
Techniques for solving Nonlinear
Programming Problems with Emphasis
on Interior Point Methods and Optimal

Control Problems.

Catherine Buchanan

Master of Philosophy

Department of Mathematics and Statistics

University of Edinburgh

2007

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Edinburgh Research Archive

https://core.ac.uk/display/429706659?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

“To Almighty God: whose love kept me safe through the toughest of days.”

Declaration

I declare that this thesis was composed by myself and that the work contained

therein is my own, except where explicitly stated otherwise in the text.

(Catherine Buchanan)

Abstract

The primary focus of this work is a thorough research into the current available

techniques for solving nonlinear programming problems. Emphasis is placed on

interior-point methods and the connection between optimal control problems and

nonlinear programming is explored.

The document contains a detailed discussion of nonlinear programming, in-

troducing different methods used to find solutions to NLP problems and then

describing a large variety of algorithms from the literature. These descriptions

make use of a unified notation, highlighting key algorithmic differences between

solvers. Specifically, the variations in problem formulation, chosen merit func-

tions, ways of determining stepsize and dealing with nonconvexity are shown.

Comparisons between reported results on standard test sets are made.

The work also contains an understanding of optimal control problems, begin-

ning with an introduction to Hamiltonians, based on their background in calculus

of variations and Newtonian mechanics. Several small real-life problems are taken

from the literature and it is shown that they can be modelled as optimal control

problems so that Hamiltonian theory and Pontryagin’s maximum principle can

be used to solve them. This is followed by an explanation of how Runge-Kutta

discretization schemes can be used to transform optimal control problems into

nonlinear programs, making the wide range of NLP solvers available for their

solution.

A large focus of this work is on the interior point LP and QP solver hopdm.

The aim has been to extend the solver so that the logic behind it can be used

for solving nonlinear programming problems. The decisions which were made

when converting hopdm into an nlp solver have been listed and explained. This

includes a discussion of implementational details required for any interior point

method, such as maintenance of centrality and choice of barrier parameter. hopdm

has successfully been used as the basis for an SQP solver which is able to solve

approximately 85% of the CUTE set and work has been carried out into extending

it into an interior point NLP solver.

Acknowledgements

I would like to acknowledge the help of all those whose support, guidance, inspi-

ration and correction, mixed with unquenchable faith in me, made the writing

of this thesis possible. Specifically, I would like to thank my supervisors, Jacek

Gondzio and Ken McKinnon; and fellow PhD students Marco Colombo and David

Stern.

On a personal note, I am grateful to many friends who gave of their time

and energy to encourage me in my life and work. In particular, I offer thanks to

those who have provided me with safe places to live in these years: my parents,

Natasha Lovik, Tim & Vanessa Allsop, Adam & Lindsey Beagles, Andy & Angela

Houghton, Chris & Bridget Johnston, Jackie Keeley, Fatima Araujo and Stephen

& Helen Wood.

May those whose lives have so greatly enriched mine be truly blessed.

Table of Contents

List of Notation v

List of Figures viii

List of Tables x

Chapter 1 Introduction 1

Chapter 2 Methods of Solving Nonlinear Optimization Problems 4

2.1 Penalty methods . 4

2.1.1 Quadratic penalty . 6

2.1.2 Log barrier penalty . 7

2.1.3 Exact penalty . 9

2.2 Interior point . 10

2.2.1 Use of log barrier terms 10

2.2.2 First order optimality conditions 11

2.2.3 Newton’s method . 12

2.3 Sequential quadratic programming 14

2.4 Filter methods . 14

Chapter 3 Sequential Quadratic Programming 16

3.1 The quadratic model . 16

3.1.1 Formulation . 16

3.1.2 Solution . 18

3.2 Optimization tools . 22

3.2.1 Factorization of HL . 22

3.2.2 Linesearch methods . 23

3.2.3 Trust region methods . 25

3.3 hopdmSQP . 26

3.3.1 Dealing with hopdm error codes and nondescent directions 29

3.4 CUTE . 30

i

3.4.1 Small subset . 30

3.4.2 Complete set . 31

3.5 Possible further improvements to hopdmSQP 32

Chapter 4 Nonlinear Programming Algorithms 33

4.1 Penalty methods . 33

4.2 Interior point methods . 35

4.2.1 Linesearch methods . 36

4.2.2 Trust region methods . 39

4.2.3 Hybrid methods . 41

4.2.4 Filter methods . 42

4.3 Sequential quadratic programming 44

4.3.1 Solving the quadratic model 44

4.3.2 Choosing the step . 46

4.4 Comparisons . 46

4.4.1 Results from individual solvers 46

4.4.2 Results from comparison papers 48

Chapter 5 The Potential for hopdm to be a Nonlinear Interior Point

Solver. 50

5.1 The problem formulation used by hopdm 51

5.2 hopdmNLP . 51

5.2.1 Linear algebra . 52

5.2.2 Central path and barrier parameter 53

5.2.3 Merit function . 55

5.2.4 Variables . 56

5.2.5 Dealing with nonconvexity 59

5.3 Summary of possible future work 60

Chapter 6 Optimal Control Problems 61

6.1 Optimal control theory . 61

6.2 Calculus of variations . 63

6.2.1 Euler-Lagrange equations 64

6.3 Hamiltonians . 65

6.3.1 In Newtonian mechanics 65

6.3.2 In calculus of variations 66

6.3.3 In optimal control theory 67

6.4 Examples . 70

6.4.1 Mountain pass . 70

ii

6.4.2 Bicycle . 71

6.4.3 Sailing . 73

Chapter 7 Optimal Control Problems as Nonlinear Programming

Problems 75

7.1 Runge-Kutta discretization schemes 75

7.2 hopdmSQP used on models of small OCPs 77

7.2.1 Mountain pass . 77

7.2.2 Bicycle . 78

7.2.3 Sailing . 80

7.3 Sequential nonlinear programming 82

Chapter 8 Further Work 84

8.1 Improving hopdmSQP . 84

8.2 Coding hopdmNLP . 85

8.3 Sequential nonlinear programming 85

8.4 Small optimal control problems 86

Appendix A Cute Results 88

Appendix B Ampl models 112

B.1 Mountain Pass . 112

B.2 Bicycle . 113

B.3 Sailing . 113

B.4 Golf . 114

B.4.1 1-dimensional Euler discretization 114

B.4.2 2-dimensional Trapezoidal discretization 115

B.4.3 3-dimensional Runge-Kutta discretization 116

Appendix C Golf 121

C.1 The problem . 121

C.2 Problem instances solved . 122

C.2.1 1D line . 123

C.2.2 2D flat plane . 124

C.2.3 2D tilted line . 125

C.2.4 2D curve . 126

C.2.5 3D tilted plane . 128

C.2.6 3D bowl shape . 129

C.2.7 3D ramp . 130

C.3 Comments and conclusions . 131

iii

Appendix D Sailing 135

D.1 Variations of the problem . 135

D.1.1 Wind fields . 135

D.1.2 Water movement . 136

D.1.3 Shape of the water . 136

D.1.4 Boat type . 139

D.2 Dynamic programming . 139

D.2.1 Vanderbei’s adaptation . 140

D.2.2 Our adaptation . 143

D.3 Numerical results . 145

D.3.1 Problems solved . 147

Bibliography 152

iv

List of Notation

The following is a list of the notation used throughout this thesis. Some symbols

have two meanings, where the different usages should be apparent from context.

Specifically, meanings given to symbols in chapters 1–5 may be replaced with new

meanings in chapters 6 and 7.

Symbol Meaning
a linear constraint matrix coefficient
b right hand side constant
c constraint
d direction
e vector of 1s
f objective
g generic linear vector in objective

gravitational constant
h small vector/small valued function

infeasibility variables
integral stepsize

i row index
j column index
k iteration counter

order of Runge-Kutta schemes
l lower bound
m no. of constraints

mass
n no. of variables
p a second set of slacks1

number of integration steps in OCP
q a second set of Lagrange multipliers1

r constraint range
s slack variables
t constant for subspace determination2

time
u upper bound

control variables

1used in Loqo [71]
2used in [12]

v

Symbol Meaning
v velocity
w Lagrange multipliers for upper bounds
x primal variables

state variables
y vector of state and control variables
z Lagrange multipliers for lower bounds

B(x, µ) mixed penalty function
B(x, λ) approximation to HL

H(x, u, t) Hamiltonian
HL(x, λ) Hessian of Lagrangian, also written as HL

J performace measure
P (x, µ) log barrier penalty function

Q generic quadratic matrix
Q(x; µ) quadratic penalty function

W weighting matrix
α stepsize
β combination of TR directions3

constants used in Runge-Kutta schemes
γ problem dependent scalar4

δ trust region radius
variations

ε small scalar
ζ parameter used in choice of α by [80]
η parameter used in choice of α by [80]
θ addition to HL in augmented system, caused by variable bounds

an unknown angle
ϑ small number used for initializing variables
κ small constants5

λ Lagrange multipliers/dual variables
adjoint variables

µ barrier parameter
ν penalty parameter
ξ right hand sides of Newton equations
$ maximum point on a given mountain pass
ρ infeasibility penalty
σ centering parameter
ς duality measure
τ convergence tolerance

endpoints of subdivision of integration steps
ϕ continuously differentiable function
ω infimum of mountain pass
Γ constant diagonal matrix
∆ Newton direction

3used in NuOpt [80]
4used in [12]
5used in ipopt [77]

vi

Symbol Meaning
Θ complementarity product
Λ diagonal formed from λ6.
Φ merit function
Ω set of all possible mountain passes
A active set
E set of equality constraints
I set of inequality constraints
I1 set of ≥ constraints
I2 set of ≤ constraints

|I| etc. size of set of inequality constraints etc.

6Generally, a capital letter, Z say, represents the diagonal matrix formed from the corre-
sponding vector, i.e. z

vii

List of Figures

2.1 Newton’s Method . 5

2.2 − ln ci(x) . 8

2.3 A Filter Update . 14

3.1 A Trust-Region Dogleg. 26

4.1 Showing the need for a logarithmic linesearch. 35

5.1 A typical central path . 54

6.1 An example of a terminal control problem. 63

6.2 Wind polar . 73

7.1 Subdivision of the integral step from ti to ti+1. 76

7.2 Contours of the six-hump camel back function. 78

7.3 An optimal mountain pass between minima of the six-hump camel

back function. 79

7.4 Optimal trajectory for cyclist wishing to maximize suntan. 79

7.5 The sailing problem to be solved. 80

7.6 Two possible sailing trajectories. 81

7.7 Optimal sailing trajectory. 81

C.1 Showing the forces present on a golf ball on the green. 122

C.2 A golf green shaped as a damped sin curve. 126

C.3 Optimal golf trajectory on a 3D planar green. 133

C.4 Optimal golf trajectory on a 3D bowl shaped green. 133

C.5 Optimal golf trajectory on a 3D ramp. 134

D.1 A spatial wind field in the Apostle Islands 136

D.2 Tidal currents near the Isle of Wight in the hours before high tide. 137

D.3 Tidal currents near the Isle of Wight in the hours after high tide. 138

D.4 Showing the 7 directions a boat can sail in in Vanderbei’s formulation.140

D.5 Optimal route 1 for sailing problem found by DP. 142

viii

D.6 Optimal route 2 for sailing problem found by DP. 143

D.7 Optimal route 3 for sailing problem found by DP. 143

D.8 Optimal route 4 for sailing problem found by DP. 144

D.9 Optimal route 5 for sailing problem found by DP. 144

D.10 Optimal route 6 for sailing problem found by DP. 145

D.11 Approximate wind polar for Boat 1. 146

D.12 Wind polar for Boat 2 . 147

D.13 Optimal routes for Boats 1 & 2 sailing with the wind 148

D.14 An optimal route found for Boat 1 sailing in variable wind. 148

D.15 An optimal route found for Boat 2 sailing in wind which varies

discretely. 149

D.16 Continuously varying wind field 150

D.17 Optimal route for Boat 1 sailing in wind which varies continuously 151

D.18 Optimal route for Boat 2 sailing in wind which varies continuously 151

ix

List of Tables

3.1 Changes made to hopdmSQP to improve its performance. 31

4.1 Comparison of key features of interior point solvers 45

4.2 Rankings of solvers compared on HS test set. 47

4.3 Rankings of solvers compared on large scale test sets. 47

4.4 Comparing hopdmSQP with robust solvers on large scale problems. 49

5.1 How definition of θi depends on type of variable xi. 52

7.1 Different optimal sailing trajectories found by hopdmSQP 82

A.1 Increasing success rate as hopdmSQP is improved. 88

A.2 Results of running hopdmSQP on entire CUTE set. 90

A.3 Problems for which hopdm fails to find an optimal solution. 107

C.1 Solving the golf problem with a 1D green. 123

C.2 Solving the golf problem with a 2D flat green. 124

C.3 Solving the golf problem with a 2D tilted green. 125

C.4 Solving the golf problem with a 2D curved green. 127

C.5 Solving the golf problem with a 3D tilted planar green. 128

C.6 Solving the golf problem with a 3D bowl shaped green. 130

C.7 Solving the golf problem with a 3D ramp shaped green. 131

D.1 An example of wind directions at stages of a dynamic programming

model of the sailing problem. 142

D.2 Data for a wind polar which approximates Vanderbei’s sailing times

(Boat 1). 146

D.3 Data for a wind polar which approximates that found by Hennessey

et al. through practical experimentation (Boat 2). 147

x

Chapter 1

Introduction

We start this discussion with a description of optimization and, more specifically,

nonlinear optimization problems.

Optimization occurs naturally in many industries. For example, airline and

train companies alter their fares according to factors including how many tickets

have been sold, in order to maximize their revenue; telecommunication companies

determine optimal networks based on the twin goals of ensuring coverage between

homes, cities or countries and minimizing the expense of providing and laying

cables; warehouse managers determine their stock levels in order to keep the

storage space required small whilst having sufficient goods in stock to be able to

quickly satisfy customer demands.

To effectively find the optimal strategies for each of these problems, as well

as many more, the optimizer must determine a mathematical model for the real

life problem. This model will usually be written in terms of variables which are

mathematical representations of real life objects or criteria that affect the decision

making process. In the case of warehouse stock levels, variables would be chosen

to represent each stored item.

An objective function is then needed to provide a measure of desirability for

each possible arrangement of the objects/criteria represented by the variables.

Also, any physical constraints on the variables, or on the system to be optimized

should be included in the model. Constraints on variables include that they

may have to be nonnegative to accurately represent countable objects such as

telecommunication cables or airline tickets. Or, for an example of a constraint on

the system itself, there may be an overall space limit in the warehouse restricting

the amount of stock that can be kept.

Throughout this work, we will consider minimization problems as the tech-

niques used to solve them can easily be reversed to tackle maximization problems.

Optimization problems can be classified according to the nature of the objec-

tive function and constraints. If these are both linear (each variable has constant

1

Chapter 1 — Introduction 2

coefficients), like this

min x1 + 2x2 − 1
2
x3

s.t. x2 + 3x3 ≤ 1
x1 − 1

2
x3 = 0

then the problem is known as a linear programming problem (LP). If a problem is

not linear then it is classified as a nonlinear programming problem (NLP). Non-

linear programs vary widely. The objective and constraint functions can include

mathematical functions such as sin and cos, they can include logarithms and vari-

ables raised to high powers or to fractional powers. They can be differentiable or

non-differentiable.

There is one type of nonlinear programming problem which is typically con-

sidered separately. In this case, the objective is a quadratic function and the

constraint functions are linear, like this

min 1
2
x2

1 + 4x2x3 − 0.3x3

s.t. x1 − 1
2
x3 ≤ 1

2x2 + x3 = −6.

Problems of this form are known as quadratic programming problems (QP) and

there are standard methods for solving them, which will be discussed later, see

section 3.1.2.

Nonlinear programs are written generally as follows:

min f(x)

s.t. ci(x) = 0 i ∈ E (1.1)

ci(x) ≥ 0 i ∈ I
li ≤ xi ≤ ui i ∈ 1..n

where f and ci ∀i ∈ E∪I (the objective and constraint functions respectively) are

functions mapping R
n to R, x ∈ R

n represents the problem variables and l, u ∈ R
n

represent lower and upper bounds on x. E is the set of equality constraints and

I is the set of inequality constraints.

In this work, we research techniques for solving nonlinear programming prob-

lems and consider a specific set of optimization problems, describing traditional

techniques for finding their solution and showing how they can be reformulated

as nonlinear programming problems and thence solved. We assume that f(x) and

ci(x) ∀i ∈ 1..m are continuous and second-order differentiable.

First, in Chapter 2, nonlinear programming is explained and a variety of

solution techniques, including penalty methods and interior point methods are

described.

Chapter 1 — Introduction 3

In Chapter 3, it is shown how a sequence of quadratic approximations to NLP

can be used to find directions between iterates which converge to a solution of

the NLP. This technique is known as sequential quadratic programming (SQP).

Chapter 3 includes analysis of the choices made when implementing an SQP

method using the interior point LP and QP solver hopdm. hopdmSQP’s success on

the CUTE [14] problem set is shown.

A discussion of published NLP algorithms is provided in Chapter 4. The de-

tails and choices made when implementing an NLP solver are wide and varied and

this chapter highlights some of the main differences between algorithms, looking

at specific choices and some of the reasoning behind them. The reported success

of these algorithms is considered, with reference to some comparison papers and

to results obtained with hopdmSQP.

The final chapter on NLP methods describes the beginning of work towards

extending hopdm into an NLP interior point solver. There is discussion about

some of the issues involved with choices relating to interior point methods, such

as centrality and the barrier parameter and ways in which hopdmNLP would differ

from hopdmSQP are considered.

The next two chapters refer to a specific type of optimization problem, known

as optimal control problems (OCP). In Chapter 6, these problems are introduced,

along with the traditional solution technique which uses Hamiltonian theory.

Then Chapter 7 shows how OCP can be reformulated, using Runge-Kutta dis-

cretization schemes, as NLP problems which can be solved using the techniques

from Chapters 2 – 5. Small, practical optimal control problems are referenced,

modelled and solved.

Ideas for future work will be discussed in Chapter 8. They include completing

the extension of hopdm to hopdmNLP and exploring how it could be tuned to be

especially efficient for OCPs.

Chapter 2

Methods of Solving Nonlinear
Optimization Problems

This chapter provides a discussion of a selection of optimization techniques for

solving nonlinear programming problems. Specific algorithms which use these

techniques will then be outlined in Chapter 4.

We begin by introducing Newton’s method, which is a vital tool used, usually

in its pure form, in all of the nonlinear programming algorithms discussed in this

chapter. We then describe a variety of penalty method algorithms, commenting

on some of the ill-conditioning inherent in these techniques. The theory behind

interior point methods for nonlinear programming is then explained and sequen-

tial quadratic programming is briefly introduced. We finish this chapter with a

description of a typical filter method.

2.1 Penalty methods

The first nonlinear optimization technique described here is the technique of con-

verting a constrained optimization problem into an unconstrained one. This is

done by appending any violation of the constraints to the objective function and

removing the constraints. Using these techniques, a series of optimization prob-

lems is solved, with the penalty on constraint violation increasing with each suc-

cessive problem. There are several methods of penalising the constraints, some

of which are considered in the next subsections. The understanding of these

methods is taken mainly from Nocedal & Wright [62].

Before considering the different penalty functions we will describe the neces-

sary condition for a point to be a minimum of a function.

A function f(x) defined on X has a minimum at a point x∗ if f(x∗) ≤
f(x) ∀x ∈ X.

4

Chapter 2 — Methods of Solving Nonlinear Optimization Problems 5

Theorem 2.1. A necessary condition for x∗ to be a minimum of f(x) is that

∇f(x) = 0.

Proof. The proof uses the Taylor expansion of f about x = x∗ given by

f(x∗ + h) = f(x∗) + hT∇f(x∗) +
1

2
hT∇2f(x∗ + εh)h.

Then, using the fact that f(x∗) ≤ f(x∗ + h) if x∗ is a minimum of f(x), this can

be rewritten as

f(x∗ + h) − f(x∗) = hT∇f(x∗) +
1

2
hT∇2f(x∗ + εh)h ≥ 0

for all h sufficiently close to 0. Now for h small enough, we can see that the sign

of the change in f is dominated by the first order term hT∇f(x∗). Since this can

be made either positive or negative, according to an indiscriminate choice of h,

f(x∗ + h) − f(x∗) is only non-negative for all h if ∇f(x∗) = 0, as required.

Now, a common iterative method for finding the root (the value of x for

which ∇f(x) = 0) of a system of nonlinear equations is Newton’s method, which

is shown in Figure 2.1.

x

z

xk xk+1 xk+2

Figure 2.1: Newton’s method. The blue lines are tangent lines to the function
and the points where they cross the x-axis represent the next trial point.

At the current point, xk, a tangent line

z = ∇f(xk) + ∇2f(xk)(x − xk)

Chapter 2 — Methods of Solving Nonlinear Optimization Problems 6

is a local approximation to the function ∇f(x). Extending this line until it

intersects the line z = 0 suggests this intersection point as the next point to

consider. Algebraically, the new point is given as

xk+1 = xk − (∇2f(xk))
−1∇f(xk).

A new tangent line is then constructed about the point xk+1 and the process

continues iteratively until two consecutive points are sufficiently close together

for the algorithm to terminate and return a solution.

Newton’s method can be used when trying to find the minimum of an uncon-

strained problem. When starting the search within a neighbourhood of the root,

Newton’s method demonstrates quadratic convergence (the number of digits of

accuracy doubles at each step).

Before describing algorithms which use Newton’s method, we define the La-

grangian function,

L(x, λ) = f(x) −
∑

i∈E∪I

λici(x), (2.1)

which is used to identify optimal points in constrained optimization. (f(x), ci(x), E
and I are defined as in (1.1) and λi are known as Lagrange multipliers.) In this

definition, and for the remainder of this section on penalty methods, we will

include bound constraints as general inequality constraints and not treat them

specially.

2.1.1 Quadratic penalty

The simplest of the penalty methods is based on the quadratic penalty function

which was first proposed by Courant [22] in 1943. The penalty terms are the

squares of the constraint violations so that the constrained nonlinear problem

(1.1) is now written as the unconstrained problem

min Q(x; µ) = f(x) +
1

2µ

∑

i∈E

c2
i (x) +

1

2µ

∑

i∈I

([ci(x)]−)2,

where µ > 0 is the penalty parameter and [ci(x)]− = max(−ci(x), 0). As µ tends

towards zero the constraint violation is penalised more severely.

If there are only equality constraints, then the quadratic penalty function

is at least as differentiable as the original NLP problem and its smoothness

makes a range of unconstrained optimization techniques available for its solu-

tion. However, if inequality constraints are present then the [ci(x)]− terms mean

that Q(x; µ) has a discontinuous second derivative at all points on the boundary

of the region which is feasible for (1.1).

Chapter 2 — Methods of Solving Nonlinear Optimization Problems 7

This lack of smoothness is one of the difficulties that arises when using the

quadratic penalty function; another is caused by the need to decrease µ to

zero. The minimization of Q(x; µ) becomes more difficult because the Hessian

∇2
xxQ(x; µ) is ill-conditioned when µ is small.

An algorithm which uses the quadratic penalty method is quite straightfor-

ward for equality constrained problems, that is, problems for which I = ∅. New-

ton’s method is a popular method used to find increasingly accurate approxi-

mations to ∇Q(x; µk) = 0, the first order necessary condition for a minimum

(Theorem 2.1).

Algorithm 2.1.

Choose starting parameter µ0, starting tolerance τ0 and starting point xs
0.

For k = 0, 1, 2, . . .

Minimize Q(x; µk) approximately, starting at xs
k, to find xk.

Determine that xk is found when ‖∇Q(x; µk)‖ < τk.

If final convergence test is satisfied

STOP with solution xk.

Choose new penalty parameter µk+1 ∈ (0, µk).

Choose new tolerance τk+1 ∈ (0, τk).

Choose new starting point xs
k+1.

1

End for

It can be proved that if the exact minimizer of Q(x; µk) is found at each

iteration, or if the tolerance used to find the approximate minimizer tends to zero

as k tends towards infinity then any limit point of the sequence {xk} is a solution

of the NLP problem (1.1).

2.1.2 Log barrier penalty

Logarithmic barrier methods were introduced by Frisch [33] and developed by

Fiacco & McCormick [28]. The logarithmic barrier penalty function is best suited

to problems which only have inequality constraints. That is, problems of the form

(1.1) where E = ∅.
In this method, the penalty terms are based on the natural logarithms of the

constraints. They have the following properties, shown in Figure 2.2:

• They are smooth when the constraint is strictly satisfied. That is, when the

value of ci(x) is strictly greater than zero.

1The current solution xk can be used here.

Chapter 2 — Methods of Solving Nonlinear Optimization Problems 8

• Their value approaches infinity as the boundary of the constraint is ap-

proached. That is, as the value of ci(x) nears zero.

• They are infinite (or undefined) when the constraint is violated. That is,

when the value of ci(x) is less than zero.

c(xi)

− ln c(xi)

Figure 2.2: − ln ci(x)

So the NLP problem (1.1) represented as an unconstrained minimization prob-

lem using the log barrier approach is

min P (x; µ) = f(x) − µ
∑

i∈I

ln ci(x), (2.2)

where µ > 0 is the penalty parameter.

The penalty on constraint violation is not explicitly increased as µ decreases,

but since any point which violates a constraint always contributes a penalty of

order infinity for each constraint that it violates, the increase is not strictly nec-

essary. As µ decreases, the minimization of P (x; µ) more closely resembles min-

imization of the objective function. It differs in that it has sharp peaks towards

infinity at constraint boundaries. These peaks constitute bad scaling, making this

unconstrained minimization problem increasingly difficult to solve as the value of

µ approaches zero.

However, P (x; µ) is differentiable and so, similarly to the quadratic penalty

function, its minimizer can be found using a range of unconstrained optimization

techniques, including Newton’s method.

Chapter 2 — Methods of Solving Nonlinear Optimization Problems 9

Algorithms that use the log barrier penalty function are very similar to algo-

rithms using the quadratic penalty function and are similarly straightforward:

Algorithm 2.2.

Choose starting parameter µ0, starting tolerance τ0 and starting point xs
0.

For k = 0, 1, 2, . . .

Minimize P (x; µk) approximately, starting at xs
k, to find xk.

determine that xk is found when ‖∇P (x; µk)‖ < τk.

If final convergence test is satisfied

STOP with solution xk.

Choose new penalty parameter µk+1 ∈ (0, µk).

Choose new tolerance τk+1 ∈ (0, τk).

Choose new starting point xs
k+1.

2

End for

Under certain conditions it can be proved that any sequence of approximate

minimizers of P (x; µ) converges to a minimizer of the inequality constrained NLP

problem to be solved, as µ tends towards zero.

The simplest way to extend log barrier penalty functions to handle equality

constraints is to use a penalty function which appends quadratic penalty terms

for violation of the equality constraints. A combined penalty function of this kind

has the form:

B(x; µ) = f(x) − µ
∑

i∈I

ln ci(x) +
1

2µ

∑

i∈E

c2
i (x), (2.3)

where µ > 0 is again the penalty parameter.

Algorithms which use B(x; µ) are formed in the same way as algorithms which

use each of Q(x; µ) and P (x; µ). That is, alternating reduction of the penalty

parameter with using Newton’s method to find an approximate minimizer to the

current penalty function.

Combined penalty functions of this type are differentiable and so can be solved

using a range of techniques for unconstrained optimization. They still suffer from

ill-conditioning and poor scaling as µ tends towards zero.

It is possible to prove that any sequence of approximate minimizers of B(x; µ)

converges to a minimizer of the NLP problem as µ tends to zero.

2.1.3 Exact penalty

To find the solution to (1.1) using either the quadratic penalty method or the

log barrier penalty method requires the solution of a sequence of unconstrained

2A good point can be chosen by extrapolating along the path x0, x1, x2, . . .

Chapter 2 — Methods of Solving Nonlinear Optimization Problems 10

minimization problems. There also exists a class of penalty functions, known as

exact penalty functions, for which only a single minimization is required.

One of these is the l1 penalty function

Φ1(x; µ) = f(x) +
1

µ

∑

i∈E

|ci(x)| + 1

µ

∑

i∈I

[ci(x)]− (2.4)

which is not differentiable, so cannot be solved using algorithms which use the

necessary condition of Theorem 2.1.

Another is the Augmented Lagrangian function, an extension of the quadratic

penalty function, based on the Lagrangian (2.1), which reduces the need to de-

crease µ to zero and so does not suffer from problems caused by ill-conditioning

of the Hessian.

We will return to these penalty functions and their uses later.

2.2 Interior point

Next, we will consider interior point methods and their use in solving nonlinear

programming problems. They have most often been used in constrained linear

and quadratic programming, but research has been carried out into extending

their success in these areas into more general nonlinear programming. Some of

this work will be discussed in Chapter 4.

Interior point methods were initially recognised as a successful technique for

solving optimization problems following the publication of a paper by Karmarkar

[51] in 1984. Much of the understanding used in this discussion is taken from

Wright [79] and some of the details come from lectures given by Gondzio [38].

2.2.1 Use of log barrier terms

A significant feature of interior point methods is that an optimal solution is

approached from the interior of the feasible region, but is never reached exactly.

This feature is caused by the replacement of inequality constraints and variable

bounds by log barrier terms in the objective function. These terms share with

the log barrier penalty function the properties which are listed above and shown

in Figure 2.2.

The NLP problem (1.1) can be rewritten as

min f(x)

s.t. ci(x) = 0 i ∈ 1, 2, . . . , m (2.5)

li ≤ xi ≤ ui i ∈ 1, 2, . . . , n,

Chapter 2 — Methods of Solving Nonlinear Optimization Problems 11

where slack variables are used to change inequalities into equalities. The slack

variables are included in the model as non-negative variables which are appended

to x. The constraints, ci(x), are altered accordingly ∀i ∈ I, m = |E| + |I| and

other notation is the same as in (1.1).

Then the inequalities xi ≥ li, ui ≥ xi can be replaced by log barrier penalty

terms, giving the barrier problem:

min f(x) − µ

n
∑

i=1

ln(xi − li) − µ

n
∑

i=1

ln(ui − xi)

s.t. ci(x) = 0 i ∈ 1, 2, . . . , m.

The penalty parameter µ is reduced at each iteration according to rules which

vary between different interior point algorithms. As it tends towards 0, the ob-

jective function to be minimized more closely represents the objective of the NLP

problem.

2.2.2 First order optimality conditions

The next step in solving an NLP problem using an interior point method is to

determine the first order optimality conditions. This is done using the Lagrangian

function defined above (2.1).

L(x, λ, z; µ) = f(x) −
m

∑

i=1

λici(x) − µ

n
∑

i=1

ln(xi − li) − µ

n
∑

i=1

ln(ui − xi).

Conditions for a minimum are then determined by differentiating the Lagrangian

function with respect to each of its variables and claiming, as in Theorem 2.1,

that each of these differentials must be zero at a stationary point. It is possible

to prove that these are first order necessary conditions.

∇xL(x, λ, z; µ) = ∇f(x) −
m

∑

i=1

λi∇ci(x) −
n

∑

i=1

µ

xi − li
+

n
∑

i=1

µ

ui − xi
= 0

∇λi
L(x, λ, z; µ) = ci(x) = 0 i ∈ 1, 2. . . . , m.

To make the notation clearer, we will denote the constraints as column vectors:

c(x) ∈ R
m =

c1(x)
c2(x)

...
cm(x)

and ∇c(x) ∈ R
m×n =

∇cT
1 (x)

∇cT
2 (x)
...

∇cT
m(x)

.

Then, setting
µ

xi − li
= zi,

µ

ui − xi
= wi ∀i ∈ 1, 2, . . . , n

Chapter 2 — Methods of Solving Nonlinear Optimization Problems 12

and reversing the sign of the first equation, the first order optimality conditions

can be rewritten as follows:

−∇f(x) + ∇cT (x)λ + z − w = 0

c(x) = 0 (2.6)

(X−L)Ze = µe

(U−X)We = µe,

where z, w ∈ R
n are Lagrange multipliers associated with bound constraints, cap-

ital letters (i.e. W, Z, L, U) represent diagonal matrices formed from the vectors

(w, z, l, u) and e is a vector of 1s of appropriate dimension. (ui−xi, xi− li, zi, wi ≥
0 ∀i ∈ 1, 2, . . . , n.)

2.2.3 Newton’s method

The first order conditions for nonlinear programming given by (2.6) can be solved

using Newton’s method (Figure 2.1), since they form a large system of nonlinear

equations:

F (x, λ, z, w; µ) = 0

where

F (x, λ, z, w; µ) =

−∇f(x) + ∇cT (x)λ + z − w
c(x)

(X−L)Z − µe
(U−X)W − µe

.

For a given point, (x, λ, z, w), the Newton direction is found by solving the system

of linear equations

∇F (x, λ, z, w; µ)

xk+1 − xk

λk+1 − λk

zk+1 − zk

wk+1 − wk

= −F (x, λ, z, w; µ),

where

∇F (x, λ, z, w; µ) =

−HL(x, λ) ∇cT (x) I −I
∇c(x) 0 0 0

Z 0 X−L 0
−W 0 0 U−X

with HL(x, λ) = ∇2f(x) −
m

∑

i=1

λi∇2ci(x).

This can also be written as

−HL(x, λ) ∇cT (x) I −I
∇c(x) 0 0 0

Z 0 X−L 0
−W 0 0 U−X

∆x
∆λ
∆z
∆w

=

ξc

ξb

ξz

ξw

, (2.7)

Chapter 2 — Methods of Solving Nonlinear Optimization Problems 13

where ξc = ∇f(x) − ∇cT (x)λ − z + w, ξb = −c(x), ξz = µe − (X−L)Ze and

ξw = µe − (U−X)We.

Finding the Newton direction is one step in a class of interior point algorithms

for NLP which take the following form:

Algorithm 2.3.

Choose starting point (x0, λ0, z0, w0) such that l − x0 > 0, z0 > 0, u − x0 > 0,

w0 > 0.

Calculate merit3 of starting point.

For k = 0, 1, 2, . . .

If final convergence test is satisfied

STOP with solution xk.

Compute HL(xk, λk), ∇f(xk), c(xk) and ∇c(xk).

Calculate average of complementarity pairs

ςk =
1

2n

n
∑

i=1

[(xik − li)zik + (ui − xik)wik] . (2.8)

Choose µ = σkςk, where σk ∈ (0, 1).

Determine Newton direction

∆xk

∆λk

∆zk

∆wk

using (2.7).

Choose a step α ∈ [0, 1] to be taken in the Newton direction4, ensuring that:

xk − l + α∆xk > 0
zk + α∆zk > 0

u − xk − α∆xk > 0
wk + α∆wk > 0.

Make step: xk+1 = xk + α∆xk

λk+1 = λk + α∆λk

zk+1 = zk + α∆zk

wk+1 = wk + α∆wk.

End for

In this algorithm, if a stepsize of 1 can be taken then all primal and dual

infeasibility is removed.

Determining how to control the parameters σk, µ and α so that they guide

the sequence of iterates towards a minimum is an important part of any interior

point algorithm. Discussion of how these parameters are chosen, along with other

details which must be considered when implementing an interior point algorithm,

is left to Chapter 5.

3Ways to measure merit are discussed in section 3.2.2.1.
4Other criteria for choosing α (using merit) will be discussed in section 3.2.2.3.

Chapter 2 — Methods of Solving Nonlinear Optimization Problems 14

2.3 Sequential quadratic programming

In this chapter, we will only briefly mention the technique known as Sequential

Quadratic Programming (SQP). It consists of simplifying the NLP (1.1) by using

a quadratic approximation and then using the solution to the quadratic model to

make a step towards a new point where another quadratic model is formed. A

sequence of quadratic models are solved, giving the name of the method. A very

good discussion on the issues arising in SQP is given by Boggs and Tolle [13].

The choices which need to be made when implementing an SQP method will

be discussed in greater detail in Chapter 3.

2.4 Filter methods

There is also a set of algorithms, known as filter methods, which were originally

devised by Fletcher & Leyffer [29].

Basically, a filter is chosen and a new point is accepted if it passes through the

filter. The filter comprises points which can be represented in two dimensions with

one axis representing the value of the objective function and the other representing

the violation of the constraints. An acceptable point is one which improves in

either direction, either lowering the value of the objective function or reducing

the violation of the constraints.

When a point is accepted, it is added to the filter and any points in the

filter which are dominated by the new point are removed. A point is said to be

dominated by a new point if it has both a higher objective value and a greater

violation of the constraints than the new point. This is illustrated in Figure 2.3.

+

+
+

+

+
+

+

+

+
+

xk+1

f(x) f(x)

‖c(x)‖ ‖c(x)‖ unacceptable

to filter

Figure 2.3: The diagram on the left shows the point xk+1 dominating two of the
points in the original filter. These points are removed, leaving a larger region of
unacceptable points. The diagram on the right shows the modified filter.

At no stage should the filter contain any point which is dominated by any other.

Chapter 2 — Methods of Solving Nonlinear Optimization Problems 15

If a problem is feasible and a minimum exists then the filter method converges

to an optimal point, where there is no constraint violation and the objective

function cannot be improved further.

Chapter 3

Sequential Quadratic
Programming

Sequential quadratic programming (SQP) is first mentioned in section 2.3 as a

method for solving NLP problems of the form (1.1). Details of SQP techniques

and of the choices which must be made when implementing an SQP method

have been left to this chapter. We will first discuss the structure of general

SQP methods and the broader choices to be made for any SQP algorithm and

then move on to discuss specific choices which were made when implementing an

SQP method based on the LP and QP solver hopdm, [39], of Gondzio. We will

also describe results obtained when testing this solver on the Constrained and

Unconstrained Testing Environment set (CUTE [14]) of test problems for linear

and nonlinear optimization.

For the purpose of this work we will restrict our attention to those NLP

problems which have objective and constraint functions which are at least twice

continuously differentiable.

Much of the understanding of SQP which is used here is taken from the report

by Boggs and Tolle [13] and the book of Nocedal and Wright [62], which also

provides information about methods used to solve QP problems.

3.1 The quadratic model

3.1.1 Formulation

Any SQP method involves the solution of a sequence of quadratic approximations

to the nonlinear program, hence the name. Therefore, one of the first and key

steps in the implementation of an SQP method is to determine a way to form the

quadratic model at each point in the sequence. The quadratic model must be of

16

Chapter 3 — Sequential Quadratic Programming 17

the form

min 1
2
dTQd + gT d

s.t. aT
i d = bi i ∈ E (3.1)

aT
i d ≥ bi i ∈ I

li ≤ di ≤ ui i ∈ 1, 2, . . . , n,

where Q is a symmetric n × n matrix, g, ai i ∈ E ∪ I are vectors in R
n and

bi i ∈ E ∪ I are in R. d ∈ R
n represents the problem variables, which, in the case

of SQP, are a direction in which a step will be taken to move to the next point

in the sequence. Throughout this chapter we will use the notation d to represent

QP problem variables. We will use x to represent the points in R
n which form

the sequence.

At each sequence point, x, the most obvious choice for approximating (1.1)

by a model of form (3.1), which has a quadratic objective function and linear

constraints, is to take a quadratic approximation to the NLP objective and a

linear approximation to the NLP constraints as follows:

min 1
2
dT∇2f(x)d + ∇fT (x)d

s.t. ∇cT
i (x)d + ci(x) = 0 i ∈ E

∇cT
i (x)d + ci(x) ≥ 0 i ∈ I
ldi ≤ di ≤ ud

i i ∈ 1, 2, . . . , n.

Upper and lower bounds on the direction are calculated simply from the current

point and the variable bound:

ldi = li − xi

ud
i = ui − xi.

This approximation, however, fails to take into account any nonlinearity in the

constraint functions and so easily breaks down on problems with nonlinear con-

straints.

In order for nonlinearities in the constraints to be considered, they must be

included in the second order terms in the objective function. Instead of taking

the quadratic model objective to be an approximation to the NLP objective, it

is partly made an approximation to the Lagrangian (2.1).

The first order terms in the objective approximation remain the same and

the second order terms are an approximation to the Hessian of the Lagrangian

(HL(x, λ) = ∇2L(x, λ), written from here on as HL). The quadratic model be-

Chapter 3 — Sequential Quadratic Programming 18

comes:

min 1
2
dTB(x, λ)d + ∇fT (x)d

s.t. ∇cT
i (x)d + ci(x) = 0 i ∈ E (3.2)

∇cT
i (x)d + ci(x) ≥ 0 i ∈ I
ldi ≤ di ≤ ud

i i ∈ 1, 2, . . . , n,

where B(x, λ) is either HL or an approximation to it. Methods of choosing B(x, λ)

are considered in section 3.2.1.

3.1.2 Solution

Before considering techniques for solving the QP approximations (3.2), we will

state the first order necessary conditions for a point x∗ to be an optimal solution

of a general NLP problem (1.1). As a QP problem is a specific type of NLP

problem, these conditions also hold for direction vectors d∗ which are optimal

solutions of general QP problems (3.1).

Theorem 3.1. Suppose that x∗ is a local solution of (1.1) and that the linearly in-

dependent constraint qualification1 (LICQ) holds at x∗. Then there is a Lagrange

multiplier vector λ∗, with components λ∗
i , i ∈ E ∪ I, such that the following

conditions are satisfied at (x∗, λ∗)

∇xL(x∗, λ∗) = 0, (3.3a)

ci(x
∗) = 0, i ∈ E (3.3b)

ci(x
∗) ≥ 0, i ∈ I (3.3c)

λ∗
i ≥ 0, i ∈ I (3.3d)

λ∗
i ci(x

∗) = 0, i ∈ E ∪ I. (3.3e)

Equations (3.3) are commonly known as the Karush-Kuhn-Tucker, or KKT, con-

ditions. In this formulation, we have again included variable bound constraints

as general inequality constraints. An extension of the KKT conditions to include

bound constraints explicitly is straightforward.

Once the quadratic model (3.2) has been formulated, it has to be solved

to find the direction variables d. There are several techniques for solving QP

problems. The focus of the latter part of this chapter is on an SQP method based

on the interior point solver hopdm [39], but we will briefly mention an alternative

technique for solving QP problems before showing how interior point methods

1Linearly Independent Constraint Qualification - states that the constraint gradients of all
constraints which are active (defined later) at this optimal solution are independent.

Chapter 3 — Sequential Quadratic Programming 19

are used in QP and how they are similar to interior point methods for NLP as

discussed in section 2.2.

3.1.2.1 Active set

Now, the alternative technique to interior point methods that we will mention

here is active set methods.

At any given point, x, within a system with constraints, a subset of the con-

straints is satisfied at equality and is known as the active set (A). This set

includes all of the equality constraints and may contain some (or all) of the in-

equality constraints.

A = {i ∈ E ∪ I : ci(x) = 0} (3.4)

Considering only the active set reduces the KKT conditions (3.3), removing

(3.3c) and (3.3d), as they refer to inequality constraints, and removing (3.3e), as

λ∗
i c

∗
i (x) = 0 ∀i ∈ A at a feasible point because of (3.4). This leaves a system of

equations

[

B(x, λ) −∇cT
A(x)

∇cA(x) 0

] [

d∗

λ∗

]

=

[

−∇fT (x)
−cA

]

, (3.5)

where B(x, λ), x, d, λ and f are as in (3.2) and cA(x) ∈ R
|A| =

c1(x)
...

c|A|(x)

,

∇cA(x) ∈ R
|A|×n =

∇cT
1 (x)
...

∇cT
|A|(x)

represent the constraints in A. The system

(3.5) can then be rearranged and solved directly.

If it were possible to identify the active set from the problem statement, then

this method of solving QP problems would require the solution of only one set of

linear equations. Instead, an initial guess of A is made. Every time (3.5) is solved

A is updated using a descent method which is designed to guide the algorithm to

the optimal active set A∗. Active set algorithms are constructed to ensure that

the same active set is never considered twice, so that, as there are only a finite

number of possible combinations of constraints which can form active sets, the

algorithm is guaranteed to terminate at the solution.

Problems can arise when the constraint gradients are not linearly indepen-

dent at the point currently being considered. If constraint gradients are linearly

dependent then the claim that the same active set is never repeated is no longer

valid and it is possible for the algorithm to cycle, never terminating at an optimal

point.

Chapter 3 — Sequential Quadratic Programming 20

3.1.2.2 Interior point

An interior point algorithm applied directly to the NLP problem is described in

section 2.2. An interior point algorithm used to solve each QP in a sequence of

approximations to the NLP problem has many similarities.

The first order optimality conditions for the QP model are derived in the same

way as the first order optimality conditions for the NLP problem (2.6):

• First, subtract a slack term from each of the inequality constraints in (3.2)

to convert them into equalities, and alter ci(x) accordingly ∀i ∈ I:

min 1
2
dT B(x, λ)d + ∇fT (x)d

s.t. ∇cT
i (x)d + ci(x) = 0 i ∈ 1, 2, . . . , m

ldi ≤ di ≤ ud
i i ∈ 1, 2, . . . , n.

The slack variables are included in the model as non-negative variables

which are appended to d.

• Then replace the bound constraints on di with barrier terms in the objective:

min 1
2
dT B(x, λ)d + ∇fT (x)d − µ

n
∑

i=1

ln(di − ldi) − µ
n

∑

i=1

ln(ud
i − di)

s.t. ∇cT
i (x)d + ci(x) = 0 i ∈ 1, 2, . . . , m.

• Find the Lagrangian for this problem:

L(d, λ; x, µ) =
1

2
dT B(x, λ)d + ∇fT (x)d −

m
∑

i=1

λi(∇cT
i (x)d + ci(x))

− µ

n
∑

i=1

ln(di − ldi) − µ

n
∑

i=1

ln(ud
i − di).

• Differentiate L(d, λ; x, µ) with respect to each of d and λ, setting the deriva-

tives equal to zero to get the first order optimality conditions for the QP

approximations:

∇dL(d, λE , λI, z; x, µ) = B(x, λ)d + ∇f(x) −
m

∑

i=1

λi∇ci(x)

−
n

∑

i=1

µ

di − ldi
+

n
∑

i=1

µ

ud
i − di

= 0

∇λE
L(d, λE , λI, z; x, µ) = ci(x) = 0 i ∈ E

• Then, setting

µ

di − ldi
= zi,

µ

ud
i − di

= wi ∀i ∈ 1, 2, . . . , n

Chapter 3 — Sequential Quadratic Programming 21

and reversing the sign of the first equation, we get a set of first order op-

timality conditions for QP approximation problems which are analogous to

(2.6) for NLP problems.

−B(x, λ)d −∇f(x) + ∇cT (x)λ + z − w = 0 (3.6a)

∇c(x)T d + c(x) = 0 (3.6b)

(D−Ld)Ze = µe (3.6c)

(Ud−D)We = µe (3.6d)

(di − li, z, ui − di, wi ≥ 0 ∀i ∈ 1, 2, . . . , n.)

An interior point method using (3.6) is similar to Algorithm 2.3 for solving

(2.6). The first order optimality conditions (3.6) are a system of linear equations

which can be solved using Newton’s method

∇F (d, λ, z, w; x, µ)

dk+1 − dk

λk+1 − λk

zk+1 − zk

wk+1 − wk

= −F (d, λ, z, w; x, µ) (3.7)

with

F (d, λ, z, w; x, µ) =

−B(x, λ) −∇f(x) + ∇cT (x)λ + z − w
∇cT (x)d + c(x)
(D−Ld)Ze − µe
(Ud−D)We − µe

and

∇F (d, λ, z, w; x, µ) =

−B(x, λ) ∇cT (x) I −I
∇c(x) 0 0 0

Z 0 D−Ld 0
−W 0 0 Ud−D

to give an optimal direction of improvement (the Newton direction):

dk+1 − dk

λk+1 − λk

zk+1 − zk

wk+1 − wk

.

A step is taken in this direction, ensuring that the new values of z, w, d− ld and

ud − d are greater than zero.

A series of Newton systems are solved, with µ being updated after each solu-

tion of (3.6). Methods of updating µ are left to Chapter 5.

It is interesting here to compare the KKT conditions (3.3) with the first or-

der optimality conditions derived for use in equality constrained interior point

algorithms (3.6):

Chapter 3 — Sequential Quadratic Programming 22

• (3.3a) and (3.6a) are equivalent.

• (3.3b) and (3.6b) are also equivalent.

• (3.3c) and (3.3d) are only included for bound constraints and the Lagrange

multipliers associated with them, which are kept nonnegative by interior

point logic.

• (3.6c) and (3.6d) represent the same concept, and differ from (3.3e) only

because of the barrier term µ which is added in the interior point method.

As the interior point algorithm progresses, µ invariably → 0 and so (3.6c),

(3.6d) → (3.3e).

It can be seen that an interior point method searches for a solution where the

KKT conditions are satisfied.

3.2 Optimization tools

Determining which method to use to solve the QP approximations in an SQP

algorithm is just one of many choices which need to be made. Other decisions

made when implementing our own SQP algorithm are detailed in section 3.3.

Before this discussion, we consider some optimization tools which will be referred

to.

3.2.1 Factorization of HL

A presentation of the linear algebra inside hopdm is generally beyond the scope of

this work. (See [2] for more details.) However, it is relevant to note that in order

to solve the system of equations (3.7), hopdm uses Cholesky factorization.

Cholesky factorization is used to solve a system of equations of the form

Bx = b by finding the lower triangular matrix L such that B = LLT . This is

only possible of the matrix B is symmetric. If B is also positive definite then this

factorization can be extended to B = LDLT , where D is a diagonal matrix with

positive entries.

If the matrix HL represents a nonconvex problem then it is impossible to find

matrices L and D such that the diagonal elements of D are all positive. This

would imply that the stationary point of the QP model is not a minimum and

that the Newton direction found as the solution of (3.7) is not a descent direction.

This potential difficulty can be overcome by replacing HL with a positive

definite approximation. This can be calculated using Quasi-Newton approaches

such as the BFGS and DFP methods (see Nocedal & Wright [62] or Fletcher [30]

Chapter 3 — Sequential Quadratic Programming 23

for further details) or by adding a positive multiple of the identity (ΓI) to HL

so that all the elements in the diagonal matrix D of the LDLT factorization of

HL + ΓI are positive.

3.2.2 Linesearch methods

There are two fundamental strategies for moving from the current point xk to

a new point xk+1. The first to be considered here is linesearch methods. In

these, the system of equations (3.7) is solved to find the Newton direction for the

quadratic model (dk) and then a decision is made about how far to travel in that

direction to obtain improvement in the nonlinear program.

3.2.2.1 Merit functions

Merit functions are used to measure the merit of points on the line defined by xk+

αkdk. These functions closely resemble the penalty functions defined in section

2.1 but represent entirely different concepts. They are used to compare points

with respect to improvements in each of the objective and constraint feasibility.

In this section, and for the remainder of this work, the penalty parameter 1
µ

is

replaced with ν to avoid confusion with the interior point barrier parameter µ.

Exact merit functions are those for which a penalty parameter, ν, can be found

such that minimization of the merit function is equivalent to finding a minimum

of the original nonlinear problem. In [44], Han and Mangasarian discuss values of

ν which have this property for an l1 merit function. They prove that if ν is larger

than the maximum absolute value of the dual variables of the problem, that is:

ν > |λi| ∀i ∈ E ∪ I (3.8)

then the property holds. This value of ν is bounded if the LICQ is satisfied.

Exact merit functions include l1 merit functions and Augmented Lagrangian merit

functions.

Inexact merit functions, such as quadratic merit functions, can also be used,

but a penalty parameter which ensures that the minimum of the merit function

is also the minimum of the NLP problem cannot be found.

3.2.2.2 The Maratos effect

Merit functions of the form

Φ(x; ν) = f(x) + ν‖c(x)‖

can suffer from the Maratos effect [54] which occurs because curvature in the

constraints is not adequately represented by linearization in the QP model. This

Chapter 3 — Sequential Quadratic Programming 24

can result in cases where the direction found by solving (3.7) would cause increase

in both the objective function and the constraint violation whilst being consistent

with the quadratic convergence expected from a Newton’s method. Nocedal &

Wright [62] gives an example of this, taken from [67]. The Maratos effect can

dramatically reduce the rate at which an SQP method converges.

The problem caused by the Maratos effect can be tackled by allowing a non-

monotonic decrease in the merit function. Grippo, Lampariello & Lucidi [43]

implement this concept by storing merit function values from the previous M

iterations and insisting upon improvement on the worst of these. (M is a con-

stant.)

The problem can also be tackled by using a second order correction. A second

direction d′
k, which satisfies the linear constraints at xk + dk is calculated and the

linesearch is carried out with respect to the direction dk + d′
k. For further details

see Fletcher [30] or Nocedal & Wright [62].

3.2.2.3 Choosing a stepsize

The stepsize αk could be chosen to be the minimizer of the merit function evalu-

ated at xk + αkdk. That is, the minimizer of Φ(αk) where

Φ(αk) = f(xk + αkdk) + ν
∑

i∈E

|c(xk + αkdk)| + ν
∑

i∈I

|c(xk + αkdk)|−.

However, finding the value of αk which exactly minimizes Φ(αk) is a relatively

expensive operation and it is usually more efficient to find a good, approximate

value.

If the search direction, dk is descent with respect to the merit function then

there are values of αk for which the merit function value decreases. It is necessary

to ensure that

a. the decrease made is not negligible,

b. the step taken is not too small.

This can be done by using a backtracking linesearch which decreases αk after

every trial. For each trial value of αk, the point xk + αkdk is tested to see if

sufficient decrease would be made in the merit function if a step of length αk

were taken. The following condition is checked:

Φ(αk) ≤ Φ(0) + c1αk∇Φk(0)Tdk, (3.9)

where c1 ≈ 0.0001 is a small constant and ∇Φk(0)Tdk is the directional derivative

of the merit function at point xk with respect to search direction dk.

Chapter 3 — Sequential Quadratic Programming 25

This condition (3.9) is often called the “Armijo” condition and is one of two

which are collectively known as Wolfe’s conditions. The second condition ensures

that αk does not get too small by insisting that the merit function is decreasing

less rapidly at xk + αkdk than at xk. The condition

∇Φk(αk)
T dk ≥ c2∇Φk(0)T dk, (3.10)

where c2 ∈ (c1, 1) (c1 as in (3.9)), is known as the curvature condition. Its use

allows for linesearches which are not backtracking.

Backtracking linesearches can start from any value of αk, usually > 1. In

the case of linesearches based on Newton’s method, the best starting point is

chosen by setting αk = 1. New trial values of αk are then chosen between 0 and

the current value. This can be done by successively halving the current value

or by interpolating known function and derivative values of Φ(αk) and using the

minimizer of the interpolating polynomial as the next value of αk.

3.2.3 Trust region methods

The second fundamental strategy for moving from the current point xk to a new

point xk+1 is the use of a trust region. A point is found which approximately

minimizes a quadratic model at xk, with an additional constraint that restricts the

distance between xk and xk+1. This constraint is called a trust region constraint

and takes the form ∆xk ≤ δ, where δ is the current trust region’s size.

One method of finding this new point is to calculate the Cauchy point, xCP ,

(the best step in the steepest descent direction) and the Newton point, xN , (taking

a step of 1 in the Newton direction) and then choose the best point on the line

joining xk, xCP and xN . This line, known as a dogleg, is shown in Figure 3.1.

The improvement predicted by the step in the quadratic model is compared with

the improvement which is actually made in the nonlinear program and a decision

about whether to take the step or adjust the trust region is made as follows:

If actual reduction ≥ C1 × predicted reduction.

Make step and increase trust region size.

Else if actual reduction ≥ C2 × predicted reduction.

Make step.

Else

Reduce trust region size and do not make step.

1 > C1 > C2 > 0 are constants which vary between algorithms and don’t seem to

be critical to their success. More of the underlying theory of trust region methods

can be found in e.g. [9, 30, 35, 62].

Chapter 3 — Sequential Quadratic Programming 26

+

+
+

xk

xCP

xN

Figure 3.1: Showing the trajectory which can be searched when looking for an
approximate minimizer inside a given trust region. The point which would be
chosen if this method were used is the point where the dogleg trajectory crosses
the trust region boundary.

3.3 hopdmSQP

In this section, we give a basic outline of a linesearch SQP algorithm, which we

will consider step by step to show the decisions made when implementing our own

SQP solver, using the LP and QP solver hopdm [39]. We used the Constrained

and Unconstrained Testing Environment (CUTE [14]), to tailor the algorithm.

Algorithm 3.1.

Choose a starting point x0, λ0.

For k = 0, 1, 2, . . .

Calculate f(xk),∇f(xk), B(xk, λk) and ci(xk),∇ci(xk) ∀i ∈ E ∪ I.

Choose accuracy tolerance τk.

If final convergence test is satisfied

STOP with solution xk, λk.

Form QP approximation (3.2).

Solve (3.2) to get direction dk and new Lagrange multipliers λknew
.

Choose a steplength αk.

Make step

xk+1 = xk + αkdk

λk+1 = λk + αk(λknew
− λk)

End for

• Choose a starting point x0, λ0.

With the exception of cases when the primal starting points, x0, given by the

Chapter 3 — Sequential Quadratic Programming 27

CUTE models are outside their variable bounds, they are left unchanged.

Otherwise, they are brought within the bounds, using the following algo-

rithm:

If primal starting points are less than the variable lower bounds

If a finite upper bound exists

Choose x0 to be between the lower and upper bounds in a 10%−90%

ratio.

Else

Choose x0 to be ϑ greater than the lower bound2.

(x0 = l + ϑ)

Else if primal starting points are more than the variable upper bounds

If a finite lower bound exists

Choose x0 to be between the lower and upper bounds in a 90%−10%

ratio.

Else

Choose x0 to be ϑ less than the upper bound2.

(x0 = u − ϑ)

Dual starting points, λ0, were always left unchanged.

• Calculate f(xk),∇f(xk), B(xk, λk) and ci(xk),∇ci(xk) ∀i ∈ E ∪ I.

The CUTE problems have been written as ampl models. Ampl [32] is an

automatic differentiation tool which provides first and second derivatives

for optimization problems. Using the guidelines set out in [34] we wrote an

interface between ampl and hopdm which enables us to use the exact Hessian

of the Lagrangian as an initial B(xk, λk).

• Choose accuracy tolerance τk.

As the QP model is an approximation to the NLP problem which we are

trying to solve, we do not need to aim for high accuracy until we believe that

we are close to the solution of the NLP problem. Therefore, we ask for an

accuracy of 1.0× 10−6 (6 decimal places) for the first quadratic model, and

thereafter choose the accuracy requested according to change in objective

function.

if |(fk−1 − fk)| < 0.1 then τk = 5.0 × 10−7

if |(fk−1 − fk)| < 0.01 then τk = 5.0 × 10−8

if |(fk−1 − fk)| < 0.001 then τk = 5.0 × 10−9

2ϑ is chosen as in Loqo [74] to be 1.0.

Chapter 3 — Sequential Quadratic Programming 28

Of course, if the objective function is a constant, then this method of choos-

ing τk is inappropriate, because it will ask for high accuracy on every it-

eration. In these cases, we use the reduction of constraint violation to

determine τk.

• if final convergence test is satisfied
STOP with solution xk, λk.

Theorem 3.1 shows that if xk is a solution and the LICQ holds at xk, then

the KKT conditions (3.3) are satisfied. Therefore, in most cases, checking

these conditions is a suitable way to determine whether xk is a solution of

the problem.

If the objective function is a constant, then we only need to check that the

constraints are not violated.

• Form QP approximation (3.2).

The QP approximation which we use here is not as straightforward as (3.2).

– We place artificial bounds on the primal direction variables. Generally,

we allow them to have a maximum size of 20. However, if the requested

accuracy for the QP model is less than 1.0× 10−6 (because we believe

we are close to the solution of the NLP problem) then they are allowed

a maximum size of just 5. These bounds act as a basic trust region.

– Elements in the Hessian and Jacobian with size less than 1.0 × 10−8

are removed completely. This affects the sparsity structure of each of

these matrices, reducing the number of floating point operations re-

quired when solving the first order optimality conditions and therefore

improving the efficiency of the algorithm.

– We add extra variables to the problem, two for each equality constraint,

to ensure that the problem is primal feasible. In each pair, both vari-

ables can take any positive value, but one is added to the constraint

and the other is subtracted. Inequality constraints receive one new

positive variable, which is added. If the new variables (h+ and h−)

are required, then they are penalised in the objective function, with a

penalty parameter ρ.

min 1
2
dTB(x, λ)d + ∇fT (x)d + ρ

∑

i∈E∪I

h+
i + ρ

∑

i∈E

h−
i

s.t. ∇cT
i (x)d + ci(x) + h+

i − h−
i = 0 i ∈ E

∇cT
i (x)d + ci(x) + h+

i ≥ 0 i ∈ I
h+

i ≥ 0 i ∈ E ∪ I
h−

i ≥ 0 i ∈ E
ldi ≤ di ≤ ud

i i ∈ 1, 2, . . . , n

Chapter 3 — Sequential Quadratic Programming 29

Inspired by Benson & Shanno [5], ρ is given an initial value ten times

greater than the largest primal or dual variable. As the algorithm

progresses, ρ is gradually increased, to make the use of these artificial

variables less attractive as a solution is neared. A good explanation of

the reasoning behind adding extra parameters to the linearized con-

straints is given by Tone [70].

• Solve (3.2) to get direction dk and new Lagrange multipliers λknew
.

At this point, the altered version of (3.2) is sent to hopdm and a solution is

found. There are several factors which may cause hopdm to terminate with

an error code which states that a solution could not be found.

The solution found is tested to check that it is a descent direction with

respect to the merit function. Strategies for continuing when the solution

is not descent, or when hopdm terminates with an error code are discussed

in section 3.3.1.

• Choose a steplength αk.

αk is chosen with a linesearch strategy that uses the l1 merit function with

a penalty parameter chosen as in (3.8). A backtracking linesearch is used,

with new trial values of αk chosen by quadratic interpolation. The nonmono-

tone strategy of Grippo et al. [43] is implemented to handle the Maratos

effect.

• Make step

xk+1 = xk + αkdk

λk+1 = λk + αk(λknew
− λk)

3.3.1 Dealing with hopdm error codes and nondescent di-

rections

If hopdm returns an error code or if the direction that it finds is nondescent with

respect to the merit function then extra work must be carried out to enable

the algorithm to continue. This section describes the methods implemented in

hopdmSQP in such cases.

Primal or dual infeasible problem

If the error code returned states that the QP model is primal or dual infeasible

then we adjust the penalty parameter ρ, which was introduced to guarantee primal

feasibility, and return the problem to hopdm.

Chapter 3 — Sequential Quadratic Programming 30

Requested accuracy not reached

If the problem is not solved to the requested accuracy then a multiple of the

identity (ΓI) is added to HL and the problem is returned to hopdm.

The first time this addition is required, Γ is calculated by adding together

the maximum absolute value of off-diagonal elements and the size of the most

negative diagonal element. If this gives Γ < 1 then Γ is taken to be 1. On each

subsequent HL update, Γ is doubled.

Nondescent directions

If the direction found is nondescent with respect to the merit function then there

are a number of possibilities available to us. The first thing we try is to make our

request for accuracy more demanding and return the problem to hopdm.

If the direction returned is nondescent after progressively increasing the ac-

curacy requested to a maximum of 11 decimal places, we try to regularize the

Hessian approximation in the same way as when the solution found by hopdm did

not reach the requested accuracy.

If this regularization has not resulted in a descent direction after Γ has been

doubled 3 times, then we use the steepest descent direction with respect to the

objective (∇f(xk)) as a possible step direction. We need to be careful to ensure

that this direction does not take variables outside their bounds, as this could cause

numerical difficulties. We use the size of the previous iteration’s step (‖dk−1‖) as

a guide to determine how far along the steepest descent direction we should aim

to travel.

The steepest descent direction is also used if changing ρ when the problem

formulation is infeasible is unsuccessful or if requested accuracy is not obtained

after 4 regularization attempts.

3.4 CUTE

3.4.1 Small subset

The Constrained and Unconstrained Testing Environment (CUTE [14]) was used

to test the success of hopdmSQP. A test set of 96 problems was randomly chosen

from the 732 problems which have been written as ampl models by Benson [8].

When the first trial version of hopdmSQP was tested on these 96 problems, 52

(54%) were solved to the requested accuracy. The algorithm’s behaviour on each

of the problems was observed, patterns were detected and changes were made to

attempt to improve the success rate. These changes are explained in Table 3.1

Chapter 3 — Sequential Quadratic Programming 31

and the specific problems which are solved with each version of hopdmSQP are

shown in Appendix A (Table A.1). Changes E and J were not considered to be

successful alterations, so have not been kept. The current version of hopdmSQP is

able to solve 81 of the problems (84%).

Description of Change % Solved
Start 54

A Reduced restriction on termination conditions, replacing
requirement that KKT condition (3.3a) be satisfied to 6
decimal places with the possibility that if objective func-
tion is no longer being significantly improved and 5 deci-
mal place accuracy is achieved on 3 successive iterations,
or 4 decimal place accuracy is achieved on 10 successive
iterations, the algorithm will terminate.

58

B Insisted that primal variables are initialized within their
bounds.

57

C Increased penalty parameter ρ by a multiple of 2 at each
iteration.

62

D Delayed the increase of ρ until iteration 10. 79
E Placed a fake upper bound on infeasibility variables. 59
F Changed response to hopdm not reaching requested accu-

racy.
70

G Introduced the possibility of regularizing matrix when
direction is nondescent.

81

H Reduced the use of nonmonotonicity, so that the possi-
bility of accepting a point which does not make an im-
provement on the current merit function is only included
once α < 0.1.

79

I Some reordering of parameter settings and subroutines. 84
J Stabilized merit function so that comparisons with past

iterations use the same penalty parameter as the current
iterate.

82

Table 3.1: Changes made to hopdmSQP to improve its performance.

3.4.2 Complete set

hopdmSQP was then tested on all 732 problems. The time taken to solve each

problem, the number of NLP iterations and the constraint violation and objective

value at the solution are shown in Table A.2. The solver was allowed to run for

four hours and was allowed a maximum of 500 iterations. In all, 612 problems

were solved (84%).

Chapter 3 — Sequential Quadratic Programming 32

3.5 Possible further improvements to hopdmSQP

Those problems for which hopdmSQP fails to converge are listed in Table A.3

along with a description of their behaviour during the iteration sequence, or a

guess at why the problem is not solved. From this, it is possible to see that 19

problems converge to a known solution of the problem, but do not terminate. This

indicates that more work needs to be carried out into determining appropriate

termination conditions for the algorithm. Possibly, it would be advisable to alter

these conditions so that they are related to the size of the objective value.

It can be seen that there are many problems for which α → 0 and no further

progress can be made. It would be worth investigating the causes of this. It is

possible that this behaviour is caused by the Maratos effect, despite the nonmono-

tone procedure which has been implemented. It is also possible that it would be

more effective to update the merit function penalty parameter in a different way,

maybe giving less penalty to constraint violation. However, these are conjectures

and the actual causes for this behaviour still need to be researched.

There are 2 problems (semicon1 and vanderm1) for which the steepest descent

method returns an error. It has not been implemented correctly when it is called

because ρ is increased above its maximum value.

Also, the method for updating HL when the problem is thought to be noncon-

vex is inefficient. It would be more efficient to determine the nature of HL before

200 redundant QP iterations have been carried out and hopdm is unable to find a

solution with the requested accuracy. Also, it would be efficient to test each trial

identity addition HL + ΓI for convexity before the QP iterations are carried out.

It is also of concern that the steepest descent method ever needs to be im-

plemented. Ideally, the merit function and HL should be constructed such that

the solution of the QP approximation can provide sufficient decrease in the merit

function.

Now, there are several problems for which the objective value is still discernibly

decreasing after 500 iterations. At least three of these (hues-mod, palmer1d,

palmer2c) can be solved if the algorithm is allowed to run longer. If we include

these problems, and those for which the solver converges but does not terminate

as successes, then hopdmSQP solves 86.6% of the CUTE set.

Chapter 4

Nonlinear Programming
Algorithms

This chapter provides an overview of the work on solution methods to NLP prob-

lems which are found in the literature. To this end, we consider the different

solution methods described in Chapter 2 and comment on the choices made by

authors of the widely varying solution techniques within each section. Also, al-

though each author has chosen different notation for their work, we will use the

same notation as in previous chapters when commenting on each solver, unifying

the algorithms in the literature so that comparisons can be made more easily.

We will begin by mentioning penalty methods, considering the need to avoid

the ill-conditioning inherent in these techniques. We will then move on to show

how interior point methods, although similar, avoid the problem of ill-conditioning

when applied directly to NLP problems. Here, we provide a lengthy discussion

about the details of a selection of primal-dual interior point solvers. Following

this, we will mention several SQP methods from the literature, remarking on the

wide variety of techniques available.

Finally, we consider the merit of some of the algorithms presented, relating

the authors’ own conclusions, referring to some comparison papers and including

reference to the success of our hopdmSQP relative to the conclusions drawn in these

papers.

4.1 Penalty methods

Penalty methods for solving NLP problems have been being researched for a

number of decades. A good summary text, published in 1968, is the book by

Fiacco & McCormick [28] which gives a thorough historical survey of sequential

unconstrained methods for solving constrained minimization problems before de-

scribing a variety of such algorithms in detail. As mentioned in Chapter 2, these

33

Chapter 4 — Nonlinear Programming Algorithms 34

solution techniques tend to suffer from ill-conditioning as the penalty parameter

µ approaches zero.

Nash & Sofer have written an interesting paper [61] which employs techniques

to combat these problems, using a log-barrier function of the form (2.2), for

inequality constrained problems. As a pure Newton method of the form

dk = −HL−1∇f(xk), xk+1 = xk + dk,

would struggle as µ approaches zero because of ill-conditioning, they use a trun-

cated Newton method, avoiding problems caused by the ill-condition of the Hes-

sian matrix, HL, by calculating an approximation to the Newton direction. It is

shown that their approximation becomes more accurate as µ decreases.

It is necessary to incorporate a linesearch to find a suitable stepsize, α, such

that

xk+1 = xk + αdk

is a good new point. Murray & Wright [59] show that standard linesearch methods

(usually based on polynomial interpolation) are often ineffective for log-barrier

functions. They suggest that the interpolating function used to estimate a good

stepsize should include logarithmic terms. In fact, numerical results are given in

both [61] and [59] which show that altering the linesearch to reflect the presence

of logarithmic terms leads to a significant improvement in the efficiency of a

log-barrier algorithm. An example of the problems encountered when using a

polynomial interpolant to a log-barrier function is shown in Figure 4.1. It can be

seen that the minimum of the polynomial interpolant does not provide a good

estimate of the minimum of the log-barrier function.

Other work on how to overcome ill-conditioning and poor scaling as µ ap-

proaches zero has been carried out by Gould [42] and Dussault [25]. Also, Fors-

gren & Gill [31] have considered the use of a mixed penalty function of the form

(2.3) and have shown how ill-conditioning can be avoided by use of primal-dual

interior point methods.

Before we move on to discuss those methods, it is important to remember the

Augmented Lagrangian function, which was mentioned in section 2.1 as a penalty

function which does not suffer from ill-conditioning as µ approaches zero. It was

first proposed by Hestenes [48] and Powell [66], its key properties are described

by Fletcher [30] and it is the basis of the successful algorithm Lancelot [20, 21]

by Conn, Gould and Toint.

Chapter 4 — Nonlinear Programming Algorithms 35

Φ1

α1

Φ2

α2

µ = 1
2

Figure 4.1: Showing the inadequacy of a polynomial interpolant to a logarithmic
barrier function. The blue line shows the logarithmic barrier function and the
black line is its polynomial interpolant at points α1 and α2. (Calculated from
Φ(α1),∇Φ(α1) and Φ(α2).)

4.2 Interior point methods

It is interesting to note that although the KKT conditions for the logarithmic

barrier problem

∇f(x) − µ
∑

i∈I

∇ci(x)

ci(x)
= 0

c(x) ≥ 0

are equivalent to the perturbed KKT conditions used in interior point methods

∇f(x) −
∑

i∈I

λi∇ci(x) = 0

c(x) ≥ 0

λici(x) = µ ∀i ∈ I,

the iterates found when applying Newton’s method to each case do not coincide.

This result, which is easy to extend to nonlinear problems, has been shown by El

Bakry et al. [26] for linear programming.

Chapter 4 — Nonlinear Programming Algorithms 36

In this section we will look at a selection of algorithms which use the perturbed

KKT conditions and so are not prone to suffer from ill-conditioning.

Algorithm 2.3 provides a structure for an interior point method for solving an

NLP problem. There are many choices which have to be made in the implemen-

tation of such a method. In this section we will focus on 5 key features:

• The problem formulation to be solved. For example, we have already men-

tioned formulations (1.1) and (2.5) and considered the possibility of E = ∅
or I = ∅, or instances where there are no bound constraints, or when the

bound constraints are included in I.

• The merit function.

• The step direction and stepsize, α.

• The barrier parameter, µ.

• The method for dealing with nonconvexity, which is often handled by choos-

ing a positive definite approximation, B(x, λ), to the Hessian of the La-

grangian.

We have first divided the interior point solvers into four groups. We consider

traditional linesearch and trust region techniques, a recent algorithm which com-

bines the two and finally a linesearch algorithm based on Fletcher & Leyffer’s filter

mechanism [29]. In all, we discuss the algorithmic details of six interior point NLP

solvers and this section is completed with a comparison of these solvers in relation

to the 5 features listed above.

4.2.1 Linesearch methods

Linesearch methods were introduced in section 3.2.2 and the issues which need to

be addressed when writing a linesearch algorithm are outlined in the subsequent

discussion. Essentially, a system of linear equations is solved to find the Newton

direction and a merit function is used to determine a suitable step to be taken in

this direction. Here we discuss two interior point linesearch solvers in detail.

Loqo [71]

Vanderbei & Shanno have used the QP solver Loqo [74] as a building block for

an interior point algorithm for nonlinear programming. Some details of the QP

solver will be mentioned later, in Chapter 5.

Chapter 4 — Nonlinear Programming Algorithms 37

Loqo solves:
min f(x)
s.t. 0 ≤ ci(x) ≤ ri i ∈ I

0 ≤ ci(x) ≤ 0 i ∈ E
with bound constraints also included, but eliminated here for simplicity of for-

mulation. r ∈ R
m ∈ [0,∞) represents the range which an inequality constraint

can take. Equality constraints are written this way, by setting ri = 0.

The above formulation can be altered to

min f(x)
s.t. ci(x) − si = 0 i ∈ E ∪ I

si + pi = ri i ∈ I
si + pi = 0 i ∈ E

si, pi ≥ 0,

where s, p ∈ R
m are slack variables.

This formulation gives the Lagrangian

L(x, s, p, λ, q; µ) =f(x) − λT (c(x) − s) −
∑

i∈I

qi(si + pi − ri)

−
∑

i∈E

qi(si + pi) − µ
∑

i∈E∪I

ln si − µ
∑

i∈E∪I

ln pi,

where λ, q ∈ R
m are Lagrange multipliers associated with constraints.

Working only with equality constraints makes this formulation advantageous

when solving the first order optimality conditions to find the Newton direction.

For more details, see [74] or [71].

The merit function used is

f(x) − µ
∑

i∈E∪I

(ln si + ln pi) +
ν

2

{

‖c(x) − s‖2
2 + ‖sI + pI − rI‖2

2 + ‖sE + pE‖2
2

}

.

ν is initialised at zero and increased if the direction found is nondescent or if α

tends to zero, which could imply that the algorithm is converging to an infeasible

optimum. Although the theory states that this merit function, being inexact,

could require ν to appraoch infinity, in practice it increases rarely and often

remains at zero.

The stepsize, α, is chosen by successive halving. If the point with αk does not

improve the merit function then αk+1 = αk

2
.

The barrier parameter, µ, is chosen by an efficient heuristic which is based

on the reasoning that a sequence of iterates converges more quickly if the values

of complementarity products siλi converge uniformly to zero. Distance from

uniformity is measured by comparing the value of each complementarity product

against the average. When far from uniformity, the value of µ at the next iteration

is chosen to be close to the current value to promote uniformity.

Chapter 4 — Nonlinear Programming Algorithms 38

Finally, if HL is not positive definite, a positive multiple of the identity is

added such that

B(x, λ) = HL + ΓI

is positive definite. Positive definiteness is ensured by repeatedly doubling Γ

until the diagonal elements of the symmetric factorization (see section 3.2.1) of

B(x, λ) = LDLT are all greater than zero.

A.L.Tits, A.Wächter, S.Bakhtiari, T.J.Urban & C.T.Lawrence [69]

Tits et al. have proposed a primal dual interior point algorithm which was written

specifically to deal with a group of problems for which interior point algorithms

have been shown to consistently fail (see [76]).

This algorithm solves

min f(x)
s.t. ci(x) = 0 i ∈ E

ci(x) ≥ 0 i ∈ I

by replacing the equality constraints with an l1 penalty in the objective1

min f(x) + ν
∑

i∈E

ci(x) = fν(x)

s.t. ci(x) ≥ 0 i ∈ E ∪ I.

Using λi =
µ

ci(x)
, this formulation gives the Lagrangian

L(x, λ; ν, µ) =f(x) − µ
∑

i∈E∪I

ln ci(x) + ν
∑

i∈E

ci(x)

∇xL(x, λ; ν, µ) =∇f(x) + (νe − λE)
T∇cE(x) − λT

I∇cI(x),

where λE , λI are Lagrange multipliers associated with equality and inequality

constraints respectively and ∇cE(x), ∇cI(x) are Jacobian matrices associated

with equality and inequality constraints.

This formulation already includes an l1 penalty function which is used as

a merit function. It only penalizes equality constraints as the constraints are

prevented from taking negative values by the logarithmic terms, which means that

inequality constraints cannot take infeasible values. As Han and Mangasarian

proved in [44], if ν > maxi∈E |λi| then the minima of this penalty function are

equal to minima of the NLP problem. However, to prevent ν increasing too

quickly, it is only updated when several stringent conditions are met.

1| . | signs are redundant in this formulation as ci(x) is always positive.

Chapter 4 — Nonlinear Programming Algorithms 39

The stepsize, α, is chosen carefully. It is computed as the first α in the

sequence {1, η, η2, . . . }, η ∈ (0, 1) such that

fν(x + α∆x + α2∆x̃) ≤ fν(x) + ζα∇fν(x)T ∆x

ci(x + α∆x + α2∆x̃) ≥ 0 i ∈ E ∪ I,

where ζ ∈ (0, 1
2
) and ∆x̃ is a second order correction which is only included when

the iteration sequence is near to a solution, in order to avoid the Maratos effect

[54].

The barrier parameter is selected such that µ

• is large enough to prevent α tending to zero due to infeasibility.

• is small enough that significant decrease for f is achieved.

• approaches zero fast enough for the local convergence properties associated

with the Newton method (µ = 0) to be exploited.

No mention is made of how they choose their modification to the Hessian of

the Lagrangian in order to deal with nonconvexity.

4.2.2 Trust region methods

Trust region methods were introduced in section 3.2.3. An additional constraint

is added to the quadratic model to ensure that the suggested step is not larger

than a given trust region radius. Here, we discuss the features of two individual

algorithms which use trust region logic.

NuOpt [80]

NuOpt extends work by Yamashita [81]. It works to solve problems of the form:

min f(x)
s.t. ci(x) = 0 i ∈ E ∪ I

x ≥ 0 i ∈ 1, 2, . . . , n,

where inequality constraints have been converted to equality constraints by the

addition of slack variables with lower bounds of zero. This gives the Lagrangian:

L(x, λ; µ) = f(x) − λT c(x) − µ
n

∑

i=1

ln xi.

An l1 merit function is used:

f(x) − µ

n
∑

i=1

lnxi + ν
∑

i∈E∪I

|ci(x)|

Chapter 4 — Nonlinear Programming Algorithms 40

with ν ≥ maxi∈E∪I |λi| as in previous algorithms. The Maratos effect is handled

with a nonmonotone technique which is implemented if the interior point barrier

parameter, µ, is less than some chosen value ε.

Often in trust region methods, two directions are calculated as solutions

to each QP approximation. Here, the first is the steepest descent direction

(∆xSD, ∆λSD) and the second is the Newton direction (∆xN , ∆λN). The di-

rection taken is a linear combination of these two directions

(∆x, ∆λ) = β(∆xSD, ∆λSD) + (1 − β)(∆xN , ∆λN).

The combination to be used is chosen in an iterative way.

Set β to 0

While α not accepted

Choose largest α in direction (∆x, ∆λ) such that:

- the trust region radius is not exceeded.

- no variable bounds are violated.

Find α∗ ∈ [0, α) that minimizes QP approximation in direction (∆x, ∆λ).

If α∗ makes sufficient improvement on the Cauchy point.

Accept α∗.

Else

Increase β by 0.1.

If possible, this algorithm accepts the Newton direction.

The barrier parameter µ is controlled by several problem dependent param-

eters. The strategy for choosing it changes after it has been reduced below the

level at which a nonmonotone strategy is introduced.

A positive diagonal matrix is added to HL if it is nonsingular.

KNITRO [17]

knitro works with the formulation

min f(x)
s.t. ci(x) = 0 i ∈ E

ci(x) ≥ 0 i ∈ I,

adding positive slack variables to inequality constraints such that ci(x) ≥ 0 is

replaced with ci(x) + si = 0, si ≥ 0 ∀ i ∈ I. This gives the Lagrangian:

L(x, s, λ; µ) = f(x) + λT
E cE(x) + λT

I (cI(x) + s) − µ
∑

i∈I

ln si.

The merit function chosen uses the Euclidean norm:

f(x) − µ
∑

i∈I

ln si + ν‖cE(x), cI(x) + s‖2

Chapter 4 — Nonlinear Programming Algorithms 41

which is nondifferentiable, like the l1 merit function. It is also prone to the

Maratos effect, which is avoided here by the use of second order correction terms.

The step direction is determined in two parts. First, the optimal point on a

dogleg trajectory such as the one shown in Figure 3.1 is found. This direction is

called the normal direction and lies in the range space of the linearized constraints.

A second component of the direction is chosen by finding the step in the null

space of the constraints which makes the most improvement in the quadratic

approximation to the Lagrangian. (That is, the best step which does not alter

the amount by which the linearized constraints are violated.) The methods used

to calculate this second component of direction are designed to cope with problems

which are nonconvex. For more details, see [17].

The penalty parameter ν is chosen such that the predicted improvement in

the quadratic model which is made by a step in the composite direction is at

least a fraction (0.3) of the predicted improvement made by a step in the normal

direction.

The method implemented in knitro is not a straightforward trust region

method for solving nonlinear programs. In fact, the authors incorporate some

logic from SQP methods. As the barrier parameter, µ, is reduced towards zero,

a tolerance τµ is also reduced to zero. For each value of µ, a sequence of trust

region problems is solved, until the KKT conditions (3.3) for the barrier problem

are satisfied to within tolerance τµ. When this tolerance is reached, µ and τµ are

decreased such that

µk+1 =
µ

5
, τµ

k+1 =
τµ
k

5
.

Finally, it is worth noting that the authors of [17] have experimented with dif-

ferent trust region shapes, concluding that the best shape is one which is designed

to prevent slack variables from approaching zero prematurely. The trust region is

scaled with S−1 to penalize steps near to the boundary. (S is the diagonal matrix

formed from s.) That is, the unscaled trust region ‖∆x, ∆s‖2 ≤ δ is replaced

with ‖∆x, S−1∆s‖2 ≤ δ.

4.2.3 Hybrid methods

Although most solvers can be classified as either linesearch or trust region meth-

ods, recently (2006) Waltz et al. [78] mixed linesearch and trust region iterations

together in a way which utilizes the advantages inherent in both techniques whilst

avoiding the disadvantages.

Chapter 4 — Nonlinear Programming Algorithms 42

KNITRO-Direct [78]

Knitro-Direct is a knitro-based algorithm which is intended to be more robust

than either a pure trust region or a pure linesearch method. It works with the

same formulation as knitro [17] and also has the same merit function, using

second order correction terms to avoid the Maratos effect.

Similarly to knitro, µ is held constant until the KKT conditions (3.3) for

the barrier problem are satisfied with a tolerance of τ µ.

Now, in practice, a linesearch method, which requires only one direction cal-

culation, is used at every iteration, whilst the trust region method described in

[17], which requires an expensive null-space decomposition each time it is used, is

only implemented when the linesearch is shown or predicted to be unsuccessful.

That is, a trust region step is made when HL is not positive definite, or when

the steplength α approaches zero. As stated above, the direction chosen by the

trust region method of knitro is designed to be able to handle nonconvexity

effectively.

In order to make smooth transitions between linesearch and trust region iter-

ations, parameters such as α, δ, µ, and τµ are updated with different strategies

according to whether the immediately preceding step was a linesearch or a trust

region step.

4.2.4 Filter methods

Filter methods were introduced by Fletcher & Leyffer in 1997 [29] in the context

of active set trust region SQP. Described already in section 2.4, a filter represents

points which would not be accepted. For each point that defines the filter, the

barrier objective value and the constraint violation are stored and any further

trial point which has a higher value by both of these measures is not accepted.

See Figure 2.3 for an example of a filter.

The next solver to be described uses a filter method incorporated into an

interior point NLP solver.

IPOPT [77]

Inequality constraints are removed from the NLP formulation by the addition of

positive slack variables, using the now familiar problem structure

min f(x)
s.t. ci(x) = 0 i ∈ E ∪ I

x ≥ 0 i ∈ 1, 2, . . . , n

Chapter 4 — Nonlinear Programming Algorithms 43

which gives the Lagrangian

L(x, λ; µ) = f(x) − λT c(x) − µ
n

∑

i=1

ln xi.

Instead of using a merit function, ipopt combines the use of a filter method

with a standard linesearch method.

After each QP approximation is formed and solved, α is determined first to

keep variables within their bounds and then the point x + αd is tested, and, if

necessary, updated with a variation on a backtracking Armijo approach which

includes the filter:

While α is not accepted.

If α < αmin.

Move to a feasibility restoration phase2.

Else if x + αd is within the filter.

Reject point.

α = α
2
.

Else

If ‖c(xk)‖ < a chosen minimum constraint violation.

And a ‘switching’3 condition holds.

If Armijo condition (3.9) is met.

Accept α.

Else

α = α
2
.

Else if there is sufficient decrease in barrier objective function.

Or a sufficient decrease in constraint violation.

Accept α.

Else

α = α
2
.

If the accepted point x + αd does not meet the switching condition, or does

not make sufficient decrease in the barrier objective function, then it is added to

the filter.

2Description of this is beyond the scope of this work. See [77] for further details.
3The switching condition is met if the search direction is descent and its directional derivative

(∇ϕT (x)d) satisfies the relationship

α(∇ϕT (x)d)κ3 > κ5‖c(x)‖κ4

with respect to α and to the constraint violation. (Here κ3, κ4 > 1 and κ5 > 0 are constants
and ϕ(x) = f(x) − µ

∑

n

i=1
ln xi.)

Chapter 4 — Nonlinear Programming Algorithms 44

Similarly to knitro and knitro-Direct, ipopt holds µ constant until the

KKT conditions (3.3) for the barrier problem are satisfied to within a given tol-

erance τµ. When they are satisfied to this level, µ is reduced using the following

formula:

µk+1 = max

{

τµ

10
, min {κ1µk, µ

κ2

k }
}

,

τµ is reduced and the filter is reset. (κ1 ∈ (0, 1), κ2 ∈ (1, 2) are chosen constants.)

Any nonconvexity in the problem is dealt with by inertia correction. The

inertia (number of positive and negative eigenvalues) of the matrix is found by

calling Harwell libraries (such as the factorization routine MA27 from [45]) and

any indefiniteness is removed by the addition of multiples of the identity.

See Table 4.1 for a comparison of these solvers with regard to the 5 features

mentioned at the beginning of this section.

4.3 Sequential quadratic programming

There are many different SQP methods described in the literature. In this section,

we look at three, to illustrate the variety of algorithms available. We consider

snopt [36], a method of Boggs, Kearsley & Tolle [12] and filterSQP [29]. The

key features of an SQP algorithm are the method used to solve the quadratic

model and the strategies used for ensuring that progress is made in the iteration

sequence. That is, choosing a suitable stepsize, or deciding how to update a filter.

4.3.1 Solving the quadratic model

Both snopt and filterSQP solve the quadratic approximation using an active

set method. The model each solves is, however, different, snopt forming a first

derivatives approximation to HL whilst filterSQP uses the exact Hessian of the

Lagrangian where possible.

In [12] Boggs et al. use a method for solving the QP approximation which has

not previously been mentioned here. They call their method the O3D algorithm

(“optimizing over 3-dimensional subspaces”). Essentially, they find three search

directions, di, using the formula:

[

−∇c(xk)C
−2∇cT (xk) +

HL

γ

]

di = ti, i = 1, 2, 3,

where γ is a scalar depending on the current iterate and C is the diagonal matrix

formed by c(xk). ti are chosen such that at least one of the directions, di, is

descent with respect to the objective function. The algorithm then searches for

C
h
a
p
ter

4
—

N
o
n
lin

ea
r

P
ro

g
ra

m
m

in
g

A
lg

o
rith

m
s

45

Solver Loqo [71] Tits et al. [69] NuOpt [80] knitro [17] knitro ipopt [77]
-Direct [78]

Algorithm Linesearch Linesearch Trust region Trust region Linesearch Filter
Type Trust Region Linesearch

Constraints Inequalities Inequalities Equalities Equalities Equalities Equalities
Variable Nonnegative None Nonnegative Nonnegative Nonnegative Nonnegative
Bounds slacks slacks slacks slacks slacks
Merit Quadratic l1 l1 Euclidean Euclidean none

Function norm norm
Stepsize (α) Successive From Trust region depends on depends on Successive

halving sequence boundary direction linesearch/ halving
{1, η, η2, . . . } calculated trust region

η ∈ (0, 1) radially along
dogleg

Barrier Every Every Every When When When
Parameter iteration iteration iteration tolerance τ µ tolerance τµ tolerance τµ

(µ) updated is attained is attained is attained
Nonconvexity Diagonal no mention no mention Null space Null space Diagonal

added by decomposition decomposition added by
heuristic eigenvalue

calculation

Table 4.1: Comparison of Key Features of Interior Point Solvers

Chapter 4 — Nonlinear Programming Algorithms 46

the best direction which is a linear combination of d1, d2 and d3 and which is not

larger than a given trust region radius.

4.3.2 Choosing the step

Both [36] and [12] are linesearch methods (although [12] makes some use of trust

region logic when determining the step) which use an augmented Lagrangian

merit function with a backtracking linesearch. In both algorithms, the penalty

parameters in the merit function are adjusted to ensure that α can be chosen to

allow sufficient decrease in the merit function.

FilterSQP is a trust region method which does not use a merit function.

Instead, α is always chosen to be 1 and the new point xk+1 = xk + dk is tested.

If it is acceptable to the current filter, then it is added to the filter (see Figure

2.3) and the trust region radius, δ, may be increased. If it is not acceptable to

the filter then it is rejected and δ is decreased.

4.4 Comparisons

For many of the algorithms above, numerical results have been presented which

show the success of the solver on test problems from well known test sets (Hock

& Schittkowski [50], Mittelmann’s quadratic programming set [56], Vanderbei’s

large scale engineering set [72], CUTE [14] and COPS [24]). In this section, we will

relate the successes (or failures) of each solver and the conclusions reached by

the algorithms’ authors. We will follow this with some comments on comparison

papers which discuss the relative successes of a selection of the above algorithms

when run on the same computing machines.

4.4.1 Results from individual solvers

Loqo [71] is compared with lancelot [21] and minos [60] on the Hock &

Schittkowski test set and on a selection of large scale problems from [56]

and [72]. On the small problems from [50], Loqo and minos are shown to

be competitive, with lancelot falling slightly behind, although solution

times are generally in fractions of seconds. Each solver was ranked according

to its speed when solving these problems and the results are compared in

Table 4.2.On the large scale problems from [56] and [72], Loqo is evidently the most

appropriate solver of the three. The solvers are again ranked in accordance

with their speed in solving these problems and the results are shown in

Table 4.3.

Chapter 4 — Nonlinear Programming Algorithms 47

Solver 1st 2nd 3rd
Loqo 44 55 13
lancelot 4 30 78
minos 72 31 9

Table 4.2: Rankings of Loqo [71], lancelot [21] and minos [60] when compared
on the Hock & Schittkowski test set [50].

Solver 1st 2nd 3rd
Loqo 21 4 2
lancelot 0 12 15
minos 4 14 9

Table 4.3: Rankings of Loqo [71], lancelot [21] and minos [60] when compared
on the large scale test sets [56, 72].

It is worth noting here that, of these three solvers, Loqo is the only one

with access to second derivatives, and so would be expected to have the

best performance.

Tits, et al.’s interior point method [69] is run on 63 carefully chosen prob-

lems from the Hock & Schittkowski test set. It is shown that, in terms of

iteration count, this solver is better than Loqo on 39 of these 63 problems.

NUOPT [80] is not compared with any of the other solvers, but, with judicious

choice of parameters for computing µ, is able to solve all but 1 of the

problems from the Hock & Schittkowski test set and succeeds in finding a

solution to 31 of 33 problems from CUTE. These 33 problems are chosen such

that only one is selected from each family of similar problems, excluding any

problem with no objective function or less than 1000 variables. Extensive

numerical results are reported.

KNITRO [17] is compared with lancelot [21] on the Hock & Schittkowski

test set and on 15 problems from CUTE which have been selected for vari-

ety. On the small problems from [50], knitro does not perform as well as

lancelot, but on the larger problems from [14] it is competitive.

KNITRO-Direct [78] is a recent algorithm (published November 2005). It has

not been compared with other algorithms, but numerical testing on CUTE

shows an improvement on previous versions of knitro.

IPOPT [77] is compared with knitro and Loqo on problems from CUTE. The

authors state that they believe that their termination criteria are stricter

Chapter 4 — Nonlinear Programming Algorithms 48

than those of either knitro or Loqo and then show that, using Dolan &

Moré’s performance measure [24], ipopt’s success rate is slightly higher

than those of the other solvers when success is measured by iteration count,

number of function evaluations or CPU time.

SNOPT [36] is not compared with any of the other solvers. However, it is

shown to solve all problems in the COPS test set and 92.8% of problems in

CUTE for which n − m < 2000.

filterSQP [29] is compared with lancelot on problems from CUTE. The prob-

lems are divided into two categories: small problems with n, m < 25 and

large problems with either n ≥ 25 or m ≥ 25. For comparison, only those

problems where filterSQP and lancelot find the same optimal solution

are considered. On both sets of problems, filterSQP proves to be more

reliable and faster than lancelot.

4.4.2 Results from comparison papers

The authors of the three solvers Loqo [71], knitro [17] and snopt [36] have made

a thorough comparison of their solvers, given in full by the Table [23]. The results

of these three solvers on large scale problems from the test sets CUTE, COPS and

[72] have been compared in specific detail by Benson, Shanno & Vanderbei [7] and

comparisons between these three solvers and filterSQP [29] on problems from

CUTE have been made by Morales, Nocedal et al. in [57]. These two comparison

papers take very different angles in their comparisons, although each divides

the problems into groups according to the type of constraints which are present

in the problem formulation. In [7] a small subset of varied problems is chosen

and the details of formulation and structure which cause the three solvers to

behave as they do are discussed. (Results from other large scale problems are

also included.) In [57] the entire CUTE set is divided into four sets (unconstrained,

equality constrained, inequality constrained and generally constrained problems)

and the performance measure [24] is used to draw graphs which compare the

behaviour of the four algorithms.

We would like to compare our solver hopdmSQP with these robust solvers and

choose to do so by comparing the number of iterations required in order to find

an optimal solution on the problems detailed in [7]. For hopdmSQP we count the

number of outer NLP iterations and the total number of QP iterations required.

These comparisons, shown in Table 4.4, show that hopdmSQP performs better

on these large scale problems than snopt, which is designed for problems with

1There are bound constraints.

Chapter 4 — Nonlinear Programming Algorithms 49

Dimensions hopdmSQP

n m Loqo knitro snopt NLP QP
equality QP

dtoc3 14996 9997 54 x 11271 2 7
inequality QP

mosarqp1 2500 700 18 28 4578 4 36
yao 2500 1999 202 20 2 24 298

cvxbqp1 10000 01 18 x 10000 3 22
biggsb1 1000 01 30 23 x 13 154

mixed QP
cvxqp3 10000 7500 38 x 10217 x x

gridneta 8964 6724 24 24 8773 4 32
unconstrained QP

tridia 10000 0 12 8 x 5 27
equality NLP

gilbert 1000 1 37 33 1046 26 224
dtoc4 14996 9997 20 x x 7 59

inequality NLP
svanberg 5000 5000 20 x x 10 89

mixed NLP
clnlbeam 1499 1000 119 22 1466 5 32
dallasl 837 598 40 263 x 192 1677

unconstrained NLP
curly10 10000 0 18 23 x 74 429
penalty1 1000 0 56 46 1170 68 502

Table 4.4: Comparing the number of iterations required by the solvers Loqo,
knitro, snopt and hopdmSQP to solve a selection of large scale problems from
the CUTE set. (x represents a problem which cannot be solved)

n−m < 2000 and does not use second order information, but not as well as Loqo

and knitro.

Both [7] and [57] conclude that different solvers have the best performance

for different groups of problems. For example, of the four algorithms compared,

knitro is clearly the most efficient for solving equality constrained problems

([7] notes that Loqo’s practice of converting equality constraints into inequality

constraints is not ideal). However, Loqo is the most efficient solver for uncon-

strained problems; filterSQP, Loqo and knitro are competitive for inequality

constrained problems; and knitro and snopt are competitive for generally con-

strained problems.

It is important to remember here, that ipopt [77], although not included

in these comparison papers, reports results which show that its performance is

favourable when compared with that of Loqo and knitro.

Chapter 5

The Potential for hopdm to be a
Nonlinear Interior Point Solver.

In Chapter 4 we discussed a large variety of NLP algorithms from the litera-

ture. We considered interior point methods and sequential quadratic program-

ming methods, but did not find any solvers which combine these two techniques

in the way that hopdmSQP does. We suggest that, although hopdmSQP is ulti-

mately successful in solving problems from CUTE, using an interior point code

which works directly with the nonlinear program is likely to be more efficient

than the combination of interior point with SQP. Each system of linear equations

corresponding to the quadratic model would then only be solved once; rather

than several times, reducing µ to zero to obtain a high degree of accuracy. This

seems appropriate given that the model is an approximation. We propose to use

the experience gained in implementing hopdmSQP to write an interior point NLP

solver (hopdmNLP) which uses hopdm [39] as a building block in much the same

way as Loqo [71] uses [74].

In this chapter, we consider the structure of hopdm in greater detail than

before, and we begin by stating the formulation that it uses. We then elaborate

some of the finer details of the implementation of an interior point method, which

are handled by the complete LP/QP solver hopdm in hopdmSQP, but which will

now be dealt with explicitly, such as the control of the barrier parameter µ.

We finish this chapter with a list of factors which should be further investigated

before hopdmNLP is fully implemented. The algorithm is currently a work in

progress.

50

Chapter 5 — The Potential for hopdm to be a Nonlinear Interior Point Solver. 51

5.1 The problem formulation used by hopdm

min f(x)

s.t. ci(x) = 0 i ∈ E (5.1)

ci(x) ≥ 0 i ∈ I1

ci(x) ≤ 0 i ∈ I2

li ≤ xi ≤ ui i ∈ 1 . . . n.

where I1, I2 represent a partition of I into ≥ and ≤ constraints, respectively,

and all other notation is the same as in (1.1).

There are also some range constraints

−ri ≤ ci(x) ≤ 0.

These are included as a special case of I2. Additionally, not all variables xi have

both upper and lower bounds. Some may have neither. Some may have identical

lower and upper bounds and be fixed.

5.2 hopdmNLP

In extending hopdm into a direct NLP solver we are able to use its robust linear

algebra techniques for solving the Newton system of equations. However, unlike

the extension to an SQP solver, we are no longer able to rely on previously written

code to handle the necessary interior point logic. This logic is considered in

section 5.2.2, where the concept of centrality is properly introduced and methods

of updating the barrier parameter are discussed.

Before this discussion, we will introduce adjustments made to the Newton

system of equations (2.7) which assist in its Cholesky decomposition. We will

go on to show how the merit function can be changed to incorporate the barrier

parameter and will look carefully at the different types of variables included in

the problem structure and at techniques which have been proposed for handling

each of them. Finally, we will once more consider techniques available for dealing

with problems which are nonconvex. This is an important feature of any nonlin-

ear programming solver and, although mentioned in Chapters 3 and 4, warrants

further mention here.

Throughout this section we will draw attention to areas which should be given

careful thought when the algorithm is finally determined. They are aspects of the

solver which will benefit from numerical experience with different algorithmic or

parameter choices. We consider details which may influence the choices to be

made and alternative ideas which can be implemented and then compared.

Chapter 5 — The Potential for hopdm to be a Nonlinear Interior Point Solver. 52

5.2.1 Linear algebra

In general, the linear algebra which forms the basis of hopdm is outside the scope of

this work. Interested readers are referred to [2], which explains several techniques

for solving the Newton equations, as well as discussing issues such as scaling,

preprocessing, choice of a starting point and the optimal ordering of a matrix for

Cholesky decomposition. Here, we will introduce the augmented system approach

to solving the Newton system of equations as, initially, we intend to use this

approach in hopdmNLP.

Starting with the Newton system of equations (2.7)

−HL(x, λ) ∇cT (x) I −I
∇c(x) 0 0 0

Z 0 X−L 0
−W 0 0 U−X

∆x
∆λ
∆z
∆w

=

ξc

ξb

ξz

ξw

,

it is possible to determine ∆z and ∆w in terms of ∆x and hence remove them

from the equations, leaving the augmented system
[

−HL − Θ−1 ∇cT (x)
∇c(x) 0

] [

∆x
∆λ

]

=

[

ξ′c
ξb

]

(5.2)

where ξ′c = ∇f(x)−∇cT (x)λ− (X−L)−1µe+(U−X)−1µe is the update of ξc which

reflects the elimination of ∆z and ∆w; and Θ is the diagonal matrix formed from

θ where the definition of θi, dependent on the type of variable xi, is shown in

Table 5.1. Problems which could arise from the ∞s present in the formulation of

Variable Type θ−1
i θi

Lower bounded
zi

xi − li

xi − li
zi

Upper bounded
wi

ui − xi

ui − xi

wi

Upper & lower bounded
zi

xi − li
+

wi

ui − xi

(xi − li)(ui − xi)

(ui − xi)zi + wi(xi − li)

Free 0 ∞

Fixed ∞ 0

Table 5.1: How definition of θi depends on type of variable xi.

θi related to free and fixed variables will be considered in section 5.2.4.

As outlined in section 3.2.1, the system of equations (2.7), is solved by using

Cholesky decomposition. In practice, the augmented system of equations (5.2) is

Chapter 5 — The Potential for hopdm to be a Nonlinear Interior Point Solver. 53

solved, finding the lower triangular matrix L and diagonal matrix D such that

LDLT =

[

−HL − Θ−1 ∇cT (x)
∇c(x) 0

]

(5.3)

and using successive backsolves to determine ∆x and ∆λ. It is possible to use

the block structure of the augmented system to exploit the sparsity structures of

the Jacobian and the Hessian of the Lagrangian.

In fact, in hopdmNLP, we are able to further exploit this sparsity. In hopdmSQP,

at each successive quadratic approximation, we removed all small elements from

HL and ∇c(x), changing the matrix sparsity where possible, to reduce the number

of floating point operations required. Here, we propose to alter small elements to

zero without removing them from the sparsity structure of the matrices. This has

the advantage of giving exactly the same sparsity pattern to each successive aug-

mented system, allowing us to determine an optimal row reordering and symbolic

factorization of (5.3) once, at the beginning of the algorithm. Thus we can use

the sparsity pattern of an optimally reordered augmented system to determine a

sparsity structure of the lower triangular matrix L which can be reused at every

iteration.

Many of the advantages of reusing the same matrix structure and row or-

dering at each iteration are beyond the scope of this work. However, whilst not

investigating the advantages of sparsity exploitation techniques deeply, it is worth

acknowledging that they are key to the linear algebra which is implemented in

hopdm and that understanding sparsity patterns and how they can be utilized is

important when trying to improve the efficiency of an optimization algorithm.

5.2.2 Central path and barrier parameter

An important feature of any interior point algorithm is the speed at which the

barrier parameter µ approaches zero. In Chapter 4 we briefly discussed the logic

which some of the NLP solvers in the literature use to control the decrease of µ,

but we have left most of the discussion of this aspect of interior point methods

to this section.

First, we will refer to the literature in order to describe the central path

in the context of linear and quadratic programming and then we will consider

possible ways in which these concepts can be extended to nonlinear programming

algorithms.

5.2.2.1 Linear and quadratic programming

In linear and convex quadratic programming, the central path, C, is an arc of

points (x, λ, z, w; µ) ≥ 0 which is controlled by the parameter µ. For each value

Chapter 5 — The Potential for hopdm to be a Nonlinear Interior Point Solver. 54

of µ, there is a unique point (x, λ, z, w) which is primal-dual feasible and for which

every complementarity product ((xi − li)zi, (ui − xi)wi) is identical and equal to

µ. As µ approaches zero, the central path leads to an optimal solution of the

LP/QP problem.

Interior point algorithms for solving LP and QP problems make use of this

central path by defining a neighbourhood of C (see Figure 5.1) and setting µ so

C

Figure 5.1: A typical neighbourhood of a central path C.

that large stepsizes can be taken whilst keeping the sequence of iterates within

the chosen neighbourhood. This is typically done by calculating the average of

the complementarity products at the current point, ς (2.8), and choosing µ = σς

where σ ∈ (0, 1). The choices of neighbourhood and of σ are crucial to the

efficiency of the algorithm. A large amount of research has been carried out in

this field and rather than try to summarize here, we refer the reader to several

good texts on the subject.

Firstly, we recommend the book [79] by Wright, which includes discussion of

the central path, different neighbourhoods of the path and various algorithms

which cause the series of iterates to stay within these neighbourhoods. Two of

the path-following algorithms described are the predictor-corrector method of

Mehrotra [55] and its extension to multiple centrality correctors by Gondzio [40].

Briefly, the predictor-corrector method involves finding a predictor direction by

solving the augmented system with µ = 0. The maximum stepsize in this di-

rection which keeps the iterate within the neighbourhood is considered and the

improvement in ς which would be made if this step was taken is recorded. The

augmented system is then solved with a new right hand side, based on this value

Chapter 5 — The Potential for hopdm to be a Nonlinear Interior Point Solver. 55

of ς, giving a corrector direction which is added to the predictor. Corrector direc-

tions can also be calculated which correct for errors introduced by linearization

of the nonlinear complementarity constraints (X−LT Z = µe, U−XT W = µe).

The recent paper by Colombo & Gondzio [18], which introduces a new neigh-

bourhood and includes further ideas relating to multiple centrality correctors, also

provides a clear description of the various neighbourhoods of the central path and

a thorough explanation of corrector directions.

5.2.2.2 Nonlinear programming

Unfortunately, the central path is not well-defined for nonlinear programming.

However, it is possible that some of the techniques for choosing σ and µ which

have been proven to be effective in LP/QP may also prove effective if applied to

nonlinear programming problems. This could be done by attempting to choose

µ such that all complementarity pairs ((xi − li)zi, (ui − xi)wi) converge to zero

uniformly. Questions which should be considered include:

• The amount of effort which should be applied to the search for a good

centring direction for the QP approximation, remembering that it is only

an approximation. It will be very interesting to research the progress in the

NLP which can be achieved by using multiple centrality correctors whilst

following the central path of a local QP approximation.

• Whether it would be advantageous to alternate NLP linesearches with

choices of corrector directions, hoping to achieve better progress for each

numerical factorization of the augmented system.

• If it would be a good strategy to keep µ constant until the KKT conditions

have been satisfied to a given tolerance in the same way as knitro, knitro-

Direct and ipopt do.

5.2.3 Merit function

In hopdmNLP, we again choose to use the l1 merit function. However, this is

not entirely straightforward. Firstly, we are no longer solving the NLP problem

(5.1) by taking steps calculated by hopdm. Instead, we are finding solutions to

successive approximations to the barrier problem

min f(x) − µ
n

∑

i=1

ln(li − xi) − µ
n

∑

i=1

ln(ui − xi)

s.t. ci(x) = 0 i ∈ E
ci(x) ≥ 0 i ∈ I1

ci(x) ≤ 0 i ∈ I2.

Chapter 5 — The Potential for hopdm to be a Nonlinear Interior Point Solver. 56

The merit function must, therefore, be changed to include the barrier terms which

are now present in the NLP objective function. That is, the l1 merit function is

of the form:

Φ(x; µ, ν) = f(x) − µ
n

∑

i=1

ln(xi − li) − µ
n

∑

i=1

ln(ui − xi) + ν
∑

i∈E

|ci(x)|

+ ν
∑

i∈I1

|ci(x)|− + ν
∑

i∈I2

|ci(x)|+,

where |ci(x)|− = max(0,−ci(x)) and |ci(x)|+ = max(0, ci(x)).

Secondly, it is necessary to remember that the l1 merit function may be subject

to the Maratos effect. In implementing a nonmonotone strategy (such as that of

Grippo et al. [43]) to combat this effect, we should consider how to determine the

values of Φ(x; µ, ν) from previous iterations which will be compared with those

of the new trial points. In hopdmSQP we considered separating the storage of

the objective values and constraint violations at each accepted point so that the

merit value of a trial point (Φ(xtrial; νk)) could be compared with the merit value

of previous points with the same penalty for constraint violation1 (Φ(xk−1; νk),

Φ(xk−2; νk)). Without this change to the way that points from different iterations

are compared, the merit value of the trial point would be compared with the merit

value of previous points with the penalty parameters appropriate to the iterations

at which they were accepted (Φ(xk−1; νk−1), Φ(xk−2; νk−2)).

In the case of hopdmSQP, this change in comparisons was not immediately suc-

cessful and so it was not included in the solver which was used for our trials with

CUTE. However, to implement a nonmonotone strategy for the barrier objective

function, it will be vital to consider whether comparisons with points from previ-

ous iterations should be made with the current values of the barrier and penalty

parameters.

5.2.4 Variables

A primal-dual interior point method works with variables which can be separated

into different types. Here, we consider five types of variable and the different

ways in which we propose to handle them in hopdmNLP. It is especially important

to consider how the variables are initialized at the beginning of the algorithm,

and how they are updated after each quadratic approximation is solved. In this

section, we will also consider the problems which arise from using the augmented

system approach when there are free or fixed variables in the problem formulation,

as these can give rise to division by zero, or the inclusion of ∞ in the linear

equations to be solved. (See Table 5.1.)

1This was change J in Table 3.1.

Chapter 5 — The Potential for hopdm to be a Nonlinear Interior Point Solver. 57

Primal variables, x, are initialized in the same way as for hopdmSQP, that is,

they keep the initial value given by the problem, unless that value falls

outside the variable bounds2.

At each iteration, a backtracking linesearch is carried out to find a stepsize,

α, which provides sufficient improvement in the merit function. Primal

variables are updated using this value of α, so that xk+1 = xk + α∆xk.

If primal variables are not free or fixed, then there are no difficulties in

handling them. However, if they are free or fixed then special precautions

must be taken to avoid numerical difficulties in the augmented system.

Handling fixed variables

hopdm deals with fixed variables (li = ui) by removing them from the prob-

lem structure. The value of a fixed variable, xfi, is assigned, xfi = ui. All

constraints are updated to account for the removal of the fixed variable and

right hand sides are adjusted. For example, a constraint Ax + 3xfi = b1

where b2 ≤ xfi ≤ b2 becomes Ax = b1 − 3b2. Doing this, the ∞s which are

added to the diagonal in positions corresponding to the fixed variables are

no longer a problem. This can be seen if we separate the fixed variables from

other variables in the augmented system as follows (using the subscript fi

to denote quantities relating to the fixed variables):

−HL − Θ−1 ∇cT (x)
−HL −∞ ∇cT

fi(x)
∇c(x) ∇cfi(x)

∆x
∆xfi

∆λ

 =

ξ′c
ξ′cfi

ξb

 .

By removing the columns of the Jacobian which are associated with the fixed

variables, adjusting the right hand side and noticing that ∆xfi = 0, since

the variables are fixed, terms including ∞ are only present in redundant

equations

−HL − Θ−1 ∇cT (x)
−HL −∞

∇c(x)

∆x
0

∆λ

 =

ξ′c
0
ξ′b

and can be excluded from the calculations.

This technique works well in hopdm but it is worth noting that there are

other methods for dealing with fixed variables. The QP solver Loqo [74],

for example, adds a positive slack variable to a fixed variable (xfi + si = ui,

xfi ≥ 0, si ≥ 0), allowing xfi to vary and hence removing the ∞s.

2The algorithm used to choose an initial value for the primal variables if they fall outside
the variable bounds is given on page 27.

Chapter 5 — The Potential for hopdm to be a Nonlinear Interior Point Solver. 58

Handling free variables

hopdm handles free variables by splitting them into the difference of two

positive variables
xfr = x+

fr − x−
fr,

x+
fr, x−

fr ≥ 0

which are then added to the Hessian and Jacobian matrices.

However, this technique appears time-consuming and less attractive when

considering applying it to a succession of quadratic approximations which

will each be solved only once. Also, it has been shown (Lustig et al. [53])

that both x+
fr and x−

fr may become extremely large whilst their difference

remains bounded.

In [74], Vanderbei proposes two alternative techniques for handling free vari-

ables. In early versions of Loqo, diagonal elements of the augmented system

which correspond to free variables and which could be zero because θ−1
i = 0

are given a low priority as pivot elements for the Cholesky decomposition,

in the hope that earlier calculations will remove the zero on the diagonal

and prevent numerical errors caused by an attempt to divide by that zero.

In more recent versions, free variables are replaced by

xfr + x+
fr − x−

fr,

x+
fr, x−

fr ≥ 0

where the variables x+
fr and x−

fr contribute nonzero terms to θ−1 in the

diagonal elements of the augmented system which correspond to xfr, but

do not add extra rows or columns to the Jacobian and Hessian in the way

that a straightforward split of the variables does.

Dual variables associated with constraints, λ, are initialized according to

whether the constraints they are associated with are violated or not.

If constraint i is not violated

λi = 0

Else if upper bound on constraint is violated.

λi = ϑ.3

Else

λi = −ϑ.

3ϑ is a small value, currently set to 1 here, and elsewhere in the variable initialization process.

Chapter 5 — The Potential for hopdm to be a Nonlinear Interior Point Solver. 59

At each iteration, λ is updated by taking a step of size α in the direction

calculated by solution of the augmented system.

Slack variables, s, are initialized at every iteration as every QP approximation

has different linearized constraints. If the linearized constraint is not vio-

lated at the current point, then the slack is chosen appropriately to cause

the constraint to be exactly satisfied. If the constraint is violated, then

the slack is given a positive value of ϑ. Care must be taken with range

constraints.

However, if the slack variables (and their associated duals) are redefined

at every iteration then any centrality suggested by the previous iteration’s

solution is lost. This has potential for causing the algorithm to stall, es-

pecially if elements of s are set close to zero. An alternative would be to

initialize slack variables at the first iteration and then update them using

sk+1 = sk + α∆sk, finding α previously, using a backtracking linesearch.

Dual variables associated with bounds, z, w, are initialized to ensure uni-

formity between complementarity pairs (xi − li)zi and (ui − xi)wi. Cur-

rently, the bound dual values are chosen such that (xi − li)zi = µ and

(ui − xi)wi = µ for some chosen initial value of µ. The choice of z and w is

important because the behaviour of interior point methods is very sensitive

to the choice of starting point. Although this choice has been proposed as

theoretically sound, more work needs to be carried out into what makes a

good starting point in practice.

z and w associated with primal variables are updated at each iteration

by taking a step of size α in the direction calculated by the solution of the

augmented system. Dual variables, z, associated with slack variable bounds

are chosen at each iteration so that the complementarity pairs sizi = µ.

Infeasibility variables, h, which were useful in hopdmSQP are no longer in-

cluded in the problem formulation.

5.2.5 Dealing with nonconvexity

hopdmSQP deals with nonconvexity by testing the direction found by hopdm to see

if it is a descent direction with respect to the chosen merit function and adding

a regularizing term to the Hessian of the Lagrangian if it is not. In section 3.5

we conjectured that using the exact Hessian of the Lagrangian when it is not

convex, with the risk of finding a nondescent direction, is an inefficient technique

as it could result in the need to solve several systems of linear equations before

Chapter 5 — The Potential for hopdm to be a Nonlinear Interior Point Solver. 60

a descent direction is found. However, if the solution found when using an exact

HL which is not positive definite is a descent direction, then it is likely to be a

better direction than one chosen by using a positive definite approximation.

In Chapter 4 we investigated techniques for dealing with nonconvexity which

are employed by successful interior point solvers from the literature. These tech-

niques include adding a regularization term to HL during the Cholesky factor-

ization, removing any negative elements from the diagonal D; and analysing the

inertia of the matrix to determine the size of the regularization term which needs

to be added.

In implementing hopdmNLP, it will be necessary to consider whether one of

these techniques should be automatically applied to ensure that a positive definite

approximation to any indefinite HL is used, or whether it would be efficient to

first test to see whether the direction found using the exact HL is descent, as is

done in hopdmSQP.

5.3 Summary of possible future work

The implementation of hopdmNLP depends on several key decisions, mentioned

with possible solutions in the above sections. Here, we gather together the aspects

of the code which require further thought and which will benefit from comparison

of various techniques once a working code is available.

• Choosing how to update the penalty parameter, µ, at each iteration.

• Deciding how to compare merit function values from different iterations,

with regard to whether current or previous values of the parameters µ and

ν should be used when comparing previous points with the current trial

point.

• Deciding what method to use to deal with free variables in order to prevent

division by zero in the Cholesky factorization when θ−1
i = 0.

• Determining an effective starting point, especially with regard to initializa-

tion of slack variables and dual variables associated with variable bounds.

• Selecting a technique to implement when the Hessian of the Lagrangian is

not positive definite, and deciding whether to use that technique automat-

ically, or to allow the system of equations to be solved with an indefinite

Hessian because of the potential for greater accuracy if a descent direction

is found when using the exact HL.

Chapter 6

Optimal Control Problems

This chapter introduces a group of optimization problems with specific properties,

known as optimal control problems (OCPs). They tend to arise in dynamic

systems where the user is required to operate the system optimally by choosing

values of certain controls. Problems of this nature are typically found in systems

where the motion of an object is to be controlled, but can also be found in other

fields such as biology, chemistry and economics.

We describe the properties of a problem which make it classifiable as an OCP

and describe traditional methods of solving such problems. We introduce the the-

ory of Hamiltonians and Pontryagin’s maximum principle, showing how Hamilto-

nians are derived through both calculus of variations and Newtonian mechanics.

We then describe the way in which four practical problems can be modelled as

optimal control problems and show how Hamiltonian theory can be used to find

the solutions to these problems. In Chapter 7 we demonstrate how to represent

optimal control problems as nonlinear programs so that the solvers described in

preceding chapters can be used.

Much of the understanding in this chapter is taken from “Optimal Control

Theory” by Kirk [52] and from Reitzenstein’s Ph.D. thesis [68]. Throughout the

next two chapters, vectors x = (x1, x2, . . . xn) will be denoted in boldface.

6.1 Optimal control theory

Using the definition given by Kirk, an optimal control problem is to find an

admissible control, u, which causes the system to follow an admissible trajectory,

x, that minimizes1 a performance measure. x∗ is called an optimal trajectory and

u∗ is called an optimal control.

1Again, we will only consider minimization problems in this chapter, as the techniques are
easily reversed to solve maximization problems.

61

Chapter 6 — Optimal Control Problems 62

An optimal control problem is of the form

min J = φ(x(tF), tF) +

∫ tF

t0

F (x(t),u(t), t) dt (6.1a)

s.t. ẋ(t) = f(x(t),u(t), t) (6.1b)

x(t) ∈ X, u(t) ∈ U ∀t,

where the sets X and U contain all admissible values of the state and control

vectors respectively, and may include initial or terminal conditions, or both. The

performance measure J (6.1a) is a functional which is made up of two parts.

φ(x(tF), tF) represents goals for the final state of the system and F (x(t),u(t), t)

represents goals which are aimed at for the duration of the process to be controlled.

If J is in the form (6.1a) then it is said to be in Bolza form. If φ ≡ 0 then J is

in Lagrange form and if F ≡ 0 it is in Mayer form. J can represent a variety

of different targets, examples of which are given here, with possible performance

measures:

Minimum time: On a racing straight a car needs to get from point A to point

B in the smallest possible time.

J = tF is in Mayer form.

J =
∫ tF

t0
1 dt is in Lagrange form.

Minimum control effort: On an interplanetary exploration u(t) is the thrust

of the engine and fuel consumption is proportional to the thrust. The aim

is to use as little fuel as possible.

J =
∫ tF

t0
|u(t)| dt or J =

∫ tF
t0

(u(t))2 dt are in Lagrange form.

Terminal control: When firing a missile it is important that it does not deviate

from its target (see Figure 6.1).

J = |xF − rF | or J = (xF − rF)2, where xF is position at final time and rF

is desired position at final time, are in Mayer form.

When hitting a golf ball towards a hole, it is important that it reaches the

hole with a small speed so that it falls in.

J =
√

vx1
(tF)2 + vx2

(tF)2 is in Mayer form.

vx1
and vx2

are components of velocity.

Regulator: A manned spacecraft’s angular position, θ(t), is to be maintained

near 0.

J =
∫ ∞

0
[aθ(t) + b ˙θ(t)] dt is in Lagrange form.

a and b are weighting factors.

In choosing the performance measure it is possible to include a term to

minimize control effort. That is, to use a mixed objective.

Chapter 6 — Optimal Control Problems 63

rF xF

Figure 6.1: Showing a desired missile trajectory, and how a slight change in the
angle it is projected with can cause a significant error in the final position. The
solid line shows a trajectory to the target point rF and the dashed line shows a
trajectory given by a small error in the projection angle.

Tracking: A system x(t) must be maintained as close to a desired state r(t) as

possible in the time period [t0, tF].

J =
∫ tF

t0
‖x(t) − r(t)‖2

W (t), where W (t) is a matrix selected to weight the

importance of different components of the system, is in Lagrange form.

A nontrivial part of finding the solution to any OCP is the model chosen to

represent the process. This includes determining an appropriate performance

measure to represent the aim of the physical system.

6.2 Calculus of variations

As previously stated, this chapter will show how Hamiltonians have been used

to solve OCPs, before we demonstrate how to reformulate OCPs as NLPs in

Chapter 7. We begin our introduction to Hamiltonian theory by explaining the

basics of calculus of variations, a technique whose usage dates back to Queen

Dido of Carthage in 814bc.

Calculus of variations is used to find the maxima or minima of functionals

which are defined similarly to J when it is in the Lagrange form:

J =

∫ tF

t0

F (x(t),u(t), t) dt.

However, instead of defining J in terms of the control variable u, it is defined in

Chapter 6 — Optimal Control Problems 64

terms of the first derivative of the state variable:

J =

∫ tF

t0

F (x(t), ẋ(t), t) dt

and x is no longer written as an explicit function of t:

J =

∫ tF

t0

F (x, ẋ, t) dt.

6.2.1 Euler-Lagrange equations

To find the extrema of these functionals, J , we use the Euler-Lagrange equations

which we derive here following the steps taken in Arthurs [3].

If we choose a function ϕ which is continuously differentiable with respect to

t and a small constant ε > 0 and assume that F is continuously differentiable

with respect to x and ẋ, we can expand J(x + εϕ) in a Taylor series to get

J(x + εϕ) =

∫ tF

t0

F (x + εϕ, ẋ + εϕ̇, t) dt

=

∫ tF

t0

{

F (x, ẋ, t) + εϕ
∂F

∂x
(x, ẋ, t) + εϕ̇

∂F

∂ẋ
(x, ẋ, t) + O(ε2)

}

dt

= J(x) + εδJ + O(ε2),

where

δJ =

∫ tF

t0

{

ϕ
∂F

∂x
(x, ẋ, t) + ϕ̇

∂F

∂ẋ
(x, ẋ, t)

}

dt

denotes the linear term and is called the first variation of J.

By integrating the second term of δJ by parts and simplifying by assuming

that both endpoints are fixed (ϕ(t0) = 0 and ϕ(tF) = 0) we get that

δJ =

∫ tF

t0

ϕ

{

∂F

∂x
(x, ẋ, t) − d

dt

∂F

∂ẋ
(x, ẋ, t)

}

dt

The following theorem for optimization of functionals is analogous to theorem

2.1 for optimization of functions.

Theorem 6.1. A necessary condition for J to have an extremum at x∗ is that x∗

be a solution of

δJ =

∫ tF

t0

ϕ

{

∂F

∂x
(x, ẋ, t) − d

dt

∂F

∂ẋ
(x, ẋ, t)

}

dt = 0.

By showing that if a function h(t) is continuous and

ε

∫ tF

t0

ϕh(t) dt = 0

Chapter 6 — Optimal Control Problems 65

for every function ϕ that is continuous in the interval [t0, tF] it can be proved

that h(t) must be zero everywhere in the interval [t0, tF].

Then, replacing h(t) with δJ , we get that

Theorem 6.2. A necessary condition for J to have an extremum at x∗ is that x∗

be a solution of

∂F

∂x
(x, ẋ, t) − d

dt

∂F

∂ẋ
(x, ẋ, t) = 0 t0 ≤ t ≤ tF (6.2)

with x(t0) = x0 and x(tF) = xF .

The Euler-Lagrange equations (6.2) can be very difficult to solve. Generally,

they are nonlinear, ordinary second-order differential equations.

6.3 Hamiltonians

It is possible to rewrite the second order Euler-Lagrange equations formed through

calculus of variations as a system of twice as many first order differential equa-

tions. It is done by using the concept of a Hamiltonian. We demonstrate the

format of a Hamiltonian in Newtonian mechanics before showing how the Euler-

Lagrange equations can be translated into the same structure and how this struc-

ture can be used to solve OCPs.

6.3.1 In Newtonian mechanics

In standard mechanics, an autonomous (independent of time) Newtonian system

(which follows Newton’s Laws) is also called Hamiltonian, and has a Hamiltonian

function whose value is always conserved and equal to the energy value of the

Newtonian system.

This can be explained as follows (derivation taken from Percival & Richards

[64]). If x is the displacement of a particle of mass m in a given direction, λ is its

linear momentum in that direction and F (x, t) is the force on the particle then

the equation of motion and definition of momentum (momentum = mv where v

is the speed of the particle in the given direction) are given by the equations

ẋ =
λ

m

λ̇ = F (x, t).

Then if we define

V (x, t) = −
∫ x

x0

F (x, t) dx

Chapter 6 — Optimal Control Problems 66

we can define the Hamiltonian as

H(x, λ, t) =
λ2

2m
+ V (x, t)

so that the equations of motion and definition of momentum can be rewritten

ẋ =
dx

dt
=

∂H

∂λ
(x, λ, t) (6.3a)

λ̇ =
dλ

dt
= −∂H

∂x
(x, λ, t) (6.3b)

It is then possible to show that the value of the Hamiltonian is conserved, by

taking the derivative of the Hamiltonian and using equations (6.3):

dH

dt
=

∂H

∂x
ẋ +

∂H

∂λ
λ̇ =

∂H

∂x

dx

dt
+

∂H

∂λ

dλ

dt
=

∂H

∂x

∂H

∂λ
+

∂H

∂λ

(

−∂H

∂x

)

= 0.

6.3.2 In calculus of variations

Now we can see how it is possible to use the format of the Hamiltonian to solve

problems in calculus of variations. This derivation is taken from Arthurs [3] which

shows how to reduce the system of Euler-Lagrange equations (6.2) to the system

of first order differential equations (6.3).

We introduce a new variable

λ =
∂F

∂ẋ
(x, ẋ, t) (6.4)

which is said to be conjugate to x. Assuming that (6.4) can be solved to give ẋ

as a function of t, x and λ then we can define a Hamiltonian by the equation

H(x, λ, t) = λT ẋ − F (x, ẋ, t)

Considering the differential of H, which is given by

dH = λT dẋ + ẋT dλ − ∂F

∂t
(x, ẋ, t)dt −

(

∂F

∂x

T

(x, ẋ, t)dx +
∂F

∂ẋ

T

(x, ẋ, t)dẋ

)

= −∂F

∂t
(x, ẋ, t)dt + ẋT dλ − ∂F

∂x

T

(x, ẋ, t)dx

(cancelling terms in dẋ because of definition of λ (equation (6.4)) we find that

dx

dt
=

∂H

∂λ
(x, λ, t) (6.5a)

−dλ

dt
=

∂H

∂x
(x, λ, t), (6.5b)

Chapter 6 — Optimal Control Problems 67

where the second of these equations comes from observing that ∂H
∂x

(x, λ, t) =

−∂F
∂x

T
(x, ẋ, t) and using both the Euler-Lagrange equations (6.2) and the defini-

tion of λ.

Equations (6.5) are known, in this setting, as the canonical Euler equations

and can be seen to be equivalent to the equation of motion and definition of

momentum (6.3).

These are a system of one dimensional differential equations which should be

easier to solve than the Euler-Lagrange equations.

6.3.3 In optimal control theory

The Hamiltonian function can be used, by way of Pontryagin’s maximum principle

[65] (described later), to help solve problems arising from optimal control theory.

We will look at some examples of this later, but first look at how the Hamiltonian

function for optimal control theory is defined. Most of this definition is taken from

Kirk [52].

First we use the method of Lagrange multipliers to attach a measure for

violation of constraints (6.1b) to the performance measure J (6.1a), such that

Ja = φ(x(tF), tF) +

∫ tF

t0

F (x(t),u(t), t) dt −
∫ tF

t0

λT (ẋ − f(x(t),u(t), t)) dt,

where the Lagrange multipliers λ are also known as adjoint variables.

Now it is possible to rewrite performance measures which are written in Bolza

form as measures in Lagrange or Mayer form. In this case, we will rewrite the

terms in φ so that they are inside the integral and Ja is in Lagrange form.

So, taking

φ(x(tF), tF) = φ(x(t0), t0) +

∫ tF

t0

d

dt
[φ(x(t), t)] dt,

where we can ignore the term φ(x(t0), t0) because it does not affect the minimiza-

tion as x(t0) and t0 are fixed, we can write

Ja =

∫ tF

t0

{

F (x(t),u(t), t) − λT (ẋ − f(x(t),u(t), t)) +
d

dt
[φ(x(t), t)]

}

dt

or, by using the chain rule of differentiation on terms in φ and writing

Fa(x(t), ẋ(t),u(t), λ(t), t) ≡ F (x(t),u(t), t) − λT (ẋ − f(x(t),u(t), t))

+

[

∂φ

∂x
(x(t), t)

]T

ẋ(t) +
∂φ

∂t
(x(t), t),

we can further simplify the notation to

Ja =

∫ tF

t0

Fa(x(t), ẋ(t),u(t), λ(t), t) dt.

Chapter 6 — Optimal Control Problems 68

Now we know from Theorem 6.1 that for an extremal, the first variation

δJa = 0. Thus, if we introduce variations δx, δẋ, δu, and δλ we have the

following condition for an extremal:

δJa =

∫ tF

t0

{

[

∂Fa

∂x
(x(t), ẋ(t),u(t), λ(t), t)

]T

δx(t)

+

[

∂Fa

∂ẋ
(x(t), ẋ(t),u(t), λ(t), t)

]T

δẋ(t)

+

[

∂Fa

∂u
(x(t), ẋ(t),u(t), λ(t), t)

]T

δu(t)

+

[

∂Fa

∂λ
(x(t), ẋ(t),u(t), λ(t), t)

]T

δλ(t)

}

dt

= 0.

By integrating the second term of δJa by parts and assuming that endpoints

are fixed (δx(t0) = δx(tF) = 0), similarly to the derivation of the Euler-Lagrange

equations in section 6.2.1, we get

δJa =

∫ tF

t0

{[

[

∂Fa

∂x
(x(t), ẋ(t),u(t), λ(t), t)

]T

− d

dt

[

∂Fa

∂ẋ
(x(t), ẋ(t),u(t), λ(t), t)

]T
]

δx(t)

+

[

∂Fa

∂u
(x(t), ẋ(t),u(t), λ(t), t)

]T

δu(t)

+

[

∂Fa

∂λ
(x(t), ẋ(t),u(t), λ(t), t)

]T

δλ(t)

}

dt

= 0.

By considering only the terms in Fa which include φ we can establish that they

add to zero in all cases. Then, separating terms back out from the definition of

Fa, we retain:

0 =

∫ tF

t0

{[

[

∂F

∂x
(x(t),u(t), t)

]T

+ λT (t)

[

∂f

∂x
(x(t),u(t), t)

]

− d

dt

[

−λT (t)
]

]

δx(t)

+

[

[

∂F

∂u
(x(t),u(t), t)

]T

+ λT (t)

[

∂f

∂u
(x(t),u(t), t)

]

]

δu(t)

+
[

[f(x(t),u(t), t) − ẋ(t)]T
]

δλ(t)
}

dt.

We first observe that the constraints

ẋ = f(x(t),u(t), t)

Chapter 6 — Optimal Control Problems 69

must be satisfied at an extremal, so the coefficient of δλ(t) is 0. The Lagrange

multipliers λ(t) are arbitrary, so can be chosen to make the coefficients of δx(t) =

0, that is

λ̇(t) = −∂F

∂x
(x(t),u(t), t) −

[

∂f

∂x
(x(t),u(t), t)

]T

λ(t). (6.6)

The remaining variation δu(t) is independent, so its coefficients must be 0

0 =
∂F

∂u
(x(t),u(t), t) +

[

∂f

∂u
(x(t),u(t), t)

]T

λ(t).

These conditions can be extended to the cases where the final time and point

are not fixed. (See [52] for further details.)

If we now define a Hamiltonian

H(x(t),u(t), λ(t), t) ≡ F (x(t),u(t), t) + λT (t) [f(x(t),u(t), t)] (6.7)

then we can see that equations (6.3) and (6.5) are echoed here

ẋ =
dx

dt
=

∂H

∂λ
(x(t),u(t), λ(t), t) (6.8a)

λ̇ =
dλ

dt
= −∂H

∂x
(x(t),u(t), λ(t), t) (6.8b)

and can be used to solve the optimal control problem.

We also have the equation from the δu(t) coefficient, which can be written as

0 =
∂H

∂u
(x(t),u(t), λ(t), t)

and which is the property of the Hamiltonian function which is used in Pon-

tryagin’s maximum principle. The maximum principle is more generally written

as

u(t) = arg max
u∈U

H(x(t),u(t), λ(t), t)

and formally (from Pontryagin et al. [65]) as

Theorem 6.3. Let u(t), t0 ≤ t ≤ tF , be an admissible control which transfers the

phase point from the position x0 at time t0 to some position xF which is defined

either

a) as a specific point xF = xf

b) within a given set xF ∈ XF

c) as free

Chapter 6 — Optimal Control Problems 70

and let x(t) be the corresponding trajectory. In order that u(t) and x(t) be optimal

it is necessary that there exist a nonzero continuous vector function λ(t) (see

(6.6)) such that for every t ∈ [t0, tF] the function H(x(t),u(t), λ(t), t) attains its

maximum at the point u(t) where u(t) is chosen to maximize H(x(t),u(t), λ(t), t)

∀t.

The sense of Theorem 6.3 can easily be reversed to consider a minimization re-

quirement on J , i.e. u(t) chosen such that u(t) = arg minu∈U H(x(t),u(t), λ(t), t).

Generally in optimal control, the optimal state trajectory x∗(t) can be cal-

culated by integration once the optimal control trajectory u∗(t) has been deter-

mined.

6.4 Examples

We will now show three examples of the definition of a Hamiltonian used to solve

problems with practical application. They are taken from Reitzenstein’s work

on mountain pass problems [68], Jan Olsder’s work on bicycle routing [63] and

Hennessey et al.’s work on sailing in steady winds [46].

6.4.1 Mountain pass

6.4.1.1 The problem

The mountain pass problem is very comprehensively described by Moré and Mun-

son in [58].

Mountain passes are paths across a region defined by a continuously differen-

tiable function, f(x), which join two points with specific properties. At one end

of the mountain pass is a point, xa, which is a local minimizer of the function,

at the other is a point, xb, with a lower function value than that of the local

minimizer.

These definitions ensure that any path joining xa and xb crosses a point with

a function value higher than that of either of the end points. Each possible

connecting path has a maximum point, in terms of the function evaluated across

the length of the path. The optimal path searched for is the one which has the

lowest maximum.

More formally, the mountain pass problem is to find ω where

ω = inf
x∈Ω

{max{f(x(t)) : t ∈ [0, 1]}}

and Ω is the set of all paths which connect xa with xb (x(0) = xa, x(1) = xb).

Chapter 6 — Optimal Control Problems 71

This can also be solved by defining a new variable

$ = max
t∈[0,1]

f(x(t))

and minimizing over all possible paths, x ∈ Ω.

Reitzenstein [68] reformulates the mountain pass problem as an optimal con-

trol problem in several ways, the first and simplest being

min $
subject to ẋ(t) = u(t)

f(x(t)) ≤ $ ∀t ∈ [0, 1]
x(0) = xa, x(1) = xb,

where u(t), the control variable, is a velocity vector which steers the trajectory.

Control variables are bounded, i.e. |uj(t)| ≤ rj, j = 1, 2, . . . , n, ∀t ∈ [0, 1]

Alternative formulations given include defining the control variable u(t) to

represent acceleration and including a regularization term in the performance

measure to help find a unique, smooth solution.

6.4.1.2 The Hamiltonian

The Hamiltonian for Reitzenstein’s first formulation of the mountain pass prob-

lem is determined here. F (x(t),u(t), t) = 0 (the performance measure is in Mayer

form) and f(x(t),u(t), t) = u(t) so the Hamiltonian is

H(x(t),u(t), λ(t), t) = λ(t)Tu(t)

In order to solve the problem, measures must also be taken to include the

constraint f(x(t)) ≤ $ ∀t ∈ [0, 1] using Lagrange multipliers, but the details are

beyond the scope of this discussion.

6.4.2 Bicycle

6.4.2.1 The problem

The problem considered by Jan Olsder in [63] is that of a cyclist who leaves his

house at sunrise and cycles throughout the day at a constant positive speed in

such a way that he returns to his house at sunset. The objective is to maximize

his suntan by cycling into the sun as much as possible.

If the land has a standard (x1, x2) coordinate system (the positive x2 direction

points north, the positive x1 direction east) with the house of the cyclist at

the origin, the equations of motion of cyclist and bicycle, with initial and final

conditions are
ẋ1(t) = cos θ(t), x1(0) = x1(π) = 0
ẋ2(t) = sin θ(t), x2(0) = x2(π) = 0,

Chapter 6 — Optimal Control Problems 72

where time, t, is scaled in such a way that sunrise occurs at t = 0 and sunset at

t = π and the cycling direction, θ(t), is a function of time.

To simplify the problem, assumptions are made regarding flatness of the land,

lack of obstacles, length of the day, motion of the sun and the projection of the

sun onto the horizontal plane.

The problem is defined as follows:

max J(θ) =

∫ π

0

cos(t) cos(θ(t)) − sin(t) sin(θ(t)) dt =

∫ π

0

cos(t + θ(t)) dt

s.t. ẋ1(t) = cos (θ(t))
ẋ2(t) = sin (θ(t))
x1(0) = x1(π) = 0
x2(0) = x2(π) = 0,

where the integral represents the inner product between the direction of cycling

and the direction of the sun and the differential equation constraints represent

the motion of the cyclist and bicycle, given that the cyclist has a unit speed.

6.4.2.2 The Hamiltonian

To define this problem in terms of the Hamiltonian, with the control variable

u(t) = θ(t), we note that F (x(t), θ(t), t) = cos(t) cos(θ(t)) − sin(t) sin(θ(t)), and

f(x(t), θ(t), t) =

[

cos(θ(t))
sin(θ(t))

]

.

The Hamiltonian is

H(x(t), θ(t), λ(t), t) = cos(t) cos(θ(t)) − sin(t) sin(θ(t))

+ λ1(t) cos (θ(t)) + λ2(t) sin (θ(t))

= cos(θ(t))[λ1(t) + cos(t)] + sin(θ(t))[λ2(t) − sin(t)].

Using the second of the canonical equations (6.3), (6.5), (6.8) it can be seen that

λ̇(t) = 0 ⇒ λ(t) = λ (a constant).

The Hamiltonian must then be maximized with respect to the control variable,

θ(t), in order to find the optimal trajectory for the cyclist. The maximum principle

is used to show that θ(t) should be chosen such that

(

cos(θ(t))
sin(θ(t))

)
∣

∣

∣

∣

∣

∣

∣

∣

(

λ1 + cos(t)
λ2 − sin(t)

)

,

where the symbol || means “is parallel to”.

See [63] for more details and versions of the problem with different assumptions

and emphases.

Chapter 6 — Optimal Control Problems 73

6.4.3 Sailing

6.4.3.1 The problem

The sailing problems, known generally as Zermelo [83] problems and discussed

by Bryson & Ho [15], take a boat which is initially at the origin and try to find

the shortest time possible to reach a target zone. The velocity of the boat is

determined by the strength and direction of water currents and the wind.

The case considered by Hennessey et al. [46] is of the same form. The speed

of the boat relative to the angle between the direction it sails in and the direction

of the wind is determined by the use of a wind polar, as shown in Figure 6.2.

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

wind

θ

(V, θ)

Figure 6.2: Wind polar, showing speed (V) and angle between boat and wind (θ)
in polar coordinates.

The boat has a constant velocity relative to the water flow.

In the simplest problem considered, the wind field is considered to be constant

and the water is assumed to be still. Given a standard (x1, x2) coordinate system,

the equations of motion for this case are given by

ẋ1(t) = V (θ(t)) cos(u(t))

ẋ2(t) = V (θ(t)) sin(u(t)),

where u(t) is the angle between the x1 axis and the direction of the boat at time t

and is the variable which can be controlled by the sailor. θ(t) can be determined

from u(t) when the wind speed is known.

Chapter 6 — Optimal Control Problems 74

The problem to be solved is

min tF =

∫ tF

0

1 dt

s.t. ẋ1(t) = V (θ(t)) cos(u(t))
ẋ2(t) = V (θ(t)) sin(u(t))
x(0) = x0

x(tF) = xF ,

where the initial and final conditions x0 and xF represent a fixed starting point

and a target zone.

6.4.3.2 The Hamiltonian

To define this problem in terms of the Hamiltonian, we note that F (x(t),u(t), t) =

1 and f(x(t),u(t), t) =

[

V (θ(t)) cos(u(t))
V (θ(t))sin(u(t))

]

.

The Hamiltonian is

H((x(t),u(t), λ(t), t) = 1 + λ1(t)V (θ(t)) cos(u(t)) + λ2(t)V (θ(t)) sin(u(t)).

The solution is found by using calculus of variations to find the value of u(t)

which minimizes H(x(t),u(t), λ(t), t).

Solutions to specific examples of these three problems will be calculated in

Chapter 7 by modelling them as nonlinear programming problems and solving

using hopdmSQP.

Chapter 7

Optimal Control Problems as
Nonlinear Programming

Problems

In this chapter, we will show how optimal control problems can be approximated

in such a way that the NLP solvers which were described in Chapters 2 – 5 can

be used to solve them. This is done by converting the continuous functions (x(t))

present in the OCP formulation (6.1) into variables which can be handled by the

solvers.

First, we introduce a group of numerical methods known as Runge-Kutta

discretization schemes, which can be used to approximate continuous functions

with variables. Specifically, we show how to model the three problems described

in section 6.4 as NLP problems and use hopdmSQP to find solutions.

Finally, we discuss how refinements of the discretization strategy can be used

to find increasingly accurate approximations to the solution of the continuous

problem. We consider the merits of different types of NLP solvers when applied to

a sequence of nonlinear programs generated by increasing the number of variables

used to approximate the problem.

7.1 Runge-Kutta discretization schemes

In their standard form, optimal control problems cannot be solved by the NLP

techniques of Chapter 2. This is because NLP algorithms are used to find optimal

values for variables rather than optimal functionals. That is, a possible solution

x is made up of distinguishable values x1, x2 . . . xn. In OCPs, a possible solution

(x(t),u(t)) is made up of continuous trajectories, x1(t), x2(t), . . . , u1(t), u2(t), . . . ,

which are functionals of t.

In order to make NLP algorithms appropriate for solving OCPs, the continu-

75

Chapter 7 — Optimal Control Problems as Nonlinear Programming Problems 76

ous trajectories x1(t), x2(t) . . . must be approximated by discrete variables. This

can be done using Runge-Kutta discretization schemes which are described here,

following the derivation given in Betts [10].

Each trajectory is divided into p intervals and evaluated at the end points

t0, t1, t2, . . . tp. The intervals are of variable size hi, where hi = ti−ti−1, i = 1 . . . k.

In this way,

ẋ(t) = f(x(t),u(t), t)

becomes

x(ti+1) = x(ti) +

∫ ti+1

ti

f(x(t),u(t), t) dt i = 0 . . . p−1.

To evaluate the integral term, we further divide the integration step into

k subintervals (ti, τ1), (τ1, τ2), . . . , (τk−1, τk) of nonnegative length, as shown in

Figure 7.1.

ti

τ1 τ2, τ3 τ4 τ5 τ6

ti+1

Figure 7.1: Possible subdivision of the integral step from ti to ti+1 with k = 6.

Then the function values at the intermediate points, f̂j = f(x(τj),u(τj), τj)

are used to approximate the original integration step

∫ ti+1

ti

f(x(t),u(t), t) dt ≈ hi

k
∑

j=1

βj f̂j

with given constants βj. To evaluate f̂j, it is necessary to also approximate the

values of the state and control variables at each intermediate step. With suitable

such approximations, we obtain the Runge-Kutta family of one-step discretization

schemes of the form:

x(ti+1) = x(ti) + hi

k
∑

j=1

βj f̂j.

Here, writing the state and control variables as y(t) = (x(t),u(t)), we give

three common examples of Runge-Kutta discretization schemes, which each uses

a different number of subintervals, k:

• Euler: (k=1)

y(ti+1) = y(ti) + hif(y(ti), ti). (7.1)

Chapter 7 — Optimal Control Problems as Nonlinear Programming Problems 77

• Trapezoidal: (k=2)

y(ti+1) = y(ti) +
hi

2

(

f(y(ti), ti) + f(y(ti+1), ti+1)
)

. (7.2)

• Classical Runge-Kutta: (k=4)

k1(ti) = hif (y(ti), ti)

k2(ti) = hif

(

y(ti) +
1

2
k1(ti), ti +

hi

2

)

k3(ti) = hif

(

y(ti) +
1

2
k2(ti), ti +

hi

2

)

k4(ti) = hif (y(ti) + k3(ti), ti+1)

y(ti+1) = y(ti) +
1

6

(

k1(ti) + 2k2(ti) + 2k3(ti) + k4(ti)
)

. (7.3)

The approximation to the continuous functions becomes more accurate as

either the number of integration steps, p, or the number of subintervals, k, in-

creases. In fact, the expected error at each integration step i is of the order hk+1
i .

Therefore, the accumulated error of a Runge-Kutta scheme with k subintervals

at each integration step is of order hk, where h is the average stepsize.

7.2 hopdmSQP used on models of small OCPs

In this section, we demonstrate the use of the Euler discretization scheme (7.1)

by using it to model the three OCPs introduced in section 6.4 as NLP problems.

hopdmSQP is then used to find approximate solutions to each of these problems.

In Appendix C we introduce a further optimal control problem and make com-

parisons between the three Runge-Kutta discretization schemes (7.1), (7.2), (7.3).

7.2.1 Mountain pass

Specific examples of the family of mountain pass problems described in section

6.4.1 are given in Moré & Munson [58]. We choose

f(x1, x2) =

(

4 − 2.1x2
1 +

1

3
x4

1

)

x2
1 + x1x2 + 4(x2

2 − 1)x2
2, (7.4)

which is known as the six-hump camel back function. It has six local minimizers,

shown in Figure 7.2. There are several ways to choose the endpoints of the

mountain pass. Here, we choose the minima at (−1.5,−0.6) and (0.0, 0.8) and

search for the path between them which has the smallest maximum point. In the

Chapter 7 — Optimal Control Problems as Nonlinear Programming Problems 78

x

0.0

1

−0.5

0

0.5

−2 −1

−1.0

2

y

1.0

Figure 7.2: Contours of the six-hump camel back function.

conversion of the continuous OCP model to a discrete NLP model, the differential

equation constraints

ẋ(t) = u(t)

are discretized to become

x1(ti+1) = x1(ti) + hiu1(ti)

x2(ti+1) = x2(ti) + hiu2(ti).

The complete ampl model is in Appendix B.1. The path found by hopdmSQP when

there are 200 integration steps of equal length (p = 200, hi = 1
p
∀i) is shown in

Figure 7.3. The maximum point, or mountain pass, is at (−1.28,−0.56) with a

value of 2.24. This is the same as the solution found in [58], using their elastic

string theory.

7.2.2 Bicycle

The bicycle problem taken from Jan Olsder [63] and described in section 6.4.2

has two differential equation constraints and an integral objective function which

must be discretized before NLP algorithms can be used to solve it. This is done,

using an Euler discretization scheme (7.1), as follows:

max

∫ π

0

cos(t + θ(t)) dt

becomes

max

p
∑

i=0

cos(ti + θ(ti));

Chapter 7 — Optimal Control Problems as Nonlinear Programming Problems 79

y

1

0.6

−1.0

x

0.0

−0.2

−0.4

−0.8

−1

0.4

−0.6

2−2

1.0

0.2

0.8

0

0
−0.5
−1.0

0.5
1.0
1.5
2.0

Figure 7.3: An optimal mountain pass between the minimizers (−1.5,−0.6) and
(0.0, 0.8) of the six-hump camel back function. The diagram on the left shows
the path that the optimal mountain pass takes. The diagram on the right shows
the function values along this optimal path.

and

ẋ1(t) = cos(θ(t))

ẋ2(t) = sin(θ(t))

become

x1(ti+1) = x1(ti) + hi cos(θ(ti))

x2(ti+1) = x2(ti) + hi sin(θ(ti)).

The complete ampl model is in Appendix B.2. The optimal trajectory found by

North

East0

Figure 7.4: Optimal trajectory for cyclist wishing to maximize suntan.

hopdmSQP in the case where there are 50 integration steps of equal length (p = 50,

hi = π
p
∀i) is shown in Figure 7.4. The cyclist starts by cycling North-East and

reaches the furthest point at midday. This is the same solution as is found in [63]

by using Hamiltonians.

Chapter 7 — Optimal Control Problems as Nonlinear Programming Problems 80

7.2.3 Sailing

There are many possible examples of the sailing problem given by Hennessey et

al.’s interpretation of the Zermelo problem [46]. For the purpose of demonstrat-

ing how an Euler discretization of the problem can be used to find an optimal

trajectory for the sailboat, we use the simplest problem possible. That is, we

assume that the water is still and that the wind is constant, in the same direction

as the boat needs to travel, see Figure 7.5.

+ +
Wind

Start Finish

Figure 7.5: The sailing problem to be solved.

In order to convert the OCP sailing problem given in section 6.4.3 into an NLP

problem, it is necessary to discretize the two differential equation constraints

ẋ1(t) = V (θ(t)) cos(u(t))

ẋ2(t) = V (θ(t)) sin(u(t)).

As the wind field is parallel to the x1 axis, θ(t) = u(t) and we calculate V (θ)

using the equation for a quintic curve (7.5) given in [46] and found by practical

experimentation with a C&C yacht on Lake Superior.

V (θ) =
∑5

i=0 Ci|θ|i

C5 = −0.3765, C4 = 1.0479, C3 = 0.9402, (7.5)

C2 = −4.7994, C1 = 3.0336, C0 = 4.8401

Using an Euler discretization scheme (7.1), we get the discretized equations

x1(ti+1) = x1(ti) + hiV (θ(ti)) cos(θ(ti))

x2(ti+1) = x2(ti) + hiV (θ(ti)) sin(θ(ti)).

The complete ampl model is shown in Appendix B.3. Absolute values, |θ|, have

been replaced with
√

θ2 to remove discontinuity from the constraints.

Before using hopdmSQP to find solutions to the discretized problem, we consider

the form which we would expect the solution to take. We consider the problem of

sailing between the points (0, 0) and (100, 0), with the boat speed given by (7.5).

In [46], the authors prove that the optimal sailing trajectory between two

points can always be given as one or two line segments. Two possible trajectories

Chapter 7 — Optimal Control Problems as Nonlinear Programming Problems 81

are the straight line which joins the two points or a triangle travelling away from

the start point at the angle −θmax, covering half of the horizontal distance in this

direction, and then sailing towards the finish point at an angle of θmax. (θmax (or

−θmax due to symmetry) is the angle with the wind which allows sailing at the

maximum possible speed.) These two trajectories are shown in Figure 7.6. The

+ +
Start Finish

+ +
Start Finish

Figure 7.6: Two possible sailing trajectories between (0, 0) and (100, 0).

straight line trajectory would take 20.661 units of time to sail, whilst the two-

segment trajectory found by sailing at the maximum speed with respect to the

wind would take 19.799 units. The two-segment trajectory shown is equivalent, in

terms of time taken to travel between the start and finish points, to any trajectory

with more segments in which the boat only travels at the angles ±θmax.

Using hopdmSQP to solve the above problem in the case where there are 40

integration steps of equal length (p = 40, hi = tF
p

), we obtain the multi-segmented

trajectory shown in Figure 7.7. It can be represented as a two-segment trajectory,

which is also shown in Figure 7.7. It would take 19.382 units of time to sail this

+ +
Start Finish

+ +
Start Finish

Figure 7.7: Optimal sailing trajectory between (0, 0) and (100, 0) found by
hopdmSQP. The diagram on the left shows the exact solution found by hopdmSQP

while the diagram on the right shows its representation as a 2-segment trajectory.

trajectory, which is faster than sailing either of the proposed trajectories shown

in Figure 7.6.

It is important to remember here that, as hopdmSQP searches for a local min-

imum, it is possible that there may be a better solution to the problem than

this. Indeed, if slight alterations are made to the problem formulation, different

trajectories are found by the solver. For example, Table 7.1 shows the optimal

trajectories found when:

Chapter 7 — Optimal Control Problems as Nonlinear Programming Problems 82

a. instead of restricting the sailing angle to the angles which it is possible for

the boat to travel in (− 5π
6

≤ θ ≤ 5π
6

), we further restrict the sailing angle

such that the boat can only travel forward (−π
2
≤ θ ≤ π

2
).

b. instead of considering the problem of travelling from (0, 0) to (100, 0), we

consider the equivalent problem of travelling from (0, 50) to (100, 50).

Start Finish Restriction on θ θ1 θ2 Time

(0, 0) (100, 0) ± 5π
6

−0.224281 0.203531 19.3815

(0, 0) (100, 0) ±π
2

−0.234789 0.193263 19.3896

(0, 50) (100, 50) ± 5π
6

−0.278126 0.152511 19.4772

(0, 50) (100, 50) ±π
2

−0.336878 0.101123 19.7208

Table 7.1: Different optimal sailing trajectories found by hopdmSQP when slight
changes are made to the problem formulation. The two angles θ1 and θ2 are the
angles the boat sails at with respect to the wind on each of the two segments of
its journey.

If hopdmSQP searched for a global minimizer rather than a local minimizer then

each of these trajectories would be the same.

In Appendix D we relate further work carried out into finding an optimal

sailing trajectory.

7.3 Sequential nonlinear programming

The solution found by using an NLP solver to solve a discretized approximation

to an optimal control problem is, by definition, an approximation. It is necessary

to assess the accuracy of this estimate of the solution.

In section 7.1 we noted that the expected error for a k-stage Runge-Kutta

discretization scheme is hk, where h is the average size of an integration step.

However, although decreasing h reduces the expected error, the number of NLP

variables increases as h decreases and so the problem becomes increasingly difficult

to solve.

As the difficulty of the problem increases as h decreases, it is common to

initially use a coarse discretization scheme, with large integration stepsizes. It is

then possible to construct an approximate solution to a finer discretization of the

OCP by interpolating the solution to the coarse discretization. This constructed

solution can be used as a starting point for the finer discretization of the problem.

Significant work has been carried out into determining how best to choose a

Chapter 7 — Optimal Control Problems as Nonlinear Programming Problems 83

new discretization such that finer discretizations are employed mainly over the

integration steps where the error is largest.

This technique, known as Sequential Nonlinear Programming, is described by

Betts [10, 11] and summarized in Algorithm 7.1.

Algorithm 7.1.

Choose a coarse discretization (h large).

Determine a suitable starting point.

While solution not found.

Use an NLP solver to solve current discretization of the problem.

Assess the accuracy of the problem.

If solution is acceptably accurate.

Accept current solution.

Else

Refine the discretization of the problem.

Interpolate the current solution to provide a new starting point.

In [11], Betts gives numerical experience with different NLP solvers used in

sequential nonlinear programming. He compares active set SQP methods with

interior point NLP methods and reports that the SQP algorithms are more ap-

propriate for solving a sequence of discretized problems. This is because it is

straightforward to use the interpolation of a solution to a coarse discretization as

a starting point in an active set method, but interior point methods cannot be

restarted, or warm-started as easily.

However, a large amount of research has been carried out into warm-starting

interior point methods from solutions to similar problems. The problems which

occur when trying to use the solution to one problem as a starting point for a

similar problem are described by Colombo et al. [19]. Essentially, a small pertur-

bation to a problem may move the previous optimal solution far from centrality

causing an interior-point method to make very slow progress towards a new so-

lution. Colombo et al. provide a short review of techniques which have been

proposed for combating this difficulty in the case of linear programming, refer-

ring to [5, 41, 37, 82] and Benson & Shanno [6] have shown some success in

applying warm-start techniques to the case of nonlinear programming. It would

be interesting to investigate how this research can be applied to sequential non-

linear programming to make interior-point methods competitive with active set

SQP methods in optimal control theory.

Chapter 8

Further Work

There are many ways in which the work which has been described in this thesis

can be continued. In this concluding chapter, we have divided the possible fu-

ture directions into four sections, here amalgamating suggestions from previous

chapters with still more ideas.

8.1 Improving hopdmSQP

First, we list suggestions for improving the algorithm implemented in hopdmSQP,

including ideas first mentioned in section 3.5.

• Investigate the tendency for the stepsize, α to approach 0 in many of the

problems. It is possible that this is caused by the Maratos effect [54] and

possible that a different technique for updating the merit function penalty

parameter, ν, may prevent this from happening.

• Improve the steepest descent method which is implemented.

• Consider the logic behind the update of HL when the direction found by

solving the quadratic approximation is nondescent with respect to the merit

function. It may be that the current implementation of hopdmSQP is too

slow to determine that HL is not positive definite and to add a regularization

term.

• Decide whether to adjust the termination conditions so that they are related

to the objective value.

• Implement a method for determining if a problem is infeasible. For example,

snopt [36] begins by testing the linear constraints present in the problem,

classifying problems which do not have feasible solutions with respect to

the linear constraints as infeasible. It would be possible to use the existing

presolve in hopdm to carry out this test.

84

Chapter 8 — Further Work 85

8.2 Coding hopdmNLP

In Chapter 5, we introduced the interior point NLP solver hopdmNLP and discussed

some of the issues which have to be resolved before the algorithm can be fully

implemented. Some of these issues (the logic behind the update of HL, possible

adjustment to the termination conditions and implementation of a method to

identify infeasibility) are shared with hopdmSQP. Here we list other issues which

will be considered during the implementation of hopdmNLP. Some of these have

been mentioned in section 5.3.

• Choose how to update the penalty parameter, µ.

• Determine how best to compare merit function values from different itera-

tions, where the penalty parameters, µ and ν, may differ.

• Decide how to deal with free/fixed variables which may introduce ∞s into

the linear algebra.

• Determine a well-centred starting point.

• Instead of limiting the linear algebra to the Augmented System approach

(5.2) consider extending the nonlinear code so that it can use the normal

equations approach as well.

• Consider the possibility of experimenting with different preconditioners.

Once hopdmNLP is fully implemented it would be interesting to compare its

performance with some of the NLP solvers described in Chapter 4.

8.3 Sequential nonlinear programming

There are three main stages involved in extending an NLP solver so that it can be

used to solve discretized OCPs in a sequential nonlinear programming algorithm

such as Algorithm 7.1. These 3 stages lead to the following possibilities for future

work:

1. Research ways of evaluating the errors in a solution found by solving a coarse

discretization of an OCP and methods of using these errors to choose the

next discretization of the problem, aiming to make the integration steps

smaller over areas of the solution trajectory where the errors are largest.

2. Decide how to use the solution found from the coarse discretization in order

to find a good starting point for the refined discretization. It should be

Chapter 8 — Further Work 86

possible to find a good starting point for primal variables by straightforward

interpolation of the solution of the coarse discretization, but care should be

taken when determining new dual variable estimates.

3. Investigate warm-start techniques that have been proposed for use with

interior-point methods. Consider how they could be used appropriately in

interior point SNLP.

Once this research has been done and the code hopdmNLP has been completed,

hopdmNLP could be incorporated into an algorithm which includes each of the 3

stages listed here, making it able to solve optimal control problems.

8.4 Small optimal control problems

In Chapter 6 we introduced 3 small optimal control problems. In Chapter 7 we

chose simple versions of each of these problems and showed how to model them

using an Euler discretization (7.1) scheme.

Further work could include using other Runge-Kutta discretization schemes

(e.g. (7.2), (7.3)) to form models for each of these problems. Work could then be

carried out into investigating the efficiency of each scheme, taking into account

the time taken to solve each model and the accuracy of the solution found. (This

work has been begun in Appendix C.)

Additional work could also be carried out into finding appropriate models for

more advanced versions of each problem. For example

Mountain pass problem: several mountain pass problems which are more com-

plicated than the six-hump camel-back function (7.4) are given in [58]. These

are problems relating to the potential energy surfaces of chemical reactions.

Cycling problem: the formulation of the cycling problem given in Chapter. 6

allows for negative suntan. In [63], Jan Olsder gives further formulation of

the problem which, more realistically, ensures that the cyclist’s suntan does

not decrease when he is cycling away from the sun.

Sailing problem: this is an incredibly versatile problem. There are many more

versions of it to consider, including considering time and space-dependent

wind fields, moving water (tides, river currents) and start/finish zones rather

than points. (This work has been begun in Appendix D.)

Optimal control problems can also be found in many other industries and

applications. For example, in the space industry, finding optimal trajectories

Chapter 8 — Further Work 87

for satellites sent to photograph and examine planets in our solar system is an

optimal control problem and in the manufacturing industry, optimal control is

used to optimize chemical reactions.

Good aims for the completion of the work started here would be to write

a robust piece of code which implements an interior-point NLP method in the

context of sequential nonlinear programming. This code should be competitive

with solvers such as ipopt [77], knitro-Direct [78] and loqo [71] and be able to

solve a range of optimal control problems of all difficulties, which will have been

modelled using several Runge-Kutta discretization schemes.

Appendix A

Cute Results

Table A.1: Increasing success rate as hopdmSQP is im-
proved.

After Change
Problem Name start A B C D E F G H I J

allinitu X X X X X X X X X X X

arwhead X X X X X X X X X X X

aug3d X X X X X X X X X X X

batch X X X X X X X X

bdvalue X X X X X X X X X X X

bigbank X X X X X X X

bloweyb X X X X

booth X X X X X X X X X X X

box2 X X X X X X X X X X X

bqp1var X X X X X X X X X X X

brainpc4 X X X

brainpc6 X X X

brainpc8 X X X X

broydnbd X X X X

catenary X X X X X

cb3 X X X X X X X X X X X

chandheq X X X X X X X X X X X

chemrcta

chemrctb

clnlbeam X X X X X

clplatea X X X X X X X X X X X

csfi1 X X X X X X X

degenlpb X X X X X X X X

denschnf X X X X X X X X X X X

dixchlnv X

dixmaanb X X X X X X X X X X X

dixmaanf X X X X X X X X X X X

djtl

Continued on Next Page. . .

88

After Change
Problem Name start A B C D E F G H I J

drcav2lq

dtoc1l X X X X X X X X X X X

dtoc1nd

eigenc2

engval1 X X X X X X X X X X X

engval2 X X X X X X X X X X X

explin X X X X X X X X X X X

explin2 X X X X X X X X X X X

extrasim X X X X X X X X X X X

flosp2th

fminsurf X X X X

gilbert X X X X X X X X X X X

gottfr X X X X X X X X X X X

gouldqp2 X X X X X X X X X X X

growthls X X X X X X X X X X

hatfldg X X X X

hatfldh X X X X X X X X X

heart6ls

himmelbg X X X X X X X X X X X

himmelbi X X X X X X X X

himmelbk X X X X X X X X X

hs011 X X X X X X X X X X X

hs015 X X X X X X X X

hs022 X X X X X X X X X X X

hs026 X X X X X X X X X X X

hs031 X X X X X X X X X X X

hs036 X X X X X X X X

hs042 X X X X X X X X X X X

hs046 X X X X X X X X X X X

hs065 X X X X X X X X X X X

hs075 X X X X X

hs080 X X X X X X X X X X X

hs083 X X X X X X X X X X X

hs100lnp X X X X X X X X X X

hs106

hs110 X X X X X X X X X X X

hs3mod X X X X X X X X X X X

hvycrash

liswet2 X X X X X X X X X

liswet6 X X X X X X X X X

liswet7 X X X X X

lootsma X X X

lotschd X X X X X X X X X X X

matrix2 X X X X X

Continued on Next Page. . .

89

After Change
Problem Name start A B C D E F G H I J

maxlika X X X X X X X X X X

mccormck X X X X X X X X X X X

methanb8 X X X X X X X X X X X

mifflin1 X X X X X X X X X X X

minsurf X X X X X X X X X X X

mosarqp2 X X X X X X X X X X X

msqrta X X X

msqrtb

ncvxqp4 X X X

ncvxqp8

noncvxu2 X X X X

nonscomp X X X X X

obstclal X X X X X X X X X X X

palmer5c X X X X X X X X X X X

palmer7c X X X X X

pfit4 X X X X X X X X X X X

pfit4ls X X X X X X X X X X X

polak3 X X X X X X X X X X

polak4 X X X X X X X X X

portfl4 X X X X X X X X X X X

reading1 X X X X

sinquad X X X

sipow2 X X X X X X X X X X X

steenbre

Table A.1: Increasing success rate as hopdmSQP is im-
proved.

Table A.2: Shows hopdmSQP’s success on whole of CUTE
set, including problem sizes, iteration count, time taken2,
objective found and final constraint violation.

Problem Outer Time Objective Constraint
Name n m Iters (secs) Value Violation

3pk 30 0 27 0.06 1.7203E+00 0.0000E+00
aircrfta 5 0 3 0.00 0.0000E+00 6.0845E-06
aircrftb 5 0 17 0.02 4.9070E-12 0.0000E+00
airport 84 42 20 0.25 4.7953E+04 0.0000E+00

aljazzaf 3 1 IL
allinit 3 0 7 0.00 1.6706E+01 0.0000E+00

allinitc 3 1 IL
allinitu 4 0 16 0.07 5.7444E+00 0.0000E+00
alsotame 2 1 6 0.00 8.2085E-02 2.8888E-13
argauss 3 0 6 0.01 0.0000E+00 3.3817E-04

Continued on Next Page. . .

90

Problem Outer Time Objective Constraint
Name n m Iters (secs) Value Violation
arglina 100 0 2 0.04 1.0000E+02 0.0000E+00
arglinb 10 0 14 0.05 4.6341E+00 0.0000E+00
arglinc 8 0 6 0.01 6.1351E+00 0.0000E+00
argtrig 100 0 4 1.14 0.0000E+00 1.6217E-05
artif 5000 0 IL

arwhead 5000 0 7 1.24 -1.3612E-09 0.0000E+00
aug2d 20192 9996 18 > 1.6874E+06 3.1188E-05
aug2dc 20200 9996 20 > 1.8184E+06 3.6615E+00

aug2dcqp 20200 9996 33 > 6.4982E+06 2.5975E-05
aug2dqp 20192 9996 IL
aug3d 3873 1000 4 0.51 5.5407E+02 3.5069E-06
aug3dc 3873 1000 4 0.51 7.7126E+02 1.2651E-07

aug3dcqp 3873 1000 5 1.48 9.9336E+02 5.3912E-09
aug3dqp 3873 1000 13 3.93 6.7524E+02 4.2309E-11
avgasa 6 6 2 0 -4.17E+00 0.0000E+00
avgasb 6 6 3 0 -4.1328E+00 0.0000E+00
avion2 49 15 IL
bard 3 0 8 0 8.2149E-03 0.0000E+00
batch 46 69 48 0.35 2.5918E+05 8.4601E-09
bdexp 5000 0 13 1.22 2.4035E-04 0.0000E+00

bdqrtic 1000 0 12 0.34 3.98E+03 0.0000E+00
bdvalue 5000 0 2 0.48 0.0000E+00 3.5040E-06
beale 2 0 10 0.01 2.1500E-15 0.0000E+00

bigbank 1773 814 IL
biggs3 3 0 9 0.01 1.6495E-14 0.0000E+00
biggs5 5 0 23 0.04 4.7953E-15 0.0000E+00
biggs6 6 0 18 0.03 3.0637E-01 0.0000E+00
biggsb1 1000 0 13 0.042 1.5000E-02 0.0000E+00
biggsc4 4 7 11 0.05 -2.4375E+01 0.0000E+00

blockqp1 2005 1001 5 2.41 -9.9650E+02 4.1922E-10
blockqp2 2005 1001 5 2.67 -9.9610E+02 4.1744E-11
blockqp3 2005 1001 13 28.73 -4.9750E+02 3.4333E-08
blockqp4 2005 1001 4 3.87 -4.9810E+02 2.2778E-09
blockqp5 2005 1001 12 30.66 -4.9750E+02 1.8376E-09
bloweya 2002 1002 5 201.7 -8.1236E-06 2.5290E-07
bloweyb 2002 1002 6 143.44 -7.1916E-07 2.2635E-06
bloweyc 2002 1002 5 197.13 -3.2158E-05 3.4326E-07
booth 2 0 2 0.0000E+00 3.2515E-08
box2 2 0 7 0 1.1773E-15 0.0000E+00
box3 3 0 9 0.01 3.9353E-16 0.0000E+00

bqp1var 1 0 3 0 7.6720E-10 0.0000E+00
bqpgabim 46 0 6 0.05 -3.7903E-05 0.0000E+00
bqpgasim 50 0 7 0.02 -5.5195E-05 0.0000E+00
brainpc0 6905 6900 19 1270.56 4.9549E-02 1.6984E-04

Continued on Next Page. . .

91

Problem Outer Time Objective Constraint
Name n m Iters (secs) Value Violation

brainpc1 13805 13800 19 2144.31 2.3037E-05 4.4625E-06
brainpc2 6905 6900 32 > 3.5027E-05 5.1581E-05
brainpc3 6905 6900 12 956.25 6.2155E-05 7.9544E+00
brainpc4 6905 6900 24 1971.29 9.7382E-05 3.3037E-06
brainpc5 6905 6900 21 698.27 4.6502E-05 1.8553E-05
brainpc6 6905 6900 22 887.82 6.3153E-05 8.2338E-06
brainpc7 6905 6900 22 959.87 6.1039E-05 7.6023E-06
brainpc8 6905 6900 17 753.5 4.6995E-05 1.4310E-05
brainpc9 6905 6900 12 775 8.8475E-05 2.1009E-05
bratu1d 1001 0 11 0.25 -8.5189E+00 0.0000E+00
bratu2d 4900 0 4 2.37 0.0000E+00 5.5633E-06

bratu2dt 4900 0 15 41.14 0.0000E+00 3.6253E-04
bratu3d 3375 0 4 315.43 0.0000E+00 3.0628E-06
britgas 450 360 37 4.99 5.5931E-11 4.0586E-05
brkmcc 2 0 4 0 1.6904E-01 0.0000E+00
brownal 10 0 8 0.01 2.6840E-14 0.0000E+00
brownbs 2 0 IL

brownden 4 0 15 0.02 8.5822E+04 0.0000E+00
broydn3d 10000 0 5 2.28 0.0000E+00 2.4513E-08
broydn7d 1000 0 55 2.69 4.9651E+02 0.0000E+00
broydnbd 5000 0 6 9.59 0.0000E+00 5.8820E-08

brybnd 5000 0 9 2.04 2.4179E-14 0.0000E+00
bt1 2 1 IL

bt10 2 2 7 0 -1.0000E+00 5.5384E-09
bt11 5 3 8 0 8.2489E-01 1.4943E-09
bt12 5 3 4 0 6.1881E+00 5.1484E-06
bt13 5 1 24 0.11 1.0219E-09 1.9817E-08
bt2 3 1 12 0.01 3.2568E-02 2.3894E-09
bt3 5 3 5 0 4.0930E+00 2.9543E-10
bt4 3 2 33 0.07 -4.5511E+01 7.7304E-09
bt5 3 2 6 0 9.6172E+02 4.7201E-07
bt6 5 2 10 0.01 2.7704E-01 1.5312E-12
bt7 5 3 36 0.05 3.0650E+02 6.7376E-09
bt8 5 2 12 0.01 1.0000E+00 1.0395E-07
bt9 4 2 13 0.01 -1.0000E+00 7.0566E-09

byrdsphr 3 2 13 0.01 -4.6833E+00 2.8167E-06
camel6 2 0 8 0 2.1043E+00 0.0000E+00

cant500vr 5 1 14 0.01 1.3400E+00 5.0532E-08
catena 32 11 26 0.07 -2.3078E+04 7.8329E-09

catenary 496 166 128 3.33 -3.4840E+05 1.8580E-09
cb2 3 3 7 0 1.9522E+00 0.0000E+00
cb3 3 3 8 0.01 2.0000E+00 0.0000E+00

cbratu2d 882 0 2 0.06 0.0000E+00 6.9503E-06
cbratu3d 1024 0 2 0.85 0.0000E+00 1.6974E-05

Continued on Next Page. . .

92

Problem Outer Time Objective Constraint
Name n m Iters (secs) Value Violation

chaconn1 3 3 5 0 1.9522E+00 4.6297E-08
chaconn2 3 3 5 0 2.0000E+00 0.0000E+00
chainwoo 1000 0 180 11.07 4.1205E+02 0.0000E+00
chandheq 100 0 10 1.76 0.0000E+00 9.5384E-05
chebyqad 50 0 149 39.61 6.5632E-03 0.0000E+00
chemrcta 2500 2499 time
chemrctb 1000 999 IL
chenhark 1000 0 5 0.24 -2.0000E+00 0.0000E+00
chnrosnb 50 0 46 0.08 2.8266E-15 0.0000E+00

cliff 2 0 28 0.03 1.9979E-01 0.0000E+00
clnlbeam 1499 1000 5 0.49 3.5000E+02 2.9782E-06
clplatea 4970 0 4 0.82 -1.2588E-02 0.0000E+00
clplateb 4970 0 5 1.09 -6.9882E+00 0.0000E+00
clplatec 4970 0 2 0.33 -5.0207E-03 0.0000E+00
cluster 2 0 7 0 0.0000E+00 8.3960E-05
concon 15 11 IL

congigmz 3 5 5 0 2.8000E+01 7.7004E-07
coolhans 9 0 29 0.13 0.0000E+00 3.7176E-05

core1 65 50 IL
core2 157 122 IL

corkscrw 8997 7000 IL
coshfun 61 20 24 0.21 -2.3630E+01 0.0000E+00
cosine 10000 0 55 57.94 -9.9743E+03 0.0000E+00

cragglvy 5000 0 15 1.28 1.6882E+03 0.0000E+00
cresc100 6 200 IL
cresc132 6 2654 time

cresc4 6 8 IL
cresc50 6 100 IL
csfi1 5 4 29 0.06 -4.9075E+01 1.7255E-08
csfi2 5 4 IL
cube 2 0 27 0.03 9.0615E-14 0.0000E+00

curly10 10000 0 74 43.82 -1.0031E+06 0.0000E+00
curly20 10000 0 IL
curly30 10000 0 IL
cvxbqp1 10000 0 3 4.4 2.2502E+06 0.0000E+00
cvxqp1 1000 500 126 19.29 1.0875E+06 2.1971E-06
cvxqp2 10000 2500 54 121.75 8.1842E+07 1.0186E-05
cvxqp3 10000 7500 IL
dallasl 837 598 192 7.17 -2.0260E+05 1.9499E-06
dallasm 164 119 63 0.48 -4.8198E+04 3.2196E-07
dallass 44 29 45 0.17 -3.2393E+04 8.4356E-08
deconvb 51 0 62 1.62 5.4130E-07 0.0000E+00
deconvc 51 1 39 0.46 2.5695E-03 7.2831E-14
deconvu 51 0 280 2.52 2.7187E-03 0.0000E+00

Continued on Next Page. . .

93

Problem Outer Time Objective Constraint
Name n m Iters (secs) Value Violation

degenlpa 20 14 9 0.03 2.2159E+00 1.8912E-04
degenlpb 20 15 21 0.14 -3.0731E+01 6.9877E-09
demymalo 3 3 6 0 -3.0000E+00 0.0000E+00
denschna 2 0 7 0 3.7124E-17 0.0000E+00
denschnb 2 0 8 0 7.4867E-20 0.0000E+00
denschnc 2 0 11 0.01 1.9884E-18 0.0000E+00
denschnd 3 0 29 0.03 1.0082E-07 0.0000E+00
denschne 3 0 12 0.02 1.0000E+00 0.0000E+00
denschnf 2 0 7 0 6.6823E-18 0.0000E+00
dipigri 7 4 7 0.01 6.8063E+02 5.5387E-07
disc2 28 23 418 3.94 1.5625E+00 2.7634E-05
discs 33 66 104 3.14 1.2000E+01 1.6869E-09

dittert 327 264 55 7.89 -1.9976E+00 1.4761E-06
dixchlng 10 5 IL
dixchlnv 100 50 IL
dixmaana 3000 0 6 0.28 1.0000E+00 0.0000E+00
dixmaanb 3000 0 34 4.13 1.0000E+00 0.0000E+00
dixmaanc 3000 0 57 9.88 1.0000E+00 0.0000E+00
dixmaand 3000 0 62 10.35 1.0000E+00 0.0000E+00
dixmaane 3000 0 34 3.47 1.0000E+00 0.0000E+00
dixmaanf 3000 0 87 13.07 1.0000E+00 0.0000E+00
dixmaang 3000 0 131 21.69 1.0000E+00 0.0000E+00
dixmaanh 3000 0 174 36.1 1.0000E+00 0.0000E+00
dixmaani 3000 0 36 3.37 1.0000E+00 0.0000E+00
dixmaanj 3000 0 199 37.97 1.0054E+00 0.0000E+00
dixmaank 3000 0 263 50.78 1.0178E+00 0.0000E+00
dixmaanl 3000 0 300 64.02 1.0589E+00 0.0000E+00
dixon3dq 10 0 3 0 8.7925E-17 0.0000E+00

djtl 2 0 IL
dnieper 57 24 30 0.13 1.8744E+04 2.1286E-05
dqdrtic 5000 0 3 0.19 4.4043E-12 0.0000E+00
dqrtic 5000 0 268 17.77 7.8770E-06 0.0000E+00

drcav1lq 10000 0 time
drcav2lq 10000 0 time
drcav3lq 10000 0 38 > 1.3134E-01 0.0000E+00
drcavty1 10000 0 time
drcavty2 10000 0 19 > 1.5444E-02 0.0000E+00
drcavty3 10000 0 38 > 1.3134E-01 0.0000E+00

dtoc1l 14985 9990 7 6.49 1.2534E+02 1.8410E-05
dtoc1na 1485 990 7 1.59 1.2702E+01 2.4671E-06
dtoc1nb 1485 990 6 1.39 1.5938E+01 7.9264E-07
dtoc1nc 1485 990 185 88.54 2.5041E+01 2.8728E-06
dtoc1nd 735 490 IL
dtoc2 5994 3996 11 11.08 5.0993E-01 6.7170E-06

Continued on Next Page. . .

94

Problem Outer Time Objective Constraint
Name n m Iters (secs) Value Violation
dtoc3 14996 9997 2 0.9 2.3526E+02 6.4115E-05
dtoc4 14996 9997 7 > 2.8748E+00 3.1463E-05
dtoc5 9998 4999 5 1.81 1.5351E+00 8.3195E-06
dtoc6 10000 5000 23 18.79 1.3485E+05 8.7696E-06
dual1 85 1 5 0.01 3.5013E-02 3.3307E-16
dual2 96 1 4 0.08 3.3734E-02 1.1102E-15
dual3 111 1 5 0.18 1.3323E-15 1.5470E-06
dual4 75 1 13 0.21 7.4609E-01 3.5527E-15
dualc1 9 215 26 0.07 6.1553E+03 3.4118E-09
dualc2 7 229 21 0.05 3.5513E+03 1.0161E-09
dualc5 8 278 18 0.02 4.2723E+02 3.8949E-10
dualc8 8 503 25 0.07 1.8309E+04 1.6686E-10
edensch 2000 0 8 0.25 1.2003E+04 0.0000E+00

eg1 3 0 8 0 -1.4293E+00 0.0000E+00
eg2 1000 0 7 0.1 -9.9895E+02 0.0000E+00
eg3 101 200 6 0.4 6.8404E-02 6.8981E-11

eigena 110 0 24 0.79 3.1708E-09 0.0000E+00
eigena2 110 55 16 0.15 9.5057E-17 4.1311E-09

eigenaco 110 55 10 0.48 1.2901E-16 1.3097E-07
eigenals 110 0 171 5.6 1.9238E-02 0.0000E+00

eigenb 110 0 74 1.3 5.0480E-02 0.0000E+00
eigenb2 110 55 IL

eigenbco 110 55 131 5.35 5.8675E-02 3.2077E-06
eigenbls 110 0 107 2.5 1.1898E-09 0.0000E+00
eigenc2 462 231 IL

eigencco 30 15 17 0.06 6.3105E-01 1.3400E-07
eigmaxa 101 101 23 0.59 -1.0000E+01 7.3812E-08
eigmaxb 101 101 8 0.05 -9.6743E-04 1.7598E-07
eigmaxc 22 22 13 0.04 -3.0000E+00 2.1752E-08
eigmina 101 101 17 0.28 1.0000E+00 4.5609E-07
eigminb 101 101 18 0.15 9.6743E-04 5.8830E-08
eigminc 22 22 23 0.08 1.0000E+00 1.1523E-08
engval1 5000 0 9 0.69 5.5487E+03 0.0000E+00
engval2 3 0 16 0.01 1.6632E-11 0.0000E+00

errinros 50 0 35 0.09 4.0404E+01 0.0000E+00
expfit 2 0 9 0.01 2.4051E-01 0.0000E+00
expfita 5 21 19 0.27 1.1366E-03 0.0000E+00
expfitb 5 101 14 0.15 5.0194E-03 0.0000E+00
expfitc 5 501 18 10.88 2.3303E-02 0.0000E+00
explin 120 0 123 2.17 -7.2341E+05 0.0000E+00
explin2 120 0 25 0.28 -7.2411E+05 0.0000E+00
expquad 120 0 IL

extrasim 2 1 2 0 1.0000E+00 1.3568E-10
extrosnb 10 0 1 0 0.0000E+00 0.0000E+00

Continued on Next Page. . .

95

Problem Outer Time Objective Constraint
Name n m Iters (secs) Value Violation

fccu 19 8 5 0 1.1149E+01 1.2748E-08
fletcbv2 0 0 3 0 -5.1401E-01 0.0000E+00
fletcbv3 10000 0 IL
fletchbv 100 0 mem
fletchcr 100 0 7 0.01 3.0877E-14 0.0000E+00
fletcher 4 4 23 0.08 1.9525E+01 8.6564E-11
flosp2hh 650 0 IL
flosp2hl 650 0 11 1.73 3.8871E+01 0.0000E+00
flosp2hm 650 0 IL
flosp2th 650 0 IL
flosp2tl 650 0 6 0.91 1.0000E+01 0.0000E+00
flosp2tm 650 0 IL
fminsrf2 15625 0 91 6.99 1.0177E+00 0.0000E+00
fminsurf 1024 0 97 118.578 1.0002E+00 0.0000E+00
freuroth 5000 0 9 0.93 6.0816E+05 0.0000E+00
gausselm 1495 3690 43 1403.91 -9.9984E-01 1.2005E-05
genhs28 10 8 4 0 9.2717E-01 1.2990E-09

genhumps 5 0 121 0.53 8.5891E-16 0.0000E+00
genrose 500 0 5 0.03 4.9496E+02 0.0000E+00

gigomez1 3 3 8 0.01 -3.0000E+00 0.0000E+00
g500bert 1000 1 26 0.42 4.8203E+02 3.2045E-12

goffin 51 50 4 0.04 6.0084E-09 0.0000E+00
gottfr 2 0 5 0 0.0000E+00 1.3687E-05

gouldqp2 600 349 4 0.18 1.8800E-04 1.9851E-13
gouldqp3 699 349 5 0.16 2.0652E+00 4.9248E-13

gpp 250 498 21 5 1.4401E+04 1.2708E-07
gridneta 8964 6724 4 2.64 3.0498E+02 2.0379E-06
gridnetb 13284 6724 4 3.1 1.4332E+02 3.2137E-05
gridnetc 7564 3844 4 2.65 1.6187E+02 5.7075E-07
gridnetd 3945 2644 7 2.9 5.6644E+02 2.1748E-06
gridnete 7565 3844 5 3.73 2.0655E+02 1.4409E-05
gridnetf 7565 3844 13 15.7 2.4211E+02 6.5690E-06
gridnetg 44 34 5 0.01 7.3317E+01 6.2644E-08
gridneth 61 36 5 0.01 3.9626E+01 3.9742E-09
gridneti 61 36 6 0.02 4.0247E+01 3.8133E-09
grouping 100 125 2 0.01 1.3850E+01 1.0622E-19

growth 3 0 369 0.62 1.0040E+00 0.0000E+00
growthls 3 0 329 0.48 1.0040E+00 0.0000E+00

gulf 3 0 23 0.04 9.5913E-13 0.0000E+00
hadamals 90 0 15 0.13 7.6813E+02 0.0000E+00
hadamard 65 256 3 0.06 1.0000E+00 8.3858E-09

hager1 10000 5000 2 0.64 8.8080E-01 5.4752E-08
hager2 10000 5000 2 1.23 4.3208E-01 1.7982E-06
hager3 10000 5000 2 1.46 1.4096E-01 3.7085E-07

Continued on Next Page. . .

96

Problem Outer Time Objective Constraint
Name n m Iters (secs) Value Violation
hager4 10000 5000 5 11.71 2.7940E+00 5.6359E-07
haifam 85 150 18 0.96 -4.5000E+01 8.8799E-06
haifas 7 9 8 0.01 -4.5000E-01 2.8451E-08
hairy 2 0 36 0.21 2.0000E+01 0.0000E+00

haldmads 6 42 9 0.04 3.3292E-02 2.8025E-10
hanging 288 180 25 0.75 -6.2018E+02 9.4783E-08

harkerp2 100 0 10 0.18 -5.0000E-01 0.0000E+00
hart6 6 0 7 0.02 -3.3229E+00 0.0000E+00

hatflda 4 0 24 0.06 5.0178E-16 0.0000E+00
hatfldb 4 0 22 0.06 5.5728E-03 0.0000E+00
hatfldc 4 0 5 0 5.0200E-17 0.0000E+00
hatfldd 3 0 19 0.02 6.6151E-08 0.0000E+00
hatflde 3 0 24 0.03 4.4344E-07 0.0000E+00
hatfldf 3 0 IL
hatfldg 25 0 21 0.12 0.0000E+00 5.2621E-06
hatfldh 4 7 11 0.05 -2.4375E+01 0.0000E+00
heart6 6 0 38 0.11 0.0000E+00 3.6397E-05

heart6ls 6 0 IL
heart8 8 0 IL

heart8ls 8 0 233 1.85 1.0561E+00 0.0000E+00
helix 3 0 16 0.02 3.5284E-24 0.0000E+00

h500berta 10 0 3 0 6.1634E-10 0.0000E+00
h500bertb 50 0 3 0.01 6.1743E-18 0.0000E+00
himmelba 2 0 0 0 0.0000E+00 0.0000E+00
himmelbb 2 0 20 0.02 4.3513E-10 0.0000E+00
himmelbc 2 0 6 0 0.0000E+00 4.3074E-08
himmelbd 2 0 IL
himmelbe 3 0 0 0 0.0000E+00 0.0000E+00
himmelbf 4 0 91 0.14 3.1857E+02 0.0000E+00
himmelbg 2 0 6 0 2.9302E-17 0.0000E+00
himmelbh 2 0 5 0 -1.0000E+00 0.0000E+00
himmelbi 100 12 17 0.07 -1.7550E+03 0.0000E+00
himmelbj 43 14 IL
himmelbk 24 14 9 0.08 5.1814E-02 9.7298E-09
himmelp1 2 0 10 0.01 -5.1738E+01 0.0000E+00
himmelp2 2 1 9 0.01 -6.2054E+01 0.0000E+00
himmelp3 2 2 7 0.01 -5.9013E+01 0.0000E+00
himmelp4 2 3 6 0.01 -5.9013E+01 0.0000E+00
himmelp5 2 3 9 0.03 -5.9013E+01 0.0000E+00
himmelp6 2 4 2 0.02 -5.9013E+01 0.0000E+00

hong 4 1 8 0.01 1.3473E+00 9.8752E-11
hs001 2 0 27 0.03 3.5943E-15 0.0000E+00
hs002 2 0 10 0.04 4.9412E+00 0.0000E+00
hs003 2 0 3 0 1.4567E-11 0.0000E+00

Continued on Next Page. . .

97

Problem Outer Time Objective Constraint
Name n m Iters (secs) Value Violation
hs004 2 0 3 0 2.6667E+00 0.0000E+00
hs005 2 0 7 0.01 -1.9132E+00 0.0000E+00
hs006 2 1 4 0 1.0838E-19 1.5073E-10
hs007 2 1 15 0.02 -1.7321E+00 4.0442E-10
hs008 2 2 5 0 -1.0000E+00 6.8276E-05
hs009 2 1 3 0 -5.0000E-01 2.1885E-12
hs010 2 1 13 0.01 -1.0000E+00 1.6882E-08
hs011 2 1 6 0 -8.4985E+00 0.0000E+00
hs012 2 1 11 0.01 -3.0000E+01 0.0000E+00
hs013 2 1 IL
hs014 2 2 6 0 1.3935E+00 1.5687E-09
hs015 2 2 17 0.03 3.0650E+02 1.4319E-09
hs016 2 2 8 0.05 2.3145E+01 0.0000E+00
hs017 2 2 11 0.01 1.0000E+00 0.0000E+00
hs018 2 2 7 0.01 5.0000E+00 0.0000E+00
hs019 2 2 50 0.09 -6.9618E+03 0.0000E+00
hs020 2 3 6 0.01 4.0199E+01 3.7943E-10
hs021 2 1 2 > -9.9960E+01 0.0000E+00
hs022 2 2 5 0 1.0000E+00 0.0000E+00
hs023 2 5 7 0.01 2.0000E+00 0.0000E+00
hs024 2 2 3 0 -1.0000E+00 0.0000E+00
hs025 3 0 1 0 3.2835E+01 0.0000E+00
hs026 3 1 15 0.02 4.1531E-10 1.1465E-05
hs027 3 1 23 0.03 4.0000E-02 2.8755E-14
hs028 3 1 2 0 1.2354E-13 2.4968E-10
hs029 3 1 13 0.12 -2.2627E+01 8.4792E-08
hs030 3 1 8 0.01 1.0000E+00 1.0400E-10
hs031 3 1 6 0.01 6.0000E+00 0.0000E+00
hs032 3 2 20 0.08 1.0000E+00 4.6592E-10
hs033 3 2 14 0.1 -4.5858E+00 0.0000E+00
hs034 3 2 8 0 -8.3403E-01 8.6519E-08
hs035 3 1 2 0 1.1111E-01 0.0000E+00
hs036 3 1 6 0.04 -3.3000E+03 0.0000E+00
hs037 3 1 19 0.04 -3.4560E+03 0.0000E+00
hs038 4 0 39 0.06 1.4400E-12 0.0000E+00
hs039 4 2 13 0.01 -1.0000E+00 7.0566E-09
hs040 4 3 5 0 -2.5000E-01 7.6080E-12
hs041 4 1 6 0 1.9259E+00 9.4233E-09
hs042 3 1 6 0 1.3858E+01 1.1527E-11
hs043 4 3 8 0.01 -4.4000E+01 0.0000E+00
hs044 4 6 3 0.01 -1.5000E+01 0.0000E+00
hs045 5 0 1 0 2.0000E+00 0.0000E+00
hs046 5 2 16 0.02 5.3101E-10 5.6864E-06
hs047 5 3 18 0.06 3.1877E-11 1.5131E-07

Continued on Next Page. . .

98

Problem Outer Time Objective Constraint
Name n m Iters (secs) Value Violation
hs048 5 2 3 0 1.0595E-21 2.5629E-09
hs049 5 2 17 0.02 1.3887E-09 1.5595E-10
hs050 5 3 9 0.01 8.2921E-14 1.6403E-09
hs051 5 3 3 0 9.8501E-19 7.2742E-13
hs052 5 3 2 0 5.3266E+00 3.9869E-08
hs053 5 3 4 0 4.0930E+00 9.8729E-09
hs054 6 1 4 0 1.9286E-01 1.1181E-09
hs055 6 6 3 0.02 6.6667E+00 5.1319E-12
hs056 7 4 34 0.12 -7.8115E-11 1.9993E-05
hs057 2 1 3 0 3.0648E-02 0.0000E+00
hs059 2 3 26 0.28 -7.8028E+00 0.0000E+00
hs060 3 1 7 0.01 3.2568E-02 1.1961E-07
hs061 3 2 9 0.01 -1.4365E+02 7.3316E-09
hs062 3 1 27 0.03 -2.6273E+04 9.5196E-09
hs063 3 2 50 0.09 9.6172E+02 8.5869E-10
hs064 3 1 21 0.03 6.2998E+03 3.5624E-10
hs065 3 1 9 0.02 9.5353E-01 1.7404E-10
hs066 3 2 7 0 5.1816E-01 7.4648E-10
hs067 8 21 312 0.99 -1.1620E+03 2.0365E-07
hs070 4 1 21 0.1 8.9232E-03 0.0000E+00
hs071 4 2 7 0.01 1.7014E+01 2.8945E-10
hs072 4 2 27 0.04 7.2768E+02 9.7447E-09
hs073 4 3 5 0.01 2.9894E+01 1.4294E-09
hs074 4 4 86 0.15 5.1265E+03 4.9795E-11
hs075 4 4 81 0.16 5.1744E+03 1.0690E-08
hs076 4 3 3 0 -4.6818E+00 0.0000E+00
hs077 5 2 10 0.01 2.4151E-01 6.8001E-10
hs078 5 3 7 0 -2.9197E+00 2.3050E-09
hs079 5 3 5 0 7.8777E-02 1.1930E-08
hs080 5 3 8 0.01 5.3950E-02 8.3699E-07
hs081 5 3 33 0.07 5.3950E-02 3.4577E-11
hs083 5 3 6 0 -3.0666E+04 4.8677E-09
hs084 5 3 IL
hs085 5 38 40 0.31 -1.9052E+00 0.0000E+00
hs086 5 6 5 0 -3.2349E+01 0.0000E+00
hs087 11 6 49 0.09 8.8276E+03 4.0567E-10
hs088 2 1 19 0.05 1.3627E+00 3.3729E-11
hs089 3 1 19 0.08 1.3627E+00 3.3606E-11
hs090 4 1 123 0.93 1.3627E+00 9.4641E-13
hs091 5 1 49 0.45 1.3627E+00 0.0000E+00
hs092 6 1 79 0.69 1.3627E+00 0.0000E+00
hs093 6 2 139 0.3 1.3514E+02 1.6520E-07
hs095 6 4 3 0 1.5620E-02 0.0000E+00
hs096 6 4 3 0 1.5620E-02 0.0000E+00

Continued on Next Page. . .

99

Problem Outer Time Objective Constraint
Name n m Iters (secs) Value Violation
hs097 6 4 IL
hs098 6 4 13 0.02 3.1358E+00 0.0000E+00
hs099 19 14 IL
hs100 7 4 7 0.01 6.8063E+02 5.5387E-07

hs100lnp 7 2 10 0.01 6.8063E+02 2.8110E-09
hs100mod 7 4 8 0.01 6.7875E+02 0.0000E+00

hs101 7 6 IL
hs102 7 6 21 0.06 9.1188E+02 8.6831E-09
hs103 7 6 21 0.05 5.4367E+02 0.0000E+00
hs104 8 6 10 0.01 3.9512E+00 0.0000E+00
hs105 8 0 20 0.28 1.1363E+03 0.0000E+00
hs106 8 6 IL
hs107 9 6 28 0.05 5.0550E+03 2.1564E-09
hs108 9 13 40 0.22 -8.6603E-01 1.6542E-10
hs109 9 10 97 0.3 5.3269E+03 1.9168E-10
hs110 10 0 6 0 -4.5778E+01 0.0000E+00
hs111 10 3 20 0.08 -4.5151E+01 2.7296E-08

hs111lnp 10 3 20 0.08 -4.5151E+01 2.7296E-08
hs112 10 3 14 0.02 -4.7761E+01 2.8775E-10
hs113 10 8 7 0.01 2.4306E+01 1.1292E-08
hs114 10 11 239 0.83 -1.7688E+03 2.9446E-06
hs116 13 15 IL
hs117 15 5 8 0.03 3.2349E+01 0.0000E+00
hs118 15 17 3 0 6.6482E+02 0.0000E+00
hs119 16 8 10 0.02 2.4490E+02 1.7398E-10

hs21mod 7 1 13 0.02 -9.5960E+01 0.0000E+00
hs268 5 5 3 0 2.8787E-06 0.0000E+00

hs35mod 2 1 2 0 2.5000E-01 0.0000E+00
hs3mod 2 0 3 0 2.1777E-08 0.0000E+00
hs44new 4 5 2 0 -3.0000E+00 0.0000E+00
hs99exp 28 21 IL
hubfit 2 1 3 0 1.6894E-02 0.0000E+00

hues-mod 10000 2 IL
huestis 10000 2 IL
humps 2 0 152 0.81 1.6124E+01 0.0000E+00

hvycrash 201 150 IL
hypcir 2 0 5 0 0.0000E+00 6.9871E-08
indef 1000 0 IL

integreq 100 0 3 0.22 0.0000E+00 9.6668E-06
jensmp 2 0 335 1.62 1.2436E+02 0.0000E+00
kissing 127 903 IL

kiwcresc 3 2 13 0.01 1.2761E-08 0.0000E+00
kowosb 4 0 17 0.06 3.0751E-04 0.0000E+00
ksip 20 1000 3 0.57 5.7580E-01 0.0000E+00

Continued on Next Page. . .

100

Problem Outer Time Objective Constraint
Name n m Iters (secs) Value Violation
lakes 90 78 IL
launch 25 29 IL

lch 600 1 22 1.42 -4.2877E+00 1.8419E-09
lewispol 6 9 5 0 1.1268E+00 9.0002E-05
liarwhd 10000 0 14 8.57 1.8493E-17 0.0000E+00

linspanh 72 32 2 0 -7.7000E+01 8.2577E-13
liswet1 10002 10000 9 8.53 2.5012E+01 3.7982E-04

liswet10 10002 10000 12 11.39 2.5001E+01 2.8227E-04
liswet11 10002 10000 36 58.66 5.1062E+01 2.7673E-06
liswet12 10002 10000 IL
liswet2 10002 10000 5 5.56 2.5000E+01 9.3796E-06
liswet3 10002 10000 6 13.54 2.5000E+01 1.0279E-08
liswet4 10002 10000 6 9.86 2.5000E+01 4.1978E-07
liswet5 10002 10000 6 12.27 2.5000E+01 1.4777E-07
liswet6 10002 10000 5 6.56 2.5000E+01 5.0767E-07
liswet7 10002 10000 31 48.01 3.9077E+01 4.2711E-04
liswet8 10002 10000 IL
liswet9 10002 10000 IL

lminsurf 15129 0 17 37.45 9.0041E+00 0.0000E+00
loadbal 31 31 9 0.03 4.5285E-01 2.5075E-11

loghairy 2 0 35 0.24 6.5524E+00 0.0000E+00
logros 2 0 81 0.5 3.3129E-13 0.0000E+00
lootsma 3 2 14 0.09 1.4142E+00 0.0000E+00
lotschd 12 7 5 0.01 2.3984E+03 1.6458E-08

lsnnodoc 5 4 9 0.01 1.2311E+02 8.7438E-09
lsqfit 2 1 3 0 3.3787E-02 0.0000E+00
madsen 3 6 12 0.04 6.1643E-01 0.0000E+00

madsschj 81 158 IL
makela1 3 2 10 0.01 -1.4142E+00 0.0000E+00
makela2 3 3 15 0.02 7.2000E+00 0.0000E+00
makela3 21 20 30 0.1 -2.8106E-10 2.9936E-07
makela4 21 40 3 0.01 2.3033E-10 0.0000E+00
mancino 100 0 168 18.21 2.4400E-12 0.0000E+00
manne 1094 730 6 1.28 -9.7425E-01 0.0000E+00

maratos 2 1 7 0 -1.0000E+00 2.0749E-10
maratosb 2 0 400 1.26 -1.0000E+00 0.0000E+00
matrix2 6 2 14 0.03 1.5699E-08 0.0000E+00
maxlika 713 0 20 0.28 1.1363E+03 0.0000E+00

mccormck 50000 0 7 > -4.5662E+04 0.0000E+00
mconcon 15 11 IL
mdhole 2 0 20 0.02 9.4726E-11 0.0000E+00

methanb8 31 0 9 0.02 8.7640E-07 0.0000E+00
methanl8 31 0 126 0.33 4.6035E-04 0.0000E+00

mexhat 2 0 6 0 -4.0100E-02 0.0000E+00
Continued on Next Page. . .

101

Problem Outer Time Objective Constraint
Name n m Iters (secs) Value Violation
meyer3 3 0 IL

mifflin1 3 2 7 0.01 -1.0000E+00 7.9343E-10
mifflin2 3 2 14 0.01 -1.0000E+00 0.0000E+00

minc44 303 262 7 1.53 2.5774E-03 1.5026E-07
minmaxbd 5 20 19 0.05 1.1571E+02 0.0000E+00
minmaxrb 3 4 12 0.01 6.8315E-06 0.0000E+00
minperm 1113 1227 5 948.94 3.6288E-04 2.9800E-10
minsurf 36 0 5 0.01 1.0000E+00 0.0000E+00
mistake 9 13 149 0.71 -1.0000E+00 3.3631E-08
model 60 32 21 0.08 5.7422E+03 3.3692E-08
morebv 5000 0 1 0.07 1.0395E-11 0.0000E+00

mosarqp1 2500 700 4 0.88 -9.5288E+02 0.0000E+00
mosarqp2 900 600 9 3.17 -1.5975E+03 0.0000E+00

msqrta 1024 0 6 > 0.0000E+00 1.3623E-05
msqrtals 1024 0 mem

msqrtb 1024 0 time
msqrtbls 1024 0 mem
mwright 5 3 9 0.01 2.4979E+01 1.2124E-08
nasty 2 0 IL

ncvxbqp1 10000 0 mem
ncvxbqp2 10000 0 mem
ncvxbqp3 10000 0 mem
ncvxqp1 1000 500 IL
ncvxqp2 1000 500 185 > -5.7785E+07 9.4635E-07
ncvxqp3 1000 500 IL
ncvxqp4 1000 250 73 225.67 -9.4013E+07 9.7292E-07
ncvxqp5 1000 250 119 394.6 -6.6376E+07 1.0523E-07
ncvxqp6 1000 250 424 1206.3 -3.4620E+07 1.1313E-06
ncvxqp7 1000 750 109 > -4.3420E+07 1.6346E-06
ncvxqp8 1000 750 IL
ncvxqp9 1000 750 IL
ngone 97 1273 33 > -6.0910E-01 1.9124E-08

noncvxu2 1000 0 193 625.53 2.3362E+03 0.0000E+00
noncvxun 1000 0 67 1.22 2.3168E+03 0.0000E+00

nondia 9999 0 18 2.246 1.2022E-13 0.0000E+00
nondquar 10000 0 14 6.54 7.0004E-06 0.0000E+00
nonmsqrt 9 0 26 0.06 1.6384E+00 0.0000E+00
nonscomp 10000 0 84 89.9 1.3404E-05 0.0000E+00
obstclal 100 0 3 0 1.3979E+00 0.0000E+00
obstclbl 100 0 5 0.01 2.8750E+00 0.0000E+00
obstclbu 100 0 5 0.01 2.8750E+00 0.0000E+00

odfits 10 6 29 0.05 -2.3800E+03 2.0509E-09
oet1 3 1002 2 0.08 5.3833E-01 0.0000E+00
oet2 3 1002 6 0.49 8.7160E-02 9.0218E-10

Continued on Next Page. . .

102

Problem Outer Time Objective Constraint
Name n m Iters (secs) Value Violation

oet3 4 1002 2 0.09 4.5113E-03 0.0000E+00
oet7 7 1002 6 0.64 8.7160E-02 7.7538E-10

optcdeg2 1198 799 8 0.64 2.2959E+02 1.5082E-06
optcdeg3 1198 799 16 1.55 4.6181E+01 1.6231E-06
optcntrl 28 20 2 0 5.5000E+02 2.6636E-08
optctrl3 118 80 24 0.15 2.0480E+03 1.4347E-07
optctrl6 118 80 24 0.14 2.0480E+03 1.4347E+00
optmass 66 55 34 0.26 -5.8684E-05 1.5400E-07

optprloc 30 29 20 0.1 -1.6420E+01 0.0000E+00
orthrdm2 4003 2000 7 2.87 1.5553E+02 2.0624E-07
orthrds2 203 100 IL
orthrega 517 256 IL
orthregb 27 6 8 0.01 2.6599E-17 8.5020E-05
orthregc 10005 5000 IL
orthregd 10003 5000 8 17.36 1.5239E+03 1.2952E-07
orthrege 36 20 IL
orthrgdm 10003 5000 time
orthrgds 10003 5000 mem
osbornea 5 0 41 0.06 5.4670E-05 0.0000E+00
osborneb 11 0 54 0.22 3.1334E-01 0.0000E+00

oslbqp 8 0 12 0.02 6.2500E+00 0.0000E+00
palmer1 4 0 73 0.17 1.1755E+04 0.0000E+00

palmer1a 6 0 32 0.06 8.9884E-02 0.0000E+00
palmer1b 4 0 18 0.04 3.4474E+00 0.0000E+00
palmer1c 8 0 IL
palmer1d 7 0 IL
palmer1e 8 0 94 0.17 6.3040E-02 0.0000E+00
palmer2 4 0 23 0.06 4.5811E+03 0.0000E+00

palmer2a 6 0 55 0.13 1.7161E-02 0.0000E+00
palmer2b 4 0 23 0.06 6.2339E-01 0.0000E+00
palmer2c 8 0 IL
palmer2e 8 0 61 0.09 2.6274E-02 0.0000E+00
palmer3 4 0 12 0.04 2.4170E+03 0.0000E+00

palmer3a 6 0 8 0.01 4.5559E+00 0.0000E+00
palmer3b 4 0 10 0.02 4.2276E+00 0.0000E+00
palmer3c 8 0 41 0.1 2.1453E-01 0.0000E+00
palmer3e 8 0 46 0.08 1.3838E-01 0.0000E+00
palmer4 4 0 10 0.03 2.4240E+03 0.0000E+00

palmer4a 6 0 8 0.01 6.8903E+00 0.0000E+00
palmer4b 4 0 11 0.02 6.8351E+00 0.0000E+00
palmer4c 8 0 43 0.1 4.0865E-01 0.0000E+00
palmer4e 8 0 77 0.33 1.4803E-04 0.0000E+00
palmer5a 8 0 10 0.01 2.1281E+00 0.0000E+00
palmer5b 9 0 236 0.43 1.5158E-02 0.0000E+00

Continued on Next Page. . .

103

Problem Outer Time Objective Constraint
Name n m Iters (secs) Value Violation

palmer5c 6 0 6 0 2.1281E+00 0.0000E+00
palmer5d 4 0 12 0.02 8.7339E+01 0.0000E+00
palmer5e 8 0 483 0.77 2.9508E-02 0.0000E+00
palmer6a 6 0 110 0.27 5.5949E-02 0.0000E+00
palmer6c 8 0 165 0.27 1.4492E-01 0.0000E+00
palmer6e 8 0 42 0.07 2.2766E-04 0.0000E+00
palmer7a 6 0 IL
palmer7c 8 0 97 0.25 4.3613E+00 0.0000E+00
palmer7e 8 0 IL
palmer8a 6 0 35 0.06 7.4010E-02 0.0000E+00
palmer8c 8 0 149 0.3 5.9929E-01 0.0000E+00
palmer8e 8 0 54 0.1 6.3393E-03 0.0000E+00
penalty1 1000 0 68 333.78 9.8917E-03 0.0000E+00
penalty2 100 0 21 0.19 9.7096E+04 0.0000E+00
pentagon 6 12 7 0.18 1.4513E-04 0.0000E+00

pentdi 1000 0 5 0.17 -7.5000E-01 0.0000E+00
pfit1 3 0 319 0.54 1.0719E-12 0.0000E+00

pfit1ls 3 0 319 0.56 1.0719E-12 0.0000E+00
pfit2 3 0 137 0.22 5.8591E-08 0.0000E+00

pfit2ls 3 0 137 0.22 5.8591E-08 0.0000E+00
pfit3 3 0 err

pfit3ls 3 0 err
pfit4 3 0 179 0.35 2.9810E-11 0.0000E+00

pfit4ls 3 0 179 0.37 2.9810E-11 0.0000E+00
polak1 3 2 6 0.01 2.7183E+00 6.1571E-08
polak2 11 2 38 0.09 5.4598E+01 7.4741E-06
polak3 12 10 20 0.05 5.9330E+00 9.5425E-09
polak4 3 3 32 0.08 3.5461E-09 0.0000E+00
polak5 3 2 68 0.13 5.0000E+01 5.9342E-05
polak6 5 4 82 0.2 -4.4000E+01 0.0000E+00
porous1 4900 0 13 52.57 0.0000E+00 5.2399E-06
porous2 4900 0 9 39.36 0.0000E+00 8.2168E-06
portfl1 12 1 3 0 2.0486E-02 0.0000E+00
portfl2 12 1 3 0 2.9689E-02 0.0000E+00
portfl3 12 1 3 0 3.2750E-02 5.5511E-16
portfl4 12 1 3 0 2.6307E-02 3.1086E-15
portfl6 12 1 3 0 2.5792E-02 4.4409E-16

powell20 1000 1000 28 1.87 5.2146E+07 4.3038E-07
powellbs 2 0 40 0.1 0.0000E+00 6.0736E-05
powellsq 2 0 40 0.06 0.0000E+00 5.6474E-06

power 1000 0 6 0.08 4.0488E-11 0.0000E+00
probpenl 500 0 13 8.84 3.9900E-07 0.0000E+00
prodpl0 60 29 9 0.03 6.0919E+01 2.1684E-09
prodpl1 60 29 9 0.03 5.3037E+01 7.0154E-10

Continued on Next Page. . .

104

Problem Outer Time Objective Constraint
Name n m Iters (secs) Value Violation
pspdoc 4 0 8 0.01 2.4142E+00 0.0000E+00

pt 2 501 2 0.02 1.7840E-01 0.0000E+00
qpcboei1 372 288 39 1.68 1.4434E+07 1.9537E-08
qpcboei2 143 125 73 1.16 8.2937E+06 6.4791E-07
qpcstair 385 356 42 3.32 6.2044E+06 4.0680E-07
qpnboei1 372 288 IL
qpnboei2 143 125 58 8.31 1.7698E+06 9.6227E-05
qpnstair 385 356 34 6.39 5.1460E+06 5.4678E-07

qr3d 155 0 IL
qr3dbd 155 0 60 1.59 1.2587E-05 0.0000E+00
qr3dls 155 0 404 51.99 4.6560E-01 0.0000E+00
qrtquad 120 0 68 0.3 -3.6481E+06 0.0000E+00
quartc 10000 0 516 84.15 2.1567E-04 0.0000E+00
qudlin 12 0 7 0.02 -7.2000E+03 0.0000E+00

reading1 10001 5000 7 1185.52 -1.7534E-02 2.7092E-05
reading2 15001 10000 4 24.3 -1.8864E-07 7.6504E-06
reading3 202 102 IL

recipe 3 0 0 0 0.0000E+00 0.0000E+00
res 18 2 1 0 0.0000E+00 1.0270E-15

rk23 17 11 8 0.01 8.3333E-02 1.5765E-06
robot 7 2 13 0.01 1.2628E+01 4.7030E-10

rosenbr 2 0 24 0.02 3.0337E-13 0.0000E+00
rosenmmx 5 4 40 0.08 -4.4000E+01 0.0000E+00

s332 2 1 10 0.08 2.9924E+01 0.0000E+00
s365mod 7 5 IL

s368 100 0 1 0.13 0.0000E+00 0.0000E+00
sawpath 589 782 IL

scon1dls 1000 0 176 4.47 2.2515E-01 0.0000E+00
scosine 10000 0 mem

scurly10 10000 0 IL
scurly20 10000 0 IL
semicon1 1000 0 err
semicon2 1000 0 IL
sensors 1000 0 36 435.24 -2.1069E+05 0.0000E+00
sim2bqp 2 0 4 0 2.7622E-12 0.0000E+00
simbqp 2 0 4 0 1.5842E-07 0.0000E+00

simpllpa 2 2 2 0 1.0000E+00 0.0000E+00
simpllpb 2 3 2 0 1.1000E+00 0.0000E+00
sineali 20 0 29 0.07 -1.8734E+03 0.0000E+00
sineval 2 0 43 0.05 5.3140E-22 0.0000E+00
sinquad 10000 0 38 82.16 6.2197E-10 0.0000E+00

sinrosnb 1000 999 1 0.01 -9.9901E+04 0.0000E+00
sipow1 2 10000 2 1.82 -9.9975E-01 0.0000E+00
sipow1m 2 10000 2 1.93 -1.0000E+00 0.0000E+00

Continued on Next Page. . .

105

Problem Outer Time Objective Constraint
Name n m Iters (secs) Value Violation
sipow2 2 5000 2 0.64 -9.9985E-01 0.0000E+00
sipow2m 2 5000 2 0.58 -9.9980E-01 0.0000E+00
sipow4 4 10000 2 2.62 2.7283E-01 5.4671E-07
sisser 2 0 15 0.01 4.1034E-10 0.0000E+00
smbank 117 64 IL
smmpsf 720 263 112 5.95 1.0518E+06 7.5073E-07
snake 2 2 79 0.36 4.2793E-05 0.0000E+00
sosqp1 20000 20000 0 0 0.0000E+00 0.0000E+00
sosqp2 20000 10001 5 > -4.9987E+03 2.9961E-06
spanhyd 72 32 58 0.39 2.3974E+02 6.8633E-08
spiral 3 2 49 0.09 -6.1121E-10 1.2227E-09

sreadin3 10000 5000 3 934.36 -1.9443E-05 2.2486E-05
srosenbr 10000 0 24 3.57 1.6322E-09 0.0000E+00
sseblin 192 72 391 2.72 1.6171E+07 6.7717E-08
ssebnln 192 96 IL

ssnlbeam 31 20 IL
stancmin 3 2 6 0 4.2500E+00 0.0000E+00
static3 434 96 IL

steenbra 432 108 91 29.36 1.6958E+04 5.5879E-08
steenbrb 468 108 IL
steenbrc 540 126 IL
steenbrd 468 108 IL
steenbre 540 126 IL
steenbrf 468 108 IL
steenbrg 540 126 IL
supersim 2 2 4 0 6.6667E-01 1.0193E-08
svanberg 5000 5000 10 7.05 8.3614E+03 2.8800E-06

swopf 82 91 7 0.05 6.7860E-02 1.6890E-07
synthes1 6 6 5 0 7.5928E-01 3.5612E-11

tame 2 1 2 0 0.0000E+00 1.5321E-14
tfi2 3 10000 2 3.11 6.4904E-01 0.0000E+00

tointqor 50 0 3 0 1.1755E+03 0.0000E+00
trainf 20000 10002 17 -1000 3.4877E+00 6.7600E-06
trainh 20000 10002 time
tridia 10000 0 5 1.59 1.3282E-17 0.0000E+00

trimloss 142 72 15 0.14 9.0600E+00 1.7094E-09
try-b 2 1 9 0.01 7.9286E-20 7.1412E-10

twirism1 343 313 IL
twobars 2 2 7 0 1.5087E+00 9.4641E-09

ubh1 17997 12000 124 > 1.1456E+01 5.8959E-05
ubh5 19997 14000 78 > 9.0923E+01 6.6515E-05

vanderm1 100 99 err
vanderm2 100 99 IL
vanderm3 100 99 IL

Continued on Next Page. . .

106

Problem Outer Time Objective Constraint
Name n m Iters (secs) Value Violation

vanderm4 9 8 IL
vardim 100 0 IL
watson 31 0 15 0.04 1.8427E-08 0.0000E+00
weeds 0 0 17 0.02 9.2054E+03 0.0000E+00

womflet 3 3 53 0.12 4.8637E+00 0.0000E+00
woods 10000 0 mem

yao 2000 1999 24 4.69 1.9732E+02 4.1344E-06
yfit 3 0 IL
yfitu 3 0 IL

zangw5002 2 0 2 0.00 -1.8200E+01 0.0000E+00
zangw5003 3 0 6 0 0.0000E+00 6.8907E-07
zecevic2 2 2 2 0 -4.1250E+00 0.0000E+00
zecevic3 2 2 7 0.01 9.7309E+01 1.1216E-10
zecevic4 2 2 6 0 7.5575E+00 0.0000E+00

zigzag 58 50 218 1.86 5.0492E+00 4.4475E-07
zy2 3 1 15 0.15 2.0000E+00 0.0000E+00
Table A.2: Shows hopdmSQP’s success on whole of CUTE
set, including problem sizes, iteration count, time taken,
objective found and final constraint violation.

Table A.3: Problems for which hopdm fails to find an
optimal solution.

Problem Name Behaviour demonstrated
aljazzaf Gets very close to optimal point, but doesnt terminate.
allinitc Gets very close to optimal point, but doesnt terminate
artif α gets very small, but constraints are not satisfied. Con-

straints only: they include arctan.
aug2dqp Gets very close to optimal point, but doesnt terminate
avion2 Gets very close to optimal point, but doesnt terminate
bigbank Is still diverging after 500 iterations. Could it be unbounded?
brownbs Huge objective function (of order 1.0e+11). Decreasing grad-

ually at each iteration, but (3.3a) is of order 1.0e+6 through-
out.

bt1 Converges to a point where constraint violation = 1. α → 0.
chemrcta Runs out of time.
chemrctb A feasible point is not found. α → 0.
concon Gets very close to optimal point, but doesnt terminate
core1 hopdm error code 2 is returned at every QP iteration. Increas-

ing ρ does not help. As direction given from hopdm is never
reliable, steepest descent is used, but it is not effective.

Continued on Next Page. . .

107

Problem Name Behaviour demonstrated
core2 hopdm error code 2 is returned at every QP iteration. Increas-

ing ρ does not help. As direction given from hopdm is never
reliable, steepest descent is used, but it is not effective.

corkscrw Initially, QP approximation is primal infeasible. Eventually,
algorithm converges to nonfeasible point, α → 0 at every
iteration.

cresc100 Direction found is never descent. When diagonal matrix is
added to HL, a direction is found in which a full step can be
taken, but this doesn’t progress to an optimal point.

cresc132 Runs out of time.
cresc4 Direction found is never descent. It is still not descent after

diagonal matrix is added to HL. Steepest descent is used, but
this is not a suitable direction either as α → 0.

cresc50 Direction found is never descent. When diagonal matrix is
added to HL, a direction is found in which a full step can be
taken, but this doesn’t progress to an optimal point.

csfi2 No obvious reason for this problem’s failure to converge.
hopdm terminates normally each time and a full step size is
always taken.

curly20 Gets very close to optimal point, but doesnt terminate, al-
though full step is always taken.

curly30 Gets very close to optimal point, but doesnt terminate, al-
though full step is always taken.

cvxqp3 Converges to a nonoptimal point.
dixchlng A feasible point is never found. α is small.
dixchlnv A feasible point is never found. α → 0.
djtl (3.3a) is of order 1.0e+11 throughout.
drcav1lq Runs out of time after converging to an infeasible point.
drcav2lq Runs out of time after converging to an infeasible point.
drcavty1 Runs out of time with (3.3a) nearly satisfied.
dtoc1nd A feasible point is never found.
eigenb2 A feasible point is never found.
eigenc2 A feasible point is never found.
expquad Gets very close to optimal point, but doesnt terminate
fletcbv3 Is still diverging after 500 iterations. Could it be unbounded?
fletchbv Is still diverging after 478 iterations when program runs out

of memory.
flosp2hh This is an unconstrained problem. Although (3.3a) is suffi-

ciently satisfied, the objective is still decreasing and so algo-
rithm does not terminate.

flosp2hm Unbounded primal at each QP iteration, despite l1 penalty
parameter ρ being increased to its maximum (1.0e+16). Con-
sequentially, a steepest descent direction is always used and
this is not a successful direction, so α → 0.

Continued on Next Page. . .

108

Problem Name Behaviour demonstrated
flosp2th Diagonal term added to HL at each iteration. Full step then

taken in direction given by hopdm, but little progress is made.
flosp2tm Diagonal term added to HL at each iteration. Full step then

taken in direction given by hopdm, but little progress is made.
hatfldh Objective is constant. Feasible point is never found, and

α → 0.
heart6ls Diagonal term added to HL at each iteration. Full step then

taken in direction given by hopdm, but little progress is made.
heart8 Objective is constant. Partial steps made at each iteration,

but feasible point is never found.
himmelbd Objective is constant. Feasible point is never found as α → 0.
himmelbj Constraints and KKT conditions (3.3) are satisfied after just

3 iterations. However, objective function is still decreasing,
so algorithm does not terminate. After another 20 iterations,
nonmonotonicity is always allowed and algorithm takes step-
sizes of 1 in a direction which doesn’t make an improvement
on the current point.

hs013 (3.3a) never met. α → 0.
hs084 Gets very close to optimal point, but doesnt terminate. Pos-

sibly because final objective value is of order 1.0e+6 and so
small fluctuations are larger than what is allowed for algo-
rithm termination.

hs097 Takes full step, but objective is still decreasing when iteration
limit is reached.

hs099 Takes full steps, but objective is still decreasing when itera-
tion limit is reached.

hs101 Converges to optimum point on several occasions. However,
(3.3a) is not satisfied with desired accuracy and next iteration
allows a nonmonotone step which moves far away from the
optimum.

hs106 Converges to a non-KKT point.
hs116 Partial steps taken at each iteration. Feasible point never

found.
hs99exp Feasible point is never found.
hues-mod Progress is made at every iteration, but iteration limit is

reached.
huestis Converges to infeasible point.
hvycrash Feasible point is never found.
indef Unconstrained problem. Objective is still decreasing when

iteration limit is reached.
kissing Progress is made at every iteration, but iteration limit is

reached.
lakes Feasible point not found. α → 0.
launch Feasible point not found. α → 0.
liswet12 Feasible point is not found.

Continued on Next Page. . .

109

Problem Name Behaviour demonstrated
liswet8 Feasible point is not found. At each iteration, full step is

allowed after allowing nonmonotonicity. Therefore, improve-
ment is not made.

liswet9 Feasible point is not found.
madsschj Unconstrained problem. Objective still decreasing when it-

eration limit is reached.
mconcon Converged to optimal point, but first (3.3a) is never satisfied.
meyer3 Unconstrained problem. Objective still decreasing when it-

eration limit is reached.
msqrtals Runs out of memory.
msqrtb Runs out of time.
msqrtbls Runs out of memory.
nasty Unconstrained problem. Consistently far away from a KKT

point.
ncvxbqp1 Gets close to optimal point but doesn’t terminate. Runs out

of memory.
ncvxbqp2 Gets close to optimal point but doesn’t terminate. Runs out

of memory.
ncvxbqp3 Gets close to optimal point but doesn’t terminate. Runs out

of memory.
ncvxqp1 Gets close to optimal point but doesn’t terminate.
ncvxqp3 Gets close to optimal point but doesn’t terminate.
ncvxqp8 Gets close to optimal point but doesn’t terminate.
ncvxqp9 Gets close to optimal point but doesn’t terminate.
orthrds2 Feasible point is never found.
orthrega Feasible point is never found.
orthregc Feasible point is never found.
orthrege Gets close to optimal point but doesn’t terminate.
orthrgdm Runs out of time after converging to infeasible point. α → 0.
orthrgds Memory error.
palmer1c Allowing nonmonotonicity means that algorithm fluctuates

around a nonoptimal point.
palmer1d Unconstrained problem. Objective still decreasing when it-

eration limit is reached.
palmer2c Unconstrained problem. Objective still decreasing when it-

eration limit is reached.
palmer7a Unconstrained problem. Objective decreases slightly at

each iteration and is still decreasing when iteration limit is
reached.

palmer7e Converged to optimal point, but (3.3a) is never satisfied.
qpnboei1 QP approximation is extremely difficult to solve and a QP

solution is rarely found, even after regularization. Instead,
the steepest descent direction is proposed and as α → 0 in
this direction, no progress is made.

Continued on Next Page. . .

110

Problem Name Behaviour demonstrated
qr3d Unconstrained problem. Objective still decreasing gradually

when iteration limit is reached.
reading3 Gets close to optimal point but doesn’t terminate.
s365mod Never reaches a feasible point. α → 0.
sawpath Never reaches a feasible point. α → 0.
scosine Runs out of memory after converging to nonoptimal point.

α → 0.
scurly10 Still diverging (slowly) after 500 iterations.
scurly20 Unconstrained problem. No progress being made in objec-

tive, which is of order 1.0e+14 throughout iteration sequence.
semicon1 Feasible point is never found. α → 0. Error in implementing

steepest descent method.
semicon2 Feasible point is never found. α → 0
smbank Still diverging after 500 iterations.
ssebnln (3.3a) not met.
ssnlbeam Strong regularization required at each iteration. (3.3a) never

met.
static3 Still diverging after 500 iterations. Could it be unbounded?
steenbrb Strong regularization required at each iteration. (3.3a) never

met.
steenbrc Strong regularization required at each iteration. (3.3a) never

met.
steenbrd Strong regularization required at each iteration. (3.3a) never

met.
steenbre Strong regularization required at each iteration. (3.3a) never

met.
steenbrf Strong regularization required at each iteration. (3.3a) never

met.
steenbrg Strong regularization required at each iteration. (3.3a) never

met.
trainh Runs out of time.
twirism1 Converges to point where (3.3a) is not met.
vanderm1 Error in the implementation of steepest descent method.
vanderm2 Converges to infeasible point. α → 0.
vanderm3 Does not find feasible point.
vanderm4 Converges to infeasible point. α → 0.
vardim Gets close to optimal point but doesn’t terminate.
woods Runs out of memory after onverging to point which does not

satisfy (3.3a)
yfit Gets close to optimal point but doesn’t terminate.
yfitu Gets close to optimal point but doesn’t terminate.

Table A.3: Problems for which hopdm fails to find an
optimal solution.

111

Appendix B

Ampl models

B.1 Mountain Pass

#define parameters

param p = 200; #no. of discretization steps

param x10 = -1.5; #starting position on mountain

param x20 = -0.6;

param x1p = 0.0; #ending position on mountain

param x2p = 0.8;

#define variables

var x1 {0..p};

var x2 {0..p};

var ux1 {0..p} <= 2, >=-2;

var ux2 {0..p} <= 2, >=-2;

var height;

var z {i in 0..p} = (4 - 2.1*x1[i]^2 + x1[i]^4/3)*x1[i]^2

+ x1[i]*x2[i] + 4*(x2[i]^2-1)*x2[i]^2;

#write model

minimize maxheight: height;

s.t. x1diff{i in 0..p-1}: x1[i+1] = x1[i] + (1/p)*ux1[i];

s.t. x2diff{i in 0..p-1}: x2[i+1] = x2[i] + (1/p)*ux2[i];

s.t. Height{i in 0..p} : z[i] <= height;

s.t. x1start : x1[0] = x10;

s.t. x1end : x1[p] = x1p;

s.t. x2start : x2[0] = x20;

s.t. x2end : x2[p] = x2p;

112

#provide sensible starting point

let {j in 0..p} x1[j] := x10 + (j/p)*(x1p-x10);

let {j in 0..p} x2[j] := x20 + (j/p)*(x2p-x20);

B.2 Bicycle

#define parameters

param p = 50; #no. of discretization steps

param x10 = 0; #starting position of bike

param x20 = 0;

param x1p = 0; #final position of bike

param x2p = 0;

param pi = 3.141592;

#define variables

var x1 {0..p}; #position

var x2 {0..p};

var theta {0..p} <=2*pi, >=-2*pi; #angle of travel

#write model

maximize Tan: sum{i in 0..p}sum{i in 0..p}cos((i*pi/p)+theta[i]);

s.t. Cx1{i in 0..p-1}: x1[i+1] = x1[i] + (pi/p)*cos(theta[i]);

s.t. Cx2{i in 0..p-1}: x2[i+1] = x2[i] + (pi/p)*sin(theta[i]);

s.t. x1start : x1[0] = x10;

s.t. x2start : x2[0] = x20;

s.t. x1end : x1[p] = x1p;

s.t. x2end : x2[p] = x2p;

B.3 Sailing

#define parameters

param p = 40; #no. of discretization steps

param x10 = 0; #starting position of boat

param x20 = 0;

param x1p = 100; #final position of boat

param x2p = 100;

#define variables

113

var x1 {0..p} ; #position

var x2 {0..p} ;

var theta {0..p} >= -2.617, <=2.617;

var absthta {i in 0..p} = sqrt(theta[i]^2);

var z {i in 0..p} = -0.3675*absthta[i]^5 + 1.0479*theta[i]^4

+ 0.9402*absthta[i]^3 - 4.7994*theta[i]^2

+ 3.0336*absthta[i] + 4.8401;

var tF >= 0; #total time of motion

#write model

minimize Ttime: tF;

s.t. Cx1{i in 0..p-1}: x1[i+1] = x1[i] + (tF/p)*z[i]*cos(theta[i]);

s.t. Cx2{i in 0..p-1}: x2[i+1] = x2[i] + (tF/p)*z[i]*sin(theta[i]);

s.t. x1start : x1[0] = x10;

s.t. x2start : x2[0] = x20;

s.t. x1end : x1[p] = x1p;

s.t. x2end : x2[p] = x2p;

s.t. time : tF>= 0;

B.4 Golf

B.4.1 1-dimensional Euler discretization

This is the ampl model for an Euler discretization of the problem described in

section C.2.1.

#define parameters

param p = 25; #no. of discretization steps

param x0 = 0; #starting position of ball

param xp = 20; #position of hole

param mu = 0.07; #friction coefficient

param g = 9.8; #gravitational coefficient

param m = 0.01; #mass of ball

#define variables

var x {0..p};

var vx {0..p};

var speed {i in 0..p} = sqrt(vx[i]^2);

var dirx {i in 0..p} = vx[i]/speed[i];

114

+ or- 1, indicates direction, used to calculate friction

var tF >= 0; #total time of motion

#write model

minimize finalspeed: vx[p]^2;

s.t. Cx{i in 0..p-1} : x[i+1] = x[i] + (tF/p)*vx[i];

s.t. Cv{i in 0..p-1} :vx[i+1] = vx[i] - (tF/p)*mu*g;

s.t. xstart : x[0] = x0;

s.t. xend : x[p] = xp;

#give some initial starting points

let tF := 15;

let vx[0] := 30;

B.4.2 2-dimensional Trapezoidal discretization

This is the ampl model for a Trapezoidal discretization of the problem described

in section C.2.3.

#define parameters

param p = 25; #no. of discretization steps

param x10 = 0; #starting position of ball

param x1p = 20; #position of hole

param mu = 0.07; #friction coefficient

param g = 9.8; #gravitational coefficient

param m = 0.01; #mass of ball

#define variables

var x1 {0..p};

var x3 {i in 0..p} = 2*x1[i]/5;

var vx1 {0..p};

var vx3 {0..p};

var speed {i in 0..p} = sqrt(vx1[i]^2 + vx3[i]^2);

param dzdx = 0.4;

param Nx3 = 1/(sqrt(1 + dzdx^2));

param Nx1 = -dzdx*Nx3;

var dirx1 {i in 0..p} = vx1[i]/speed[i];

var dirx3 {i in 0..p} = vx3[i]/speed[i];

var tF >= 0; #total time of motion

115

#write model

minimize finalspeed: vx1[p]^2 + vx3[p]^2;

s.t. Cx1{i in 0..p-1} :

x1[i+1] = x1[i] + (tF/(2*p))*(vx1[i] + vx1[i+1]);

s.t. Cx3{i in 0..p-1} :

x3[i+1] = x3[i] + (tF/(2*p))*(vx3[i] + vx3[i+1]);

s.t.Cvx1{i in 0..p-1} :vx1[i+1] = vx1[i] +

(tF/(2*p))*g*Nx3*(2*Nx1-mu*(vx1[i]/speed[i]+vx1[i+1]/speed[i+1]));

s.t. xstart : x1[0] = x10;

s.t. xend : x1[p] = x1p;

#give some initial starting points

let tF := 3;

let vx1[0] := 12;

let vx1[p] := 0.1;

B.4.3 3-dimensional Runge-Kutta discretization

This is the ampl model for a Runge-Kutta discretization of the problem described

in section C.2.7.

#define parameters

param p = 25; #no. of discretization steps

param x10 = 1; #starting position of ball

param x20 = 2;

param x1p = 1; #position of hole

param x2p = -2;

param mu = 0.07; #friction coefficient

param g = 9.8; #gravitational coefficient

param m = 0.01; #mass of ball

#define variables

var x1 {0..p};

var kx11 {0..p-1};

var kx12 {0..p-1};

var kx13 {0..p-1};

var kx14 {0..p-1};

var x2 {0..p};

116

var kx21 {0..p-1};

var kx22 {0..p-1};

var kx23 {0..p-1};

var kx24 {0..p-1};

var x3 {i in 0..p} = -0.3*atan(x2[i]) + 0.05*(x1[i] + x2[i]);

var kx31 {0..p-1};

var kx32 {0..p-1};

var kx33 {0..p-1};

var kx34 {0..p-1};

param dzdx = 0.05;

var dzdy0 {i in 0..p} = -0.3/(1 + x2[i]^2) + 0.05;

var dzdy1 {i in 0..p-1} = -0.3/(1 + (x2[i] + kx21[i]/2)^2) + 0.05;

var dzdy2 {i in 0..p-1} = -0.3/(1 + (x2[i] + kx22[i]/2)^2) + 0.05;

var dzdy3 {i in 0..p-1} = -0.3/(1 + (x2[i] + kx23[i])^2) + 0.05;

var ax1 {i in 0..p};

var ax2 {i in 0..p};

var ax3 {i in 0..p};

var Nmag0 {i in 0..p} =

(g-ax1[i]*dzdx - ax2[i]*dzdy0[i] + ax3[i])/sqrt(1 + dzdx^2);

var Nmag1 {i in 0..p-1} =

(g-ax1[i]*dzdx - ax2[i]*dzdy1[i] + ax3[i])/sqrt(1 + dzdx^2);

var Nmag2 {i in 0..p-1} =

(g-ax1[i]*dzdx - ax2[i]*dzdy2[i] + ax3[i])/sqrt(1 + dzdx^2);

var Nmag3 {i in 0..p-1} =

(g-ax1[i]*dzdx - ax2[i]*dzdy3[i] + ax3[i])/sqrt(1 + dzdx^2);

var Nx30 {i in 0..p} =

(g-ax1[i]*dzdx - ax2[i]*dzdy0[i] + ax3[i])/(1 + dzdx^2);

var Nx31 {i in 0..p-1} =

(g-ax1[i]*dzdx - ax2[i]*dzdy1[i] + ax3[i])/(1 + dzdx^2);

var Nx32 {i in 0..p-1} =

(g-ax1[i]*dzdx - ax2[i]*dzdy2[i] + ax3[i])/(1 + dzdx^2);

var Nx33 {i in 0..p-1} =

(g-ax1[i]*dzdx - ax2[i]*dzdy3[i] + ax3[i])/(1 + dzdx^2);

var Nx10 {i in 0..p} = -dzdx*Nx30[i];

var Nx11 {i in 0..p-1} = -dzdx*Nx31[i];

var Nx12 {i in 0..p-1} = -dzdx*Nx32[i];

var Nx13 {i in 0..p-1} = -dzdx*Nx33[i];

var Nx20 {i in 0..p} = -dzdy0[i]*Nx30[i];

117

var Nx21 {i in 0..p-1} = -dzdy1[i]*Nx31[i];

var Nx22 {i in 0..p-1} = -dzdy2[i]*Nx32[i];

var Nx23 {i in 0..p-1} = -dzdy3[i]*Nx33[i];

var vx1 {0..p};

var kvx11 {0..p-1};

var kvx12 {0..p-1};

var kvx13 {0..p-1};

var kvx14 {0..p-1};

var vx2 {0..p};

var kvx21 {0..p-1};

var kvx22 {0..p-1};

var kvx23 {0..p-1};

var kvx24 {0..p-1};

var vx3 {0..p};

var kvx31 {0..p-1};

var kvx32 {0..p-1};

var kvx33 {0..p-1};

var kvx34 {0..p-1};

var speed0 {i in 0..p} = sqrt(vx1[i]^2 + + vx2[i]^2 + vx3[i]^2);

var speed1 {i in 0..p-1} = sqrt((vx1[i] + kvx11[i]/2)^2 +

(vx2[i] + kvx21[i]/2)^2 + (vx3[i] + kvx31[i]/2)^2);

var speed2 {i in 0..p-1} = sqrt((vx1[i] + kvx12[i]/2)^2 +

(vx2[i] + kvx22[i]/2)^2 + (vx3[i] + kvx32[i]/2)^2);

var speed3 {i in 0..p-1} = sqrt((vx1[i] + kvx13[i])^2 +

(vx2[i] + kvx23[i])^2 + (vx3[i] + kvx33[i])^2);

var tF >= 0; #total time of motion

var dirx10 {i in 0..p-1} = vx1[i]/speed0[i];

var dirx11 {i in 0..p-1} =(vx1[i] + kvx11[i]/2)/speed1[i];

var dirx12 {i in 0..p-1} =(vx1[i] + kvx12[i]/2)/speed2[i];

var dirx13 {i in 0..p-1} =(vx1[i] + kvx13[i])/speed3[i];

var dirx20 {i in 0..p-1} = vx2[i]/speed0[i];

var dirx21 {i in 0..p-1} =(vx2[i] + kvx21[i]/2)/speed1[i];

var dirx22 {i in 0..p-1} =(vx2[i] + kvy2[i]/2)/speed2[i];

var dirx23 {i in 0..p-1} =(vx2[i] + kvy3[i])/speed3[i];

var dirx30 {i in 0..p-1} = vx3[i]/speed0[i];

var dirx31 {i in 0..p-1} =(vx3[i] + kvx31[i]/2)/speed1[i];

var dirx32 {i in 0..p-1} =(vx3[i] + kvx32[i]/2)/speed2[i];

118

var dirx33 {i in 0..p-1} =(vx3[i] + kvx33[i])/speed3[i];

#write model

minimize finalspeed: vx1[p]^2 + vx2[p]^2 + vx3[p]^2;

s.t. Cx1k1{i in 0..p-1} : kx11[i] = (tF/n)* vx1[i];

s.t. Cx1k2{i in 0..p-1} : kx12[i] = (tF/n)*(vx1[i] + kvx11[i]/2);

s.t. Cx1k3{i in 0..p-1} : kx13[i] = (tF/n)*(vx1[i] + kvx12[i]/2);

s.t. Cx1k4{i in 0..p-1} : kx14[i] = (tF/n)*(vx1[i] + kvx13[i]);

s.t. Cx2k1{i in 0..p-1} : kx21[i] = (tF/n)* vx2[i];

s.t. Cx2k2{i in 0..p-1} : kx22[i] = (tF/n)*(vx2[i] + kvx21[i]/2);

s.t. Cx2k3{i in 0..p-1} : kx23[i] = (tF/n)*(vx2[i] + kvx22[i]/2);

s.t. Cx2k4{i in 0..p-1} : kx24[i] = (tF/n)*(vx2[i] + kvx23[i]);

s.t. Cx3k1{i in 0..p-1} : kx31[i] = (tF/n)* vx3[i];

s.t. Cx3k2{i in 0..p-1} : kx32[i] = (tF/n)*(vx3[i] + kvx31[i]/2);

s.t. Cx3k3{i in 0..p-1} : kx33[i] = (tF/n)*(vx3[i] + kvx32[i]/2);

s.t. Cx3k4{i in 0..p-1} : kx34[i] = (tF/n)*(vx3[i] + kvx33[i]);

s.t.Cvx1k1{i in 0..p-1} : kvx11[i] = (tF/n)*(vx1[i] + Nx10[i] -

mu*Nmag0[i]*dirx10[i]);

s.t.Cvx1k2{i in 0..p-1} : kvx12[i] = (tF/n)*(vx1[i] + Nx11[i] -

mu*Nmag1[i]*dirx11[i]);

s.t.Cvx1k3{i in 0..p-1} : kvx13[i] = (tF/n)*(vx1[i] + Nx12[i] -

mu*Nmag2[i]*dirx12[i]);

s.t.Cvx1k4{i in 0..p-1} : kvx14[i] = (tF/n)*(vx1[i] + Nx13[i] -

mu*Nmag3[i]*dirx13[i]);

s.t.Cvx2k1{i in 0..p-1} : kvx21[i] = (tF/n)*(vx2[i] + Nx20[i] -

mu*Nmag0[i]*dirx20[i]);

s.t.Cvx2k2{i in 0..p-1} : kvx22[i] = (tF/n)*(vx2[i] + Nx21[i] -

mu*Nmag1[i]*dirx21[i]);

s.t.Cvx2k3{i in 0..p-1} : kvx23[i] = (tF/n)*(vx2[i] + Nx22[i] -

mu*Nmag2[i]*dirx22[i]);

s.t.Cvx2k4{i in 0..p-1} : kvx24[i] = (tF/n)*(vx2[i] + Nx23[i] -

mu*Nmag3[i]*dirx23[i]);

s.t.Cvx3k1{i in 0..p-1} : kvx31[i] = (tF/n)*(vx3[i] + Nx30[i] -

mu*Nmag0[i]*dirx30[i]-g);

s.t.Cvx3k2{i in 0..p-1} : kvx32[i] = (tF/n)*(vx3[i] + Nx31[i] -

mu*Nmag1[i]*dirx31[i]-g);

s.t.Cvx3k3{i in 0..p-1} : kvx33[i] = (tF/n)*(vx3[i] + Nx32[i] -

mu*Nmag2[i]*dirx32[i]-g);

119

s.t.Cvx3k4{i in 0..p-1} : kvx34[i] = (tF/n)*(vx3[i] + Nx33[i] -

mu*Nmag3[i]*dirx33[i]-g);

s.t. Cx1{i in 0..p-1} : x1[i+1] = x1[i] +

(kx11[i] + 2*kx12[i] + 2*kx13[i] + kx14[i])/6;

s.t. Cx2{i in 0..p-1} : x2[i+1] = x2[i] +

(kx21[i] + 2*kx22[i] + 2*kx23[i] + kx24[i])/6;

s.t. Cx3{i in 0..p-1} : x3[i+1] = x3[i] +

(kx31[i] + 2*kx32[i] + 2*kx33[i] + kx34[i])/6;

s.t. Cvx1{i in 0..p-1} : vx1[i+1] = vx1[i] +

(kvx11[i] + 2*kvx12[i] + 2*kvx13[i] + kvx14[i])/6;

s.t. Cvx2{i in 0..p-1} : vx2[i+1] = vx2[i] +

(kvx21[i] + 2*kvx22[i] + 2*kvx23[i] + kvx24[i])/6;

s.t. Cvx3{i in 0..p-1} : vx3[i+1] = vx3[i] +

(kvx31[i] + 2*kvx32[i] + 2*kvx33[i] + kvx34[i])/6;

s.t. x1start : x1[0] = x10;

s.t. x1end : x1[p] = x1p;

s.t. x2start : x2[0] = x20;

s.t. x2end : x2[p] = x2p;

let tF := 5;

let vx1[0] := -2;

let vx1[n] := 0.1;

120

Appendix C

Golf

In Chapter 7 we introduced three Runge-Kutta schemes which can be used to

approximate optimal control problems by nonlinear programming problems. The

errors associated with each of these methods was discussed and we proposed

that investigating the trade-off between accuracy and solution time would be

an interesting work. In this appendix, we introduce a further optimal control

problem and use it to begin these comparisons.

C.1 The problem

The problem of determining the optimal speed and direction with which to hit

a golf ball from a position on the green so that it reaches the hole with a small

enough velocity to drop into it has been discussed by Alessandrini [1], whose work

was later corrected by Vanderbei [75].

We give the green a standard coordinate system (x = (x1, x2, x3) where x1, x2

represent the horizontal components of direction and x3 represents the vertical

component) and define velocity and acceleration with the same system (v =

(vx1
, vx2

, vx3
) and acc = (accx1

, accx2
, accx3

)). Then the problem formulation is

min
√

v2
x1

(tF) + v2
x2

(tF) + v2
x3

(tF)
s.t. ẋ(t) = v(t)

v̇(t) = acc(t),

where tF is the time taken for the ball to reach the hole, x(t), v(t), acc(t) are

functions of time and acc(t) is given by Newton’s equation

Force = Mass × Acceleration.

That is, the acceleration is determined by the forces acting on the golf ball (see

Figure C.1). Using the notation (Nx1
(t), Nx2

(t), Nx3
(t)) for the normal force,

(Frx1
(t), F rx2

(t), F rx3
(t)) for the frictional force and (0, 0,−mg) for the force

121

gravityfriction

normal force

v

Figure C.1: Showing the forces present on a golf ball on the green.

due to gravity, where m is the mass of the golf ball and g is the gravitational

constant, the problem can also be written:

min
√

v2
x1

(tF) + v2
x2

(tF) + v2
x3

(tF)
s.t. ẋ1(t) = vx1

(t)
ẋ2(t) = vx2

(t)
ẋ3(t) = vx3

(t)
mv̇x1

(t) = Nx1
(t) + Frx1

(t)
mv̇x2

(t) = Nx2
(t) + Frx2

(t)
mv̇x1

(t) = Nx3
(t) + Frx3

(t) − mg.

The control variables are the components of the initial velocity given to the ball

(vx1
(0), vx2

(0), vx3
(0)).

C.2 Problem instances solved

Vanderbei [75] gives ampl models for Euler and Trapezoidal discretizations of the

golf problem where the surface of the green is an approximation of the 18th hole

of the 2000 PGA championship.

In this work, we begin more simply, first considering problems in 1 and 2

dimensions with varying curvature in the surface of the green. For each problem

we have written ampl models which use Euler (7.1), Trapezoidal (7.2) and Runge-

Kutta (7.3) discretization schemes. We use hopdmSQP to attempt to solve each

of these models with 5, 25, 125, 250, 500 and 1000 integration steps. For each

case, the starting point given to the solver was chosen judiciously, often as an

interpolation of the solution of a model with fewer integration steps. A selection

of the ampl models used are shown in Appendix B.4. The formulae which are

used to calculate normal and frictional forces can be found in [1, 10, 75].

122

In the following sections we will describe the surface of the green for each

problem considered. We will then record the time taken for each model to be

solved, along with the number of outer iterations required. We also record the

objective value at a solution, the time taken for the ball to traverse the green to the

hole and the values of the control variables, vx1
(0), vx2

(0). (Units of measurement

are metres, metres/second and seconds.) We then use this data to comment on

the relative merits of models based on different discretization schemes.

Finally, we will draw together conclusions taken from the comments made on

the individual problems.

C.2.1 1D line

We begin with the simplest of green shapes. The ball is restricted to the straight

1-dimensional line between x1 = 0 and x1 = 20.

Results from solving discretized models of this problem are shown in Table

C.1. Every time a problem was successfully solved the final speed approximated

Discr. No. Time No. Final
Scheme Steps Taken Iters Speed tF vx1

(0)
E 5 0.61 23 2.30E − 15 6.97071 4.78191
E 25 0.01 4 4.82E − 09 7.48775 5.13660
E 125 0.06 5 7.14E − 09 7.60567 5.21749
E 250 0.06 3 8.87E − 08 7.62081 5.22788
E 500 0.15 3 2.53E − 08 7.62841 5.23309
E 1000 1.07 3 2.25E − 07 7.63222 5.23570
T 5 0.03 13 8.72E − 10 7.63604 5.23832
T 25 0.06 15 3.99E − 09 7.63604 5.23832
T 125 0.22 13 1.17E − 10 7.63604 5.23832
T 250 0.32 10 1.39E − 08 7.66658 5.23820
T 500 0.84 11 4.08E − 09 7.66669 5.23820
T 1000 0.97 5 8.32E − 09 7.63604 5.23832

RK 5 0.02 7 7.03E − 09 7.69231 5.26735
RK 25 0.24 5 3.74E − 10 7.73993 5.23823
RK 125 0.28 4 6.25E − 09 7.63604 5.23832
RK 250 1.57 6 1.07E − 08 7.63604 5.23832
RK 500 3.69 7 3.75E − 09 7.64113 5.23832
RK 1000 10.51 6 8.81E − 10 7.63604 5.23832

Table C.1: Results from using hopdmSQP to solve Euler, Trapezoidal and Runge-
Kutta approximations of the golf problem when the green surface is a 1-
dimensional line.

0, so little can be told about the accuracy of the solution by considering whether

improvement is made in the objective.

123

However, we can see that the optimal solutions to each model display simi-

larities. The solution to Trapezoidal models with 5, 25, 125 and 1000 integration

steps and to Runge-Kutta models with 125, 250 and 1000 integration steps are

tF = 7.63604, vx1
(0) = 5.23832. Also, tF and vx1

(0) found using Euler discretiza-

tions both increase towards these values with each refinement of the discretization.

C.2.2 2D flat plane

Our next green is a level plane. The ball is placed at x1 = 0, x2 = 10 and is hit

towards the hole at x1 = 20, x2 = 0. The optimal trajectory found is along the

straight line connecting these two points and the results of solving models of this

problem are shown in Table C.2.

Discr. No. Time No. Final
Scheme Steps Taken Iters Speed tF vx1

(0) vx2
(0)

E 5 0.00 4 5.38E − 09 7.37063 4.52245 −2.26123
E 25 0.02 5 4.28E − 08 7.91733 4.69610 −2.42895
E 125 0.13 4 1.01E − 09 8.04202 4.93440 −2.46720
E 250 0.21 3 8.02E − 07 8.05802 4.94422 −2.47211
E 500 0.47 3 7.11E − 07 8.06606 4.94915 −2.47458
E 1000 1.21 3 9.20E − 06 8.07008 4.95162 −2.47581
T 5 solution not found
T 25 0.32 24 7.28E − 06 8.07411 4.95410 −2.47705
T 125 72.20 27 5.77E − 04 8.07328 4.95410 −2.47705
T 250 solution not found
T 500 solution not found
T 1000 26.78 18 5.98E − 03 8.08215 4.95409 −2.47705

RK 5 0.06 9 2.85E − 01 6.61884 5.30979 −2.65490
RK 25 4.03 7 1.28E − 02 7.93598 4.97338 −2.48699
RK 125 2.96 7 1.28E − 02 7.91400 4.97333 −2.48666
RK 250 solution not found
RK 500 solution not found
RK 1000 solution not found

Table C.2: Results from using hopdmSQP to solve Euler, Trapezoidal and Runge-
Kutta approximations of the golf problem when the green surface is a 2-
dimensional flat plane.

Firstly, it can be seen that the final speed increases as the number of in-

tegration steps used in Euler discretizations increases and is greater still when

found using Trapezoidal or Runge-Kutta discretization schemes. This is not un-

expected. In fact, as less accurate discretizations are also less constrained, it is

likely that solving these models would find solutions with better objective values.

124

It is interesting to note that, with the exception of the solution to the Euler

discretization model with 25 integration steps, the initial velocity given to the

ball propels it directly towards the hole (vx1
(0) ≈ −2 × vx2

(0)).

The solutions found by the different discretization schemes differ slightly, but

from the data, we can suggest that the optimal trajectory begins with an initial

velocity of vx1
(0) ∈ (4.9, 5), vx2

(0) ∈ (−2.5,−2.4) and takes approximately 8

seconds.

C.2.3 2D tilted line

The next green to be considered is another 2-dimensional green. In this problem

instance, one of the dimensions is horizontal and the other is vertical (x1 and x3,

say). The green is a straight line, tilted such that x3 = 2
5
x1. The ball starts at

x1 = 0 and is hit towards the hole at x1 = 20. The results found when solving

this problem with different discretizations are shown in Table C.3.

Discr. No. Time No. Final
Scheme Steps Taken Iters Speed tF vx1

(0)
E 5 0.07 15 1.45E − 10 2.89739 11.50462
E 25 0.45 32 2.96E − 06 3.11229 12.35795
E 125 10.72 15 7.57E − 07 3.22296 12.55270
E 250 5.10 11 2.04E − 07 3.16760 12.57760
E 500 8.87 9 1.15E − 07 3.17076 12.59010
E 1000 13.70 8 8.99E − 08 3.17234 12.59640
T1 5 0.20 47 1.72E − 06 3.26616 12.56770
T1 25 1.98 217 2.17E − 06 3.19624 12.60190
T1 125 0.79 8 3.51E − 06 3.17781 12.60260
T 250 5.48 18 3.53E − 07 3.17407 12.60270
T 500 4.37 11 2.93E − 07 3.17390 12.60270
T 1000 15.35 11 1.50E − 07 3.17411 12.60270

RK 5 solution not found
RK 25 solution not found
RK 125 solution not found
RK 250 solution not found
RK 500 solution not found
RK 1000 solution not found

Table C.3: Results from using hopdmSQP to solve Euler, Trapezoidal and Runge-
Kutta approximations of the golf problem when the green surface is a 2-
dimensional tilted line.

We were unable to find a starting point from which any of the models which

use a Runge-Kutta discretization scheme were able to converge to an optimal

1KKT condition (3.3a) satisfied to accuracy less than requested.

125

point. This, and the fact that the solver converges to a point which is not as

accurate as initially requested when solving the Trapezoidal models with 5, 25

and 125 integration steps, reflects that these models, which would theoretically

give more accurate solutions, are also more difficult to solve than the models

which use an Euler discretization scheme.

However, when the models which use a Trapezoidal discretization scheme can

be solved to the requested accuracy, tF is always 3.174 and vx1
(0) is always 12.603,

values which the solutions of models which use an Euler discretization scheme tend

towards as the number of integration steps increases.

C.2.4 2D curve

We now consider another 2-dimensional green with one horizontal and one vertical

dimension. In this problem instance we add curvature to the shape of the green,

aiming to hit the ball along the curves provided by a damped sin wave,

x3 =
4sin(2x1)

x1

.

This green is shown in Figure C.2, which also shows the start point of the ball

+

+Start

Hole

Figure C.2: Showing the start and finish points of a golf ball’s trajectory over a
2-dimensional green shaped as a damped sin curve.

(x1 = 15.5) and the position of the hole (x1 = 13.8). This is the first problem for

which we are required to use the corrected formulation of Vanderbei [75]. In his

work on finding optimal golf trajectories he found that Alessandrini’s formulation

[1] was only valid for problems where the green surface is planar. In order to adapt

the formulation for problems where the green surface is curved, he notices that

the normal force is not constant on a curved surface, as Alessandrini proposed.

126

See [75] for more details of how the normal force can be adjusted to take this into

account.

The results found when solving discretized models of this problem are shown

in Table C.4.

Discr. No. Time No. Final
Scheme Steps Taken Iters Speed tF vx1

(0)
E 5 0.05 19 1.19E + 00 0.95736 −0.73091
E 25 3.33 91 3.18E − 11 0.90599 −2.24495
E 125 0.15 5 4.66E − 09 0.88788 −2.63845
E 250 0.40 5 7.01E − 11 0.88610 −2.69005
E 500 1.14 5 2.53E − 08 0.88523 −2.71609
E 1000 2.84 5 4.54E − 09 0.88482 −2.72918
T 5 0.16 34 2.43E − 09 0.84529 −2.45797
T 25 0.73 25 4.41E − 04 0.77707 −2.79796
T 125 solution not found
T 250 solution not found
T 500 solution not found
T 1000 solution not found

RK 5 solution not found
RK 25 solution not found
RK 125 solution not found
RK 250 solution not found
RK 500 solution not found
RK 1000 solution not found

Table C.4: Results from using hopdmSQP to solve Euler, Trapezoidal and Runge-
Kutta approximations of the golf problem when the green surface is a 2-
dimensional curve.

We were again unable to find starting points from which solutions to the

Runge-Kutta models of this problem could be found and were also unable to find

starting points from which Trapezoidal models with more than 25 discretization

steps could converge.

In fact, we only have two reasonable solutions to models which use a Trape-

zoidal discretization scheme and only the first of these (5 integration steps) is

similar to the solutions of models which use an Euler discretization scheme. The

second (25 integration steps) has a final speed which is significantly higher than

the final speeds found by using all but the first of the Euler discretizations.

So, taking the solutions from models which use the Euler discretization scheme

as our guide, we conjecture that an optimal solution to this problem is tF ≈ 0.88,

vx1
(0) ≈ −2.73.

127

C.2.5 3D tilted plane

Now we are ready to consider 3-dimensional greens. We start with a planar green,

which enables us to use Alessandrini’s simpler model formulation. The green we

consider is x3 = x1

4
+ x2

6
. The ball is placed at x1 = x2 = 1 and hit towards the

hole at x1 = x2 = 10. An optimal trajectory found is shown in Figure C.3 (page

133). The ball is hit towards a point above the hole and as it slows down it falls

to the hole.

Numerical results found when solving discretized models of the problem are

shown in Table C.5. If we study the data closely we can clearly see disadvantages

Discr. No. Time No. Final
Scheme Steps Taken Iters Speed tF vx1

(0) vx2
(0)

E 5 0.04 14 6.99E − 01 2.54224 6.29010 5.50250
E 25 0.07 7 5.62E − 01 2.76276 6.83272 5.82559
E 125 2.92 12 5.30E − 01 2.81460 6.95580 5.90364
E 250 59.30 19 5.26E − 01 2.82123 6.97154 5.91378
E2 500 165.11 25 1.31E + 00 3.35671 7.13092 5.91810
E 1000 209.54 11 5.23E − 01 2.82623 6.98340 5.92143
T 5 0.01 6 5.07E − 01 2.83560 6.96891 5.92291
T 25 0.04 5 5.22E − 01 2.83150 6.98719 5.92348
T 125 0.27 4 5.21E − 01 2.83157 6.98793 5.92344
T 250 0.64 4 5.21E − 01 2.83158 6.98795 5.92343
T 500 1.65 4 5.21E − 01 2.83158 6.98796 5.92343
T 1000 4.28 4 5.21E − 01 2.83158 6.98796 5.92343

RK 5 0.27 20 5.33E − 01 2.82102 6.98716 5.92532
RK 25 0.73 7 5.23E − 01 2.82792 6.98736 5.92399
RK 125 7.76 7 5.22E − 01 2.82791 6.92567 5.92399
RK2 250 343.84 17 5.22E − 01 2.82791 6.95651 5.92399
RK 500 721.03 8 6.26E − 01 2.96327 6.99815 5.91087
RK 1000 solution not found

Table C.5: Results from using hopdmSQP to solve Euler, Trapezoidal and Runge-
Kutta approximations of the golf problem when the green surface is a 3-
dimensional tilted plane.

of both the Euler and Runge-Kutta discretization schemes:

The mean value found for tF value is 2.84619. If we assume that this mean

value is close to that of an optimal trajectory then it is interesting to consider the

solutions which are farthest from it. Only 4 of the values for tF found by solving

our discretized models differ from the mean by more than 0.05. These values are:

• those found by the first two Euler discretizations. This is expected, as the

2KKT condition (3.3a) satisfied to accuracy less than requested.

128

error analysis of Runge-Kutta schemes in Chapter 7 predicts that these

discretization schemes would find the least accurate trajectories.

• an anomalous result found by an Euler discretization with 500 integration

steps, which converges before the requested accuracy has been achieved.

This highlights the fact that it is not possible to rely entirely on the error

analysis of Chapter 7 when using an NLP solver which does not solve the

problem exactly. That is, the NLP solver has potential for introducing

further errors than those inherent in the discretization schemes themselves.

• that found by a Runge-Kutta discretization with 500 integration steps. It

takes over 12 minutes for this solution to be found, which is more than

twice as long as the solution time for any other model. This, added to

our inability to find suitable starting points for Runge-Kutta models of 2D

greens, leads to the observation that Runge-Kutta schemes, despite having

the potential for finding more accurate trajectories than Euler discretization

schemes, are less suited to the NLP solution technique because of the form

that their NLP models take. A large number of additional variables must

be introduced to represent the sub-intervals at each integration step.

The trends in tF noted here are repeated in vx1
(0) and vx2

(0) which are con-

jectured to have approximate values of 6.99 and 5.92 respectively in an optimal

solution.

C.2.6 3D bowl shape

We now consider a curved 3-dimensional green. This green is a gentle bowl shape

given by the equation

x3 =
(x1 − 10)2

125
+

(x2 − 5)2

125
− 1.

The ball is placed on one side of the dip in the green (x1 = 0, x2 = 0) and is

to be hit towards the hole, on the other side of the dip (x1 = 20, x2 = 0), as

shown in Figure C.4 (page 133). An optimal trajectory, also shown in Figure C.4,

curves around the side of the “bowl”. Numerical results found when solving this

problem are shown in Table C.6.

As with previous green shapes, we were unable to find solutions to many of the

Trapezoidal and Runge-Kutta models of this problem, further confirmation that

these more accurate models are more difficult for our NLP algorithm to solve.

Also of note is that the final speed of the ball is much smaller when found

by solving models which use the Trapezoidal discretization scheme than that

129

Discr. No. Time No. Final
Scheme Steps Taken Iters Speed tF vx1

(0) vx2
(0)

E 5 0.21 15 3.70E + 00 4.48338 3.87882 −2.17623
E 25 9.45 109 2.52E + 00 4.72299 4.77061 −2.91586
E 125 0.37 4 2.32E + 00 4.77247 5.06979 −3.04781
E 250 1.82 4 2.28E + 00 4.78245 5.13453 −3.07294
E 500 3.90 8 2.28E + 00 4.78182 5.13044 −3.07138
E 1000 3.10 4 2.28E + 00 4.78338 5.14069 −3.07528
T 5 0.01 22 8.02E − 08 5.99623 4.92089 −3.80787
T 25 0.97 24 2.54E − 06 4.57167 5.31378 −2.73992
T 125 2.14 22 8.51E − 03 5.59234 5.01320 −4.20357
T 250 solution not found
T 500 solution not found
T 1000 solution not found

RK 5 solution not found
RK 25 42.49 51 1.92E + 01 3.54693 −0.14865 −1.13071
RK 125 solution not found
RK 250 solution not found
RK 500 solution not found
RK 1000 solution not found

Table C.6: Results from using hopdmSQP to solve Euler, Trapezoidal and Runge-
Kutta approximations of the golf problem when the green surface is a 3-
dimensional bowl shape.

found when solving models which use the Euler discretization scheme. However,

there is no consistency to the solutions found when solving models based on the

Trapezoidal discretization scheme, whilst the solutions found by solving models

based on the Euler discretization scheme appear to tend towards the values tF ≈
4.8, vx1

(0) ≈ 5.1, vx2
(0) ≈ −3.1.

C.2.7 3D ramp

Finally, we consider the green shape which was tackled by Vanderbei [75]. This

is a ramp shaped green, given by the equation

x3 = −0.3 tan−1(x2) + 0.05(x1 + x2)

and shown with an optimal trajectory in Figure C.5 (page 134). The numerical

results are shown in Table C.7.

We are again unable to find starting points for which several of the Runge-

Kutta and Trapezoidal models of the problem can converge to a solution. Also

as previously, the solutions to models which use an Euler discretization appear

to tend towards an optimal solution as the number of integration steps increases.

130

Discr. No. Time No. Final
Scheme Steps Taken Iters Speed tF vx1

(0) vx2
(0)

E 5 0.60 11 6.82E − 01 2.57579 0.52547 −2.63985
E 25 0.08 5 6.67E − 01 2.98528 0.72548 −0.31283
E 125 0.53 5 6.64E − 01 3.07780 0.77243 −3.27833
E 250 0.91 5 6.65E − 01 3.08980 0.77855 −3.29869
E 500 1.81 5 6.65E − 01 3.09585 0.78163 −3.30899
E 1000 3.83 5 6.65E − 01 3.09888 0.78317 −3.31416
T 5 0.09 17 3.04E − 09 5.00455 0.92140 −3

T 25 9.62 116 1.65E + 00 1.43353 0.38855 −4.24225
T 125 16.49 14 1.10E − 03 3.02320 0.70362 −3.88182
T4 250 201.98 132 2.20E − 01 2.89665 0.69002 −3.88219
T 500 solution not found
T 1000 solution not found

RK5 5 2.42 103 8.85E − 04 5.39880 −0.15212 −0.483080
RK 25 129.91 72 7.90E − 01 4.33160 0.56695 −1.61588
RK 125 69.25 10 8.56E − 01 4.07336 0.58740 −1.62957
RK 250 solution not found
RK 500 solution not found
RK 1000 solution not found

Table C.7: Results from using hopdmSQP to solve Euler, Trapezoidal and Runge-
Kutta approximations of the golf problem when the green surface is a 3-
dimensional ramp, taken from the 18th hole at the 2000 PGA championship.

In this case, the solution tended towards is tF ≈ 3.1, vx1
(0) ≈ 0.8, vx2

(0) ≈ −3.3.

The solutions found using Trapezoidal and Runge-Kutta discretizations differ

from this, but are more erratic, no pattern can be seen.

C.3 Comments and conclusions

The aim of this appendix was to begin work on comparing the different discretiza-

tion schemes. We expected that the Runge-Kutta scheme would have the highest

accuracy, as it is a fourth order method, and were interested in whether this

increase in accuracy would cause the model solution time to increase.

However, the increase in accuracy expected by the Runge-Kutta scheme is

only evident in the first (and simplest) problem considered here and even in

that problem instance, the Trapezoidal method (second order) appears to be

as accurate as the Runge-Kutta method. In other problem instances, finding

3this value was not displayed correctly by ampl.
4constraint violation greater than requested and KKT condition (3.3a) satisfied to accuracy

less than requested.
5KKT condition (3.3a) satisfied to accuracy less than requested.

131

any solution using Runge-Kutta schemes proved to be very difficult and heavily

dependent on the choice of starting point. The Trapezoidal discretization scheme

also proved unreliable. Only using the Euler discretization scheme (first order)

were we able to find solutions in every instance and for every choice of number

of integration steps. As expected, these solutions appear to increase in accuracy

as the number of integration steps increase.

We would like to mention some possible reasons for the Runge-Kutta scheme

being less successful than we expected it to be:

• Runge-Kutta discretization schemes include many more variables and con-

straints than the lower-order methods. Also, as they ask for higher accuracy,

they are more difficult to solve.

• The error analysis in Chapter 7 cannot be relied on because hopdmSQP only

requires 6 decimal place accuracy.

• Vanderbei [75] comments that a problem which is reported to be infeasible

is more likely to be infeasible due to poor model formulation than to a

bad algorithm. It is not impossible that the Runge-Kutta models which we

created for these problems contain unnoticed errors.

There is a certain degree of freedom involved in choosing which variables to

include in the model and in choosing how to represent the constraints. We

experimented with various forms of each model before choosing the forms

used in the analysis above, but there may be ways in which the models can

be formulated that would be better suited to the NLP solution technique.

• Vanderbei [75] also notes that both Loqo [71] and snopt [36] are sensitive

to the starting point chosen. When solving each of the models we found

that this was also the case for hopdmSQP.

In general, we found a solution to a model with a small number of integration

steps and interpolated this solution to provide a good starting point for

model with more integration steps. Observations suggest that this method

is not suitable for the Runge-Kutta variables which correspond to the sub-

interval steps (i.e. kx1(t),kx2(t),kvx1(t) . . .).

Our preliminary analysis suggests that the Euler discretization scheme is the

most robust method for use in solving OCPs as NLP problems.

Write something to give the figures somewhere to place themselves.

132

Figure C.3: Showing an optimal golf trajectory found on a 3D planar green. An
Euler discretization with 125 integration steps is used to find this solution. The
black line shows the optimal trajectory, whilst the blue line shows a reference
straight line trajectory between the starting point and the hole. The optimal
trajectory runs from right to left.

Figure C.4: Showing an optimal golf trajectory found on a 3D bowl shaped green.
An Euler discretization with 125 integration steps is used to find this solution.
The optimal trajectory runs from right to left.

133

Figure C.5: Showing an optimal golf trajectory found on a 3D ramp based on
the 18th hole at the 2000 PGA championship. An Euler discretization with 125
integration steps is used to find this solution. The optimal trajectory runs from
bottom to top.

Write something to move the figure to the top of the page.

134

Appendix D

Sailing

In Chapters 6 and 7, we introduced the sailing problem discussed in Bryson &

Ho [15]. We concentrated on the simplest instance of the problem, describing

Hennessey et al.’s use of Hamiltonian theory and calculus of variations [46] and

using hopdmSQP to find solutions to NLP approximations.

In this appendix we discuss the variety of problems whose solution is an opti-

mal route for a sailing boat, mentioning some of the difficulties encountered when

trying to write nonlinear models for more involved versions of the problem.

We then describe the optimization technique of dynamic programming, refer-

ring to Vanderbei’s method of finding optimal sailing routes [73]. We show our

alternative adaptation of the technique (which is discussed in greater detail in

Buchanan & Stern [16]) and conclude with some preliminary results based on an

implementation of this adaptation.

D.1 Variations of the problem

D.1.1 Wind fields

In the problem discussed in Chapters 6 and 7, we considered the case in which the

wind was constant in both strength and direction. However, it is more realistic

for the strength and direction of the wind to vary, both by time and by position.

In [47], Hennessey & Kumar worked on the problem of finding an optimal

sailing route in the Apostle Islands in Lake Superior. Hamiltonians are used to

find an optimal sailing route through these islands, given the artificial assumption

that wind speed is constant. Figure D.1 shows an approximate representation of

a possible wind field for that area which varies with position but not with time.

135

Figure D.1: An approximate representation of a spacial wind field in the Apostle
Islands, shown in detail in [47]. In this representation, ellipses show the approxi-
mate position of islands and arrows show mean wind directions.

D.1.2 Water movement

In our basic instance of the sailing problem, we considered only the case of sailing

on still water. However, in reality, water is often not still. For example, rivers flow

towards the sea; and seas and oceans are subject to tidal flows. As an example,

tidal currents around the Isle of Wight in South England, taken from the Reeds

Oki Channel Almanac [27], are shown in Figures D.2 and D.3.

When trying to determine suitable nonlinear models for the sailing problem with

wind fields which vary spatially like the one shown in Figure D.1 or with water

currents which vary with time and position like those shown in Figures D.2 and

D.3, we encountered difficulties. Our initial assumptions about the standard

nonlinear programming problem (1.1) included that the constraint functions ci(x)

are continuous and second-order differentiable. Therefore, in order to include

wind and water variations in the nonlinear program, we need to be able to write

them as continuous functions of time and position. This may be very difficult.

D.1.3 Shape of the water

In the simple formulation of Chapters 6 and 7, the optimal route sought was from

a starting point to a finish point, across a stretch of water with no boundaries

or islands. However, areas of water may be bordered by land or contain islands.

Figures D.1, D.2 and D.3 all show how the route of a sailing boat can be restricted

by the shape of the water. The irregular shapes that the water can take should

be carefully considered when trying to define the feasible region in the nonlinear

136

Figure D.2: Tidal currents near the Isle of Wight in the hours before high tide.
The two numbers on each arrow represent the mean speed of the current (in
knots) during neap tides and spring tides at the time and place indicated. This
figure is copied from the Reeds Oki Channel Almanac [27]

137

Figure D.3: Tidal currents near the Isle of Wight in the hours after high tide. The
two numbers on each arrow represent the mean speed of the current (in knots)
during neap tides and spring tides at the time and place indicated. This figure is
copied from the Reeds Oki Channel Almanac [27]

138

program. Every island and stretch of coastline has to be approximated by a

continuous, second-order differentiable function.

Also, the sailing boat may not be constrained to specific start and finish points.

For example, problems can be formulated in which the sailing boat begins at a

starting line and aims for a circular target zone. Start and finish areas of these

types are straightforward to represent in a nonlinear programming model.

D.1.4 Boat type

Finally, the type of boat being sailed has an effect on the problem formulation.

Figure 6.2 shows an example of a “wind polar”, demonstrating how the speed of

a boat varies with the angle between the sailing direction and the direction of the

wind. Every different type of boat has its own distinct wind polar.

We noted in Chapter 7 that optimal routes for the simple problem of sailing

from one point to another in a constant wind can be expressed as two straight

line segments, but that, often, the NLP solver finds a multi-segmented route. At

each point where one segment ends and another begins, the boat crosses over the

wind. This is called tacking. In practice, crossing from one side of the wind to

the other takes time, as the sails must be moved across the boat, which is often

slowed down by the process. It would, therefore, be appropriate to include a

tacking penalty in the nonlinear model so that two-segment routes with a single

tack become the only optimal solutions. This tacking penalty should differ with

the type of boat and also with the experience of the sailors. We have not found

a way to represent this penalty in the formulation of the nonlinear model.

D.2 Dynamic programming

Another optimization technique which can be used to solve the sailing problem

is dynamic programming. Here, we first describe the technique, before showing

ways in which it can be used to solve our problems.

Dynamic programming was invented by Bellman [4]. It is a technique which

is applicable to a wide range of problems, the most common of which is to find

the shortest, or lowest cost path between two points. The features of a problem

which can be solved using dynamic programming are summarized in Hillier &

Liebermann [49] as follows:

1. An optimal solution is sought.

2. The problem can be divided into stages.

3. Each stage has a number of states.

139

4. At each stage, a decision is made which transforms the current set of states

into new states.

5. At each stage, the decision made is independent of previous decisions. (This

is the principle of optimality for dynamic programming.)

6. The solution procedure begins with determination of the optimal decision

at the last stage of the problem. This is usually a trivial calculation.

7. It is then possible to define a recursive relationship which identifies the

optimal solution for the nth stage given the solution of the nth + 1.

Points 6 and 7 can often be reversed without losing any of the benefits of the

technique. That is, the solution procedure can begin with determination of the

optimal solution at the first stage of the problem. The recursive relationship then

identifies the optimal solution of the nth + 1 stage given the solution to the nth.

In the next two sections we will show two ways in which dynamic programming

can be adapted to find approximate optimal routes for a sailing boat. First, we will

describe a simplified version of an algorithm by Vanderbei [73] and then we will

introduce our preliminary work on a different variation of dynamic programming

for the sailing problem.

D.2.1 Vanderbei’s adaptation

Vanderbei [73] breaks the boat’s route into stages by placing a grid over the water

and allowing the boat to travel between adjacent gridpoints at each stage. The

states are defined as the current stage, the boat’s position and a record of whether

the boat is currently sailing to the left or to the right of the wind. The direction

of the wind is determined by the states. From each gridpoint, the boat is able

to sail to an adjacent gridpoint in up to 7 directions. (See Figure D.4.) It is not

possible to sail directly into the wind.

�

�

�

�

�

�

�

�

Wind from
the NE

Figure D.4: Showing the 7 directions a boat can sail in in Vanderbei’s formulation.

Characteristics of the specific problem which Vanderbei addresses in [73] are

as follows:

140

• The wind speed is kept constant, but its direction is changeable with time.

The wind direction for the next stage of the journey, which is uniform across

the area of water considered, is decided by user input probabilities. It may

remain the same as during the previous stage, or come from 45◦ to the left

or right of the old wind.

• The water is assumed to be still.

• The feasible region is a square lake, with no islands. The optimal route

sought is from a starting point to a finish point.

• No wind polar is given in terms of boat speed relative to the wind, but the

time the boat takes to travel from one gridpoint to the next is defined with

respect to the angle which the boat makes with the wind:

Angle with wind Time (minutes)
0◦ 1

±45◦ 2
±90◦ 3
±135◦ 4

180◦ N/A

A penalty of three minutes is added every time the boat tacks.

In order to apply a dynamic programming technique to this program, a recur-

sive relationship must be determined. This is done by defining F (s, x1, x2, R/L)

to be the minimum time in which gridpoint (x1, x2) can be reached at stage s,

arriving there sailing on either the right (R) or left (L) side of the wind. Here

we’ve simplified Vanderbei’s work by removing the dependence on probabilities.

Instead, we assume that we know the direction of the wind at this stage.

This recursion is initialized at the starting point:

F (0, 1, 1, L) = 0 (D.1)

F (0, 1, 1, R) = 0

and continues

F (s + 1, x1, x2, R) = min
R/L,y1,y2

2

(

F (s, y1, y2, R/L) + tyxs

)

, (D.2)

F (s + 1, x1, x2, L) = min
R/L,y1,y2

3

(

F (s, y1, y2, R/L) + tyxs

)

,

2such that a route to the right hand side of the current wind exists between y and x.
3such that a route to the left hand side of the current wind exists between y and x.

141

where tyxs is the time taken to travel from gridpoint y to gridpoint x subject to

the wind conditions of stage s. tyxs includes a tacking penalty if it is incurred.

We considered the problem with the wind directions at each stage chosen to

be those given in Table D.1.

Stage Wind Direction
0 North East
1 North East
2 North
3 North West
4 West

Table D.1: An example of wind directions at stages of a dynamic programming
model of the sailing problem.

Using the dynamic programming recursion given by (D.1), (D.2), we solved

this problem for routes between x1 = x2 = 1 (S) and x1 = x2 = 4 (T) and

found six optimal routes, each taking 18 minutes. These routes are shown in

Figures D.5–D.10, with stages sailed to the right of the wind shown in red and

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

S

T

(1, 1, R) → (1, 2, R) → (1, 1, L) → (2, 2, L) → (3, 3, L) → (4, 4, L)
4 2 + 3 4 3 2

Figure D.5: Optimal route 1 for sailing problem found by dynamic programming.

stages sailed to the left of the wind shown in blue. Arrows are used to show wind

directions and the times taken for each stage are shown beneath the Figures.

Inaccuracies introduced by this method of approximating the problem include:

• The time taken to travel between horizontally and vertically adjacent grid-

points is equated to the time taken to travel between diagonally adjacent

gridpoints. This biases the optimization process towards choosing diagonal

segments, as greater distance is travelled in the same time.

142

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

S

T

(1, 1, R) → (1, 2, R) → (1, 3, R) → (2, 2, L) → (3, 3, L) → (4, 4, L)
4 4 2 + 3 3 2

Figure D.6: Optimal route 2 for sailing problem found by dynamic programming.

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

S

T

(1, 1, R) → (1, 2, R) → (1, 3, R) → (2, 3, L) → (3, 3, L) → (4, 4, L)
4 4 3 + 3 2 2

Figure D.7: Optimal route 3 for sailing problem found by dynamic programming.

• Wind directions only vary at gridpoints, which are not regularly spaced out

in time. Each wind’s duration depends on the direction the boat travels in.

D.2.2 Our adaptation

In our adaptation we break the boat’s route into stages by allowing it to sail for

one minute at each stage. The states are defined as the current time, the boat’s

position and a record of whether the boat is sailing to the left or right of the wind.

The speed and direction of both wind and water are determined by the states.

At each stage, the number of directions in which the boat can sail is determined

by the accuracy with which its wind polar has been specified. It is not possible

to sail directly into the wind.

We call each set of states (time, position, side of wind) an instance of a boat

and record the history of the boat at each instance so that an instance also

represents a path from the starting point to the current position. Instead of

143

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

S

T

(1, 1, R) → (1, 2, R) → (1, 3, R) → (2, 4, L) → (3, 3, L) → (4, 4, L)
4 4 4 + 3 1 2

Figure D.8: Optimal route 4 for sailing problem found by dynamic programming.

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

S

T

(1, 1, R) → (1, 2, R) → (1, 3, R) → (2, 4, L) → (3, 4, L) → (4, 4, L)
4 4 4 + 3 2 1

Figure D.9: Optimal route 5 for sailing problem found by dynamic programming.

limiting the boat instances to specific waypoints, we simply reject any instance

which is “too” close to another at the same stage. We have experimented with

different methods of defining one instance’s proximity to another. The basic

algorithm used is as follows:

Algorithm D.1.

Define valid region.

Define finish region.

Set up starting instances.

(There will be at least two, one to the right and one to the left of the wind.)

While finish region is not reached

For every instance at current stage

Apply movement due to water flow at current position and time.

For every possible direction with respect to wind

Apply movement due to wind at current position and time.

144

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

S

T

(1, 1, R) → (1, 2, R) → (1, 3, R) → (2, 3, L) → (3, 4, L) → (4, 4, L)
4 4 3 + 3 3 1

Figure D.10: Optimal route 6 for sailing problem found by dynamic programming.

If boat crosses over wind

Apply a tacking penalty.

If moved boat is in valid region

Add to list of possible new instances.

End for

End for

Empty list of instances at current stage.

For every instance in list of possible new instances

If instance is in finish region

Compile a list of instances which have reached the finish.

Else If instance is too close to any previous instance in list

Reject instance.

Else

Add instance to new list of instances at current stage.

End for

We can deduce that the first instance found in the finish region represents

an optimal route, as the stages correspond to time. If we were to define a DP

recurrence similar to (D.1), (D.2) then the value of F (s, x1, x2, R/L) would be s

for all values of s, x1, x2, R/L. However, our adaptation is not a true dynamic

programming recursion, as the possible routes are not all considered.

D.3 Numerical results

Our work on modelling the sailing problem as a dynamic programming model

is in preliminary stages, but we hope that it will be adaptable to deal with any

water shape or flow and with any wind field. For comparison and demonstration

145

purposes we have considered some problems with constant water flow and a va-

riety of simple wind fields of constant strength. The algorithm has been written

in java.

We considered two wind polars.

1. Boat 1: A wind polar which approximates the times which Vanderbei’s

sailing boat takes to travel in the 7 possible directions available to it. See

Table D.2 and Figure D.11. We included the possibility of the boat remain-

ing stationary by giving it a speed of 0 when sailing directly into the wind.

Angle with wind Speed
0◦ 1

±45◦ 0.5
±90◦ 0.333
±135◦ 0.25

180◦ 0

Table D.2: Data for a wind polar which approximates Vanderbei’s sailing times
(Boat 1).

�

�

�
�

��

�
�

�

�
Wind θ

(V, θ)

Figure D.11: Approximate wind polar for Boat 1, showing speed (V) and angle
between boat and wind (θ) in polar coordinates.

2. Boat 2: A wind polar which approximates that found by Hennessey et al.

[46] by practical experimentation with a C&C yacht on Lake Superior. See

Table D.3 and Figure D.12.

Both boats have a fastest speed of 1 unit/minute, but vary in that Boat 1 sails at

this speed when sailing with the wind, but Boat 2 moves fastest when it is sailing

to one side of the wind. For each boat, the tacking penalty imposed halves the

distance which a boat travels in a stage when it tacks. In all the figures in the

following section, segments of the route which are sailed to the right of the wind

are shown in red and segments sailed to the left of the wind are shown in blue.

146

Angle with wind Speed
0◦ 0.65

±30◦ 0.93
±40◦ 1
±60◦ 0.88
±90◦ 0.66
±120◦ 0.35

180◦ 0

Table D.3: Data for a wind polar which approximates that found by Hennessey
et al. through practical experimentation (Boat 2).

�

�

�

�

�

�

�

� �

�

�

�

�

�

�

�
Wind θ

(V, θ)

Figure D.12: Wind polar for Boat 2, showing speed (V) and angle between boat
and wind (θ) in polar coordinates.

D.3.1 Problems solved

D.3.1.1 Sailing with the wind

We consider the problem of sailing a boat from x1 = 0, x2 = 3.5 (S) to a finish

line at x1 = 40 (T) along a river which is just 7 units wide. There is a constant

following wind (from the West). A typical optimal route for each boat considered

is shown in Figure D.13. Boat 1, whose fastest speed is attained when sailing

with the wind, sails down the centre of the river for 12 minutes. Boat 2, whose

fastest speed is attained when sailing to one side of the wind, tacks several times,

sailing from one side of the river to the other. It takes 17 minutes to reach the

finish line.

147

Boat 1
Wind

� � � � � � � � � � � � �

T

S

Boat 2
Wind

�

�

�

�

�

�

�

�

�

�

�

�

� �

�

�

�

�

�

�

�

�

S

T

Figure D.13: Optimal routes for Boats 1 & 2 sailing with the wind.

D.3.1.2 Sailing in a wind which varies discretely

Next, we have approximated the problem solved by Vanderbei when the wind

directions are chosen to be those given in Table D.1. We take a larger lake

than the one in Vanderbei’s study and work with the problem of finding the

optimal route between the starting point x1 = x2 = 0 (S) and the finishing

point x1 = x2 = 20 (T). As the boat in Vanderbei’s formulation takes between

1 and 7 minutes to traverse a single stage, we consider that this increase in size

is appropriate. Similarly, we claim that each wind lasts for four minutes. (Four

stages in our formulation). After 20 minutes, the wind continues to come from

the West.

A typical optimal route sailed by Boat 1 is shown in Figure D.14 and is
�

��

�

�

�

�

�

�

�

�

�

�

�
�

�
�

��

�

�

�

�

�
���

S

T

Figure D.14: An optimal route found for Boat 1 sailing in variable wind. The
arrows show the wind direction each time it changes.

similar to solutions found using Vanderbei’s algorithm (Figures D.6–D.10). The

boat begins its journey immediately and travels North until the wind turns away

148

from the North East, allowing the boat to travel diagonally across the lake. The

last stages of the journey make use of a following Westerly wind.

The optimal route for Boat 2 involves it staying stationary for the first 8

minutes, when the wind is blowing from the North East. When the wind changes,

the optimal route leads across the centre of the lake. A typical route is shown in

Figure D.15. The entire route is sailed to the left of the wind.
�

�

�

�

�

�

�

�

�

�
�

�
�

S

T

Figure D.15: A typical optimal route found for Boat 2 sailing in wind which varies
discretely. The arrows show the wind direction each time it changes.

Boat 1 takes 25 minutes to complete an optimal route and Boat 2, despite

waiting for 8 minutes, takes just 21 minutes.

D.3.1.3 Sailing in a wind which varies continuously

Finally, we consider a problem where the wind direction varies continuously. We

are looking for an optimal sailing route between x1 = 0, x2 = 10 (S) and x1 = 40

(T) on a river of width 20 units. The wind direction, shown in Figure D.16, varies

with x1.

The typical optimal routes found when sailing with Boat 1 and Boat 2 are

shown in Figures D.17 and D.18, respectively. Boat 1 takes 44 minutes to travel

from the starting point to the finish line, whilst Boat 2 takes just 28 minutes.

However, although the times taken to complete the optimal routes differ sig-

nificantly, the directions travelled in are not dissimilar. Both boats travel in a

South-Easterly direction in the first half of the journey, when the winds are from

the North and in a North-Easterly direction in the second half of the journey

when the winds are from the South.

There is much more interesting work that could be carried out into the problem

of finding optimal routes for sailing boats. For example, we have not considered

here the cases where there are islands in the water such as those in the study

149

x1

an
gl

e
of

w
in

d
(◦

)
0 5 10 15 20 25 30 35 40

90
110
130
150
170
190
210
230
250
270

Figure D.16: Continuously varying wind field. This plot shows how the angle
that the wind makes with the horizontal changes as x1 varies.

by Hennessey & Kumar [47] (Figure D.1) or those where the water is not still

(Figures D.2 and D.3).

If I write a lot of nonsense here then it will move the figure up. It has to be

a lot of nonsense.

If I write

It

On

Separate

Lines

Then

It will

Not

Have to

Be

As

Much

150

S

T

�

�
�

�

��

�
�

�

�����
�

�
���

�
�

� �

�

�
�

��

�

�
�������

�
�

���
�

�

�

�

Figure D.17: Optimal route for Boat 1 sailing in wind which varies continuously.
The arrows show wind directions with respect to x1.

S

T

�

�

�

�

�
��

�

�

�
�

�

�

���

�

�

�

�
���

��
�

�

�

�

�

Figure D.18: Optimal route for Boat 2 sailing in wind which varies continuously.
The arrows show wind directions with respect to x1.

151

Bibliography

[1] Stephen Alessandrini; A motivational example for the numerical solution

of two-point boundary value problems; SIAM Review 37 (1995) pp. 423–427.

[2] E. D. Andersen, J. Gondzio, C. Meszaros & X. Xu; Implementation of

interior point methods for large-scale linear programming ; in Interior Point

Methods of Mathematical Programming , Tamas Terlaky, editor; Kluwer

Academic Publishers (1996) pp. 189–252.

[3] A. M. Arthurs; Calculus of Variations; Routledge Kegan Paul Ltd (1975).

[4] Richard Bellman; Dynamic Programming ; Princeton University Press

(1957).

[5] H. Y. Benson & D. F. Shanno; An exact primal-dual penalty method ap-

proach to warmstarting interior-point methods for linear programming ; Com-

putational Optimization and Applications, to appear (2006).

[6] H. Y. Benson & D. F. Shanno; Interior point methods for non-convex

nonlinear programming: regularization and warmstarts; Computational Op-

timization and Applications, to appear (2007).

[7] H. Y. Benson, D. F. Shanno & R. J. Vanderbei; A comparative study

of large-scale nonlinear optimization algorithms; Technical Report ORFE 01-

04; Department of Operations Research and Financial Engineering, Prince-

ton University (2001).

[8] Hande Benson.

URL http://orfe.princeton.edu/~rvdb/ampl/nlmodels/cute/

[9] Dimitri Bertsekas; Nonlinear Programming ; Athena Scientific (1999).

[10] John T. Betts; Practical Methods for Optimal Control Using Nonlinear

Programming ; SIAM (2001).

152

[11] John T. Betts; Planning a trip to the moon? . . . and back? (2006); 3rd

International Workshop on Astrodynamics Tools and Techniques, ESA, No-

ordwijk.

[12] P. T. Boggs, A. J. Kearsley & J. W. Tolle; Practical algorithm for

general large scale nonlinear optimization problems; SIAM Journal on Opti-

mization 9 (1999) pp. 755–778.

[13] P. T. Boggs & J. W. Tolle; Sequential quadratic programming ; Acta

Numerica 4 (1995) pp. 1–51.

[14] I. Bongartz, A. R. Conn, N. I. M. Gould & Ph. L. Toint; CUTE:

Constrained and Unconstrained Testing Environment (1993).

[15] A. E. Bryson Jr & Y. C. Ho; Applied Optimal Control ; Hemisphere, New

York (1975).

[16] C. R. Buchanan & D. A. Stern; Optimization on the high seas; isquared

magazine 1 (2007) pp. 9–13.

[17] R. A. Byrd, M. E. Hribar & J. Nocedal; An interior point algorithm for

large-scale nonlinear programming ; SIAM Journal on Optimization 9 (1999)

pp. 877–900.

[18] M. Colombo & J. Gondzio; Further development of multiple centrality

correctors; Computational Optimization and Applications, to appear (2006).

[19] M. Colombo, J. Gondzio & A. Grothey; A warm-start approach for

large-scale stochastic linear programs; Technical Report MS-2006-04; School

of Mathematics, The University of Edinburgh (2007).

[20] A. R. Conn, N. I. M. Gould & Ph. L. Toint; A globally convergent

augmented Lagrangian algorithm for optimization with general constraints

and simple bounds; SIAM Journal on Numerical Analysis 28 (1991) pp. 545–

572.

[21] A. R. Conn, N. I. M. Gould & Ph. L. Toint; Lancelot: A fortran

package for large-scale nonlinear optimization. (Release A); number 17 in

Springer Series in Computational Mathematics; Springer Verlag, Heidelberg

(1992b).

[22] R. Courant; Variational methods for the solution of problems of equi-

librium and vibrations; Bulletin of the American Mathematical Society 49

(1943) pp. 1–23.

153

[23] Benchmarks comparing LOQO with snopt and nitro on the CUTE set and

Schittkowski test set .

URL http://www.princeton.edu/~rvdb/cute table.pdf

[24] E. D. Dolan & J. J. Moré; Benchmarking optimization software with

COPS ; Technical Report ANL/MCS-246; Argonne National Laboratory

(2000).

[25] J. Dussault; Numerical stability and efficiency of penalty algorithms; SIAM

Journal on Numerical Analysis 32 (1995) pp. 296–317.

[26] A. S. El-Bakry, R. A. Tapia, T. Tsuchiya & Y. Zhang; On the for-

mulation and theory of the Newton interior-point method for nonlinear pro-

gramming ; Journal of Optimization Theory and Applications 89 (1996) pp.

507–541.

[27] N. Featherstone & P. Lambie, editors; Reeds Oki Channel Almanac;

Adlard Coles Nautical (2004).

[28] A. V. Fiacco & G. P. McCormick; Nonlinear Programming: Sequential

Unconstrained Minimization Techniques; John Wiley & Sons (1968).

[29] R. Fletcher & S. Leyffer; Nonlinear programming without a penalty

function; Mathematical Programming 91 (2002) pp. 239–269.

[30] Roger Fletcher; Practical Methods of Optimization; second edition; John

Wiley & Sons (1987).

[31] A. Forsgren & P. E. Gill; Primal-dual interior methods for nonconvex

nonlinear programming ; SIAM Journal on Optimization 8 (1998) pp. 1132–

1152.

[32] R. Fourer, D. M. Gay & B. W. Kernighan; AMPL: A modelling lan-

guage for Mathematical Programming ; Duxbury Press/Wadsworth (1993).

[33] K. R. Frisch; The logarithmic potential method for convex programming

(1955); Institute of Economics, University of Oslo.

[34] David M. Gay; Hooking your solver to AMPL; Technical Report 97-4-06;

Computing Sciences Research Center, Bell Laboratories (1997).

[35] P. E. Gill, W. Murray & M. H. Wright; Practical Optimization; Aca-

demic Press (1981).

154

[36] P.E. Gill, W. Murray & M. A. Saunders; SNOPT: An SQP algorithm

for large-scale constrained optimization; SIAM Journal on Optimization 12

(2002) pp. 979–1006.

[37] J. Gondzio & A. Grothey; Reoptimization with the primal-dual interior

point method ; SIAM Journal on Optimization 13 (2003) pp. 842–864.

[38] Jacek Gondzio; Practical large scale optimization lectures; University of

Edinburgh.

URL http://student.maths.ed.ac.uk/displaycourse.html

[39] Jacek Gondzio; HOPDM: A fast LP solver based on a primal-dual interior

point method ; European Journal of Operational Research 85 (1995) pp. 221–

225.

[40] Jacek Gondzio; Multiple centrality corrections in a primal-dual method for

linear programming ; Computational Optimization and Applications 6 (1996)

pp. 137–156.

[41] Jacek Gondzio; Warm-start of the primal-dual method applied in the cut-

ting plane scheme; Mathematical Programming 83 (1998) pp. 125–143.

[42] Nick I. M. Gould; On the accurate determination of search directions for

simple, differentiable penalty functions; IMA Journal of Numerical Analysis

6 (1986) pp. 357–372.

[43] L. Grippo, F. Lampariello & S. Lucidi; A nonmonotone linesearch

technique for Newton’s method ; SIAM Journal on Numerical Analysis 23

(1986) pp. 707–716.

[44] S. P. Han & O. L. Mangasarian; Exact penalty functions in nonlinear

programming ; Mathematical Programming 17 (1979) pp. 251–269.

[45] A catalogue of subroutines (HSL 2000) (2002); Harwell Subroutine Library,

AEA Technology, Harwell.

[46] M. P. Hennessey, J. A. Jalkio, C. S. Greene & C. M. Sullivan;

Optimal routing of a sailboat in steady winds (2006); School of Engineering

and Center for Applied Mathematics, University of St. Thomas.

[47] M. P. Hennessey & S. Kumar; Integrated graphical game and simulation-

type problem-based learning in kinematics; International Journal of Mechan-

ical Engineering Education 34 (2006) pp. 220–232.

155

[48] M. R. Hestenes; Multiplier and gradient methods; Journal of Optimization

Theory and Applications 4 (1969) pp. 303–320.

[49] F. S. Hillier & G. J. Liebermann; Introduction to Operations Research;

seventh edition; Mc-Graw Hill Higher Education (2001).

[50] W. Hock & K. Schittkowski; Test examples for nonlinear programming

codes; number 187 in Lecture Notes in Economics and Mathematical Sys-

tems; Springer Verlag, Heidelberg (1981).

[51] N. Karmarkar; A new polynomial-time algorithm for linear programming ;

Combinatorics 4 (1984) pp. 373–395.

[52] D. E. Kirk; Optimal Control Theory ; Prentice Hall (1970).

[53] I. J. Lustig, R. E. Marsten & D. F. Shanno; Interior point methods

for linear programming: Computational state of the art ; ORSA Journal on

Computing 6 (1994) pp. 1–14.

[54] N. Maratos; Exact penalty function algorithms for finite dimensional and

control optimization problems; Ph.D. thesis; University of London (1978).

[55] S. Mehrotra; On the implementation of a primal-dual interior point

method ; SIAM Journal on Optimization 2 (1992) pp. 575–601.

[56] H. Mittelmann; Benchmarks for optimization software.

URL http://plato.la.asu.edu/bench.html

[57] J. L. Morales, J. Nocedal, R. A. Waltz, G. Liu & J. P. Goux;

Assessing the potential of interior methods for nonlinear optimization; Tech-

nical report; Evanston IL (2001).

[58] J. Moré & T. Munson; Computing mountain passes and transition states;

Mathematical Programming 100 (2004) pp. 151–182.

[59] W. Murray & M. H. Wright; Line search procedures for the logarithmic

barrier function; SIAM Journal on Optimization 4 (1994) pp. 229–246.

[60] B. A. Murtagh & M. A. Saunders; MINOS 5.5 user’s guide; Technical

Report SOL 83-20R; Systems Optimization Laboratory, Stanford University

(1998).

[61] S. G. Nash & A. Sofer; A barrier method for large-scale constrained

optimization; ORSA Journal on computing 5 (1993) pp. 40–53.

156

[62] J. Nocedal & S. Wright; Numerical Optimization; Springer (1999).

[63] Geert Jan Olsder; Bicycle routing for maximum suntan; SIAM Review

45 (2003) pp. 345–358.

[64] I. Percival & D. Richards; Introduction to Dynamics; Cambridge Uni-

versity Press (1982).

[65] L. S. Pontryagin, V. G. Boltyanskii, R. V. Gamkrelidze & E. F.

Mishchenko; The Mathematical Theory of Optimal Processes; John Wiley

& Sons, New York (1962).

[66] Mike Powell; A method for nonlinear constraints in minimization prob-

lems; in Optimization, Roger Fletcher, editor; Academic Press, London,

New York (1969) pp. 283–298.

[67] Mike Powell; Convergence properties of algorithms for nonlinear opti-

mization; SIAM Review 28 (1986) pp. 487–500.

[68] Johannes Reitzenstein; Designing and computing mountain-pass trajec-

tories via methods of optimal control with applications in chemistry ; Ph.D.

thesis; University of Bayreuth (2005).

[69] A. L. Tits, A. Wächter, S. Bakhtiari, T. J. Urban & C. T.

Lawrence; A primal-dual interior point method for nonlinear programming

with strong global and local convergence properties; SIAM Journal on Opti-

mization 14 (2003) pp. 173–199.

[70] Kaoru Tone; Revisions of constraint approximations in the successive QP

method for nonlinear programming problems; Mathematical Programming 26

(1983) pp. 144–152.

[71] R. J. Vanderbei & D. F. Shanno; An interior-point algorithm for non-

convex nonlinear programming ; Computational Optimization and Applica-

tions 13 (1999) pp. 231–252.

[72] Robert J. Vanderbei.

URL http://orfe.princeton.edu/~rvdb/ampl/nlmodels

[73] Robert J. Vanderbei; Optimal sailing strategies, statistics and operations

research program (1996); University of Princeton.

URL http://www.sor.princeton.edu/~rvdb/sail/sail.html

157

[74] Robert J. Vanderbei; Loqo: An interior point code for quadratic pro-

gramming ; Optimization Methods and Software 11 (1999) pp. 451–484.

[75] Robert J. Vanderbei; A case study in trajectory optimization: putting on

an uneven green; SIAG/OPT Views & News 12 (2001) pp. 6–14.

[76] A. Wächter & L. T. Biegler; Failure of global convergence for a class of

interior point methods for nonlinear programming ; Mathematical Program-

ming 88 (2000) pp. 565–574.

[77] A. Wächter & L. T. Biegler; On the implementation of an interior point

filter line-search algorithm for large-scale nonlinear programming ; Mathe-

matical Programming 106 (2006) pp. 25–37.

[78] R. A. Waltz, J. L. Morales, J. Nocedal & D. Orban; An interior al-

gorithm for nonlinear optimization that combines line search and trust region

steps; Mathematical Programming 2006 (2006) pp. 391–408.

[79] Stephen Wright; Primal Dual Interior Point Methods; SIAM Publica-

tions (1997).

[80] H. Yamashita, H. Yabe & T. Tanabe; A globally and superlinearly con-

vergent primal-dual interior point trust region method for large scale con-

strained optimization; Mathematical Programming 102 (2005) pp. 111–151.

[81] Hiroshi Yamashita; A globally convergent primal-dual interior point

method for constrained optimization; Optimization Methods and Software

10 (1998) pp. 443–469.

[82] E. A. Yildirim & S. J. Wright; Warm-start strategies in interior point

methods for linear programming ; SIAM Journal on Optimization 12 (2002)

pp. 782–870.

[83] E. Zermelo; Über das Navigationsproblem bei Ruhender oder veränder-

licher Windverteilung ; Zeitschrift fur Angewandte Mathematik und Mech-

anik 11 (1931) pp. 114–124.

158

