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Abstract

Multiple-input multiple-output (MIMO) radar has been receiving increasing attention in re-

cent years due to the dramatic advantages offered by MIMO systems in communications. The

amount of energy reflected from a common radar target varies considerably with the observa-

tion angle, and these scintillations may cause signal fading which severely degrades the perfor-

mance of conventional radars. MIMO radar with widely spaced antennas is able to view several

aspects of a target simultaneously, which realizes a spatial diversity gain to overcome the target

scintillation problem, leading to significantly enhanced system performance. Building on the

initial studies presented in the literature, MIMO radar is investigated in detail in this thesis.

First of all, a finite scatterers model is proposed, based on which the target detection perfor-

mance of a MIMO radar system with arbitrary array-target configurations is evaluated and

analyzed. A MIMO radar involving a realistic target is also set up, whose simulation results

corroborate the conclusions drawn based on theoretical target models, validating in a practical

setting the improvements in detection performance brought in by the MIMO radar configura-

tion.

Next, a hybrid bistatic radar is introduced, which combines the phased-array and MIMO radar

configurations to take advantage of both coherent processing gain and spatial diversity gain

simultaneously. The target detection performance is first assessed, followed by the evaluation

of the direction finding performance, i.e., performance of estimating angle of arrival as well

as angel of departure. The presented theoretical expressions can be used to select the best

architecture for a radar system, particularly when the total number of antennas is fixed.

Finally, a novel two phase radar scheme involving signal retransmission is studied. It is based

on the time-reversal (TR) detection and is investigated to improve the detection performance

of a wideband MIMO radar or sonar system. Three detectors demanding various amounts

of a priori information are developed, whose performance is evaluated and compared. Three

schemes are proposed to design the retransmitted waveform with constraints on the transmitted

signal power, further enhancing the detection performance with respect to the TR approach.
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Chapter 1
Introduction

This thesis is devoted to the MIMO radar system taking advantage of spatial diversity gain. In

this introductory chapter, the origin and motivation of this work will be provided in Section 1.1.

Then Section 1.2 will summarize the objectives and main contributions of this thesis. Finally,

an overview of the organisation of the remaining chapters will be presented in Section 1.3.

1.1 Introduction and Motivation

The term RADAR was originally an acronym for “RAdio Detection And Ranging” coined in

1941, and has become a standard English word today. The basic principle of a radar system

is to transmit an electro-magnetic (EM) signal into space and receive echo signals reflected by

targets, which are carefully processed to provide information about them. Early radar was de-

veloped at a rapid pace driven by military demands, but after World War II, radar has been used

for diverse civilian purposes as well. The wide range of radar applications and developments

in the signal processing domain stimulate radar researchers to design and implement more and

more sophisticated radar systems in order to meet the increasing accuracy requirements.

In recent years, a concept termed multiple-input multiple-output (MIMO) radar has been at-

tracting increasing attention, which was motivated by intensive research on MIMO wireless

communications since 1990s. This is not surprising due to the fundamental similarity between

communication systems and radar in that they both utilize antennas to transmit and receive

EM signals. There is no explicit definition of MIMO radar as many different research groups

have tackled MIMO radar problems from various perspectives. MIMO radar can be broadly

defined as a radar system deploying multiple antennas to simultaneously transmit arbitrary

waveforms and utilizing multiple antennas to receive signals which are then processed jointly.

Researchers in this field have demonstrated considerable potential gains from MIMO radar in

scintillation mitigation, resolution enhancement, and interference suppression, etc. By fully

exploiting these benefits, MIMO radar is capable of significantly improving target detection,

1
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parameter estimation, tracking and recognition performance compared with its conventional

phased-array counterpart [1].

Motivated by breakthroughs in communications theory, one important notion of MIMO radar is

proposed by Fishler et al. in [3] that the system performance can be dramatically enhanced by

taking advantage of the spatial diversity gain provided by the array-target configuration. More

specifically, such a gain is determined by the interelement spacing of the antenna array, the

size of the target, and the distance between the antenna array and the target. Spatial diversity

gain is one of the two major benefits realized by MIMO communication systems, and it is of-

ten achieved by transmitting the same signal through different sub-channels and combining the

information at the receiver. Diversity gain is used to combat channel fading and thus enhance

the link reliability of the system [4,5]. The same idea can be exploited in radar scenarios. It has

long been understood that common radar targets are complex bodies, and large scintillations in

the amount of energy reflected by a complex target can occur with only very small changes in

the illuminating direction. The antennas of MIMO radar are widely separated such that different

antennas observe different aspects of the target, and the target returns resulting from indepen-

dent illuminations are combined together leading to a spatial diversity gain. This is similar to

that obtained in the communication systems when the data is transmitted through independent

channels. The underlying idea of diversity gain in MIMO radar is that any individual view of

the target might have a small return with a significant probability, but by increasing the number

of look directions, the probability that all directions have small returns can be very low [6]. The

target deep fading or scintillation problem, which severely degrades the performance of con-

ventional radars whose antennas are closely spaced, is overcome by taking advantage of spatial

diversity gain, leading to a significantly enhanced target detection and parameter estimation

performance of MIMO radar [7–10].

The MIMO model presented in the literature can only be adopted in radar systems with extreme

configurations, and it is derived based on assumptions which may be not realistic in practice.

In order to investigate performance of radar systems with arbitrary configurations, a new model

has to be considered. In addition, since different configurations yield distinct system perfor-

mance results, an immediate question “What is the best architecture for a radar system when

the number of antennas is fixed?” needs to be answered. Moreover, for a radar system with a

specified configuration, it is obvious that waveform design is a crucial problem as the choices

of transmitted signals affect system performance considerably. The superiority of MIMO radar
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and the questions mentioned above inspired the work documented in this thesis.

1.2 Objectives and Contributions of the Thesis

1.2.1 Objectives

The objective of the work presented in this thesis is to investigate the performance of a MIMO

radar system taking advantage of spatial diversity gain. It aims to find out the effects that dif-

ferent configurations of a MIMO radar system have on detecting both theoretical and realistic

targets. The next purpose is to seek the best architecture for a radar system with a fixed num-

ber of antennas, taking into account both target detection and direction finding performance.

Finally, this work also aims to provide waveform and detector design schemes for a MIMO

system to enhance target detection performance.

1.2.2 Contributions

The main contributions of this thesis can be summarized as follows:

• A finite scatterers model is introduced to solve the problem that the existing idealized

statistical model proposed for MIMO radar can only be adopted in extreme scenarios. A

closed form formula is derived to calculate the theoretical probability of detection for a

MIMO radar having an arbitrary array-target configuration. This theoretical result makes

it possible to predict the actual MIMO radar performance before implementing expensive

experiments and avoiding time consuming simulations.

• Based on the finite scatterers model, a MIMO radar system is set up involving a realistic

target which is a life-size land vehicle. The target detection performance of the system

with different configurations is simulated, and the numerical results corroborate previous

conclusions drawn based on theoretical and mathematical target models, validating in a

practical setting the improvements in detection performance available from MIMO radar

configurations. To the author’s knowledge, this is the first effort of its kind in the open

literature.

• A hybrid bistatic radar is introduced, which combines the phased-array and MIMO con-

figurations to simultaneously take advantage of both coherent processing gain and spatial
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diversity gain. This hybrid radar is a general system model and it can be utilized to de-

scribe various practical radar configurations, including the MIMO and phased-array con-

figurations as special and extreme cases. Theoretical expressions are derived to evaluate

both the target detection and direction finding performance of a hybrid radar, which can

be used to select the best architecture for a given specific scenario, particularly when the

total number of antennas is fixed.

• A modified detection process based on time-reversal (TR) detection, an approach to im-

prove the detection performance of a radar system, is explored to overcome the latter’s

limitations. Three detectors requiring different amounts of a priori information are de-

veloped, whose theoretical thresholds and probabilities of detection are derived. Three

schemes are proposed to design the retransmitted waveform with constraints on the trans-

mitted signal power, further enhancing the system detection performance significantly

compared with the TR approach.

1.3 Organisation of the Thesis

The rest of the thesis is organised as follows:

Chapter 2 presents the general principles and background knowledge related to the topic of

this thesis. It starts with an introduction to the key components of a radar system, followed

by a brief review of conventional radars employing multiple antennas. Then important signal

processing approaches addressing the target detection and direction finding problems are dis-

cussed. After reviewing the current state of MIMO radar research, the time-reversal technique

and its applications in radar for target detection are also discussed.

Chapter 3 evaluates the target detection performance of a MIMO radar system having an ar-

bitrary array-target configuration. After a short discussion of the statistical MIMO model and

its limitations, a finite scatterers model is introduced. MIMO radar with a theoretical target

is then examined, and a closed form formula to calculate the theoretical probability of detec-

tion for such a system is derived, following which the analysis of two extreme channel models

and simplified expressions of the formula for two special cases are provided. Finally, MIMO

radar involving a realistic target is set up by using the data collected from previous research on

target modelling, and the detection performance of the system with different configurations is

simulated.
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Chapter 4 studies a hybrid bistatic radar which combines the phased-array and MIMO configu-

rations, providing a balance between coherent processing gain and spatial diversity gain. This

chapter starts with the description of the hybrid radar configuration, along with its channel and

signal models. Next, a closed form expression is derived to assess the theoretical probability

of detection for different configurations of the hybrid radar system. In the end, the perfor-

mance of the radar as a direction finding system is evaluated. An initialization process is first

described, during which the angle of departure (AoD) is estimated. Then the angle of arrival

(AoA) estimation is considered when the true AoD, or the estimated AoD obtained during the

initialization stage is known at the transmitter, and for the latter, the effect the estimation error

in AoD has on finding AoA is measured.

Chapter 5 investigates a MIMO detection process developed based on the time-reversal (TR)

detection proposed in the literature to enhance radar target detection performance. Three de-

tectors demanding different amounts of a priori information are discussed, whose theoretical

thresholds and probabilities of detection are derived. Then, with constraints on transmitted sig-

nal power, three schemes are proposed to design the retransmitted waveform based on the noisy

estimated channel and a parameter indicating the quality of the estimation. Lastly, a compari-

son of the performance of various detectors is done, followed by a comparison drawn between

different waveform design schemes and the TR approach.

Chapter 6 summarises the whole thesis and states possible directions of future research.
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Chapter 2
Background

In this chapter, we will present a discussion of some fundamental principles of radar required

for this project, and a review of the work done by the research community in the emerging field

of MIMO radar. The content of this chapter provides the reader with a basic background of

the current work and will be frequently referred to in the rest of the thesis. This chapter will

divide into two main parts, dealing separately with conventional and recently developed radars

respectively. In the first part, some key concepts of a radar system will firstly be described,

followed by an introduction to conventional radars utilizing multiple antennas as well as long-

familiar approaches for target detection and direction finding problems. The second part will

cover two new schemes that have appeared in the radar community, MIMO radar and the radar

time-reversal technique, which can provide improved performance over conventional radars.

2.1 Basic Background of Radar

In this section, we will introduce some basic concepts of radar systems and briefly discuss three

conventional multiple antenna radars. More details can be found in some classic textbooks, such

as [11].

2.1.1 Tasks of Radar

The underlying concept of radar systems is that the transmitter emits electro-magnetic (EM)

signals into an environment and the receiver collects the echoes reflected from objects. The

reflected signals are then appropriately processed in order to detect the presence of targets

and/or to extract as much information about the targets as possible. Early radar was devel-

oped for military applications such as surveillance of hostile targets and control of weapons to

guide missiles and fighter aircraft. However, radar now has been widely employed for civil-

ian applications including air traffic control, police detection of speeding traffic, marine and

air navigation, detection and tracking of weather disturbances, etc. [11, 12]. Regardless of the

broad ranges of applications, the two basic tasks of radar are:
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Detection of the presence of reflecting targets, which is the most fundamental function of a

radar system. To accomplish this task, an EM waveform is transmitted and it will be

reflected by targets if they are present. The function of a detector is to decide whether

the received signal is the reflected echo in noise (targets exist) or noise only (no target).

If targets are detected, one may be interested in determining their characteristics, which

leads to the second task of radar.

Extraction of information about targets from the received signals. The radar receiver measures

the echoes reflected by the target, and several parameters of the target can be estimated

by observing a series of measurements as a function of position, time, and frequency.

Some of the most important parameters of a target being illuminated by a radar system

are [11]:

• Range: Range is the distance between the radar system and the target. One ap-

proach to estimate the range is to transmit a short pulse and measure the time dif-

ference between the transmission and the reception of the echo signal. Another

method is to transmit a chirp whose frequency changes with time, and then mea-

sure the difference in frequency by comparing the frequency of the received signal

to the one currently being emitted, which gives the time difference and thus the

range.

• Angle: The angle information, such as angle of arrival (AoA), indicates the direc-

tion of the target with respect to the radar system, and it specifies the exact target

location when combined together with the range. The target direction finding prob-

lem is usually solved by processing the signals impinging on an antenna array, i.e.,

spatial samples of the echo signal reflected by the target.

• Velocity: Measuring the velocity of targets is the main objective of several radar

systems, such as the police speed radar. The velocity information is also used in

a moving target indication (MTI) radar to separate the moving target echoes from

the stationary clutter, and the latter is unwanted and can be very strong in many

cases. The target motion relative to the radar system results in the Doppler effect,

i.e., frequency shift in the echo signal. The Doppler frequency can be estimated

from the received echoes and consequently the velocity can be known.

Before we proceed to introduce the signal processing algorithms for target detection and pa-

rameter estimation, important properties of radar targets and sources of interference in radar
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systems will be discussed first.

2.1.2 Radar Cross Section of Target

Scattering occurs when a target is illuminated by an EM wave, causing the incident energy to

be re-radiated (scattered) in many different directions away from the target. The amount of

energy scattered in the direction of the receiver is of chief interest in radar since it indicates

how detectable the target is, and it is characterized by the target’s radar cross section (RCS).

The RCS of a target is the required area of a hypothetical perfectly reflecting sphere at the

target location, such that the power actually received at the receiver is produced. The perfectly

reflecting sphere means that it scatters the incident power isotropically. Scattering, and hence

the RCS, depends on a large number of properties of both the target and the illuminating EM

wave, including the material and absolute size of the target, target size relative to the wavelength

of the EM wave, the incident angle and reflected angle, distance between the target and the

transmitter and receiver, etc. [13].

Common types of radar targets such as aircraft, ships, and terrain, are complex bodies composed

of many scatterers, and their RCS are complicated functions of the viewing aspect, the radar

frequency, and also the range. Both experimental measurements and modelling simulations

demonstrate that a small change in the target aspect of only a fraction of a degree may lead

to scintillations of 15dB or more in the reflected energy [11]. In order to properly assess the

effects of these scintillations, the RCS of a complex target is best described by an appropriate

statistical model which is chosen according to assumptions about the nature of the target. There

are several widely adopted statistical RCS models, for example, the Chi-square target model,

the classical Swerling I - Swerling IV models, the Rice target model, etc. [12, 14].

2.1.3 Interference

Information about a target is carried by the signal reflected from the target which always ex-

periences interference by undesired signals, degrading the system performance. Interference in

radar has long been deeply studied and it can be divided into the following three categories:

Noise: Noise may be generated by internal sources such as electronic devices in the radar

receiver, and/or by external sources like the background environment surrounding the
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target and the receiver. Noise is always present and normally modelled as a random

addition to the desired echo signal.

Clutter: Clutter is defined as unwanted radar echos, including reflections from ground, sea,

clouds, rain, snow flakes, trees, birds, insects, and man-made structures, etc. [15]. It is an

important task of the radar to distinguish clutter from the echo signals reflected by targets,

and clutter sources in certain radar applications can be targets in other circumstances.

Clutter is viewed as a passive interference since it is a response to the signals transmitted

by the radar. In some scenarios, clutter could be so strong that the targets are difficult

or even impossible to be detected. The modelling of clutter has been investigated in

depth because a proper model is essential in clutter suppression, and there are several

widely adopted statistical models fitting reality quite well, such as the Gaussian, Weibull,

noncentral Chi-square, Log-normal, and K-distributed models [12, 16–18].

Jamming: Jamming arises from signals emitted by intentional hostile sources or unintentional

friendly sources which use the same frequency range as the radar does. Jamming is

considered as an active interference since it is transmitted by devices outside the radar

and is generally independent of the radar signals. Jamming can severely degrade the

usefulness of a radar by either masking real targets with high power noise (confusion), or

producing false signals which appear as echoes from real targets (deception) [11].

2.1.4 Radar vs. Sonar

Although this thesis mainly focuses on radar, we notice that the underlying mathematical theo-

ries of radar and sonar are very similar. Thus, we briefly discuss the similarities and differences

between these two remote sensing systems in this section.

Similar to the word radar, the term SONAR was originally an acronym for “SOund Navigation

And Ranging”, and has become a standard English word today. Working in the same way as a

radar does, a sonar system transmits acoustic waves into an environment (usually underwater)

from projectors, and then the echoes reflected from targets are received by hydrophones. The

device being able to both transmit and receive acoustic signals is called a transducer, which is

commonly utilized in sonar systems. The basic tasks of sonar are the same as that of radar: to

detect the presence of targets and to extract information about targets from the received waves.

In the sonar community, the energy reflected from a target is described by the target strength,
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which, similar to the RCS of a radar target, is a function of the target size, material, and shape,

etc. [19]. The performance of sonar is also degraded because of noise and interference. Possible

noise sources are waves on the surface of the ocean, shipping traffic, sea-life such as shrimp,

whales, and dolphins, the electronic devices in the receiver and so on [20]. Similar to clutter

in radar, reverberation affects sonar performance significantly. Reverberation is defined as

undesired received echoes due to scattering from objects in the sea, the bottom and surface of

the ocean, etc., and it is a response to the acoustic signals emitted by the sonar.

The fundamental difference between radar and sonar is the type of transmitted signal and prop-

agation medium. Radar sends out EM waves propagating in air while sonar emits acoustic

waves normally in water. This is because EM waves are severely attenuated underwater, while

acoustic signals can penetrate water more easily. Hence, radar signals travel at a constant speed

3× 108 meters per second, while sonar waves propagate at various velocities depending on the

medium they are traveling through. The speed of acoustic waves in water is approximately 1500

meter per second, and it is no longer a constant value but a function of water temperature, salin-

ity, and pressure (or ocean depth) [21]. This speed fluctuation makes the propagation of sonar

signals very complicated and may lead to waveform distortion. Another difference between

them is the operating frequency. The frequencies of radar systems are typically on the order of

1 GHz, while sonar systems operate at much lower frequencies, i.e., less than 500kHz [22]. A

low frequency is utilized in sonar because the absorption of acoustics strongly depends on fre-

quency, and the higher the frequency, the greater the absorption, and thus the higher the sound

attenuation for a given distance. We emphasize here that although in essence the mathematical

expressions presented in this thesis can be used for both radar and sonar systems due to their

similar underlying theories, Chapter 3 and Chapter 4 are more based on radar scenarios, while

Chapter 5 is more suited to sonar environments.

2.1.5 Conventional Multiple Antenna Radars

Due to the presence of interference, some tasks of a radar may not be accomplished satisfac-

torily by a single antenna, and one solution is to employ an antenna array at the radar receiver

and/or transmitter. Radar array processing has been a topic of intensive research and developed

considerably for many years, and we will discuss three conventional multiple antenna radar

systems in this section. Notice here that the antenna elements can be arranged in many ways

to construct a linear, planar, or volumetric array, and the interelement spacings can be uniform,
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non-uniform, or random [23]. In this thesis, we mainly consider the most widely known con-

figuration, the uniform linear array (ULA), whose antenna elements are equally spaced along

a straight line and are assumed to be omnidirectional. However, other typical array configura-

tions can also be adopted in principle, such as circular arrays, parallel linear arrays, and arrays

with three linear arms spaced at 120◦ with a common center [23]. Note here that, strictly speak-

ing, the configuration considered in Chapter 4 is not an ULA but a linear array with unequal

spacings.

2.1.5.1 Conventional Phased-Array Radar

A ULA is often employed at the receiver in the conventional phased-array radar, and it can also

be used at the transmitter if the radar is active. We will discuss the processing at the receiver

in this section, the transmission processing is very similar. As depicted in Figure 2.1, an N -

element ULA with interelement spacing d is illuminated by a target located in the far field

whose direction is specified by the angle Φ with respect to the perpendicular direction to the

array. The far field assumption implies that the distance between the target and the receiver is

much larger than the dimension of the antenna array such that a plane wave impinging on the

array in the target direction Φ should be considered. We further assume that all the signals are

narrowband, i.e., the bandwidth of the incident wave is much smaller than the carrier frequency

fc. At time t, the antennas of the array spatially sample the received signal at different locations

and the array outputs can be given by an N × 1 vector:

r(t) = s0(t) ·Ψ(Φ) + n(t)

Ψ(Φ) =
[

1 exp
{

j2πd
λc

sinΦ
}

· · · exp
{

j2π(N−1)d
λc

sinΦ
} ]T (2.1)

where the superscript T denotes the matrix transpose, s0(t) is the value of the signal arriving

at the first antenna element which is viewed as a reference point, λc is the wavelength of the

signal, and the N × 1 vector n(t) is the additive noise at all the antennas. Ψ(Φ) is an N × 1

vector, which is usually referred to as the steering vector of the array in the direction Φ, and Φ

is normally known as the angle of arrival (AoA). It is clear that the signals arriving at different

antennas are the same except the phase terms exp
{

j2πkd
λc

sinΦ
}

, k = 0, 1, ..., N − 1, which

arise due to different propagating distances to the antennas, i.e., the spatial delays with respect
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to the reference point (Antenna Element 1) illustrated in Figure 2.1.

Antenna 
Element 1

Plane waveSpatial 
delay

( 1) sinN d− ⋅ Φ

sind ⋅ Φ

2 sind ⋅ Φ

d d
Antenna 
Element 2

Antenna 
Element 3

Antenna 
Element N

Figure 2.1: Plane wave impinging on an uniform linear array (ULA)

The receiver employs a beamformer to linearly combine the received signals with different

weighting coefficients, and information about the target will be extracted based on the output

of the beamformer which is given by:

x(t) = wHr(t) = s0(t) ·wHΨ(Φ) + wHn(t)

= s0(t) ·
N∑

k=1

w∗k exp
{

j(k−1)2πd
λc

sinΦ
}

+
N∑

k=1

w∗knk(t)
(2.2)

where the superscripts ∗ and H stand for the complex conjugate and conjugate transpose oper-

ation, respectively. The scalar wk is the k-th entry of the N ×1 vector w and it is the weighting

coefficient corresponding to the k-th antenna, and nk(t) is the k-th element of the noise vector

n(t). The beampattern is the power of the beamformer output as a function of the direction

along which it is measured and it can be defined as [24]:

B(Φ) =
∥∥wHΨ(Φ)

∥∥2
= wHΨ(Φ)ΨH(Φ)w (2.3)

where ‖·‖ represents the Euclidean norm. We show the beampattern of a conventional beam-
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former which coheres a beam toward the direction Φ0 = 0◦ in Figure 2.2 as an example, and the

arrays adopted are standard ULAs (interelement spacing d = λc
2 ) with 2, 4, 6, and 8 antennas.

From Figure 2.2, we find that the more the antennas, the larger the array length, and thus, the

higher the peak power and the narrower the beam. Observing (2.3) and Figure 2.2, it is clear

that a beamformer has various gains for signals from different directions. Therefore, one can

detect a target in the direction Φtgt by adopting a beamformer whose beampattern has large

value at that angle, or cancel an interference from a certain angle by utilizing a beamformer

having small beampattern in that direction. From (2.3), we know that a beamformer is able to

produce a desired beampattern by controlling the weighting coefficients wk. In the conventional

phased-array radar, the weighting vector is chosen as w = Ψ(Φ0), i.e., the beamformer coheres

a beam toward the direction of interest Φ0. If the beam angle Φ0 equals the target angle Φ, then

a coherent processing gain wHΨ(Φ) = N can be realized. Since the weighting coefficients

can be changed electronically, the conventional phased-array radar essentially realizes a radar

with a directional antenna without any costly mechanical operations.
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Figure 2.2: The beampattern of a conventional beamformer aimed at 0◦, and the arrays are
standard N -element ULAs (interelement spacing d = λc

2 ) with different numbers
of antennas N

The angle Φ is normally restricted to the range [−π/2, π/2], i.e., only the wave propagating

over the forward half of the antenna is considered [11]. Further define θ = 2πd
λc

sinΦ which is

termed the electrical angle, and the beampattern can be rewritten as
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B(Φ) =

∥∥∥∥∥
N∑

k=1

w∗k exp
{

j(k − 1)2πd

λc
sinΦ

}∥∥∥∥∥

2

=

∥∥∥∥∥
N∑

k=1

w∗k exp {j(k − 1)θ}
∥∥∥∥∥

2

(2.4)

If the value of θ lies outside the range [−π, π], then there will be multiple values of Φ corre-

sponding to the same θ, making it impossible to find the direction unambiguously. This spatial

aliasing effect happens when the interelement spacing is larger than the half-wavelength λc
2 .

Therefore, we typically choose d = λc
2 such that θ = 2πd

λc
sinΦ = π sinΦ ∈ [−π, π], ensuring

no aliasing exists in the beampattern.

2.1.5.2 Adaptive Array Radar

The conventional phased-array radar maximizes the output power for signals from a certain di-

rection by utilizing a beamformer whose weighting coefficients are fixed and determined only

by the locations of the antenna elements and the direction of interest [25]. The performance

of this radar can be significantly degraded by strong directional interference, and thereby, an

adaptive array radar is proposed. It adopts an adaptive beamformer which can adjust its weight-

ing coefficients based on some optimality criterion which depends on the characteristics of the

scene being observed, such as the target and clutter statistics. One simple example of the design

criterion is to maximize the signal to noise ratio (SNR) [26]. Assume that the received array

data is the sum of the desired signal component s and the unwanted noise component n, whose

covariance matrices are Cs and Cn, respectively. The goal of this adaptive beamformer is to

find the weighting vector w which maximizes the SNR, that is,

max
w

wHCsw
wHCnw

(2.5)

Solving the above optimization problem yields the optimal weighting vector wopt which is the

eigenvector of the matrix C−1
n Cs corresponding to the largest eigenvalue. Here C−1

n denotes

the matrix inverse of Cn.

The adaptive beamformer has long been studied and there are a large number of techniques

[26–29], but the most well known is the linearly constrained minimum variance (LCMV) beam-
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former proposed by Frost [30]. This algorithm minimizes the output power of the beamformer

while constraining the responses of the beamformer to signals from directions of interest equal

to specific values, which can be expressed as below:

min
w

wHCrw s.t.RHw = f (2.6)

where Cr is the covariance matrix of the signals received by the antenna array, and the columns

of the matrix R are the steering vectors of the array corresponding to the directions of interest

and the entries of the vector f specify the desired responses. The above constraint optimization

problem can be solved by the method of Lagrange multipliers as follows:

wopt = C−1
r R(RHC−1

r R)−1f (2.7)

For the special case of R = Ψ(Φ0) and f = 1, the above solution is the well known minimum

variance distortionless response (MVDR) beamformer first derived by Capon in [31]. The

steering vector Ψ(Φ0) is defined in (2.1) and the angle Φ0 is the direction of the target. The

MVDR beamformer avoids desired signal distortion in amplitude or phase while suppressing

the unwanted interference.

Several adaptive algorithms have been developed for efficient implementation of adaptive beam-

formers [24, 30, 32], reducing the computational complexity which is primarily due to a matrix

inversion operation. However, these algorithms require a large number of samples to reach the

steady-state behavior when the number of antennas is large. An efficient technique to solve such

a problem is reduced-rank adaptive filtering, and several algorithms were proposed [33–42].

The reduced-rank algorithm projects the received data vector onto a lower-dimensional sub-

space and performs the optimization within it, reducing the number of adaptive coefficients and

extracting the most important characteristics of the processed data.
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2.1.5.3 Multistatic Radar

A multistatic radar, also termed as a multisite or a netted radar, consists of several transmitters

and receivers whose locations are sparsely separated such that different aspects of a target can

be viewed simultaneously, bringing in a spatial diversity gain. Each of the possible transmitter-

receiver pairs works just as an individual radar, which is capable of accomplishing target de-

tection and/or estimation. The outcomes of the local processing are then delivered to a central

processor through a communication link [43]. The central processor jointly fuses the outputs

coming from all the transmitter-receiver pairs and provides a global result [44–46]. A statistical

MIMO radar, which will be introduced in Section 2.3.1, can be viewed as a form of multistatic

radar in a sense, but there are some differences between them. A statistical MIMO radar pro-

cesses the signals picked up by all the receivers jointly, while the multistatic radar handles the

received signals by a two-step approach including local processing in the initial stage and a

decision fusion in the second stage.

2.2 Basic Review of Radar Signal Processing

Having introduced some basic concepts of a radar, this section will proceed to discuss basic

approaches for the radar target detection and the direction finding problem, and more advanced

methods developed recently will be deferred to the next section.

2.2.1 Target Detection Approach

The target detection problem in radar is to decide whether the received signals contain both the

desired signal and noise or simply noise only, which can be described as follows:

r =





n H0

s + n H1

(2.8)

where r, s, and n represent the observed signals, the desired signals, and the noise, respectively.

The alternate hypothesis H1 and null hypothesis H0 are that the target does or does not exist,

respectively. Our goal is to find an appropriate function of the observed data and make the

detection decision by comparing the value of the function with a pre-determined value, hoping
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that the decision is correct most of the time. The detection process is usually expressed as

T (r)
>H1

<H0

η (2.9)

where the function of the data T (r) is termed as the test statistic or the detection rule and

η is called the threshold. As shown in Table 2.1, four events are possible, two of which are

erroneous and thereby unwanted. Since the noise, and thus the observed signals, are always

assumed to be random variables, the performance of a target detector is commonly assessed by

evaluating the possibilities the events would happen. Notice here that the observed signals r are

assumed to be discrete samples, while in reality we normally observe continuous waveforms.

The conversion can be easily done by a pre-processing, e.g., matched-filtering the observed

waveforms followed by appropriate sampling. The values of interest are the probability of false

alarm PrFA (decide a target is present when it is not) and the probability of missed detection

PrMD (decide no target exists when it does), and both error probabilities are expected to be as

small as possible. Notice here that evaluating PrMD is equivalent to calculating the probability

of detection PrD since their sum is always equal to one.

H0: No target H1: Target Exists
Decide No Target Correct Type II Error (Missed Detection)

(T < η) PrMD = Pr(T < η|H1)
Decide Target Exists Type I Error (False Alarm) Correct

(T ≥ η) PrFA = Pr(T ≥ η|H0) PrD = Pr(T ≥ η|H1) = 1− PrMD

Table 2.1: Decisions and probabilities of interest in target detection

It is obvious that both error probabilities depend on the value of the threshold η, and as illus-

trated in Figure 2.3, increasing the threshold η can reduce PrFA but enlarging PrMD, while

PrMD can be decreased by reducing η at the expense of increasing PrFA. Reducing both error

probabilities simultaneously is impossible and there is a trade-off between them when choosing

the threshold [47]. A common approach is to select the threshold η such that the probability of

false alarm is fixed at a required value, and such a detector is referred to as constant false alarm

rate (CFAR) detector. Recalling the definition PrFA = Pr(T > η|H0), it is clear that the test

statistic T has to be known in order to determine η from the value of PrFA. We emphasize

here that the test statistic is a function of the observed data and different choices of function
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will lead to distinct detection performance results. We will next introduce several widely used

approaches.

T

Threshold

0PDF( )T H 1PDF( )T H

Probability of 
False Alarm

Probability of 
Missed Detection

Decide 
Target Exists

Decide No 
Target 

Figure 2.3: Decision regions and Error probabilities

The most classical approach is based on the Neyman-Pearson theorem, which states that for a

given probability of false alarm PrFA, the detector maximizing the probability of detection PrD

(equivalent to minimizing the probability of missed detection PrMD) is [47]

TLRT(r) =
PDF(r|H1)
PDF(r|H0)

>H1

<H0

η (2.10)

where the threshold η is determined from

PrFA = Pr(T > η|H0)

=
∫ +∞
η PDF(T |H0)dT =

∫
{r:T (r)>η} PDF(r|H0)dr

(2.11)

where PDF(r|H1) and PDF(r|H0) denote the probability density function (PDF) of the ob-

served data r under the alternate hypothesis H1 and null hypothesis H0, respectively. The test

(2.10) is referred to as the likelihood ratio test (LRT). The LRT detector requires complete

knowledge of the PDFs of the observed data under both hypotheses, which are not always pos-

sible in realistic scenarios. When unknown parameters exist in one or both PDFs, there are two
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major approaches addressing the problem based on the LRT: the generalized likelihood ratio

test (GLRT) and the Bayesian approach.

The GLRT views the unknown parameters as deterministic and replaces the unknowns by their

maximum likelihood estimates (MLEs), which can be expressed as below [47]:

TGLRT(r) =
PDF(r| θ̂1,H1)
PDF(r| θ̂0,H0)

>H1

<H0

η (2.12)

where θ1 and θ0 denote the unknown parameters included in PDFs under H1 and H0, respec-

tively. θ̂i is the MLE of θi under Hi (maximizes PDF(r|θi,Hi)), and PDF(r| θi,Hi) is the

PDF of the data r under Hi when θi is known, where i = 0 or 1.

The Bayesian approach assumes that the unknown parameters θ0 and θ1 are random vectors

with known prior PDFs PDF(θ0) and PDF(θ1), respectively, and the detector is given by [47]

TBLRT(r) =
PDF(r|H1)
PDF(r|H0)

=
∫

PDF(r|θ1,H1)PDF(θ1)dθ1∫
PDF(r|θ0,H1)PDF(θ0)dθ0

>H1

<H0

η (2.13)

The Bayesian approach has the same optimality as the Neyman-Pearson test since the uncondi-

tional PDFs PDF(r|H0) and PDF(r|H1) no longer depend on the unknowns after the inte-

grations. However, the multidimensional integration is always impossible to calculate in closed

form, and it can be difficult to select proper prior PDFs for the unknown parameters. The GLRT

is a practical approach when unknown parameters exist by virtue of its ease of implementation

in realistic scenarios, although it cannot be claimed to be optimal in any sense.

2.2.2 Direction Finding Techniques

One of the most important parameters of a target is its direction with respect to the radar re-

ceiver, i.e., AoA discussed in Section 2.1.5.1. A large number of techniques have been devel-

oped for AoA estimation and some of the most popular algorithms will be discussed in this

section. As in Section 2.1.5.1, we focus our attention on the scenario that narrowband signals
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impinge on an antenna array. Notice that only a single target is assumed to be present in (2.1),

but here we extend that to the multiple targets case so that the signals received by the antenna

array can be expressed by an N × 1 vector as below:

r(t) = Θs(t) + n(t) (2.14)

where the K×1 vector s(t) contains the signals impinging on the array from the K targets and

the N ×1 vector n(t) includes the additive white Gaussian noise received at each antenna. The

k-th column of the N ×K matrix Θ is the steering vector of the antenna array corresponding

to the k-th target, which is given by

Ψ(Φk) =
[

1 exp {jπ sinΦk} · · · exp {jπ(N − 1) sin Φk}
]T

(2.15)

Here Φk is the AoA of the k-th target and the antenna array is assumed to be an N -element

ULA as shown in Figure 2.1 with interelement spacing d = λc
2 . Note that K has to be smaller

than N . The covariance matrix of r(t) is the basis of many algorithms, which is defined as

Cr = E
{
r(t)rH(t)

}
= ΘCsΘH + σ2

nIN (2.16)

where the K × K matrix Cs is the covariance matrix of the signal vector s(t) and σ2
nIN

is the covariance matrix of the white Gaussian noise vector, where IK denotes the K × K

identity matrix. Recall that acquiring the exact value of the second-order statistics of the data

Cr requires infinite observation time, while in practice only a finite number of observation

samples are available. If L snapshots of the data vector r(t) are known, a common approach to

estimate Cr is to compute the sample covariance matrix as

Ĉr =
1
L

L∑

l=1

r(tl)rH(tl) (2.17)
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where tl is the time at which the l-th snapshot of the received signal r(t) is sampled. Direction

finding techniques estimate the AoAs of targets through analyzing the structure of Cr, and here

we introduce several algorithms which are frequently employed.

• Conventional Beamformer

The general idea of beamforming techniques is to “steer” the array in one direction at

a time and measure the output power, and the AoA estimates are the locations of the

highest peaks. The conventional (or Bartlett) beamformer [48] maximizes the power of

the beamforming output for a given input signal, i.e., the weighting vector wBF = Ψ(Φ),

which produces the following output power spatial spectrum

PBF(Φ) = wH
BFCrwBF = ΨH(Φ)CrΨ(Φ) (2.18)

The resolution limit of the conventional beamformer prevent the separation of targets

with close AoAs, and for an N -element ULA with interelement spacing d, the resolution

is approximately λc
Nd [49]. For example, by utilizing a standard ULA with 6 antennas and

half-wavelength spacings, two targets whose angle separation is less than 1
3 rad ∼= 19◦

will not be resolved regardless of the available data quality or quantity.

• Capon’s Beamformer

In an attempt to separate closely spaced targets, Capon’s beamformer (also known as

the MVDR beamformer mentioned in Section 2.1.5.2) was proposed, whose weighting

vector is appropriately chosen such that the total output power is minimized while the

signal along the look direction passes the beamformer with unit response. Based on

(2.7), the weighting vector can be expressed as follows:

wCapon =
C−1

r Ψ(Φ)
ΨH(Φ)C−1

r Ψ(Φ)
(2.19)

The power spatial spectrum yielded by the weighting vector is given by
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PCapon(Φ) = wH
CaponCrwCapon =

1
ΨH(Φ)C−1

r Ψ(Φ)
(2.20)

Since the power contributed by the undesired interference coming from directions other

than the look direction is minimized, the spectral leakage from nearby targets is attenu-

ated. Hence, the Capon’s spectrum has sharper peaks and thus better resolution compared

with the conventional beamformer. There are many alternative algorithms for beamform-

ing and the interested reader may refer to [25] for a comprehensive overview.

• The MUSIC Algorithm

The MUSIC (MUltiple SIgnal Classification) algorithm [50] analyzes the covariance ma-

trix Cr by performing the eigendecomposition and dividing the eigenvalue/eigenvector

pairs into two classes as below:

Cr = ΘCsΘH + σ2
nIN = UrΛrUH

r = UsΛsUH
s + σ2

nUnUH
n (2.21)

where the N ×N matrix Ur is a unitary matrix whose columns are eigenvectors and Λr

is a diagonal matrix with N real and positive eigenvalues λ1, λ2, . . . , λN (in decreasing

order) as its diagonal elements. Since K targets are assumed to be present and Cs is often

assumed to be nonsingular, the matrix ΘCsΘH has K positive eigenvalues and N −K

zero eigenvalues. It is clear that any vector orthogonal to Θ is an eigenvector of Cr with

eigenvalue σ2
n and there are N − K linearly independent such vectors. Therefore, the

eigenvalue/eigenvector pairs are partitioned into (a) the signal eigenvectors Us whose

columns are the eigenvectors corresponding to the largest K eigenvalues λ1 ≥ λ2 ≥
. . . ≥ λK > σ2

n and (b) the noise eigenvectors Un whose columns are the eigenvectors

corresponding to the remaining N −K eigenvalues λK+1 = λK+2 = . . . = λN = σ2
n.

Collectively, the eigenvectors Us and Un are ofen called the signal subspace and noise

subspace, respectively. Since the columns of Un (the noise eigenvectors) are orthogonal

to Θ, hence, for all the K AoAs {Φ1,Φ2, . . . ,ΦK}, we have UH
n Ψ(Φk) = 0. The

MUSIC power “spatial spectrum” is defined as
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PMUSIC(Φ) =
1

ΨH(Φ)UnUH
n Ψ(Φ)

(2.22)

Although PMUSIC(Φ) is not a true power density spectrum, it exhibits peaks in the vicin-

ity of the true AoAs [51]. Figure 2.4 illustrates the spectra of the conventional beam-

former, Capon’s beamformer, and the MUSIC algorithm when two targets exist, whose

AoAs are 5◦ and 15◦, respectively. Both signals have a SNR of 5dB, and all the three

approaches use L = 100 data snapshots obtained from a ULA with 6 antennas using

half-wavelength spacings. Observing the figure, we find that the conventional beam-

former fails to resolve the targets since the angular separation in this case is 10◦, which is

smaller than the resolution limit of 19◦. Capon’s beamformer barely separates the targets,

while the MUSIC algorithm produces two sharp peaks in the vicinity of the true AoAs.

It is clear that the MUSIC algorithm requires a search to find the target directions, which

can be avoided by applying the Root-MUSIC approach [52] if the array is a ULA. The

Root-MUSIC method is a polynomial-rooting version of the MUSIC technique, and in-

stead of a search, the AoAs can be determined by computing the roots of a polynomial.
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Figure 2.4: A comparison of the spectral-based algorithms for AoA estimation when two tar-
gets exist. The true AoAs are indicated by dotted vertical lines.
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The MUSIC method is based on the assumption that Cs is nonsingular, which is invalid

if the incident signals are coherent, e.g., the signals result from the multipath effect.

When this happens, Cs is singular and has zero eigenvalues. Thereby, it is impossible

to distinguish some signal eigenvectors from the noise eigenvectors, and as a result, the

noise subspace Un is no longer orthogonal to the steering vectors in the matrix Θ and

the MUSIC method may fail to yield peaks at the correct locations.

• Maximum Likelihood Methods

Although the spectral-based algorithms discussed before are computationally attractive,

they do not always provide sufficient accuracy, particularly for scenarios involving highly

correlated or coherent signals. One way to solve this problem is to employ parametric

approaches which directly estimate the AoAs by exploiting the underlying data model,

and the most popular parametric approach is the maximum likelihood (ML) technique

[53]. The likelihood function is the PDF of all the observation data given the unknown

parameters. The ML estimates of the parameters are the arguments that maximize the

likelihood function, since these values make the probability of the observations as large

as possible. Here we take a case which is commonly considered in the literature as an

example. Similar to (2.17), we denote by s(tl) the l-th snapshot of the signals emitted

from the K targets, where l = 1, 2, ..., L. It is assumed that the noise level σ2
n, s(tl),

and a K × 1 vector Φ, whose entries are the AoAs of the K targets Φ1, Φ2, ..., ΦK ,

are unknown. Obviously, the matrix Θ in (2.14) is a function of Φ and we drop the

argument of Θ(Φ) for notational convenience. Based on (2.14), the likelihood function

can be expressed as below:

L(Φ, s(tl), σ2
n) =

L∏

l=1

1
(πσ2

n)N
exp

{
− 1

σ2
n

[r(tl)−Θs(tl)]
H [r(tl)−Θs(tl)]

}
(2.23)

As mentioned before, the ML estimates of the parameters are the arguments maximizing

the likelihood function, and thus, the optimization problem can be rewritten as

min
Φ,s(tl),σ2

n

LN · log(πσ2
n) +

1
σ2

n

L∑

l=1

‖r(tl)−Θs(tl)‖2 (2.24)
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Previous researchers had derived the ML estimates of the AoAs by solving (2.24), which

can be given by [51]

Φ̂ML = arg min
Φ

trace
{[

IN −Θ
(
ΘHΘ

)−1
ΘH

]
· Ĉr

}
(2.25)

where Ĉr is the sample covariance matrix defined in (2.17). Note that for the special

case when there is only one target, the above equation reduces to the conventional beam-

former. Although the ML methods increase the estimation accuracy and robustness, they

typically require a multidimensional search for the parameters of interest and can only

be solved numerically, which may be too computationally expensive for practical use.

A large number of approaches for direction finding are documented in the literature, readers

interested in this area may refer to [51,54–68] and references therein for detailed presentations.

2.3 Review of MIMO Radar

MIMO radar has been receiving increasing attention in recent years, and loosely speaking, it

refers to an architecture that employs multiple antennas to simultaneously transmit waveforms

and utilizes multiple antennas to receive the reflected signals which are then jointly processed.

In general, MIMO radar systems can be classified into two categories according to their configu-

rations: (a) statistical MIMO radar, and (b) colocated MIMO radar. The antennas of a statistical

MIMO radar are widely separated in order to capture the spatial diversity of the target’s RCS,

while the antennas of the colocated MIMO radar are close enough such that all the elements

view the same aspect of the target. It has been demonstrated that both MIMO radar systems

have the ability to achieve significantly improved performance compared with the conventional

phased-array or adaptive radars, and we will discuss some important aspects of MIMO radar in

this section.

2.3.1 Statistical MIMO Radar

As mentioned in Section 2.1.2, large scintillations in the amount of energy reflected by a com-

plex target can occur because of small changes in the target aspect. These scintillations are
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responsible for signal fading, which may reduce the received energy to a level that does not al-

low reliable detection or estimation, severely degrading the system performance. The notion of

the statistical MIMO radar is to employ widely separated antennas such that different antennas

view various aspects of the target, capturing the spatial diversity of the target’s RCS.

2.3.1.1 System Model

Due to the target’s complex body and the large distance between the antennas, the point-like

target model which is commonly adopted in radar is no longer adequate for a statistical MIMO

radar. Therefore, a more accurate model has to be developed taking into account the spatial

characteristics of the target. Fishler et al. [8] assumed that the target is composed of an infinite

number of small scatterers that are distributed over an area S. The center of the target is denoted

by S0 whose coordinates are (x0, y0), and the target dimensions along the x and y axes are ∆x

and ∆y, respectively. The scatterers are assumed to be random, isotropic and independent,

and they are uniformly distributed over the area S. The complex reflectivity of each scatterer

is modeled as a zero-mean, white, complex random variable with the same variance, and the

sum of all the variances equals one such that the average energy returned from the target is

normalized to one.

It is further assumed that the target is illuminated by Nt transmit antennas placed at arbitrary

coordinates Tk = (xt
k, y

t
k), k = 1, 2, ..., Nt. The narrowband signal emitted from the k-th trans-

mit antenna is assumed to be
√

Es
Nt

sk(t), where ‖sk(t)‖2 = 1 and Es is the total transmitted

power. The normalizing coefficient is employed to make sure that the total transmitted power

and the average received power at each element are not affected by the number of transmit

antennas. The signals reflected by the target are collected by Nr receive antennas arbitrarily

located at coordinates Rl = (xr
l , y

r
l ), l = 1, 2, ..., Nr. Collectively denote the transmitted

signals from the various transmitting elements and the signals collected by all the receive an-

tennas by an Nt × 1 vector s(t) =
[

s1(t) s2(t) · · · sNt(t)
]T

and an Nr × 1 vector

r(t) =
[

r1(t) r2(t) · · · rNr(t)
]T

, respectively. The following expression is derived to

describe the received signal vector [8]:

r(t) =
√

Es

Nt
diag {Ψr(S0)} ·A · diag {Ψt(S0)}︸ ︷︷ ︸

H

s(t− τ) + n(t) (2.26)
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where diag{a} stands for a diagonal matrix with its diagonal given by the vector a, and n(t) =[
n1(t) n2(t) · · · nNr(t)

]T
is an Nr × 1 vector representing the additive noise at all

the receive antennas. Denote the distance between the k-th transmit antenna and the target

center, and the distance between the target center and the l-th receive element by d(Tk, S0) and

d(Rl, S0), respectively, where k = 1, 2, ..., Nt and l = 1, 2, ..., Nr. τ = d(T1,S0)+d(R1,S0)
c0

is

the propagation time delay from the first transmit antenna to the first receive antenna via the

target center, and c0 here is the speed of light. The Nr×1 vector Ψr(S0) and the Nt×1 vector

Ψt(S0) are the receiver steering vector and transmitter steering vector, respectively, which are

functions of the location of the target center S0 = (x0, y0) and can be expressed as below:

Ψr(S0)=
[

1 exp
{

j2πfc[d(R1,S0)−d(R2,S0)]
c0

}
· · · exp

{
j2πfc[d(R1,S0)−d(RNr ,S0)]

c0

} ]T

Ψt(S0)=
[

1 exp
{

j2πfc[d(T1,S0)−d(T2,S0)]
c0

}
· · · exp

{
j2πfc[d(T1,S0)−d(TNt ,S0)]

c0

} ]T
(2.27)

Denote by αlk the entry lying in the l-th row and the k-th column of the Nr × Nt matrix A

in (2.26), and αlk is the fading coefficient of the target between the k-th transmit element and

the l-th receive antenna, accounting for the effects of all the small scatterers. Recalling that the

complex reflectivities of the scatterers are assumed to be random variables, αlk is approximately

a complex normal random variable due to the central limit theorem, and it is shown in [8] that

αlk ∼ CN (0, 1). As indicated in (2.26), the transmitter and receiver steering vectors together

with the fading coefficients comprise the Nr × Nt channel matrix H, whose (l, k)-th entry is

denoted by hlk.

The idea of the statistical MIMO radar is to exploit the spatial diversity of the target’s RCS, and

for this to be possible, it is required that the fading coefficients αlk for different transmit-receive

antenna pairs are uncorrelated. Consider the (l, k)-th and the (j, i)-th entry of A, it is proved

in [8] that αlk and αji are uncorrelated if at least one of the following four conditions holds:

xt
k

d(Tk,S0) −
xt

i
d(Ti,S0) > λc

∆x ,
yt

k
d(Tk,S0) −

yt
i

d(Ti,S0) > λc
∆y

xr
l

d(Rl,S0) −
xr

j

d(Rj ,S0) > λc
∆x ,

yr
l

d(Rl,S0) −
yr

j

d(Rj ,S0) > λc
∆y

(2.28)
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where λc is the carrier wavelength. In contrast, if the following four conditions are met jointly:

xt
k

d(Tk,S0) −
xt

i
d(Ti,S0) ¿ λc

∆x ,
yt

k
d(Tk,S0) −

yt
i

d(Ti,S0) ¿ λc
∆y

xr
l

d(Rl,S0) −
xr

j

d(Rj ,S0) ¿ λc
∆x ,

yr
l

d(Rl,S0) −
yr

j

d(Rj ,S0) ¿ λc
∆y

(2.29)

then αlk and αji are approximately fully correlated. These conditions have a simple physical

interpretation. The spatial distributed target can be regarded as an “hypothetical” antenna with

aperture ∆ (∆ could be ∆x or ∆y for x- or y- direction), and thus its beamwidth is λc/∆.

If the spacing between two antennas is large enough such that they can not be illuminated

by the target’s beamwidth simultaneously, then they observe different aspects of the target

with uncorrelated RCSs, i.e., elements of A associated with these antennas are uncorrelated.

Conversely, if two antennas are closely spaced and within the same beamwidth of the target,

their corresponding entries of A are correlated. This concept is illustrated in Figure 2.5.
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Figure 2.5: Elements of the channel matrix are uncorrelated when the MIMO radar antennas
fall in different beamwidths originating from the target [1]

For the statistical MIMO radar, the interelement spacing between each pair of antennas obeys

condition (2.28), and hence, all the entries of A are uncorrelated and αlk ∼ CN (0, 1). Note that
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[diag {Ψr(S0)}Adiag {Ψt(S0)}] has the same distribution as that of A since diag {Ψr(S0)}
and diag {Ψt(S0)} are diagonal matrices with elements on the unit circle. Therefore, the re-

ceived signal of the statistical MIMO model can be expressed as below:

r(t) =
√

Es

Nt
Hs(t− τ) + n(t) (2.30)

where the entries of the Nr ×Nt channel matrix H are independent and identically distributed

(i.i.d.) random variables, and hlk ∼ CN (0, 1). Defining a NrNt × 1 channel vector h by

stacking all the columns of H into a vector, the MIMO channel can also be expressed as h ∼
CN (0NrNt , INrNt), where 0k stands for a k × 1 all-zeros vector.

For comparison purposes, we will briefly discuss the channel model for the configuration of

the conventional phased-array radar. The array elements are densely spaced and every pair of

antennas obeys condition (2.29), and hence, all the elements of A are fully correlated and the

matrix can be given by A = α1Nr×Nt . Here α ∼ CN (0, 1) and 1k×l denotes a k × l all-ones

matrix. Hereby, based on (2.26), the channel matrix for the phased-array configuration can be

expressed as H = αΨr(S0)ΨT
t (S0).

In addition, the statistical MIMO model can only be used for ideal array-target configurations

where the interelement spacings are either large enough such that different antennas observe

different aspects of the target or small enough that all the antennas view the same aspect. How-

ever, it is very possible that such conditions do not hold in practice and hence, the statistical

MIMO model can no longer be adopted. Another model is required to be considered, and this

problem will be solved in Chapter 3.

2.3.1.2 Diversity Gain

The statistical MIMO radar combines target returns resulting from independent illuminations,

yielding a diversity gain which can be used to overcome target fading or scintillation. As

discussed above, the fading coefficients of the paths between different transmit-receive antenna

pairs are uncorrelated, and there are NrNt such paths responsible for the NrNt entries of the

channel matrix H. The signals emitted from different transmit antennas carry independent

information about the target and are superposed yielding the received signals. Consequently,
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the transmitted waveforms have to be properly selected enabling the separation between signals

at the receiver. The most common choice is to transmit signals that are mutually orthogonal,

that is,
∫

sl(t− τ)s∗k(t)dt = δlk(τ). Here sk(t) is the signal transmitted from the k-th antenna

and δlk denotes the Dirac delta function. Let the received signals r(t) shown in (2.30) go

through a bank of matched filters and denote the output by an NrNt× 1 vector x, then we have

[x](l−1)Nt+k =
∫

rl(t− τ)s∗k(t)dt =
√

Es

Nt
hlk + n (2.31)

where k = 1, 2, ..., Nt, l = 1, 2, ..., Nr, and n is the noise component. It is obvious that

the noisy estimates of all the NrNt channel coefficients hlk are extracted, and the statistical

MIMO radar actually combines the results from NrNt statistically independent radars. It is

known that the conventional phased-array radar coheres a beam toward the target direction

in order to realize coherent processing gain, trying to overcome the scintillation problem by

maximizing the received energy from the target. However, since the target fading coefficient

for all transmit-receive antenna pairs are the same, and this individual view of the target might

dramatically reduce the energy returned from the target with a significant probability. When

this happens, the conventional approach would still fail even with a coherent processing gain.

The statistical MIMO radar is an alternative to address the scintillation or deep fading problem.

Although there is no coherent processing gain in a MIMO radar, it actually synthesizes many

independent radars, each of which has an individual look at the target. Thereby, the whole

system would suffer from deep fading only if the target fading for all the individual observed

aspects are severe, which has a low probability. An intuitive question to ask is “Is it possible

to take advantage of both coherent processing gain and spatial diversity gain simultaneously?”,

and we will answer this question in Chapter 4 by introducing a hybrid radar which combines

the phased-array and MIMO radar configurations.

There are two applications that can benefit from the spatial diversity gain of MIMO radar pre-

sented in the literature. The first is the target detection problem studied in [7, 8], which il-

lustrated that the MIMO radar outperforms the conventional phased-array radar whenever the

probability of detection is at a reasonable level, e.g., 0.8 or higher. The second application is

the direction finding problem investigated in [3, 9], and the system considered has widely sep-

arated antennas at the transmitter to support the target spatial diversity and a standard antenna
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array with half-wavelength intervals at the receiver to enable unambiguous AoA estimation.

It is demonstrated that the performance of estimating AoA can be significantly improved by

exploiting the spatial diversity gain offered by the MIMO configuration at the transmitter. For

more benefits offered by the configuration having widely spaced antennas we refer the inter-

ested reader to [6, 10, 69].

2.3.1.3 Waveform Design Techniques

Orthogonal waveforms have been proven to be a good choice for transmission in a MIMO radar

when the received signal is disturbed by additive white Gaussian noise and all the entries of the

channel matrix H are independent complex Gaussian random variables with zero-mean and unit

variance, i.e., the covariance matrix of the channel vector h is an identity matrix. However, for a

more general setting which takes the target angular spread into consideration, better waveforms

are required to be designed to improve the system performance.

Yang and Blum [70] investigated waveform design for identification and classification of a

distributed target, in other words, their goal is to find the waveform which leads to the best

estimation of the target response. It is assumed that the target response vector (channel vector)

remains static during the observation interval and it is a Gaussian random vector with zero-

mean and a known covariance matrix. The components of the noise vector are assumed to

be i.i.d. and complex Gaussian, with zero-mean and the same variance. The second-order

statistics of the distributed target response contain information about the target and this fact has

been exploited to find the optimum waveform. The waveform is designed under a constraint

on the total transmitted power based on two criteria: (a) maximizing the mutual information

between the random target response and the received signals; and (b) minimizing the value of

minimum mean-square error (MMSE) in estimating the target response. It is demonstrated that

both criteria lead to the same solution of the optimum waveform, which utilizes a waterfilling

strategy to allocate the transmitted power.

De Maio and Lops [71] consider waveform design for detecting a distributed target in a distur-

bance which is not white due to the presence of clutter returns. It is assumed that the channel

vector is a zero-mean Gaussian random vector whose covariance matrix is a scaled identity

matrix, and the interference vector is a complex Gaussian random vector with zero-mean and

a known covariance matrix. The optimum waveform is designed to maximize the Chernoff

bound for the detection probability of the GLRT detector under a constraint on the signal to
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clutter power ratio (SCR). In addition, the information-theoretic design criterion, maximizing

the mutual information between the channel vector and the received waveforms, is also studied

under the same SCR constraint, and the optimum solution found through both criteria are the

same.

2.3.2 Colocated MIMO Radar

Unlike the statistical MIMO radar where antennas are widely separated to exploit the spatial

diversity, the antennas of the colocated MIMO radar are close enough that all the elements

view the same aspect of the target, and there are many papers investigating the merits of such

a colocated MIMO radar, e.g., [72–96]. The configuration of the colocated MIMO radar is

similar to that of the conventional phased-array radar, but instead of transmitting scaled versions

of a single waveforms, a colocated MIMO radar transmits independent probing signals via its

multiple antennas, and this waveform diversity allows superior capabilities compared with its

phased-array counterpart.

Transmitting independent waveforms simultaneously from the multiple transmit antennas of a

MIMO radar and letting the received signals go through a bank of matched filters, the informa-

tion of the propagation paths from each of the transmit antenna to each of the receive element

can be extracted from the outputs of the matched filters. By appropriately utilizing the infor-

mation, the colocated MIMO radar can improve the system performance by realizing a virtual

array [72, 73, 87], and this concept is briefly explained as follows. Denoting the propagation

time delay from the k-th transmit antenna to the target and from the target to the l-th receive

element by τ t
k and τ r

l , respectively, the target response in the k-th matched filter output of the

l-th receive antenna is α exp{−j2πfc(τ t
k + τ r

l )}, where α is the target fading coefficient and

k = 1, 2, ..., Nt, l = 1, 2, .., Nr. Obviously, both the transmit and receive antenna locations

affect the time delay and thus the phase. There are NrNt time delays for all of the matched

filter outputs, and they can be viewed as the time delays corresponding to the antennas of a

virtual array with NrNt elements, whose steering vector is written as

[
e−j2πfc(τ t

1+τr
1 ) · · · e−j2πfc(τ t

1+τr
Nr

) e−j2πfc(τ t
2+τr

1 ) · · · e
−j2πfc(τ t

Nt
+τr

Nr
)

]T
(2.32)

Therefore, an NrNt-element virtual array is created by using only Nr + Nt physical antennas.
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The virtual array can be interpreted as the convolution of the transmit array and the receive

array, as it is easy to understand that the transmitter steering vector convolved with the receiver

steering vector gives the virtual steering vector [73].

Two configurations attracting the most attention are the filled and an overlapped linear virtual

array. The filled linear virtual array is created by adopting a standard Nr-element ULA with

half-wavelength interelement spacing as the receiver and a sparse Nt-element ULA as the trans-

mitter whose interelement spacing is chosen as Nr
2 wavelength. It is clear that an NrNt-element

virtual ULA is generated via the convolution, whose interelement spacing is half-wavelength.

Hence, by wisely designing the locations of antennas, a virtual array with long aperture can be

obtained using only a small number of physical antennas, dramatically increasing the spatial

resolution [72] and improving parameter identifiability [77]. In contrast, if a standard ULA with

half-wavelength spacing is employed at both the transmitter and receiver, the resulting virtual

array is an overlapped linear virtual array, i.e., more than one virtual element is at the same lo-

cation. Selecting the standard ULA at the transmitter enables the radar to form a focused beam

by emitting correlated waveforms [84], but transmit beamforming is impossible in the filled

linear virtual array case because the large interelement spacing leads to aliasing. It has been

shown that the overlapped linear virtual array configuration is able to enhance the flexibility

for transmit beampattern design [78, 84, 85] and to improve the target detection and parameter

estimation performance [82]. The work in this thesis focuses on the statistical MIMO radar, the

reader may refer to a tutorial [75] for more details about the colocated MIMO radar.

2.4 Time-Reversal Techniques

The time-reversal (TR) technique, an extension to broadband signals of the phase-conjugation

concept in optics, has attracted increasing interest for a broad range of applications for the last

two decades. It has been indicated that applying TR in a radar system for target detection pro-

vides significant gains over conventional detection. In this section, we will start by discussing

the basic principles of the TR approach, and move further to a brief introduction to TR detection

in a radar system.
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2.4.1 Basic principles of time-reversal techniques

The TR technique was first proposed as a solution to an important problem in the acoustic and

ultrasound domains, focusing waves on targets through an inhomogeneous medium, which is

difficult since the focusing can be strongly degraded due to the fluctuations of sound velocity in

the propagating medium [97]. The idea of the TR technique is to convert a divergent wave re-

flected from a target into a convergent wave which focuses on the same target. As illustrated in

Figure 2.6, the TR process includes three steps. In the first step, a waveform is radiated from the

transducer array to the target through an inhomogeneous medium. The target generates a scat-

tered waveform which propagates back through the inhomogeneous medium and is distorted.

The second step is to record the waveforms received and measured by the transducer array for a

time interval. In the last step, the recorded waveforms are time reversed and retransmitted into

the medium, focusing on the target.

We next briefly explain why the TR technique provides inputs to the sensors of the transducer

array that focus energy at the target location. The diffraction impulse response hRk
(S0, t)

measures the signal received at the target location S0 after a Dirac delta function is applied to

the k-th transducer at location Rk [98]. Similarly, the diffraction impulse response hS0(Rk, t)

is measured at the position of the k-th sensor after a source is excited at the target location S0.

The reciprocity theorem, valid in homogeneous as well as in inhomogeneous media, indicates

that the respective positions of a source and an observer can be interchanged without altering

the observed acoustic signal [99]. In other words, we have hRk
(S0, t) = hS0(Rk, t). As shown

in Figure 2.6, after the initial transmission, the target is illuminated and behaves as a source,

and the signal observed at the k-th transducer is in proportion to hS0(Rk, t). Consequently, the

time reversed signal retransmitted from the k-th sensor in the third step is hS0(Rk, T − t), and

the total signal received at the target location is the superposition of the signals retransmitted

from all the N sensors, which can be given by

r(S0, t) =
N∑

k=1

hRk
(S0, t) ~ hS0(Rk, T − t) =

N∑

k=1

hRk
(S0, t) ~ hRk

(S0, T − t) (2.33)

where ~ denotes the convolution. Clearly, all the signals from different sensors reach their

maxima at the position S0 at the same time T , leading to constructive interference and maxi-

mizing the signal energy at the target location. Therefore, TR technique provides the optimal
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Figure 2.6: Description of the TR process: (a) initial transmission, (b) record of the backscat-
tered waveforms, (c) retransmission of the time reversed waveforms.

solution for focusing energy through an inhomogeneous medium in the sense that it realizes

the spatial-temporal matched filter to the propagation transfer function between the transducer

array and the target [100].

The characteristics of the TR technique enable it to turn multipath effects, traditionally con-

sidered a drawback, into a benefit, which is very similar to the MIMO concept developed in

communications. It has been shown that TR technique can improve the focusing quality by

taking advantage of scattering and multipath in inhomogeneous media, i.e., they demonstrate

super-resolution focusing since the energy focuses on the target with much higher resolution

than that in free-space [101–105]. We take a waveguide as an example to explain this unique
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feature. As shown in Figure 2.7, each waveguide interface acts as a mirror and generates more

paths in addition to the direct path from the real array to the target. By applying the method of

images, the effect of a transducer array in a waveguide can be viewed as that of a set of virtual

arrays in free-space, which are the images of the real array with respect to the waveguide in-

terfaces. It is obvious that the resolution is much higher due to the existence of virtual arrays

which increase the effective array aperture. Notice here that only the first reflections due to the

presence of the two interfaces are depicted in Figure 2.7, but in fact the number of reflections

required to be taken into account can be larger, depending on the distance from the target to the

array [105].
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Figure 2.7: Representation of the virtual transducer arrays in the waveguide.

2.4.2 TR Detection in Radar

There are extensive publications studying the applications of TR in addition to focusing energy

in acoustic and ultrasound domains, such as focusing in the electromagnetic domain [106],

imaging in random media [107, 108], ultra-wideband communications [109–112], and compu-

tational imaging [113–117]. Recently, Moura et al. explored the radar target detection problem

applying the TR technique, showing that TR detection provides significant gains over conven-

tional detection [118–120]. The process of TR detection also involves three steps. Waveforms

are first emitted from the transmitter, then the signals received by the receiver are measured,

time reversed, energy normalized, and retransmitted, and finally the detector at the transmit-
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ter makes the detection decision. The TR detection of a radar system with a single antenna as

well as an antenna array was investigated, whose performance was examined with experimental

measurements collected in a highly cluttered laboratory environment. It has been demonstrated

that TR can dramatically improve target detection performance compared with conventional de-

tection, which results from the fact that the waveform is reshaped to match the channel during

the TR process, which is essentially a waveform design process. However, the retransmitted

signal in Moura’s algorithm contains noise components, and it is obvious that if the noise level

is high, the TR technique is no longer a good choice. In addition, [118–120] did not derive

analytical expressions for the threshold and probability of detection of the TR detection, which

were determined by Monte Carlo simulations. These limitations of TR detection motivated the

new schemes proposed in Chapter 5.

2.5 Conclusions

This chapter covered the fundamental knowledge required for analyzing a radar system. In

the first part, the basic components and their characteristics in a radar system were studied,

followed by a classification of conventional radars employing multiple antennas. A brief review

of some well known signal processing approaches for target detection and direction finding

problems were given, laying the foundation for the remainder of the thesis. In the second part,

new schemes developed in radar were introduced, including the MIMO radar reported in the

recent literature as well as systems utilizing time-reversal techniques. Their superiority over

the conventional radar systems and their own limitations stimulated the present work, whose

technical aspects will be discussed in the next three chapters.
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Chapter 3
Detection Performance of MIMO

Radar With Finite Scatterers Model

Previous researchers proposed a statistical MIMO model and investigated a radar system with

several special array-target configurations, showing that MIMO radar can improve target detec-

tion performance significantly by exploiting spatial diversity. However, such model can only

be adopted in extreme scenarios. In this chapter, we will introduce a system model in which

the radar target is composed of a finite number of small scatterers, based on which the target

detection performance of the system with different configurations is studied. A MIMO system

involving a theoretical target is explored, and a closed form formula is derived to calculate the

theoretical probability of detection for the system having an arbitrary array-target configura-

tion. We also set up a MIMO radar system including a realistic target by making use of the data

collected from previous research on ground target modelling.

3.1 Introduction

As mentioned in Chapter 2, Fishler et al. proposed a statistical MIMO radar model in [8]

and demonstrated that MIMO techniques can be applied in radar scenarios to improve target

detection performance by exploiting spatial diversity gain. In the statistical MIMO model, it

is assumed that the distributed target has a rectangular shape and is composed of an infinite

number of random and independent scatterers. All the scatterers are assumed to be uniformly

distributed over the target area and their complex reflectivity coefficients are zero-mean ran-

dom variables with the same distribution. Such a model is neither realistic nor convenient to

be employed given that in practice the target actually comprises several significant scatterers at

different spatial locations, which implies that a finite scatterers model should be used instead.

Although in [3] the finite scatterers model is utilized, only a specific configuration is considered

that the scatterers are assumed to be laid out as a linear array which is parallel to the antenna

array. In addition, the statistical MIMO model can only be used for ideal array-target config-

urations where the interelement spacings are either large enough such that different antennas
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observe different aspects of the target or small enough that all the antennas view the same

aspect of the target. In other words, only extreme scenarios that the channel gains between

different transmit-receive antenna pairs are totally uncorrelated or fully correlated are studied

in [8]. However, it is very possible that such conditions do not hold in practice and hence, the

statistical MIMO model can no longer be adopted and we need to resort to another model.

In this chapter, we investigate the target detection performance of a MIMO radar system with an

arbitrary array-target configuration, assuming that the target is modelled as the sum of a finite

number of independent scatterers. We first examine a radar system involving a theoretical tar-

get, for which the reflectivity coefficients of the scatterers are assumed to be zero-mean random

variables. Unlike the ideal configurations discussed in [8] that all the channel gains have corre-

lation coefficients 1 or 0, the channel gains between different antenna pairs of a general radar

system have various degrees of correlation, which depend on the exact array-target configura-

tion and can be measured by the correlation matrix of a vector containing all the entries of the

channel matrix. Based on the calculated correlation matrix, a closed form formula is derived to

evaluate the theoretical probability of detection for a MIMO radar having an arbitrary configu-

ration, while [8] presents the detection performance for only four special configurations. This

theoretical result makes it possible to predict the actual MIMO radar performance before im-

plementing expensive experiments and avoiding time consuming simulations. Furthermore, the

preferable MIMO array configuration could be selected for different scenarios by comparing

the predicted performance of various configurations.

The assumption of the theoretical target model described above that the reflectivities of the scat-

terers are random variables is reasonable and useful from a theoretical and mathematical point

of view. In order to have an impression of the effects the MIMO system has on detecting real

targets, we next proceed to set up a MIMO radar including a realistic target by determining the

reflectivity coefficients of the scatterers using the data collected from previous research on target

modelling, and simulate the detection performance of the system with different configurations.

To my best knowledge, this is the first effort of its kind in the open literature. The target consid-

ered here is a life-size land vehicle, which is modelled using a computer aided electro-magnetic

(EM) simulator FEldberechnungbei Korpern mit beleibeiger Oberflache (FEKO) [121]. We

emphasize here that although we are working with FEKO data, rather than “real” data collected

from experimental field trials, the former is a common practical choice as the availability of the

real data is very limited [121].
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3.2 System Model

3.2.1 Channel Model

As shown in Figure 3.1, uniform linear arrays (ULA) of antennas are employed at both the

transmitter and receiver with Nt and Nr elements, respectively. The interelement spacings are

∆tλc and ∆rλc, where λc is the carrier wavelength and ∆t and ∆t are the normalized transmit

and receive antenna spacing in wavelengths. We assume that all the signals are narrowband and

that distances between scatterers and both the transmitter and receiver are much larger than the

dimensions of the antenna arrays, that is, we operate in the far field.
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Figure 3.1: Configuration of a MIMO radar system with the finite scatterers model

In the finite scatterers model, a distributed target is assumed to be composed of a finite number

of scatterers which are small enough to be viewed as point-like targets. As illustrated in Figure

3.1, it is assumed that there are Ns independent scatterers distributed over the target area S,

and Ns is also the number of independent multipaths because of the assumption of a “single-

bounce” propagation model. Path p is defined by the angle of departure (AoD) Φt
p, the angle

of arrival (AoA) Φr
p, reflectivity coefficient of the p-th scatterer arc

p , and distance between Tx 1

and Rx 1 along the path dtr
p = dt

p + dr
p.

Based on above assumptions, the Nr ×Nt channel matrix H is given by [122]
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H =
Ns∑

p=1

arc
p exp(−j2πdtr

p

λc
)Ψr(Φr

p)Ψ
T
t (Φt

p) (3.1)

Ψε(Φε
p) =




1

exp{j2π∆ε sin(Φε
p)}

...

exp{j2π(Nε − 1)∆ε sin(Φε
p)}




(3.2)

In (3.2) ε represents either r or t.

3.2.2 Signal Model

It is supposed that the i-th antenna of the transmitter transmits a signal
√

Es
Nt

si (t), where

‖si(t)‖2 = 1 and Es is the total transmitted power. The normalizing coefficient is em-

ployed to make sure that the total transmitted power and the average received power at each

element are not affected by the number of transmit antennas. Denote by an Nr × 1 vec-

tor r(t) =
[

r1(t) r2(t) · · · rNr(t)
]T

the signals received at all the receiving elements,

which can be described as follows:

r(t) =
√

Es

Nt
H · s(t− τ) + n(t) (3.3)

where the Nt × 1 vector s(t) =
[

s1(t) s2(t) · · · sNt(t)
]T

stands for the transmitted

signals and the Nr × 1 vector n(t) =
[

n1(t) n2(t) · · · nNr(t)
]T

represents the additive

white Gaussian noise at all the receive antennas. Here we assume that n(t) is a zero-mean,

complex Gaussian random vector process with correlation matrix σ2
nINr . Note here that τ is the

time delay from the transmitter to the receiver via the target, and differences in time of arrival at

the receive antennas are ignored for simplicity. We further assumed that the transmitted signals

are mutually orthogonal, which is equivalent to the fact that
∫

sj(t− τ)s∗i (t)dt = δij(τ).
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Let the received signal r go through a bank of matched filters and denote the output by an

NrNt × 1 vector x, that is, the {(i − 1)Nt + j}-th entry of x is given by [x](i−1)Nt+j =
∫

ri(t)s∗j (t)dt, where i = 1, 2, ..., Nr and j = 1, 2, ..., Nt. Recalling that all the transmitted

signals are orthogonal, it is not difficult to obtain the following expression

x =





n H0√
Es
Nt

h + n H1

(3.4)

where the alternate hypothesis H1 and null hypothesis H0 are that the target does or does not

exist at delay τ , respectively. The NrNt × 1 channel vector h is composed of all the entries of

the channel matrix H, and the NrNt × 1 noise vector n ∼ CN (0NrNt , σ
2
nINrNt). The MIMO

radar detector given by [8] can be written as below:

T = ‖x‖2 >H1

<H0

η (3.5)

where η is a threshold ensuring the desired probability of false alarm PrFA. From (3.1) and

(3.5), it is clear that the target detection decision will be made based on the value of the chan-

nel matrix, which is determined by the locations and reflectivity coefficients of the scatterers.

Therefore, in the following two sections, we investigate the target detection performance of a

MIMO radar system involving a theoretical target and a realistic target, respectively, and the

only difference between them is the assumption of the locations and reflectivities of the scatter-

ers. We emphasize here that the finite scatterers model itself has no limitation on the scatterers

constituting the target except that each scatterer is required to be small enough such that they

can be viewed as point-like targets.

3.3 MIMO Radar With a Theoretical Target

In this section, we explore a MIMO radar system having the same configuration as that shown

in Figure 3.1, and the theoretical target considered here includes Ns random and independent

scatterers which are uniformly distributed over the target area S. We assume that each reflec-
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tivity coefficient arc
p can be a zero-mean complex Gaussian random variable with variance ι2p

and assume that the sum of all the variances equals to one. The last assumption is responsi-

ble for normalizing the average power reflected from the target to one. A formula to calculate

the theoretical probability of detection for such a radar system will be derived first, following

which is the analysis of two extreme channel models with respect to the level of correlation

of the channel matrix, and then simplified expressions of the formula for two special cases are

provided.

3.3.1 Detection Performance

From (3.4) and (3.5), it is easy to see that the probability of detection of the MIMO radar

depends on the distributions of the test statistic T = ‖x‖2 under both hypotheses. First of all,

we consider T under the null hypothesis H0 and get

T = ‖x‖2 =
NrNt∑

i=1

|ni|2 =
NrNt∑

i=1

(<2[ni] + =2[ni]
)

(3.6)

where ni is the i-th entry of the noise vector n. Recalling that n ∼ CN (0NrNt , σ
2
nINrNt), we

can express the distribution of T directly by a chi-square random variable with 2NrNt degrees

of freedom as follows:

T ∼ σ2
n

2
χ2

2NrNt
Under H0 (3.7)

We next proceed to consider the test statistic T under the alternate hypothesis H1. First of all,

an NrNt× 1 vector hn = h+
√

Nt
Es

n is defined, and thus T = ‖x‖2 = Es
Nt
‖hn‖2. It is easy to

verify that hn has zero mean, and the NrNt ×NrNt square matrix Chn = E{hn · hH
n } is the

covariance matrix of hn, that is, hn ∼ CN (0NrNt ,Chn). Recalling the assumption about the

reflectivity coefficients and substituting (3.1) gives the (k, l)-th entry of the covariance matrix

Chn as
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Chn(k, l) =
Ns∑

m=1
ι2m{exp[j2π(p− u)∆r sin(Φr

m)]·

exp[j2π(q − v)∆t sin(Φt
m)]}+ Nt

Es
σ2

nδkl

(3.8)

where k = (p − 1)Nt + q, l = (u − 1)Nt + v, p, u = 1, 2, ..., Nr, and q, v = 1, 2, ..., Nt.

Therefore, for any set of parameters in the channel matrix given by (3.1), we can easily compute

the covariance matrix Chn . Note that the covariance matrix Chn is a Hermitian matrix and it

can be factorized through its eigenvalue decomposition, i.e.,

Chn = Uhn ·Λhn ·UH
hn

(3.9)

where the NrNt ×NrNt matrix Uhn is a unitary matrix whose columns are eigenvectors and

Λhn is a diagonal matrix with NrNt real and nonnegative eigenvalues λ1, λ2,...,λNrNt (in

decreasing order) as its diagonal elements. We next define an NrNt× 1 vector hnu = UH
hn

hn,

then according to the property of the linear transform of complex Gaussian random vectors, the

distribution of hnu is given by

hnu ∼ CN (0NrNt ,U
H
hn
·Chn ·Uhn) = CN (0NrNt ,Λhn) (3.10)

Considering the fact that Λhn is the covariance matrix of hnu and is a diagonal matrix, it is safe

to conclude that all the elements of hnu are uncorrelated and its i-th element has the distribution

CN (0, λi). Finally, notice that

‖hnu‖2 =
∥∥UH

hn
hn

∥∥2
= (UH

hn
hn)H(UH

hn
hn) = hH

n hn = ‖hn‖2 (3.11)

Therefore, the original problem of calculating the distribution of T = ‖x‖2 becomes the eval-

uation of ‖hnu‖2. The reason why we apply such a transform is that the elements of x could

be correlated for some scenarios. The uncorrelated nature of the elements of hnu simplifies the

44



Detection Performance of MIMO Radar With Finite Scatterers Model

calculation process dramatically.

According to the above analysis, the test statistic T can be viewed as the sum of a set of NrNt

independent weighted chi-square random variables
{

Esλi
2Nt

χ2
2

}
. The characteristic function is

utilized in the following derivation because it provides a simple method for determining the

PDF of a sum of independent random variables [123]. This approach is usually much easier

than the direct calculation which demands PDF convolution, i.e., the PDF of a sum of K in-

dependent random variables is the K-fold convolution of the PDF of each random variable.

Further defining ci = Es
Nt

λi, we can express the characteristic function of T as below [123]:

z(v) =
NrNt∏

i=1

1
1− jvci

(3.12)

Assume there are N distinct values {ck} of all the NrNt values, and ck has corresponding

algebraic multiplicity µk [124]. Thus, (3.12) can be rewritten as

z(v) =
N∏

k=1

1
(1− jvck)µk

(
N∑

k=1

µk = NrNt

)
(3.13)

Given the fact that the characteristic function of a random variable is the Fourier transform of

the probability density function (PDF) of the random variable with a sign inverse in the complex

component, it is possible to derive the PDF of T through the inverse Laplace transform of (3.13)

with the substitution z = −jv. The following is the characteristic function expressed in the

form of partial fraction expansions [124]:

z(z) =
N∏

k=1

1
(1+ckz)µk

=

NQ
k=1

“
1

ck

”µk

NQ
k=1

(z+ 1
ck

)µk

=
N∑

k=1

[
Ak,1

(z+ 1
ck

)µk
+ Ak,2

(z+ 1
ck

)µk−1 + · · ·+ Ak,µk

(z+ 1
ck

)

]
=

N∑
k=1

µk∑
l=1

Ak,l

(z+ 1
ck

)µk−l+1

(3.14)

where the coefficient Ak,l is given by
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Ak,l = 1
(l−1)!

[
dl−1

dzl−1

{
z(z) · (z + 1

ck
)µk

}]∣∣∣
z=− 1

ck

= 1
(l−1)!


 dl−1

dzl−1

NQ
p=1

“
1

cp

”µp

NQ
p=1,p 6=k

(z+ 1
cp

)µp




∣∣∣∣∣∣∣
z=− 1

ck

(3.15)

The inverse Laplace transform of (3.14) gives rise to the PDF of T under H1 as below:

PDF(T |H1) =
N∑

k=1

µk∑
l=1

Ak,l

(µk−l)! · T (µk−l) · exp
(
− T

ck

)
(3.16)

As mentioned before, for a given noise level, one common approach is to determine the thresh-

old η based on the desired probability of false alarm PrFA, and the probability of detection PrD

is computed based on the value of η and the PDF of the test statistic T underH1. Both relations

can be described using the following formulae:

PrFA = Pr (T > η|H0) = Pr
(

σ2
n
2 χ2

2NrNt
> η

)
= Pr

(
χ2

2NrNt
> 2η

σ2
n

)
(3.17)

PrD = Pr (T > η|H1) =
∫ +∞
η PDF(T |H1)dT (3.18)

Substituting (3.16) into (3.18), we can express the probability of detection, by utilizing the

upper incomplete Gamma function, as below:

PrD =
N∑

k=1

µk∑
l=1

Ak,l · cµk−l+1
k · exp(− η

ck
) ·

µk−l∑
p=0

“
η
ck

”p

p! (3.19)

where the threshold η is easily calculated from (3.17) as
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η = σ2
n
2 F−1

χ2
2NrNt

(1− PrFA) (3.20)

where F−1
χ2

k
denotes the inverse cumulative distribution function (CDF) of a chi-square random

variable with k degrees of freedom. The above equations demonstrate that it is possible to

predict the performance of MIMO radar system without implementing costly experiments. In

addition, the comparison between the theoretical performance of different configurations pro-

vides us the principle based on which to design the best MIMO system for various scenarios.

Below, we will further investigate the relationship between the correlation of the channel matrix

and the distribution of eigenvalues {λi}, and then show the simplified expressions of PrD for

two special cases.

We emphasize here that calculating the distributions of a sum of weighted chi-square random

variables is a common problem encountered in statistics and engineering. The widely adopted

technique is to approximate the linear summation by a single chi-square random variable with

different degrees of freedom and an scaling factor, which are carefully chosen such that the first

two moments remain the same [125–127]. However, in this section, the accurate PDF and CDF

of the weighted sum are derived in closed form, which can be widely used in many practical

applications.

3.3.2 Analysis of Extreme Channel Models

Recall that the additive white Gaussian noise is independent of the channel, then the covariance

matrix Chn can be rewritten as

Chn = E
[
hn · hH

n

]
= E

[
h · hH

]
+

Nt

Es
σ2

nINrNt (3.21)

That is, the covariance matrix Chn is actually the sum of the correlation matrix of the channel

vector h including NrNt channel matrix entries {hk} and the scaled covariance matrix of the

noise vector n. Obviously, the eigenvalues {λi} of Chn are closely related to the correlation

matrix of the vector h. This correlation matrix depends on the specific configuration of the
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radar system. However, we can compute its value under the following two extreme cases.

3.3.2.1 Entries are totally uncorrelated

Invoking the assumption that the sum of all the variances of the reflectivity coefficients is one,

it is not difficult to verify that E [hk · h∗k] = 1, in other words, the diagonal elements of the

correlation matrix are one. Moreover, the totally uncorrelated condition illuminates that all

the non-diagonal elements of E
[
h · hH

]
are zero. This results in the diagonal matrix Chn =(

1 + Nt
Es

σ2
n

)
INrNt . Hence, there exists NrNt eigenvalues {λi}, and they all have the same

value λ = 1 + Nt
Es

σ2
n. Making use of the simplified formula introduced in the next section, we

can evaluate PrD easily.

3.3.2.2 Entries are fully correlated

Similar to the calculation in the previous subsection, we know that the diagonal elements of

the correlation matrix are one. The condition of full correlation demonstrates that all the non-

diagonal elements are also equal to one, that is, E
[
h · hH

]
is an all-ones matrix. Therefore,

Chn has NrNt eigenvalues, in which λ1 = NrNt+ Nt
Es

σ2
n and the other (NrNt−1) eigenvalues

have the same value λ2 = Nt
Es

σ2
n.

The magnitudes of the correlation values Chn(k, l) in (3.8) depend on the distribution of the

angles Φt and Φr of each path and the array interelement spacing. If Φt and Φr for all the paths

are the same, then we get the fully correlated case. The correlation decreases as the range of

angles increases for the same array spacing. For any non-zero angle spread, increasing antenna

spacing has the effect of decreasing the correlation [122].

3.3.3 Formulae of PrD for Two Special Cases

Here, in order to simplify the computation, we display the compact form of (3.19) for two

special cases: all the eigenvalues {λi} are different or are the same.

3.3.3.1 Eigenvalues are different

In this case, the number of distinct eigenvalues is N = NrNt and all the algebraic multiplicity

µk are one. As a result, (3.16) is rewritten as
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PDF(T |H1) =
NrNt∑

k=1

NrNt∏
p=1,p6=k

ck
ck−cp

ck
· exp

(
− T

ck

)
(3.22)

Substitute (3.22) into (3.18) leads to the following formula:

PrD =
NrNt∑
k=1

(
NrNt∏

p=1,p6=k

ck
ck−cp

)
· exp(− η

ck
) (3.23)

3.3.3.2 Eigenvalues are the same

In this case, the NrNt eigenvalues have the same value λ, so (3.12) can be expressed as below:

z(v) =
1

(1− jv Es
Nt

λ)NrNt
(3.24)

which results in the conclusion that T = ‖x‖2 ∼ Esλ
2Nt

χ2
2NrNt

. Consequently, the probability of

detection is given by

PrD = 1−Fχ2
2NrNt

(
2Ntη
Esλ

)
(3.25)

where Fχ2
k

denotes the CDF of a chi-square random variable with k degrees of freedom. This

result matches equation (29) in [8].

3.4 MIMO Radar With a Realistic Target

The reflectivity coefficients of the scatterers composing the target are assumed to be zero-mean

complex Gaussian random variables in the last section, which is a useful assumption from a

theoretical point of view. In order to have an impression of the effects the MIMO radar has on
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detecting real targets, we set up a MIMO radar system involving a realistic target in this section,

and the locations and gains of the scatterers are determined by the data collected from previous

research on modelling ground targets.

3.4.1 System Configuration

X

Y

Z

Fixed Tx

Rotating Rx

Target

Trajectory of
The receiver

Figure 3.2: Transmitter and receiver configuration during the FEKO simulations in [2]

Mishra [121] modeled four types of life-size land vehicles using a computer aided EM simulator

FEKO, and formatted bistatic synthetic aperture radar (SAR) images through appropriate post-

processing of the results. These four targets are the armoured personal carrier (APC), the

main battle tank (MBT), the stinger launcher (STR), and the land missile launcher (MSL). As

illustrated in Figure 3.2, a system having a three dimensional (3D) configuration is simulated by

Mishra. For each run, the 3D target is illuminated by the transmitter for a range of frequencies,

and the transmitter is fixed at a certain azimuth and elevation with a given polarization. The EM

simulator generates the surface current on the provided computer aided design (CAD) model of

the target, based on which the scattered field in a given polarization at the receiver is obtained

50



Detection Performance of MIMO Radar With Finite Scatterers Model

and stored. The receiver has a fixed elevation and varying azimuth angle through 0◦ to 360◦

with a predetermined angular step. The FEKO data collected from each run then are post-

processed, generating 2D SAR images of the target viewed by the fixed transmitter and rotating

receiver with different azimuth. Figure 3.3 shows the bistatic SAR images of the MBT when

the transmitter elevation and azimuth is 10◦ and 0◦, respectively, and the receiver elevation is

10◦ and the receiver azimuth has four different values.

cross range (m)

ra
ng

e 
(m

)

Rx azimuth is 32.40°

−5 0 5

−5

0

5

cross range (m)
ra

ng
e 

(m
)

Rx azimuth is 33.84°

−5 0 5

−5

0

5

cross range (m)

ra
ng

e 
(m

)

Rx azimuth is 35.28°

−5 0 5

−5

0

5

cross range (m)

ra
ng

e 
(m

)

Rx azimuth is 36.72°

−5 0 5

−5

0

5

Figure 3.3: Bistatic SAR images of the MBT for four values of the receiver azimuth

For certain polarizations of the transmitter and receiver, several 50× 50 matrices are available

to form images of a given type of target viewed by a pair of transmitter and receiver at different

locations. As the values of matrix entries indicate the reflectivities of different parts of the

target, it is reasonable to assume that the target is composed of a finite number of point-like

scatterers, whose reflectivity coefficients change as the locations of the transmitter and receiver

vary. In other words, for each pair of transmitter and receiver locations, the target is modeled

by a 10m by 10m rectangular area S as shown in Figure 3.4, in which there are 2,500 point-like

scatterers {Sp,q}, whose reflectivity coefficients {arc
p,q} are the values of the (p, q)-th entries of

the corresponding 50× 50 matrix. The origin of the xy-plane is at the center of the target, and

the coordinates (xp,q, yp,q) of the scatterer Sp,q are (q × 0.2− 5.1, p× 0.2− 5.1).

Therefore, we set up the MIMO radar system as illustrated in Figure 3.5, where, as before,
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Figure 3.4: Finite scatterers model of the realistic target

ULAs are employed at both transmitter and receiver with Nt and Nr elements, respectively.

The interelement spacings are ∆tλc and ∆rλc, where λc is the carrier wavelength and ∆t

and ∆r are the normalized transmit and receive antenna spacing in wavelengths. dt
0 and dr

0

are the distances between the centre of the target and the first antenna of the transmitting and

receiving array, respectively. Notice the fact that these two values do not need to be the same.

In Figure 3.5, the rectangular area S in the xy-plane is the 10m by 10m target model illustrated

in Figure 3.4. Because of the limited FEKO data, the elevation of transmitter and receiver, Φte

and Φre, can be either 10◦ or 15◦, and the transmitter azimuth Φta can be one of the following

six values 0◦, 60◦, 120◦, 180◦, 240◦, and 300◦, while the receiver azimuth Φra can be any

one among 500 values, from 0◦ to 360◦ with a step of 0.72◦. For any of the aforementioned

system configuration, the target can be APC, MBT, STR, or MSL, and the polarizations of the

transmitter and receiver can be either horizontal or vertical.
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dtp,q drp,q

Φte Φre
Φra

dt0 dr0

Figure 3.5: Configuration of a MIMO radar system involving the realistic target

3.4.2 System Model

As shown in Figure 3.5, the path through the scatterer Sp,q is defined by AoD Φt
p,q, AoA Φr

p,q,

reflectivity coefficient arc
p,q, distance between Tx 1 and Sp,q, dt

p,q, and distance between Sp,q

and Rx 1, dr
p,q. Then, similar to (3.1) and (3.2), for a MIMO radar having the configuration de-

scribed in the last section with any combination of all the possible parameters, we can calculate

the Nr ×Nt channel matrix H as below:

H =
50∑

p=1

50∑

q=1

arc
p,q exp(−j2πdtr

p,q

λc
)Ψr(Φr

p,q)Ψ
T
t (Φt

p,q) (3.26)
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Ψε(Φε
p,q) =




1

exp{j2π∆ε sin(Φε
p,q)}

...

exp{j2π(Nε − 1)∆ε sin(Φε
p,q)}




(3.27)

where ε represents either r or t and dtr
p,q = dt

p,q + dr
p,q is the distance between Tx 1 and Rx

1 along the path through the scatterer Sp,q. In addition, geometrical computation gives us the

following equations:

dε
p,q =

√
(dε

0 sinΦεe)2 + (xε − xp,q)2 + (yε − yp,q)2 (3.28)

sin(Φε
p,q) =

(dε
p,q)

2 − (dε
0)

2 cos(2Φεe)− x2
p,q − y2

p,q

2dε
0 sinΦεedε

p,q

(3.29)

where xε = dε
0 sinΦεe sinΦεa and yε = dε

0 sinΦεe cosΦεa. The transmitted signals are the

same as that described in Section 3.2.2, and the output of a bank of matched filters x, the

MIMO radar detector, and the threshold of the detector η are shown in (3.4), (3.5), and (3.20),

respectively. Therefore, together with the channel matrix H given by (3.26), we are able to

measure the value of the vector x, and the detection decision can be made by comparing ‖x‖2
with the threshold η.

Note here that the elements of the channel matrix H are assumed to be zero-mean complex

Gaussian random variables in the theoretical target model discussed in the last section, and

thus the theoretical probability of detection of a MIMO radar system can be derived. In the

realistic target model, however, the channel gains are computed using the FEKO data and the

distributions are unknown. Hence, we make the detection decision for each realization of H by

viewing it as a deterministic matrix, and obtain the probability of detection of a MIMO radar

system by averaging over multiple realizations. The approaches for generating multiple channel

realizations using the available FEKO data will be described in detail in the next section.
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3.5 Simulation Results

In this section, numerical results are presented showing the target detection performance of a

MIMO radar system with different antenna spacings. We consider a radar system, regardless

of the type of targets, having two transmit antennas and four receive antennas. The probability

of false alarm is set to be a constant value PrFA = 10−6 and the SNR is defined as the ratio

between the transmitted power Es and the noise level per receiving element σ2
n.

We start by investigating a MIMO radar system involving the theoretical target discussed in

Section 3.3. It is assumed that the target area has circular shape with radius r0, within which

64 scatterers are uniformly distributed. The carrier frequency of the signal is 10 GHz, and the

size of the antenna array is much smaller than the distances between the target and both the

transmitter and receiver, which are in the order of 3 ∼ 5 km.

First of all, we validate the theoretical results of the probability of detection PrD obtained from

(3.19) for various configurations. Figure 3.6 depicts the theoretical probability of detection as

a function of the average received SNR when r0 = 15m, and the five configurations considered

involve the two extreme models mentioned in Section 3.3.2 and three models whose array

interelement spacings are 50, 100, and 200 wavelengths, respectively.
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Figure 3.6: Theoretical and simulated probability of detection as a function of the SNR for
systems with 2 Tx and 4 Rx antennas, Tx/Rx interelement spacings varied simulta-
neously

Figure 3.6 also shows the PrD recorded from Monte Carlo simulations for the same five sce-
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narios, and the total number of tests for each case is 10,000. Obviously, the simulated results

agree well with the theoretical values, which confirms the correctness of formula (3.19).

Observing the figure, we find that the curves corresponding to the two extreme channel models

set bounds for the system performance. In other words, all the configurations with specific

interelement spacings lie between these two ideal scenarios. Moreover, the performance curve

is closer to the full correlation case as the spacing decreases, while closer to the uncorrelated

case as the spacing becomes larger. This agrees with the analysis shown in Section 3.3.2 that

for the same target having a non-zero angle spread, the larger the antenna spacing, the lower

the channel matrix correlation, and thus the more spatial diversity gain can be realized.

It can be seen in Figure 3.6 that at low SNR, a system with densely spaced antennas outperforms

the ones whose interelement spacing is large, while at high SNR the latter performs better.

Furthermore, the system with large antenna spacing is always preferred when the detection

performance is acceptable, i.e., PrD is large enough. This is because at low SNR the received

power affects target detection performance the most, while the number of diversity paths is the

dominating factor at high SNR.

We next examine the target detection performance of a MIMO radar system with different

configurations when the target is the realistic target introduced in Section 3.4. As mentioned

before, the performance is measured based on multiple realizations of the channel matrix gener-

ated using the available FEKO data. Note the fact that there are several approaches to generate

channel realizations, and here we just employ a simple one, as our major objective is to explore

the advantages of a MIMO radar when a realistic target is considered.

In all the following simulations, the target studied is a MBT, the polarizations of both the

transmitter and receiver are horizontal, the elevation of the receiver is 10◦, and the elevation

and azimuth of the transmitter is 10◦ and 0◦, respectively. Numerical results for the scenarios

with other combinations of the parameters can also be obtained using corresponding FEKO

data. The carrier frequency of the signal is 1 GHz, and the channel matrix H is normalized

such that the average energy returned from the target is one.

When the system parameters are fixed at the above values, 500 matrices with size 50 × 50 are

available, whose entries are the reflectivity coefficients {arc
p,q} of all the 2,500 scatterers {Sp,q}

composing the target. Each matrix corresponds to a receiver location with the azimuth Φra

varying from 0◦ to 360◦ at a step of 0.72◦. We observe that those images, viewed by a fixed
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transmitter and a rotating receiver whose azimuth changes within a small variation range, are

quite similar. In other words, the coefficients {arc
p,q} would not change dramatically for a few

successive receiver azimuth steps when other parameters remain the same. Furthermore, from

(3.26) to (3.29), it is obvious that, with the selected polarizations, elevations and azimuths of

the transmitter and receiver, the values of {arc
p,q} are fixed and the value of channel matrix H

changes as the values of dt
0 and dr

0, the distances between the center of the target and the first

antenna of the transmitting and receiving array, vary. The conditions on choosing dt
0 and dr

0 are

quite loose, as long as they are large enough that the system is operated in the far field, but not

so large that the target would be viewed as a point target.
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Figure 3.7: Probability of detection as a function of the SNR for angular range I, 2 Tx and 4
Rx antennas, Tx/Rx interelement spacings varied simultaneously.

The detection performance for various MIMO radar configurations is shown in Figure 3.7, and

these systems are almost the same, except that the antenna spacings ∆t and ∆r are 0.5, 100,

200, and 500 wavelengths, respectively. For each configuration, we generate 3, 000 realiza-

tions of H by assigning 10 successive values to Φra from 32.4◦ to 38.88◦ with a step of 0.72◦

(denoted range I), and allocating 300 arbitrary values to dt
0 and dr

0 respectively for each an-

gular value. The values of dt
0 and dr

0 are selected to be between 3 ∼ 5 km. Observing the

figure, we find that at low SNR, a system with densely spaced antennas outperforms the ones

whose interelement spacing is large, while at high SNR the latter performs better. Furthermore,

the system with large antenna spacing is always preferred when the detection performance is
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acceptable, e.g., PrD > 0.5.
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Figure 3.8: Probability of detection as a function of the SNR for angular range II, 2 Tx and 4
Rx antennas, Tx/Rx interelement spacings varied simultaneously.

Figure 3.8 depicts the detection performance of a MIMO radar system with different configu-

rations. The difference between this figure and Figure 3.7 is the new angular range (range II)

of the look angle, i.e., 10 successive values are assigned to Φra here from 176.4◦ to 182.88◦

with a step of 0.72◦. Similar to Figure 3.7, we find from Figure 3.8 that the system with

sparsely spaced arrays performs better at high SNR, and this configuration should always be

chosen when PrD > 0.6. This result agrees well with the conclusions drawn before from the

numerical results of the system involving the theoretical target shown in Figure 3.6, where the

realizations of the channel matrix are obtained based on theoretical and mathematical target

models. However, it is obvious that the radar system has different detection performance from

various observation angles, and the performance improvement brought in by the MIMO config-

uration is also different. Therefore, we next consider Figure 3.9, which displays the detection

performance when the target is viewed from various receiver look angles at a fixed SNR value.

Before we proceed to discuss Figure 3.9, the second approach to generate multiple realizations

of the channel matrix is introduced. It is clear that the receiver azimuth Φra can only be one of

the 500 values which are integer multiples of 0.72◦ when the data record is used directly. As

mentioned before, {arc
p,q} are similar for a few successive receiver azimuths when other param-

58



Detection Performance of MIMO Radar With Finite Scatterers Model

0 50 100 150 200 250 300 350
0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

average Rx angle (degree)

P
r D

 

 
spacing is 500 wavelength
spacing is 1/2 wavelength

Figure 3.9: Probability of detection as a function of the look angle at SNR=15dB for systems
with 2 Tx and 4 Rx antennas, Tx/Rx interelement spacings varied simultaneously

eters remain unchanged. Hence, we can generate several realizations of H where Φra could

be any value by using linear interpolation. In other words, for an arbitrary Φra
0 that is not an

integer multiple of 0.72◦, we first find two values Φra
L and Φra

U , which is the lower and upper

bound of Φra
0 , respectively. Here Φra

L =
⌊

Φra
0

0.72◦

⌋
× 0.72◦ and Φra

U = Φra
L + 0.72◦, where bkc

represents the largest integer smaller than k. The reflectivity coefficients corresponding to Φra
L

and Φra
U are available, denoted by {arc,L

p,q } and {arc,U
p,q }, respectively. We calculate the reflectiv-

ity of each scatterer arc,0
p,q when the receiver azimuth is Φra

0 by using interpolation between the

corresponding two values of arc,L
p,q and arc,U

p,q . Notice here that the real and imaginary parts of

{arc,0
p,q } are interpolated separately.

In the simulation yielding Figure 3.9, we divide 360◦ into 50 equal-sized angular sections and

obtain the corresponding PrD values. Each PrD value comes from 3,000 realizations of H

utilizing the interpolation approach mentioned before. These realizations are computed with

different dt
0 and dr

0, and various receiver azimuth chosen arbitrarily from the corresponding

angle section. From Figure 3.9, it is obvious that, except for a few observation angles, a MIMO

radar with large antenna spacing always provides better detection performance, and for most

angles, the performance improvement resulting from the MIMO configuration is significant.

For those few observation angles where the MIMO configuration is worse, the performance
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difference is small, and we believe this is because the target scattering is not rich enough when

it is viewed from those specific angles. In addition to the better average performance with the

angle, we find from Figure 3.9 that the MIMO configuration also provides performance with

less variability, i.e., the performance is less dependent on the look angle, which makes it more

attractive.

3.6 Conclusions

In this chapter we introduced the MIMO radar system assuming that the target is modelled as

the sum of a finite number of independent small scatterers. Both theoretical and realistic targets

were considered. For the theoretical target, a closed form formula to evaluate the theoretical

probability of detection for a MIMO radar having an arbitrary array-target configuration was de-

rived and it was validated by Monte Carlo simulations. This theoretical result makes it possible

to predict the detection performance of the actual MIMO radar without time consuming simula-

tions. For the realistic target, numerical results showing the target detection performance were

presented, which was measured based on multiple realizations of the channel matrix generated

utilizing the available FEKO data. Regardless of the target type, comparisons of the detec-

tion performance of a MIMO radar with different interelement spacings demonstrated that for

a distributed target, the larger the antenna spacings, the lower the channel matrix correlation,

and thus the more spatial diversity gain can be achieved. In addition, at low SNR, a system

with densely spaced antennas outperforms the ones whose interelement spacing is large, while

at high SNR the latter performs better. The system with large antenna spacing is always pre-

ferred when the detection performance is acceptable, e.g., the probability of detection is higher

than 0.6. All the results were consistent with the conclusions drawn in previous work which

investigated a MIMO radar with special array-target configurations only.
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Chapter 4
Detection and Direction Finding

Performance of Hybrid Bistatic Radar

As mentioned in Chapter 2, previous researchers have demonstrated that the conventional

phased-array radar provides coherent processing gain while the MIMO radar exploits spatial

diversity gain to improve the target detection and direction finding performance. In this chap-

ter, we will introduce a hybrid bistatic radar which combines these two configurations to take

advantage of both types of gains. We will investigate the best architecture for such system, tak-

ing into account both target detection and direction finding performance. This radar system is

a general model, which can be used to describe many practical array configurations, including

the MIMO and phased-array radar as special and extreme cases. A closed form expression is

derived to calculate the theoretical probability of detection for different configurations of the

hybrid bistatic system, and the Cramer-Rao bound (CRB) and the mean-square error (MSE)

of the maximum likelihood (ML) estimation for both angle of departure (AoD) and angle of

arrival (AoA) are evaluated to assess the direction finding performance.

4.1 Introduction

The two major problems in radar theory are the target detection and parameter estimation prob-

lems. We emphasize here that rather than designing novel algorithms to solve these two prob-

lems, we mainly focus on the performance evaluation for a radar system in this thesis. Such

an analysis makes it possible to find the best architecture for a specific scenario, and thus, the

performance of a radar system can be enhanced by adopting an appropriate configuration.

In practice, the performance of a radar system is limited by target scintillations or “fading” [11].

As discussed in Chapter 2, for target detection, the conventional phased-array radar addresses

this scintillation problem by cohering a narrow beam toward the target direction, which can

realize coherent processing gain to maximize the received energy reflected by the target. For
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direction finding, multiple independent snapshots are collected to average out scintillation ef-

fects in order to improve the estimation accuracy. The MIMO radar proposed by Fishler et al.

in [8] can overcome the scintillation problem by exploiting spatial diversity gain. It is demon-

strated in [8] that, for target detection, the MIMO radar system outperforms the phased-array

radar at high SNR while the latter performs better when the SNR is low. It is also shown in [3]

and [9] that the MIMO radar leads to a significant improvement in AoA estimation accuracy

because of the diversity offered by widely-separated antennas at the transmitter. In this case,

unlike the system used to detect targets, the receiver has to employ an array of closely-spaced

elements in order to avoid ambiguous angle estimates.

In this chapter, we investigate the best architecture for a radar system which is used for both

target detection and direction finding, particularly when the total number of transmitting and

receiving antennas is fixed. A hybrid bistatic radar combines the phased-array and MIMO radar

configurations, providing a balance between coherent processing gain and spatial diversity gain.

In addition, the hybrid radar is a general system model, which can be used to describe various

practical radar configurations, including the MIMO and phased-array configurations as special

and extreme cases. The target is assumed to be spatially distributed, and both the finite scatterers

model and the statistical model described in the last chapter are considered for a hybrid radar.

Although the architecture of the multistatic coherent sparse aperture system proposed in [128]

is similar to the hybrid bistatic radar, they utilized the point-like target assumption and focus on

processing the received data at a central processor coherently rather than exploring the spatial

diversity of the target. The system configuration discussed in [129] is the same as that in our

work, but the major aim of [129] is to propose spatial spectral estimators to detect target and

estimate parameters. In this chapter a parametric approach is applied and our emphasis is to

explore the performance of the system accounting for both the diversity gain and the coherent

processing gain in order to find the best configuration. In [129], the target direction is only

denoted by a “target location parameter” whose manifold is not formally defined, and linearly

independent waveforms are assumed to be transmitted from all the antennas. In our work,

however, we define the target direction by two parameters, AoD and AoA, and assume that

each array transmits one of a set of orthogonal waveforms and the antennas of each array work

as a beamformer cohering a beam toward the AoD. In this way, as mentioned in [130], extra

coherent processing gain can be achieved compared with the fully independent waveforms case

at the price of estimating AoD first. We want to investigate the effect different configurations

have on system performance and so we wish to measure the full gains that the hybrid radar
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system can realize.

We first consider the target detection performance and a closed form formula is derived utiliz-

ing the statistical model, which can be used to predict the theoretical probability of detection

for any hybrid radar configuration. It should be noted that [8], by contrast, only presents the de-

tection performance for four special configurations. We also show that it is possible to model a

realistic radar system using the finite scatterers model, which can perform just like the ideal hy-

brid radar under certain conditions. Then we introduce the initialization process during which

the AoD is estimated, and assess the estimation performance by measuring the average CRB.

This is because the transmitter needs to know the AoD at each phased-array in order to steer

a beam toward the correct target direction to realize coherent processing gain. In the phased-

array radar case considered in [8], perfect AoD information is assumed to be available but the

method to obtain that is not described. Then the average and outage CRBs proposed in [9] for

AoA estimation are extended to apply to the general case of a hybrid radar system assuming

that the true AoD value is available at the transmitter. We focus our attention on the scenario

that orthogonal waveforms and appropriate matched filters are employed, while in [9] the trans-

mitted signals are modeled by a Gaussian random process. The extension of our results to the

Gaussian waveform case in [9] is also briefly discussed. We also consider the scenario that the

transmitter only knows the estimated AoD obtained during the “initialization” stage, and derive

equations to evaluate the effect the estimation error in AoD has on finding AoA. The theoretical

expressions presented in this chapter provide both the detection and estimation performance of

a hybrid radar system. These equations can be used to select the best architecture for a given

specific scenario, considering factors such as the number of antennas, the SNR values, and the

required precision of the application.

4.2 System Model

4.2.1 Channel Model

As illustrated in Figure 4.1, the hybrid bistatic radar considered here has Mt antenna arrays at

the transmitter and Mr arrays at the receiver, and the separation between antenna arrays at the

transmitter and receiver are ∆taλc and ∆raλc, respectively. Each array is a uniform linear array

(ULA) of antennas with Nt elements at the transmitter and Nr elements at the receiver, and the

interelement spacings are ∆tλc and ∆rλc, respectively. Here λc is the carrier wavelength and
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Figure 4.1: Configuration of the hybrid bistatic radar system

∆ta, ∆ra, ∆t, and ∆r are normalized spacings in wavelengths. In order to realize coherent

processing gain, it is required that the interelement spacings are small such that each antenna

array has the same configuration as that of a conventional phased-array radar with Nt or Nr

closely spaced sensors. Each phased-array is able to use a beamformer to steer toward any

direction. To achieve spatial diversity gain, we assume that the separation between arrays at the

transmitter and receiver are large enough that the whole radar system can be considered as an

Mr ×Mt MIMO radar. In other words, in the hybrid radar system we utilize an antenna array

at the location where there is only one antenna in the conventional MIMO radar [8], so different

antenna arrays observe different aspects of the target, while all the antennas in one array view

the same aspect. All the signals are assumed to be narrowband. The channel matrix can be

expressed by an MrNr ×MtNt block matrix as below:

H =




H11 H12 · · · H1Mt

H21 H22
...

...
. . .

...

HMr1 · · · · · · HMrMt




(4.1)
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where the (u, p)-th block Hup is an Nr ×Nt matrix which is given by

Hup = αupΨr(Φr
u)ΨT

t (Φt
p)

Ψε(Φε
ς ) =




1

exp{j2π∆ε sin(Φε
ς )}

...

exp{j2π(Nε − 1)∆ε sin(Φε
ς )}




(4.2)

where αup is the fading coefficient of the target between the p-th transmit array and the u-

th receive array, ε and ς are either t and p or r and u, respectively, p = 1, 2, ..., Mt, and

u = 1, 2, ..., Mr. Here Φt
p is the AoD of the path from the first element of the p-th transmit array

to the center of the target area, and Φr
u is the AoA of the path from the target center to the first

element of the u-th receive array. Here we adopt the statistical MIMO model proposed in [8],

and hence a fading coefficient vector α which is defined such that [α](u−1)Mt+p , αup and

α ∼ CN (0MrMt , IMrMt). Note here that the vector α is the key MIMO definition, suggesting

that each array constitutes one element of a MIMO system. On the other hand, (4.2) follows the

phased-array definition, implying that each array itself works as a conventional phased-array

radar.

Notice that the statistical MIMO model can only be utilized for a system combining the ideal

phased-array and MIMO configurations, which do not exist in the real world. Therefore, a

hybrid radar based on this model is actually an ideal system. In contrast, as mentioned in the last

chapter, the finite scatterers model can be used to calculate the channel matrix of a radar system

having an arbitrary array-target configuration described by specific parameters of locations and

sizes of targets, transmitter and receiver. However, as discussed in Chapter 2, a finite scatterers

model coincides with the statistical model of the ideal MIMO system if its parameters obey the

condition that the so-called distance-dimension ratio, which is the ratio of the distances between

the target and both the transmitter and receiver to the dimension of the target, is smaller than

the normalized antenna spacing in wavelengths. In contrast, if the distance-dimension ratio

is far larger than the normalized interelement spacing, then the corresponding finite scatterers

model can be approximated as the statistical model of the ideal phased-array configuration. For

mathematical tractability, we employ the statistical model to derive theoretical performance. As

shown in Section 4.5, we can simulate a realistic hybrid radar using the finite scatterers model
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with appropriate parameters, which performs in the same way as the ideal hybrid radar model

above.

Furthermore, it is assumed that we operate in the “far field”, but because of the configuration

of the hybrid radar system, there are two ways to define the “far field” assumption depending

upon the dimensions of the array separations:

(A1) The separations ∆ta and ∆ra, as well as the dimension of each transmitting and receiving

antenna array, are much smaller than the distances between the target and both the transmitter

and the receiver, that is, the whole system works in the far field. Therefore, the AoDs for all

the MtNt transmit antenna elements are assumed to be the same, and similarly, the AoAs for

all the MrNr receive antenna elements are assumed to have the same value.

(A2) The sizes of ∆ta and ∆ra cannot be neglected compared with the distances between the

target and both the transmitter and the receiver, but the dimension of each antenna array is

much smaller than those distances, i.e., each antenna array individually works in the far field.

In other words, there are Mt different values of AoDs corresponding to the Mt sub-arrays at the

transmitter, but the Nt antenna elements within each sub-array have the same AoD. Similarly,

there are Mr various AoAs for the Mr sub-arrays at the receiver, while the Nr antenna elements

of each sub-array share the same AoA.

As mentioned before, the separations ∆ta and ∆ra have to be large enough such that different

arrays observe different aspects of the target for both (A1) and (A2), that is the MIMO condition

defined in equation (16) of [8] must hold. For the system shown in Figure 4.1, such a condition

can be expressed as below:

∆ta >
dt

1

∆x
, ∆ra >

dr
1

∆x
(4.3)

where dt
1, dr

1, and ∆x denote the distance between the first element of the first transmit array

and the target centre, the distance between the target centre and the first element of the first

receive array, and the dimension of the target in the x-direction, respectively.

The assumption (A1) implies that the differences between the AoD Φt
p for different transmit

arrays are so small that they can be neglected, i.e., Φt
1

.= Φt
2

.= · · ·Φt
Mt

. Similarly, the AoA Φr
u
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is also equal for all the Mr receiving arrays. From Figure 4.1, it is reasonable to say that such

an approximation is proper if

sinΦt
1 − sinΦt

Mt
≤ ε

sinΦr
1 − sinΦr

Mr
≤ ε

(4.4)

where ε is a small threshold chosen for a required precision, such as ε = 0.01, 0.001. From

(4.3) and (4.4), it is not difficult to see that if the following conditions hold jointly:

dt
1

∆x < ∆ta ≤
x0−xt

1−
(y0−yt

1)(sin Φt
1−ε)r

1−(sin Φt
1−ε)2

(Mt−1)λc

dr
1

∆x < ∆ra ≤
xr
1−x0− (y0−yr

1)(sin Φr
1−ε)r

1−(sin Φr
1−ε)2

(Mr−1)λc

sinΦt
1 = x0−xt

1

dt
1

, sinΦr
1 = xr

1−x0

dr
1

(4.5)

then the assumption (A1) is true. Here (x0, y0), (xt
1, y

t
1), and (xr

1, y
r
1) denote the coordinates

of the target centre, the first antenna of the first transmit array, and the first antenna of the first

receive array, respectively.

The assumption (A2) means that the AoDs and AoAs for various transmitting and receiving

arrays are different, and we say (A2) is true when (4.3) holds while (4.4) is not met. It is

possible that a few transmit or receive arrays have almost the same AoD or AoA while others

are different, i.e., the system is a hybrid of (A1) and (A2)1. We emphasize here that the system

model presented in this section are suitable for both assumptions, and the differences between

(A1) and (A2) will be discussed in later sections.

4.2.2 Signal Model

As discussed in the last section, we view the whole radar system as an Mr ×Mt MIMO radar

system. Therefore, we assume that each of the Mt transmit arrays transmits a different wave-

form, which are collectively denoted by an Mt × 1 vector b(t) = [b1(t), b2(t), · · · , bMt(t)]T .

1Such a scenario is not difficult to investigate using the formulae provided in the following sections.
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In addition, each of the Mt transmit arrays can be regarded as the transmitter of a conventional

phased-array radar with Nt antennas. That is, the p-th transmitting antenna array utilizes its

corresponding beamformer to steer toward the estimated target direction Φ̃t
p in order to obtain

coherent processing gain for its waveform bp(t). The maximum processing gain that could be

achieved by each transmit array is Nt, which can be realized when Φ̃t
p equals the true target

direction Φt
p. The transmitting beamformer of the p-th transmit array is denoted by an Nt × 1

vector at
p = Ψ∗

t (Φ̃
t
p) and here p = 1, 2, ..., Mt. Therefore, the signals transmitted from the

MtNt transmit antennas can be described by an MtNt × 1 vector s(t) as below:

s(t) =
√

Es

MtNt

[
(b1(t)at

1)
T (b2(t)at

2)
T · · · (bMt(t)at

Mt
)T

]T
(4.6)

where Es is the total transmitted power from all the transmit antennas. The normalizing coef-

ficient is used to make sure that the total transmitted power and the average received power at

each sensor are not affected by the number of transmit antennas. We further assume that the

transmit waveforms are mutually orthogonal over L samples, i.e.,
∫

bj(t− τ)b∗i (t)dt = Lδij(τ),

where L ≥ Mt. Note here that the transmitted signal model shown above does not apply to the

“initialization” stage described in Section 4.4.1, during which the AoD is estimated.

Denote the received signals and the additive white Gaussian noise at all the receiver antennas

by an MrNr × 1 vector r(t) = [r1(t), r2(t), · · · , rMrNr(t)]T and an MrNr × 1 vector n(t) =

[n1(t), n2(t), · · · , nMrNr(t)]T , respectively. Together with the channel matrix H given in (4.1),

the received signal can be expressed as

r(t) = H · s(t− τ) + n(t) (4.7)

where n(t) is assumed to be a zero-mean, complex Gaussian random vector process with corre-

lation matrix σ2
nIMrNr . Note here that τ is the time delay from the transmitter to the receiver via

the target, and differences in time of arrival at the receive antennas are ignored for simplicity.
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4.3 Target Detection Performance

In this section, we examine the target detection performance of the hybrid bistatic radar system,

and a closed form expression to evaluate the theoretical probability of detection is derived.

In order to exploit coherent processing gain at both the transmitter and receiver to improve

the target detection performance, we assume that the u-th receiving antenna array, similar to

that of the transmitter, uses its corresponding beamformer to steer toward the estimated target

direction Φ̃r
u. The maximum processing gain Nr is again realized when Φ̃r

u is the same as the

true target direction Φr
u. The receiving beamformer of the u-th receive array is denoted by an

Nr × 1 vector ar
u = Ψ∗

r(Φ̃
r
u) and here u = 1, 2, ..., Mr. Therefore, from (4.1), (4.6), and (4.7),

the output of the u-th beamformer is given by

rb
u(t) = (ar

u)T




r(u−1)Nr+1(t)

r(u−1)Nr+2(t)
...

ruNr(t)




=
√

Es
MtNt

(ar
u)T

Mt∑
p=1

Hupat
pbp(t) + (ar

u)Tnu(t)

(4.8)

where the Nr × 1 vector nu(t) denotes the additive white Gaussian noise at the elements of the

u-th receiving array. Denote the output of a bank of matched filters by a MrMt×1 vector x, that

is, [x](u−1)Mt+p =
∫

rb
u(t)b∗p(t)dt, where u = 1, 2, ..., Mr and p = 1, 2, ..., Mt. Following [8],

the radar detector can be written as

T = ‖x‖2 >H1

<H0

η (4.9)

where η is a threshold determined by the desired probability of false alarm PrFA. Recalling the

assumption that all the transmit waveforms are mutually orthogonal, we can obtain
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[x](u−1)Mt+p =

√
EsL2

MtNt
(ar

u)THupat
p +

∫
(ar

u)Tnu(t)bp(t)dt (4.10)

Assuming that all the beamformers steer toward the correct target direction, that is, Φ̃t
p = Φt

p

and Φ̃r
u = Φr

u, a full coherent processing gain of NrNt can be realized. Substituting (4.2) into

(4.10), it is not difficult to express the MrMt × 1 vector x under both the null hypothesis H0

and alternate hypothesis H1 as below:

x =





n H0√
EsL2

MtNt
NrNtα + n H1

(4.11)

where the noise vector n ∼ CN (0MrMt , LNrσ
2
nIMrMt) and the fading coefficient vector α ∼

CN (0MrMt , IMrMt). Therefore, the distributions of the test statistic T under both hypotheses

are given by

T = ‖x‖2 ∼




LNrσ2
n

2 χ2
2MrMt

H0(
EsL2N2

r N2
t

2MtNt
+ LNrσ2

n
2

)
χ2

2MrMt
H1

(4.12)

where χ2
k denotes a chi-square random variable with k degrees of freedom. As mentioned

before, for a given noise level, the threshold η can be determined by PrFA, while the probability

of detection PrD is computed from the value of η and the distribution of the test statistic T under

H1. Hereby, we can get

PrD = 1−Fχ2
2MrMt

(
2η

EsL2N2
r N2

t
MtNt

+LNrσ2
n

)

η = LNrσ2
n

2 F−1
χ2

2MrMt

(1− PrFA)
(4.13)

where F−1
χ2

k
and Fχ2

k
denotes the inverse cumulative distribution function (CDF) and the CDF
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of a chi-square random variable with k degrees of freedom, respectively. Here we assume that

all the beamformers steer toward the true target direction, and the detection performance when

only the estimated target direction is available will be provided at the end of Section 4.4.3.

The three systems discussed in [8] actually are special cases of the hybrid bistatic radar system,

i.e., the hybrid radar is the ideal MIMO radar when Nt = Nr = 1, the ideal phased-array radar

when Mt = Mr = 1, and the ideal MISO radar when Nt = Mr = 1. The corresponding

equations to calculate η and PrD for all these extreme scenarios derived from (4.13) match the

results in equations (28), (29), (34), (35), (38) and (39), respectively, in [8]. Note the fact that

previous theoretical results are derived utilizing the statistical model, which is appropriate only

for ideal scenarios. In order to analyze the detection performance of a system with a more

realistic configuration, we can extend the derivation provided in the last chapter for a MIMO

radar to the hybrid radar system case employing the finite scatterers model.

4.4 Direction Finding Performance

In what follows, we examine the performance of the hybrid bistatic radar as a direction finding

system to estimate the AoD and AoA based on the received signal reflected from the target. We

emphasize here that the work presented in this thesis focuses on a single target scenario, and

an extension to the multiple targets case is possible by adopting elaborately designed transmit

waveforms and applying appropriate estimation techniques. This could be a promising area

for future research since, to the author’s knowledge, the effect of spatial diversity realized by

a MIMO radar on the multiple targets scenario is not clear. From the viewpoint of estimation,

the MSE of the estimator is a common measurement to compare the performance of different

systems. However, the MSE depends on the specific approach adopted by the estimator. Thus,

we focus our attention on the CRB of the hybrid radar system with various configurations,

which provides a benchmark against which the performance of any unbiased estimator can be

compared [131]. It is noted that we only consider a simple scenario where the target is viewed

as a point source by each antenna array, which then estimates the target direction. However, our

analysis could be extended to a more complicated problem of estimating the nominal direction

of a distributed target [132, 133].

It is known that an array whose interelement spacings are larger than half-wavelength will

suffer from the spatial aliasing effect [122, 134], which makes it impossible to estimate the

71



Detection and Direction Finding Performance of Hybrid Bistatic Radar

target direction unambiguously. Hence, here we assume that the interelement spacings of both

the transmit and receive arrays are half-wavelength, that is, ∆t = ∆r = 0.5. In addition, in

order to estimate the AoD and AoA, Nt and Nr cannot be equal to one since a single omni-

directional antenna is unable to provide any angle information.

4.4.1 Initialization

In order to realize coherent processing gain, the transmitter needs to know the AoD in order to

steer toward the target direction. Hence, an “initialization” stage is required with no a priori

knowledge about the channel available, which is described as follows. If we only need to

estimate the AoA and Nt = 1, i.e., the transmitter is an array with widely-spaced antennas,

then such initialization is unnecessary and we should estimate the AoA directly.

The transmitted signal model described in (4.6) cannot be employed in the procedure of estimat-

ing AoD since the direction knowledge of the transmitting beamformers is not known. Instead,

during the “initialization” stage, orthogonal waveforms are transmitted from all the antennas

to realize the AoD estimation [72, 87]. As a specific example of orthogonal waveforms, the

time-division multiplexing (TDM) process is assumed to be utilized here, which is described as

follows: At time t1, the first element of the first transmitting antenna array transmits the signal

s and the received signals at all the MrNr receiving antennas are stored. Then, at time t2, the

second antenna of the first array transmits s and again all the received signals are recorded. This

operation is repeated until the last transmitting antenna is excited with the same signal s at time

tMtNt . Here we assumed that |s|2 = 1, and the fading coefficients are assumed to be constant

during the initialization process. We consider the far field assumption (A1) first and denote the

AoD and AoA by Φt and Φr, respectively. According to (4.1) and (4.2), the signal received by

the v-th element of the u-th receive array due to the excitation of s at the q-th antenna of the

p-th transmit array is given by

ru,v(tw) = ψr(v) · αup · ψt(q) · s + n (4.14)

where ψr(v) = exp {jπ(v − 1) sin(Φr)}; ψt(q) = exp
{
jπ(q − 1) sin(Φt)

}
; w = (p−1)Nt+

q; u = 1, 2, ..., Mr; v = 1, 2, ..., Nr; p = 1, 2, ..., Mt and q = 1, 2, ..., Nt. After recording all

the MrNrMtNt received signals, we combine them into one Nt×1 data record with MrNrMt
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snapshots as shown below, based on which the AoD is estimated.

rinit(k) =




ru,v(t(p−1)Nt+1)

ru,v(t(p−1)Nt+2)
...

ru,v(tpNt)




+ n(k)

= ψt(Φt) · αup · ψr(v) · s + n(k)

(4.15)

where ψt(Φt) =
[

ψt(1) ψt(2) · · · ψt(Nt)
]T

; k = (u − 1)NrMt + (v − 1)Mt + p;

u = 1, 2, ..., Mr; v = 1, 2, ..., Nr and p = 1, 2, ..., Mt. n(k) ∼ CN (0Nt , σ
2
nINt) and αup is

an entry of the MrMt × 1 fading coefficient vector α. The estimated AoD Φ̂t is obtained by

employing the ML estimator, which is given by [51]

Φ̂t = arg max
Φt′

MrNrMt∑

k=1

∣∣ψH
t (Φt′)rinit(k)

∣∣2 (4.16)

As mentioned before, in order to compare the performance of any unbiased estimator, one can

use the Cramer-Rao lower bound on the variance of any AoD estimator Φ̂t, which is denoted

by CRB(Φt |α). The notation indicates that the value is conditioned on the unknown param-

eters α [9]. Comparing (4.15) with equation (1.1a) in [64], we find that in this case, rinit(k),

ψt(Φt), αupψr(v)s, n(k), and MrNrMt in (4.15) corresponds to the noisy data vector y(t),

the direction matrix A(θ), the signal amplitude x(t), the additive noise e(t), and the number of

snapshots N in equation (1.1a), respectively. By using Theorem 4.1 provided in [64], the CRB

conditioned on the fading coefficients can be expressed as

CRB(Φt |α) =
σ2

n

‖α‖2 ·
6

NrNtπ2 cos2(Φt)(N2
t − 1)

(4.17)

Note here that ‖α‖2 ∼ 1
2χ2

2MrMt
. Similar to [9], we can calculate the average CRB (ACRB)

by averaging the CRB with respect to α, which is given by
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ACRB(Φt) =
σ2

n

(MrMt − 1)
· 6
NrNtπ2 cos2(Φt)(N2

t − 1)
(4.18)

When the far field assumption (A2) is adopted, the AoDs for various transmitting arrays are

different and all the AoDs need to be estimated separately. The AoD of the p-th transmitting

array is estimated based on the Nt × 1 data record with MrNr snapshots, which is obtained

from the received signals at all the MrNr receiving antennas when each antenna of the p-th

transmitting array is excited with the signal s in a TDM fashion. After a very similar derivation,

we can obtain the conditional CRB and ACRB for each AoD under (A2). The equations are

almost the same as (4.17) and (4.18), except that for the conditional CRB, ‖α‖2 ∼ 1
2χ2

2Mr
, and

for the ACRB, (MrMt − 1) in (4.18) changes to (Mr − 1).

4.4.2 AoA estimation with true AoD

Now we proceed to investigate the performance of the hybrid radar system for estimating the

AoA Φr under (A1). Since the estimated AoD is available after the initialization process, we

assume that each of the Mt transmitter arrays employs a beamformer to steer toward the target

direction to exploit coherent processing gain. In order to examine the effects of the system

configuration on the performance of estimating the AoA, we first assume that the transmitter

knows the true target direction, i.e., Φ̂t = Φt. The performance of the system when the error

in estimating AoD is taken into account will be provided in the next section. During the ob-

servation period, it is assumed that the fading coefficients are constant while the transmitted

waveforms are different for each snapshot.

In the hybrid radar system, we cannot estimate Φr by utilizing all the received signals directly,

but by processing each receive antenna array’s signals separately. This is because the separation

between receiving antenna arrays are much larger than a half-wavelength. As was the case for

target detection, we assume that the waveforms which are mutually orthogonal over L samples

have been used as the transmit waveforms b(t). From (4.2), (4.6), and (4.7), the Nr× 1 signals

ru received by the u-th receiving array are given by

ru(t) =
√

EsNt

Mt
ψr(Φ

r)αT
ub(t− τ) + nu(t) (4.19)
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where the k-th entry of the Nr × 1 vector ψr(Φr) is exp{jπ(k − 1) sin(Φr)}, and αu =[
αu1 αu2 · · · αuMt

]T
. Here αu ∼ CN (0Mt , IMt) and nu(t) ∼ CN (

0Nr , σ
2
nINr

)
.

Then, by applying a matched filter of duration L samples for each distinct transmit waveform,

i.e., xup =
∫

ru(t)b∗p(t)dt, and invoking the assumption that
∫

bj(t− τ)b∗i (t)dt = Lδij(τ), we

can obtain a single snapshot which can be written as an Nr × 1 vector

xup =

√
EsNtL2

Mt
ψr(Φ

r)αup + nup (4.20)

where u = 1, 2, ..., Mr; p = 1, 2, ..., Mt, and nup ∼ CN (0Nr , Lσ2
nINr). In this case, the SNR

increases by a factor of L compared to what we would measure for one sample in isolation.

Recall the fact that arrays at both the transmitter and receiver are separated far enough from

each other that they view different aspects of the target, then the fading coefficients αu and

αv for the u-th and v-th receiving arrays, respectively, are independent. Therefore, we can

obtain a MrMt × 1 vector α by stacking all the Mr {αu} into a single column vector, and

α ∼ CN (0MrMt , IMrMt). αup in (4.20) is the {(u − 1)Mt + p}-th entry of α. Since the

elements of α are independent, we can combine all the vectors xup into one data record with

MrMt snapshots, based on which the AoA Φr is estimated.

Similar to the initialization stage, the ML estimator is applied to estimate the AoA Φ̂r, which

is given by [51]:

Φ̂r = arg max
Φr′

Mr∑

u=1

Mt∑

p=1

∣∣ψH
r (Φr′)xup

∣∣2 (4.21)

Comparing (4.20) with equation (1.1a) in [64], we note that xup, ψr(Φr),
√

EsNtL2

Mt
αup, nup,

and MrMt in (4.20) correspond to the noisy data y(t), the direction matrix A(θ), the signal

amplitude x(t), the additive noise e(t), and the number of snapshots N in equation (1.1a),

respectively. The CRB conditioned on α can be calculated by using Theorem 4.1 provided

in [64], which is written as
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CRB(Φr |α) =
6

Lπ2 cos2(Φr)(N2
r − 1)

· Mtσ
2
n

EsNrNt ‖α‖2 (4.22)

Note here that ‖α‖2 ∼ 1
2χ2

2MrMt
. The ACRB of Φr shown below is calculated by averaging

(4.22) with regards to α.

ACRB(Φr) = 6
Lπ2 cos2(Φr)(N2

r−1)
· Mtσ2

n
EsNrNt(MrMt−1)

(4.23)

From (4.23), it is obvious that the ACRB is unable to indicate the direction finding performance

of the radar system when Mr = Mt = 1. Therefore, we proceed to examine the outage CRB

proposed in [9], which is denoted by CRBout=p(Φr). Similar to the outage capacity defined in

communications, the outage CRB for a given probability p means that the probability of finding

an estimator whose MSE is less than CRBout=p(Φr) is smaller than 1 − p [9]. Following [9],

CRBout=p(Φr) can be evaluated from (4.22) by replacing ‖α‖2 with 1
2F−1

χ2
2MrMt

(p).

As was the case for AoD estimation, AoAs for various receiving arrays are different under

(A2), and all the AoAs are need to be estimated separately. In this case, we assume that all the

transmitting arrays know the true target direction, and the AoA of the u-th receiving array is

estimated based on the vector xup with Mt snapshots. The equation of the conditional CRB for

each AoA is almost the same as (4.22), except that ‖α‖2 ∼ 1
2χ2

2Mt
. Using (Mt − 1) instead of

(MrMt − 1) in the second term of (4.23) gives us the ACRB for each AoA under (A2).

Note here that although orthogonal waveforms are assumed to be adopted, the transmitted sig-

nals can also be modeled by a Gaussian random process in this hybrid radar system as that

in [9], i.e., b(t) ∼ CN (0Mt , IMt). Here we assume that the power of each signal is unchanged

compared to the orthogonal waveform case. When assumption (A1) is adopted, from (4.19),

we can express the signals received by all the MrNr receiving antennas as below

r(t)=
[

rT
1 (t) rT

2 (t) · · · rT
Mr

(t)
]T

=
√

EsNt
Mt

[IMr ⊗ψr(Φr)]Ωb(t−τ)+n(t) (4.24)
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where the Mr×Mt matrix Ω =
[

α1 α2 · · · αMr

]T
and n(t) ∼ CN (0MrNr , σ

2
nIMrNr).

We further assume that r(t) has L independent snapshots, and based upon which the AoA Φr

is estimated. Following a derivation similar to that provided in [135], we can obtain the CRB

of Φr conditioned on Ω, which is given by

CRB(Φr|Ω)= 6
Lπ2cos2(Φr)(N2

r−1)

{
EsNrNt‖Ω‖2F

Mtσ2
n

−Mt+<
[
trace

(
IMt +

EsNrNt
Mtσ2

n
ΩHΩ

)−1
]}−1

(4.25)

From (4.25), a closed form equation of the CRB conditioned on Ω can be derived for two

special cases: Mt = 1 or Mr = 1.

CRB(Φr |Ω) = 6
Lπ2 cos2(Φr)(N2

r−1)
·
(

M2
t σ4

n

E2
sN2

r N2
t ‖Ω‖4

+ Mtσ2
n

EsNrNt‖Ω‖2
)

(4.26)

where ‖Ω‖2 ∼ 1
2χ2

2MrMt
. Note here that the system considered in [9] is actually a special

configuration of the hybrid radar when Mr = Nt = 1, and the corresponding equation for this

scenario derived from (4.26) matches equation (26) provided in [9].

When assumption (A2) is adopted, the AoA of the u-th receiving array Φr
u is estimated based

on the received signal vector ru(t) with L snapshots. The covariance matrix of this signal is

given by

Cru = ψr(Φ
r
u) · EsNt

Mt
‖αu‖2 ·ψH

r (Φr
u) + σ2

nINr (4.27)

Comparing it with equation (1) in [135], we note that ψr(Φr
u), EsNt

Mt
‖αu‖2, and σ2

n in this

equation corresponds to the direction matrix A, the signal covariance matrix P , and the com-

mon noise variance σ in equation (1) in [135], respectively. Hence, the CRB can be calculated

by using equation (5) provided in [135]
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CRB (Φr |α) = 6
Lπ2 cos2(Φr)(N2

r−1)
·
(

M2
t σ4

n

E2
sN2

t N2
r ‖α‖4

+ Mtσ2
n

EsNtNr‖α‖2
)

(4.28)

where ‖α‖2 ∼ 1
2χ2

2Mt
. Comparing (4.26) with (4.22), and comparing (4.28) with the CRB

equation of the scenario when orthogonal waveforms are transmitted under (A2), we find that

both (4.26) and (4.28) have an additional term inversely proportional to ‖α‖4, which can be

viewed as the “penalty” for using Gaussian random waveforms rather than orthogonal ones.

4.4.3 AoA estimation with estimated AoD

Since the CRB of AoD obtained before will not be zero, we know that the process of estimating

AoD cannot be error-free, and the case discussed in last section is actually an ideal scenario.

Therefore, we further investigate the direction finding performance of the hybrid radar under

(A1) when the estimated AoD Φ̂t obtained during the “initialization” stage, instead of the true

AoD value Φt, is available at the transmitter. In other words, each of the Mt transmitting

antenna arrays utilizes a beamformer to steer toward the estimated target direction to exploit

coherent processing gain. Given the fact that the ML estimator is asymptotically Gaussian

distributed and achieves the CRB [131], it is reasonable to assume that the estimated AoD Φ̂t is

a “truncated” Gaussian distributed, i.e., Φ̂t ∼ Nt(Φt, σ2
Φ), whose probability density function

(PDF) is

PDF(Φ̂t) =
QTG√
2πσ2

Φ

exp

{
−(Φ̂t − Φt)2

2σ2
Φ

}
(4.29)

when Φ̂t ∈ [
Φt − π

2 ,Φt + π
2

]
and equals to 0 elsewhere. The mean is the true value of the

AoD, and for a certain realization of the fading coefficient vector α, the variance σ2
Φ equals the

conditional CRB of the AoD given by (4.17). Here QTG is a normalizing constant chosen to

make PDF(Φ̂t) a density function depending on the value of Φt and σ2
Φ, which is, however,

very close to 1 for the scenarios considered here.

The error between Φ̂t and Φt reduces the coherent processing gain realized by the transmitting

beamformers, which results in a decrease in the AoA estimation performance. We evaluate this
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effect by considering the average coherent processing gain that could be achieved since Φ̂t is a

random variable. After similar calculation as that for (4.19) to (4.22), the conditional CRB of

AoA when the estimation error in AoD is included can be written as follows:

CRBerr(Φr |α) = 6
Lπ2 cos2(Φr)(N2

r−1)
· MtNtσ2

n

EsNr‖α‖2Pt

Pt = E
[∥∥∥ψT

t (Φt)at(Φ̂t)
∥∥∥

2
]

= ψT
t (Φt) ·Cat ·ψ∗

t (Φ
t)

(4.30)

where Cat = E
[
at(Φ̂t)aH

t (Φ̂t)
]
, at(Φ̂t) = ψ∗

t (Φ̂
t), and the k-th element of the Nt × 1 vector

ψt(Φt) is exp
{
jπ(k − 1) sin(Φt)

}
. Then, the (m,n)-th entry of the Nt ×Nt matrix Cat is

Cat(m,n) = E
[
cos

{
π(n−m) sin(Φ̂t)

}]
+ j · E

[
sin

{
π(n−m) sin(Φ̂t)

}]
(4.31)

Recall the assumption that Φ̂t ∼ Nt(Φt, σ2
Φ), and make use of formulae provided in [136–138],

the above equation becomes:

Cat(m,n) = J0(z) + QTG

∞∑
k=1

J2k(z) exp
[
−σ2

Φ(2k)2

2

]
×

{
cos(2kΦt)A(2k, σΦ)− sin(2kΦt)B(2k, σΦ)

}

+ j ·QTG

∞∑
k=0

J2k+1(z) exp
[
−σ2

Φ(2k+1)2

2

]
×

{
sin

[
(2k + 1)Φt

]A(2k + 1, σΦ) + cos
[
(2k + 1)Φt

]B(2k + 1, σΦ)
}

(4.32)

where Jk(z) is a Bessel function of the first kind and integer order [136], z = π(n−m), and

A(a, b) = <
{

erf( π√
8b
− j ab√

2
)
}
−<

{
erf(− π√

8b
− j ab√

2
)
}

B(a, b) = =
{

erf( π√
8b
− j ab√

2
)
}
−=

{
erf(− π√

8b
− j ab√

2
)
} (4.33)

where erf(a + jb) is the complex-valued error function [136]. Substituting (4.32) and (4.33)

into (4.30) gives the CRB of AoA conditioned on α including the effect of the estimation error
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in AoD. It is impossible to derive a closed-form equation of the corresponding ACRB. One

way to obtain ACRB numerically is to generate a realization of α, calculate the conditional

CRB of the AoD using (4.17) first, which is the value of σ2
Φ, then evaluate the corresponding

conditional CRB of the AoA from (4.30) to (4.33). Repeat this process for multiple realiza-

tions and compute the ACRB of the AoA by averaging over the conditional CRBs. However,

such a procedure is time consuming, and hence, we employ another approach to calculate the

ACRB approximately, and the numerical results provided in the next section validate that the

approximate method works quite well. Firstly, calculate the ACRB of the AoD using (4.18).

Then, substitute this value as σ2
Φ to (4.32) and denote the resulting matrix as Ct

app. Similar to

(4.23), we evaluate the approximate ACRB of the AoA, taking into account the estimation error

in AoD, as below:

ACRBerra(Φr) = 6
Lπ2 cos2(Φr)(N2

r−1)
· MtNtσ2

n

EsNr(MrMt−1)ψT
t (Φt)Ct

appψ∗t (Φt)
(4.34)

Similarly, we can obtain the approximate probability of detection PrD considering the es-

timation error in both AoD and AoA by replacing N2
r N2

t in the denominator of (4.13) by

ψT
r (Φr)Cr

appψ
∗
r(Φ

r)×ψT
t (Φt)Ct

appψ
∗
t (Φ

t). Here Cr
app is computed by substituting the value

of ACRB of the AoA from (4.23) as σ2
Φ to (4.32), and replacing Φt in (4.32) by Φr.

When assumption (A2) is adopted and estimation errors exist in the AoD, we can derive the

conditional and average CRBs of the AoA by following the same procedure leading to (4.30)

and (4.34), which can be briefly described as below:

i) Compute the value of σ2
Φ, which equals the conditional or average CRB of the AoD under

(A2) provided in Section 4.4.1.

ii) Calculate the reduced coherent processing gain Pt by substituting the obtained σ2
Φ into

(4.30) to (4.33).

iii) Derive the conditional or average CRB of the AoA when estimation errors exist in the

AoD by multiplying N2
t

Pt
by the corresponding CRBs of the AoA under (A2) when the

transmitter knows the true AoD, which are provided in Section 4.4.2.
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4.5 Simulation Results

In this section, numerical results yielded by simulations of a hybrid bistatic radar are provided.

We examine the target detection performance first for a system with eight transmit antennas

and eight receive antennas when the number of snapshots L = 8. The carrier frequency of the

signal is 10 GHz, and the size of the antenna array is much smaller than the distances between

the target and both the transmitter and receiver, which are on the order of 3 ∼ 5 km. The

probability of false alarm is set to be a constant value PrFA = 10−6 and the SNR is defined as

the ratio between the transmitted power Es and the noise level per receiving antenna σ2
n. The

far field assumption (A1) is employed in the simulations, and we assume that Φt = 45◦ and

Φr = 45◦.
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Figure 4.2: Theoretical and simulated probability of detection as a function of the SNR for
systems with 2 transmitting antenna arrays

First of all, we validate the theoretical results of PrD obtained from (4.13) for various configu-

rations. Figure 4.2 depicts the theoretical probability of detection as a function of the average

received SNR when the number of the transmit arrays is two, i.e., Mt = 2, and the number

of receive arrays of the four configurations considered is 1, 2, 4, and 8, respectively. Figure

4.2 also shows the PrD recorded from simulations of the same four scenarios employing the

finite scatterers model, and the total number of tests for each case is 10,000. It is assumed that
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the target area has circular shape with radius r0 = 20m, within which there are 64 scatterers.

The normalized interelement spacing of each antenna array ∆t = ∆r = 0.5 and the array

separation ∆ta = ∆ra = 400. In this case, the distance-dimension ratio mentioned in Section

4.2.1 is smaller than the normalized separations ∆ta and ∆ra. According to the description

of the relationship between the finite scatterers model and the statistical model, all the antenna

arrays in the considered scenario together constitute an ideal MIMO system. In contrast, each

array itself can be viewed as an ideal phased-array configuration since the distance-dimension

ratio is much larger than the interelement spacings ∆t and ∆r. Obviously, the simulated results

agree well with the theoretical values calculated using the statistical model, which confirms the

correctness of the formula (4.13).
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Figure 4.3: Theoretical probability of missed detection as a function of the SNR for systems
with various numbers of receiving antenna arrays

Figure 4.3 and Figure 4.4 depict the theoretical probability of missed detection PrMD calcu-

lated by using (4.13) for various hybrid radar configurations.We consider different numbers of

transmit and receive arrays, that is, Mt and Mr can be 1, 2, 4, or 8. The scenarios considered

in Figure 4.3 have 2 values of Mt, and for each Mt, 3 different values of Mr are examined.

From the figure, we find that the configuration with Mr = 1, i.e., the phased-array receiver

configuration, work best at low SNRs. As the SNR increases, the hybrid system with Mr = 2

outperforms the others. The receiver with one sparsely-spaced receive array (Mr = 8, Nr = 1)
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Figure 4.4: Theoretical probability of missed detection as a function of the SNR for systems
with various numbers of transmitting antenna arrays

is always preferred when the detection performance is good, e.g., PrMD is less than 0.01. Then

we compare the curves shown in Figure 4.4 corresponding to the radar systems having various

Mt when Mr is fixed at 1 and 4. Similarly, the radar having the phased-array configuration at

the transmitter performs the best at low SNR, but systems with larger Mt achieve lower PrMD

as the SNR increases. Furthermore, by comparing the three solid lines (Mr = 1) with the dotted

lines (Mr = 4), it is clear that a larger value of Mr is always preferred when PrMD is less than

0.1. However, this is not always the case for Mt, especially when Mr is large. In fact, the sys-

tem with large Mt performs the best only at relatively high SNR, and at that SNR value PrMD is

comparatively low, e.g., lower than 10−6. In addition, observing these two figures, we can see

that the improvement on detection performance by enlarging Mr for a fixed transmitter config-

uration is more obvious than that by increasing Mt when the receiver is unchanged. Therefore,

a hybrid system, whose transmitter consists of a few antenna arrays and widely spaced elements

at the receiver, provides better target detection performance than either the MIMO radar or the

phased-array radar for practical values of PrMD, such as 0.01 and 0.001. Furthermore, these

results suggest that it is possible to enhance the system performance by forming an adaptive

MIMO radar. For example, the best architecture of a radar system can be predicted for every

specific scenario, depending on the given number of antennas, the SNR value considered, the
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required probability of false alarm, etc. Assuming we are capable of moving antenna elements

to the desired locations in real time, a MIMO radar whose configuration is adaptively adjusted

to provide the best performance can be realized.
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Figure 4.5: Average CRB of AoD as a function of the SNR for a hybrid radar system with
different configurations

Next, we proceed to assess the direction finding performance of the hybrid radar system, which

is again assumed to have a total of 8 transmitting and 8 receiving antennas. We first examine the

performance of estimating AoD at the initialization stage. Notice that Mt cannot be 8 since no

AoD estimation is possible when there is only one single antenna for each transmit array. Figure

4.5 shows the average CRB of AoD calculated by (4.18) for a hybrid radar system with various

configurations. It is obvious that for the same Mr, the smaller the value of Mt, the lower the

ACRB, while the ACRB decreases as Mr becomes larger for a fixed Mt. Therefore, in order to

estimate the AoD more precisely, the phased-array configuration (Mt = 1) should be selected

for the transmitter while increasing the number of receive arrays Mr improves performance.

Figure 4.6 depicts the simulated average MSE of AoD for the same five scenarios as that in

Figure 4.5, but this time using the ML estimator. It also shows the simulated result for the con-

ventional phased-array radar, i.e., Mt = Mr = 1, which is unable to be calculated by (4.18).

Averaging the MSE
∣∣∣Φ̂t − Φt

∣∣∣
2

for 100,000 realizations of the channel matrix H defined in

(4.1) gives the simulated results, where the estimated AoD Φ̂t is obtained from (4.16). Appar-

ently, the theoretical ACRB curves in Figure 4.5 agree well with the corresponding simulated

84



Detection and Direction Finding Performance of Hybrid Bistatic Radar

0 5 10 15 20
10

−6

10
−5

10
−4

10
−3

10
−2

SNR (dB)

A
ve

ra
ge

 M
S

E

 

 
Mt=1,Mr=1
Mt=1,Mr=4
Mt=2,Mr=4
Mt=4,Mr=4
Mt=2,Mr=1
Mt=2,Mr=2

Figure 4.6: Average MSE of the ML estimator for AoD as a function of the SNR for a hybrid
radar system with different configurations

average MSE curves shown in Figure 4.6, which validates the correctness of (4.18) and also

indicates that the ML estimator utilized in these scenarios is an efficient estimation technique.
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Figure 4.7: Average CRB of AoA as a function of the SNR for two kinds of transmitting wave-
forms when the true AoD value is assumed to be available at the transmitter
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Figure 4.8: Average MSE of the ML estimator for AoA as a function of the SNR when the true
AoD value is assumed to be available at the transmitter

Now we investigate the direction finding performance at the receiver. First of all, the perfor-

mance of estimating AoA is examined when the true AoD value is assumed to be available

at the transmitter. Here we assume that the number of snapshots L is 80, and Mt could be

1, 2, 4, or 8, while Mr could be 1, 2, or 4. The curves corresponding to “Hybrid” in Figure

4.7 are evaluated using (4.23), which show the average CRB of AoA when the hybrid signal

(4.6) is adopted as the transmitting waveform. On the other hand, the curves corresponding to

“Orthogonal” in Figure 4.7 show the average CRB of AoA for the same system configurations

when the signals transmitted from all the MtNt antennas are mutually orthogonal. It is clear

that the former provides better performance due to the coherent processing gain realized by the

beamformers at the price of estimating the AoD first. Figure 4.8 shows the simulated average

MSE of AoA for different systems employing the ML estimator. The estimated AoA is ob-

tained from (4.21) and the simulated results are given by averaging the MSE
∣∣∣Φ̂r − Φr

∣∣∣
2

for

100,000 realizations of the channel matrix H. Obviously, the theoretical ACRB results shown

in Figure 4.7 agree well with the corresponding simulated curves in Figure 4.8, which validates

the correctness of (4.23). Furthermore, we observe that the smaller the value of Mr, the better

the estimation of AoA, and for the systems with the same receiver configuration Mr = 1, the

one with Mt = 2 achieves the lowest average MSE, indicating that the total gain achieved by

combining the spatial diversity gain provided by the 2 arrays and the coherent processing gain
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obtained by the 4 antennas of each array outweighs the diversity gain, or the processing gain

realized by the 8 antennas in the MIMO or the phased-array configurations.
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Figure 4.9: True and approximate average CRB of AoA as a function of the SNR when only the
estimated AoD value is available at the transmitter
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Figure 4.10: Average MSE of the ML estimator for AoA as a function of the SNR when only the
estimated AoD value is available at the transmitter
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We further explore the performance of finding Φr when the transmitter only knows the esti-

mated AoD obtained during the initialization stage. In Figure 4.9, the curves corresponding

to “True” show the ACRB of AoA obtained numerically using the first approach described in

Section 4.4.3, while the curves corresponding to “App” depict the approximate ACRB of AoA

when the second method is employed. Comparing the results, we find that the difference is quite

small so that the second approach provides a useful CRB estimate. In addition, we present the

simulated average MSE of AoA including the effect of estimation error in AoD in Figure 4.10.

Here, the estimated AoD is obtained for each realization of channel matrix first, which is the

direction the transmitting beamformers steer toward, then the ML estimator at receiver gives Φ̂r

based on the received signal, and the average MSE is calculated by averaging
∣∣∣Φ̂r − Φr

∣∣∣
2

for

100,000 realizations. Obviously, Figure 4.9 agrees well with the corresponding curves in Figure

4.10, which validates the correctness of (4.30). Furthermore, comparing Figure 4.9 with Figure

4.7 and Figure 4.10 with Figure 4.8, we notice that the difference between the performance of

the system with the true AoD and estimated AoD is small, indicating that the estimation error

in AoD resulting from the initialization stage would not decrease the performance of estimating

AoA dramatically. However, this conclusion is somewhat dependent on the array sizes and the

number of snapshots available. Thereby, only the system with true AoD value is considered in

the following simulations for simplicity and mathematical tractability.
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Figure 4.11: Outage CRB of AoA as a function of the SNR for a hybrid radar system with
different configurations when the outage probability p = 0.01
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Figure 4.12: Outage CRB of AoA as a function of the SNR for different values of outage prob-
ability p

We will next compare the system performance by using the outage CRB rather than the ACRB

since the latter does not exist when Mr = Mt = 1. Figure 4.11 shows the CRBout(Φr)

for various radar systems when p = 0.01. Observing the results for systems whose number

of transmit arrays Mt is fixed at 4, we find that the radar with smaller Mr always performs

better, which agrees with the conclusion drawn from Figure 4.7. Hence, an array with closely-

spaced antennas is usually preferred at the receiver for estimating the AoA. Then we compare

the performance of systems with the same Mr which is equal to 1. We see that the hybrid

radar with 4 transmit arrays, each having 2 antennas, performs better than the system whose

transmitting antennas are far from each other (Mt = 8) or are closely located (Mt = 1). Hence,

applying the hybrid bistatic radar system can achieve better direction finding performance than

using the MIMO or the phased-array configuration.

From previous results we find that when Mr = 1, the hybrid radar with 2 transmit arrays

performs the best in terms of the average MSE, while the system with Mt = 4 should be chosen

in order to achieve the lowest outage CRB for p = 0.01. In addition, we see from Figure 4.12

that when Mr = 1 and p = 0.1, the system with 2 transmit arrays outperforms the one having 4

arrays in the sense of outage CRB. In order to explain this, we further present in Figure 4.13 the

CDF of the CRB for systems with Mr = 1 and Mt = 1, 2, 4, and 8 when the SNR is fixed at
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Figure 4.13: CDF of the CRB of AoA at SNR=10dB for a hybrid radar system with different
numbers of transmitting antenna array when the receiver has one antenna array
(Mr = 1)

10dB. Recalling the fact that the CRB is actually conditioned on a random variable ‖α‖2, which

has the distribution 1
2χ2

2MrMt
, it is clear that the CRB itself is also a random variable whose

distribution is affected by the values of Mt and Mr. Figure 4.13 illustrates that the comparison

of the direction finding performance between different radar systems based on only the average

MSE or only the outage CRB is not adequate, and the CDF of CRB should also be taken into

account.

4.6 Discussion

In general, our analysis shows that a system with the phased-array configuration, either at the

transmitter or receiver, has relatively better target detection performance at low SNR, while

the system with the MIMO configuration is preferred at high SNR. The radar system having a

sparsely-spaced receive array usually provides better detection performance for low probability

of missed detection. However, it is possible that the system whose transmitter is a widely-

spaced array works best only when the detection probability is equal to one, which is unneces-

sary or even impossible in the real radar system. Therefore, a hybrid radar, whose transmitter

consists of a few antenna arrays and widely-spaced elements at the receiver, provides better tar-
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get detection performance than either the MIMO radar or the phased-array radar for practical

values of PrMD, such as 0.01 and 0.001.

In contrast, if a radar system is applied to find the target direction AoA, then the phased-array

configuration is always preferred at the receiver, and the transmitter should also choose a hybrid

configuration to improve the estimation performance. Regarding the estimation performance

for the AoD, the phased-array configuration should be chosen at the transmitter while increasing

the number of receive antenna arrays improves the estimation, which is the exact opposite of

the best configuration for AoA estimation. Although the performance of estimating the AoD

during the initialization process will affect the direction finding performance overall given the

fact that the AoD information is needed to be known by the transmitter in order to cohere a

beam toward the target direction, we validate that the estimation error in AoD caused by the

initialization would not decrease the performance of estimating AoA significantly.

It can be seen that the best hybrid configuration for a radar system is not the same for different

detection and estimation applications. A hybrid radar system, which is a compromise of these

configurations, would be the best choice to optimize jointly the detection and estimation per-

formance. The best hybrid radar configuration for a specific scenario varies depending on the

given number of antennas, the SNR value considered, the required precision, etc., which can be

evaluated by the theoretical expressions presented in this chapter.

4.7 Conclusions

In this chapter we investigated the hybrid bistatic radar system, which is a combination of the

conventional phased-array and MIMO radar configurations. We derived a closed form expres-

sion to evaluate the theoretical probability of detection of the system, and examined the per-

formance of the hybrid radar to estimate the AoA by measuring the average and outage CRBs.

The performance of estimating the AoD during the initialization process was also examined,

and theoretical results were validated by simulations. For a radar system having a fixed number

of transmitting and receiving antennas, which is used for both target detection and direction

finding, we suggest that a hybrid configuration should be employed, and the total gain achieved

by combining the spatial diversity gain provided by the antenna arrays together and the coher-

ent processing gain obtained by each array outweighs the diversity gain, or the processing gain

realized by the antennas in pure MIMO or phased-array configurations.
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Chapter 5
Detector and Waveform Design for

MIMO systems with Noisy Channel
Estimation

We have studied the effects the configuration of a MIMO radar has on system performance

in the previous chapters. Obviously, for a radar with a fixed architecture, system performance

would be significantly affected by the choice of transmitted signals, and such a waveform design

problem will be investigated in this chapter. As mentioned in Chapter 2, previous research has

shown that time reversal (TR), which is developed in the acoustics domain, can also improve

the detection performance of a radar system. However, the TR technique is no longer a good

choice when the noise level is high since the retransmitted signal contains significant noise

components. We will investigate a MIMO detection process similar to TR detection, during

which a waveform designed using the estimated channel and a parameter indicating the quality

of the estimation is retransmitted, and the detector determines the presence or absence of a

target. Three detectors will be developed, whose theoretical thresholds and probabilities of

detection will be derived. We will propose three schemes to design the retransmitted waveform

with constraints on signal power, whose performance will be compared with the TR scheme.

5.1 Introduction

The TR technique, an extension of the concept of phase-conjugation in optics, has attracted

increasing interest for a broad range of applications. The unique feature of TR is that it can

turn multipath effects, traditionally considered a drawback, into a benefit, which is very sim-

ilar to the MIMO concept. In the TR approach, a signal is first radiated through the medium,

then the backscattered signal is recorded, time reversed, energy normalized, and retransmit-

ted. As discussed in Chapter 2, this technique is not new, and there are extensive publications

studying the applications of TR in the acoustic and ultrasound domains [99,101,139,140], ran-

dom media [107, 108], ultra-wideband communications [109, 110], and computational imag-

ing [113–116]. Recently, Moura et. al. exploited the MIMO radar target detection problem
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applying TR, showing that TR detection can considerably improve system performance com-

pared with conventional detection [118–120]. This is because the waveform is reshaped to

match the channel during the TR process, which is a waveform design process. However, the

retransmitted signal in Moura’s algorithm contains noise components, and it is clear that the

TR scheme is no longer a good choice if the noise level is high. In addition, analytical ex-

pressions for the threshold and probability of detection of the TR detection were not derived

in [118–120]. Instead these were determined by Monte Carlo simulations.

In this chapter, we investigate a MIMO detection process similar to TR detection. That is,

during the probing phase, an incident wave is first radiated into the medium and an estimated

channel matrix with estimation error is obtained. It is assumed that a parameter indicating the

quality of the estimation is given a priori, which can be appropriately chosen depending on the

noise level, the channel dynamics, and estimation strategies, etc. [141–143]. Then, a waveform

designed using the estimated channel and the estimation quality parameter under power con-

straints, instead of the normalized TR signal used in Moura’s scheme, is retransmitted. Finally

the detector determines the presence or absence of a target. We first develop three detectors,

whose theoretical thresholds and probabilities of detection are derived. Next, three criteria are

proposed to design the retransmitted waveform under power constraints. Note here that similar

to TR detection, it is assumed that the channel remains static during the probing and detection

phases, i.e., the scheme is only suited to low Doppler scenarios. The waveform design problem

for a MIMO communication system maximizing the channel capacity when estimation error

exists is studied in [141–143], and it is assumed that the estimated channel and the estimation

error are independent. In this chapter, motivated by [141–143], we consider the waveform de-

sign problem for a radar (or sonar) system and assume that the estimation error is independent

of the channel and their sum is the estimated channel. Although waveforms are designed for

MIMO radar in [70,71], they only assumed that the second-order statistics of the channel matrix

is known and this assumption is the basis for the algorithms which are developed. Here, how-

ever, we design the detector and the retransmitted waveform using an instantaneous estimated

channel matrix.

5.2 System Model

We consider a wideband bistatic MIMO radar (or sonar) system including a pair of arrays A

and B, which have Na and Nb sensors, respectively. The channel frequency response matrix
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is denoted by an Nb × Na matrix H(fq), q = 1, 2, ..., Qf , where the (i, j)-th entry of H(fq),

hij(fq), is the frequency response of the channel between the i-th sensor of Array B and the

j-th sensor of Array A at the discrete frequency fq. It is assumed that the sequential frequen-

cies fq are at least one coherence bandwidth apart and hence the channel matrices at different

frequencies are considered to be independent following [122]. We adopt the statistical MIMO

model here, that is, the entries of the channel matrix are modeled as independent zero-mean

complex Gaussian random variables, and they are normalized to have unit variance. Note that

such a model has been utilized in [8] and [120], but the propagation mechanisms causing mul-

tipaths, which result in the random target response, are different. In [8], the distributed target

itself leads to multipath propagation, while in [120], the multipaths are due to a rich scattering

environment surrounding point-like targets.

As shown in Figure 5.1, the target detection process has two steps. During the probing phase,

for the p-th snapshot, the i-th sensor of Array A transmits an incident wideband signal spi(t)

into the medium, whose discrete Fourier transform is Spi(fq) at frequency fq. The signal vector

received by Array B for the p-th snapshot is

xp(fq) = H(fq) · sp(fq) + n1,p(fq) (5.1)

where n1,p(fq) is the noise vector at Array B whose entries are assumed to be zero-mean

complex Gaussian random variables with variance σ2
n1

, and the Na × 1 signal vector sp(fq) =

[Sp1(fq), Sp2(fq), · · · , SpNa(fq)]
T . Here the superscript T denotes the transpose of a matrix.

Based on all the P snapshots xp(fq), the estimated channel matrix Ĥ(fq) is obtained, whose

(i, j)-th entry is expressed as

ĥij(fq) = hij(fq) + eij(fq) (5.2)

where eij(fq) is the (i, j)-th element of the channel estimation error matrix E(fq). Similar

to [144], we assume that eij(fq) is a zero-mean complex Gaussian random variable which is

independent of hij(fq) and has variance σ2
e . Note here that knowing the value of σ2

e requires

noise power estimation and knowledge of the estimation method and the waveform length dur-
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Figure 5.1: Description of the (a) probing and (b) detection process of the MIMO system

ing the probing phase. From (5.2), it is not difficult to see that ĥij(fq) is a zero-mean complex

Gaussian random variable with variance 1+σ2
e and is dependent on hij(fq) with correlation co-

efficient 1√
1+σ2

e

. Here, we define σ2
h

∆= 1
1+σ2

e
to simplify mathematical expressions. Therefore,

conditioned on ĥij(fq), the random variable hij(fq) has mean σ2
hĥij(fq) and variance σ2

hσ2
e .

Next, as shown in Figure 5.1(b), the signal y(fq) designed based on Ĥ(fq) and σ2
e is retrans-

mitted into the medium from Array B during the detection phase, and the detector at Array A

determines the presence or absence of a target based on the received signal r(fq) at all of the

Qf frequencies. Since the focus of this chapter is to design different detectors and retransmitted

waveforms and study their effects on the target detection performance, we assume that, if it is
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required, the estimated channel matrix Ĥ(fq), the estimation error variance σ2
e , and the retrans-

mitted waveform Y at Array B are fed back to Array A via a side channel, and we concentrate

on analyzing the second detection stage.

It is assumed that Array B transmits M snapshots in the second phase, during which the channel

remains the same. Denote the M snapshots received by the i-th sensor of Array A at frequency

fq and the corresponding additive white Gaussian noise components by M × 1 vectors ri(fq)

and ni(fq), respectively, which can be written as

ri(fq) = Y(fq) · hi(fq) + ni(fq) (5.3)

where i = 1, 2, ..., Na, q = 1, 2, ..., Qf , and

Y(fq) =
[

y1(fq) y2(fq) · · · yM (fq)
]T

H(fq) =
[

h1(fq) h2(fq) · · · hNa(fq)
] (5.4)

where the Nb × 1 vector ym(fq) is the m-th snapshot signal retransmitted from Array B at

frequency fq, and the entries of ni(fq) are assumed to be zero-mean complex Gaussian random

variables with variance σ2
n. Grouping the signals received by the i-th sensor of Array A at all

the Qf frequencies yields an MQf × 1 vector ri, which is given by

ri =
[

rT
i (f1) rT

i (f2) · · · rT
i (fQf

)
]T

= Y · hi + ni (5.5)

where the MQf ×NbQf matrix Y, the NbQf × 1 vector hi, and the MQf × 1 vector ni can

be expressed as below:
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Y=




Y(f1) 0 · · · 0

0 Y(f2) · · · 0
...

...
. . .

...

0 0 · · · Y(fQf
)




,
hi =

[
hT

i (f1) hT
i (f2) · · · hT

i (fQf
)

]T

ni =
[

nT
i (f1) nT

i (f2) · · · nT
i (fQf

)
]T (5.6)

Similar to the channel vectors hi, we can obtain Na estimated channel vectors ĥi and estimation

error vectors ei by stacking the corresponding columns of Ĥ(fq) and E(fq) into NbQf × 1

columns, respectively, and ĥi = hi + ei. Based on previous discussion, it is easy to see that

hi

∣∣∣ĥi ∼ CN
(
σ2

hĥi, σ
2
hσ2

eINbQf

)
, ni ∼ CN (

0MQf
, σ2

nIMQf

)
(5.7)

where i = 1, 2, ..., Na, the separator “|” represents “conditioned on”, and 0k and Ik stand

for a k × 1 all-zeros vector and a k × k identity matrix, respectively. The detector at Array A

determines whether or not a target exists in the medium based on the values of all the Na vectors

ri. In this chapter, we restrict our attention to the design of the detector and the retransmitted

waveform Y, which will be explained in the following sections.

5.3 Detector Design

The target detection problem of the MIMO system can be described as follows:

ri =





ni H0

Y · hi + ni H1

(5.8)

where i = 1, 2, ..., Na, and the alternate hypothesis H1 and null hypothesis H0 are that the

target does or does not exist, respectively. From (5.5) and (5.7), it is obvious that the received

signals ri are complex Gaussian vectors under both hypotheses with different distributions

given the estimated channel:

97



Detector and Waveform Design for MIMO systems with Noisy Channel Estimation

ri ∼



CN (

0MQf
, σ2

nIMQf

) H0

CN (di,C) H1

di = σ2
hYĥi, C = σ2

hσ2
eYYH + σ2

nIMQf

(5.9)

We develop three approaches to detect the target in this chapter: the conventional detector, the

optimal detector, and the generalized likelihood ratio test (GLRT) detector. The theoretical

threshold η and the probability of detection PrD of each detector will be derived in this section.

Notice that in order to express the distribution of a weighted sum of several non-central chi-

square random variables in a closed form equation, we use a common approximation technique

[126] in the derivation for both the optimal detector and the GLRT detector. This approach

approximates a weighted sum of non-central chi-square variables by a single central chi-square

variable whose degrees of freedom and scaling factor are carefully chosen such that the first

two moments remain the same.

5.3.1 Detector I: Conventional Detector

It is well known that the optimal detector for a known signal in white Gaussian noise is a

matched filter [47], and such a detector is employed as Detector I, whose performance is exam-

ined when estimation errors exist in channel matrix. The conventional detector given by [47]

can be expressed as

TI = <
[

Na∑

i=1

(Yĥi)H r̄i

]
>H1

<H0

ηI (5.10)

where the superscript H represents the conjugate transpose of a matrix and < denotes the real

part of a complex number. Notice here that the detector actually matches to the estimated

channel ĥi instead of the true channel hi as in [47] since only the noisy channel estimate is

available. From (5.9) and (5.10), the distributions of the test statistic TI under both hypotheses

can be given by
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TI ∼





N
(

0, 1
2

Na∑
i=1

Υ1i

)
H0

N
(

Na∑
i=1

ĥH
i YHdi,

1
2

Na∑
i=1

{Υ1i + Υ2i}
)

H1

Υ1i = σ2
nĥ

H
i YHYĥi, Υ2i = σ2

hσ2
e ĥ

H
i YHYYHYĥi

(5.11)

Therefore, for a given noise level, the threshold for the conventional detector ηI can be deter-

mined by the required probability of false alarm PrFA following (5.11)

ηI =

√
σ2

n
2

Na∑
i=1

ĥH
i YHYĥi ·Q−1(PrFA) (5.12)

From (5.10) and (5.12), it is obvious that Detector I requires knowledge of Y and ĥi at Array

A in Figure 5.1 to decide the existence of targets. Based on (5.11) and (5.12), the theoretical

probability of detection of Detector I PrD,I can be written as

PrD,I = Q




ηI−
NaP
i=1

ĥH
i YHdi

s
1
2

NaP
i=1

{Υ1i+Υ2i}


 (5.13)

where the Gaussian right-tail function is defined as Q(x) =
∫ +∞
x

1√
2π

exp(−1
2 t2)dt, and the

function Q−1(x) denotes its inverse.

Next, we proceed to express the threshold and probability of detection in a second form, which

is employed for waveform design discussed in the next section. Denote by UΣVH the singular

value decomposition (SVD) of Y, where the MQf×MQf matrix U and NbQf×NbQf matrix

V are unitary matrices. When M ≥ Nb, Σ =
[

Σ1 0
]T

. Here Σ1 is an NbQf × NbQf

diagonal matrix with n positive singular values ς1, ς2, ..., ςn of Y (in decreasing order) on the

diagonal and the all-zeros matrix has dimensions NbQf × (M − Nb)Qf . While M < Nb,

Σ =
[

Σ2 0
]
, and Σ2 is a MQf × MQf matrix with n singular values on the diagonal

and the all-zeros matrix has dimensions MQf × (Nb −M)Qf . Here, n is the rank of Y, i.e.,

n = rank(Y) ≤ min (MQf , NBQf ). Therefore, we can obtain the following expressions:
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Na∑
i=1

ĥH
i YHYĥi =

Na∑
i=1

ĥH
i V


 Ξ 0

0 0


VH ĥi

Na∑
i=1

ĥH
i YHYYHYĥi =

Na∑
i=1

ĥH
i V


 Ξ2 0

0 0


VH ĥi

(5.14)

where the n× n diagonal matrix Ξ = diag(β), and the k-th entry of the n× 1 vector β is the

square of the corresponding singular value of Y, i.e., βk = ς2
k . Denote the k-th element of the

vector h′i = VH ĥi by h′ik and let ρk =
Na∑
i=1

|h′ik|2, the above equations can be rewritten as

Na∑
i=1

ĥH
i YHYĥi =

n∑
k=1

βkρk,
Na∑
i=1

ĥH
i YHYYHYĥi =

n∑
k=1

β2
kρk (5.15)

where |·| stands for the modulus of a complex number. Substituting (5.15) into (5.12) and

(5.13), we can express the theoretical threshold and probability of detection of Detector I in the

following form:

ηI =

√
σ2

n
2

n∑
k=1

βkρk ·Q−1(PrFA),PrD,I = Q




ηI−σ2
h

nP
k=1

βkρk

s
1
2


σ2

hσ2
e

nP
k=1

β2
kρk+σ2

n

nP
k=1

βkρk

ff


 (5.16)

5.3.2 Detector II: Optimal Detector

Next, we proceed to design Detector II, which is the likelihood ratio test (LRT) detector for

the case when σ2
e > 0. The LRT detector is the optimal solution to the hypotheses testing

problem in the Neyman-Pearson sense, i.e., the detector maximizes PrD subject to a constraint

on PrFA [47]. The LRT can be stated as the following decision rule

L(r) =
PDF(r1,r2, ..., rNa |H1 )
PDF(r1,r2, ..., rNa |H0 )

>H1

<H0

η (5.17)
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where PDF(r1,r2, ..., rNa |H1 ) and PDF(r1,r2, ..., rNa |H0 ) are the probability density func-

tions (PDFs) of the data under hypotheses H1 and H0, respectively. Previous assumptions

imply that the PDFs can be written as

PDF(r1,r2, ..., rNa |H0 ) =
Na∏

i=1

1
(πσ2

n)MQf
exp

{
− 1

σ2
n

rH
i ri

}
(5.18)

under H0 and

PDF(r1,r2, ..., rNa |H1 ) =
Na∏
i=1

1

π
MQf det(C)

exp
{−(ri − di)HC−1(ri − di)

}
(5.19)

under H1. Substituting (5.18) and (5.19) into (5.17), taking the logarithm of both sides, and

incorporating the non-data-dependent term into the threshold, we decide H1 if

T ′ =
Na∑
i=1

{
rH
i Bri + rH

i gi + gH
i ri

}
> η′, B = 1

σ2
n
IMQf

−C−1, gi = C−1di (5.20)

In order to analyze the distribution of the test statistic, a non-data-dependent term is added at

both sides of (5.20), and the detector can be described as below:

TII =
Na∑
i=1

{
rH
i Bri + rH

i gi + gH
i ri + gH

i B†gi

}

=
Na∑
i=1

{(
ri + B†gi

)H ·B · (ri + B†gi

)} >H1

<H0

ηII

(5.21)

where the superscript † denotes the Moore-Penrose pseudoinverse. It is reasonable to assume

that TII under both hypotheses follows the Gamma distribution but with different parameters as

it has a quadratic form in a Gaussian random variable, that is,
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TII ∼




Γ (k0, θ0) H0

Γ (k1, θ1) H1

(5.22)

where Γ (k, θ) denotes the Gamma distribution with the shape parameter k and scale parameter

θ. In order to calculate k0 and θ0, we first compute the mean and variance of the test statistic

TII under H0, which are given by

E [TII |H0 ] =
Na∑
i=1

{
σ2

ntrace(B) + gH
i B†gi

}

var [TII |H0 ] =
Na∑
i=1

{
σ4

ntrace(BHB) + 2σ2
ng

H
i gi

} (5.23)

Following (5.22), the threshold for Detector II based on the required PrFA can be given by

ηII = F−1
Γ(k0,θ0)(1− PrFA), k0 = (E[TII|H0 ])2

var[TII|H0 ] , θ0 = var[TII|H0 ]
E[TII|H0 ]

(5.24)

where F−1
Γ(k,θ) denotes the inverse cumulative distribution function (CDF) of a Gamma random

variable with parameters k and θ. From (5.21) and (5.24), it is clear that the implementation of

Detector II requires knowledge of Y, ĥi, and σ2
e at Array A in Figure 5.1.

We next consider the test statistic TII under the alternate hypothesis. Based on (5.9), the

received signal under H1 can be rewritten as ri = di + wi, where i = 1, 2, ..., Na and

wi ∼ CN (
0MQf

,C
)
. Hence, the test statistic TII can be expressed as follows:

TII =
Na∑
i=1

{(
wi + di + B†gi

)H B
(
wi + di + B†gi

)}

=
Na∑
i=1

{[
w′

i + C− 1
2

(
di + B†gi

)]H
C

1
2 BC

1
2

[
w′

i + C− 1
2

(
di + B†gi

)]}

=
Na∑
i=1

{
w′H

i B′w′
i + w′H

i g′i + g′Hi w′
i + g′Hi B′†g′i

}
(5.25)
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where

w′
i = C− 1

2 wi ∼ CN (
0MQf

, IMQf

)
,B′ = C

1
2 BC

1
2 ,g′i = B′C− 1

2

(
di + B†gi

)
(5.26)

Therefore, the mean and variance of TII under H1 are given by

E [TII |H1 ] =
Na∑
i=1

{
trace(B′) + g′Hi B′†g′i

}

var [TII |H1 ] =
Na∑
i=1

{
trace(B′HB′) + 2g′Hi g′i

} (5.27)

The theoretical probability of detection of the optimal detector can be expressed as follows

based on (5.22):

PrD,II = 1−FΓ(k1,θ1) (ηII) , k1 = (E[TII|H1 ])2

var[TII|H1 ] , θ1 = var[TII|H1 ]
E[TII|H1 ]

(5.28)

where FΓ(k,θ) stands for the CDF of a Gamma random variable with parameters k and θ.

Similar to Detector I, we next express the threshold and probability of detection of Detector II

using the second form which is more suited to waveform design. From (5.9) and (5.20), the

following equations can be derived based on the SVD of Y mentioned in Section 5.3.1:

C = U


 σ2

hσ2
eΞ + σ2

nIn 0

0 σ2
nIMQf−n


UH

B = U




1
σ2

n
In −

(
σ2

hσ2
eΞ + σ2

nIn

)−1 0

0 0


UH

(5.29)

Substituting (5.29) into (5.21), we can rewrite the test statistic under H0 as below:
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TII =
Na∑
i=1

zH
0i




1
σ2

n
In −

(
σ2

hσ2
eΞ + σ2

nIn

)−1 0

0 0


 z0i

= 1
2

Na∑
i=1

n∑
k=1

σ2
eβk

σ2
eβk+σ2

n(1+σ2
e)

(
2 |z0ik|2

)
Under H0

(5.30)

where z0ik is the k-th entry of the vector z0i = UH
(
ri + B†gi

)/
σn. Denote as γ0ik the k-th

element of the vector UHB†gi

/
σn, which is given by

γ0ik = σ2
h

σn
·
(

σ2
eβk

σ2
nσ2

eβk+σ4
n(1+σ2

e)

)−1
· (σ2

hσ2
eβk + σ2

n

)−1 · ςkh′ik = σnh′ik
σ2

eςk
(5.31)

Following the fact that z0i ∼ CN (
UHB†gi

/
σn, IMQf

)
, we have

2 |z0ik|2 ∼ χ
′2
2

(
2 |γ0ik|2

)
= χ

′2
2

(
2σ2

n |h′ik|2
σ4

eβk

)
(5.32)

where χ′2k (λ) denotes a non-central chi-square random variable with k degrees of freedom and

non-centrality parameter λ. From (5.30) and (5.32), we know that the test statistic TII underH0

is a weighted sum of non-central chi-square random variables, and thus, it can be approximated

as below by using the approximation technique mentioned at the start of Section 5.3:

TII ∼ 1
2

Na∑

i=1

n∑

k=1

σ2
eβk

σ2
eβk + σ2

n(1 + σ2
e)

χ
′2
2

(
2σ2

n |h′ik|2
σ4

eβk

)
.= θ0χ

2
k0

(5.33)

where χ2
k denotes a central chi-square random variable with k degrees of freedom. The condi-

tion that the first two moments of both sides of (5.33) are the same leads to
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1
2

Na∑
i=1

n∑
k=1

σ2
eβk

σ2
eβk+σ2

n(1+σ2
e)
·
(

2 +
2σ2

n|h′ik|2
σ4

eβk

)
= θ0k0

1
4

Na∑
i=1

n∑
k=1

σ4
eβ2

k

[σ2
eβk+σ2

n(1+σ2
e)]2

· 2 ·
(

2 +
4σ2

n|h′ik|2
σ4

eβk

)
= 2θ2

0k0

(5.34)

Solving the above equation for the parameters θ0 and k0 yields the following expressions:

θ0 = Ω0/µ0, k0 = µ2
0

/
Ω0

µ0 = 1
2

Na∑
i=1

n∑
k=1

σ2
eβk

σ2
eβk+σ2

n(1+σ2
e)
·
(

2 +
2σ2

n|h′ik|2
σ4

eβk

)
=

n∑
k=1

Naσ4
eβk+σ2

nρk

σ4
eβk+σ2

eσ2
n(1+σ2

e)

Ω0 = 1
4

Na∑
i=1

n∑
k=1

σ4
eβ2

k

[σ2
eβk+σ2

n(1+σ2
e)]2

·
(

2 +
4σ2

n|h′ik|2
σ4

eβk

)
=

n∑
k=1

βk(Naσ4
eβk+2σ2

nρk)
2[σ2

eβk+σ2
n(1+σ2

e)]2

(5.35)

Following (5.33), we can obtain the threshold for Detector II based on the choice of PrFA:

ηII = θ0F−1
χ2

k0

(1− PrFA) (5.36)

where F−1
χ2

k
is the inverse CDF of a central chi-square random variable with k degrees of free-

dom. We next consider the alternate hypothesis. Substituting (5.29) into (5.25) and letting

z1i = UH
(
w′

i + C− 1
2

(
di + B†gi

))
, we can express the test statistic TII under H1 as below:

TII =
Na∑
i=1

zH
1i




1
σ2

n
In −

(
σ2

hσ2
eΞ + σ2

nIn

)−1 0

0 0





 σ2

hσ2
eΞ + σ2

nIn 0

0 σ2
nIMQf−n


 z1i

= 1
2

Na∑
i=1

n∑
k=1

σ2
hσ2

eβk

σ2
n

(
2 |z1ik|2

)
Under H1

(5.37)

where z1ik is the k-th element of the vector z1i. Denote γ1ik the k-th entry of the vector

UHC− 1
2

(
di + B†gi

)
, which is written as
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γ1ik =
(
σ2

hσ2
eβk + σ2

n

)−1/2
{

1 +
(
σ2

hσ2
eβk + σ2

n

)−1
(

σ2
eβk

σ2
nσ2

eβk+σ4
n(1+σ2

e)

)−1
}

ςkh′ik
1+σ2

e

=
(
σ2

eβk + σ2
n(1 + σ2

e)
)1/2 · σhh′ik

σ2
eςk

(5.38)

Given z1i ∼ CN
(
UHC− 1

2

(
di + B†gi

)
, IMQf

)
, we have

2 |z1ik|2 ∼ χ
′2
2

(
2 |γ1ik|2

)
= χ

′2
2

(
2σ2

h[σ2
eβk+σ2

n(1+σ2
e)]|h′ik|2

σ4
eβk

)
(5.39)

From (5.37) and (5.39), the test statistic TII under H1 is a weighted sum of non-central chi-

square random variables, and similar to (5.33), we have the following central chi-square ap-

proximation:

TII ∼ 1
2

Na∑

i=1

n∑

k=1

σ2
hσ2

eβk

σ2
n

χ
′2
2

(
2σ2

h

[
σ2

eβk + σ2
n(1 + σ2

e)
] |h′ik|2

σ4
eβk

)
.= θ1χ

2
k1

(5.40)

Setting the first two moments of both sides of (5.40) to be the same yields

1
2

Na∑
i=1

n∑
k=1

σ2
hσ2

eβk

σ2
n

·
(

2 +
2σ2

h[σ2
eβk+σ2

n(1+σ2
e)]|h′ik|2

σ4
eβk

)
= θ1k1

1
4

Na∑
i=1

n∑
k=1

σ4
hσ4

eβ2
k

σ4
n

· 2·
(

2 +
4σ2

h[σ2
eβk+σ2

n(1+σ2
e)]|h′ik|2

σ4
eβk

)
= 2θ2

1k1

(5.41)

The parameters θ1 and k1 can be solved from the above equation as below:
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θ1 = Ω1/µ1, k1 = µ2
1

/
Ω1

µ1 = 1
2

Na∑
i=1

n∑
k=1

σ2
hσ2

eβk

σ2
n

(
2 +

2σ2
h[σ2

eβk+σ2
n(1+σ2

e)]|h′ik|2
σ4

eβk

)

= σ2
h

σ2
nσ2

e

n∑
k=1

{
Naσ

4
eβk +

(
σ2

hσ2
eβk + σ2

n

)
ρk

}

Ω1 = 1
4

Na∑
i=1

n∑
k=1

σ4
hσ4

eβ2
k

σ4
n

(
2 +

4σ2
h[σ2

eβk+σ2
n(1+σ2

e)]|h′ik|2
σ4

eβk

)

= σ4
h

2σ4
n

n∑
k=1

{
Naσ

4
eβ

2
k + 2βk

(
σ2

hσ2
eβk + σ2

n

)
ρk

}

(5.42)

Based on (5.40), the theoretical probability of detection of Detector II can be given by

PrD,II = 1−Fχ2
k1

(
ηII
θ1

)
(5.43)

where Fχ2
k

is the CDF of a central chi-square random variable with k degrees of freedom.

5.3.3 Detector III: GLRT Detector

Detector III is the GLRT detector, which is a practical approach when unknown parameters

exist [47]. The GLRT detector replaces the unknowns with their maximum likelihood (ML)

estimates, and the decision rule is stated as

max
h1,h2,...,hNa

PDF(r1,r2, ..., rNa |H1,h1,h2, ...,hNa )

PDF(r1,r2, ..., rNa |H0 )
>H1

<H0

η (5.44)

where PDF(r1,r2, ..., rNa |H1,h1,h2, ...,hNa ) is the PDF of the data underH1 when the vec-

tors hi are known. Taking the logarithm of (5.44), we can recast the GLRT rule as

Na∑

i=1

rH
i ri −

Na∑

i=1

min
h1,h2,...,hNa

‖ri −Yhi‖2 >H1

<H0

η′ (5.45)
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where ‖·‖ stands for the Euclidean norm. The second term in (5.45) achieves the minimum

when [131]

h̃i =
(
YHY

)†
YHri (5.46)

where i = 1, 2, ..., Na. Therefore, after some algebra, the GLRT detector is given by

TIII =
Na∑

i=1

2rH
i Y

(
YHY

)†YHri

σ2
n

>H1

<H0

ηIII (5.47)

Invoking the SVD of Y, TIII under H0 can be written as

TIII =
Na∑
i=1


 2

σ2
n
rH
i U


 In 0

0 0


UHri


 =

Na∑
i=1

n∑
k=1

2
σ2

n
|ψ0ik|2 ∼ χ2

2nNa
(5.48)

The above result comes from the fact that the vector ψ0i = UHri ∼ CN (
0MQf

, σ2
nIMQf

)

and ψ0ik is the k-th element of ψ0i. Following (5.48), we can obtain the threshold for the GLRT

detector based on the choice of PrFA:

ηIII = F−1
χ2

2nNa

(1− PrFA) (5.49)

From (5.47) and (5.49), only the value of Y is required to be known for Detector III at Array

A in Figure 5.1. We next calculate the distribution of TIII under H1. Let the vector ψ1i =

UHC− 1
2 ri and we can rewrite (5.47) as
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TIII =
Na∑
i=1

2
σ2

n

{
ψH

1iU
HC

1
2 Y

(
YHY

)†YHC
1
2 Uψ1i

}

=
Na∑
i=1

2
σ2

n
ψH

1i


 σ2

hσ2
eΞ + σ2

nIn 0

0 0


ψ1i =

Na∑
i=1

n∑
k=1

1
σ2

n

(
σ2

hσ2
eβk + σ2

n

) (
2 |ψ1ik|2

) (5.50)

where ψ1ik is the k-th entry of the vector ψ1i. Denote λ1ik the k-th element of the vector

UHC−1/2di, which is given by

λ1ik =
(
σ2

hσ2
eβk + σ2

n

)− 1
2 · σ2

hςkh
′
ik (5.51)

Following the fact that ψ1i ∼ CN
(
UHC− 1

2 di, IMQf

)
, we have

2 |ψ1ik|2 ∼ χ
′2
2

(
2 |λ1ik|2

)
= χ

′2
2

(
2σ2

hβk|h′ik|2
σ2

eβk+σ2
n(1+σ2

e)

)
(5.52)

From (5.50) and (5.52), it is clear that TIII is a weighted sum of several non-central chi-square

random variables, and similar to (5.33), the test statistic can be approximated as a central chi-

square random variable as follows:

TIII ∼ 1
σ2

n

Na∑

i=1

n∑

k=1

(
σ2

hσ2
eβk + σ2

n

)
χ
′2
2

(
2σ2

hβk |h′ik|2
σ2

eβk + σ2
n(1 + σ2

e)

)
.=

α

σ2
n

χ2
l (5.53)

The condition that the first two moments of both sides of (5.53) are the same leads to

n∑
k=1

Na∑
i=1

{(
σ2

hσ2
eβk + σ2

n

) ·
(

2 +
2σ2

hβk|h′ik|2
σ2

eβk+σ2
n(1+σ2

e)

)}
= αl

n∑
k=1

Na∑
i=1

{(
σ2

hσ2
eβk + σ2

n

)2 · 2 ·
(

2 +
4σ2

hβk|h′ik|2
σ2

eβk+σ2
n(1+σ2

e)

)}
= 2α2l

(5.54)
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Solving the above equation for the parameters α and l yields the following expressions:

α = b/a, l = a2
/
b

a =
n∑

k=1

2
{
Na

(
σ2

hσ2
eβk + σ2

n

)
+ σ4

hβkρk

}

b =
n∑

k=1

2
{

Na

(
σ2

hσ2
eβk + σ2

n

)2 + 2σ4
h

(
σ2

hσ2
eβk + σ2

n

)
βkρk

}
(5.55)

Hence, based on (5.53), the theoretical probability of detection of Detector III can be written as

PrD,III = 1−Fχ2
l

(
ηIIIσ

2
n

α

)
(5.56)

5.4 Waveform Design

In this section, we propose three approaches to design the retransmitted waveform Y in order

to improve the system detection performance. Notice here that all the schemes discussed in this

section are under the transmit power constraint trace(YYH) = MEs which limits the total

transmitted power.

5.4.1 Conventional Signal Scheme

We first introduce the conventional signal (CS) scheme similar to that in [118, 119] for com-

parison purposes in the numerical results presented in the next section. In the CS scheme, the

same waveform is retransmitted from Array B regardless of the available channel information.

In this chapter, we assume that the k-th element of the retransmitted signal vector ym(fq) in

(5.4) is given by

ymk(fq) =

√
Es

NbQf
exp [j2π(k − 1)(q − 1)/Qf ] (5.57)

where k = 1, 2, ..., Nb, q = 1, 2, ..., Qf , and the normalization factor is employed here to meet
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the power constraint.

5.4.2 Time Reversal Scheme

Before introducing the proposed waveform designs, we first briefly describe the TR scheme

proposed in [118–120]. It is assumed that the number of snapshots during the probing and de-

tection phases are the same, and for each snapshot, Array A transmits an incident waveform and

the signals received by Array B are recorded, time reversed, power normalized, and transmitted

back into the medium by Array B. The signal vector received by Array B at frequency fq for

the m-th snapshot is denoted by xm(fq) in (5.1), and the m-th retransmitted TR signal is given

by

ym(fq) = kmx∗m(fq) = km

[
H∗(fq)s∗m(fq) + n∗1,m(fq)

]
, km =

√√√√
Es

QfP
q=1

‖xm(fq)‖2 (5.58)

where the superscript ∗ stands for the complex conjugate and km is a normalization factor to

meet the power constraint. The conjugation here results from the fact that time reversal in the

time domain corresponds to phase conjugation in the frequency domain up to a phase shift (see,

e.g., [99]).

It is assumed that the noise level at Array B, i.e., the variance of the white Gaussian noise

n1,m(fq), is known in [118–120]. In this chapter, instead, we assume that the estimated channel

matrix Ĥ(fq) and the estimation error variance σ2
e are known. In order to fairly compare the

performance of different waveform schemes, we modified the TR scheme as follows:

ym(fq) =

√√√√√Es

/ Qf∑

q=1

∥∥∥Ĥ(fq)sm(fq)
∥∥∥

2 [
Ĥ∗(fq)s∗m(fq)

]
(5.59)

Such a modification actually approximates xm(fq) as Ĥ(fq)sm(fq), which is reasonable since

Ĥ(fq) is estimated based on xm(fq) and σ2
e is a function of the noise level at Array B. We

name this modified TR scheme as the matched-filter (MF) scheme in this chapter in order
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to avoid confusion. Following the procedure mentioned in Section 5.2, we can generate the

retransmitted MF signal matrix YMF by assembling all the MQf vectors ym(fq) appropri-

ately. In general, the incident waveform can be any signal and in the simulations we adopt

smk(fq) = exp [j2π(k − 1)(q − 1)/Qf ] in (5.59) as in [120]. Here smk(fq) is the k-th entry

of the vector sm(fq) and k = 1, 2, ..., Na, q = 1, 2, ..., Qf .

5.4.3 Waveform Design A: MF Upper Scheme

As demonstrated in [118–120], the TR scheme improves the system detection performance

significantly. Our goal in this section is to further improve the performance by designing a

waveform based on the MF scheme above, in order to maximize an upper bound of PrD for

the GLRT detector. Before we proceed to the waveform design, several parameters are defined

similar to (5.49) and (5.50):

ηL = F−1
χ2

2Na

(1− PrFA) , ηU = F−1
χ2

2ϑNa

(1− PrFA)

TU =
Na∑
i=1

ϑ∑
k=1

1
σ2

n

(
σ2

hσ2
eβk + σ2

n

) (
2 |ψ1ik|2

)

= TIII +
Na∑
i=1

ϑ∑
k=n+1

1
σ2

n

(
σ2

hσ2
eβk + σ2

n

) (
2 |ψ1ik|2

)
, TIII + TD

(5.60)

where ϑ = min(NbQf ,MQf ) and the second term in the last row is defined as TD. Since n

is the rank of Y and βk is the square of the k-th singular value of Y, we have 1 ≤ n ≤ ϑ

and βk = 0 when k > n. Therefore, 2 |ψ1ik|2 ∼ χ
′2
2

(
2 |λ1ik|2

)
= χ2

2 for k > n and hence

TD ∼ χ2
2Na(ϑ−n). It is not difficult to derive the following inequalities:

ηU ≥ ηIII ≥ ηL > 0, TU = TIII + TD, TIII > 0, TD ≥ 0 (5.61)

The reason for defining the above parameters is that the goal of the waveform design is to derive

the optimal value of the matrix Y based on a certain criterion. Therefore, it is impossible

to know the rank of the “designed” Y before the waveform design process, and thereby the

threshold and test statistic in (5.49) and (5.50) can not be employed directly during the design

process because of the unknown value of n. Following (5.61), we can derive the required upper
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bound of PrD for the GLRT detector as below:

PrD = Pr {TIII ≥ ηIII} ≤ Pr {TIII ≥ ηL} ≤ Pr {TU ≥ ηL} ≤ E [TU]/ηL (5.62)

where the last inequality arises from Markov’s inequality [145]. Taking the expectation of TU

in (5.60) yields

E [TU] = 2σ4
h

σ2
n

ϑ∑
k=1

{
Naσ

2
n

(
1 + σ2

e

)2 +
[
Naσ

2
e

(
1 + σ2

e

)
+ ρk

]
βk

}
(5.63)

where ρk =
Na∑
i=1

|h′ik|2 =
Na∑
i=1

vH
k ĥiĥH

i vk and vk is the k-th right-singular vector of YMF

introduced in the last section. Note here that the entries of β are actually the eigenvalues of the

Hermitian matrix YYH , and thus, the power constraint can be rewritten as

ϑ∑

k=1

βk = MEs, βk ≥ 0, k = 1, 2, ..., ϑ (5.64)

Therefore, the design criterion under the power constraint can be expressed as the following

constrained maximization problem:

max
β

ϑ∑
k=1

[
Naσ

2
e

(
1 + σ2

e

)
+ ρk

]
βk, s.t.

ϑ∑
k=1

βk = MEs, βk ≥ 0, k = 1, 2, ..., ϑ (5.65)

Considering the fact that [Naσ
2
e

(
1 + σ2

e

)
+ ρk] is positive and taking into account the con-

straints, we can derive the following equation employing Abel’s inequality [146]:
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ϑ∑
k=1

[
Naσ

2
e

(
1 + σ2

e

)
+ρk

]
βk≤max

{
β1,β1+β2, ...,

ϑ∑
k=1

βk

}
·max

{
Naσ

2
e

(
1+σ2

e

)
+ρk

}

= MEs ·
[
Naσ

2
e

(
1 + σ2

e

)
+ max {ρk}

] (5.66)

Observing the above equation, it is easy to understand that the maximization of (5.65) is

achieved by allocating all the available power to the eigenvalue βk which corresponds to the

largest ρk.

5.4.4 Waveform Design B: MF Lower Scheme

Now we consider the second waveform design from the viewpoint of maximizing a lower bound

of PrD for the GLRT detector based on the MF scheme. Similar to the last section, (5.61) leads

to

PrD = Pr {TIII ≥ ηIII} ≥ 1− Pr {TIII ≤ ηU} ≥ 1− Pr{TIII+TD≤2ηU}
Pr{TD≤ηU} (5.67)

In addition, recalling the distribution of TD and the definition of ηU, we have

Pr {TD ≤ ηU} = 1− Pr
{

χ2
2Na(ϑ−n) ≥ ηU

}
≥ 1− Pr

{
χ2

2Naϑ ≥ ηU

}
= PrFA (5.68)

Substituting (5.68) into (5.67) and utilizing Markov’s inequality again, we can derive the re-

quired lower bound of PrD for the GLRT detector as follows:

PrD ≥ 1− Pr{TU≤2ηU}
PrFA

= 1− Pr
n

e−σ2
nTU≥e−2σ2

nηU

o

PrFA
≥ 1− E

h
e−σ2

nTU

i

e−2σ2
nηU ·PrFA

(5.69)

Due to the fact that [− (
σ2

hσ2
eβk + σ2

n

)
] < 0 and given the statistical independence of 2 |ψ1ik|2

for different values of i and k, the following equation can be obtained for the moment generating

function of the non-central chi-square distribution:
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E
[
e−σ2

nTU

]
=

ϑ∏
k=1

Na∏
i=1

E
[
e−(σ2

hσ2
eβk+σ2

n)(2|ψ1ik|2)
]

=
ϑ∏

k=1

Na∏
i=1

exp

 
−2σ4

hβk|h′ik|2
1+2(σ2

h
σ2

eβk+σ2
n)

!

1+2(σ2
hσ2

eβk+σ2
n) =

ϑ∏
k=1

exp

 
−2σ4

hβkρk

1+2(σ2
h

σ2
eβk+σ2

n)

!

[1+2(σ2
hσ2

eβk+σ2
n)]Na

(5.70)

Taking the logarithm and making use of the inequality log(1 + x) > x
1+x when x > −1 and

x 6= 0, we can express the problem of maximizing the lower bound of PrD with the power

constraint as below:

max
β

ϑ∑
k=1

{
2βkρk+2Na(σ2

hσ2
eβk+σ2

n)
1+2(σ2

hσ2
eβk+σ2

n)

}
, s.t.

ϑ∑
k=1

βk = MEs, βk ≥ 0, k = 1, 2, ..., ϑ (5.71)

We solve the above constrained optimization problem by using the method of Lagrange mul-

tipliers [24] and applying the Karush-Kuhn-Tucker (KKT) conditions [147]. The solution for

the waveform design criterion (5.71) can be written as

βk =
1 + 2σ2

n

2σ2
hσ2

e




√
2ρk + 4ρkσ2

n + 2Naσ2
hσ2

e

1 + 2σ2
n

ξ − 1




+

(5.72)

where (a)+ ∆= max(0, a) and ξ is chosen such that the power constraint is met:

ϑ∑

k=1




√
2ρk + 4ρkσ2

n + 2Naσ2
hσ2

e

1 + 2σ2
n

ξ − 1




+

=
2MEsσ

2
hσ2

e

1 + 2σ2
n

(5.73)

It is clearly seen from above equation that this design scheme actually utilizes the waterfilling

strategy [122] to allocate the transmitted power, and the larger the ρk is, the more power is

allocated to the corresponding βk.

REMARK 1: Both waveform designs introduced above select the values of βk according to
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the ρk values, which are determined by the estimated channel vectors as well as the right-

singular vectors of YMF . Recalling the physical explanation of the SVD, we can split the

design procedure into two separate parts. The “path directions” of the designed waveform are

determined by the MF scheme, and the waveform design A and B allocate the retransmitted

power to each direction according to the “path quality” following different design criteria. We

emphasize this by naming the design schemes as “MF upper” and “MF lower”, respectively.

The reason for utilizing the MF scheme, i.e., a modified TR scheme, is that [118–120] have

shown that TR is able to significantly improve the detection performance, and we want to

achieve further performance improvements. Furthermore, although the theoretical derivation

for both schemes are based on the GLRT detector, Detector I and II can also be employed when

the designed waveforms are retransmitted from Array B, and their performance can be easily

calculated using the formulae (5.13) and (5.28) or (5.16) and (5.43).

5.4.5 Waveform Design C: Mutual Information (MI) Scheme

In this section, we design the waveform by maximizing the lower bound of the mutual infor-

mation (MI) between the retransmitted and received signals. First of all, rewrite the NaQf × 1

received signal vector for one snapshot as

r=
[
rT(f1), rT(f2), · · · , rT(fQf

)
]T=HT

Qy+n, y=
[
yT(f1),yT(f2), · · · ,yT(fQf

)
]T (5.74)

where the Na × 1 vector r(fq) and the Nb × 1 vector y(fq) contain the signals received by all

the Na antennas of Array A and the signals retransmitted from all the Nb antennas of Array B at

frequency fq, respectively. The elements of the NaQf×1 noise vector n are zero-mean complex

Gaussian random variables with variance σ2
n. The NbQf×NaQf matrix HQ is a block diagonal

matrix with the Qf matrices H(fq) arranged sequentially along its main diagonal blocks. We

also define the NbQf ×NaQf estimated channel matrix ĤQ in the same way. Assuming y is

a random vector, the considered MI is

I
(
r,y| ĤQ

)
= h

(
y| ĤQ

)
− h

(
y| r, ĤQ

)
(5.75)

116



Detector and Waveform Design for MIMO systems with Noisy Channel Estimation

where h (·) stands for the differential entropy. The above MI can be interpreted as the amount of

uncertainty in the received signal r which is removed by knowing y given ĤQ. Intuitively, the

larger the MI, the less uncertain the received signal, and thus the better the system performance.

Following the conclusion stated in Appendix I in [141] that the second term on the right-hand

side of (5.75) is upper bounded by the entropy of a Gaussian random variable whose variance

is equal to the mean square error of the linear MMSE estimate of y given r and ĤQ, we can

derive the lower bound of the MI as below:

I
(
r,y|ĤQ

)
≥ log2

det(πeCy)

det

„
πeCy|r,ĤQ

«=log2
det(πeCy)

det
“
πe
h
Cy−σ4

hCyĤ∗
Q(σ4

hĤT
QCyĤ∗

Q+Cω)−1
ĤT

QCy

i”

= log2 det
(
INbQf

+ σ4
hĤ

∗
QC−1

ω ĤT
QCy

)
∆= IL

(
r,y| ĤQ

) (5.76)

where det(·) represents the determinant of a matrix, Cy stands for the covariance matrix

of y given ĤQ, and Cy|r,ĤQ
denotes the covariance matrix of y given r and ĤQ. The

NaQf ×NaQf matrix Cω is a block diagonal matrix, whose q-th diagonal block is a Na×Na

matrix
[
σ2

hσ2
eP (fq) + σ2

n

]·INa and P (fq) = E
[
yH(fq)y(fq)

]
. Note that the Hermitian matrix

Ĥ∗(fq)ĤT (fq) can be factorized through its eigenvalue decomposition, i.e.,

Ĥ∗(fq)ĤT (fq) = V(fq)D(fq)VH(fq) (5.77)

where the Nb×Nb matrix V(fq) is a unitary matrix whose columns are eigenvectors and D(fq)

is a diagonal matrix with Nb real and nonnegative eigenvalues Λq1,Λq2, · · · ,ΛqNb
(in decreas-

ing order) as its diagonal entries. We next define the NbQf × NbQf block diagonal matrices

GQ and VQ , whose q-th diagonal blocks are σ4
hD(fq)

/[
σ2

n + σ2
hσ2

eP (fq)
]

and V(fq), respec-

tively. Recalling that det(Ia + AB) = det(Ib + BA), the lower bound of the MI in (5.76) can

be rewritten as

IL

(
r,y| ĤQ

)
= log2 det

[
INbQf

+ VQGQVH
QCy

]
= log2 det

[
INbQf

+ GQQ]
(5.78)

117



Detector and Waveform Design for MIMO systems with Noisy Channel Estimation

where Q = VH
QCyVQ is an NbQf × NbQf matrix. Hadamard’s inequality states that given

an N × N positive semi-definite Hermitian matrix A with (i, j)-th entry aij , then det (A) ≤
N∏

i=1
aii and the equality is achieved if and only if A is diagonal [70]. Thus, (5.78) achieves its

maximum value when INbQf
+ GQQ is diagonal. Remembering that the diagonal matrix GQ

has nonnegative diagonal entries and Cy is a covariance matrix, we conclude that Q must be

a diagonal matrix whose {(q − 1)Nb + k}-th diagonal element is a nonnegative value Qqk,

q = 1, 2, ..., Qf and k = 1, 2, ..., Nb. In addition, the power constraint is given by

Es = E
[
yHy

]
= trace (Cy) = trace (Q) (5.79)

Therefore, the waveform design criterion maximizing the lower bound of the MI under the

power constraint can be expressed as below:

max
Q

Qf∑
q=1

Nb∑
k=1

log2

{
1 + σ4

hΛqkQqk

σ2
n+σ2

hσ2
eP (fq)

}

s.t.
Qf∑
q=1

Nb∑
k=1

Qqk = Es, Qqk ≥ 0, q = 1, 2, ..., Qf , k = 1, 2, ..., Nb

(5.80)

Notice here that by virtue of the presence of P (fq) = E
[
yH(fq)y(fq)

]
=

Nb∑
k=1

Qqk in the

denominator, (5.80) is not a concave function. However, for a fixed set of values for P (fq), the

function becomes concave and thus it can be directly optimized. Hence, an iterative algorithm

is proposed here, and the values of P (fq) are updated in each iteration until the algorithm

converges. We initialize the algorithm by allocating equal power to all the Qf frequencies, that

is, P (fq, 0) = Es/Qf for q = 1, 2, ..., Qf . For the i-th iteration (i ≥ 1), replacing P (fq) in

(5.80) by P (fq, i− 1) and applying the KKT conditions [147] leads to the solution

Qqk(i) =
(

ζ(i)− σ2
n + σ2

hσ2
eP (fq, i− 1)

σ4
hΛqk

)+

(5.81)

where the water-level ζ(i) can be found by solving
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Qf∑

q=1

Nb∑

k=1

(
ζ(i)− σ2

n + σ2
hσ2

eP (fq, i− 1)
σ4

hΛqk

)+

= Es (5.82)

Then, the values of P (fq) for the i-th iteration are updated as P (fq, i) =
Nb∑
k=1

Qqk(i) and the

iteration ends if max |P (fq, i)− P (fq, i− 1)| ≤ ε for all the Qf frequencies, where ε is a

threshold with small value. After the values of Qqk are determined, we have the covariance

matrix Cy = VQQVH
Q .

Notice here that when Na < Nb, a small modification is required to be made to the above

algorithm. Obviously, Λqk = 0 for k = Na + 1, Na + 2, ..., Nb, and from (5.80), it is clear that

the corresponding Qqk should be equal to zero in order to maximize the lower bound. Thus,

when Na < Nb, the limit of k is changed from Nb to Na in (5.80)-(5.82) and the values of

Qqk are determined for k = 1, 2, ..., Na using the algorithm mentioned before. Next, setting

Qqk = 0 for k = Na + 1, Na + 2, ..., Nb gives us the NbQf ×NbQf diagonal matrix Q.

Once Cy is determined, we generate a set of deterministic vectors {y1,y2, · · · ,yM} as the re-

transmitted signals vectors for the M snapshots. These vectors are appropriately designed such

that their covariance matrix remains as Cy. The block diagonal structure of Cy implies that the

retransmitted signals at different frequencies are mutually orthogonal. Such orthogonality can

be realized, for example, by designing the retransmitted signal using the orthogonal frequency

division multiplexing (OFDM) scheme [148]. Denoting the k-th column of V(fq) by vk(fq),

we generate the signals retransmitted from Array B at frequency fq for the m-th snapshot by

using an orthogonal basis as below:

ym(fq) =
Nb∑

k=1

vk(fq)
√QqkOkm,

M∑

m=1

OkmO∗lm = Mδkl (5.83)

where m = 1, 2, ..., M , k, l = 1, 2, ..., Nb, and δkl represents the Dirac delta function. The

NbQf × 1 signal vector ym is obtained by sequentially stacking all the Qf vectors ym(fq)

into a vector. Walsh codes are adopted as the basis functions in the simulations, but any other

orthogonal bases could also be employed in principle. From (5.83), we can calculate that the
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covariance matrix of the generated vectors equals Cy and the power constraint has been met.

After all the M snapshots {ym} are generated, the retransmitted signal matrix Y can be easily

obtained by reshaping {ym} appropriately. Its corresponding system performance for all the

three detectors can be evaluated using the formulae provided in Section 5.3.

REMARK 2: From the simulation we find that normally the iterative algorithm converges

after a few iterations (less than 20 for ε = 0.001). However, at very low signal-to-noise

ratios (SNRs) and when the difference between the largest two values of Λqk is very small,

the algorithm can enter an endless loop by allocating all the power to their corresponding

power allocations Qqk in turn. From (5.81), it is not difficult to understand that this prob-

lem can happen when the difference between the numerators for two successive iterations

σ2
e

(
1 + σ2

e

) |P (fq, i)− P (fq, i− 1)| is large enough. The lower the SNR, the larger the value

of σ2
e , and this is the reason why such a problem only occurs at very low SNRs. To solve this

problem, we terminate the algorithm if the number of iterations exceeds a selected value and

choose the results obtained in the last iteration as the final solution. This approach is reasonable

since if there are two coefficients Λqk having similar values, then allocating the power to either

of them leads to similar system performance.

5.5 Numerical Results and Discussion

In this section, we present numerical results showing the target detection performance of a

MIMO system with different detectors and different retransmitted waveforms. We set PrFA =

0.001 and define the SNR as SNR = Es/σ2
n with Es normalized to 1. As mentioned before,

the value of σ2
e depends on the estimation method and the waveform length during the probing

phase, which is inversely proportional to the SNR at Array B [144]. Since we focus on the

detection phase and system performance when channel estimation errors exist, we assume that

the noise level at Array B is in proportion to that at Array A and set σ2
e = σ2

n in all the simu-

lations. Notice here that the algorithms for both the detector and waveform designs are based

on the estimated channel Ĥ(fq), which is the sum of the true channel and the estimation error.

Therefore, we utilize a semi-analytical approach to obtain the system performance. In other

words, we generate 10, 000 realizations of the true channel and the estimation error matrix, cal-

culate the corresponding PrD for each realization using (5.16), (5.43), and (5.56), and obtain

the theoretical system detection performance by averaging PrD over all the realizations. The

system performance recorded from Monte Carlo simulations is also presented to validate the
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correctness of the derived formulae. For each realization of the estimated channel matrix, we

generate 10,000 independent received signals, compute their test statistics, and compare them

with the threshold. The percentage of the number of times that the test statistic exceeds the

threshold is the simulated probability of detection.
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Figure 5.2: Theoretical and simulated probability of detection as a function of the SNR for
systems with different detectors when Na = Nb = 4 and M = 5

We first examine the performance of a system with four sensors at both Arrays A and B, choos-

ing M = 5 and Qf = 6 for simulation purposes only. Notice here that the number of snapshots

M only applies to the detection phase, and the waveform transmitted from Array A during

the probing phase is not specified, but leads to the situation that the estimation error variance

σ2
e = σ2

n. Figure 5.2 depicts the detection performance of the system employing different de-

tectors when two kinds of designed waveforms, the MF lower and MI schemes, are adopted.

Obviously, the simulated results agree well with the theoretical values, validating the correct-

ness of the derived formulae. Comparing the curves corresponding to the same retransmitted

waveform, we find that Detector II performs the best under any circumstance, which is con-

sistent with the fact that Detector II is the optimal detector in the Neyman-Pearson sense. In

addition, the performance difference between Detector I and Detector II decreases as the SNR

becomes higher, i.e., σ2
e is smaller. This can be explained by the fact that both the optimal de-

tector when the channel matrix is known and Detector I are in the form of matched filters, and
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Figure 5.3: Theoretical and simulated probability of detection as a function of the SNR for
systems with different retransmitted waveforms when Na = Nb = 4, M = 5, and
Detector II is employed

the only difference is that the former matches to the true channel H while the latter matches to

the estimated channel Ĥ [47]. When σ2
e has a small value, the estimation error in the estimated

channel is insignificant, and thus the difference between the performance of Detector I and the

optimal performance should be small. Furthermore, it is easily seen that Detector III performs

the poorest at low SNR but is similar to the optimal detector when the SNR is high. This is

because the GLRT detector actually estimates the unknown parameters first and then makes

the detection decision based on them. Intuitively, the lower the SNR, the worse the estimation,

which degrades the detection performance. However, although Detector II performs the best, it

requires knowledge of Y, ĥi, and σ2
e at Array A. In contrast, as mentioned in Section 5.3, the

implementation of Detector I needs the information of Y and ĥi, while for Detector III only Y

is required to be known.

We next compare the detection performance of the systems retransmitting different waveforms

as shown in Figure 5.3 and Figure 5.4 for low and high SNRs, respectively. Here, Detector II

is employed for all the scenarios, and any difference in performance arises from the designed

waveforms only. In order to demonstrate the advantage of the MF scheme, we also present the

system performance when the CS scheme is adopted. It is clear that there is very good agree-
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Figure 5.4: Theoretical and simulated probability of missed detection as a function of the SNR
for systems with different retransmitted waveforms when Na = Nb = 4, M = 5,
and Detector II is employed

ment between the theoretical and simulated performance. Obviously, the MF scheme provides

much better performance than the CS approach, and all the three proposed waveform designs

further improve the system performance significantly with respect to the MF scheme. We start

by comparing the MF upper and lower schemes. At low SNR, the MF upper is superior, while

the MF lower is preferred when SNR is high. In addition, the MF lower always outperforms

the MF approach, but the MF upper performs worse than the MF scheme when SNR is high

enough. Such results are reasonable since one should concentrate all the available power on the

path with the best quality in order to overcome the high level of noise at low SNR, which is the

idea of the MF upper method. As the SNR becomes higher, the noise level and consequently the

estimation error variance σ2
e decreases, and thus allocating power to several paths according to

their amplitudes, i.e., the waterfilling strategy utilized in the MF lower approach, leads to better

detection reliability because of the spatial diversity gain. Furthermore, it is clear from Figure

5.3 and Figure 5.4 that the MI scheme outperforms all the other waveform designs and should

be selected for precise target detection, e.g., for probability of detection PrD ≥ 0.7. Although

all the three designed waveforms provide significant performance improvements, we point out

that such enhancement is achieved at the price of knowing the quality of channel estimation σ2
e

a priori.
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Figure 5.5: Theoretical and simulated probability of missed detection as a function of Na for
systems with different retransmitted waveforms when M = 5, SNR = 0dB, and
Detector II is employed

We proceed to investigate the impact of the number of antennas at Array A Na, the number of

antennas at Array B Nb, and the number of snapshots M on the detection performance for the

proposed three waveform designs. The SNR is fixed at 0dB for the next three figures, and the

number of snapshots M equals 5 for Figure 5.5 and Figure 5.6. First of all, it is clear that for

all the scenarios considered in Figure 5.5, Figure 5.6, and Figure 5.7, the MI scheme provides

the best detection performance, and the MF lower approach outperforms the MF upper method.

Next, we compare the slopes of the curves corresponding to different waveforms for the same

Nb in Figure 5.5, and the larger the slope is, the more effect Na has on the corresponding wave-

form design. In other words, for the same increase in the value of Na, the MI scheme provides

the greatest performance improvement, and the MF lower method achieves more enhancement

than the MF upper approach does. Similarly, we can draw the same conclusions for both Nb

and M by observing Figure 5.6 and Figure 5.7. Therefore, the MI scheme is the best among

the three waveform design approaches since it not only performs the best but also realizes the

largest performance enhancement for the same increase in the value of Na, Nb, or M . In that

sense, the MF lower scheme is also better than the MF upper approach.
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5.6 Conclusions

In this chapter, we investigated the target detection performance of a bistatic wideband MIMO

system, whose detection process is similar to the TR procedure. Based on the estimated channel

and the estimation error variance obtained during the probing phase, the retransmitted wave-

form and the detector were designed. Three detectors were developed, whose theoretical thresh-

olds and probabilities of detection were derived. Three schemes were proposed to design the

retransmitted waveform with a power constraint, which maximizes the upper and lower bound

of the probability of detection of the GLRT detector, and the lower bound of the MI between

the retransmitted signal and the received signal, respectively. Numerical results showing the

detection performance of a MIMO system involving the designed detectors and retransmitted

waveforms were presented. It was demonstrated that the optimal detector performs the best but

it requires more a priori information than the conventional detector does. The performance dif-

ference between the conventional and the optimal detector increases as the estimation quality

becomes poorer. The GLRT detector performs the poorest at low SNR but demands the least

amount of a priori information. All the three waveform design approaches further improve the

system performance with respect to the MF approach at the price of knowing the quality of
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Figure 5.7: Theoretical and simulated probability of missed detection as a function of M for
systems with different retransmitted waveforms when SNR = 0dB and Detector II
is employed

channel estimation a priori. The MF upper scheme works the best at low SNR, but is outper-

formed by the MF lower approach as the SNR increases. However, the MI scheme consistently

provides the maximum target detection probability in all the simulation scenarios that were

tested.
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Chapter 6
Conclusions

This thesis has been concerned with the performance evaluation and waveform design for

MIMO radar which takes advantage of spatial diversity gain. This concluding chapter will

give a summary of the results from previous chapters as well as the main contributions of this

thesis in Section 6.1. Some suggestions for possible future directions of the current research

will be discussed in Section 6.2.

6.1 Summary of Results

One of the major interests behind the present project was to overcome the limitations of the

statistical MIMO model proposed for MIMO radar in the literature. The finite scatterers model

is one solution, based on which the target detection performance of a MIMO radar system with

arbitrary array-target configurations was evaluated in Chapter 3. First of all, a theoretical tar-

get model was examined, the reflectivity coefficients of whose scatterers were assumed to be

independent, identically distributed zero-mean random variables. Unlike the ideal configura-

tions that all the channel gains have correlation coefficients 1 or 0, the channel gains between

different antenna pairs of a general radar system have various degrees of correlation, which

depend on the exact array-target configuration. Based on the correlation matrix, a closed form

result was derived to calculate the theoretical probability of detection for a MIMO radar sys-

tem. Two extreme channel models where all the channel gains are totally uncorrelated or fully

correlated were analyzed, and the simplified expressions of the formula for two special cases

were provided. Numerical results were presented showing the probabilities of detection of a

MIMO radar system with five configurations, including the two extreme cases. The curves

corresponding to the two extreme channel models set bounds for the system performance, and

the performance curve is closer to the full correlation case as the spacing decreases, while it

is closer to the uncorrelated case as the antenna array spacing becomes larger. Furthermore,

at low SNR, a system with densely spaced antennas outperforms large interelement spacing.

Conversely, widely spaced antennas perform better at high SNR and are always preferred when
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the detection performance is acceptable. Next, a MIMO radar system involving a realistic target

was set up by determining the reflectivity coefficients of the scatterers using the data collected

from previous research on target modelling. The considered target is a life-size land vehicle

modelled using a computer aided electromagnetic (EM) simulator FEKO. Numerical results

of the system with different configurations were displayed, corroborating previous conclusions

based on the theoretical and mathematical target model. This work has validated in a practical

setting the improvements in detection performance available from MIMO radar configurations.

Previous researchers have shown that the conventional phased-array radar provides coherent

processing gain while the MIMO radar exploits spatial diversity gain, and a hybrid radar which

combines these two configurations to take advantage of both types of gains was investigated in

Chapter 4. This radar system is a general model and it can be used to describe many practical

configurations, including the MIMO and phased-array radar as special cases. A closed form

expression was first derived to evaluate the theoretical probability of detection of the system.

Next, the performance of the hybrid radar as a direction finding system was examined. An

initialization stage was introduced, during which angle of departure (AoD) is estimated, and

the performance is assessed by measuring the average Cramer-Rao bound (CRB). Then the

performance of the hybrid radar for estimating the angle of arrival (AoA) was evaluated by

computing the average and outage CRBs when the true AoD is assumed to be known at the

transmitter. The corresponding CRBs for AoA estimation were also calculated when only the

estimated AoD obtained during the initialization stage is available at the transmitter, that is,

the effect the estimation error in AoD has on finding AoA was taken into account. Numerical

results demonstrated that a hybrid radar, whose transmitter consists of a few antenna arrays and

widely spaced elements at the receiver, provides the best detection performance for practical

values of probability of missed detection, such as 0.01 and 0.001. Simulations also showed

that for a radar system applied to find AoA, the architecture that the transmitter has a hybrid

configuration and the receiver has the phased-array configuration is the best choice. Regard-

ing the AoD estimation, the phased-array configuration should be selected at the transmitter

while increasing the number of receive antenna arrays improves the performance, which is the

exact opposite of the best configuration for AoA estimation. Although the performance of the

AoD estimation affects the direction finding performance overall given the fact that the AoD

information is required at the transmitter to cohere a beam toward the target direction, we in-

vestigated several simulation scenarios where it was shown that the estimation error in AoD

caused by the initialization would not decrease the AoA estimation performance significantly.
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Consequently, the best configuration for a radar system is not the same for different applica-

tions, and a hybrid radar which is a compromise of these configurations would be the best

choice to jointly optimize the detection and estimation performance. The total gain achieved by

combining the spatial diversity gain provided by the antenna arrays together with the coherent

processing gain obtained by each array outweighs the diversity gain, or the processing gain

realized by the antennas in pure MIMO or phased-array configurations.

After studying the effect the radar configuration has on system performance, the waveform

design problem for a MIMO radar system was explored in Chapter 5. The target detection

performance of a wideband MIMO system was considered, whose detection process is similar

to the time-reversal (TR) detection proposed in the literature. TR detection provides dramatic

gains over conventional detection since the transmitter reshapes the waveform to match the

channel during the TR process, which is a simple form of waveform design. Here, instead of

the normalized TR signal, a waveform is designed based on the noisy estimated channel and a

parameter indicating the quality of the estimation. This waveform is retransmitted, and then a

detector determines the presence or absence of a target. Three detectors were developed: the

conventional detector, the optimal detector, and the generalized likelihood ratio test (GLRT)

detector. Closed form formulae were derived to compute the theoretical threshold and prob-

ability of detection of each detector. Simulations showed that the optimal detector performs

the best but it demands more a priori information than the conventional detector does. The

performance difference between the two increases as the estimation quality becomes poorer.

Although the GLRT detector performs the worst at low SNR, it requires the least amount of

a priori information and it obtains similar performance to the optimal detector when SNR is

high enough. Three schemes were proposed to design the retransmitted waveform with con-

straints on transmitted signal power: the MF upper and MF lower schemes maximize the upper

and lower bound of the probability of detection of the GLRT detector, respectively, and the MI

scheme maximizes the lower bound of the mutual information (MI) between the retransmitted

signal and the received signal. Numerical results illustrated that the MF scheme, a modified TR

approach, performs much better than the conventional signal (CS) scheme, and all the three de-

signed waveforms bring in further performance improvements with respect to the MF approach

at the cost of knowing the quality of channel estimation a priori. In addition, the MF upper

scheme is always preferred at low SNR, which is outperformed by the MF lower approach as

the SNR increases, and the MI scheme should be selected for precise target detection.
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6.2 Future Work

There are several directions that can be extended around the topics involved in this thesis. Some

suggestions are listed below:

• In Chapter 3, the theoretical probability of detection for a MIMO radar system was de-

rived based on the assumption that the target RCS fading has a zero-mean complex Gaus-

sian distribution. An interesting research area is to extend the analysis to other widely

adopted statistical RCS models, such as the Chi-square target model and the Rice target

model, examining if the MIMO configuration can still provide superior performance due

to spatial diversity gain. In addition, the target detection performance of MIMO radar

was evaluated without taking into account the effects of clutter and jamming, and the

noise level was always assumed to be known, which were unrealistic in real-life systems.

Consequently, one future research area is to design an optimal detector when clutter and

jamming exist and/or the noise level is unknown, and assess the corresponding perfor-

mance of a MIMO radar system with different configurations. Again, realistic target

models can then be substituted for the theoretical target, allowing us to have an impres-

sion of the realistic benefits of MIMO radar.

• We focused our attention on investigating the impact of the radar configuration on sys-

tem performance in Chapter 4, thus a simple transmitted waveform was adopted and

each antenna array worked as a conventional phased-array radar. Recall that the colo-

cated MIMO radar explored in depth in the current literature has the same configuration

as the conventional phased-array radar does, and it is capable of exploiting the waveform

diversity to provide increased flexibility and performance gains. A promising area for

future research is to combine the statistical MIMO radar and the colocated MIMO radar,

that is, study a system which has the same architecture as the hybrid radar but trans-

mitting colocated MIMO waveforms from each phased-array and applying sophisticated

signal processing approaches to the received signals. For example, extend the prob-

ing signal design proposed in [78] to the hybrid radar scenario and/or applying adaptive

techniques for radar imaging introduced in [82] to the received signals. It is possible to

further enhance the detection capability, parameter estimation accuracy, resolution, and

jammer resistance, etc., by simultaneously taking advantage of spatial diversity gain and

waveform diversity gain provided by both types of MIMO radar.
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• Theoretically speaking, the schemes proposed in Chapter 5 can be adopted in any MIMO

system, radar or sonar, as long as the channel remains static during the probing and detec-

tion phases. In addition, it has been demonstrated that TR techniques have a wide range of

underwater applications. Hence, an interesting future topic is to implement experiments,

instead of doing simulations, on those schemes in a sonar scenario, experimentally val-

idating their superiority as well as the realizability of a MIMO sonar. Moreover, due to

the characteristics of TR techniques, it is possible to exploit its potential in applications

such as parameter estimation and target localization. Furthermore, only the very original

TR approach has been applied to MIMO systems, and there are many developed TR tech-

niques in the current literature, e.g., decomposition of the time reversal operator (DORT)

approach [140], MUSIC TR [115], likelihood TR [113]. How to apply these methods

in MIMO system and provide performance gains would be another promising research

field.

• The MIMO radar with widely spaced antennas enables simultaneous observations of a

target from several perspectives, providing us more information about the target features.

Thereby, MIMO radar possesses potential for moving target detection, target tracking,

and target classification. How to exploit these potentials could be another future topic.
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Radar and Sonar Systems with Noisy Channel
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Abstract

It has been shown that time reversal (TR), which is developed in the acoustics domain, can also

improve the detection performance of a radar system. However, the TR technique is no longer a good

choice when the noise level is high since the retransmitted signal contains significant noise components.

We investigate a multiple-input multiple-output (MIMO) detection process similar to TR detection, during

which a waveform designed using the estimated channel and a parameter indicating the quality of the

estimation is retransmitted, and the detector determines the presence or absence of a target. We develop

three detectors, whose theoretical thresholds and probabilities of detection are derived in closed form.

Three schemes are proposed to design the retransmitted waveform with constraints on signal power. We

compare the detection performance of different detectors, showing that the detector performing the best

has the highest complexity, while the detector with the poorest performance requires the least amount

of a priori information. Numerical results also show that all the three designed waveforms can further

improve the system performance significantly compared with the TR approach, but such enhancement is

gained at the price of knowing the quality of channel estimation a priori.
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Index Terms

MIMO, time-reversal, target detection, detector design, waveform design

I. INTRODUCTION

The time-reversal (TR) technique has attracted increasing interest for a broad range of applications.

The unique feature of TR is that it can turn multipath effects, traditionally a considered drawback, into

a benefit, which is very similar to the MIMO concept. In the TR approach, a signal is radiated through

the medium, then the backscattered signal is recorded, time reversed, and retransmitted. This technique

is not new, Fink et. al. applied TR to focus energy on scatterers through an inhomogeneous medium two

decades ago [1], [2], demonstrating super-resolution in the acoustic and ultrasound domains. There are

also extensive publications studying the applications of TR, such as random media [3], ultra-wideband

communications [4], and computational imaging [5], [6]. Recently, Moura et. al. explored the MIMO radar

detection using TR, showing that TR detection provides significant gains over conventional detection [7]–

[9]. This results from the fact that the transmitter reshapes the waveform to match the channel during the

TR process, which is a waveform design process. However, the retransmitted signal in Moura’s algorithm

contains noise components, and obviously the TR technique is no longer a good choice when the noise

level is high. Furthermore, [7]–[9] did not derive analytical expressions for the threshold and probability

of detection of the TR detection, which are determined by Monte Carlo simulations.

We investigate a MIMO detection process similar to TR detection in this paper. That is, during the

probing phase, an incident wave is transmitted into the medium and an estimated channel matrix with

estimation error is obtained. It is assumed that a parameter indicating the estimation quality is given

a priori, which can be appropriately chosen depending on the noise level, the channel dynamics, and

estimation strategies, etc. [10]–[12]. Then, a waveform designed based on the estimated channel and

the estimation quality parameter under power constraints, instead of the normalized TR signal used in

Moura’s scheme, is retransmitted, and finally the detector determines the presence or absence of a target.

Note here that similar to TR detection, it is assumed that the channel remains static during the probing

and detecting phases, i.e., the scheme is only suited to low doppler scenarios. The waveform design

problem for a MIMO communication system maximizing the channel capacity when estimation error

exists is explored in [10]–[12], and it is assumed that the estimated channel and the estimation error

are independent. In this paper, we assume that the estimation error is independent of the channel and

their sum is the estimated channel. Although the waveforms are designed for MIMO radar in [13] [14],
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they only assumed that the second-order statistics of the channel matrix is known and based on which

the algorithms are developed. Here, however, we design the detector and the waveform according to the

value of an instantaneous estimated channel matrix.

This paper is organized as follows. We first introduce the system model of the MIMO system. Three

detectors are formulated in Section III, whose theoretical thresholds and probabilities of detection are

expressed in closed form formulae. We then propose three criteria to design the retransmitted waveform

under power constraints. Section V presents the numerical results to compare the detection performance of

a MIMO system with different detectors and retransmitted waveforms. Finally, we give some discussion

and draw conclusions.

II. SYSTEM MODEL

We consider a wideband bistatic MIMO radar (or sonar) system including a pair of arrays A and B,

which has Na and Nb sensors, respectively. The channel frequency response matrix is denoted by an

Nb × Na matrix H̄(fq), q = 1, 2, ..., Qf , where the (i, j)-th entry of H̄(fq), hij(fq), is the frequency

response of the channel between the i-th sensor of Array B and the j-th sensor of Array A at the discrete

frequency fq. It is assumed that the sequential frequencies fq are one coherence bandwidth apart and

hence the channel matrices at different frequencies are considered to be independent [15]. We adopt the

statistical MIMO model here, that is, the entries of the channel matrix are modeled as independent zero-

mean complex Gaussian random variables, and they are normalized to have unit variance. Note that such

a model has been utilized in [9] and [16], but the propagation mechanisms causing multipaths, which

result in the random target response, are different. In [9], the multipaths are due to a rich scattering

environment surrounding point-like targets, while in [16], the distributed target itself leads to multipath

propagation.

As shown in Fig.1, the target detection process has two steps. During the probing phase, for the p-th

snapshot, the i-th sensor of Array A transmits an incident wideband signal spi(t) into the medium, whose

discrete Fourier transform is Spi(fq) at frequency fq. The signal vector received by Array B for the p-th

snapshot is

x̄p(fq) = H̄(fq) · s̄p(fq) + $̄p(fq) (1)

where $̄p(fq) is the noise vector at Array B whose entries are assumed to be zero-mean complex Gaussian

random variables with variance σ2

$, and the Na×1 signal vector s̄p(fq) = [Sp1(fq), Sp2(fq), · · · , SpNa
(fq)]

T
.

Here the superscript T denotes matrix transpose. Based on all the P snapshots x̄p(fq), the estimated
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channel matrix ˆ̄H(fq) is obtained, whose (i, j)-th entry is expressed as

ĥij(fq) = hij(fq) + eij(fq) (2)

where eij(fq) is the (i, j)-th element of the channel estimation error matrix Ē(fq). We assume that

eij(fq) is a zero-mean complex Gaussian random variable which is independent of hij(fq) and has

variance σ2
e . Note here that knowing the value of σ2

e requires noise power estimation and knowledge

of the estimation method and the waveform length during the probing phase. From (2), we know that

ĥij(fq) is a zero-mean complex Gaussian random variable with variance 1 + σ2
e and is dependent on

hij(fq) with correlation coefficient 1/
√

1 + σ2
e . Therefore, conditioned on ĥij(fq), the random variable

hij(fq) has mean σ2ĥij(fq) and variance σ2σ2
e . Here, we define σ2 ∆

= 1
1+σ2

e

.

Next, as shown in Fig.1(b), the signal ȳ(fq) designed based on ˆ̄H(fq) and σ2
e is retransmitted from

Array B during the detecting phase, and the detector at Array A determines whether or not a target exists

based on the received signal r̄(fq) at all of the Qf frequencies. Since the focus of this paper is to design

different detectors and retransmitted waveforms and study their effects on the detection performance, we

assume that, if it is required, the estimated channel matrix ˆ̄H(fq), the estimation error parameter σ2
e , and

the retransmitted waveform Ȳ at Array B are fed back to Array A via a side channel, and we concentrate

on analyzing the second detection stage.

It is assumed that Array B transmits M snapshots in the second phase, during which the channel

remains the same. Denote the M snapshots received by the i-th sensor of Array A at frequency fq

and the corresponding additive white Gaussian noise components by M × 1 vectors r̄i(fq) and n̄i(fq),

respectively, which can be written as

r̄i(fq) = Ȳ (fq) · h̄i(fq) + n̄i(fq) (3)

where i = 1, 2, ..., Na, q = 1, 2, ..., Qf , and

Ȳ (fq) =

[

ȳ1(fq) ȳ2(fq) · · · ȳM (fq)

]T

H̄(fq) =

[

h̄1(fq) h̄2(fq) · · · h̄Na
(fq)

] (4)

where the Nb × 1 vector ȳm(fq) is the m-th snapshot signal retransmitted from Array B at frequency fq,

and the entries of n̄i(fq) are assumed to be zero-mean complex Gaussian random variables with variance

σ2
n. Grouping the signals received by the i-th sensor of Array A at all the Qf frequencies yields an

MQf × 1 vector r̄i, which is given by

r̄i =

[

r̄T
i (f1) r̄T

i (f2) · · · r̄T
i (fQf

)

]T

= Ȳ h̄i + n̄i (5)
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where the NbQf × 1 vector h̄i and the MQf × 1 vector n̄i are obtained by sequentially stacking all

the Qf vectors h̄i(fq) and n̄i(fq) into columns, respectively. The MQf × NbQf matrix Ȳ is a block

diagonal matrix with the Qf matrices Ȳ (fq) arranged sequentially along its main diagonal blocks. Similar

to the channel vectors h̄i, we can obtain Na estimated channel vectors ˆ̄hi and estimation error vectors ēi

by stacking the corresponding columns of ˆ̄H(fq) and Ē(fq) into NbQf × 1 columns, respectively, and

ˆ̄hi = h̄i + ēi. Based on previous discussion, it is easy to see that

h̄i

∣

∣

∣

ˆ̄hi ∼ CN
(

σ2ˆ̄hi, σ
2σ2

e ĪNbQf

)

n̄i ∼ CN
(

0̄MQf
, σ2

nĪMQf

)

(6)

where i = 1, 2, ..., Na, the separator “|” represents “conditioned on”, and 0̄k and Īk stand for a k × 1

all-zeros vector and a k× k identity matrix, respectively. The detector at Array A determines whether or

not a target exists based on the values of all the Na vectors r̄i. In this paper, we restrict our attention to

the design of the detector and the retransmitted waveform Ȳ , which will be explained in the following

sections.

III. DETECTOR DESIGN

The target detection problem of the MIMO system can be described as follows:

r̄i =











n̄i H0

Ȳ · h̄i + n̄i H1

(7)

where i = 1, 2, ..., Na, and the alternate hypothesis H1 and null hypothesis H0 are that the target does

or does not exist, respectively. From (5) and (6), it is obvious that the received signals r̄i are complex

Gaussian vectors under both hypotheses with different distributions given the estimated channel:

r̄i ∼











CN
(

0̄MQf
, σ2

nĪMQf

)

H0

CN
(

d̄i, C̄
)

H1

d̄i = σ2Ȳ ˆ̄hi, C̄ = σ2σ2
e Ȳ Ȳ H + σ2

nĪMQf

(8)

In this paper, we develop three approaches to detect the target, and the theoretical threshold η and

the probability of detection PrD of each detector will be derived in this section. Notice that in order to

express the distribution of a weighted sum of several noncentral chi-square random variables in a closed

form equation, we use a common approximation technique [17] in the derivation for both Detector II

and Detector III. This approach approximates a weighted sum of chi-square variables by a single one

with different degree of freedom and a scaling factor, which are carefully chosen such that the first two

moments remain the same.
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A. Detector I: Conventional Detector

It is well known that the optimal detector for a known signal in white Gaussian noise is a matched filter

[18], and such a detector is employed as Detector I, whose performance is examined when estimation

errors exist in channel matrix. The conventional detector given by [18] can be expressed as

TI = Re[
Na
∑

i=1

(Ȳ ˆ̄hi)
H r̄i]

>H1

<H0

ηI (9)

where the superscript H represents the conjugate transpose of a matrix. Notice here that the detector

actually matches to the estimated channel ˆ̄hi instead of the true channel h̄i as in [18] since only the

noisy channel estimation is available. From (8) and (9), the distributions of the test statistic TI under

both hypotheses can be given by

TI ∼























N

(

0, 1

2

Na
∑

i=1

Υ1i

)

H0

N

(

Na
∑

i=1

ˆ̄hH
i Ȳ H d̄i,

1

2

Na
∑

i=1

{Υ1i + Υ2i}

)

H1

Υ1i = σ2
n
ˆ̄hH

i Ȳ H Ȳ ˆ̄hi, Υ2i = σ2σ2
e
ˆ̄hH

i Ȳ H Ȳ Ȳ H Ȳ ˆ̄hi

(10)

Before we proceed to derive the theoretical threshold and probability of detection, we denote the

singular value decomposition (SVD) of Ȳ by Ū Σ̄V̄ H , where the MQf × MQf matrix Ū and NbQf ×

NbQf matrix V̄ are unitary matrices. When M ≥ Nb, Σ̄ =

[

Σ̄1 0̄

]T

. Here Σ̄1 is an NbQf × NbQf

diagonal matrix with n positive singular values ς1, ς2, ..., ςn of Ȳ (in decreasing order) on the diagonal

and the all-zeros matrix has dimensions NbQf × (M −Nb)Qf . While M < Nb, Σ̄ =

[

Σ̄2 0̄

]

, and Σ̄2

is a MQf ×MQf matrix with n singular values on the diagonal and the all-zeros matrix has dimensions

MQf × (Nb − M)Qf . Here, n is the rank of Ȳ , i.e., n = rank(Ȳ ) ≤ min (MQf , NBQf ). Therefore,

we can obtain the following expressions:

Na
∑

i=1

ˆ̄hH
i Ȳ H Ȳ ˆ̄hi =

Na
∑

i=1

ˆ̄hH
i V̄







Ξ̄ 0̄

0̄ 0̄






V̄ H ˆ̄hi

Na
∑

i=1

ˆ̄hH
i Ȳ H Ȳ Ȳ H Ȳ ˆ̄hi =

Na
∑

i=1

ˆ̄hH
i V̄







Ξ̄2 0̄

0̄ 0̄






V̄ H ˆ̄hi

(11)

where the n× n diagonal matrix Ξ̄ = diag(β̄), and the k-th entry of the n× 1 vector β̄ is the square of

the corresponding singular value of Ȳ , i.e., βk = ς2

k . Denote the k-th element of the vector h̄′
i = V̄ H ˆ̄hi
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by h′
ik and let ρk =

Na
∑

i=1

|h′
ik|

2
, the above equations can be rewritten as

Na
∑

i=1

ˆ̄hH
i Ȳ H Ȳ ˆ̄hi =

n
∑

k=1

βkρk

Na
∑

i=1

ˆ̄hH
i Ȳ H Ȳ Ȳ H Ȳ ˆ̄hi =

n
∑

k=1

β2
kρk

(12)

where |·| stands for the modulus of a complex number. For a given noise level, the threshold for the

conventional detector ηI can be determined by the required probability of false alarm PrFA following

(10) and (12) as below:

ηI =

√

σ2
n

2

n
∑

k=1

βkρk · Q−1(PrFA) (13)

From (9) and (13), it is obvious that Detector I requires knowledge of Ȳ and ˆ̄hi at Array A in Fig.1

to decide the existence of targets. Based on (10) and (13), the theoretical probability of detection of

Detector I PrD,I can be given by

PrD,I = Q













ηI−σ2

n
∑

k=1

βkρk

√

1

2

{

σ2σ2
e

n
∑

k=1

β2

k
ρk+σ2

n

n
∑

k=1

βkρk

}













(14)

where the functions Q(x) and Q−1(x) denote the Gaussian right-tail function and its inverse, respectively.

B. Detector II: Optimal Detector

Next, we proceed to design Detector II, which is the likelihood ratio test (LRT) detector for the case

when σ2
e > 0. The LRT detector is the optimal solution to the hypotheses testing problem in the Neyman-

Pearson sense, i.e., the detector maximizes PrD subject to a constraint on PrFA [18]. The LRT can be

stated as the following decision rule

L(r̄) =
p(r̄1,r̄2, ..., r̄Na

|H1 )

p(r̄1,r̄2, ..., r̄Na
|H0 )

>H1

<H0

η (15)

where p(r̄1,r̄2, ..., r̄Na
|H1 ) and p(r̄1,r̄2, ..., r̄Na

|H0 ) are the probability density functions (PDFs) of the

data under hypotheses H1 and H0, respectively. Based on (8) and (15) and after some algebra, we decide

H1 if

T ′ =
Na
∑

i=1

{

r̄H
i B̄r̄i + r̄H

i ḡi + ḡH
i r̄i

}

> η′

B̄ = 1
σ2

n

ĪMQf
− C̄−1, ḡi = C̄−1d̄i

(16)
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In order to analyze the distribution of the test statistic, a non-data-dependent term
Na
∑

i=1
ḡH
i B̄†ḡi is added

at both sides of (16), and the detector equation can be written as below:

TII =
Na
∑

i=1

{

(

r̄i + B̄†ḡi

)H
· B̄ ·

(

r̄i + B̄†ḡi

)

}

>H1

<H0

ηII (17)

where † denotes the Moore-Penrose pseudoinverse. From (8) and (16), the following equations can be

derived based on the SVD of Ȳ mentioned in Section III-A:

C̄ = Ū







σ2σ2
e Ξ̄ + σ2

nĪn 0̄

0̄ σ2
nĪMQf−n






ŪH

B̄ = Ū







1
σ2

n

Īn −
(

σ2σ2
e Ξ̄ + σ2

nĪn

)−1
0̄

0̄ 0̄






ŪH

(18)

Substituting (18) into (17), we can express the test statistic under H0 as below:

TII =
Na
∑

i=1
z̄H
0i







1
σ2

n

Īn −
(

σ2σ2
e Ξ̄ + σ2

nĪn

)−1
0̄

0̄ 0̄






z̄0i

= 1
2

Na
∑

i=1

n
∑

k=1

σ2σ2

eβk

σ2σ2
eβk+σ2

n

(

2 |z0ik|
2
)

Under H0

(19)

where z0ik is the k-th entry of the vector z̄0i = ŪH
(

r̄i + B̄†ḡi

)/

σn. Denote γ0ik the k-th element of

the vector ŪHB̄†ḡi

/

σn, which is given by

γ0ik =
σ2σ2

nσ2
eβk + σ4

n

σnσ2
eβk (σ2σ2

eβk + σ2
n)

ςkh
′
ik =

σnh′
ik

σ2
e ςk

(20)

Following (8), it is not difficult to see that z̄0i ∼ CN
(

ŪHB̄†ḡi

/

σn, ĪMQf

)

, and thus we have

2 |z0ik|
2 ∼ χ

′2
2

(

2 |γ0ik|
2
)

= χ
′2
2

(

2σ2
n |h

′
ik|

2

σ4
eβk

)

(21)

where χ′2
k (λ) denotes a noncentral chi-square random variable with k degrees of freedom and non-

centrality parameter λ. Notice that TII is a weighted sum of noncentral chi-square random variables, and

thus, it can be approximated as below by using the approximation technique mentioned before:

TII∼
1

2

Na
∑

i=1

n
∑

k=1

σ2σ2
eβk

σ2σ2
eβk + σ2

n

χ
′2
2

(

2σ2
n |h

′
ik|

2

σ4
eβk

)

.
=θ0χ

2
k0

(22)

where χ2
k denotes a chi-square random variable with k degrees of freedom. The condition that the first

two moments of both sides of (22) are the same leads to

1
2

Na
∑

i=1

n
∑

k=1

σ2σ2

eβk

σ2σ2
eβk+σ2

n

(

2 +
2σ2

n|h
′

ik|
2

σ4
eβk

)

= θ0k0

1
4

Na
∑

i=1

n
∑

k=1

σ4σ4

eβ2

k

(σ2σ2
eβk+σ2

n)2
· 2 ·

(

2 +
4σ2

n|h
′

ik|
2

σ4
eβk

)

= 2θ2
0k0

(23)
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Solving the above equation for the parameters θ0 and k0 yields the following expressions:

θ0 = Ω0/µ0, k0 = µ2
0

/

Ω0

µ0 =
n
∑

k=1
σ2

(

Naσ
4
eβk + σ2

nρk

)/(

σ2σ4
eβk + σ2

eσ
2
n

)

Ω0 =
n
∑

k=1
σ4βk

(

Naσ
4
eβk+2σ2

nρk

)

/[

2
(

σ2σ2
eβk+σ2

n

)2
]

(24)

Following (22), we can obtain the threshold for Detector II based on the choice of PrFA:

ηII = θ0F−1
χ2

k0

(1 − PrFA) (25)

where F−1
χ2

k

is the inverse cumulative distribution function (CDF) of a chi-square random variable with

k degrees of freedom. From (17) and (25), it is clear that the implementation of Detector II requires

knowledge of Ȳ , ˆ̄hi, and σ2
e at Array A in Fig.1. We next consider the alternate hypothesis. Based on

(8), the received signal under H1 can be rewritten as r̄i = d̄i+w̄i and w̄i∼CN (

0̄MQf
,C̄

)

. Thus, we have

TII =
Na
∑

i=1

{[

C̄− 1

2 w̄i + C̄− 1

2

(

d̄i + B̄†ḡi

)]H
· C̄ 1

2 B̄C̄
1

2 ·
[

C̄− 1

2 w̄i + C̄− 1

2

(

d̄i + B̄†ḡi

)]}

(26)

Substituting (18) into (26) and letting z̄1i = ŪH
(

C̄− 1

2 w̄i + C̄− 1

2

(

d̄i + B̄†ḡi

))

, we can express the

test statistic TII under H1 as below:

TII =
Na
∑

i=1
z̄H
1i ·







1
σ2

n

Īn − (

σ2σ2
e Ξ̄ + σ2

nĪn
)−1

0̄

0̄ 0̄






·







σ2σ2
e Ξ̄ + σ2

nĪn 0̄

0̄ σ2
nĪMQf−n






· z̄1i

= 1
2

Na
∑

i=1

n
∑

k=1

σ2σ2

eβk

σ2
n

(

2 |z1ik|2
)

Under H1

(27)

where z1ik is the k-th element of the vector z̄1i. Denote γ1ik the k-th entry of the vector ŪHC̄− 1

2

(

d̄i + B̄†ḡi

)

,

which is

γ1ik =
(

σ2σ2
eβk + σ2

n

)−1/2
{

1 +
(

σ2σ2
eβk + σ2

n

)−1

(

σ2σ2

eβk

σ2σ2
nσ2

eβk+σ4
n

)−1
}

ςkh′

ik

1+σ2
e

=

√
σ2σ2

eβk+σ2
n·h

′

ik

σ2
eςk

(28)

Given z̄1i ∼ CN
(

ŪHC̄− 1

2

(

d̄i + B̄†ḡi

)

, ĪMQf

)

, we have

2 |z1ik|2∼χ
′2
2

(

2 |γ1ik|2
)

=χ
′2
2

(

2(σ2σ2

eβk+σ2

n)|h′

ik|
2

σ4
eβk

)

(29)

Similar to (22), we have the following approximation:

TII∼
1

2

Na
∑

i=1

n
∑

k=1

σ2σ2
eβk

σ2
n

χ
′2
2

(

2
(

σ2σ2
eβk+σ2

n

)|h′
ik|2

σ4
eβk

)

.
=θ1χ

2
k1

(30)
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Following the same procedure shown in (23) and (24), we can obtain the parameters θ1 and k1 for TII

under H1 as below:

θ1 = Ω1/µ1, k1 = µ2
1

/

Ω1

µ1 = σ2

σ2
nσ2

e

n
∑

k=1

{

Naσ
4
eβk +

(

σ2σ2
eβk + σ2

n

)

ρk

}

Ω1 = σ4

2σ4
n

n
∑

k=1

{

Naσ
4
eβ

2
k + 2βk

(

σ2σ2
eβk + σ2

n

)

ρk

}

(31)

Based on (30), the theoretical probability of detection of Detector II can be given by

PrD,II = 1 −Fχ2

k1

(

ηII

θ1

)

(32)

where Fχ2

k
is the CDF of a chi-square random variable with k degrees of freedom.

C. Detector III: GLRT Detector

Detector III is the generalized likelihood ratio test (GLRT) detector, which is a practical approach

when unknown parameters exist [18]. The GLRT detector replaces the unknowns with their maximum

likelihood (ML) estimates, and the decision rule can be recast as below [14]:

Na
∑

i=1

r̄H
i r̄i −

Na
∑

i=1

min
h̄1,h̄2,...,h̄Na

∥

∥r̄i − Ȳ h̄i

∥

∥

2 >H1

<H0

η (33)

where ‖·‖ stands for the Euclidean norm. Based on (7), we can derive the GLRT detector as follows:

TIII =
Na
∑

i=1

2r̄H
i Ȳ

(

Ȳ H Ȳ
)†

Ȳ H r̄i

σ2
n

>H1

<H0

ηIII (34)

Invoking the SVD of Ȳ , TIII under H0 can be written as

TIII =
Na
∑

i=1







2

σ2
n

r̄H
i Ū







Īn 0̄

0̄ 0̄






ŪH r̄i







=
Na
∑

i=1

n
∑

k=1

2

σ2
n

|ψ0ik|
2 ∼ χ2

2nNa

(35)

The above result comes from the fact that the vector ψ̄0i = ŪH r̄i ∼ CN
(

0̄MQf
, σ2

nĪMQf

)

and ψ0ik

is the k-th element of ψ̄0i. Following (35), we can obtain the threshold for the GLRT detector based on

the choice of PrFA:

ηIII = F−1

χ2

2nNa

(1 − PrFA) (36)
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From (34) and (36), only the value of Ȳ is required to be known for Detector III at Array A in Fig.1.

We next calculate the distribution of TIII under H1. Let the vector ψ̄1i = ŪHC̄− 1

2 r̄i and we can rewrite

(34) as

TIII =
Na
∑

i=1

2

σ2

n

{

ψ̄H
1i Ū

HC̄
1

2 Ȳ
(

Ȳ H Ȳ
)†

Ȳ HC̄
1

2 Ū ψ̄1i

}

=
Na
∑

i=1

2

σ2

n











ψ̄H
1i







σ2σ2
e Ξ̄ + σ2

nĪn 0̄

0̄ 0̄






ψ̄1i











=
Na
∑

i=1

n
∑

k=1

1

σ2

n

(

σ2σ2
eβk + σ2

n

)

(

2 |ψ1ik|
2
)

(37)

where ψ1ik is the k-th entry of the vector ψ̄1i. Denote λ1ik the k-th element of the vector ŪHC̄−1/2d̄i,

which is given by

λ1ik =
(

σ2σ2
eβk + σ2

n

)− 1

2 · σ2ςkh
′
ik (38)

Given ψ̄1i ∼ CN
(

ŪHC̄− 1

2 d̄i, ĪMQf

)

, we have

2 |ψ1ik|
2 ∼ χ

′2
2

(

2 |λ1ik|
2
)

= χ
′2
2

(

2σ4βk|h′

ik|
2

σ2σ2

eβk+σ2

n

)

(39)

Similar to (22), the test statistic can be approximated as

TIII∼
1

σ2
n

Na
∑

i=1

n
∑

k=1

(

σ2σ2
eβk+σ2

n

)

χ
′2
2

(

2σ4βk|h
′
ik|

2

σ2σ2
eβk+σ2

n

)

.
=

α

σ2
n

χ2
l (40)

Following the same procedure shown in (23) and (24), we can derive the parameters α and l for TIII

under H1 as below:

α = b/a, l = a2
/

b

a=
n
∑

k=1

2
{

Na
(

σ2σ2
eβk + σ2

n

)

+ σ4βkρk

}

b=
n
∑

k=1

2
{

Na
(

σ2σ2
eβk+σ2

n

)2
+2σ4

(

σ2σ2
eβk+σ2

n

)

βkρk

}

(41)

Hence, based on (40), the theoretical PrD,III is given by

PrD,III = 1 −Fχ2

l

(

ηIIIσ2

n

α

)

(42)

IV. WAVEFORM DESIGN

In this section, we propose three approaches to design the retransmitted waveform Ȳ in order to

improve the system detection performance. Notice here that all the schemes discussed in this section are

under the constraint trace(Ȳ Ȳ H) = MEs which limits the total transmitted power.
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A. Conventional Signal Scheme

We first introduce the conventional signal (CS) scheme similar to that in [7] [8] for comparison purposes

in the numerical results. In the CS scheme, the same waveform is retransmitted from Array B regardless

of the available channel information. In this paper, we assume that the k-th element of the retransmitted

signal vector ȳm(fq) in (4) is given by

ymk(fq) =

√

Es

NbQf

exp [j2π(k − 1)(q − 1)/Qf ] (43)

where k = 1, 2, ..., Nb, q = 1, 2, ..., Qf , and the normalization factor is employed here to meet the power

constraint.

B. Time Reversal scheme

Before introducing the proposed waveform designs, we first briefly describe the TR scheme proposed

in [7]–[9]. The numbers of snapshots during the probing and detecting phases are assumed to be the

same, and for each snapshot, Array A transmits an incident waveform and the signals received by Array

B are recorded, time reversed, power normalized, and transmitted back into the medium. The signal

received by Array B at frequency fq for the m-th snapshot is denoted by x̄m(fq) in (1), and the m-th

retransmitted TR signal is

ȳm(fq) = kmx̄∗

m(fq) = km

[

H̄∗(fq)s̄
∗

m(fq) + $̄∗

m(fq)
]

(44)

where km =

√

√

√

√Es

/

Qf
∑

q=1

‖x̄m(fq)‖
2

is a normalization factor to meet the power constraint and the

superscript ∗ stands for the complex conjugate. The conjugation here results from the fact that time

reversal in the time domain corresponds to phase conjugation in the frequency domain up to a phase

shift (see, e.g., [1]).

The noise level at Array B, i.e., the variance of the white Gaussian noise $̄m(fq), is assumed to

be known in [7]–[9]. In this paper, instead, we assume that the estimated channel matrix ˆ̄H(fq) and

the estimation error parameter σ2

e are known. In order to fairly compare the performance of different

waveform schemes, we modified the TR scheme as follows:

ȳm(fq) =

√

√

√

√

√Es

/ Qf
∑

q=1

∥

∥

∥

ˆ̄H(fq)s̄m(fq)
∥

∥

∥

2 [

ˆ̄H∗(fq)s̄
∗

m(fq)
]

(45)

Such a modification actually approximates x̄m(fq) as ˆ̄H(fq)s̄m(fq), which is reasonable since ˆ̄H(fq)

is estimated based on x̄m(fq) and σ2

e is a function of the noise level at Array B. We name this modified

January 19, 2010 DRAFT

154



Original Publications

13

TR scheme as the matched-filter (MF) scheme in this paper in order to avoid confusion. Following

the procedure mentioned in Section II, we can generate the retransmitted MF signal matrix ȲMF by

assembling all the MQf vectors ȳm(fq) appropriately. In general, the incident waveform can be any

signal and in the simulations we adopt smk(fq) = exp [j2π(k − 1)(q − 1)/Qf ] in (45) as in [9] where

smk(fq) is the k-th entry of the vector s̄m(fq).

C. Waveform Design A: MF upper scheme

As demonstrated in [7]–[9], the TR scheme improves the system detection performance significantly.

Our goal in this section is to further improve the performance by designing a waveform based on the MF

scheme above, in order to maximize an upper bound of PrD for the GLRT detector. Before we proceed

to the waveform design, several parameters are defined similar to (36) and (37):

ηL = F−1
χ2

2Na

(1 − PrFA) , ηU = F−1
χ2

2ϑNa

(1 − PrFA)

TU =
Na
∑

i=1

ϑ
∑

k=1

1
σ2

n

(

σ2σ2
eβk + σ2

n

)

(

2 |ψ1ik|
2
)

= TIII +
Na
∑

i=1

ϑ
∑

k=n+1

1
σ2

n

(

σ2σ2
eβk + σ2

n

)

(

2 |ψ1ik|
2
)

(46)

where ϑ = min(NbQf ,MQf ) and the second term in the last row is defined as TD. Since n is the rank

of Ȳ and βk is the square of the k-th singular value of Ȳ , we have 1 ≤ n ≤ ϑ and βk = 0 when k > n.

Therefore, 2 |ψ1ik|
2 ∼ χ

′2
2

(

2 |λ1ik|
2
)

= χ2
2 for k > n and hence TD ∼ χ2

2Na(ϑ−n). It is not difficult to

derive the following inequalities:

ηU ≥ ηIII ≥ ηL > 0, TU = TIII + TD, TIII > 0, TD ≥ 0 (47)

The reason for defining the above parameters is that before the waveform design, it is impossible to

know the rank of Ȳ , and thereby the threshold and test statistic in (36) and (37) can not be employed

directly during the design process because of the unknown value of n. Following (47), we can derive the

required upper bound of PrD for the GLRT detector as below:

PrD ≤ Pr {TIII ≥ ηL} ≤ Pr {TU ≥ ηL} ≤ E [TU]/ηL (48)

where the last inequality arises from Markov’s inequality [19]. Taking the expectation of TU in (46)

yields

E [TU] =
2σ4

σ2
n

ϑ
∑

k=1

[

Naσ
2
n

σ4
+

(

Naσ
2
e

σ2
+ ρk

)

βk

]

(49)
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where ρk =
Na
∑

i=1
|h′

ik|
2 =

Na
∑

i=1
v̄H
k

ˆ̄hi
ˆ̄hH

i v̄k and v̄k is the k-th right-singular vector of ȲMF introduced in

the last section. The entries of β̄ are the eigenvalues of the Hermitian matrix Ȳ Ȳ H , and thus the design

criterion under the power constraint can be expressed as the following constrained maximization problem:

max
β̄

ϑ
∑

k=1

(

Naσ
2
e

/

σ2 + ρk

)

βk

s.t.
ϑ
∑

k=1
βk = MEs, βk ≥ 0, k = 1, 2, ..., ϑ

(50)

Moreover, considering the fact that [Naσ
2
e

(

1 + σ2
e

)

+ ρk] is positive and taking into account the

constraints, we can derive the following equation employing Abel’s inequality [20]:

ϑ
∑

k=1

(

Naσ
2
e

/

σ2 + ρk

)

βk

≤ max

{

β1, β1 + β2, ...,
ϑ
∑

k=1
βk

}

max
{

Naσ2
e

σ2 + ρk

}

= MEs ·
(

Naσ
2
e

/

σ2 + max {ρk}
)

(51)

From (51), it is easy to understand that the maximization of (50) is achieved by allocating all the

available power to the eigenvalue βk which corresponds to the largest ρk.

D. Waveform Design B: MF lower scheme

Now we design the second waveform by maximizing a lower bound of PrD for the GLRT detector

based on the MF scheme. Similar to the last section, (47) leads to

PrD ≥ 1 − Pr {TIII ≤ ηU} ≥ 1 − Pr{TIII+TD≤2ηU}
Pr{TD≤ηU}

(52)

In addition, recalling the definition of TD and ηU, we have

Pr {TD ≤ ηU} ≥ 1 − Pr
{

χ2
2Naϑ ≥ ηU

}

= PrFA (53)

Substituting (53) into (52) and utilizing Markov’s inequality, we express the required lower bound of

PrD for the GLRT detector as

PrD ≥ 1 − Pr{TU≤2ηU}
PrFA

≥ 1 −
E
[

e−σ2
nTU

]

e−2σ2
nηU ·PrFA

(54)

Due to the fact that [−
(

σ2σ2
eβk + σ2

n

)

] < 0 and given the statistical independence of 2 |ψ1ik|
2

for

different values of i and k, the following equation can be obtained for the moment generating function

of the noncentral chi-square distribution:

E
[

e−σ2
nTU

]

=
ϑ
∏

k=1

Na
∏

i=1
E

[

e−(σ2σ2
eβk+σ2

n)(2|ψ1ik|
2)

]

=
ϑ
∏

k=1

exp

(

−2σ4βkρk

1+2(σ2σ2
eβk+σ2

n)

)

[1+2(σ2σ2
eβk+σ2

n)]Na

(55)
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Taking the logarithm and making use of the inequality log(1 + x) > x
1+x

when x > −1 and x 6= 0,

we can express the waveform design criterion with the power constraint as below:

max
β̄

ϑ
∑

k=1

{

2βkρk+2Na(σ2σ2

eβk+σ2

n)
1+2(σ2σ2

eβk+σ2

n)

}

s.t.
ϑ
∑

k=1
βk = MEs, βk ≥ 0, k = 1, 2, ..., ϑ

(56)

Applying the Karush-Kuhn-Tucker (KKT) conditions [21], the solution for the above design criterion

can be given by

βk =
1 + 2σ2

n

2σ2σ2
e

(

√

2ρk + 4ρkσ2
n + 2Naσ2σ2

e

1 + 2σ2
n

ξ − 1

)+

(57)

where (a)+
∆
= max(0, a) and ξ is chosen such that the power constraint is met:

ϑ
∑

k=1

(

√

2ρk+4ρkσ2
n+2Naσ2σ2

e

1+2σ2
n

ξ−1

)+

=
2MEsσ

2σ2
e

1 + 2σ2
n

(58)

Obviously, this waveform design scheme utilizes the waterfilling strategy [15] to allocate power, and

the larger the ρk is, the more power is allocated to the corresponding βk.

REMARK 1: Both waveform designs introduced above select the values of βk according to the ρk

values, which are determined by the estimated channel vectors as well as the right-singular vectors

of ȲMF . Recalling the physical explanation of the SVD, we can split the design procedure into two

separate parts. The “path directions” of the designed waveform are determined by the MF scheme, and

the waveform design A and B allocate the retransmitted power to each direction according to the “path

quality” following different design criteria. We emphasize this by naming the design schemes as “MF

upper” and “MF lower”, respectively. The reason for utilizing the MF scheme, i.e., a modified TR scheme,

is that [7]–[9] have shown that TR can improve the detection performance, and we want to achieve further

optimization. Furthermore, although the theoretical derivation for both schemes are based on the GLRT

detector, Detector I and II can also be employed when the designed waveforms are retransmitted from

Array B, and their performance can be easily calculated using (14) and (32).

E. Waveform Design C: MI scheme

In this section, we design the waveform by maximizing the lower bound of the mutual information

(MI) between the retransmitted and received signals. First of all, rewrite the NaQf × 1 received signal

vector for one snapshot as

r̄ =
[

r̄T (f1), r̄
T (f2), · · · , r̄T (fQf

)
]T

= H̄T
Q ȳ + n̄

ȳ =
[

ȳT (f1), ȳ
T (f2), · · · , ȳT (fQf

)
]T (59)
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where the Na × 1 vector r̄(fq) and the Nb × 1 vector ȳ(fq) contain the signals received by all the Na

antennas of Array A and the signals retransmitted from all the Nb antennas of Array B at frequency fq,

respectively. The elements of the NaQf × 1 noise vector n̄ are zero-mean complex Gaussian random

variables with variance σ2
n. The NbQf × NaQf matrix H̄Q is a block diagonal matrix with the Qf

matrices H̄(fq) arranged sequentially along its main diagonal blocks. We also define the NbQf ×NaQf

estimated channel matrix ˆ̄HQ in the same way. Assuming ȳ is a random vector, the considered MI is

I
(

r̄, ȳ| ˆ̄HQ

)

, which can be interpreted as the amount of uncertainty in the received signal r̄ which is

removed by knowing ȳ given ˆ̄HQ. Intuitively, the larger the MI, the less uncertain the received signal, and

thus the better the system performance. Denoting C̄ȳ the covariance matrix of ȳ given ˆ̄HQ and following

the procedure shown in Appendix I in [10], we can derive the lower bound of the MI as below:

IL

(

r̄, ȳ| ˆ̄HQ

)

= log2 det
[

ĪNbQf
+ σ4 ˆ̄H∗

QC̄−1
ω

ˆ̄HT
QC̄ȳ

]

(60)

where the NaQf × NaQf matrix C̄ω is a block diagonal matrix, whose q-th diagonal block is a

Na ×Na matrix
[

σ2σ2
eP (fq) + σ2

n

]

· ĪNa
and P (fq) = E

[

ȳH(fq)ȳ(fq)
]

. We first express the eigenvalue

decomposition of the Hermitian matrix ˆ̄H∗(fq)
ˆ̄HT (fq) as V̄(fq)D̄(fq)V̄

H(fq), where the Nb×Nb matrix

V̄(fq) is a unitary matrix and D̄(fq) is a diagonal matrix with Nb real and nonnegative eigenvalues

Λq1,Λq2, · · · ,ΛqNb
(in decreasing order) as its diagonal entries. Next, we define the NbQf ×NbQf block

diagonal matrices V̄Q and ḠQ, whose q-th diagonal blocks are V̄(fq) and σ4D̄(fq)
/[

σ2
n + σ2σ2

eP (fq)
]

,

respectively. Thus, the lower bound of the MI in (60) can be rewritten as

IL

(

r̄, ȳ| ˆ̄HQ

)

= log2 det
[

ĪNbQf
+ ḠQQ̄

]

(61)

where Q̄ = V̄H
Q C̄ȳV̄Q is an NbQf ×NbQf matrix. From Lemma 1 in [13], we know that (61) achieves its

maximum when ĪNbQf
+ ḠQQ̄ is diagonal. Remembering that the diagonal matrix ḠQ has nonnegative

diagonal entries and C̄ȳ is a covariance matrix, we conclude that Q̄ must be a diagonal matrix whose

{(q − 1)Nb + k}-th diagonal element is a nonnegative value Qqk, q = 1, 2, ..., Qf and k = 1, 2, ..., Nb.

In addition, considering the power constraint Es = E
[

ȳH ȳ
]

= trace
(

Q̄
)

, we can express the waveform

design criterion maximizing the lower bound of the MI as below:

max
Q̄

Qf
∑

q=1

Nb
∑

k=1
log2

{

1 + σ4ΛqkQqk

σ2

n+σ2σ2

eP (fq)

}

s.t.
Qf
∑

q=1

Nb
∑

k=1
Qqk = Es

Qqk ≥ 0, q = 1, 2, ..., Qf , k = 1, 2, ..., Nb

(62)
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Note that (62) is not a concave function due to the presence of P (fq) = E
[

ȳH(fq)ȳ(fq)
]

=
Nb
∑

k=1

Qqk

in the denominator. However, for a fixed set of values for P (fq), the function becomes concave and thus

it can be directly optimized. Hence, an iterative algorithm is proposed here, and the values of P (fq) are

updated in each iteration until the algorithm converges. We initialize the algorithm by allocating equal

power to all the Qf frequencies, i.e., P (fq, 0) = Es/Qf for q = 1, 2, ..., Qf . For the i-th iteration,

replacing P (fq) in (62) by P (fq, i − 1) and applying the KKT conditions [21] leads to the solution

Qqk(i) =

(

ζ(i) −
σ2

n + σ2σ2
eP (fq, i − 1)

σ4Λqk

)+

(63)

where the water-level ζ(i) can be found by solving

Qf
∑

q=1

Nb
∑

k=1

(

ζ(i) −
σ2

n + σ2σ2
eP (fq, i − 1)

σ4Λqk

)+

= Es (64)

Then, the values of P (fq) for the i-th iteration are updated as P (fq, i) =
Nb
∑

k=1

Qqk(i) and the iteration

ends if max |P (fq, i) − P (fq, i − 1)| ≤ ε for all the Qf frequencies, where ε is a threshold with small

value. Once all the Qqk are determined, we have the covariance matrix C̄ȳ = V̄QQ̄V̄H
Q .

Notice here that when Na < Nb, a modification is required to be made to the above algorithm.

Obviously, Λqk = 0 for k = Na + 1, Na + 2, ..., Nb, and from (62), it is clear that the corresponding

Qqk should be equal to zero in order to maximize the lower bound. Thus, when Na < Nb, the limit

of k is changed from Nb to Na in (62)-(64) and the values of Qqk are determined for k = 1, 2, ..., Na

using the algorithm mentioned before. Next, setting Qqk = 0 for k = Na +1, Na +2, ..., Nb gives us the

NbQf × NbQf diagonal matrix Q̄.

Once C̄ȳ is determined, we generate a set of NbQf × 1 deterministic vectors {ȳ1, ȳ2, · · · , ȳM} as

the retransmitted signal vectors for the M snapshots. These vectors are appropriately designed such that

their covariance matrix remains as C̄ȳ. The block diagonal structure of C̄ȳ implies that the retransmitted

signals at different frequencies are mutually orthogonal. Such orthogonality can be realized, for example,

by designing the retransmitted signal using orthogonal frequency division multiplexing (OFDM) scheme

[22]. Denoting the k-th column of V̄(fq) by v̄k(fq), we generate the signals transmitted by all the Nb

antennas of Array B at frequency fq for the m-th snapshot by utilizing an orthogonal basis as below:

ȳm(fq) =
Nb
∑

k=1

v̄k(fq)
√

QqkOkm,

M
∑

m=1

OkmO∗

lm = Mδkl (65)

where m = 1, 2, ..., M , k, l = 1, 2, ..., Nb, and δkl represents the Dirac delta function. The NbQf × 1

signal vector ȳm is obtained by sequentially stacking all the Qf vectors ȳm(fq) into a vector. Walsh

codes are adopted as the basis functions in the simulations, but other orthogonal bases can be employed
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in principle. From (65), we can calculate that the covariance matrix of the generated vectors equals C̄ȳ and

the power constraint has been met. After all the M snapshots {ȳm} are generated, the retransmitted signal

matrix Ȳ can be easily obtained by reshaping {ȳm} appropriately. Its corresponding system performance

for all the three detectors can be evaluated using the formulae provided in Section III.

REMARK 2: From the simulation we find that normally the iterative algorithm converges after a few

iterations (less than 20 for ε = 0.001). However, at very low signal-to-noise ratios (SNRs) and when the

difference between the largest two values of Λqk is very small, the algorithm can enter an endless loop

by allocating all the power to their corresponding Qqk in turn. From (63), it is not difficult to understand

that this problem can happen when the difference between the numerators for two successive iterations

σ2
e

(

1 + σ2
e

)

|P (fq, i) − P (fq, i − 1)| is large enough. The lower the SNR, the larger the value of σ2
e , and

this is the reason why such a problem only occurs at very low SNRs. To solve this problem, we terminate

the algorithm if the number of iterations exceeds a selected value and choose the results obtained in the

last iteration as the final solution. This approach is reasonable since if there are two coefficients Λqk

having similar values, then allocating the power to either of them leads to similar system performance.

V. NUMERICAL RESULTS AND DISCUSSION

In this section, numerical results are presented showing the target detection performance of a MIMO

system with different detectors and retransmitted waveforms. We set PrFA = 0.001 and define the SNR as

SNR = Es/σ2
n with Es normalized to 1. As mentioned before, the value of σ2

e depends on the estimation

method and the waveform length during the probing phase, which is inversely proportional to the SNR at

Array B [23]. Since we focus on the detection phase in this paper investigating the system performance

when channel estimation error exists, we assume that the noise level at Array B is in proportion to that

at Array A and set σ2
e = σ2

n in all the simulations. Note that the algorithms for both the detector and

waveform designs are based on the estimated channel ˆ̄H(fq), which is the sum of the true channel and

the estimation error. Therefore, we utilize a semi-analytical approach to obtain the system performance.

That is, we generate 10, 000 realizations of the true channel and the estimation error matrix, calculate

the corresponding PrD for each realization using (14), (32), and (42), and yield the theoretical system

detection performance by averaging PrD over all the realizations.

We first examine the performance of a system with four sensors at both Arrays A and B, choosing

M = 5 and Qf = 6 for simulation purposes only. Fig.2 depicts the detection performance of the

system employing different detectors when two designed waveforms, the MF lower and MI schemes, are

adopted. The PrD recorded from Monte Carlo simulations is also presented. For each realization of the
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estimated channel matrix, we generate 10,000 independent received signals, compute their test statistics,

and compare them with the threshold. Obviously, the simulated results agree well with the theoretical

values, validating the correctness of the derived formulae. Comparing the curves corresponding to the

same waveform, we find that Detector II always performs the best, which is consistent with the fact

that Detector II is the optimal detector. In addition, the performance difference between Detector I and

Detector II decreases as the SNR becomes higher, i.e., σ
2

e
is smaller. This can be explained by the

fact that both the optimal detector when the channel matrix is known and Detector I are in the form

of matched filters, and the only difference is that the former matches to the true channel H̄ while the

latter matches to the estimated channel ˆ̄
H [18]. When σ

2

e
has a small value, the estimation error in the

estimated channel is insignificant, and thus the difference between the performance of Detector I and

the optimal performance should be small. Furthermore, it is easily seen that Detector III performs the

poorest at low SNR but is similar to the optimal detector when the SNR is high. This is because the

GLRT detector estimates the unknown parameters first and then makes the detection decision based on

it. Intuitively, the lower the SNR, the worse the estimation, which degrades the detection performance.

However, although Detector II performs the best, it requires knowledge of Ȳ , ˆ̄
hi, and σ

2

e
at Array A. In

contrast, as mentioned in Section III, the implementation of Detector I needs the information of Ȳ and

ˆ̄
hi, while for Detector III only Ȳ is required to be known.

We next compare the detection performance of the systems retransmitting different waveforms as shown

in Fig.3 and Fig.4 for low and high SNRs, respectively. Here, Detector II is employed for all the scenarios.

We also provide the system performance recorded from Monte Carlo simulations following the same

procedure mentioned before, and there is a very good agreement between the theoretical and simulated

performance. Obviously, the MF scheme provides much better performance than the CS approach, and all

the three proposed waveform designs further improve the system performance significantly with respect

to the MF scheme. We start by comparing the MF upper and lower schemes. At low SNR, the MF

upper is superior, while the MF lower is preferred when SNR is high. In addition, the MF lower always

outperforms the MF approach, but the MF upper performs worse than the MF scheme when SNR is high

enough. Such results are reasonable since that one should concentrate all the available power on the path

with the best quality in order to overcome the high level of noise at low SNR, which is the idea of the

MF upper method. As the SNR becomes higher, the noise level and consequently the estimation error

parameter σ
2

e
decreases, and thus allocating power to several paths according to their amplitudes, i.e., the

waterfilling strategy utilized in the MF lower approach, leads to better detection reliability because of

the spatial diversity gain. Furthermore, it is clear from Fig.3 and Fig.4 that the MI scheme outperforms
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all the other waveform designs and should be selected for precise target detection, e.g., the probability

of detection PrD ≥ 0.7. Although all the three designed waveforms bring in significant performance

improvements, we point out that such enhancement is achieved at the price of knowing the channel

estimation error parameter σ
2
e a priori.

We proceed to investigate the impact of the number of antennas at Array A Na, the number of antennas

at Array B Nb, and the number of snapshots M on the detection performance for the proposed three

waveform designs. The SNR is fixed at 0dB for the next three figures, and the number of snapshots

M equals to 5 for Fig.5 and Fig.6. First of all, it is clear that for all the scenarios considered in

Fig.5, Fig.6, and Fig.7, the MI scheme provides the best detection performance, and the MF lower

approach outperforms the MF upper method. Next, we compare the slopes of the curves corresponding

to different waveforms for the same Nb in Fig.5, and the larger the slope is, the more effect Na has

on the corresponding waveform design. In other words, for the same increase in the value of Na, the

MI scheme provides the greatest performance improvement, and the MF lower method achieves more

enhancement than the MF upper approach does. Similarly, we can draw the same conclusions for both Nb

and M by observing Fig.6 and Fig.7. Hence, the MI scheme is the best among the three waveform design

approaches since it not only performs the best but also realizes the largest performance enhancement for

the same increase in the value of Na, Nb, or M , and in that sense, the MF lower scheme is better than

the MF upper approach.

VI. CONCLUSIONS

In this paper, we investigated the target detection performance of a bistatic wideband MIMO system,

whose detection process is similar to the TR procedure. Based on the estimated channel and a parameter

indicating the quality of the estimation obtained during the probing phase, the retransmitted waveform and

the detector are designed. Three detectors are developed, whose theoretical thresholds and probabilities of

detection are derived in closed form. Three schemes are proposed to design the retransmitted waveform

with a power constraint, which maximizes the upper and lower bound of the probability of detection of

the GLRT detector, and the lower bound of the MI between the retransmitted signal and the received

signal, respectively. Numerical results showing the detection performance of a MIMO system involving

the designed detectors and retransmitted waveforms are presented. It is shown that the optimal detector

performs the best but it requires more a priori information than the conventional detector does. The

performance difference between the conventional and the optimal detector increases as the estimation

quality becomes poorer. The GLRT detector performs the poorest but demands the least amount of a
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priori information. All the three waveform design approaches further improve the system performance

with respect to the MF approach at the price of knowing the quality of channel estimation a priori. The

MF upper scheme works the best at low SNR, but is outperformed by the MF lower approach as the

SNR increases. However, the MI scheme consistently provides the minimum target detection probability

in all the simulation scenarios that were tested.
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Fig. 2. PrD versus SNR for systems with different detectors
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Predicted Detection Performance of MIMO Radar
Chaoran Du, John S. Thompson, Member, IEEE, and Yvan Petillot

Abstract—It has been shown that multiple-input multiple-output

(MIMO) radar systems can improve target detection performance

significantly by exploiting the spatial diversity gain. We introduce

the system model in which the radar target is composed of a finite

number of small scatterers and derive the formula to evaluate the

theoretical probability of detection for the system having an arbi-

trary array-target configuration. The results can be used to pre-

dict the detection performance of the actual MIMO radar without

time-consuming simulations.

Index Terms—Detection performance, finite scatterers model,
multiple-input multiple-output (MIMO), radar, spatial diversity.

I. INTRODUCTION

M
OTIVATED by the advantages offered by multiple-input

multiple-output (MIMO) systems in communications,

Fishler et al. [1], [2] proposed that MIMO techniques can

also be applied in radar scenarios to improve performance

by exploiting the so-called spatial diversity gain defined in

communication theory [3]. However, it is assumed that the

rectangular-shape target is composed of an infinite number of

random scatterers in [1], and the gains of all the scatterers are

random variables with the same distribution. Hence, such a

model is not convenient to be employed when the target com-

prises several significant scatterers at different spatial locations,

which implies that a finite scatterers model should be used

instead. Although in [2] the finite scatterers model is utilized, it

assumes that the scatterers are laid out as a linear array which

is parallel to the antenna array.

In this letter, we implement the MIMO radar system as-

suming that the target is modeled by a finite number of

scatterers without limitation on the locations. The main contri-

bution of this letter is the derivation of a formula to calculate the

theoretical probability of detection for a MIMO radar having

an arbitrary array-target configuration, while [1] presents the

detection performance for only four special configurations. This

theoretical result makes it possible to predict the actual MIMO

radar performance before implementing expensive experiments
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Fig. 1. Configuration of the finite scatterers channel model.

and avoiding time-consuming simulations. Furthermore, the

preferable MIMO array configuration could be selected for

different scenarios by comparing the predicted performance of

various configurations.

This letter is organized as follows. In Section II, we develop

the system model of the MIMO radar. We then apply this model

to formulate the detection problem and generate the equation to

compute the probability of detection. Analysis of two extreme

channel models and simplified expressions for two special cases

are also shown in Section III. The next section examines numer-

ical results and provides some discussion. Section V gives the

conclusions.

II. SYSTEM MODEL

A. Channel Model

Uniform linear arrays of antennas [3] are employed at both

transmitter and receiver with and elements, respectively.

The antenna separations are and , where is the

carrier wavelength and and are the normalized transmit

and receive antenna spacing in wavelengths. We assume that all

the signals are narrow band and that distances between scatterers

and both transmitter and receiver are much larger than the di-

mensions of the antenna arrays, that is, we operate in the far

field.

The radar target can be viewed as the finite point-like scat-

terers model illustrated in Fig. 1. It is assumed that there are

random and independent scatterers uniformly distributed over

the target area , and is also the number of independent mul-

tipaths because of the assumption of a “single-bounce” propa-

gation model. As shown in Fig. 1, path is defined by angle of

departure (AoD) , angle of arrival (AoA) , complex path

gain , and distance between T 1 and R 1 along the path .

1070-9908/$25.00 © 2007 IEEE
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Based on above assumptions, the channel matrix , which is

an matrix, is given by [3]

(1)

...
(2)

In (2), represents either or , and

, and the superscript denotes the conjugate transpose.

We assume that each path gain can be a zero-mean complex

Gaussian random variable with variance and assume that the

sum of all the variances equals to one.

B. Signal Model

It is supposed that the th transmitter transmits a signal

, where and is the total trans-

mitted power. The normalizing coefficient is employed to make

sure that the total transmitted power and the average received

power at each element are not affected by the number of transmit

antennas. Furthermore, all the transmitted signals are orthog-

onal, which is equivalent to the fact that ,

where is a dirac delta function. Denote the transmitted

signals by an vector , the received

signals and the additive white Gaussian noise at all the receiver

antennas by an vector and an

vector , respectively, where the

superscript represents transpose and .

Here is a all-zeros vector and is a

identity matrix. The system model can be written as follows:

(3)

Together with the channel matrix given by (1), we can mea-

sure the value of the observed signals , from which the target

detection decision will be made after applying an appropriate

detector.

The optimal MIMO radar detector given by [1] can be ex-

pressed as follows:

(4)

where the alternate hypothesis and null hypothesis are

that the target does or does not exist, respectively, and is a

threshold determined by the probability of false alarm. The

matrix is the output of a bank of matched filters,

which is written as [1]

(5)

where the channel vector is composed of all the

entries of the channel matrix and the noise vector

.

From (4) and (5), it is easy to understand that the probability

of detection of the MIMO radar depends on the distribu-

tion of . Thus, the problem of predicting the detection per-

formance of the MIMO radar turns into the calculation of the

probability density function (PDF) of , which will be dis-

cussed in the next section.

III. DETECTION PERFORMANCE

In this section, we first derive the formula to calculate the

theoretical probability of detection for a MIMO radar system

with an arbitrary array-target configuration. Following that is

the analysis of two extreme channel models with respect to the

level of correlation of the channel matrix, and then simplified

expressions of the formula for two special cases are provided.

A. General MIMO Radar

The general MIMO radar can be modeled by the system men-

tioned in the last section without any other restriction. First of

all, we consider given . Recall from [1, equation (26)]

that the distribution of is a chi-square random variable with

degrees of freedom as follows:

(6)

We proceed to the case under the alternate hypothesis .

Firstly, we define the vector . It

is easy to verify that has zero mean, and the square ma-

trix is the covariance matrix of , that is,

. Substituting (1) gives

(7)

where and

. Therefore, for any set of pa-

rameters in the channel matrix given by (1), we can easily com-

pute the covariance matrix can be rewritten as ,

where is a diagonal matrix whose th diagonal element is the

corresponding eigenvalue of and is a unitary matrix.

We define a vector , and then according to

the property of linear transforms of complex normal distributed

random vectors, the distribution of is given by

(8)

Considering the fact that is the covariance matrix of and is

a diagonal matrix, it is safe to conclude that all the elements of

are uncorrelated and the th element has the distribution

. Notice that , and then the original

problem of calculating becomes the evaluation of .

The reason why we apply such a transform is that the elements

of could be correlated for some scenarios. The uncorrelated

nature of the elements of simplifies the calculation process

dramatically.
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According to the above analysis, can be viewed as

the sum of a set of independent random variables

, and . We further define

and assume there are distinct values

of all the values, and has corresponding algebraic

multiplicity [4]. Thus, the characteristic function of

can be expressed as follows [6]:

(9)

Given the fact that the characteristic function of a random

variable is the Fourier transform of the PDF of with a sign

inverse in the complex component, it is possible to derive the

PDF of through the inverse Laplace transform of (9) with

the substitution . Following [4], the PDF of given

is given by

(10)

where the coefficient is written as [5]

(11)

As mentioned before, for a given noise level, the threshold

can be determined by , while is computed from

the value of and the PDF of under . Using the upper

incomplete Gamma function, we can express as follows:

(12)

(13)

where denotes the inverse cumulative distribution

function of a chi-square random variable with degrees

of freedom. The above equation demonstrates that it is possible

to predict the performance of the MIMO radar system without

implementing costly experiments. In addition, the comparison

between the theoretical performance of different configurations

provides us the principle based on which to design the best

MIMO system for various scenarios. We further investigate

the relationship between the correlation of the channel matrix

and the distribution of eigenvalues , and then show the

simplified expressions of for two special cases.

B. Analysis of Extreme Channel Models

Recall that the additive white Gaussian noise is independent

of the channel, then can be rewritten as

(14)

It is clear that the eigenvalues of are closely related to

the correlation matrix of the vector including channel

matrix entries . This correlation matrix depends on the spe-

cific configuration of the radar system. However, we can com-

pute its value under the following two extreme cases.

1) Entries Are Totally Uncorrelated: Invoking the assump-

tion that the sum of all the variances of the path gains is one,

it is not difficult to verify that , where de-

notes the conjugate, in other words, the diagonal elements of

the correlation matrix are one. Moreover, the totally uncorre-

lated condition illuminates that all the non-diagonal elements

of are zero. This results in the diagonal matrix

. Hence, there exists eigenvalues

, and they all have the same value .

Making use of the simplified formula introduced in the next sec-

tion, we can evaluate easily.

2) Entries Are Fully Correlated: Similar to the calculation in

the previous subsection, we know that the diagonal elements of

the correlation matrix are one. The condition of full correlation

demonstrates that all the non-diagonal elements are also equal

to one, that is, is an all-ones matrix. Therefore,

has eigenvalues, in which

and the other eigenvalues have the same value

.

The magnitudes of the correlation values in (7) de-

pend on the distribution of the angles and of each path

and the array interelement spacing. If and for all the paths

are the same, then we get the fully correlated case. The corre-

lation decreases as the range of angles increases for the same

array spacing. For any non-zero angle spread, increasing an-

tenna spacing has the effect of decreasing the correlation [3].

C. Formulae of for Two Special Cases

Here, in order to simplify the computation, we display the

compact form of (12) for two special cases: all the eigenvalues

are different or are the same.

1) Eigenvalues Are Different: In this case, the number of dis-

tinct eigenvalues is and all the algebraic multiplicity

are one. As a result, (10) is rewritten as

(15)

Therefore, the probability of detection is given by

(16)
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Fig. 2. Theoretical and simulated  ! as a function of the SNR.

2) Eigenvalues Are the Same: In this case, the eigen-

values have the same value , so (9) can be expressed as follows:

(17)

which results in the conclusion that

. Consequently, the proba-

bility of detection is given by

(18)

where denotes the cumulative distribution function

(CDF) of a chi-square random variable with degrees of

freedom. This result matches [1, equation (29)].

IV. NUMERICAL RESULTS AND DISCUSSION

A simulation of a MIMO radar system has yielded several nu-

merical results that are provided in this section. We consider a

system with two transmitting antennas and four receiving an-

tennas, and the target area has circular shape with radius ,

within which 64 scatterers are uniformly distributed. The car-

rier frequency of the signal is 10 GHz, and the size of antenna

array is much smaller than the distances between the target and

both the transmitter and receiver, which are in the order of 3–5

km. The probability of false alarm is set to be a constant value

.

First of all, we validate the theoretical results of obtained

from (12) for various configurations. Fig. 2 depicts the theoret-

ical probability of detection as a function of the average received

SNR when , and the five configurations considered

involve the two extreme models mentioned in Section III-B and

three models whose array interelement spacings are 50, 100, and

200 wavelengths, respectively.

Fig. 2 also shows the recorded from simulations for the

same five scenarios, and the total number of tests for each case

is 10 000. Obviously, the simulated results agree well with the

theoretical values, which confirms the correctness of formula

(12).

Observing the figure, we find that the curves corresponding to

the two extreme channel models set bounds for the system per-

formance. In other words, all the configurations with specific

element spacings lie between these two ideal scenarios. More-

over, the performance curve is closer to the full correlation case

as the spacing decreases, while closer to the uncorrelated case

as the spacing becomes larger, which agrees with the analysis

of the relation between antenna interelement spacing and the

channel matrix correlation shown in Section III-B.

It can be seen in Fig. 2 that at low SNR, a system with

densely spaced antennas outperforms the ones whose interele-

ment spacing is large, while at high SNR, the latter performs

better. Furthermore, the system with large antenna spacing is

always preferred when the detection performance is acceptable,

i.e., is large enough. This is because that at low SNR, the

received power affects target detection performance the most,

while the number of diversity paths is the dominating factor at

high SNR.

V. CONCLUSION

In this letter, we introduced the MIMO radar system as-

suming that the target is modeled as the sum of a finite number

of random and independent scatterers. A formula to calculate

the theoretical probability of detection for a MIMO radar

having arbitrary array-target configuration was derived, and it

was validated by simulation results.
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Abstract—We simulate a multiple-input multiple-output (MIMO) 

radar system involving a realistic target, which is a life-size land 

vehicle modeled using a EM simulator FEKO. Numerical results 

showing the detection performance of a MIMO radar are 

provided, which is measured based on multiple realizations of the 

channel matrix generated using the available FEKO data. The 

results validate in a practical setting the improvements in 

detection performance available from MIMO radar 

configurations. 

MIMO radar,  detection performance, spatial diversity, finite 

scatterers model 

I.  INTRODUCTION 

Motivated by the advantages offered by MIMO systems in 
communications, Fishler et al. [1, 2] proposed that MIMO 
techniques can also be applied in radar scenarios to improve 
performance by exploiting the so-called spatial diversity gain 
defined in communication theory [3]. However, the 
rectangular-shape target is assumed to be composed of an 
infinite number of random scatterers in [1], and the gains of all 
the scatterers are random variables with the same distribution. 
Such a model is neither realistic nor convenient to be employed 
given that in practice the target actually comprises several 
significant scatterers at different spatial locations. In [4], we 
model the target by a finite number of scatterers without 
limitation on the locations, whose reflectivity coefficients are 
assumed to be random variables. [1] presents the detection 
performance of a MIMO radar system with four special 
configurations, while the probability of detection for a MIMO 
radar having an arbitrary array-target configuration can be 
computed using formulae derived in [4]. These numerical 
results show that the MIMO radar whose array interelement 
spacing is large always outperforms the ones with densely 
spaced antennas for high SNRs and hence high detection 
probabilities, e.g., 0.5 or higher. 

The main contribution of this paper is that we set up a 
MIMO radar system involving a realistic target, and simulate 
the detection performance of the system with different 
configurations, validating the conclusions presented in [1, 4] 
which are based on theoretical and mathematical target models. 
To the authors' knowledge, this is the first effort of its kind in 
the open literature. The target considered here is a life-size land 
vehicle, which is modeled using a computer aided 

electromagnetic (EM) simulator FEKO [5]. We emphasize that 
although we are working with FEKO data, rather the “real” 
data collected from experimental field trials, the former is a 
common practical choice as the availability of the real data is 
very limited [5]. The system model used in this paper is similar 
to that in [4] where, however, the gains of the scatterers 
composing the target are assumed to be zero-mean complex 
Gaussian random variables. 

This paper is organized as follows. We first introduce the 
system configuration of a MIMO radar, and then develop its 
channel model, signal model, and the target detector which is 
utilized in the simulation. In Section IV, numerical results 
showing the target detection performance of a MIMO radar 
system with various configurations are provided, followed by 
some discussion. These results are obtained based on multiple 
realizations of the channel matrix generated using the available 
FEKO data. Section V gives the conclusions. 

II. SYSTEM CONFIGURATION 

Mishra [5] modeled four types of life-size land vehicles 
using a computer aided EM simulator FEKO, and formatted 
bistatic SAR images through appropriate post-processing of the 
results. These four targets are the armoured personal carrier 
(APC), the main battle tank (MBT), the stinger launcher (STR), 
and the land missile launcher (MSL). In this section, we build 
up a bistatic MIMO radar system having a 3-dimensional (3D) 
configuration based on Mishra's work, including a realistic 
target model. 

In Mishra's simulation, for each run, the 3D target is 
illuminated by the transmitter for a range of frequencies, and 
the transmitter is fixed at a certain azimuth and elevation with a 
given polarization. The EM simulator generates the surface 
current on the provided CAD model of the target, based on 
which the scattered field in a given polarization at the receiver 
is obtained and stored. The receiver has a fixed elevation and 
varying azimuth angle through 0° to 360° with a predetermined 
angular step. The FEKO data collected from each run then are 
post-processed, generating 2D SAR images of the target 
viewed by the fixed transmitter and rotating receiver with 
different azimuth. 

For certain polarizations of transmitter and receiver, several 
50×50 matrices are available to form images of a given type of 
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target viewed by a pair of transmitter and receiver at different 
locations. As the values of matrix entries indicate the 
reflectivities of different parts of the target, it is reasonable to 
assume that the target is composed of a finite number of point-
like scatterers, whose reflectivity coefficients change as the 
locations of transmitter and receiver vary. In other words, for 
each pair of transmitter and receiver locations, the target is 
modeled by a 10m×10m rectangular area S as shown in Fig.1, 

in which there are 2500 point-like scatterers ,{ }i js , whose 

reflectivity coefficients ,{ }i ja  are the values of the (i, j) 

entries of the corresponding 50×50 matrix. The origin of the 
xy-plane is at the centre of the target, and the coordinates 

( ), ,,i j i jx y  of the scatterer ,i js  are ( )0.2 5.1, 0.2 5.1j i× − × − . 

Figure 1.  Finite scatterers model of the target. 

 Therefore, we can set up the MIMO radar system as 
illustrated in Fig.2, where uniform linear arrays of antennas [3] 
are employed at both transmitter and receiver with Nt and Nr 
elements, respectively. The antenna separations are #t$c and 
#r$c, where $c is the carrier wavelength and #t and #r are the 
normalized transmit and receive antenna spacing in 
wavelengths. Rt0 and Rr0 are the distances between the centre of 
the target and the first antenna of the transmitting and receiving 
array, respectively. Notice the fact that these two values do not 
need to be the same. In Fig.2, the rectangular area S in the xy-

plane is the 10m 10m target model illustrated in Fig.1. 

Because of the limited FEKO data, the elevation of transmitter 
and receiver,  t and  r, can be either 10° or 15°, and the 
transmitter azimuth !t can be one of the following six values 
0°, 60°, 120°, 180°, 240°, and 300°, while the receiver azimuth 
!r can be any one among 500 values, from 0° to 360° with a 
step of 0.72°. For any of the aforementioned system 
configuration, the target can be APC, MBT, STR, or MSL, and 

the polarizations of the transmitter and receiver can be either 
horizontal or vertical. 

Figure 2.  Configuration of the MIMO radar system. 

III. SYSTEM MODEL 

A. Channel Model 

We assume that all the signals are narrowband and that 
distances between scatterers and both transmitter and receiver 
are much larger than the dimensions of the antenna arrays, that 
is, we operate in the far field. As shown in Fig.2, the path 

through the scatterer ,i js  is defined by angle of departure 

(AoD) 
,

t

i jΦ , angle of arrival (AoA) 
,

r

i jΦ , reflectivity 

coefficient ,i ja , distance between Tx 1 and ,i js , 
,

t

i jd , and 

distance between ,i js  and Rx 1, 
,

r

i jd . Then, for a MIMO radar 

having the configuration described in the last section with any 
combination of all the possible parameters, we can calculate 

the Nr Nt channel matrix H as below [3, 4]: 
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where   represents either r or t, , ,cos( )i j i j

ε εΩ = Φ , 

, , ,

t r

i j i j i jd d d= + , and the superscript H denotes the conjugate 

transpose. Geometrical computation gives us the following 
equations:  

2 2 2

, 0 , ,( sin ) ( ) ( )i j i j i jd R x x y yε
ε ε ε εθ= + − + −  (3) 

 
( )

2
2 2 2

, 0 , ,

,

0 ,

cos(2 )

2 sin

i j i j i j

i j

i j

d R x y

R d

ε
ε εε

ε
ε ε

θ

θ

− − −
Ω =  (4) 

where 0 sin sinx Rε ε ε εθ ϕ=  and 0 sin cosy Rε ε ε εθ ϕ= . 

B. Signal Model 

It is supposed that the kth transmitter transmits a signal 

/ ( )t kE N s t , where  E is the total transmitted power. The 

normalizing coefficient is employed to make sure that the total 
transmitted power and the average received power at each 
element are not affected by the number of transmit antennas. 
Furthermore, all the transmitted signals are orthogonal, which 

is equivalent to the fact that ( ) ( )j i ijs t s t dt δ= , where 
ijδ  is 

a Dirac delta function. An Nr  vector 
1 2 r

T

Nr r r! "=# $r   

denotes the received signals, which is given by 

 

t

E

N
= ⋅ +r H s w  (5) 

where the Nt  vector 
1 2 t

T

Ns s s! "= # $s   and the Nr  

vector 
1 2 r

T

Nw w w! "= # $w   stands for the transmitted 

signals and the additive white Gaussian noise at all the receiver 

antennas, respectively. Here 
2( , )

r rN n Nσw 0 I! ! , the 

superscript T denotes transpose, 0Nr is a Nr  all-zeros vector, 

and INr is a Nr Nr identity matrix. Let the received signal r go 

through a bank of matched filters, and denote the output by a 

NrNt vector x, which can be written as follows [1, 4]: 

 

0

1

t

E

N

%
&

= '
+&

(

n

x
h n

"

"
 (6) 

where the alternate hypothesis 1"  and null hypothesis 0"  are 

that the target does or does not exist, respectively. The NrNt  

channel vector h is composed of all the entries of the channel 

matrix H, and the NrNt  noise vector 
2( , )

r t r tN N n N Nσn 0 I! ! . Together with the channel matrix H 

given by (1), we can measure the value of the x, from which 
the target detection decision will be made. 

In [1, 4], h is assumed to be a zero-mean complex Gaussian 
random vector with known covariance matrix, and thus, the 
theoretical probability of detection PrD of a MIMO radar can be 
calculated. In this paper, however, the channel gains are 
calculated using the FEKO data and the distributions are 
unknown. Therefore, we make the detection decision for each 
realization of h by viewing it as a deterministic vector, and 
obtain the PrD of a MIMO radar by averaging over multiple 
realizations. Because the entries of h are not known in advance, 
we resort to the generalized likelihood ratio test (GLRT) 
approach which replaces the unknown parameters by their 
maximum likelihood estimates [6]. In other words, the decision 
rule of the GLRT can be stated as follows 

 
( )

( )

1

0

1

0

max ,p

p
γ

>

<
h

x h

x

"

"

"

"
 (7) 

where ( )1,p x h"  and ( )0p x "  denote the probability 

density function (pdf) of the data given h under 1"  and under 

0" , respectively. Given the complex Gaussian distribution of 

n, it is not difficult to obtain the radar detector which can be 
expressed as 

 

1

0

2
T δ

>
=

<
x

"

"

 (8) 

where ! is a threshold ensuring the required probability of false 

alarm PrFA. As the distribution of 
2

x  under 0"  is a chi-

square random variable with 2NrNt degrees of freedom, we can 
calculate the threshold which is given by 

 ( )2
( 2 )

2
1

FA1 Pr
2 N Nr t

n F
χ

σ
δ −= −  (9) 

where 2
(2 )

1

N Nr t

F
χ

−
 denotes the inverse cumulative distribution 

function of a chi-square random variable with 2NrNt degrees of 
freedom. Then, the detection decision can be made by 

comparing the value of 
2

x  with !. 

IV. SIMULATION AND NUMERICAL RESULTS 

In this section, we present numerical results showing the 
target detection performance of a MIMO radar system with 
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different antenna spacings. The performance is measured based 
on multiple realizations of the channel matrix generated using 
the available FEKO data. Note the fact that there are several 
approaches to generate channel realizations, and here we just 
employ a simple one, as our major objective is to validate the 
advantages of a MIMO radar when a realistic target is 
considered. 

In all the following simulations, the target is a MBT, the 
polarizations of both the transmitter and receiver are horizontal, 
the elevation of the receiver is 10°, and the elevation and 
azimuth of the transmitter is 10° and 0°, respectively. 
Numerical results for the scenarios with other combinations of 
the parameters can also be obtained using corresponding FEKO 
data. We consider a system with two transmitting antennas and 
four receiving antennas, the carrier frequency of the signal is 1 
GHz, and the probability of false alarm is set to be a constant 

value 
6

FAPr 10−
= . The channel matrix H is normalized such 

that the average energy returned from the target is one. The 
SNR is therefore defined as the ratio between the transmitted 

power E and the noise level per receiving antenna 
2

nσ . 

When the system parameters are fixed at the above values, 
500 matrices with size 50×50 are available, whose entries are 

the reflectivity coefficients ,{ }i ja  of all the 2500 scatterers 

,{ }i js  composing the target. Each matrix corresponds to a 

receiver location with the azimuth  r varying from 0° to 360°
at a step of 0.72°. We observe that those images, viewed by a 
fixed transmitter and a rotating receiver whose azimuth 
changes within a small variation range, are quite similar. In 

other words, the coefficients ,{ }i ja  would not change 

dramatically for a few successive receiver azimuth steps when 
other parameters remain the same. Furthermore, from (1)-(4), it 
is obvious that, with the selected polarizations, elevations and 

azimuths of the transmitter and receiver, ,{ }i ja  are fixed and 

the value of channel matrix H changes as the values of Rt0 and 
Rr0 vary. The conditions on choosing Rt0 and Rr0 are quite 
loose, as long as they are large enough that the system is 
operated in the far field, but not so large that the target would 
not be viewed as a point target. 

The detection performance for various MIMO radar 
configurations is shown in Fig.3, and these systems are almost 
the same, except that the antenna spacings  t and  r are 0.5, 
100, 200, and 500 wavelengths, respectively. For each 
configuration, we generate 3000 realizations of H by assigning 
10 successive values to  r from 32.4° to 38.88° with a step of 
0.72° (denoted range I), and allocating 300 arbitrary values to 
Rt0 and Rr0 respectively for each angular value. Rt0 and Rr0 are 
selected to be between 3 ~ 5 km. 

Observing the figure, we find that at low SNR, a system 
with densely spaced antennas outperforms the ones whose 
interelement spacing is large, while at high SNR the latter 
performs better. Furthermore, the system with large antenna 
spacing is always preferred when the detection performance is 
acceptable, i.e., PrD > 0.5. This is because that at low SNR, the 
received power affects target detection performance the most, 

while the number of diversity paths is the dominating factor at 
high SNR. 

Figure 3.  PrD as a function of the SNR for angular range I, 2 Tx, 4 Rx 

antennas, Tx/Rx interelement spacings varied simultaneously. 

Figure 4.  PrD as a function of the SNR for angular range II, 2 Tx, 4 Rx 

antennas, Tx/Rx interelement spacings varied simultaneously. 

The receiver azimuth  r can only be one of the 500 values 
which are integer multiples of 0.72° when the data record is 

used directly. As mentioned before, ,{ }i ja  are similar for a 

few successive receiver azimuths when other parameters 
remain unchanged. Hence, we can generate several realizations 
of H where  r could be any value by using linear interpolation. 
In other words, for an arbitrary  r0 that is not an integer 
multiple of 0.72°, we first find two values  rl and  ru, which is 
the lower and upper bound of  r0, respectively. Here 

0
/ 0.72 0.72

rl r
ϕ ϕ != ×" #

   and 0.72ru rlϕ ϕ= +
 , where k !" #   

represents the largest integer smaller than k. The reflectivity 
coefficients corresponding to  rl and  ru are available, denoted 

by ,{ }l

i ja  and ,{ }u

i ja , respectively. We calculate the 

reflectivity of each scatterer 
0

,i ja  when the receiver azimuth is 

 r0 by using interpolation between the corresponding two 
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Fig.4 depicts the detection performance of a MIMO radar 
system with different configurations. The difference between 
this figure and Fig.3 is the new angular range (range II) of the 
look angle, i.e., 10 successive values are assigned to  r here 
from 176.4° to 182.88° with a step of 0.72°. Similar to Fig.3, 
we find from Fig.4 that the system with sparsely spaced arrays 
performs better at high SNR, and this configuration should 
always be chosen when PrD > 0.6. This result agrees well with 
the conclusions drawn in [1, 4], where the realizations of the 
channel matrix are obtained based on theoretical and 
mathematical target models. However, it is obvious that the 
radar system has different detection performance from various 
observe angles, and the performance improvement brought in 
by the MIMO configuration is also different. Therefore, we 
now consider Fig.5, which displays the detection performance 
when the target is viewed from various receiver look angles at 
a fixed SNR. 

Figure 5.  PrD as a function of the look angle at SNR=15dB, 2 Tx, 4 Rx 

antennas, Tx/Rx interelement spacings varied simultaneously. 

In this simulation, we divide 360° into 50 equal-sized 
angular sections and obtain the corresponding PrD values. Each 
PrD value comes from 3000 realizations of H utilizing the 
interpolation approach mentioned before. These realizations 
are computed with different Rt0 and Rr0, and various receiver 
azimuth chosen arbitrarily from the corresponding angle 
section. From Fig.5, it is clear that, except for a few 
observation angles, a MIMO radar with large antenna spacing 
always provides better detection performance, and for most 
angles, the performance improvement resulting from the 

MIMO configuration is significant. For those few observation 
angles where the MIMO configuration is worse, the 
performance difference is small, and we believe this is because 
the target scattering is not rich enough when it is viewed from 
those specific angles. In addition to the better average 
performance with the angle, we find from Fig.5 that the MIMO 
configuration also provides performance with less variability, 
i.e., the performance is less dependent on the look angle, which 
makes it more attractive. 

V. CONCLUSIONS 

In this paper, we introduce the configuration of a MIMO 
radar system including a target, which is a life-size land vehicle 
modeled using an EM simulator FEKO. Numerical results 
showing the target detection performance are presented, which 
is measured based on multiple realizations of the channel 
matrix generated utilizing the available FEKO data. 
Comparisons of the detection performance of a MIMO radar 
with different antenna spacings show that a system with a large 
array interelement spacing always performs better for high 
SNRs and hence high detection probabilities, e.g., 0.6 or 
higher. These numerical results obtained using FEKO data 
validate the conclusion drawn in previous papers where the 
target is characterized by theoretical target models. 
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Abstract—The conventional phased-array radar provides 

coherent processing gain while the MIMO radar exploits spatial 

diversity gain to improve the system performance. We investigate 

a hybrid bistatic radar combining these two configurations to 

take advantage of both gains. The probability of detection of the 

hybrid system is derived, and the CRB and the MSE of the 

maximum likelihood estimation for both angle of departure and 

angle of arrival are evaluated to assess the direction finding 

performance. 

MIMO, phased-array radar, spatial diversity, coherent 

processing gain, target detection, direction finding, CRB, MSE 

I.  INTRODUCTION 

Two major challenges in radar theory are the target 
detection and parameter estimation problems. In practice, the 
performance of a radar system is limited by target scintillations 
or “fading” [1]. For target detection, the conventional phased-
array radar addresses this target “fading” problem by cohering 
a narrow beam toward the target direction, which can realize 
coherent processing gain to maximize the received energy 
reflected by the target. While for direction finding, we collect 
multiple independent snapshots to average out scintillation 
effects to improve the estimation accuracy. A new architecture 
called the MIMO radar proposed by Fishler et al. in [2] can 
overcome the deep fading problem by exploiting the spatial 
diversity gain defined in communication theory [3]. It is 
demonstrated in [2] that, for target detection, the MIMO radar 
system outperforms the phased-array radar at high signal-to-
noise (SNR) while the latter performs better when the SNR is 
low. It is also shown in [4] and [5] that the MIMO radar leads 
to significant improvements in angle-of-arrival (AoA) 
estimation accuracy because widely-separated antennas at the 
transmitter observe different aspects of the target. 

In this paper, we investigate the best architecture for a radar 
system which is used for both target detection and direction 
finding, particularly when the total number of transmitting and 
receiving antennas is fixed. A hybrid bistatic radar combines 
the phased-array and the MIMO radar configurations, 
providing a balance between the coherent processing gain and 
the spatial diversity gain. In addition, the hybrid radar is a 
general system model, which can be used to describe various 
practical radar configurations, including the MIMO and 
phased-array configurations as special and extreme cases. 

Although the architecture of the multistatic coherent sparse 
aperture system proposed in [6] is similar to the hybrid bistatic 
radar, they utilized the point-like target assumption and focus 
on processing the received data at a central processor 
coherently rather than exploring the spatial diversity of the 
target. The system configuration discussed in [7] is the same as 
that in this paper, but the major aim of [7] is to propose spatial 
spectral estimators to detect the target and estimate propagation 
parameters. In this paper a parametric approach is applied and 
our emphasis is to explore the performance of the system 
accounting for both the diversity gain and the coherent 
processing gain in order to find the best configuration. In [7], 
the target direction is only denoted by a “target location 
parameter” whose manifold is not formally defined, and 
linearly independent waveforms are assumed to be transmitted 
from all the antennas. In this paper, however, we define the 
target direction by two parameters, angle-of-departure (AoD) 
and AoA, and assume that each array transmits one of a set of 
orthogonal waveforms and the antennas of each array operate 
as a beamformer cohering a beam toward the estimated AoD. 
In this way, as mentioned in [8], extra coherent processing gain 
can be achieved compared with fully independent waveforms 
case at the price of estimating the AoD first. We want to 
investigate the effect different configurations have on system 
performance and so we wish to measure the gains that the 
hybrid radar system can realize. The theoretical expressions 
presented in this paper provide both the detection and 
estimation performance of a hybrid radar system. These 
equations can be used to select the best architecture for a given 
specific scenario, considering factors such as the number of 
antennas, the SNR values, and the required precision of the 
application.  

This paper is organized as follows. In Section II we 
introduce the hybrid radar system model. The target detection 
problem is formulated and a closed form expression to 
compute the theoretical probability of detection is derived in 
section III. We then discuss the initialization process during 
which the AoD is estimated, and assess the estimation 
performance by measuring the average CRB. Next, the average 
and outage CRBs for AoA estimation are presented, assuming 
that the AoD information is available at the transmitter. 
Numerical results and some discussion are shown in Section V, 
and conclusions are drawn in Section VI. Readers may refer to 
[9] for more details. 
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II. SYSTEM MODEL 

Similar to the system configuration in [7], the narrowband 
hybrid bistatic radar considered here has Mt antenna arrays at 
the transmitter and Mr arrays at the receiver, and the array 
separations are large enough such that different arrays observe 
different aspects of the target. Each array is a uniform linear 
array (ULA) of antennas with Nt elements at the transmitter and 
Nr elements at the receiver, which has the same configuration 
as that of a conventional phased-array radar with closely 
spaced sensors. We assume that the whole system works in the 
“far field”, i.e., the dimension of each array and the array 
separations are much smaller than the distances between the 
target and both the transmitter and receiver. Denote the 
transmitted signals and the additive white Gaussian noise by  
e(t) and n(t), respectively, and the received signal can be 
written as 

 ( ) ( ) ( )t t t= ⋅ +r H e n  (1) 

where 
2( ) ( , )

r r r rM N n M N
t σn 0 I  !  and here kI  denotes a  

k k×   identity matrix. The channel matrix is given by 
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where the 
r tN N×  matrix Cup can be expressed as below: 
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where the superscript T denotes the transpose of a matrix,   is 
either t or r, and correspondingly ! is either p or u. Here 
p=1,2,…,Mt, and u=1,2,…,Mr. "t and "r are the normalized 
transmit and receive interelement spacings in wavelengths, and 
#up is the fading coefficient between the pth transmit array and 

the uth receive array. Here
t

pΦ is the AoD of the path from the 

first element of the pth transmit array to the center of the target 

area, and
r

uΦ is the AoA of the path from target center to the 

first antenna of the uth receive array. We adopt the statistical 
model proposed in [2] in this paper, and hence a fading 

coefficient vector ! is defined such that[ ]
( 1) t

upu M p
β

− +
! $ and 

( , )
r t r tM M M M! 0 I  ! , where 0k represents a 1k ×  all-zeros 

vector. Note here that the vector ! is the key MIMO definition, 
suggesting that each array constitutes one element of a MIMO 
system. On the other hand, (3) follows the phased-array 
definition, implying that each array itself works as a 
conventional phased-array radar. 

We further assume that each of the Mt transmit arrays 
transmits a different waveform, which are collectively denoted 

by 
1 2( ) ( ), ( ), , ( )

t

T

Mt b t b t b t != $ %b ! . In addition, the pth transmitting 

array utilizes its corresponding beamformer ap to steer toward 

the estimated target direction
t

pΦ% , where
* ( )t

p t p= Φa  % , the 

superscript * stands for the complex conjugate and 
p=1,2,…,Mt. Therefore, the transmitting signals are given by 

 0 1 1 2 2( ) ( ) ( ) ( )
t t

T T T

M Mt c b t b t b t != $ %e a a a!  (4) 

where
0

s

t t

E
c

M N
=

 and Es is the transmitted power. The 

normalizing coefficient is employed here to make sure that the 
total transmitted power and the average received power at each 
element are not affected by the number of transmit antennas. 

III. TARGET DETECTION PERFORMANCE 

In this section, we derive a closed form expression to 
evaluate the theoretical probability of detection of a hybrid 
bistatic radar. In order to exploit coherent processing gain at 
both the transmitter and receiver to improve the target detection 
performance, we assume that the uth receiving array, similar to 
that of the transmitter, utilizes its corresponding beamformer to 

steer toward the estimated target direction
r

uΦ% . Denote the uth 

receiving beamformer by 
*( )r

u r u= Φg  % , and assume that the 

transmit waveforms are mutually orthogonal over L samples, 

i.e., ( ) ( )j i ijb t b t dt Lδ=& . Here u=1,2,…,Mr and 
ijδ is the Dirac 

delta function. The output of the uth beamformer is given by 

 
1

( ) ( ) ( )
tM

T Ts
u u uk k k u u

kt t

E
y t b t t

M N =

= +'g C a g n  (5) 

where nu(t) denotes the noise at the elements of the uth 

receiving array and 
2( ) ( , )

r ru N n Nt σn 0 I  ! . Following [2], the 

optimal detector makes the detection decision based on a 

1r tM M ×  vector x, which is the output of a bank of matched 

filters, that is, [ ]
( 1)

( ) ( )
t

u pu M p
y t b t dt

− +
= &x , where u=1,2,…,Mr 

and p=1,2,…,Mt. The theoretical probability of detection of a 
hybrid radar system can be expressed as below: 
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where   is the threshold determined by the required probability 

of false alarm PrFA, 2
(2 )

1

M Mt r

F
χ

−
 and 2

(2 )M Mt r

F
χ

 denotes the inverse 

cumulative distribution function and the cumulative 
distribution function of a chi-square random variable with 
2MtMr degrees of freedom, respectively. Here it is assumed that 
all the beamformers steer toward the true target direction, and 
then the full coherent processing gain NrNt can be realized. We 
provide the detection performance when only the estimated 
target direction is available in our journal paper [9], which is 
not presented here due to the space limitation. 

The three systems discussed in [2] actually are special cases 
of the hybrid bistatic radar system, i.e., the hybrid radar is the 
MIMO radar when Nt=Nr=1, the phased-array radar when 
Mt=Mr=1, and the MISO radar when Nt=Mr=1. The 
corresponding equations to calculate   and PrD for all these 
extreme cases derived from (6) matches the results in equations 
(28), (29), (34), (35), (38) and (39), respectively, in [2]. 

IV. DIRECTION FINDING PERFORMANCE 

In this section, the performance of the hybrid radar as a 
direction finding system to estimate the AoD and AoA based 
on the received signal reflected from the target is examined. 
We focus our attention on the CRB of the hybrid system with 
various configurations, which provides a benchmark against 
which the performance of any unbiased estimator can be 
compared [11]. In order to avoid spatial aliasing, we set 
!t=!r=0.5 in this section [3][12]. It is noted that in this paper, 
we only consider a simple scenario where the target is viewed 
as a point source by each antenna array, which then estimates 
the target direction. However, our analysis could be easily 
extended to a more complicated problem of estimating the 
nominal direction of a distributed target [13]. 

A. Initialization 

In order to realize coherent processing gain, the transmitter 
needs to known the AoD to steer toward the target direction. 
Hence, an “initialization” stage is required with no a priori 
knowledge about the channel available, during which the AoD 
is estimated. The transmitted signal model described in (4) 
cannot be employed in the procedure of estimating AoD since 
the direction knowledge of the transmitting beamformers is not 
known. Instead, orthogonal waveforms are transmitted from all 
the antennas to realize the AoD estimation [14][15]. As a 
special example of orthogonal waveforms, the time-division 
multiplexing (TDM) process is utilized in this paper, which is 
described as follows: At time t1, the first element of the first 
transmitting array transmits the signal s and the received 

signals at all the MrNr receiving antennas are recorded. Then, at 
time t2, the second element of the first array transmits s and 
again all the received signals are stored. This operation is 
repeated until the last transmitting antenna is excited at time 

t tM Nt . Here we assume that |s|
2
=1 and that the scintillation 

coefficients are constant during the initialization process.  Note 
that the “far field” assumption implies that the differences 

between the AoD
t

pΦ for different transmitting arrays are so 

small that they can be neglected, i.e., 1 2 t

t t t

MΦ Φ Φ  ! . 

Similar statement applies to the AoA as well, and hence, we 
denote the AoD and AoA by "t and "r, respectively. After 
recording all the MrNrMtNt received signals, we combine them 

into one 1tN × data record with MrNrMt snapshots, which can 

be shown as below following (1) to (4) 

 ( ) ( ) ( ) ( )t t up rk v s kβ γ= Φ +y  n  (7) 

where the qth entry of the 1tN ×  vector ( )t tΦ is 

{ }exp ( 1)sin( )
t

j qπ − Φ ; { }( ) exp ( 1)sin( )
r r

v j vγ π= − Φ ; k 

= (u-1) NrMt + (v-1) Mt + p; u = 1, 2,…, Mr; v = 1,2,…, Nr and 

p=1,2,…,Mt. 
2( ) ( , )

t tN n Nk σn 0 I"  !  and #up is an entry of 

the vector !, which is the same as that in (3). The estimated 

AoD ˆ
tΦ is obtained by using the maximum likelihood (ML) 

estimator, which is given by [16] 
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where the superscript H denotes the conjugate transpose. We 
use the Cramer-Rao lower bound on the variance of any AoD 

estimator ˆ
tΦ  to compare the estimation performance, which is 

denoted by CRB( )tΦ ! . The notation indicates that the value 

is conditioned on the unknown parameters ! [5]. By using 
Theorem 4.1 provided in [17], the CRB conditioned on the 
scintillation coefficients can be expressed as 

 

2

2 2 2 2

6
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cos ( )( 1)

n
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r t t tN N N

σ

π
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Note here that
2 2

(2 )

1

2 r tM Mχ! " . Similar to [5], the 

average CRB (ACRB) can be computed by averaging the CRB 
with respect to !, which is given by 
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B. AoA Estimation 

Now we proceed to assess the performance of the hybrid 
radar system for estimating the AoA. Since the estimated AoD 
is available after the initialization process, each transmit array 
employs a beamformer to steer toward the target direction to 
exploit coherent processing gain. Here we assume that the 

transmitter knows the true target direction, i.e., ˆ
t t

Φ = Φ . The 

performance of the hybrid radar when the error in estimating 
AoD is taken into account is investigated in [9]. The interested 
reader may refer to [9] for more details, in which the CRB 
formulae and corresponding numerical results are presented, 
indicating that the estimation error in AoD resulting from the 
initialization stage may not decrease the performance of 
estimating AoA dramatically. 

We assume that the waveforms which are mutually 
orthogonal over L samples have been used as the transmit 
waveform b(t), and matched filters of duration L samples for 
each distinct waveform are applied to the received signals. 

Following (1) to (4), we can obtain a 1
t

N × data record with 

MrMt snapshots as below: 

 

2

( )s t
up r r up up

t

E N L

M
β= Φ +y  n  (11) 

where  up is the {(u-1)Mt + p}th entry of the vector ! defined in 
Section II, u=1,2,…,Mr, and p=1,2,…,Mt. The vth element of 

the 1
r

N ×  vector ( )
r r

Φ  is { }exp ( 1)sin( )rj vπ − Φ  and 

2( , )
r rup N n NLσn 0 I  ! . The ML estimator applied to 

estimate AoA ˆ
r

Φ  can be written as [16] 
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The CRB conditioned on ! can be calculated by using 
Theorem 4.1 provided in [17], which is given by 
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Therefore, the average CRB of !r can be expressed as 
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From (14), it is obvious that the ACRB is unable to indicate 
the direction finding performance of the system when 
Mr=Mt=1. Hence, we proceed to examine the outage CRB 

proposed in [5], which is denoted by CRB ( )
out p r= Φ . The 

outage CRB for a given probability p means that the 
probability of finding an estimator whose MSE is less than 

CRB ( )
out p r= Φ  is p [5]. Following [5], CRB ( )

out p r= Φ  can 

be evaluated from (13) by replacing 
2

!  with 

( )2
(2 )

11

2 M Mt r

F p
χ

−
. 

Note here that although orthogonal waveforms are utilized 
in this paper, the transmitted signals can also be modelled by a 
Gaussian random process in the hybrid radar as that in [5], i.e., 

( ) ( , )
t tM Mtb 0 I  ! . The AoA is estimated based on the 

signals received by all the receive antennas, which are given by 
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r
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t
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where the symbol ⊗ denotes the Kronecker product, the 

r t
M M×  matrix 
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t tu M M! 0 I  ! , 

u = 1, 2,…, Mr, and 
2( ) ( , )

r r r rM N n M Nt σn 0 I  ! . Following a 

derivation similar to that in [18], we can obtain the CRB of 
AoA condition on ", which is shown as below: 
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V. NUMERICAL RESULTS 

In this section, we examine the performance of a hybrid 
radar system with eight antennas at both the transmitter and 
receiver. Fig. 1 depicts the probability of miss-detection PrMD 
calculated by using (6) for various system configurations. First 
of all, we compare the curves corresponding to the systems 
having the same Mt and three different values of Mr. The 
configuration with Mr=1 works the best at low SNR, and the 
system with one sparsely-spaced receive array (Mr=8, Nr=1) 
outperforms the others as the SNR increases, which is always 
preferred when the detection performance is acceptable, e.g., 
PrMD is less than 10

-4
. Then we consider the scenarios with a 

fixed Mr and various Mt. Similarly, the system having a 
phased-array configuration at the transmitter performs the best 
at low SNR, while systems with larger Mt achieve lower PrMD 
as the SNR increases. However, when Mr is large, the system 
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with large Mt performs the best only at relatively high SNR, 
and at that SNR value PrMD is comparatively low, e.g., lower 
than 10

-6
, which is unnecessary or even impossible in the real 

radar system. In addition, we can find that the improvement on 
detection performance by enlarging Mr for a fixed transmitter 
configuration is more obvious than that by increasing Mt when 
the receiver is unchanged. Therefore, a hybrid radar system, 
whose transmitter consists of a few antenna arrays and widely 
spaced elements at the receiver, provides better target detection 
performance than either the MIMO radar or the phased-array 
radar for practical values of PrMD. 

Figure 1.  PrMD versus the SNR for various configurations. 

Figure 2.  Average CRB of AoD versus the SNR for various configurations. 

Next, we proceed to investigate the direction finding 
performance. Fig. 2 shows the average CRB of AoD calculated 
by using (10) for a hybrid system with various configurations. 
Notice here that Mt cannot be eight since no AoD estimation is 
possible during the initialization process when there is only one 
single antenna for each transmit array. It is obvious that for the 
same Mr, the smaller the value of Mt of a system, the lower the 
ACRB, while the ACRB decreases as Mr becomes larger for a 
fixed Mt. Thereby, in order to estimate the AoD more precisely, 
the phased-array configuration (Mt=1) should be selected for 
the transmitter while increasing the number of receive arrays 
Mr improves performance. 

Figure 3.  Average CRB of AoA versus the SNR for various configurations. 

Figure 4.  Average MSE of the ML estimator for AoA versus the SNR. 

Figure 5.  Outage CRB of AoA for systems with various configurations. 

Fig. 3 represents the average CRB of AoA evaluated by 
(14) for different systems when the number of snapshots is 
assumed to be 80. In Fig. 4, the simulated average MSE of 
AoA for various configurations employing the ML estimator is 
shown. The estimated AoA is obtained from (12) and the 
simulated results are given by averaging the 

MSE
2

ˆ
r r

Φ − Φ for 100,000 realizations of the channel matrix 

H. Obviously, the theoretical ACRB results shown in Fig. 3 
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agree well with the corresponding simulated curves in Fig. 4. 
We also find that the smaller the value of Mr, the better the 
estimation of AoA. For the systems with the same receiver 
configuration Mr=1, the one with Mt=2 transmit arrays achieves 
the lowest average MSE, indicating that the total gain achieved 
by combining the spatial diversity gain provided by the 2 
arrays and the coherent processing gain obtained by the 4 
antennas of each array outweighs the diversity gain, or the 
processing gain realized by the 8 antennas in the MIMO or the 
phased-array configurations. 

Finally we will compare the system performance by using 
the outage CRB rather than the ACRB since the latter does not 
exist when Mr=Mt=1. Fig. 5 shows the CRB ( )

out r
Φ  when 

p=0.01. Observing the results for systems whose number of 
transmit arrays Mt is fixed at 4, we find that the radar with 
smaller Mr always performs better, which agrees with the 
conclusion drawn before. Hence, an array with closely-spaced 
antennas is usually preferred at the receiver for estimating the 
AoA. Then we compare the performance of systems with 
Mr=1, and see that the hybrid radar with 4 transmit arrays 
performs better than the system whose transmitting antennas 
are far from each other (Mt=8) or are closely located (Mt=1). 
Results for the system performance taking into account 
estimation errors in the AoD can be found in [9]. 

Based on previous discussion, we find that the best 
configuration for estimating AoD is the exact opposite of that 
for finding AoA. Although the performance of AoD estimation 
during the initialization process will affect the direction finding 
performance overall given the fact that the AoD information is 
required at the transmitter in order to cohere a beam toward the 
target detection, we validate in [9] that the estimation error in 
AoD caused by the initialization would not decrease the 
performance of estimating AoA significantly. It can be seen 
that the best hybrid configuration for a radar system is not the 
same for different detection and estimation applications. A 
hybrid system which is a compromise of these configurations 
would be the best choice to optimize jointly the detection and 
estimation performance. The best hybrid radar configuration 
for a specific scenario varies depending on the given number of 
antennas, the SNR value considered, the required precision, 
etc., which can be evaluated by the theoretical expressions 
presented in this paper. 

VI. CONCLUSIONS 

In this paper, we investigated the hybrid bistatic radar 
system, which is a combination of the conventional phased-
array and MIMO radar configurations. A closed form 
expression to evaluate the theoretical probability of detection 
of the hybrid system is derived, and the direction finding 
performance is examined by measuring the average CRB and 
outage CRB for estimating AoD and AoA. For a radar system 
having a fixed number of transmitting and receiving antennas, 
which is used for both target detection and direction finding, 
we suggest that a hybrid configuration should be employed, 
and the total gain achieved by combining the spatial diversity 
gain provided by the antenna arrays together and the coherent 
processing gain obtained by each array outweighs the diversity 

gain, or the processing gain realized by the antennas in pure 
MIMO or phased-array configurations. 
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Abstract: It has been shown that time reversal (TR), which is developed in the acoustics 
domain, can also improve the detection performance of a radar system. However, the TR 

technique is no longer a good choice when the noise level is high since the retransmitted 

signal contains significant noise components. We investigate a multiple input-multiple output 

(MIMO) detection process similar to TR detection, during which a waveform designed based 

on the estimated channel and a parameter indicating the quality of the estimation given a 

priori is retransmitted, and the detector determines the presence or absence of a target. We 

develop three detectors, whose theoretical thresholds are derived in closed form. Two

schemes are proposed to design the retransmitted waveform with constraints on signal 

power. We compare the detection performance of different detectors, showing that the 

detector performing the best has the highest complexity, while the detector with the poorest 

performance demands the least amount of a priori information. Numerical results also 

present that both the designed waveforms achieve significant performance gains compared 

with the signal utilized in the TR process.

Keywords: MIMO, time-reversal, target detection, detector design, waveform design
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1. INTRODUCTION

The time-reversal (TR) technique, extended from the concept of phase-conjugation in 

optics, has attracted increasing interest for a broad range of applications. The unique feature 

of TR is that it can turn multipath effects, traditionally a drawback for target detection and 

imaging, into a benefit, which is very similar to the multiple-input multiple-output (MIMO)

concept developed in communications. In the TR approach, a signal is first radiated through 

the medium, then the backscattered signal is recorded, time reversed, energy normalized, and 

retransmitted [1]. Recently, Moura et. al. explored the MIMO radar target detection problem 

using TR, showing that TR detection provides significant gains over conventional detection 

[2,3]. This results from the fact that the transmitter reshapes the waveform to match the 

channel during the TR process. However, the retransmitted signal in Moura's algorithm 

contains noise components, and it is obvious that if the noise level is high, the TR technique 

is no longer a good choice. Furthermore, [2,3] did not derive analytical expressions for the 

threshold and probability of detection of the TR detection, which were determined instead by 

Monte Carlo simulations.

We investigate a MIMO detection process similar to the TR detection in this paper. That 

is, during the probing phase, an incident wave is first transmitted into the medium and an 

estimated channel matrix with estimation error is obtained. It is assumed that a parameter 

indicating the quality of the estimation is given a priori, which can be appropriately chosen 

depending on the noise level, the channel dynamics, and estimation strategies, etc. [4]. Then, 

a waveform designed using the estimated channel and the estimation quality parameter under 

power constraints, instead of the TR signal used in Moura's scheme, is retransmitted, and 

finally the detector determines the presence or absence of a target. Note here that similar to 

the TR detection, it is assumed that the channel remains static during the probing and 

detecting phases.

2. SYSTEM MODEL

We consider a wideband bistatic MIMO sonar (or radar) system including a pair of arrays 

A and B as shown in Fig.1, which has Na and Nb sensors, respectively. The channel 

frequency response is denoted by a Nb×Na ( )qH fmatrix , q=1,2,…,Qf

( )qH f

, where the (k,l)-th

entry of is the frequency response of the channel between the k-th sensor of array B 

and the l-th sensor of array A at the discrete frequency fq

As shown in Fig.1, the target detection process has two steps, and an estimated channel 

matrix

. We adopt the statistical MIMO 

model here, that is, the entries of the channel matrix are assumed to be zero-mean circularly 

symmetric complex Gaussian (ZMCSCG), and they are normalized to have unit variance. 

The random target response results from the multipath effect, which arises from different

propagation mechanisms. For example, the multipaths are due to a rich scattering 

environment surrounding point-like targets in [3], while in [5], the distributed target itself 

leads to multipath propagation.

ˆ ( )qH f is obtained after the probing phase. In this paper, we consider the situation 

where minimum mean square error (MMSE) estimation is employed, and denote the 

estimation error as ˆ( ) ( ) ( )q q qE f H f H f ! , whose entries are ZMCSCG with variance
2

e" .
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Note here that knowing the value of 2

e requires noise power estimation and knowledge of 

the waveform length during the probing phase. Then, using the properties of MMSE

estimation, the entries of ˆ ( )qH f can be shown to be ZMCSCG with variance 1- 2

e [4]. Since 

the focus of this paper is to design different detectors and retransmitted waveforms and study 

their effects on the target detection performance of the MIMO system, we assume that the 

estimated channel matrix and the quality parameter 2

e are given a priori, and we concentrate 

on investigating the detection performance of the second step.

Channel Matrix H
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Antenna Na

s1

s2

sNa

Antenna 2

Antenna 1

Target
Antenna Nb
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Antenna 1
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Probing Phase

2 ,n S 

Channel Matrix H
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r2
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Antenna 1

yNb

y2
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Antenna 2
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2 2ˆ , ,e nH   2 2ˆ , , ,e nH Y   

Fig.1: Description of the probing and detecting process of the MIMO system

It is assumed that array B transmits M snapshots in the second stage, during which the 

channel remains the same. Grouping the M snapshots received by the i-th sensor of array A at 

all the Qf frequencies yields an MQf

1 2 1 2

,

( ) ( ) ( ) ( ) , ( ) ( ) ( )
f

i i i

TT
T T T

q q q M q i i i i Q

r Y h n

Y f y f y f y f h h f h f h f

! " #

$ %$ %! !& ' & '  

×1 vector, which is given by

(1)

where i=1,2,…,Na, q=1,2,…, Qf, and the superscript T denotes the transpose of a matrix. 

Here, the MQf×NbQf Ymatrix is a block diagonal matrix whose diagonal blocks are 1( )Y f ,

2( )Y f ,…, ( )
fQY f , the Nb ( )m qy f×1 vector is the m-th snapshot retransmitted from array B 

at frequency fq ( )i qh f, is the i-th column of ( )qH f , and in represents the corresponding 

additive white Gaussian noise, whose entries are ZMCSCG with variance 2

n . Similarly to

ih , we can obtain Na
ˆ
ihestimated channel vectors and error vectors ie by stacking the 

corresponding columns of ˆ ( )qH f and ( )qE f into NbQf

ˆ
i i ih h e! #

×1 columns, respectively, and

. The detector at array A decides whether or not a target exists based on the values 

of all the signals ir received by the Na

3. DETECTOR DESIGN

sensors.

The target detection problem of the MIMO system can be described as follows:

0 1

ˆ
Under :   ;       Under :   i i i i i iH r n H r Y h Y e n! ! " # " # (2)

where i=1,2,…,Na, and the alternate hypothesis H1 and null hypothesis H0 are that the target 

does or does not exist, respectively. In this section, we develop three approaches to detect the 
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target: the conventional detector, the optimal detector, and the generalized likelihood ratio 

test (GLRT) detector. Only the key equations are presented here due to space limitation, and 

interested readers may refer to [6] for the detailed derivation.

It is well known that the optimal detector for a known signal in white Gaussian noise is the

matched filter, and such a detector is denoted as Detector I, whose performance is examined 

when estimation error exists. The conventional detector given by [7] can be expressed as

1

0

2

-11
I I I FA

1

ˆ
Re( ) ,      ,     (Pr )

2

a

a

N
H

HN n i i
H i
i i i i

i H

d d

T d r d Y h Q

 

! ! "

"

#
" " $ " $

%

&
&

(3)

where the superscript H denotes the conjugate transpose of a matrix, PrFA is the required 

probability of false alarm, and Q
-1

Y

(x) stands for the inverse Gaussian right-tail function.

Clearly, Detector I demands the information of and
ˆ
ih to decide the existence of targets.

Note here that the detector matches to the estimated channel
ˆ
ih instead of the true channel ih

as in [7], and this is because only the estimated channel is available at arrays A and B.

Next, we proceed to design Detector II, which is the likelihood ratio test (LRT) detector. 

The LRT detector is the optimal solution in the Neyman-Pearson sense [7]. After some 

algebra, the optimal detector can be described as below:

' ( ' () *
1

0

††

II II

1

2 2 1 1

2

1ˆ
, , ,

a

f f

HN
H

i i i i

i H

H

i i e n MQ MQ i i

n

T r B g B r B g

d Y h C YY I B I C g C d

!

  
 

"

+ +

#
" , $ $ ,

%

" $ " , " + "

&
(4)

where the superscript † denotes the pseudoinverse, and kI stands for a k×k identity matrix.

It is reasonable to assume that TII

' (II 0 0~ ,T k -.

under both hypotheses have Gamma distributions as it 

has a quadratic form in Gaussian random variables, i.e., under H0 ' (II 1 1~ ,T k -.and 

under H1 ' (,k -., where denotes the Gamma distribution with the shape parameter k and 

scale parameter  . Hence, the theoretical threshold of the optimal detector can be given by

' ( ' (2
0 0 0 0

1

II FA,
1 PrF

/ /
! +

. 0 0
" +

) 2

0

1

trace( )
aN

H

n i

i

B g/  
"

" ,& *†

iB g , ) *4 2

0

1

trace( ) 2
aN

H H

n n i i

i

B B g g  
"

0 " ,&

(5)

where ' (
1

,k
F

-

+

.
denotes the inverse cumulative distribution function (CDF) of the Gamma 

random variable with parameters k and  . From (4) and (5), it is clear that the implementation 

of Detector II requires knowledge of Y ,
ˆ
ih , and 2

e at array A.

Detector III is the GLRT detector, which is a practical approach when unknown 

parameters exist [7]. The GLRT detector replaces the unknowns with their maximum

likelihood (ML) estimates, and in our case, it is given by
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 !  !
1

2
2

0

†
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III III III FA 
1

2 ,     1 Pr
a

nNa

HN
H H H

i i n

i H

T r Y Y Y Y r F" # # $

%

&
% % $

'
( (6)

where n is the rank of Y , i.e.,  !rank( ) min ,f B fn Y MQ N Q% ) , and 2

1

 k
F $ is the inverse CDF 

of a central chi-square random variable with k degrees of freedom. Obviously, only the value 

of Y is required to be known for Detector III. We next consider TIII under H1
HU V*

. Denote by 

the singular value decomposition (SVD) of Y , where the MQf × MQf Umatrix and 

NbQf × NbQf Vmatrix are unitary matrices, and * is an MQf × NbQf

1 2, ,..., n+ + +

diagonal matrix with n

positive singular values Y (in decreasing order) on the diagonal. Defining an 

n ,× 1 vector , whose k-th entry  k Yis the square of the corresponding singular value of ,

i.e., 2

k k, +% , we can rewrite (6) as below:

 !  !  !
2

2 2 '2 ' 2 2

III 22
1 1

1
,     ~ ,    2

aN n

e k n ik ik ik ik k ik e k n

i k n

T h" , " - - . / / , " , "
"% %

% 0 % 0(( (7)

where |.| denotes the modulus of a complex number, '

ikh is the k-th element of the vector

' ˆH

i ih V h% , and  !'2

k. / stands for a noncentral chi-square random variable with k degrees of 

freedom and non-centrality parameter !. Notice here that TIII is a weighted sum of several 

noncentral chi-square random variables, and it is difficult to derive a closed form for its 

distribution. In order to calculate the theoretical PrD, we approximate TIII

 !1 2  !  !1 2

2
2 2 '

III 2
1

2
2 2 2 2 2 2

1 1

~ ,     ,     2 ,     

, 2

aN

l k ik

in

n n

a e k n k k a e k n e k n k k

k k

T b a l a b h

a N b N

3
. 3 4

"

" , " , 4 " , " " , " , 4

%

% %

% % %

% 0 0 % 0 0 0

(

( (

using a common 

technique which has been widely adopted in statistics and engineering. This approach 

approximates a weighted sum of chi-square variables by a single one with different degree of 

freedom and a scaling factor, which are carefully chosen such that the first two moments 

remain the same. Therefore, the test static of the GLRT detector can be expressed as below:

(8)

4. WAVEFORM DESIGN

In this section, we propose two approaches to design the retransmitted waveform Y by

maximizing the upper and lower bound of the PrD

trace( )H f sYY MQ E%

of the GLRT detector developed in the last 

section, respectively. The design criteria are under the constraint which 

limits the total transmitted power. As defined in the last section, entries of , are actually the 

eigenvalues of the Hermitian matrix HYY , and thus, the power constraint can be rewritten as

1

,
n

k f s

k

MQ E,
%

%( and 0,   1, 2,...,k k n, 5 % . The first waveform is designed to maximize the upper 

bound, which is obtained by utilizing Markov’s inequality, i.e., 1 2 6 7DPr Pr T E T# #% 5 ) .
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Substituting (7) into the above equation and recalling the power constraint, we can express 

the design criterion for waveform design I as the following constrained maximization 

problem:

 !2

1 1

max ,     s.t. ,     0,   1, 2,...,
n n

a e k k k f s k

k k

N MQ E k n
"

# $ " " "
% %

& % ' %( ( (9)

Applying Abel’s inequality, we find that the maximization of (9) is achieved by allocating 

all the available power to the eigenvalue  k which corresponds to the largest !k
Next, we design the second waveform based on the lower bound. Again, adopting 

Markov’s inequality leads to the bound

.

) * ) *2 2 2 2
2 2

DPr 1 Pr 1 Pr 1n n n nT T

n nT e e E e e
# # + # # +# # + , , , ,- .% , , ' , % , ' ' , / 0

.

After some derivation, we can describe the problem of maximizing the lower bound as below

 !2 2

2 2
1 1

2 2
max ,     s.t. ,   0,   1, 2,...,

1 2( )

n n
k k a e k n

k f s k

k ke k n

N
MQ E k n

"

" $ # " #
" "

# " #% %

1 2& &3 3
% ' %4 5

& &3 36 7
( ( (10)

This constrained optimization problem can be solved by employing the Karush-Kuhn-

Tucker (KKT) conditions [9], and the waveform design II can be given by

 !  ! !2 2 2 2 21 2 2 2 4 2 1 2 1k n e k k n a e nN" # # 8 $ $ # # #
&

% & & & & ,
(11)

where ( ) max(0, )a a& % and is chosen such that the constraint is met, i.e.,
1

n

k f s

k

MQ E"
%

%( .

It is clearly seen that this design scheme utilizes the waterfilling strategy [4] to allocate the 

power, and the larger the !k is, the more power is allocated to its corresponding  

5. NUMERICAL RESULTS AND DISCUSSION

k.

In this section, we present numerical results showing the target detection performance of a 

MIMO system with four sensors at array A and two sensors at array B. We choose the 

number of snapshots M = 2 and the number of frequencies Qf
2SNR /s nE #%

= 4 for simulation purposes.

The signal-to-noise ratio (SNR) is defined as , and the probability of false 

alarm is set to be a constant value PrFA=0.01. Notice here that the algorithms for both the 

detector and waveform design are based on a known estimated channel, which is actually a 

realization of the random vector. Therefore, a semi-analytical approach is utilized to obtain 

the system performance. In other words, we generate 10,000 realizations of the estimated 

channel matrix, calculate the corresponding PrD for each realization, and determine the 

system detection performance by averaging PrD

Fig.2 depicts the detection performance of systems employing different detectors at array 

A for two values of

over all the realizations.

2

e# . The waveform adopted here is the normalized TR signal, and the 

normalization is used to meet the power constraint. For each 2

e# , any difference in 

performance results from the detector design only since the retransmitted signals are the same 

for all systems. Observing the curves, we find that Detector II performs the best under any 
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circumstance, which is consistent with the fact that Detector II is the optimal detector in the 

Neyman-Pearson sense. In addition, the performance difference between Detector I and 

Detector II increases as the estimation quality becomes lower, i.e., 2

e is larger. This can be 

explained that Detector I is effectively a matched filter to the signal
ˆ
iYh , while the optimal 

detector is a filter matching to the true signal iYh when the channel matrix is known [7].

Therefore, the difference between the performance of Detector I and the optimal performance 

should be small when the error in the estimated channel is insignificant, and this happens 

when 2

e is small. Furthermore, it is easily seen that Detector III performs the poorest at low 

SNR but is similar to the optimal detector when the SNR is high. This is because the GLRT 

detector actually estimates the unknown parameters first and then makes the detection 

decision based on those estimates. Intuitively, the lower the SNR, the worse the estimation, 

which leads to worse detection performance. However, although Detector II performs the 

best, it has the highest complexity and it requires knowledge of Y ,
ˆ
ih , and

2

e at array A. In 

contrast, as mentioned in Section 3, the implementation of Detector I needs the information 

of Y and
ˆ
ih , while for Detector III only Y is required to be known.
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We next examine the detection performance of the systems retransmitting different 

waveforms with two values of 2

e as shown in Fig.3. Here, Detector III is employed for all 

scenarios, and any difference in performance arises from the designed waveforms only. In 

Fig.3, the labels TR, WD1, and WD2 correspond to the normalized TR signal, the waveform 

design I, and the waveform design II proposed in the last section, respectively, and all the 

waveforms have the same transmitted power constraint. Obviously, the designed waveforms 

improve the system performance significantly with respect to the TR signal. Specifically, for 

PrD
2 0.1e !

=0.8, the performance gap between waveform design I and the TR signal is about 5dB 

when and 4dB when 2 0.5e ! , while the performance gain achieved by waveform 

design II compared with the TR signal is about 4dB when 2 0.1e ! and 1.5dB when 2 0.5e ! .

Nevertheless, from the waveform design algorithms, we realize that such significant 

performance improvement is achieved at the price of knowing the quality of channel 

estimation 2

e a priori. We emphasize here that although both the waveforms are designed 

based on the GLRT detector, the semi-analytical PrD of the systems employing Detector I and 
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Detector II can also be obtained when the designed waveforms are retransmitted from array 

B, and similarly, both waveforms achieve considerable performance gains. These numerical 

results are available in [6], but are not presented here due to the space limitation.

6. CONCLUSIONS

In this paper, we investigated the target detection performance of a bistatic wideband 

MIMO system, whose detection process is similar to the TR procedure. Based on the 

estimated channel and a parameter indicating the quality of the estimation obtained during the 

probing phase, the retransmitted waveform and the detector are designed. Three detectors are 

developed, whose theoretical thresholds are derived in closed form. Two approaches are 

proposed to design the retransmitted waveform with signal power constraint, which maximize 

the upper and lower bound of the probability of detection of the GLRT detector, respectively. 

Numerical results demonstrate that the optimal detector performs the best but demands the 

largest amount of a priori information. The performance difference between the conventional 

and the optimal detector increases as the estimation quality becomes lower. The GLRT 

detector performs the poorest at low SNR but is similar to the optimal detector at high SNR.

Both the designed waveforms achieve significant performance gains compared with the TR 

signal at the price of knowing the quality of channel estimation a priori.
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