plants from natural 

populations, which are described below. Silene dioica and S. diclinis have the same 

XY system as S. latifolia, i.e. genes in the “older” regions of the S. latifolia Y 

chromosome stopped recombining with the X before this group of dioecious species 

split; the sequences of these genes form distinct X and Y clusters, rather than 

clustering by their species of origin (NICOLAS et al. 2005). S. dioica is the sister 

species to S. latifolia, and these species often hybridize in nature (BAKER 1948; 

FILATOV et al. 2001; LAPORTE et al. 2005). S. vulgaris, the outgroup species used in 

this study, is gynodioecious and has no sex chromosomes (DESFEUX et al. 1996).  

Individuals were grown in the greenhouse at the University of Edinburgh and DNA 

was extracted from fresh leaves using the Fast DNA kit (Q-biogene), following the 

manufacturer’s instructions which can be found at www.qbiogene.com.  

Sex-linked and autosomal genes were identified in the mapping families 

F2005-4 and H2005-1, which are F2 families descended from crosses between 

geographically distant populations (BERGERO et al. 2007). For putatively X-linked 

genes, we genotyped the two F1 individuals (parents of the F2) of H2005-1, and 

scored 92 F2 offspring for variants found in the maternal and/or paternal plant. For 

each gene, the inheritance patterns of the two variants within the family were 

compared to the pattern obtained for previously published X-linked genes. 

For mapping genes in S. vulgaris, two families (named SV1 and SV2) were 

used, with 51 and 64 offspring respectively. These families were generated by 

crossing a female plant (E2000 5/9, from Dijon, France) with two unrelated 

hermaphroditic plants (H2000-4 and 99K-10-4, from Flamanville, France, and 

Sussex, England, respectively). A linkage map of the markers was inferred using the 

software JoinMap (STAM 1993). 

 

4.3.2 Identifying sex-linked genes 

A set of S. latifolia gene sequences were isolated from a cDNA library constructed 

by a simplified version of the template-switching (TS) procedure of MATZ et al. 
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(1999). First strand cDNA was synthesized from total RNA extracted from male leaf 

primordia, using 50 mM of oligo(dT)21  

( 5´-GATCGATTTTTTTTTTTTTTTTTTTTTVN-3´), 30 mM MgCl2 and 200 U 

reverse transcriptase Superscript II (Invitrogen, Paisley, UK), following the 

manufacturer’s recommendation specified at www.invitrogen.com. The TS adapter 

(5´-GGTTTTGGTAGTTCTGTGTGTTGGG-3´) was ligated to the 5´ ends of 

cDNAs in a 50 !l reaction containing 5 units of Klenow-fragment 3´ ! 5´ exo
--- 

(New England Bioloabs, Ipswich, MA), 1x buffer 2 (New England Biolabs, Ipswich, 

MA), 1 mM dNTPs, and 50 picomoles of TS adapter. The reaction was carried out at 

16 °C, overnight. After incorporation of the TS adapter, the cDNA was purified on a 

QIAGEN spin column, polymerase chain reaction (PCR) amplified using the primer 

pair for the TS-adapter and an oligo(dT)21 primer, and finally cloned in a T-tailing 

pBS vector (Stratagene, La Jolla, CA). We refer to this as the TS library. 

Candidate sex-linked genes in S. latifolia were identified using a combination 

of segregation analysis of intron size variants (ISVS), using a universal primer (5´-

GGTTGGAGCTAGTGTTGTG-3´) labelled with 6-FAM or VIC (Applied 

Biosystems, Foster City, CA), and direct sequencing, as described by BERGERO et al. 

(2007). Briefly, we first identified putative intron positions by comparing the S. 

latifolia cDNA sequences with the translated A. thaliana and O. sativa (rice) genome 

sequences, using BLASTX at www.ncbi.nlm.nih.gov. PCR primers were then 

designed from the S. latifolia cDNA sequences flanking putative introns, using the 

Oligonucleotide Properties Calculator available at 

http://www.basic.northwestern.edu/biotools/oligocalc.html. The PCR conditions 

using the labelled universal forward primer were generally as follows: 10 cycles of 

94°C for 30sec, 56°C for 30sec, 72°C for 1min, followed by 25 cycles of 94°C for 

30sec, 50°C for 30sec, 72°C for 1min; final extension at 72°C for 30min. PCR 

conditions without the universal labelled forward primer: 10 cycles of 94°C for 

30sec, 56°C for 30sec, 72°C for 1min, followed by 25 cycles of 94°C for 30sec, 

52°C for 30sec, 72°C for 1min. To detect size differences that could be used as 

genetic markers, the PCR products were run on 1.5% agarose gels and inspected 

visually.  
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For sequences that did not yield suitable size variants, capillary 

electrophoresis was performed on an ABI 3730 capillary sequencer (Applied 

Biosystems, Foster City, CA). The labelled forward primer allowed length variants 

among the PCR products to be scored using the Genemapper software package 3.7 

(Applied Biosystems, Foster City, CA). PCR amplicons that showed no length 

variants were directly sequenced, and sequences were examined in Sequencher 4.5 to 

detect variants suitable for segregation analysis after digestion with restriction 

enzymes. Finally, if no suitable restriction sites were found, genotyping for 

segregation analysis was performed by direct sequencing to detect polymorphic 

variants. A total of sixteen genes were tested for sex-linkage. 

 

4.3.3 Obtaining the complete Slcyt sequence 

Since the cDNA sequence that allowed us to determine that Slcyt is sex-linked (see 

Results) did not contain the whole Slcyt coding sequence, nested PCR was used to 

obtain the 5´ end of the gene. The TS cDNA library was used as template in a first 

round of PCR using a primer for the TS-adapter and the reverse gene-specific primer 

Slcyt_b_R (Table 4.1). One microlitre of the first-round PCR was used in a second 

round PCR with primer for the TS-adapter and the gene-specific primer Slcyt_R, 

which binds internally to the PCR product from Slcyt_b_R (Table 4.1). The PCR 

products were cloned, sequenced in an ABI 3730 capillary sequencing machine 

(Applied Biosystems) and visualized using Sequencher 4.5 software.  

Intron 1 proved difficult to amplify, but was amplified with Phusion enzyme 

(Finnzymes, Espoo, Finland) and a PIKO 24 thermal cycler (Finnzymes, Espoo 

Finland), following the manufacturer’s instructions (PCR conditions: 40sec at 98°C, 

followed by ten cycles of 5sec at 98°C, 5sec at 62°C, 5min at 72°C; 25 cycles of 5sec 

at 98°C, 5sec at 55°C, 5min at 72°C; final extension at 72 °C for 5min). 

 

4.3.4 Analyses of DNA sequence diversity 

To study DNA sequence diversity of Slcyt within S. latifolia, parts of the gene 

(starting within exon 2, and including the whole of intron 2 and exon3, and parts of 

the 3´ UTR, see Figure 4.1) were amplified in the same 48 European male plants, 

from 24 different European populations, covering the entire native range of the 



 

Table 4.1: Primers used in order to amplify Slcyt and SlX9 

Name Sequence Notes 

SlX9_F (exon2) CTTGTGGAACTTCTGGTGGAAG 

SlX9_R (exon3) GTCCAATCACATTCAAGTCTCTCC 

establishing sex linkage of SlX9 in S. latifolia; 

mapping in S. latifolia and S. vulgaris 

Slcyt_F2(exon2)  GAGATGATGTCTTCCTTGATGC 

Slcyt_b_R (exon 3) TAGAGGAAGCCTACTATGACAGC 

establishing sex linkage of Slcyt in S. latifolia 

Slcyt_ex2_cons_F ACCCCGGTGGAGATGATG 

Slcyt_3_R (3'UTR) CAACTTCTTGTCAAAATTGATCG 

Studying diversity of Slcyt 

Slcyt-I1-F-univ.-1  GTCTGGAGCTAGTGTTGTGTTCATCTGCTCTTCATATTCTTC

G 

Slcyt-I1-R-2 AATTGGGAATAGGGATGCATTTGC 

Mapping Slcyt in S. latifolia ; amplifying 

SlX_STR1in S. latifolia, S.dioica and S. 

diclinis (forw. primer only). 

Cyt-dicl-I1-R TTCTACTTGAGACCACAAATTCTC amplifying SlX_STR1in S. diclinis 
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Table 4.1, continued  

Cyt-exon1-F-1 CGAAACTGGTTAGTATGCAAGAAG 

Cyt-exon2-R TCAAGGAAGACATCATCTCCAC 

Mapping Cyt in S. vulgaris 

Slcyt-E3-UTR-R GAGTTTCCTATTTGCGCAAGTAGAG 

Slcyt_R2(exon3) TAGAGGAAGCCTACTATGACAGC 

Slcyt_ex3_cons_R GCATCGTCAAATTCTTCTTTTGCATC 

Slcyt_F (exon 3) 

Slcyt-E3-beg2-R-univ 

AGATGCAAAAGAAGAATTTGACG 

GTCTGGAGCTAGTGTTGTGTGTTGGAAGGA ATTTGAGG 

Slcyt-E3-beg-R-univ GTCTGGAGCTAGTGTTGTGCCAGCATCGTCAAATTCTTC 

Slcyt_ex1_cons_F: TCTAAGGATGATTGTTGGGTTGTC 

Slcyt-exon1-F-2 TGTTGGGTTGTCATTCATGG 

Other Slcyt primers 

Slcyt_R(exon3) ACAGCGATACAAACAACAGCAC  



 

 

species (the samples are listed in Table 4.2) that were used to confirm the absence of 

a Y-linked copy (see Results), using the primers Slcyt_ex2_cons_F and Slcyt_3_R 

(3'UTR)  (Table 4.1). The PCR products were directly sequenced and edited in 

Sequencher. Sequence diversity was analyzed using DnaSP 4.0  software (ROZAS 

and ROZAS 1999), which was also used for several tests of neutrality, including 

Tajima’s D, Fu and Li’s D* and F*, Fay and Wu’s H and Fu’s F statistics (FAY and 

WU 2000; FU 1997; FU and LI 1993; TAJIMA 1989). The significance levels for these 

tests were calculated using coalescent simulations implemented in DnaSp, assuming 

no recombination (FILATOV 2008), which is a conservative approach (TAJIMA 1989; 

WALL 1999). The HKA test (HUDSON et al. 1987) was used to compare Slcyt 

diversity levels with those of X7, Cyp-X, X4 and SlX9, another new X-linked gene, 

which will be described in Chapter 5. 

 

In the course of studying sequence the diversity of Slcyt, we identified a polymorphic 

(TTA)n microsatellite in intron 1 (referred to below as SlX_STR1). This was scored 

using the primers Slcyt-I1-F-univ.-1 and Slcyt-I1-R-2 (Table 4.1), and the sizes of the 

amplicons were determined using GeneMapper 3.7. Ten out of eleven females from 

different natural populations were heterozygous for SlX_STR1 (Table 4.3). To 

further test for complete sex-linkage (and exclude a pseudo-autosomal location for 

Slcyt), SlX_STR1was amplified in the 48 males listed in Table 4.2. Finding 

heterozygous males would indicate the presence of a Y-linked copy, or a 

pseudoautosomal location. 

 

 

 

 

 

 

 

Figure 4.1: Gene structure of Slcyt. Sizes in bp of exons, and the position of the 

microsatellite  SlX_STR1are given. There is a gap in the sequence of about 70bp in 

intron 1, which has a total length of about 730bp. 

Ex1    

 

Ex 2    Ex 3    
SlX_STR1 

87    67 242   
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Table 4.2: Origins of male individuals of the Slcyt diversity study, and the length of the 

region that includes the microsatellite SlX_STR1 in intron 1 of Slcyt. The amplification of 

SlX_STR1was not successful for individuals no. 8 and 37. Non-integer numbers of basepairs 

must be due to inaccuracies of length scoring by GeneMapper 3.7 

ID Length of amplicon (bp) Country Population 

1 161 

2 176 

Germany Bissendorf 

3 191 

4 191 

Sweden Oland, Grasgard 

5 164 

6 176 

France Relais des Chenes 

7 148.5 

8 - 

Greece Ioanninon 

9 158 

10 155 

Poland Krakow, near Conference Centre 

11 167 

12 165 

Denmark 

Aarhus Botanic Garden, origin 

unknown  

13 213 

14 213 

Austria Vienna, Heiligenstadt 

15 185 

16 164 

Norway Lardalsoyri 

17 145 

18 173 

Greece Evrou 
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Table 4.2, continued 

19 155 

20 155 

Italy near Tarquinia, Lazio 

21 161 

22 170 

Estonia Vinupea 

23 145 

24 145 

Austria Dietmans 

25 191 

26 158 

France Canche 

27 158 

28 148.5 

Portugal Serre de Nogere 

29 148.5 

30 138 

Netherlands River Kraal 

31 138 

32 129 

France Vitry en Artois 

33 129 

34 142 

Italy Piedmont, Ceres 

35 155 

36 185 

UK Dalkeith 

37 - 

38 185 

UK Somerset, Burnham-on-Sea 

39 119.5 Russia Krasnoyarsk, Siberia 
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Table 4.2, continued 

40 119.5 Russia Krasnoyarsk, Siberia 

41 167 

42 148.5 

Portugal Segier-Chavez 

43 155 

44 148.5 

Spain 

Madrid, San Lorenzo de El 

Escorial 

45 161 Ukraine 

46 164 

Ukraine 

Ukraine/Belarus border 

47 185.5 

48 185.5 

Germany near Glaubitz  
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Table 4.3: Lengths of the region that includes the microsatellite SlX_STR1 in intron 1 of 

Slcyt in female S. latifolia individuals from various natural populations. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Individual Location Length of amplicon (bp) 

K2005-2B France 171, 176 

K2005-1B2 Germany 161, 176 

G2005-5/3 Greece 148, 161 

G2005-4  Greece 135, 145 

J2006-1/3 Denmark 159, 177 

E2004-17/3 Netherlands 149, 177 

K2005-3A/3 Poland 155, 171 

K2005-4/3 Austria 174, 214 

K2005-9/3 Estonia 162, 171 

K2005-2A/3 France 165, 222 

K2005-7/3 Norway 165 
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4.4 Results  

 

4.4.1 Identification of two new X-linked genes in S. latifolia 

A total of 16 S. latifolia cDNA sequences were screened for sex-linkage using the 

ISVS method, direct sequencing and/or restriction digestion (see Methods). The PCR 

primers used for mapping are listed in Table 4.1. Two new genes were found to be 

sex-linked, giving a total of thirteen genes so far identified on the X and/or Y 

chromosome in this species. They were provisionally named Slcyt and SlX9/SlY9. 

Sex-linkage of the first gene, Slcyt, was established by direct sequencing and 

segregation analysis of an SNP variant (G/C) in intron 2. The male parent of the 

F2005-4 mapping family previously studied (BERGERO et al. 2007) carried a G while 

the female parent was homozygous for C. Seven male offspring were scored, and all 

inherited the mother’s variant, whereas all four female offspring scored were 

heterozygous for both variants, strongly suggesting that the gene is X-linked. Further 

evidence for X-linkage is given below.  

The other new sex-linked gene, SlX9, was mapped using the mapping family 

H2005-1 (BERGERO et al. 2007), by scoring a size variant in intron 2 directly on an 

agarose gel. Variants in the SlX9/SlY9 gene found exclusively in the father and male 

offspring (Y-linked sequences) were identified using segregation analysis of a 

marker that was heterozygous in both the maternal and paternal plants. This gene 

will be described in more detail in chapter 5. 

 

4.4.2 Genetic mapping of Slcyt and SlX9 

Slcyt and SlX9 were genetically mapped using segregation analysis among the 

92 F2 offspring of the mapping family H2005-1. The maternal plant was 

heterozygous for both genes. For Slcyt, the F2 offspring were scored for SlX_STR1. 

Again, there were no heterozygous males among the offspring, and no recombinants 

were found between Slcyt and SlX6b among the 92 offspring scored, supporting the 

conclusion that Slcyt is X-linked, and is located in the part of the X that does not 

recombine with the Y in males. SlX6b maps at a distance of ~1cM from the 

pseudoautosomal marker, OPA (BERGERO et al. 2007). One of the mother’s two 

SlX_STR1 alleles appeared in only two out of 43 males and four out of 49 females. 
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This aberrant ratio (!2 
= 93.56, p < 0.001, 1d.f.) is similar to results for SlX6b (R. 

Bergero, unpublished data), and suggests either a bias in transmission via female 

gametophytes or higher mortality of offspring carrying this maternal X chromosome. 

No such bias was detected in five other mapping families tested, but these families 

confirmed X-linkage of Slcyt. No Y-linked copy was detected (see below). 

The same intron size variant that was used to establish sex-linkage was also 

used to map SlX9 in relation to the other known X-linked genes. SlX9 maps to the 

same position as SLCyp-X, a previously described sex-linked gene located about 14 

cM from the pseudoautosomal marker (BERGERO et al. 2007).  

 

4.4.3 Mapping orthologues of X-linked genes in Silene vulgaris 

Because no Y-linked copy was detected, we tested linkage of the Slcyt orthologue in 

S. vulgaris (which we denote by Svcyt), to test whether the gene has changed its 

chromosomal location. Segregating indels in introns were therefore used as markers 

to map as many S. vulgaris orthologues of S. latifolia X-linked genes as possible. 

Segregating ISVS and SNP markers were obtained for six S. vulgaris genes, the 

homologues of the X-linked genes SlX3, CypX, SlX7, SlX6a, DD44X, and SlX9, and 

scored in the progeny of families SV1 and SV2 (see Methods). Neither mapping 

family had segregating indels in the introns of Svcyt, so the segregation of two SNPs 

in intron 1 was scored in family SV1 by direct sequencing; informative variants were 

present in both the maternal and paternal parents. Figure 4.2 shows the consensus 

map obtained for the two S. vulgaris families. The mapped genes fall into a single S. 

vulgaris linkage group, spanning 25cM, except for Svcyt, suggesting that this gene 

moved to the X of S. latifolia from another location. We next describe the analysis of 

this gene in more detail. 

 

4.4.4 Slcyt gene structure and function 

The complete coding sequence and most of the intron sequences were obtained for 

Slcyt. The gene structure was inferred by comparing the S. latifolia cDNA sequence 

with the genomic sequence (Figure 4.1). BLASTX searches were performed at 

www.ncbi.nlm.nih.gov to identify homologous genes in other organisms and their 

functions. The best hit in the A. thaliana genome sequence was to a member a family  
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Figure 4.2: Genetic map of X-linked genes in S. latifolia and their homologues in S. 

vulgaris. The cyt gene falls into a different linkage group in S. vulgaris, and is 

therefore not shown.  DD44X was mapped onto the S. latifolia X chromosome by 

FILATOV (2005), using a different mapping family. 

 

S. vulgaris            S. latifolia 

Slcyt 

SlX 

XY9 

9 
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Table 4.4: Synonymous (Ks) and non-synonymous (Ka) divergence values between Slcyt and 

the sequenes of the orthologous Cyt gene in three related species. The lengths of the 

alignments are given in base pairs (bp).  

 

 

 

of cytochrome B5 proteins (BLAST e-value 2e
-41

) that has 61% amino acid identity 

to Slcyt. Slcyt also shows significant similarity to cytochrome B proteins in the 

dicotyledonous plant Vernicia fordii (Euphorbiaceae), and in the monocotyledons 

Sorghum bicolor and Triticum monococcum (BLAST e-values 1e
-46

 to 4e
-34

). The 

homologue of the Slcyt gene was sequenced in S. vulgaris, S. dioica and S. diclinis. 

Divergence values between S. latifolia and the other species are shown in Table 4.4. 

The Slcyt gene has probably remained functional in the species studied. We isolated 

it from cDNA, showing that the gene is transcribed, and we found no premature stop 

codons or frameshifts in any of the sequences, and, in comparisons between S. 

latifolia and S. vulgaris, KA is smaller than KS, suggesting that purifying selection has 

been acting on the gene. 

 

4.4.5 Searches for a Y-linked copy of Slcyt in S. latifolia and its close relatives S. 

dioica and S. diclinis 

No heterozygotes were found among 48 males screened for the microsatellite 

SlX_STR1 in the Slcyt gene, even though we found 19 length variants among these 

males (Table 4.2), and most females scored were heterozygous (Table 4.3). It 

therefore seems likely that there is no Y copy. Given that Slcyt maps close to the 

pseudoautosomal region, divergence between the X-linked gene and any Y-linked 

copy is expected to be low, and conserved primers should amplify a Y-linked copy 

of Slcyt, if present.  

Species compared KS (%) KA (%) Length of sequence (bp) 

S. latifolia - S. vulgaris 10 6 273 

S. latifolia - S. dioica 1.6 1.3 288 

S. latifolia - S. diclinis 1.3 0.4 351 



 92 

To more rigorously test for the possibility that a Y-linked copy of Slcyt exists, 

several approaches were tried. First, primers designed to match regions of conserved 

amino acid identity between Slcyt in S. latifolia and the A. thaliana or S. vulgaris 

homologues were used to amplify genomic DNA and cDNA from male individuals. 

No heterozygous SNPs were detected in any of six males tested, four of which were 

F1 individuals from crosses between different populations. Second, 48 males from 

24 different European populations (see above) were sequenced in our diversity 

analysis, and none carried any SNPs in the region.  

We did not obtain any Slcyt sequence (not even the X sequence) using an 

approach in which amplification requires only one primer (either forward or reverse) 

to match the Y-linked copy (GUTTMAN and CHARLESWORTH 1998). The primers 

tested were Slcyt_ex3_cons_R, Slcyt-exon2-R, Slcyt_ex1_cons_F, Slcyt_F (exon 3), 

Slcyt_b_R (exon 3), Slcyt_ex2_cons_F. 

To test whether there is a Y-linked copy in S. dioica, we amplified the 

microsatellite SlX_STR1 in 20 offspring of a S. dioica female from a population in 

Finland, whose genotype at this locus is unknown, using the same primer 

combination as for S. latifolia, and scored the length variants using Genemapper. 

Among the progeny there were three alleles, 146 bp, 168 bp and 180 bp. Overall, 

nine females were heterozygous (three 168/180 and six 146/180) and five were 146 

bp homozygotes (Table 4.5). In all six males, only one allele was detected (either 

146 bp or 180 bp, see Table 4.5). This suggests X linkage and no Y copy (assuming a 

heterozygous 146/180 maternal parent, which mated with at least three males, 

carrying 146 bp, 180 bp and 168 bp variants on the X). Autosomal inheritance is not 

excluded by these results alone (a 146/180 female mated with at least two males). 

However, it is very unlikely that all six male offspring would be homozygous by 

chance, but only five out of 14 females  (Fisher’s exact test, d.f. = 1, p < 0.05).  

We also genotyped eleven male and six female S. dioica, sampled from the 

wild.  All male individuals again each had only one length variant, whereas four 

females were heterozygotes (Table 4.6).  
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Table 4.5: Lengths of the region that includes the microsatellite SlX_STR1 in intron 1 of the 

Cyt gene, in twenty offspring of a S. dioica female sampled from a wild population (family 

A2009-1, see text).  

 

 

 

Lengths observed (bp) 

146 168 180 
Numbers of females Numbers of males 

— + + 3 0 

+ — + 6 0 

+ — — 5 3 

— — + 0 3 

Totals 14 6 
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Table 4.6: Lengths of the region that includes the microsatellite SlX_STR1 in intron 1 of 

Cyt in male and female S. dioica individuals from natural populations. 

 

 Individual Location Sex Length of amplicon (bp) 

99M24.2  unknown male 129 

9-1 unknown male 146 

FS01 Scotland male 139 

FS02 Scotland male 136 

FS03 Scotland male 133 

FS04 Scotland male 136 

FS05 Scotland male 146 

FS06 Scotland male 139 

FS07 Scotland male 136 

FS08 Scotland male 136 

FS09 Scotland male 133 

99K24.1  France female 129,136 

99K22.7 France female 129,136 

FS10 Scotland female 136,146 

FS11 Scotland female 136,146 

FS12 Scotland female 139 

FS13 Scotland female 139 
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In S. diclinis, however, all three males and three females scored carried two 

different length variants for Cyt. These plants were derived from seeds collected 

from one female from Spain, and were therefore full- or half-siblings (family A2000-

13). Direct sequencing of one male and one female individual from this family 

(individuals A2000-13-4 and A2000-13-10) confirmed that the PCR products (which 

span a region of 1,162 sites from exon 1 to within exon 3) were indeed two copies of 

Cyt, although they differ by about 70bp in length due to an insertion in intron 1. 

There were, however, no SNP variants, which suggests that these are two alleles of 

the same gene, rather than paralogues. Without a mapping family or population 

samples from S. diclinis, we cannot currently test for sex-linkage in this species, so 

the two copies could be autosomal or in the pseudoautosomal region of the X and Y. 

A pseudoautosomal location would result in incomplete sex-linkage of two paternal 

variants in the F1 of a cross, and in different variants being incompletely associated 

with the sexes in population samples, so this is potentially testable in the future. It 

would be interesting to test this, because the S. diclinis X is now known to have 

undergone a translocation of an autosome region (HOWELL et al. 2009). 

 

4.4.6 Sequence diversity analyses 

To test whether the movement of the Slcyt gene to the S. latifolia X chromosome was 

a selected event, we analyzed this sequence further. S. latifolia genomic DNA 

sequences were obtained for a region starting within exon 2, and including the whole 

of intron 2 and exon 3, and parts of the 3´ UTR, and diversity was analyzed using the 

European sample of S. latifolia males described above. We obtained direct sequences 

of 45 X-linked copies. The diversity of Slcyt was very low: synonymous diversity, 

!S, was 0.16% and nonsynonymous diversity, !A, was 0.07%, based on 237 coding 

sites. The !A/!S ratio is 0.45. The aligned noncoding positions (173 sites) also 

yielded a low diversity estimate (0.16%). 

The HKA test (HUDSON et al. 1987) was used to compare Slcyt diversity 

levels with those at four other X-linked genes, SlX9, X7, X4 and Cyp-X, by testing 

the within-species polymorphism of Slcyt, after correcting for divergence from their 

S. vulgaris orthologues. The test was significant for the comparisons of Slcyt versus 

SlX9, X4 and Cyp-X (!2
 = 6.26, p < 0.05; !2

 = 5.72, p < 0.05; !2
 = 6.82, p < 0.01, 
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respectively); for the comparison of X7 vs. Slcyt, !2
 = 3.57 and p < 0.06, but the 

number of X7 sites available was much smaller than for the other three genes (191 bp 

versus 367, 863, 804 bp, for SlX9, X4 and Cyp-X, respectively), and the power was 

low. We therefore conclude that the low diversity at Slcyt is unlikely to be explained 

by neutral processes alone, such as a very low mutation rate at the locus.  

The low Slcyt diversity suggests the possibility of a selective sweep. We 

therefore performed Tajima’s D test, which compares the two estimates of diversity, 

the nucleotide diversity, ", based on pairwise comparisons of allele sequences, and # 

(which is based on the number of segregating sites). At equilibrium under neutrality, 

the two estimates are expected to be the same, and Tajima’s D will be close to zero 

(TAJIMA 1989), whereas recent directional selection (positive or purifying selection) 

leads to an excess of low frequency variants, and a negative Tajima’s D. The other 

tests shown in Table 4.7 also detect variants at frequencies differing from the neutral 

distribution. All the tests performed on Slcyt were significant; a skewed frequency 

spectrum at segregating sites, together with an excess of high-frequency variants 

which represent the derived state (Fay and Wu’s H), suggest the action of positive 

selection, rather than selection against deleterious variants.  

 

Table 4.7: Tests of neutrality statistics Slcyt. 

 

 

 

4.5 Discussion 

 The sex chromosomes in S. latifolia are believed to have evolved from a 

single pair of ordinary autosomes, consistent with the fact that all eleven sex-linked 

genes previously described have Y-linked counterparts (ATANASSOV et al. 2001; 

BERGERO et al. 2007; DELICHERE et al. 1999; FILATOV 2005; MOORE et al. 2003; 

Tajima’s D Fu and Li's D* Fu and Li's F* Fu’s F Fay and Wu’s H 

-1.6 -2.66 -2.72 -2.6 -1.82 

p < 0.05 p < 0.01 p < 0.01 p < 0.05 p < 0.01 
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NICOLAS et al. 2005), and that all four genes previously mapped in S. vulgaris 

(FILATOV 2005) are on a single autosome, as is the newly discovered X-linked gene 

SlX9 mapped here. Slcyt is the first gene discovered on the S. latifolia X that has 

been acquired from a different genomic location in the course of X-chromosome 

evolution in this genus, and is now located close to the SlX6b gene. In female 

meiosis, both genes map only about 1cM from the pseudoautosomal marker, OPA, 

discovered by Di Stilio et al. (1998). Divergence between SlX6b and its Y-linked 

homologue is low (KS = 4.5%), showing that the X stopped recombining with the Y 

chromosome only recently at this locus (BERGERO et al. 2007). All 46 males from the 

different European populations contained only a single, hemizygous copy of Slcyt. 

Thus, a translocation was probably involved, which is now fixed within the species. 

Since no autosomal paralogous copy was detected, the chromosomal segment 

probably moved onto the X chromosome only (and not the Y also), and was lost 

from another genomic region at the same time.  

It is unknown whether the event affected Slcyt alone or whether neighbouring 

genes were translocated in the same event. Slcyt contains introns, showing that it is 

not a retrogene, so a larger, segmental event is possible, forming a neo-X 

chromosome. If the event indeed translocated a substantial region into the S. latifolia 

pseudoautosomal region, it might have directly prevented recombination between the 

X and Y chromosomes in this region (and, once fixed, would not affect 

recombination between X chromosomes, though it might initially have been 

deleterious for female fertility in heterozygotes, as is true for many translocations). 

This event could be similar to that in the medaka fish, where a duplication created a 

new copy of the autosomal dmrt1 gene on another autosome, immediately isolating a 

small region close to the new copy from its homologue (KONDO et al. 2006). In 

medaka, unlike the case of Slcyt, the original copy is still present. More information 

on S. vulgaris or S. latifolia sequences, including sequencing BAC clones containing 

the S. latifolia Slcyt gene, should allow genes adjacent to Slcyt to be found, which 

would help determine the size of the insertion, and whether any of these genes could 

have been under sexually antagonistic selection, and could thus have selected for the 

translocation. Another interesting consequence of movement of a large genome 

region, containing several essential genes, from an autosome to the X, is that this 
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could explain why YY plants in S. latifolia are inviable, since these plants would 

entirely lack these genes. This alternative to classical genetic degeneration of the Y 

chromosome has not previously been considered. Such a genome rearrangement 

would have to be sufficiently advantageous in females to drive the change, however. 

Our evidence gives some support for the hypothesis that the translocation was 

driven by selection. Cyt appears to be X-linked in S. dioica as well as S. latifolia, but 

not in S. diclinis, in which we found two copies in both females and males, so that it 

is probably still autosomal. Thus Slcyt probably moved to the X after the split of S. 

latifolia/S. dioica from S. diclinis. This is consistent with a skew in the frequency 

spectrum still being observable at segregating sites in the Slcyt gene. The 

combination of strongly reduced diversity and a highly skewed frequency spectrum 

of segregating sites, reflecting a recently reduced effective population size, suggests 

positive selection when the translocation became fixed (though we cannot exclude 

the possibility of a selective sweep after its fixation). A recent rapid non-selective 

fixation could also lead to a uniform haplotype at the locus (TAJIMA 1990). It seems 

unlikely, however, that such a non-selective event would produce the strongly 

significant results we find for Tajima’s tests and the other tests in Table 4.7, but this 

possibility should be tested in the future using neutral models.  

If selection was involved, it need not have involved the Slcyt locus itself. The 

protein encoded is probably used in the mitochondrial electron transport system. 

Slcyt may therefore be a housekeeping gene, in which case sexual antagonism 

involving Slcyt itself might not be the main driver behind the gene’s movement, and 

one would have to assume selection on another gene translocated in the same event 

(Jiang et al. 2001; Jin et al. 2001). However, a connection is well-established 

between mitochondrial electron transport and cytoplasmic male-sterility in plants, 

possibly due to the high metabolic needs of anther development (CHASE 2007; 

WARMKE and LEE 1978), and so it is possible that Slcyt has some important function 

in males, and that its loss would benefit females due to sexual antagonism (assuming 

that its effect is recessive). It will thus be very interesting in the future to compare 

gene expression of Slcyt in males and females and in sex-specific reproductive 

tissues.  
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5 High sequence diversity and possible introgression of an X-linked 

gene on a plant sex chromosome 
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5.1 Abstract 

 

I describe patterns of DNA sequence diversity in a newly-identified sex linked gene 

in Silene latifolia, SlX9/SlY9. The copies on both sex chromosomes appear to be 

functional, and each maps close to the respective X- and Y-linked copy of another 

sex-linked gene pair, SlCyp. The Y-linked copy has low diversity, similar to what has 

been found for several other Y-linked genes in S. latifolia, and consistent with the 

theoretical expectations of hitch-hiking processes occurring on a non-recombining 

chromosome. However, for SlX9, we find high diversity (nucleotide diversity for 

silent sites is estimated to be!4%), much higher than other genes on the S. latifolia X 

chromosome. We evaluate the hypothesis of introgression from the closely related 

species S. dioica as an explanation for the high diversity. 

 

5.2 Introduction  

 

Measuring neutral nucleotide diversity, !, provides information about population size 

and structure, demographic events, and selection. Estimates of diversity vary within a 

genome (NACHMAN et al. 1998; SACHIDANANDAM et al. 2001), either due to regional 

variation in the mutation rate (HAAG-LIAUTARD et al. 2007; WOLFE et al. 1989) or 

different demographic histories at different loci (REICH et al. 2002), or both. With 

recombination and selection acting differently at different sites, loci may differ in their 

age, i.e. in the expected time, t = 2Ne, back to the most common recent ancestor; 

positive selection reduces t (and hence ! = 4 Neµ), whereas balancing selection 

increases it.  

In contrast to the situation for autosomal and X-linked loci, on a non-

recombining chromosome, such as the Y chromosome, all sites are completely linked 

and experience the same effective population size; hence we expect diversity at Y-

linked loci to be much more homogeneous, differences in ! mainly reflecting 

differences in µ. Because of selective interference effects among linked loci, such as 

weak selection Hill-Robertson interference (COMERON 2008; HILL and ROBERTSON 

1966; MCVEAN and CHARLESWORTH 2000), genetic hitchhiking due to positive 

selection (KAPLAN et al. 1989; MAYNARD SMITH and HAIGH 1974) or the elimination 
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of deleterious variants (background selection and Muller’s ratchet (CHARLESWORTH 

et al. 1993; GORDO et al. 2002; MULLER 1964), we expect diversity values to be 

lower on the Y compared to the X or autosomes, taking into account the smaller 

number of Y chromosomes in the population.  

 

Silene latifolia is a dioecious plant and a model system for the evolution of 

young sex chromosomes. In this system, synonymous diversity values of six X-

linked genes studied (SlX1, SlX4, DD44-X, SlssX, Sl-Cyt, Cl-Cyp) vary between 

0.07% and 5.1% (ATANASSOV et al. 2001; BERGERO et al. 2008; LAPORTE et al. 

2005; Bergero, unpublished data; Chapter 4) (see Table 5-1), the lowest value for 

SlssX apparently being due to a recent selective sweep in the genomic region that did 

not affect diversity at the nearby DD44-X (FILATOV 2008). We do not have estimates 

for recombination rates per physical distance for the Silene sex chromosome, but a 

rough estimate suggest 18cM per MB of sequence. Four Y-linked genes studied 

(SlY1, SlY4, DD44-Y, SLAP3Y) have silent diversity values between zero and 0.28% 

(ATANASSOV et al. 2001; LAPORTE et al. 2005; MATSUNAGA et al. 2003) (see Table 

5-1), which is consistent with the idea that interference among selected sites reduces 

Ne on the Y chromosome. 

 

Apart from variable selection pressures and mutation rates among loci, introgression 

might play a role in shaping within-species polymorphism, by increasing the 

coalescent time for a given locus. S. latifolia forms natural hybrids with its closely 

related sister species Silene dioica (DESFEUX et al. 1996; MINDER et al. 2007; 

MINDER and WIDMER 2008), but the two species are geographically and ecologically 

distinct, with S. latifolia having white flowers, a generally wider distribution and 

growing in dry, open habitats, whereas S. dioica has red flowers, and is found mainly 

in Northern Europe, at the margins of woodlands (BAKER 1947; 1948; KARRENBERG 

and FAVRE 2008). Also the type of pollinators differ, with S. latifolia being mainly 

visited by the moth Hadena bicruris, and S. dioica during the day by bumblebees and 

butterflies (BOPP and GOTTSBERGER 2004; MINDER et al. 2007). However, data from 

three known sex-linked genes, DD44, SlX1 and SlX4 (IRONSIDE and FILATOV 2005; 

LAPORTE et al. 2005), as well as AFLP markers (KARRENBERG and FAVRE 2008; 
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MINDER et al. 2007; MINDER and WIDMER 2008), suggest that introgression of S. 

dioica sequences into S. latifolia is common in nature. In line with this, hybrids 

carrying pink flowers can be seen frequently in the wild. 

 

In order to understand sex chromosome evolution in its early stages, I isolated more 

genes from the S. latifolia X and Y chromosome, to test for Y chromosome 

degeneration and the effects of different chromosomal environments on nucleotide 

diversity. Here, we describe a newly identified sex-linked gene pair in S. latifolia, 

SlX9/SlY9, and analyse it with respect to diversity levels, Y chromosome 

degeneration and introgression. We find that synonymous (but not non-synonymous) 

diversity levels at SlX9 are highly elevated, suggesting that diversity varies across 

more than two orders of magnitude across the S. latifolia X chromosome. High 

diversity at SlX9 is most likely due to introgression from S. dioica, which might be 

confined to X-linked and autosomal loci only. In contrast, the Y linked copy, SlY9, 

which seems to be functional, has very low diversity levels. We do not find any 

evidence for coding sequence degeneration of SlY9, but we find that the Y has 

accumulated additional intronic sequence, as observed previously for the Y-linked 

genes DD44-Y and SlY3 (MARAIS et al. 2008) or SlCyp-Y (BERGERO and 

CHARLESWORTH 2009). 
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Table 5-1: Levels of diversity, ! (%), in previously studied sex-linked genes of S. latifolia. 

 

 

 

Gene 

 

Synonymous 

sites 

 

Non-synonymous 

sites 

 

Reference 

  

Gene 

 

Synonymous 

sites 

 

Non-synonymous 

sites 

 

Reference 

SlX1 2.3 or 2.1 0.24 (ATANASSOV et 

al. 2001; 

BERGERO et al. 

2008) 

 

 SlY1 0 0.006 (ATANASSOV et 

al. 2001) 

SlX4 5.1or 4.4 0.592/0.45 (BERGERO et al. 

2008; LAPORTE 

et al. 2005) 

 

 SlY4 0.000 0.000 (LAPORTE et al. 

2005) 

DD44X 2.4 0.44 (BERGERO et al. 

2008; LAPORTE 

et al. 2005) 

 

 DD44Y 0.277 0.000 (LAPORTE et al. 

2005) 

SlSSx 0.07 0.03 (BERGERO et al. 

2008) 

 

 SLAP3Y 0.12 0.083 (MATSUNAGA et 

al. 2003) 

SlCyt 0.17 0.08 see Chapter 4 

 

     

CypX 

 

1.098 0.020 R. Bergero, 

unpublished data 
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5.3 Methods 

 

5.3.1 Plant materials 

Sex-linkage of SlX9 was established using the mapping family H2005-1 (BERGERO et 

al. 2007), which is a full-sib cross between F1 offspring whose parents came from 

different European populations (male E2004-17-1, from the Netherlands, and female 

E2004-11-1, from Canche, Northern France). 92 plants from this family were used to 

map its location on the X chromosome map. The mother of the mapping family is a 

heterozygote for two X-linked alleles that produced PCR products of different 

lengths (bands of about 450 and 600 bp, see Figure 5-1), which were used for genetic 

mapping, as described below. The panel of 38 Y-deletion mutants used to find the 

location of SlY9 is described in BERGERO et al. (2008). To study sequence diversity, 

we used a sample of 46 males from 24 different European populations, covering the 

entire range of the species, and six S. dioica individuals, including plants from 

France and Finland (listed in Table 5-2 and 5-3). 

 

5.3.2 PCR amplifications and primers 

SlX9 was identified from a S. latifolia cDNA library derived from male leaf 

primordia, and shown to be a sex-linked gene (see Chapter 4). The complete cDNA 

sequence was obtained, and primers were designed based on this sequence. As 

described below, it proved very difficult to sequence this gene in its entirety from all 

our sampled individuals, and only partial genomic sequences were obtained, with 

different regions sequenced from different species, and from the X and Y copies (see 

Figure 5-2 and Table 5-4 below). To obtain sequences, new primers were designed 

from the sequences yielded by the initial primers; these are listed in Table 5-5. 
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Figure 5-1: PCR products of SlX9 in family H2005-1. The female parent carries 

only one variant (SlX9) and the father two differently sized variants (SlX9 and SlY9). 

All female offspring inherit the two SlX9 copies, whereas all sons inherit the SlY9 

copy from the father as well as the SlX9 variant from the mother. 
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Table 5-2: Origins of male individuals for the SlX9/SlY9  diversity study, the intron type 

of the X-linked copy (“long” or “short”) and the broad geographical region.   

* Geographical regions: 1 = “Northern Europe”; 2 = “North-Eastern Europe”; 3 = 

“Mediterranean group”; 4 = “Spain and Portugal” 

 

ID Country Population 
Intron type Geographical region* 

1 short 1 

2 
Germany Bissendorf 

short 1 

3 short 1 

4 
Sweden Oland, Grasgard 

long 1 

5 - 3 

6 
France Relais des Chenes 

short 3 

7 short 3 

8 
Greece Ioanninon 

long 3 

9 long 2 

10 
Poland 

Krakow, near 

Conference Centre short 2 

11 short 1 

12 

Denmark 

Aarhus Botanic 

Garden, origin 

unknown  

short 1 

13 short 2 

14 
Austria Vienna, Heiligenstadt 

short 2 

15 short 1 

16 
Norway Lardalsoyri 

short 1 

17 short 3 

18 
Greece Evrou 

short 3 

19 - 3 

20 
Italy near Tarquinia, Lazio 

long 3 

21 long 2 

22 
Estonia Vinupea 

- 2 

23 - 2 

24 
Austria Dietmans 

long 2 

25 France Canche short 1 
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Table 5-2, continued 

26 France Canche short 1 

27 long 4 

28 
Portugal Serre de Nogere 

long 4 

29 long 1 

30 
Netherlands River Kraal 

long 1 

31 short 1 

32 
France Vitry en Artois 

short 1 

33 - 3 

34 
Italy Piedmont, Ceres 

short 3 

35 long 1 

36 
UK Dalkeith 

long 1 

37 short 1 

38 
UK 

Somerset, Burnham-

on-Sea short 1 

41 long 4 

42 
Portugal Segier-Chavez 

long 4 

43 short 4 

44 
Spain 

Madrid, San Lorenzo 

de El Escorial short 4 

45 Ukraine short 2 

46 

Ukraine Ukraine/Belarus 

border 

short 2 

47 short 1 

48 
Germany near Glaubitz  

short 1 
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Table 5-3: S. dioica individuals used in this study 

 

ID Location Sex 

99M24.2 unknown male 

99M9.1 unknown male 

99K24.1 France female 

A2009_1_female_1 Finland female 

A2009_1_male_7 Finland male 

A2009_1_male_9 Finland male 

A2009_2_female_1 Finland female 

 

 

Table 5-4: Regions amplified for the diversity study 

 

Gene 
Sequence for 

diversity study 

No. coding 

sites analyzed 

No. noncoding 

sites analyzed 

SlX9 

intron 1 

(partial), exon 

2, intron 2, 

exon3, intron 3 

(partial) 

255 178 

SlY9 

intron 2 

(partial), exon 

3, intron 3, 

exon 4(partial) 

270 222 
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Figure 5-2: Schematic view of the alignment of SlX9, SdX9, SlY9 and Sv9. Sizes of introns and exons are not drawn to scale. Both X-linked intronic 

variants are shown (SlX9_hap_1 and SlX9_hap_2). Thick lines around exons: sequences available for at least one individual. (The original S. latifolia 

cDNA clone from which the gene was identified contained the whole open reading frame; sizes of exons for which we do not have complete sequences 

are drawn based on the assumption that exon sizes are the same as for the cDNA.) Note: Sequences used in the diversity studies of SlX9, SdX9 and SlY9 

only cover parts of the gene sequences, as indicated. 

  

SlX9_hap_1   

SlX9_hap_2   

SdX9 
 

 

 

 

 

 

 

 

 

 

SlY9 

Sv9 

 

      Exon 1 (97bp)            Exon 2 (76 bp)                                                                 Exon 3 (183 bp)      Exon 4 (91 bp)       

 SlX9 diversity (434 bp analysed)                               

SlY9 diversity (489 bp analysed)                           
SdX9 diversity (634 bp analysed)                               
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Table 5-5: Primers used in this study 

Name Sequence Notes 

RB18_F CTTGTGGAACTTCTGGTGGAAG 

RB18_R GTCCAATCACATTCAAGTCTCTCC 

establishing sex-linkage;  

deletion mapping of SlY9 

RB18_male_intron_2_F TCTTTCACACCCAATTTGATCC amplify SlY9 with RB18_E3_rev 

RB18_male_intron_2_R GTACAGGGAAGAGCAAAGCAC 

RB18_exon_1_F AGCTAGCAGTTTTGCAGCATC amplify SlY9  

RB18_Y_E3-R GACATTCAAGTCTCTCCTCAGCCAA 

amplification of cDNA to get Y 

copy 

RB18-Intron2-male-F-2 AAGGACAACAATTCAATGGGATG 

RB18-Intron2-male-F-3 GGGATGGAGGGAGTATGTTATTATTG SlY9-diverstiy with RB18-3’UTR  

RB18-3’UTR GATGAATCTAAAATCAAACAGTGAAAC  

RB18_exon_1_F AGCTAGCAGTTTTGCAGCATC 

RB18_exon_4_R TCTTCAGTCCTTCCTTTGAAGC SlX9-diverstiy 

RB18-male-exon1-F ACTCTCTCTCGCTCTTACTCC  

RB18_male_exon3-R GACATTCAAGTCTCTCCTCAGCCAA  

RB18-E3-R-beg TCCTCAGCCAGTCTCTTTGAA  

RB18-E2-F-beg GTTGCTGCAGTGAACCCTCT  

RB18-EXON2-R-Male TGCCTCAGAGGGTTTACTGC  

 

 

PCR amplification was generally done using Taq JumpStart
TM 

(Sigma-

Aldrich), and the following conditions: initial denaturation at 95°! for 5min, 10 

cycles of denaturation at 95°! (30 sec), annealing at 55-58°! (30 sec), extension at 

72°! (1-1.5 min), final extension at 72°! for 15 min. PCR amplicons were cleaned 

using ExoSAP-IT (Amersham Biosciences, Tokyo) and sequenced on an ABI 3730 
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capillary sequencer (Applied Biosystems) and sequences edited using Sequencher 

4.7. 

The two X-linked alleles in the mapping family (see above) were cloned from 

PCR products and sequenced. Primers used to amplify across introns 1, 2 and 3 are 

listed in Table 5-5. The gene structure of SlX9 was then inferred by comparing the 

SlX9 genomic sequence with its cDNA sequence, as well as by comparisons with A. 

thaliana and S. vulgaris gene structures. A BLASTN search was performed at 

www.ncbi.nlm.nih.gov to identify homologous genes in other organisms and their 

functions.  

 

5.3.3 Obtaining and mapping the Y-linked homologue 

As described in Chapter 4, using primers RB18_F and RB18_R (Table 5-5) to 

amplify DNA from male and female plants from family H2005-1, yielded a male-

specific PCR product of about 1.2kb. To sequence the Y-linked homologue of SlX9, 

the longer, male-specific allele (see Figure 5-1) was cut from the agarose gel, cloned 

and sequenced. To obtain the 5´ coding sequence of SlY9, which was not present in 

the region initially sequenced, the cloned PCR products from family H2005-1 were 

also used to design new, Y-specific primers from this sequence (Table 5-5). These 

primers were also used for the SlY9 diversity study (see below).  

To test whether the Y-linked gene was expressed, we did nested PCR using 

cDNA derived from male flower tissue. The first round of PCR amplification used 

the primers TsShort and RB18_R (Table 5-5), where TsShort matched the sequence 

to which the cDNA was ligated. The second round used TsShort and the Y-specific 

primer RB18_Y_E3-R (Table 5-5). 

For deletion mapping SlY9 on the Y chromosome, PCR amplifications were 

scored in the deletion mutants (see above) using the primers RB18_F and RB18-R 

(Table 5-5). The location of SlY9 was inferred by comparing the presence/absence of 

the Y-linked, larger, fragment to the presence/absence of other Y-linked genes 

(BERGERO et al. 2008; ZLUVOVA J et al. 2007; ZLUVOVA et al. 2005). 
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5.3.4 Diversity of SlX9 and SlY9 and linkage disequilibrium analysis 

To study sequence diversity of SlX9 and SlY9, parts of the genes (listed in Table 5-4) 

were amplified in the 46 male individuals from different European populations 

(Table 5-2); The X-linked copy was amplified from each plant using the primers 

RB18_exon_1_F and RB18_exon_4_R, and the Y-linked copy with either RB18-

Intron2-male-F-2 and RB18-3´UTR, or RB18-Intron2-male-F-3 and RB18-3´UTR 

respectively (Table 5-5). The sequence fragments were assembled and aligned 

manually using the program Se-Al v.2.0a11 (Se-Al: Sequence Alignment Editor, 

http://evolve.zoo.ox.ac.uk/).  

Sequence diversity was analyzed using DnaSP 4.0 software (ROZAS and ROZAS 

1999), excluding indel polymorphisms. To estimate between-population 

differentiation, the SlX9 and SlY9 sequences were divided into four broad geographic 

groups based on their location of origin (“Northern Europe”, “North-Eastern 

Europe”, “Mediterranean group”, and “Spain and Portugal”, see Table 5-2), K SSSTTT 

statistics were computed in DnaSP. A NJ tree of the X-linked sequences was 

constructed in MEGA 3.1 (KUMAR et al. 2004). 

To test for introgression from the sister species S. dioica, we used the 

principle that introgression will cause variants from one species to be more often 

found in the same haplotype than expected based on their frequencies in the hybrid 

population, i.e. there will be positive linkage disequilibrium among segregating sites, 

specifically in regions containing multiple successive variants from S. dioica. The 

associations are expected to last until they are broken up by recombination events, so 

that the physical distance over which we observe positive LD can be used as a 

measure of the time when hybridization occurred and/or the strength of selection 

against hybrid individuals. We used DnaSP 4.0 to calculate D´, a measure of linkage 

disequilibrium among segregating sites, standardized relative to its maximum 

possible value.  

 

5.3.5 Tests of neutrality and recombination estimates 

Using these population samples of SlX9 and SlY9, several neutrality tests were 

performed in DnaSP 4.0, including Tajima’s D, Fu and Li’s D* and F*, Fu’s F and 

Fay and Wu’s H statistics (FAY and WU 2000; FU 1997; FU and LI 1993; TAJIMA 
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1989).  Levels of statistical significance were estimated using coalescent simulations 

in DnaSP 4.0, conservatively assuming no recombination.  

We also used DnaSP 4.0 to calculate an estimate of the recombination 

parameter, R = 3Ner (for SlX9); the minimum number of recombination events; 

Strobeck’s S statistic, which gives the probability of sampling the same or smaller 

number of haplotypes as observed in the population sample, given an estimate of ! 

(STROBECK 1987). 

 

5.3.6 Comparisons with outgroup species 

Using the primer pair RB18_exon_1_F and RB18_exon_4_R (Table 5-5), the 

homologue of SlX9/SlY9 was amplified in S. vulgaris, a gynodioecious species that 

lacks sex chromosome and forms an outgroup to the S. latifolia/S.dioica clade. 

Amplification in S. dioica was done using different combinations of primers, 

listed in Table 5-5 (RB18-male-exon1-F and RB18_male_exon3-R; RB18_exon_1_F 

and RB18-E3-R-beg; RB18-E2-F-beg and RB18_exon_4_R; RB18-male-exon1-F 

and RB18-EXON2-R-Male; RB18-male-exon1-F and RB18_exon_4_R). We call 

these homologues Sv9 (for S. vulgaris) and SdX9 (for S. dioica); we infer that SdX9 

is X-linked, but we did not obtain the Y-linked homologue for this species (see 

Results). The HKA test (HUDSON et al. 1987), as implemented in DnaSP 4.0, was 

used to compare the diversity levels at SlX9 and SlY9, taking into account the 

different ploidy levels, and using Sv9 as the outgroup sequence. 

To test whether SlY9 has an accelerated rate of mutation, all fourfold 

degenerate sites were extracted from the SlX9/Y9 coding sequence using DnaSP 4.0. 

The baseml program of PAML was used to compare the rates of evolution along the 

4 branches of the phylogenetic tree, using Sv9 as the out group sequence: a model 

that assumes a single rate of evolution for all branches (“clock = 1”) was compared 

with a model that assumes a different rate for the Y-linked branch compared to the 

X-linked and autosomal genes (“clock = 2”). Because there were only 72 fourfold 

degenerate sites, we also performed the same test using all 444 coding sites of the 

alignment. 

The codeml program of PAML was used to estimate KA/KS ratios along the 

branches leading to SlX9 and SlY9 respectively, again using S. vulgaris as an 
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outgroup, and allowing each branch of the tree to have its own rate of evolution. The 

likelihood of obtaining the data under a model in which all three branches of the tree 

have the same KA/KS (“model = 0”) was compared with a model in which there was 

one KA/KS ratio in the branch leading to SlY9, and one for the branches leading to 

SlX9 and Sv9 respectively (“model = 2”). 

Divergence between the X- and Y-linked copies of SlX9-Y9 was estimated 

using DnaSP 4.0. The exonic sequence of male E2004-15-1 (from Serre de Nogere, 

Portugal) was compared to the set of X-linked sequences amplified for the diversity 

study (255 coding sites). Synonymous and nonsynonymous divergence values were 

calculated using DnaSP 4.0.  

In S. latifolia, sex-linked genes differ in their degree of X-Y divergence, 

suggesting that recombination initially stopped in the region of the sex chromosomes 

where female suppressor/male sterility genes evolved (CHARLESWORTH and 

CHARLESWORTH 1978), and was suppressed between other X-Y homologues at later 

stages. We used the divergence between SlX9 and SlY9 to test whether the significant 

correlation between the genetical map position of a gene on the X and its divergence 

from its Y-linked homologue still existed when SlX9 was added to the dataset of 

BERGERO et al. (2007). If recombination has been gradually repressed along the X-Y 

axis, one would expect to see such a correlation.   

 

 

5.4 Results 

 

5.4.1 Discovery of the new gene  

As outlined in Chapter 4, our segregation results for a gene amplified using the 

primer pair RB18_F and RB18-R (see Methods and Table 5-5 above) suggested that 

the sequence corresponds to a sex-linked gene, which was named SlXY9. Figure 5-1 

shows the segregation of the informative intron size variant in the family H2005-1. A 

longer genomic DNA fragment is inherited by all male offspring (indicating Y-

linkage), whereas the daughters inherited one copy from the mother and one from the 

father.  
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The SlX9 cDNA sequence contains a continuous open reading frame of 444 bp 

coding sites (148 amino acids). BLAST tests showed that the gene is similar to the 

photosystem I subunit of A. thaliana (e-value 2e-37 with GeneID: 837358, 

TAIR:AT1G08380) and to undefined membrane proteins of tobacco, wheat and rice 

(BLAST e-values 1e-38 to 9e-37). It is thus probably a housekeeping gene.  

Partial genomic sequences of SlX9 and SlY9 were obtained from males E2004-

15-1, E2004-17-1 and E2004-1-9 (whose Y haplotype came from the pollen donor 

98E-6/9 (USA)). The results show that the original cDNA corresponds to the X-

linked copy (its JC-corrected synonymous divergence from the set of  X-linked 

sequence of the diversity study is 8.8%, based on 61 synonymous sites, similar to the 

within-species synonymous diversity of SlX9, see below). The cDNA sequence from 

male flower tissue overlapped with the exonic SlY9 sequence of male E2004-15-1 by 

94bp, and the sequences in this region were identical, whereas there were 6 sites with 

differences from all X-linked sequences, including those obtained in our diversity 

study (see below). Retrieving a Y-linked copy from cDNA suggests that SlY9 is 

expressed. The mean synonymous divergence of all Y sequences from the cDNA 

was only slightly lower than that for the X (8.6% with JC correction), but there are 

fixed differences between the X and Y sequences.  

Comparisons between the original cDNA clone and all genomic sequences of 

SlX9 and SlY9 that we could obtain (including those obtained in our diversity study, 

see below) suggest that there are 4 exons in S. latifolia (Figure 5-1), implying the 

presence of one intron more than in the A. thaliana putative homologue. These 

comparisons revealed that the distinctive large Y-linked band identified in family 

H2005-1 is due to presence of extra sequence in intron 2 of theY-linked copy. The 

complete intron 2 was obtained only for one male plant (E2004-17-1, the father of 

mapping family H2005-1); for the diversity study, the forward primer was located 

within intron 2, so that the full length of the intron in other male plants is not known 

(the length of sequence obtained for intron 2 in other plants was only 86bp or less). 

No BlastN or BlastX matches were found for the insertion in SlY9, and no repetitive 

sequences were detected using the RepeatMasker program (www.repeatmasker.org). 

However, we cannot exclude the possibility that the insertion was caused by a TE, 
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since its sequence might represent a new TE type, or could have changed too much 

to be recognizable as a known type. 

 

5.4.2 X and Y haplotypes 

To study sequence diversity, we obtained 40 X and 46 Y sequences from a total of 

46 males from different European locations (amplified using primer pairs listed in 

Table 5-5: for SlX9, the primers RB18_exon_1_F and RB18_exon_4_R were used, 

and for SlY9 they were RB18-Intron2-male-F-2 and 3' UTR-R, or RB18-Intron2-

male-F-3 and 3' UTR-R). The PCR amplifications always yielded just one copy, 

which was in all cases clearly identifiable as either SlX9 or SlY9, using the intron 

length variant that distinguishes the Y-linked alleles (see above). The gene is 

therefore present as single copy in the genome, and is sex-linked throughout the 

species’ range. No frame shift mutations or premature stop-codons were found in the 

coding regions in any of the SlY9 (or SlX9) sequences. 

Among the X-linked sequences, we found two distinct sequence types. In 

thirteen SlX9 sequences, intron 2 was ~ 485bp, whereas in the other 27 it was only ~ 

380bp. The intron sequences of the two types were highly diverged, and were 

aligned manually (see Methods). We discuss these two sequence types further below. 

All three introns of SlY9 are longer than those of SlX9 or the S. vulgaris 

homologue (Sv9 in Figure 5-2), and the complete intron 2 from the genomic 

sequence of male E2004-17-1 is about 600 bp longer than in the longer SlX9 type 

just described (see also Figure 5-1). This suggests, by parsimony, that the intron sizes 

have expanded in the Y-linked copy, consistent with previous findings of non-coding 

sequence accumulation on the Silene Y chromosome (CERMAK et al. 2008; HOBZA et 

al. 2006), and longer introns for the Y-linked genes DD44Y and SlX3 (MARAIS et al. 

2008), and the observed expansion of the Drosophila miranda neo-Y and the non-

recombining Y-like region of papaya (BACHTROG et al. 2008; LIU et al. 2004).  

 

5.4.3 Location of the SlY9 gene on the X and Y chromosomes, and X-Y 

divergence 

As described in Chapter 4, in the genetic map of the X chromosome, the X-linked 

SlX9 gene is closely linked to SlCyp-X, a previously described sex-linked gene 
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(BERGERO et al. 2007). To test whether the Y-linked copies of these two genes are 

also close, we used deletion mapping (see Methods). This showed that SlY9 is always 

co-deleted with SlCyp-Y, suggesting that these genes have been physically close 

since recombination stopped in the relevant region of the sex chromosomes. 

Because only parts of the sequences could be obtained, estimating divergence 

between types of sequence is difficult. To estimate X-Y divergence, we compared 

392 coding sites of the longer sequence from male E2004-15-1with the original 

cDNA clone (which, as shown above, is an X-linked sequence); this yielded a silent 

site divergence estimate (KS) of 15.3%, after Jukes-Cantor (JC) correction for 

saturation, and non-synonymous divergence (KA) was 0.069%. Similarly, (JC-

corrected) KS was 14.4% and KA 0.026% when 255 nucleotides in exons 2 and 3 

from the SlX9 diversity study and SlY9 from male E2004-15-1 were compared. There 

were no fixed non-synonymous differences, i.e. all nonsynonymous differences 

between SlX9 and SlY9 were polymorphisms in the SlX9 sequences.  Similar 

estimates were obtained whether we include all X sequences, or only the longer or 

shorter type. Because SlX9 has high sequence diversity (see below), we also 

estimated the net divergence between SlX9 and SlY9 using these sequences 

(subtracting the average of the diversity values); this yielded 6.25% for silent sites 

and 9.8% for synonymous sites (based on 255 coding sites). Because SlX9 maps to 

the same position on the X chromosome as SlCyp-X, both genes should have stopped 

recombining at the same time, and they should thus have similar sequence 

divergence. The synonymous divergence between SlCyp-X and SlCyp-Y is estimated 

to be 6.1% (BERGERO et al. 2007), slightly lower than for SlX9 and SlY9. This 

difference may simply be inaccuracy due to the small numbers of sites in our SlXY9 

alignments. The relationship previously found between the position on the genetic 

map of the X and its X-Y divergence (BERGERO et al. 2007) remains significant 

when SlX9 is added to the dataset (Figure 5-3; p-value for the regression < 0.1%).  
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 Figure 5-3: Synonymous divergence values between sex-linked genes are plotted 

against the map position of the respective X-linked gene. SlX9 is shown as a red 

square, all other genes as blue squares.  

 

 

5.4.4 Divergence from outgroup species 

Several X-Y pairs of genes have been found to have higher mutation rates in the Y 

copies ((FILATOV 2005; FILATOV and CHARLESWORTH 2002)), and we tested the 

SlX9 and SlY9 genes for this difference. Both SlX9 and SlY9 have similar divergence 

from the S. vulgaris homologue (JC-corrected distances for SlX9 vs. Sv9 were 14.6% 

for 90 silent sites, and KS = 21% and KA = 0.5%, based on 255 coding sites; for the 

Y, KS = 21% and KA= 0, based on 261 coding sites). PAML analysis confirms that 

SlY9 does not evolve significantly faster than the X-linked copy, considering only 4-

fold degenerate sites or all coding sites (Table 5-6). Furthermore, the dN/dS ratio on 

the branch leading to SlY9 does not differ significantly from that on the other 

branches (Table 5-6). The overall dN/dS estimate is 0.077. Together with the lack of 
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frame shift mutations or premature stop-codons in SlY9, as well as its expression as 

mRNA, these results suggest that the SlY9 gene is still functional.  

 

Table 5-6: PAML-based tests of rate differences between SlX9 and SlY9, using Sv9 

as an out group sequence. 

Program Comparison No. of 

sites 

model !2
 d.f. p 

clock = 1 1 baseml 4fold degen. 

sites 

72 

clock = 2 

2.67 

 

0.102 

clock = 1 1 baseml all coding sites 444 

clock = 2 

0.32 

 

0.57 

model = 0 1 codeml KA/KS 438 

model = 2 

1.51 

 

0.22 

 

 

5.4.5 Sequence diversity in S. latifolia 

We sequenced a portion of SlX9 starting within intron 1. Within our S. latifolia 

sample, synonymous diversity of the X-linked copy, SlX9, was "S = 9.2% with JC 

correction, which is very high, and greatly exceeds the values for other X-linked 

genes (see above); non-synonymous diversity, "A, was only 0.05%. These estimates 

are based on only 85 alignable codons in exons 2 and 3. Silent site diversity is only 

half the above value (4.0% with JC correction, based on 240 sites), still a high value. 

As described further below, the high diversity results, at least partly, from the 

presence of two SlX9 sequence types (the two X haplotypes with different intron 

sizes described above, see Figure 5-2). Silent site diversity with JC correction within 

each set of X-linked sequences was 3.2% in either case, suggesting that the net silent 

site divergence between the two groups is about 1.3%.  

The Y-linked copy, SlY9, has substantially lower diversity. In 270 sites of 

coding sequence, not a single polymorphism was detected among our 46 Y 

sequences from different European populations, and there were only two SNPs in the 

introns. For silent sites (283 sites), nucleotide diversity was 0.163% representing a 

X/Y ratio of silent diversity of 24.5, using the estimate for the X chromosome above, 
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though it should be noted that the X and Y estimates of " are based on different gene 

regions (see Figure 5-2), and that the numbers of sites analyzed in either set of 

sequences is small. There was also one indel polymorphism in intron 3 of SlY9: the 

sequences from two males from a population in Greece had an insertion of the triplet 

TCA. The diversity at SlY9 is significantly lower than in SlX9 by an HKA test, taking 

ploidy levels into account (all sites: !2
 = 5.5, p <0.05). 

Given that the SlY9 diversity is lower than expected purely from the lower Y 

effective population size, the reduction is probably due to hitch-hiking processes in 

the non-recombining regions of the Y chromosome, which include most of this 

chromosome. In S. latifolia, there were three fixed differences between the X- and Y-

linked copies (based on 231 bp of aligned sequence), suggesting that the gene has 

been in the non-recombining region of the Y for some time.  

SlY9 and SlX9 both showed significant differentiation between populations (see 

Methods), with the SlX9 KST estimate being 0.109 (p < 0.001) and the estimate for 

SlY9 = 0.122  (p < 0.05), but the latter is highly inaccurate, being based on only 2 

segregating sites. 

 

5.4.6 Introgression from S. dioica? 

The high SlX9 diversity is puzzling. Given the genetic evidence mentioned above 

that there are no duplicate copies of these genes, we tested whether the presence of 

two SlX9 sequence types described in the preceding section could be explained by 

introgression of the S. dioica orthologue of SlX9. Very recent introgression seems 

unlikely, because the short length type was found in populations from the 

Mediterranean region, where S. dioica is absent (PRENTICE et al. 2008). Both intron 

sizes were found within S. latifolia populations from Sweden, Poland (where S. 

dioica is also present), and in Greece, and the short SlX9 sequence was also found in 

Italy and Spain.  

To test this further, we sequenced portions of the gene from S. dioica (SdX9 in 

Figure 5-2). All four S. dioica males only had one copy, whereas one of the two 

females contained heterozygous SNPs, so it appears that only the X-linked copy 

amplified from S. dioica. In support of this conclusion, mean silent site divergence 

between SdX9 and SlY9 was 8.3% (but based on only 54 sites), higher than the 



 121 

average (raw) divergence between SlX9 and SdX9 (which was 2.7%, similar to 

estimates from other genes in these species, which range from a net silent site 

divergence of 1.1% for SlX1 (ATANASSOV et al. 2001) to a synonymous divergence 

of 4.4% for Sl-Cyp (BERGERO and CHARLESWORTH 2009)). Given the high 

divergence between SlX9 and SlY9 (KS = 14.4% and silent site divergence = 9.1%, 

see above), the S. dioica Y-linked sequence may be too diverged for the primers to 

work, or, alternatively, the Y copy may have been deleted in S. dioica.  

All seven S. dioica sequences had the shorter haplotype (Figure 5-2). 

Compared with S. latifolia (see above), diversity appears to be slightly lower in S. 

dioica (from our sample of 7 X-linked sequences); using 538 silent sites, we have " 

= 1.6% (or 2.44% versus 2.95% in S. latifolia, for the 151 sites whose sequences 

could be compared in both species). 

In terms of their sequences, the group of shorter S. latifolia SlX9 haplotypes are 

more similar to the S. dioica sequence than the long ones. Divergence values of the 

short and long SlX9 sequences from the SdX9 sequences were 5.6% and 3.8%, 

respectively (net JC-corrected silent divergence values, based on 260 and 320 sites); 

net divergence values were 3.73% and 1.07%, respectively. Furthermore, the NJ tree 

(Figure 5-4) shows that the S. latifolia sequences with the short intron type cluster 

together with the S. dioica sequences, although all bootstrap values are very low. 

One S. latifolia individual (no. 32 in Table 5-2, from Northern France, which has the 

short intron 2 type), is very similar to a group of SdX9 sequences (Figure 5-4), 

sharing four SNP variants with S. dioica, at sites at which all other S. latifolia 

sequences were fixed for a different variant. Introgression has thus probably occurred 

in its recent ancestry, which is plausible, as both species co-exist in this geographic 

region. Another SlX9 sequence of the short intron type (from individual 6) is also 

similar to a group of SdX9 sequences (Figure 5-4), but it comes from a region where 

S. dioica is not found (Southern France). 
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Figure 5-4: Neighbour-Joining tree constructed in MEGA, based on all sites, with bootstrap 

support values > 40% shown at the branches. Numbers represent S. latifolia individuals (see 

Table 5-2). 
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SlX9 and SdX9 share 13 polymorphic sites, 7 of which are in regions shared 

among both S. latifolia haplotypes, while 5 are in the intron 2 region that is present 

only in the subset of the S. latifolia short haplotype group plus the S. dioica 

sequences (Supplementary Figure 5-1). There was one fixed differences between the 

sequences of the two species, in the very beginning of intron 1, but for this site, only 

four S. latifolia sequences aligned with S. dioica (Supplementary Figure 5-1, Table 

5-7).   

 

Table 5-7: The number of shared and fixed variants between S. latifolia and S. dioica. Note 

that, since we obtained 40 S. latifolia but only seven S. dioica sequences, the number of sites 

polymorphic in S. latifolia and fixed in S. dioica is probably an underestimate. This value, 

however, only includes sites for which we had all seven S. dioica sequences (i.e. excluding 

the last 558 bp of the alignment).  

No. of fixed 

differences 

No. of sites 

polymorphic in S. 

latifolia, but fixed 

in S. dioica 

No. of sites 

polymorphic in S. 

dioica, but fixed in S. 

latifolia 

No. of shared 

polymorphic sites 

 

1 

 

64 

 

9 

 

13 

 

 

5.4.7 Linkage disequilibrium 

Among 36 polymorphic sites in the S. latifolia SlX9 gene, 9 pairs of sites are under 

significant linkage disequilibrium in our sample of alleles (Fisher’s exact test; p < 

0.05, after correction for multiple comparisons using the Bonferroni procedure). 

Eight of these pairs were less than 100bp apart from each other, whereas in one pair, 

the sites are 1493 bp apart (Table 5-8); all SNPs which were in significant LD, were 

downstream of exon 2, suggesting that there might be a small region of positive LD 

either within SlX9 or extending downstream of the gene. The respective S. dioica 

sequences always corresponded to one of either SNP pair, i.e. the association 

between two nucleotides was also present in S. dioica (the S. dioica sample was 

polymorphic at one of these sites (pos. 2085), but we did not have all seven S. dioica 
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haplotypes for all sites that were under LD in S. latifolia (see Supplementary Figure 

5-1)). 

Sites that were under significant LD in S. latifolia showed different patterns of 

polymorphism, depending on whether these sites were upstream or downstream of 

the intron 2 insertion (although this could be due to chance): all three sites upstream 

of this region were only polymorphic in the set of short SlX9 sequences, whereas 

polymorphisms were shared across both intronic groups downstream of the insertion 

(Supplementary Figure 5-1). The three polymorphic sites upstream of the insertion 

(734, 794, 875) carried variants that were not found in our (limited) S. dioica sample. 

Note that polymorphisms that were not under significant LD were shared among the 

two SlX9 haplotype groups also upstream of the length difference in intron 2.   

 The ZnS value, which measures the average linkage disequilibrium for all 

sites, was only 0.06, lower than the ZnS value for a different sex-linked gene, SlX1 

(ZnS = 0.131) (ATANASSOV et al. 2001). The recombination parameter, R, between 

adjacent sites was 0.13, and the minimum number of recombination events (both 

estimated by DnaSP 4.0) was 8.  

 

Table 5-8: Sites with significant linkage disequilibrium in the SlX9-diversity sample.  

 

 

 

 

 

 

 

 

 

 

 

The alternative to introgression, ancestral polymorphism, with balancing 

selection in the common ancestor of the two species, and maintained in S. latifolia, 

predicts that we should observe many variants at higher frequencies than expected 

Position 1 (bp) Position 2 (bp) Distance (bp) 

734 2227 1493 

794 875 81 

2016 2097 81 

2016 2100 84 

2067 2073 6 

2085 2097 12 

2085 2100 15 

2097 2100 3 

2154 2157 3 
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under neutrality, resulting in a positive Tajima’s D statistic. However, in our sample, 

Tajima’s D for SlX9 was negative, though not significant (Tajima’s D = -0.32, p > 

0.1). Other tests of selection on SlX9 were also not significant (Table 5-9), except for 

Fu’s F, which is very sensitive to a frequency spectrum bias towards rare 

polymorphisms.  

 

Table 5-9: Tests of neutrality and recombination for SlX9 and SlY9. 

 

Gene 

 

Tajima’s 

D 

 

Fu and Li's 

D* 

 

Fu and Li's 

F* 

 

Fu’s F 

 

Strobeck's 

S statistic 

 

Fay and 

Wu’s H 

 

No. of  

haplotypes 

 

R = 3Ner 

(adjacent sites) 

SlX9 -0.32 

NS 

-0.25 

NS 

-0.32 

NS 

-7.63 

p < 0.05 

1.000 -1.23 

NS 

26 

p(nH=28) < 

0.001 

 

0.14 

SlY9 -1.19307 

p < 0.1 

- 1.74431 

p < 0.1 

- 1.84007 

p < 0.1 

- 0.515 

NS 

0.836 0.46377 

NS 

4 

p(nHap=4) = 

0.21 

- 

 

 

5.5 Discussion  

 

5.5.1 Causes of low Y diversity, relative to the X  

SlX9, is a sex-linked gene that shares characteristics with other known genes on 

the S. latifolia sex chromosomes. Although there is no overt sign that its Y-linked 

copy is degenerating, its diversity is reduced to a greater extent than expected based 

on the three times lower number of Y compared to X chromosomes in the 

population, similarly to the findings for all other Y-linked genes previously studied 

(SlY4, DD44Y, SlY1 and SlAp3Y) (ATANASSOV et al. 2001; LAPORTE et al. 2005; 

MATSUNAGA et al. 2003). A reduced mutation rate on the Y cannot account for the 

diversity difference. Mutation rates in S. latifolia were found either not to differ 

between the X and Y copies (as we have found here), or to be significantly higher for 

the Y-linked copies (FILATOV 2005; FILATOV and CHARLESWORTH 2002; NICOLAS et 

al. 2005).  
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Population structure can increase species-wide diversity, but diversity on the Y 

chromosome should be more affected by subdivision than diversity on the X, even if 

pollen and seed dispersal rates are the same (LAPORTE and CHARLESWORTH 2002). 

Strong population structure has been found in S. latifolia for the genes SlX4/Y4 and 

DD44-X/Y (LAPORTE et al. 2005)) and SlX1/Y1 (ATANASSOV et al. 2001; IRONSIDE 

and FILATOV 2005), in all cases much more markedly for the Y than the X, due to the 

low Y diversity. Our small within-population samples are not suitable for rigorous 

tests for subdivision (only large-scale geographical subdivisions can be tested, see 

above), but our conclusion of reduced diversity on the Y should be conservative with 

respect to subdivision, and we can conclude that this probably cannot explain the 

high X diversity.  

Accordingly, the data suggest that hitch-hiking processes have probably led to 

a reduced diversity of non-recombining regions of the S. latifolia Y chromosome. 

The Silene Y presumably contains many active genes, as suggested by its mere size 

(about 570 MB), and none of the eleven genes identified is degenerate, i.e. Hill-

Robertson interference effects may be considerable. However, on a completely 

linked chromosome such as the Y, all sites are affected by the same selective or 

demographic processes, making it difficult to determine which might be the major 

force reducing Y diversity.  

We observed an excess of low-frequency variants for SlY9 (Table 5-9), as 

shown by a negative Tajima’s D; however, with the small sample of genes whose 

diversity has been studied in this species, it is difficult to estimate and correct for any 

effects of recent demographic history that may have produced a tendency for such a 

frequency spectrum. (Note that the X-linked genes SlssX, Sl-CypX and Sl-Cyt also 

have negative Tajima’s D values (BERGERO et al. 2008; Chapter 4; Bergero, 

unpublished data). The positive (though non-significant) Fay and Wu’s H argues 

against a selective sweep on the Y chromosome. The data are, however, consistent 

with purifying selection and thus with results represented in Chapter 2 as well as the 

suggestion (BACHTROG 2008) that Muller’s ratchet and/or background selection 

should be more important early in Y chromosome evolution, when the number of 

functional genes that can undergo detrimental mutations is still very large. Selective 

sweeps might become more important at intermediate stages of Y evolution, after the 
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Y has lost many genes, so that there is a higher chance that beneficial mutations can 

occur on chromosomes not carrying many deleterious mutations.  Previous studies of 

three Y-linked genes (SlY1, SlY4 and DD44Y) did not find significant Tajima’s D 

values, but argue that population subdivision could obscure the effects of a sweep 

(ATANASSOV et al. 2001; LAPORTE et al. 2005). On the other hand, the strong Y 

chromosome differentiation among populations (IRONSIDE and FILATOV 2005) 

argues against recent species-wide selective sweeps. Population structure is, 

however, consistent with background selection, or locally confined sweeps 

(IRONSIDE and FILATOV 2005).  

 

5.5.2 Causes of high X diversity in S. latifolia  

For SlX9, synonymous diversity is higher than for any other X-linked gene studied in 

this species, and introgression from S. dioica is certainly a plausible hypothesis to 

explain this. The shared short intron 2 structure, shared SNPs, and tendency for 

nearby sites to show positive linkage disequilibrium are consistent with 

introgression. Evidence for introgression from S. dioica into S. latifolia has also been 

reported for DD44X and SlX4 (LAPORTE et al. 2005). For SlX4, a size variant in a S. 

latifolia intron matched an intron size variant in S. dioica, similar to our observation 

for SlX9 (LAPORTE et al. 2005); for SlX1, nine out of ten shared polymorphisms were 

located in the first 1755 bp, and fixed differences were found only at the 3´ end of 

the gene (ATANASSOV et al. 2001), whereas, for DD44X, the sequences sampled 

from the two species shared 14 polymorphic sites and had no fixed differences 

(LAPORTE et al. 2005). These results suggest that the introgressed regions can be 

very localized (LAPORTE et al. 2005), and thus that it may be infrequent, and that the 

introgressed regions are often eliminated after recombination (presumably due to 

selection). Note that, for the diversity analysis of SlX9, exon 1 and intron 1 were not 

included, i.e. our diversity value might be an over-estimate if the region surveyed 

coincides with a region of the gene in which SdX9 sequence has been introgressed. 

Introgression between S. latifolia and S. dioica has also been detected using 

AFLP markers and (maternally inherited) chloroplast markers: out of 209 markers 

studied by MINDER et al. (2007), only 7 were species-specific, and five out of seven 

chloroplast haplotypes in S. latifolia were also present in S. dioica (PRENTICE et al. 
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2008). MINDER et al. (2007) did not observe significant LD between segregating 

AFLP markers, but these markers were scattered on different S. latifolia 

chromosomes, and were probably mostly loosely linked, so the chance of detecting 

LD would be slight unless a chromosome contains a large region that introgressed 

too recently to have recombined. Using a similar AFLP marker set, allopatric 

populations of S. dioica and S. latifolia in Switzerland separated by small distances 

were found to be more distinct than sympatric ones (MINDER and WIDMER 2008), as 

expected if hybridization occurs locally, but the introgressed regions are usually 

eliminated, rather than persisting.  

For SlX9, the short sequences cluster together with SdX9 in the phylogenetic 

tree, and form a distinct group from the long intronic sequences (Figure 5-4) 

(although the bootstrap support values are very low); in line with this, silent 

divergence from S. dioica is lower for the group of short SlX9 sequences compared 

to the long ones, suggesting that introgression occurred recently enough to give these 

differences. Furthermore, individual no. 32, which comes from a region where S. 

dioica is present, carries a SlX9 sequence that is very similar to those of S. dioica and 

might be derived from a recent introgression event.  

However, the fact that we find both of the SlX9 haplotypes in plants from the 

Mediterranean region, where S. dioica is absent, argues against a hypothesis of 

simple introgression as the source of the variant with the short intron 2. Since S. 

latifolia sequences of the long intron type also share variants at polymorphic sites 

with S. dioica, recombination must have occurred after introgression took place, to 

yield a group of haplotypes with the short intron 2 characteristic of S. dioica, but 

with variants derived from the long S. latifolia haplotype. 

The finding of high diversity in S. latifolia, but not S. dioica, suggests 

introgression into S. latifolia, but not of SlX9 sequences into S. dioica (SWEIGART 

and WILLIS 2003). This is consistent with the distribution of chloroplast versus 

genomic markers, which suggested that hybridization events mainly involve S. dioica 

as the pollen donor (MINDER et al. 2007). However, experiments with equal amounts 

of pollen from the two species yielded progeny from S. latifolia recipients in which 

less than 20% were hybrids, compared with 50% with S. dioica recipients (RAHME et 

al. 2009). 
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Since we do not have a sequence of the Y-linked copy of SdX9 (if indeed a 

homologue exists in S. dioica), we cannot test for introgression of the Y-linked gene. 

The SlY4 and DD44-Y genes show no signs of introgression, but instead, their 

sequences cluster by their species of origin (IRONSIDE and FILATOV 2005; LAPORTE 

et al. 2005). However, as LAPORTE et al. (2005) pointed out, the lower effective 

population size of the Y chromosome implies that shared polymorphisms are 

expected to be lost quickly, making introgression less detectable than for the X or the 

autosomes.  

To estimate the diversity for X-linked genes relative to homologues on the Y 

(or to estimate X/autosome diversity ratio), it is clearly essential to have reliable 

diversity estimates for genes on the different chromosomes, and introgression from a 

different species will make this difficult and could increase the estimated diversity 

(SWEIGART and WILLIS 2003). 

Is introgression the sole cause of higher X than Y diversity? If introgression of 

the X occurred recently, it might be possible to remove the introgressed alleles and 

estimate X diversity, for comparison with the Y. However, this may not be possible 

if introgression is not recent, so that one cannot recognise introgressed alleles. When 

we excluded from the SlX9 dataset all polymorphisms that were shared with S. 

dioica, the X-Y difference in diversity remained unchanged, suggesting that 

introgression is not the sole factor for higher X than Y diversity (HKA test: !2
 = 

4.50, p <0.05). If most introgressed sequences are eliminated, and only certain small 

introgressed regions remain, this will be difficult to distinguish from shared ancestral 

polymorphisms for such closely related species. In the case of Mimulus guttatus and 

M. nasutus, introgression was detectable because high diversity was found only in 

those M. guttatus populations that are sympatric with M. nasutus, and also because 

M. nasutus sequences were quite readily distinguishable from M. guttatus, allowing 

recent introgression to be recognised (SWEIGART and WILLIS 2003). Both these 

characteristics differ from the situation for our species, and we cannot rule out that 

ancestral polymorphism has contributed to some of the observed pattern in S. 

latifolia. It does seem unlikely, however, that ancestral polymorphism is detectable 

in S. latifolia only, and not in S. dioica. 

 



 130 

5.5.3 Introgression and X-Y divergence 

If SlX9 and SlY9 stopped recombining after S. latifolia and S. dioica split into two 

species, the X-linked copy of one species should be more similar to that species’ Y-

linked copy than to the X of the other. Introgression could then inflate the divergence 

between X- and Y-linked copies, relative to the actual time since they stopped 

recombining, and different degrees of introgression of different regions of the X 

could make it difficult to determine the true times when recombination stopped, at 

least for regions in which it stopped most recently.  

However, this is unlikely to have affected our results for SlXY9, since we can 

say for Sl-Cyp, the gene most closely linked to SlX9/Y9, that it probably stopped 

recombining before the two species split: Sl-CypY carries an intronic MITE insterion 

in S. latifolia and S. dioica, but the insertion is absent from Sl-CypX. Furthermore, 

SlX9-SlY9 divergence is much higher than that between the two species, making a 

scenario of independent recombination cessation unlikely. 
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6 Conclusion and future directions 

 

The results presented in this thesis show that purifying selection acting against 

deleterious mutations can cause patterns of diversity and rates of degeneration that are 

consistent with data from Drosophila, suggesting that levels of diversity on the D. 

melanogaster fourth (dot) chromosome and the D. miranda neo-Y chromosome can 

be explained by selection acting against deleterious mutations only. Similarly, levels 

of diversity on the D. americana dot chromosome are only about 10-17 fold reduced 

compared to the autosomes (BETANCOURT et al. 2009), confirming the relatively high 

diversity in regions of low recombination in Drosophila. These results are in contrast 

to previous findings which suggested that the strong skew in the frequency spectrum 

at segregating sites observed for the neo-Y, in combination with its reduced diversity, 

is not compatible with background selection (BACHTROG 2004). This conclusion, 

however, was based on the assumption that background selection reduces diversity in 

a deterministic fashion, and the work presented in chapter 2 shows that this is not the 

case. If interference effects are taken into account, the observed distortions in the 

frequency spectra at segregating sites are indeed compatible with purifying selection 

alone, and hence with the Drosophila data. The new results also suggest that, with an 

increasing number of sites linked on a non-recombining chromosome, purifying 

selection against relatively strongly deleterious mutations becomes increasingly less 

efficient, resulting in a situation where the effective population size (and hence 

neutral diversity) is larger than predicted by the current model of background 

selection, which assumes independence among sites (NORDBORG et al. 1996). 

Mathematical models taking these interference effects into account are yet to be 

developed.  

 

 The validity of Muller’s ratchet in driving the degeneration of asexual 

population has previously been questioned, mainly because the time-scales involved 

were estimated to be too large. In chapter 3, it was shown that, based on estimates of 

mutation rates and selection coefficients against loss-of-function mutations, the 

predicted rate of accumulation of such mutations is consistent with the rate observed 

for the evolving neo-Y chromosome of D. miranda. Furthermore, selection at 



 132 

“nonsynonymous” sites can accelerate the process of gene loss, an effect that had not 

been investigated before.  

The model presented could be extended by allowing weak selection at 

“synonymous” sites or by modelling the effects of strongly beneficial mutations. Even 

if the data from Drosophila are compatible with purifying selection only, we can 

realistically assume that some adaptive changes do occur on evolving Y 

chromosomes. For example, the human and Drosophila Y have accumulated male-

function genes (CARVALHO et al. 2009; SKALETSKY et al. 2003), and this most likely 

happened most by positive selection, though little is known about the time-scales 

involved (i.e. if these genes accumulated after other genes had been lost already).  

Adding positive selection to the model is likely to speed up degeneration, though it is 

questionable if neutral diversity would be reduced much further; this is because 

beneficial mutations are, relatively speaking, just the opposite of deleterious 

mutations, and the plateauing effect of selection on Ne might persist – the exact 

outcome would most likely depend considerably on the selection coefficients 

assumed.  

 

In chapters 4 and 5, I have described the discovery of two new sex-linked 

genes in S. latifolia, SlCyt and SlX9/SlY9, both of which were mapped onto the sex 

chromosomes. I have shown that SlCyt moved onto the X only after the sex 

chromosomes had evolved, possibly after the split between S. latifolia/S. dioica and S. 

diclinis. SlCyt is the first known gene to have moved onto the Silene X chromosome 

and is now situated in a region that stopped recombining with the Y only recently. 

This, together with evidence of a selective sweep affecting diversity at SlCyt, raises 

the question of whether the translocation itself might have caused recombination 

suppression in the genomic region; more data are needed to resolve this question. 

SlX9/Y9 shows similar characteristics to other known genes on the Silene sex 

chromosomes, such as reduced Y diversity and possibly introgression from S. diocia, 

which might have inflated diversity.  

 

The theoretical results presented in the first chapters suggest that purifying 

selection can explain the Drosophila data - but how do they relate to Y chromosome 

evolution in S. latifolia? Given the molecular data that are available, the S. latifolia Y 

chromosome seems less degenerated than the D. miranda neo-Y: except for Sl-Cyt 
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(which has been transposed from an autosome, see chapter 4), and SlssY (which might 

contain nonsynonymous substitutions that impair protein function (FILATOV 2008)), 

all other X-linked genes now described have intact Y-linked homolgues, and all Y-

linked genes that have been investigated are expressed in males. However, some of 

the previous studies may have been biased towards finding intact genes on the Y, by 

screening cDNA from male tissue, using Y-derived probes (ATANASSOV et al. 2001; 

DELICHERE et al. 1999; MOORE et al. 2003); hence, only genes that were actually 

present on the Y could be detected. We cannot exclude the possibility that the Silene 

Y has lost many of its genes, similar to the situation on the D. miranda neo-Y - the 

fact that Silene plants without an X chromosome are not viable, suggests that at least 

some degeneration has taken place. The approach used here, i.e. searching for X-

linked genes and scoring their segregation pattern in a mapping family, might be a 

better means to assess the amount of Y degeneration. Indeed, this is the first time that 

an X-linked gene has been found which lacks a Y-linked homologue. So far, however, 

the sample size of X-Y pairs available is too small to deduce any general pattern of 

the amount of degeneration; new sequencing technology is likely to help to search for 

genes more time-efficiently.  

 

More information on parameters of mutation and selection need to be known 

in order to assess the evolutionary forces that shape the Silene Y. For example, to 

investigate the speed of degeneration, better estimates of the age of the system are 

needed; we do not have any estimates of the effective population size in Silene, nor its 

(deleterious) mutation rate and the distribution of mutational effects. We also need to 

understand the biology of the system better: For example, an important difference 

between the D. miranda neo-Y and the Silene Y, which is likely to affect 

degeneration, might be the amount of Y-linked genes expressed in the haploid stage. 

Since the Silene Y is derived from an ordinary autosome, the proportion of genes 

expressed in pollen is likely to high; in Arabidopsis, 61% of genes expressed in the 

sporophyte were also detected as mRNAs in pollen (HONYS and TWELL 2003). This 

could effectively increase selection against deleterious mutations, and slow down 

degeneration. As is known from Drosophila, sheltering of Y-linked mutations when 

there is no haploid expression can reduce selection against deleterious mutations 

considerably (CROW and SIMMONS 1983). This might also explain the higher diversity 
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on the Silene Y chromosome compared to the D. miranda neo-Y because stronger 

selection leads to higher diversity under BGS. 

Due to gene expression in pollen, the relative importance of positive versus 

negative selection might also differ between plants and animals. Assuming that at 

least some beneficial mutations are recessive, positive selection might be more 

efficient on plant Y chromosomes compared to animals. Similarly, nothing is known 

about dosage compensation in Silene or in any other plant sex chromosome system; 

dosage compensation might lead to faster degeneration, again, because deleterious 

mutations on the Y are sheltered more efficiently. In Silene, the sex chromosomes 

evolved de novo (so a dosage compensation mechanism was probably not in place 

when the sex chromosomes evolved), whereas in D. miranda (which already 

contained a Y chromosome), the dosage compensation machinery might have been 

recruited to new chromosomal regions more readily. To establish whether there is 

dosage compensation in Silene, it is, of course, first it is necessary to find Y-

degenerate genes before expression analyses can be done. 

Hence, there is still a lot to be learnt from the Silene system. It might turn out 

that, even though many aspects of sex chromosome evolution are surprisingly similar 

among different species (such as a step-wise recombination cessation between the X 

and Y or reduced Y diversity), other aspects, such as the speed of degeneration or the 

processes driving degeneration might differ, depending on the biology of the system 

in question.  
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#9_{S._lATifoliA_LONG_X} — — — — — — A T — G C G A T A T C G T T C C A T G G C T A A C C C A G T C C G A C T G A T T T A T — A A T — T A A G G C A T G G — — — — — — — — — — — — — — — — — — — A G C T A C A T C G T G T A G A T A T G G G T —

#21_{S._lATifoliA_LONG_X} — — — — T T A C — G C T A T A T C G T T C C A T G G C T A A C C — — — — — C G A C T G A T T T A T — A A T — T G A G G C A T G G — — — — — — — — — — — — — — — — — — — C G C T A C A C C G T A T A G A C G T G G G T —

#20_{S._lATifoliA_LONG_X} — — — — — T A C — G C T A T A T — — T T C C A T G G C T A A T C C A G T C C G A C T G A T T T A T T — A T — T A A T G C G T G G — — — — — — — — — — — — — — — — — — — C G C T A C A C T A C G T A G A C G T G G G T —

#24_{S._lATifoliA_LONG_X} — — — — — T A C — G G C G T A T C G T T C C A G G G C T A A C C C A G T C C G A C T G A T T T A T — A A T — T A A G G C A T G G — — — — — — — — — — — — — — — — — — — A G C T A C A T C G T G T A G A T A T G G G T —

#28_{S._lATifoliA_LONG_X} — — — — — T A C — G C T A T A C C A T T C C A T G G T T A A C C C A G T T C G T C T G A T A T A T — A A T — T A A G G C A T G G — — — — — — — — — — — — — — — — — — — C G C C A G A C T A C A T G G A T A T A A G T —

#27_{S._lATifoliA_LONG_X} T T A C C T A C — G C T A T A C C A T T C C A T G G T T A A C C C A G T T C G T C T G A T A T A T — A A T — T A A G G C A T G G — — — — — — — — — — — — — — — — — — — C G C C A G A C T A C A T G G A T A T A A G T —

#29_{S._lATifoliA_LONG_X} — T C G C T A C — G C C G T A T C G T T C T G T G G A T A A C C C A G T C C G A C T G A T T T A T — A A T — T A A G G T A T G G — — — — — — — — — — — — — — — — — — — C G C T A C A C T A C G T A G A T A C G G G T —

#30_{S._lATifoliA_LONG_X} — — — — — — A C — G C C G T A T C G T T C T G T G G A T A A C C C A G T C C G A C T G A T T T A T — A A T — T A A G G T A T G G — — — — — — — — — — — — — — — — — — — C G C T A C A C T A C G T A G A T A C G G G T —

#36_{S._lATifoliA_LONG_X} — — — — — T A C — G C C G T A T C G T T C C G T G G A T A A C C C A G T C C G A C T G A T T T A T — A A T — T A A G G T A T G G — — — — — — — — — — — — — — — — — — — C G C A A C A C T A C G T A G A T A C G G G T —

#41_{S._lATifoliA_LONG_X} — — — — — — A C — G C T A T A C C A T T C C A T G G T T A A C C C A G T T C G T C T G A T T T A T — A A T — T A A G G C A T G G — — — — — — — — — — — — — — — — — — — C G C C A G A C T G C A T G C A T A T A G G T —

#42_{S._lATifoliA_LONG_X} — — — — — — — C — G C T A T A C C A T T C C A T G G T T A A C C C A G T T C G T C T G A T T T A T T A A T — T A A G G C A T G G — — — — — — — — — — — — — — — — — — — — — C C A G A C T A C A T G C A T A T A A G T —

Supplementary Figure 5-1: Polymorphic sites in the alignment of SlX9 and Sd9 sequences. The 27 SlX9 sequences of the short intron type are shown above the Sd9 sequences, the thirteen long SlX9 sequences are at the bottom of the alignment.
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          PROGRAM projectrec2

        IMPLICIT NONE

        

        INTEGER, PARAMETER :: nZyg =1000, nGam = 1, nChr=100

    

        INTEGER, DIMENSION (nZyg, nGam, nChr):: n1, n0 , n2,n4,  m1, m2, gamete 

        INTEGER, DIMENSION (2, 1, nChr)::embryo, tmp

        INTEGER:: donor, aceptor

        INTEGER, DIMENSION(1:2):: par

        INTEGER:: iZyg, iGam, iChr, boo1, iLoc, maske, ix, i, gen, iff, j, iGamother

 

        INTEGER:: NoMut, n, newZyg

        REAL:: v,a,b,c

        REAL::nome, pRec, lambda, critfit

      INTEGER:: Ce 

        INTEGER:: aRec, test, st, chrom, bits

        INTEGER:: ia,ja, Ne, k, homoMask, heteroMask, homoTest, heterotest, zy, lethal

        REAL:: w,x, y,  homofitness, heterofitness, homofitness_so_far, heterofitness_so_far

        REAL, Dimension(1:nZyg)::fitness,relative_fitness, ln_fitness, relative_fitness_compare

       REAL, DIMENSION(0:31, nChr)::s

       INTEGER, DIMENSION(0:31)::pos

        INTEGER:: numg, nPRINT, try, words, doloops, total, itotal, conv

        PARAMETER (numg=32)

       CHARACTER:: out_file

      REAL:: harmonic_s,  harmonic_summe, harmonic_mean, harmonic_mean_Nes, counts

          REAL:: summe, mean, meanNes

REAL:: lambdarealnochr,rhalfl, realnochr

INTEGER::  NoConv, noChrright, noChrleft, reset , halfl, rest, untilright, untilleft , ibclr 

INTEGER::  iGamotfher , Chr, cChr, locus, noRec, norecs, il, ipos, nomutations

       REAL:: average_fitness,  lambdapRec, noms, vei, fitness_term, T2, T3, T_int, lambdacrit

        REAL:: freq_average_1, frequ1, frequ2, frequ3, freq_average_0, no_test, no_test_1, no_test_0,recfrequ,GCFREQU,lambdaGC

        REAL:: equil_fitness,average_ln_fitness

         REAL:: AVERAGE_FITNESSRELATIVE, var, vari, fitness_var, coef_of_var, divider , k_min,  D_min , D_rel, average_rel_fitness 

        REAL:: sum_coeff, count_sum, average_sel_coeff

             

   

    n2=0

doloops =4444

      DO i = 1,doloops

      Call random_number(v)

      END DO 

       DO iCHr = 1,nChr
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        !determine selection coefficients for positions 0 -31

        Ne = 500 !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!needs to be adjusted

        fitness = 1.0

      DO ja = 0,31

        w = 0

        DO ia = 1, 12

        CALL RANDOM_Number(v)

        w =w+v ! w = Sum of 12 random nos., N(0,1) distributed

        END DO

        

    w = w-6.0

    x = -3.3+(w*1.106) ! 0.00142 rate of lethal mut. 

    y = exp(x) ! lognormal distribtuon of y

    

    IF (y .le. 1.0) THEN 

    s(ja, iChr)  = y

    ELSE

    s(ja, iChr) = 1.0

    

    END IF       

   

      END DO

      

!positions on the chromosome:

DO ja = 0,31

      k = 2**ja

      pos(ja) = k

     ! PRINT*, pos(ja)

      END DO

 

 END DO 

 st = 3

 Do chrom = 1,3,2

 st = st-1

 DO  iChr = chrom,nChr,3 !make selection coeff. at every third pos. = 0

     

      DO ja = st,31,3

      s(ja, iChr) = 0.0

      END DO

END DO      

END DO    

DO iChr = 2,nChr,3 

DO ja = 0 ,31,3

      s(ja, iChr) = 0.0

      END DO

      END DO
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 PRINT*, "check"

!Calculate arithmetic mean selection coeff

summe = 0.0

harmonic_summe = 0.0

counts = 0.0

Do iChr = 1,nChr

Do iPos = 0,31

!PRINT*, " "

!PRINT*, "s", s(iPos, iChr)

If( ( s(iPos, iChr).ne. 1.0) .and. ( s(iPos, iChr).ne. 0.0) ) THEN

counts = counts + 1.0

harmonic_s = 1.0/(s(iPos, iChr)) !=1/s

!PRINT*, "harmonic_s", harmonic_s

summe = summe + s(iPos, iChr)

harmonic_summe = harmonic_summe + harmonic_s ! = sum(1/s)

!PRINT*, "harmonic_summe", harmonic_summe

ENDIF

ENDDO

ENDDO

!PRINT*, counts, "counts"

mean = summe/counts

PRINT*, " arithmetic mean selection coeff.:", mean

meanNes = mean*nZyg*0.5

PRINT*, " arithmetic mean Nes", meanNes

harmonic_mean = counts/harmonic_summe

PRINT*, harmonic_mean, "harmonic_mean"

harmonic_mean_Nes = harmonic_mean*nZyg*0.5

PRINT*, "harmonic_mean_Nes scaled down to haploids", harmonic_mean_Nes

n2 = 0

 CALL set_selected(n2,s,nZyg,nGam,nChr)

!PRINT*, n2

 CALL set_neutral(n2,nZyg,nGam,nChr)

 PRINT*, maxval (n2)

 PRINT*, minval (n2)

 

!WRITE (UNit= 1, fmt = "(I20)") n2

!WRITE (unit = 2, fmt = "(F10.8)") s

 PRINT*, "selection and n2 set"
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lethal = 0

Do iChr = 1, nChr

Do iPos = 0,31

IF (s(iPos, iChr)== 1.0) THEN

lethal = lethal +1

ENDIF

ENDDO

ENDDO

PRINT*, "lethals" , lethal

conv = 0

 doloops =4444

      DO i = 1,doloops

      Call random_number(v)

      END DO 

 n4 = 0

T2=0

total = 0

itotal=0

fitness = 1.0   

 relative_fitness = 1.0

equil_fitness=exp(-32*nChr*0.0000104*0.6666666) !w = exp(U) !changed from diploids

lambdapRec = 0.000026*nChr*32!!keeps Ner = 10-8 * 1.3 * 10^6constant!!!adjust if nChr>1000!

 recfrequ= 0.000026 !!!!!!!!!!!!!!!!!!!

GCfrequ = 0.000018466 !!!!!!!!!!!!!!!!!!!!!!!!!  

lambdaGC =0.000018466*nChr*32   !!!!!!!!!!!!!!!0.25*10-5/352*e consatnt

!lambdapRec=0.0

!recfrequ=0.0

!GCfrequ=0.0

!lambdaGC = 0.0

 

 

 

nPrint = 1000

!PRINT*, "nPrint", nPrint

average_fitness = 1.0

         n0 = 0

nomutations = 0

      

PRINT*, "nChr", nChr

PRINT*, "GCfrequ", GCfrequ

PRINT*, " recfrequ",  recfrequ

!open( unit = 3, File = "n2-after_sel-haploids-20000-4th-NORECGC-newfitness", status = "new" )
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!OPEN(unit = 5, file = "ntdiv-selection10,000-2nd-RECCGC", status = "new") 

!OPEN(unit = 7, file = "fitness-selection-haploids-10000-noRECGC", status = "new") 

!PRINT*, n2

!PRINT*, s

 !positions on the chromosome:

DO ja = 0,31

      k = 2**ja

      pos(ja) = k

      END DO

!CALL fixedsyn(n2, nZyg, nGam, nChr)

!call ntdiv_neutral(n2, nZyg, nGam, nChr)

!!!!!!!!!!DETERMINE FITNESS  

      

Do iZyg = 1,nZyg

homofitness_so_far = 0.0

chromosomess: DO iChr = 1,nChr

homofitness = 0.0

         

               

  cx1:      Do ja = 0,31

  fitness_term = 0.0

        homoTest = iand(n2(iZyg, 1,iChr), pos(ja))  

        IF (homotest.NE.0) THEN

        

        If ( s(ja,iChr) == 0.0 ) THEN

        fitness_term = 0.0

        ELSEIF ( s(ja, iChr ) .ge. 1.0)  THEN !lethal 

        !PRINT*, "homolethal", iZyg

        homofitness_so_far=-10000.0

        

        EXIT Chromosomess

        ELSE

        fitness_term =log(1.0-(s(ja, iChr)))

        !PRINT*, izyg, fitness_term

        ENDIF
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        ENDIF

        homofitness=homofitness+fitness_term !Multiplicative fitness effects

 END DO cx1

 

        homofitness_so_far = homofitness_so_far+homofitness

        

        

         END DO Chromosomess

IF ( homofitness_so_far == -10000.0 ) THEN

relative_fitness_compare(iZyg)  = -10000000.0

ELSE

ln_fitness(iZyg) = homofitness_so_far

relative_fitness_compare(iZyg) =ln_fitness(iZyg)-log(equil_fitness) !these are "feasible numbers"

ENDIF

ENDDO

   

Do iZyg = 1, nZyg

If (relative_fitness_compare(iZyg)  == -10000000.0) THEN

 relative_fitness(iZyg) = 0.0

 ELSE

   relative_fitness(iZyg) = exp(relative_fitness_compare(iZyg)-maxval(relative_fitness_compare)) !fitness(iZyg)/maxval(fitness)

   ENDIF

   ENDDO

   

   

CALL ntdiv_neutral(n2,nZyg, nGam, nChr)

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

PRINT*, maxval(s), "MAXVAL S"

      !Number of mutations from Poisson distibution and Locus of mutation from even distrib.

generation:     DO gen = 1,10000

     ! PRINT*, "GENERATION", gen

      

 Zyg:    DO iZyg = 1, nZyg

     

       DO iGam = 1, nGam
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      Chro: DO iChr = 1, nChr

      NoMut = 0

       CALL RANDOM_NUMBER(v)

      nome = v

      lambda = 0.0003328!0.0003328!corresp. to mu = 4 * 10-9 for Ne*mu constant!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

      CALL poissontry(nome, Ce,lambda) ! number of mutations from poisson

mutations: IF (Ce == 0) THEN  !no mutations

      n2(iZyg, iGam, iChr) = n2(iZyg, iGam, iChr)

     

      n0(iZyg, iGam, iChr) = n2(iZyg, iGam, iChr)

      

     ELSeIF  (Ce>0) THEN mutations

      

      DO  WHILE (NoMut .lt.  Ce)

      nomutations = nomutations+1

       CALL RANDOM_NUMBER(v)    ! random position on chromosome

      n=v*32

      bits = btest1(n2(iZyg, iGam, iChr), n)

      

      IF (bits == 1) THEN

      n2(iZyg, iGam, iChr) = ibclr(n2(iZyg, iGam, iChr), n)

      ELSEIF (bits == 0) THEN

      

      n1(iZyg, iGam, iChr) = 2**n

      n2(iZyg, iGam, iChr) = ior(n2(iZyg, iGam, iChr), n1(iZyg, iGam, iChr)) 

      n0(iZyg, iGam, iChr) = n2(iZyg, iGam, iChr)

      END IF

      

      NoMut = NoMut + 1

      

      END Do

      

      ENDIF mutations

      

      END DO Chro

      

      END DO 

      

END DO Zyg

 !!!!!!!!!!DETERMINE FITNESS  

      

Do iZyg = 1,nZyg
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homofitness_so_far = 0.0

chromosomess11: DO iChr = 1,nChr

homofitness = 0.0

         

               

  cx11:      Do ja = 0,31

  fitness_term = 0.0

        homoTest = iand(n2(iZyg, 1,iChr), pos(ja))   

        IF (homotest.NE.0) THEN

        

        If ( s(ja,iChr) == 0.0 ) THEN

        fitness_term = 0.0

        ELSEIF ( s(ja, iChr ) .ge. 1.0)  THEN !lethal 

        !PRINT*, "homolethal", iZyg

        homofitness_so_far=-10000.0

        

        EXIT Chromosomess11

        ELSE

        fitness_term =log(1.0-(s(ja, iChr)))

        !PRINT*, izyg, fitness_term

        ENDIF

        

        ENDIF

        homofitness=homofitness+fitness_term !Multiplicative fitness effects

 END DO cx11

 

        homofitness_so_far = homofitness_so_far+homofitness

        

        

         END DO Chromosomess11

!PRINT*, equil_fitness, "eqil_fitness"

IF ( homofitness_so_far == -10000.0 ) THEN

relative_fitness_compare(iZyg)  = -10000000.0

ELSE

ln_fitness(iZyg) = homofitness_so_far

relative_fitness_compare(iZyg) =ln_fitness(iZyg)-log(equil_fitness) !these are "feasible numbers"

ENDIF
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ENDDO

   

Do iZyg = 1, nZyg

If (relative_fitness_compare(iZyg)  == -10000000.0) THEN

 relative_fitness(iZyg) = 0.0

 ELSE

   relative_fitness(iZyg) = exp(relative_fitness_compare(iZyg)-maxval(relative_fitness_compare)) !fitness(iZyg)/maxval(fitness)

   ENDIF

   ENDDO

   

   

  

      !CHOOSE PARENTS

      newZyg = 1

      

counting:  Do  WHILE (newZyg .le. nZyg) !ends when as many viable zygotes as individuals      

      

      

sampling1:      DO 

      CALL RANDOM_NUMBER(v)

      par(1) = v*nZyg+1

      CALL RANDOM_number(v)

      IF (v .lt. relative_fitness(par(1)) ) Exit sampling1

      ENDDO sampling1

      

  sampling2:      DO

      CALL RANDOM_NUMBER(v)

      par(2) = v*nZyg+1

      CALL RANDOM_number(v)

      IF (v .lt. relative_fitness(par(2)) ) Exit sampling2

       

   ENDDO sampling2

   

Do iChr = 1, nChr

embryo(1,1,iChr) = n2(par(1), 1, iChr)

embryo(2,1,iChr) = n2(par(2), 1, iChr)

ENDDO
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!!!!!!!!!!!!!!!!!!

!gene conversion

!!!!!!!!!!!!!!!!

 IF (lambdaGC .ne. 0) THEN     

         CALL RANDOM_NUMBER(v)

       nome = v

           

      CALL poissontry(nome, Ce,lambdaGC) ! number of gene conversion events from poisson

      NoConv = 0

   

     IF (Ce ==0) THEN

!PRINT*, "no gene conversion"

ELSE 

    DO WHILE (NoConv .lt. Ce)

conv = conv+1

 Call random_number(v)

        cChr = v*nChr +1 !chromosome for gene conversion

         

        CALL random_number(v) !Locus from even distribution

        locus=v*32

        

   iGam = 1

   

   

 !  decide which gamete donor:

     Call Random_number(v)

        IF (v .lt. 0.5) THEN

       donor = 1

      aceptor =2

        ELSE

       donor = 2

      aceptor =1

        END IF

   

   

   

        Call Random_number(v)

               halfl =  (tractlength(v))/2 !integer half tract length from exponential distr.

        rhalfl=real(halfl)

        realnoChr= rhalfl/32.0

         noChrright = realnoChr !this is the number of chromosomes that are converted as a whole (more or less)

       noChrleft = realnoChr

 

       rest = (realnoChr-real(noChrright))*32

        !for right hand side of conversion locus:
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       untilright = locus + rest

       if (untilright .gt. 31 )THEN

       untilright = untilright -32

       ENDIF

       

       IF ((noChrright ==0) .and. (untilright.ge.locus)) then

       noChrright = -1

       ELSEIF ((noChrright == 0) .and. (untilright .lt. locus)) THEN

       noChrright = 0

       ELSEIF ((nochrright .ge. 1) .and. (untilright .ge. locus)) ThEN

       noChrright = noCHRRIGHT -1

       ELSEIF ((NOCHRRIGHT .ge. 1) .AND. (UNTILRIGHT .lt. LOCUS)) THEN

       noChrright = noChrright

       ENDIF

          !for left hand side of conversion locus:

        

        untilleft = locus - rest

       

        IF( untilleft .lt. 0 )THEN

        untilleft = 32-abs(untilleft)

        ENDIF

        

        IF ((noChrleft ==0) .and.  (untilleft .le. locus)) THEN

        noCHRleft = -1

        ELSEIF ((noChrleft==0) .and. (untilleft .gt. locus) )THEN

        noChrleft = 0

        ELSEIF ((noChrleft .ge. 1) .and. (untilleft .gt. locus )) THEN

        noChrleft = noChrleft

        ELSEIF ((noChrleft .ge.1) .and. (untilleft .le. locus )) THEN 

        noChrleft = noChrleft -1

        ENDIF 

           

        IF (noChrleft == -1) THEN

      call mvbits(embryo(donor, 1, cChr), untilleft, locus+1-untilleft, embryo(aceptor, 1, cChr), untilleft) 

        ELSE

        call mvbits(embryo(donor, 1, cChr), 0, locus+1, embryo(aceptor, 1, cChr), 0)

        ENDIF

IF ((noChrleft .ge.0) .and. ( cChr - noChrleft .ge.2))THEN  !!!!!!!

call mvbits(embryo(donor, 1, cChr-noChrleft-1), untilleft, 32-untilleft, embryo(aceptor, 1, cChr-noChrleft-1), untilleft)

ENDIF 

            

         !chromosomes fully converted: 

         

         IF ((noChrleft .ge.1) .and. (noChrright.ge.1) .and.((cChr-noChrleft) .ge.1) .and. ((cChr+noChrright) .le. nChr)) THEN

        DO Chr = cChr-noChrleft, cChr+noChrright !all to be converted converted

        call mvbits(embryo(donor, 1, Chr), 0, 32, embryo(aceptor, 1, Chr), 0)
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        END DO

     

       

       ELSEIF  ((noChrleft .ge.1) .and. (noChrright.ge.1) .and.((cChr-noChrleft) .le.1) .and. ((cChr+noChrright) .ge. nChr)) THEN

       DO Chr = 1,nChr !all converted

       call mvbits(embryo(donor, 1,  Chr), 0, 32, embryo(aceptor, 1, Chr), 0)

        END DO

      

       ELSEIF ((noChrleft .ge.1) .and. (noChrright.ge.1) .and.((cChr-noChrleft) ==1) .and. ((cChr+noChrright) .gt. nChr)) THEN

        DO Chr = 1,nChr

       call mvbits(embryo(donor, 1, Chr), 0, 32, embryo(aceptor, 1, Chr), 0)

        END DO

        ELSEIF ((noChrleft .ge.1) .and. (noChrright.ge.1) .and.((cChr-noChrleft) ==0) .and. ((cChr+noChrright) == nChr)) THEN

        DO Chr = 1,nChr

       call mvbits(embryo(donor, 1,  Chr), 0, 32,embryo(aceptor, 1, Chr), 0)

        END DO

       

        ELSEIF ((noChrright == 1) .and. (noChrleft ==0) .and. ((cChr+noChrright) .le. nChr)) THEN!!!!!!!!

        call mvbits(embryo(donor, 1,  cChr+1), 0, 32, embryo(aceptor, 1, cChr+1), 0)

     

     

ELSEIF ((noChrleft == 1) .and. (noChrright == 0) .and. ((cChr-noChrleft) .ge.1)) THEN !!!!!

        call mvbits(embryo(donor, 1,  cChr-1), 0, 32, embryo(aceptor, 1, cChr-1), 0)

ENDIF

     ! positions to the right converted

   

        IF (noChrright == -1) THEN

        call mvbits(embryo(donor, 1,  cChr), locus+1, untilright-locus, embryo(aceptor, 1, cChr), locus+1)

 

        ELSE

        call mvbits(embryo(donor, 1,  cChr), locus+1, 31-locus, embryo(aceptor, 1, cChr), locus+1)

        END IF

 IF ((noChrright .ge. 0) .and. (cChr+ noChrright .le. nChr-1)) THEN   !!!!!!!!!!

 call mvbits(embryo(donor, 1,  (cChr+noChrright+1)), 0, untilright+1, embryo(aceptor, 1, (cChr+noChrright+1)), 0)

 ENDIF

    

    NoConv = NoConv +1

       END DO 

ENDIF 

ENDIF
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  !!!!!!!!!!!!!!!!!!

!  END GENE CONVERSION

  !!!!!!!!!!!!!!!!!!!  

!!!!!!!!!!!!!!!!!

!RECOMBINATION

!!!!!!!!!!!!!!!!!

       

      boo1 = 4294967295

      

      

!!!!!FIRST RECOMBINATION WITHOUT FORMING GAMETES:

    !chosen parents make recombination & gametes

     itotal=itotal+1

   

 CALL RANDOM_NUMBER(v)

       nome = v      

      CALL poissontry(nome, Ce,lambdapRec)

      !!!!!!!!!!!!!!!!NEW PART:

RECO : If (Ce == 0 .or. lambdapRec == 0.0) THEN 

!NO RECOMBINATION

Call random_number(v)

IF(v.ge.0.5) THEN

DO iff = 1,nChr

n4(newZyg, 1,iff) = embryo(1,1,iff)

ENDDO

Else

Do iff = 1,nChr

n4(newZyg, 1,iff) = embryo(2,1,iff)

ENDDO

ENDIF

ELSE RECO

!RECOMBINATION

recDo:      Do il = 1, Ce

 total = total+1

 

Call Random_Number(v)

      iChr = v*nChr+1

     

 CALL RANDOM_NUMBER(v)
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        iLoc=v*32  

        

        

        

recomb_within:      IF (iLoc .ne. 0) then

      

      tmp = embryo

      call mvbits (embryo(1,1,iChr), iLoc, 32-iLoc, tmp(2,1,iChr), iLoc)

      

      call mvbits (embryo(2,1,iChr), iLoc, 32-iLoc, tmp(1,1,iChr), iLoc)

      

      

   IF (iChr .ne. nChr) THEN

      DO iff= iChr+1, nChr

      tmp(1,1,iff) = embryo(2,1,iff)

    tmp(2,1,iff) = embryo(1,1,iff)

      END DO

      ENDIF

      

      

ELSE recomb_within  !recombination between words

      DO iff= iChr, nChr

      tmp(1,1,iff) = embryo(2,1,iff)

    tmp(2,1,iff) = embryo(1,1,iff)

      END DO

END IF recomb_within

        

   

 ENDDO recDo  

         

       CALL RANDOM_NUMBER(v)

     IF (v .lt. 0.5) THEN  

         

Do i = 1,nChr

      n4(newZyg, 1, i) = tmp(1,1,i)

      END DO

ELSE

Do i = 1,nChr

      n4(newZyg, 1, i) = tmp(2,1,i)

      END DO

ENDIF

ENDIF RECO

!PRINT*, "total recs after", newZyg, total
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newZyg = newZyg +1

END DO COUNTING

Do iZyg = 1, nZyg

Do iGam = 1, nGam

Do iChr = 1, nChr

n2(iZyg, iGam, iChr) = n4(iZyg, iGam, iChr)

END DO

END DO

END DO

if (mod(gen,nPrint).eq.0) then

PRINT*, gen

Do iZyg = 1, nZyg

!  PRINT*," fitness(iZyg)", fitness(iZyg)

   ENDDO

!CALL fixedsyn(n2, nZyg, nGam, nChr)  ! PRINTS number of sites fixed for 0 or 1 and polymorphic sites

!WRITE(unit = 7, fmt = "(E14.3)") average_fitness

CALL ntdiv_neutral(n2,nZyg, nGam, nChr)

!PRINT*, average_fitness

  Call CPU_time(T3)

      T_int = T3-T2

PRINT*, "CPU time", T_int

     

      T2=T3

ENDIF

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

END DO generation

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

PRINT*, "no gene conversions", conv

PRINT*, "nChr", nChr

PRINT*, "GCfrequ", GCfrequ

PRINT*, " recfrequ",  recfrequ
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average_rel_fitness= sum(relative_fitness)/nZyg

var = 0.0

Do iZyg = 1, nZyg

VARI = (relative_fitness(iZyg)-average_rel_fitness)**2

Var = var +vari

ENDDO

fitness_var = Var /(nZyg-1)

coef_of_var = (SQRT(fitness_var))/average_rel_fitness

PRINT*, "coefficient of var. in fitness (relative) with Method (0,1)"

PRINT*,  coef_of_var

CALL Bsel(n2,nZyg, nGam, nChr, s, recfrequ, GCfrequ)

CALL  fixednonsyn(n2, nZyg, nGam, nChr, s) ! PRINTS number of sites fixed for 0 or 1 and polymorphic sites

PRINT*, " "

CALL fixedsyn(n2, nZyg, nGam, nChr)  ! PRINTS number of sites fixed for 0 or 1 and polymorphic sites

CALL LD_selected(n2,nZyg,nGam,nChr)

CALL LD_neutral(n2,nZyg,nGam,nChr)

PRINT*, "NEW METHOd all sites"

no_test=0.0

no_test_1 = 0.0

!test prop. of nonsyn sites that carry 1

DO iChr = 1,10,3

DO iPos = 0,30,3

IF (s(ipos, iChr)== 0) THEN

PRINT*, "s alarm!", iChr, ipos

ENDIF

Do iZyg = 1,20

Do iGam = 1,nGam
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test= btest1(n2(iZyg, iGam,iChr),iPos)

IF (test== 1) THEn

no_test_1 = no_test_1+1.0

ENDIF

EnD DO

END DO

END DO

DO iPos = 1,31,3

IF (s(ipos, iChr)== 0) THEN

PRINT*, "s alarm!", iChr, ipos

ENDIF

Do iZyg = 1,20

Do iGam = 1,nGam

test= btest1(n2(iZyg, iGam,iChr),iPos)

IF (test== 1) THEn

no_test_1 = no_test_1+1.0

ENDIF

EnD DO

END DO

END DO

END DO

!!!!!!!!CHROMOSOME 2 etc.

DO iChr = 2,10,3

DO iPos = 1,31,3

IF (s(ipos, iChr)== 0) THEN

PRINT*, "s alarm!", iChr, ipos

ENDIF

Do iZyg = 1,20

Do iGam = 1,nGam

test= btest1(n2(iZyg, iGam,iChr),iPos)
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IF (test== 1) THEn

no_test_1 = no_test_1+1.0

ENDIF

EnD DO

END DO

END DO

DO iPos = 2,29,3

Do iZyg = 1,20

Do iGam = 1,nGam

test= btest1(n2(iZyg, iGam,iChr),iPos)

IF (s(ipos, iChr)== 0) THEN

PRINT*, "s alarm!"

ENDIF

IF (test== 1) THEn

no_test_1 = no_test_1+1.0

ENDIF

EnD DO

END DO

END DO

END DO

!FCHROMOSOM 3 etc.

third: DO iChr = 3,10,3

thirdpos: DO iPos = 0,30,3

IF (s(ipos, iChr)== 0) THEN

PRINT*, "s alarm!", iChr, ipos

ENDIF

Do iZyg = 1,20

Do iGam = 1,nGam

test= btest1(n2(iZyg, iGam,iChr),iPos)

IF (test== 1) THEn

no_test_1 = no_test_1+1.0

ENDIF

EnD DO

END DO

END DO thirdpos
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DO iPos = 2,29,3

IF (s(ipos, iChr)== 0) THEN

PRINT*, "s alarm!", iChr, ipos

ENDIF

Do iZyg = 1,20

Do iGam = 1,nGam

test= btest1(n2(iZyg, iGam,iChr),iPos)

IF (test== 1) THEn

no_test_1 = no_test_1+1.0

ENDIF

EnD DO

END DO

END DO

END DO Third

divider = 32.0*10.0*20.0*0.666666

PRINT*, "divider", divider

freq_average_1= no_test_1/divider

PRINT*, "no_test_1"

PRINT*,  no_test_1

PRINT*, "freq_average_1 at nonsyn. sites with new method 10chr, 20zyg sites"

PRINT*, freq_average_1

freq_average_0 = 1-freq_average_1

PRINT*, " "

PRINT*, "freq_average_0 at nonsyn. sites"

PRINT*,  freq_average_0

PRINT*, "pRec = ", pRec

 !PRINT*, "JUST 2 ZYGOTES"

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

!Subroutine

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!  

    CONTAINS  

        SUBROUTINE ntdiv_neutral(n, mZyg, mGam, mChr)  

     INTEGER, INTENT(IN):: mZyg, mGam, mChr 

     INTEGER:: jChr,  jZyg, jGam,  i, first_test, start, chromosome
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     INTEGER, DIMENSION(mZyg, mGam, mChr),  INTENT(IN) ::n

     REAL:: prop1, prop0,propsegr_syn, nositessyn1, nositessyn0,no_fixedsyn0, no_fixedsyn1

     INTEGeR::  BB,AA,  bits1, bits2, ipos,  mult

      REAL::CC,F

     

     REAL:: nuc

    INTEGER::      test, no_segregating, ende

     REAL :: theta

     REAL:: a,b,nucleotidediv

     REAL:: a1,a2,b1,b2,c1,c2,e1,e2, S, D, a11, btes, n_2, t, t1, t2, var, diff

    

    

     

     no_fixedsyn0 = 0.0

no_fixedsyn1 = 0.0

  CC = 0

start = 4

     DO chromosome = 1,2

     start = start - 2

     DO jChr = chromosome,mChr,3

     Do i = start,31,3

     

  !!!DIVERsiTY!!!!!!!!!!!!!!!!!!!!

       BB = 0

        

Zygote:        DO jZyg = 1, mZyg

!PRINT*, "zyg", jZyg

        AA = 0

        

        bits1 = btest1(n(jZyg,1,jChr), i)

               

        AA = bits1

       ! PRINT*, "A", A

        

      

        BB = BB+AA !sum of all "1" at that position

       

        mult = (mZyg-BB)*BB  !no of pairwise diff. at that pos.

    

        END DO Zygote

        

                

        CC = CC + mult 

!!!END DIVERITY!!!!!!!!!!!!!!!!!!!!

     END DO 
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END DO

END Do

!third chromsome

     

     DO jChr = 3,mChr,3

     Do i = 1,31,3

 !!!DIVERsiTY!!!!!!!!!!!!!!!!!!!!

       BB = 0

        

Zygoten:        DO jZyg = 1, mZyg

        AA = 0

        

        bits1 = btest1(n(jZyg,1,jChr), i)

              

        AA = bits1

        

      

        BB = BB+AA !sum of all "1" at that position

       

        mult = (mZyg-BB)*BB  !no of pairwise diff. at that pos.

        END DO Zygoten

                

        CC = CC + mult 

!!!END DIVERITY!!!!!!!!!!!!!!!!!!!!

     

     END DO 

END DO

 F = mZyg*(mZyg - 1.0)*0.5    !!!!!!! = n(n-1)/2

        

        nuc = CC/F

       

nucleotidediv=nuc/(mChr*32*0.333333333)

! WRITE(unit = 5, fmt ="(F10.8)")  nucleotidediv

 PRINT*, nucleotidediv

  END SUBROUTINE ntdiv_neutral 
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       SUBROUTINE poissontry(nom, C,lam)

       

        REAL:: lambda

        real :: A

        REAL, INTENT(IN):: nom,lam

        INTEGER, INTENT(OUT):: C

        INTEGER:: i,B

        i = 0

        

         A = 0.0

         

         B=0

                

         DO WHILE (A<=nom) 

         A = ((  (exp(-lam)) * (lam**i) ) /FACT(i)) + A

       B = B+1

       i = i+1

       C= B-1

      

        EnD DO

        

         END SUBROUTINE POISSONTRY 

    

 

        INTEGER Function FACT(N)

        INTEGER, INTENT (IN):: N

        INTEGER:: J

        Fact = 1

                       

        DO J = 0, N

        IF (J.NE.0) THEN       

       

        Fact = Fact *J

    

        ELSE 

        Fact = 1

     

        END IF

        END DO

       

        END FUNCTION FACT   

     

SUBROUTINE bitsub(variable)

IMPLICIT NONE
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INTEGER:: k, bits

INTEGER, INTENT(IN):: variable

Do k = 0,31

bits = btest1(variable, k)

!WRITE(unit = *, fmt = "(I)", advance = 'no') bits

END DO

END Subroutine bitsub

    

integer function tractlength(ve)

real::ve

integer:: leng, lambda

lambda = 352 !!!!!!!!!!!!!!parameter for tract length

tractlength = (-lambda*log(1-ve))

END FUNCTION tractlength

          

       

        

        SUBROUTINE fixednonsyn(n, mZyg, mGam, mChr,se)  

    INTEGER, INTENT(IN):: mZyg, mGam, mChr 

     INTEGER:: jChr,  jZyg, jGam,  i, first_test, start, chromosome

     INTEGER, DIMENSION(mZyg, mGam, mChr),  INTENT(IN) ::n

     REAL:: prop1, prop0,propsegr, nosites1, nosites0,no_fixed0, no_fixed1

     INTEGeR::  BB,AA,  bits1, bits2, ipos,  mult

      REAL::CC,F

     REAL, INTENT (IN), DIMENSION (0:31,mChr):: se

     REAL:: nuc

    INTEGER::      test, no_segregating, ende

     REAL :: theta

     REAL:: a,b,nucleotidediv

     REAL:: a1,a2,b1,b2,c1,c2,e1,e2, S, D, a11, btes, n_2, t, t1, t2, var, diff

 REAL:: sum_coeff, count_sum, average_sel_coeff

    

     sum_coeff = 0.0

      count_sum = 0.0

     

     no_fixed0 = 0.0

     no_fixed1 = 0.0

  CC = 0.0

  

 start = -1 

     DO Chromosome = 1,3

     start = start + 1

Chr:    DO jChr = chromosome ,mChr, 3

posi:    Do i = start, 31, 3

nosites0=0.0
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nosites1 = 0.0

!! DIVERSITY PART::::::::::::::

 BB = 0

 

Zygote:        DO jZyg = 1, 100

!PRINT*, "zyg", jZyg

        AA = 0

        

        bits1 = btest1(n(jZyg,1,jChr), i)

      

        

        AA = bits1

       ! PRINT*, "A", A

        

      

        BB = BB+AA !sum of all "1" at that position

       

        mult = (100.0-BB)*BB  !no of pairwise diff. at that pos.

        END DO Zygote

         CC = CC + mult 

         

         !!!!!END DIVERSITY

 

 

 

 

     first_test = btest1(n(1,1,jChr),i) !either 1 or 0

 IF (first_test==0) THEN

    

Zygotel:     DO jZyg = 1,100

     DO jGam = 1,mGam

     test= btest1(n(jZyg, jGam, jChr),i)

          

     IF (test==first_test) THEN

     nosites0=nosites0+1.0

     ELSE

     exit Zygotel

     ENDIF

     

     END DO

     END DO Zygotel

      

     IF (nosites0 == (100.0)) THEN

    

     no_fixed0 = no_fixed0+1.0
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     ENDIF

     

ELSEIF (first_test == 1) THEN 

Zygotes:     DO jZyg = 1,100

     DO jGam = 1,mGam

     test= btest1(n(jZyg, jGam, jChr),i)

          

     IF (test==first_test) THEN

     nosites1=nosites1+1.0

     ELSE

     exit Zygotes

     ENDIF

     

     END DO

     END DO Zygotes

      

     IF (nosites1 == (100.0)) THEN

     !PRINT*, s(i, jChr)

      sum_coeff = sum_coeff+ se(i,jChr)

        count_sum = count_sum + 1.0

     no_fixed1 = no_fixed1+1.0

     ENDIF

     

ENDIF

     

     END DO posi

     

     !FOR SECOND NON_SYN POSITION

     

          

     pos:    Do i = start+1, 31, 3

nosites0=0.0

nosites1 = 0.0

 !!!DIVERsiTY!!!!!!!!!!!!!!!!!!!!

       BB = 0

        

Zygotem:        DO jZyg = 1, 100

        AA = 0

        

        bits1 = btest1(n(jZyg,1,jChr), i)

     

        

        AA = bits1

       ! PRINT*, "A", A
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        BB = BB+AA !sum of all "1" at that position

       

        mult = (100.0-BB)*BB  !no of pairwise diff. at that pos.

             END DO Zygotem

        

      !  PRINT*, "B", B

                

        CC = CC + mult 

!!!END DIVERITY!!!!!!!!!!!!!!!!!!!!

     first_test = btest1(n(1,1,jChr),i) !either 1 or 0

  IF (first_test==0) THEN

    

Zy:     DO jZyg = 1,100

     DO jGam = 1,mGam

     test= btest1(n(jZyg, jGam, jChr),i)

          

     IF (test==first_test) THEN

     nosites0=nosites0+1.0

     ELSE

     exit Zy

     ENDIF

     

     END DO

     END DO Zy

      

     IF (nosites0 == (100.0)) THEN

   

     no_fixed0 = no_fixed0+1.0

     ENDIF

     

ELSEIF (first_test == 1) THEN 

Zygo:     DO jZyg = 1,100

     DO jGam = 1,mGam

     test= btest1(n(jZyg, jGam, jChr),i)

          

     IF (test==first_test) THEN

     nosites1=nosites1+1.0

     ELSE

     exit Zygo

     ENDIF

     

     END DO

     END DO Zygo

      

     IF (nosites1 == (100.0)) THEN

  sum_coeff = sum_coeff+se(i,jChr)

      count_sum = count_sum+1.0
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      no_fixed1 = no_fixed1+1.0

     ENDIF

     

ENDIF

     

     END DO pos

    END DO Chr

    END DO 

     

     

!     FOR third chromosome, position 0

Ch:    DO jChr = 3 ,mChr, 3

 i = 0

 

  !!!DIVERsiTY!!!!!!!!!!!!!!!!!!!!

       BB = 0

        

Zygoter:        DO jZyg = 1, 100

!PRINT*, "zyg", jZyg

        AA = 0

        

        bits1 = btest1(n(jZyg,1,jChr), i)

       

        

        AA = bits1

         

        BB = BB+AA !sum of all "1" at that position

       

        mult = (100.0-BB)*BB  !no of pairwise diff. at that pos.

           END DO Zygoter

        

          CC = CC + mult 

!!!END DIVERITY!!!!!!!!!!!!!!!!!!!!

nosites0=0.0

nosites1 = 0.0

     first_test = btest1(n(1,1,jChr),i) !either 1 or 0

  IF (first_test==0) THEN

    

Zygot:     DO jZyg = 1,100

     DO jGam = 1,mGam

     test= btest1(n(jZyg, jGam, jChr),i)

          



File: /Users/vkaiser/haploids-newfitness/thesis.f90

Page: 28

     IF (test==first_test) THEN

     nosites0=nosites0+1.0

     ELSE

     exit Zygot

     ENDIF

     

     END DO

     END DO Zygot

      

     IF (nosites0 == (100.0)) THEN

     no_fixed0 = no_fixed0+1.0

     ENDIF

     

ELSEIF (first_test == 1) THEN 

Zygotess:     DO jZyg = 1,100

     DO jGam = 1,mGam

     test= btest1(n(jZyg, jGam, jChr),i)

          

     IF (test==first_test) THEN

     nosites1=nosites1+1.0

     ELSE

     exit Zygotess

     ENDIF

     

     END DO

     END DO Zygotess

      

     IF (nosites1 == (100.0)) THEN

       sum_coeff = sum_coeff + se(i,jChr)

     count_sum = count_sum+1.0

     no_fixed1 = no_fixed1+1.0

     ENDIF

     

ENDIF

     

 END DO Ch

 

  F = 100.0*(100.0 - 1.0)*0.5

 nuc = CC/F

average_sel_coeff= sum_coeff/count_sum

PRINT*, " "

PRINT*, "average sel. coeff at fixed nonsyn.sites"

PRINT*, average_sel_coeff

 IF (mod (mChr, 3) == 0) THEN

prop0 = no_fixed0/((mChr*32)/1.5)

prop1 = no_fixed1/((mChr*32)/1.5)

ELSEIF (mod (mChr,3) ==2) THEN !mCHr = 2,5 etc. => 



File: /Users/vkaiser/haploids-newfitness/thesis.f90

Page: 29

prop0 = no_fixed0/(   ( ( (mChr-2)*32) /1.5)+43)

prop1 = no_fixed1/(   ( ( (mChr-2)*32) /1.5)+43)

ELSEIF (mod (mChr,3) ==1) THEn ! mChr = 1,4 etc

prop0 = no_fixed0/(   (mChr - 1)*32/1.5 + 22)

prop1 = no_fixed1/(   (mChr - 1)*32/1.5 + 22)

ENDIF

propsegr = 1-prop0-prop1

IF (mod (mChr, 3) == 0) THEN

no_segregating = (  (32/1.5)*mChr)-no_fixed0-no_fixed1

ELSEIF (mod (mChr,3) ==2) THEN !mCHr = 2,5 etc. =>

no_segregating = (  (32/1.5) * (mChr -2)+ 43)-no_fixed0-no_fixed1

ELSEIF (mod (mChr,3) ==1) THEn ! mChr = 1,4 etc

no_segregating = (   (32/1.5 ) * (mChr -1) + 22)-no_fixed0-no_fixed1

ENDIF

     nucleotidediv=nuc/(32*mChr*0.6666666)

     

     

      

     PRINT*, "no. fixed nonsyn. sites", " for 0="

     PRINT*, no_fixed0

     PRINT*,  " and for 1="

     PRINT*,  no_fixed1

     PRINT*, "proportion of nonsyn. sites fixed:", "for 0" 

     WRITE(unit = *, fmt = "(2F6.2)") prop0

     PRINT*, "and for 1"

     WRITE(unit = *, fmt = "(2F6.2)") prop1

     PRINT*, "proportion of nonsyn. sites that are segreagating:"

     WRITE(unit = *, fmt = "(2F6.2)")  propsegr

     PRINT*, "no_segregating"

     PRINT*,  no_segregating

     PRINT*, " "

     PRINT*, "nucleotidediv nonsyn"

     PRINT*,  nucleotidediv

     

     !!!TAJIMA:

      a1 = 0

      ende = (100.0)-1.0

        DO i = 1, ende

      a = (1.0/i)

      a1 = a1+a

      END DO

     

     theta = no_segregating/a1      !!!!!theta = S/(1/i)

     S = theta*a1
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     a2 = 0

     

     DO i = 1, ende

     a11 = 1.0/(i**2)

     a2 = a11+a2

     END DO

      n_2= 100

   

    

     b1 = (n_2 + 1.0)/(3.0 * (n_2-1.0) )

         

     b2 = 2.0*(n_2*n_2 + n_2 + 3.0)/(9.0*n_2*(n_2-1.0))

     

     c1 = b1 - 1/a1

     

     c2 = b2 - ((n_2 + 2.0)/(a1*n_2)) + a2/(a1*a1)

     

     e1 = c1/a1

     

     e2 = c2/((a1*a1) + a2)

   

        var = SQRT((e1*S) +e2*S*(S-1.0))

   

     diff =  nuc -theta

    

     D= diff/var

    PRINT*, " " 

    PRINT*, "Tajima's D nonsyn 10%"

     PRINT*, D

       k_min = no_segregating* (100.0-1.0)/F != 2S/n   = S*(n-s)//n*(n - 1.0)*0.5 = 2S/n

      D_min = abs((  k_min-(S/a1)) / var )

     D_rel = D/D_min

      PRINT*,"D_rel nonsynonymous"

      PRINT*,  D_rel

      D_rel = (nuc -theta) / abs(k_min-theta)

   !PRINT*,"D_rel", D_rel

    

     

  END SUBROUTINE fixednonsyn  

 

 

 !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

 ! !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

 

 

         SUBROUTINE fixedsyn(n, mZyg, mGam, mChr)  

     INTEGER, INTENT(IN):: mZyg, mGam, mChr 
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     INTEGER:: jChr,  jZyg, jGam,  i, first_test, start, chromosome

     INTEGER, DIMENSION(mZyg, mGam, mChr),  INTENT(IN) ::n

     REAL:: prop1, prop0,propsegr_syn, nositessyn1, nositessyn0,no_fixedsyn0, no_fixedsyn1

     INTEGeR::  BB,AA,  bits1, bits2, ipos,  mult

      REAL::CC,F

     

     REAL:: nuc

    INTEGER::      test, no_segregating, ende

     REAL :: theta

     REAL:: a,b,nucleotidediv

     REAL:: a1,a2,b1,b2,c1,c2,e1,e2, S, D, a11, btes, n_2, t, t1, t2, var, diff

    

    

     

     no_fixedsyn0 = 0.0

no_fixedsyn1 = 0.0

  CC = 0

start = 4

     DO chromosome = 1,2

     start = start - 2

     DO jChr = chromosome,mChr,3

     Do i = start,31,3

     

  !!!DIVERsiTY!!!!!!!!!!!!!!!!!!!!

       BB = 0

        

Zygote:        DO jZyg = 1, 100

        AA = 0

        

        bits1 = btest1(n(jZyg,1,jChr), i)

    

        

        AA = bits1

         

        BB = BB+AA !sum of all "1" at that position

       

        mult = (100-BB)*BB  !no of pairwise diff. at that pos.

             END DO Zygote

                    

        CC = CC + mult 

!!!END DIVERITY!!!!!!!!!!!!!!!!!!!!

nositessyn0=0.0

nositessyn1 = 0.0

     first_test = btest1(n(1,1,jChr),i) !either 1 or 0
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IF (first_test==0) THEN

    

Z:     DO jZyg = 1,100

     DO jGam = 1,mGam

     test= btest1(n(jZyg, jGam, jChr),i)

          

     IF (test==first_test) THEN

     nositessyn0=nositessyn0+1.0

     ELSE

     exit Z

     ENDIF

     

     END DO

     END DO Z

      

     IF (nositessyn0 == (100)) THEN

     no_fixedsyn0 = no_fixedsyn0+1.0

     ENDIF

     

ELSEIF (first_test == 1) THEN 

Zs:     DO jZyg = 1,100

     DO jGam = 1,mGam

     test= btest1(n(jZyg, jGam, jChr),i)

          

     IF (test==first_test) THEN

     nositessyn1=nositessyn1+1.0

     ELSE

     exit Zs

     ENDIF

     

     END DO

     END DO Zs

      

     IF (nositessyn1 == (100)) THEN

       no_fixedsyn1 = no_fixedsyn1+1.0

     ENDIF

     

ENDIF

     

     END DO 

END DO

END Do

!third chromsome

     

     DO jChr = 3,mChr,3

     Do i = 1,31,3

 !!!DIVERsiTY!!!!!!!!!!!!!!!!!!!!
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       BB = 0

        

Zygoten:        DO jZyg = 1, 100

        AA = 0

        

        bits1 = btest1(n(jZyg,1,jChr), i)

    

        

        AA = bits1

        

        BB = BB+AA !sum of all "1" at that position

       

        mult = (100-BB)*BB  !no of pairwise diff. at that pos.

           END DO Zygoten

                        

        CC = CC + mult 

!!!END DIVERITY!!!!!!!!!!!!!!!!!!!!

nositessyn0=0.0

nositessyn1 = 0.0

     first_test = btest1(n(1,1,jChr),i) !either 1 or 0

  !  PRINT*, first_test

IF (first_test==0) THEN

    

Za:     DO jZyg = 1,100

     DO jGam = 1,mGam

     test= btest1(n(jZyg, jGam, jChr),i)

          

     IF (test==first_test) THEN

     nositessyn0=nositessyn0+1.0

     ELSE

     exit Za

     ENDIF

     

     END DO

     END DO Za

      

     IF (nositessyn0 == (100)) THEN

       no_fixedsyn0 = no_fixedsyn0+1.0

     ENDIF

     

ELSEIF (first_test == 1) THEN 

Zas:     DO jZyg = 1,100

     DO jGam = 1,mGam

     test= btest1(n(jZyg, jGam, jChr),i)

          

     IF (test==first_test) THEN
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     nositessyn1=nositessyn1+1.0

     ELSE

     exit Zas

     ENDIF

     

     END DO

     END DO Zas

      

     IF (nositessyn1 == (100)) THEN

     no_fixedsyn1 = no_fixedsyn1+1.0

     ENDIF

     

ENDIF

     

     END DO 

END DO

 F = 100*(100 - 1.0)*0.5    !!!!!!! = n(n-1)/2

        

        nuc = CC/F

       

if( mod( mChr, 3) == 0) THEN

prop0 = no_fixedsyn0/((mChr*32)/3.0)

prop1 = no_fixedsyn1/((mChr*32)/3.0)

 ELSEIF (mod (mChr,3) ==2) THEN !mCHr = 2,5 etc. =>

 prop0 = no_fixedsyn0/(  ((mChr-2)*32)/3.0 +21)

 prop1 = no_fixedsyn1/(  ((mChr-2)*32)/3.0 +21)

 ELSEIF (mod (mChr,3) ==1) THEN !mCHr = 1,4 etc.

 prop0 = no_fixedsyn0/(  ((mChr-1)*32)/3.0 + 10)

 prop1 = no_fixedsyn1/(  ((mChr-1)*32)/3.0 + 10)

 ENDIF

 

propsegr_syn=1.0-prop0-prop1

if( mod( mChr, 3) == 0) THEN

no_segregating = ((32/3.0)*mChr)-no_fixedsyn0-no_fixedsyn1

 ELSEIF (mod (mChr,3) ==2) THEN !mCHr = 2,5 etc. =>

 no_segregating = (((32/3.0 )*(mChr-2))+21) -no_fixedsyn0-no_fixedsyn1

ELSEIF (mod (mChr,3) ==1) THEN !mCHr = 1,4 etc.

no_segregating = (((32/3.0 )*(mChr-1))+10) -no_fixedsyn0-no_fixedsyn1

 ENDIF

 

nucleotidediv=nuc/(mChr*32*0.333333333)

PRINT*, "no fixed synonymous sites for  0="

PRINT*, no_fixedsyn0

PRINT*,  " and  for 1="

 PRINT*,  no_fixedsyn1

   PRINT*, " "

 PRINT*, "proportion of sites fixed:", "for 0"
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 WRITE(unit = *, fmt = "(2F6.2)") prop0

  PRINT*,  "and for 1"

  WRITE(unit = *, fmt = "(2F6.2)") prop1

  PRINT*, " "

 PRINT*, "proportion of syn. sites that are segregating:"

 WRITE(unit = *, fmt = "(2F6.2)") propsegr_syn

 PRINT*, "no segregating syn"

  PRINT*, no_segregating

  PRINT*, " "

 PRINT*," nucleotidediv syn"

 PRINT*,  nucleotidediv

 PRINT*, " "

 PRINT*, " "

 

! TAJIMA::

 

  a1 = 0

      ende = (100)-1.0

          DO i = 1, ende

      a = (1.0/i)

      a1 = a1+a

      END DO

         theta = no_segregating/a1      !!!!!theta = S/(1/i)

     S = theta*a1

        

     

     

     a2 = 0

     

     DO i = 1, ende

     a11 = 1.0/(i**2)

     a2 = a11+a2

     END DO

      n_2= 100

   

    

     b1 = (n_2 + 1.0)/(3.0 * (n_2-1.0) )

         

     b2 = 2.0*(n_2*n_2 + n_2 + 3.0)/(9.0*n_2*(n_2-1.0))

     

     c1 = b1 - 1/a1

     

     c2 = b2 - ((n_2 + 2.0)/(a1*n_2)) + a2/(a1*a1)

     

     e1 = c1/a1

     

     e2 = c2/((a1*a1) + a2)
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     var = SQRT((e1*S) +e2*S*(S-1.0))

        diff =  nuc -theta

   

     D= diff/var

    PRINT*, " "

    PRINT*, " Tajima's D synonymous 10%"

     PRINT*, D

     

   k_min = no_segregating* (100.0-1.0)/F != 2S/n   = S*(n-s)//n*(n - 1.0)*0.5 = 2S/n

    D_min = abs((  k_min-(S/a1)) / var )

    D_rel = D/D_min

      PRINT*,"D_rel synonymous"

      PRINT*,  D_rel

    D_rel = (nuc -theta) / abs(k_min-theta)

  !  PRINT*,"D_rel", D_rel

    

  END SUBROUTINE fixedsyn 

  

   

  !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

     

  !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

  !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

  

 SUbroutine LD_selected(n,mZyg,mGam,mChr)

INTEGER, INTENT(IN):: mZyg, mGam, mChr 

     INTEGER:: jChr,  jZyg, jGam, jpos

     INTEGER, DIMENSION(mZyg, mGam, mChr),  INTENT(IN) ::n

real:: x11,x10,x01,x00,D, p0, p1, Dprime, Dmax,q0,q1, Dsum, Daverage

INTEGER:: test, test2, cou, sites

Dsum = 0

cou=0

DO jChr = 1,mChr,3

DO jpos = 0,30,3

cou=cou+1

x11 = 0.0

x10 = 0.0

x01 = 0.0

x00 = 0.0

sites=0 

 Do jZyg = 1,mZyg

Do jGam = 1,mGam



File: /Users/vkaiser/haploids-newfitness/thesis.f90

Page: 37

sites = sites +1

test = btest1(n(jZyg, jGam,jChr),jpos)

test2=btest1(n(jZyg, jGam,jChr),jpos+1)

IF ((test ==1) .and. (test2==1)) THEN

x11 = x11+1.0

ELSEiF ((test ==1) .and. (test2==0)) THEN

x10 = x10+1.0

ELSEiF ((test ==0) .and. (test2==1)) THEN

x01 = x01+1.0

ELSEiF ((test ==0) .and. (test2==0)) THEN

x00 = x00+1.0

ENDIF

END DO

END DO

x11 = x11/(sites)

x10= x10/(sites)

x01 = x01/(sites)

x00 = x00/(sites)

!allele frequencies:

p0 = x01+x00

p1 = x11+x10

q0 = x10 + x00

q1 = x11+x01

 

!CALCULATE D

D = x11-(p1*q1)

!CALCULATE Dmax

IF (D .ge. 0) THEN 

IF( (p0*q1) .le. (p1*q0) )THEN

Dmax = p0*q1

ELSE

Dmax = p1*q0

ENDIF

ELSEIF (D .lt. 0) THEN

IF( (p0*q0) .le. (p1*q1) )THEN

Dmax = p0*q0

ELSE

Dmax = p1*q1

ENDIF

ENDIF
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!CALCULATE Dprime

Dprime= D/Dmax

IF (Dmax==0) THEN

cou=cou-1

Dprime=0

ENDIF

Dsum = Dsum + Dprime

END DO 

END DO

 

!PRINT*, "CHROMOSOME2"

DO jChr = 1,mChr,3

DO jpos = 1,28,3

cou=cou+1

x11 = 0.0

x10 = 0.0

x01 = 0.0

x00 = 0.0

sites=0 

 Do jZyg = 1,mZyg

Do jGam = 1,mGam

sites = sites +1

test = btest1(n(jZyg, jGam,jChr),jpos)

test2=btest1(n(jZyg, jGam,jChr),jpos+1)

IF ((test ==1) .and. (test2==1)) THEN

x11 = x11+1.0

ELSEiF ((test ==1) .and. (test2==0)) THEN

x10 = x10+1.0

ELSEiF ((test ==0) .and. (test2==1)) THEN

x01 = x01+1.0

ELSEiF ((test ==0) .and. (test2==0)) THEN

x00 = x00+1.0

ENDIF

END DO

END DO
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!haplotype frequencies:

x11 = x11/(sites)

x10= x10/(sites)

x01 = x01/(sites)

x00 = x00/(sites)

!allele frequencies:

p0 = x01+x00

p1 = x11+x10

q0 = x10 + x00

q1 = x11+x01

 

!CALCULATE D

D = x11-(p1*q1)

!CALCULATE Dmax

IF (D .ge. 0) THEN 

IF( (p0*q1) .le. (p1*q0) )THEN

Dmax = p0*q1

ELSE

Dmax = p1*q0

ENDIF

ELSEIF (D .lt. 0) THEN

IF( (p0*q0) .le. (p1*q1) )THEN

Dmax = p0*q0

ELSE

Dmax = p1*q1

ENDIF

ENDIF

!CALCULATE Dprime

Dprime= D/Dmax

IF (Dmax==0) THEN

cou=cou-1

Dprime=0

ENDIF

Dsum = Dsum + Dprime
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END DO 

END DO

!!!!!!!!!!!!!!!!!!!!FOR position 31 on second chromosome etc.

IF (mCHR.ge.3) THEN 

DO jChr = 1,mChr-1,3

 jpos = 31

 

cou=cou+1

x11 = 0.0

x10 = 0.0

x01 = 0.0

x00 = 0.0

sites=0 

 Do jZyg = 1,mZyg

Do jGam = 1,mGam

sites = sites +1

test = btest1(n(jZyg, jGam,jChr),jpos)

test2=btest1(n(jZyg, jGam,jChr+1),0)

IF ((test ==1) .and. (test2==1)) THEN

x11 = x11+1.0

ELSEiF ((test ==1) .and. (test2==0)) THEN

x10 = x10+1.0

ELSEiF ((test ==0) .and. (test2==1)) THEN

x01 = x01+1.0

ELSEiF ((test ==0) .and. (test2==0)) THEN

x00 = x00+1.0

ENDIF

END DO

END DO

!haplotype frequencies:

x11 = x11/(sites)

x10= x10/(sites)

x01 = x01/(sites)

x00 = x00/(sites)

!allele frequencies:

p0 = x01+x00

p1 = x11+x10

q0 = x10 + x00

q1 = x11+x01
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!CALCULATE D

D = x11-(p1*q1)

!CALCULATE Dmax

IF (D .ge. 0) THEN 

IF( (p0*q1) .le. (p1*q0) )THEN

Dmax = p0*q1

ELSE

Dmax = p1*q0

ENDIF

ELSEIF (D .lt. 0) THEN

IF( (p0*q0) .le. (p1*q1) )THEN

Dmax = p0*q0

ELSE

Dmax = p1*q1

ENDIF

ENDIF

!CALCULATE Dprime

Dprime= D/Dmax

IF (Dmax==0) THEN

cou=cou-1

Dprime=0

ENDIF

Dsum = Dsum + Dprime

END DO 

ENDIF

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

DO jChr = 3,mChr,3

 DO jpos = 2,29,3

cou=cou+1

x11 = 0.0

x10 = 0.0

x01 = 0.0

x00 = 0.0

sites=0 
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 Do jZyg = 1,mZyg

Do jGam = 1,mGam

sites = sites +1

test = btest1(n(jZyg, jGam,jChr),jpos)

test2=btest1(n(jZyg, jGam,jChr),jpos+1)

IF ((test ==1) .and. (test2==1)) THEN

x11 = x11+1.0

ELSEiF ((test ==1) .and. (test2==0)) THEN

x10 = x10+1.0

ELSEiF ((test ==0) .and. (test2==1)) THEN

x01 = x01+1.0

ELSEiF ((test ==0) .and. (test2==0)) THEN

x00 = x00+1.0

ENDIF

END DO

END DO

x11 = x11/(sites)

x10= x10/(sites)

x01 = x01/(sites)

x00 = x00/(sites)

!allele frequencies:

p0 = x01+x00

p1 = x11+x10

q0 = x10 + x00

q1 = x11+x01

 

!CALCULATE D

D = x11-(p1*q1)

!CALCULATE Dmax

IF (D .ge. 0) THEN 

IF( (p0*q1) .le. (p1*q0) )THEN

Dmax = p0*q1

ELSE

Dmax = p1*q0

ENDIF

ELSEIF (D .lt. 0) THEN

IF( (p0*q0) .le. (p1*q1) )THEN

Dmax = p0*q0

ELSE
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Dmax = p1*q1

ENDIF

ENDIF

!CALCULATE Dprime

Dprime= D/Dmax

IF (Dmax==0) THEN

cou=cou-1

Dprime=0

ENDIF

Dsum = Dsum + Dprime

END DO 

END DO

!PRINT*, " " 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

PRiNT*, "no. of comparisons selected"

PRINT*, cou

Daverage = Dsum/cou

PRINT*, "Daverage selected"

PRINT*, Daverage

END SUBROUTINE LD_selected

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

 SUbroutine LD_neutral(n,mZyg,mGam,mChr)

INTEGER, INTENT(IN):: mZyg, mGam, mChr 

     INTEGER:: jChr,  jZyg, jGam, jpos

     INTEGER, DIMENSION(mZyg, mGam, mChr),  INTENT(IN) ::n

real:: x11,x10,x01,x00,D, p0, p1, Dprime, Dmax,q0,q1, Dsum, Daverage

INTEGER:: test, test2, cou, sites

Dsum = 0

cou=0

DO jChr = 1,mChr,3

DO jpos = 2,26,3
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cou=cou+1

x11 = 0.0

x10 = 0.0

x01 = 0.0

x00 = 0.0

sites=0 

 Do jZyg = 1,mZyg

Do jGam = 1,mGam

sites = sites +1

test = btest1(n(jZyg, jGam,jChr),jpos)

test2=btest1(n(jZyg, jGam,jChr),jpos+3)

IF ((test ==1) .and. (test2==1)) THEN

x11 = x11+1.0

ELSEiF ((test ==1) .and. (test2==0)) THEN

x10 = x10+1.0

ELSEiF ((test ==0) .and. (test2==1)) THEN

x01 = x01+1.0

ELSEiF ((test ==0) .and. (test2==0)) THEN

x00 = x00+1.0

ENDIF

END DO

END DO

!PRINT*, " "

x11 = x11/(sites)

x10= x10/(sites)

x01 = x01/(sites)

x00 = x00/(sites)

!allele frequencies:

p0 = x01+x00

p1 = x11+x10

q0 = x10 + x00

q1 = x11+x01

 

!CALCULATE D

D = x11-(p1*q1)

!CALCULATE Dmax

IF (D .ge. 0) THEN 
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IF( (p0*q1) .le. (p1*q0) )THEN

Dmax = p0*q1

ELSE

Dmax = p1*q0

ENDIF

ELSEIF (D .lt. 0) THEN

IF( (p0*q0) .le. (p1*q1) )THEN

Dmax = p0*q0

ELSE

Dmax = p1*q1

ENDIF

ENDIF

!CALCULATE Dprime

Dprime= D/Dmax

IF (Dmax==0) THEN

cou=cou-1

Dprime=0

ENDIF

Dsum = Dsum + Dprime

END DO 

END DO

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

IF ( mCHr .ge. 2) THEN

!FOR POSITION 29 on Chromosome 1 etx

DO jChr = 1,mChr-1,3

 jpos = 29

cou=cou+1

x11 = 0.0

x10 = 0.0

x01 = 0.0

x00 = 0.0

sites=0 

 Do jZyg = 1,mZyg

Do jGam = 1,mGam

sites = sites +1

test = btest1(n(jZyg, jGam,jChr),jpos)

test2=btest1(n(jZyg, jGam,jChr+1),0)
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IF ((test ==1) .and. (test2==1)) THEN

x11 = x11+1.0

ELSEiF ((test ==1) .and. (test2==0)) THEN

x10 = x10+1.0

ELSEiF ((test ==0) .and. (test2==1)) THEN

x01 = x01+1.0

ELSEiF ((test ==0) .and. (test2==0)) THEN

x00 = x00+1.0

ENDIF

END DO

END DO

x11 = x11/(sites)

x10= x10/(sites)

x01 = x01/(sites)

x00 = x00/(sites)

!allele frequencies:

p0 = x01+x00

p1 = x11+x10

q0 = x10 + x00

q1 = x11+x01

 

!CALCULATE D

D = x11-(p1*q1)

!CALCULATE Dmax

IF (D .ge. 0) THEN 

IF( (p0*q1) .le. (p1*q0) )THEN

Dmax = p0*q1

ELSE

Dmax = p1*q0

ENDIF

ELSEIF (D .lt. 0) THEN

IF( (p0*q0) .le. (p1*q1) )THEN

Dmax = p0*q0

ELSE

Dmax = p1*q1

ENDIF

ENDIF

!CALCULATE Dprime

Dprime= D/Dmax
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IF (Dmax==0) THEN

cou=cou-1

Dprime=0

ENDIF

Dsum = Dsum + Dprime

END DO 

ENDIF

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

DO jChr = 2,mChr,3

DO jpos = 0,27,3

cou=cou+1

x11 = 0.0

x10 = 0.0

x01 = 0.0

x00 = 0.0

sites=0 

 Do jZyg = 1,mZyg

Do jGam = 1,mGam

sites = sites +1

test = btest1(n(jZyg, jGam,jChr),jpos)

test2=btest1(n(jZyg, jGam,jChr),jpos+3)

IF ((test ==1) .and. (test2==1)) THEN

x11 = x11+1.0

ELSEiF ((test ==1) .and. (test2==0)) THEN

x10 = x10+1.0

ELSEiF ((test ==0) .and. (test2==1)) THEN

x01 = x01+1.0

ELSEiF ((test ==0) .and. (test2==0)) THEN

x00 = x00+1.0

ENDIF

END DO

END DO

!PRINT*, " "

x11 = x11/(sites)

x10= x10/(sites)

x01 = x01/(sites)

x00 = x00/(sites)

!allele frequencies:

p0 = x01+x00
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p1 = x11+x10

q0 = x10 + x00

q1 = x11+x01

 

!CALCULATE D

D = x11-(p1*q1)

!CALCULATE Dmax

IF (D .ge. 0) THEN 

IF( (p0*q1) .le. (p1*q0) )THEN

Dmax = p0*q1

ELSE

Dmax = p1*q0

ENDIF

ELSEIF (D .lt. 0) THEN

IF( (p0*q0) .le. (p1*q1) )THEN

Dmax = p0*q0

ELSE

Dmax = p1*q1

ENDIF

ENDIF

!CALCULATE Dprime

Dprime= D/Dmax

IF (Dmax==0) THEN

cou=cou-1

Dprime=0

ENDIF

Dsum = Dsum + Dprime

END DO 

END DO

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

!FOR POSITION 30 on chr 2 etc

IF (mChr .ge. 3) THEN

DO jChr = 2,mChr-1,3

 jpos = 30

cou=cou+1

x11 = 0.0
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x10 = 0.0

x01 = 0.0

x00 = 0.0

sites=0 

 Do jZyg = 1,mZyg

Do jGam = 1,mGam

sites = sites +1

test = btest1(n(jZyg, jGam,jChr),jpos)

test2=btest1(n(jZyg, jGam,jChr+1),1)

IF ((test ==1) .and. (test2==1)) THEN

x11 = x11+1.0

ELSEiF ((test ==1) .and. (test2==0)) THEN

x10 = x10+1.0

ELSEiF ((test ==0) .and. (test2==1)) THEN

x01 = x01+1.0

ELSEiF ((test ==0) .and. (test2==0)) THEN

x00 = x00+1.0

ENDIF

END DO

END DO

x11 = x11/(sites)

x10= x10/(sites)

x01 = x01/(sites)

x00 = x00/(sites)

!allele frequencies:

p0 = x01+x00

p1 = x11+x10

q0 = x10 + x00

q1 = x11+x01

 

!CALCULATE D

D = x11-(p1*q1)

!CALCULATE Dmax

IF (D .ge. 0) THEN 

IF( (p0*q1) .le. (p1*q0) )THEN

Dmax = p0*q1

ELSE
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Dmax = p1*q0

ENDIF

ELSEIF (D .lt. 0) THEN

IF( (p0*q0) .le. (p1*q1) )THEN

Dmax = p0*q0

ELSE

Dmax = p1*q1

ENDIF

ENDIF

!CALCULATE Dprime

Dprime= D/Dmax

IF (Dmax==0) THEN

cou=cou-1

Dprime=0

ENDIF

Dsum = Dsum + Dprime

END DO 

ENDIF

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

DO jChr = 3,mChr,3

DO jpos = 1,28,3

cou=cou+1

x11 = 0.0

x10 = 0.0

x01 = 0.0

x00 = 0.0

sites=0 

 Do jZyg = 1,mZyg

Do jGam = 1,mGam

sites = sites +1

test = btest1(n(jZyg, jGam,jChr),jpos)

test2=btest1(n(jZyg, jGam,jChr),jpos+3)

IF ((test ==1) .and. (test2==1)) THEN

x11 = x11+1.0

ELSEiF ((test ==1) .and. (test2==0)) THEN

x10 = x10+1.0

ELSEiF ((test ==0) .and. (test2==1)) THEN
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x01 = x01+1.0

ELSEiF ((test ==0) .and. (test2==0)) THEN

x00 = x00+1.0

ENDIF

END DO

END DO

x11 = x11/(sites)

x10= x10/(sites)

x01 = x01/(sites)

x00 = x00/(sites)

!allele frequencies:

p0 = x01+x00

p1 = x11+x10

q0 = x10 + x00

q1 = x11+x01

 

!CALCULATE D

D = x11-(p1*q1)

!CALCULATE Dmax

IF (D .ge. 0) THEN 

IF( (p0*q1) .le. (p1*q0) )THEN

Dmax = p0*q1

ELSE

Dmax = p1*q0

ENDIF

ELSEIF (D .lt. 0) THEN

IF( (p0*q0) .le. (p1*q1) )THEN

Dmax = p0*q0

ELSE

Dmax = p1*q1

ENDIF

ENDIF

!CALCULATE Dprime

Dprime= D/Dmax

IF (Dmax==0) THEN

cou=cou-1
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Dprime=0

ENDIF

Dsum = Dsum + Dprime

END DO 

END DO

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

IF (mChr .ge. 4) THEN

!FOR POSITION 31 on chr 3 etc

DO jChr = 3,mChr-1,3

 jpos = 31

cou=cou+1

x11 = 0.0

x10 = 0.0

x01 = 0.0

x00 = 0.0

sites=0 

 Do jZyg = 1,mZyg

Do jGam = 1,mGam

sites = sites +1

test = btest1(n(jZyg, jGam,jChr),jpos)

test2=btest1(n(jZyg, jGam,jChr+1),2)

IF ((test ==1) .and. (test2==1)) THEN

x11 = x11+1.0

ELSEiF ((test ==1) .and. (test2==0)) THEN

x10 = x10+1.0

ELSEiF ((test ==0) .and. (test2==1)) THEN

x01 = x01+1.0

ELSEiF ((test ==0) .and. (test2==0)) THEN

x00 = x00+1.0

ENDIF

END DO

END DO

x11 = x11/(sites)

x10= x10/(sites)

x01 = x01/(sites)

x00 = x00/(sites)

!allele frequencies:

p0 = x01+x00

p1 = x11+x10
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q0 = x10 + x00

q1 = x11+x01

 

!CALCULATE D

D = x11-(p1*q1)

!CALCULATE Dmax

IF (D .ge. 0) THEN 

IF( (p0*q1) .le. (p1*q0) )THEN

Dmax = p0*q1

ELSE

Dmax = p1*q0

ENDIF

ELSEIF (D .lt. 0) THEN

IF( (p0*q0) .le. (p1*q1) )THEN

Dmax = p0*q0

ELSE

Dmax = p1*q1

ENDIF

ENDIF

!CALCULATE Dprime

Dprime= D/Dmax

IF (Dmax==0) THEN

cou=cou-1

Dprime=0

ENDIF

Dsum = Dsum + Dprime

!PRINT*, "cou", cou

END DO 

ENDIF

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

     

PRiNT*, "no.of comparisons neutral"

PRINT*, cou

Daverage = Dsum/cou

PRINT*, "Daverage neutral"

PRINT*, Daverage
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END SUBROUTINE LD_neutral

SUBROUTINE Bsel(n, mZyg, mGam, mChr, sel, recf, GCf)

INTEGER, INTENT(IN) :: mChr, mZyg, mGam

REAL, INTENt (IN) :: recf, GCf

INTEGER, DIMENSION(mZyg, mGam, mChr),  INTENT(IN) ::n

REAL, dimension(0:31,mCHR), INTENT(IN):: sel

INTEGER::  multiplier, jChr, iPos, jPos, start, chromosome

INTEGER:: bin

INTEGER:: counts

REAL:: exponentsum, Z, r,u, s

REAL, DIMENSIOn (0:9):: B, nucleotidediv, rel_red,compare_B

INTEGER:: start_bin, ende_bin,BB, mult, bits1,bits2, bin_size, jZyg

     INTEGER:: AA, F, rounds

     REAL:: nuc,div_neutral_expected,CC,distance

counts = 0

!10 data points to calculate B

PRINT*, "expected B"

multi: DO multiplier = 0,9

counts = 0

bin = multiplier

jChr = (mChr/10-(mChr/20))+(mChr/10)*multiplier ! Chromosome on Which focal position

 IF (mod (jChr, 3) == 0) THEN

 jPos = 16

 ELSEIF (mod (jChr,3) ==2) THEN !mCHr = 2,5 etc. =>

 jPos = 15

ELSEIF (mod (jChr,3) ==1) THEn ! mChr = 1,4 etc

jPos = 17

ENDIF

Exponentsum = 0.0

start = -1 

     DO Chromosome = 1,3

     start = start + 1

Chr:    DO iChr = chromosome ,mChr, 3

posi:    Do i = start, 31, 3!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
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!Calculate exponent:

distance = abs(jChr*32-iChr*32+jPos-i)

counts = counts+1

Z = distance * recf + 2* (352* GCf) *(  1 - exp(-(distance/352.0))  ) !incorportaes GC

!Z = distance *recf   !=distance times rec rate

r = 0.5* (1-exp(-(2*z) ) )

u = 0.0000104

s = sel(i, iChr)

exponentsum = exponentsum+ u/( s* (  ( 1+ (r*(1-s)/s)  )**2) )

IF (s==0 ) THEn

!PRINT*, "s alamr!"

ENDIF

ENDDO posi 

!FOR SECOND NON_SYN POSITION

 pos:    Do i = start+1, 31, 3

 distance = abs(jChr*32-iChr*32+jPos-i)

distance = abs(jChr*32-iChr*32+jPos-i)

counts = counts+1

Z = distance * recf + 2* (352* GCf) *(  1 - exp(-(distance/352.0))  ) !incorportaes GC

!Z = distance *recf   !=distance times rec rate

r = 0.5* (1-exp(-(2*z) ) )

u = 0.0000104

s = sel(i, iChr)

exponentsum = exponentsum+ u/( s* (  ( 1+ (r*(1-s)/s)  )**2) )

IF (s==0 ) THEn

!PRINT*, "s alamr!"

ENDIF

!PRINT*, "exponentsum", exponentsum

 ENDDO Pos

 ENDDO Chr

 

  ENDDO

 

 !     FOR third chromosome, position 0

Ch:    DO iChr = 3 ,mChr, 3

 i = 0

 !PRINT*, jChr, jPos

 !PRINT*, iChr, i

distance = abs(jChr*32-iChr*32+jPos-i)
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counts = counts+1

Z = distance * recf + 2* (352* GCf) *(  1 - exp(-(distance/352.0))  ) !incorportaes GC

!Z = distance *recf   !=distance times rec rate

r = 0.5* (1-exp(-(2*z) ) )

u = 0.0000104

s = sel(0, iChr)

IF (s==0 ) THEn

!PRINT*, "s alamr!"

ENDIF

!PRINT*, "exponentsum before summations", exponentsum

exponentsum = exponentsum+ u/( s* (  ( 1+ (r*(1-s)/s)  )**2) )

 END DO Ch

 

 PRINT*, "exponentsum", exponentsum

 B(bin) = exp(-exponentsum)

! PRINT*, " expected B BIN", multiplier, "="

 PRINT*, B(bin)

! PRINT*, "count", counts

 ENDDO multi

     !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

  

  

  !CaLCULATE OBSERVED sysnonymous  DIVERSITY in BINS

  

     

     start_bin = 1

     ende_bin = mChr/10

     bin = 0

     bin_size = mChr/10

     

   !  PRINT*, BIN_SIZE, "BIN_SIZE"

     

bins:     Do rounds = 0,9

CC=0

Chr2:     DO jChr = start_bin, ende_bin

   !  PRINT*, " "

   !  PRINT*, "jChr", jChr

   !  PRINT*, " " 

    

    !!!!!!!!!!calc DIV

     

     IF (mod (jChr,3) ==0 )THEN   ! Chr 3 etc

     DO i = 1,31,3
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     IF (sel(i,jChr) .ne. 0) THEN

     PRINT*, "ALEMR"

     ENDIF

     

    ! PRINT*, i

!! DIVERSITY PART::::::::::::::

  BB = 0

        

      DO jZyg = 1, mZyg

        AA = 0

        

        bits1 = btest1(n(jZyg,1,jChr), i)

              

        AA = bits1

       ! PRINT*, "A", A

        

      

        BB = BB+AA !sum of all "1" at that position

       

        mult = (mZyg-BB)*BB  !no of pairwise diff. at that pos.

      !  PRINT*, "mult", mult

       ! PRINT*, " "

        END DO 

        

      !  PRINT*, "B", B

                

        CC = CC + mult 

         !!!!!END DIVERSITY

ENDDO

ELSEIF (mod (jChr,3) ==1) THEN   ! Chr 1 etc

     DO i = 2,29,3

     IF (sel(i,jChr) .ne. 0) THEN

     PRINT*, "ALEMR"

     ENDIF

   !  PRINT*, i

!! DIVERSITY PART::::::::::::::

BB = 0

        

      DO jZyg = 1, mZyg

        AA = 0

        

        bits1 = btest1(n(jZyg,1,jChr), i)

       

        

        AA = bits1

       ! PRINT*, "A", A
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        BB = BB+AA !sum of all "1" at that position

       

        mult = (mZyg-BB)*BB  !no of pairwise diff. at that pos.

      !  PRINT*, "mult", mult

       ! PRINT*, " "

        END DO 

        

      !  PRINT*, "B", B

                

        CC = CC + mult 

         !!!!!END DIVERSITY

ENDDO

ELSEIF (mod (jChr,3) ==2) THEN   ! Chr 2 etc

     DO i = 0,30,3

  !   PRINT*, i

     IF (sel(i,jChr) .ne. 0) THEN

     PRINT*, "ALEMR"

     ENDIF

!! DIVERSITY PART::::::::::::::

BB = 0

        

      DO jZyg = 1, mZyg

        AA = 0

        

        bits1 = btest1(n(jZyg,1,jChr), i)

   

        

        AA = bits1

       ! PRINT*, "A", A

        

      

        BB = BB+AA !sum of all "1" at that position

       

        mult = (mZyg-BB)*BB  !no of pairwise diff. at that pos.

      !  PRINT*, "mult", mult

       ! PRINT*, " "

        END DO 

        

      !  PRINT*, "B", B

                

        CC =  CC + mult 

         !!!!!END DIVERSITY

ENDDO
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ENDIF

 F = mZyg*(mZyg - 1.0)*0.5    !!!!!!! = n(n-1)/2

        nuc = CC/F

       !  PRINT*, F, CC, nuc

        nucleotidediv(bin)=nuc/(bin_size*32*0.333333333)

             ENDDO Chr2

        

        

       start_bin = start_bin + mChr/10

       ende_bin = ende_bin + mChr/10

     bin = bin +1 

                

        ENDDO bins

        

 

        

    !    COMPARE exp and obs ntdiv

    

    

    div_neutral_expected = mZyg *2* 0.0000104   !expected Without BGS

    !PRINT*, div_neutral_expected

   

    PRINT*, "observed B "

    DO bin = 0,9

    rel_red (bin)= nucleotidediv(bin)/div_neutral_expected   !observed B

  !   PRINT*, "observed B ", "BIN", BIN

     PRINT*, rel_red (bin)

    ENDDO

    

     PRINT*, "observed red. in ntdiv/ expected B in bin"

    Do bin = 0,9

    compare_B(bin) = rel_red (bin)/B(bin)

  !  PRINT*, "observed red. in ntdiv/ expected B in bin", bin

    PRINT*, compare_B(bin)

    ENDDO 

    

   

END SUBROUTINE Bsel

INTEGER FUNCTION Btest1(input, posit)

INTEGER, INTENT (IN) :: input, posit

LOGICAL:: testtt

testtt = btest(input, posit)
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IF (testtt) then

btest1 = 1

ELSE 

btest1 = 0

ENDIF 

END FUNCTION Btest1

SUBROUTINE set_neutral(n,mZyg,mGam,mChr)

INTEGER, INTENT(IN):: mZyg, mGam, mChr 

    INTEGER:: jChr,  jZyg, jGam, jpos

     INTEGER, DIMENSION(mZyg, mGam, mChr),  INTENT(INOUT) ::n

     REAL:: v,w,x,B,A,C,Y,D

     INTEGER:: st, chrom,i

     

i = 0

 st = 3

 Do chrom = 1,3,2

 st = st-1

Chr: DO jChr = chrom ,mChr,3

pos: Do jPos = st,31,3 !only neutral sites though

!PRINT*,  jChr, jPos

Call Random_number(v)

Set1: IF (v .le. 0.4293757229) THEn !do nothinbg => all remain zero

ElseIF ((v .gt. 0.4293757229 ) .and. ( v .le. 0.8587514458) ) THEn

DO jZyg = 1,mZyg

Do jGam = 1,mGam

n(jZyg,jGam,jChr) = ibset(n(jZyg,jGam,jChr), jPos) !jPos is set to "one"

END DO

END DO

ELSEIF (v .gt. 0.8587514458) THEN !Polymorphic! decide how many "one"

!PRINT*, "polymorphic at pos", jPos

call random_number(w)

B = 1.0/(mZyg)

!PRINT*, "B", B

C = 0.0

A = 0.0
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D = 0.0

!PRINT*, "w", w

DO WHILE (C.le. w)

!PRINT*,"C", C

A =(1.0/B)/7484.47086 ! = SUM(i/2N) ,i=1,2N-1 !!!!!!!!!!cvhange!!!!!!!!!!!!!!!!!

C = A+C

!C = Stammfunction

D = B

B = B+ (1/(mZyg))

ENDDO

!PRINT*, D

!PRINT*, "Stammfunctionsvalue" ,C

!PRINT*, "x-value D", D

! Now now the FRACTION  of gametes that carry "one" at jPos, C

DO jZyg = 1,mZyg

Do jGam = 1,mGam

Call random_number(y)

IF (y .le. D) THEN !Pos set to "one"

n(jZyg,jGam,jChr)= ibset(n(jZyg,jGam,jChr), jPos) !jPos is set to "one"

ENDIF

END DO

END DO

ENDIF SET1

ENDDO POS

ENDDo Chr

ENDDO

!FOR SECOND CHROMOSOME:

Chr1: DO jChr = 2 ,mChr,3

pos1: Do jPos = 0,31,3 !only neutral sites though

!PRINT*,jChr, jPos

Call Random_number(v)

Set2: IF (v .le. 0.429) THEn !do nothing => all remain zero

!PRINT*, "all zero at pos", jPos

ElseIF  ((v .gt. 0.429 ) .and. ( v .le. 0.858) ) THEn

!PRINT*, "all one at pos", jPos

DO jZyg = 1,mZyg

Do jGam = 1,mGam



File: /Users/vkaiser/haploids-newfitness/thesis.f90

Page: 62

n(jZyg,jGam,jChr) = ibset(n(jZyg,jGam,jChr), jPos) !jPos is set to "one"

END DO

END DO

ELSEIF (v .gt. 0.858) THEN !Polymorphic! decide how many "one"

!PRINT*, "polymorphic at pos", jPos

call random_number(w)

B = 1.0/(mZyg)

!PRINT*, "B", B

C = 0.0

A = 0.0

D = 0.0

!PRINT*, "w", w

DO WHILE (C.le. w)

!PRINT*,"C", C

A =(1.0/B)/7484.47086 ! = SUM(i/2N) ,i=1,2N-1 !!!!!!!!!!cvhange!!!!!!!!!!!!!!!!!

C = A+C

!C = Stammfunction

D = B

B = B+ (1/(mZyg))

ENDDO

!PRINT*, "Stammfunctionsvalue" ,C

!PRINT*, "x-value D", D

!PRINT*, D

! Now now the FRACTION  of gametes that carry "one" at jPos, C

DO jZyg = 1,mZyg

Do jGam = 1,mGam

Call random_number(y)

IF (y .le. D) THEN !Pos set to "one"

n(jZyg,jGam,jChr)= ibset(n(jZyg,jGam,jChr), jPos) !jPos is set to "one"

ENDIF

END DO

END DO

ENDIF SET2

ENDDO POS1

ENDDo Chr1
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END SUBROUTINE set_neutral

SUBROUTINE set_selected(n,se, mZyg,mGam,mChr)

INTEGER, INTENT(IN):: mZyg, mGam, mChr 

    INTEGER:: jChr,  jZyg, jGam, jpos

     INTEGER, DIMENSION(mZyg, mGam, mChr),  INTENT(INOUT) ::n

     REAL, DIMENSION(0:31, mChr), INTENT(IN) ::se

     REAL::q

     INTEGER:: chroma

    ! PRINT*," NONSYNONUMOUS"

     

DO chroma = 1,3,2

!PRINT*, "CHROMA", chroma

CHr : Do jChr = chroma, mChr,3

pos: Do jPos = 0,31,3

!PRINT*, jChr, jPos 

IF (se(jPos,jChr) .ne. 0.0) THEN

q = 0.0000104/(se(jPos,jChr))

ELSE 

q = 0.0

ENDIF

!PRINT*, "q", q

DO jZyg = 1,mZyg

DO iGam = 1, mGam

Call Random_number(v)

IF (v .le. q) THEN

n(jZyg,jGam,jChr) = ibset(n(jZyg,jGam,jChr), jPos)

ENDIF

ENDDO

ENDDO

ENDDO pos

ENDDO Chr

ENDDO

!!!!!!!!!!!!!!!!!

DO chroma = 1,2

!PRINT*, "CHROMA", chroma

CHr2 : Do jChr = chroma, mChr,3
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pos2: Do jPos = 1,31,3

!PRINT*, jChr, jPos 

IF (se(jPos,jChr) .ne. 0.0) THEN

q = 0.0000104/(se(jPos,jChr))

ELSE 

q = 0.0

ENDIF

!PRINT*, "q", q

DO jZyg = 1,mZyg

DO iGam = 1, mGam

Call Random_number(v)

IF (v .le. q) THEN

n(jZyg,jGam,jChr) = ibset(n(jZyg,jGam,jChr), jPos)

ENDIF

ENDDO

ENDDO

ENDDO pos2

ENDDO Chr2

ENDDO

!!!!!!!!!!!!!!!!!!!!!

DO chroma = 2,3

!PRINT*, "CHROMA", chroma

CHr3 : Do jChr = chroma, mChr,3

pos3: Do jPos = 2,31,3

!PRINT*, jChr, jPos 

IF (se(jPos,jChr) .ne. 0.0) THEN

q = 0.0000104/(se(jPos,jChr))

ELSE 

q = 0.0

ENDIF

!PRINT*, "q", q

DO jZyg = 1,mZyg

DO iGam = 1, mGam

Call Random_number(v)

IF (v .le. q) THEN

n(jZyg,jGam,jChr) = ibset(n(jZyg,jGam,jChr), jPos)

ENDIF
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ENDDO

ENDDO

ENDDO pos3

ENDDO Chr3

ENDDO

END SUBROUTINE set_selected

                     

        END PROGRAM projectrec2

        

        


