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ABSTRACT 

The contents of this thesis may be divided into two main 

branches; the first one deals with a detailed analysis of period 

doubling bifurcations of the Henon map and a short account of this 

bifurcation of the Duffing equation, and the second one consists 

of the study of the relationship of compact analytic semigroups (CAS) 

with the hermitian approximation property (HAP) and with the 

metric approximation property (MAP) on a separable Banach space. 

Section One of Chapter One provides some numerical devices to 

evaluate periodic points and bifurcation values (and their limiting 

values) of the Henon map, HMB(x,y) = (1 - Mx 2  + y, Bx). 

Section Two deals with the smoothness of the curve M =
OD 

B E (- 	and suggests that this curve is only C smooth, 
,\ 	,\J 

= log2 6, ó = 8.721097200 ... near B = ± 1 and C 	smooth
00  

otherwise. In Section Three we develop some geometric insight which 

enables us to explore the domain of attraction of a periodic orbit, 

and the existence of a homoclinic point and a Horseshoe for higher 

values of B and smaller values of N. 

In Chapter Two, we describe some computational methods for 

finding periodic points and period doubling bifurcation values of 

the Duffing Equation. The numerical methods developed and the 

results obtained in Chapter One and Chapter Two suggest very wide 

scope of conducting analogous study in other ordinary differential 

equations. 

Chapter Three establishes mainly three facts, viz. (1) a 

separable Banaçh space having HAP possesses a CAS, at, t E H satisfying 

11]. 
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the relations (T1)(atX)_ = X and (T 2 ) II atil < 1 for every t 

in H, (2) the converse of (1) is false in general and (3) a 

separable Banach space having MAP-also has a CAS, at, t E H satis-

fying the relations (T1) ( atX)_ = X for all t in H and 

(T3 ) II a II < 1 for every t in IR . 	The converse of (3) is 

unknown at this moment, and we close this chapter by citing it as 

an open problem. 
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CHAPTER ONE 

PERIOD DOUBLING BIFURCATIONS 

OF THE HENON MAP 

1.0 	Introduction 

This chapter is primarily concerned with the answers of four 

questions connected with the Henon map. Henon in [34] has intro-

duced and studied a remarkable map, HMB(x,Y) = (1 - 	+ y, Bx), 

(where M,B are parameters), which is a canonical form for the 

most general quadratic maps of the plane into itself, having con-

stant Jacobians, (here equal to -B everywhere). Feigenbaum in 

[24] and [26] has studied numerically a number of one-parameter 

families, such as M -- 1 - Mx 2  (x E [-1,1] and M (F [0,2]) and 

discovered that period doubling bifurcations occur in such systems. 

After his exciting discovery, many authors (refer to [12], [18], [29] 

and [56])  have extended his theory to higher dimensional systems. 

Amongst them, Derrida et al. in [18] has computed with good 

accuracy period doubling bifurcations in the Henon map with the 

parameter value B = 0.3, and Collet et al. in [12] has discussed 

in great detail this bifurcation theory for one parameter families 

of analytic maps from C to Cr1,  whose restriction to F, n  is real. 

Moreover Hitzl in [36], and Hitzl and Zele in [37] have exten-

sively studied this theory for the Henon map and displayed for a 

few cases the boundary curves in the M - B parameter plane, of 

the occurrence of period doubling bifurcations. Now a natural 
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question arises, "If the period doubling bifurcation values of a 

parameter in a higher dimensional system having at least two para-

meters occur, can we find a suitable numerical method to calculate 

them for all values of the other parameter(s) lying in a certain 

domain?" In Section One, an affirmative answer to this question 

in the case of the Henon map is discussed and very effective 

numerical methods are devised to find a periodic point and a bifur- 

cation value for every value of B in (-- , 00). We are also hopeful 

that our method would work to some extent with the other higher 

dynamical systems (see Remark 1.1.6). Again Quispel in [51] and 

[52] has shown analytically the existence of bifurcation values 

for all values of B and derived an approximate analytical ex- 

pression of Mn (B)• 	However his formula does not give very accurate 

results and our method gives much more accurate results than those 

given by his formula. 

Next, if M00 (B) is the limit of the bifurcation values 

N(B) for each B, then M 	is a function of B, that is,
OD 

= N00 (B). Obviously this curve is continuous. Now the second 
Go 

question is, "How smooth is this curve?" Section Two deals with 

the study of this curve, and our numerical explorations here sug-

gest that this curve is ccx, cx = 10926, S = 8.721097200 ..., 

Co 

near B = ± 1 and C 	otherwise. 

Since to find a periodic point depends extremely sensitively 

on the initial conditions, we can raise the third question as, 

"How big is the domain of attraction of a periodic orbit?" In 

Section Three some graphical pictures are presented to illustrate 

this question. The Henon map has two fixed points whose coordinates 

are given by 
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(B-i) + /(l-B) 2  + 4M 
X = 	

- 2M 	 , y = Bx. When both of these two points 

become unstable, (one is always unstable), for some specific parameter 

values, then the pictorial behaviour of the stable manifold at one of 

these two points indicates that the domain of attraction of a periodic 

orbit lies in a region whose boundary is mostly formed by this mani-

fold. 

Section Three is also devoted to some discussion of the existence 

of homoclinic points and of a Smale Horseshoe. Marotto [49] has 

shown analytically the existence of a transversal homoclinic point 

for small values of B and some appropriate values of M, say if 

M > 1.55. Curry in his paper [14] has also suggested the existence 

of such a point for B = 0.3 and N = 1.4. 	Later, Misiurewicz and 

Szewc in [50] have proved rigorously that there does exist a trans-

versa] homoclinic point for B = 0.3 and M = 1.4. Now the fourth 

question can be put as, "Does there exist a transversal homoclinic 

point for a higher value of B and a smaller value of M?" This 

question has also an affirmative answer. 	We present this fact for 

B = 0.8 (and for B = 0.35 briefly) and N = 0.9. Eventually we show 

the existence of a Horseshoe for these parameter values. 

Now before laying out the plan of our main study, we want to 

state some definitions and elementary results which are needed for 

our study. 

Definition 1.0.1, Diffeomorphisms. 	Let A and •B be two subsets 

of ]R. A C1 -differmorphism f: A - B is a mapping f which is 

one-to-one, onto and has the property that both f and f- I  are 

k-times differentiable. 

3 
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Definition 1.0.2, Flows. 	Let us consider a system of differential 

equation as 

dx def 
= 	= 
	

(1) 

where x = x(t) E IR 	 is a vector valued function of an independent 

variable (usually time) and f: U - Rtl is a smooth function defined 

on some subset U 	The vector field f is said to generate a 

flow 	U -+ ]R' , where 	(x) = 4(x,t) is a smooth function de- 

fined for all x in U and t in some interval I = (a,b) 	]R, (0€ I), 

and 	satisfies (1) in the sense that 

= f(,T)) 

for all x E U and T E I. Moreover 	satisfies the group pro- 

perties (j) 	= id and (11) 0 t+s =ot o q. If an initial con- 

dition 	(0) = xE U is given, then we seek a solution 4(x ,t) 

such that 4(x,0) = In this case, 4(x, ): I -' de-

fines a solution curve, trajectory, or orbit of the differential 

equation (1) based at 

Definition 1.0.3, Stable And Unstable Periodic Points. 	Let 

]R 	 be a diffeomorphism. A point x in )R is called a 

fixed point of f if f(x) = x. A fixed point x is said to be 

stable if for every neighbourhood U of x, there exists a 

neighbourhood V of x whose images fk(V) lie in U for all 

positive integers k. 	Otherwise x is known as unstable. A 

periodic orbit of f is a finite sequence of distinct points each 
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of which is the image of the previous one, and whose first point is 

the image of the last. Its period m is the number of points in the 

sequence, which are called periodic points of period m. Fixed points 

can be included under this definition as periodic points of period one. 

A periodic orbit of period m (or rn-cycle) is said to be stable or 

unstable according as each of its points is stable or unstable when 

considered as a fixed point of fm• 	By continuity, they are all 

stable or unstable together, so it is sufficient to examine the 

stability of one of them. 

Lemma 1.0.4. 	A sufficient condition for a periodic point x of 

period k for a diffeornorphism f to be stable is that the eigen-

values of the derivative Df 1 (x) are less than one in absolute value. 

The proof is simple and so, omitted. 

Definition 1.0.5, Hyperbolic Periodic Points. 	A periodic point x 

of period k for a diffeomorphism f is called hyperbolic if the 

derivative Df'(x) at x has no eigenvalues of absolute value 1. 

It is easy to check that if x is a hyperbolic periodic point of f, 

then it is also a hyperbolic periodic point of f- 1  and vice-versa. 

Definition 1.0.6, Bifurcations. The systems of physical interest 

typically have parameters which appear in the defining systems of 

equations. As these parameters are varied, changes may occur in 

the qualitative structure of the solutions for certain parameter 

values. These changes are called bifurcations and the parameter 

values are called bifurcation values (or bifurcation points). 

In the case of a diffeomorphism f, period doubling bifurcations 



1.1 

(or flip bifurcations or subharnionic bifurcations) occur when one of 

the eigenvalues of the derivative Dfk(x) equals -1. 

Definition 1.0.7, The Domain of Attraction for A Periodic Point. 

Let x be an attracting periodic point of period k for a diffeo- 

n morphism f. Then the set, D = {y E  ]R I (fk )m (y) - x as m + 00), 

is the domain of attraction for x 

Definition 1.0.8, Stable and Unstable Manifolds. 	We define the 

stable manifold of a hyperbolic periodic point x having period k as 

the set of points y  for which (f k in ) (y) + x as in + 00• 	Also the 

unstable manifold of a hyperbolic periodic point x is defined as 

the set of all points z for which (fk)ifl() + x as in -'- -. The 

stable and unstable manifolds of a periodic point x are denoted by 

W5 (x) and Wu (x) respectively. 

Definition 1.0.9, Homoclinic and Heteroclinic Points. 	Let x be a 

hyperbolic periodic point for a diffeomorphism f. Then a point 

p E  W5(x)  fl W'1(x) - {x) is called a hoinoclinic point. If the inter-

section of W5 (x) and Wu(X)  at P is transverse, the homoclinic 

point is called transverse. Similarly, if the stable manifold 

W5 (x) at a hyperbolic periodic point x intersects the unstable 

manifold W1' () at another hyperbolic periodic point y trans-

versally at some point q, say, this point q is then said to be 

transversally heteroclinic. 
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Definition 1.0.10, C a  (a isc&positive real number) Smooth Curve; 

Holder's Continuity 

A mapping f: ]R - ]R is said to be C a_smooth if f is n-times 

differentiable and f 	is Holder's continuous with the exponent 

p in the sense that If - f (n) (y)I < Cx-y ', where C is 

a positive constant, n is the largest non-negative integer less 

than a and p = a-n. 

Definition 1.0.11, Poincaré Maps. 	Let -y be a periodic orbit of 

some flow 0 in Rn  arising from a non-linear vector field 

f(x). A cross-section to -y at x is a subinanifold E C ]R1  

which has codimension 1 and intersects y transversally at x. 

Let U C Z be some neighbourhood of x. Then the first return or 

the Poincaré map P: U - E is defined for a point yE U by 

setting P() to be the point 	() where T is chosen to be 

the smallest positive number such that 4() E E. Clearly x is 

a fixed point for the map P. 	The criterion for hyperbolicity is 

that its derivative DP(x) has no eigenvalue of absolute value one. 

Definition 1.0.12, Hyperbolic Sets. 	Let A be a closed invariant 

set for a differmorphism f defined on Rn . A is called hyper-

bolic for f if there is a continuous invariant direct sum decom-

position TA ]R = E • E with the property that there are con-

stants c> 0, 0 < A < 1 such that: 

if v E Eu , x E A, then IDfTl().vI < cA'Iv  I 

if V E E5 , x E A, then 	Dftl()v I < 

where TA IRT1  consists of all the tangent vectors to En at all points 
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of A, and for each xE A, T1R is the tangent space at x and 

T 	= Eu  W E is a direct sum splitting of this vector space into 

subspaces of dimensions n 
U 	 S 	U 

and n (n + n
S  = n). Moreover here 

n 
E' = Span {u 1 ,u2 , •••,u 

U 

n 
and 	ES = Span {v 1 ,v2 , ..., v 

S} 

,where u1,u2, ..., u 	are the n eigenvectors whose eigenvalues 

are greater than one in absolute value and v 1 ,v2 , ..., v 
S 
 are 

eigenvectors whose eigenvalues are less than one in modulus. 

Definition 1.0.13, (Smale) Horseshoes. 	Let A be a hyperbolic set 

for a diffeomorphism, f: ]R->- ]Rn . 	Let Z2 = {l,2} 	be the set of 

bi-infinite sequences of l's and 2's with the product (compact-open) 

topology, and write elements of E 2  by x, where x(i) = 1 or 2 

and i E Z. Define the shift map 	a: 	E2  by a(x)(i) = x(i+1); 

that is, a shifts a sequence x one step to the left. If there 

exists a homeomorphism h: A->.Z 2 such that hf = ah or hfh 1  = a, 

then the set A is called a Horseshoe and f is called a Horseshoe 

map. 

1.1 Section One: Numerical Methods and Evaluations 

Our chief aim in this section is to demonstrate some numerical 

algorithms in order to find periodic points and to obtain the limiting 

value M of the sequence of period doubling bifurcation values of M 

for eiy B lying in  



1.1.1 Feigenbaum Theory For Period Doubling Bifurcations Of 

The Henon Map 

Before embarking upon our exposition of the numerical methods, and 

results, we wish to broach the beautiful phenomenon of the sequence of 

period doubling bifurcations appearing with the Henon map for IBI < 1. 

Some intuitive pictures of these phenomena are depicted later. In this 

context, we also wish to point out that the stability theory is in-

timately connected with the Jacobian matrix of the map, and that the 

trace of the Jacobian matrix is the sum of its eigenvalues and the 

product of the eigenvalues equals the Jacobian determinant. For a par-

ticular value of B in the closed interval [-1,1], the Henon map H 

depends on the real parameter M, and so a fixed point x 	( or a 

periodic point x 0  ) of this map depends on the parameter value M, 

that is, x0  = x0 (M). Now, first consider the open interval 

	

= (-(1 - B) 2 , 	 (l - B) 2 ). The fixed point x0  remains stable 

for all values of N lying in this interval and a stable periodic tra-

jectory of period one appears around it, (for more technical details, 

refer to [37]). This means, the two eigenvalues of the Jacobian 

matrix j = _2Mx1 	at x remain less than one in modulus, 

	

B 	0) 	0 

and as a result all the neighbouring points (that is, points in the 

domain of attraction) are attracted towards x 0 (M), N lying in Il• 

Again some negative values of B for which N lies in the region 

sandwiched between the boundary curves N = - B ± (1 - B)v 	yield 

complex eigenvalues for the Jacobian J 1 . This region is exhibiied 

in Fig. 1 by the striped lines between the curves M and M1 . 

The significance of complex eigenvalues is that the successive itera-

tions of the map spiral into the stable fixed point, and that of real 



LI 

'3 

2 

M 

0 

- I 

1-1 

10 

0 	 -4-' 

8 

Fig-1: Striped regions indicate 
the existence of complex 
eigenvalues for periods 1 and 2 

eigenvalues is that consecutive iterations approach the stable fixed 

point along the direction of the eigenvector corresponding to the 

higher elgenvalue in modulus. If we now begin to increase the value 

of M, then it happens that one of the eigenvalues starts decreasing 

through -1 and the other remains less than one in modulus, because 

their product is always equal to (-B). When N equals 	(1-B) 2., 

one of the eigenvalues becomes -1 and then x 0  loses its stability, 



11 

= (l - B) 2  emerging as the first bifurcation value of N. Again 

if we keep increasing the value N, the point x(M) becomes un-

stable and there arises around it two points, say, x21 (M) and 

s22  (M) forming a stable periodic trajectory of period 2. All the 

neighbouring points except the stable manifold of x(M) are attracted 

towards these two points and this phenomenon continues for all N 

lying in the open interval 12 = ((l-B) 2 , (1+B) 2  + (1-B) 2 ). Since 

the period as emerged becomes double, the previous eigenvalue which was 

-1 becomes +1 and as we keep increasing M, one of the eigenvalues 

starts decreasing from +1 to -1. The values of M in 12  for 

which we obtain the inequality [2(1-B) 2  - 2M + B]2 - B2.< 0 (see the 

relation (19) in [37]) give complex eigenvalues for the Jacobian J 2 . 

The shaded portion in Fig. 1 between the curves. M 1  and N2  shows this 

region. Since the trace is always real, when eigenvalues are complex 

they are conjugate to each other moving along the circle of radius 

where Be = B 2  is the effective Jacobian, in the opposite 

directions as shown in Fig. 2. 

Fig. 2. 
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When we reach M = (1+B) 2  + (1-B) 2 , we find that one of the eigen-

values of the Jacobian of H2  (because of the Chain rule of differen-

tiation, it does not matter at which periodic point one evaluates the 

eigenvalues) becomes -1, indicating the loss of stability of the 

periodic trajectory of period two. Thus, the second bifurcation takes 

place at this value M2  of M. We can then repeat the same arguments, 

and find that the periodic trajectory of period 2 becomes unstable and 

a periodic trajectory of period 4 appears in its neighbourhood. This 

phenomenon continues up to a particular value of M, say M3 (B), at 

which the periodic trajectory of period 4 loses its stability in such 

a way that one of the eigenvalues at any of its periodic points be-

comes -1, and thus it gives the third bifurcation at M 3 (B). For 

any period doubling trajectory, when eigenvalues run from +1 to 

-1 they show the similar behaviour as represented by Fig. 2. 

Increasing the value M further and further, and repeating the 

same arguments we obtain a sequence {N(B)} (see Figs. 3 and 4) as 

bifurcation values for the parameter N such that at M = Mn(B) a 

periodic trajectory of period 2' arises and all periodic trajec-

tories of period 2m(m<n)  remain unstable. The sequence {M(B)} 

behaves in a universal manner such that N(B) - M(B) 

where C is a constant and 5 is the Feigenbaum Universal constant. 

Since the Henon map has constant Jacobian -B, IBI <1 gives the 

dissipative case, that is, contraction of area and in this case 6 

equals 4.6692016091029 ... . For IBI =1 we have the conserva-
tive case, i.e. the preservation of area and in this case 6 equals 

8.721097200 ... . 	Furthermore, the Feigenbaum theory says that the 

Henon map H at N = M00 (B) has an invariant set F of Cantor type 

encompassed by infinitely many unstable periodic orbits of period 2' 
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Fig.4:A typical sequence of 
period doubling bifurcations 



= 0,1,2, ...), and that all the neighbouring points except those 

belonging to these unstable orbits and their stable manifolds are 

attracted to F under the iterations of HM B 
, 

The case when JBI >1. 

When IBI > 1, the Jacobian of the map Hk, k = 2n ,  

n = 0,1,2,3, ... is always greater than one and so we have expan-

sion of area for this map. Consequently a trajectory of any period 

k is always unstable. However we can obtain bifurcations for the 

repelling orbit of period k because of the following reasons. 

We have 

= (1 - 	+ y, Bx) 

Again, 	R ' (xy) = (B
1 
 y, -1 + x + B 2My2 ) 

Now, consider a homeomorphism T: iR2 - IP 	defined by 

T(x,y) = (-y, -x) 

Then 

0 HBO T (x, y) 

= T_ 1 0 liMB y, -x) 

= T 1 (-B 1x, -l-y + B 2Mx2 ) 

= (l+y - B 2MX2 , B'x) 

15 

B M, B-1 
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Therefore, HM-1B  is topologically conjugate to H -2 
	• 	Since B M,B 

the topological conjugacy preserves all the dynamical structure of 

HM  and of the above conjugacy implies that the B-values 

with absolute value greater than one do not exhibit new behaviour 

and that whenever 
1 M ,B has a stable orbit of period k, then 

-1 
B or H -2 
	1 has a repelling orbit of the same period. In 

BM,B 	
12 addition, this conjugacy gives the relation Mk(B ) = B M.K(B). 

Hence whenever the bifurcation values for all B with IBI  <1 are 

available, this relation gives the bifurcation values for all B 

with JBI > 1. Therefore, it establishes the remarkable result that 

the bifurcation values for the Henon map, of any period k, can be 

obtained for each value of B lying in (_co, ce). 

We now wish to describe some suitable numerical methods with 

the help of which two important ingredients, namely a periodic point 

x of the map for a period k and the bifurcation values of the 

parameter M for different k can be obtained. 

1.1.2 Numerical Methods For Finding A Periodic Point 

To find a periodic point of the Henon map H (for simplicity, 

we write H, instead of liMB)  for the period k, we can apply 

the following three numerical methods. 

the Newton recurrence formula, 

X 
L1+1 
 = x n 	—n 	—n - Df(x )f(x ), where n = 0,1,2, ... 

—  

and (Df)(x) is the Jacobian of the map f at the vector x. 

(We see later that this map f is equal to Hk - i in our case.) 

the averaging iteration method. 



(iii) the direct iteration method. 

Ci) The Newton formula actually gives the zero(es) of a map, 

and to apply this numerical tool in the Henon map one needs a number 

of recurrence formulae which are given below. 

Let the initial point be (x 03l y). 	Then 

H(x,y) = (1 - Mx 2  + y, Bx) = (x1 , y1 ), 

where x1  = 1 - Mx2  + y and y1  = Bx 
0 

H2 (x 9 y) = H(x1 , y1 ) = (x2 , y2), where x2  = 1 - Mx + y1  

and y2 = Bx1 . 

Proceeding in this manner, the following recurrence formulae for the 

Henon map can be established. 

x= 1 _2  +y 	and y = Bx 	, where n = 1,2,3,4 n 	n-1 	n-1 	n 	n-1 

Since the Jacobian of H, (n time iterations of the Henon map), is 

the product of the Jacobian of each iteration of the map, we proceed 

as follows to describe our recurrence mechanism for the Jacobian 

matrix. 

The Jacobian J 1  for the transformation 

H(x,y) = (1 - Nx2  + y, Bx) is 

= 	1-2Nx 	l 	= 	ID1 	Eli 	= 	IL1 	E1) I 	0 	I 
B 	oJ 	[N1 	T1j 	[N1 	T1j 

where, L1  = D1  = -2Mx 9  E1  = 1, N1  = B and T1  = 0. Next the 

Jacobian J2  for the transformation H2 (x 1 y) = ( x2 ,y2 ), where 

17 



x2  and y2  are as mentioned above, is the product of the Jacobians 

for the transformations H(x1,y1) = (1 -. Mx + y 1 , Bx1 ) and 

H(x0 ,y0 ) = ( 1 - Mx2  + y, Bx0 ). 	So we obtain 

= 	I_21 	1 • 	L1 	E1  = L2 	E2  

B 	0 	N1  T1 	N2  T2  

where D2  = -2Mx1 , L2  = D2L1+N1 , E2  = D2E1+T1 , N2  = BL  and 

T2  = BE 1* 

Continuing the process in this way, we have the Jacobian for 

l!I 

m H as 

J 	= L E 
in in in 

N T m in 

with a set of recursive formulae as 

D =-2Nx , L =DL 	+N , E =DE 	+T m 	tn-i 	in 	in rn-i 	rn-i 	in 	in rn-i 	rn-i 

N m 	rn-i 	in 	rn-i 
= BL 	, and T = B E 	, in = 2 9 3,4, ... (in addition to the 

particular initial values L 1  = D1  -2Mx 3. N1  = B, E1  = 1 and 

T1  = 0). Since a fixed point of the map H is a zero of the 

map H (x,y) = H(x,y) - (x,y), the Jacobian of H 	is given by 

= Lkl E  

N 	T-i k 

where Lk ,  Ek ,  Nk ,  T  are as 

mentioned above. So its inverse is 	 = 	rTk_i _Ekl 

[ 	J 
where t = (Tk_l)(Lk_l) - EkNk, the Jacobian determinant. Thefe-

f ore, Newton's method gives the following recurrence formulae in 

order to yield a periodic point of Hk. 

x n+i = x 	k-1)  n n 	k - ((T 	 (x -x ) - E (y n -yn  ))/ 



and y n+i = y - ((_Nk) (x_x) + (Lk_l) 

,where H1 x = (x, y), and with the initial point (x ,y0 ) and the 

initial conditions of L, D, 'N, E, T are as said before. For 

practical purposes, this method is very useful and requires generally 

at most 20 iterations to yield a periodic point of the given map. 

However, it involves a number of complicated recurrence formulae for 

the Jacobian of the map. 

(ii) We now wish to describe some averaging iteration methods 

on the Henon map in order to obtain a periodic point of period k. 

Suppose an initial value x = (x 03l y) is given. By this method, 

after first iteration we take the average value' = (x + Hk x 	 x ) —1 	—o 	—o  
or x' =(11k x + H21  x ) as the initial value for the second —1 	—0 

iteration, instead of l We repeat this process by applying the 

1 	 k 	 1 k 	2k averaging formula x 	
= 2(x + H x ) or x 	= (H x + H x n 	xi 	 ) — — —n+l —n —n 

and find that this process gives the fast convergence of the values 

of x, owing to the following reasons. 

Suppose our averaging formula isx 	= (x + Hkx). Assume 

that x is a fixed point of H and that x = x + e for some 

vector e. Let U and V be the basis eigenvectors for the 

Jacobian operator J 
k  at x with the corresponding eigenvalues a 

and i such that for some scalars cx and 	, we have 

en  = cx
n 	nU+V. Then 

e+i = 	(e + Jkefl) + 0 Ole II) 

= 	(a U + 	V) + (czaU + nh1\7) + 0(IIell 2) n 	n 

kt2.) 	+ 
= ( 2 	

cx U + ( 1-f) 	V + O( Ile H 2) 
n 
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If e+i = 	+ +1V, then we have n+l (2) 	+ some small 

error term and " + some small error term. At a stable n+l
periodic point, the absolute values of a and p are less than 1 

and their product is always equal to (_B)k. 	It is noted that we 

are concerned with period doubling bifurcations when one of the eigen-

values becomes -1. As N approaches to a bifurcation value, one of 

the eigenvalues, say a approaches -1 and p tends to _(_B)k.  Then 

l+a 	 l+p 	1 

--- 
" 0 and --- 	and so each iteration of the map reduces the 

error, at least by half of the previous error. Consequently, after a 

reasonably small number of iterations these two scalars tend to zero. 

This leads e+1  to zero approximately and, therefore, gives a fast 

convergence of xn+l  to X.  

	

- 	 - 

However the second factor 	in the first averaging method 

is not very small and so we apply the second averaging method. 

Consider the second averaging method x 	= (H1 
-n  
x + H2k 

n+l 	 -n 
x ), and 

-  

then analogous assumptions yield a 	a(1+)n and 

= p(l±p)B. In this case, when N approaches a bifurcation 

value, i 2 C(l+a) 'u 0 and 	p(1+p) '' 0. Here the scalarp(l+p) is 

smaller than the term(l+p) obtained in the first case, and hence 

the same sort of argument leads us to conclude that x 
n+l 

 converges 
- 

to x much faster than it does in the previous case. This averaging 

method is one of the most suitable and effective methods for finding 

a periodic point near a bifurcation value. Table 2 shows that with 

the judicious choices of initial values of N and x, this method 

gives a periodic point even after one iteration. 

(iii) The direct iteration method means to achieve a periodic 

point just by iterating directly the map itself. Recalling our 

assumptions made in the first averaging method, and using the direct 
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iteration method, we obtain 

e 
n-I-i  =a  n oU+jV+O(lle!2). n 

So, 	a n+l =a n o + some small error term and 

n+i = 	p + some small error term. 

These relations do not indicate any significant reduction of the 

error term, and so the direct iteration method requires a large 

number of iterations to yield a periodic point. Therefore, this 

method gives very slow convergence near the bifurcation values, 

and as such this method is much too time consuming and tedious. 

1.1.3 Numerical Methods For Finding Bifurcation Values 

For our purposes, we use two numerical methods, namely, 

(i) Trial and Error Method and (ii) Secant Method. 

(i) The Trial and Error method can be applied as follows: 

First of all, we recall our recurrence relations for the Jacobian 

matrix of the map 	described in Newton's method and then the eigen- 

value theory gives the relation Lk + Tk = -1 - (_B)k at the bifur-

cation value. Again the Feigenbaum theory says that 

M 	-M 
f  M 	

+ n+l 	n 
+l 
	, 	 (*) 

where n = 1,2,3, ... and 6 is the Feigenbaum Universal constant 

as stated in 1.1.1. 

In the case of the Henon map, the first two bifurcation values 

and N2  can be evaluated by their explicit formulae, viz., 

N1  = (l-B) 2  and N2  = 2(l+B) 2  + (1-B) 2 . Furthermore, it is 

easy to find the periodic points for these N1  and N2  for any value 



of B. So we start to apply this method in order to find bifurca-

tion values from M onwards. After fixing B and obtaining a 

periodic point, say x2 , at 
2'  we make a judicious choice of 

an initial value M by using (*) for the bifurcation value 143  

of period 4. Because a periodic point at M 
2  may not be an 

attracting point for a periodic point at M 	(or at 143 ). our next 

primary task is to obtain a stable periodic point for M. We also 

recall that the modulus of the sum of two eigenvalues at a stable 

periodic point is less than two. So, in order to find a stable 

periodic point for M, we consider a closed region around 

bounded by a simple Jordan curve, say a square of length 0.2, and 

then search for a point inside the square in such a way that the 

absolute value of L4+T4  remains less than 2. It is always possible 

to have such a point, because there exists a stable periodic point 

for M near x
2  After obtaining a stable periodic point for M, 

we adopt it as an initial point for a periodic point at M3 , and 

then go on steadily increasing the value of 	with close obser- 

vation of the value of L 4  + T4 . 	Ultimately, that value of M 

for which the value of L 4+T4  equals -1 - (-B) 4  appears to be 

the third bifurcation value 143 . In order to find out the next 

higher bifurcation value of M of period 8, we employ the same 

mechanism to have an initial value 	for M4 . This time we 

slightly reduce the side length of the square around a stable 

periodic point x3  at M3 , because the larger the period k, 

the nearer the periodic points for different bifurcation values. 

Proceeding in the same way as for M3 , we can obtain 144 . We can 

continue the process to obtain further higher bifurcation values, 

as many as we want. Although this method is cumbersome in the sense 
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that it takes a lot of time, and that to get a stable periodic point 

for an initial value of M is not so immediate, it is very useful 

when other methods fail. 

(ii) 	To discuss the Secant method, we notice that if we put 

I = Lk + T   + 1 + (_B)k, then I turns out to be a function of the 

parameter M. The bifurcation value of N of the period k occurs 

when 1(M) equals zero. This means, in order to find a bifurcation 

value of period k, one needs the zero of the function 1(M), which 
I(M)(M - Mn_i) 

is given by the Secant method, M+i = N - I(M ) - I(M ) 
n 	n-i 

applied on the function 1(M). This method depends very sensitively 

on the initial conditions. If an initial value is very far from an 

actual bifurcation value, this method fails to give the convergence 

of the values of M in general. With the right choice of an initial 

value of N, it is found that at most 20 iterations are sufficient 

to give a bifurcation value. The results in different Tables fur-

nished later justify this statement. We also find that although some 

methods are complicated, all these methods give almost the same 

accuracy of the results. 

1.1.4 The Numerical Tools Employed In Our Results 

We are now in a position to elucidate our final version of the 

numerical mechanism which gives the results listed in different 

Tables later. We first describe how the Secant method is made 

suitable to work for yielding a bifurcation value. Feigenbaum 

theory also tells us the following result 

M nu M 	+ 
(M 	-M) n+i 	n 

n+l 	•( -1) 	
(**) 
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First of all, our substantial discovery is the achievement of some 

common attracting points for applying the averaging methods, namely )  

(-0.8, 0.7), (0.6, 0.275), (0.55, 0.275) and (0.4953, -0.04758); 

the first one acts as a common attracting point for all values of 

B in 0 < B < 1, the second for all B in -0.85 < B < 0, the 

third for all B in -0.95 < B < -0.85 and the fourth for all B in 

-1 < B < -0.95. 	In our study, exact (true) values mean they are 

correct up to 12 or 18 decimal places unless stated to the contrary. 

The results are calculated up to 18 decimal places in order to study 

the smoothness of the curve M00  = M(B) in Section Two and up to CO 

12 decimal places otherwise. 

The first two bifurcation values M1  and M can be evaluated 

by their explicit formulae. Then using the relation (*), an approxi- 

mate value 	of M3  is obtained. Since the Secant method needs two 

initial values, we use M and a slightly larger value, say 

+ 10 	as the two initial values to apply this method and ulti- 

mately obtain M3 . 	In like manner, the same procedure is employed 

to obtain the successive bifurcation values M 4 , M5  ... etc. to our 

requirement. However to do so, a great difficulty arises in using 

(*) with the true value of 6 (here true values of 6 means either 

6 = 8.721 or 6 = 4.669 correct up to 3 decimal places, depending 

upon the values of B). For a value of B in the vicinity of 1 

and -1, the approximate values of M given by (*) with exact 

value of 6 = 4.669 are very far from their respective true values. 

For instance, for B =-0.9,(M 1  = 2.7075, M2  = 3.6125), the first 

four approximate values are given as tabulated below. 

In such a situation, the Secant method may not converge, and so 

one needs to give a delicately chosen number in place of 6 while 



TABLE 1 

Using 	tS = 4.669, 	the 
approximate values of 
M,M,M 	and 	M 3 	4 	5 	6 

Approximate values of M 
M4 , M5  and M6  by our 

method 

True values of M 3 , M4 , M5  
and 

3.806323286241 3.726923685819 3.722670082410 

3.746265140331 3.736081626121 3.735914971523 

3.738751621172 3.737507301162 3.737661378613 

3.738o35405532 3.737891651415 3.737949035969 

(-J1 



using (*). At least it should be noticed that the approximate value 

of M3  should not be higher than the true value of M 4 , and 

similarly for other cases as well. So, what we have done is that 

for 0 < B < 1, 6 is replaced by the number 6' = 6 + 3.B in 

order to obtain the initial value M for M 3 . After obtaining 
M -M 
n 	n+l M19  M2 , M3 , the number 	
M 	- M 	(n = 1, 2, ...), is put in 
n+l 	n+2 

the formula (*) to replace 6 in order to achieve the initial 

values for the higher successive bifurcation values. Again for 

-1 < B < 0, 	6 is replaced by the number 6" = 6 - 3.6B in order 

to get an approximate value M for M3 , and afterwards the same 

technique is applied for higher subsequent bifurcation values. For 

this purpose one could also replace 6 by the value 6(B 
e 
 )  given 

by the formula stated in page 3924 in [51]. However, our method 

gives much more suitable approximation than that given by ô(Be)• 

Moreover, things look far worse when B = -1. Since at this value 

B, the domain of attraction for a periodic point becomes much 

smaller and smaller with the larger value of k, an initial value 

M' 	for the bifurcation value M 	should be chosen in such a n+l 	 n+l 

way that it becomes compatible to the Secant method as well as to 

the averaging methods so that a periodic point of M  can be used 

as an initial point for a periodic point of M' +1. Our computer 

computation shows that if 6 is replaced by 13.5, then the formula 

(*) gives a good approximation for all the bifurcation values. 

We next discuss how the two averaging methods are made com-

patible to work for achieving a periodic point. In this case, we 

choose an appropriate point out of the four common attracting 

points mentioned before, as an initial point for a periodic point 

at M. Then eventually one of the averaging methods yields a 
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periodic point for N3  and this periodic point is used as an initial 

point for a periodic point at M. The reason for doing this is that 

a periodic point at M3  may not be an attracting point for a 

periodic point at N4 . 	So 	should be chosen in such a way that 

a periodic point at N3  becomes an attracting point for a periodic 

point at M, and besides M becomes a suitable initial value in 

order to apply the Secant method for evaluating N4 . The process 

can be continued in a similar fashion. 

As mentioned before, the second averaging method gives faster 

convergence than the first one does. But since in the neighbourhood 

of B = ±1, both eigenvalues approximately equal -1 at a bifurca-

tion value, the second averaging method is not suitable for small 

values of k. Our computational test shows that for any period k, 

this method works for all values of B lying in -0.7 B < 0.95. 

For 0.95 < B < 1, the first averaging method is used up to k = 28 

and the second one is used for other values of k. For 

-1 < B < -0.7 the first method is used up to k = 2 and other-

wise the second one. For B = ±1 the first method is more useful 

than the second one (also see 1.1.9). 

The effect of this numerical machinery is significantly strong. 

This drastically reduces the number of iterations to give the con-

vergence of the Secant method as well as of the averaging methods. 

Tables 2, 3 and 4 are furnished to show the effect of this scheme 

for B = -0.7. 	In this scheme, the Secant method requires at most 

10 iterations to give the next higher bifurcation value from its 

predecessor, and the number of iterations in order to yield a 

periodic point by the averaging methods is at most 50; some- 

times even one iteration is sufficient for this purpose. In addition, 



the values of N given by (**) with exact value of 6 converge 

very fast. 	For instance, M.  converges-(correct up to 12 decimal 

places): after 7 steps at B = -1, after 9 steps at B = 1 and 

after at most 12 steps for other values of B. 

Remark 1.1.5 To get faster convergence of N, one could use 
00 

Aitken's extrapolation method, namely, 

-M 	)2 

N' 	 (M ,n -,n-1-1 = M 	- _____________________ 
+M (N 	

- 2M ,n-1 

However, near B = ±1 this method does not help much. Moreover, 

- 1  

	

by using the formula 	M n+ 

	

a 	 n 
6 " 	 or by applying Aitken's 

- M +2 

extrapolation formula, 6 can also be evaluated. 

Remark 1.1.6 This numerical scheme suggests the following conjec-

ture: 

'If F: ]Rn - 	is a diffeomorphism having some parameters 

such that period-doubling bifurcations occur with F. then in order 

to evaluate the periodic points and the bifurcation values, the same 

numerical machinery including the averaging methods and the Secant 

method described in 1.1.4, can be applied with the judicious choice 

of the initial values of the periodic points and of the bifurcation 

values.' For example, we apply this machinery to the map F des-

cribed in connection with Duff ing's equation in Chapter 2. 
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1.1.7 	Illustration Of The Results In Tables 2, 3 and 4 

To show more clearly how effective and accurate our numerical 

methods are, some results obtained for B = -0.7 are furnished in 

Tables 2, 3 and 4. For this case, a Computer program with some 

special comments is also displayed (see Program 1). All calcula-

tions in Table 2 are executed in longreal precision (double pre-

cision) on a Amdahl 470 V/7 Computer and those in Table 3 in 

longlongreal precision (quadruple precision). 

In Table 2, firstly the period k = 4 is shown, and then 

1st, 2nd, 3rd and 4th columns show respectively the number of itera-

tions required to yield a periodic point, the successive values of 

N starting from an initial value to the bifurcation value, x and 

y coordinates of a periodic point. To be more precise, for B = -0.7 

and for the period k = 4, the initial value of N is 

3.016127640524, and-for this value of N, the initial values 

-0.8 and 0.7 of x and y take 13 iterations to go to the periodic 

point (0.571286672010, 0.056446636624). 

The Secant method needs 5 iterations to yield the bifurcation 

value 3.012363618984 with the periodic point (0.571762110574, 

0.055530484303). After completing these steps, the Computer pro-

gram gives approximate 6 value and M oo  value. Next, the period 

k = 8 starts, and exactly the same procedure is continued to yield 

the next higher bifurcation value 3.027939554995 with the periodic 

point (0.576644536483, 0.054577594261). The process is continued 

and it is found that at k = 1024, the value of N starts con-

vergence. These results are exhibited up to k = 4096. For Table-

3, we use the same Computer program just by changing the word 

'longreal' with the word 'longlongreal'. 



PROGRAM 1 

!COMMENT:THE FOLLOWING PROGRAM GIVES THE SUCCESSIVE %C 
BIFURCATION VALUES(M) STARTING FROM M(3) FOR 3=-0.7 

%BEGIN 
%INTEGER K,GG,G,W,H,R,RR,WW 
%LONGREAL 	Z,MMMM,OZZ ,X, 1,11 ,Y,M 4,B,A,D,C,E,J,S,T,U, %C 
JJJ,XX,YY I MM,MMM,AA,DD,CC,EE,JJ,SS,TT,UU,LL,NN,VV,QQ,PP, %C 
OO,L,N,V,Q,P 
SELECTOUTPUT (1) 
B=-0.7;00=4.6692016091029 

!COMMENT:X,Y AND DELTA VALUES ARE INITIALISED AS FOLLOWS 

X.6;Y.275;000_3.6*B;XXX;YYY 

!COMMENT:THE FIRST TWO BIFURECATION VALUES ARE GIVEN %C 
BY J AND JJ. 

J((1_B)**2)*3/4 
JJ((1+B)**2)/4+((1_B)**2) 

!COMMENT:THE IMMEDIATELY FOLLOWING CYCLE GIVES %C 
THE CONSECUTIVE BIFURCATION VALUES(M). 

%CYCLE RR=2,1,12 
K=2\\RR  
SPACES(20);PRINTSTRING("K");PRINT(K,1,1);NEWLINE 

!COMMENT:BY USING (*), TWO INITIAL VALUES M AND MM %C 
ARE CALCULATED TO START THE SECANT METHOD. %C 
HERE OUR SECANT METHOD IS %C 
MMM=MM_(II*(MM_M))/(II_I),WHERE 1=1(M) AND 11I(MM). 

MJJ+ ( JJ-J) /0 
MMM+(10**(_RR.2)) 

!COMMENT:THE IMMEDIATELY FOLLOWING CYCLE YIELDS A- %C 
PERIODIC POINT FOR M WITH THE AID OF THE SECOND %C 
AVERAGING METHOD AND EVENTUALLY ESTIMATES I. 

%CYCLE GG1,1,100 
AX;CY 
%CYCLE W1,1,K 
Z1_M*X*X+Y 
YB*X 
x=z 
%REPEAT 
%CYCLE WW=1,1,2*K 
ZZ1_M*XX*XX+YY 
YY = B * XX 
XX=zz 
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%REPEAT 
X(X+XX)/2;Y(Y+YY)/2 
XXX; YY=Y 

!COMMENT:THE FOLLOWING CONVERGENCE CONDITION IS PUT %C 
TO GET A PERIODIC POINT CORRECT UPTO 12 DECIMAL %C 
PLACES AND SIMILAR CONDITION IS PUT LATER WHENEVER %C 
NECCESSARY. 

%EXITIF ((X_A)**2)+((Y_C)**2)<10**(_24) 
%REPEAT 
PRINT(GG,3,1);PRINT(M,3,12);PRINT(X,3,12);PRINT(Y,3,12) 
NEWLINE 

!COMMENT:THE IMMEDIATELY FOLLOWING CYCLE CALCULATES %C 
THE JACOBIAN OF THE APPROPRIATE MAP WITH INITIAL %C 
CONDITIONS STATED BELOW. 

T0;S0;UB;E1;VX;L_2*M*X;QY 
%CYCLE H=1,1,K-1 
PB*V 
V 1-MVV+Q 
D_2*M*V 
Q=P 
TB*E;NB*L 
LD*L+U; ED*E+S 
ST;UN 
%REPEAT 
IL+T+1+((B)**K) 

!COMMENT:NOW THE SECANT METHOD STARTS WITH THE FOLLOWING %C 
FIRST CYCLE AND THEN EXACTLY SAME STEPS DESCRIBED ABOVE %C 
IN CASE OF YIELDING I ARE REPEATED TO OBTAIN II. 

%CYCLE G1,1.20 
%CYCLE GG=1,1,100 
AX;CY 
%CYCLE W=1,1,K 
Z1_MM*X*X+Y 
YBX 
X= Z 
%REPEAT 
%CYCLE WW=1,1,2*K 
ZZ=1_MM*XX*XX+YY 
YYB* XX 

XX=zz 
%REPEAT 
X(X+XX)/2;Y(Y+YY)/2 
XXX;YYY 
%EXITIF ((X_A)**2)+((Y_C)**2)<10**(_24) 
%REPEAT 
PRINT(GG,3,1);PRINT(MM,3,12);PRINT(X,3,12);PRINT(Y,3,12) 
NEWLINE 
T0;S0;UB;E1 
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VX;L2*MM*X ;QY 
%CYCLE H1,1,K-1 
PB*V 
V=1_MM*V*V+Q 
D-2 **XJ 

Q=P 
TB*E ; NB*L 
LD*L+U; ED*E+S 
ST;UN 
%REPEAT 
11L+T+1+((_B)**K) 
%EXITIF MOD(II-I)0 
MMM=MM_II*(MM_M)/(II_I) 
1=11 ;MMM;MMMMM 
%EXITIF MOD(MMM)<10**(.12) 
%REPEAT 

!COMMENT:THE APPROXIMATE DELTA VALUE IS GIVEN BY MMMM. 

MMMM(J-JJ)/(JJ-MMM) 
OMMMM 
JJJ;JJMMM 

!COMMENT:THE APPROXIMATE LIMITING VALUE OF M IS GIVEN BY JJJ. 

JJJ=JJ+(JJ-J)/(00-1) 
SPACES(11);PRINT(MMMM,3,12) ;PRINT(JJJ,3 ,12) ;NEWLINE 
%REPEAT 
%ENDOFPROGRAM 
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TABLE 2 

(B=-0.7;IN LONGREAL PRECISION) 
K=4.0 

13.0 3.016127640524 0.571286672010 0.056446636624 
8.0 3.016227640524 0.571274085712 0.056470704182 

10.0 3.012369256614 0.571761395983 0.055531871684 
7.0 3.012363627439 0.571762109502 0.055530486384 
5.0 3.012363618984 0.571762110574 0.055530484303 

7.460174261466 3.039580335213 
K= 8.0 

10.0 3.025749850389 0.576344855997 0.054528780926 
9.0 3.025759850389 0.576346299720 0.054528968626 
7.0 3.027956662844 0.576646757138 0.054578032110 
6.0 3.027939422048 0.576644519219 0.054577590862 
4.0 3.027939554987 0.576644536481 0.054577594261 
2.0 3.027939554995 0.576644536483 0.054577594261 

6.411404034447 	3:032184602739 
K= 16.0 

11.0 3.030368966077 0.574882852109 0.056352126455 
8.0 3.0303699660 77 0.574882458442 0.056352572313 
6.0 3.031017210803 0.574640289762 0.056630188720 
4.0 3.031007551890 0.574643738756 0.056626189209 
3.0 3.031007692487 0.574643688519 0.056626247455 
2.0 3.031007692518 0.574643688508 0.056626247467 

5.076674658352 	3.031843879201 
K= 32.0 

8.0 3.031612052208 0.575330636100 0.056147344497 
6.0 3.0316 12152208 0.575330692393 0.056147311298 
5.0 3.031664436179 0.575359499401 0.056130453810 
3.0 3.031664116374 0.575359326836 0.056130554009 
2.0 3.031664118310 0.575359327880 0.056130553402 

4.674005136592 	3.031843019843 
K= 64.0 

6.0 3.031804560131 0.575057111971 0.056393646128 
3.0 3.031804570131 0.575057100681 0.056393656529 
3.0 3.031804835274 0.575056801470 0.056393932195 
2.0 3.031804835234 0.575056801515 0.056393932153 

4.664867416155 	3.031843186063 
K= 128.0 

6.0 3.031835000491 0.575174103135 0.056302640902 
3.0 3.031835001491 0.575174105116 0.056302639420 
3.0 3.031834989243 0.575174080851 0.056302657570 

4.666607485830 	3.031843207382 
K= 256.0 

6.0 3.031841450898 0.575126437373 0.056342116383 
3.0 3.031841450998 0.575126436991 0.056342116705 
3.0 3.031841448117 0.575126447988 0.056342107426 

4.6686 16592658 	3.031843208411 
K= 512.0 

6.0 3.031842831584 0.575108702383 0.056356667159 
2.0 3.031842831594 0.575108702321 0.056356667211 
2.0 3.031842831450 0.575108703216 0.056356666467 
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4.669068644347 3.031843208462 
K= 1024.0 

4.0 3.031843127726 0.575111161929 0.056354710844 
2.0 3.031843127727 0.575111161932 0.056354710842 
2.0 3.031843127719 0.575111161912 0.056354710857 

4.669173765120 3.031843208464 
K= 2048.0 

5.0 3.031843191171 0.575112252843 0.056353834562 
1.0 3.031843191171 0.575112252844 0.056353834561 

4.669197491804 3.031843208464 
K= 4096.0 

6.0 3.031843204760 0.575112492847 0.056353641728 
1.0 3.031843204760 0.575112492847 0.056353641728 

4.669195373917 3.031843208464 
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TABLE 3 

(B=-0.7;IN LONGLONGREAL PRECISION) 
K=4.0 

13.0 3.016127640524 0.571286672010 0.056446636624 
8.0 3.016227640524 0.571274085712 0.056470704182 

10.0 3.012369256614 0.571761395983 0.055531871684 
7.0 3.012363627439 0.571762109502 0.055530486384 
5.0 3.0123636 18984 0.571762110574 0.055530484303 

7.460174261466 	3.039580335213 
K= 8.0 

10.0 3.025749850389 0.576344855997 0.054528780926 
9.0 3.025759850389 0.576346299720 0.054528968626 
7.0 3.027956662844 0.576646757 138 0.054578032110 
6.0 3.027939422048 0.576644519219 0.054577590862 
4.0 3.027939554987 0.576644536481 0.054577594261 
2.0 3.027939554995 0.576644536483 0.054577594261 

6.411404034448 	3.032 184602739 
K= 16.0 

11.0 3.030368966077 0.574882852 109 0.056352 126455 
8.0 3.030369966077 0.574882458442 0.056352572313 
6.0 3.031017210804 0.574640289761 0.056630188720 
4.0 3.031007551890 0.574643738756 0.056626189209 
3.0 3.031007692487 0.574643688519 0.056626247455 
2.0 3.031007692518 0.574643688508 0.056626247467 

5.076674658348 	3.031843879201 
K= 32.0 

8.0 3.031612052208 0.575330636100 0.056147344497 
6.0 3.0316 12152208 0.575330692393 0.056147311298 
5.0 3.031664436179 0.575359499400 0.056130453811 
3.0 3.03 16641 16374 0.575359326836 0.056 130554009 
2.0 3.031664118310 0.575359327880 0.056130553402 

4.674005136602 	3.031843019.843 
K= 64.0 

6.0 3.031804560131 0.575057111971 0.056393646128 
3.0 3.031804570131 0.575057100681 0.056393656529 
3.0 3.031804835274 0.575056801470 0.056393932195 
2.0 3.031804835234 0.575056801515 0.056393932153 

4.664867416163 	3.031843186063 
K= 128.0 

6.0 3.031835000491 0.575174103135 0.056302640902 
3.0 3.031835001491 0.575174105116 0.056302639420 
3.0 3.031834989243 0.575174080851 0.056302657570 

4.666607486204 	3.031843207382 
K= 256.0 

6.0 3.031841450898 0.575126437373 0.056342116383 
3.0 3.031841450998 0.575126436991 0.056342116705 
3.0 3.031841448117 0.575126447988 0.056342107426 

4.668616589653 	3.031843208411 
K= 512.0 

6.0 3.031842831584 0.575108702383 0.056356667159 
2.0 3.031842831594 0.575108702321 0.056356667211. 
2.0 3.031842831450 0.575108703216 0.056356666467 
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4.669068665659 3.031843208462 
K= 1024.0 

4.0 3.031843127726 0.575111161929 0.056354710844 
2.0 3.031843127727 0.575111161932 0.056354710842 
2.0 3.031843127719 0.575111161912 0.056354710857 

4.669173734149 3.031843208464 
K= 2048.0 

5.0 3.031843.191171 0.575112252843 0.056353834562 
1.0 3.031843191171 0.575112252844 0.056353834561 

4.669195548191 3.031843208464 
K= 4096.0 

6.0 3.031843204760 0.575112492848 0.056353641728 
1.0 3.031843204760 0.575112492848 0.056353641728 

4.669200321759 3.031843208464 
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TABLE 4 

(B=-0.7;IN LONGLONGREAL PRECISION WITH THE CHANGE OF 
CONVERGENCE CONDITION) 

K= 4.0 
16.0 3.016127640524 0.571286672010 0.056446636624 
11.0 3.016227640524 0.571274085712 0.056470704182 
13.0 3.012369256619 0.571761395982 0.055531871686 
10.0 3.012363627439 0.571762109502 0.055530486384 
8.0 3.012363618984 0.571762110574 0.055530484303 

7.460174261462 3.039580335213 
K= 8.0 

14.0 3.025749850389 0.576344855997 0.054528780926 
12.0 3.025759850389 0.576346299720 0.054528968626 
9.0 3.027956662779 0.576646757129 0.054578032108 
8.0 3.027939422049 0.576644519219 0.054577590862 
6.0 3.027939554987 0.576644536481 0.054577594261 
4.0 3.027939554995 0.576644536483 0.054577594261 

6.411404034475 3.032184602739 
K= 16.0 

14.0 3.030368966077 0.574882852109 0.056352126455 
12.0 3.030369966077 0.574882458442 0.056352572313 
7.0 3.031017210746 0.574640289782 0.056630188697 
5.0 3.031007551891 0.574643738756 0.056626189209 
4.0 3.031007692487 0.574643688519 0.056626247455 
3.0 3.031007692518 0.574643688508 0.056626247467 

5.076674658337 3.031843879201 
K= 32.0 

10.0 3.031612052208 0.575330636100 0.056147344497 
9.0 3.031612152208 0.575330692393 0.056147311298 
6.0 3.031664436169 0.575359499395 0.056130453814 
3.0 3.031664116374 0.575359326836 0.056130554009 
3.0 3.031664118310 0.575359327880 0.056 130553402 

4.674005136595 3.031843019843 
K= 64.0 

7.0 3.031804560131 0.575057111971 0.056393646128 
4.0 3.031804570131 0.575057100681 0.056393656529 
4.0 3.031804835274 0.575056801470 0.056393932195 
2.0 3.031804835234 0.575056801515 0.056393932153 

4.664867416162 3.031843186063 
K= 128.0 

7.0 3.031835000491 0.575174103135 0.056302640902 
4.0 3.031835001491 0.575174105116 0.056302639420 
3.0 3.03 1834989243 0.575174080851 0.056302657570 

4.666607486204 3.031843207382 
K= 256.0 

7.0 3.031841450898 0.575126437373 0.056342116383 
3.0 3.031841450998 0.575126436991 0.056342116705 
3.0 3.031841448117 0.575126447988 0.056342107426 

4.668616589653 3.031843208411 
K= 512.0 

7.0 3.031842831584 0.575108702383 0.056356667159 
3.0 3.031842831594 0.575108702321 0.056356667211 
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3.0 3.031842831450 0.575108703216 0.056356666467 
4.669068665659 3.031843208462 

K= 1024.0 
5.0 3.031843127726 0.575111161929 0.056354710844 
2.0 3.031843127727 0.575111161932 0.056354710842 
2.0 3.031843127719 0.575111-161912 0.056354710857 

4.669173734149 3.031843208464 
K= 2048.0 

6.0 3.031843191171 0.575112252843 0.056353834562 
2.0 3.031843191171 0.575112252844 0.056353834561 

4.669195548216 3.031843208464 
K= 4096.0 

7.0 3.031843204760 0.575112492848 0.056353641728 
2.0 3.031843204760 0.575112492848 0.056353641728 

4.669200321619 3.031843208464 
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In order to verify whether the convergence condition for periodic 

points affects the bifurcation values and hence the M values, the
OD 

results in Table 4 were performed in longlongreal precision, but with 

a new convergence condition as (X - A) 2  + (Y - C) < 10_30. However 

with this new condition we can not get correct figures in longreal 

precision due to the reasons stated in the next article for Table 5. 

Remark 1.1.8. 	The number of iterations taken by the Secant method 

and by the averaging methods can be further reduced by choosing more 

accurately the initial values of N and the periodic points. 

1.1.9. 	Illustration Of The Results In Tables 5 6 and 7 

Tables 5, 6 and 7 are shown with an idea of how the methods 

work in the vicinity of B = 1, (similar tables can be provided for 

a value of B near -1). As said earlier, the second averaging 

method is not very suitable for small values of k in general and 

not even suitable for large values of k when the results are cal-

culated in longreal precision, (see also 1.1.10). The results in 

Tables 5 and 6, prepared for B = 0.999, are evaluated respectively 

in longreal and longlongreal precisions. We divide the Computer 

program into two parts, each part being similar to the program used for 

B = -0.7; in the first part, 	the first averaging method is applied 

up to k = 256 and in the second part, the second averaging method 

is used for the next higher values of k. Unfortunately, some of the 

- results in Table 5 after the period k = 256 are not correct. 

It is seen that when the second averaging method began for the 



TABLE 5 

(B=0.999;IN LONGREAL PRECISION) 
K= 4.0 

22.0 1.129313567747 -0.564839447767 0.565391829323 
11.0 1.129323567747 -0.564822175406 0.565374576881 
7.0 1.132834905416 -0.558804738916 0.559364076948 
4.0 1.132842036703 -0.558792613178 0.559351965182 
3.0 1.132842051204 -0.558792588522 0.559351940555 

7.464095335765 1.169318869722 
K= 8.0 

21.0 1.150773333587 -0.625844116377 0.626289235787 
11.0 1.150774333587 -0.625845684691 0.626290800914 
6.0 1.150195028122 -0.624926741994 0.625373719805 
4.0 1.150194334007 -0.624925628215 0.625372608276 
3.0 1.150194333172 -0.624925626875 0.62 5372606938 

7.713152739634 1.154923504206 
K= 16.0 

37.0 1.152444033464 -0.602759111488 0.603243027255 
21.0 1.152444133464 -0.602758581564 0.603242498172 
8.0 1.152201031739 -0.604078379610 0.604560195131 
4.0 1.152199853055 -0.604084941530 0.604566746577 
3.0 1.152199847288 -0.604084973634 0.604566778630 

8.652286128912 1.152746427806 
K= 32.0 

15.0 1.152431637371 -0.608774883108 0.609249151972 
4.0 1.152431647371 -0.608774982643 0.609249251344 
5.0 1.152430303334 -0.608761584471 0.609235875139 
3.0 1.152430303008 -0.608761581210 0.609235871884 

8.702383797429 1.152493111145 
K= 64.0 

11.0 1.152456784915 -0.607539135611 0.608015474009 
5.0 1.152456785915 -0.607539111852 0.608015450289 
6.0 1.152456737717 -0.607540257445 0.608016593974 
3.0 1.152456737713 -0.607540257543 0.608016594071 

8.717922627410 1.152463942198 
K= 128.0 

11.0 1.152459769938 -0.607837758300 0.608313610500 
5.0 1.152459770038 -0.607837763249 0.608313615441 
6.0 1.152459771870 -0.607837853851 0.608313705896 

8.712374484679 1.152460598795 
K= 256.0 

13.0 1.152460120128 -0.607762983574 0.608238959736 
4.0 1.152460120138 -0.607762982479 0.608238958644 

13.0 1.152460121134 -0.607762873492 0.608238849837 
13.0 1.152460121130 -0.607762873933 0.608238850277 

8.687375542262 1.152460216317 
K= 512.0 

100.0 1.152460161333 -0.607781507640 0.608257453418 
21.0 1.152460161533 -0.607781554594 0.608257500296 
11.0 1.152460161794 -0.607781615615 0.608257561216 

8.588973395533 1.152460172876 
K= 1024.0 
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18.0 1.152460166528 	-0.607786263428 0.608262201371 
49.0 1.152460166548 	-0.607786273219 0.608262211146 
5.0 1.152460166734 	-0.607786363245 0.608262301024 

8.231638693359 	1.152460168080 
K= 2048.0 

100.0 1.152460167334 	-0.607786341689 0.608262279515 
59.0 1.152460167336 	-0.607786341876 0.608262279702 
16.0 1.152460167417 	-0.607786350139 0.608262287952 

7.216865539175 	1.152460167605 
K= 4096.0 

53.0 1.152460167513 	-0.607786483586 0.608262421177 
100.0 1.152460167513 	-0.607786483815 0.608262421406 
100.0 1.152460167530 	-0.607786498324 0.608262435891 
50.0 1.152460167540 	-0.607786506009 0.608262443563 

5.643759977738 	1.152460167572 
K= 8192.0 

100.0 1.152460167561 	-0.607786474654 0.608262412261 
9.0 1.152460167561 	-0.607786474496 0.608262412103 

5.518503925075 	1.152460167567 
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TABLE 6 

(B=0.999;IN LONGLONGREAL PRECISION) 
K= 4.0 

22.0 1.129313567747 -0.564839447767 0.565391829323 
11.0 1.129323567747 -0.564822175406 0.565374576881 
7.0 1.132834905416 -0.558804738916 0.559364076948 
4.0 1.132842036703 -0.558792613178 0.559351965182 
3.0 1.132842051204 -0.558792588522 0.559351940555 

7.464095335765 1.169318869722 
K= 8.0 

21.0 1.150773333587 -0.625844116377 0.626289235787 
11.0 1.150774333587 -0.625845684691 0.626290800914 
6.0 1.150195028123 -0.624926741995 0.625373719806 
4.0 1.150194334007 -0.624925628215 0.625372608276 
3.0 1.150194333172 -0.624925626875 0.625372606938 

7.713152739634 1.154923504206 
K= 16.0 

37.0 1.152444033464 -0.602759111488 0.603243027255 
21.0 1.152444133464 -0.602758581564 0.603242498172 
8.0 1.152201031736 -0.604078379625 0.604560195145 
4.0 1.152199853055 -0.604084941530 0.604566746577 
3.0 1.152199847288 -0.604084973634 0.604566778630 

8.652286128914 1.152746427806 
K= 32.0 

15.0 1.152431637371 -0.608774883108 0.609249151972 
4.0 1.152431647371 -0.608774982643 0.609249251344 
5.0 1.152430303334 -0.608761584471 0.609235875140 
3.0 1.152430303008 -0.608761581210 0.609235871884 

8.702383797480 1.152493 1 11145 
K= 64.0 

11.0 1.152456784915 -0.607539135611 0.608015474009 
5.0 1.1524567859 15 -0.607539111852 0.608015450289 
6.0 1.152456737717 -0.607540257457 0.608016593986 
3.0 1.152456737713 -0.607540257543 0.608016594072 

8.717922626134 1.152463942198 
K= 128.0 

11.0 1.152459769938 -0.607837758300 0.608313610500 
5.0 1.152459770038 -0.607837763249 0.608313615441 
6.0 1.152459771869 -0.607837853845 0.608313705889 

8.712374522829 1.152460598795 
K= 256.0 

13.0 1.152460120128 -0.607762983575 0.608238959738 
5.0 1.152460120138 -0.607762982481 0.608238958645 
7.0 1.152460121130 -0.607762873921 0.608238850265 

8.687375847293 1.152460216317 
K= 512.0 

14.0 1.152460161333 -0.607781507643 0.608257453421 
7.0 1.152460161533 -0.607781554590 0.608257500291 
7.0 1.152460161794 -0.607781615634 0.608257561235 

8.588964083775 1.152460172876 
K= 1024.0 

11.0 1.152460166528 -0.607786263436 0.60826220 1379 

42 



6.0 1.152460166548 -0.607786273231 0.608262211158 
6.0 1.152460166734 -0.607786363235 0.608262301014 

8.231846004257 1.152460168080 
K= 2048.0 

7.0 1.152460167334 -0.607786341669 0.608262279495 
5.0 1.152460167336 -0.607786341863 0.608262279689 
5.0 1.152460167419 -0.607786350277 0.608262288090 

7.215956034426 1.152460167605 
K= 4096.0 

7.0 1.152460167513 -0.607786483616 0.608262421207 
5.0 1.152460167513 -0.607786483790 0.608262421381 
5.0 1.152460167540 -0.607786506076 0.608262443630 

5.642834312037 1.152460167572 
K= 8192.0 

6.0 1.152460167561 -0.607786474611 0.6082624 12218 
4.0 1.152460167561 -0.607786474600 0.608262412207 
5.0 1.152460167565 -0.607786472420 0.608262410030 

4.764167392389 1.152460167572 
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TABLE 7 

(B0.999;IN LONGLONGREAL PRECISION WITH THE CHANGE 
OF CONVERGENCE CONDITION 

K= 4.0 
26.0 1.129313567747 	-0.564839447767 0.565391829323 
14.0 1.129323567747 	-0.564822175406 0.565374576881 
8.0 1.132834905412 	-0.558804738922 0.559364076954 
5.0 1.132842036703 	-0.558792613178 0.559351965182 
4.0 1.132842051204 	-0.558792588522 0.559351940555 

7.464095335765 	1.169318869722 
K= 8.0 

26.0 1.150773333587 	-0.625844116377 0.626289235787 
15.0 1.150774333587 	-0.625845684691 0.626290800914 
8.0 1.150195028129 	-0.624926742004 0.625373719815 
5.0 1.150194334007 	-0.624925628215 0.625372608276 
4.0 1.150194333172 	-0.624925626875 0.625372606938 

7.713152739634 	1.154923504206 
K= 16.0 

47.0 1.152444033464 	-0.602759111488 0.603243027255 
30.0 1.152444133464 	-0.602758581564 0.603242498172 
10.0 1.152201031797 	-0.604078379283 0.604560194804 
6.0 1.152199853055 	-0.604084941528 0.604566746575 
5.0 1.152199847288 	-0.604084973634 0.604566778630 

8.652286128914 	1.152746427806 
K= 32.0 

18.0 1.152431637371 	-0.608774883108 0.609249151972 
8.0 1.152431647371 	-0.608774982647 0.609249251348 
7.0 1.152430303335 	-0.608761584476 0.609235875145 
5.0 1.152430303008 	-0.608761581210 0.609235871884 

8.702383797480 	1.152493111145 
K= 64.0 

14.0 1.1524567849 15 	-0.607539135611 0.608015474009 
7.0 1.152456785915 	-0.607539111852 0.608015450289 
8.0 1.152456737717 	-0.607540257457 0.608016593986 
5.0 1.152456737713 	-0.607540257543 0.608016594072 

8.717922626137 	1.152463942198 
K= 128.0 

14.0 1.152459769938 	-0.607837758300 0.608313610500 
7.0 1.152459770038 	-0.607837763249 0.608313615441 
8.0 1.152459771869 	-0.607837853845 0.608313705889 

8.712374522857 	1.152460598795 
K= 256.0 

16.0 1.152460120128 	-0.607762983576 0.608238959738 
8.0 1.152460120138 	-0.607762982481 0.608238958645 

10.0 1.152460121130 	-0.607762873921 0.608238850266 
8.687375848205 	1.152460216317 

K= 512.0 
18.0 1.152460161333 	-0.607781507643 0.608257453421 
10.0 1.152460161533 	-0.607781554590 0.608257500291 
11.0 1.152460161794 	-0.607781615634 0.608257561235 

8.588964064977 	1.152460172876 
K= 1024.0 
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14.0 1.152460166528 	-0.607786263436 0.608262201379 
9.0 1.152460166548 	-0.607786273231 0.608262211158 

10.0 1.152460166734 	-0.607786363238 0.608262301016 
8.231845142297 	1.152460168080 

K= 2048.0 
11.0 1.152460167334 	-0.607786341669 0.608262279495 
8.0 1.152460167336 	-0.607786341863 0.608262279689 
8.0 1.152460167419 	-0.607786350279 0.608262288092 

7.215964453454 	1.152460167605 
K= 4096.0 

10.0 1.152460167513 	-0.607786483616 0.608262421207 
8.0 1.152460167513 	-0.607786483790 0.608262421381 
6.0 1.152460167540 	-0.607786506082 0.608262443636 

5.642825647998 	1.152460167572 
K= 8192.0 

9.0 1.152460167561 	-0.607786474612 0.608262412218 
7.0 1.152460167561 	-0.607786474600 0.608262412207 
6.0 1.152460167565 	-0.607786472426 0.608262410037 

4.764123947302 	1.152460167572 
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period k = 512, it failed to yield a periodic point correctly at 

N = 1.152460161333 even after 100 iterations. It does not mean that 

the second averaging method needs more than 100 iterations to do so 

correctly. It is rather found that x and y values fluctuated 

around the actual periodic point without converging to it because 

of the rounding errors. 	Since the results started going wrong 

from the period k = 512, the program afterwards started giving 

wrong bifurcation values and periodic points. Consequently the M 

value is not correct. However this difficulty can be averted by 

applying the first averaging method throughout and by choosing more 

accurately the initial values of M, or by calculating the results 

in longlongreal precision. 

On the other hand, Table 6 shows that the second averaging 

method took 14 iterations to yield the periodic point 

(-0.607781507643, 0.608257453421) at N = 1.152460161333 for the 

period k = 512. 	The different figures in this table can be des- 

cribed like Table 2. It is seen that the numbers of iterations taken 

by the Secant method and by the averaging methods are atmost 5 and 22 

respectively. Furthermore, the M,,-values start convergence from 

k = 4096 and the convergence of 5-values is slower than that done 

for B = -0.7. 	The results in Table 7 were executed in longlongreal 

precision, but with a different convergence condition for periodic 

points, namely, (x - A) 2  +(Y - C) 2  < 130.. 

1.1.10 Error Estimates 

In our Computer programs we impose two stopping conditions for 

46 

convergence in order to save Computer time, one for the periodic points, 
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viz. exitif 	(x - A) 2  + (y - C )2 < 10_24 where A and r nra 

respectively last but one values of x and y, and another one for 

M-values, viz • , exitif Mod(MM - M) < 10- 12, 
 where M and MM are 

the last two consecutive values of M. 	(These two conditions are 

applied if the results are calculated up to 12 decimal places, and 

similarly the negative power of 10 should be rightly chosen accor-

ding to the number of decimal places one needs.) As such it seems 

that there may be some truncation errors in calculations. Moreover, 

our Computer can retain values up to 16 and 36 significant digits 

if calculations are performed in longreal and longlongreal precisions 

respectively. Therefore, the results may involve some rounding errors. 

But it is quite illuminating that the results, except 6-values in 

Tables 2 and 3, have good agreement in both precisions. The dif-

ferent figures, except 6-values in Table 4, have also good agreement 

with those in Tables 2 and 3. The cS-values,which are not our prime 

concern, are slightly affected by these errors. The 6-values cal-

culated in longreal and longlongreal precisions appear to be correct 

up to 3 and 5 decimal places respectively, and so these errors are 

not very significant. 

For the values of B near 1 and -1, if we evaluate the results 

up to £ (L < 11) decimal places, then our numerical methods can be 

applied without any difficulty in both precisions. Also in that 

case all the results have good agreement in both precisions. In the 

case of a higher number of decimal places, say 12 or more, the bifur-

cation values and the periodic points may differ in the last one or two 

decimal places. As an example, we can cite the case for the period 

k = 128 in Table 5. Here the bifurcation value, and x and y values 

12  differ from those tabulated in Table 6 by 10,  6xl0 2  and 7x1012 
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respectively, which are very small indeed. Similarly, the bifurca-

tion values and M value in Table 7 are the same as those in Table 6. 

This indicates that the increase of the negative power of 10 in the 

convergence condition for periodic points does not affect the M - 

values. Moreover, as mentioned in 1.1.9, if we want to calculate the 

results up to m Cm 12) decimal places in longreal precision, 

then our numerical methods seem to be not very suitable. Hence in 

this case, we evaluate the results in longlongreal precision and so 

the results are very accurate. In addition, it is very interesting 

to note that whenever our method works, the N values are the same 

in either precision, indicating that the above-mentioned errors do not 

have any significant effect on them. 

In a nutshell, we can conclude from the results in different 

Tables that the M values for all values of B are very accurate 

as they are the same in either precision, and that the bifurcation 

values and the periodic points are also very accurate for small values 

of B and they may be slightly different near B = 1 and -1, 

having very small errors. 

1.2 	Section Two. The Smoothness Of The Curve N = M(B), B E (_ ,co) 

This section consists of a study of the smoothness of the curve 

M = M O (B), •B E (- 	Our theoretical discussions,(see 1.2.2), 

motivate the following conjecture. 

Conjecture: The curve N = M(B) is C smooth in the sense of 

Holder continuity near B = ±1, where c = 1092  S, 6 the area 

In general the symbol " is used to mean 'approximately equal to', but 
here it is used with 6 to specify the Feigenbaum constant for the 
conservative case. 
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preserving Feigenbaum constant being equal to 8.721097200 ..., but 
IV 

not for a > 1092 6, and C 	smooth otherwise. 

To study this conjecture, the theory of finite differences is 

applied and suggests that the conjecture is true. The results in 

different Tables provided for this section are calculated in longlong-

real precision and so they are very accurate. The same sort of Com-

puter program as used for B =-0.7 is also employed for these results 

with an appropriate averaging method. To show distinctly the finite 

difference values up to the fifth order, the N values are calculated 

up to 18 decimal places, but the finite difference values are kept up 

to certain decimal places in order to save space. 

1.2.1 	The Curve N = M (B) In GeneralOD  

The explicit formulae, N1  = (1-B) 2  and N2  = 

say that their graphs are parabolas. From the graph 

n = 3,4,5,..., drawn in the computer, it seems that 

be approximately represented by a parabolic equation 

+ (1-B) 2 , 

of N = M (B), 
n 	n 

N =M (B) can n 	n 

of the form 

M n = C+L(B-A) 2  

.) where A is the value of B at which N attains its minimum that 
n 

lies between 0.6 and 0.61, (observed from the graphsanc their numerical 

values), C is the bifurcation value of N at A, L is a Suitably 

chosen constant depending on N. For example, the curve 

MCD 
= NCO (B) can be approximately represented by a parabolic equation 

as N = C + L(B - A) 2 , where A = 0.608, C = 0.934099116562 and 

L = 1.238392802522. Of course, the errors are noticeably high and 

-3 	 -3 lie between - 22 x 10 	and 29 x  10 



TABLE 8 

1.00 1.153612188859 0.49 0.952775397350 
0.99 1.142235043825 0.48 0.956036908783 
0.98 1.131175273874 0.47 0.959556532975 
0.97 1.120431922315 0.46 0.963333393776 
0.96 1.110003961624 0.45 0.967366621325 
0.95 1.099890315473 0.44 0.971655351119 
0.94 1.090089868786 0.43 0.976198723186 
0.93 1.080601473674 0.42 0.980995881366 
0.92 1.071423953941 0.41 0.986045972704 
0.91 1.062556108371 0.40 0.991348146972 
0.90 1.053996713145 0.39 0.996901556319 
0.89 1.045744523968 0.38 1.002705355050 
0.88 1.037798278173 0.37 1.008758699547 
0.87 1.030156696809 0.36 1.015060748319 
0.86 1.022818486639 0.35 1.021610662187 
0.85 1.015782342011 0.34 1.028407604605 
0.84 1.009046946650 0.33 1.035450742106 
0.83 1.002610975408 0.32 1.042739244866 
0.82 0.996473096057 0.31 1.050272287397 
0.81 0.99063 1971 127 0.30 1.058049049341 
0.80 0.985086259830 0.29 1.066068716369 
0.79 0.979834620037 0.28 1.074330481185 
0.78 0.974875710285 0.27 1.082833544606 
0.77 0.970208191792 0.26 1.091577116726 
0.76 0.965830730436 0.25 1.100560418156 
0.75 0.961741998683 0.24 1.109782681312 
0.74 0.957940677429 0.23 1.119243151769 
0.73 0.954425457749 0.22 1.128941089650 
0.72 0.951195042539 0.21 1.138875771047 
0.71 0.948248148035 0.20 1.149046489472 
0.70 0.945583505204 0.19 1.159452557322 
0.69 0.943199861011 0.18 1.170093307344 
0.68 0.941095979538 0.17 1.180968094106 
0.67 0.939270642962 0.16 1.192076295456 
0.66 0.9377226 52377 0.15 1.203417313956 
0.65 0.936450828465 0.14 1.214990578295 
0.64 0.935454011997 0.13 1.226795544671 
0.63 0.934731064175 0.12 1.238831698121 
0.62 0.934280866801 0.11 1.251098553816 
0.61 0.934102322273 0.10 1.263595658292 
0.60 0.934194353426 0.09 1.276322590625 
0.59 0.934555903200 0.08 1.289278963543 
0.58 0.935185934156 0.07 1.302464424461 
0.57 0.936083427854 0.06 1.315878656443 
0.56 0.937247384091 0.05 1.329521379090 
0.55 0.938676820029 0.04 1.343392349336 
0.54 0.940370769213 0.03 1.357491362161 
0.53 0.942328280521 0.02 1.371818251218 
0.52 0.944548417041 0.01 1.386372889362 
0.51 0.947030254908 0.00 1.401155189092 
0.50 0.949772882119 
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-0.01 1.416165102889 -0.51 2.466220459011 
-0.02 1.431402623466 -0.52 2.493551680840 
-0.03 1.446867783919 -0.53 2.521147889597 
-0.04 1.462560657778 -0.54 2.549010133493 
-0.05 1.478481358968 -0.55 2.577139461691 
-0.06 1.494630041667 -0.56 2.605536924076 
-0.07 1.51 1006900075 -0.57 2.63420357 1035 
-0.08 1.527612168092 -0.58 2.663140453233 
-0.09 1.544446118902 -0.59 2.69234862 1390 
-0.10 1.561509064468 -0.60 2.721829126050 
-0.11 1.578801354950 -0.61 2.751583017349 
-0.12 1.596323378036 -0.62 2.781611344783 
-0.13 1.614075558198 -0.63 2.811915156971 
-0.14 1.632058355871 -0.64 2.842495501418 
-0.15 1.650272266573 -0.65 2.873353424282 
-0.16 1.668717819950 -0.66 2.904489970151 
-0.17 1.687395578773 -0.67 2.935906181819 
-0.18 1.706306137872 -0.68 2.967603100085 
-0.19 1.725450123033 -0.69 2.999581763555 
-0.20 1.744828189845 -0.70 3.031843208464 
-0.21 1.7644410225 17 -0.71 3.064388468511 
-0.22 1.784289332661 -0.72 3.097218574704 
-0.23 1.804373858062 -0.73 3.130334555215 
-0.24 1.824695361416 -0.74 3.163737435238 
-0.25 1.845254629075 -0.75 3.197428236840 
-0.26 1.866052469775 -0.76 3.231407978806 
-0.27 1.887089713372 -0.77 3.265677676459 
-0.28 1.908367209590 -0.78 3.300238341455 
-0.29 1.929885826776 -0.79 3.335090981547 
-0.30 1.951646450680 -0.80 3.370236600313 
-0.31 1.973649983264 -0.81 3.405676196852 
-0.32 1.995897341532 -0.82 3.441410765462 
-0.33 2.018389456408 -0.83 3.477441295293 
-0.34 2.041127271644 -0.84 3.513768770009 
-0.35 2.064111742779 -0.85 3.550394167445 
-0.36 2.087343836140 -0.86 3.587318459279 
-0.37 2.110824527894 -0.87 3.624542610686 
-0.38 2.13455480357 -0.88 3.662067579940 
-0.39 2.158535655152 -0.89 3.699894317923 
-0.40 2.182768084421 -0.90 3.738023767478 
-0.41 2.20 7253098098 -0.91 3.7764 56862582 
-0.42 2.231991709228 -0.92 3.815194527361 
-0.43 2.256984936149 -0.93 3.854237675003 
-0.44 2.282233801921 -0.94 3.8935872065 79 
-0.45 2.307739333803 -0.95 3.933244009537 
-0.46 2.333502562787 -0.96 3.973208955444 
-0.47 2.359524523159 -0.97 4.013482896672 
-0.48 2.385806252119 -0.98 4.054066661898 
-0.49 2.412348789427 -0.99 4.094961048250 
-0.50 2.439153177078 -1.00 4.136166803904 
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Table 8 is provided for the values of M for the whole range 

of B-values from +1 to -1 with the difference 0.01 and the graph of 

M for these values is shown in Fig. 5. However the computational 

exploration suggests that this curve is not as smooth as a parabola 

is near B = ±1. 

1.2.2 	Some Theoretical Discussions 

We present below some theoretical discussions which motivate the 

above-mentioned conjecture. 

Let T be the period doubling operator with suitable coordinate 

adjustments on the space S of all smooth mappings from the plane 

into itself. Also let 4 and 	be the area preserving and the dis- 

sipative fixed points of T respectively. Then the Jacobian DT() 

of the operator T at • has two eigenvalues greater than one, 

namely 6 and 2 (see [1 0 ]). 

Then by the manifold theorem, there exist at 4 an unstable 

manifold W'(4) of dimension 2 spanned by the eigenvectors corres-

ponding to the elgenvalues 6 and 2, and a stable manifold W5 () 

of codiniension 2. 	Since the space is infinite dimensional, this 

stable manifold is also infinite dimensional. Moreover, these 

manifolds are invariant under T. 

Let X.(= 6), A 2  (= 2), A 3 , ... be the eigenvalues of DT(). 

Linearize T, if possible, near • and choose coordinates x.,, 

I = 1,2, ..., in such a way that the following hold: 

Tx. = Ax1 

Tx =Ea 
1 
 A 1  . 1  x., 	for x = Z a 

1  .x 1  . with some scalars cz 1  .'s. 

W5 (i)= {x: x = Ect.x
i  and x1  = f(x2 ,x3 , ...) for some 

3.

suitable map f} 
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Now 	x 	 = f(x2 ,x3 . 	. ) 

So, A rX 	= 	( 2-'x 29 A  3r33' ...), for all r > 0. 

This gives 

f(x2,x3, ... ) = f(2_rX29 A 3 x3 , ...). 

Taking rn-times partial derivative with respect to x
2) . we obtain 

(x 2 ,x3 , ...) = 2 	(2_rX 	-r 	•••  m 	2 9  3 	3 9  M x2 	 ax  

This implies 

a'f-r 	-r 	 2
m r a'f (2 x2, A3-  X3 	) = 
	
[j 	

(x2 ,x3 , ...) 	(I) 
ax2 	 ax 

We now see that at the point A = (1 (=x 2 ), O(x3), ... ) the right hand 

side of (I) is bounded for all sufficiently large values of r only if.  

a 
m  f 

	

m 1092 	
ax 

Hence in order that - is continuous, 
axm 

Ilu 	 2 
m must be less than or equal to 10926. 	Since m is an integer, 

the greatest value of in is 3. 	Moreover, if f c C,a = 3+p, p > 0, 

then 

-r 	 181r 
33f-  (2 , 0, 0 	

) = 
 

ax 	 oJ ax 

a 3 f (0) Since 	= 0 from (II) we obtain 

	

L (2 ' , 0, ...) 	- 	(0, 0, ...) 
ax 

r 
=-1- (1, 0, ...) 

ax 
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I C(2 —r) 	where C = 	

• 	

J

r 	
3f (1,0,...)! 

 Jax 

Here C remains bounded for all values of r if p 1og 2 6 - 3. 

This suggests that WS() 	is not a smooth submanif old of S. 

Next, the class {HMB: M and B are reals) forms a two-

dimensional manifold in the function space S and 

HMOO  (B) BE 
wS (P) fl W(4) if IBI = 1. 

The arguments cited above lead us to imagine that the curve M = M(B) 

is only C smooth, where a = log 26 near B = ± 1. 

On the other hand, the stable manifold WS 	is a smooth sub- 

manifold of S (see [121). 	Again HNB),,B belongs to 

for all B with IBI < 1. Therefore.the curve 

{(M,B) 	IBI < 1 and HMCO,B E W5 ()) is Cm-smooth. 

The relation M(B 1
) = B 2  M , (B) implies that this curve is C co  

for IBI > 1 as well. 

Nevertheless, our arguments above do not guarantee any conclusion 

rigorously, but shed light on the conjecture stated above. So our 

next goal is to discuss the theory of finite differences through 

which we want to study the curve M = M (B). co 	OD 

1.2.3. 	The Theory Of Finite Differences And the Curve M oo  = 

B E (- co, co) 

The finite difference operator t is defined for a real valued 

function*-y = f(x) in the interval [a,b] by 



56 

f(x) = f(x+h) - f(x) 	where x is a particular 

value of x in [a,b] and h, a step-length. For higher differences 

the following symbolisms are used 

(Lf(x)) = 	2f(x), ..., 	( rf())  = 	
r+l f(x). 

If D is the differential operator, then the theory of finite dif-

ferences gives the relation A = ehD - 1. From this we have 

= h1  D1  (1 + 	+ ••• ) 1 

where i = 1,2,3 ...... 

Therefore, for small h we have an approximate relation as 

" h D'. 

More precisely, we have 

I 	f(x )I 	' 	 Ihi '  ID' f(x0 )I h  
0 

where the lower suffix h in /x is written to emphasize the 

step-length. If the step-length h is increased to 2h, then the 

same sort of relation can be achieved as 

2h f(x0 )I 	nu 	12h11  IDI  f(x)1  

The relations (I) and (II) jointly imply that 

I 	f(x 	I 
" 	

2' , 	i = 1, 2 ...... 

1A 
1 
2h f(x)I 
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Replacing f(x 
0 	 0 
) by N (B ), we obtain 

M(B) I 	,\ 	
2 
	

(III) 

2h M(B)J 

From this we can say that if the function M is i-times differen-

tiable, then a relation of the form (III) can be obtaihed. 

The Case When IBI < 1. 

It can be shown numerically that when IBI < 1, the result 

(III) is true for all 1. 	To support this assertion we cite the 

case when B = 0.6.. Around B = 0.6, 41 values starting from 

0.580 to 0.620 are considered and the M -values at these B are 
00 

calculated up to 18 decimal places in longlongreal precision. To 

justify the claim that these M..-values are correct up to 18 

decimal places, we list in Table 9 the N-values for different 
CO 

periods k at B = 0.60 and B = 0.999. it is also found that the 

increase of negative power of 10 in the convergence condition for 

the periodic points does not affect these values. 	The B-values, 

their corresponding M..-values, and the successive finite differences 

up to fifth order with the step-length 0.001 and with some special 

comments are listed in Tables 10 and 11. Also their successive 

finite differences with the step-length 0.002 are shown in Table 12. 

If the ratios, 
A0001  N(B)I 

I i N(B)I 
0.002 	0 

i = 1,2,3,4,5 	and B 
0 = 

0.580, ...,0.618, 

are calculated, it is found that they are approximately equal to 2. 
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To allude specifica ily, suppose B 0  = 0.580. 

Then 	
0.001 M(0.580) 

JA 0.002 Moo 
 

- 0.750555 X 10-4 
 

- 	 , substituting the values from 

	

0.147436 X  10 	 Tables 10 and 12. 

" 	0.509074 

,, 	2- 1 

Similarly, 

and 

I2N (0.580)1 0.001 00 

1 2 N (0.580)I 0.002 CO 

l3 N (0.580)1 0.001 

I3 N (0.580)1 0.002 

1 64 (0.580)1 0.001 00 

N (0.580)1OD  0.002 

N (0.580)1 0.001 CO 

N (0.580)1 0.002 CO 

r'.. 	 0.249905 	nu 	
22 

fl 	 0.124659 	'u 	2 

1\, 	 0.061973 	"u 	2 

0.032529 	".. 	2 

Analogous results can be found for other values of B 
0 

. 	If further 

higher finite differences are evaluated, the ratios with step-

lengths 0.001 and 0.002 show similar characterizations. This leads 



TABLE 9 

!COMMENTS:IN THE FOLLOWING TABLE ,1ST,2ND AND %C 
3RD COLUMNS REPRESENT RESPECTIVELY THE PERIODS %C 
(K-VALUES),THE M(INFINITY)-VALUES FOR B=0.6 %C 
AND THE M(INFINITY)-VALUES FOR 8=0.999. 
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4.0 
8.0 

16.0 
32.0 
64.0 

128.0 
256.0 
512.0 

1024.0 
2048.0 
4096.0 
8192.0 

16384.0 
32768.0 
65536.0 

131072.0 
262144.0 

0.937051895951745786 
0.934261315005137582 
0. 934188780301218141 
0.934194020477330677 
0. 934194330850821958 
0. 934194352446653112 
0. 934194353378878220 
0. 934194353424139706 
0. 934194353426158145 
0. 934194353426252336 
0. 934194353426256614 
0. 934194353426256812 

• 0.934194353426256821 
0.934194353426256821 
0.934194353426256821 
0.934194353426256821 
0.934194353426256821 

1.169318869722449742 
1.154923504206398399 
1.152746427806330732 
1.152493111144941790 
1.152463942197569717 
1.152460598794910413 
1.1524602 16316855307 
1.152460172876164771 
1.152460168079801284 
1.152460167604650976 
1.15246016757246 1434 
1.152460167571796193 
1.152460167571804477 
1.152460167571805621 
1.152460167571805706 
1.152460167571805710 
1.152460167571805710 



TABLE 10 

A(1)=10000 
!COMMENT:IN THE FOLLOWING TABLE,THE FIRST,THE SECOND 
AND THE THIRD COLUMNS GIVE RESPECTIVELY THE VALUES 
OF B,M(INFINITY) AND FIRST FINITE DIFFERENCES 
FOR STEP-LENGTH 0.001. 

0.580 0.935185934155621779 
0.581 0.935110878577981541 -0.750555/A(1) 
0.582 0.935038498622734149 -0.723799/A(1) 
0.583 0.934968795301744995 -0.697033/A(1) 
0.584 0.934901769628721421 -0.670256/A(l) 
0.585 0.934837422619220645 -0.643470/A(1) 
0.586 0.934775755290657563 -0.616673/A(1) 
0.587 0.934716768662312423 -0.589866/A(1) 
0.588 0.934660463755338382 -0.563049/A(1) 
0.589 0.934606841592768929 -0.536221/A(l) 
0.590 0.934555903199525183 -0.509383/A(1) 
0.591 0.934507649602423062 -0.482535/A(1) 
0.592 0.934462081830180320 -0.455677/A(1) 
0.593 0.934419200913423453 -0.428809/A(l) 
0.594 0.934379007884694469 -0.401930/A(1) 
0.595 0.934341503778457526 -0.375041/A(1) 
0.596 0.934306689631105432 -0.348141/A(1) 
0.597 0.934274566480966006 -0.321231/A(1) 
0.598 0.934245 135368308302 -0.29431 1/A(1) 
0.599 0.934218397335348696 -0.267380/A(l) 
0.600 0.934194353426256821 -0.240439/A(l) 
0.601 0.934173004687161374 -0.213487/A(1) 
0.602 0.934154352166155765 -0.186525/A(1) 
0.603 0.934138396913303633 -0.159552/A(1) 
0.604 0.934125139980644207 -0.132569/A(1) 
0.605 0.934114582422197523 -0.105575/A(1) 
0.606 0.934106725293969498 -0.078571/A(1) 
0.607 0.934101569653956844 -0.051556/A(1) 
0.608 0.934099116562151841 -0.024530/A(1) 
0.609 0.934099367080546951 0.002505/A( 1) 
0.610 0.934102322273139291 0.029551/A(1) 
0.611 0.934107983205934939 0.056609/A(1) 
0.612 0934116350946953092 0.083677/A(1) 
0.613 0.934127426566230076 0.1 10756/A(1) 
0.614 0.934141211135823185 0.137845/A(1) 
0.615 0.934157705729814377 0.164945/A(1) 
0.616 0.934176911424313804 0.192056/A(1) 
0.617 0.934198829297463 186 0.219178/A(l) 
0.618 0.934223460429439028 0.246311 /A(l) 
0.619 0.934250805902455677 0.273454/A( 1) 
0.620 0.934280866800768209 0.300608/A( 1) 



TABLE 11 

A(2)= 1 00000;A(3)= 1 00000000;A(4)= 100000000000 
A(5)=100000000000000 
!COMMENTS: DIVIDE THE FOLLOWING 4 COLUMNS RESPECTIVELY 
BY A(2),A(3),A(4) AND A(5).THEN THESE COLUMNS 
SHOW 2ND,3RD,4TH AND 5TH FINITE DIFFERENCES 
RESPECTIVELY WITH THE STEP-LENTH 0.001. 

0.267562 
0.267663 0.101187 
0.267765 0.101371 0.184195 
0.267866 0.101556 0.184988 0.7926 
0.267968 0.101741 0.185768 0.7802 
0.268070 0.101928 0.186535 0.7674 
0.268172 0.102115 0.187291 0.7557 
0.268274 0.102303 0.188033 0.7423 
0.268377 0.102492 0.188763 0.7298 
0.268480 0.102682 0.189480 0.7169 
0.268582 0.102872 0.190184 0.7037 
0.268686 0.103063 0.190874 0.6906 
0.268789 0.103254 0.191551 0.6770 
0.268892 0.103446 0.192215 0.6638 
0.268996 0.103639 0.192865 0.6500 
0.269100 0.103833 0.193501 0.6361 
0.269204 0.104027 0.194124 0.6224 
0.269308 0.104222 0.194732 0.6087 
0.269412 0.104417 0.195326 0.5935 
0.269517 0.104613 0.195906 0.5807 
0.269622 0.104809 0.196471 0.5649 
0.269727 0.105006 0.197023 0.5516 
0.269832 0.105204 0.197559 0.5361 
0.269937 0.105402 0.198081 0.5217 
0.270043 0.105601 0.198588 0.5074 
0.270149 0.105800 0.199080 0.4914 
0.270255 0.105999 0.199557 0.4773 
0.270361 0.106199 0.200018 0.4614 
0.270467 0.106400 0.200466 0.4473 
0.270574 0.106601 0.200896 0.4306 
0.270681 0.106802 0.201312 0.4158 
0.270788 0.107004 0.201713 0.4010 
0.270895 0.107206 0.202097 0.3839 
0.271002 0.107408 0.202466 0.3696 
0.271110 0.107611 0.202819 0.3530 
0.271218 0.107814 0.203157 0.3374 
0.271326 0.108018 0.203479 0.3217 
0.271434 0.108221 0.203784 0.3057 
0.271543 0.108426 0.204073 0.2887 
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TABLE 12 

A(6)= 1 000;A(7)= 1 0000;A(8)= 100000000; 
A(9)= 1 0000000000;A(1 0)= 1000000000000 
!COMMENTS: DIVIDE THE FOLLOWING 5 COLUMNS RESPECTIVELY 
BY A(6),A(7),A(8),A(9) AND A(10).THEN THESE 
COLUMNS GIVE 1ST,2ND,3RD,4TH AND 5TH FINITE DIFFERENCES 
RESPECTIVELY WITH THE STEP-LENGTH 0.002. 

-0.147436 
-0.142083 
-0.136729 0.107065 
-0.131373 0.107106 
-0.126014 0.107147 0.811707 
-0.120654 0.107187 0.813190 
-0.115292 0.107228 0.814680 0.297218 
-0.109927 0.107269 0.816175 0.298447 
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-0. 104561 0.107310 
-0.099192 0.107351 
-0.093821 0.107392 
-0.088449 0.107433 
-0.083074 0.107474 
-0.077697 0.107516 
-0.072318 0.107557 
-0.066937 0.107598 
-0.061554 0.107640 
-0.056169 0.107682 
-0.050782 0.107723 
-0.045393 0.107765 
-0.040001 0.107807 
-0.034608 0.107849 
-0.029212 0.107891 
-0.023814 0.107933 
-0.018415 0.107975 
-0.013013 0.108017 
-0.007609 0.108060 
-0.002203 0.108102 
0.003206 0.108144 
0.008616 0.108187 
0.014029 0.108230 
0.019443 0.108272 
0.024860 0.108315 
0.030279 0.108358 
0.035700 0.108401 
0.041124 0.108444 
0.046549 0.108487 
0.051977 0.108530 
0.057406 0.108574 

0.817676 
0.819 183 
0.820696 
0.8222 15 
0.823739 
0.825269 
0.826804 
0.828344 
0.829890 
0.83 1440 
0.832995 
0.834556 
0.836 120 
0.837690 
0.839264 
0.840842 
0.842425 
0.844011 
0.845602 
0.847 197 
0.848795 
0.850397 
0.852002 
0.853611 
0.855223 
0.856838 
0.858456 
0.860078 
0.861701 
0.863328 
0.864957 

0.299655 0.243659 
0.300843 0.239631 
0.302010 0.235551 
0.303157 0.231433 
0.304283 0.227273 
0.305388 0.223061 
0.306471 0.218804 
0.307533 0.214508 
0.308573 0.210165 
0.309591 0.205777 
0.310586 0.201358 
0.311560 0.196897 
0.312510 0.192385 
0.313438 0.187840 
0.314343 0.183263 
0.315225 0.178642 
0.316083 0.173981 
0.316918 0.169293 
0.317729 0.164574 
0.318516 0.159805 
0.319279 0.155000 
0.320017 0.150185 
0.320732 0.145337 
0.321422 0.140433 
0.322087 0.135508 
0.322727 0.130574 
0.323343 0.125596 
0.323933 0.120582 
0.324498 0.115552 
0.325038 0.110501 
0.325553 0.105428 
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us to conclude that the curve M = M(B) for -1 < B < 1 is 

00  C -smooth. 

The Case When JBI = 1. 

In the neighbourhood of B = 1 and -1, it can be shown 

numerically that the relation (III) is true up to i = 3 and that for 

I > 3 the ratio is very far from the value 2 ' . 	To verify this 

fact, we consider just as above 41 B-values around B = 1, nainely,  

(0.999) ' , Y = 20, 19 ....., -20. Then the finite differences are 

applied to M(e') as a function of u with step-length 

H = -log(O.999), where u = log B. The reason for doing this is 

that if we evaluate the values M(eu)  for B = (0.999)'1, 

Y = 20, 19, ..., 0, then the other values M(eU)  for B = (0999)Y 

Y = -1, -2,..., -20 can be evaluated just by using the formula 

N(B 1) = B 2N(B). 	These B-values, the corresponding N values 

and the successive finite difference values up to 5th order are listed 

in Tables 13 and 14. Further, the finite difference values up to 5th 

order with step-length 2H are shown in Table 15. If we observe the 

values of these finite differences in these Tables, it is seen that 

there is a symmetry in values up to third differences, but fourth and 

fifth difference values show irregular behaviour. This indicates 

reasonably that the relation (III) is not satisfied when i > 3. 

To be more precise, let B = 0.999. 

N (B ) I 
Then 	 H 	o 	= 	0.114769 x 10 2  

JA 2H 	0 
M (B )I 	0.229971 x  10- 2 

0.499059 	2- 1 



I 2  M (B ) 

	

H co o 	= 	0.432862 x  10 

	

2 M (B )I 	0.173582 x  :io 
2H 00 0 

0.249371 	2-2 

 
M (B 	

0.111370 x 

	

) I 	= 

	

N (B )I 	0.821066 
2H co 0 

0.135640 ' 2 

0.845435 x 10- 

	

M(B) I 	=  

' 	M(B)I 	
0.210925 x 10- 8 

2H  

0.400822 7. 2 

M (B ) I 
and 	- H co o 	= 	0.584835 x  lO 

	

12H N(B)I 	
0.202068 x  10 8  

co 0 

0.289424 	2 

We can carry Out similar calculations for higher finite differences 

and can find that the relation (III) is highly unsatisfied. So we 

can draw the conclusion that the curve M =M (B) near B = 1 is 
CO 	 00 

C 3  only. 

In Table 16, 21 values of B around B = -1, the corresponding 

M,-values, and the finite differences up to 5th order with step-

length -H are shown, while in Table 17, the finite differences 

with step-length -2H are listed. It is evident from these Tables 

that there is a regularity in the finite difference values up to 

3rd order, but that there is no such regularity in the case of 

4th and 5th order finite differences. If we calculate the values 
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TABLE 13 

!COMMENTS:HERE N(1)100,X=0.999 AND THE EXPRESSION 
X**Y MEANS THAT THE EXPONENT OF X IS Y,(Y=20,19,..,-20). %C 
THE THREE COLUMNS IN THE FOLLOWING TABLE SHOW %C 
RESPECTIVELY THE VALUES OF B,M(INFINITY) AND %C 
THE FIRST FINITE DIFFERENCES OF THE FUCTION %C 
M(INFINITY) WITH STEP-LENGTH EQUAL TO H=-LOG(.999). 

X**20 1.131381219307043391 
X**19 1.132452941176066519 0.107172/N(1) 
X**18 1.133528787734328562 0.1 07585/N(1) 
X1 7 1.134608770161625452 0.107998/N(1) 
X**16 1.135692899659255966 0.1084 13/N(1) 
X**15 1.136781187449718716 0.108829/N(1) 
X**14 1.137873644776346336 0.109246/N(1) 
X** 13 1.138970282902865887 0.1 09664/N(1) 
X**12 1.140071113112880811 0.1 10083/N(1) 
X11 1.141076146709278335 0.1 10503/N(1) 
X'10 1.142285395013571740 0.110925/N(1) 
X9 1.143398869365178994 0.11 1347/N(1) 
X**8 1.144516581120604523 0.11 1771/N(1) 
X**7 1.145638541652425755 0.112196/N(1) 
X**6 1.146764762347921667 0.1 12622/N(1) 
X**5 1.147895254607197664 0.1 13049/N(1) 
X**4 1.149030029840788276 0.1 13478/N(1) 
X**3 1.150169099466611584 0.113907/N(1) 
X**2 1.151312474905250401 0.1 14338/N(1) 
X**1 1.152460167571805711 0.1 14769/N(1) 
X0 1.153612188858759193 0.115202/N(1) 
X-1 1.154768549903061932 0.1 15636/N(1) 
X**_2 1.155929260996230460 0.1 16071/N(1) 
X**_3 1.157094332 169181304 0.1 16507/N(1) 
X**_4 1.158263773424284349 0.1 16944/N(1) 
X**_5 1.159437594752278002 0.1 1 7382/N(1) 
X**6 1.160615806140290558 0.11782 1/N(1) 
X**_7 1.16 1798417576483278 0.1 1826 1/N(1) 
X**_8 1.162985439053049948 0.1 187021N(1) 
X**-9 1.164176880568593056 0.119144/N(1) 
X-10 1.165372752129996270 0.1 19587/N(1) 
X-1 1 1.166573063753804824 0.120031/N(1) 
X**_ 12 1.167777825467256020 0.1 20476/N(1) 
X**_13 1.168987047309121836 0.120922/N(1) 
X**_14 1.170200739330462119 0.121369/N(1) 
X**_15 1.171418911595321235 O.121817/N(1) 
X**_16 1.172641574181365812 0.122266/N(1) 
X**_17 1.173868737180452922 0.122716/N(1) 
X**_18 1.175100410699123642 0.123167/N(1) 
X**_19 1.176336604859025752 0.1 23619/N(1) 
X**_20 1.177577329797275960 0.1 24072/N(1) 
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0.021503 
0.02 1200 
0.020834 
0.020394 
0.0 19876 
0.0 19284 
0.0 18626 
0.0 17905 
0.0 17086 
0.0 16073 
0.0 14702 
0.0 12826 
0.0 10429 
0.007384 
0.002665 

-0.005482 
-0.022619 
-0.255531 
-0.845435 
-0.260600 
-0.028547 
-0.011631 
-0.003610 
0.00 1033 
0.004033 
0.006409 
0.008281 
0.009662 
0.0 10692 
0.0 11535 
0.0 12288 
0.0 12985 
0.0 13622 
0.0 14190 
0.014684 
0.015107 
0.0 15469 

-0.000303 
-0.000366 
-0.000440 
-0.000518 
-0.000593 
-0.000658 
-0.000721 
-0.000818 
-0.001013 
-0.001371 
-0.001875 
-0.002397 
-0.003046 
-0.004719 
-0.008147 
-0.017137 
-0.232911 
-0.589904 
0.584835 
0.232053 
0.016915 
0.008021 
0.004643 
0.003000 
0.002376 
0.00 1872 
0.00 1380 
0.001031 
0.000843 
0.000753 
0.000697 
0.000638 
0.000568 
0.000494 
0.000423 
0.000362 

TABLE 14 

N(2)=1 00000;N(3)= 10000000 
N(4)=1000000000 ;N(5)=N(4). 
!COMMENTS: DIVIDE THE FOLLOWING 4 COLUMNS 
BY N(2),N(3),N(4) AND N(5) RESPECTIVELY, 
AND THEN THESE COLUMNS GIVE RESPECTIVELY 
2ND,3RD,4TH AND 5TH FINITE DIFFERENCES 
WITH THE STEP-LENGTH H 

m. 

0.412469 
0.413587 0.111798 
0.414707 0.112013 
0.415829 0.112225 
0.416954 0.112433 
0.418080 0.112637 
0.419208 0.112836 
0.420339 0.113029 
0.421471 0.113215 
0.422605 0.113394 
0.423740 0.113565 
0.424878 0.113726 
0.426016 0.113873 
0.427156 0.114001 
0.428297 0.114105 
0.429439 0.114179 
0.430581 0.114206 
0.431723 0.114151 
0.432862 0.113925 
0.433976 0.111370 
0.435005 0.102915 
0.436008 0.100309 
0.437008 0.100024 
0.438007 0.099907 
0.439006 0.099871 
0.440005 0.099882 
0.441004 0.099922 
0.442004 0.099986 
0.443005 0.100069 
0.444006 0.100165 
0.445009 0.100272 
0.446013 0.100388 
0.447018 0.100511 
0.448024 0.100640 
0.449032 0.100777 
0.450041 0.100919 
0.451052 0.101065 
0.452064 0.101216 
0.453078 0.101371 



(TABLE 15) 

N(6)=10000;N(7)= 100000000 
!COMMENTS:THE FOLLOWING COLUMNS SHOW 1ST, 
2ND,3RD,4TH AND 5TH FINITE DIFFERENCES 
WITH THE STEP-LENGTH EQUAL TO 2H 
,IF THEY ARE RESPECTIVELY DIVIDED 
BY N(1),N(6),N(3),N(7) AND N(7). 

67 

0.2 14757 
0.2 15583 
0.216411 0.165435 
0.217242 0.165883 
0.218075 0.166332 
0.218910 0.166782 
0.219747 0.167232 
0.220586 0.167684 
0.221428 0.168136 
0.222272 0.168588 
0.223119 0.169042 
0.223967 0.169496 
0.224818 0.169951 
0.225671 0.170407 
0.226527 0.170863 
0.227384 0.171319 
0.228245 0.171776 
0.229107 0.172232 
0.229971 0.172689 
0.230838 0.173142 
0.231707 0.173582 
0.232578 0.173999 
0.233451 0.174403 
0.234326 0.174803 
0.235203 0.175203 
0.236082 0.175602 
0.236963 0.176002 
0.237846 0.176402 
0.238731 0.176802 
0.239618 0.177202 
0.240507 0.177603 
0.241398 0.178004 
0.242291 0.178405 
0.243186 0.178807 
0.244083 0.179210 
0.244983 0.179613 
0.245884 0.180017 
0.246787 0.180421 
0.247692 0.180826 

0.896945 
0.898625 
0.900273 
0.90 1882 
0.903447 
0.904962 
0.906422 
0.9078 19 
0.909139 
0.9 10362 
0.911453 
0.912371 
0.9 13060 
0.913411 
0.913175 
0.909803 
0.892949 
0.857088 
0.821066 
0.803821 
0.799974 
0.799241 
0.799088 
0.799268 
0.799674 
0.800252 
0.800961 
0.80 1770 
0.802656 
0.803608 
0.8046 18 
0.805680 
0.806792 
0.807945 
0.809 135 

0.033276 
0.032569 
0.031743 -0.001533 
0.030801 -0.001768 
0.029747 -0.001996 
0.028563 -0.002238 
0.027 176 -0.002572 
0.025432 -0.003131 
0.023132 -0.004043 
0.020094 -0.005338 
0.016078 -0.007054 
0.010402 -0.009692 
0.001141 -0.014938 

-0.036086 -0.046488 
-0.202254 -0.203394 
-0.527148 -0.491062 
-0.718830 -0.516576 
-0.532669 -0.005521 
-0.210925 0.507905 
-0.045798 0.486870 
-0.008857 0.202068 
0.000266 0.046065 
0.005863 0.0 14720 
0.009840 0.009574 
0.012869 0.007006 
0.015181 0.005340 
0.016951 0.004081 
0.018377 0.003197 
0.019612 0.002661 
0.020727 0.002350 
0.021741 0.002129 
0.022646 0.001919 
0.023438 0.001698 



TABLE 16 

!COMMENTS: HERE U0.999 AND THE EXPRESSION 
U ** V MEANS THE EXPONENT OF U IS V. 
(V=10,9,....,-10). 
THE FOLLOWING 3 COLUMNS GIVE THE 
VALUES OF B,M(INFINITY) AND THE 1ST FINITE 
DIFFERENCES RESPECTIVELY WITH THE STEP-LENGTH 
EQUAL TO -H. 

** 10 4.095145284431820540 

	

** 9 	4.099215149832903502 0.406987/N(1) 

	

** 8 	4.103292152688709156 0.407700/N(1) 

	

** 7 	4.107376306969043645 0.408415/N(1) 

	

** 6 	4.111467626663355739 0.409132/N(1) 

	

** 5 	4.115566125779267603 0.409850/N(1) 

	

-U ** 4 	4.119671818340691261 0.410569/N(1) 

	

** 3 	4.123784718385430683 0.411290/N(1) 

	

-U ** 2 	4.127904839961456277 0.412012/N(1) 

	

-U ** 1 	4.132032197120459739 0.412736/N(1) 

	

** 0 	4.136166803904275415 0.413461/N(1) 

	

-U ** -1 	4.140308674160105790 0.414187/N(1) 
-U ' -2 4.144457821072506695 0.414915/N(1) 
-U ** -3 4.148614257627411568 0.415644/N(1) 
-U ** -4 4.152777996796256821 0.416374/N(1) 
-U ** -5 4.156949051549415599 0.417105/N(1) 
-U -6 4.161127434862575070 0.417838/N(1) 

** -7 4.165313159720433280 0.418572/N(1) 
** -8 4.169506239119091949 0.419308/N(1) 

-U ** -9 4.173706686067954631 0.420045/N(1) 
** -10 4.177914513591225160 0.420783/N(1) 

!COMMENTS:DIVIDE THE FOLLOWING 4 COLUMNS BY 
N(2),N(3),N(4) AND N(5) RESPECTIVELY AND THEN 
THEY REPRESENT RESPECTIVELY 2ND,3RD,4TH AND 5TH 
FINITE DEFFERENCES WITH THE STEP-LENGTH 
EQUAL TO -H. 

0.7 13745 
0.715142 0.139698 
0.716541 0.139894 0.019643 
0.717942 0.140076 0.018173 
0.719345 0.140239 0.016290 -0.001884 
0.720748 0.140378 0.013892 -0.002398 
0.722153 0.140480 0.010166 -0.003726 
0.723558 0.140517 0.003721 -0.006445 
0.724962 0.140418 -0.009857 -0.013579 
0.726347 0.138472 -0.194632 -0.184775 
0.727666 0.131846 -0.662647 -0.468015 
0.728964 0.129859 -0.198622 0.464024 
0.730261 0.129714 -0.014497 0.184125 
0.731558 0.129704 -0.001063 0.013434 
0.732856 0.129757 0.005314 0.006377 
0.734154 0.129847 0.009011 0.003697 
0.735454 0.129961 0.011404 0.002393 
0.736755 0.130094 0.013302 0.001898 
0.738057 0.130242 0.014800 0.001498 



0.111985 
0.112122 
0.112241 
0.112333 
0.112379 
0.112176 
0.110903 
0.108123 
0.105330 
0.104027 
0.103787 
0.103794 
0.103848 
0.103927 
0.104025 

0.025581 
0.021107 
0.0 13788 

-0.015718 
-0.147527 
-0.405271 
-0.557325 
-0.409600 
-0-154306 
-0.023272 
0.006058 
0.0 133 17 
0.0 17779 

-0.011793 
-0.03682E 
-0.16131E 
-0.389553 
-0.40979 
-0.004330 
0.403019. 
0.386328 
0.160364 
0.036590 
0.011721 

TABLE 17 

N(8)= 1000000 
!COMMENTS:IF WE DIVIDE THE FOLLOWING FIVE 
COLUMNS RESPECTIVELY BY N(1),N(6),N(8),N(7) 
AND N(7),THEN THEY GIVE 1ST,2ND,3RD.4TH 
AND 5TH FINITE DIFFERENCES WITH THE STEP-
LENGTH EQUAL TO -2H. 

0.814687 
0.816116 
0.817547 0.286057 
0.818982 0.286617 
0.820419 0.287177 
0.82 1859 0.287738 
0.823302 0.288299 
0.824748 0.288861 
0.826196 0.289423 
0.827648 0.289983 
0.829102 0.290532 
0.830558 0.291064 
0.832018 0.291586 
0.833479 0.292105 
0.834944 0.292623 
0.836411 0.293142 
0.837880 0.293662 
0.839353 0.294182 
0.840827 0.294702 
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for further higher order finite differences, they show the same sort 

of behaviour as they do for 4th and 5th order. So, we can draw the 

same conclusion that the curve M = M(B) is C 3  near B =.-1. 

Remark 1.2.4 	This study suggests the following conjecture. 

"The behaviour of the curve M ,,  = M(B) is universal, that means, 

if T: 	 is a diffeomorphism having two parameters P and R, 

like N and B in the Henon map, such that for each value of R in 

a nicely chosen interval in the real line, period doubling bifurca-

tions occur with the parameter P, then the curve 
pc,, = P,,, (R) is 

C, c = 1092  , near that value of R which corresponds to B = 1 

or B = -1 in the Henon map and C for the other values of R in 

the chosen interval." 

To have a clearer picture of this conjecture, we can explain it 

with the map F defined in Chapter 2. As mentioned there, this map 

has constant Jacobian e -27rR and therefore, here R = 0 corres-

ponds to B = 1 in the Henon map. If we consider an interval 

[O,L], L being a finite positive real number, then the curve 

P = P(R) in this interval will possess the similar virtue as 

the curve M = M O(B) in the interval (0,1] has.OD  

1.3 Section Three: The Domain Of Attraction Of A Periodic Orbit, 

Homoclinic Points 

The principal purpose in this section is to set forth some ideas 

behind the concept of the domain of attraction of a stable periodic 

orbit. Our computational tests suggest that the stable manifold at 
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• particular unstable periodic point forms a part of the boundary of 

• region in which the domain of attraction of a stable periodic orbit 

lies. It is also hinted that there exist a transversal homoc]jnjc 

point and a Horseshoe for higher values of B, say B = 0.8. 

To present this theory.in  a comprehensive manner, we consider 

the parameter values as B = 0.8 and N = 0.9. At this value of B, 

the second and the third bifurcation values of N are 0.85 and 

0.964285570069 respectively. So, for these B and M there exists 

a stable trajectory of period 4 comprising of the following periodic 

points. 

P (-1.149409918717, 1.080458237198) 

Q (-0.634709659927, 0.713143513662) 

R (0.891429392077, -0.919527934974) 

and S (1.350572796497, -0.507767727942). 

Again for these B and N, there are two unstable periodic points 

of period 2 as 

T (-0925264339232, 0.917989249163) 

and U (1.147486561454, -0.740211471386) 

Furthermore, another two unstable fixed points given by the equations 

(B-i) ± v'(l_B)2 + 
X = ____________ 

4M 
y=Bx, are 

2N 

V (0.948821334908, 0.759057067926) 

and W (-1.171043557130, -0.936834845704). 

The topological structure of the domains of attraction says that the 

domains of attraction of the periodic points P, Q, R, S are res-

pectively separated by the stable manifolds at the unstable points 

T, V and U (see Fig. 6). 
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Fig.6:Topological structure of the 
domains of attraction. 
The symbols 0-for stable periodic 
points and X-for unstable periodic 
points 

But in reality, these manifolds show very wild behaviour indicating 

that the domains of attraction have complicated boundaries. Now, 

to exhibit stable and unstable manifolds at these unstable periodic 

points some numerical techniques are employed as described below: 

First of all, the Stable Manifold Theorem (Th.1.4.2, p.  18 

in [331) states that if there is a hyperbolic point of period k, 

such that the eigenvalues of the Jacobian of the transf or-

mation H 	(k is the appropriate period), at this point are ) 

and p with IXI < 1 and M > 1, then there exist stable and 

unstable manifolds W,  W" at A(x0) such that they are tangent to 
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the eigenspaces E 

to the eigenvalues 

vectors U and V 

Then any point x 

xctU+8V, with 

, E generated by the eigenvectors corresponding 

A and i respectively. Let us consider elgen-

at the respective eigenvalues A and p 

(x,y) in the plane can be represented by 

a, 6 some scalars. 
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Then, 	Hk(X +x) = H  (x + aU + V) 	(x + AaU + pV) 
- - 	 - - 

Hence, in coordinate wise, we have 

H1 (x+x, y0+y) " ( xe, + Ax, y + py) 

For convenience, considering (x 0 ,y0) as the origin, this gives 

Hk(x,y) 	(Xx, py) 	and so 

H (x,y) " (A x, p y) 

Besides, d(1f1 ,W) Au p 1  d(x, Ws ) 	 (I) 

(d denotes the distance from a point to the manifold). 

Let x be a point on the eigenspace EX and in a suitable neighbour-

hood of the origin (origin being considered as .a hyperbolic periodic 

point). In this case d(x, W 5 ) is small initially and so after a 

certain suitable number of iterations the right-hand side of (I) 

becomes very small. As a result, the point x is mapped by H_k  to 

a point which lies on a curve close to the stable manifold. 

In the same manner, we can deduce that 

d(Hkx, Wi') 'v Xd(x, W")  

From (II),we can conclude similarly that if x is a point in a 



suitable neighbourhood of the origin and lies on the eigenspace E, 

then the point x is brought under some suitable number of itera-

tions of the map H   to a curve close to the unstable manifold. 

Bearing this idea in mind, we proceed to obtain our desired manifold 

pictures. Again it is noted that in order to obtain these manifolds 

at apoint, we mention a certain number of iterations which is the 

best possible we can give in a specific situation considered. 

Further ) the calculations are executed in double precision. The 

stable manifolds are shown in Fig. 8, whereas the unstable mani-

folds are shown in Fig. 10. 

1.3.1 	Stable and Unstable Manifolds: 

We now wish to illustrate our procedures of how to obtain the 

stable and the unstable manifolds at the unstable periodic points 

T, U, V and W. 

At the point T 

Consider first the unstable point T which is a periodic point 

of period 2. The Computer program used to obtain the stable mani-

fold at T is furnished in Program 2. The eigenvalues of the 

Jacobian of H 2  at this point are A = -0.465687332337 and 

= -1.374312667662. So by the stable manifold theorem, there 

exist stable and unstable manifolds at T. Since the eigenspaces 

EX, E generated by the eigenvectors corresponding to the elgen-

values A and p are 1-dimensional, they are straight lines and 

parallel to-the respective equations: 
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y = -1.052693358347x 	 (III) 

and 	y = --0.61278245227lx 	. 	 (IV) 

Consider now the line that passes through the point T and parallel 

to (III). Next, consider a closed interval on this line, centred 

at T, having the length 0.01 units, and then pick up 1000 equally 

spaced points from this interval. 

. vo 

I 

+ 	 0, 00 t5 

Fig-7:A rough picture of how 
our method works for the stable 
manifold at T.A real picture 
is shown in fig 8. 

It is found that the inverse map 112 at each of these 1000 points 

can be iterated up to 10 times without overflowing to a large value, 

although at some points more iterations are possible. Therefore, 

the points obtained by iterating ten times the inverse map H 2  

at these points are plotted to obtain the stable manifold at T. 

This graph is marked as S 1  in Fig. 8. We draw only a part of the 

stable manifold by retaining the absolute values of x and y less 

than or equal to 8 so that we can draw the other manifolds in the 



same plane with the same scales. The same restrictions on x and 

y values are imposed for all manifold graphs shown in Figs-8 and 

10 except for the stable manifold at W, where we retain their 

absolute values less than or equal to 15, so as to get a better 

picture of that manifold. 

Next, consider the line that also passes through T, but 

parallel to (IV). To obtain the unstable manifold we use the same 

Computer program as shown in Program 2 with the only exceptions that 

the cycle K is executed with the direct Henon map and that the 

cycle J goes up to 20 iterations. Just like the stable manifold, 

we consider a segment of the line E, centred at T, containing 

1000 equally spaced points and having the total length 0.01 units. 

It is observed in this case that even the large number of iterations 

of the map H2  does not give real overflow and that the points 

obtained by these iterations approach normally towards the periodic 

points P and Q. The number of iterations of the map H2  we give 

is 20 and the unstable manifold is marked by U 1  in Fig. 10. 

We would like to point out that similar Computer programs with 

slight appropriate changes are used for the manifolds at U, V and W. 

At the point U 

Since U is the image of T under the map H, the images 

of the stable manifold S 1  and the unstable manifold U 1  under H 

give respectively the stable manifold S 2  and the unstable manifold 

U2  at the point U. 

At the point V 

This point exists as an unstable fixed point from the direct 
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Henon map H. The eigenvalues of the Jacobian of H at this point are 

A = 0.382673979702 and P = -2.090552382536. The eigenspaces EA and 

are given by the equations 

y = 2.090552382536x +1  and y = -0.382673979702x + m1  

respectively, where k and m are some constants. 

Now, in order to obtain the stable manifold at V, on the line 

EX we consider a segment of length 0.003 units, containing 300 points, 

towards the right of point V, and another segment of length 0.003 units, 

containing 1200 points towards the left of V. These two segments are 

continuous in the sense that they form an interval on the line EX 

of total length 0.006 units. Iterating the inverse map H 1  8 times 

at the points lying on the right-side segment of length 0.003 and 

12 times at the points lying on the left-side segment of length 

0.003, and then plotting the resulting points, we achieve the stable 

manifold at V. It is marked by S 3  in Fig. 8. 

In the case of the unstable manifold at V, we consider a seg-

ment of the line E 11 , centred at V, having length 0.006, and then 

pick up 600 equally spaced points from this segment. We give 12 

iterations of the map H at these points. The points obtained under 

this scheme are plotted in order to obtain the unstable manifold at 

V,(see mark U3  in Fig. 10). 

At the point W 

This point also exists as an unstable fixed point from the 

direct Henon map. The eigenvalues of the Jacobian of H at this 

point are A = -0.328373295916 and p = 2.436251698750. 	The 

eigenspaces EX  and E' are generated by the lines 



y = -2.436251698730 
X + 2 and y = 0.328373295916 x + 

respectively, where k
2  and m2  are some constants. This time we 

consider a segment of the line E centred at W, having the length 

0.006 units and then pick up 600 equally spaced points. Iterating 

this segment nine times by the inverse map H 1 , the stable mani-

fold at W is obtained. It is marked by S 4  in Fig. 8. In this 

Fig. 8, the dotted marks Z and ZZ are put in order to indicate 

that this manifold does not take turns at these points; in other 

words the curve goes far beyond these points and then takes 

turns ) (see also Fig. 9). 

To achieve the unstable manifold at W, we consider on the 

line Ell  a segment of length 0.001, containing 100 points, towards 

the right of the point W and another segment of length 0.003 units, 

containing 300 points towards the left of W . All these points are 

equally spaced and these two segments are continuous in the sense 

that they form an interval on the line EA  of total length 0.004 

units. Iterating the direct map H twelve times at the points 

lying on the right-side segment of length 0.001 units and eight 

times at the points lying on the left-side segment of length 0.003 

units, and then plotting the resulting points, we obtain the un-

stable manifold at W. (See mark U 4  in Fig. 10). 

Some important remarks are now in order. 

Remark 1.3.2 
	

The stable manifold at the unstable point W is 

quite interesting. For, it is apparent from its graph (Fig. 9) 

that all the stable and the unstable points (other than W which 

is on the curve) are in a region whose boundary is mostly covered 

by this manifold. Further, it is also evident from Fig. 8 that 

Ft 
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the stable manifolds at T, U and V , (which separate the domains 

of attraction of the periodic points P, Q, R and S), lie inside 

this region. So it is important to note that this stable manifold 

forms mostly the boundary of a region which contains the domain of 

attraction of the stable periodic orbit containing the periodic 

points P, Q, R and S. However, the violent winding of this 

manifold implies that the domain of attraction has a complicated 

boundary. 

Remark 1.3.3 (See Fig. 11). 	The unstable manifold U3  at V 

intersects the stable manifold S 3  at H other than V. Moreover, 

it is clear from Fig. 11 that this intersection is transversal. 

This shows the existence of a transversal homoclinic point H for 

the parameter values B = 0.8 and N = 0.9 in the Henon map. Similarly, 

we can show by considering a suitable interval on the appropriate eigen-

space that the unstable manifold at W intersects transversally the 

stable manifold S 4  at a point other than W, indicating also the 

existence of transversal homoclinic points. 

Remark 1.3.4 
	

Remark 1.3.3 says that there exists a transversal 

homoclinic point for stable and unstable manifolds at V and W. 

Therefore, by the Smale-Birkhoff Homoclinic Theorem, (see Th. 5.3.5, 

p. 252 in [33])  the Henon map has a Horseshoe for the parameter 

values B = 0.8 and M = 0.9. This extends the results of Devaney and 

Nitecki, who have proved in [19] that the Henon map has a Horseshoe 

for N > (5 + 20)(1 + 1B1 2 )/ 4  and B 0 0. 
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Remark 1.3.5 
	

We have carried out similar analysis for B = 0.35 

and N = 0.9, as described in this section for B = 0.8 and N = 0.9. 

For B = 0.35 and M = 0.9, there is a stable periodic orbit of 

period 4, consisting of the following stable periodic points. 

A (-0.625970810088, 	0.454391626438) 

B (-0.311530007613, 	0.385607640902) 

C (1.101736116864, 	-0.219089783531) 

and 

D (1.298261789824, 	-0.109035502664) 

Again, there is an unstable periodic trajectory of period two con-

taining two unstable points, E (-0.487362463850, 0.423354640125) 

and F (1.209584686072, -0.170576862347). In addition, there are 

two unstable periodic points having period 1 as follows 

G (0.753120617785, 	0.263592216225) 

and 

H (-1.475342840007, -0.516369994003) 

The stable manifolds at E, F, C and H, and the unstable 

manifold at H are shown in Fig. 12. Here also it is found that 

the unstable manifold at H intersects transversally the stable 

manifold at another point I. Though the points H and I are 

seen to coincide in Fig. 12, they can not coincide on theoretical 

grounds and that they are distinct points can be seen by choosing 

some suitable scales. By the same sort of arguments as made in 

Remark 1.3.4, we can conclude that there is a Horseshoe for the 

Henon map at the parameter values B = 0.35 and N = 0.9. 

Another important finding from Fig. 13 is that all the stable 

and the unstable periodic points (except H) are contained in a 



region bounded mostly by the stable manifold at H. Also it can 

be shown that the stable manifolds at E, F and G lie in this 

region. So we can conclude that the stable manifold at H forms 

mostly the boundary of a region in which the domain of attraction 

of the stable periodic orbit containing the points A, B, C and D 

lies. 

On balance, we wish to conjecture that for all values of B 

and N for which there is a stable periodic orbit of period k 

(k = 2N, N = 1,2,...), the stable manifold at an unstable fixed 

point, (which is given by the direct Henon map at.the particular 

parameter values of B and M),forms mostly the boundary of a 

region in which the domain of attraction of a stable periodic 

orbit lies. 

EM 



PROGRAM 2 

!COMMENTS:THE FOLLOWING PROGRAM IS %C 
USED TO FIND OUT SOME POINTS ON THE %C 
STABLE MANIFOLD AT THE UNSTABLE %C 
POINT T=(AA,AAA),WHERE AA=-0.925264339232 %C 
AND AAA=0.917989249163. %C 
C IS THE TANGENT OF THE SLOPE OF %C 
THE EIGEN-SPACE. 

%BEG IN 
%INTEGER I,K,J,N.: 
%LONGREAL X,R,XX,YY, ZZ,Y,M,B,A,C,AA,AAA 
SELECTOUTPUT( 1) 
READ(N) ;READ(A) 

• 8 ; M= . 9 
C -1.052693358347;AA-.925264339232;AAA=.917989249163 
!COMMENTS:THE IMMEDIATELY FOLLOWING CYCLE %C 
STARTS TO GIVE POINTS ON THE EIGEN- %C 
SPACE. HERE N500 AND A0.005 

%CYCLE 10,1,N 
RA* I/N 
XAA+R* ( 1/SQRT( 1+C*C)) 
YAAA+R*(C/SQRT(1+C*C)) 
XXX; YYY 
!COMMENTS:THE IMMEDIATELY FOLLOWING %C 
CYCLE STARTS TO GIVE POINTS ON THE %C 
STABLE MANIFOLD. 

%CYCLE J=1,1,10 
%CYCLE K=1,1,2 
ZZ(B**(_1))*YY 
YY_1+XX+M* (B**  (-2) ) *yy*YY 
xx = z z 
%IF XX*XX+YY*YY>10000 %THEN->NN 
%REPEAT 
%REPEAT 
PRINT(XX,3, 12) ;PRINT'(YY, 3,12) ;NEWLINE 
NN: %REPEAT 
%ENDOFPROGRAM 
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Fig.9:Stable manifold at W. 
All stable and unstable points 
are surrounded by this manifold. 
Scales:X-axis, lcmO.5 

Y-axis, lcml. 4 
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CHAPTER TWO 

PERIOD DOUBLING BIFURCATIONS 

OF THE DUFFING EQUATION 

2.0 	Introduction 

Feigenbaum's fascinating sequence of period doubling bifur-

cations can also be observed in some ordinary differential equations, 

such as Duff ing's and Van-der Pol's equations. Although various 

bifurcations of the forced Duff ing's and Van-der Pol's equations 

have been studied by many authors (see [7], [39], [40] and [41]), 

so far as we are concerned a systematic theory of period doubling 

bifurcations in these equations is yet to be made. So the bifur-

cations of these equations are worth examining in great detail. 

In this short chapter, we describe our attempts of obtaining 

period doubling bifurcation values of the Duffing equation by 

using partly some of the numerical apparatus developed in Chapter 

One and partly some other numerical tools introduced here. 

Kubiêek and Holodnf.ok in [43] have provided some algorithms for the 

determination of such bifurcation points in ordinary differential 

equations. However our numerical methods are considerably dif-

ferent from those. 

2.1 Runge-Kutta Fourth Order Method 

One of the most generally used methods to solve a system of 

first order differential equations is the Runge-Kutta fourth order 



method. We wish to state this method for a system in the plane 

which is useful for our purpose. 

Suppose we are given the following system with an initial 

value (x0) y0) at time to . 

x 	f(x,y,t) 

= 	g(x,y,t) 

Then this method gives the following recursive formulae with a 

step-length h. 

Xn+l = x + - (K + 2K + 2K + K ' n 6 lx 	2x 	3x 	4x 

= y + - (K + 2K + 2K + K n 6 ly 	2y 	3y 	4y 

where t 	= t 
0 
+nh, 

K lx = hf(x n ' n' t), 

K ly = hg(x n "n' tn) 

Khf(x + K , y + K 	t  + l 2x 	n 	lx n 	ly 

K 2y = hg(x n  + 22K1,y n  + K1y  t + h). 

K 	= hf(x +K2 , y + K , t + h), 3x 	n n 

1(3 y = hg(x n  + 2x '  ' n + 	+ tn 	h),2y , 

K 4x = hf(x n 	3x + K , y + K3, t   + h), 

K4 y = hg(x n 
	3x' 
+K 	y n 
	3y 	n +K , t +h). 

IiJ 



For detailed theory of this method, refer to [ 44 ]. 

Again, this Runge-Kutta method involves mainly truncation 

errors. Although there are some bounds for this error (see page 

125-26, in [441), it is difficult to derive an explicit formula 

for this error and so in practice one keeps track of the errors 

by repeating the computation with h,2 instead of h and corn-

paring the results. 

2.2 The Map To Be Considered With The Duffing Equation 

We wish to outline period doubling bifurcations with the 

following case of the Duffing equation having 2n-periodic forcing 

term 

x+Rx-x-f-x3 	= 	P Cos  t, 	PO. 	(I) 

Our first intention is to show that for all values of R 

and t (time variable) in the real line, equation (I) has a 

finite solution. 

First, let t 	0. 

Multiplying (I) by i, we obtain 

xx+R.x2 -xx+x3 x 	Px Cos  t 

Then, 	d (
1 x2  - x2  + x 1 ) = - R 	+ P x cos t 
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- R x2  + 	(1 + II 2 ) 

	

R' x 2  + 	R' can be chosen to 

be positive. 

This gives, 

t 
1~2 C + J (R' x2  + )dt, 	where c is a constant. 

0 

Let 	g(t) =  2*2 

and 	f(t) = c + J 	f(t) + )dt 

Then, 	g(t) 	c + J (2R' g(t) + )dt. 

Set, 	h(t) = g(t) - f(t). 

(t 
So 	h(t) 	2R' J h(t)dt 	and 	h(0) 	0. 

0 

This implies h(t) < 0, for all t 	0. 

Consequently, 	x2 	f(t), 	 (II) 

P where f(t) = 
Ae 2R't 

- 

P 	
with 	A - 	 C. 

The inequality (II) implies that x(t) and x(t) are. finite for 

all t 	0. 

Newt, let 	t < 0 	and 	t = -S. 

dx 	 d2x Setting 	x' = 	and 	x" = 	, we get from (I) 
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- Rx' - x + x 3 	= 	P cos s . 	 (III) 

The equation (III) is of the form (I), and so with the same sort 

of arguments given above we can show that x(s) and x'(s) remain 

finite for s > 0, that is to say, x(t) and x(t) are finite 

for t<0. 

Now, take an initial point (x(0), y(o)) and define a map F 

by 

F(x(0), y(0)) 	= 	(x(27), y(27r)), 

where x(t) is the solution of (I) and y(t) = x(t). 

Then, by the 27r-periodicity of the above equation, the following hold. 

F2 (x(0), y(0)) = 	(x(47), y(4rr)) 

F3(x(0), y(o)) = 	(x(671), y(67)) 

Fn(X(0), Y(0)) = 	(x(2nir), y(2n7r)) 

where F1' is the n-times functional composition of the map F. 

Keeping R fixed we see that F depends on P, i.e. F = F(P). 

Again by the Floquet theory (see Ch. 8, in [ 42 ]), this map has the 

constant Jacobian e -2irR . If a comparison between the Duffing 

equation and the Henon map is made, it is noticed that R = 0 

and R = 	correspond to B = 1 and B = 0 respectively in the 



Henon map. Since period doubling bifurcations occur in the Henon 

map for each B in [0,1], it seems that the map F has these 

bifurcations for every R in [0, 00). Byatt-Smith in his paper 

[7] has fixed R = 0.25 and shown some specific values of P 

where this bifurcation occurs. Furthermore, like the Henon map 

near B = 1, the case near R = 0 becomes more complicated to 

handle than that with the larger value of R. 

2.3 The Jacobian Matrix For The Transformation F 

Let the solution x(t) of (I) be perturbed to x(t) + a(t) 

with a(t) small. Putting this perturbed value in (I), we have 

+a+R(x+a) - (x+a) + (x+a) 3  = Pcos t. 

This gives 

a + Ra - a + 3x2a = 0 	 (IV) 

(retaining only first order terms in a). 

Now (IV) is a linear differential equation which can be written as 

a system of first order equations by means of 

a = b 
(V) 

b = -Rb+a-3x2a 

If (a(0), b(0)) is an initial value of (a(t), b(t)) and if 

we define a map D by 
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then there exists a 2 x  2 matrix, 	J = 	Q(l) 	Q(3) 

Q(2) 	Q(4) 

such that 

a(2,r) 	= 	D a(0) 	= 	Q(l) 	Q(3)a(0) 
I 

b(2,r) 	 b(0) 	 Q(2) 	Q(4) 	b(0) 

Now by the Floquet theory (see also p.  25 

is the Jacobian of the transformation F 

(x(0), y(0)). Besides, the initial values 

result a(27i) = Q(l), b(27r) = Q(2), and 

a(0) = 0, b(0) = 1 give a(2ir) = Q(3), 

these initial values, the solutions of th 

in [33]), the matrix J 

at the point 

a(0) = 1, b(0) = 0 

the initial values 

b(2w) = Q(4). So with 

system (V) yield the 

values of the Jacobian elements, Q(i), i = 1,2,3,4. 

2.4 The Computational Scheme To Evaluate Bifurcation Values 

We now wish to outline the computational scheme which gives the 

bifurcation values for the map F. In our study we put R = 0.25 so 

that F is a function of P alone. We want to recall the Jacobian 

theory which says that the sum of the eigenvalues of the Jacobian of 

the map F is equal to its trace and the product 

is A bifurcation value occurs when one 

equals -1 and so the trace Q(l) + Q(4) = - 

put I = Q(l) + Q(4) + 1 + e_ 2 9  then I turn 

of the eigenvalues 

of the eigenvalues 

-2,rR 
l - e 	. If we 

s out to be a function 

of P. 	In order to obtain the bifurcation values of P, we need to 



find the zeroes of I and this can be achieved by the Secant method. 

To give an initial value of P, we do not use the relation 
P 	-P 

n+2 
P n+l + nn+1

6 	
n 

1. because it is not easy here to find a 

suitable 6-value. 	Consequently, slightly complicated tricks are 

employed for our purpose. 

Step One: We first use the Computer Program 3. Initially we put 

some arbitrary initial values of P. x and y, keeping an eye 

that the Runge-Kutta method gives the convergence of x and y. 

Then by the Trial and Error method, we keep increasing the value 

of P in such a way that the value of I approaches to zero. 

For each value of P, the Runge-Kutta method yields a periodic 

point, say, (x1 ,y1 ), and so this periodic point is used as 

initial values of x and y for the next chosen higher value 

of P. At the same time, to check whether the program runs pro- 

perly we notice the value, of the Jacobian determinant which should 

approximately equal e 
-27rR 

 and which is given by Z(9) in the 

program. The process is continued and gives a rough estimate of 

the first bifurcation value as 2.65485(evaluated up to five decimal 

places), with a periodic point (0.99799968, 2.36515406). Since 

our intention is to obtain this value up to 12 decimal places, we 

could have continued this method to do so, but the method is too 

time-consuming and tedious. 	So, estimating approximately the 

bifurcation value up to 5 decimal places by this method, we than 

apply the Secant method to obtain up to 12 decimal places. Of 

course the result(s) may not be correct up to 12 decimal places 

because of truncation error, (see 2.7). It is also noted that 

the Secant method essentially needs two suitable initial values 



of P and this goal is accomplished by the Trial and Error method. 

Step Two: 	Secondly, we use the computer Program 4. Here 

P = 2.65485 and PP = 2.654855 are taken as two initial values 

of P, and x1  = 0.99799968 and y1  = 2.36515406 are taken as 

initial values of x and y. In this program, N is the number 

of divisions of the period 2ir and equals 250. 	So the step- 

length is H = - 	. To achieve a periodic point, the first 

averaging method,(described in Chapter One).,is used, and the same 

sort of convergence condition, viz., (X - AA) 2  + (Y - A) 2  < 10 24  

is imposed. The results given by the Secant method for the period 

2ir are listed in Tables 18 and 19. Table 18 shows that the first 

bifurcation value is 2.654850042763 with a periodic point 

A1  = (0.998012083515; 2.365155496697). 

Step Three: 	Next, the period 2rr is increased to 471, but 

ir
-- 	i the step-length H = - 	

4
s kept fixed by putting N = 500. In 

order to apply the Trial and Error method for evaluating some 

approximate second bifurcation value, a slightly larger value 

of the first bifurcation value is considered as an initial value 

of P and A1  is taken as an initial point for (x,y). This 

process gives 2.76459 as an approximate second bifurcation value 

with a periodic point (x 2  = 1.29150051, y2  = 2.49939170). Then 

in Program 4, necessary alterations of the values of N and 11 

are made, two initial values 2.76459 and 2.764591 are put 

for P and (x2 ,y2) is used as an initial value for (x,y). 

Ultimately this procedure yields 2.764589999694 as the second 

bifurcation value with a periodic point 
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A2  = (1.291489423615, 2.499385725247). 

Step Four: We next repeat the Step Three for the periods 87r, 

16ir, 32ir and 64w with the necessary alterations of the values 

of N and H, and of initial values of P, PP, x and y. 

For all periods we keep the step-length H fixed by choosing 

N rightly in order to have higher accuracy in values. Then the 

Trial and Error method computes the following approximate values: 

Periods 	P values 	 x values 	y values 

	

871 	P = 2.79344 	1.41105997 	2.51319511 

PP = 2.793441 

	

16w 	P = 2.79948 	1.39558224 	2.51845406 

PP = 2.799481 

	

32w 	P = 2.80099 	1.40583830 	2.51809560 

PP = 2.800991 

	

64w 	P = 2.801208 	1.40271141 	2.51859976 

PP = 2.8012081 

Having considered the above-mentioned values as initial 

values with an appropriate period, the Secant method determines 

3rd, 4th, 5th and 6th bifurcation values respectively, as given 

below: 
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Bifurcation values 	 Periodic Points 

2.793440001689 

2.799480005153 

2.800989993105 

2.801207999882 

x value 

1.411059957611 

1.395582258661 

1.405838449499 

y value 

2.513195117261 

2.518454044130 

2.518095605683 

1.402658349000 	2.518604862011 

Remark 2.5: Following the same computational mechanism, we can 

evaluate further higher bifurcation values. However to keep H 

fixed, N should be made considerably larger with the higher 

periods. As a result the Computer program takes a very long time 

to produce the required results. 

Remark 2.6: An approximate bifurcation value evaluated up to 5 

or 6 decimal places by the Trial and Error method may not be 

suitable values in order to apply the Secant method to yield 

further higher bifurcation values. In other words, we may need 

to obtain more than six decimal places in a bifurcation value by 

applying initially the Trial and Error method. 

2.7 Error Analysis. 	The results in Table 18 were given by 

Program 4 for the period 2'i and executed in longreal precision. 

Replacing the convergence condition for x and y by 
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(x - AA) 2  + (v - 	< 10 30 . 	we find that Pwrpnr Fm- i-ha 

number of iterations, the bifurcation value and the values of the 

periodic point remain unchanged. This implies that the effect of 

rounding errors is not noticeable. However truncation error is 

very significant here. The results in Table 19 were calculated 

with the half of the step-length used for Table 18. It is found 

that the truncation error involved with the first bifurcation 

value is approximately equal to 91 x 10_11. This error can be 

similarly estimated for other bifurcation values. This suggests 

that our results are correct up to 8 decimal places. 

Problem 2.8: 	One can carry out analogous study on Duff ing's 

and Van der Poi's equations, as we have made on the Henon map. 



PP(YQAM - 

%BEGIN 
%INTEGER K,N,L,S,SS,T 
%LONGREAL PPP,R,AA,AAA, 11,1 ,PP,H,B,C,D,E,F,G,J,X,Y,P 
%LONGREALARRAY Z(1:9) ,A(1:9) ,Q(1:4) 
READ ( N) READ ( K) READ(P) READ (X) READ ( Y) 
R0 .25;Q(1)1;Q(2)0;Q(3)0 ;Q(4)1 
H(2*PI*K)/N 
!COMMENTS:IN THE FOLLOWING TWO CYCLES %C 
S & L, THE RtJNGE-KUTTA FOURTH ORDER METHOD %C 
IS APPLIED TO ACHIEVE THE CONVERGENCE OF X %C 
AND Y.SINCE WE ARE CONCERNED TO YIELD BIFUR- %C 
CATION POINTS,FIRST AVERAGING METHOD DESCRI- %C 
BED IN CHAPTER ONE IS USED FOR THIS PURPOSE. 

%CYCLE S=1,1,100 
AAX;AAAY 
%CYCLE L1,1..N 
A(9)H*Y;BH*(_R*Y+X_(X**3)+P*COS(((S_1)*N+(L_1))*H)) 
C=H* ( Y+B/2) 
DH*(_R*(Y+B/2)+(X+A(9)/2)_((X+A(9)/2)**3) %C 
+p*COS(( (S_1)*N+(L_1) )*H+H/2)) 
EH*(Y+D/2) 
FH*(_R*(Y+D/2)+(X+C/2)_((X+C/2)**3) %C 
+p*COS(((5_1)*N+(L_1))*H+H/2)) 
GH*(Y+F) 
JH*(_R*(Y+F)+(X+E)_((X+E)**3)+P*COS(((S_1)*N+(L_1)) %C 

X=X+(A(9)+2*C+2*E+G)/6;YY+(B+2*D+2*F+J)/6 
%REPEAT 
%EXITIF (((X_AA)**2)+((Y_AAA)**2))<10**(_12) 
X(X+AA)/2;Y(Y+AAA)/2 
%REPEAT 
!COMMENTS:THE IMMEDIATELY FOLLOWING %C 
CYCLE IS EMPLOYED TO EVALUATE THE FUCTION %C 
I FOR A PARTICULAR VALUE OF P. 

%CYCLE SS=1,1,N 
A(9)H*Y;BH*(_R*Y+X_(X**3)+P*COS((SS1)*H)) 
CH*(Y+B/2) 
DH*(_R*(Y+B/2)+(X+A(9)/2)_((X+A(9)/2)**3) %C 
4P*COS(((SS_1)*H+H/2))) 
EH*(Y+D/2) 
FH*(_R*(Y+D/2)+(X+C/2)_((X+C/2)**3) %C 
+p*COS(((SS_1)*Ij+H/2))) 
G=H*(Y+F) 
JH*(_R*(Y+F)+(X+E)_((X+E)**3)+P*COS( ((SS-1) %C 
*H+H))) 
A(1)H*Q(2);A(2)H*(_R*Q(2)+Q(1)_3*X*X*Q(1)) 
A(3)H*(Q(2)+A(2)/2) 
A(4)H*(_R*(Q(2)+A(2)/2)+(Q(1)+A(1)/2)_3*X*X*(Q(1)+A(1)/2)) 
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A(5)H*(Q(2 )+A( 4)/2) 
A(6)H*(_R*(Q(2 )+A(4)/2)+(Q(1)+A(3)/2)_3*X*X*(Q(1)+A(3)/2)) 
A(7)H*(Q(2)+A(6)) 
A(8)H*(_R*(Q(2)+A(6))+(Q(1)+A(5))_3*X*X*(Q(1)+A(5))) 
Z(1)H*Q(4);Z(2)H*(_R*Q(4)+Q(3)_3*X*X*Q(3)) 
Z(3)H*(Q(4)+Z(2)/2) 
Z(4)H*(_R*(Q(4)+Z(9j/2)+(Q(3)+Z(1)/2) %C 
_3*X*X*(Q(3)+Z(1)/2)) 
Z(5)H*(Q(4)+Z(4)/2) 
Z(6)=H*(_R*(Q(4)+Z(4)/2)+(Q(3)+Z(3)/2)_3*X*X*(Q(3)+Z(3)/2)) 
Z(7)H*(Q(4)+Z(6)) 
Z(8)H*(_R*(Q(4)+Z(6))+(Q(3)+Z(5))_3*X*X*(Q(3)+Z(5))) 
Q(1)Q(1)+(A(1)+2*A(3)+2*A(5)+A(7))/6 
0(2)Q(2)+(A(2)+2*A(4)+2*A(6)+A(8) )/6 
Q(3)Q(3)+(Z(1)+2*Z(3)+2*Z(5)+Z(7))/6 
Q(4)=Q(4)+(Z(2)+2*Z(4)+2*Z(6)+Z(8))/6 
XX+(A(9)+2*C+2*E+G)/6;YY+(B+2*D+2*F+J)/6 
%REPEAT 
I=Q(1)+Q(4)+1+EXP(_2*PI* 25*K) 
Z(9)Q(1)*Q(4)_Q(2)*Q(3) 
PRINT(I,3,6);PRINT(X,3,8);PRINT(Y,3,8);PRINT(Z(9),3,8) 
NEWLINE 
%ENDOFPROGRAM 
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PROGRAM 4 

%BEGIN 
%INTEGER K,N S,L,S,SS,T 
%LONGREAL PPP,R,AA,AAA,II,I ,PP,H,B,C,D,E,F,G, %C 
x,Y,P,J 
%LONGREALARRAY Z(1:9) ,A(1:9) ,Q(l:4) 
READ(N) ;READ(K) ;READ(P) ;READ(PP) ;READ(X) ;READ(Y) 
R0.25;Q(1)1;Q(2)=O;Q(3)=O;Q(4)=]. 
H(2*PI*K)/N 
COMMENTS : THE PART OF THE PROGRAM 3 %C 
STARTING FROM THE FIRST COMMENT TO THE %C 
EQUATION WITH I IS PUT HERE. THIS EVALUATES I %C 
WITH P. 

PRINT(S,3,1);PRINT(P,3,12);PRINT(x,3,12) %C 
;PRINT(Y,3,12) ;NEWLINE 
!COMMENTS:THE SECANT METHOD STARTS WITH THE %C 
FOLLOWING CYCLE T. 

%CYCLE T=1,1,20 
!COMMENTS:AGAIN THE PART OF THE PROGRAM 3 %C 
STARTING WITH THE FIRST COMMENT TO THE %C 
EQUATION I IS PUT HERE .P IS REPLACED BY %C 
PP AND I BY II.THE VALUE OF II %C 
GIVES THE VALUE OF I AT PP. 

%EXITIF MOD(II-I)=O 
PPPPP_II*(PP_P)/( Il-I) 
1=11 ;PPP;PPPPP 
%EXITIF MOD(PP_P)<10**(_12) 
PRINT(S,3,1);PRINT(PPP,3,12);PRINT(x,3,12) %C 
;PRINT(Y,3,12);NEWLINE 
%REPEAT 
%ENDOFPROGRAM 
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TABLE 18 

!COMMENTS:IN THIS TABLE FIRST,SECOND,THIRD AND %C 
FOURTH COLUMNS GIVE RESPECTIVELY THE NUMBER OF %C 
ITERATIONS REQUIRED BY THE RUNGE-KUTTA METHOD %C 
,THE BIFURCATION VALUES (P),X-AND Y VALUES %C 
CORRESPONDING TO DIFFERENT P. HERE STEP-LENGTH %C 
H=2*PI/250 
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19.0 
18.0 
18.0 
15.0 
16.0 
13.0 
13.0 
11.0 
11.0 
8.0 
9.0 
6.0 
6.0 
4.0 
4.0 
1.0 

2.654850000000 
2.654849999902 
2.654849514909 
2.654850047915 
2.654850103230 
2.654850042169 
2.654850035810 
2.654850042831 
2.654850043563 
2.654850042755 
2.654850042671 
2.654850042764 
2.654850042774 
2.654850042763 
2.654850042762 
2.654850042763 

0.9980 12 136785 
0.998005908057 
0.998012136907 
0.9980 12741087 
0.998012077095 
0.998012008187 
0.9980 12084253 
0.998012092 175 
0.9980 12083428 
0.9980 120825 16 
0.998012083523 
0.998012083628 
0.998012083512 
0.998012083500 
0.998012083513 
0.998012083515  

2.365 155502863 
2.365154781881 
2.365155502877 
2.365 155572810 
2.365 155495954 
2.365155487978 
2.365155496783 
2.365155497700 
2.365155496687 
2.365155496582 
2.365155496698 
2.365 155496710 
2.365155496697 
2.365155496695 
2.365155496697 
2.365155496697 

TABLE 19 

!COMMENTS:FOR THE FOLLOWING TABLE THE SAME PROGRAM %C 
WHICH GIVES THE RESULTS IN TABLE 18 IS USED %C 
JUST BY REPLACING THE STEP-LENGTH H WITH %C 
H/2=2*PI/500 

19.0 
18.0 
18.0 
15.0 
15.0 
13.0 
13.0 
11.0 
11.0 
8.0 
8.0 
6.0 
6.0 
3.0 

2.654850000000 
2.654850003738 
2.654849537398 
2654850048058 
2.654850097767 
2.654850043226 
2.654850038039 
2.654850043718 
2.654850044244 
2.654850043669 
2.654850043618 
2.654850043674 
2.654850043679 
2.654850043673 

0.998009555254 
0.998003326527 
0.998009550597 
0.9980 10 13 1540 
0.998009495385 
0.998009433461 
0.998009501406 
0.998009507867 
0.998009500793 
0.998009500138 
0.998009500853 
0.998009500918 
0.998009500848 
0.998009500841 

2.365154116044 
2.365153395046 
2.365154115505 
2.365 154182749 
2.365154 109 114 
2.365154 10 1946 
2.365154109811 
2.365154110558 
2.365 154109740 
2.365154109664 
2.365 154109747 
2.365154 109754 
2.365154109746 
2.365 154109745 



CHAPTER THREE 

COMPACT ANALYTIC SEMIGROUPS (CAS) 

3.0 	Introduction 

The chief aim in this chapter is to study the following two 

problems. 

Problem 1. 	Let X be a separable Banach space. Is there a corn- 

pact analytic semigroup t - at: H - CL(X) such that (T1)(atX)= X 

and (T2 ) II aII 1< 1 for all t in H if and only if (*) X has 

the hermitian approximation property? 

Problem 2. 	Is there a compact analytic semigroup t -)- at: H + CL(X) 

such that (T1)(atX)= X for every t in H and (T 3 ) IT atli 	1 

for all t in ]R+  if and only if (**) X has the metric approxi-

mation property? 

(T1 ), (T 2 ) and (T3) represent the same conditions as mentioned 

above throughout this chapter, and play an important role in our 

study in the sense that they restrict the construction of a compact 

analytic semigroup at, t C H, on a given separable Banach space. 

For instance, we can not construct such a semigroup with the pro- 

perties (T1) and (T2 ) on C[0,11, (see Theorem 3.3.7.) Sinclair [54] 

and many other authors have studied analytic semigroups with a 

bqunded approximate identity; and we study compact analytic semi-

groups with a bounded compact left approximate identity. In fact, 

in this chapter we establish a road to a compact analytic semigroup 
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via (*) and (**), and show that the reverse road in the case of 

(*) is not possible in general. Although the reverse road in the 

case of (**) is possible in some particular case (see Theorem 

3.3.8), whether or not it is possible in general is kept as an open 

problem (see Problem 3.3.9). 

In Section One, we discuss the problem 1 on the space C 0  so 

that it can give a clear picture of problem l,(problem 2 can also 

be discussed similarly on C 0 ). Although we are not directly con-

cerned to study a compact analytic semigroup on this space, it is 

very interesting to see some enlightening results briefly. In par-

ticular, the theorem 3.1.4 is significant and shows the special 

importance of the conditions (T 1) and (T 2 ). 

Section Two is mainly devoted to the study of problem 1. We 

give an affirmative answer of the 'only if part' of the problem 

completely (Theorem 3.2.6) and show with a counter example (3.2.7) 

that 'the if part' is false in general. Eventually, it is shown that 

the scalar multiples of the identity operator are the only hermitians 

in the disc algebra A. 

In Section Three we present problem 2, showing that its 'only 

if part' is true with the condition (T 3 ), (Theorem 3.3.5), but not 

true with the condition (T2 ), (Theorem 3.3.7); and that 'the if 

part' is also true with the condition (T 3), provided CL(X) is 

the norm closure of the finite rank operators on X 7 (Theorem 3.3.8). 

Now some basic definitions are provided in order to carry out 

our main study. 
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Definition 3.0.1. 	Let X be a unital Banach algebra with dual 
* 

space X . The numerical range of an element x in X is defined 

by 

V(x) = If W: f E X, II f 1 = f(l) = 1) 

An element x E X is called hermitian if one of the following 

equivalent conditions is satisfied. 

the numerical range of x, V(x), is contained in the real line. 

1 i 1  { II 1+iax II - l} = 0 

II  exp(icx) II = 1 	(c E ]R) 

Definition 3.0.2. 	A one-parameter semigroup on a complex Banach 

space X is a family at, t E ]R+, of bounded linear operators 

at: X -),-X, satisfying the following relations. 

0 
a = 1 

a S t 	s+t 
a = a 	, for all s, t E 

liin a t  x = x, for every x in X. 
t+o 

If the parameter t ranges over the whole real line F., we then 

call it a one-parameter group. The (infinitesimal) generator Z of 

a one-parameter semigroup at  is defined by 

Zx = lim t-1 (a t  x - x). 
t+0 

The domain, Dom(.Z), of Z is the set of x for which the limit 

exists. 
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Definition 3.0.3. 	Let X be a Banach space and let 

S 	= {z 
E  C : .ReZ > 0 and IArg (z) I < a} be a sector in C, 

where cx lies in (0, /21. An analytic semigroup a t on X is a 

family of bounded linear operators, at:  X -- X, defined for t E  S a 9 

where cx is fixed and satisfying the following conditions: 

ts 	t+s 
M a a = a , for all t, s ES 

cx 

at  is an analytic function of t E 

If x E X and c > 0 then lim a t  x = x, provided t 
t-,-0 

remains within S 

We define the generator Z of at by 

Zx 	= 	urn t -1 (a t  x - x), 
t4-O 

where t > 0 and Dciii (Z) is the set of x for which the limit exists. 

If all at  are compact operators, then we call it a compact analytic 

semigroup. 

Definition 3.0.4. 	A Banach space X is said to have the hermitian 

approximation property if for each compact subset F  of X and each 

E > 0 there is a compact hermitian operator R on X such that 

(i) 	II Rx - xli < c for all x E F and (ii) 11R11 	1. 

Definition 3.0.5. 	A Banach space X is said to have the metric 

approximation property if for each compact subset F of X and 

each c >0 there is a finite rank operator T on X such that 

(i) 11Ti - x 1 < c for all x E F and (ii) VT 11 < 1. 
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Approximate Identities. 3.0.6. 	Let A be a Banach algebra over C. 

We assume that A does not have an identity. Let A be a directed 

set. A net {e} 	in A is called a left (res. right, two- 
)LEA 

sided) approximate identity in A, if for all x A, 

urn e.x = 
AEA " 

(resp. urn xe = x, 	lim eAx = x = urn xeA). 
AEA A 	AEA 	 AEA 

It is said to be bounded if there is a constant K such that 

lieIl < K for all A C A; in this case, we define the bound of 

{eA}AEA by sup {QeAII : A C A), and the norm by 

II {e}II 	= lirn sup II eAA. 
A 

Let X be a left Banach A module. Then a bounded approximate 

identity in A for X is a bounded net { e A: A C Al in A such that 

lim eAx = x for all x in X. We can define similarly an approxi-
AEA 
mate identity for a right or two sided Banach-A module. However 

we are mainly interested in a left approximate identity. 

If all eA,  A C  A are compact and hermitian bounded operators, 

then we call it a bounded compact hermitian approximate identity 

for X. 

Definition 3.0.7. 	Let 0 be a connected open set in t and 

H() be the collection of all analytic functions on Q. Suppose 

F C  H(2). We call F a normal family if every sequence of members 

of F contains a subsequence which converges uniformly on compact 

subsets of S1. The limit function is not required to belong- - to F 
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3.1. Section One: 	CAS on The Space C 

In this section we focus our attention on the construction of a 

compact analytic semigroup and of a compact hermitian approximate 

identity on the space C 0 . It is a folklore fact that every Hubert 

space has hermitian approximation property, and so does C 0 . How-

ever the space C 0  has its own compact analytic semigroups and 

approximate identity (Theorem 3.1.1) which are, we think, worth-

looking at. We show in Theorem 3.1.4 that a compact analytic semi-

group on C0  with the conditions (T 1) and (T2 ) consists of 

multipliers only. 

Theorem 3.1.1. 	There exists a compact analytic semigroup 

t 	at: H- CL(C) such that (T1)(atC0)_ = C 	and 

(T 2  )Ila
t li < 1 for every t E  H. Furthermore, C0  has a compact 

herinitian approximate identity. 

Proof. 	We define an analytic semigroup at, t E H as 

t-t 	-2t 	-nt a = Multiplication by (1, e , e 	, ..., e 	...). It can be 

checked without difficulty that at  is an analytic semigroup on 

C0 . We now show that at  is a compact operator on C0 . 

Let an  = (1, e , •.., e 	, 0, ...) . Then a 	being a 

finite rank operator, is compact. Now II a t - atti - 0 as n 

Since the limit of a compact operator sequence is compact, at  is  

compact. 

i Next 	 t , 	ii a U = 	sup {Ie
-nt  I} 

n 

1. 

Also it is straight-forward to show that (atC)_ = C 0.. This completes 



the arguments for the first part of the theorem. 

To prove the second part we construct an approximate identity 

as follows. 

Let 	P : C -  'C n 0 	0 

(x19 x21' ...x n ,...) -+ (x1 ,x,... ,x,O,O...) 

Then clearly, 	(i) 	II PII 	1 

Op x - x 1 	0 	as 	n 	for all x 	C n 	
- 	

0 

P 
n  is compact. 

We finally wish to prove that P is hermitian. 

Let x E C 	with V X 1 	1. 
0 

Now, 	Ii x + iaP n (x) ii , 	(a E ]R) 

= 	ii ((1+ia)x1 , (1+icz)x2 , ... , (l+ia)x, x 1 ,. ..)II  

= 	either sup{ 11 	ii 	k = n, n+l, . . 
k 	k+l 

or 	max { (l+ia)x } 
1kn 

l,in the first case, 

and in the second case, say, it is equal to 

II (l+i)x2 lI 

111 

1+ictI 	= 	2 + ..... 



Therefore, in either case 

1° x + Ia P n xli - 1 
I liiti1 	 0 

a 

Thus, for every xE  C0  with 11 X•" < 1, we obtain 

u• 
rn 

(iIx+jctPxiI 	- 1 
a 	 J 

lI1+jaP i- 
So,

n II  
 lini 	 0 	 (iv) 

a 

Next, consider the element 	x 	= 	(1,1, ..., 1,0,0, ..., 0 •..) 
t___1 	•J 

up to n times 

Then, 	x 
0 	0 
E C 	and II 

0 
x II 	= 	1. 

lix +iap xli -1 Now 	urn 	o 	n o 
ct-30+ a 

= 	urn 	
11+ial - 1 

a 

= 	0 

lil+iaP ii - 1 
This gives 	litn 	 0 	 (v) 

a 
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The inequalities (iv) and (v) combinedly imply that 



113 

lll+ictP II 	-1 
urn. 	n 
	0 

ci4O+ 

Hence by definition 3.0.1, P 	is herniitian 	 (vi) n 

The results (1), (ii), (iii) and (vi) combinedly assert that {P} 

is a left compact hermitian approximate identity. 

The results now follow. 

Q.E.D. 

Before discussing the main result in Theorem 3.1.4, it is 

enlightening to look at the following lemmas. 

Lemma 3.1.2. 	If at, t E H, is an analytic semigroup on a 

separable Banach space X satisfying the conditions (T 1) and 

(T2 ), then there exists a one parameter group S, r E ]R on 

X such that Srx = litn a5+lrx  exists for all r,E ]R. 
s+0 

It is not hard to prove the lemma and so the proof is 

omitted. Also refer to problem 2.36 in page 63 in [16] 

Lemma 3.1.3. 	Let 2.0 be the usual sequence space. If the operators 

* 
T: 2. 	2. 

1  and T : 2. + 2. 	are conjugate to each other, thenOD  1  
* 

T is a multiplier if and only if T is a multiplier. 

The proof is straightforward and so, omitted. 

We now move on to the main result on C . In addition to the 
0 

above two lemmas, we need more technical apparatus, namely, the 



Poisson integral on the right half complex plane, for proving the 

following theorem. 

Theorem 3.1.4. 	If there is a compact analytic semigroup at, 

t E H, on C 0  satisfying the conditions (T 1 ) and (T2), then 

the generator Z of at  is of the form 	1 ,p2 , ...) with 

0, i = 1,2, ... and at is a multiplier so that 

11 1t 11
2 
 t 

atx 	= (e 	x1 , e 	x2 , ... ), 	where x = (x1 ,x2 , ...) 

in C0 . 

- 	 r 	s+ir Proof. 	For each r 	]R, let S = lim a 	. By lemma 3.1.2, 
s+0 

the right hand limit exists and S is a one-parameter group on 

C 	such that 11 cr11 = 1. Therefore, 5r 	rE]R, is an isometry 

on C0 . If x E C0  and x E C 	= Li, then the conjugate 
* 	* 

operator S 
r* 
 defined by (S 

r* 
 x )x = x (S r x) is readily seen 

* 
to be an onto isometric mapping on C 0  

Let 	= (0,0,..., 1, 0...) 
L_) 

nth place 

Again, for each x E CO3  

(S G n )x = o n (SrX) -- G n x 

Hence this gives 

S a + a 	as n 	n 

as 	r -'- 0 by group properties. 

r + 0. 

As a result, given a positive integer N we can choose r E ]R 
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such that 
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 -aII<l 	for 	nN, 0 < r < r  n 	n 	 0 

Since an isometry on L sends an extreme point of the unit ball 

of Li to an extreme point , and since an extreme point of the 

unit ball of Li is of the form (0,0, ... e10,O,...), 0 E 

we obtain 

r* 
S a 

fl 
= e 	

T(fl) 
a 	, where T is a map from IN 

onto IN. 	Now (I) gives 

n 

	

lie 	a 
T 
(n) - a I! < l,forn 	N, 0 < r < r 	. 	(II) n 	 o 

We claim that (II) gives t(n) = n for all n < N. Suppose if 

possible, T(n 0) i n for some n 0 < N. Now consider the element 

	

a 	=n 	(0, ..., 1, 0,... ) 
0 

n 0  th place 

Then 	
iou = i, 	and 	

)n 0 = 0  

Applying L1  norm in (II), we get 

	

CO 	10 (r) 

	

I 	 fl 

	

1 Je 	(a 	) 	- (a ) I 	< 1 . 	 (IV) 

	

k=l 	 T(fl)k 

But putting k = n, we have 



iO (r) 

e 	
T(fl) 	- 	

= 

by using (III) 

This offends the inequality (IV) and hence, a contradiction. So 

r* 	iO(r) 
we must have T(n) = n for all n < N. Hence S a = e 	a n 	 n 

for each n < N. If k is any integer, then by group-law 

= 	. 	This yields 

ikO 
n  (r) S kr* a = e 	a n 	 n 

Hence, for every r E  ]R 

r* 	 i01 (r) 	i02 (r) 
S 	(x) 	= (e 	x1 , e 	x2 , ...) 

where x = (x.) c 

Since S is a group, the map r -'- e 	is a character on the 

additive group IR, and therefore by Theorem 35C. in [47] there 

exists a real p 	 such that O(r) = Pnr. Consequently we obtain 

r* 	 i1t 1r 	iii 2r 
S 	(x) 	= 	Ce 	x1, e 	x2  . ..... ) 

So by lemma 3.1.3 

irr 	ilJ 1r 	ii2r 
a y = S y = Ce 	y1, e 	y2  ......) 	where y = (y.) E C 

1 	0 
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Also, an analytic function is uniquely determined by its boundary values 



by the Poisson Integral on the right-half plane. Our semigroup at 

is analytic in H and Continuous in H, and so, by the Poisson 

Integral on the right half plane 
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00 

s-Fir 	

1 fCO (a 	(a)) 
Tr  n  

- 

(a(a)) 6 kn S 

+ (y - r) 2  
dy Cs > 0) 

CO 	
iliny 

1 	e 	so 
- 	

kn dy 
2 

- - f 
 00 

S +(y-r) 2  
- 

=e (s+ir)p 
n 

This yields as+i r (x) = (e (s+ir).ix ) 
n 

Thus the assertion follows. 

Q.E.D. 

Remark .3.1.5. 	If we drop the condition II atil 1 for each t in 

H, then the above theorem may not be true. For simplicity, if we 

consider the space C 2  and the analytic semigroup 

0 -1 
at = e t  1 oj 	

then it can be checked without difficulty that at 

is not a multiplier. 



3.2. Section Two: GAS AndHermitian Approximation Property 

This section mainly presents the proofs of the facts that a 

separable Banach space having the hermitian approximation property 

possesses a compact analytic semigroup with the properties (T 1 ) 

and (T2 ) 	(Theorem 3.2.6) and that its converse is not true in 

general (Counter Example 3.2.7). The somewhat contrived construc- 

tion of an analytic semigroup in Theorem 3.2.6 is based on the paper 

[54 ], where the author has shown many interesting properties of an 

analytic semigroup. Dixon in his paper [20] has studied the exis-

tence of various approximate identities in the algebra CL(X) 

of all compact operators on a Banach space X. However our approxi-

mate identity in this algebra needs essentially to be hermitian. 

For the converse problem (3.2.7) the references [38] and [53] are 

important ones. 

We begin with some lemmas. 

Lemma 3.2.1. 	Let X be a separable Banach space. Then the 

following two conditions are equivalent. 

For each compact subset F of X and each c > 0, there 

is a compact herinitian operator R with II R II 1 such that 

II Rx - x 1 K c for every x in F 

There exists a sequence {h..} with lihJi < 1 of compact 

hermitian operators on X such thilt Hh 1x - xli + 0 as j - 	for 

every x in X. 
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Proof. 	Since X is a separable Banach space, it has a countable 

dense subset, say, S = {x 1 ,x2 , ..., x. . . . } 

We first prove that (i) implies (ii). 

Let F 	be a compact subset containing x 1 ,x2 , ..., x... Then, 

by the given hypothesis, there exists a compact hermitian operator 

h. with Ii h. II 	1 such that II h.y - yll < - 	for all y in F. . . . M. 

Let x E X and c > 0. 	Then there is an 	i 	such that 

lli - 	 xli 	<C  

Now, 	for ji 

II h j x - x 1 < Ii h 
J  
.x - h J  .x 1  

. II + II h  
i 	1 
. - x. 	

1 
II + lix. - xli 

J  

II h 
J  
.Ii 11  - x 

1 	 J 
. Ii + II h . x 

1  . - x 1  . II + 11  1  . - x II 

< 2E + 
J 

Since x and c were arbitrary, Ii h.x - xli -*0  as j -* 00 for 

every x in X. 

The next attempt is to show that (ii) implies (i). Let c > 0 

and a compact subset F of X be given. Now, for each x in F, 

there exists a positive integer N  such that the open ball 

B 	centred on x and with radius C14, contains h 
j  
.x for 

all j N x 

Now, for y E  B 
x,c/4 and j 	N, we obtain 
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II h. y - x II < II h. y - h. x II 	+ II h. x - x II < E/2 

and 

	

II h.y - y 1 	II h.y - 	' + 11 x - 	
< C 	 + £ 12 = 	E . 	(II) 

Again all these open balls B 	 XEF form an open cover for F. 

Since F is compact there is a finite number of balls, say, 

B: 	B 	 ... B 	 (x11 , x22, ..., Xkk are in F) 

such that F is contained in their union. Again by virtue of (II), 

II h.y - yll < C for all 	
x y in B 	£/2 and for all j 	N 

3 	 . . , 	 x. 
11 

Let 	N 	= 	max IN 	N 	
. ..... N 
	} X11' X22 	Xkk 

Then for any y in F,  we obtain II hNY - yll < e . 	Putting 

h  = R, we get our desired result. 

Q.E.D. 

Remark 3.2.2. 	Following the definition 3.0.6 the sequence {h 1 } 

can be treated as a left approximate identity for X bounded by 1. 

Remark 3.2.3. 	The proof of the second part of the above lemma 

shows that for each x in any compact set F, h.x - x uniformly on F. 

The following lemma gives a key result for satisfying the hypo-

thesis of the lemma 3.2.5. The mechanism of proving it goes through 

the standard compactness arguments. 

Lemma 3.2.4. Let X be a complex Banach space having the hermitian 



approximation property. Then for each compact operator T on X, 

each n > 0 and each finite subset x1 ,x2 , in X, there 

exists a compact herinitian operator U with II ull < 1 such that 

II (U-1)x11 + Ii (U-1)TII < i for k = 1,2, ..., m. 

Proof. Because X has the hermitian approximation property, 

lemma 3.2.1 together with remark 3.2.2 gives a left approximate 

identity {h.} consisting of compact-hermitian operators on X 

and bounded by 1. Now for each xk , (k = 1,2,..., m), 

hjxk -- x as j + . 	So, given r > 0, there exists a positive 

integer N  	such that 
II  hx - xkII < 
	for all j 	N 	(I) 

Next, let X1  be the unit ball of X. Since T is compact, 

(TX1 ) 	is a compact subset of X. 

Now for each Tx in (TX 
1 ) 

h.Tx - Tx uniformly on (TX 1 ), (see Remark 3.2.3). 	So, there 

exists a positive integer N such that 

11 (hN - l)TxII < n/2 	for all x in X1 . 	 (II) 

Let 	N' = max {N11N2, "" N,N}. 

Then setting U = hN, in (I) and (II), we have 

II (U - 1)xkII + II (U - 1)T11 < r, 	for k = 1,2, ..., 

which is what was wanted. 

Q.E.D. 
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The proof of the following lemma is omitted, because it follows 
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almost exactly the line of proving the lemma 5(b) in [5 4 ]. The main 

difference is that the treatment there is in terms of two-sided 

bounded approximate identity rather than only left approximate identity 

(which is in our case). 

Lemma 3.2.5. 	Let X be a separable Banach space, T  CL(X), 

x E  X, c > 0 and K be a bounded subset of C. 	Then there 

exists r>O such that II  exp t(T + (U-1))x - exp t Tx11 < c 

for all tEEK and all U 	CL(X) with 11 U11 	1 and 

II (U-l)xll + II (U-1)T11 	< 

We have now achieved all the principal ingredients in order to 

prove the following theorem 3.2.6. It is apparent that some of the 

results proved in this theorem may follow from the paper [54 ]. 

However, in order to have a consistent notation and a completely 

self-contained exposition, we give almost independent proof by 

repeating a little analysis in that paper. 

Theorem 3.2.6. 	Let X be a separable Banach space with the 

hermitian approximation property. Then there exists a compact 

analytic semigroup t - at H -- CL(X) such that 

(T1)(atX) 	= X and (T2 ) II atli 	1 for all t E H. 

Proof. 	Since X has the hertnitian approximation property, by 

lemma 3.2.1 there is a sequence {h} of compact hermitian 

operatorson X such that lihil < 1 for all j E IN and 

II hx - X 1 - 0 as j - for every x in X. For each n E IN, 

let 	(n) = {t € C 	Itl < n} and CL(X) 1  = CL(X) + C.l . The 
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separability of X gives a countable dense subset 

S = {x1 ,x2 , 	x, 

Now our first aim is to select a subsequence {u } from 

{h.} and to construct a sequence {bt}, t E C, in CL(X) 1  such 

that for all positive integers n, the following hold: 

lUll • 

n 
t b = 1, b 	= exp t( 	(U -1)), for each t 	C. 0 	

j=l 

Obt1 
XK 

- b 	
Xkll <2fl, 
	

for each XkE S, 

k=i,2, ...,n 

and for each t E (n). 

Our arguments are organized as follows. 

We first pick up an element U 1  from the sequence { h} in 

such a way that the lemma 3.2.5 with T = 0 and c = 2 71  is satis- 

fied. This choice U 1  is possible, because II U1Xk - Xkll (k= 1,2,...,n) 

can be chosen as small as we require by using Lemma 3.2.4. Let 

b 1 t = exp t(U 1-1). Owing to lemma 3.2.5, b 1 t satisfies condition (III), 

and hence U1  and b 	(I), (II) and (III). Thus the case 

n=i is handled. In order to apply the induction hypothesis, assume 

now n>1 and that we obtain U 1 , U2 ,..., U 1  and b1 t ,  b2 t ,...,  bt1  

n-i 
satisfying (I), (II) and (III). Next, putting T = 	I U., c = 2 

j=l 

and K = L(n) in lemma 3.2.5, we can choose U from the sequence 

{h} to satisfy the conditions (I), (II) and (III). The hypotheses 

of lemma 3.2.5 may be satisfied by U because of lemma 3.2.4. This 

completes the inductive choice of the sequence {u}. 



Our next objective is to construct at from b n t satisfying 

the following relations. 

H atli 	1 for all t in H. 

t 
t + a : H -- CL(X) is analytic. 

at is compact for every t in H. 

— (a t  X) = X, for every t in H. 

a t  x 	x as t - 0+, 	for every x in X. 

t+s 	t 5 a 	H. 

n 
Now, fortEIR 	II b II 	= 	II exp t I (U -1)11 n 	

j=1 

exp(-nt)exp nt 

	

= 	1, for every positive integer n. 

Again, let t = cx+i, a , 	E ]R and a > 0 

n 
Then, 	II b 	I! 	= II n 	exp(ct+i) 	I 	(U.-l) II 

j=1 

	

n 	 n 

	

II exp a 	I 	(U.-1)II 	II exp(i 	I 	(U.-l) II 

	

j=1 	- 	 j=l 

n 
1 since I (U.-1) is herniitian and 

j=l 
n 	

bin 

	

and II exp a I U. II 	e 

Hence, 11b t 11  < 1 	for all t E H and for n 	1. 	 (X) n 
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Let c > 0 and y X. Now choose n k such that 

<E:/3 and It y - xli < c/3 for some x E  S. 	 (XI) 

Therefore, for each t E (n)fl H = D(n) 

Ilbt t y-b 	yll n-i 	n 

lIbt 	y_bt 	x 1 + llb 	x _bt x  II + llbt x  _bt y ll 
n-i 	n-i n 	n-i n 	n n 	n n 	n 

< 	c, 	by applying (X) and (XI). 

Thus, 11b
1  y - bt yll < c for all t E D(m) and all n 	in. 

So, the sequence bt y is Cauchy in X uniformly in t in 

D(m) for each positive integer m. 	Hence, lim b  y exists n   

for all t E H and we denote this limit by a ty . 	Now the sequence 

{bty} converges to a t y uniformly on the compact set D(m) for 

each in. Moreover each function t * bty: H -- X is analytic, 

and so t + aty: H - X is analytic. We are thus led to the 

conclusion that for each y E X, t a t  y is analytic and there-

fore, that t + at: H + CL(X) is analytic. This gives (V), and now 

(IV) follows immediately from (X). 

Next we want to show that at  is compact for every t in H. 

Now for every t in H, 

n 
b t 	= 	exp t 	(U.-l) 

j=l 

n 
= 	exp(-nt) exp t E U. 

j=l 

CO 

= exp(-nt).l + exp(-nt) E 	(tM)' 
i! i= 1 
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n 
where N = E U. 

j=1 

P 
Since every U. is compact, M = E U. is compact. Moreover, 

J 	 j=1 
since M is compact, AM and M are compact for any scalar A 

and any integer i. 	Again the limit of a sequence of compact 

operators is compact. Hence 

CO 

exp(-nt) E (tM)1 	 is compact. 
1=1 

Now, 	a t = urn b t  
n n-*. co 

OD 	 i 

= lim exp(-nt)l + urn exp(-nt) E (tM) 
i! i=1 

CO 

= 	
( tM)1 urn exp(-nt)  

i! i=i  

So, 	at is compact. 

Again, given an x1 E  S, we can obtain (as we obtained the 

inequality (III)) 

II b 	x. - bt x. II <2 
	

for each t E D(m), n-i 1 	n i 

m is a positive integer. 

Hence the sequence {b_t  x.} is Cauchy in X uniformly in t in 

D(m) for each positive integer m. Thus lirn b- t  x1  exists for 

each tEll. 

We can write x. 	
t 

b 	(b
-t 
 x.). 

1 	n 	n i 
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This gives 	x. = lim b  .(bt x.) 
1 	 n 	n n 

t t 	 -t = a x , where urn b 	X. = x 	is in X. n 1 

The assertion (VII) (atX)_ = X follows now. 

Next, fix t E H. Given x E X, c > 0, there exists y in X 

such that II x - a t  y 1 < c/3. For s E H, II a S 	t 
(x - a y) II < c/3. 

This implies II aSx  - aS+txIl < c/3. Since t 	at is analytic for 

t E H, aS+ty  - a t  y as s -'- 0. So, there is a 6 > 0 such that 

Is! < 6 implies II a
s+t 	t 

y - a yll < c/3. As a result, we have 

Isl <6 implies lix - a S  x 1 	 t 
lix - a y 1 + 'la t 	s+t y - a 	y 1 +llas+t 	S 

y - a xli 

< 	C. 

This gives, a5x - x as 	s + 0. 

The last result (IX) follows readily from the fact that 

t+S = bt b5 b  
n ii n 

The results (IV) through (IX) give the existence of a compact 

analytic semigroup at (t E H) satisfying the conditions (T 1) 

and (T2 ). 

Q.E.D. 

We now shift our attention to the converse of theorem 3.2.6 

which is stated below. 

"Let X be a separable Banach space. 	If there is a compact 

analytic semigroup t + at: H + CL(X) satisfying the conditions 

(T1) and (T 2 ). does X have the herinitian approximation property?" 



We give a negative answer with a counter example. 

Counter Example 3.2.7 

We recall some notations and definitions. The set 

D = {zEiE: Izi < l} is the open unit disc in the complex plane U 

and D its closure. A is the collection of functions which are 

continuous on D and analytic on D. Then A is a Banach space 

under the Sup norm, II f II 	= sup If(z)t, f E  A. In fact, A is 
zIl 

a uniformly closed linear algebra of continuous complex-valued 

functions on the closed disc D. Moreover, the space C(D) of 

all complex-valued continuous functions on D is separable. A 

being a subspace of C(D) is separable. 

We now define a map at:  A 4-  A, parametrized by t E H as 

follows: ( atf)( z ) = f(etz), t E H, f 	A, z E D. Clearly, 

for every t E H, at  is a bounded linear operator on A. In 

order to prove that at  is compact, we proceed as follows. 

Let 	with II fil < 1, Vn, be a sequence in A. We shall 

show that {atf}  has a convergent subsequence. Because 	is 

uniformly bounded on each compact subset of D, it is a normal 

family, (refer to Theorem 14.6 in [53]). Therefore, it has a con-

vergent subsequence, say If 
}, which converges uniformly on com- 

pact subsets of D. Since at  f 
n  maps D onto the compact sub- 

set K, where K = {t: II < e et} ,  {atf } converges uniformly 
k 

on D. Hence the compactness of at is a consequence of Montel's 

theorem. The other properties of an analytic semigroup are easily 

verified. Thus, at, t  H, is a compact analytic semigroup 

128 



on A. 

We next prove that it is contraction, that is, 

ii ait < 1 for each t E H. 

Now, for f E A with ii fit < 1, 

ii afiI 	= 	sup { II a t f(z)III 

Izkl 

sup {l f(e
-t 
 z)I} 

z l 

. 	1 

Our next objective is to show that the closure of the range of at 

is the whole space A, that is, (atA) 	= A, for every t in H. 

For this purpose, we first show that A is the uniform closure of 

the polynomials P(z) 	 2k, 	k E , z E D. Let f E A. 
k=O k  

Then f has a convergent power series representation as 

Co 

f(z) = 	Eczz', z E D. Let 	fr(Z) = f(rz), 0 < r < 1. 

Since f is uniformly continuous, f r tends to f as r - 1. 

Also 	
n n 

fl 
= E a r z converges uniformly on D and so 

is in the closure of all polynomials P(z). 	Hence 

f 

	

	is in the uniform closure of all polynomials P(z). 

Next, for z E D, let P(z) be a polynomial, 

P n (z) = a o + a 
1  z + ... + a n z fl 	

1 
(a. ' s are scalars). 
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Let us define a function g  by 



g(z) = z'  , n = 0,1,2 . 

Then g E.  A, k' n. Now consider the function f defined by 

n kt f 	=E ae gk  
k=0 

Because A is a unital Banach algebra, f is in A. 

-t Hence, 	(a t  f)(z) 	= 	f(e z) 

n 
kt 	-t = 	a e 

k 	g(e z) 
k=0  

kt -kt k 
=E ae e 	z 

k=0 

n 	
k 

= 	E a k z 	= 	P(z) 
k=0 	

n 

Thus a 
t 
 A contains all the polynomials P(z). Since polynomials 

are dense in A, (atA) = A, as desired. Ultimately we have 

proved that there exists an analytic semigroup at, (t G H) of 

compact operators on A such that (T1)(atA) 	= A and 

(T2 ) Ii ail 	1 for every t in H. - 
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Our final task 

operator S on A 

that is, S = yl, 

small such that 

its lie 	- I  

is to establish the fact that every hermitian 

is a scalar multiple of the identity operator I, 

y is a scalar. Fix t E  ]R sufficiently 

(I) 

Now an isometry T of the space A onto A is of the form 

(Tf)(z) = (af)(t(z)), where f is in A, z in D, a is a 



complex constant of modulus 1 and T is a conformal map of the 

unit disc onto itself (refer to [38], P. 147). Since S is 

its hermitian, e its - is an isometry and so e 	f(z) = cf(TZ), 

Vf CA, ' z C D and a 	 is a complex constant of modulus 1. 

The inequality (I) now yields 

c&f(T(z)) - f(z)l 	<2 11 fl , 	f E A and V z E D. (II) 

We claim that the above inequality holds only when 

T (z) = z 	VzED 

Suppose, if possible, T(z0) 	z 	for some z0  on the 

boundary of D. Let z0  = e 
10

. 	Since t maps boundary to 

boundary, T(Z) is on the boundary. 	Let T(z0) = e 1 ,  

4 	Then 

1 + e- ie 
T(z) 

<1 
2 

Choose n E  IN sufficiently large such that 

1 + e  O T ( z ) t  

For this n, let us define a function g on D by 

Ii g(z) 	
+ e18 

zjn 

= 
2 

Now obviously, (III) g(e' 0 ) = 1, 	(IV) II gil = 1 and 

(V) 	gEA. 

1-  The symbol C LS sometimes used for the phrase 

'belongs to". 

131 



132 

Again, 	la t g (r(z)) - 

= htl 1 + e— 
ie 

t(z )I 
-1 

o 

2 

1 + e-10  T(z 
) 

In 

0  
2 

-1 

	

> 	I - 	= 	IIgII 

This contradicts the inequality (II). 

Therefore, 	T(z) = z for all z on the boundary of the unit disc. 

Hence, by the Maximum Modulus Theorem, T(z) = z, V z E D. 

Thus, we obtain 

	

its 	 - 
e 	f(z) = a f(z), V f in A, V z  E D 

Consequently, there exists 5 > 0 such that itt < 6 implies 

its 1  i .  
its lie ll - I < . This n turn gives e = aI for some 

at E U 

-1 Again, 	S 	= 	urn 	
its  

e  
it 

= 	urn It 
it J 

I  

= 	LI, 	L is a scalar. 

Therefore, every hermitian operator on A is a scalar multiple 

of the identity operator. But the identity operator is not a 



compact operator on A. So, A does not have the herinitian 

approximation property. 

Q.E.D. 

3.3 	Section Three. 	CAS And Metric Approximation Property 

In Section Two (3.2), we dealt with the hermitian approximation 

property and now we wish to investigate analogous results when the 

space X has the metric approximation property. In fact, most of 

the results in this section are the harvest of the fruits of our 

preceding work. However, some of the technical difficulties here 

are that if the property 'hermitian' is eliminated from the 

theorem 3.2.6, the elements bt  constructed in that theorem may 

not satisfy the ,condition Ii bt 11 < 1 for all t in H, and that 

lemma 3.3.3. which plays a vital role in constructing the family 

ct in Theorem 3.3.5, may not be true in general unless we have 

a commutative bounded left approximate identity. The first handi-

cap is averted by restricting the condition ii b it < 1 for only 

non-negative reals t, and to surmount the second one we first 

prove in Theorem 3.3.5 the existence of a one-parameter semigroup 

t 	+ 
a , t 	]R and-then in the light of this semigroup, we construct 

a commutative bounded left approximate identity. 

A fairly concrete example in Theorem 3.3.7 shows that the main 

result in Theorem 3.3.5 may not be true with the substantial con-

dition (T2 ). The book [21] is a standard reference for this in-

vestigation. In order to study the converse problem, one technical 

difficulty is that the space of compact operators on a separable 
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Banach space X may not be the norm closure of the finite rank 

operators, although this result is true in most of our familiar 

separable Banach spaces. Enflo in [23] has given a counter 

example of this. But with this hypothesis, the converse can be 

established (Theorem 3.3.8). Nevertheless, there may be some 

sophisticated strategy for solving this converse problem, and 

so we keep it as an open problem (3.3.9). Since all Hilbert 

spaces have the metric approximation property, the converse is 

true for all Hubert spaces. 

Lemma 3.3.1. 	Let X be a separable Banach space. Then the 

following two conditions are equivalent: 

(j) 	For each compact subset F of X and each E > 0 there is a 

bounded operator T on X with finite rank such that 

II Tx - x 1 < e for every x in F and II Til 	1. 

(ii) There exists a sequence {h} 	with 11h 11 	1, of finite 

rank bounded operators on X such that II h.x - xli - 0 as 

j -'- CO for every x in X. 

Proof: 	Replace the word 'hermitian' by the words 'finite rank' in 

lemma 3.2.1 and then the proof of this lemma follows 

closely the lines of the proof of that lemma. 

Remark 3.3.2. 	From the second part of the proof of lemma 3.3.1, 

it follows that h. + I uniformly on compact sets. 

The following lemma is very useful, particularly to satisfy 

the hypotheses of the lemma 3.3.4. We notice that this lemma needs 

a commutative left approximate identity. 
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Lemma 3.3.3. 	Let X be a separable Banach space such that it has 

a commutative left approximate identity {h.} bounded by one and 

consisting of compact operators on X. If T is in the closed 

subalgebra of CL(X) generated by {h.}, then for each r > 0 

there exists U in {h.} such that II (U-1)TI] +11 T(U-1)11 < 

Proof: 	Because h
i  hi 

 = hh., V i,j, T commutes with each 

member of {h.J. 	So, T(U-1) = (U-1)T for every U in {h.}. 

Hence we need to show that given n > 0 there is U in {h} 

such that II (U-1)TI] < n/2. 

Let X be the unit ball of X. Since T is compact, 

(TX 1 ) 	is a compact subset of X. So, appealing to remark 3.3.2, 

we obtain h - I uniformly on (TX 1). 	This tells us that there 

exists a positive integer N, independent of any x in X1 , 

such that Ii (h - l)Txll < n/2 for all x in X1 . 

Putting U = hN, we get II (U-1)TII < rjI2. 

Hence theresult now follows as desired. 

Q.E.D. 

Lemma 3.3.4. 	Let X be a separable Banach space, let CL(X) 1  

be the Banach algebra obtained by adjoining an identity to CL(X), 

let K be a bounded subset of the complex plane and let c > 0. 

If S = T + i.i.l with T E CL(X) and p E C, then there exists 

> 0 such that 

II exp t(s +(U-l)) - exp t Sli 

(c + exp 21t1 - l)exp Re(tp) 
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for all t E K and. all U E CL (X) with II U 1 	1 and 

II (U-1)TI1 + II T(U-1) 11 < 

Proof. 	See lemma 5(a) in [5 4 ]. 

We now turn to the main result in this section. We have 

already aired the general philosophy behind similar development 

in former sections when Xhas the hermitian approximation property. 

The guiding idea is to find a family of elements c in CL(X) 1  

which ultimately leads to the wanted conclusions. 

Theorem 3.3.5. 	Let X be a separable Banach space having the 

metric approximation property. Then there exists an analytic semi-

group t - at : H + CL(X) such that (T1)(atX)_ = X for all 

t E H and (T3) II t 
a II < 1 for every t in ]R+. 

Proof: 	By the given hypothesis, X has the metric approximation 

property, and so by lemma 3.3.1 we can have a sequence {h.} con-

sisting of finite rank bounded operators on X such that 

U h. II < 1, V j c IN 	and II h 	- x 1 - 0 as j -' 	V x E X. 

We can now regard the sequence {h.} as a countable bounded left 

approximate identity for X. We adopt here the same sort of 

notations as used in Theorem 3.2.6. If we replace the word 

'hermitian' by the words 'finite rank' in lemmas 3.2.4 and 3.2.5, 

these results are still true. So applying these lemmas and re-

tracing the same sort of arguments as we did in theorem 3.2.6, 

we can select a subsequence {u} from {h,} in CL(X) and a 

sequence {bt}  in CL(X) 1  such that for all positive integers 

n, the following hold: 
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U 1 	1. 
n 

b 0 = 1, b 	= exp t(E (U. - 1)) for all t in G. 
U b 1  x, - b 	Xkll < 2 	for each Xk, k = 1,2, ..., n 

(xk E S) and for each t E (n). 

From this construction of bt, it can be proved easily that 

II biI < 1 only for t E ]R+ 	Now, given c > 0 and y E X, it 

can be seen without difficulty that U bt1 y - bnt  y II < e for all t 

in :!R+.  Theref ore, the sequence bt y is Cauchy in X uniformly in 

t in ]R+.  Hence lim b  y exists for all t E ]R+  and let this 

limit be aty. 	Employing the similar techniques as applied in 

Theorem 3.2.6, we can show that: 

t + a t :  ]R+ - CL(X) is analytic. 

II all < 1, 	t E 

t 1 	•t+s 	 + a a 	= a 	, t, s E ]R , and 

atx 	x, V x X as t -- 0+ 

This gives at t E IR+ is a one-parameter contraction 

semigroup. 

We recall that our principal goal is to show the existence of 

a compact analytic semigroup on X where the parameter ranges 

over H. Next, let f = a 1' 5  £ E IN, then clearly {f} is a 

commutative left approximate identity for X consisting of compact 

operators and bounded by one. Now we want to choose a subsequence 

{v} from {f , } in CL(X) and to construct a sequence {ct}  in 

CL(X) 1  such that for all positive integers n, the following hold: 
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liv ii 	1. 
n 

t 
c = 1, c = 	

n 
 

n 	
exp t( 	(Vk - 1)) 	for all t E G 

k= 1 

-t 	ct 	I 	-n 

	

Cx) 	lI c -1 Xk - 	 < 2 	for each xkE S, k = 1,2,..., n n 

and for each t E z(n). 

	

(xi) 	lic t - C
t  ii 	2-n + {exp 21tI - 1}exp - (n-1)Re t, n-i 	n 

for all t E 

We choose an element V1  from the sequence {f} with S = T = 0 

and e = 2_i in lemmas 3.2.5 and 3.3.4. This choice is possible 

by invoking the lemmas 3.2.4 and 3.3.3. Let ct = i and 

c1  = exp t(V1  - 1). Then V1  and c1 	satisfy the relations 

from (viii) through (xi). We now apply induction hypothesis to 

obtain the sequences. {Vn}  and {ct} . Suppose we obtain 

V1V2•• V 	and c1 t ,  .., c 	satisfying our required rela- 

tions. Then by putting S = -n + T, T =E Vk, 
k=l 

E = 2n exp(-n(n+1)) and K = (n+l) in lemmas 3.2.5 and 3.3.4 

we can choose a V+i  from the sequence {f , } satisfying our desired 

relations (viii) to (xi). This choice of V+1 is possible because 

of lemmas 3.2.4 and 3.3.3. Thus we obtain a sequence {V} as 

wanted. Next, consider the compact set, 

A6  = It EU : Re t 	61, Itl < 6 	and 6 > 01. 

Then obviously, H = U A6. The inequality (xi) yields that 

6>0 

cn..1 - cl 	2-n + exp (26 - (n - 1)6_i), for all t E A6 
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This inequality shows that c 	is Cauchy uniformly for all t in 

each compact subset A, 5 > 0. Consequently lim c 	exists 

in CL(X) 1  for all t in H. 	We denote this limit by dt. 

Now each function t c n t : H + CL(X) 1  is analytic and the sequence 

ct converges uniformly to d   for all t in each compact set 

6 > 0. Therefore t - d 	H - CL(X) is analytic 	(xii). 

Again for each t E 

n 

ft 	= II 
n 	exp t( E. (Vk 

k= 1 

exp (-nt) exp (nt) 

= 1 for every positive integer n. 

This concludes that II d L II < 1 for every t E IR 	 (xiii), 

t 	t+s The result (xiv) d d = d 	is obvious from the construction 

tof c 	Moreover, using the inequality (x) and with the aid of the 

analogous mechanism as led up the relations (VII) and (VIII) in 

Theorem 3.2.6 we can prove the following relations 

(xv) 	(dtX)_ = X, 	V t E  H 

and (xvi) d t  x x, V x E X as t + o+. 

Moreover, clearly d   is compact for every t in H. 	(xvii) 

Finally the relations (xii) to (xvii) ensure the existence of a 

compact analytic semigroup dt, t E H satisfying the conditions 

(T1) and (T3 ). 

Q.E.D. 



We now show that a separable Banach space X having the metric 

approximation property may not have a compact analytic semigroup 

satisfying the conditions (T 1 ) and (T2 ). We illustrate below that 

the space C[ 0 ,1] can not have such a semigroup. Before discussing 

this result we need the following lemma. 

Lemma 3.3.6 	Consider the space C[0,1] with the uniform norm. 

Let f be a non-zero element in C[ 0 ,1]. Then the multiplier 

L 	defined by means of Lfg = fg, 	V g c C[ 0 ,1) can not be 

compact on C[0,1]. 

This lemma can be proved easily, and therefore, the proof 

is omitted. 

Theorem 3.3.7. 	The space C[O,l] with the uniform norm can not 

have a compact analytic semigroup at t H, satisfying the 

relations (T1)(atX)_ = X and (T) II atil < 1 for all t in H. 

Proof. 	We know that C[0,1] is a separable Banach space with 

its uniform norm. Also C[ 0 ,1] has the metric approximation pro-

perty 1 (refer to §30 in [ 21 ]). We now assume that, if possible, 

this space has a compact analytic semigroup at, t E H satis-

fying (T1) and (T2 ). Then by Theorem 3.1.4 in Section One, 

there exists an isometry S on this space. So, by the 

Banach-Stone Theorem, (Theorem 8, p.  442, in [ 22]), there is a 

homeoniorphism T from [0,1] onto [0,1] and a function cz 

in C[0,1] with 	c*(x)I = 1, x E [0,1] such that 
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(Sr f)(x) = 	(x) f(r(x)), 	V x c [0,1] and V f c CF0,1.]. 



By the similar arguments given in the counter example 3.2.7 in 

Section Two and constructing a suitable function g in C[0,1], 

we can prove that 	T(x) = x for all x E [0,1]. Thus 5r is 

a multiplier and so S r  can not be compact. We thus reach a 

contradiction and hence the result follows. 

Q.E.D. 

Theorem 3.3.8. 	Let X be a separable Banach space such that the 

set of compact operators is the norm closure of the finite rank 

operators. If there is a compact analytic semigroup 

t 	at : H -'- CL(X) such that (T1) (atX)_ = X for a11 t G H 

and (T3) U a t  11 	1, V t c 1R4 , then X has the metric approxi- 

mation property. 

Proof: 	By the given hypothesis, we have 

II a n tI 	1, V t e IR 	 and a x - x, V x E X, as t + 0+ 

1/n 
Let T 	= a. , n 	IN . 	Then T 	is compact, Tx -' x as 

n +CO for every x in X and II Til < 1, 	V n E ]N. 

Choose a finite rank operator S such that 

II S  II <l 	and 	II S 	- T II < - n 	 n 	n 	n 

Now,  for each x in X, 

II S x -x II 	II S x - T x 1 + Ii T x - x 1 n 	 n 	n 	n 

1 
—lix Ii +I1T x - x 1 
n 	 n 

141 

+0 as n+. 



Consequently, we obtain a sequence {S} consisting of finite rank 

operators such that 11S n II < 1, V n and S x + x V x c X as 
n 

n -- . 	Hence, by lemma 3.3.1 we obtain the required result. 

Q.E.D. 

We close this chapter by citing the following open problem. 

Problem 3.3.9. 	Let X be a separable Banach space. If there 

exists a compact analytic semigroup t at : H + CL(X) satis-

fying the relations (T 1) and (T3 ), does X have the metric 

approximation property? 
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LIST OF SYMBOLS 

We give below a list of some of the symbols used, and what they 

mean. 

IN 	The set of natural numbers. 

The set of integers. 

IR 	The real line. 

C 	The complex plane. 

]Rr (Cn) The set of all n-tuples (x 1 , x2 , ..., x), 

x.'s in 1R 	(x 's in C). 
1 	 1 

H 	The open right half, {t E C Re t > O}, 

of the complex plane C. 

S 	The closure of a set S. 

BL(X) 	The set of all bounded linear operators on the space X. 

CL(X) 	The set of all compact operators on the space X.. 

The separable Banach space, consisting of all convergent 

sequences with the limit 0. 

C[011] 	The separable Banach space of bounded continuous real 

functions on [0,1]. 

ru 	 Approximately equal to. 

n times functional composition of a map f 

f(n) 	
n times derivative of a map f 
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