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Abstract
Word-Sense Disambiguation (WSD), holds promise for many NLP applications re-

quiring broad-coverage language understanding, such as summarization (Barzilay and

Elhadad, 1997) and question answering (Ramakrishnan et al., 2003). Recent studies

have also shown that WSD can benefit machine translation (Vickrey et al., 2005) and

information retrieval (Stokoe, 2005). Much work has focused on the computational

treatment of sense ambiguity, primarily using data-driven methods. The most accu-

rate WSD systems to date are supervised and rely on the availability of sense-labeled

training data. This restriction poses a significant barrier to widespread use of WSD

in practice, since such data is extremely expensive to acquire for new languages and

domains.

Unsupervised WSD holds the key to enable such application, as it does not require

sense-labeled data. However, unsupervised methods fall far behind supervised ones

in terms of accuracy and ease of use. In this thesis we explore the reasons for this,

and present solutions to remedy this situation. We hypothesize that one of the main

problems with unsupervised WSD is its lack of a standard formulation and general

purpose tools common to supervised methods. As a first step, we examine existing ap-

proaches to unsupervised WSD, with the aim of detecting independent principles that

can be utilized in a general framework. We investigate ways of leveraging the diver-

sity of existing methods, using ensembles, a common tool in the supervised learning

framework. This approach allows us to achieve accuracy beyond that of the individual

methods, without need for extensive modification of the underlying systems.

Our examination of existing unsupervised approaches highlights the importance of

using the predominant sense in case of uncertainty, and the effectiveness of statistical

similarity methods as a tool for WSD. However, it also serves to emphasize the need for

a way to merge and combine learning elements, and the potential of a supervised-style

approach to the problem. Relying on existing methods does not take full advantage of

the insights gained from the supervised framework.

We therefore present an unsupervised WSD system which circumvents the question

of actual disambiguation method, which is the main source of discrepancy in unsuper-

vised WSD, and deals directly with the data. Our method uses statistical and semantic

similarity measures to produce labeled training data in a completely unsupervised fash-

ion. This allows the training and use of any standard supervised classifier for the actual

disambiguation. Classifiers trained with our method significantly outperform those us-

ing other methods of data generation, and represent a big step in bridging the accuracy
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gap between supervised and unsupervised methods.

Finally, we address a major drawback of classical unsupervised systems – their re-

liance on a fixed sense inventory and lexical resources. This dependence represents

a substantial setback for unsupervised methods in cases where such resources are un-

available. Unfortunately, these are exactly the areas in which unsupervised methods are

most needed. Unsupervised sense-discrimination, which does not share those restric-

tions, presents a promising solution to the problem. We therefore develop an unsuper-

vised sense discrimination system. We base our system on a well-studied probabilistic

generative model, Latent Dirichlet Allocation (Blei et al., 2003), which has many of

the advantages of supervised frameworks. The model’s probabilistic nature lends itself

to easy combination and extension, and its generative aspect is well suited to linguis-

tic tasks. Our model achieves state-of-the-art performance on the unsupervised sense

induction task, while remaining independent of any fixed sense inventory, and thus

represents a fully unsupervised, general purpose, WSD tool.
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Chapter 1

Introduction

Ford: “You’d better be prepared for the jump into

hyperspace. It’s unpleasantly like being drunk.”

Arthur: “What’s so unpleasant about being drunk?”

Ford: “You ask a glass of water.”

Hitchhiker’s Guide to the Galaxy

Douglas Adams

Ambiguity is a widespread phenomenon throughout human perception and language,

and a fundamental issue when attempting to understand human cognition. It appears in

various forms in natural language, and is at the root of many basic problems in the area

of computational linguistics, such as anaphora resolution, prepositional attachment,

part-of-speech tagging and more. In this thesis we focus on the problem of word-

sense disambiguation (WSD), the task of identifying the intended meanings (senses)

of words in context. WSD is one of the oldest problems in computational linguistics,

first formulated as a computational task in the 1940s (Weaver, 1949/1955), and is still

a very active field of research. The most recent workshop for evaluation of WSD

(Agirre et al., 2007), was the biggest ever, containing eighteen tasks with over one

hundred participating teams. A famous example of the difficulty of the task was given

by Bar-Hillel (1960). He claimed that no existing or imaginable computer program

would be able to determine that the correct meaning of the word pen in the passage

below is enclosure, rather than writing-implement.

Little John was looking for his toy box. Finally he found it. The box was
in the pen. John was very happy.

Ironically, as pointed out by Yarowsky (2000), this same example can be used to

demonstrate the utility of automatic disambiguation methods using statistical mea-

1



Chapter 1. Introduction 2

sures, since it is very rare to refer to the contents of a writing implement, whereas

this is much more common for an enclosure.

WSD is of interest and importance for several reasons. From a research perspec-

tive, it is an excellent representative case of ambiguity in language in general, embody-

ing the correspondence between senses and meanings, while being self contained and

well-defined. It is also of interest in its own right, since it has many unique characteris-

tics, touching both semantics and syntax, and being strongly connected to many other

areas of linguistic knowledge (as evidenced by the many and diverse approaches used

to address the problem throughout the years, see Section 3.2). WSD has an additional

layer of complexity, not found in other types of linguistic ambiguity, due to the fact

that the list of potential senses varies from word to word and, in fact, may differ even

for an individual word, as a result of change in domain or shifts in language usage

over time. From a pragmatic perspective, WSD is important since it holds promise for

many natural-language applications requiring broad-coverage language understanding.

Examples include summarization, information retrieval and machine translation. For

instance, when used as part of a machine translation system, WSD can greatly reduce

the computational complexity and running time required to produce an accurate trans-

lation by detecting the correct sense of the source words, and removing from the search

space translations pertaining to the other senses. For information retrieval, a more so-

phisticated indexing, where word-senses are used instead of ambiguous words, could

make it easier for the user to find the information they wanted. Is would also reduce

the number of entries for each key, thus making retrieval faster. To enable such an in-

dexing, an accurate wide-coverage WSD method is necessary in order to disambiguate

all the words in the document database. Recent studies show that correctly applied

WSD benefits both machine translation (Vickrey et al., 2005) and information retrieval

(Stokoe, 2005).

Given the potential of WSD for many NLP tasks, much work has focused on

the computational treatment of sense ambiguity, primarily using data-driven methods.

Most accurate WSD systems to date are supervised (see Pradhan et al. 2007). Such sys-

tems use classification algorithms trained on occurrences of ambiguous words which

were manually annotated with the appropriate sense given the context. The classifiers

automatically learn disambiguation cues from these hand-labeled examples.

Although supervised methods typically achieve better performance than their un-

supervised alternatives, their applicability is limited to those words for which sense

labeled data exists, and their accuracy is strongly correlated with the amount of labeled
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data available (Yarowsky and Florian, 2002). Furthermore, obtaining manually labeled

corpora with word senses is costly and the task must be repeated for new domains

and languages. Ng (1997) estimates that a high accuracy domain independent sys-

tem for WSD would probably need a corpus of about 3.2 million sense tagged words.

At a throughput of one word per minute (Edmonds, 2000), this would require about

27 person-years of human annotation effort. Supervised methods are further restricted

by their reliance on a predefined list of senses, which is likely to be inappropriate to

a specific domain and task, leading to decreased performance, and necessitating the

compilation of a new sense list, and the consequent relabeling of the training data.

Due to these fundamental shortcomings of supervised methods, considerable effort

has been devoted to the development of unsupervised methods for WSD, which hold

promise for large-scale disambiguation that is unrestricted in terms of language and

domain. Unsupervised methods do not require labeled training data, and are therefore

much less costly to use, and easier to transfer between domains. The unsupervised

framework has the further advantage of allowing more room for the use of linguistic

knowledge and resources, and for the application of linguistic theories. In cases where

a suitable lexical resource is unavailable (e.g., a new domain with specific terminology

that is not contained in standard dictionaries), unsupervised methods can induce the

senses directly from the data, thus ensuring that they suit the task at hand. Because of

these advantages, there have been many unsupervised WSD methods and approaches

proposed in the literature (see Chapter2 for an overview). Despite all this, unsuper-

vised methods have been largely unsuccessful in providing an effective solution to the

problem. Their performance falls far below that of supervised methods and is not suf-

ficient to make them useful for real-world applications. For example, in the Semeval

English lexical sample task (Pradhan et al., 2007), the best performing unsupervised

method achieved an F-Score of 53.8%, compared to 88.7% for the best supervised

system. Supervised methods, therefore, are still the solution of choice, despite being

unsatisfactory in term of cost and manual labor.

In this thesis we focus on the performance gap separating unsupervised WSD meth-

ods from supervised ones. We explore the causes for this gap, and provide solutions

to some of the core problems which prevent unsupervised methods from reaching the

level of performance and applicability achieved by supervised systems. We hypoth-

esize that the performance gap is largely due to a lack of standardized representation

and methodology, which prevents the use of powerful tools for learning, evaluation

and combination, such as are common in the field of supervised learning. Another rea-
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son for the comparatively weak performance of unsupervised methods is the treatment

and evaluation of WSD as a classification task. Under this setting, supervised methods

have the advantage of being able to use a large collection of powerful general-purpose

classifiers.

These observations guided us in our work to help unsupervised WSD overcome

the performance gap. In this thesis, we address and provide solutions for several of the

problems we mentioned. For cases where there are existing WSD methods in place,

and designing a new WSD system is not feasible or cost-effective, we present a su-

pervised methodology (ensembles) to help improve performance with little need for

modification or re-design. In order to more fully exploit the potential of the super-

vised setting, and for use when suitable existing methods are not readily available, we

propose a method for automatically creating sense-labeled training data. This allows

the use of powerful supervised classifiers for the task of disambiguation, and greatly

reduces the gap between the unsupervised and supervised settings. Finally, we address

the issue of treating WSD as a classification task according to a fixed list of senses.

We note that for many applications, a fixed dictionary is undesirable, and may not

suit the task and domain. Instead, we can take advantage of the freedom offered by

the unsupervised setting, which is not restricted by the list of senses used in training.

We present a model based on a probabilistic generative formulation which induces the

senses directly from the data, thus insuring their relevance to the task and domain at

hand. The work presented in this thesis represents a major contribution in providing

general-purpose, accurate, WSD methods which are unrestricted in terms of domain,

language and application.

1.1 Contributions of the Thesis

In this thesis we address the performance gap separating unsupervised and super-

vised WSD. As discussed above, this gap represents a major barrier preventing the

widespread use and potential benefits of WSD in real-world applications. We take a

deep look into the nature of this gap, explore its causes, and present solutions to help

bridge it1. Our research also provides some important insights regarding the relative

strengths and weaknesses of supervised and unsupervised methods in computational

linguistics in general. Our individual contributions are detailed below.

1Code developed in the process of our work has been made publically available at:
http://homepages.inf.ed.ac.uk/s0570628/code.html.
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A standardized framework for comparison and analysis of unsupervised WSD

methods. We present a framework which allows the comparison, evaluation, and

detailed analysis of existing unsupervised methods under uniform conditions. This

consists of a re-implementation of some of the algorithms and the development of the

necessary tools to enable all the component methods to make use of identical input,

and produce a similar detailed output format. To our knowledge, this represents a

novel setting, and no such detailed comparison has been performed previously. The

framework enables an in-depth study of the strengths and weaknesses of individual

algorithms, and helps determine important underlying principles which are not specific

to a certain algorithm, and can therefore be used in a general setting.

Ensemble combinations. We propose a set of ensemble methods which harness

the diversity of existing approaches to unsupervised WSD. These ensembles can be

used to improve performance of existing methods with little additional effort. They

can also provide a fall-back option in cases where contextual information is not suffi-

ciently informative. We explore several ensembles and show that they can outperform

state-of-the-art individual methods. Our work on ensemble methods also represents an

important contribution to unsupervised learning in general, since it demonstrates the

benefits that can be gained from employing simple methods drawn from supervised

methodology in an unsupervised framework.

Unsupervised creation of sense-labeled data. Combination of existing methods

provides a solution when a variety of such methods are available, and a quick and easy

way of improving results is needed. However, designing a complete WSD method

from the ground up offers the possibility of greater performance benefits. Therefore,

we develop an unsupervised methodology for the automatic creation of sense-labeled

training data. The system makes use of distributional and semantic similarity metrics,

and the data it creates can be used to train any standard supervised classifier. We show

that classifiers trained on our automatically-created data can surpass the performance

achieved using previous methods for data-creation and outperform state-of-the-art un-

supervised methods. Our method allows improvements to supervised methods to be

easily transferred to the unsupervised setting, since it employs a completely supervised

methodology for the actual learning and disambiguation. It therefore represents a sig-

nificant step in bridging the performance gap between unsupervised and supervised

methods. Our experiments also demonstrate the effectiveness of the unsupervised data
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creation methodology, and advocate the use of a similar approach for other tasks where

manually-labeled data is commonly used.

A Bayesian model for sense induction. The use of a fixed list of senses by all su-

pervised and most unsupervised WSD methods is a serious obstacle to applied WSD,

since the predefined sense distinctions are often unsuitable or irrelevant to the task at

hand. While supervised methods are naturally constrained to the sense labels used

in the training data, unsupervised methods need not restrict themselves in this way.

Instead, unsupervised methods can induce the relevant senses directly from the data

at hand. We describe a sense induction system which represents an important con-

tribution in this area of unsupervised WSD. We introduce a novel perspective on the

sense induction task, which places it in a Bayesian generative context, as apposed to

the common approach which treats it as a standard clustering problem. We develop a

probabilistic model for the task which provides a principled way of taking into account

a wide range of relevant contextual features, and perform an in-depth analysis of the

model and its components. Our sense-induction method surpasses state-of-the-art per-

formance on the task. The underlying model is not specific to sense-induction, and can

therefore be employed for other tasks where several types of informative features are

available.

To summarize, our work explores the nature of the performance gap separating

unsupervised and supervised WSD. We address many of the fundamental issues con-

tributing to this gap, and present our solutions to these problems. First, we address

the lack of standardization of existing unsupervised WSD systems, and demonstrate

how to leverage the diversity with the help of ensemble methods. As our next step,

we present a WSD method based on the unsupervised creation of sense-labeled train-

ing data. Our system retains the freedom from manual annotation, while avoiding the

choice of representation and approach which is a problematic and contentious issue

in unsupervised WSD, by handling the disambiguation stage in the supervised set-

ting. Finally, we address the restrictions imposed by a predefined sense inventory by

proposing a probabilistic generative model for unsupervised sense induction. This al-

lows unsupervised WSD to be easily integrated into natural-language applications, and

tailored to a specific task and domain, without the need to define a new purpose-built

sense inventory and corresponding training dataset. All our methods outperform cur-

rent state-of-the-art unsupervised performance on their respective tasks. While still

falling short of state-of-the-art supervised methods in cases where manually labeled
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training data can be used, they non-the-less represent a significant step in reducing the

gap in WSD and enabling large-scale use of unsupervised WSD in real-world applica-

tions, where such data is usually unavailable.

1.2 Thesis Structure

In Chapter 2 we familiarize the reader with the field of unsupervised WSD. First, we

introduce relevant terminology and present some resources commonly used in the field

and employed in this thesis. These include standard sense inventories, large scale

corpora, and evaluation resources. We conclude the chapter with a high-level overview

of previous work, with references to the appropriate sections in following chapters,

each containing a more detailed overview of work directly relevant to that chapter.

In Chapter 3 we look into the reasons for the performance gap between super-

vised and unsupervised methods for WSD. We design a framework for standardized

analysis and evaluation of unsupervised WSD systems. We select four methods repre-

senting different approaches to unsupervised disambiguation: a simple context-overlap

approach, two methods employing different graph-based representations, and an algo-

rithm which uses vector-based distributional and semantic similarity measures for de-

termining the predominant sense of an ambiguous word in a corpus. We compare them

in detail, examining their strengths and weaknesses and the differences between them.

Our experiments reveal that there is only a small overlap between the methods in terms

of correctly disambiguated words. We therefore, in the second part of the chapter,

present a set of ensembles, an idea borrowed from supervised methodology, in order

to leverage this complimentary nature. Our ensemble methods outperform the indi-

vidual component methods, and produce state-of-the-art results on standard evaluation

datasets.

In Chapter 4 we develop an automatic method for unsupervised creation of sense-

labeled training data. This approach provides the means of circumventing many of the

problems leading to the performance gap between unsupervised and supervised WSD,

such as lack of a standard representation or powerful, well-studied tools for classifi-

cation. Our method, as opposed to previous methods of automatic data annotation,

makes minimal use of linguistic resources, and is thus applicable to a wider range of

domains and languages. In order to assess the usability of our automatically created

data, we use it to train a selection of classifiers representing different machine-learning

paradigms, and compare them on two standard evaluation datasets. We also compare
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to previously proposed methods for automatically creating sense-labeled data. The

results achieved using our method are significantly better than those achieved when

using previous ones, and approach the performance of training on manually annotated

data.

In Chapter 5 we direct our efforts towards another fundamental drawback of su-

pervised methods, namely their reliance on a predefined list of senses. We address the

task of inducing senses from the data, independently of any dictionary, by developing a

system based on a generative probabilistic model, Latent Dirichlet Allocation (LDA).

We adapt the model (originally designed for modelling text generation) to the sense-

induction problem, and extend it to take into account multiple sources of information

relevant to the task. The new model represents a general extension of LDA, and can

be used for a variety of tasks where multiple information sources are available. We

explore the use of our model for sense induction, looking into several relevant issues,

such as the nature of the learning corpus, the choice of information sources, and the im-

portance of parameter tuning. Comparison on a standard evaluation dataset shows that

our sense-induction system outperforms other state-of-the-art methods on this task.

We conclude in Chapter 6, with a summary of the main findings of this work. We

also discuss possible applications for the methods presented in the thesis, and direc-

tions for further research.

1.3 Published Work

Parts of the work presented in this thesis have been previously published. This applies

to Chapter 3, portions of which have been published in ACL-COLING (Brody et al.,

2006), and Chapter 4, in COLING (Brody and Lapata, 2008).



Chapter 2

Related Work

I have read your book and much like it.

Moses Hadas

Before proceeding to the main body of the thesis, and presenting our methods and con-

tributions to the problem of unsupervised WSD, it is necessary to familiarize the reader

with the some background knowledge about the problem and the setting in which it is

addressed. This chapter fulfills this function. We start with a general discussion re-

garding levels of supervision in machine learning in general, and WSD in particular

(Section 2.1). We then introduce relevant terminology from the field of WSD that is

used in this thesis (Section 2.2). In Section 2.3, we provide a description of data and

evaluation resources commonly used in unsupervised WSD, and of which we make

use in our work. Finally, in Section 2.4 we describe related previous work. Since the

methods presented in this thesis fall naturally into three individual subsets of the field

of unsupervised WSD, we chose to place each piece of work within the relevant context

at the beginning of each chapter. However, Section 2.4 provides a general overview of

the field, and indicates where each subset we address falls within the field as a whole.

It thus links together our individual discussions of related work into a single unit.

2.1 Annotation and Supervision

In many fields of computer science, it is customary to distinguish between three set-

tings for machine learning: (1) supervised, (2) unsupervised and (3) semi-supervised.

In the supervised setting, the computer program is provided with labeled training data

before it receives the unlabeled test data. The program attempts to extract from the

9
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labeled data information on how to provide the correct labels for the items in the test

set. In the unsupervised setting, on the other hand, no labeled data is provided. The

program is expected to detect “natural” distinctions in the test data which divide it in

a significant fashion according to some criteria. The labels the program provides in the

output have no meaning besides serving to distinguish between the classes that were

detected. The semi-supervised setting is midway between the previous two. In this

setting, a small amount of labeled data is provided, along with a large amount of un-

labeled data. The quantity of the labeled portion of the data is usually not sufficient to

permit reliable learning. A semi-supervised algorithm must make use of both the high

accuracy information about the labels provided by the labeled data, and the informa-

tion about the global structure of the data learned from the large unlabeled dataset. The

algorithm combines all this information to try and match the distinctions represented

by the provided labels with natural divisions it detects in the data.

2.1.1 Supervision in WSD

In the field of WSD, the same terms are often used, but with slightly different meaning.

Since WSD is almost always evaluated with respect to a given sense inventory, there

is effectively a small amount of labeled data inherent in the task. Even unsupervised

methods for WSD are expected to produce output which is tagged with meaningful

senses from the sense inventory. Unsupervised WSD methods using a specific sense

inventory are therefore more similar to semi-supervised methods in other fields. The

exception to this are sense induction methods where the sense-inventory is not pre-

defined, and the output of the program is not expected to match a gold standard la-

beling. In this case, the labels themselves have no external meaning, matching only

natural divisions in the data with respect to the task. These cases therefore conform to

the classic definition of an unsupervised setting.

Since most unsupervised WSD methods do have a small amount of highly infor-

mative data (the sense inventory and sense definitions therein), many unsupervised

methods tend to make heavy use of this data and knowledge of linguistic theory (see,

for instance, Section 3.2) when attempting to solve the WSD problem.

Supervised WSD, on the other hand, is much more like the classic supervised set-

ting – an amount of annotated text is provided as input to the algorithm, which is used

to learn how to label new unlabeled data. The sense-inventory itself is usually only

used to provide the set of valid labels, and then ignored by the algorithm. Supervised
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techniques do not need to resort to semantic information to match meanings in the

text to those in the sense inventory. Since the labels are provided by the annotated

text, a simple vector representation, such as is used in many machine learning classi-

fication algorithms, is sufficient. As a result, the data representation is more-or-less

identical between the different methods. Data instances are represented by a feature

vector extracted from the context of the word, and the precise identity of the feature

set is largely independent of the method employed. The main differences between ap-

proaches, and the points at which linguistic knowledge comes in, are (1) the choice of

machine learning technique to employ to best capture the distinctions in the data, and

(2) the choice of which feature space would be most informative for the task. Mooney

(1996) discusses in detail the significance of these choices. He also provides a com-

parison of several machine learning methods applied to WSD. Yarowsky and Florian

(2002) compare some more recent efforts to use machine learning techniques for WSD.

To summarize, there are three main settings in the field of WSD. In the supervised

setting, machine-learning classifiers are trained on examples which are annotated with

the correct sense in accordance to predefined list of senses (usually a dictionary). These

methods are the most accurate, but require manual annotation which is very expensive

in term time and effort. In the unsupervised WSD setting, the methods are required to

label the instances with the correct sense from the dictionary. No labeled examples are

given, but the algorithms can make use of the information contained in the dictionary,

and other lexical resources, as well as unlabeled corpora. The third setting is sense

induction, which is a special case of unsupervised WSD, where no dictionary is given

(and, of course, no labeled examples). The methods is expected to induce the rele-

vant sense distinctions from the data itself, and then label the instances accordingly. In

this thesis we focus on the latter two settings: standard unsupervised WSD and (unsu-

pervised) sense induction. Supervised methods provide an upper bound on expected

performance.

2.2 Terminology

Sense Inventory A resource containing a list of possible senses and their definition,

for each word of interest. Sense inventories are often standard dictionaries, but can also

be of other forms (e.g., thesauri, which list words with similar meaning for each entry).

Sense inventories differ with regard to the amount and the nature of the information

they provide.
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Word Sense Disambiguation The task of assigning one of several possible sense-

labels to a word. The list of possible senses for each word is fixed, and contained

in a pre-specified sense inventory, which also provides the definitions of the senses

and possibly further information, such as examples or related words. The term disam-

biguation is sometimes used in a wider sense to include sense discrimination, where

the senses are not pre-defined (see below). In this thesis, we will distinguish between

the two.

Supervised WSD Disambiguation with the aid of labeled training examples. The

sense labels conform to a predefined sense inventory.

Unsupervised WSD Disambiguation according to a predefined sense inventory, but

without labeled training examples. Information from lexical resources (primarily the

dictionary serving as the sense inventory) and additional corpora of unlabeled text are

used.

Sense Induction / Sense Discrimination The task of separating the different oc-

currences of a given word into two or more groups (or clusters) representing different

meanings. In this task, as opposed to word sense disambiguation, the number and iden-

tity of the possible senses is not pre-defined, and must be inferred by the algorithm.

No dictionary or other description of the senses is provided.

Knowledge-Rich Methods WSD methods which make use of a pre-defined and

fixed sense-inventory, and possibly other linguistic knowledge and resources. Most

unsupervised WSD methods fall into this category, and the term is used to emphasize

the fact that they are only unsupervised in not using labeled training data. However,

they make use of other knowledge sources.

Knowledge-Lean Methods Typically sense-discrimination methods that do not make

use of a sense inventory or other lexical resources. The term is used to distinguish these

methods from the more common, knowledge-rich, unsupervised WSD methods.

Word Tokens vs. Word Types The distinction between a word type and a word token

was first made by Peirce (1933). The type of a word is the abstract notion of that word,

whereas a token is the representation of that word as used in a particular point in the

text. The author further distinguishes between the a token and an instance, where the
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token is the physical representation of the word type, and the instance represents the

individual point at which it occurred. For example, in the sentence “The quick brown

fox jumped over the lazy dog” there are two instances of the token the which embodies

the type (abstract word) the. It is common practice (though slightly inaccurate), to use

token to signify an instance. Our example, therefore, is said to contain two tokens of

the single type the. Since this distinction is more relevant to our work, we will follow

this practice throughout the thesis, and refer to instances as tokens, and to the abstract

notion of the word as its type.

Target Word The word that is the current focus of the disambiguation (or discrim-

ination) algorithm, as opposed to other words in the context or in the lexicon. For

instance, in the sentence “The quick brown fox jumped over the lazy dog”, we may

wish to determine whether the word fox refers to an animal or a person of shifty na-

ture. In this case, our target word is fox, and the rest of the words in the sentence are

merely helpful contextual clues for disambiguation of the target.

Coarse-Grained vs. Fine-Grained WSD Sense-inventories (see above) have differ-

ing opinions as to what constitutes a sufficient distinction between two senses, or con-

versely, when two shades of meaning are similar enough to fall into the same sense.

Some sense inventories (e.g., Oxford Dictionary of English) employ a hierarchical

structure, where the top level corresponds to coarse-grained distinctions, and lower

levels distinguish between increasingly fine shades of meaning. It is widely recognized

(see Edmonds and Kilgarriff 2002; Navigli 2006; Snow et al. 2007) that differing levels

of granularity are suitable for different tasks. For many applications (e.g., information

retrieval) coarsely defined senses may be more useful (see Snow et al. 2007 for dis-

cussion). For example, the word sense has five senses in WordNet, of which two were

grouped together by the annotators in the Senseval 2 workshop (see Section 2.3.3.2),

to form the following four coarse-grain senses.

1. a. A general conscious awareness.

(e.g., a sense of security)

b. The faculty through which the external world is apprehended.

(e.g., a sense of smell)

2. The meaning of a word.

(e.g., The dictionary gave several senses for the word)
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3. Sound practical judgment.
(e.g., I can’t see the sense in doing it now)

4. A natural appreciation or ability.

(e.g., keen musical sense).

Senses 1a and 1b represent different aspects of the same general meaning – that of

feeling or perception.

Co-occurrence Two words are said to co-occur if they both appear within a speci-

fied distance (window) of one another. Distance can be measured in terms of words,

sentences, paragraphs, etc. For instance, in the sentence “The quick brown fox jumped

over the lazy dog”, the words quick and fox co-occur within a 3-word window, but fox

and lazy do not, since they are more than three words apart. They do, however, co-

occur within the same sentence. The Distributional Hypothesis (Harris, 1985) posits

that words which tend to co-occur with a target word provide a strong indication of its

meaning. Therefore, features based on co-occurrence counts are common in the field

of WSD.

Distributional Similarity Based on the Distributional Hypothesis (see above), words

which have similar patterns of co-occurrence (tend to co-occur with the same words)

are expected to have similar meaning. Distributional similarity metrics are ways of

quantifying this type of similarity. They assume a vector representation (see Sec-

tion 3.2.3) based on some form of co-occurrence information, and provide the means

of quantifying the similarity (or, conversely, the distance) between the two words, by

comparing their vector representations.

Semantic/Dictionary-Based Similarity A method for measuring similarity between

words (or between word-senses) using the information provided in a lexical resource,

such as a dictionary. The WordNet Similarity package (Pedersen et al., 2004), is one

of the most popular collections of such methods, providing implementations of several

semantic similarity metrics for WordNet (see Section 2.3.1).
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2.3 Resources

2.3.1 Sense Inventories

In order to adequately define the task of disambiguation, an agreed-upon sense inven-

tory must be established. Such an inventory provides the list of ambiguous words, and

defines the possible senses for each word.

Traditionally these sense inventories have been well-known dictionaries, such as

the Oxford Dictionary of English and Longman’s Dictionary of Contemporary En-

glish. Several WSD methods (e.g., Yarowsky 1992; Mohammad and Hirst 2006) have

also made use of Thesauri, such as Roget’s Thesaurus and the Macquire Thesaurus.

Dictionaries define the senses using glosses in natural language format, whereas the-

sauri define senses in terms of synonymous words. The latter format is easier to process

computationally. Unfortunately, traditional thesauri were not designed as sense inven-

tories to assist in language comprehension (this task was left to dictionaries), but rather

to provide assistance for humans when writing. This fact affected the way the thesauri

were constructed, which senses were considered and included, and what information

was provided in the entries.

With the advances of computational linguistics, many well established sense in-

ventories have been converted to machine readable form. There have also been new

resources designed from the start with the aim of providing data for computational pro-

cessing of language. One of the most widely-used resources in the NLP community

is WordNet (Fellbaum, 1998). This resource is essentially a dictionary and thesaurus

combined, represented in a graph-like structure. English nouns, verbs, adjectives and

adverbs are organized into synonym sets (graph nodes), each representing one under-

lying lexical concept. These synsets are linked together by labeled edges representing

different linguistic relations. These relations are primarily hypernymy/hyponymy (su-

perordinate/subordinate), antonymy, entailment, and meronymy/holonymy. There are

also links representing derivationally related forms, attributes and “see-also” relations.

The noun brother has the following entries in WordNet:

• Sense 1: brother, blood brother (a male with the same parents as someone else)

“my brother still lives with our parents”

• Sense 2: brother (a male person who is a fellow member (of a fraternity or

religion or other group)) “none of his brothers would betray him”
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• Sense 3: buddy, brother, chum, crony, pal, sidekick (a close friend who accom-

panies his buddies in their activities)

• Sense 4: brother, comrade (used as a term of address for those male persons

engaged in the same movement) “Greetings, comrade!”

• Sense 5: Brother ((Roman Catholic Church) a title given to a monk and used as

form of address) “a Benedictine Brother”

Each entry contains a list of synonymous words and a gloss (in parenthesis) de-

scribing the meaning shared by the members of the synset. Many synsets also give one

of more examples of usage (in quotation marks). Each synset also lists the relations

in which it takes part. Nouns and verbs are organized into hierarchies based on the

hypernymy/hyponymy relation between synsets. An example of a portion of the noun

hierarchy is shown in Figure 2.1. The synsets representing the first sense of brother are

linked through the antonymy relation to the synset of (the first sense of) sister . The

synset for bone is linked to arm and leg through the meronymy (part-of) relation, and

to organic substance through the hyponymy (is-a) relation.

Adjectives are arranged in clusters containing head synsets (an antonymous pair,

or occasionally a triplet) and satellite synsets, representing concepts that are similar in

meaning to the concept represented by a head synset. Adverbs are often derived from

adjectives, and sometimes have antonyms. Therefore the synset for an adverb usually

contains a lexical pointer to the adjective from which it is derived.

The first publicly-available version of WordNet was 1.5 (released in 1995). This

was created by a team of lexicographers, basing themselves primarily on words and

senses found in the SemCor corpus (see Section 2.3.3.1). Over the years, there have

been several versions of WordNet, as more lexical items were added and changes and

revisions were made. The latest version (WordNet 3.0) contains a total of 155,287

unique strings, divided into 117,659 synsets. These are composed of four part-of-

speech portions. The noun portion contains 117,798 words and 82,115 synsets. The

verb portion has 11,529 words and 13,767 synsets. The adjective portion has 21,479

words and 18,156 synsets, and the adverb portion 4,481 words and 3,621 synsets.

WordNet has been widely used in WSD research, both as a sense inventory (see

discussion in Kilgarriff and Palmer 2000), and as a knowledge resource in WSD algo-

rithms (for examples, see Section 3.2).

WordNet enjoys widespread popularity, and many tools have been designed which

make use of its data. One such resource is the WordNet Similarity package (Pedersen
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Figure 2.1: An example of three semantic relations (hyponymy, antonymy and

meronymy) in a portion of the WordNet noun hierarchy. From Miller et al. (1990).

et al., 2004). This resource contains implementations of different methods which have

been proposed for automatically measuring the semantic similarity between synsets in

WordNet. These include methods which rely on the WordNet graph structure, corpus

statistics, the WordNet glosses and usage examples, and on combinations thereof. For a

good overview of the different methods, see Pedersen et al. (2004), and for an in-depth

comparison see Budanitsky and Hirst (2004).

Despite the widespread use of WordNet, and the enormous amount of information

contained therein, there are several problems with its use for WSD. One problem is the

absence of a similar resource in other languages. Though there are attempts to create

WordNets in other languages (e.g., Vossen 1998), the effort involved is enormous, and

for many less widely-spoken languages there is little hope of a similar resource in

the near future. Another criticism is that the division of senses in WordNet is often

extremely fine-grained (Edmonds and Kilgarriff, 2002), and therefore can be more of a

hindrance than an assistance in many real-world applications. Often the disadvantage

of the increase in data sparseness and the difficulty in automatically detecting fine

distinctions outweigh the small benefit these distinctions provide to the application

(see Snow et al. 2007).

There have been several attempts (e.g., Agirre and de Lacalle 2003; Navigli 2006)

to provide a coarser-grained division of WordNet synsets, by unifying groups of synsets

which are only marginally distinct. Ideally, such groupings should be done when creat-

ing the sense inventory. When this was not done, producing such a grouping manually
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Figure 2.2: An example of an annotated sentence and related structure from

OntoNotes. The sentence structure is represented with a syntactic tree (upper-left). The

argument structure of the verbs in the sentence is indicated (upper-right), co-referring

entities are resolved (lower-left), and the portions of the concept hierarchy relevant to

the sentence are shown (lower-right). Corresponding elements between these struc-

tures are linked.

is usually infeasible, considering the size of a wide coverage sense-inventory. Instead,

it is necessary to rely on automatic methods, at the cost of reduced accuracy.

The OntoNotes project1 (Hovy et al., 2006) is a collaboration between several uni-

versities and companies. It aims to provide a publicly available annotated corpus com-

prised of various genres of text (news, conversational telephone speech, weblogs, use

net, broadcast, talk shows) in three languages (English, Chinese, and Arabic). The

text is annotated with structural information (syntax and predicate argument struc-

ture) and shallow semantic information (i.e., word senses linked to an ontology and

co-reference). These layers of annotation, all making use of a common ontology and

indexing system, provide a level of semantic representation far beyond the entity and

relation types annotation presently in use in many tasks. An example of an annotated

sentence, along with the relevant structure, is shown in Figure 2.2. The creators put a

strong emphasis on the quality of annotation, realizing the importance this has when

used to train machine learning algorithms. Therefore, they aim to ensure that every

layer of annotation has at least 90% inter-annotator agreement. Pilot studies they per-

formed have shown that predicate structure, word sense, ontology linking, and coref-

erence can all be annotated rapidly and with better than 90% consistency. The creators

1http://www.bbn.com/ontonotes
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of OntoNotes hope it will fundamentally change the field of natural language process-

ing, similarly to the Penn TreeBank and WordNet, and enable applications to break the

current accuracy barriers in transcription, translation and question answering.

2.3.2 Corpora

Large-scale machine readable corpora provide an important resource in unsupervised

WSD. Since unsupervised algorithms are not provided with labeled training exam-

ples, they must learn as much as possible from other sources. Large-scale corpora can

provide important information about the characteristics of the data on which the algo-

rithms will be evaluated, as well as statistical properties of the words (e.g., frequency,

common usage patterns). In this section we present the corpora we used in our work.

2.3.2.1 British National Corpus (BNC)

The British National Corpus (Clear, 1993) is a 100 million word collection composed

of 4049 samples of written and spoken language from a wide range of sources, de-

signed to represent a wide cross-section of British English from the later part of the

20th century, both spoken and written. The written part (90%) contains a wide variety

of text from different domains. It includes, among other sources, newspaper articles,

journals, academic literature and fiction, letters, and school and university essays. The

spoken part (10%) consists of transcription of informal conversation (selected in a de-

mographically balanced way to represent different ages, regions and social classes),

and spoken language from a range of contexts, from formal meetings to radio shows.

The BNC is a widely used resource for natural language processing.

2.3.2.2 Wall Street Journal (WSJ)

The Wall Street Journal2, is a business publication providing news with a strong fi-

nancial and business aspect. As a publicly available corpus, the Wall Street Journal

comes in two parts. The first, containing approximately 30 million words and com-

posed of articles from 1987-1989, has been widely used in NLP. It is the base of the

manually annotated DSO (Ng and Lee, 1997) , Penn Treebank (Marcus et al., 1993),

and PropBank (Palmer et al., 2005) corpora. The second part, containing articles from

the years 1994-1996, approximately 40 million words, is available as part of the North

American News Text Corpus (Graff, 1995).

2http://online.wsj.com
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2.3.3 Evaluation Datasets

An important part of the study of word sense disambiguation is the availability of

standard evaluation datasets and metrics. These allow reliable quantification of per-

formance and accurate comparison between methods under identical conditions. It is

therefore important to present the evaluation resources we used in our work.

2.3.3.1 SemCor

The SemCor corpus3 (Landes et al., 1998), created by the Princeton University, is a

subset of the English Brown corpus (Kucera and Francis, 1967). It is composed of

352 texts, and contains approximately 700,000 running words. For 186 texts (more

than 200,000 content words), all open class words (nouns, verbs, adjectives, and ad-

verbs) are annotated with part-of-speech, lemma and sense information, while in the

remaining 166 texts only verbs are annotated with lemmas and senses. In total, the

“all-words” component of SemCor has 359,732 tokens among which 192,639 are se-

mantically annotated, while the “only-verbs” component has 316,814 tokens, among

which 41,497 verb occurrences are semantically annotated. WordNet version 1.6 was

used as the sense inventory, but the annotation has been automatically mapped to all

later versions of WordNet.

The corpus was created to guide the WordNet annotators with regard to the possi-

ble senses in context, discover words and senses missing from WordNet, and provide

examples of the senses in context. The order of senses in WordNet is according to

their frequency in SemCor. Senses that do not appear in the corpus are ordered arbi-

trarily, after those which are attested (McCarthy et al., 2004). Information about the

sense frequencies of a word, and particularly the identity of the first sense in WordNet

(i.e., the most frequent sense in SemCor), has been used extensively in both supervised

(e.g., Hoste et al. 2001) and unsupervised (e.g., Galley and McKeown 2003) WSD

algorithms, as a fallback in cases where local contextual information is insufficient.

SemCor is one of the largest corpora which is sense-annotated for all words, and

along with its matching sense-inventory, WordNet, provides a standard evaluation re-

source for WSD algorithms.

3SemCor is publically available at http://www.cs.unt.edu/rada/downloads.html.
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2.3.3.2 Senseval and Semeval

Much of the progress in WSD is due to workshops and evaluation exercises organized

by Senseval, an international organization devoted to the evaluation of word sense

disambiguation systems. Its purpose is stated in the Constitution of Senseval4:

• To organise activities for the evaluation of word sense disambigua-
tion programs.

• To promote interest in the Lexicon and Word Sense Disambiguation
(WSD).

• To provide members of the ACL and ACL-SIGLEX having a special
interest in WSD with a means of exchanging news of recent research
developments and other matters of interest.

• To sponsor meetings and workshops on WSD and related themes that
appear to be timely and worthwhile.

The constitution of Senseval also states that along with understanding of the impor-

tance of WSD in application of language technology, the organization’s underlying

goal is to the further the understanding of lexical semantics and polysemy. In order to

study and evaluate WSD, Senseval has primarily focused on stand-alone WSD, despite

acknowledging that WSD, in many applications, is an inseparable part of a complex

system. The SENSEVAL organization was started in 1997, following a workshop,

“Tagging with Lexical Semantics: Why, What, and How?”, held at the conference on

Applied Natural Language Processing.

Senseval-15 (Kilgarriff and Palmer, 2000) was held in the summer of 1998, cul-

minating in a workshop at Herstmonceux Castle, England. Following the success of

the first workshop, Senseval-26 (Preiss and Yarowsky, 2001) was held in 2001, in

conjunction with ACL in Toulouse. Senseval-2 included tasks for twelve languages,

including Chinese, Dutch, Estonian and Korean. Senseval-37 (Mihalcea and Edmonds,

2004) took place in 2004, followed by a workshop held later that year in Barcelona, in

conjunction with ACL. Senseval-3 included 14 different tasks for core word sense dis-

ambiguation, as well as identification of semantic roles, multilingual annotations, logic

forms and subcategorization acquisition. Semeval-1/Senseval-48 (Agirre et al., 2007)

took place in Prague in June 2007, in conjunction with ACL. There were 19 tasks,

4http://www.senseval.org/overview.html
5http://www.itri.brighton.ac.uk/events/senseval/ARCHIVE/index.html
6http://www.sle.sharp.co.uk/senseval2
7http://www.senseval.org/senseval3
8http://nlp.cs.swarthmore.edu/semeval
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including one on cross-language information retrieval and one on the evaluation of

sense-discrimination, as well as the standard stand-alone all-words and lexical-sample

evaluation tasks. All Senseval workshops have made their datasets available in the

public domain.

2.3.3.3 All-Words vs. Lexical Sample

WSD algorithms are commonly evaluated on two tasks: all-words and lexical-sample.

In the all-words setting, the systems being evaluated must disambiguate all the (con-

tent) words in a given piece of text, according to a sense-inventory containing a list of

possible senses for each word. In the lexical sample setting, a list of words is selected

by the task designers, and the systems are evaluated according to their performance

on (only) these words. While the all-words task is a more representative of overall

WSD performance, it has several problems. From a pragmatic perspective, creating

an all-words sense-labeled corpus is very labour-intensive, and even large quantities of

text contain only few instances of low-to-medium frequency words, making accurate

evaluation difficult. Also, it is not clear that all-words is the task for which a WSD

system would be applied in a real-world application. For purposes of information ex-

traction and question answering, for instance, it might be more practical to focus on a

few words whose variation in meaning strongly influences the results.

2.4 Related Work Overview

A detailed overview of the entire field of WSD is unfeasible in this context. We chose

instead, at the beginning of each chapter, to provide detailed descriptions of previous

work that is directly related to that presented in the chapter. This provides a natural

division of related work in the field into three main categories. In Chapter 3 we give an

overview of classic unsupervised WSD methods, which make use of a standard sense

inventory and lexical knowledge in a variety of approaches. In Chapter 4, we address

methods for unsupervised creation of labeled data and semi-supervised bootstrapping

techniques which lie on the boundary between supervised and unsupervised methods.

Finally, in Chapter 5, we describe methods for sense-induction, which is a completely

unsupervised setting and does not make use of a predefined sense inventory or lexical

resources. Examples for each setting are provided in each case. Together, the related-

work sections of each chapter provide the background for the issues which are the
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focus of this thesis – the nature of the gap between supervised and unsupervised WSD

techniques, and the steps that can be taken to diminish it.

2.5 Summary

In this chapter, we provided some necessary background regarding the problem of

word sense disambiguation, and its research. We introduced relevant terminology and

described data and evaluation resources from the field which we use in this thesis. We

concluded with an overview of related previous work, which links together the specific

areas of the field discussed in later chapters, and places them in a global context.



Chapter 3

Ensemble Methods for Unsupervised

WSD

3.1 Introduction

As stated in the introduction to this thesis, unsupervised methods hold the key to enable

wide-scale WSD for real world applications, since they are not restricted by the need

for sense-labeled data. However, unsupervised methods fall far behind supervised ones

in accuracy. Our goal in this thesis is to make use of methods and ideas from the

supervised learning framework to close the gap and help bring unsupervised WSD

closer to the accuracy achieved by supervised methods. In order to address this issue,

we must ask ourselves: what is the source of the accuracy gap? Is the problem in the

algorithms, in the choice of inventory, the data, or all of the above? In this chapter, as

a first step, we examine the issue of formulation and algorithms (leaving the issues of

data and sense-inventory for Chapters 4 and 5, respectively). We compare and contrast

existing methods for unsupervised WSD in order to answer the following questions:

(1) Do existing methods yield similar results? (2) Are they complementary and, if so,

how can they be combined? (3) What are the key elements in successful methods?

Methods for unsupervised WSD vary greatly in approach (e.g., type vs. token

approaches, see next section), formulation of the problem (e.g., graphical vs. vec-

tor space representation), and type of knowledge used (e.g., semantic relatedness vs.

distributional similarity). In Section 3.2 we provide a detailed discussion of these is-

sues along with examples. These differences result in a lack of standardization and

compatibility between different WSD algorithms which makes comparison and inte-

gration between different algorithms very difficult. On the other hand, the variety of

24
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approaches presents a wide spectrum of unsupervised WSD algorithms, with possi-

ble complementary aspects. Our comparison shows that the algorithms we examine

yield sufficiently diverse outputs, thus motivating the use of combination methods for

improving WSD performance. We present a method for leveraging this diversity by

combining the outputs as an ensemble in an unsupervised fashion. We thus take ad-

vantage of currently existing methods and resources without resorting to difficult mod-

ifications of the algorithms themselves. Combination approaches are a common tool in

the supervised framework, and have been studied previously for supervised WSD (Flo-

rian et al., 2002). However, their use in an unsupervised setting is, to our knowledge,

novel. We examine several existing and new unsupervised combination methods and

demonstrate that our combined systems consistently outperform the state-of-the-art

(e.g., McCarthy et al. 2004). Importantly, our WSD algorithms and combination meth-

ods are completely unsupervised, and do not make use of training material in any way,

nor do they use the first sense information available in WordNet.

This chapter consists of two main parts. In the first part, we provide an overview of

existing approaches to unsupervised WSD, and describe in detail the main algorithms

from each approach. Next, we present a detailed comparison of the performance of

a representative group of methods on SemCor (Miller et al., 1993). In the second

part, we motivate the use of combination methods to harness the diversity of existing

approaches in order to improve unsupervised WSD accuracy. We evaluate our unsu-

pervised ensemble methods, and show that they outperform state-of-the-art individual

methods. We conclude with a discussion of our results and findings, and directions for

future research.

3.1.1 Types vs. Tokens

An important issue in the task of WSD is that of type- versus token-based approaches.

Token-based approaches consider each occurrence of an ambiguous word indepen-

dently, and use its immediate context for disambiguation. However, it has been ob-

served that, in many cases, texts tend to follow the ‘one-sense-per-discourse’ rule (Gale

et al., 1992b). Human writers tend to restrict themselves to a specific sense of a word

they use throughout a piece of text, since switching senses in the middle of a dis-

course creates confusion for the reader and hinders comprehension. This tendency can

be exploited to help resolve ambiguity, and provides the foundation for the type-based

approach. If a certain instance of a word has highly ambiguous context, other instances
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of the same word (the same type) in the document can be used to infer the most prob-

able sense, since they are likely to share it. Therefore, if we know that most of the

other occurrences of the word in the document have sense s, we can assign that sense

to instances were we are less certain. Type-based methods go even further, and use this

as the main strategy for disambiguation. They consider all occurrences of a word (all

tokens of a single type) in the document as one unit, and determine a single sense for

it. The ‘one-sense-per-discourse’ approach assumes a single most probable sense in

a given discourse or document. The ‘predominant-sense’ approach (McCarthy et al.,

2004), takes this assumption a step further. It assumes a single, most frequent, sense

for each ambiguous word in a given corpus or domain. Many WSD algorithms use

the first sense from WordNet (which is the most frequent sense in the SemCor corpus)

as a fallback option when the method encounters an instance where the correct sense

cannot be reliably estimated (e.g., Galley and McKeown 2003, Hoste et al. 2001). This

fallback method has been shown to be very effective and in many cases outperforms

unsupervised WSD methods (McCarthy et al., 2004). However, the predominant sense

of a word can change from domain to domain. For example, the predominant sense of

the word bill depends on whether we are in the legal domain (where bill is likely to be

a statute in draft) or financial domain (where the bank-note sense is prominent), and

the most frequent sense of strike may differ when we move from a sports domain (a

term from baseball) to an employment/labor domain (the refusal-to-work sense). Esti-

mating the predominant sense in a given domain has been shown to be a difficult but

worthwhile task with regard to WSD (Koeling et al., 2005).

3.2 Unsupervised Approaches

This section provides a brief survey of a variety of approaches to unsupervised WSD,

with the intent of familiarizing the reader with the diversity of existing methods ad-

dressing the task. We chose to divide the approaches by the way they represent the

WSD problem. We describe three main categories: (1) Direct Context, (2) Graph-

based, and (3) Vector-based. The Direct Context approach is the most simple, and

does not make use of underlying structure. It works purely at the word level, and

makes only minimal assumptions about the connection between context and meaning.

Graph-based approaches, on the other hand, make strong structural assumptions. They

try to model the underlying semantic connection between words in the context, and

make heavy used of linguistic knowledge for this purpose. The methods then lever-
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age this structure to disambiguate and infer meaning. Finally, vector-based methods

approach the problem from a statistical, mathematical view. They posit that mathe-

matical similarity/distance metrics in an appropriate vector space can by used to infer

similarity in meaning, and help to resolve ambiguous cases. While this approach also

makes heavy use of the connection between context and meaning, it does so implicitly,

in the design of the vector-space, and makes fewer assumptions as to semantic struc-

ture. We present a detailed description of a few disambiguation methods demonstrating

the implementation of each approach.

3.2.1 Direct-Context Approach

3.2.1.1 Extended Gloss Overlap

Gloss Overlap was originally introduced by Lesk (1986) for performing token-based

WSD. It is one of the earliest and most basic methods proposed for unsupervised WSD,

and the foundation of many WSD algorithms. The method assigns a sense to a target

word by comparing the dictionary definitions of each of its senses with the words in the

surrounding context. The sense whose definition has the highest overlap (i.e., words in

common) with the context is assumed to be the correct one.

Banerjee and Pedersen (2003) present the concept of “extended glosses”. They

augment the dictionary definition (gloss) of each sense with the glosses of related

words and senses. These extended glosses increase the information available in es-

timating the amount of overlap. The original Extended Gloss Overlap measure pre-

sented in the article compares the extended glosses of two senses. The authors present

a WSD algorithm which uses this measure for disambiguation of a word in context by

calculating the extended-gloss overlap between each sense of the target word and the

extended glosses of all the senses of all words in the context. The sense of the target

which has the highest overall overlap is chosen as the correct one.

Due to the large amount of relations considered by the algorithm, it is computation-

ally complex, and expensive in terms of running time and computational resources. A

much simpler algorithm, based on the same idea, but closer to the original method

proposed by Lesk (1986), compares the extended gloss of each sense of the target

word directly to the surrounding context, rather than using the glosses of the individ-

ual context words. In this work, we focus on our simpler version of the Extended Gloss

Overlap algorithm.

As an example, consider the word arrow for which WordNet contains two senses:
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1. a mark to indicate a direction or relation.

2. a projectile with a straight thin shaft and an arrowhead on one end and stabilizing

vanes on the other; intended to be shot from a bow.

In the sentence “He shot the arrow, scoring ten points.” the original overlap method

would detect the overlapping word shot occurring in both the sentence and the gloss

of the second sense, allowing the algorithm to correctly label the word with that sense.

However, in the sentence “He fired the arrow at the target.”, no overlap (disregarding

function words) exists between the sentence and either of the glosses. However, if

we consider the extended gloss of the second sense, containing the gloss of its hyper-

nym projectile: “A weapon that is forcibly thrown or projected at a target but is not

self-propelled”, the overlap with the word target in the above sentence gives us the

correct sense.

The range of relationships used to extend the glosses is a parameter, and can be

chosen from any combination of WordNet relations. In their implementation, Banerjee

and Pedersen (2003) make use of all first-order WordNet relations, considering hy-

pernyms, hyponyms, holonyms, meronyms and words related through the ‘attribute’,

‘see-also’, ‘similar-to’, ‘entailed-by’ and ‘cause’ relation indicators. For every sense sk

of the target word, the following score is calculated:

SenseScore(sk) = ∑
Rel∈Relations

Overlap(context,Rel(sk)) (3.1)

where context is a simple (space separated) concatenation of all words in a context

window of length ±n around the target word w0 (i.e., all wi for −n ≤ i ≤ n, i 6= 0), and

Rel(sk) is the gloss (or glosses) of the synset(s) related to sk through relation-type Rel.

The overlap scoring mechanism is also parametrized and can be adjusted to normalize

the length of the glosses, to exclude examples from the glosses, or to ignore function

words.

3.2.2 Graph-Based Methods

Graph-based methods share some common elements. They all represent the context as

a graph where the nodes are word-senses and the edges represent semantic connections

between them. They then use different characteristics of the graph to determine the

sense of the target word that is in some way “optimal”. The methods differ mainly
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Distance Synonyms Siblings Other

same sentence 1.0 1.0 1.0

1 sentence 1.0 1.0 1.0

2 sentences 1.0 0.5 0.3

3 sentences 1.0 0.5 0.3

next paragraph 0.5 0.3 0.2

farther 0.5 0.3 0.0

Table 3.1: Weighting scheme used in Galley and McKeown (2003). Weights are based

on distance between the word instances in the text and on the type of relation: synonym,

sibling (hyponyms of the same hypernym), or other (hypernym, hyponym, antonym,

holonym and meronym).

in the amount of context they use (sentence or whole document), type of semantic

relationships considered, and in their measure of “optimality”.

3.2.2.1 Lexical Chains

Lexical cohesion is often represented via lexical chains, i.e., sequences of related words

spanning a topical text unit (Morris and Hirst, 1991). Algorithms for computing lexical

chains often perform WSD before inferring which words are semantically related. Here

we describe one such disambiguation algorithm, proposed by Galley and McKeown

(2003), while omitting the details of creating the lexical chains themselves.

Galley and McKeown’s (2003) method consists of two stages. First, for each doc-

ument, a graph is built representing all possible interpretations (senses) of the target

words in question. Word-senses are nodes in the graph, and semantic relations are

weighted edges. The text is processed sequentially, comparing each word against all

words previously read. If a relation exists between the senses of the current word and

any possible sense of a previous word, a connection (edge) is formed between the ap-

propriate words and senses. The strength of the connection is a function of the type of

relationship and of the distance between the words in the text (in terms of words, sen-

tences and paragraphs). The set of relations being considered is a parameter that can

be tuned experimentally. The original algorithm used the heuristic weighting scheme

shown in Table 3.1, which is based on the type of WordNet relation between the word-

senses, and the distance between them in the text.

In the disambiguation stage, all occurrences of a given word are collected together.
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For each sense of a target word, the strength of all connections involving that sense are

summed, giving that sense a unified score. The sense with the highest unified score

is chosen as the correct sense for the target word. In subsequent stages the actual

connections comprising the highest unified score are used as a basis for computing the

lexical chains.

The algorithm is based on the ‘one sense per discourse’ hypothesis and groups

together the information from every occurrence of the ambiguous target word in the

document, in order to decide the appropriate sense. It is therefore a type-based algo-

rithm, since it tries to determine the sense of the word in the entire document at once,

and not separately for each instance.

3.2.2.2 Structural Semantic Interconnections

Inspired by lexical chains, Navigli and Velardi (2005) developed Structural Seman-

tic Interconnections (SSI), a WSD algorithm which makes use of an extensive lexical

knowledge base. This knowledge base is primarily based on WordNet and its standard

relation set (i.e., hypernymy, meronymy, antonymy, similarity, nominalization and per-

tainymy) but is also enriched with collocation information representing semantic relat-

edness between sense pairs. Collocations are gathered from existing resources (such

as the Oxford Collocations, the Longman Language Activator, and collocation web

sites). Each collocation is mapped to the WordNet sense inventory in a semi-automatic

manner (Navigli, 2005) and transformed into a relatedness edge.

Given a local word context C = {w1, . . . ,wn} (the sentence containing the target

word), SSI builds a graph G = (V,E) such that V =
nS

i=1
senses(wi) and an edge (s,s′) ∈

E exists if there is at least one interconnection between s (a sense of the word) and s′ (a

sense of its context) in the lexical knowledge base. The set of valid interconnections is

determined by a manually-created context-free grammar consisting of a small number

of rules. In effect, interconnections are paths comprised of one or more relations,

connecting the two senses. Disambiguation is performed in an iterative fashion. First,

a set I is created, containing the senses of words yet to be disambiguated. Initially,

this set contains all senses of all words in the context. In each step, for each sense s of

a word in I , SSI determines the degree of connectivity between s and the other senses

in I :
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SSIScore(s) =
∑

s′∈I\{s}
∑

j∈Interconn(s,s′)

1
length( j)

∑
s′∈I\{s}

|Interconn(s,s′)|
(3.2)

where Interconn(s,s′) is the set of interconnections between senses s and s′. The con-

tribution of a single interconnection is given by the reciprocal of its length, calculated

as the number of edges connecting its ends. The overall connectivity score is then nor-

malized by the number of contributing interconnections. The highest ranking sense s of

word wi is chosen and the senses of wi are removed from the context I . The procedure

terminates when either I is the empty set or there is no sense such that its SSIScore

exceeds a fixed threshold.

3.2.2.3 Sequence Data Labeling

Mihalcea (2005a) uses a graph over word sequences, where the vertices are the differ-

ent senses of each word, and are connected by edges to senses of the k previous words

in the sequence (in the article, k = 3), in a fashion similar to Markov chains. The

algorithm consists of two stages. In the first stage, the graph is created. A Lesk-like

algorithm (see Section 3.2.1.1) over dictionary definitions is used in order to determine

the weight of the edges between senses. In principle, the strength of the edges could

be determined by any measure of sense similarity (for example, WordNet-based). The

authors chose to use a dictionary-gloss-based similarity measure in order not to rely on

the existence of a graph structure such as WordNet.

In the second stage, a score is associated with each node (word-sense). Starting

with uniform scores for the nodes, an iterative procedure is applied to the graph, prop-

agating the scores from each node to the next, based on the score itself, and on the

weight of the connecting edge. For this purpose, the PageRank algorithm (Brin and

Page, 1998) is used. Under certain conditions, which are fulfilled in this model, the al-

gorithm is guaranteed to converge to a stationary state. The procedure concludes when

convergence is reached. For each word, the sense with the highest score can then be

determined.

3.2.2.4 Summary

As mentioned at the beginning of Section 3.2.2, all graph-based methods share a sim-

ilar representation. However, they differ in several respects. The amount of context

used varies from a single sentence (SSI) to the whole document (Lexical Chains), with
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the sequence-labeling method falling somewhere between, since it considers the en-

tire document as a sequence, but only uses relations (edges) between words that are

close together in the text. The algorithms also differ with regard to whether they take

a type- (Lexical Chains) or token-based approach (SSI and Sequence Labeling), and

to the type of relations and weighting schemes they use. Finally, these different al-

gorithms employ very different scoring methods to determine the “optimal” senses,

ranging from a simple summation of edge weights (Lexical Chains), to an more com-

plex scoring scheme with an iterative factor (SSI), to a sophisticated random-walk

algorithm borrowed from the field of network analysis.

3.2.3 Vector-Based Models

3.2.3.1 Topic Tagging

Hearst and Schütze (1993) were among the first to consider a vector-based represen-

tation of word meaning. This representation was used to augment and rearrange an

existing structured lexicon (WordNet), and to classify new words into existing cate-

gories. It is the latter task that is of interest here. It is not, strictly speaking, a WSD

task, since words are assigned to general topics, rather than specific senses. However,

the method presented in the paper was the foundation of many later vector-based WSD

algorithms. In addition, topic-tags can be considered a form of coarse-grained sense

inventory. In fact, the Macquire Thesaurus annotates word senses with similar cate-

gory labels, and has been used as a sense inventory for WSD (e.g., Mohammad and

Hirst 2006).

Hearst and Schütze’s (1993) procedure works in two stages. In the first stage,

WordNet is divided into sections representing topics. The second stage assigns proper

names and new words (not in the existing lexicon) to one of these topics. Every word

in the target corpus (five months of articles from the New York Times) is represented

by a vector of co-occurrence counts. The cosine of the angle between the vectors of

two words in this space is taken as a measure of the semantic similarity between the

words. For each new word, the twenty nearest neighbors (most similar known words)

are found. The target word is assigned to the category to which the largest number of

neighbors belong. The algorithm was tested on proper nouns with a strong connection

to a specific category, and was largely successful (only one clear error) in assigning

them to their correct category. It was also evaluated on the 27 words from the test-set

document that did not have an entry in WordNet. On these words, the results were
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mixed, with 63% assigned to their correct category, 19% to related categories, and

19% incorrectly assigned.

3.2.3.2 Distributional and WordNet Similarity

McCarthy et al. (2004) propose a method for automatically ranking the senses of am-

biguous words from raw text. Their approach is based on the methodology presented

in Hearst and Schütze (1993), and stated more explicitly in Widdows (2003):

• For a unknown word, find ‘corpus-derived neighbors’ - words in the corpus

whose occurrences are similar to the target.

• Map the target word to the place in the taxonomy where these neighbors are most

concentrated.

In order to adapt this methodology to the task of sense ranking, some modification

must be made. Instead of placing a new word in the taxonomy, we wish to determine

which among the existing senses of the word is most appropriate to its use in the corpus.

Therefore, sense ranking is equivalent to quantifying the degree of similarity among the

neighbors and the different sense descriptions of the polysemous target word. Semantic

similarity between words and senses within the taxonomy can be calculated using one

of the many available WordNet similarity measures (see Section 2.3.1).

Let N(w) = {n1,n2, . . . ,nk} be the k most (distributionally) similar words to an

ambiguous target word w, and senses(w) = {s1,s2, . . .sn} the set of senses for w. For

each sense si and for each neighbor n j, the algorithm selects the neighbor’s sense which

has the highest WordNet similarity score (wnss) with regard to si.

wnss(si,n j) = max
nsx∈senses(n j)

wnss(si,nsx) (3.3)

The ranking score of sense si is then increased as a function of this WordNet similar-

ity score and the distributional similarity score (dss) between the target word and the

neighbor:

RankScore(si) = ∑
n j∈Nw

dss(w,n j)
wnss(si,n j)

∑
s′i∈senses(w)

wnss(s′i,n j)
(3.4)

The predominant sense is simply the sense with the highest ranking score (RankScore)

and can be consequently used to perform type-based disambiguation. The method

presented above has four parameters: (a) the semantic space model representing the
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distributional properties of the target words (it is acquired from a large corpus repre-

sentative of the domain at hand and can be augmented with syntactic relations such

as subject or object), (b) the measure of distributional similarity for discovering neigh-

bors (see Lee 1999 for an overview), (c) the number of neighbors that the ranking score

takes into account, and (d) the measure of sense similarity (see Budanitsky and Hirst

2001 for an overview of WordNet-based similarity measures).

3.3 Comparison of Unsupervised WSD Algorithms

3.3.1 Selection of Representative Algorithms

For our experiments, we chose four of the algorithms described in the previous sec-

tion: Extended Gloss Overlap (Overlap), Lexical Chains (LexChains), Distributional

and WordNet Similarity (Similarity) and Structural Semantic Interconnections (SSI).

These were selected to represent the wide variety of approaches to unsupervised WSD.

The methods differ in the type of representation they use, ranging from simple bag-of-

words to various graph representations to statistical vector models. The methods can

also be divided along other lines. The type of features and relations that they em-

ploy vary, from simple first order relations (word-overlap or first-order WordNet rela-

tions) to more complex statistical similarity and complex relationship paths in a graph.

Another important issue is the division between type- and token-based approaches.

Some of the methods described (Lexical Chains and Similarity) require the ‘one-sense-

per-discourse’ assumption in order to obtain enough information about the ambiguous

word. In fact, the Similarity approach makes an even greater simplification and uses

one sense of each word for the entire corpus. The methods vary in the amount of data

they employ for disambiguation. SSI and Overlap rely on sentence-level information

for disambiguation, whereas Similarity and LexChains utilize the entire document or

corpus. This enables the accumulation of large amounts of data regarding the ambigu-

ous word, but does not allow separate consideration of each individual occurrence of

that word. LexChains and Overlap take into account a restricted set of semantic rela-

tions (paths of length one) between any two words in the whole document, whereas

SSI and Similarity use a wider set of relations.

To summarize, we selected representative models from the categories described in

Section 3.2, which vary along the following dimensions: (a) the type of WSD per-

formed (i.e., token-based vs. type-based), (b) the representation and size of the context
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Method WSD Context Relations

LexChains types document first-order

Overlap tokens sentence first-order

Similarity types corpus higher-order

SSI tokens sentence higher-order

Table 3.2: Properties of four WSD algorithms.

surrounding an ambiguous word (i.e., graph-based vs. word-based, document vs. sen-

tence), and (c) the number and type of semantic relations considered for disambigua-

tion. The properties of the selected WSD algorithms are shown in Table 3.2.

3.3.2 Experimental Setup

We compared the results of the four selected methods on two different, though closely

related, tasks. The first task is finding the predominant sense of a polysemous word in

the text. Both the similarity-based method and the lexical chains method were initially

designed for this task. The Gloss Overlap and SSI methods were designed for the more

specific WSD task, and need to be modified to the task of predominant sense detection.

This adaptation was done by simply having the method find the correct sense of every

occurrence of the target word in the text, and selecting the sense which was chosen

most frequently.

The second task we addressed was the disambiguation of individual instances (to-

kens) in context, which is the most relevant in terms of application. This task is also

more precise, and therefore the accuracy on this task is expected to be much lower

than in the predominant sense detection task. In addition, only the Gloss Overlap and

SSI algorithms are designed for this task. For the other algorithms, the only option is

to tag all occurrences of each word with the predominant sense found for that word,

and hope that this sense is strongly predominant, and covers a large portion of the in-

dividual instances. This technique of using the estimated predominant sense to label

all instances, disregarding context, can also be applied to Gloss Overlap and SSI al-

gorithms, in the following manner. First, token-based disambiguation is performed on

all the ambiguous instances. Then, the most frequently chosen sense-label for each

word type is determined, and used to re-label all the instances of that word. For Gloss

Overlap and SSI, both the direct labeling and the predominant-sense technique were

tested.
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Our experiments were conducted on the SemCor corpus, on the same 2,595 polyse-

mous nouns (53,674 tokens) used as a test set by McCarthy et al. (2004). These nouns

were those which occurred more than twice in SemCor and more than ten times in

the British National Corpus (BNC). Our experiments use the WordNet (version 1.7.1)

sense inventory. However, the approaches are not limited to this particular lexicon

and can be adapted for use with other resources with traditional dictionary-like sense

definitions and alternative structure.

The following notation describes our evaluation measures: W is the set of all am-

biguous noun types in the SemCor corpus (|W |= 2,595). Senses(w) is the set of senses

for noun type w, while fg(w) and fm(w) refer to w’s most frequent (predominant) sense

according to the SemCor gold standard and our algorithms, respectively. Finally, T (w)

is the set of tokens of w and senseg(t) denotes the sense assigned to token t according

to SemCor.

We first measure how well our algorithms can identify the predominant sense, if

one exists:

Accps =
|{w ∈W | fm(w) = fg(w)}|

|W |
(3.5)

A baseline for this task can be easily defined for each word type by selecting a sense

at random from its sense inventory and assuming that this is the predominant sense:

Baselinesr =
1
|W | ∑

w ∈W

1
|senses(w)|

(3.6)

We evaluate the algorithms’ token-based disambiguation performance, using the de-

tected predominant sense fm(w) to label all tokens, by measuring the ratio of tokens

for which our models choose the right sense:

Accwsd/ps =
∑

w∈W
|{t ∈ T (w)| fm(w) = senseg(t)}|

∑
w∈W

|T (w)|
(3.7)

In the predominant sense detection task, in case of ties in SemCor, any one of the

predominant senses was considered correct. Also, all algorithms were designed to

randomly choose from among the top scoring options in case of a tie in the calcu-

lated scores. This introduces a small amount of randomness (less than 0.5%) in the

accuracy calculation, and was done to avoid the pitfall of defaulting to the first sense
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listed in WordNet, which is usually the actual predominant sense in SemCor (the order

of senses in WordNet is based primarily on the SemCor sense distribution) and thus

overestimating accuracy.

In all the experiments in this chapter, we used the χ2-test to evaluate statistical

significance. Unless otherwise stated, we took p < 0.01 to indicate a statistically sig-

nificant difference.

3.3.3 Parameter Settings

We did not specifically tune the parameters of our WSD algorithms on the SemCor cor-

pus, as our goal was to use hand labeled data solely for testing purposes. We selected

parameters that have been considered “optimal” in the literature, although admittedly

some performance gains could be expected had parameter optimization taken place.

For Overlap, we used the semantic relations proposed by Banerjee and Pedersen

(2003), namely hypernyms, hyponyms, meronyms, holonyms, and troponym synsets.

We also adopted their overlap scoring mechanism which treats each gloss as a string

of words and assigns an n-word overlap the score of n2. Function words were not

considered in the overlap computation. For LexChains, we used the relations reported

in Galley and McKeown (2003). These are all first-order WordNet relations, with the

addition of the siblings – two words are considered siblings if they are both hyponyms

of the same hypernym. The relations have different weights, depending on their type

and the distance between the words in the text (see Table 3.1). These weights were

imported from Galley and McKeown (2003) into our implementation without modifi-

cation.

Because the SemCor corpus is relatively small (less than 700,00 words), it is not

ideal for constructing a neighbor thesaurus appropriate for McCarthy et al.’s (2004)

method. This method requires each word to participate in a large number of co-

occurring contexts in order to obtain reliable distributional information. To over-

come this problem, we followed McCarthy et al. and extracted the neighbor the-

saurus from the entire BNC. We also recreated their semantic space, using a RASP-

parsed (Briscoe and Carroll, 2002) version of the BNC and their set of dependencies

(i.e., Verb-Object, Verb-Subject, Noun-Noun and Adjective-Noun relations). Similarly

to McCarthy et al., we used Lin’s (1998b) measure of distributional similarity, and con-

sidered only the 50 highest ranked neighbors for a given target word. Sense similarity

was computed using the Lesk’s (Banerjee and Pedersen, 2003) WordNet similarity
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Method Accps Accwsd/dir Accwsd/ps

UpperBnd 100% – 68.4%

SSI 53.7% 42.7% 47.9%

Similarity 54.9% – 46.5%

Overlap 49.4% 36.5% 42.5%

LexChains 48.3% – 40.7%

Baseline 34.5% – 23.0%

Table 3.3: Results of individual disambiguation algorithms on SemCor nouns2. Scores

represent accuracy on three tasks: predominant sense detection (Accps), context-

specific WSD (Accwsd/dir), and WSD using the automatically acquired predominant

sense to label all instances (Accwsd/ps).

measure1.

3.3.4 Results

The performance of the individual algorithms is shown in Table 3.3. We also include

the random-sense baseline discussed in Section 3.3 and the upper bound of defaulting

to the actual first (i.e., most frequent) sense provided by the manually annotated Sem-

Cor. We report predominant sense accuracy (Accps), and WSD accuracy when using

the automatically acquired predominant sense (Accwsd/ps) to label all instances of the

word. For token-based algorithms, we also report their WSD performance in context,

i.e., without use of the predominant sense (Accwsd/dir).

As expected, the accuracy scores in the WSD task are lower than the respective

scores in the predominant sense task, since detecting the predominant sense correctly

only insures the correct tagging of the instances of the word with that first sense. All

methods perform better than the baseline in the predominant sense detection task, and

the difference is statistically significant. LexChains and Overlap perform significantly

worse than Similarity and SSI, whereas LexChains is not significantly different from

1This measure is identical to our Extended Gloss Overlap from Section 3.2.1.1, but instead of search-
ing for overlap between an extended gloss and a word’s context, the comparison is done between the
two extended glosses of two synsets.

2The LexChains results presented here are not directly comparable to those reported by Galley and
McKeown (2003), since they tested on a subset of SemCor, and included monosemous nouns. They also
used the first sense in SemCor in case of ties. The results for the Similarity method are slightly better
than those reported by McCarthy et al. (2004) due to minor improvements in implementation.
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Overlap LexChains Similarity

SSI 30.48% 31.67% 37.14%

Similarity 35.87% 33.10%

LexChains 28.05%

Table 3.4: Portion of words for which each pair of algorithms correctly assigned the

predominant sense (as % of all words).

Overlap. Likewise, the difference in performance between SSI and Similarity is not

significant. With respect to WSD, all the differences in performance are statistically

significant.

Interestingly, for the Overlap and the SSI algorithms, using the detected predomi-

nant sense to tag all instances is preferable to tagging each instance individually (com-

pare Accwsd/dir and Accwsd/ps for these algorithms in Table 3.3). This means that a

large part of the instances which were not tagged individually with the predominant

sense were actually that sense.

As we can see from the last line of Table 3.3, on average, the most frequent sense

accounts for 68% of word occurrences. It is interesting to note that for all three meth-

ods, the disambiguation score using the calculated first sense is approximately 85% of

the predominant sense accuracy. This implies that the methods are more successful on

more frequent words or on those with a strong skew to the predominant sense (leading

to higher ratio than the expected 68%).

3.4 Ensembles for WSD

3.4.1 Motivation

A close examination of the performance of the individual methods in the predominant

sense detection task shows that while the accuracy of all the methods is within a range

of 7%, the actual words for which each algorithm gives the correct predominant sense

are very different. Table 3.4 shows the degree of overlap in assigning the appropri-

ate predominant sense among the four methods. As can be seen, the largest amount

of overlap is between Similarity and SSI, and this corresponds to approximately two

thirds the words they correctly label. This means that each of these two methods cor-

rectly assigns the predominant sense to more than 350 words which the other labels



Chapter 3. Ensemble Methods for Unsupervised WSD 40

incorrectly.

If we had an “oracle” which would tell us which method to choose for each word,

we would achieve approximately 82.4% in the predominant sense task, giving us 58%

in the WSD task. We see that there is a large amount of complementation between

the algorithms, where the successes of one make up for the failures of the others. This

suggests that the errors of the individual methods are sufficiently uncorrelated, and that

some advantage can be gained by combining their predictions. These observations,

along with the differences between the methods and the variety of the information

sources and interactions they use (as described in Section 3.3.1 and summarized in

Table 3.2), lead us to the next set of experiments, which investigate the unsupervised

combination of WSD algorithms.

3.4.2 Ensemble Methods

An important finding in machine learning is that a set of classifiers whose individual

decisions are combined in some way (an ensemble) can be more accurate than any of

its component classifiers, provided that the individual components are relatively ac-

curate and diverse (Dietterich, 1997). This simple idea has been applied to a variety

of classification problems, ranging from optical character recognition to medical di-

agnosis, part-of-speech tagging (see Dietterich 1997 and van Halteren et al. 2001 for

overviews), and notably supervised WSD (Florian et al., 2002).

Since our effort is focused exclusively on unsupervised methods, we cannot use

most machine learning approaches for creating an ensemble (e.g., stacking), as they

require a labeled training set. We therefore examined several basic ensemble combi-

nation approaches that do not require training data for parameter estimation.

3.4.3 Formulation

We define Score(Mi,s j) as the (normalized) score which a method Mi gives to word

sense s j. The predominant sense calculated by method Mi for word w is then deter-

mined by:

PS(Mi,w) = argmax
s j∈senses(w)

Score(Mi,s j) (3.8)

All ensemble methods receive a set {Mi}k
i=1 of individual methods to combine, so

we denote each ensemble method by MethodName({Mi}k
i=1).
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Direct Voting Each ensemble component has one vote for the predominant sense, and

the sense with the most votes is chosen. The scoring function for the voting ensemble

is defined as:

Score(Voting({Mi}k
i=1),s)) =

k

∑
i=1

eq[s,PS(Mi,w)] (3.9)

where eq[s,PS(Mi,w)] =

{
1 if s = PS(Mi,w)

0 otherwise

Probability Mixture Each method provides a probability distribution over the senses.

These probabilities (normalized scores) are summed, and the sense with the highest

score is chosen:

Score(ProbMix({Mi}k
i=1),s)) =

k

∑
i=1

Score(Mi,s) (3.10)

Rank-Based Combination Each method provides a ranking of the senses for a given

target word. For each sense, its placements according to each of the methods are

summed and the sense with the lowest total placement (closest to first place) wins.

Score(Ranking({Mi}k
i=1),s)) =

k

∑
i=1

(−1) ·Placei(s) (3.11)

where Placei(s) is the number of distinct scores that are larger or equal to Score(Mi,s).

Arbiter-based Combination An alternative to ensemble methods where each mem-

ber plays an equal part is arbiter-base combination. One WSD method can act as an

arbiter for adjudicating disagreements among component systems. It makes sense for

the adjudicator to have reasonable performance on its own. We therefore selected SSI

as the arbiter since it had the best accuracy on the WSD task (see Table 3.3).

For each disagreed word w, and for each sense s of w assigned by any of the systems

in the ensemble {Mi}k
i=1, we calculate the following score:

Score(Arbiter({Mi}k
i=1),s) = SSIScore∗(s) (3.12)

where SSIScore∗(s) is a modified version of the score introduced in Section 3.2.2.2

which excludes from the context used by SSI the senses of w which were not chosen

by any of the systems in the ensemble. Therefore, the context used for w is the set

of agreed senses and the remaining words of each sentence. This effectively reduces

the number of possibilities considered by the arbiter and can positively influence the
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algorithm’s performance, since it eliminates noise coming from senses which are likely

to be wrong.

An example of the way the various ensembles work is given in Table 3.5. For this

example we chose the the word ‘sense’, which has five senses in WordNet (for def-

initions of the senses and further details, see Section 4.3.2). The top portion of the

table gives the original scores assigned by each of the members in our ensemble to

each of the senses. As can be seen, the scoring systems vary considerably between

the different algorithms, and therefore can not be compared directly. The Probability

Mixture method partially addresses this problem by normalizing the scores to create

probability distributions. These can be summed to determine the most probable sense

taking into consideration the scores given by all the ensemble members. The Voting

ensemble uses only one piece of information from each member - the identity of the

most likely sense according to that algorithm. It does not take into consideration the

scores for the other senses. This approach has several advantages. Firstly, because

there is no standardized scoring system, the meaning of the scores is unclear. By only

considering the highest-scoring sense, this ensemble method is, in a sense, leveling

the field, and forcing all the members to use the same criterion. Secondly, the Voting

ensemble is the only one that can be used naturally with WSD methods that do not

use a scoring system, but only give the estimated correct sense. On the other hand,

when scores are available, the Voting ensemble throws away a lot of potentially useful

information. The Ranking ensemble tries to get the best of both worlds. It asks the

methods to rank the various senses, and in this way transforms the different scoring

mechanisms to a standard ranking system. It retains a large part of the information im-

plicit in the scores, although it dispenses with the exact score values. It can, therefore,

take into account the opinion of each ensemble method on all of the senses, not just

the highest-scoring one. It can also be used with WSD methods that do not provide

scores, under the assumption that the sense estimated as correct by the algorithm is

ranked first, and all the rest share second place.

3.4.4 Method and Parameter Settings

We assess the performance of the different ensemble systems on the same set of Sem-

Cor nouns on which the individual methods were tested. For the best ensemble, we

also report results for disambiguating all-nouns in the Senseval-3 all-words task, in

order to compare with state-of-the-art WSD algorithms. The parameter settings for the
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Sense 1 Sense 2 Sense 3 Sense 4 Sense 5

Original

Scores

SSI 16 41 30 0 3

Similarity 0.175 0.473 0.303 0.174 0.226

Overlap 22 179 32 61 19

LexChains 458.6 514.5 571.7 444.9 417.2

ProbMix

SSI 0.18 0.46 0.33 0.00 0.03

Similarity 0.13 0.35 0.22 0.13 0.17

Overlap 0.07 0.57 0.10 0.20 0.06

LexChains 0.19 0.21 0.24 0.19 0.17

Ensemble 0.57 1.59 0.89 0.52 0.43

Voting

SSI – vote – – –

Similarity – vote – – –

Overlap – vote – – –

LexChains – – vote – –

Ensemble 0 3 1 0 0

Ranking

SSI 3 1 2 5 4

Similarity 4 1 2 5 3

Overlap 4 1 3 2 5

LexChains 3 2 1 4 5

Ensemble 14 5 8 16 17

Table 3.5: Example of the operation of the different ensemble methods on the word

sense. Tables show the contribution of each component in the ensemble to each sense

under the different ensemble setups, and the resulting scores for the ensemble as a

whole. Winning scores are denoted in bold.
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Method Accps Accwsd/ps

UpperBnd 100% 68.4%

Rank-based 58.1% 50.3%

Voting 57.3% 49.8%

PrMixture 57.2% 50.4%

Arbiter-based 56.3% 48.7%

Similarity 54.9% 46.5%

SSI 53.5% 47.9%

Table 3.6: Accuracy for ensemble combinations on predominant sense detection

(Accps) and WSD using the detected predominant sense (Accwsd/ps).

individual members of our ensembles are the same as described in Section 3.3.3.

3.4.5 Results

Our results are summarized in Table 3.6. All ensemble methods perform significantly

better than the best individual methods, i.e., Similarity and SSI. On the WSD task,

the voting, probability mixture and rank-based ensembles significantly outperform the

arbiter-based one. The performances of the probability mixture and rank-based com-

binations do not differ significantly, but both ensembles are significantly better than

voting. One of the factors contributing to the arbiter’s worse performance (compared

to the other ensembles) is the fact that in many cases (almost 30%), none of the senses

suggested by the other methods was correct. In these cases, there is no way for the

arbiter to select the correct sense.

We also examined the relative contribution of each component to overall perfor-

mance. Table 3.7 displays the drop in performance by eliminating any single compo-

nent from the rank-based ensemble (indicated by −). The system that contributes the

most to the ensemble is SSI, which is also the best performing individual system, for

context-specific WSD (see Table 3.3). Interestingly, the removal of Overlap and Simi-

larity cause a similar decrease in WSD accuracy (0.6 and 0.9, respectively), despite the

difference between them in individual performance. However, the effect of their re-

moval on the predominant sense accuracy, is very different (0.5 for Overlap, compared

to 1.8 for Similarity). This seems to indicate that the decrease in WSD accuracy stems

from different sources in the two algorithms. The Similarity method performs weakly
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Ensemble Accps Accwsd/ps

–Rank-based 58.1% 50.3%

–Overlap 57.6% (−0.5%) 49.7% (−0.6%)

–LexChains 57.2% (−0.7%) 50.2% (−0.1%)

–Similarity 56.3% (−1.8%) 49.4% (−0.9%)

–SSI 56.3% (−1.8%) 48.2% (−2.1%)

Table 3.7: Decrease in accuracy as a result of removal of each method from the rank-

based ensemble.

Method Accps Accwsd/dir Accwsd/ps

UpperBnd 63.10% – 61.10% (68.72%)

Rank-Based 56.56% – 55.01% (63.89%)

SSI 55.76% 50.26% (59.97%) 53.39% (62.52%)

Similarity 45.84% – 46.88% (57.28%)

Baseline 29.50% – 21.50% (36.80%)

Table 3.8: Results of individual disambiguation algorithms on Senseval 3 nouns. Re-

sults in parentheses include monosemous nouns.

on frequent words, and strongly on rarer ones (as shown in Figure 3.1 and discussed be-

low). Its removal would therefore effect the ensemble’s accuracy mostly on infrequent

words, which translates to a smaller effect when counting actual instances. Overlap, on

the other hand, has similar performance in all frequency bands, and therefore a similar

effect on both predominant-sense accuracy, and per-instance WSD.

Figure 3.1 shows the WSD accuracy of the best single methods and the ensem-

bles as a function of the noun frequency in SemCor. We can see that there is at least

one ensemble outperforming any single method in every frequency band, and that the

rank-based ensemble consistently outperforms Similarity and SSI in all bands. Al-

though Similarity has an advantage over SSI for low and medium frequency words, it

delivers worse performance for high frequency words. This is possibly due to the qual-

ity of neighbors obtained for very frequent words, which are not semantically distinct

enough to reliably discriminate between different senses. This factor also strongly af-

fects the results of the voting combination, though it has less impact on the ranking and

probability mixture combination, which take into account the scores of all the senses.
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Figure 3.1: WSD accuracy as a function of noun frequency in SemCor, for Similarity,

SSI, and four ensembles.

Table 3.8 lists the performance of the rank-based ensemble on the Senseval 3 cor-

pus. We also report results for the best individual methods, namely SSI and Similarity.

Our baseline selects the first sense randomly and uses it to disambiguate all instances

of a target word. Our upper bound defaults to the first sense from SemCor (UpperBnd).

For the WSD task, aside from the accuracy on polysemous nouns, which is compara-

ble to our evaluation and results on SemCor, we also report in parentheses the overall

accuracy on nouns, including monosemous ones. These numbers are comparable to

the official scores reported for the Senseval 3 task. The best unsupervised system that

participated in Senseval 3 was IRST-DDD, and achieved 61.2% F-Score. This system

was developed by Strapparava et al. (2004) and performs domain driven disambigua-

tion (IRST-DDD). Specifically, the approach compares the domain of the context sur-

rounding the target word with the domains of its senses and uses a version of WordNet

augmented with domain labels (e.g., economy, geography).

Our rank-based ensemble outperforms Similarity and SSI as well as the IRST-DDD

system. This is an encouraging result, suggesting that there may be advantages in de-

veloping diverse classes of unsupervised WSD algorithms for system combination. We

further note that not all of the components in our ensemble are optimal. Predominant

senses for Lesk and LexChains were estimated from the Senseval 3 data, however, a
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larger corpus would probably yield more reliable estimates. Also, one would expect

better performance with better disambiguators (e.g., by substituting Lesk or LexChains

with IRST-DDD).

3.5 Discussion

Comparison of Existing Approaches As stated in the beginning of this chapter, one

of our goals was to perform a detailed comparison of existing WSD approaches under a

common framework. Our experiments revealed some important insights. The Overlap

and LexChains methods, which employed relatively simple representation and scoring

schemes, perform poorly compared to the other methods, and do not come close to

state-of-the-art results. Though simplicity is desirable, it can not come at the expense

of performance. SSI has the best performance among the methods we compared. How-

ever, it makes use of extensive lexical knowledge, much of which was laboriously col-

lected from various linguistic resources. It also uses a complex representation, which

relies heavily on the structure of WordNet. These resources do not exist in most other

languages, and are difficult to adapt and extend to new domains. This makes SSI prob-

lematic as a basis for a wide-coverage, general purpose, WSD algorithm. The last of

the algorithms we examined, Similarity, achieves good performance while requiring

only a small amount of lexical knowledge. Its vector-based representation is relatively

simple, and has the added advantage of being a standard representation employed by

many supervised algorithms. This means that tools or ideas borrowed from the super-

vised framework (like the ensemble idea used in this chapter) are more likely to work

well with this representation. The dependence of the method on corpus statistics rather

than lexical knowledge makes it easy to port to new domains and other languages,

provided sufficient (unannotated) text is available.

Predominant Sense One of the insights gained from our comparison has to do with

the usefulness and strength of using the automatically estimated predominant sense.

Our experiments have shown that using the predominant sense to tag all instances

can often outperform true token-based WSD methods. However, such an approach is

not a feasible disambiguation technique, since completely ignoring secondary senses

is unacceptable in most real-world situations where WSD is required. Nonetheless,

there is much to be gained from the strength of the predominant-sense. We now know

that the automatically-estimated predominant sense can be used as a fallback option in
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cases of uncertainty or insufficient contextual information, thus increasing recall with

little chance of losing precision.

Choice of Ensembles As stated in Section 3.4.2, our choice of ensembles was mo-

tivated by the need for simple methods which have minimal requirements from the

underlying WSD algorithms. This was desirable in order to make the ensembles as

widely applicable as possible. For this reason we chose ensembles which require only

that a score be assigned to each possible sense by each of the component WSD al-

gorithms. Our ensembles present several simple ways of making the most of these

raw numbers. Using more sophisticated methods, we can expect better results, but

at the cost of imposing restrictions on the underlying WSD algorithms, or requiring

additional data (e.g., a small amount of manually annotated data in order to learn an

optimal weighting of the component algorithms). In Section 6.3 we discuss possible

improvements and modifications that can be made to the simple ensembles presented

in this chapter.

Pros and Cons of Ensembles In this chapter we showed that simple ensemble tech-

niques borrowed from the supervised framework can improve the results of existing

unsupervised WSD methods without the extensive labor and system design needed

for building an algorithm from scratch. Ensemble methods are especially suited for

use with existing unsupervised WSD methods, since they turn one of the main dis-

advantages of existing methods – their lack of a standard representation, formulation

and approach to the problem – into an advantage. They leverage the diversity and

complementary nature of the different algorithms to help compensate for each other’s

weaknesses. In Section 6.2, we expand further on the type of scenario in which ensem-

bles are most useful. Combination approaches have several drawbacks, however. They

depend on the existence of a number of sufficiently diverse WSD systems, that can be

run on similar input, and provide output according to a single inventory. Unless this

setting already exists, it is doubtful whether creating it is worthwhile if the only aim is

to increase accuracy, since the improvements resulting from the ensemble methods are

relatively small. It is likely that, in such cases, investing the required time and effort in

building a system from scratch would be a better choice.

All-Words vs. Representative Samples Some classic unsupervised WSD algo-

rithms take the all-words approach, making use of linguistic connections between all



Chapter 3. Ensemble Methods for Unsupervised WSD 49

the words in the document. For instance, as described in Section 3.2.2, the Lexical

Chains approach makes use of discourse connections, while the Sequence-Labelling

approach makes use of both semantic connections and contextual connection between

the words in a graphical model. Most of these approaches assume a lexical resource

that provides information about every word and its relations to every other one.

On the other hand, the lexical-sample approach (so called because of the means

by which it is evaluated, see Section 2.3.3.3), addresses each word individually as a

separate disambiguation problem. From a machine learning perspective, this approach

better suits the supervised setup we are trying to emulate. In the supervised setting,

the common methodology is to train a classifier on each word individually, given the

labeled data for that word. This breaks the problem down into a collection of stand-

alone classification tasks, for which there exist many well-known machine learning

solutions. From a pragmatic perspective, taking into account the type of applications

and tasks for which unsupervised WSD is most useful, i.e., new domains, the single-

word approach has a further advantage. It is more adaptable, and allows the extension

and modification of a small part of the lexicon while leaving the rest intact. This means

that new words, or new senses of existing words, that are specific to the new domain

can be augmented to an existing WSD system with little cost. It also allows different

techniques to be used for some of the words. For instance, supervised methods can

be used for words for which much labeled data is available, or for word classes where

unsupervised methods show a weakness, such as highly polysemous or very infrequent

words, while unsupervised methods address the rest of the words. For these reasons,

the individual-word approach is most suited for our purposes in this thesis.

3.5.1 Summary

In this chapter we presented an evaluation study of four algorithms, representing four

well-known approaches to unsupervised WSD. Our comparison involved type- and

token-based disambiguation algorithms relying on different kinds of WordNet rela-

tions and different amounts of corpus data. Our experiments revealed two important

findings. First, type-based disambiguation can yield results superior to a token-based

approach. In other words, using the predominant sense is more accurate than disam-

biguating instances individually, even for token-based algorithms. Second, the outputs

of the different approaches we examined are sufficiently diverse to motivate combi-

nation methods for unsupervised WSD. We defined several unsupervised ensembles
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which combine the predominant sense outputs of individual methods, and showed that

the combined systems outperformed their best component algorithms both on the Sem-

Cor and Senseval 3 data sets.

The issues discussed above point the way to our next step. In order to provide

an accurate, reliable WSD system which can be adapted to new domains and other

languages, we can not rely on existing methods, but must develop our own. Our ap-

proach should use a vector-based representation, and preferably employ corpus-based

distributional similarity metrics. It should make use of ideas from supervised methods,

and treat each word on an individual basis. Our method should be simple, and rely

as little as possible on lexical resources. Finally, it should make use of the estimated

predominant sense in cases of uncertainty, since our experiments have shown this to

be a low-risk strategy for increasing recall.



Chapter 4

Automatic Creation of Sense-Labeled

Training Data

4.1 Introduction

In the previous chapter we examined and compared a variety of existing unsupervised

methods representing different approaches to the WSD problem. We noted the lack

of a standard methodology and representation such as is common in the supervised

framework, and suggested that this contributes to the accuracy gap between unsuper-

vised and supervised methods. We presented ways to leverage the diversity of existing

approaches to improve WSD results, using ensemble methods borrowed from the su-

pervised learning setup. Our detailed examination of WSD approaches highlighted

the importance of defaulting to the predominant sense in case of uncertainty, and the

effectiveness of the distributional similarity approach to WSD. Our experiments also

showed the potential benefits in borrowing ideas from the supervised methodology.

However, they also served to emphasize the disadvantages inherent in having to rely

on existing methods. Since these methods were designed independently of each other,

and without regard for a wider learning framework, using them as the core of a WSD

system does not result in an optimal setting. Our goal is to create a WSD system which

will be free of human annotation, but can provide accuracy at a level comparable to

state-of-the-art supervised methods. Our system should take into consideration the

lessons we learned in the previous chapter, regarding the importance of the predomi-

nant sense and the potential of distributional similarity metrics. In order to accomplish

this goal, it is necessary to design a system from the ground up, taking these factors

into account from beginning to end.

51



Chapter 4. Automatic Creation of Sense-Labeled Training Data 52

We therefore developed an unsupervised WSD method which circumvents the

question of actual disambiguation method, which is the main source of discrepancy

in unsupervised WSD, and deals directly with the data. It automatically creates la-

beled training data, suitable for use with standard supervised classifiers. Our approach

uses distributional similarity to find words which are similar to the target ambiguous

word (distributional neighbors). It then associates each neighbor with a sense, through

a semantic similarity measure. Sentences containing the neighbors are extracted from

a large corpus, and the neighbors are replaced with instances of the target word, labeled

with the sense associated with that neighbor. This procedure produces a labeled train-

ing dataset in a completely unsupervised fashion. The dataset can be used to train any

standard supervised classifier which in turn can be used for disambiguation of the test

data. Our approach shifts to the supervised setting before the disambiguation stage,

thereby taking better advantage of the benefits supervised learning presents, such as a

standard representation, and a selection of powerful, well studied, classifiers. We train

several classifiers, based on a variety of learning paradigms, on our automatically-

constructed dataset, and use them for disambiguation. The results are compared to

those of the same classifiers, trained on manually-labeled data, and to other unsuper-

vised WSD algorithms. Classifiers trained with our method significantly outperform

those using other methods of data generation, and represent a big step in bridging the

accuracy gap between supervised and unsupervised methods.

4.2 Related Work

As mentioned in the thesis introduction (Chapter 1), the problem of obtaining suffi-

cient labeled data for supervised methods (the data acquisition bottleneck) is a major

setback to useful and accurate word-sense disambiguation. Classical approaches to

unsupervised WSD usually deal with the lack of labeled data by using other sources

of information, such as lexical resources and linguistic knowledge. Some methods

(e.g., the Lexical Chains algorithm, see Section 3.2.2) rely on semantic relations be-

tween words, provided by linguistic resources such as WordNet. Others make use of

manually provided linguistic data (e.g., the collocation information used in the SSI al-

gorithm described there). In the previous chapter we mentioned some of the problems

with such approaches, notably the lack of a standardized formulation of the problem,

and incompatibility of difference approaches. There are few methods which address

the lack of labeled data directly, and these fall into two main categories: (1) extending
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or expanding a small existing dataset, using bootstrapping techniques, and (2) auto-

matically creating labeled data.

4.2.1 Bootstrapping Approaches

Yarowsky (1995) introduced one of the earliest semi-supervised algorithms for WSD.

The algorithm uses a small seed group of hand-labeled instances or collocation features

as a starting point in an iterative procedure. In each iteration, a classifier is trained

on the labeled data, and used to tag the unlabeled data. Instances which are tagged

with high confidence (scored above a certain threshold), are added to the labeled data.

The algorithm also makes use of the one-sense-per-discourse heuristic. That is, if

several instances in a single discourse are tagged with a single sense, the algorithm

tags the rest of the instances with the same sense. This procedure is repeated, and

in each stage, only tags scoring above the confidence threshold are retained. This

allows the algorithm to overcome misclassifications that occur in previous stages. The

algorithm makes use of the supervised Decision List method for WSD. The Decision

List method takes into account a wide range of potential evidence sources (lemmas,

parts-of-speech, inflected forms etc.) that co-occur with the ambiguous word (local or

distant co-occurrences, or dependency relations) and may provide information about

the word sense. These indicative features are ranked by their log-likelihood ratio score:

log p(sense A| f eature)
p(sense B| f eature) according to the training data (the algorithm considers only two

main senses for each word). In the end, the algorithm creates a decision list based on

the features, starting from the highest rank. The decision list is simply a set of if-else

rules, stating that “if feature X occurs, label with sense A, otherwise, proceed to next

rule”.

This procedure was applied to a small set of twelve nouns (due to the effort required

to hand-label the seed group). For each word, distinctions were made between only two

frequent but highly distinct senses, such as the living-organism and factory senses of

plant, and the bird and machine senses of crane. In this restricted setting, the algorithm

achieved high accuracy (96.1% average accuracy, with a most-frequent-sense baseline

of 63.9%).

This method is of interest because of the way it essentially creates a labeled dataset

which did not exist previously. It then makes use of the strengths of supervised meth-

ods to take advantage of this new data in a robust way. This bears some resemblance

to the method we propose in this work.
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Karov and Edelman (1996) describe an iterative method for WSD using a corpus and

a machine-readable dictionary. They create a seed set of tagged examples by using

words that appear uniquely in the definition of each of the senses. For each such re-

lated word, all sentences in the corpus which contain that word are labeled with the

associated sense. The algorithm then proceeds in an iterative fashion - each instance

(sentence containing the target word) in the corpus is labeled with the sense of the

most similar sentence in the seed set. Similarity between sentences is measured by

similarity of the words comprising them, and this, in turn, is measured by similarity of

the sentences in which the words appear throughout the corpus. The circularity of the

definitions is part of the iterative convergeant nature of the algorithm. In each iteration,

the results of the previous iteration are used to calculate the two similarities (between

sentences and between words), until the process converges. The algorithm was tested

on a set of four nouns (drug, sentence, suit, and player), to disambiguate between two

quite distinct senses. It achieved results similar to those of Yarowsky (1995), with

accuracy ranging from 90.5% to 94.8%, while using a much smaller, automatically

created, seed group.

This approach contains some elements similar to Yarowsky’s (1995) work and our

own. Both Yarowsky (1995) and Karov and Edelman (1996) use seeds, although the

latter construct the seed set automatically, using the semantic resource (the dictionary),

thereby making the method completely unsupervised. The method we present in this

chapter also makes use of an automatically constructed dataset, but the method of

construction is very different, and our procedure is not an iterative, bootstrapping, one.

We create the dataset as a whole, rather than “growing” is from a seed set. Also, the

notion of similarity discussed in the article is quite different from the one we employ.

Karov and Edelman (1996) measure similarity between sentences, and use the sentence

information to compare words. Our method makes use of distributional and semantic

similarity at the individual words level, and does not consider sentences at all.

4.2.2 Unsupervised Creation of Labeled Data

Gale et al. (1992a) pioneered the use of parallel corpora as a source of sense-tagged

data. Their key insight is that different translations of an ambiguous word can serve to

distinguish its senses. Ng et al. (2003) extend this approach further and demonstrate

that it is feasible for large scale WSD, and can achieve results comparable to those
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of the systems that participated in Senseval 2. They gather examples from English-

Chinese parallel corpora and use automatic word alignment as a means of obtaining a

translation dictionary. Translations are next assigned to senses of English ambiguous

words. English instances corresponding to these translations serve as training data.

This approach provides a useful method for automatically creating training data for

WSD, and is especially suited for disambiguation as part of a translation system. How-

ever, there are several drawbacks with this approach. First and foremost, it relies on

multi-lingual parallel corpora, which have limited availability. While more easily ob-

tained than manual sense-labeled data, they are still relatively rare, and there is no

guarantee that one will be available in the domain of interest. The approach also de-

pends on automatic word alignment methods, and therefore suffers if these methods

are inaccurate. The translation-based approach is restricted in terms of the senses it

can learn to distinguish, since only senses with different translations can be disam-

biguated. Finally, it is not entirely free from manual intervention. In order to be used

as a general WSD system, a manual mapping must be performed between translations

and senses.

Another way to automatically obtain sense-labeled data is to use related words

from a dictionary to learn contextual cues for WSD (Mihalcea, 2002). Perhaps the

first incarnation of this idea is found in Leacock et al. (1998), who describe a sys-

tem for acquiring topical contexts that can be used to distinguish between senses of

an ambiguous word. For each sense, related monosemous words are extracted from

WordNet by making use of the various relationship connections between sense entries

(i.e., hyponymy, hypernymy etc.). The system then queries the Web using these related

words. The contexts retrieved for the monosemous words related to a specific sense

are presumed to be indicators of that sense, and are used as training examples. A prob-

abilistic Bayesian classifier, which takes into account both topical and local features,

is trained on the retrieved examples. It is then used to disambiguate occurrences of the

target word.

The authors evaluated the effectiveness of their method on a manually annotated

corpus comprised of instances of one noun (line), one verb (serve) and one adjective

(hard). They examined and tried to draw conclusions regarding the effects of using

topical vs. local features for each of these words, as representatives of their respective

parts-of-speech. A similar idea, proposed by Yarowsky (1992), is to use a thesaurus

and acquire informative contexts from words in the same category as the target.

Such methods do not rely on parallel corpora, and obtain information about the
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senses from lexical resources. They are less restricted in terms of data, while offering

wider coverage. They still suffer from several problems, however, largely as a result

of the fact that the lexical resources are not anchored in the target domain. A detailed

examination of these issues, along with examples, is presented in Section 4.3.2.

Our own work uses insights gained from unsupervised methods with the aim of

creating large datasets of sense-labeled instances without explicit manual coding. Sim-

ilarly to McCarthy et al. (2004), we assume that words related to the target word are

useful indicators of its senses. Unlike McCarthy et al. (2004), however, our method

disambiguates words in context and is able to assign additional senses, besides the first

one. Our approach leverages the information provided by a lexical resource, but un-

like the lexical methods mentioned previously, is grounded in the domain of interest

through our use of distributional similarity. It does not require parallel corpora, and is

free of the restrictions of the translation-based approaches.

4.3 Methodology

4.3.1 Overview

We start off with the observation that different senses of a word tend to occur with

different contextual features, which can be used for disambiguation. This assumption

is the basis for most word-sense disambiguation algorithms, both supervised and unsu-

pervised, and dates back to Weaver (1949/1955). As an example, if we were given the

ambiguous word bat, and told that the playing-stick sense of bat tends to occur near

the word ball, whereas the animal sense tends to be the subject of the verb fly, we can

use these contextual features to disambiguate instances where one of these features is

present.

Standard supervised approaches to WSD use a variety of machine learning methods

to learn such contextual sense-cues from a large training set containing many exam-

ples of the target ambiguous word, each provided with a portion of local context and

annotated with the correct sense. In order to alleviate the need for manually annotated

data, the approach proposed here makes use of some of the principles first presented in

McCarthy et al. (2004). They made use of a combination of distributional and semantic

similarity measures in order to infer the predominant sense of a word in the corpus in

an unsupervised fashion (see Section 3.2.3.2). In our work, we take this approach sev-

eral steps forward, and use the combination of similarity methods in order to produce
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For each ambiguous word:

1. acquire neighbors of the target word (i.e., words which are

likely to share context features with certain senses of the

target).

2. associate each neighbor with the relevant sense(s).

3. replace instances of neighbors in the corpus with

sense-labelled instances of the target word.

4. train a supervised classifier for senses using the generated

data.

Figure 4.1: Outline of method for producing pseudo-labeled training data

a sense-labeled training set, without resorting to human intervention. This dataset can

be used by any supervised classifier to preform WSD.

Figure 4.3.1 summarizes our method. Similarly to McCarthy et al. (2004), we first

use a distributional similarity measure to obtain a list of words (distributional neigh-

bors) similar to the word we wish to disambiguate. The distributional information is

gathered from a large corpus of (un-annotated) text, in the domain of interest. Af-

ter acquiring the neighbors, our method diverges from that of McCarthy et al. (2004).

Whereas they use a semantic similarity metric to score the senses of the target word and

select the predominant one, we employ the semantic measure to separate the neighbors

into sense-specific groups. Once each neighbor is associated with a target sense, we

proceed with the creation of labeled data. We extract occurrences of each of the neigh-

bors in our corpus, and transform them into an instance of the target word, labeled

with the matching sense for that neighbor. The important steps, from an unsupervised

perspective are: (1) acquiring neighbors, and (2) associating neighbors with senses.

Each step can be implemented in several ways. We describe in more detail our choice

of implementation for each of these stages below.

Despite the simplicity of the method, we demonstrate that the resulting labelled
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training set can be successfully used for training supervised classifiers for WSD, which

outperform other state-of-the-art unsupervised methods and are only slightly inferior

to the performance of the same classifiers using expensive manually-annotated data.

Neighbor Acquisition There are many means of obtaining appropriate neighbors for

the target word. Broadly speaking, these fall into two categories: the neighbors can be

extracted from a corpus (distributional neighbors) or from a semantic resource, for ex-

ample the dictionary providing the sense inventory (semantic neighbors). A wealth of

algorithms have been proposed in the literature for acquiring distributional neighbors

from a corpus (see Weeds 2003 for an overview). They differ as to which features they

consider and how they use the distributional statistics to calculate similarity.

Lin’s (1998a) information-theoretic similarity measure is commonly used in lexi-

con acquisition tasks and has demonstrated good performance in unsupervised WSD

(McCarthy et al., 2004). It operates over dependency relations pertaining to the target

word. For example, in the sentence “The big bat flew into the cave”, the word bat par-

ticipates in two dependency relations – it is the subject of the verb flew, and is modified

by the adjective big.

In Lin’s (1998a) similarity measure, a word w is described by a set T (w) of co-

occurrence triplets < w,r,w′ >, where r represents the type of relation (e.g., object-of ,

subject-of , modified-by) between w and its dependent w′. A word’s triplet set can

be viewed as a sparsely represented feature vector for that word. The similarity be-

tween w1 and w2 is then defined as:

S(w1,w2) =
∑

(r,w)∈T (w1)∩T (w2)
I(w1,r,w)+ I(w2,r,w)

∑
(r,w)∈T (w1)

I(w1,r,w)+ ∑
(r,w)∈T (w2)

I(w2,r,w)
(4.1)

where I(w,r,w′) is the information value of w with regard to (r,w′), defined as:

I(w,r,w′) = log
count(w,r,w′) · count(r)

count(∗,r,w′) · count(w,r,∗)
(4.2)

The measure is used to estimate the pairwise similarity between the target word

and all other words in the corpus (with the same part of speech); the k words most

similar to the target are selected as its neighbors.

A potential caveat with Lin’s (1998a) distributional similarity measure is its re-

liance on syntactic information in the form of dependency relations. An accurate de-

pendency parser may not be available for all languages or domains, thereby restricting
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the use of this measure. An alternative is to use a measure of distributional similar-

ity which does not use syntactic information. One such measure is InfoMap1, which

considers only word co-occurrence statistics and therefore does not require a syntac-

tic parser. In InfoMap, each word is represented by a vector which records how many

times it co-occurs with other words. The similarity between any two words can then be

measured using a vector-distance measure such as cosine. Syntax-free distributional

neighbors have been previously used in word sense discrimination and disambiguation

(Schütze, 1998; Dagan et al., 1997). Syntax-free measures, such as InfoMap, have

the advantage of usability in cases where accurate dependency parsers are unavail-

able. However, dependency information is often less noisy, since it pertains directly

to the word of interest, whereas co-occurring words may be not be directly related.

This makes dependency-based measures more accurate, and a preferred choice when

syntactic information can be obtained.

As mentioned earlier, it is also possible to obtain neighbors simply by consult-

ing a semantic dictionary. In WordNet, for example, we can assume that WordNet

relations, (e.g., hypernymy, hyponymy, synonymy) indicate words which are seman-

tic neighbors. An advantage of using distributional neighbors is that they reflect the

characteristics of the corpus we wish to disambiguate and are potentially better suited

for capturing sense differences across genres and domains, whereas dictionary-based

neighbors ignore the corpus and domain. These issues, and their effects on WSD per-

formance, are further discussed in Section 4.6.

Associating Neighbors with Senses If the neighbors are extracted from WordNet,

it is not necessary to associate them with their senses as they are already assigned a

specific sense. Distributional similarity methods, however, do not provide a way to

distinguish which neighbors pertain to each sense of the target. For that purpose, we

adapt a method proposed by McCarthy et al. (2004). Specifically, for each acquired

neighbor, we choose the sense of the target which gives the highest semantic similarity

score to any sense of the neighbor. There are a large number of semantic similarity

measures to choose from (see Budanitsky and Hirst 2001 for an overview). We use

Lesk’s measure as modified by Banerjee and Pedersen (2003) for two reasons. First,

it has been shown to perform well in the related task of predominant sense detection

(McCarthy et al., 2004). Second, it has the advantage of relying only upon the sense

definitions, rather than the complex graph structure which is unique to WordNet. This

1http://infomap.stanford.edu
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makes the method more suitable for use with other sense inventories.

Note that unlike McCarthy et al. (2004), we are associating neighbors with senses,

rather than merely trying to detect the predominant sense, and therefore require more

precision in our selection. When it is unclear which sense of the target word is most

similar to a given neighbor (i.e., when the scores of two or more senses are close to-

gether), that neighbor is discarded. The degree of ‘closeness’ is a parameter which

depends on the data at hand and is tuned experimentally (in our experiment, we dis-

carded neighbors where the two most similar senses were within 20% of each other).

4.3.2 Example

As an example, we will show the complete process for disambiguating a word, using

the two neighbor types described above: distributional neighbors, using a large corpus

(BNC), and semantic neighbors from a lexical resource (WordNet). This choice of

corpus and lexical resource are natural ones, since our test data (from Senseval 2) is

composed of instances from the BNC, and uses WordNet as the sense inventory. The

word sense has five senses in WordNet, of which two were grouped together by the

Senseval 2 annotators, to form the following four coarse-grained senses.

1. a. A general conscious awareness.

(e.g., a sense of security)

b. The faculty through which the external world is apprehended.

(e.g., a sense of smell)

2. The meaning of a word.

(e.g., The dictionary gave several senses for the word)

3. Sound practical judgment.
(e.g., I can’t see the sense in doing it now)

4. A natural appreciation or ability.

(e.g., keen musical sense).

The first stage in the process involves the acquisition of sense-specific neighbors.

Using the Lin (1998a) distributional method described above on the BNC corpus, the

following neighbors were retrieved and associated with the relevant senses:
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• Neighbors of sense 1: awareness, feeling, instinct, enthusiasm, sensation, vi-

sion, tradition, consciousness, anger, panic, loyalty

• Neighbors of sense 2: emotion, belief, meaning, manner, necessity, tension,

motivation

No neighbors are associated with the last two senses, indicating that they are not preva-

lent enough in the corpus to be detected through the distributional similarity method.

This is borne-out by the sense frequencies in the test data, where the first two senses

comprise 38% and 39% of the instances respectively, and the third and fourth senses

account for only 19% and 4%.

Using semantic neighbors from WordNet, as described above, results in the follow-

ing sense-specific neighbors (excluding words not present in our corpus):

• Neighbors of sense 1: sentience, sensation, sensitivity, sensitiveness, sensibil-

ity, modality, module, knowingness, faculty, consciousness, cognizance, cogni-

sance, awareness, will, volition, understanding, speech, self-awareness, reten-

tiveness, retention, reason, memory, language, intellect, feel, attention

• Neighbors of sense 2: signified, acceptation, signification, significance, mean-

ing, import, symbolization, symbolisation, subtlety, spirit, shade, refinement,

referent, purport, point, overtone, nuance, nicety, moral, lesson, intent, inten-

tion, gist, essence, effect, core, connotation, burden

• Neighbors of sense 3: gumption, logic, sagacity, judgment, judgement, discern-

ment, prudence, judiciousness, eye, discretion, circumspection

• Neighbors of sense 4: hold, grasp, appreciation

Wordnet, of course, contains information about all the senses it lists. We see, however,

that rarer, more specific, senses have fewer neighbors in WordNet (which are attested

in our corpus). We can also see one of the main problems with acquiring neighbors

from a semantic resource. Many of the neighbors are themselves ambiguous, and only

one of their senses (often a rare one) is related to our target sense. This is the case,

for example, with the words modality and faculty associated with sense 1, the word

shade associated with sense 2, and many more. Such neighbors may provide noisy and

misleading information.

A common approach to rectifying this problem is to select only monosemous re-

lated words. However, this approach tends to have the unwanted effect of removing
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many informative neighbors along with the noisy ones. These are the monosemous

neighbors from the previous list:

• Neighbors of sense 1: cognisance, self-awareness

• Neighbors of sense 2: signified, signification, nuance, moral, intention

All neighbors of the two rarer senses were eliminated, since they are ambiguous. Un-

like the distributional neighbors, where the absence of neighbors for the last two senses

was an indication of their rarity, here this represents a limitation of the resource and

method used. However, the neighbors that remain are arguably less noisy and more

specific to the associated sense.

The advantages and disadvantages of both neighbor-acquisition methods can be

seen in the example above. While WordNet provides neighbors for all senses, they

are not necessarily relevant to the specific corpus, and do not exhibit the “replace-

ability” that the distributional neighbors do. In other words, they may have similar

meanings, but are not usually used in the same type of context, so are less useful for

extracting helpful contextual cues. The WordNet hierarchy is abstract, and often the

categories don’t fit the common usage or distinctions made in the text. In addition,

WordNet is primarily a dictionary, not a thesaurus, and so lists only words which are

strongly synonymous as synonyms. Words that are related less directly (e.g., hyper-

nyms, hyponyms) vary in their degree of synonymy, and are sometimes semantically

quite different, which again poses an obstacle when trying to learn contextual cues.

Once sense-specific neighbors are acquired, by one of the methods described above,

the next stage is to replace instances of the neighbors in our corpus with the target am-

biguous word labeled with the appropriate sense. For example, when encountering

the sentence “The philosophical explanation of authority is not an attempt to state the

meaning of a word” in the corpus, our method would automatically transform this to

“The philosophical explanation of authority is not an attempt to state the sense (s#2)

of a word.” This is done for every sentence in the corpus containing a neighbor. These

modified sentences, or pseudo-instances, comprise the training corpus we provide to

each of our machine learning algorithms. The classifier trained on these instances is

then used for disambiguating genuine instances of the ambiguous target word. Note

that if we were using only monosemous semantic neighbors, which do not include

the neighbor meaning, our method would ignore this sentence in the corpus, and we

would have less training examples. This means that different lists of neighbors lead to
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completely different training datasets, which may also vary considerable in size (see

Table 4.2)

4.4 Experimental Setup

4.4.1 Test Data

For the purpose of our experiments, we made use of the data provided for the En-

glish lexical sample task in Senseval 2 (Preiss and Yarowsky, 2001) and Senseval 3

(Mihalcea and Edmonds, 2004) workshops. Since our methods are unsupervised, and

therefore do not make use of the labels in the training data, we were able to merge the

training and test data for use in our evaluations.

Since our method does not require sense-tagged data, it could be applied to the

disambiguation of any word in the lexicon. This means it could be used for disam-

biguation in the all-words task. However, our approach is not strictly an online method,

since the procedure requires the unsupervised construction of a separate training set for

each word we wish to disambiguate, and training a machine-learning classifier for that

word using the dataset, before proceeding with the actual disambiguation. We chose

the lexical sample task as a proof of concept, to demonstrate that the method is feasible

and successful.

In our experiments, we made use of the coarse-grained sense grouping provided

for both Senseval datasets. It is widely recognized (see Edmonds and Kilgarriff 2002,

Navigli 2006, Snow et al. 2007) that differing levels of granularity are suitable for dif-

ferent tasks. For many NLP applications, coarse grained differences are more suitable

(see, for example, Moldovan and Mihalcea 2000), and finer distinctions may cause

more harm than good. In order to assess the effect of granularity on our method, we

also performed an experiment comparing the results on coarse- and fine-grained sense

distinctions.

The workshop organizers provided a small amount of surrounding context for each

instance (usually a sentence or two surrounding the sentence containing the target

word). This context was parsed using RASP (Briscoe and Carroll, 2002), to extract

part-of-speech tags, lemmatized forms of the words, and dependency information,

from which we extracted the feature representation of our instances (see Section 4.4.3).

We filtered the data by removing all instances for which the annotators disagreed on

the correct tagging. We also removed instances which were not correctly recognized
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by the parser (a target word tagged with the wrong part-of-speech, for example). These

comprised only 1.6% for the Senseval 3 data, but almost 18% of the Senseval 2 data.

The reason for this is the large number of multi-word expressions in Senseval 2, and

the inclusion of words that are more commonly verbs than nouns (such as grip), which

confused the parser. This was done to isolate the results of our system from the effects

of external processes, such as the accuracy of the parser. In cases where more than one

instance of the target word existed in the provided context, we disambiguated the first

mention, in order to eliminate the problems of identifying the correct instance of the

word. The original data consisted of 4835 training and test instances for Senseval 2,

and 4997 for Senseval 3. After filtering we retained 2985 instances for Senseval 2, and

4652 for Senseval 3.

As can be observed in Table 4.1, the two Senseval datasets differ considerably.

The Senseval 3 data has a higher level of ambiguity, and is therefore a more difficult

dataset. In addition, although Senseval 3 has a slightly lower percentage of first sense

instances, the higher ambiguity means that the skew is, in fact, much greater than in

Senseval 2. A large skew towards the predominant sense means there are less instances

from which we can learn about the rarer senses, and that we run a higher risk when

labeling an instance as one of the rarer senses (instead of defaulting to the predominant

one).

If we had access to an oracle, and labeled each word in our test data with its true

predominant sense, we would achieve 66.96% accuracy on the Senseval 2 dataset, and

62.15% accuracy on Senseval 3.

4.4.2 Automatically Created Training Data

As mentioned in Section 4.3 we retrieved neighbors using Lin’s (1998a) similarity

measure on a RASP parsed (Briscoe and Carroll, 2002) version of the BNC. We used

subject and object dependencies, as well as adjective and noun modifier dependen-

cies. We also created training data sets using collocational neighbors. Specifically,

using the InfoMap toolkit2, we constructed vector-based representations for individual

words from the BNC using a term-document matrix and the cosine similarity measure.

Vectors were initially constructed with 1,000 dimensions, the most frequent content

words. The space was reduced to 100 dimensions with singular value decomposition

(Berry et al., 1994). From the neighbors returned by the system, we selected only those

2http://infomap.stanford.edu/
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Senseval 2 # tags amb. 1st sense

art 84 2 48 (57%)

authority 113 4 60 (53%)

bar 267 7 176 (65%)

bum 94 2 80 (85%)

chair 184 2 163 (88%)

channel 57 4 29 (50%)

child 165 2 104 (63%)

church 145 3 76 (52%)

circuit 97 4 44 (45%)

day 331 5 206 (62%)

dyke 47 2 35 (74%)

facility 148 2 146 (98%)

fatigue 61 3 54 (88%)

feeling 132 4 81 (61%)

grip 31 5 21 (67%)

hearth 51 2 45 (88%)

material 155 3 81 (52%)

mouth 128 3 113 (88%)

nation 75 2 60 (80%)

nature 116 3 72 (62%)

post 148 4 86 (58%)

restraint 63 4 29 (46%)

sense 122 4 51 (41%)

spade 80 3 60 (75%)

stress 91 3 70 (76%)

total 2,985 3.28 66.96%

Senseval 3 # tags amb. 1st sense

argument 259 4 149 (57%)

arm 387 5 308 (79%)

atmosphere 173 5 112 (64%)

audience 259 2 244 (94%)

bank 371 8 278 (74%)

degree 340 5 231 (67%)

difference 297 4 179 (60%)

difficulty 64 2 59 (92%)

disc 262 4 110 (41%)

image 208 6 86 (41%)

interest 270 6 116 (42%)

judgment 94 5 29 (30%)

organization 164 4 136 (82%)

paper 206 4 104 (50%)

party 309 4 216 (69%)

performance 234 3 105 (44%)

plan 207 2 157 (75%)

shelter 240 4 113 (47%)

sort 226 3 184 (81%)

source 82 7 45 (54%)

total 4,652 4.35 62.15%

Table 4.1: Properties of the Senseval 2 and 3 lexical sample datasets used as test data.

For each word, we give the total number of labeled examples we used (#tags), the am-

biguity, or number of (coarse-grained) senses (amb.), and the number (and percentage)

of instances labeled with the most frequent sense (1st sense).
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Dataset Depend Co-Occur AllWN MonoWN

Senseval 2 172K 110K 246K 12.8K

Senseval 3 168K 135K 412K 14.5K

Table 4.2: Number of training instances obtained with our method when us-

ing dependency-based (Depend) and co-occurrence based (Co-Occur) distributional

neighbors, unfiltered WordNet neighbors (AllWN), and monosomous WordNet neigh-

bors (MonoWN).

which were nouns. Since the algorithm relies only on co-occurrence statistics, it re-

turns relevant words of any part-of-speech. However, our experiments focus solely on

nouns. Furthermore, using neighbors from other parts-of-speech as pseudo-instances

of our target ambiguous noun would introduce noise, and be likely to confuse the ma-

chine learning classifiers.

Finally, we also extracted neighbors from WordNet by selecting synonyms, anto-

nyms, hyponyms, hypernyms and siblings (i.e., hyponyms of the same hypernym) of

the target word, in that order. A problem often encountered when using dictionary-

based neighbors is that they are themselves polysemous, and the related sense is often

not the most prominent one in the corpus, which leads to noisy data. We therefore ex-

perimented with using all neighbors for a given word or only those which are monose-

mous and hopefully less noisy. In all cases we used 50 neighbors, the most similar

nouns to the target. Table 4.2 shows the number of training data instances we obtained

according to the different neighbor selection methods.

4.4.3 Feature Space

In order to represent the training and test instances in our supervised learning setup,

we used a feature set designed to capture both immediate local context, wider context

and syntactic context. We used six feature categories: ±10-word window, ±5-word

window, collocations, word n-grams, part-of-speech n-grams and dependency relations

(including verb-object, verb-subject, adjective-noun modifiers, and noun-noun modi-

fiers). These feature types have been widely used in various WSD algorithms (see Lee

and Ng 2002 for a detailed evaluation). An example instance with its feature vector

(containing features from all the categories we used) is presented in Figure 4.2. These

feature types have been widely used in various WSD algorithms (see, for instance,

Florian et al. 2002 and see Lee and Ng 2002 for an evaluation of the effectiveness of
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each of these feature categories to WSD). Our feature space is of high dimensionality,

containing every possible feature in the categories listed, but is very sparse, since only

a small number actually occur in the data. In all cases, we use the lemmatized version

of the word(s).

4.4.4 Supervised Classifiers

We experimented with three supervised classifiers, which are based on different learn-

ing paradigms. This allows us to examine the effect of our training-data creation pro-

cedure on different kinds of classifiers in order to judge which are most suited for

use with our method. All these classifiers have been previously used for the purpose

of WSD, and have shown competitive performance (see Niu et al. 2005b, Preiss and

Yarowsky 2001 and Mihalcea and Edmonds 2004).

Support Vector Machine (SVM) SVMs model classification as the problem of find-

ing a separating hyperplane in a high dimensional vector space. SVM classifiers focus

on differentiating between the most problematic cases - instances which are close to

one another in the high dimensional feature space, but have different labels. The SVM

classifier is discriminative, rather than generative, and does not explicitly model the

classes. SVMs have been used very successfully in many NLP tasks. We used the

multi-class bound-constrained support vector classification (SVC) version of SVM de-

scribed in Hsu and Lin (2001) and implemented in the BSVM package3. The only

parameter we provided was the misclassification penalty. We set this to a high value

(1000), in order to avoid labeling all instances with the most frequent sense.

Maximum Entropy Maximum Entropy based classifiers are a common alternative

to other probabilistic classifiers, such as Baysian classifiers, and have received much

interest in various NLP tasks, such as part-of-speech tagging (Ratnaparkhi, 1996)and

text classification (Nigam et al., 1999). Maximum Entropy classifiers represent a prob-

abilistic, model-based, global constrained approach. They assume a uniform, zero-

knowledge (maximal entropy) model, under the constraints of the training dataset. The

classifier finds the (unique) maximal-entropy model which comforms to the expected

feature distribution of the training data. Maximum Entropy classifiers tend to overfit

when provided with only small amounts of training data. In our case, where there is an

3http://www.csie.ntu.edu.tw/∼cjlin/bsvm/
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“The philosophical explanation of authority is not an attempt to state

the sense of a word.”

Topical Features

General Context

(ten preceding and

ten following words)

explanation

of

authority

is

not

. . .

Local Context

(five preceding and

five following words)

an

attempt

to

state

. . .

Collocation Features

Preceding Word the

Next Word of

Word N-Grams

Preceding Bigram state the X

Flanking Bigram the X of

Following Bigram X of a

Part-of-Speech N-Grams

Preceding Bigram Verb Det. X

Flanking Bigram Adj. X Prep.

Following Bigram X Prep. Det.

Dependencies

Verb-Object Dependency object of verb state

Figure 4.2: Example sentence representing an instance of the target word sense. The

table lists the feature types (left) and their associated values (right).
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abundance of (automatically) labeled data, we are more concerned with how well the

classifier handles the noise introduced by our automatic labeling scheme. We used the

optimized Megam implementation (Daumé III, 2004)4.

Label Propagation The basic Label Propagation algorithm (Zhu and Ghahramani,

2002) represents labeled and unlabeled instances as nodes in an undirected graph with

weighted edges. Initially only the known data nodes are labeled. The goal is to prop-

agate labels from labeled to unlabeled points along the weighted edges. The weights

are based on distance in a high-dimensional space. At each iteration, only the original

labels are fixed, whereas the propagated labels are “soft”, and may change in subse-

quent iterations. This property allows the final labeling to be affected by more distant

labels, that have propagated further, and gives the algorithm a global aspect. We used

SemiL5, a publicly available implementation of the label propagation algorithm (and

set all the parameters to the default values).

The purpose of this work is not to determine the best settings and parameters for

each of these classifiers, but rather to determine which classifier(s) work best with

our method of label generation, and how each is affected by use of labeled pseudo-

instances, rather than real human-annotated ones. For this reason, we made no attempt

to optimize the parameters of any of these classifiers, and tried to use the basic, out-of-

the-box settings. These settings are used for all our experiments. In addition, we use

the same feature space, throughout. This is a simple agglomeration of features com-

monly used for WSD, as described in Section 4.4.3. We did not attempt to manually

optimize the feature space to the task in any way.

4.4.5 Baselines and Comparisons

As an upper bound on expected accuracy, we compare to the results of the same clas-

sifiers when using manually-labeled data (under the same experimental settings). This

provides an estimate of the expected decrease in accuracy caused solely by the use of

our automatic data-labelling method. Given a more successful classifier, or a better set

of parameters for this task, which increases the accuracy on hand-labelled data, we can

expect a similar increase when using our automatically-labelled data.

4http://www.cs.utah.edu/∼hal/megam/
5http://www.engineers.auckland.ac.nz/∼vkec001
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We also compare our method to two other unsupervised ones. The first of these

is the Lesk algorithm, which is completely local, and uses only immediate context

and dictionary definitions for token disambiguation. The second is the unsupervised

predominant-sense algorithm of McCarthy et al. (2004), which is type-based and global,

and ignores local context. A more detailed description of both these algorithms can be

found in Section 3.2. We used an augmented version of the Lesk algorithm, where

unknown instances (where no overlap was found) are tagged using an automatically-

derived predominant sense (via the method of McCarthy et al. 2004).

Throughout our experiments, we use the χ2 test to determine the statistical signif-

icance of performance differences. When stating that the results of two systems are

significantly different, we mean p < 0.01, unless otherwise noted.

4.5 Results

4.5.1 System Performance

Table 4.3 presents the results of the various algorithms trained on automatically gen-

erated (four center columns) and the manually tagged data (rightmost column). We

report the percentage of correctly labeled instances (since all algorithms labeled all

instances, accuracy, precision, recall and F-score are all equivalent).6

Manually Labeled Data In order to obtain an upper bound and measure of compari-

son for our experiments, we performed a 5-fold cross-validation test using the human

annotation provided with the Senseval dataset. For this purpose, we randomly divided

the Senseval data (the combined testing and training, as mentioned in Section 4.4.1)

into five portions. We then performed five experiments, in each one we used a single

20% portion as test data, and the remaining 80% for training. We ran each of our

supervised classifiers on the data, and averaged the results of the five experiments.

The rightmost column of the table shows the resulting average accuracy scores. As

previously stated (Section 4.4.4), these scores do not represent the highest achievable

performance in a supervised setting, but rather those obtained using the various algo-

rithms in their most basic, ‘out-of-the-box’ setting.

6As mentioned in the previous section, the results in the table represent an augmented version of
the Lesk algorithm. For the unaugmented Lesk algorithm, the results are: For Senseval 2, F-score
= 36.93% (precision = 41.78%,recall = 33.10%). For Senseval 3, F-score = 37.00% (precision =
41.67%,recall = 33.28%)
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Senseval 2 AllWN MonoWN Co-Occur Depend Manual

SVM 49.45% 51.62% 60.57% 63.72% 72.63%

MaxEnt 41.34% 49.28% 60.23% 61.91% 72.70%

LP 41.27% 47.91% 59.20% 63.42% 69.65%

McCarthy 60.64%

Lesk 45.43%

Senseval 3 AllWN MonoWN Co-Occur Depend Manual

SVM 51.46% 44.73% 55.98% 58.60% 74.91%

MaxEnt 47.89% 43.10% 54.88% 57.93% 74.83%

LP 45.74% 43.36% 62.06% 62.06% 69.88%

McCarthy 56.58%

Lesk 43.98%

Table 4.3: Accuracy on Senseval 2 and 3 lexical samples. Support vector machine

(SVM), maximum entropy (MaxEnt) and label propagation (LP) classifiers are trained

on automatically and manually labeled data sets.

As we can see, all the algorithms exhibit a similar level of performance, with

slightly lower scores for the Senseval 3 dataset, which is more difficult, as mentioned

in Section 4.4.1. On the Senseval 2 data, the SVM is significantly better that the other

two classifiers. For Senseval 3, Label Propagation is significantly worse than the oth-

ers. All other differences are not significant. The results shown here are comparable

to those achieved by the state-of-the-art supervised systems participating in the two

Senseval competitions. The best performing systems in the Senseval competitions (on

coarse-grained nouns) achieved approximately 76% accuracy in Senseval 2, and close

to 80% accuracy in Senseval 3. The SMU system (Mihalcea, 2002) achieved the best

results on the Senseval 2 English lexical sample task. It used a seed set of noun phrases

and verb-noun constructs created from existing sense-annotated data (WordNet and

SemCor), and from web queries on closely related monosemous words from WordNet.

The seed set was expanded by using web queries on the elements in the original set

and extracting other phrases containing the target word from the retrieved contexts.

Patterns of local context (up to two words surrounding the target) were learned from

the expanded example set using a set of heuristics. The training set provided by the

task organizers was used to filter and remove erroneous patterns. The patterns were
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used for disambiguation when present in the context of the test instances. In cases

where there is no contextual information, the first sense from WordNet was used.The

Basque Country University system (Agirre and Martı́nez, 2004) was the best perform-

ing system in the Senseval 3 English lexical sample task. It combined the output of

four learning algorithms (Decision Lists, Naive Bayes, a vector space model and a

Support Vector Machine). The system used a rich feature space which included syn-

tactic dependencies and domain information extracted using different tools and also

from external resources. Different smoothing methods were tested on Senseval 2 data,

and the best parameters for the systems and their combination were calculated using

10-fold cross-validation on the Senseval 3 training data. It is likely that the higher

scores achieved by the state-of-the-art systems in Senseval 3 are due to better systems

and algorithms, rather than a decrease in task difficulty (as explained in Section 4.4.1,

the Senseval 3 task is more difficult in several respects). For instance, many of the sys-

tems in Senseval 3, including the best performing one, were combinations of different

classifiers (see Mihalcea and Edmonds 2004). Also, the number of training instances

per word was considerably larger in Senseval 3 (see Section 4.4.1).

Automatically Labeled Data The results using the automatically acquired training

sets are presented in the four center columns. Each column represents one source

of neighbors used to create the pseudo-labeled data. Using the neighbors provided

by WordNet (AllWN) leads to significantly lower scores than the use of either co-

occurence-based (Co-Occur) or dependency-based (Depend) distributional neighbors.

Using only monosemous neighbors from WordNet (MonoWN) improves the results

slightly on the Senseval 2 dataset, though they are still significantly lower than those

resulting from the distributional neighbors. On the Senseval 3 dataset, using only

monosemous neighbors lowers the accuracy. A possible explanation for this is that

the WordNet neighbors for Senseval 2 are very noisy, so that filtering out polysemous

neighbors helps improve the accuracy. For the Senseval 3 words, the noise is less,

so that the expected gain from reduction of noise is out-weighed by the amount of

information lost in the filtering (see Section 4.3.2 for an example). Another reason may

lie with the choice of words in each of the lexical samples. In the Senseval 2 dataset,

the main criterion for selection was to give a range of low, high and medium frequency

words in the chosen corpus (BNC, Kilgarriff 2001). No such criterion was given for

the choice of lexical sample words in Senseval 3. The higher average ambiguity (in

coarse grained senses) also suggests higher frequency. This may lead to differences in
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the type and ambiguity of the neighbors retrieved.

When comparing the results of using co-occurrence-based distributional neighbors

(Co-Occur) to using dependency-based ones (Depend), we can see a drop of 1.5-4.5%

accuracy on the Senseval 2 test set, and less than 3% on the Senseval 3 test set. As

mentioned in Section 4.3.1, the co-occurrence-based distributional neighbors can be

acquired even when parsing tools are unavailable. Our experiments demonstrate that

using distributional neighbors is still a viable option in such cases, and achieves results

which are almost as good as when dependency information is available.

The results using both types of distributional neighbors are all significantly better

than those using neighbors (monosemous or otherwise) from WordNet, regardless of

the classifier used. We discuss the reasons for this in Section 4.6. On both datasets,

dependency-based distributional neighbors perform better than using the automatically-

acquired predominant sense (for the Maximum Entropy classifier, the difference is not

statistically significant).

When we compare the results from the manually tagged data to those achieved

by using the distributional neighbors, we can see that use of our pseudo-tagged data

results in scores that are approximately 7-10% lower for Senseval 2, and 8-17% lower

for Senseval 3. Since the results were achieved using the same feature set and classifier

settings, the comparison provides an estimate of the expected decrease in accuracy

due only to our unsupervised tagging method. The implication is that for a given

supervised method, we can expect, using our (automatically constructed) dataset, to do

approximately 90% as well as we would if we had a manually tagged dataset the size of

the one used in the Senseval 2 experiments, or 85% as well as with one the size of the

Senseval 3 training set. Our method allows for any improvement in supervised WSD

algorithms to be easily transferred to unsupervised WSD, by using our automatically-

constructed training dataset instead of a manually-annotated one.

4.5.2 Coverage

Table 4.4 shows the percentage of instances labeled with senses other than the most

frequent, in each of the experimental settings. If we compare to Table 4.3 we can see

that these numbers are inversely correlated with accuracy. As stated in Section 4.4.1,

the decision to label with a secondary sense is a risk, since the first sense is usually

very dominant. On the other hand, we are not interested in labeling all instances with

a single sense, since this defeats the purpose of context-dependent WSD. Table 4.5
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Senseval 2 AllWN MonoWN Co-Occur Depend Manual

SVM 31.26% 25.23% 10.99% 12.50% 19.70%

MaxEnt 15.98% 16.28% 3.45% 5.49% 18.83%

LP 23.08% 19.77% 3.62% 8.91% 13.87%

Senseval 3 AllWN MonoWN Co-Occur Depend Manual

SVM 38.13% 28.98% 12.94% 18.10% 24.10%

MaxEnt 31.23% 22.46% 6.26% 8.71% 23.52%

LP 30.95% 12.36% 1.74% 5.37% 16.60%

Table 4.4: Percentage of instances labeled with secondary senses when using auto-

matically and manually labeled training data.

Senseval 2 AllWN MonoWN Co-Occur Depend Manual

SVM 43.41% 36.79% 53.05% 58.71% 62.59%

MaxEnt 48.43% 50.41% 73.79% 65.24% 64.23%

LP 40.49% 39.83% 57.41% 65.04% 58.70%

Senseval 3 AllWN MonoWN Co-Occur Depend Manual

SVM 37.54% 48.44% 41.36% 44.77% 65.57%

MaxEnt 33.59% 40.67% 40.89% 60.25% 65.90%

LP 31.81% 53.91% 66.67% 58.00% 59.72%

Table 4.5: Classifier accuracy for secondary sense labels when using automatically

and manually labeled training data.
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Coarse-Grained Fine-Grained

Senseval 2 Depend Manual Depend Manual

SVM 63.72% 73.53% 47.00% 64.79%

MaxEnt 61.91% 73.53% 43.05% 65.13%

LP 63.42% 69.65% 40.57% 43.35%

Coarse-Grained Fine-Grained

Senseval 3 Depend Manual Depend Manual

SVM 58.60% 76.85% 53.44% 69.05%

MaxEnt 57.93% 76.20% 53.10% 68.96%

LP 62.06% 69.88% 46.17% 42.52%

Table 4.6: Comparison of classifier performance on fine- and coarse-grained sense

distinctions.

gives the accuracy of the classifiers with regard to only the secondary senses. Here we

see further evidence that the choice to label more instances with a non-first sense is

risky, leading to lower accuracy. As expected, this effect seems to be stronger in the

Senseval 3 data, for the reasons mentioned in Section 4.4.1.

It is interesting to note that the SVM classifier labels two to three times as many

instances with secondary-sense labels, while still achieving similar levels of overall

accuracy to the other classifiers (Table 4.3) and only slightly lower accuracy on the

secondary senses (Table 4.5). This fact would make it a better choice when it is impor-

tant to have more data on rarer senses. Another point of interest is the fact that even the

SVM classifier strongly under-represents the rarer senses. This is especially true when

using distributional neighbors. Since the few most frequent senses account for almost

all of the occurrences of the target word in the corpus, and therefore comprise almost

all its distributional probability mass, distributional-similarity metrics rarely provide

neighbors for more than the two or three most frequently occurring senses.

4.5.3 Fine-Grained Senses

In our initial experiments, we decided to evaluate our method on coarse-grained sense

distinctions, for the reasons stated in Section 4.4.1. In order to determine the impact of

this decision on our results, we preformed a comparison experiment using dependency-
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Method F-Score

SVM 53.44%

MaxEnt 53.10%

LP 46.17%

Rank 48.41%

ProbMix 46.17%

Table 4.7: Comparison of performance between classifiers trained using dependency-

based automatically-labeled data and rank-based (Rank) and probability-mixture (Prob-

Mix) ensembles on Senseval 3 fine-grained senses.

based distributional neighbors on fine-grained sense distinctions. Table 4.6 shows the

scores for this experiment. When moving from coarse to fine-grained senses, there is

a significant difference between the two Senseval datasets. The average ambiguity in

Senseval 2 increases from 3.28 senses to 5.6 senses, whereas in Senseval 3 the increase

is much smaller – from 4.35 senses to 4.8 senses on average. The greater increase in

ambiguity for the Senseval 2 dataset leads to a correspondingly large decrease in accu-

racy, when compared to Senseval 3. However, in both cases, we see that the classifiers’

sensitivity to the granularity shift is similar when trained on our automatically-labeled

data (Depend) and on the manually-labeled data (Manual). This indicates that our data

creation method is not particularly sensitive to the granularity, and is applicable for a

variety of levels of sense distinction.

4.5.4 Comparison to Ensemble Methods

In Chapter 3 we presented several ensembles which combine the output of a group

of WSD algorithms in order improve performance. The ensembles make use of the

predominant-sense type-based approach. In other words, they estimate the most fre-

quent sense of each word in the data, and label all instances of the word with that

sense. In Chapter 3 we evaluated the ensembles in an all-words setting, where the

large number of words allowed an accurate assessment of their success in estimating

the true predominant sense. For the sake of completeness, we compare our context-

specific data-creation method and the top ensembles from Chapter 3 on a lexical sam-

ple task. Table 4.7 presents the results of the classifiers trained using our dependency-

based distributional neighbors method, and the rank-based (Rank) and probability mix-

ture (ProbMix) ensembles, on Senseval 3 fine-grained senses. Both the SVM and the
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maximum-entrophy classifiers do significantly better than the ensembles. The label-

propogation classifier, which has the weakest performance on this data, does as well

as the probability mixture ensemble, but worse than the rank-based one. However, de-

spite its relatively weak performance, it still has the advantage of performing context

specific WSD, and labeling some instances with secondary senses.

4.6 Discussion

Our experiments addressed and provided information about several important issues

regarding WSD through the use of automatically created training data. The first choice

one has to make is the method of data creation. As mentioned in Section 4.2.2, the

translation-based approach is restricted by the relative scarcity of parallel corpora and

limited to words and senses which are distinguished by different translations. Methods

based on semantic neighbors from a lexical resource seem less constrained and more

widely applicable. However, our experiments clearly show that resource-based neigh-

bors are less effective for creation of labeled data than distributional ones. There are

several reasons for this:

Topical vs. Local Information one characteristic of the lexical-resource approach

is that while the related words share meaning with the target, they often do not share

local behavior. In other words, they do not appear in the same immediate local context,

do not share syntax, or are used differently in the sentence. For this reason, the useful

information that can be extracted from their contexts tends to be topical (e.g., informa-

tive words in the document which are indicative of a general topic or domain), rather

than local (e.g., part-of-speech of words which are adjacent to the target, grammatical

dependencies etc.). According to Leacock et al. (1998), topical features appear to be

more useful for the disambiguation of nouns, whereas local information is more useful

for verbs and adjectives. However, the comparison was done using only a single word

for each part-of-speech, and it is not clear how representative these are of the general

situation for words in that class. Regardless of the part-of-speech, topical information

is mostly useful when the difference between senses can be attributed to a specific do-

main. Senses which are less domain-specific, and more ubiquitous, are not as easily

distinguished using topical features.
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Availability of Monosemous Words Leacock et al. (1998) state that 64% of the

words they examined had monosemous relatives (as provided by WordNet) that were

present in the corpus. While this figure is quite high, it is certainly not sufficient for

many purposes. Many words and senses may not have any monosemous relatives at

all. Also, it is not clear how many of the relatives they reported where closely related

words, such as synonyms, and how many were more distant, and therefore presumably

less useful. In addition, the corpus frequency of the monosemous relatives was not

stated. It is important to note that their method relies on a web-size corpus large enough

to contain many examples of the monosemous relatives. While the web certainly fulfils

that requirement for English, it is not clear if this is the case for other, rarer, languages.

In particular, there is no reason to expect even a large corpus to contain many examples

of every monosemous relative, since many may be rare, domain specific, or both. If this

is the case, using a smaller corpus than the web may not provide sufficient occurences

on which to train a classifier.

Specificity The neighbors provided by a semantic resource are often more accurate,

being based on the knowledge of human experts. However, a semantic resource is a

stand-alone knowledge base, and is designed to be as general as possible. It is there-

fore, in many cases, badly suited for use in a specific domain or corpus. It will provide

neighbors for all senses, even rare ones, which may appear rarely, or not at all, in our

chosen corpus. In addition, it may provide as neighbors words which have a similar

sense to the target, but also have more frequent senses, which are more likely to be

present in the corpus (see Section 4.3.2). Distributional neighbors, on the other hand,

are anchored in the corpus. Although these are often unevenly distributed among the

senses of the target, with a strong skew towards the first sense, they are almost always

relevant and are guaranteed to be present in the corpus.

Pseudo Labels vs. Predominant Sense Since the data-creation method we present

shares some common elements (e.g., the use of distributional and semantic similarity)

with the automatic predominant-sense detection algorithm of McCarthy et al. (2004),

one might reasonably ask whether there is reason to prefer our method over theirs. Is

it not sufficient just to make use of the automatically detected predominant sense for

WSD? The answer to this is simple. While McCarthy et al.’s (2004) method focuses on

detecting a single predominant sense throughout the corpus, our data-creation method
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builds a dataset that allows us to learn about and identify all the (prevalent) senses ex-

isting in the corpus. Despite the fact that the most-frequent-sense heuristic is a strong

baseline, and determining the predominant sense provides a good fallback option in

case of limited local information, it does not constitute a true context-specific WSD

algorithm. Any approach that ignores local context, and labels all instances with the

same sense, providing no information about the secondary senses, has very limited ef-

fectiveness when WSD is needed in an application. In addition, such global approaches

run the risk of completely mistaking the predominant sense, and thereby mis-labeling

most of the instances, whereas approaches that consider local context are less prone to

such large-scope errors.

A final issue that needs to be addressed when using any automatic data-creation

method is the choice of classifier. Our experiments investigated a selection of stan-

dard machine learning classifiers employing different approaches, and can offer some

important information as to the choice. We discussed the issue of secondary-sense cov-

erage in Section 4.5.2. The significance of the secondary senses may vary according

to the application, and this should be a consideration when choosing which classifier

to use. It is also interesting to note that while the Label Propagation algorithm pre-

formed relatively poorly when using the manually labeled data, it ranks very highly

when using the automatically labeled data (see Table 4.3). A possible explanation has

to do with the nature of the automatically acquired data. The instances in this data

are not actual occurrences of the target word, but rather occurrences of similar related

words, and therefore have slightly different properties to those in the test set. In ad-

dition to learning to distinguish between different senses, it is also important to learn

which instances in the training set are closest to a given instance in the test set. The

other classifiers we examined deal only with the classes in the training set, whether the

focus is on distinguishing between classes, as in the case of SVMs, or on modeling

them accurately, as in Maximum Entropy models. The graph based label-propagation

method, on the other hand, does not separate the training and test set (it is principally a

semi-supervised method). It combines the two datasets, allowing the properties of both

to influence the structure of the resulting graph. This suggests that a semi-supervised

classifier may be a good choice when using automatically created training data.
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4.6.1 Summary

In this chapter, we presented an unsupervised approach to WSD which retains many

of the advantages of supervised methods, while being free of the costly requirement

for manually-annotated data. It focuses on the data-creation stage, thereby enabling

the use of supervised learning techniques for the difficult disambiguation stage. The

method makes use of similarity metrics in the distributional and semantic space to pro-

vide sense-labeled training data suitable for use with any supervised machine-learning

classifier. Our experiments show that the data created by out method produces supe-

rior results to that of other data-creation methods in the literature. We also demon-

strated that classifiers trained using our method can out-perform state-of-the-art unsu-

pervised methods, and approach the accuracy of fully-supervised methods trained on

large amounts of manually-annotated data.

The method we described in this chapter operates under the assumption of the ex-

istence of a predefined sense inventory. Under this setting, supervised methods com-

monly outperform unsupervised ones, and it is therefore desirable to bring supervised

methodology into the unsupervised setting. However, the reliance on a fixed list of

senses represents a serious obstacle to applied WSD, since the predefined sense dis-

tinctions are often unsuitable or irrelevant to the task at hand. In this aspect, unsuper-

vised methods have the advantage. Unlike supervised methods, which are constrained

to the set of labels used for training, they can induce the relevant senses directly from

the data at hand. This approach has great potential, since it allows unsupervised WSD

to be easily integrated into specific applications, and tailored to new tasks and domains,

without the need to define a new purpose-built sense inventory and corresponding train-

ing dataset. We therefore focus our efforts in this direction in the next chapter.



Chapter 5

Sense Induction with Latent Dirichlet

Allocation

5.1 Introduction

In the introduction to this thesis, we noted the importance of unsupervised WSD for

new domains and languages. In the previous chapters we examined classic approaches

to unsupervised WSD, and presented ways to use lessons learned from supervised

methods to relax some of the restrictions of unsupervised approaches and to improve

performance. However, one important limitation still remains. From the early days of

WSD (e.g., Lesk 1986), unsupervised methods have tended to focus on disambigua-

tion according to, and with the aid of, dictionaries or other lexical resources (see Sec-

tion 2.1.1). From a pragmatic perspective, there are several strong drawbacks to such

an approach. Unsupervised methods are of importance primarily for new domains and

languages, where labelled training data is scarce. However, most dictionaries are bi-

ased, lacking senses relevant to some domains, while providing definitions for senses

that are rare or absent in others. In addition, the granularity of the sense distinctions

is fixed, and may not be suitable for the specific task at hand. For new languages, the

problem is even more severe, as suitable lexical resources may not exist.

These considerations argue in favor of unsupervised sense induction (or discrim-

ination), where the sense distinctions arise directly from the data, and are therefore

more likely to be suitable to the task and domain at hand. There is little risk that

an important sense will be left out, or that irrelevant senses will influence the result.

Sense induction is applicable to languages which are short on lexical resources, such

as comprehensive machine-readable dictionaries. Recent work in machine translation

81
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(Vickrey et al., 2005) and information retrieval (Véronis, 2004) indicates that induced

senses can lead to improved performance in areas where methods based on a fixed set

of senses have previously failed (Carpuat and Wu, 2005; Voorhees, 1993).

For these reasons, in this chapter we develop a novel approach to sense induction.

The task is typically treated as a standard unsupervised clustering problem. However,

our approach is different. The sense induction system we present is based on an ex-

tension of Latent Dirichlet Allocation (LDA), a probabilistic generative model. The

generative approach is well suited for language modelling, and has been successfully

employed for many NLP tasks. The model has many of the advantages common in su-

pervised methods, as it has been well studied, and has a variety of available tools and

inference techniques. The probabilistic nature of the model allows easy combination

with other systems, using mixture or product models. Our extension to the original

model provides the means of combining several layers of informative input (e.g., dif-

ferent feature classes), a useful property for many tasks, and a common practice in

WSD. Our multi-layer model is general, and can be used for other applications. In the

following sections we describe our model in detail, and demonstrate its effectiveness

in achieving state-of-the-art performance on the task of sense induction.

5.2 Related Work

5.2.1 Previous Approaches to Sense Induction

Sense Induction is commonly viewed as an unsupervised clustering problem, where

instances of a target word are partitioned into classes by considering their contexts.

There are many approaches regarding how to address the clustering problem. In this

section we present an overview of a selection of methods representing different clus-

tering approaches for sense induction. They vary as to representation, problem formu-

lation, choice of feature space, and how they address the issue of model order (optimal

number of clusters).

Clustering by Committee Pantel and Lin (2002) present the Clustering by Commit-

tee (CBC) algorithm which employs a distributional-similarity metric over a vector

representation. The algorithm clusters together words sharing an induced sense. Each

sense cluster is represented by a small sub-group of words which are very similar to

one another (the committee). Each word is represented by a (sparse) vector of de-
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pendency co-occurrence counts. For instance, the word ball might have the feature

object-of-throw with a value related to the number of times it occurred as the object

of the verb throw in a given corpus. The actual value the authors use is the mutual

information between the target and dependent words (ball and throw, in our example).

Similarity is measured with the help of a Distributional Similarity metric defined over

these dependency vectors (for more information, see Section 4.3.1). The dependency

features provide a strong characterization of the word, and similarity in this feature dis-

tribution space has been shown to correlate strongly with semantic similarity between

words (Lin, 1998b).

Clustering is performed in a three-phase procedure. First, for each word, the top-

ten most similar words are calculated. These are clustered, and the “tightest” cluster

(highest average pairwise similarity between members) is added to a list of candidate

committees. In the second phase, proceeding iteratively from the highest ranking group

in the candidate list, the group centroid is calculated and compared to centroid of each

of the set of existing clusters. If it is different enough (similarity is below a certain

threshold), the candidate group becomes the committee of a new cluster, and is added

to the existing ones. The committees are now fixed, and their centroid represents the

cluster as a whole. Any elements added to the cluster in the next phase do not effect

the cluster centroid. In the third phase, any unassociated words are added to the most

similar cluster. Once a word has been added to a cluster, the feature vector represent-

ing that word is stripped of features overlapping with those of the cluster centroid.

The stripped vector (representing a possible less-frequent sense of the word) is again

evaluated against the existing clusters. This is repeated until the stripped vector is not

similar to any cluster (below a specific threshold). The authors performed both an au-

tomatic comparison of their clusters to WordNet and a manual evaluation, reporting

63% and 72% accuracy, respectively.

Hyperlex The Hyperlex algorithm (Véronis, 2004) addresses the clustering problem

from a graph-based perspective. It makes use of the “small-world” properties of co-

occurrence graphs and detects “hubs” in the graph which represent induced senses. For

each target word, a set of context paragraphs containing the word are retrieved from

the web using the plural and singular form of the word as a query. These form the

dataset for each word. A graph is constructed with a node for every noun and adjective

occurring in the dataset more that five times. Edges link any two words which co-occur

in the same paragraph, and the weight of the edges, representing semantic distance, is
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set to w = 1−max(p(A|B), p(B|A)), where the probabilities are estimated from the

word frequencies. A simple algorithm detects and separates the hubs in the graph by

iteratively finding the most frequent word, converting it to a hub, and removing it and

its neighbors from the graph. The algorithms stops when the new hubs no longer meet

certain specifications (related to frequency and number of neighbors). Once the hubs

(set of senses) are determined, each word in the graph is assigned a score vector which

is zero for all indexes except that of the closest hub, where the value is the distance

between the word and the hub. In order to disambiguate the target word in a given

context, the score vectors of all the words appearing in the context are summed, and

the sense (hub) with the highest score is chosen. Manual evaluation was performed,

with the hub-senses being represented by the ten words closest to each. The algorithm

achieved very high (95.5%) accuracy in that setting.

I2R One of the best performing systems on the Semeval sense induction task, I2R

(Niu et al., 2007), takes an information-theoretic perspective. It makes use of the Se-

quential Information Bottleneck (sIB) algorithm (Slonim et al., 2002), to cluster the

instances into a predetermined number of clusters. The sIB algorithm is based on an

information-theoretic formulation, and views the clustering task as an optimization

problem. It attempts to group together values of one variable while retaining as much

information as possible regarding the values of another (target) variable. There is a

trade-off between the compactness of the clustering and the amount of retained in-

formation, known as the Information Bottleneck. In the sense induction setting, the

algorithm is used to cluster together instances which have similar feature distributions

(the target variable), thus reducing the amount of information lost by merging several

instances into a single cluster. The sequential IB algorithm works iteratively. Start-

ing with a random partition of the instances into the designated number of clusters, it

sequentially draws each of the elements from its current cluster, and places it in the

cluster to which it is most similar, i.e., for which the merging cost (in terms of in-

formation loss) is lowest. The algorithm proceeds until it reaches a local maximum

where each instance is most similar to its current cluster. The feature space used by the

authors contained parts of speech of neighboring words with position information, un-

ordered single words in the context, and local collocations. No syntactic relations were

used. Rather than determining the required number of clusters via heuristic manually-

specified thresholds, as in the previous methods, the authors address the issue of model-

order through a cluster-validation procedure. For every value of K between 2 and 5,
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clustering is performed on the original dataset, and on twenty random subsets contain-

ing 90% of the instances. A scoring function is defined, based on how many of the

instance pairs in the random subsets maintain the same/different-cluster association as

in the full dataset. The value of K which maximizes this function is chosen.

Though all the methods we mention view the problem from a clustering perspec-

tive, they differ in several respects. Two of the methods address the clustering task

using different forms of vector similarity (information-theoretic, as in I2R, or seman-

tic, as in CBC), while the third sees it as a matter of detecting high density areas in

graphs. The first method we mentioned, CBC, uses an all-word setting, while the other

two handle each ambiguous word individually. The feature representation used can be

highly specific syntactic information, requiring an accurate dependency parser (CBC),

more general collocation information (Hyperlex), or a tailored feature set, somewhere

in between (I2R). Finally, the important issue of model order is addressed differently

in each case (through heuristic thresholds in CBC and Hyperlex, and with a cluster-

validation procedure in I2R).

5.2.2 LDA Topic Models

Our treatment of the sense induction problem differs from the standard clustering ap-

proach. We base our system on a generative probabilistic graphical model, Latent

Dirichlet Allocation (LDA), first proposed by Blei et al. (2003) for modelling text

generation. The model posits that each document is generated by selecting a distri-

bution of topics from a family of parametrized Dirichlet distributions. The words in

the document are then generated by repeatedly sampling a topic according to the topic

distribution, and selecting a word given the chosen topic. For the purpose of inference,

the model is reversed, and the most likely topic distribution and word assignments are

calculated from the observed data. The generative nature of the model allows it to han-

dle newly observed documents which do not conform precisely to a previously seen

distribution.

Figure 5.1 presents an example of the output of LDA on a single document (taken

from Blei et al. 2003). Each word is assigned a single topic, and the overall topic

distribution is inferred from the distribution of these assignments. The topics which

pertain to the example document are shown in Figure 5.2. For each topic, a list of the

most probable words for that topic is shown. The topic headings are not provided by

the LDA system, but were manually added by the authors for clarification.
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The4 William Randolph3 Hearst3 Foundation2 will give $1.252 million2 to Lincoln1

Center3, Metropolitan Opera1 Co.3, New1 York1 Philharmonic1 and Juilliard

School4. “Our board2 felt that we had a real opportunity3 to make3 a mark1 on

the future3 of the performing1 arts with these grants2 an act1 every bit1 as important3
as our traditional3 areas of support2 in health, medical research2, education4 and

the social services2,” Hearst3 Foundation2 President2 Randolph3 A. Hearst3 said

Monday4 in announcing2 the grants2. Lincoln1 Centers share3 will be $200,0002

for its new1 building2, which will house2 young3 artists and provide2 new1 public2

facilities2. The Metropolitan Opera1 Co. and New1 York1 Philharmonic1 will

receive2 $400,0002 each. The Juilliard School4, where music1 and the performing1

arts are taught4, will get $250,0002. The Hearst3 Foundation2, a leading1 supporter1

of the Lincoln1 Center3 Consolidated Corporate Fund2, will make3 its usual annual2
$100,0002 donation, too.

Figure 5.1: Example output of the LDA model on a single document. Each word is

assigned a single topic, indicated by its subscript, and referring to the topics listed in

Figure 5.2.

1.“Arts” 2.“Budgets” 3.“Children” 4.“Education”

NEW MILLION CHILDREN SCHOOL
FILM TAX WOMEN STUDENTS
SHOW PROGRAM PEOPLE SCHOOLS
MUSIC BUDGET CHILD EDUCATION
MOVIE BILLION YEARS TEACHERS
PLAY FEDERAL FAMILIES HIGH
MUSICAL YEAR WORK PUBLIC
BEST SPENDING PARENTS TEACHER
ACTOR NEW SAYS BENNETT
FIRST STATE FAMILY MANIGAT
YORK PLAN WELFARE NAMPHY
OPERA MONEY MEN STATE
THEATER PROGRAMS PERCENT PRESIDENT
ACTRESS GOVERNMENT CARE ELEMENTARY
LOVE CONGRESS LIFE HAITI

Figure 5.2: Topics pertaining to the example document, along with a list of most prob-

able words for each topic. Topic headings were added manually by Blei et al. (2003).
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The authors present efficient approximate inference techniques over the model (see

Section 5.3.2). They also compare to other models proposed in the literature, and

report improved results on document modelling and text classification tasks, where

their model overfits considerably less than the others. The authors also emphasize the

applicability of the model to other areas where the data can be modelled in a similar

fashion, using repeated-structures and underlying distributions, and demonstrate by

applying it to a collaborative filtering task (user/movie preference).

Recently, there have been several attempts to make use of LDA topics for WSD.

Boyd-Graber and Blei (2007) propose a model that takes an all-words approach and

integrates the original LDA process for document modelling with the idea of using dis-

tributional neighbors, as proposed in McCarthy et al. (2004) (see Section 3.2.3.2). As

in the original LDA model, documents are generated word by word. For each word, a

topic is sampled from the document’s topic distribution, and a word is generated from

that topic. In addition, a distributional neighbor is selected based on the topic and dis-

tributional similarity to the generated word. The authors specifically design the model

so that the addition of neighbors does not effect the topic assignment procedure. This

enables them to use the variational inference method described in Blei et al. (2003) to

acquire topic assignment probabilities for each word. These assignments are used to

calculate the most-probable sense given the neighbor, using a topic-specific version of

the Jiang-Conrath (Jiang and Conrath, 1997) semantic similarity measure. The authors

evaluate their method on several datasets and tasks, but the results do not achieve sig-

nificant improvement over the respective baselines, and do no better than the original

method of McCarthy et al. (2004).

In a supervised setting, Cai et al. (2007) replace the common bag-of-words docu-

ment representation by a bag-of-topics one, using topics derived from an LDA model.

This helps simple algorithms, such as Naive Bayes, by reducing the sparsity of the

vector space. When using more powerful algorithms, such as SVM, which can handle

high-dimensional sparse data, the benefit is smaller.

A key element in these previous attempts at using LDA for WSD is the tendency

to remain at a topic-based, document-like setting. When modelling text, LDA posits

that each word is generated from a specific topic. When dealing with documents, these

LDA topics often resemble high-level categories used to describe the subject matter,

such as ‘arts’ and ‘education’ (Blei et al., 2003). While such categories can be useful

for document classification, and have been shown to be a useful source of additional

information for WSD methods (see Leacock et al. 1998; Bordag 2006), they are in-
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sufficient on their own. It is unreasonable to expect a single set of high-level topics to

differentiate between every two senses of every ambiguous word. Furthermore, LDA

need not be restricted to the topic-modeling setting. The model is general, and can

be used to model other types of grouping inherent in the data, such as genre, senti-

ment or word-senses. In this respect, LDA can be viewed as a general-purpose form

of clustering algorithm, based on a generative, probabilistic, model. LDA has sev-

eral advantages over standard unsupervised clustering techniques. It is a probabilistic

model, and thus inherently modular. As we have shown in Chapter 3, modularity is

an important prerequisite for WSD. Since such models specify probability distribu-

tions over possible values, they are easy to integrate and combine with each other as

mixture or product models. The LDA generative approach is appropriate for modeling

language, where a latent structure in the speaker’s mind is responsible for generating

words1. In addition, LDA has many of the advantages of supervised techniques, as

it has been widely studied, and comes with a variety of standard tools and inference

techniques. It has been used in many natural language processing tasks besides WSD.

Examples include entity correference resolution (Bhattacharya and Getoor, 2006) and

part-of-speech tagging (Toutanova and Johnson, 2008).

In this chapter, we present an LDA-inspired model specifically designed to han-

dle the sense induction problem directly. As discussed in Section 3.5, our approach

in this thesis is to handle each ambiguous word individually. We therefore create a

separate disambiguation model for every target word, while employing a small num-

ber of sense-clusters meant to capture the possible senses of that word. This is in

marked contrast to the tens, and sometimes hundreds, of topics commonly used in

document-modeling tasks. We also make use of much smaller units of text (a few sen-

tences, rather than a full document), in order to focus on local sense-clusters, rather

than high-level topical information. As we are dealing with sense induction, we do not

rely on a pre-existing list of senses, and do not assume a correspondence between our

automatically derived sense-clusters and those of any given sense inventory. Such a

mapping is only performed when necessary to enable evaluation and comparison with

1Although several clustering models, such as Gaussian Mixture Models (GMM), can be considered
probabilistic and generative, they differ significantly from the LDA approach. Clustering models are
generative, since they attempt to provide a representation of the underlying classes (clusters) in the data,
as apposed to discriminative methods, which seek only to distinguish between them. However, they
do not take into account the linguistic process, or attempt to model specifically the generation of text.
LDA considers these aspects, and presents a formulation which is well suited to the natural properties
of language, such as the Zipfian distribution of words. While these factors can be introduced into other
clustering models in the form of priors and special features, this requires careful engineering, while in
the LDA framework they arise naturally as part of the model.
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other disambiguation methods.

The model we develop is enhanced to allow the integration of several information

layers. In many tasks, we have several useful sources of information about the ob-

ject of interest. For instance, for the purpose of document classification, both text and

images in the document are of interest, since each of these can provide information

about the document. In speech summarization, layers of speech-based features can

provide a helpful addition to the transcribed text (see Murray et al. 2006). In WSD, re-

searchers have long been combining information from different sources, such as lexical

resources, grammatical information and context information (see, for example, Preiss

2004, and Florian et al. 2002). Our own work (see Chapter 3) also shows the benefit

of integrating multiple sources of information in the task of unsupervised WSD. We

would, therefore, like to adapt the generative LDA model to allow such integration.

The modified version of LDA which we present (Layered-LDA) provides this utility.

Few works have addressed the issue of integrating multiple information sources in

the LDA framework. Griffiths et al. (2005) present a composite model that integrates

document-level contextual information with short-range syntactic dependencies for the

purpose of document modelling. Their model combines the classic LDA model, which

addresses high level topics, with an HMM for modelling local dependencies. The

resulting model is competitive on the tasks of part-of-speech tagging and document

classification. Barnard et al. (2003) present several models for automatically annotat-

ing images with description keywords. Their basic LDA approach (which they call

multi-modal LDA or MoM-LDA) is similar to a two-layer (text and images) version

of our system. It assumes independence among the image and text layers, but uses

information from both. The more sophisticated models presented in that paper attempt

to do away with the independence assumption and focus on the main task they address

- jointly modeling image fragments and descriptive keywords. Both these approaches

focus on a specific setup and task (long- and short-range contextual information in the

first instance, text and images in the second), and tailor their models appropriately.

They therefore do not represent a general solution to the problem of combining mul-

tiple information sources. Our approach, on the other hand, is designed as a general

extension of the LDA model. It is not application-specific, and can be used for any

task where multiple layers of information exist.
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α θ t w Nw
D

φ(β)

Figure 5.3: LDA model for topic-based document modelling. Shaded nodes represent

observed variables. Rectangles represent repeated structures. The outer rectangle

represents a document (D), and the inner one represents the choice of a topic (t) and

word (w), repeated for each of the Nw words in the document.

5.3 The Model

5.3.1 Sense Induction

As mentioned in Section 5.2.2, the original LDA model (represented in Figure 5.3)

posits that each document is generated by selecting a distribution (θ in the figure) of

topics from a Dirichlet distribution parametrized by α. The words in the document

are generated by repeatedly sampling a topic according to the topic distribution, and

selecting a word given the chosen topic according to the word-topic distribution φ

(parametrized by β).

We propose to adapt the classic LDA model to our WSD task by making sev-

eral changes in the original document-generation model2. We are not interested in

modelling a whole document as a collection of words produced by a distribution of

high-level topics. Instead, we wish to present the local context surrounding a single

instance of an ambiguous target word as a collection of context elements produced by

a distribution of senses of the word (see Figure 5.4). Context elements may be any sort

of relevant information, such as nearby words, part-of-speech information and so on.

We describe the full set of elements with which we experimented in Section 5.4.2.

In a simple example case, where context elements are words, and each context is

a 20-word window centered around the ambiguous target word, the generative process

is as follows. A distribution θ over the possible senses of the target is sampled from

2The original LDA software on which we based our model is GibbsLDA++, a C/C++ Implementa-
tion of Latent Dirichlet Allocation (LDA) using Gibbs Sampling for Parameter Estimation and Infer-
ence, by Xuan-Hieu Phan. Available at http://gibbslda.sourceforge.net/.
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Figure 5.4: Modified LDA model for word-sense modelling. Shaded nodes represent

observed variables. Rectangles represent repeated structures. The outer rectangle

represents the context C of an instance, and the inner ones represent repeated choice

of a sense (s) and a context word (w), repeated for each of the Nc words in the context.

a family of Dirichlet distributions parametrized by α. Then, for each of the twenty

words in the window, a sense is sampled from the sense-distribution, and the word

is generated given that sense assignment, according to the multinomial word-sense

distribution φ (parametrized by β).

As mentioned above, we wish to make use of a richer context representation, con-

taining several categories of features (not only a single 20-word window). We therefore

enhanced our version of the LDA model with the ability to deal with several feature

layers. Figure 5.5 shows a symbolic representation of our layered model. We have

multiple layers of information, each composed of a different class of features. For in-

stance, one layer could contain the words observed in a 20-word window, representing

high-level topical information. Another layer could contain part-of-speech bigrams ad-

jacent to the target, and represent syntactic information. The full list of feature classes

used in our experiments is detailed in Section 5.4.2. Information from all of the layers

is combined when estimating the sense distribution of each instance.

Under the layered model, for each instance, each layer is generated in a similar

fashion to the single word-window layer described above. For each element in the

layer, in turn, a sense assignment is sampled from the sense distribution θ, which is

shared by the whole instance. Then, a value is sampled for the element (a word in the

word-window layer, a part-of-speech bigram in the PoS-bigram layer, etc.), given the

sense-assignment, from the appropriate multinomial distribution for that layer (φ j).

The model operates under the simplifying assumption of independence between

the layers. Many probabilistic models assume independence between multiple sources

of information, to reduce computational complexity, despite the fact that such inde-
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Figure 5.5: Extended sense induction model; inner rectangles represent different

sources (layers) of information. All layers share the same, instance-specific, sense

distribution (θ), but each have their own (multinomial) sense-feature distribution (φ).

Shaded nodes represent observed features fi; these can be words, parts of speech,

collocations or dependencies.

pendence is rarely present in reality. The classic model for probabilistic classification

is the Naive Bayes method, so named for exactly this reason. Despite their simplicity,

such models achieve high performance in many tasks (see Langley et al. 1992).

5.3.2 Inference

Several inference approaches have been proposed for LDA models. Exact inference

is intractable, given the complexity of the model. Instead, various approximate infer-

ence techniques have been suggested. Blei et al. (2003) propose an EM-based max-

imum likelihood inference technique, using a variational E-step. Goldwater (2007)

reviews several common inference techniques and their limitations. She then describes

Markov Chain Monte-Carlo (MCMC) sampling algorithms and in particular the Gibbs

sampling algorithm (Geman and Geman, 1984) which can be used to estimate the pos-

terior distribution of the parameters, as well as the maximum a posteriori (MAP) or

expected value thereof. The Gibbs sampling procedure is iterative. In each iteration,

a value is sampled for each variable in the model in turn, according to the conditional

probability given the current values of all the other variables.
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5.3.3 Notation

Before formally describing our model, it is neccessary to present and explain the no-

tation we use. This are summarized in Table 5.1. To begin with, our model contains a

number of constants. K indicates the number of sense-clusters used in the model. This

is essentially another hyperparameter, which is provided in advance (see discussion in

Section 5.5.2). We use L to represent the number of different input layers in the data

and Vl to indicate the size of the vocabulary in each layer, i.e., the number of different

values which can occur in the layer (for example, in the word window layers, Vl is

equal to the number of different word types in the data).

We also make use of several levels of variables and parameters. First, there are

the hyperparameters and top level variables, which are the most global. The variable

α parametrizes the Dirichlet distribution of senses in each instance. Specifically, it

controls the probabilities of the family of possible sense-distributions from which is

sampled the individual sense distribution of each instance. In our mathematical anal-

ysis, we decompose α into portions αl , one for each layer. One interpretation of α is

as a pseudo-count prior, or smoothing factor, which provides weight in addition to that

which was actually observed in the data. Under this interpretation, we can speak of αl

as being the portion of the pseudo-count that is given to each input layer l.

For indexes, we use m to index the documents, and l to index the layers. The index

i is used to distinguish features and their associated senses. This index is global and

ignores document and layer boundries3.

The second category of variables relates to individual instances. Each instance has

a sense distribution θ, representing the relative portion of each sense in that instance (in

terms of the sense assighnments of the individual features comprising that instance).

Each instance is made up of observed features { fi, fi+1, ...} and their corresponding

latent sense assignments {si,si+1, ...}. The collection of all the observed features in the

data (all instances) is indicated by f , and similarly, s represents the collection of all the

sense assignments. We use f−i to indicate all features except the current one ( fi), and

s−i for all sense assignments except si.

In our notation #(x) indicates the number of times the event x was observed in the

data (all instances). Similarly, for a specific instance, #m(x) represents the number

of times event x was observed in document m, and #m is the total number of events

in document m, i.e., the size of the document. On the layer level, #l(x) represents

3An alternative would be to provide a triple index for each feature and its sense assignment, indicat-
ing the document, layer and location in the layer. We chose a single index for simplicity.
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the number of times event x was observed in layer l (of a certain document), and #l

indicates the size of the layer.

5.3.4 Model Formulation

In order to formally describe our model, we must outline the underlying probabilistic

assumptions, and derive the update function used in the Gibbs sampling procedure,

i.e., the conditional distribution of a single assignment given the current assignments

of all the other variables. In our model, each element in each of the layers (e.g., each

word in the ±10-word window, or each part-of-speech bigram in their layer) is a vari-

able, and is assigned a sense label. From these assignments, the sense distribution

of the instance as a whole can be determined. We need to provide the conditional

probability of the i-th variable (for example, the part-of-speech bigram preceding the

target) being assigned sense label si, given the feature-value fi of the variable (e.g., the

〈verb,determiner〉 bigram value), and the current sense assignments of all the other

variables in the data (s).

We begin with the basic Bayesian formulation. The probability of a single sense as-

signment, si, is proportional to the product of the likelihood (of the feature-value fi of

the i-th variable, given the rest of the data) and the prior probability of the assignment.

p(si|s−i, f ) ∝ p( fi|s, f−i,β) · p(si|s−i,α) (5.1)

For the likelihood term, integrating over all possible values of the multinomial feature-

sense distribution φ gives us the rightmost term in Equation 5.2.

p( fi|s, f−i,β) =
Z

p( fi|l,s,φ) · p(φ| f−i,βl)dφ =
#( fi,si)+βl

#(si)+Vl ·βl
(5.2)

This term has an intuitive interpretation. The notation #( fi,si) indicates the number

of times the feature-value si was assigned sense si in the rest of the data. Similarly,

#(si) indicates the number of times the sense assignment si was observed in the data.

βl is the Dirichlet prior for the feature-sense distribution φ in the current layer, and Vl

is the size of the vocabulary of that layer, i.e., the number of possible feature values

in the layer. Intuitively, the probability of a feature-value given a sense is directly

proportional to the number of times we’ve seen that value and that sense-assignment

together in the data, taking into account a pseudo-count prior, expressed through β.

A similar approach is taken with regards to the prior probability. In this case,
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Constants

K number of senses

L number of layers

Vl size of the vocabulary (number of types) in layer l

Global

α hyperparameter of the Dirichlet sense distribution family

φ joint word-feature distribution (multinomial)

β hyperparameter of the word-sense distribution

Indexes

m document index

l layer index

i feature and sense assignment index (global)

Instance

θ sense distribution for a specific instance

fi the i-th feature

si sense assignment for the i-th feature

f the collection of all features in the data

f−i the collection of all features in the data except fi

s the collection of sense assignments of all features in the data

s−i the collection of sense assignments of all features in the data except si

Count Notation

#(x) number of times event x was observed in the data (all instances)

#m(x) number of times event x was observed in instance m

#m total number of events in instance m (size of the instance)

#l(x) number of times event x was observed in layer l (in a specific instance)

#l size of layer l (in a specific instance)

Table 5.1: Notation used in description of the layered LDA model
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however, all layers of information in the instance must be considered.

p(si|s−i,α) = ∑
l

λl · p(si|l,s−i,αl) (5.3)

Here λl is the weight for the contribution of layer l, and αl is the Dirichlet prior for the

sense distribution θ in the current layer. Treating each layer individually, we integrate

over the possible values of θ, obtaining a similar count-based term.

p(si|l,s−i,αl) =
Z

p(si|l,s−i,θ) · p(θ| f−i,αl)dθ =
#l(si)+αl

#l +S ·αl
(5.4)

#l(si) indicates the number of elements in layer l assigned the sense si, #l indicates the

number of elements in layer l, i.e., the size of the layer (in the current instance). S is

the number of senses. Here, too, the intuitive interpretation is that the prior for sense

si in a specific layer is its observed proportion in that layer, taking into account the

pseudo-count αl .

To distribute the pseudo counts represented by α in a reasonable fashion among the

layers, we define αl = #l
#m ·α where #m = ∑l #l, i.e., the total size of the instance. This

distributes α according to the relative size of each layer in the instance.

p(si|l,s−i,αl) =
#l(si)+ #l

#m ·α
#l +S · #l

#m ·α
=

#m · #l(si)
#l +α

#m+S ·α
(5.5)

Placing these values in Equation 5.3 we obtain the equation specifying the overall prior

probability, which is a simple weighted average of the priors from the individual layers.

p(si|s−i,α) =
#m ·∑l λl · #l(si)

#l +α

#m+S ·α
(5.6)

Putting it all together, we arrive at the final update equation for the Gibbs sampling:

p(si|s−i, f ) ∝
#( fi,si)+βl

#(si)+Vl ·βl
·

#m ·∑l λl · #l(si)
#l +α

#m+S ·α
(5.7)

Note that when dealing with a single layer, this equation collapses to Equation 5.8,

which is identical to the Gibbs update equation for the original LDA algorithm (with

#m(si) indicating the number of words in the document assigned to sense-cluster si).

p(si|s−i, f ) ∝
#( fi,si)+β

#(si)+V ·β
· #m(si)+α

#m+S ·α
(5.8)

The sampling algorithm gives direct estimates of s for every context element. However,

in the context of our task, we are more interested in estimating θ, the sense-context

distribution. This can be obtained as in Equation 5.6, but taking into account all sense

assignments, without removing assignment i.
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5.4 Experimental Setup

5.4.1 Data

For evaluation, we used the dataset provided in the sense induction and discrimination

task in Semeval-2007 (Agirre and Soroa, 2007). This is comprised of text from the

Penn Treebank II (sections 1 and 22-24 were used for test data, and the rest for map-

ping, see Section 5.4.3). The Treebank data is a collection of articles from first half

of the 1989 Wall Street Journal. Table 5.2 shows some of the properties of the Se-

meval dataset (both portions combined). The average ambiguity is approximately four

senses, with a high (almost 80%) skew towards the predominant sense. This means

that an algorithm which simply chooses the most frequent sense of each word to label

all the instances achieves almost 80% accuracy. This skew is partly the result of the

fact that OntoNotes (Hovy et al., 2006) senses were used in Semeval, instead of the

finer-grained WordNet ones. Coarser senses make the inference task easier, but also

make it very difficult to beat the first-sense baseline.

For our experiments, we used two learning corpora. The British National Corpus

(BNC) served as our out-of-domain corpus, and contained approximately 730 thousand

instances of the 35 target nouns in the Semeval lexical sample. The second, in-domain,

corpus was built from selected portions of the Wall Street Journal (WSJ) corpus. We

used all articles4 from the years 1987-89 and 1994 to create a corpus of similar size to

the BNC, containing approximately 740 thousand instances of the target words.

A simple way to judge whether two pieces of text share a similar domain is to

examine the frequency of occurrence of different words in the data. We can measure

divergence between these distributions to determine how (dis-)similar they are. Fig-

ure 5.6 shows the distribution of the Semeval target words in the BNC, the WSJ, and

the provided test data. The Jensen-Shannon divergence between the instance distribu-

tion in the WSJ and Semeval is 0.0166 bits, whereas the divergence between the BNC

distribution and that of Semeval is 0.15 – almost ten times as large. This indicates that

the WSJ text is much more similar to the test data than the BNC. This is to be expected,

as the Semeval data is itself a portion of the WSJ.

The LDA framework contains several parameters whose values must be specified

(see Section 5.5.2). We used the Senseval 2 lexical sample (Preiss and Yarowsky,

2001) data as a tuning set, to get an estimate of the desired value for the α parameter.

4Excluding the portion used for the Penn. Treebank II, i.e., the Semeval dataset
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Word # Instances Ambiguity 1st Sense

area 363 3 266 (73.2%)

authority 111 4 53 (47.7%)

base 112 5 40 (35.7%)

bill 506 3 340 (67.1%)

capital 335 4 313 (93.4%)

carrier 132 8 101 (76.5%)

chance 106 4 52 (49.0%)

condition 166 2 135 (81.3%)

defense 141 7 41 (29.0%)

development 209 3 159 (76.0%)

drug 251 2 163 (64.9%)

effect 208 3 169 (81.2%)

exchange 424 5 306 (72.1%)

future 496 3 395 (79.6%)

hour 235 4 201 (85.5%)

job 227 3 172 (75.7%)

management 329 2 205 (62.3%)

move 317 4 295 (93.0%)

network 207 3 123 (59.4%)

order 403 7 336 (83.3%)

part 552 4 441 (79.8%)

people 869 4 791 (91.0%)

plant 411 2 360 (87.5%)

point 619 9 458 (73.9%)

policy 370 2 296 (80.0%)

position 313 7 95 (30.3%)

power 298 3 150 (50.3%)

president 1056 3 887 (83.9%)

rate 1154 2 979 (84.8%)

share 3061 2 2989 (97.6%)

source 187 5 69 (36.8%)

space 81 5 43 (53.0%)

state 689 3 570 (82.7%)

system 520 5 284 (54.6%)

value 394 3 357 (90.6%)

total/avg 15852 3.94 12634 (79.7%)

Table 5.2: Number of instances and ambiguity of each noun in the Semeval lexical

sample. The rightmost column presents the number (and percentage) of instances of

the word labeled with the most frequent sense.
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Figure 5.6: Distribution of word occurrences in the two corpora and the evaluation

dataset. Each bar represents one of the 35 words in the lexical sample, and the height

of the bar indicates the relative frequency (% of instances) in the dataset.
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5.4.2 Context Features

For the purpose of our experiments, we used the feature set described in detail in Sec-

tion 4.4.3. This feature set is designed to capture both immediate local context, wider

context and syntactic context. It contains six feature categories: ±10-word window

(10w), ±5-word window (5w), collocations (1w), word n-grams (ng), part-of-speech

n-grams (pg) and dependency relations (dep). Each feature category is treated as a

separate information layer in our model.

The Semeval workshop organizers provided a small amount of context for each

instance (usually a sentence or two surrounding the sentence containing the target

word). This context, as well as the text in the training corpora, was parsed using RASP

(Briscoe and Carroll, 2002), to extract part-of-speech tags, lemmatized forms of the

words, and dependency information. For instances containing more than one occur-

rence of the target word, we chose the first occurrence as the target. Instances which

were not correctly recognized by the parser (e.g., a target word labeled with the wrong

lemma or part-of-speech), were automatically assigned to the largest sense-cluster.5

5.4.3 Evaluation

Because every sense induction system uses its own set of arbitrary labels, evaluation

and comparison between different systems is a difficult problem. Several possible

solutions have been suggested. One alternative is to manually evaluate and decide on

the correctness of each system’s clustering solution. This presents several problems.

First and foremost, such evaluation is extremely expensive in terms of manual labor,

and requires individual evaluation of each system or system variation. Also, in order

to make the evaluation fair, the same evaluator should judge all systems. This makes it

difficult to introduce and evaluate a new system without re-evaluating previous ones. In

addition, it is impossible to make the evaluation standardized, and there is no guarantee

that two judges (or the same judge, at different times) will make identical, or even

similar, decisions.

Another option is via integration with a particular application (e.g., information

retrieval, Schütze 1998), and comparison of the effects of the system on the results.

While this approach is pragmatic, it presents many problems of its own. For instance,

it is necessary to decide upon a task and application which will allow such integration,

and not be biased towards a particular approach or system. In addition, the effects

5Less than 1% of the instances
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of the integration process and compatibility with the application must be taken into

consideration when evaluating system performance.

Another approach attempts to perform the evaluation independently of a specific

task, as is commonly done for supervised systems. The proponents of this approach at-

tempt to devise a reasonable way of mapping the results of the unsupervised system to

the gold-standard annotation. Pantel and Lin (2002) automatically map induced senses

to WordNet, and then manually evaluate the mapping quality. More recently, tagged

corpora have been used to map the induced senses to gold standard ones (Purandare

and Pedersen, 2004; Niu et al., 2005a; Agirre et al., 2006). This approach allows for

standardized evaluation and comparison, but introduces noise arising from the map-

ping process, and may be biased towards certain types of systems (Agirre and Soroa,

2007).

A final option is to treat the problem as a standard unsupervised clustering task.

In this approach, the gold-standard senses represent the true classes (but the labels are

ignored), against which the system’s clustering solution is evaluated using standard

measures from the clustering literature, such as purity, entropy and F-score.

Given a set of gold standard classes (senses) {Si}n
1 and a clustering solution {C j}m

1 ,

and assuming there are |D| instances in the dataset, the purity of a cluster C j is defined

by:

Purity(C j) =
1
|C j|

·max
i

|C j ∩Si|

In words, the purity of a cluster is the proportion of the cluster shared with the most

similar gold-standard class. The purity of the entire clustering solution is:

Purity({C j}m
1 ) =

m

∑
j=1

|C j|
|D|

·Purity(C j)

The Entropy measure employs a similar approach, but uses an information-theoretic

weighting. The Entropy of a cluster is defined as:

Entropy(C j) = − 1
logm

·
n

∑
i

|C j ∩Si|
|C j|

log
|C j ∩Si|
|C j|

The Entropy of the entire clustering solution is:

Entropy({C j}m
1 ) =

m

∑
j=1

1
m
·Entropy(C j)



Chapter 5. Sense Induction with Latent Dirichlet Allocation 102

F-Score is similar to that used in information retrieval, assuming the Si are the correct

documents given the query, and C j are those retrieved by the system. Therefore,

Precision(Si,C j) =
|C j ∩Si|
|C j|

Recall(Si,C j) =
|C j ∩Si|
|Si|

F-Score(Si,C j) =
2 ·Precision(Si,C j) ·Recall(Si,C j)
Precision(Si,C j)+Recall(Si,C j)

F-Score(Si) = max
C j

F-Score(Si,C j)

The F-Score of the entire clustering solution is given as:

F-Score({C j}m
1 ) =

n

∑
i=1

|Si|
|D|

·F-Score(Si)

In the sense induction and discrimination task in Semeval-2007 (Agirre and Soroa,

2007), the task organizers presented a standardized framework for evaluation of un-

supervised systems under the latter two approaches described above6. They provided

a cluster-based evaluation system, which did not attempt to match the induced sense

categories with the labels of the gold standard, but instead used clustering metrics to

evaluate.

The organizers also provided a standardized mapping system for mapped evalua-

tion, which made use of each system’s labels on one portion of the data (the “training”

portion) to derive the most likely mapping to the gold standard labels, and then used

that mapping to calculate the system’s F-Score on the rest of the data (the “test” por-

tion)7. The mapping matrix M is defined as follows:

Mi, j = P(Si|C j) =
|Si∩C j|
|C j|

In other words, each cell < i, j > in the matrix contains the proportion of times where

6The authors refer to these as the ‘unsupervised’ and ‘supervised’ evaluation methods, but we will
use ‘cluster-based’ and ‘mapped’ to avoid confusion

7It is important to note that the labels of the “training” portion are not used in any way for actual
training of the model, since the entire system is unsupervised. They are only used to provide a mapping
to the gold standard, for evaluation purposes. The “training” part could more accurately be called the
mapping portion.
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an instance of the mapping data assigned to cluster C j had the gold-standard sense-tag

Si.

Then, given a cluster assignment vector vx = (p1, p2, ..., pm) produced by the WSD

system for each instance x, where p j is the probability of assigning that instance to

cluster C j, the mapped sense assignment scores are calculated by multiplying the as-

signment vector with the mapping matrix. The final mapped (gold-standard) sense

assignment for that instance is chosen by selecting the sense with the highest mapped

assignment score.

Assignment(x) = argmax
i

vx ·M

Under the cluster-based evaluation setting, the one-cluster-per-word baseline outper-

formed all the systems except one, which was only marginally better. It is important to

keep in mind that labeling all instances with a single sense does not truly comprise a

feasible baseline system. The cluster-based evaluation ignores the actual labelling, and

due to the dominance of the first sense in the data, encourages a single-sense approach.

In addition, as stated above, the evaluation was done using coarse-grain OntoNotes

senses, which further amplified the predominant-sense problem. For the purposes of

this work, therefore, we focused on the mapped evaluation.

The best performing system in the mapped evaluation setting was I2R (Niu et al.,

2007) described in Section 5.2. Under this setting, most of the participating systems

outperformed the most-frequent-sense (MFS) baseline, and those that didn’t obtained

only slightly lower scores.

5.4.4 Sense Induction Procedure

Sense induction methods do not use labeled data in any part of the process. However,

they do make use of large amounts of unlabeled data, in order to get as much infor-

mation as possible about the characteristics of the data. While this unlabeled data is

sometimes also called “training data”, we will refer to it as “learning data”, to differ-

entiate it from labeled training data used in supervised systems.

In order to induce the senses of a target word, we created a combined dataset con-

sisting of all the instances of the word extracted from the large learning corpus, together

with the instances extracted from the much smaller test data. We then ran the Gibbs in-

ference procedure on the combined dataset. Due to the difference in size (three orders
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of magnitude) between the learning corpus and the test set, the sense-cluster distinc-

tions are almost entirely influenced by the properties of the former. The output of the

process is sense-cluster assignment probabilities for every instance in the combined

dataset, but for evaluation purposes we are only interested in the assignments of the

test set instances.

5.5 Sense Induction Using Layered LDA

Before presenting the quantitative results of our experiments, we give an example of

the sense-clustering produced by our system in Section 5.5.1. Our experiments ad-

dress several issues involved with using our layered LDA model for sense induction.

The first issue is that of model selection. Our model and the induction framework con-

tain several parameters that can be adjusted to better model the data. We examine the

effects of these parameters on system performance in Section 5.5.2. Another important

issue is the selection of information sources (layers) used by our model. We address

this in the experiments in Section 5.5.3. We also examine the issue of cross-domain

learning. As mentioned in the introduction to this chapter, sense induction frees the

system from dependence on a fixed sense inventory, thereby enabling use on new tasks

and languages. However, there is still an implicit dependence remaining. Sense in-

duction methods typically rely on large (unlabeled) corpora for learning. These are

often standard, publically available, machine readable corpora, not necessarily in the

domain of interest. This leads to the question: in this framework, what are the effects

of cross-domain learning? More specifically, how effective is learning from a general

corpus? Is it better to train on a small in-domain corpus, or a large out-of-domain

one? Do we have to tune model parameters separately for each domain? How detri-

mental is cross-domain learning, and what can we do to minimize negative effects?

To answer these questions, in Section 5.5.4 we compare a system which learns from

an out-of-domain corpus (BNC), to our main system, which learns from an in-domain

corpus (WSJ). Finally, in Section 5.5.5, we compare the performance of our methods

to state-of-the-art.

5.5.1 Example of System Output

The OntoNotes sense definitions and automatically induced clusters for the words

drug and power are presented in Tables 5.3 and 5.4, respectively. The senses were
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“Production”

plant

company

computer

nuclear

electric

system

year

U.S.

utility

price

line

market

industry

“World Politics”

party

government

political

military

president

economic

U.S.

people

world

soviet

country

struggle

election

“Financial”

plant

co.

nuclear

million

unit

utility

electric

company

light

corp.

power

share

inc.

“National Politics”

bank

president

congress

state

government

security

federal

executive

company

court

law

veto

authority

OntoNotes Sense Definitions for power :

• Sense 1 An ability to control or influence.

• Sense 2 Entity that possesses ability to control or influence.

• Sense 3 Exerted physical force.

• Sense 4 A mathematical measurement.

Table 5.3: Manual sense definitions and induced sense-clusters for the word power

extracted from the WSJ using a single ±10-word layer. Cluster labels were manually

assigned.
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“Enforcement”

U.S.

administration

federal

against

war

dealer

government

official

enforcement

testing

charge

trafficker

money

president

abuse

program

law

“Treatment”

patient

people

problem

doctor

company

abuse

aid

user

test

prescription

cost

year

alcohol

effect

addict

treatment

Dr.

“Industry”

company

million

sale

maker

stock

inc.

market

product

co.

U.S.

sterling

prescription

drug

generic

analyst

industry

pharmaceutical

“Research”

administration

food

company

approval

FDA

patient

test

market

U.S.

approve

treat

aid

study

product

treatment

develop

receive

OntoNotes Sense Definitions for drug:

• Sense 1 Medicines. A substance that affects the body in some legal,

usually-beneficial way. Does not apply to narcotics.

• Sense 2 Narcotics. A substance, usually illegal, that causes bodily

pleasure or some other reaction. Has a very negative connotation.

Table 5.4: Manual sense definitions and induced sense-clusters for the word drug

extracted from the WSJ using a single ±10-word layer. Cluster labels were manually

assigned.
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induced using the in-domain learning corpus (WSJ) and a single layer consisting of

words occurring in a ±10-word window. The lists contain the most likely content

words to appear in the window for each sense-cluster. As we can see, the induced sense

distinctions only roughly correspond to those in the lexicon. For drug, for instance, the

first two induced senses match the first OntoNotes sense, whereas the third and fourth

sense-clusters correspond to the second. For power, the second and fourth OntoNotes

senses are missing. In fact, this is in keeping with the manual sense labelling in the

Semeval test data, where the fourth sense is completely absent, and the second sense

is very infrequent (approximately 6%). This is a good example of a case where a fixed

lexicon is unsuitable for the specific domain at hand, but automatically induced senses

accurately match the data. Note that several words are shared between two, or more of

the clusters. However, some of these have different shades of meaning in the different

contexts (e.g., the word treatment in the second and fourth sense-clusters in Table 5.4).

5.5.2 Model Selection

There are several parameters that need to be addressed when using our model. The

question of the optimal number of clusters in an unsupervised clustering problem is an

important and difficult one. In our case, this means deciding on the desirable number

of sense clusters (see Section 5.2 for treatment of this issue in previous work). Addi-

tionally, our system contains several hyperparameters which can be adjusted to better

model the data. The α and β hyper-parameters determine the sense-cluster and feature

distributions, respectively. Another parameter regards the decision of when the model

has converged. Finally, our layered model adds the option of different weights for each

of the layers.

In our experiments we examined the two highest level parameters, namely, the

number of sense-clusters and value of α. The rest of the parameters were set to com-

mon default values. The β parameter was set to 0.1 (in all layers). This value is often

considered optimal in LDA-related models (Griffiths and Steyvers, 2002). The number

of convergence iterations was set to 2000. For simplicity, we chose uniform weights

for the layers. Due to the randomized nature of the Gibbs inference procedure, all the

results reported here and in the following sections are average scores over ten runs.

In order to determine the best value for the α parameter, we used the Senseval 2

lexical sample dataset for tuning, and experimented with values ranging from 0.005

to 1. Based on the results of this experiment, shown in Figure 5.7, we set the value
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Figure 5.7: Model performance with varying values of the α parameter on the Sense-

val 2 dataset.
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Figure 5.8: Model performance with varying number of senses on in and out-of-domain

corpora with a single ±10-word layer.
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α = 0.01 α = 0.02 α = 0.03

86.7 86.9% 86.9%

Table 5.5: Results (F-Score) of model selection experiments for the in-domain (WSJ)

system.

Single Layer

Layer F-Score

10w 86.9%
5w 86.8%

1w 84.6%

ng 83.6%

pg 82.5%

dep 82.2%

MFS 80.9%

Remove One

Layer Diff. F-Score

-10w -0.2% 83.1%

-5w -0.3% 83.0%

-1w -0.3% 83.0%

-ng -0.3% 83.0%

-pg -0.6% 82.7%

-dep +1.4% 84.7%

all – 83.3%

Combination

Layer F-Score

10w+5w 87.3%
5w+pg 83.9%

1w+ng 83.2%

10w+pg 83.3%

1w+pg 84.5%

10w+pg+dep 82.2%

MFS 80.9%

Table 5.6: Results (in-domain) for single layer (left), leave-one-out (center) and selected

combination (right) experiments. Also shown are the most-frequent-sense (MFS) base-

line, and results of the combined system, containing all layers (all).

of α to 0.02 in all our subsequent experiments. In order to examine the effectiveness

of using an external tuning dataset to determine the parameter values, we performed

additional experiments using the Semeval data (our test set). We explored the effect of

small changes from the optimal value of al pha (as determined by our tuning experi-

ment). The results of these experiments are shown in Table 5.5. The effects are quite

minor (≤0.2%). This indicates that there is little need to fine-tune the α parameter, and

relying on a value obtained using an external tuning set (as we did) is sufficient.

To address the issue of model-order, we experimented with values ranging from

three to nine sense-clusters. Figure 5.8 (solid line) shows the results obtained for dif-

ferent numbers of sense-clusters for the in-domain system (WSJ), using the a single

±10 word layer. For this system, performance peaks at four sense-clusters, which is a

reasonable result, given that this is close to the average ambiguity in the test data (see

Table 5.2).
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5.5.3 Layer Analysis

Table 5.6 presents the results of a series of experiments designed to investigate the rel-

ative contributions of the individual layers to the combined (layered) model. All exper-

iments employed the optimal parameters determined in the previous section (α = 0.02,

with 4 sense-clusters).

The first set of experiments compares the performance on the induction task using

each of the individual layer on their own. This corresponds to running a basic (non-

layered) version of our LDA model (as in Figure 5.4), using only a single information

source as input. The results are shown on the left side of the table. The layer composed

of words co-occurring within a ±10-word window, and representing wider, topical, in-

formation gives the highest scores on its own. It is followed by the ±5-word and

collocation (1w) windows, which represent more immediate, local context. The word

n-grams and the part-of-speech n-grams, on their own, achieve lower scores, largely

due to sparseness. The lowest-scoring single layer is the dependency layer, which gives

results that are only slightly above the most-frequent-sense (MFS) baseline. Depen-

dency features are very specific (containing information about the type of dependency,

whether the target word is the head or the dependent, and the other word involved in

the relation). This means that it is very informative when present, but extremely sparse.

All the systems outperform the most-frequent-sense baseline.

The center portion of the table shows the results obtained when running the layered

model with all but one of the layers as input. We can use this information to determine

the contribution of each layer by comparing (middle column) to the combined model

with all layers (all). Because we are dealing with multiple layers, there is an element of

overlap involved. Therefore, each of the word-window layers, despite relatively high

informativeness on its own, does not cause as much damage when it is absent, since the

other two layers compensate for the topical and local information. The absence of the

word n-gram layer, which provides specific local information, does not make a great

impact when the collocation layer and the part-of-speech n-gram layer are present.

Finally, we can see that the extremely sparse dependency layer is determental to the

multi-layer model as a whole, and its removal increases performance. The sparsity of

this layer means that there is often little data on which to base a decision. In these

cases, the layer contributes a close-to-uniform estimation of the sense distribution,

which confuses the combined model.

On the right side of the table we present the results for a selected set of layer combi-
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α = 0.01 α = 0.02 α = 0.03

84.1% 84.7% 84.4%

Table 5.7: Results of parameter-variation experiments out-of-domain (BNC)

nation experiments. The benefits of combining information sources are evident in one

case. The 10w+5w combined system produces the best performance, outperforming

each of its individual component layers by 0.5%. Other pairwise combinations result in

scores which are inbetween the scores of their components, and do not perform as well

as the best individual layer in the pair. The lesson we can learn from these results is

that the layered model can provide improved results by combining multiple sources of

information, but these must be carefully selected. Combining two layers with similar

performance on their own results in improved scores. However, if one of the compo-

nents is considerablly weaker than the other, it will tend to effect the combined system,

resulting in a lower score than that of the strong component by itself. The results pre-

sented here also address the issue of the naive independence assumption underlying

our layered model. Using a combination of layers which are more independent of one

another, as in the 10w+pg+dep combined system, is not sufficient to improve results,

and improvements can be gained even when the independence assumption is strongly

violated, as in the case of the 10w+5w combination. These results suggest that it is

the relative strength of the component layers, rather than their mutual independence,

which affects the performance of the combined system.

5.5.4 Cross-Domain Learning

5.5.4.1 Model Selection

Figure 5.8 (dashed line) shows the results obtained for different numbers of sense-

clusters in the out-of-domain (BNC) system, using a single ±10-word layer. For this

system, the best results were obtained using twice as many sense-clusters as required

by the in-domain system (solid line in the figure). This can be attributed to the loss of

accuracy resulting from the shift in domain. The coarse sense-divisions of the learning

domain do not match those of the target domain (as seen in the example below). In-

stead, finer granularity is required in order to encompass all the relevant distinctions.

Table 5.7 presents the results of our experiments with small variations of α on the Se-

meval data. Once again, the differences are relatively small, and the optimal value for
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the tuning dataset (0.02) gives the best performance on our test data, as well. These

model-selection experiments confirm the conclusion reached in Section 5.5.2 that an

external tuning set provides a reasonable estimate of the α parameter, which does not

vary greatly across domains. On the other hand, the correct selection of the number of

sense-clusters has a bigger effect (a 0.75% increase between 4 and 8 sense-clusters in

this case, and up to 2% in other settings with which we experimented).

Table 5.8 presents the automatically induced clusters for the word drug, this time

using the out-of-domain corpus (BNC) for the induction process, and eight topics, in-

stead of the four used with the in-domain corpus. While there is some correspondence

with the sense-clusters in Table 5.4 (as indicated by the assigned cluster labels), the

differences between the two corpora are clearly represented. The WSJ focuses on the

financial aspect, while the BNC is directed towards a wider, general interest, audience.

5.5.4.2 Layer Analysis

Table 5.9 presents the results of a series of experiments, similar to the ones in presented

in Section 5.5.3, this time using an out-of-domain system, trained on the BNC. The

general trends for individual layers (left) and all-but-one layer systems (center) are

similar, although some interesting differences are apparent. The sparser layers, notably

word n-grams and dependencies, fare comparatively worse. This is expected, since

the more precise, local, information is likely to vary strongly across domains. Even

when both domains refer to the same sense of a word, it may to be used in a different

immediate context, and local contextual information learned in one domain will be less

effective in the other.

Another observable difference is that the combined model excluding only the de-

pendency layer does better than each of the single layers. Due to the discrepancies

between domains, each individual layer is less effective, and the benefit of combin-

ing as much data as possible outweights the negative influence of the weaker layers.

In fact, the all-layers out-of-domain system outperforms the all-layers in-domain one

(compare bottom-center cell in both tables).

Looking at the results of our layer combination experiments (right portion of the

table), we see that the conclusions we drew from the combination experiments with

the in-domain corpus (see Section 5.5.3) hold true here, as well. The combined sys-

tems which outperform their individual components are 10w+5w (producing the best

results of any of the out-of-domain systems), and 1w+pg. In each of these systems, the

component layers have similar performance on their own.
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“Trafficking”

trafficking

against

trafficker

traffic

U.S.

cartel

government

charge

enforcement

state

control

“Wonder Drug”

think

people

addict

involve

life

drink

help

effect

mean

feel

wonder

“Abuse”

effect

alcohol

disease

treatment

cause

pain

addiction

take

patient

addictive

chemical

“Enforcement”

police

charge

court

test

supply

drug

jail

dealer

use

arrest

possession

“Treatment”

alcohol

problem

health

abuse

drug

people

service

patient

prescribe

treatment

help

“New Meds”

patient

treatment

intravenous

effect

therapy

HIV

ulcer

anti-inflammatory

non-steroidal

concentration

report

“Issue”

drink

addict

abuse

crime

addiction

life

sex

centre

alcohol

family

violence

“Research/Industry”

company

food

research

administration

world

U.S.

price

product

market

cost

pharmaceutical

Table 5.8: Induced sense-clusters for the word drug extracted from the BNC using a

single ±10-word layer. Cluster labels were manually assigned.
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Single Layer

Layer F-Score

10w 84.6%

5w 84.6%

1w 83.6%

pg 83.1%

ng 82.8%

dep 81.1%

MFS 80.9%

Remove One

Layer Diff. F-Score

10w -0.8% 83.3%

5w -1.3% 82.8%

1w -0.6% 83.5%

pg -0.9% 83.2%

ng -1.2% 82.9%

dep +0.6% 84.7%

all – 84.1%

Combination

Layer F-Score

10w+5w 85.5%
5w+pg 83.5%

1w+ng 83.5%

10w+pg 83.4%

1w+pg 84.1%

10w+pg+dep 81.7%

MFS 80.9%

Table 5.9: Out-of-domain results for single layer (left), leave-one-out (center) and se-

lected combination (right) experiments. Also shown are the most-frequent-sense (MFS)

baseline, and results of the combined system, containing all layers (all).

5.5.4.3 Corpus Size vs. Domain

Figure 5.9 shows the scores achieved by the model using increasingly large portions

of the corpora. The system uses a single ±10 word layer, and the parameters are those

determined as optimal in the previous sections (α = 0.02, four and eight sense-clusters

for the in- and out-of-domain systems, respectively). In general, for the in-domain

system, the increase in data seems to improve accuracy, but the differences are small,

and are sometimes overweighted by the randomness of the sampling algorithm. For the

out-of-domain setting, increasing the corpus size does not show a consistent benefit.

From these results it is clear that using a small amount of in-domain data is preferable

to using a very large out-of-domain corpus. Even using the entire out-of-domain corpus

results in lower scores than those achieved with 10% of the in-domain one.

5.5.5 Comparison to State-of-the-Art

Table 5.10 compares the results of our in- and out-of-domain layered-LDA systems to

the the top two systems in the Semeval induction task. Both LDA systems significantly

outperform the most-frequent-sense (MFS) baseline (p < 0.01 using a χ2 test). Our

best in-domain system outperforms the highest-scoring system in Semeval (I2R), while

our out-of-domain system outperforms the second-best system (UMND2), although

the differences are not statistically significant. The difference between our in-domain

and out-of-domain systems is significant (at p < 0.01).
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Figure 5.9: Model performance with increasing sizes of in-domain (solid) and out-of-

domain (dashed) learning data.

System F-Score

LDA-WSJ (10w+5w) 87.3%

I2R 86.8%

LDA-BNC (10w+5w) 85.5%

UMND2 84.5%

MFS 80.9%

Table 5.10: F-score of best-performing Semeval-07 systems and our LDA models on

the sense induction task, using mapped evaluation.
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5.6 Discussion

Our experiments were designed to investigate several aspects of our layered LDA

model. In this section, we will briefly discuss our experimental results and their impli-

cations.

Layers vs. Ensembles The ensemble methods described in Chapter 3 showed us the

benefit of combining the opinions of several systems. However, the individual systems

in the ensemble are unaware of each other (with the possible exception of the Arbitor

ensemble, see Section 3.4.2), and the benefits of the combined opinions come only in

a post processing stage. In the layered model, on the other hand, the combined sources

of information are present from the input stage, and are expected to influence each

other during the learning stage itself, thus improving performance.

Model Selection The first aspect was that of model selection. We looked at the ef-

fects of the values of high-level parameters and determining the correct number of

clusters. Our experiments indicate that our model is relatively robust to small adjust-

ments of the α parameter, which influences the cluster distribution. This means that

we can use an external tuning set to estimate the best parameter values with little risk

of impairing our model. The issue of model order, i.e., determining the correct number

of clusters, is a more complex one, and has a bigger effect on performance. Although

using a number of clusters corresponding to the average ambiguity provided good per-

formance in our experiments, it would be preferable to determine this parameter in a

more principled manner, preferably on a word-for-word basis.

Layer Analysis We explored the potential of our extention to the LDA model, which

allows it to make use of multiple layers of information. Our experiments compared

a variety of feature categories, designed to capture local, topical and syntactic infor-

mantion, and the interactions between them in the layered model. The results show

that combining different information sources can be beneficial, and lead to perfor-

mance gains, but the layers must be carefully selected. Combining layers which differ

strongly in individual performance can lead to decrease in performance. On the other

hand, layers with similar individual performance can improve results, even when the

independence assumption inherent in the model is violated. There is still much scope

for exploring the layered aspect of the model, including a closer look at how indepen-

dence effects performance, and whether differential weighing of the layers can provide
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a way to exploit even the weaker information sources.

Co-occurrence vs. Syntax A disappointing observation arising from our results is

that our best performance was achieved using only co-occurrence information, while

making use of syntactic dependency information actually hindered the model. Since

we are dealing with a token-based approach, where each instance of a word in treated

individually, dependency data is very sparse. Most instances participate in only one

or two dependency relations, and this has a strong detrimental effect on performance.

In the previous chapter, on the other hand, we showed that dependency information

can improve accuracy over simple co-occurrence information (see Table 4.3) when

dealing with word types, rather than tokens. It may also be the case that dependency

information would be more useful for the treatment of verbs, rather than nouns. Verbs

commonly participate in more dependency relations, and syntactic information can be

expected to play a larger part in their disambiguation.

Domain Independence in Sense Induction Our experiments addressed the issue

of cross domain learning and its effects on the performance of the model. From the

results, it is clear that learning from an in-domain corpora provides much better per-

formance than using an out-of-domain one. Even the help of a much larger learn-

ing corpus and the combination of multiple sources of information are not enough to

compensate for the cross-domain effect. This serves to emphasize the advantages of

a completely unsupervised method, which requires only plain text as input, and can

therefore be applied easily to the domain at hand. As demonstrated in the example

in Table 5.3, the automatic induction of senses can help model the target data more

accurately than relying on an external fixed sense inventory. Both these characteris-

tics of our method (freedom from annotation and independence from a pre-specified

dictionary) make it especially suited for wide coverage WSD, and applicable to many

nature-language tasks.

5.6.1 Summary

We presented an unsupervised, generative, probabilistic method for sense induction.

This provides a solution to the problem of dependence on a fixed sense-inventory,

which severely limits the potential uses of unsupervised WSD methods. Our method

has many of the advantages common in a supervised framework, but does not require

labeled data. The system is based on an extension of the Latent Dirichlet Allocation
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model, which we referred to as Layered-LDA. Our extension is general, and can be

used for any task where several sources of information are available. Our method

achieves state-of-the-art results on the unsupervised sense induction task.



Chapter 6

Conclusions and Future Directions

Mellvile, as a great author, used one word to convey two

ideas, as opposed to the typical scientific paper, which

can go for pages without conveying any ideas at all.

Michael Lesk

This chapter concludes our thesis. In Section 6.1, we summarize the main findings and

contributions of the thesis. Section 6.2 addresses the issue of application, i.e., the use

of WSD methods as part of a larger system designed to perform a real-world task. We

conclude in Section 6.3 with a discussion of future research directions.

6.1 Findings

The work in this thesis addresses the performance gap separating unsupervised and

supervised WSD. It takes a deep look into the nature of this gap, explores its causes,

and presents solutions to help bring unsupervised methods closer to the level of per-

formance common to supervised ones. We addressed classic unsupervised methods

which make use of a dictionary (see Section 2.1.1) in Chapter 3. In Chapter 4 we

presented ways to automatically sense-label training data, thus enabling a supervised

methodology without manual annotation. We addressed the completely unsupervised

task of sense induction in Chapter 5. Our research also provides some important in-

sights regarding the relative strengths and weaknesses of supervised and unsupervised

methods in computational linguistics in general. The main findings of the thesis are

presented in detail below.

119
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A standardized framework for comparison and analysis of unsupervised WSD

methods. We designed a framework which provides all the necessary infrastructure

to allow the comparison, evaluation, and detailed analysis of existing unsupervised

methods on the same data, under uniform conditions. To our knowledge, such a set-

ting was not available previously, nor was such a comparison performed in the past.

Our experiments compared the performance of four unsupervised WSD algorithms,

employing different representations, approaches and methodology (context overlap,

lexical-chains, structural-semantic interconnections, and predominant-sense detection

using similarity metrics). We also examined the utility of using the most frequent

(first) sense estimated by each of the algorithms to label all instances of the data. The

results of our experiments lead to the following conclusions. Type-based disambigua-

tion (i.e., using the most-frequent-sense for all instances) outperforms token-based,

context-specific, disambiguation. Although labeling all instances with a single sense

does not provised an applicable WSD solution on its own, the first sense can provide a

reliable fallback for token-based methods in cases where the context is not sufficiently

informative. Our examination of the different approaches used in previous algorithms

brought to light the effectiveness of using distributional and semantic similarity met-

rics, which we employed in our unsupervised data-creation method. The detailed com-

parison of the accuracy of the different methods demonstrated their complimentary

nature. Each method performed well on a different group of words, with little overlap.

This finding led to the subsequent development of unsupervised ensemble methods.

Ensemble combinations. We developed unsupervised ensembles for improving the

performance of a group of WSD methods. We examined several ensembles (arbiter,

probability-based, voting, and rank-based) designed to operate on the basis of sense-

labeled output, with no assumptions regarding the methodology employed by the com-

ponent algorithms. We found that even simple ensembles achieve better results than

individual components and outperform state-of-the-art algorithms on standard evalua-

tion sets. Our experiments show that the best performing ensemble is the rank-based

one. This ensemble considers information regarding all the senses, under a weighting

scheme that is independent of the algorithm’s underlying methodology. The ensem-

bles serve an important function in demonstrating a way in which the differences in

formulation and approach to the disambiguation problem, that had previously been a

hindrance to the development of accurate WSD system, can be harnessed to improve

performance. The ensemble methods are very helpful in cases where a WSD sys-
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tem already exists, and the cost of developing a more accurate system from scratch

is prohibitive. In these circumstances, they can be used to improve performance with

very little additional effort. Another important benefit of our ensemble methods is to

provide a strong fallback option in cases where context is not sufficiently informative.

Finally, our work on unsupervised ensemble methods also represents an important

contribution to unsupervised learning in general, since it demonstrates the benefits that

can be gained from employing simple ideas drawn from supervised methodology in an

unsupervised framework.

Unsupervised creation of labeled data. We described an unsupervised method

which uses distributional and semantic similarity metrics to automatically sense-label

training data, thus enabling the use of supervised classifiers in an unsupervised frame-

work, and reducing the gap between the two settings. We made use of distributional

similarity to detect words with similar context-statistics in the corpus (distributional

neighbors), and employed semantic similarity metrics to associate them with senses of

the target word. We then extracted instances of the distributional neighbors, along with

their context, from the corpus, replacing each neighbor with the target word and label-

ing it with the associated sense. This procedure produced our sense labeled dataset.

We trained three supervised classifiers (SVM, maximum-entropy, and label propaga-

tion), based on different learning approaches, on our automatically created data, and

on data created using previous methods proposed in the literature. We evaluated on

two standard datasets, and compared to standard unsupervised WSD methods and to

the use of manually labeled data, as an upper bound. Our results showed that classi-

fiers trained on our automatically created data can surpass the performance achieved by

previous methods of automatic data-creation and outperform state-of-the-art unsuper-

vised methods. We further showed that coverage of secondary senses varies between

classifiers. Using an SVM as the classifier resulted in coverage approaching that of

using manual data, making it the preferred choice in cases where secondary senses are

especially important.

We found that using co-occurrence-based distributional neighbors rather than dep-

endency-based ones resulted in only a small decrease in performance (0−4.5%), and

was still preferable to using other data-creation methods. This means that our approach

can be used in cases where accurate syntactic parsers are unavailable. We also found

that data created with our method is similar to manually labeled data in terms of sen-

sitivity to the coarseness of the sense distinctions. Our approach can therefore be used
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for tasks requiring either fine or coarse sense granularity. Comparison of the differ-

ent classifiers revealed that the label-propagation classifier had the smallest decrease

in performance when using our dataset instead of the manually labeled one. We at-

tributed this to the fact that this classifier takes into account the character of the test

set, as well as that of the training data. This allowed it to compensate for the differences

between our pseudo-instances and real instances of the target word, as found in the test

data. Our method was successful for a variety of classifiers. This implies that im-

provements to supervised methods (through the development of better classifiers) can

be easily transferred to the unsupervised setting. Our approach therefore represents a

significant step in bridging the performance gap between unsupervised and supervised

methods.

From the point of view of unsupervised learning, our method proves the effective-

ness of unsupervised data creation methods, and opens the way for a similar methodol-

ogy in other tasks which employ machine learning algorithms trained on labeled data,

such as parsing and relation extraction.

A Bayesian model for sense induction. We presented a sense induction system

based on a probabilistic generative model, which is independent of a fixed sense in-

ventory. We introduced a novel point of view of the sense induction task. Whereas

previously the task has been treated as a standard clustering problem, we view it from

a more language-oriented perspective. Our approach postulates that the observed data

(context surrounding the ambiguous word) is generated with the intent of communi-

cating the latent meaning of the word. Our model provides a principled way to in-

corporate a wide range of informative features in the induction process. We adapted

the LDA model originally designed for modelling text generation to the task of sense

induction. We extended the model to allow the use of multiple sources of information.

We investigated the properties of our model, including the effects of model parame-

ters, the selection of information sources, and cross domain learning. We compared

the results of our model to those of state-of-the-art sense induction methods based on

clustering.

We found that appropriate selection of model order has greater effect on perfor-

mance than variation in model parameters. In addition, an external tuning dataset can

be used to reliably estimate the desired value of the parameters. In depth analysis of

several feature categories and their contribution to the combined model revealed that

performance can benefit from the combination of several information sources, pro-
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vided they are strong predictors on their own. This is necessary to prevent weaker

components from having a negative effect on the model as a whole. On a standard

evaluation dataset, our model outperforms state-of-the-art methods for unsupervised

sense induction. The induced senses match the distinctions present in the data. Our

model is therefore suitable for a variety of tasks and domains, where methods based

on a fixed sense-inventory (both classical unsupervised and supervised WSD methods,

see Section 2.1.1) may suffer from the noise introduced through irrelevant senses or

unnecessary distinctions.

Finally, our model represents a general extension of LDA, designed to make use

of multiple sources of information. It can therefore be employed on a variety of tasks,

other than WSD, where such information exists.

To summarize, in this thesis we have explored the nature of the performance gap sepa-

rating unsupervised and supervised WSD. We have addressed many of the fundamental

issues contributing to this gap, and presented our solutions to these problems. As a first

step, the incompatibility, diversity, and lack of standardization of existing unsupervised

WSD systems were addressed using ensemble methods. Next, we addressed the prob-

lematic aspect of problem formulation and difference in approaches that characterizes

unsupervised WSD. We presented an unsupervised process for creating sense-labeled

training data, which retains the freedom from manual annotation, while transferring

the actual disambiguation to the hands of the more accurate and powerful supervised

methods. Finally, we turned our attention to the restrictions imposed by a predefined

sense inventory. We presented a system for unsupervised sense induction, which al-

lows unsupervised WSD to be easily integrated into natural-language applications, and

tailored to a specific task and domain, without the need to define a new purpose-built

sense inventory and corresponding training dataset. Our research also provides some

important insights regarding the nature of the performance gap separating supervised

and unsupervised methods in WSD and in computational linguistics in general. All our

methods surpass current state-of-the-art performance on their respective unsupervised

tasks, and represent a significant step in closing the gap in WSD.

6.2 Applications

An important aspect not addressed in this thesis, but which requires mention, is the

issue of application. Though the stand-alone WSD setting is often required in order
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to remove external influences and focus purely on the disambiguation problem, it is of

little practical use in and of itself. Integration into a real-world application is important

both as a realistic evaluation of performance and in order for any WSD system to

have pragmatic value. The methods and systems we presented in this work each have

specific characteristics making them suitable for different uses and applications.

The ensemble methods described in Chapter 3 were designed primarily to help

improve the performance of existing WSD systems. These methods are of potential

use for legacy systems, which contain an existing WSD component. Our ensembles

present a quick and easy way of improving performance without the cost of develop-

ing a new WSD component from scratch and ensuring its compatibility with system

requirements. The existing component can be integrated into an ensemble along with

other available WSD algorithms. Our experiments show that results of a state-of-the-

art system can be improved even when the ensemble contains relatively weak members.

Since our ensemble methods operate on the basis of the predominant sense method-

ology, disregarding context, they can be used in combination with supervised WSD

methods that take context into account. For instance, the ensembles could provide

a strong fallback option for supervised methods when encountering unseen words or

words with uninformative contexts.

The data-creation method presented in Chapter 4 represents a highly-versatile tool

for disambiguation. It can be employed to replace or enhance (as described in Sec-

tion 6.3, below) any existing supervised WSD component. It is thus ideally suited

for easy integration into natural-language applications which have previously relied on

supervised methods for accuracy, and been restricted by their limitations. Use of this

method allows the expansion of such applications to encompass new domains where

sufficient training data is unavailable.

Another potential application for both our ensemble methods and for classifiers

trained on our automatically-labeled data, would be to create preliminary annotations,

under the “annotate automatically, correct manually” methodology. This methodology

can be used to reduce manual effort and provide high volume annotation, as demon-

strated in the Penn Treebank project.

Sense induction holds great promise in terms of application, since it learns directly

from the data, and the induced sense distinctions are therefore those which are relevant

to the task and domain at hand. As mentioned in Chapter 5, recent work in machine

translation (Vickrey et al., 2005) and information retrieval (Véronis, 2004) indicates

that induced senses can lead to improved performance in places where methods em-
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ploying a fixed dictionary have previously failed (Carpuat and Wu, 2005; Voorhees,

1993). Aside from the benefits of induced senses, rather than fixed ones, our sense-

induction model is especially suited for use as a component in an application due to

its probabilistic nature. The probabilistic formulation allows for easy integration with

other components through mixture and product models. Yet another advantage of our

model is the easy integration of additional sources of information, which can be spe-

cific to the task at hand. For instance, we might want to include contextual information

from the target language as well as the source, if using the model as part of a transla-

tion system, or include relevant meta-data if the system is being used for information

retrieval.

6.3 Directions for Future Work

The work in this thesis opens many avenues for further research. The unsupervised

ensemble methods presented in Chapter 3 can be extended in several directions. The

ensembles we explored were based on simple methodologies, designed to impose as

few restrictions as possible on the component systems. More sophisticated ensemble

methods, which have more knowledge on which to base their decisions, could give bet-

ter performance. For instance, taking into account the algorithms’ confidence in their

classification, the ensemble could choose to ignore members with low-confidence, on

a per-instance basis. In addition, it could choose when to make use of the context-

based classification provided by the ensemble members, and when to default to the

document-wide predominant sense. Another direction to pursue is integrating more

members into the ensembles. This has the potential for increasing their accuracy and

robustness. Possible additions include not only domain driven disambiguation algo-

rithms (Strapparava et al., 2004) but also graph theoretic ones (Mihalcea, 2005b), as

well as algorithms that quantify the degree of association between senses and their co-

occurring contexts (Mohammad and Hirst, 2006). Increasing the number of compo-

nents would also allow more sophisticated combination methods such as unsupervised

rank aggregation algorithms (Tan and Jin, 2004).

In Chapter 4 we introduced an unsupervised method for creation of labeled train-

ing data. This method, too, presents many possibilities for further research. Provid-

ing an unsupervised method which differs from supervised ones only in its training

data makes it very easy to integrate the two methodologies. This could be done in

several ways. One option is to explore ways to merge manually and automatically
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labeled data. Such a combination could be used to inflate a small manually-labeled

dataset. The integration would require a way of strengthening the importance of the

few manual labels so they are not overwhelmed by the automatic ones, and needs to

take into account the different nature of the two components (actual instances of the

target in the manually labeled data versus pseudo-instances, created from distributional

neighbors in the automatically-created portion). This presents an interesting challenge

from a research perspective. Another option is to perform the integration on a per-

word basis. Under this setting, our unsupervised system can be used for most cases.

However, for words for which there is already sufficient training data, or when our

unsupervised methodology does not provide the desired accuracy, supervised method-

ology can be employed. This greatly reduces the burden of manual annotation to a few

specific cases. It also makes it relatively easy to shift domain, since whenever new

words or senses are encountered (e.g., terminology or senses that are specific to the

new domain), our method can be used to provide the missing information. A further

possibility is to shift the focus of the manual labor from the task of labeling examples

to that of selecting informative neighbors for senses of ambiguous words. This could

represent an enormous reduction in the amount of manual labour required for produc-

ing a training dataset, since a single informative neighbor can provide a large number

of training instances. Finally, the method we presented highlights the effectiveness of

automatic data-creation as an unsupervised methodology. It would be very interesting

to see whether this methodology could be successfully employed in other tasks where

labeled training data is used, such as parsing or relation extraction.

The layered-LDA model for sense-induction presented in Chapter 5 suggests many

interesting research possibilities. Our experiments used a set of layers composed of a

simple agglomeration of features commonly used in the field and shown to be infor-

mative for WSD. However, they may not be the best choice for integrating in a model

such as our own, which assumes independence between the layers and prefers layers

with similar individual performance (as shown in our experiments). Further study into

the optimal choice of information sources to use as layers could be beneficial to our

sense-induction system. The model itself contains several elements which could bene-

fit from further study. One issue is the weighting of the layers. Our model provides the

option of assigning different weights to the different information layers. Our experi-

ments show that some of the layers we used were much more accurate and informative

than others. However, in our system, we chose to weight all the layers equally for

the sake of simplicity. Determining the optimal layer weights presents an interesting
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problem with strong potential for improving the performance of the model. Another

issue is the correct tuning of model parameters. In general, we chose not to focus on

the issue of parameter estimation in our work and therefore did not include a compre-

hensive study of its influence on the model. All model parameters were set either to

standard default values, or estimated on a separate, held out, dataset. However, bet-

ter parameter estimation could substantially increase system accuracy. Goldwater and

Griffiths (2007) describe a method for integrating hyperparameter estimation into the

Gibbs sampling procedure using a prior over possible values. Such an approach could

be adopted in our framework, as well, and extended to include the layer weighting

parameters. In addition, the infinite LDA model (Teh et al., 2006) automatically deter-

mines the optimal number of sense-clusters as an intrinsic part of the inference process.

Adding both these components to our model would provide an elegant solution to the

parameter estimation problem, and eliminate the need for tuning datasets and other ex-

ternal methods, such as cluster-validation. Finally, our Layered-LDA model represents

a general extension of the LDA model, designed to be used wherever multiple sources

of information are available. It would be interesting to apply this model to other tasks

which conform to this setting. Possible examples include classification of scientific

documents (where images and the abstract are possible additional layers to the main

text), induction of music categories (where lyrics and different musical information

can be viewed as layered elements of a song), and many others.
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