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Lay abstract

Trabecular bone has a complex and porous microstructure. This study develops ap-
proaches to determine the mechanical behaviour of this material at the macroscopic
level by developing models of its microstructure and computationally subjecting them
to mechanical loading. This study provides an assessment of how the mechanical
behaviour of trabecular bone at the macroscale, i.e. organ level, is affected by the
mechanical behaviour at lower scales. It is expected that this study can be employed to
provide further information to enhance current clinical prediction tools, and improve
bone strength and implant stability predictions.

The main tool used to simulate the mechanical behaviour of trabecular bone is the
micro-finite element method, which is basically the finite element method applied to
geometries obtained through micro-computed tomography scans. These simulations
were carried out using cutting edge high performance computing platforms, i.e. super-
computers, which are essentially a large number of very powerful “normal” computers
linked together through a high speed network.

Results show that changing the microscopic yield characteristics only has a small
effect on the macroscopic behaviour. The overall shape of the macroscopic yield surface
was also investigated. The results show that yielding defined in terms of strain is largely
isotropic, permitting use of relatively simple models. In load cases with shear, different
yield strains for clockwise and counter-clockwise shear may arise. The macroscopic
post-yield behaviour of trabecular bone was also investigated by including both plasticity
(i.e. permanent deformations) and damage (i.e. reduction in the elastic properties) at the
microscopic level. Results show that the reduction in elastic properties is not isotropic,
which is contrary to what has been assumed in the literature; additionally, hardening
and damage were seen to evolve differently in tension, compression and shear.





Abstract

Trabecular bone has a complex and porous microstructure. This study develops ap-
proaches to determine the mechanical behaviour of this material at the macroscopic
level through the use of homogenisation-based multiscale methods using micro-finite
element simulations. In homogenisation-based finite element methods, a simulation
involving a representative volume element of the microstructure of the considered
material is performed with a specific set of boundary conditions. The macroscopic
stresses and strains are retrieved as averaged quantities defined over this domain. Most
of the homogenisation-based work on trabecular bone has been performed to study
its macroscopic elastic regime, and therefore define its constant macroscopic stiffness
tensor.

The rod and plate-shaped microstructure of trabecular bone can be precisely identi-
fied with advanced scanning tools, such as micro-computed tomography devices. Taking
into account the size requirements to achieve a certain independence of boundary condi-
tions for trabecular bone in a homogenisation-based multiscale setting, the resulting
stack of images can have around ten million solid voxels after binarisation. Although a
completely linear finite element simulation with such a large system may be feasible
with commercial packages (with the proper time and memory requirements), it is not
possible to perform a nonlinear simulation for such a mesh in a reasonable time frame,
and the amount of required memory may not be available. A highly scalable parallel
driver program which solves finite strain elastoplastic systems was developed within
the framework of the existing parallel code ParaFEM. This code was used through-
out this study to evaluate the yield and post-yield properties of trabecular bone. It
was run on cutting edge high performance computing platforms (BlueGene/Q at the
Hartree Centre, Science and Technology Facilities Council; and ARCHER, UK National
Supercomputing Service, at Edinburgh Parallel Computing Centre).

Micro-finite element simulations require definition of properties at the microscopic
scale and it is unclear how these properties affect the macroscopic response. This
study examines the effect of compressive hydrostatic yield at the microscopic scale on
the macroscopic behaviour. Two different microscopic yield criteria, one permitting
yielding at compressive hydrostatic stresses and the other not, were considered. A
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large number of load cases were examined. It was found that these two microscopic
yield criteria only influence macroscopic yield behaviour in load scenarios which are
compression-dominated; for other load cases, macroscopic response is insensitive to
the choice of the microscopic yield criterion, provided it has an appropriate strength
asymmetry. Also, in compression-dominated load cases, high density bone is much
more sensitive as it is more like a continuum, resulting in the microscopic properties
being more directly upscaled.

Only a few previous studies have employed homogenisation to evaluate the macro-
scopic yield criterion of trabecular bone. However, they either used a simplified
microscopic yield surface or examined only a small number of load cases. A thorough
multiaxial evaluation of the macroscopic yield surface was performed by applying a
wide range of loading scenarios (160 load cases) on trabecular bone samples. Closed-
form yield surfaces with different symmetries (isotropy, orthotropy and full anisotropy)
were fitted to the numerically obtained macroscopic yield points in strain space, and
the fitting errors were evaluated in detail for different subsets of load cases. Although
orthotropy and full anisotropy showed the smallest fitting errors, they were not signifi-
cantly superior to the isotropic fit. Thus, isotropy in strain space presents itself as the
most suitable option due to the simplicity of its implementation. The study showed
that fitting errors do depend on the chosen set of load cases and that shear load cases
are extremely important as it was found that even for these highly aligned samples,
trabecular bone presents some degree of shear asymmetry, i.e. different strength in
clockwise and counter-clockwise shear directions.

There have been no previous attempts to evaluate the post-yield behaviour of
trabecular bone through homogenisation-based studies on detailed micro-finite element
trabecular bone meshes. A damage and plasticity constitutive law for the microscale
based on existing data in the literature was considered. A homogenisation-based
multiscale approach was used to evaluate the hardening and stiffness reduction at the
macroscale when uniaxial load scenarios are applied to trabecular bone samples, for a
small range of plastic strain Euclidean norms. Results show that damage progression at
the macroscale for trabecular bone is not isotropic, which is contrary to what has been
assumed previously, and that both the evolution of the yield surface and damage are
different for tension, compression and shear. Nonetheless, they can be correlated with
plastic strain Euclidean norms by using linear relationships. It was also observed that
macroscopic damage in a specific load case affects differently the on-axis orthotropic
stiffness and the off-axis orthotropic stiffness components.

The findings of this study will permit the use of a more rigorous definition of the
post-elastic macroscopic behaviour of trabecular bone in finite element settings.
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Symbols

A Area
A Generic set of thermodynamical forces
A Consistent material tangent operator
A Assembly operator in a FE setting
B Discrete symmetric gradient operator or left Cauchy-Green strain tensor
C Consistent spatial tangent operator
d Distance to a yield point in strain space
d Newton update direction
D Damage scalar variable
Dc First damage parameter
De Elastic stiffness tensor
De

0 dam Damaged macroscopic elastic stiffness tensor
Dep Consistent tangent operator
ei j Ith and jth orthotropic coefficient of the macroscopic elastic stiffness

tensor in matrix form
E Young’s Modulus
ei Ith eigenvector of a second-order tensor
Ei Ith eigentensor of a second-order tensor
ErrorFIT Fitting error
ErrorORT Orthotropic error
f Yield surface in stress space
f ext External force vector
f int Internal force vector
f ext Total external force vector
F0 Constant defining the shape and eccentricity of an isotropic yield surface

in stress space
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FD Damage dissipation potential
F Second-order tensor defining the offset from the origin of a quadric in

stress space or deformation gradient
F∆ Incremental deformation gradient
F Fourth-order tensor defining the shape and orientation of a quadric in

stress space
Fy Microscopic constitutive functional
g Yield surface in strain space
g0 First constant defining the shape and eccentricity of an isotropic yield

surface in strain space
G Shear modulus
G0 Second constant defining the shape and eccentricity of an isotropic yield

surface in strain space
G Second-order tensor defining the offset from the origin of a quadric in

strain space or discrete spatial gradient operator
G Fourth-order tensor defining the shape and orientation of a quadric in

strain space
H Conjugate thermodynamical force associate with a scalar internal variable
Hdam Constant associated with damage evolution
H iso Hardening modulus associated with a scalar internal variable
H Generic set of hardening modulus
I Second-order unit tensor
I Fourth-order unit tensor (δik δ jl)
Isym Fourth-order symmetric identity tensor

(1
2 [δik δ jl +δil δ jk]

)
J Jacobian of the transformation between the continuum and the standard

integration domain
JCPPM Jacobian of a Closest-Point Projection Method
kp Second damage parameter
K Bulk modulus
Kdam Damaged stiffness
K Global stiffness matrix
K Set of kinematically admissible displacements
l Characteristic length of the continuum
lµ Characteristic length of the RVE
L Lagrangian function
mi Ith eigenvalue of the fabric tensor
mi Ith eigenvector of the fabric tensor
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M Continuous descent function of a line search procedure
M̂ Merit function of a line search procedure
Mi Ith eigentensor of the fabric tensor
M Structural tensor
nCPPM Maximum number of allowed Closest-Point Projection Method iterations
ndim Number of physical dimensions
nel Number of elements in a FE mesh
ngauss Number of integration points in a FE element
nls Maximum number of allowed line search iterations
nmax Cardinality of a set
nNewton Maximum number of allowed Newton-Raphson iterations
nnod Number of nodes in a FE mesh
n Unit normal vector to the boundary of the RVE
Nel

i Shape function defined in an element and associated with node i

N Flow tensor or interpolation matrix
Ob j Objective function to be minimised for orthotropic stiffness
Orth3 Set of second-order orthogonal tensors in three dimensions
P First Piola-Kirchhoff stress tensor
q Thermodynamical force associated with a scalar internal variable
Q Orthogonal tensor
R2 Coefficient of determination of a regression
R2

ad j Adjusted coefficient of determination of a regression

R(·) Residual of (·)
R Set of real numbers
R(·) Vector space of dimension (·) over the set of real numbers
SOrth3 Subset of the set of second-order orthogonal tensors in three dimensions
Sym6 Space of 6×6 symmetric matrices
t (Pseudo-) Time
tol Tolerance for stopping an iterative numerical scheme
text External traction field
uµ Microscopic displacement
u0 Mean of the microscopic displacement
ũµ Fluctuation of the microscopic displacement
u Prescribed displacement
U Vector space of dimension equal to the number oh physical dimensions
V Volume
V Left stretch tensor
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V Space of virtual displacements
wi Weight of the ith Gaussian integration point
x Deformed (spatial) coordinates in the continuum or solution vector
X Undeformed (material) coordinates in the continuum
Y Thermodynamic force associated with a scalar damage variable
y Coordinates within the RVE
α Line search parameter
ααα Generic set of internal variables
ααα Internal variable incremental constitutive function
β First constant of a line search procedure involving a quadratic fit
γi j Shear yield strain in the ei e j plane
γ̇ Plastic multiplier
δδδ Kronecker Delta
εh Trial strain parameter
ε
+
ii Tensile yield strain in the ith orthotropic direction

ε
−
ii Compressive yield strain in the ith orthotropic direction

ε
+
i j Clockwise shear yield strain in the eie j plane

ε
−
i j Counter-clockwise shear yield strain in the eie j plane

ε
+
0 Tensile yield strain of an isotropic quadric in stress space

ε
−
0 Compressive yield strain of an isotropic quadric in stress space

ε
p Accumulated plastic strain

εεε Strain tensor
ε̃εεµ Microscopic strain tensor fluctuation
ζ0 Parameter which controls the shape of a quadric in stress space
η Second constant of a line search procedure involving a quadratic fit
ηηη Virtual displacement
κ Scalar internal variable
λ First Lamé constant or load factor
µ Second Lamé constant
ν Poisson’s ratio
ξi j Strain interaction coefficients between the ith and the jth orthotropic

directions
ξ0 Parameter which controls the shape of a quadric in strain space
ρ Density or bone volume over total volume fraction
σ
+
ii Tensile yield stress in the ith orthotropic direction

σ
−
ii Compressive yield stress in the ith orthotropic direction

σ
+
0 Tensile yield stress of an isotropic quadric in stress space
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σ
−
0 Compressive yield stress of an isotropic quadric in stress space

σσσ Generic stress tensor
σσσ pro j Stress solution of the closest-point projection method equations without

considering hardening and damage
σσσ Stress incremental constitutive function
τi j Shear yield stress in the ei e j plane
τττ Kirchhoff stress tensor
ϕ Scalar function to be minimised in a Closest-Point Projection Method

context
ϕϕϕ Deformation map
χ Complementary energy function
χi j Stress interaction coefficients between the ith and the jth orthotropic

directions
Ξ Dissipation potential
ψ Free energy function
ψe Elastic contribution to the free energy function
ψ p Plastic contribution to the free energy function
Ω Domain of a generic body
Ωµ Domain of the RVE
∂Ωt Boundary of the RVE where tractions are prescribed
∂Ωu Boundary of the RVE where displacements are prescribed
∂Ωµ Boundary of the RVE

Abbreviations

BiCGStab Stabilised bi-conjugate gradient
BiCGStab(l) Stabilised hybrid bi-conjugate gradient
BMD Bone mineral density
BV/TV Bone volume over total volume ratio
Conn Connectivity
CPPM Closest-point projection method
CPU Central processing unit
CT Computed tomography
DOA Degree of anisotropy
DOF Degrees of freedom
DVC Digital Volume Correlation
DXA Dual energy X-ray absortiometry
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FE Finite element
FEM Finite element method
GMRES Generalised minimum residual
GPU Graphical processing unit
HPC High performance computing
KUBC Kinematic uniform boundary conditions
MIL Mean intercept length
MINRES Minimum residual method
MPI Message passing interface
PBC Periodic boundary conditions
PCG Preconditioned conjugate gradient
PDE Partial differential equation
RVE Representative volume element
SMI Structure model index
SRµCT Synchrotron radiation micro-computed tomography
SUBC Static uniform boundary conditions
Tb.Th Trabecular thickness
TMD Tissue mineral density
VE Volume element
µCT Micro-computed tomography
µFE Micro-finite element

Other symbols and operators

d(·) Differential of (·)
det (·) Determinant of (·)
div (·) Divergence of (·)
divX (·) Material divergence of (·)
divx (·) Spatial divergence of (·)
e(·) Exponential of (·)
ln (·) Natural logarithm of (·)
∆(·) Increment of (·), typically associated with a time, or pseudo-time, incre-

ment
δ (·) Iterative increment of (·), typically associated with an iteration of a nu-

merical scheme
∇ (·) Gradient of (·)
∇sym (·) Symmetric gradient of (·)
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∇X (·) Material gradient of (·)
∇x (·) Spatial gradient of (·)
∂ (·) Boundary of the domain (·)
∂

∂a(·) Derivative of (·) with respect to a
˙(·) Time derivative of (·)
(·)T Transpose of (·)
a ·b Single contraction of two vectors (ai bi)
a ·B Single contraction of a vector a and a second-order tensor B (ai Bi j)
Ab Single contraction of a second-order tensor A and a vector b (Ai j b j)
AB Single contraction of two second-order tensors (Aik Bk j)
A : B Double contraction of two second-order tensors (Ai j Bi j)
A : B Double contraction of a fourth-order tensor A and a second-order tensor

B (Ai jkl Bkl)
A : B Double contraction of a second-order tensor A and a fourth-order tensor

B (Ai j Bi jkl)
A : B Double contraction of two fourth-order tensors (Ai jmn Bmnkl)
a⊗b Tensor product of two vectors (ai b j)
a⊗sym b Symmetric tensor product of two vectors

(1
2(ai b j +bi a j)

)
A⊗B Tensor product of two second-order tensors (Ai j Bkl)
A⊗B Symmetric tensor product of two second-order tensors

(1
2(Aik B jl +

Ail B jk)
)

A⊙B Alternate tensor product of two second-order tensors (AilB jk)
ααα ∗βββ Appropriate product between two entities, ααα and βββ , in a specific context
∥a∥ Euclidean norm of a vector (∥a∥=

√
a ·a)

∥A∥ Euclidean norm of a second order tensor (∥A∥=
√

A : A)
A ∈ B A is an element of B
∀ (·) The statement preceding ∀ is true for all values of (·)∫ xmax

xmin
(·)dx Definite integral of (·) over x from xmin to xmax⋃nmax

i=1 (·)i Union of sets (·), from i = 1 to i = nmax

∑
nmax
i=1 (·)i Summation of elements (·), from i = 1 to i = nmax

Indicial notation

Italic subscripts (i, j, k, l . . . ) are used for Cartesian components, and they range over
the number of dimensions considered, which is three throughout this study. When an
index appears twice in the same product, summation over the repeated index is implied
as per the Einstein notation. However, an important exception occurs when a summation
symbol (∑) including the product appears, which in this case implies no summation
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over repeated indices, and these indices are not Cartesian components any more but
rather elements of a set.

It is also important to point out that subscripts are not exclusively used for indicial
notation, as explained in the next section. The meaning of the subscript will be made
clear from the context where it appears.

Subscripts and superscripts

(·)0 The variable is related to the macroscale in a multiscale setting. Important
exceptions are: σ

+
0 , σ

−
0 , ε

+
0 , ε

−
0 , ζ0 and ξ0 which denote tensile and com-

pressive yield stresses and strains and the corresponding shape parameters
for an isotropic quadric in the corresponding space

(·)µ The variable is related to the microscale in a multiscale setting
(·)n+1 The variable is in the time increment n+1
(·)(k) The variable is in the iteration k within an iterative numerical scheme
(·)e The variable is related to the elastic regime
(·)p The variable is related to the plastic regime
(·)trial The variable is in the trial predictor stage of an operator split scheme
(·)+ The variable is related to the positive boundary of an RVE or with a tensile

load case
(·)− The variable is related to the negative boundary of an RVE or with a compres-

sive load case
(·)ext The variable is related to an external boundary of an RVE. An important

exception is f ext which denotes the external force vector in an FE setting
(·)int The variable related to an internal boundary of an RVE. An important excep-

tion is f int which denotes the internal force vector in an FE setting
(·)s The variable is related to the solid phase of an RVE
(·)v The variable is related to the void phase of an RVE
(·)t The variable denotes the history of the corresponding quantity up to instant t

(·)ip The variable is a field which is interpolated from the field (·)
(·)g The variable is a global quantity in an FE setting
(·)(k) The variable is in the iteration k within an iterative numerical scheme
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Brackets

Parentheses ( ) They are used to indicate priority in the order in which
mathematical operations are performed. However, they
are sometimes used to express the dependency of some
physical quantity on another, such as σσσ(t), which indi-
cates time dependency of the stress tensor.

Square brackets [ ] They are used in conjunction with parentheses to indi-
cate priority in the order of mathematical operations.
An important exception occurs when they are used to
represent a matrix projection of a fourth-order tensor or
of four-dimensional tuples, such as [A] or [K].

Curly brackets {} They are used to represent a vector projection of second-
order tensors or of two-dimensional tuples, such as {σσσ}
or {f int}.

Double square brackets J K They are used to indicate the jump equation of what is
within the brackets.

Vertical bars | They are used in conjunction with a subscript, for ex-
ample |(·) to indicate that the expression preceding the
vertical bar is evaluated at (·).

Character fonts

• Italic letters A, a, B, b, C, c . . . : Scalars and scalar-valued functions.

• Greek characters α , β , γ . . . : Scalars and scalar-valued functions. An important
exception is Ω which denotes the region of Euclidean space occupied by a generic
body.

• Bold lower case letters a, b, c . . . : Vectors and vector-valued functions. An
important exception is d which denotes the Newton update direction.

• Bold upper case letters C, D, E . . . : Second-order tensors and second-order
tensor-valued functions. Important exceptions are A, which denotes the generic
set of thermodynamical forces, B which denotes the discrete symmetric gradient
operator, G which denotes the discrete spatial gradient operator, H which denotes
the generic set of hardening modulus, J which denotes the Jacobian of the Closest-
Point Projection Method, N which denotes the interpolation matrix in a FE context,
and K which denotes the global stiffness matrix of a FE system.
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• Greek bold characters ααα , βββ , γγγ . . . : Second-order tensors and second-order tensor-
valued functions. An important exception is ααα which denotes the generic set of
internal variables.

• Double-barred upper case letters A, B, C . . . : Fourth-order tensors. An important
exception is R which denotes the set of real numbers.

• Calligraphic upper case letters A , B, C . . . : Spaces or sets. Important excep-
tions are Fy, which denotes the microscopic constitutive functional, A , which
denotes the assembly operator in a FE setting, and L , which denotes a Lagrangian
function.



Chapter 1

Introduction

The exponential growth of the older population around the world in general, and in
developed countries in particular, implies that problems associated with deteriorated
mechanical properties of bone are increasing at an alarming rate, with osteoporosis
being the most common cause for bone fracture in elderly population. Osteoporosis
is three times more common in women than in men, especially after menopause. An
increase in life expectancy means that women now live more than a third of their lives
after menopause, and this number is increasing (World Health Organisation, 2003).

World Health Organisation (2003) states that Osteoporosis affects more than 75
million people in Europe, Japan and USA, and that it causes more than 2.3 million
fractures annually in Europe and USA alone. Hip, vertebral and forearm fractures were
estimated to potentially affect 40% of the population at some point in their lifetime,
a percentage similar to coronary heart diseases. Hip fractures are the most severe
type as they are associated with a high degree of morbidity and a significant mortality
(Sambrook and Cooper, 2006; World Health Organisation, 2003). Osteoporosis is not
only affecting life quality but also results in significant economic burden. For instance,
in England and Wales, the cost was estimated at £942 million each year (Torgerson
and Cooper, 1998). In USA, direct medical expenses on fracture were estimated to
be around $14 billion in 1995 (Ray et al., 1997). These costs are mainly attributed to
classic osteoporotic fractures (Johnell, 1997).

As mentioned in the previous paragraph, bone fractures are most common in
anatomic sites with a large proportion of trabecular bone. Bone fractures can be
predicted through a proper assessment of bone strength. The current bone strength
assessment gold standard for low radiation methods is dual energy X-ray absortiom-
etry (DXA) (Dall’Ara et al., 2012), because of its low cost, high reliability and ease
of use (Bergot et al., 2001). It measures areal bone mineral density (aBMD). Some
experimental studies have shown that the strength of bone is affected by bone mineral
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density (BMD) (Siris et al., 2004), which remains as the prime predictor, by the quality
of bone (Ammann and Rizzoli, 2003; McDonnell et al., 2007), by its micro-architecture
(Ciarelli et al., 2000; Homminga et al., 2004), by possible accumulations of existing
micro-damage (Bouxsein, 2003; Wenzel et al., 1996), and by the properties of the solid
phase of trabecular bone (Boivin et al., 2000).

Implants are in a constant development and are nowadays expected to work in
problematic environments, such as extremely debilitated osteoporotic trabecular bone
or under more extreme loading conditions, such as those derived from more active
lifestyles. Implants are also expected to last longer due to the increase in the life
expectancy of people. Therefore, correct design and mechanical assessment under
physiological conditions are needed. By evaluating the strength of bone, and thus
assessing its nonlinear mechanical properties, implants acting under these physiological
environments may be properly evaluated, which may significantly improve their design
features and thus their performance.

The finite element method (FEM) is a widely employed numerical technique used to
solve partial differential equations (PDE) numerically. This technique is hugely utilised
in engineering, but particularly in solid mechanics, with bone mechanics being a sub-
field of solid mechanics in which FEM is widely used to evaluate the behaviour of bone
and bone-implant systems. At the macroscopic level, finite element (FE) simulations
have been used in a vast range of applications, from prediction of bone fracture (Schileo
et al., 2008; Ural and Vashishth, 2007), hip arthroplasty (Phillips et al., 2006; Terrier
et al., 2014), total knee replacement (Au et al., 2005; Conlisk et al., 2015), limb fracture
fixation (Donaldson et al., 2012; Watson et al., 2007), or pure constitutive modelling
of nonlinear phenomena (Garcia et al., 2009; Wolfram et al., 2012). Homogenised FE
models have the potential to include the microstructural information in macroscopic
models and thus account for all known bone strength affecting factors, and can improve
bone strength assessment over traditional BMD-based methods (Dall’Ara et al., 2013,
2012).

At the microscopic level, micro-FE (µFE) simulations have been primarily used to
assess the macroscopic stiffness tensor of bone (Donaldson et al., 2011; van Rietbergen
et al., 1996, 1995) and, more recently, to assess the macroscopic yield surface (Bayraktar
et al., 2004a; Rincón-Kohli and Zysset, 2009; Sanyal et al., 2015; Wolfram et al., 2012).
These µFE models are created by converting each voxel from a set of micro-computed
tomography (µCT) scans to a trilinear hexahedron element.

The technique used in these µFE simulations to upscale properties from the micro-
to the macroscale is homogenisation (de Souza Neto and Feijóo, 2008; Hill, 1972;
Perić et al., 2011; Wang et al., 2009; Wolfram et al., 2012). This technique relies
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on the averaging of stresses and strains over a representative volume element (RVE)
to represent the continuum material properties. This RVE has a characteristic length
which is much smaller than the characteristic length of the continuum, which in this
study would be bone at the organ level, but at the same time much larger than the
size of the microstructural features (Wang et al., 2009), which in this study would be
trabeculae and pores1. Hill (1963) stated that the RVE is structurally entirely typical of
the whole mixture on average, and contains a sufficient number of inclusions for the
apparent overall moduli to be effectively independent of the surface values of traction
and displacement, as long as these values are “macroscopically uniform”. Due to
the considerable size of the features present in the microstructure of trabecular bone,
and since the macroscopic level is not much larger than the scale at which trabeculae
become discernible, the material sample window of trabecular bone is smaller than
a proper RVE and thus, from now onwards, it will be called a volume element (VE),
which can be used to obtain apparent properties, instead of effective properties. These
apparent properties are dependent on the size of the considered specimen and also on
the boundary conditions used (Wang et al., 2009).

Needless to say, the results of any FE system are strongly dependant upon the mod-
elling assumptions: geometry, material properties and (natural and essential) boundary
conditions (BC). Due to the limitations in acquiring experimental data from biological
systems, robust data regarding any of these features can be extremely challenging to
obtain. At the microscale, the problem of obtaining appropriate geometry has been
almost completely solved since µCT scans can obtain a precise description of the mi-
crostructure of trabecular bone and the only remaining problem is the lack of objectivity
of the binarisation procedure, which is the process of converting a gray-scale image to a
black-and-white image, so that only solid and void phases are represented. Most of the
binarisation approaches are not fully automatic as they require some interaction with
the user (Gómez et al., 2013). BCs at the microscale are usually considered within the
framework of homogenisation-based multiscale analysis. Several studies have defined
the effects of different BCs on the macroscopic stiffness tensor (Pahr and Zysset, 2008;
Wang et al., 2009) and one has studied their effect on the macroscopic yield surface
(Panyasantisuk et al., 2015b).

The focus of this study is on material properties, specifically on the constitutive
model of trabecular bone at the macroscale. As previously mentioned, homogenised
trabecular bone models can improve the assessment of bone strength (Dall’Ara et al.,
2013, 2012) but since the outcome of a FE system considerably depends on the material

1A more thorough description of the characteristic lengths of the scales involved in this study is given
in Section 3.1 of Chapter 3.
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properties, these need to be adequately defined. Due to the hierarchical nature of bone
(Fratzl and Weinkamer, 2007; Wang and Gupta, 2011), the mechanical properties at
each of its scales are interlinked and therefore multiscale analyses should be considered
if precise material properties at the macroscale need to be defined. An important
consideration to take into account is the relatively limited experimental data on the
mechanical behaviour of the solid phase of trabecular bone, i.e. at the microscopic level.
Only a few studies describe the mechanical behaviour of the solid phase, and these
mostly comprise of nanoindentation studies (Carnelli et al., 2010; Tai et al., 2006). More
recently, experiments at the extracellular level (Luczynski et al., 2015; Schwiedrzik
et al., 2014), which is a scale below the microscopic scale, have also been conducted;
however, these studies provide limited information about the multiaxial behaviour of
the solid phase of trabecular bone.

The solid phase is modelled in this study by using a phenomenological approxi-
mation at the microscale, i.e. based on the mechanical response in an average sense
(de Souza Neto et al., 2008), without taking into account the effects of mechanisms at
lower scales. Since it is recognised that the macroscopic anisotropy of trabecular bone
is largely a consequence of its anisotropic microstructure, a micromechanical approach
is considered at the macroscale, i.e. the macroscopic effect of this microstructure is
studied by means of homogenisation techniques (de Souza Neto et al., 2008; Perić et al.,
2011).

While macroscopic elastic properties of trabecular bone have been extensively
assessed using homogenisation in previous studies (Donaldson et al., 2011; Pahr and
Zysset, 2008; van Rietbergen et al., 1996, 1995; Wang et al., 2009; Zysset, 2003), only
a few studies have assessed its macroscopic yield and post-yield behaviour by means
of homogenisation techniques (Bayraktar et al., 2004a; Panyasantisuk et al., 2015b;
Sanyal et al., 2015; Wolfram et al., 2012). These previous studies either used simplified
models for the solid phase, e.g. by employing an asymmetric strength criterion in
principal strain space (Bayraktar et al., 2004a; Sanyal et al., 2015; Wolfram et al.,
2012), and/or considered only a few load cases to represent the whole six-dimensional
multiaxial description of the yield surface (Panyasantisuk et al., 2015b; Wolfram et al.,
2012) (if the considered sample is described in a three-dimensional Euclidean space,
taking into account the symmetry of the considered stress or strain second-order tensor
implies that the tensor space is six-dimensional; the corresponding yield surface is a five-
dimensional hypersurface in such a space). Furthermore, the macroscopic multiaxial
post-yield behaviour of trabecular bone has not yet been assessed in the context of
homogenisation-based multiscale modelling. This means that none of the previous
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studies considered the assessment of damage or hardening at the macroscale by using
this multiscale technique.

1.1 Structure of the thesis

This dissertation is divided into eight chapters and a brief description of the content of
each of the remaining chapters is as follows.

Chapter 2 reviews the literature that is relevant to this topic. It focuses on the mor-
phology and mechanical behaviour of trabecular bone at the microscale and macroscale.
The mechanical behaviour in the elastic and post-elastic regimes is discussed, with a
special emphasis on plasticity and damage applied to trabecular bone.

Chapter 3 considers multiscale modelling and concepts of computational plasticity
and damage. The multiscale method presented here is homogenisation. Numerical
algorithms for integration of evolution equations for damage and plasticity are then
developed and compared.

Chapter 4 discusses FEM and high performance computing (HPC). The FEM is
described in both infinitesimal and finite strain regimes and its computer implementation
is explained. Key topics associated with HPC are discussed, including the software
used (ParaFEM), a brief introduction to the hardware, and the developed driver program
for finite strain elastoplasticity.

Chapter 5 describes the study of the effect of the solid phase yield surface on the
macroscopic behaviour of trabecular bone. Several load cases are investigated and
conclusions are drawn by separating these load cases into specific sets.

Chapter 6 describes the study of the macroscopic yield surface of trabecular bone.
A similar set of load cases to those employed in Chapter 5 is used, and a minimisation
procedure is employed to find a closed-form expression which minimises a fitting error.
Several symmetry cases (isotropy, orthotropy and full anisotropy) are investigated.

Chapter 7 describes the study of the post-yield behaviour of trabecular bone. A
full set of uniaxial cases (three tensile, three compressive and three shear) is used to
investigate the hardening and damage behaviour at the macroscale, starting from an
assumption of a solid phase constitutive law, for a small range of plastic strains.

Chapter 8 outlines the conclusions which can be drawn from this study, with a
special emphasis on the macroscopic mechanical behaviour of trabecular bone. Then
the future work which could be performed in near and distant futures is also outlined.





Chapter 2

Literature review

This Chapter reviews the relevant literature on trabecular bone. Its description from a
morphological point of view and its mechanical behaviour are discussed. The literature
on mechanical properties is discussed at both scales studied: microscale (scale where
the trabecular structure can be described in detail) and macroscale (continuum). In the
following sections and chapters, trabecular bone at the microscopic level is referred
to as solid phase or tissue, and the mechanical behaviour of trabecular bone at the
macroscopic level as macroscopic or apparent.

2.1 Morphological description of bone

Bone is a hierarchical composite material. At the nanoscale it consists of type I collagen
molecules which are periodically reinforced with nanocrystal platelets of hydroxyapatite.
This basic unit is periodically arranged within an extra-fibrillar mineral matrix to form
mineralised collagen fibrils. These fibrils are then hierarchically organised into lamellae,
which are planar layers of bone tissue, with a thickness of around 5 µm. Lamellae are
arranged like a rotated plywood structure, where the fibre direction rotates around the
axis perpendicular to the layers; this is true for both cortical and trabecular bone (Fratzl
and Weinkamer, 2007; Gupta et al., 2005; Hellmich and Ulm, 2002)

The composition of bone at the microscale depends on what macroscopic morphol-
ogy is being considered, cortical or trabecular. Around 80% of the skeletal mass is
cortical, or compact, bone which is mainly found in the shaft of long bones. Trabecular,
or cancellous/porous, bone comprises the remaining 20% of the skeletal mass and is
typically found in the ends of long bones. This distinction is made because of their
macroscopic appearance, with cortical bone resembling a continuum and trabecular
bone resembling an open-cell foam. They have different porosities and anisotropies,
and in general, different material properties.
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Cortical bone is a very dense material, containing porosity of the order of 6% mostly
due to the presence of blood vessels (Fratzl and Weinkamer, 2007). These blood vessels
are concentrically surrounded by multiple lamellae, forming an osteon, which is the
basic building block of cortical bone. These osteons are mainly arranged in parallel
arrays following the axial direction of the bone. Trabecular bone, which has a porosity
with an average value of around 80%, consists of a large lattice of plates and rods
known as trabeculae. The porous space between trabeculae is filled with marrow and
living cells. Trabeculae are composed of the same material as cortical bone, but its
arrangement is not in osteons, but in bone packets with different mineral content. They
contain some microporosity due to the presence of osteocyte (bone cells) lacunae,
which are channels thinner than the blood vessels in osteons; these lacunae are linked
between them and to the exterior by even thinner channels, called canaliculi (Fratzl and
Weinkamer, 2007; Weiner and Wagner, 1998). At the nanoscopic level, collagen fibrils
and mineral particles forming trabecula closely follow their orientation (Cowin, 2001;
Jaschouz et al., 2003; Roschger et al., 2001).

The microstructure, or microarchitecture, of trabecular bone has been studied at an
approximate resolution of 20 µm (Cowin, 2001; Sanyal et al., 2015). This microstruc-
ture is not random as it is linked to mechanical usage by adaptation through Wolff’s law
(Wolff, 1870), targeting its optimum functioning as a load carrying system. There is a
wide variety of methods to quantify the microstructure of trabecular bone, including 2D
histomorphometric methods or 3D reconstruction methods. This study will focus on
bone volume over total volume fraction (BV/TV) and fabric assessed through the mean
intercept length (MIL) fabric tensor, as these are the two most common parameters
used to formulate closed-form expressions of the macroscopic mechanical behaviour of
trabecular bone (Cowin, 1986; Harrigan and Mann, 1984; Odgaard et al., 1997; Turner
et al., 1990; Wolfram et al., 2012; Zysset, 2003). BV/TV is probably the most basic
quantifier of trabecular bone and it is a term which is often used to represent density,
although it has no units. It is defined as the fraction between the volume occupied by
the solid phase over the volume occupied by the solid phase plus marrow (Cowin, 2001).
MIL is a measure of the anisotropy of the microstructure and is usually expressed as
a symmetric second-order tensor, i.e. the fabric tensor (Harrigan and Mann, 1984;
Kanatani, 1984; Whitehouse, 1974). MIL is not the only method used to calculate
the fabric tensor; two additional widely used methods are the star volume distribution
(Cruz-Orive et al., 1992) and the star length distribution (Smit et al., 1998). Note that
regardless of the definition of fabric tensor, its principal directions and the macroscopic
principal mechanical directions of trabecular bone are closely related (Odgaard et al.,
1997).
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2.2 Mechanical behaviour of bone

A better understanding of the mechanical properties of trabecular bone improves the
assessment of bone strength as fractures frequently occur in regions of trabecular bone
(Fratzl and Weinkamer, 2007). Additionally, homogenised FE models may improve
the assessment of bone strength (Dall’Ara et al., 2013, 2012) and implant stability
prediction (Steiner et al., 2015). For these homogenised models to succeed, they
require an accurate description of the microscopic elastic and post-elastic properties
of trabecular bone. Note that trabecular bone actually behaves as a visco-elastoplastic
material (Gupta et al., 2007; Gupta and Zioupos, 2008; Manda et al., 2016). These
viscous contributions originate from the viscosity of the marrow in the voids between
trabeculae and also due to the viscous properties of bone tissue itself. However, some
studies have suggested that the use of rate-independent models is adequate if strain rates
are within the range of physiological strain rates (Cowin, 2001; Garcia et al., 2010),
which are around 1%− 3% per second (Schaffler et al., 1989). Some studies have
also suggested that rate-independent models are appropriate if strain rates are around
0.5% per second (Kopperdahl and Keaveny, 1998; Morgan and Keaveny, 2001). In
these cases, rate-dependent effects can be safely ignored and several studies involving
homogenisation have assumed this (Bayraktar et al., 2004a; Panyasantisuk et al., 2015b;
Wolfram et al., 2012).

The solid phase of trabecular bone is usually assumed to be isotropic (Bayraktar
et al., 2004a; Kabel et al., 1999; Sanyal et al., 2015; Wolfram et al., 2012) although as
discussed in Section 2.1, the solid phase actually behaves as an anisotropic material.
However, as Cowin (1997) pointed out, there is little to no error in assuming tissue
isotropy: trabeculae are composed of laminated material about their axes, implying
transverse isotropy or orthotropy, and since the loading axis is the same as the axis of
the trabecula, a beam made of orthotropic material can be reduced to a beam made of
isotropic material.

Another common assumption at the solid phase level is homogeneity, i.e. the spatial
distribution of properties in the solid phase is constant (Hambli, 2013; van Rietbergen
et al., 1995; Verhulp et al., 2008). However, it is well-known that the solid phase of
trabecular bone is heterogeneous in mineral content (Blanchard et al., 2013; Fratzl and
Weinkamer, 2007; Renders et al., 2008). Although the effect of mineral content on the
stiffness has been widely studied in linear µFE models (Bourne and van der Meulen,
2004; Gross et al., 2012; Kaynia et al., 2014), its effect on models including geometrical
and material nonlinearities is still unknown.
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2.2.1 Elastic behaviour

Physiological strains in bone are usually below 0.3% (Schaffler et al., 1989). When
trabecular bone is subjected to macroscopic strains of such magnitude, the mechanical
behaviour can be approximated as linear, and bone is considered to remain in the elastic
regime (Bayraktar and Keaveny, 2004; Morgan and Keaveny, 2001). Nonetheless, it
is important to differentiate between the elastic regimes at the microscale and at the
macroscale, as they both have different properties and limits (i.e. yield stresses or
strains). These limits are discussed in Section 2.2.2.

As mentioned earlier, the solid phase is commonly described as an isotropic ho-
mogeneous material, which can also be considered as linear elastic when the strains
are sufficiently low. This isotropy is mainly due to the axis of the material being very
close to the loading/trabecular axis (Jaschouz et al., 2003; Roschger et al., 2001). The
assumption of solid phase homogeneity is also widely used (Bayraktar and Keaveny,
2004; Donaldson et al., 2011; Sanyal et al., 2012) and it has been shown that its effect on
the macroscopic elastic properties is minor (Gross et al., 2012; Kaynia et al., 2014). The
effect of tissue mineral density (TMD) is included in µFE models by assessing attenua-
tion values from µCT or synchrotron-radiation µCT (SRµCT) scans and then using a
hydroxyapatite calibration phantom to convert these attenuation values to density units
(Easley et al., 2010; Kaynia et al., 2014). Density values are then typically converted
to Young’s modulus (Eµ ) through a power law and then assigned to each element in
the µFE system depending on the element’s density (Easley et al., 2010). Although
homogeneous µCT-based µFE models have been shown to considerably overestimate
the macroscopic stiffness when compared to heterogeneous µCT-based µFE models
(Jaasma et al., 2002; Mulder et al., 2007; Renders et al., 2008), it has been recently
shown that these heterogeneous models also underestimate the macroscopic stiffness
when compared to heterogeneous SRµCT-based µFE models, with the latter ones being
considered the gold standard in assessing TMD variation in trabecular bone (Kaynia
et al., 2014). The assumption of ignoring TMD heterogeneity at the tissue level is then
justified when assessing the macroscopic elastic properties as TMD heterogeneity has a
minor effect (Gross et al., 2012; Kaynia et al., 2014).

Eµ has been accurately assessed through nanoindentation experiments, which re-
quire the assumption of isotropy and typically assume a Poisson’s ratio of 0.3 (Hengs-
berger et al., 2002; Rho et al., 1997). Hengsberger et al. (2002) provides Eµ for
individual human bone lamellae under physiological conditions, ranging from 7.4±0.45
GPa to 18.5±4.9 GPa. Wolfram et al. (2010a,b) reported Eµ values of around 12 GPa
under wet conditions. Bayraktar et al. (2004a,b) used a combined experimental and
numerical approach to calculate specimen-specific Eµ , which consists of finding which
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is the macroscopic on-axis (related to the principal axis) elastic modulus (E0) through
a simple compression experiment and through a µFE simulation with an arbitrary Eµ .
Then this Eµ is scaled by the factor E0/Eµ . They reported Eµ of 18.0±2.8 GPa, with
a range from 12.1 to 22.2 GPa. It is apparent that there is a considerably broad range
of values of Eµ in the literature, with variations arising due to testing methods and
conditions.

The macroscopic elastic stiffness of trabecular bone is usually considered orthotropic
(Fratzl and Weinkamer, 2007; Odgaard et al., 1997; Ulrich et al., 1998; van Rietbergen
et al., 1996), with nine independent parameters. The on-axis E0 for human bone ranges
from 0.3 to 3,000 MPa, spanning four orders of magnitude. It has been reported that
BV/TV can explain up to 87% of the variability of the elastic constants, with relative
errors ranging from 31% to 71%; adding fabric to the model improves the adjusted
coefficients of determination (R2

ad j) of the regression by 0.03 to 0.25 and decreases
the relative errors by 5% to 27% (Zysset, 2003). Some experimental techniques have
been used to evaluate the orthotropic elastic constants of trabecular bone; these include
mechanical testing and ultrasonic techniques (Reilly and Burstein, 1975; Snyder and
Hayes, 1990; van Buskirk et al., 1981; Yahia et al., 1988). Mechanical experiments
have been successful in determining some of the orthotropic elastic constants. Some
studies reported orthotropic elastic moduli using multiple uniaxial compression experi-
ments (Goulet et al., 1994; Hodgskinson and Currey, 1990b; Snyder and Hayes, 1990).
Ultrasonic methods have a significant advantage over traditional mechanical testing
(Ashman et al., 1989; Rho, 1996): smaller and more simply shaped specimens can be
used. However, ultrasonic methods require the specification of a mean TMD to evaluate
the macroscopic elastic properties, which is a source of limitation since, as previously
mentioned, the solid phase is heterogeneous in mineral content (Cowin, 2001).

µFE models have been widely used for evaluating the macroscopic orthotropic
stiffness of trabecular bone as they naturally overcome some of the limitations associated
with experimental techniques (Ulrich et al., 1998; van Rietbergen et al., 1996, 1995).
The procedure to create µFE models is to binarise µCT scans, i.e. to determine what is
solid and what is void through image analysis techniques (Gómez et al., 2013) and then
assign a hexahedron to every solid voxel. The resulting FE mesh is then subjected to six
different strain or stress states: three tensile or compressive load scenarios in directions
1, 2 and 3, and three pure shear load scenarios in planes 12, 13 and 23 (Hollister and
Kikuchi, 1992). These tests permit evaluation of the macroscopic stiffness tensor using
standard mechanics methodologies for a given set of boundary conditions1 (Hollister
and Kikuchi, 1992; van Rietbergen et al., 1996). Kinematic uniform BCs (KUBC)

1Boundary conditions for homogenisation-based multiscale methods are reviewed in Chapter 3.
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represent an upper bound while static uniform BCs (SUBC) represent a lower bound
(Kanit et al., 2003). The use of periodic BCs (PBC) results in the macroscopic stiffness
tensor lying in between these bounds and provides the most realistic prediction (Hollister
and Kikuchi, 1992; Kanit et al., 2003; Zysset, 2003). The macroscopic stiffness tensor
can be calculated as

De
0 =

1
V

∫
De

µ : Mµ dV, (2.1)

where V is the total volume of the considered sample and De
µ is the tissue elastic

stiffness tensor. Mµ is the local structure tensor (Hollister and Kikuchi, 1992; Suquet,
1985; van Rietbergen et al., 1996), which relates the strain at each integration point (εεεµ )
of the µFE mesh to the homogeneous strain (εεε0), such that εεεµ =Mµ : εεε0. A detailed
discussion on the structural tensor is included in Section 3.1 of Chapter 3. A matrix
representation of the macroscopic orthotropic stiffness tensor can be considered by
taking advantage of its symmetries, and thus reducing the number of components from
81 to 36, and further to 21 if the matrix symmetry is considered, such that

[De
0] =



D1111 D1122 D1133 D1112 D1113 D1123

D2211 D2222 D2233 D2212 D2213 D2223

D3311 D3322 D3333 D3312 D3313 D3323

D1211 D1222 D1233 D1212 D1213 D1223

D1311 D1322 D1333 D1312 D1313 D1323

D2311 D2322 D2333 D2312 D2313 D2323



=



e11 e12 e13 δ14 δ15 δ16

e21 e22 e23 δ24 δ25 δ26

e31 e32 e33 δ34 δ35 δ36

δ41 δ42 δ43 e44 δ45 δ46

δ51 δ52 δ53 δ54 e55 δ56

δ61 δ62 δ63 δ64 δ65 e66


,

(2.2)

where ei j are the orthotropic coefficients and δi j are the non-orthotropic coefficients.
Each applied εεε0 enables the evaluation of one column of Mµ at each integration
point, so that [Mµ ]i j = {εεεµ}i/{εεε0} j. If the axes of the considered VE are not aligned
with the orthotropic axes, a minimisation procedure needs to be used to rotate the
sample to the axes which best represent orthotropy. van Rietbergen et al. (1996) used a
function representing the ratio of the squared non-orthotropic coefficients to the squared
orthotropic coefficients,

Ob j =
∑

6
i, j=1 δ 2

i j

∑
6
i, j=1 e2

i j
. (2.3)
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Note that in a material such as trabecular bone, which is not purely orthotropic, the
assumption of orthotropy implies a certain error as the non-orthotropic coefficients are
generally non-zero. van Rietbergen et al. (1996) calculated the error associated with
this assumption as

ErrorORT = ∥[I]− [De
0]
−1[De

0]∥, (2.4)

where ∥(·)∥ denotes the Euclidean norm of the corresponding matrix, [I] is the matrix
representation of the fourth-order unit tensor defined as Ii jkl = δikδ jl and δ is the
Kronecker Delta.

Some theoretical models have been proposed to describe the relationship between
the microstructure of trabecular bone and its macroscopic elastic properties. Zysset
(2003) describes one isotropic and four anisotropic models. The isotropic model relates
the macroscopic stiffness and macroscopic compliance tensors of the corresponding
cellular material with BV/TV (Gibson, 1985). The four anisotropic models add the
effect of fabric on the elastic properties (Cowin, 1985; Yang et al., 1998; Zysset, 2003;
Zysset et al., 1998). These models typically establish relationships between the µFE-
obtained elastic properties of trabecular bone samples, BV/TV and fabric tensors in
order to obtain closed-form expressions of the macroscopic stiffness tensor. As an
example, De

0 obtained through Zysset’s model (Zysset et al., 1998) is defined as

De
0(ρ,M) =

3

∑
i=1

(λ0 +2µ0)ρ
k m2l

i Mi⊗Mi

+
3

∑
i,j=1
i ̸=j

λ
′
0 ρ

k ml
i ml

j Mi⊗M j +
3

∑
i,j=1
i ̸=j

2µ0 ρ
k ml

i ml
j Mi⊗M j ,

(2.5)

where the fabric tensor is defined as M = ∑
3
i=1 mi Mi = ∑

3
i=1 mi (mi⊗mi), mi are the

strictly positive fabric tensor eigenvalues, Mi are the normalised fabric eigentensors,
mi are the normalised fabric eigenvectors, λ0 and µ0 are the Lamé constants if ρ = 1
and the material was isotropic (M = I), ρ is BV/TV and λ ′0 would be equal to λ0 if the
material was isotropic.

2.2.2 Post-elastic behaviour

Bone shows two main mechanisms of energy dissipation after yield, plastic deformation
and damage (Schwiedrzik and Zysset, 2013). Plastic deformation implies that irrecover-
able deformation is present in the material and damage implies stiffness degradation
(Garcia et al., 2009). This happens for both cortical and trabecular bone (Fondrk et al.,
1999; Keaveny et al., 1999); however, in trabecular bone, excessive compressive loads
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lead to damage progression, as in microcrack propagation, and further leading to the
complete fracture and collapse of trabecula, which may lead to a softening behaviour
(Hambli, 2013; Schwiedrzik and Zysset, 2013; Yeh and Keaveny, 2001) and eventual
densification (i.e. hardening at very large strains, e.g. larger than 40%) (Hosseini et al.,
2012), produced by the contact between collapsing trabecula.

Plastic behaviour

The plastic behaviour of the solid phase of trabecular bone presents strength asymmetry,
i.e. a greater strength in compression than in tension (Carnelli et al., 2010; Lucchini
et al., 2011; Tai et al., 2006). Tai et al. (2006) suggested that this increased strength
in compression can be explained by nanogranular friction between mineral particles.
This indicates that bone at the nanoscale behaves as a cohesive-frictional material and
that this behaviour could be modelled with a pressure-sensitive yield surface. Tai et al.
(2006) suggested that a Mohr-Coulomb yield surface is able to capture some features
from nanoindentation experiments on bone. They assessed a yield stress from the
fitted pressure-sensitive yield surface of 260 MPa; they also performed macroscopic
compression tests in which they reported yield values for cortical bone of 178 MPa.
Strength asymmetry at the nanoscale is likely to be upscaled, but these differences in
yield stresses have been reported to be caused by heterogeneities and defects, which
may weaken the mechanical properties at higher scales. Carnelli et al. (2010) and
Lucchini et al. (2011) suggested the use of a Drucker-Prager yield surface instead.
They respectively reported uniaxial compressive yield stresses of 182 MPa and 150
MPa. Bayraktar et al. (2004b) calculated the yield strains for the solid phase by using a
combined numerical-experimental approach in which µFE simulations and macro-level
mechanical testing were used; the resulting yield strains were 0.41% in tension and
0.83% in compression; these values for the yield strains have been used in many recent
µFE studies (Panyasantisuk et al., 2015b; Sanyal et al., 2015; Wolfram et al., 2012).
Maghous et al. (2009) showed that an isotropic porous material with a Drucker-Prager
yield surface for the solid phase reduces to an eccentric-ellipsoid macroscopic yield
surface when upscaled, with reduced uniaxial yield values. Consequently, and due to
porosity present at every hierarchical scale of bone (Smith et al., 2008), Schwiedrzik
and Zysset (2013) suggested that an eccentric-ellipsoid could model the yield surface
of bone at different scales.

The macroscopic yield surface of trabecular bone has been modelled in the past by
using a wide range of yield surfaces: anisotropic eccentric-ellipsoid, or Tsai-Wu, in
stress space (Cowin, 1986; Schwiedrzik et al., 2013; Wolfram et al., 2012); isotropic
superellipsoid in principal strain space (Bayraktar et al., 2004a), anisotropic yield
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surface in stress space based on Kelvin modes (Arramon et al., 2000), anisotropic
halfspace-wise generalised Hill criterion in stress space (Rincón-Kohli and Zysset,
2009), an anisotropic quartic in strain space (Sanyal et al., 2015), and a cuboid in strain
space (Pankaj and Donaldson, 2013). Except for the yield criteria defined by Arramon
et al. (2000), Bayraktar et al. (2004a), Sanyal et al. (2015), and Pankaj and Donaldson
(2013), the remaining are fabric-based. Macroscopic yield surfaces for trabecular
bone in strain space have a weak dependency on BV/TV and fabric, as reported by
Panyasantisuk et al. (2015b). Matsuura et al. (2008) found that yield strains decrease
with increasing fabric eigenvalues in samples with good alignment, and suggested that a
high value of fabric in a given direction means that there are long trabeculae along this
direction, which are prone to buckling, and therefore yield at earlier strains. Wolfram
et al. (2012) suggested that even an isotropic criterion in strain space is not able to reflect
the yield behaviour completely as there is still some anisotropy in yield strain values.
They also reported that BV/TV can have some effect on yield strains due to the reported
p-values, but the slope of the linear regression with respect to density is much smaller
than that with respect to fabric, and thus density dependence may be neglected. Pankaj
and Donaldson (2013) assumed isotropy and developed an asymmetric multisurface
yield criterion in strain space. As an example of one of the most commonly used yield
surfaces to represent the macroscopic yield behaviour of trabecular bone, an orthotropic
Tsai-Wu yield surface in stress space (Wolfram et al., 2012) is defined as

f (σσσ0) = σσσ0 : F : σσσ0 +F : σσσ0−1, (2.6)

where
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where f is the yield surface in stress space, σ
+
ii are the uniaxial tensile (+) and compres-

sive (-) yield stresses along the axis ei (i = 1,2,3), τi j are the shear stresses in the plane
ei e j (i, j = 1,2,3; i ̸= j), and χi j are the stress interaction coefficients.

Homogenisation-based multiscale techniques have also been used to assess the
macroscopic multiaxial yield behaviour of trabecular bone. However, in the nonlinear
regime, more than six simulations per sample are needed to approximate the whole
yield envelope. Strain interactions are expected, such as interactions between normal
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components or the cellular solid-like behaviour in combined normal and shear cases
(Fenech and Keaveny, 1999; Sanyal et al., 2015). Only a few studies have employed
this powerful technique to determine the macroscopic yield surface of trabecular bone
(Bayraktar et al., 2004a; Panyasantisuk et al., 2015b; Sanyal et al., 2015; Wolfram et al.,
2012). Bayraktar et al. (2004a), Sanyal et al. (2015) and Wolfram et al. (2012) used
3, 10 and 15 samples respectively, with the first using only high BV/TV (28% to 38%)
samples and the latter only covering low BV/TV (6% to 15%) samples. Panyasantisuk
et al. (2015b) and Wolfram et al. (2012) used 17 load cases, a number which is much
smaller when compared to the 297 and 231 load cases of Bayraktar et al. (2004a) and
Sanyal et al. (2015), respectively. All of these studies used the same yield behaviour, a
bilinear model (Bayraktar and Keaveny, 2004), except Panyasantisuk et al. (2015b) who
used an approximated Drucker-Prager criterion. With respect to BCs, Panyasantisuk
et al. (2015b) investigated the effect of BCs on the macroscopic yield behaviour of
trabecular bone and found that KUBCs present an upper bound of the yield surface,
with this effect being more pronounced when the yield surface is defined in stress space.

Needless to say, the homogenised macroscopic behaviour is likely to depend on the
assumptions made at the solid phase level, i.e. different solid phase constitutive laws
will reflect different macroscopic behaviours; which is why it is important to define
these appropriately. To the author’s knowledge, only one study has compared the effect
of different solid phase pressure-dependent yield surfaces on the macroscopic behaviour
of trabecular bone (Baumann et al., 2016). This study concluded that the macroscopic
mechanical behaviour is relatively insensitive to the solid phase yield criterion and
inclusion of an appropriate strength asymmetric model is adequate. They also stated
that it is unlikely to be able to validate a solid phase constitutive law from macro-level
experiments alone due to the reported insensitivity of the results.

Damage behaviour

Jepsen and Davy (1997) and Fondrk et al. (1999) quantified the effect of damage
mechanisms on the macroscopic behaviour of cortical bone and Keaveny et al. (1994,
1999) quantified it for trabecular bone. Both types of bone exhibit a degradation in
their elastic properties as overloading occurs. Although the lamellar organisation in
cortical and trabecular bone is different, they share a similar nanostructure (Garcia et al.,
2009; Rho et al., 1998), and therefore it has been suggested that damage originates at
the nanoscopic level. There is some experimental evidence of damage mechanisms at
the microscale and nanoscale (Gupta et al., 2006; Lucchini et al., 2011; Zhang et al.,
2010). Gupta et al. (2006) showed that there is a decohesion between the mineralised
collagen fibrils and the interfibrillar matrix, suggesting diminished elastic properties



2.2 Mechanical behaviour of bone 27

after yield (Schwiedrzik and Zysset, 2013). Zhang et al. (2010) showed that the decrease
in modulus is related to an increasing load and contact area in indentation studies. Some
of these experimental findings were successfully recreated with FE simulations using a
coupled plastic-damage constitutive model (Lucchini et al., 2011; Zhang et al., 2010).
However, it has been suggested that special care must be taken when extracting elasto-
plastic properties of a material from a force-displacement indentation curve as materials
with significantly different properties may result in very similar curves (Chen et al.,
2007). For a more accurate micro-mechanical description, some studies have quantified
microscopic damage by using different staining agents which allows for labelling of pre-
existing damage and damage caused by an in vitro mechanical overloading (Hernandez
et al., 2014; Lambers et al., 2014).

Several computational damage models have been proposed for bone at the mi-
croscale (Lucchini et al., 2011; Ramtani and Zidi, 2001; Schwiedrzik and Zysset, 2013;
Zhang et al., 2010). Ramtani and Zidi (2001) derived a theoretical model to simulate
the effect of damage on bone adaptation; however, full experimental validation of all
required constants is needed and both damage and adaptation are two processes which
are not fully understood yet, even less so their interaction. In both Zhang et al. (2010)
and Lucchini et al. (2011), the elastic region is bounded by a Drucker-Prager-like
yield surface. In Lucchini et al. (2011), the damage scalar variable is governed by an
equivalent plastic strain and in Zhang et al. (2010) the damage variable is governed by
equivalent plastic strains in tension and compression, which respectively depend on
the maximum and minimum eigenvalues of the plastic strain second-order tensor (εεε p).
Schwiedrzik and Zysset (2013) developed a visco-plastic damage constitutive model for
bone, which is applicable at several scales, from the nano to the macroscale. However,
the small amount of porosity present in some scales may imply that the yield onset is
better described with a surface without a yield limit in hydrostatic compression, such as
Mohr-Coulomb or Drucker-Prager (Carnelli et al., 2010; Tai et al., 2006).

Apparent damage behaviour has been modelled in only a few studies (Garcia et al.,
2009; Schwiedrzik and Zysset, 2013; Zysset and Curnier, 1996). Zysset and Curnier
(1996) described a continuum damage model with fabric-based elasticity. The model
features isotropic hardening and the yield criterion has the same symmetry as the elastic
space. Garcia et al. (2009) created a macroscopic damage constitutive model which
is applicable to both cortical and trabecular bone. It features a halfspacewise Hill
criterion damage onset, an anisotropic ellipsoid yield surface and isotropic hardening.
Schwiedrzik and Zysset (2013) used an eccentric-ellipsoid to define yield and damage
onsets, with nonlinear isotropic hardening. All these studies feature a scalar damage
variable, implying isotropic damage behaviour.
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2.2.3 Bovine vs. human trabecular bone

The biomechanical properties of bone tissue varies considerably between species, even
amongst mammalians, and are strongly related to the size of the considered animal. For
instance, mice do not have osteons (Carriero et al., 2014). In this study, bovine trabecular
bone was used due to its easy accessibility. One might argue that bovine trabecular
bone is not as relevant as human trabecular bone, especially since one of the aims of
this study is to establish predictive criteria for load scenarios such as implant loosening
and bone strength; situations which are relevant almost exclusively for humans.

However, Poumarat and Squire (1993) evaluated the stress-strain curves from bovine
and human trabecular bone samples, and they found that the stress-strain curves and
ultimate strengths did not differ significantly between species. Only differences in
Young’s modulus were found. Hodgskinson and Currey (1990a,b) found that up to
94% of the observed variation in the measured apparent Young’s modulus of bovine
and human trabecular bone could be explained by a composite measure of BV/TV,
trabecular orientation, and ratio of anisotropy. These results suggest that the elastic and
failure properties of both bovine and human trabecular bone may be studied solely on
the base of BV/TV and fabric, and that trabecular bone of both species indeed have
comparable mechanical properties.



Chapter 3

Multiscale modelling and plasticity

This Chapter introduces the concepts of homogenisation-based multiscale modelling,
plasticity and damage. These form the basis for the following chapters.

3.1 Homogenisation-based multiscale modelling

This Section briefly describes homogenisation-based multiscale theory and largely
follows the work and notation of de Souza Neto and Feijóo (2006), Perić et al. (2011),
and Nguyen et al. (2012). The theory outlined in this Section is based on linear
kinematics, and thus the infinitesimal stress-strain conjugate pair is used. However, a
finite strain extension can be implemented as discussed in de Souza Neto and Feijóo
(2008).

This theory will be discussed in a general sense with a further progressive refinement
to specifically deal with the material studied in this thesis, trabecular bone, and the
assumptions made. Quasi-static approach is used in this study, and body forces and
viscous effects are neglected as an approximation. Trabecular bone is a biphasic
material, with solid and void phases. Marrow is contained in the void phase, and is
a soft compressible material; thus the assumption that the marrow does not exert any
traction force upon the solid phase through the solid-void interface is taken into account
(Lacroix and Prendergast, 2002).

Every point x in the macroscopic continuum is associated to a local RVE with a
domain Ωµ and a boundary ∂Ωµ (Fig. 3.1). The size of the microscopic domain (lµ )
is much smaller than the characteristic length (l) of the macroscopic continuum; this
difference in length in general engineering materials ranges from three to five orders
of magnitude, typically. However, in the case of trabecular bone this separation in
scales is much smaller, of around two orders of magnitude (from tens to hundreds of
micrometres in the microscale to a few millimetres in the macroscale), and this is why
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the macroscopic response is usually largely dependent on both the boundary conditions
used for the RVE (thus a trabecular bone RVE becomes a VE) and the size of the
considered VE, as it is discussed in Section 3.1.4 and Wang et al. (2009). The domain
Ωµ of the RVE consists of solid (Ωs

µ ) and void (Ωv
µ ) parts, such that

Ωµ = Ω
s
µ ∪Ω

v
µ . (3.1)

Fig. 3.1 Macroscopic continuum with the associated local microstructure.

The external boundaries are defined as

∂Ωµ = ∂Ω
s ext
µ ∪∂Ω

v ext
µ , (3.2)

where ∂Ωs ext
µ and ∂Ωv ext

µ are respectively ∂Ωµ ∩∂Ωs
µ and ∂Ωµ ∩∂Ωv

µ , i.e. the external
boundaries for the solid and void phases. With respect to the internal boundaries, the
following relationships can be defined:

∂Ω
s
µ = ∂Ω

s ext
µ ∪∂Ω

s int
µ ,

∂Ω
v
µ = ∂Ω

v ext
µ ∪∂Ω

v int
µ ,

(3.3)

where ∂Ωs int
µ = ∂Ωv int

µ . This distinction of internal and external boundaries is signif-
icant to the material considered in this study. The internal boundaries are in contact
with the marrow and appropriate assumptions are made in the following sections with
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respect to its mechanical behaviour. The external boundaries are significant when the
relevant BCs are considered within a homogenisation-based multiscale setting.

3.1.1 RVE equilibrium

The RVE is in constant equilibrium for each instant t of its deformation history. It is
subjected to an external traction field (text

µ ) applied to ∂Ωµ . The principle of Virtual
Work establishes that the RVE is in equilibrium if the following variational equation
holds: ∫

Ωµ

σσσ µ(y, t) : ∇
sym

ηηη dV −
∫

∂Ωµ

text
µ (y, t) ·ηηη dA = 0 ∀ηηη ∈ V , (3.4)

where σσσ µ are the microscopic stresses, y are the local coordinates of the RVE, t is
(pseudo-) time, “:” is the double contraction defined as A : B→ Ai jBi j, ∇sym is the
symmetric gradient operator applied to (·) as in ∇sym(·) = 1

2 [∇(·)+∇(·)T], ηηη are the
virtual displacements and V is an appropriate space of virtual displacements of the
RVE. An alternative strong form of Eq. 3.4 can be written as

div σσσ µ(y, t) = 0 ∀y ∈Ωµ

σσσ µ(y, t)n = text
µ (y, t) ∀y ∈ ∂Ωµ

Jσσσ µ(y, t)nv intK = 0 ∀y ∈ ∂Ωv int
µ

, (3.5)

where n is the unit normal vector to ∂Ωµ , nv int is the unit normal vector to ∂Ωv int
µ , and

Jσσσ µ(y, t)nv intK is the jump equation of the corresponding vector field across ∂Ωv int
µ .

Further refinements of Eq. 3.4 can be performed in order to obtain a more thorough
decomposition of its terms. For instance, taking into account that pores might be filled
with fluid and that these might be pressurised enough to substantially contribute to the
mechanical behaviour of the RVE, the following is obtained:∫

Ωs
µ

σσσ µ(y, t) : ∇
sym

ηηη dV +
∫

Ωv
µ

σσσ µ(y, t) : ∇
sym

ηηη dV

−
∫

∂Ωs ext
µ

text
µ (y, t) ·ηηη dA−

∫
∂Ωv ext

µ

text
µ (y, t) ·ηηη dA = 0 ∀ηηη ∈ V .

(3.6)

The voids are also in equilibrium through Eq. 3.4, resulting in the following expression:∫
Ωv

µ

σσσ µ(y, t) : ∇
sym

ηηη dV−
∫

∂Ωv int
µ

tv
µ(y, t) ·ηηη dA−

∫
∂Ωv ext

µ

text
µ (y, t) ·ηηη dA= 0 ∀ηηη ∈V ,

(3.7)
where tv

µ is the void traction field, i.e. the traction exerted by the fluid upon the solid
part through the solid-void interface. By substituting Eq. 3.7 into Eq. 3.6, the following
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expression is recovered:∫
Ωs

µ

σσσ µ(y, t) : ∇
sym

ηηη dV −
∫

∂Ωs ext
µ

text
µ (y, t) ·ηηη dA

+
∫

∂Ωv int
µ

tv
µ(y, t) ·ηηη dA = 0 ∀ηηη ∈ V .

(3.8)

An additional simplification can be considered, which is that the void does not exert
traction forces on the solid phase (the marrow is a soft compressible material which
would exert minimal forces to the solid phase), which results in∫

Ωs
µ

σσσ µ(y, t) : ∇
sym

ηηη dV −
∫

∂Ωs ext
µ

text
µ (y, t) ·ηηη dA = 0 ∀ηηη ∈ V . (3.9)

Equation 3.9 is the final expression of the principle of virtual work at the microscale,
which is relevant to trabecular bone due to the considered assumptions.

3.1.2 Averaging of strain and stress

At any instant t, the macroscopic strain (εεε0) and macroscopic stress (σσσ0) tensors at point
x of the macroscopic continuum are respectively defined as the volume averages of the
microscopic strain (εεεµ ) and microscopic stress (σσσ µ ) tensor fields over Ωµ , resulting in

εεε0(t) =
1
V

∫
Ωµ

εεεµ(y, t) dV (3.10)

and
σσσ0(t) =

1
V

∫
Ωµ

σσσ µ(y, t) dV. (3.11)

Equation 3.10 can be further developed by using εεεµ = ∇symuµ and the divergence
theorem, resulting in

εεε0(t) =
1
V

∫
Ωµ

εεεµ(y, t) dV

=
1
V

(∫
∂Ωs ext

µ

uµ(y, t)⊗sym n dA+
∫

∂Ωv ext
µ

uµ(y, t)⊗sym n dA

+
∫

∂Ωs
µ∩∂Ωv

µ

uµ(y, t)⊗sym ns int dA+
∫

∂Ωv
µ∩∂Ωs

µ

uµ(y, t)⊗sym nv int dA
)
,

(3.12)

where ⊗sym is the symmetric tensor product, defined as u⊗sym v = 1
2(u⊗v+v⊗u)→

1
2(uiv j + viu j), and ns int and nv int are respectively the outward unit normals to ∂Ωs int

µ

and ∂Ωv int
µ . By observing that ns int = −nv int at ∂Ωs

µ ∩ ∂Ωv
µ , the final expression of
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the macroscopic strain can be recovered as (Nguyen et al., 2012)

εεε0(t) =
1
V

∫
∂Ωµ

uµ(y, t)⊗sym n dA. (3.13)

Equation 3.11 can be further developed by using the tensor relation:∫
Ω

S(∇ v)T dV =
∫

∂Ω

(Sn)⊗v dA−
∫

Ω

(div S)⊗v dV. (3.14)

By substituting S for σσσ µ , v for y, Ω for Ωµ , and considering that ∇ y = I, the following
is obtained:

σσσ0(t) =
1
V

∫
Ωµ

σσσ µ(y, t) dV

=
1
V

(∫
Ωs

µ

σσσ µ(y, t) dV +
∫

Ωv
µ

σσσ µ(y, t) dV
)

=
1
V

(∫
∂Ωs ext

µ

(σσσ µ(y, t)ns ext)⊗y dA+
∫

∂Ωs
µ∩∂Ωv

µ

(σσσ µ(y, t)ns int)⊗y dA

+
∫

∂Ωv ext
µ

(σσσ µ(y, t)nv ext)⊗y dA+
∫

∂Ωv
µ∩∂Ωs

µ

(σσσ µ(y, t)nv int)⊗y dA

−
∫

Ωs
µ

(div σσσ µ(y, t))⊗y dV −
∫

Ωv
µ

(div σσσ µ(y, t))⊗y dV

+
∫

∂Ωv int
µ

Jσσσ µ(y, t)nv intK⊗y dA
)
.

(3.15)

The last term in Eq. 3.15 is added to ensure traction continuity where the stress field
may be discontinuous (e.g. material interfaces). By observing that ns int = −nv int at
∂Ωs

µ ∩∂Ωv
µ and using Eq. 3.5, the final expression of the macroscopic stress can be

recovered:

σσσ0(t) =
1
V

∫
∂Ωµ

(σσσ µ(y, t)n)⊗y dA =
1
V

∫
∂Ωµ

text
µ (y, t)⊗y dA. (3.16)

From Eq. 3.11, and using the fact that the stress is the linear mapping of the elastic
strain through the fourth-order elasticity tensor, and homogeneity of the solid phase
properties throughout the RVE and for all time, the following is obtained:

σσσ0(t) =
1
V

∫
Ωµ

σσσ µ(y, t) dV → De
0 : εεε

e
0(t) =

1
V

∫
∂Ωµ

De
µ : εεε

e
µ(y, t) dV. (3.17)
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Through the use of the local structure tensor Mµ , defined as εεεµ(y, t) =Mµ(y, t) : εεε0(t)

(Hollister and Kikuchi, 1992), on Eq. 3.17, the following is obtained:

De
0 : εεε

e
0(t) =

1
V

∫
∂Ωµ

De
µ : Mµ(y, t) dV : εεε

e
0(t), (3.18)

and therefore De
0 is defined as

De
0 =

1
V

∫
∂Ωµ

De
µ : Mµ(y, t) dV. (3.19)

Equation 3.19 is the definition of the elastic stiffness tensor which is used in elastic ho-
mogenisation studies to assess the magnitude and symmetries of the elastic mechanical
behaviour of trabecular bone at the macroscale (van Rietbergen et al., 1996).

3.1.3 The Hill-Mandel principle of macrohomogeneity

The Hill-Mandel principle of macrohomogeneity (Hill, 1965) establishes that the defor-
mation energy at the microscale and at the macroscale should be equal. It can be stated
through

σσσ0(t) : εεε0(t) =
1
V

∫
Ωµ

σσσ µ(y, t) : εεεµ(y, t) dV. (3.20)

The microscopic displacement field (uµ ) can be decomposed into a mean part (u0) and
a fluctuation with mean equal to zero (ũµ ), resulting in

uµ(y, t) = u0(y, t)+ ũµ(y, t) = εεε0(t)y+ ũµ(y, t), (3.21)

which results in the corresponding decomposition of strains, in a similar fashion

εεεµ(y, t) = εεε0(t)+ ε̃εεµ(y, t). (3.22)

By combining Eq. 3.22 with Eq. 3.20, the following is obtained:∫
Ωµ

σσσ µ(y, t) : ε̃εεµ(y, t) dV = 0. (3.23)

By using the following two well-known tensorial relationships (Holzapfel, 2000):

div (ATu) = (div A)u+A : ∇ u ,∫
∂Ω

u ·An dA =
∫

Ω

div (ATu) dV,
(3.24)
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and Eq. 3.16, a more refined version of the Hill-Mandel principle is obtained as∫
∂Ωµ

text
µ (y, t) · ũµ(y, t) dA = 0 ∀ũµ ∈ V . (3.25)

It is important to point out that the displacement fluctuation field ũµ and the virtual
displacement field ηηη coincide (Perić et al., 2011), and thus Eq. 3.9 becomes∫

Ωs
µ

σσσ µ(y, t) : ∇
sym

ηηη dV = 0 ∀ηηη ∈ V . (3.26)

If Eq. 3.21 is applied to Eq. 3.25, the following is recovered:

σσσ0(t) : εεε0(t) =
1
V

∫
∂Ωµ

text
µ (y, t) ·uµ(y, t) dA. (3.27)

By taking into account Eq. 3.13, Eq. 3.16, the fact that the macroscopic quantities are
independent of the RVE coordinates, and 1

V
∫

∂Ωµ
n⊗y dA = I (Nguyen et al., 2012),

the following three equations are obtained:

σσσ0(t) : εεε0(t) =
1
V

∫
∂Ωµ

text
µ (y, t) · (εεε0(t)y) dA,

σσσ0(t) : εεε0(t) =
1
V

∫
∂Ωµ

uµ(y, t) · (σσσ0(t)n) dA,
(3.28)

and
σσσ0(t) : εεε0(t) =

1
V

∫
∂Ωµ

(εεε0(t)n) · (σσσ0(t)y) dA. (3.29)

Equations 3.27 and 3.28 can be combined to yield

0 =
1
V

∫
∂Ωµ

[
text
µ (y, t) ·uµ(y, t)− text

µ (y, t) · (εεε0(t)y)−uµ(y, t) · (σσσ0(t)n)
]

dA

+σσσ0(t) : εεε0(t).
(3.30)

The last term of the right-hand side can be rewritten by using Eq. 3.29, as

0 =
∫

∂Ωµ

[
text
µ (y, t) ·uµ(y, t)− text

µ (y, t) · (εεε0(t)y)−uµ(y, t) · (σσσ0(t)n)

+(εεε0(t)n) · (σσσ0(t)y)
]

dA.
(3.31)

Equation 3.31 can be rewritten as∫
∂Ωµ

(text
µ (y, t)−σσσ0(t)n) · (uµ(y, t)− εεε0(t)y) dA = 0. (3.32)
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3.1.4 Boundary conditions of the RVE

Equations 3.25, 3.27 and 3.32 are alternative forms of the Hill-Mandel principle of
macrohomogeneity (Eq. 3.20). Equation 3.32 is more convenient for defining the
appropriate BCs of the RVE. Needless to say, any chosen set of BCs should satisfy one
of these equations in order to be admissible. Three types of BCs are described:

1. Static uniform boundary conditions (SUBC) or Neumann boundary conditions

The external traction field (text
µ ) is prescribed on ∂Ωµ in terms of a macroscopic

stress, as
text
µ (y, t) = σσσ0(t)n ∀y ∈ ∂Ωµ . (3.33)

2. Kinematic uniform boundary conditions (KUBC) or Dirichlet boundary condi-

tions

The displacement field (uµ ) is prescribed on ∂Ωµ in terms of a macroscopic
strain, as

uµ(y, t) = εεε0(t)y ∀y ∈ ∂Ωµ . (3.34)

3. Periodic boundary conditions (PBC)

The RVE boundary ∂Ωµ is divided into positive ∂Ω+
µ and negative ∂Ω−µ parts,

with the respective associated normals, n+ and n−, so that ∂Ωµ = ∂Ω+
µ ∪∂Ω−µ

and ∂Ω+
µ ∩ ∂Ω−µ = 0. For instance, in the case of a cubic RVE, a positive and

negative division would be on opposite sides of the cube. The periodicity of
displacement fluctuations (ũµ ) and anti-periodicity of external tractions (text

µ ) on
the RVE boundary are represented as

ũµ(y+, t) = ũµ(y−, t) ∀y+ ∈ ∂Ω
+
µ and matching y− ∈ ∂Ω

−
µ ,

text
µ (y+, t) =−text(y−, t) ∀y+ ∈ ∂Ω

+
µ and matching y− ∈ ∂Ω

−
µ .

(3.35)

Using different BCs for the RVE leads to different estimates of the macroscopic response
(apparent properties vs effective properties, with effective properties being independent
of BCs and size of the RVE). Amongst the described BCs, KUBCs provide the stiffest
response (upper bound) and SUBCs provide the most compliant response (lower bound),
with the periodic response in between (Wang et al., 2009). Some studies suggest that
periodic BCs provide the least biased estimate (Kanit et al., 2003; Terada et al., 2000),
in the sense that the macroscopic response is less dependent on BCS and on the size of
the RVE.
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3.1.5 Microscopic constitutive model

The microscopic constitutive response, ignoring thermal effects, is defined as a rela-
tionship between the microscopic stress over the solid domain and the history of the
microscopic strain tensor at that point, through a continuum constitutive functional,
such as

σσσ µ(y, t) = Fy(εεε
t
µ(y)), (3.36)

where the superscript t denotes the history up to instant t, and the subscript y denotes a
possible dependency of the constitutive functional on the local coordinates y of the RVE
(i.e. possible heterogeneity of the properties of the solid phase throughout the RVE).

3.1.6 Multiscale constitutive model

The infinitesimal multiscale constitutive model is completely defined by (de Souza Neto
and Feijóo, 2010; Perić et al., 2011):

1. Definition of the domain Ωµ = Ωs
µ ∪Ωv

µ and the microscopic constitutive law Fy

(Section 3.1.5).

2. Choice of an appropriate set of BCs for the RVE (Section 3.1.4).

3. Choice of the resulting multiscale constitutive functional:

(a) Microscopic equilibrium problem, which is defined as
“Given the history of the macroscopic infinitesimal strain tensor εεε0 find the

field ũµ ∈ V such that, for each t,∫
Ωs

µ

Fy{[εεε0(t)+∇
sym ũµ(y, t)]t} : ∇

sym
ηηη dV = 0 ∀ηηη ∈ V .” (3.37)

(b) Macroscopic stress tensor evaluation

σσσ0(t) =
1
V

∫
Ωs

µ

σσσ µ(y, t) dV =
∫

Ωs
µ

Fy[(εεε0(t)+∇
sym ũµ(y, t))] dV. (3.38)

3.2 Plasticity

This Section briefly describes continuum rate-independent plasticity and its numerical
implementation through the closest-point projection method (CPPM). The theory pre-
sented here largely follows the description in de Souza Neto et al. (2008), Armero and
Pérez-Foguet (2002) and Pérez-Foguet and Armero (2002). The theory outlined in this
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Section is based on infinitesimal strains, but a large strain extension in the context of
isotropic multiplicative plasticity will be briefly introduced in Chapter 4. Additionally,
the plastic constitutive laws described in this Section, and used throughout this study,
are associative1.

3.2.1 Thermodynamics of internal variables

In the context of plasticity it is useful to use an alternative to history functionals
(Eq. 3.36), which is based on thermodynamics of internal variables (de Souza Neto
et al., 2008). The underlying hypothesis to this theory is that at any instant of a
thermodynamic process, the thermodynamic state can be completely determined by
knowing the instantaneous value (not the past history) of a finite number of state
variables. In the applications contemplated in this study, the thermodynamic state at a
point is determined by the following state variables: strain εεε , and a finite set of scalar,
vectorial, or tensorial strain-like internal variables of cardinality k, αααk, associated with
dissipative mechanisms.

Following the hypothesis of thermodynamics of internal variables, and by ignoring
thermal effects, the free energy of a considered material can be assumed to have the
following form:

ψ = ψ(εεε,αααk). (3.39)

Equation 3.39 is strictly convex with respect to εεε and each αααk, and zero-valued at the
origin {εεε,αααk}= {0,0}. By taking the time derivative of the free energy (Eq. 3.39), the
following expression is obtained:

ψ̇ =
∂ψ(εεε,αααk)

∂εεε
: ε̇εε +

k

∑
i=1

∂ψ(εεε,αααk)

∂ααα i
∗ α̇αα i , (3.40)

where “∗” denotes the product between ∂ψ

∂ααα i
and α̇αα i which yields a scalar. By using the

Clausius-Duhem inequality
σσσ : ε̇εε− ψ̇ ≥ 0, (3.41)

the following is obtained:(
σσσ − ∂ψ(εεε,αααk)

∂εεε

)
: ε̇εε−

k

∑
i=1

∂ψ(εεε,αααk)

∂ααα i
∗ α̇αα i ≥ 0. (3.42)

1This assumption is explained in Section 3.2.3.
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Since this equation must hold for any kinetic process ε̇εε , the following holds:

σσσ =
∂ψ(εεε,αααk)

∂εεε
. (3.43)

For each plastic internal variable (αααk), a corresponding hardening thermodynamic force
(Ak), or stress-like internal variable, is defined as

Ak =
∂ψ(εεε,αααk)

∂αααk
. (3.44)

Therefore, Eq. 3.42 can be rewritten as

−
k

∑
i=1

Ai ∗ α̇αα i ≥ 0. (3.45)

To completely characterise the constitutive model, additional laws defining the evolution
of the plastic internal variables must be defined. These will be defined in the context
of normal dissipativity. The Clausius-Duhem inequality (Eq. 3.45) must hold for any
process and it poses restrictions on the possible expressions of the evolution equations.
An effective way of ensuring that this is fulfilled is by postulating the existence of a
non-negative dissipation potential

Ξ = Ξ(Ak;εεε,αααk)≥ 0, (3.46)

where εεε and αααk appear as parameters. Equation 3.46 is a strictly convex function with
respect to each Ak and zero-valued at the origin Ak = 0. Normal dissipativity means
that the evolution of the plastic internal variables is determined by the law

α̇ααk =−
∂Ξ(Ak;εεε,αααk)

∂Ak
. (3.47)

If a constitutive model is defined by Eqs. 3.39, 3.43, 3.44 and 3.47, it satisfies a priori

the dissipation inequality (Eq. 3.45).

3.2.2 Mathematical description of plasticity

This Section describes the continuum rate-independent theory of plasticity from a math-
ematical perspective. All the necessary ingredients to postulate a three-dimensional
general elastoplastic constitutive model are introduced: elastoplastic strain decompo-
sition, elastic law, yield function, evolution of the plastic strain, and evolution of the
yield function (hardening/softening).
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With the assumption of linear kinematics, the infinitesimal strain tensor (εεε) can be
decomposed into the sum of an elastic component, or elastic strain tensor (εεεe), and a
plastic component, or plastic strain tensor (εεε p), such that

εεε = εεε
e + εεε

p. (3.48)

Following this assumption, Eq. 3.39 can be assumed to be of the form

ψ = ψ(εεε,εεε p,αααk), (3.49)

with the plastic strain tensor taken also as a plastic internal variable. It is usual to
assume that this energy function can be additively split as

ψ = ψ(εεε,εεε p,αααk) = ψ
e(εεε− εεε

p)+ψ
p(αααk), (3.50)

where ψe is the elastic contribution and ψ p is the plastic contribution of the free energy.
Following this decomposition and by taking into account that σσσ = ∂ψe

∂εεεe and Ak =
∂ψ p

∂αααk
,

Eq. 3.45 can be rewritten as a plastic dissipation function

σσσ : ε̇εε
p−Ak ∗ α̇ααk ≥ 0, (3.51)

where−σσσ is the hardening thermodynamic force associated with εεε p. The yield function
is a scalar function which remains negative as long as yield is not attained and becomes
zero when plastic flow may occur. It can be stated that plastic flow happens when

f (σσσ ,Ak) = 0. (3.52)

Note that, in this case, the yield function is defined as a hypersurface in stress space.
However, it can also be expressed as a hypersurface in strain space. If the stress and
strain tensors are symmetric, and thus the corresponding spaces are six-dimensional,
the yield function is a five-dimensional manifold in these spaces.

The plastic internal variables considered in this Section are the plastic strain tensor
εεε p and the hardening variables αααk. Evolution equations for both of them are needed for
a complete characterisation of the constitutive model. These evolution equations are
introduced as a plastic flow rule ε̇εε p and a hardening function α̇ααk, respectively as

ε̇εε
p = γ̇ N(σσσ ,Ak) (3.53)
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and
α̇ααk = γ̇ Hk(σσσ ,Ak), (3.54)

where N is the flow vector and Hk is the hardening modulus. These evolution equations
are complemented by the loading/unloading conditions, which define when plastic flow
may occur, and are stated as

f (σσσ ,Ak)≤ 0; γ̇ ≥ 0; f (σσσ ,Ak)γ̇ = 0. (3.55)

In the case of associative plasticity, the evolution equations (Eqs. 3.53 and 3.54) are
defined as

ε̇εε
p = γ̇

∂ f (σσσ ,Ak)

∂σσσ
(3.56)

and
α̇ααk =−γ̇

∂ f (σσσ ,Ak)

∂Ak
. (3.57)

3.2.3 Numerical implementation through the closest-point projec-
tion method

The governing equations of the elastoplastic constitutive initial value problem are the
following:

ε̇εε
e = ε̇εε− γ̇ N(σσσ ,Ak)

α̇αα = γ̇ H(σσσ ,Ak)

f (σσσ ,Ak)≤ 0; γ̇ ≥ 0; f (σσσ ,Ak)γ̇ = 0

σσσ =
∂ψe(εεεe)

∂εεεe ; Ak =
∂ψ p(αααk)

∂αααk
.

(3.58)

In this Section, the variational formulation of the closest-point projection method
(CPPM) equations is presented, which will then allow the derivation of return-mapping
algorithms with global convergence. The name “closest-point projection” gives a
hint on the variational structure of the equations, which basically has to do with the
minimisation of the distance, in the proper metric, between the trial predictor state and
the admissible bounding elastic region, defined through the yield surface.

Equations 3.58 need to be integrated in time in order to be usable from a compu-
tational perspective. In the FE context, these equations are integrated locally at each
of the Gauss integration points in the FE mesh. These equations follow a strain-driven
structure, i.e. given an increment of the total strain, determine the current values of the
thermodynamic forces σσσ and Ak, and of the plastic internal variables εεε p and αααk.
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The loading/unloading conditions in Eqs. 3.58 define plastic consistency, which
needs to be enforced in a particular way, which also means that the solution of the
elastoplastic constitutive initial value problem does not directly follow traditional
solution procedures for initial value problems. Many of the proposed techniques to
solve this elastoplastic constitutive initial value problem follow an operator split strategy,
i.e. a two-step algorithm with an initial trial-state step where the stresses are updated
elastically and if the activation of the plastic evolution equations is detected, a plastic-
corrector step follows, where Eqs. 3.58 are numerically solved. This procedure has
also been given the name of predictor/corrector. Of particular interest to solve the
plastic-corrector step is the closest-point projection method (Armero and Pérez-Foguet,
2002; Pérez-Foguet and Armero, 2002). It consists of an implicit approximation of Eqs.
3.58, leading to a nonlinear system of algebraic equations in the stresses and stress-like
internal variables. The major advantage of using the closest-point projection method as a
solution of Eqs. 3.58 is that, under some assumptions mentioned later, some algorithms
employing the closest-point projection method equations exhibit global convergence
and a unique solution. These are very desirable properties in a HPC framework as the
time increment does not need to be restarted when the numerical method used to solve
Eqs. 3.58 fails to convergence at some integration point of the mesh; this is because
this numerical method always converges.

In some cases, such as a Von-Mises yield surface with linear hardening (or perfect
plasticity, i.e. no hardening or softening) or a Drucker-Prager yield surface with the
same hardening conditions, the plastic-corrector step has closed-form solutions (de
Souza Neto et al., 2008). However, this is not the general case, and in order to solve the
nonlinear algebraic equations of the plastic-corrector step, an iterative algorithm needs
to be applied. A widely used option is a Newton scheme which, when coupled to the
closest-point projection method, gives rise to the Newton-CPPM algorithm (Armero
and Pérez-Foguet, 2002). The Newton-CPPM scheme is very attractive since it has
a quadratic rate of convergence and the linearised closed-form is readily available,
which enormously simplifies the derivation of the consistent tangent operator in implicit
FE formulations (Simo, 1985). Nonetheless, Newton-like schemes possess limited
(local) convergence properties, in the sense that the solution is assured only for limited
radius around the initial estimate. This is due to the possible strong nonlinearities
of the elastoplastic constitutive initial value problem, usually associated with regions
of high curvature of the yield surface. Note that this can happen even in well-posed
continuum models, such as constitutive models defined with a convex yield criterion,
associative plasticity, strain hardening and constant stiffness. Problems associated with
local convergence of the Newton-CPPM scheme will be tackled by implementing a
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primal-CPPM scheme instead, which exhibits global convergence under some limiting
assumptions (Pérez-Foguet and Armero, 2002).

The existence of the variational structure of the closest-point projection method
equations relies on two major assumptions. The first assumption is the strict convexity
of the free energy function. However, a stronger assumption is considered here, which
is that the free energy function is twice differentiable, with a positive-definite Hessian.
The solid phase of trabecular bone is usually modelled with linear elasticity and linear
hardening (Panyasantisuk et al., 2015b; Wolfram et al., 2012), with the corresponding
free energy function (ααα in this case usually denotes a scalar internal variable and H
denotes the corresponding linear hardening scalar modulus),

ψ(εεεe,ααα) = ψ
e(εεεe)+ψ

p(ααα) =
1
2

εεε
e : De : εεε

e +
1
2

ααα ∗H∗ααα. (3.59)

The Hessian is then obtained as

[∇2
ψ] =

 ∂ 2ψ

∂ (εεεe)2
∂ 2ψ

∂εεεe∂ααα

∂ 2ψ

∂ααα∂εεεe
∂ 2ψ

∂ααα2

=

[
De 0
0 H

]
, (3.60)

which is indeed positive-definite as De is positive-definite due to being an elasticity
tensor and H is positive due to the presence of hardening. Note that the positive-
definiteness of this Hessian implies strict convexity of ψ .

The second assumption is that the evolution equations are associative for a convex
and differentiable yield function. The solid phase of trabecular bone has been modelled
with smooth approximations of Drucker-Prager yield surfaces recently (Panyasantisuk
et al., 2015b), mainly because of its little porosity, which may lead to a possible lack of
yield in hydrostatic compression. This yield surface is defined as (Schwiedrzik et al.,
2013)

f (σσσ ,q) =
√

σσσ : F : σσσ +F : σσσ − (1+q) = 0, (3.61)

where F, F and q are defined later. The Hessian is then obtained as

[∇2 f ] =

 ∂ 2 f
∂σσσ2

∂ 2 f
∂σσσ∂q

∂ 2 f
∂q∂σσσ

∂ 2 f
∂q2

=

[
∂ 2 f
∂σσσ2 0
0 0

]
, (3.62)

where
∂ 2 f
∂σσσ2 =

F√
σσσ : F : σσσ

− (F : σσσ)⊗ (σσσ : F)√
(σσσ : F : σσσ)3

. (3.63)
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The yield surface (Eq. 3.61) is convex if its Hessian is positive semi-definite, which
holds since

σσσ :
∂ 2 f
∂σσσ2 : σσσ ≥ 0→ σσσ :

(
F√

σσσ : F : σσσ
− (F : σσσ)⊗ (σσσ : F)√

(σσσ : F : σσσ)3

)
: σσσ ≥ 0

→
√

σσσ : F : σσσ −
√

σσσ : F : σσσ ≥ 0,

(3.64)

which, at the same time, holds if and only if F is positive semi-definite, which is
true for a hyperbolic approximation to a Drucker-Prager yield surface. Equation 3.61
is differentiable because there are no singularities (i.e. there are no points in the
corresponding space where the derivative is non-unique or non-existent); it is important
to note that it corresponds to a smooth (hyperbolic) approximation to Drucker-Prager,
and therefore it does not have the apex singularity which is present in the traditional
Drucker-Prager model. Associativity of the evolution equations is usually assumed when
modelling the solid phase of trabecular bone, mostly for simplicity since the current
state of validation experiments does not allow for a proper study of its hardening.

It is important to note that these assumptions are only needed from a theoretical
point of view. Non-associative models and/or strain-softening can still be used, and
although global convergence of the return-mapping equations may not hold, an improved
numerical convergence has still been shown when using the aforementioned primal-
CPPM scheme instead of the Newton-CPPM scheme (Armero and Pérez-Foguet, 2002).

The starting point of the derivation of the closest-point projection method equations
from a variational point of view is to define the complementary energy function (χ),
which is obtained through a Legendre transform of the free energy function (Eq. 3.50).
The differential of the free energy function is defined as

dψ = σσσ : dεεε
e +Ak ∗dαααk . (3.65)

By using the product rule of differentiation on the conjugate pairs, the following is
obtained:

d(σσσ : εεε
e) = dσσσ : εεε

e +σσσ : dεεε
e→ σσσ : dεεε

e = d(σσσ : εεε
e)−dσσσ : εεε

e,

d(Ak ∗αααk) = dAk ∗αααk +Ak ∗dαααk→ Ak ∗dαααk = d(Ak ∗αααk)−dAk ∗αααk +Ak ,

(3.66)

which when applied to Eq. 3.65 yields

d(σσσ : εεε
e +Ak ∗αααk−ψ) = dχ = dσσσ : εεε

e +dAk ∗αααk . (3.67)
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The complementary energy function is strictly convex due to the strict convexity of
the free energy function. Since both χ and ψ are convex functions and are Legendre
transforms of each others, their first derivatives are inverse functions of each other, such
that

∂ψ

∂εεεe =
(

∂ χ

∂σσσ

)−1
;

∂ψ

∂αααk
=
(

∂ χ

∂Ak

)−1
. (3.68)

The elastic strain and the plastic internal variables can be obtained as

∂ χ(σσσ ,Ak)

∂σσσ
=

∂

∂σσσ
(σσσ : εεε

e +Ak ∗αααk−ψ) = εεε
e +σσσ :

∂εεεe

∂σσσ
− ∂ψ

∂εεεe :
∂εεεe

∂σσσ
= εεε

e, (3.69)

and

∂ χ(σσσ ,Ak)

∂Ak
=

∂

∂Ak
(σσσ : εεε

e +Ak ∗αααk−ψ) = αααk +Ak ∗
∂αααk

∂Ak
− ∂ψ

∂αααk
∗ ∂αααk

∂Ak
= αααk .

(3.70)
Under the previously stated assumptions, the closest-point projection method equations
can be obtained as the first-order necessary conditions of the following unilaterally
constrained variational problem:

min
{σσσ ,Ak}

f (σσσ ,Ak)≤0

{χ(σσσ ,Ak)−σσσ : εεε
e trial
n+1 −Ak ∗ααα

trial
k n+1}, (3.71)

where εεεe trial and ααα trial are the trial values of the elastic strain and the plastic internal
variables, and thus the initial guesses of the minimisation problem. They are obtained
as

εεε
e trial
n+1 = εεε

e
n +∆εεε; ααα

trial
k n+1 = αααk n , (3.72)

where εεεe
n, ∆εεε and αααk n are the previous converged elastic strains, the total strain incre-

ment (which depends on the time increment dictated by the FE layer) and the previous
converged strain-like internal variables (which would be 0 if the corresponding integra-
tion point has not yielded yet). Furthermore, the solution of Eq. 3.71, if it exists, is
unique and is indeed the solution of the closest-point projection method equations.

The Lagrangian associated to the variational problem (Eq. 3.71), for the Lagrange
multiplier field γ̇ , is defined as

L (σσσ ,Ak, γ̇) = χ(σσσ ,Ak)−σσσ : εεε
e trial
n+1 −Ak ∗ααα

trial
k n+1 + γ̇ f (σσσ ,Ak). (3.73)
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The first-order necessary conditions for a local minimum of the unilaterally constrained
problem (Eq. 3.71) are

∂L

∂σσσ

∣∣∣
{σσσn+1,Ak n+1,∆γ}

=
∂ χ(σσσn+1,Ak n+1)

∂σσσ
− εεε

e trial
n+1 +∆γ

∂ f (σσσn+1,Ak n+1)

∂σσσ

= εεε
e
n+1− εεε

e trial
n+1 +∆γ

∂ f (σσσn+1,Ak n+1)

∂σσσ
= 0,

(3.74)

∂L

∂Ak

∣∣∣
{σσσn+1,Ak n+1,∆γ}

=
∂ χ(σσσn+1,Ak n+1)

∂Ak
−ααα

trial
k n+1 +∆γ

∂ f (σσσn+1,Ak n+1)

∂Ak

= αααk n+1−ααα
trial
k n+1 +∆γ

∂ f (σσσn+1,Ak n+1)

∂Ak
= 0

(3.75)

and the Karush-Kuhn-Tucker (or loading-unloading) conditions are

f (σσσn+1,Ak n+1)≤ 0; ∆γ ≥ 0; ∆γ f (σσσn+1,Ak n+1) = 0. (3.76)

Equations 3.74, 3.75 and 3.76 correspond exactly to the closest-point projection method
equations. Using the aforementioned assumptions (positive Hessian of the comple-
mentary energy and a differentiable convex yield function with associative evolution
equations) results in a positive-definite Hessian of the Lagrangian (Eq. 3.73), which is
given by

∇
2L = ∇

2
χ + γ̇ ∇

2 f . (3.77)

This results in the strict convexity of the Lagrangian, implying that any solution of the
first-order necessary conditions (Eqs. 3.74, 3.75 and 3.76) is a unique global minimum.
The existence of this global minimum is assured if the expression to be minimised in
Eq. 3.71 satisfies the growth condition, which is

χ(σσσ ,Ak)→ ∞ ∀ ∥{σσσ ,Ak}∥→ ∞. (3.78)

Note that the assumption of a twice differentiable constant positive-definite Hessian
of the complementary energy function assures the coerciveness condition, and thus
satisfies the growth condition (Pérez-Foguet and Armero, 2002).

The closest-point projection method equations need to be iteratively solved if the
trial-state step is not admissible. The trial state is defined as

εεε
e trial
n+1 = εεεn+1− εεε

p
n ; εεε

p trial
n+1 = εεε

p
n ; ααα

trial
k n+1 = αααk n . (3.79)
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If the trial state is not admissible (i.e. fn+1 > 0) then the following set of algebraic
equations needs to be solved for a solution where ∆γ > 0:

εεεe
n+1− εεεe trial

n+1 +∆γ N(σσσn+1,Ak n+1)

αααk n+1−ααα trial
k n+1−∆γ Hk(σσσn+1,Ak n+1)

f (σσσn+1,Ak n+1)

=


0
0
0

 (3.80)

for

σσσn+1 =
∂ψ(εεεe

n+1,αααk n+1)

∂εεεe ; Ak n+1 =
∂ψ(εεεe

n+1,αααk n+1)

∂αααk
(3.81)

and

N(σσσn+1,Ak n+1) =
∂ f (σσσn+1,Ak n+1)

∂σσσ
; Hk(σσσn+1,Ak n+1) =−

∂ f (σσσn+1,Ak n+1)

∂Ak
.

(3.82)
As previously mentioned, a common strategy to solve such a nonlinear system of equa-
tions is to use a Newton iterative scheme (Newton-CPPM). This scheme converges if
the initial estimate is close to the final solution, exhibiting a quadratic rate of conver-
gence in such a scenario. Although a quadratic rate of convergence is a very desirable
property, the convergence radius is small (i.e. the convergence is not global), and thus
the usability of the Newton-CPPM scheme is somehow limited. To further understand
how the closest-point projection method works, a graphical representation is shown in
Fig. 3.2.

Newton-CPPM scheme applied to the generic quadric yield surface with linear
isotropic hardening

An example of a Newton-CPPM scheme applied to the isotropic generic quadric yield
surface described by Schwiedrzik et al. (2013) is developed here, as this yield surface is
extensively used throughout this study. Possible dependencies on variables are dropped
for notational convenience in this Section.

The free energy equation of the material being examined is assumed to be quadratic
due to the presence of a linear elastic regime and linear hardening

ψ = ψ
e +ψ

p =
1
2

εεε
e : De : εεε

e +
1
2

H iso κ
2, (3.83)

where H iso is the isotropic constant hardening modulus and κ is an isotropic plastic
internal variable. The yield function of the generic quadric reads

f =
√

σσσ : F : σσσ +F : σσσ − (1+q) = 0, (3.84)
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Fig. 3.2 Graphical representation of the closest-point projection method in normal stress space.
The blue and green surfaces are respectively the initial (blue) and hardened (green) yield surfaces.
The blue dots are the intermediate (i.e. non-converged) stresses.

where q=H isoκ is the conjugate hardening thermodynamic force of κ , the second-order
tensor F is

F =
1
2

(
1

σ
+
0
− 1

σ
−
0

)
I, (3.85)

the fourth-order tensor F is

F=−ζ0F2
0 (I⊗ I)+(ζ0 +1)F2

0 (I⊗ I), (3.86)

where

F0 =
σ
+
0 σ
−
0

2σ
+
0 σ
−
0
, (3.87)

and where σ
+
0 and σ

−
0 are respectively the uniaxial tension and uniaxial compression

yield stresses, and ζ0 is a parameter which controls the shape of the yield surface.
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The system of equations corresponding to the Newton-CPPM applied to this yield
surface is written as

εεεe
n+1− εεεe trial

n+1 +∆γ Nn+1

κn+1−κ
trial
n+1 −∆γ Hn+1√

σσσn+1 : F : σσσn+1 +F : σσσn+1− (1+qn+1)

=


Rεεεe

Rκ

R f

 (3.88)

where Rεεεe , Rκ , and R f are the residuals of the variables denoted by the corresponding
subscripts, and

N =
∂ f
∂σσσ

=
F : σσσ√

σσσ : F : σσσ
+F,

H =−∂ f
∂q

= 1.
(3.89)

Due to the one to one dependency of κ on ∆γ , the second equation of Eqs. 3.88 can be
dropped, and therefore they become{

εεεe
n+1− εεεe trial

n+1 +∆γ Nn+1√
σσσn+1 : F : σσσn+1 +F : σσσn+1− (1+qn+1)

}
=

{
Rεεεe

R f

}
, (3.90)

where qn+1 = H iso(κ
trial
n+1 +∆γ). Equations 3.90 can be linearised with respect to the

independent variables, resulting in{
dεεεe +∆γ

∂N
∂εεεe : dεεεe +d∆γ N

∂ f
∂εεεe : dεεεe + ∂ f

∂∆γ
d∆γ

}
=

{
dεεεe trial

0

}
. (3.91)

The algebraic system of Eqs. 3.91 can be reorganised as

[JCPPM]

{
dεεεe

d∆γ

}
=

{
dεεεe trial

0

}
, (3.92)

where [JCPPM] is the matrix form of the Jacobian of the Newton-CPPM scheme, which
is defined as

[JCPPM] =

[
I+∆γ

∂N
∂εεεe N

∂ f
∂εεεe

∂ f
∂∆γ

]
=

[
A11 A12

A21 A22

]
, (3.93)

where the corresponding coefficients are shown in Table 3.1.
The updated solution at the iteration k+1 of the iterative scheme is obtained as{

εεεe

∆γ

}(k+1)

=

{
εεεe

∆γ

}(k)

− ([JCPPM]−1)(k)

{
Rεεεe

R f

}(k)

. (3.94)
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Table 3.1 Coefficients of the Jacobian of the closest-point projection method of the generic
quadric with isotropic hardening.

Coefficient Mathematical expression

A11 I+∆γ
∂N
∂σσσ

: ∂σσσ

∂εεεe

A12 N
A21 N : ∂σσσ

∂εεεe

A22 −H iso
∂N
∂σσσ

F√
σσσ :F:σσσ

− (F:σσσ)⊗(σσσ :F)
(
√

σσσ :F:σσσ)3

∂σσσ

∂εεεe De

The Newton-CPPM scheme is summarised in Algorithm 1. In this algorithm, nCPPM is
the maximum number of Newton-CPPM iterations and tol is the accepted tolerance for
the corresponding numerical scheme.

Primal-CPPM scheme applied to the generic quadric yield surface

Global convergence is a very desirable property in an algorithm. It means that all
sequences generated by the algorithm converge to a solution of the problem (Luenberger,
2003). In a FE context this property is very important because the non-convergence of
the return-mapping equations usually leads to having to reduce the time increment. For
problems with relatively few degrees of freedom this may not be critical. However, most
of the simulations performed in this study involved large problems and were run on a
supercomputer with thousands of cores, and resources, especially on such a platform,
are limited.

A simple yet efficient choice for achieving global convergence in the Newton-
CPPM scheme is by applying the corresponding line search procedure, leading to
the primal-CPPM scheme (Pérez-Foguet and Armero, 2002). This method is chosen
over the others because it does not dramatically increase the computational cost of the
Newton-CPPM scheme. Moreover, the remaining methods are not fully competitive in
terms of computational cost in regions where the primal-CPPM shows no difficulties
(Pérez-Foguet and Armero, 2002). In this Section, subscripts within parentheses denote
iterations within the Newton scheme while superscripts within parentheses denote
iterations within the line search scheme.

A line search is one of the most basic minimisation procedures and can be defined
as follows. A general nonlinear unconstrained algebraic system of equations is given by

R(x) = 0, (3.95)
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Algorithm 1 Newton-CPPM scheme.
1: 1. Define the residual and solution vectors, respectively
2:

3:

{
Rεεε

R f

}
=

{
εεεe

n+1− εεεe trial
n+1 +∆γ Nn+1√

σσσn+1 : F : σσσn+1 +F : σσσn+1− (1+qn+1)

}
; {x}=

{
εεεe

n+1
∆γ

}
4:
5: where

6: {R}(0) =

{
0√

σσσ trial
n+1 : F : σσσ trial

n+1 +F : σσσ trial
n+1− (1+q trial

n+1 )

}
7: and

8: {x}(0) =
{

εεεe trial
n+1
0

}
9:

10: 2. Start a Newton iterative scheme
11: for k← 0,nCPPM do
12: 3. Calculate the Jacobian
13:

14: [JCPPM](k) =

I+∆γ

(
F√

σσσ :F:σσσ
− (F:σσσ)⊗(σσσ :F)√

(σσσ :F:σσσ)3

)
: De F:σσσ√

σσσ :F:σσσ
+F(

F:σσσ√
σσσ :F:σσσ

+F
)

: De −H iso

(k)
15:
16: 4. Calculate the new solution vector
17:

18:

{
εεεe

n+1
∆γ

}(k+1)

=

{
εεεe

n+1
∆γ

}(k)

− ([JCPPM]−1)(k)
{

Rεεεe

R f

}(k)

19:
20: 5. Update R(k+1) as in Step 1
21: 6. Check for convergence
22: if ∥R(k+1)∥ ≤ tol or k = nCPPM then
23: SET (·)n+1 = (·)(k+1)

n+1
24: EXIT
25: end if
26: end for
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where R is the vector of residuals and x ∈ Rnx is the vector of solution variables. Note
that this problem is unconstrained in the sense that there are no constraints on any of the
components of the solution vector x. Other more sophisticated line search algorithms
may take into account the unilateral constrained nature of the plastic multiplier, i.e.
being non-negative (Pérez-Foguet and Armero, 2002). However, situations in which
the plastic multiplier will be negative cannot be envisaged and thus its non-negative
character has not been considered explicitly. In general, Eq. 3.95 corresponds to the
first-order necessary conditions of an unconstrained minimisation problem where the
continuously differentiable function to be minimised is

ϕ(x) : Rnx → R, (3.96)

where R(x) = ∇ϕ(x). An iterative scheme is considered in order to solve the minimisa-
tion problem

x(k+1) = x(k)+α
(k)d(k), (3.97)

where α is the line search parameter. Note that the solution update of the Newton-CPPM
scheme is recovered if α = 1. Since our attention is focused on schemes which exhibit
a quadratic rate of convergence, a Newton update direction is considered

d(k) =−(J−1
CPPM)(k) R(k), (3.98)

where J(k) = ∇ R(k) ∈ Rnx×nx is the Jacobian matrix. The invertibility of this Jacobian
matrix is assured in the case where ϕ is strictly convex (as it is the case for the
complementary energy function χ), as the Jacobian would be positive definite.

The classical global convergence theorem (Luenberger, 2003) states that global
convergence for bounded sequences x(k) is acquired if Eq. 3.97 defines a continuous
mapping from x(k) to x(k+1) and a continuous descent function M : Rnx → R exists.
This is satisfied provided the line search parameter α is obtained as the minimisation of
the following merit function:

M̂(α) = M(x(k)+α
(k)d(k)). (3.99)

The direction d(k) defines a descent direction so that

∂M̂
∂α

∣∣∣
α=0

=
∂M(x(k+1))

∂x(k+1)

∣∣∣
α=0
· ∂x(k+1)

∂α
= ∇M(x(k)) ·d(k) ≤ 0. (3.100)

Typical line search schemes obtain a numerical solution of the minimisation problem of
the merit function (Eq. 3.99). For global convergence to be achieved, the Goldstein’s



3.2 Plasticity 53

conditions (Luenberger, 2003) need to be met:

M(x(k)+α
(k)d(k))≤M(x(k))+βα

(k)
∇M(x(k)) ·d(k), (3.101)

and
M(x(k)+α

(k)d(k))≥M(x(k))+(1−β )α(k)
∇M(x(k)) ·d(k), (3.102)

where β ∈ (0,0.5). The first Goldstein condition implies the reduction of the merit
function at each iteration and bounds α > 0 from above. The second Goldstein condition
assures that α is away from zero. Note that these are not the only possible conditions
to be used in a line search scheme; similar alternative conditions can be found in the
literature, e.g. Wolfe (1969). The descent function M can be written with respect to the
residual R as

M(x(k)) =
1
2
[
R(x(k)) ·R(x(k))

]
. (3.103)

The descent direction (Eq. 3.100) can be rewritten by using the Newton update direction
(Eq. 3.98) such that

∇M(x(k)) ·d(k) =−1
2

[
∂ (R ·R)

∂x

](k)
·
[(

∂R
∂x

)−1](k)
R(k) =−2M(x(k))≤ 0. (3.104)

Several numerical approximations can be used to construct the line search scheme
(Seifert and Schmidt, 2008), such as quadratic or cubic fittings of the merit function
M̂ through the current and previous values of M̂ and M̂′, or even pseudo-analytical
schemes, where M̂ is evaluated at equidistant values of the line search parameter α , and
α is chosen where M̂ is minimum. In this case, a quadratic fitting of M̂ from the values
M̂(k)

(0) , M̂′(k+1)
(0) , and M̂(k)

( j) at α
(k)
( j) is chosen (Pérez-Foguet and Armero, 2002). The line

search parameter of the next line search iteration, α
(k)
( j+1), is chosen as the minimum of

the fitted quadratic curve. The line search iterative scheme is repeated for j = 0, ...,nls

until the first Goldstein condition (Eq. 3.101) is met, which now reads

M̂(α
(k)
( j) ) = M̂(k)

( j) ≤ (1−2βα
(k)
( j) ) M̂(k). (3.105)

The second Golstein condition (Eq. 3.102) is considered by imposing α
(k)
( j+1) ≥ ηα

(k)
( j)

for a fixed value η > 0. These conditions lead to the “backtracking” line search (i.e.
iteratively shrinking α) (Shultz et al., 1985). The values used in this study are η = 0.1
and β = 10−4, as suggested by Pérez-Foguet and Armero (2002).

The primal-CPPM scheme is summarised in Algorithm 2. In this, nls is the maximum
number of line search iterations. If the primal-CPPM scheme is compared to the Newton-
CPPM scheme, one will notice that the addition of a line search scheme does not lead to
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a significant increase in required computational effort in comparison with the traditional
Newton-CPPM. This is because only a few additional vector computations are needed
as the Jacobian is kept constant during the line search procedure, and the calculation of
the Jacobian is more expensive than calculating the residual and solution vectors.

Comparison of the Newton-CPPM and the Primal-CPPM schemes applied to the
generic quadric

Both Newton-CPPM and primal-CPPM schemes were applied to the generic quadric
(Eq. 3.84) and were implemented in MATLAB (MathWorks, Natick, MA, USA). Their
performance and convergence properties were assessed by a single time increment for
different imposed trial strain levels.

The set of parameters used in these tests, which need to be defined in Eqs. 3.83,
3.84, 3.85 and 3.86, were σ

+
0 = 50, σ

−
0 = 100, H iso = 0.05. The parameter ζ0 was

varied from ζ0 = −1 to ζ0 = 0.49. The corresponding shapes of the yield functions
defined through these values are shown in Fig. 3.3. The isotropic stiffness tensor is
defined as

De = 2G Isym +(K− 2
3

G)I⊗ I, (3.106)

where G and K are respectively the shear and bulk modulus, defined through a Young’s
modulus of E = 10000 and a Poisson’s ratio of ν = 0.3. The fourth-order tensor Isym is
defined as (Isym)i jkl =

1
2(δikδ jl +δilδ jk).

Fig. 3.3 (a) Yield surface corresponding at ζ0 = −1. (b) Yield surface corresponding at
ζ0 = 0.49. Both surfaces are plotted in normal stress space.

As shown in Fig. 3.3a, the yield surface corresponding to ζ0 =−1 is defined through
two parallel planes in normal stress space, which intersect the axes at σ

+
0 and σ

−
0 . This

implies that the associative flow vector always has the same direction. The yield surface
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Algorithm 2 Primal-CPPM scheme.
1: 1. Define the residual and solution vectors, respectively
2:

3:

{
Rεεεe

R f

}
=

{
εεεe

n+1− εεεe trial
n+1 +∆γ Nn+1√

σσσn+1 : F : σσσn+1 +F : σσσn+1− (1+qn+1)

}
; {x}=

{
εεεe

n+1
∆γ

}
4:
5: where

6: {R}(0) =

{
0√

σσσ trial
n+1 : F : σσσ trial

n+1 +F : σσσ trial
n+1− (1+q trial

n+1 )

}
; {x}(0) =

{
εεεe trial

n+1
0

}
7: 2. Start a Newton iterative scheme
8: for k← 0,nCPPM do
9: 3. Calculate the Jacobian [JCPPM](k)

10: 4. Start a line search scheme for unconstrained problems, with
11: α

(k)
(0) = 1; M̂(k)

(0) =
1
2(R

(k) ·R(k)); M̂′(k)
(0) =−2M̂(k)

(0)

12: with the appropriate input data R(k)
(0), x(k)

(0), and d(k)
(0)

13: for j← 0,nls do
14: 5. Compute the new residual, solution, and merit function
15: R(k+1)

( j) = R(x(k+1)
( j) ); x(k+1)

( j) = x(k)
(0)+α

(k)
( j)d(k)

(0)

16: M̂(k+1)
( j) = 1

2

(
R(k+1)
( j) ·R(k+1)

( j)

)
17: 6. Check the first Goldstein condition (Eq. 3.101)
18: if M̂(k+1)

( j) ≤ (1−2βα
(k)
( j) )M̂

(k) or j = nls then

19: SET x(k+1) = x(k+1)
( j)

20: EXIT
21: else

22: α
(k)
( j+1) = MAX

(
ηα

(k)
( j) ,

−
(

α
(k)
( j)

)2
M̂′(k)

(0)

2
(

M̂(k+1)
( j) −M̂(k)

(0)−α
(k)
( j) M̂′(k)

(0)

))
23: end if
24: end for
25: 7. Check for convergence
26: if ∥R(k+1)∥ ≤ tol or k = nCPPM then
27: SET (·)n+1 = (·)(k+1)

n+1
28: EXIT
29: end if
30: end for
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in Fig. 3.3b corresponds to a hyperbolic approximation of a cone in normal stress space,
with the same uniaxial yield stresses as the case where ζ0 =−1.

Convergence of the algorithm is achieved when ∥R(x)∥ ≤ 10−8. The number of
iterations to achieve convergence for both Newton-CPPM and primal-CPPM schemes is
shown in Fig. 3.4. The y-axis represents the ζ0 parameter, which varies from -1 to 0.49,
and which changes the general curvature of the yield surface, but especially around the
positive hydrostatic region when ζ0 ≥ 0.45 as the yield surface becomes a cone when
ζ0 = 0.5 (Schwiedrzik et al., 2013). The x-axis represents the elastic trial strain with a
scalar εh defining its magnitude, and ranging from 0 to 10. The colourbar represents the
number of iterations needed to achieve convergence, with the maximum number set to
50.

To test that the convergence of the closest-point projection method under difficult
situations, stress returns are performed in regions where the yield surface is highly
curved. Therefore, the tests include trial strains which have a direction close to the
positive hydrostatic direction. The trial strain is defined as

{εεεe trial}= εh



1.1
1
1
0
0
0


. (3.107)

Fig. 3.4 Convergence of the Newton-CPPM (left) and of the primal-CPPM (right).

It is observed in Fig. 3.4 that the Newton-CPPM scheme has regions where convergence
is not achieved while the primal-CPPM scheme has none. The zones of non-convergence
are situated in regions where the curvature of the yield surface is high and where the
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trial-state is far away from the final solution. This is expected as the Newton-CPPM
may have convergence difficulties in these situations. For both algorithms there is a
region of convergence with low number of iterations close to ζ0 =−1 and εh = 0, which
is expected as in these cases, the direction of the flow vector does not vary much and
the trial-state is close to the final solution.

3.2.4 Mathematical description of damage

This Section describes the continuum rate-independent theory of damage from a physico-
mathematical perspective. It is assumed that damage can be modelled as a scalar variable
as the current state of validation experiments does not allow for evaluation of possible
anisotropic damage at the solid phase level. The description of the theory presented
here is based on de Souza Neto et al. (2008) and Murakami (2012).

Following the decomposition of the strain into elastic and plastic components (see
Eq. 3.48), the addition of the damage scalar (D) only involves a modification of the
elastic component of the free energy function, such that

ψ(εεεe,D,κ) = ψ
e(εεεe,D)+ψ

p(κ) =
1
2
(1−D)εεεe : De : εεε

e +
1
2

H iso κ
2. (3.108)

Therefore, the stress is now defined as

σσσ =
∂ψ

∂εεεe = (1−D)De : εεε
e. (3.109)

The thermodynamic force associated with the damage variable D is defined as

Y =−∂ψ

∂D
=

1
2

εεε
e : De : εεε

e. (3.110)

A dissipation potential (Eq. 3.46) is then considered as

Ξ(σσσ ,Y,q) = f (σσσ ,q)+FD(Y ). (3.111)

The first part of the right-hand side of Eq. 3.111 corresponds to the yield surface and
the second part corresponds to the damage dissipation potential. A possible expression
for the damage dissipation potential is

FD(Y ) =
1
2

HdamY 2. (3.112)
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The evolution of the damage variable for a material with associative behaviour is then
defined as

Ḋ = γ̇
∂FD

∂Y
= γ̇ HdamY. (3.113)

Newton-CPPM scheme applied to the generic quadric yield surface with damage

The free energy equation of the material being considered is again assumed to be
quadratic due to the presence of a linear elastic regime, which now depends on the
damage variable, and linear hardening (Eq. 3.108).

The considered yield function is the same as in the undamaged case (see Eq. 3.84),
as it is defined in stress space rather than in effective stress space. If the latter was the
case, damage would produce softening in the stress-strain curve due to the contraction
of the yield surface as damage increases, and therefore would not preserve the desired
constant hardening of 5% of the elastic modulus (Schwiedrzik and Zysset, 2015).
The closest-point projection method equations (Eqs. 3.80) for this damaged material
read as 

εεεe
n+1− εεεe trial

n+1 +∆γ Nn+1

Dn+1−D trial
n+1 −∆γ Hdam Yn+1

κn+1−κ
trial
n+1 −∆γ Hn+1√

σσσn+1 : F : σσσn+1 +F : σσσn+1− (1+qn+1)

=


Rεεεe

RD

Rκ

R f

 , (3.114)

where again H = 1, which means that the equation for the internal variable κ can be
dropped, leading to Eqs. 3.114 becoming

εεεe
n+1− εεεe trial

n+1 +∆γ Nn+1

Dn+1−D trial
n+1 −∆γ Hdam Yn+1√

σσσn+1 : F : σσσn+1 +F : σσσn+1− (1+qn+1)

=


Rεεεe

RD

R f

 . (3.115)

The consistent linearisation of Eqs. 3.115 yields
dεεεe +d∆γ N+∆γ

∂N
∂εεεe : dεεεe

dD−d∆γ HdamYn+1−∆γ Hdam
∂Y
∂εεεe : dεεεe

∂ f
∂εεεe : dεεεe + ∂ f

∂DdD+ ∂ f
∂∆γ

d∆γ

=


dεεεe trial

0
0

 . (3.116)

And thus, the Jacobian of the closest-point projection method scheme is now defined as

[JCPPM] =

 I+∆γ
∂N
∂εεεe 0 N

−∆γ Hdam
∂Y
∂εεεe 1 −Hdam Y

∂ f
εεεe

∂ f
∂D

∂ f
∂∆γ

=

A11 A12 A13

A21 A22 A23

A31 A23 A33

 , (3.117)
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where the corresponding coefficients are given in Table 3.2.

Table 3.2 Coefficients of the Jacobian of the closest-point projection method of the generic
quadric with isotropic hardening and isotropic damage.

Coefficient Mathematical expression

A11 I+∆γ
∂N
∂σσσ

: ∂σσσ

∂εεεe

A12 0
A13 N
A21 −∆γ HdamDe : εεεe

A22 1

A23 −Hdam Y

A31 N : ∂σσσ

∂εεεe

A32 −N : De : εεεe

A33 −H iso
∂N
∂σσσ

F√
σσσ :F:σσσ

− (F:σσσ)⊗(σσσ :F)
(
√

σσσ :F:σσσ)3

∂σσσ

∂εεεe (1−D)De

Comparison of the Newton-CPPM and the Primal-CPPM schemes applied to the
generic quadric with damage

The performance and convergence properties of the Newton-CPPM and primal-CPPM
for the generic quadric with damage are assessed by a single time increment for different
strain levels imposed. The set of parameters and settings used in these tests are the
same as before, except for the trial strain parameter εh, which now ranges from 0 to
0.1. The addition of a damage parameter is needed for this model; an arbitrary value of
Hdam = 0.01 was used. The convergence is shown in Fig. 3.5.

It can be observed from Fig. 3.5 that both the Newton-CPPM and primal-CPPM have
regions of no convergence. This is because, in the case of damage, global convergence
may not be guaranteed as the aforementioned assumptions for global convergence are
not fulfilled. For instance, the assumption of a twice differentiable positive-definite
Hessian of the complementary energy function χ is not fulfilled, and thus global
convergence for the primal-CPPM algorithm is not attained. This is easily seen, as

∂ 2ψ

∂D2 = 0. (3.118)

However, there are alternative methods to obtain improved convergence when damage
is considered. In this study, an improved trial predictor was used (Bićanić and Pearce,
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Fig. 3.5 Convergence of the Newton-CPPM (left) and of the primal-CPPM (right) when
considering damage.

1996; de Souza Neto et al., 2008). This consists of performing a Newton-CPPM loop
as normal, if convergence is not achieved then the loop is restarted but with the initial
guess for stress now being σσσ pro j, which is defined as the stress returned to the frozen
yield surface, i.e. no hardening or damage evolution. Needless to say that, in order
to obtain σσσ pro j, a primal-CPPM scheme with the perfectly plastic material without
damage should be used. This scheme is detailed in Algorithm 3. The convergence of
this method is compared with the convergence of the Newton-CPPM and shown in Fig.
3.6.

Fig. 3.6 Convergence of the Newton-CPPM (left) and of the Newton-CPPM with an improved
trial predictor (right).

As shown in Fig. 3.6, the convergence properties of the Newton-CPPM scheme
with an improved trial predictor are hugely improved with respect to the traditional
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Algorithm 3 Improved initial predictor for a constitutive law with damage.
1: 1. Perform a Newton-CPPM as in Algorithm 1, with the initial guesses
2: σσσ = σσσ trial

n+1 ; κ = κ
trial
n+1 ; D = Dtrial

n+1

3: 2. Check for convergence of the initial Newton-CPPM
4: if ∥R(k+1)∥ ≤ tol then
5: SET (·)n+1 = (·)(k+1)

n+1
6: EXIT
7: else
8: 3. Perform a primal-CPPM as in Algorithm 2, with the initial guesses
9: σσσ = σσσ trial

n+1 ; κ = κ
trial
n+1 ; D = Dtrial

n+1

10: and with
11: H iso = 0; Hdam = 0
12: to obtain σσσ

pro j
n+1

13:
14: 4. Perform a Newton-CPPM as in Algorithm 1, with the initial guesses
15: σσσ = σσσ

pro j
n+1 ; κ = κ

trial
n+1 ; D = Dtrial

n+1

16: end if

Newton-CPPM scheme. However, global convergence is not attained, which is expected
since the assumptions for it to happen (Eq. 3.118) are not met.

3.2.5 Consistent tangent operator

Consistent tangent operator without incorporation of damage

By rewriting the first row of Eqs. 3.91, the following is obtained:(
I+∆γ

∂N
∂σσσ

: De
)

: dεεε
e +d∆γ N = dεεε

e trial. (3.119)

The left-hand side of Eq. 3.119 can be rewritten by using dεεεe = (De)−1 : σσσ , such that(
I+∆γ

∂N
∂σσσ

: De
)

: dεεε
e =

(
(De)−1 +∆γ

∂N
∂σσσ

)
: dσσσ . (3.120)

Using the second row of the system of Eqs. 3.91, the following is obtained:

dκ = d∆γ → N : De : dεεε
e−H isoκ = 0→ d∆γ =

1
H iso

(N : dσσσ). (3.121)
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By combining the two previous expressions the following is achieved:

d∆γ =
1

H iso
(N : P : dεεε

e trial−d∆γ N : P : N)→ d∆γ =
N : P : dεεεe trial

N : P : N+H iso
, (3.122)

where

P=

(
(De)−1 +∆γ

∂N
∂σσσ

)−1

. (3.123)

The final expression of the consistent tangent operator is retrieved by using Eq. 3.120
and Eq. 3.122 in Eq. 3.119. This now reads as

dσσσ = P : dεεε
e trial− N : P : dεεεe trial

N : P : N+H iso
P : N (3.124)

and thus leading to the consistent tangent operator Dep

Dep =
∂σσσ

∂εεεe trial = P− (P : N)⊗ (N : P)
N : P : N+H iso

. (3.125)

Consistent tangent operator with damage

Introducing a scalar damage variable in the first row of Eqs. 3.116 gives(
I+(1−D)∆γ

∂N
∂σσσ

: De
)

: dεεε
e +d∆γ N = dεεε

e trial. (3.126)

The left-hand side of Eq. 3.126 can be rewritten by using dεεεe = 1
1−D(D

e)−1 : σσσ , such
that (

I+(1−D)∆γ
∂N
∂σσσ

: De
)

: dεεε
e =

(
1

1−D
(De)−1 +∆γ

∂N
∂σσσ

)
: dσσσ . (3.127)

Using the second row of the system of Eqs. 3.116, the following is obtained:

dD= d∆γ HdamY +∆γ Hdam (De : εεε
e) : dεεε

e = d∆γ HdamY +∆γ
Hdam

1−D
εεε

e : dσσσ , (3.128)

and using the third row of the system of Eqs. 3.116, the following is achieved:

(1−D)N : De : dεεε
e−N : De : εεε

e dD−H iso d∆γ = N : dσσσ −N : De : εεε
e dD−H iso d∆γ.

(3.129)
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By combining Eqs. 3.127 - 3.129, the following is obtained:

0 = N : dσσσ −d∆γ Hdam Y (N : De : εεε
e)−∆γ

Hdam

1−D
(N : De : εεε

e)(εεεe : dσσσ)−H iso d∆γ

→ d∆γ (Hdam Y (N : De : εεε
e)+H iso)

=
(

N−∆γ
Hdam

1−D
(N : De : εεε

e)εεεe
)

: P : (dεεε
e trial−d∆γ N)

→ d∆γ =

(
N−∆γ

Hdam
1−D (N : De : εεεe)εεεe) : P : dεεεe trial

Hdam Y (N : De : εεεe)+H iso +
(
N−∆γ

Hdam
1−D (N : De : εεεe)εεεe :

)
P : N

,

(3.130)

where

P=

(
1

1−D
(De)−1 +∆γ

∂N
∂σσσ

)−1

. (3.131)

The final expression of the consistent tangent operator is retrieved by using Eq. 3.127
and Eq. 3.130 in Eq. 3.126. This now gives

dσσσ = P : dεεε
e trial

−
(
N−∆γ

Hdam
1−D (N : De : εεεe)εεεe) : P : dεεεe trial

Hdam Y (N : De : εεεe)+H iso +
(
N−∆γ

Hdam
1−D (N : De : εεεe)εεεe

)
: P : N

P : N

(3.132)

and thus leading to the, generally unsymmetric, consistent tangent operator Dep

Dep = P−
(P : N)⊗

([
N−∆γ

Hdam
1−D (N : De : εεεe)εεεe] : P

)
Hdam Y (N : De : εεεe)+H iso +

(
N−∆γ

Hdam
1−D (N : De : εεεe)εεεe

)
: P : N

.

(3.133)





Chapter 4

The finite element method and
high-performance computing

This Chapter introduces the finite element method (FEM) from a mathematical point of
view, as it is the main numerical method used in this study to solve the global initial
boundary value problem associated to the principle of virtual work, and also because it is
crucial to understand some of the following work. Additionally, some high performance
computing (HPC) concepts relevant to the simulations conducted are introduced as
most of the simulations performed during this study were run on HPC platforms (a Cray
XC30 hosted by ARCHER, UK National Supercomputing Centre, EPCC Edinburgh;
and a BlueGene/Q hosted by the Hartree Centre, STFC Daresbury).

4.1 The finite element method

In this Section the FEM is briefly described, and it largely follows the description of
theory and notation in de Souza Neto et al. (2008) and Belytschko et al. (2000). The
theory outlined in this Section is initially described in a linear kinematics setting and
then its extension to finite strains is given. A quasi-static approach is used and therefore
inertial forces are not considered; also body forces are neglected as an approximation
(the weight of the considered trabecular bone specimens is relatively insignificant in
comparison to the external forces).

At this point it is worth stating that two main approximations are required in the FE
solution of an initial boundary value problem1.

1. A time discretisation of the underlying constitutive initial value problem.

A numerical integration scheme is used to solve the initial value problem defined

1This problem is defined later, in Section 4.1.2.
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by the constitutive equations, which relate stresses to the history of deformations
(Eqs. 3.43 and 3.47).

2. A finite element discretisation.

A standard FE approximation of the principle of virtual work is considered, where
the continuum domain of the body is (approximately) replaced with a finite set of
elements of simpler geometry.

With the introduction of these two approximations, the initial boundary value problem
is reduced to a set of incremental, generally nonlinear, algebraic FE equations which
are solved at each time increment of the considered time interval [t0,T ].

4.1.1 The principle of virtual work

A body occupies a region Ω with a boundary ∂Ω in its reference (or material) config-
uration. This body is subjected to surface tractions on ∂Ω. The current (or spatial)
description of this body and its boundary respectively corresponds to the region ϕϕϕ(Ω)

and the boundary ϕϕϕ(∂Ω), where ϕϕϕ is the mapping of deformations.
The principle of virtual work establishes that a body is in equilibrium if the corre-

sponding variational equation holds. The spatial description of the principle of virtual
work reads∫

ϕϕϕ(Ω)
σσσ(F, t) : ∇xηηη dV −

∫
ϕϕϕ(∂Ω)

text(x, t) ·ηηη dA = 0, ∀ηηη ∈ V , (4.1)

where σσσ is the Cauchy stress tensor, F is the deformation gradient tensor, x are the
spatial coordinates, text are the boundary tractions (or external traction field) per unit
deformed area, and V is the space of virtual displacements of the considered body.

If the assumption of linear kinematics is considered, material and spatial configura-
tions coincide, and the principle of virtual work can be rewritten as∫

Ω

σσσ(εεε, t) : ∇
sym
X ηηη dV −

∫
∂Ω

text(X, t) ·ηηη dA = 0, ∀ηηη ∈ V , (4.2)

where in this case σσσ is the infinitesimal stress tensor, εεε is the infinitesimal strain tensor,
and X are the initial (or material) coordinates.

4.1.2 The initial boundary value problem

Coupling together the principle of virtual work (for instance, Eq. 4.2) and the consti-
tutive stress-strain relationships (for instance, an elastoplastic constitutive model as
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described in Chapter 3), an initial boundary value problem can be formulated, whose
numerical solution is obtained through the FEM.

The boundary of the region occupied by a generic body in the material configuration
is decoupled into

∂Ω = ∂Ωu∪∂Ωt , (4.3)

where ∂Ωu is the portion of the boundary where the displacements are prescribed and
∂Ωt is the portion of the boundary where the tractions are prescribed. This body is
subjected to the following BCs:

1. The natural boundary conditions.

The history of surface traction text(X, t), t ∈ [t0,T ] is prescribed over ∂Ωt .

2. The essential boundary conditions.

The displacements are prescribed on ∂Ωu. The set of kinematically admissible
displacements of the body is then defined as

K = {u(X, t) : Ω×R→U | u(X, t)= u(X, t), t ∈ [t0,T ], X∈ ∂Ωu}, (4.4)

where u are the displacements, U is the vector space of dimension equal to the
number of considered physical dimensions, and u are the prescribed displace-
ments.

The considered body is made of a material which is assumed to be modelled by a
constitutive law based on internal variables. The internal variable field is known at the
initial time t0, which is ααα(X, t0) = ααα0(X) (usually considered to be 0 if the material is
not yielded or damaged at t0).
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The initial boundary value problem in spatial configuration is stated as follows:

The spatial quasi-static initial boundary value problem
Find a kinematically admissible displacement function u ∈K such that, for all

t ∈ [t0,T ], the principle of virtual work is satisfied:∫
ϕϕϕ(Ω)

σσσ(F, t) : ∇x ηηη dV −
∫

ϕϕϕ(∂Ωt)
text(x, t) ·ηηη dA = 0, ∀ηηη ∈ V , (4.5)

where

V = {ηηη : ϕϕϕ(Ω, t)→U | ηηη = 0 on ϕϕϕ(∂Ωu, t)} (4.6)

and at each point X, σσσ is the solution of σσσ = 1
det F

∂ψ(F,ααα)
∂F FT and α̇αα = f (F,ααα),

with prescribed deformation gradient

F(X, t) = ∇X ϕϕϕ(X, t) = I+∇X u(X, t). (4.7)

The infinitesimal initial boundary value problem is stated as follows:

The infinitesimal quasi-static initial boundary value problem
Find a kinematically admissible displacement function u ∈K such that, for all

t ∈ [t0,T ], the principle of virtual work is satisfied:∫
Ω

σσσ(εεε, t) : ∇
sym

ηηη dV −
∫

∂Ωt

text(X, t) ·ηηη dA = 0, ∀ηηη ∈ V , (4.8)

where

V = {ηηη : Ω→U | ηηη = 0 on ∂Ωu} (4.9)

and at each point X, σσσ is the solution of the infinitesimal version of Eq. 3.43 and

α̇αα = f (εεε,ααα), with prescribed infinitesimal strain

εεε(X, t) = ∇
sym u(X, t). (4.10)

4.1.3 Finite element interpolation

The FEM is used to obtain a numerical solution of the previously mentioned initial
boundary value problems. This involves replacing K and V with discrete subsets K ip

and V ip, respectively, which are generated through a FE discretisation of Ω.
A generic element el is defined through a certain number of nodes, with an interpo-

lation (or shape) function Nel
i (X) associated to each node i with coordinates Xi. These

shape functions are defined so that they have a value of 1 at node i, and 0 at every other
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node, so that

Nel
i (X j) =

1, for i = j

0, for i ̸= j
. (4.11)

4.1.4 The discretised principle of virtual work

The interpolated sets K ip and V ip are respectively

K ip = {uip(X) =
nnod

∑
i=1

u(Xi)Ng
i (X) | u(Xi) = u(Xi), Xi ∈ ∂Ωu} (4.12)

and

V ip = {ηηη ip(X) =
nnod

∑
i=1

ηηη(Xi)Ng
i (X) | ηηη(Xi) = 0, Xi ∈ ∂Ωu}, (4.13)

where nnod stands for the total number of nodes in a FE system. The global interpolation
matrix is then defined as

Ng(X) = [diag[Ng
1 (X)] diag[Ng

2 (X)] ... diag[Ng
gnod(X)]], (4.14)

where, in three dimensions, diag[Ng
i (X)] is defined as (dependency on X is dropped for

convenience from now onwards)

diag[Ng
i ] =

Ng
i 0 0

0 Ng
i 0

0 0 Ng
i

 . (4.15)

The global vector of displacements and the global vector of virtual displacements are
respectively defined as

u = {u1
1, ...,u

1
ndim

, ......,u
ngnod
1 , ...,u

ngnod
ndim }

T (4.16)

and
ηηη = {η1

1 , ...,η
1
ndim

, ......,η
ngnod
1 , ...,η

ngnod
ndim }

T, (4.17)

where ndim is the number of spatial dimensions (three dimensions are used throughout
this study), and u j

i is the ith component of the displacement vector at the global node j.
Any element uip ∈K ip and ηηη ip ∈ V ip can be respectively represented as

uip = Ngu (4.18)
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and
ηηη

ip = Ng
ηηη . (4.19)

The global discrete symmetric gradient in three dimensions is defined as

[Bg] =



Ng
1,1 0 0 Ng

2,1 0 0 ... Ng
ngnod ,1

0 0

0 Ng
1,2 0 0 Ng

2,2 0 ... 0 Ng
ngnod ,2

0

0 0 Ng
1,3 0 0 Ng

2,3 ... 0 0 Ng
ngnod ,3

Ng
1,2 Ng

1,1 0 Ng
2,2 Ng

2,1 0 ... Ng
ngnod ,2

Ng
ngnod ,1

0

Ng
1,3 0 Ng

1,1 Ng
2,3 0 Ng

2,1 ... Ng
ngnod ,3

0 Ng
ngnod ,1

0 Ng
1,3 Ng

1,2 0 Ng
2,3 Ng

2,2 ... 0 Ng
ngnod ,3

Ng
ngnod ,2


,

(4.20)
where (·)i, j =

∂ (·)i
∂X j

is the partial derivative of the elements with index i with respect
to the elements X of index j. Therefore, the vector representation of the infinitesimal
strain is defined as

{εεε}= [Bg]{u}=



u1,1

u2,2

u3,3

u1,2 +u2,1

u1,3 +u3,1

u2,3 +u3,2


=



(∇sym u)11

(∇sym u)22

(∇sym u)33

(∇sym u)12 +(∇sym u)21

(∇sym u)13 +(∇sym u)31

(∇sym u)23 +(∇sym u)32


. (4.21)

The vector representation of the infinitesimal stress tensor can be obtained as

{σσσ}T = {σ11,σ22,σ33,σ12,σ13,σ23}. (4.22)

Equation 4.2 can be discretised by using the aforementioned discretisation, resulting in∫
Ωip

({σσσ}T · [Bg]{ηηη}) dV −
∫

∂Ω
ip
t

({text} · [Ng]{ηηη}) dA = 0, ∀ηηη ∈ V ip, (4.23)

which can be conveniently rearranged as(∫
Ωip

([Bg]T{σσσ}) dV −
∫

∂Ω
ip
t

([Ng]T{text}) dA
)
· {ηηη}= 0, ∀ηηη ∈ V ip. (4.24)

Equation 4.24 is satisfied for all vectors {ηηη}, and therefore {ηηη} on the left-hand side
must vanish. By assuming that the traction forces do not depend on displacements, this
equation can be rewritten as

f int(u)− f ext = 0, (4.25)
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where f int and f ext are respectively the internal and external forces, defined as

{f int(u)}=
∫

Ωip
[Bg]T{σσσ(u)} dV (4.26)

and
{f ext}=

∫
∂Ω

ip
t

[Ng]T{text} dA. (4.27)

In view of a linear elastic constitutive law for the stress, σσσ = De : εεε where De is the
elastic stiffness tensor, we have that

{σσσ(u)}= [De][Bg]{u}, (4.28)

which leads to
{f int(u)}=

∫
Ωip

[Bg]T[De][Bg] dV{u} (4.29)

and
[K]{u}= {f ext}, (4.30)

where
[K] =

∫
Ωip

[Bg]T[De][Bg] dV. (4.31)

4.1.5 Path-dependent materials in an infinitesimal strain scenario

In this Section the stress tensor is no longer only a function of the instantaneous value
of the strain tensor, but is also dependent on the history of strains to which the solid has
been subjected. If plasticity is included, the stress tensor is the solution of a constitutive
initial value problem, as in the elastoplastic constitutive initial value problem (Eq. 3.58).
After the standard FE discretisation, the problem is reduced to the following:

{RFE(un+1)}=
∫

Ωip
[Bg]T{σσσ(αααn,εεε(un+1))} dV −

∫
∂Ω

ip
t

[Ng]T{text
n+1} dA = {0},

(4.32)
where RFE is the residual of the global FE system, and σσσ is the stress incremental
constitutive function (the stress function with respect to εεε and ααα). This equation is
generally nonlinear, and the source of its nonlinearity is the nonlinearity in the stress
incremental constitutive function, also called material nonlinearity. In this case, the
external traction field is assumed to not depend on the displacements, but in some cases
such as following forces this would not be a valid assumption.
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The incremental behaviour of the system is obtained by assuming proportional
loading, which implies that

{f ext
n+1}= λn+1{f

ext}=
∫

∂Ω
ip
t

[Ng]T{text} dA, (4.33)

where λn+1 is the prescribed load factor for the current time increment, and f ext is the
time independent external force vector field (or total external force vector).

4.1.6 The Newton-Raphson scheme for the global solution of a fi-
nite element system

The Newton-Raphson scheme exhibits a quadratic rate of convergence, which makes it
particularly appealing for solutions of systems of nonlinear equations. The linearisation,
or first-order Taylor expansion, of Eq. 4.32 can be obtained as

0≈RFE |u(k)
n+1

+
∂RFE

∂un+1

∣∣∣∣
u(k)

n+1

(u(k+1)
n+1 −u(k)

n+1) = RFE |u(k)
n+1

+
∂RFE

∂un+1

∣∣∣∣
u(k)

n+1

δu(k+1), (4.34)

where δu(k+1) is the current residual displacement, and

∂RFE

∂un+1

∣∣∣∣
u(k)

n+1

=
∫

Ωip
[Bg]T[Dep(εεε

(k)
n+1)][B

g] dV, (4.35)

where Dep(εεε
(k)
n+1) =

∂σσσ(αααn,εεεn+1)
∂εεεn+1

∣∣∣
εεε
(k)
n+1

. After reorganising Eq. 4.34, it can be expressed
as ∫

Ωip
[Bg]T[Dep(εεε

(k)
n+1)][B

g] dV δu(k+1) =−
(∫

Ωip
[Bg]T{σσσ(αααn,εεεn+1)} dV

−
∫

∂Ω
ip
t

[Ng]T{text
n+1} dA

) (4.36)

or
[K](k){δu}(k+1) =−{RFE}(k). (4.37)

It is important to point out that the current displacement field is obtained in terms of the
residual displacement field as

u(k+1)
n+1 = u(k)

n+1 +δu(k+1) (4.38)

but it can also be obtained in terms of the incremental displacement field as

u(k+1)
n+1 = un +∆u(k+1), (4.39)



4.1 The finite element method 73

where
∆u(k+1) = ∆u(k)+δu(k+1). (4.40)

Needless to say, the initial guesses for the displacement fields are

u0 = 0; u(0)
n+1 = un; ∆u(0)

n+1 = 0. (4.41)

The Newton-Raphson scheme is depicted graphically in Fig. 4.1.

Fig. 4.1 The Newton-Raphson scheme for the solution of nonlinear FE systems.

The algorithm of the Newton-Raphson scheme for an infinitesimal strain setting is
summarised in Algorithm 4. In this, A is the element assembly operator, J is the
Jacobian of the transformation between the continuum and the standard integration
domain (or natural coordinates, where the limits of integration are from −1 to 1), nel

is the number of elements in the FE system, ngauss is the number of integration points
in the element, w j is the weight corresponding to the jth Gauss integration point, and
nNewton is the maximum number of Newton-Raphson iterations.

Alternatives to the Newton-Raphson scheme

The group of schemes discussed in this section are modified Newton-Raphson methods.
The only difference is in the replacement of the consistent tangential stiffness K with a
suitable approximation. Some traditional methods within this group consist of: using
the initial tangent stiffness throughout all time increments, using a constant stiffness
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Algorithm 4 The Newton-Raphson scheme for an infinitesimal strain scenario.
1: 1. Compute the initial residual
2: RFE = f int(un)−λn+1 f ext where {f int(un)}= A nel

i=1 {f
int
i (un)} and

3: {f int
i (un)}= ∑

ngauss
j=1 w j det J j [B j]

T{σσσ j(αααn,εεεn)}
4: 2. Initiate the Newton-Raphson iterative scheme
5: for k← 0,nNewton do
6: 3. Compute the global stiffness matrix
7: K(k) = A nel

i=1 K(k)
i

8: where
9: [Ki]

(k) = ∑
ngauss
j=1 w j det J j [B j]

T[D j(εεε
(k)
n+1)][B j]

10: and
11: Dep(εεε

(k)
n+1) =

∂σσσ(αααn,εεεn+1)
∂εεεn+1

∣∣
εεε
(k)
n+1

12: 4. Solve the linear algebraic system
13: [K](k){δu}(k+1) =−{RFE}(k)

14: 5. Apply the displacement residual to displacements and update strains
15: u(k+1)

n+1 = u(k)
n+1 +δu(k+1); {εεεn+1}(k+1) = [Bg]{un+1}(k+1)

16: 6. Update stresses and dissipative variables
17: σσσ

(k+1)
n+1 = σσσ(αααn,εεε

(k+1)
n+1 ); ααα

(k+1)
n+1 = ααα(αααn,εεε

(k+1)
n+1 )

18: 7. Compute the internal forces fint and update the residual RFE as in Step 1
19: 8. Check for convergence
20: if {RFE}(k+1)·{δu}(k+1)

{RFE}(1)·{δu}(1) ≤ tol or k = nNewton then

21: SET (·)n+1 = (·)(k)n+1
22: EXIT
23: end if
24: end for



4.1 The finite element method 75

within each time increment, or using a stiffness matrix which is updated after a certain
number of iterations within each time increment (de Souza Neto et al., 2008).

Needless to say, the rate of convergence is lower than the quadratic convergence
rate of the Newton-Raphson scheme. Although these methods avoid computing the
tangent stiffness at each iteration, and thus saving some time in the computation of
the consistent tangent operator at each integration point within the FE mesh, they, in
general, lead to more iterations needed to achieve convergence. In large problems,
solving the linear algebraic systems is the most computationally expensive step; thus,
much faster solutions are generally obtained with the Newton-Raphson approach, which
is the method considered in this study.

Another widely used alternative for materials with a rapidly changing consistent
tangent operator is the use of approximated, or secant, tangent operators. These consist
in some approximation to the analytical expression of the consistent tangent operator,
and are designed to approximate the terms which rapidly change within iterations of a
single time increment.

4.1.7 Finite strain formulation

The stress incremental constitutive function can be expressed as

σσσn+1 = σσσ(αααn,Fn+1), (4.42)

where σσσ is the Cauchy stress tensor, and its dependence upon strain is achieved through
the dependence upon the deformation gradient tensor F.

By taking into account Eq. 4.42 and the initial boundary value problem in spatial
configuration stated in Section 4.1.2, the following residual can be defined:

RFE(un+1) = f int(un+1)− f ext
n+1 = 0, (4.43)

where
{f int}=

∫
ϕϕϕn+1(Ω

ip)
[Bg]T{σσσ(αααn,Fn+1)} dV (4.44)

and
{f ext}=

∫
ϕϕϕn+1(∂Ω

ip
t )
[Ng]T{text

n+1} dA, (4.45)

where Bg and Ng have the same format as in Eqs. 4.20 and 4.14, respectively. However,
the derivatives of the shape functions are spatial derivatives in this case, which means
that they are derivatives with respect to the spatial coordinates of the (deformed) FE
mesh, instead of with respect to the material coordinates of the (undeformed) FE mesh.
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The Newton-Raphson scheme for the large strain formulation in material description
can be obtained in an analogous manner to Section 4.1.6 by first considering ∂RFE

∂un+1
in

material description as[
∂RFE(un+1)

∂un+1

]
=
∫

Ωip

[
∂Ng

∂X

]T

[A(Fn+1)]

[
∂Ng

∂X

]
dV, (4.46)

where A is the consistent material tangent operator. By using the following equivalences:

∂Ng

∂X
=

∂Ng

∂x
F;

∫
ϕϕϕ(Ω)

(·) 1
det F

dV =
∫

Ω

(·) dV, (4.47)

the following is recovered:[
∂RFE(un+1)

∂un+1

]
=
∫

Ωip

[
∂Ng

∂X

]T

[A(Fn+1)]

[
∂Ng

∂X

]
dV

=
∫

ϕϕϕ(Ωip)
[Gg]T[C(Fn+1)][Gg] dV,

(4.48)

where C is the consistent spatial tangent operator, which is defined in indicial notation
as

Ci jkl =
1

det F

(
∂P
∂F

)
imkn

FjmFln =
1

det F
∂

∂Fkn
(τipF−1

mp )

=
1

det F

(
∂τip

∂Fkn
F−1

mp FjmFln + τip
∂F−1

mp

∂Fkn
FjmFln

)
=

1
det F

(
∂τi j

∂Fkm
Flm− τilδ jk

)
=

1
det F

(
∂τi j

∂εop

∂εop

∂Brs

∂Brs

∂Fkm
Flm− τilδ jk

)
,

(4.49)

where P is the Piola-Kirchhoff stress tensor, τi j are the components of the Kirchhoff
stress tensor, εi j are the components of the logarithmic strain tensor, Bi j are the compo-
nents of the left Cauchy-Green strain tensor and the matrix Gg is the global discrete
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spatial gradient operator, which is described by

[
∂Ng

∂x

]
=



Ng
1,1 0 0 Ng

2,1 0 0 ... Ng
ngnod ,1

0 0

0 Ng
1,1 0 0 Ng

2,1 0 ... 0 Ng
ngnod ,1

0

0 0 Ng
1,1 0 0 Ng

2,1 ... 0 0 Ng
ngnod ,1

Ng
1,2 0 0 Ng

2,2 0 0 ... Ng
ngnod ,2

0 0

0 Ng
1,2 0 0 Ng

2,2 0 ... 0 Ng
ngnod ,2

0

0 0 Ng
1,2 0 0 Ng

2,2 ... 0 0 Ng
ngnod ,2

Ng
1,3 0 0 Ng

2,3 0 0 ... Ng
ngnod ,3

0 0

0 Ng
1,3 0 0 Ng

2,3 0 ... 0 Ng
ngnod ,3

0

0 0 Ng
1,3 0 0 Ng

2,3 ... 0 0 Ng
ngnod ,3



.

(4.50)
In Eq. 4.49, the derivatives are defined as (de Souza Neto et al., 2008; Jog, 2008)

∂εi j

∂Bkl
=

1
2

∂ [ln (B)]i j

∂Bkl
→ 1

2
∂ ln B

∂B
=

1
2

( 3

∑
i=1

1
Bi

Ei⊗Ei +
3

∑
i, j=1
i̸= j

ln Bi− ln B j

Bi−B j
Ei⊗E j

)
∂Bi j

∂Fkm
Flm = δikB jl +δ jkBil ,

(4.51)

where Bi and Ei are respectively the eigenvalues and eigentensors of B. ∂τi j
∂εop

has exactly
the same format as the infinitesimal strain counterpart, but it is restricted to isotropic
materials due to the objectivity requirements for the Kirchhoff stress tensor. The first
part of Eq. 4.49 is the material contribution to the tangent operator while the second
part is the geometrical contribution (also called geometric nonlinearity).

The whole FE system of equations for the large strain formulation now reads∫
ϕϕϕ(k)(Ωip)

[Gg]T[C(F(k)
n+1)][G

g] dV δu(k+1)

=−
(∫

ϕϕϕ(k)(Ωip)
[Bg]T{σσσ(αααn,F

(k)
n+1)} dV −

∫
ϕϕϕ(k)(∂Ω

ip
t )
[Ng]T{text

n+1} dA
)
.

(4.52)

The algorithm of the Newton-Rapshon scheme for a large strain setting is summarised
in Algorithm 5, where⊙ is the operator that performs the following operation in indicial
notation A⊙B→ AilB jk.
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Algorithm 5 Newton-Raphson scheme for a large strain scenario.
1: 1. Compute the initial residual
2: RFE = f int(un)−λn+1f ext where {f int(un)}= A nel

i=1 {f
int
i } and

3: {f int
i (un)}= ∑

ngauss
j=1 w j det J j [B j]

T{σσσ j(αααn,εεεn)}
4:
5: 2. Initiate the Newton-Raphson iterative scheme
6: for k← 0,nNewton do
7: 3. Compute the global stiffness matrix
8: K(k) = A nel

i=1 K(k)
i

9: where
10: [Ki]

(k) = ∑
ngauss
j=1 w j det J j [G j]

T[C j(F
(k)
n+1)][G j]

11: and
12: C(F(k)

n+1) =
1

det F(k)
n+1

(
Dep(εεεn+1) : ∂εεεn+1

∂Bn+1
: ∂Bn+1

∂Fn+1
Fn+1− τττn+1⊙ I

)∣∣∣
F(k)

n+1

13: 4. Solve the linear algebraic system
14: [K](k){δu}(k+1) =−{RFE}(k)

15: 5. Apply the displacement residual to displacements and update F
16: u(k+1)

n+1 = u(k)
n+1 +δu(k+1); F(k+1)

n+1 = (I−∇x u(k+1)
n+1 )

17: 6. Update stresses and dissipative variables
18: σσσ

(k+1)
n+1 = σσσ(αααn,F

(k+1)
n+1 ); ααα

(k+1)
n+1 = ααα(αααn,F

(k+1)
n+1 )

19: 7. Compute the internal forces fint and update the residual RFE as in Step 1
20: 8. Check for convergence
21: if {RFE}(k+1)·{δu}(k+1)

{RFE}(1)·{δu}(1) ≤ tol or k = nNewton then

22: SET (·)n+1 = (·)(k)n+1
23: EXIT
24: end if
25: end for
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4.2 High-performance computing and ParaFEM

This section briefly describes a bit of history about hardware and software trends in
modern computers, with a special emphasis on supercomputers. The main parallelisation
paradigms and the used software, ParaFEM, are introduced. Most of the information
included in this Chapter can be found in Smith et al. (2013) but a thorough description
of the developed driver program is given at the end of this Section.

4.2.1 Hardware

Early computers performed operations in a serial fashion, which means that operations
were carried out sequentially, one after the other; a second operation cannot start until
the first one is finished. However, operations are often carried out on arrays of numbers
(or vectors), in a manner that operations performed on specific members of two arrays do
not affect the operations on other elements of these arrays. In such cases, operations can
be performed simultaneously. Computers consisting of such specialised hardware for
performing array operations are called vector computers. However, special care needs
to be taken when writing the code in order to take full advantage of vector processing.

Until around the 2000s, personal computers had a single core central processing
unit (CPU), and it was around then when miniaturisation of the circuits reached a
physical limit in terms of energy efficiency and overheating. The clock speed of cores
of around 3,000 MHz has not changed much since then. These issues were side-stepped
by implementing multicore CPUs, which means that each physical chip could have
two or more CPUs. This has been the standard for the last ten years. The downside of
multicore processors is that the gain in performance directly depends on the design of
the application, in terms of how efficiently it can use more than one core at the same
time.

Another method for accelerating calculations are coprocessors. These are secondary
processors which are designed to work together with the main processor, and which
perform specific tasks, such as manipulating graphics in the case of graphical processing
units (GPU). These coprocessors usually carry out the task they are designed to perform
much faster than the host processors. Very popular coprocessors are GPUs, which
are highly specialised processors with hundreds or thousands of cores; they perform
single precision operations extremely fast. The downside is that data needs to be
transferred back and forth between the main memory and the memory of the GPU,
and thus the speed up is directly dependent on minimising data transfer times. As an
example, the power of coprocessors can be shown by comparing the most powerful
latest generation Intel Core i7-5960X CPU against the most powerful latest GPU of
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NVIDIA, the NVIDIA GeForce GTX 1080. The CPU has eight cores and 16 threads
of processing at 3,000 MHz, which means that it has up to 16 lines of execution at
that clock speed, while the GPU has 2,560 cores at 1,600 MHz. Another example of
coprocessors which have become recently popular are Intel Xeon Phi processors. These
feature up to a thousand lines of execution, but with the limitation of a modest memory.
However, researchers are currently investigating how to optimise the speed of codes in
such architectures (Margetts et al., 2016).

4.2.2 High-performance computing

Most modern supercomputers are made of several thousand “standard” cores, divided
in nodes, which are linked together by fast communication networks. These nodes are
usually further divided in multicore processors, and maybe in several chips per node.
An example of a supercomputer is ARCHER, UK National Supercomputing Service,
which is a Cray XC30 MPP supercomputer with 118,080 cores, with each node having
64 GB of memory and 24 lines of execution. Another example of a supercomputer,
which is currently the fastest in the world (Strohmaier et al., 1993), is the Sunway
TaihuLight, a system build with processors designed and made in China, held at the
National Supercomputing Center in Wuxi. It has 10,649,600 cores distributed in 40,960
nodes, displaying a peak performance of 93 petaflop/s (93 quadrillions of calculations
per second) on a standard benchmark test.

Without taking into account GPU-based programming, there are two main standards
in parallel programming: OpenMP and MPI. OpenMP is also sometimes denoted as
shared memory progamming as its implementation is limited to systems where all lines
of execution share the same physical memory. OpenMP consists of a set of directives
which parallelise loops whose iterations can be performed independently. Needless to
say, for applications which have to be run on thousands of cores, OpenMP is not the
proper approach; in this case, Message Passing Interface (MPI) is the paradigm to be
used, and it is in fact the supercomputing standard. MPI is also sometimes denoted as
distributed memory programming, and thus it can be implemented in systems where
the lines of execution do not share the same physical memory. It consists of a set of
additional subroutines which allow for communication between the several instances,
or lines of execution, of the code which is being run. A big difference between these
two paradigms is that OpenMP offers almost no control on how the parallelisation is
performed, and MPI offers a complete control on how the data is transferred between
processes (Smith and Margetts, 2006; The MPI Forum, 1993).

The use of supercomputers is limited to research institutions and some large com-
panies. A popular alternative nowadays is Cloud Computing, which consists of hiring
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a system owned by someone else on a “pay as you go” basis. These companies own
several clusters with extra capacity to deal with surges in demand, and Cloud Computing
offers the perfect way of using this extra capacity to generate additional income.

4.2.3 ParaFEM

ParaFEM is a parallel library for general purpose FE analysis, written in modern
FORTRAN, which uses MPI as the parallelisation paradigm (Margetts et al., 2016;
Smith et al., 2013). It is supplied as a set of driver programs where each of them solves
specific engineering problems. These driver programs are parallel programs that permit
researchers and code developers to modify them for their own specific use without
having to deal with thousands and thousands of lines of code. The source code of the
software is fully documented in Smith et al. (2013).

In traditional FE codes, the linear algebraic system is fully assembled and then
solved by some form of Gaussian elimination. However, for very large systems, Gaus-
sian elimination is not feasible as storage requirements become a burden. ParaFEM
uses a matrix free, or element by element, approach (Smith and Margetts, 2006), which
means that the global stiffness matrix is never assembled and thus it is more memory
efficient. Iterative linear algebraic solvers are used in this case, with the precondi-
tioned conjugate gradient (PCG) solver being one of the most popular options for
positive-definite systems. In the case of ParaFEM this is the solver of choice.

In some cases, unsymmetric linear algebraic systems arise, such as in the FE dis-
cretisation of the Navier-Stokes equations or when damage or non-associative plasticity
are used in solid mechanics. In these cases, alternative iterative solvers need to be used.
Kelley (2001) and Greenbaum (1997) described variations of iterative solvers which
are able to solve such systems; the alternatives are the generalised minimum residual
(GMRES), the stabilised bi-conjugate gradient (BiCGStab) and the stabilised hybrid
bi-conjugate gradient (BiCGStab(l)).

Verification, validation and sensitivity analysis

ParaFEM has a wide array of choices for element types. In this study, linear hexahedral
elements were used, where each hexahedron would correspond to a voxel from a 3D
stack of µCT images. This mesh is not technically a Cartesian mesh, as displacements
deform these hexahedra, breaking orthogonality, generating differences in the stiffness
matrices of the elements, and thus not taking advantage of the main upper hand of tradi-
tional Cartesian meshes. Nonetheless, in this Section this mesh is deemed hexahedral
in reference to the use of a voxelised mesh with linear hexahedra.
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A recent study (Chen et al., 2014) has assessed the verification, or convergence as
mesh gets progressively refined, of uniaxial compression simulations of trabecular bone
samples with hexahedral meshes, with both linear and nonlinear material behaviours.
They assessed the convergence of specific values at the solid phase level: the third
principal stress and strain, and the displacement. Different coarsened meshes were
compared to the reference model (i.e. the model with the finest mesh, where each
hexahedron was of 19.5 µm). They found that all the solid phase values converge for
the linear simulations (differences of less than 5%) but that only displacements converge
in the nonlinear cases (differences of less than 10%). These results may highlight a
possible limitation of voxelised meshes when evaluating the solid phase strains. It is
therefore expected that local strain values may differ considerably between hexahedral
and traditional (smoothed) FE meshes, especially at the solid-void interfaces. Nonethe-
less, the advantage of voxel-based meshes is that the meshing procedure requires less
computational power in comparison with traditional meshes (such as those created
through Delaunay-based methods), meaning that very large hexahedral meshes, of the
orders of hundreds of millions of degrees of freedom (DOF), can be created in seconds
with a relatively simple algorithm.

The main method of validating solid phase values in trabecular bone is a method
called Digital Volume Correlation (DVC) (Bay et al., 1999; Zhu et al., 2016). Chen et al.
(2017) recently found that the displacements at the microscopic level are accurately
predicted if the BCs of the µFE simulation are well replicated, which means that the
BCs are derived from the displacement field measured by the DVC at the top and bottom
layers of the specimen. However, when validating strain, the accuracy and precision of
current DVC methods for strain measurement at each element (around 10−20 µm) are
still too low (Grassi and Isaksson, 2015; Palanca et al., 2015).

Most input parameters of trabecular bone constitutive models are subjected to some
uncertainty, which limits the confidence in the output of such models. Usually an uncer-
tainty analysis precedes a sensitivity analysis, and it is used to assess the uncertainty in
the input parameters, evaluating the confidence in their values. A sensitivity analysis
evaluates how these input parameters affect the output uncertainty, evaluating the order
of strength and relevance of the input parameters in determining variations in the output
(Helton et al., 2006; Saltelli, 2008).

A full sensitivity analysis of the effect of these uncertainties on the output is
computationally expensive in a HPC environment, especially if a Monte-Carlo method
is used, as it could require thousands of runs in order to explore the full input space. An
alternative is to use regression analysis to confirm that the response of the model to the
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change of input parameters is close to linear. The (standardized) regression coefficients
can be then used to assess how input parameters affect the output.

The sensitivity of the uniaxial macroscopic tensile/compressive yield stresses/strains
with respect to the input parameters of the solid phase constitutive model of Chapter 5
was performed. Two strain-controlled uniaxial loading cases were considered, ε

+
11 and

ε
−
11. Two input parameters were analysed, the solid phase tensile and compressive yield

stresses, σ
+
0 and σ

−
0 . ζ0 was not included as its partial effect, i.e. without interactions,

on the output is assessed in Chapter 5, and it was indeed found to be relatively minor.
Multilinear regressions of the macroscopic values with respect to these two input pa-
rameters were performed; the regression coefficients can be seen in Table 4.1 and the
actual data can be seen in Fig. 4.2.

The sensitivity of the uniaxial macroscopic tensile/compressive yield stresses/strains
with respect to the solid phase Young’s modulus was also performed for completeness.
The data values can be seen in Fig. 4.2.

Table 4.1 Regression coefficients of the multilinear fits of macroscopic tensile/compressive yield
stresses/strains with respect to solid phase tensile/compressive yield stresses. The multilinear
equation is defined as z = A× x+B× y+C, where x are the solid phase tensile yield stresses
and y are the solid phase compressive yield stresses. For the macroscopic yield stresses, A and B
have no units while C has MPa as units. For the macroscopic yield strains, A and B have 1/MPa
as units while C has no units. All the regressions were statistically significant (p < 0.05).

Output A B C R2

Tensile stress 0.22 -0.01 0.42 0.99
Compressive stress -0.36 0.41 6.27 0.95
Tensile strain 7.4E-5 -4.3E-6 2.1E-3 0.99
Compressive strain 1.2E-4 1.4E-4 4.1E-3 0.95

As seen in Table 4.1, all the coefficients of determination are high (R2 > 0.9),
which suggests that the output variation with respect to the input parameters is indeed
almost linear. The macroscopic yield stresses and strains follow a similar pattern, as
the stresses are the strains projected with the elastic slope, which is the same in each of
these simulations, and which can be obtained from the appropriate stress-strain curve
(Fig. 5.3 in Chapter 5). Macroscopic tensile stresses were found to largely depend on
the solid phase tensile yield stress and not on the solid phase compressive yield stress;
nonetheless, macroscopic compressive stresses were found to largely depend on both
solid phase yield stresses. This is because the sample is largely subjected to a load case
which closely follows hydrostatic compression in stress space; if the solid phase tensile
yield stress is reduced , the (approximated) Drucker-Prager cone opens, enlarging the
elastic regime in the hydrostatic compression area.
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Fig. 4.2 Multilinear fits of macroscopic tensile yield stress (a), macroscopic compressive yield
stress (b), macroscopic tensile yield strain (c) and macroscopic compressive yield strain (d) with
respect to solid phase tensile/compressive yield stresses.

The variation of macroscopic yield stresses/strains with respect to the solid phase
Young’s modulus is almost linear, as seen in Fig. 4.3. Macroscopic yield stresses are
almost insensitive to solid phase Young’s modulus while macroscopic yield strains
moderately decrease with increasing elastic modulus. When the solid phase Young’s
modulus is increased, the slope with intersects the macroscopic stress-strain curve to
determine yield increases as well, which effectively reduces the strain intercept.

Linear algebraic systems in FE and ParaFEM

In the context of solid mechanics, the linear algebraic systems which can arise from the
FE discretisation of the underlying PDEs can be different, depending on the considered
physics (de Souza Neto et al., 2008).
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Fig. 4.3 Macroscopic tensile yield stress (a), macroscopic compressive yield stress (b), macro-
scopic tensile yield strain (c) and macroscopic compressive yield strain (d) with respect to solid
phase Young’s modulus.

In the finite strain regime, an elastic system will remain positive-definite as long
as buckling is not reached. When buckling is reached, one of the eigenvalues of the
stiffness matrix will become zero; when the buckling point is surpassed, the system
may soften, leading to the stiffness matrix being indefinite. If the linear algebraic
system becomes indefinite, a candidate iterative solver is the minimum residual method
(MINRES).

If non-associative plasticity and/or damage are considered, the resulting stiffness
matrix is unsymmetric, which arises from an unsymmetric consistent tangent operator
(e.g. Section 3.2.5 of Chapter 3). If the linear algebraic system becomes unsymmetric,
candidates are, as previously mentioned, the BiCGStab(l) or the GMRES.
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In ParaFEM only two solvers are implemented, the widely used PCG and the more
specialised BiCGSTab(l). To enhance the solving capabilities of ParaFEM, an awarded
ongoing embedded CSE (eCSE, ARCHER) project (eCSE06-4, “Implementation of
generic solving capabilities in ParaFEM”, the author is a co-investigator) aims to
implement more generic solving capabilities in the package. This project consists of
extending the linear algebraic system solving capabilities of ParaFEM by interfacing
ParaFEM with the linear algebraic solver library PETSc (Balay et al., 2016).

Within the wide range of solvers and preconditioners of PETSc, the investigators
wanted to include a hybrid iterative/direct approach which is able to solve linear al-
gebraic systems with symmetric (positive-definite and indefinite) and unsymmetric
matrices. The architecture of ARCHER, which consists of a large number of very
powerful cores within each node, is likely to take advantage of such a hybrid scheme
and potentially improve running times for very large systems, since the communication
between processes is greatly reduced. In order to achieve faster computing times for
small problems (fewer than ~2.5M degrees of freedom), the investigators wanted to
include parallel direct solvers for sparse matrices. By doing this and after having
implemented the hybrid solver, ParaFEM will be able to effectively deal with problems
of any range of DOF.

4.2.4 Developepment of the driver program for finite strain elasto-
plasticity

In order to obtain a precise description of trabecular bone, µCT scans should have a
resolution of <20 µm (Müller et al., 1996). It has been reported that a serious decrease
of precision in properties appears at resolutions higher than 20 µm (Christiansen,
2016). The appropriate size of a VE of trabecular bone is around 5 mm (Sanyal et al.,
2015; van Rietbergen et al., 1995), and therefore the resulting µFE meshes can have
around 10M−40M DOF, depending on the BV/TV of the sample. Considering that
the mechanical behaviour of trabecular bone is highly nonlinear, and thus the resulting
µFE simulations need to be performed in a sequence of steps, the needed computational
effort is considerable. For example, if an implicit µFE simulation of 40M DOF is
performed in 50 load steps, a linear algebraic system of 40M unknowns needs to be
solved 50 times the number of Newton-Raphson iterations per corresponding load step.

Commercial FE packages, such as ANSYS (ANSYS, Canonsburg, USA) or ABA-
QUS (SIMULIA, Dassault Systèmes, Vélizy-Villacoublay, France) are very valuable
tools as they hugely decrease the time needed to set up FE simulations, due to their
flexibility and powerful graphical user interface. However, these general purpose FE
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codes were started during the seventies, when parallel processing was very limited,
or almost non-existent. Although both ANSYS and ABAQUS do possess parallel
capabilities (OpenMP, MPI, and GPU), their scalability is limited, and do not take full
advantage of the powerful architectures of Tier-1 (national level) and Tier-0 (European
level) supercomputers.

Obviously, there is a limit to what can be done on a desktop, due to restricted
memory and restricted number of CPUs, amongst others. Therefore, in order to solve
large problems in reasonable time frameworks, the use of a cluster or a supercomputer
is hugely advantageous. An appropriately designed software which scales well on a
large number of processors needs to be used on such platforms, but to the author’s
knowledge there is no finite strain elastoplasticity software that scales well. Thus, a
driver program within the framework of ParaFEM was developed, which preserves its
scalability and efficiency. This driver program was tested on high-end HPC platforms,
such as ARCHER and Eddie (Edinburgh Compute and Data Facility, Edinburgh, UK).

The developed finite strain elastoplastic driver program was designed based on a
hyperelastic-based plastic formulation (Simo and Ortiz, 1985; Simo and Taylor, 1985).
Early work on the extension of infinitesimal strain elastoplastic models to the finite
strain regime was carried out through the use of hypoelastic-based constitutive models
(Argyris et al., 1978; Argyris and Kleiber, 1977; Mcmeeking and Rice, 1975). In these,
the original evolution equations were extended by recasting them in terms of a suitably
chosen objective stress rate. However, many controversial issues arise (de Souza Neto
et al., 2008), such as the use of different objective stress rates in the formulation of
the constitutive equations (Atluri, 1984; Perić, 1992), possible lack of objectivity of
incremental constitutive laws (Hughes and Winget, 1980; Rubinstein and Atluri, 1983),
observed oscillatory stress response under monotonic loading (Nagtegaal, 1982), and
dissipative behaviour within the elastic range (Kojić and Bathe, 1987; Simo and Pister,
1984).

Hyperelastic-based formulations use a multiplicative decomposition of the deforma-
tion gradient (Lee and Liu, 1967); they do not exhibit dissipative behaviour under elastic
strains and trivially satisfy the requirements of incremental objectivity. Additionally,
if the Hencky strain energy function (linear relationship between the Kirchhoff stress
tensor and the logarithmic strain tensor) is used, an infinitesimal strain return-mapping
stress-update procedure is recovered under some special circumstances (Eterovic and
Bathe, 1990; Perić et al., 1992; Simo, 1992; Weber and Anand, 1990).

Hyperelastic-based formulations require the use of an appropriate objective conju-
gate stress-strain pair, which in this case is the Kirchhoff stress (τττ) − logarithmic strain
pair (εεε). The choice was based on the retrieval of an infinitesimal strain return-mapping
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stress-update scheme, as in the example described in Section 3.2.3 of Chapter 3. This
permits a straightforward extension from the small strain to the finite strain regimes, by
allowing the reuse of infinitesimal strain constitutive laws in finite strain simulations.
The only limitation is the restriction of isotropy for both the elastic and plastic regimes,
which arises due to the objectivity requirements for the Kirchhoff stress tensor. Due to
the use of an updated Lagrangian FE formulation, the updated Cauchy stress and the
updated consistent spatial tangent operator (as defined per Eq. 4.49) need to be provided
at the end of the time step. A summary of the algorithm is described in Algorithm 6.
In this, F∆ is the incremental deformation gradient, Fn+1 is the current deformation
gradient, Fn is the previous deformation gradient, Be is the elastic left Cauchy-Green
strain tensor, εεεe is the elastic logarithmic strain tensor, Be trial is the trial elastic left
Cauchy-Green strain tensor, εεεe trial is the trial elastic logarithmic strain tensor, Ve trial is
the trial elastic left stretch tensor, τττ is the Kirchhoff stress, and σσσ is the Cauchy stress
tensor.

It is important to point out that any constitutive law within the scope of continuum
solid mechanics can be easily implemented in this driver program, with the previously
mentioned restrictions. All the mechanical phenomena which can be modelled with this
driver program include elasticity, plasticity, visco-elasticity, visco-plasticity, damage,
and any possible combination of these. The only modification which needs to be
performed in the driver program is to modify the time scale accordingly when using
time-dependent effects.

The implemented solution scheme for the global FE system (Eq. 4.52) is a Newton-
Raphson scheme (Fig. 4.1). The reasons for making this choice are its ease of implemen-
tation and its speed. The major downside of the Newton-Raphson scheme is its inability
to deal with buckling points (i.e. points where the stiffness matrix has an eigenvalue of
value equal to zero) (de Souza Neto et al., 2008). There are several algorithms which
can overcome buckling points, such as displacement control or arc-length methods
(Feng et al., 1995, 1996). However, due to its ability of overcoming snap-back and
snap-through, the arc-length method is the most reliable choice. The author is currently
implementing this scheme in ParaFEM in order to deal with problems involving large
and slender trabecular bone samples.

In order to evaluate the speed and efficiency of the developed driver program within
the framework of ParaFEM, a table containing running times on ARCHER for problems
of different size is provided in Table 4.2. The systems used for these tests are cuboids
which undergo large (5%) confined homogeneous compression in 50 load increments,
in the sense that every integration point in the FE mesh is stressed in the same way. The
constitutive law applied is an eccentric-ellipsoid. The parameters in Eqs. 3.84−3.87
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Algorithm 6 Finite strain return-mapping scheme.
1: 1. Given the incremental displacement ∆un+1, calculate the incremental and current

deformation gradients, respectively
2: F∆ = I+∇(∆un+1); Fn+1 = F∆Fn

3: 2. Compute the elastic predictor state
4: Be

n = e2εεεe
n

5: Be trial
n+1 = F∆Be

n(F∆)
T

6: εεεe trial
n+1 = ln(Ve trial

n+1 ) = 1
2 ln(Be trial

n+1 )

7: ααα trial
n+1 = αααn

8: 3. If the elastic predictor state is not admissible, perform the infinitesimal strain
return mapping stress-update as in Section 3.2.3 of Chapter 3 (update τττ , εεεe, ααα and
obtain Dep = ∂τττ

∂εεε
).

9: 4. Update the Cauchy stress
10: σσσn+1 =

1
det Fn+1

τττn+1

11: 5. Update the consistent spatial tangent operator
12: Cn+1 =

1
det Fn+1

(
Dep : ∂εεε

∂B : ∂B
∂F ·F− τττ⊙ I

)∣∣∣
n+1

were ζ0 = 0.2, σ
+
0 = 50, σ

−
0 = 100, and H iso = 0.001; the elastic constants were

E = 12,700 and ν = 0.3. The constitutive law was implemented with a primal-CPPM
algorithm (Algorithm 2 in Chapter 3) so that global convergence was achieved in the
solution of the return-mapping equations. It is important to note that these tests were
designed to overcome any load imbalance issues when solved in parallel. When a
real system is run, it is likely that the mesh partition creates an uneven distribution of
yielded and unyielded integration points amongst the MPI processes, leading to a load
imbalance. This load imbalance is caused by the longer computational effort needed to
solve the return-mapping equations. When the load amongst processes is completely
balanced, the running times show that the developed driver program scales very well
for elastoplastic systems even with a very large number of processes (up to 30,720).

Chen et al. (2014) showed that the use of HPC platforms may be circumvented in
some cases. They performed some linear and nonlinear simulations on cylinders of
trabecular bone specimens of different numbers of DOFs (0.07M, 0.5M, 3.4M, 22.2M
and 158.1M) with ANSYS 14 on one core of an Intel Xeon E5-2670, 2.6 GHz and
256 GB of RAM; the largest nonlinear case was run on 32 cores. They show that even
very large nonlinear systems, up to 158M DOF, may be solved in high-end desktop
computers with a general purpose commercial FE solver, ANSYS 14, in a reasonable
timeframe (105,000 seconds for a 158M DOF simulation).

In another test to evaluate the possible differences in computational effort between
constitutive laws, cuboids of 1M DOF were subjected to large (5%) confined compres-
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Table 4.2 Running times on ARCHER (UK National Supercomputing Service) for 50 load
increments and under 5% apparent homogeneous confined compression.

Degrees of Freedom Number of MPI processes Time (s)
960 181.5

1,920 96.1
10M 3,840 60.8

7,680 30.3
15,360 38.5

960 1,336.5
1,920 712.0

50M 3,840 364.9
7,680 228.0

15,360 175.8

1,920 1,612.2
3,840 903.4

100M 7,680 484.2
15,360 351.9
30,720 250.2

1,920 3,636.7
3,840 1,890.1

190M 7,680 1,031.1
15,360 621.4
30,720 478.1

7,680 1,838.7
270M 15,360 1,124.9

30,720 721.3

sion in 50 load increments. The parameters of the constitutive law were the same as in
the previous example, except that three different yield surfaces were considered: a fully
elastic material (i.e. no yield surface), traditional Drucker-Prager and the previously
used eccentric-ellipsoid. It is important to point out that only the eccentric-ellipsoid
considers a primal-CPPM (Algorithm 2 in Chapter 3) to solve the return-mapping
equations, as in the traditional Drucker-Prager case these equations have a closed-form
solution. The corresponding running times on ARCHER are shown in Table 4.3. When
the load amongst processes is completely balanced, the running times show that the
developed driver program scales well and that the running times increase for systems
which undergo yielding. In the plastic cases, traditional Drucker-Prager has a closed-
form solution and therefore the running times are generally faster than when using the
eccentric-ellipsoid.
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Table 4.3 Running times on ARCHER for 50 load increments and under 5% apparent homoge-
neous confined compression, for different materials.

Material used Number of MPI processes Time (s)

Elastic

60 905
120 511
240 290
480 133
960 123

Drucker-Prager

60 1,218
120 647
240 362
480 237
960 125

Eccentric-ellipsoid

60 1,271
120 707
240 386
480 222
960 148

An example of a real system solved with this driver program is depicted in Fig. 4.4,
which shows the longitudinal displacement distribution. This simulation consists of a
cylinder of trabecular bone of approximately 40M DOF, which was subjected to simple
apparent compression of 2.5% in 50 load increments. The constitutive law considered is
an eccentric-ellipsoid, with ζ0 = 0.2, σ

+
0 = 50 and σ

−
0 = 100, and H iso corresponding

to 5% of the elastic slope in Eqs. 3.84−3.87; E = 12,700 and ν = 0.3. The HPC
platform used to perform this simulation was Eddie, Edinburgh Compute and Data
Facility, The University of Edinburgh. The simulation took 73,000 seconds by using
256 cores with a relatively slow Ethernet connection between the nodes.
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Fig. 4.4 Displacement field of a trabecular bone speciment under simple apparent compression
of 2.5%. The deformations have been magnified for visual purposes.



Chapter 5

Effect of the solid phase constitutive
law on the macroscopic behaviour

This Chapter evaluates the effect of compressive hydrostatic yield at the solid phase
on the macroscopic yield surface of trabecular bone in strain space, by means of a
nonlinear homogenisation method derived from multiscale theory. High-resolution FE
meshes from three trabecular bone samples of a wide range of BV/TV and directly
obtained from µCT images are considered; applying a wide range of macroscopic load
cases. This Chapter resulted in the following publication:
- Levrero-Florencio, F., Manda, K., Margetts, L., and Pankaj, P. (2016). Nonlinear ho-
mogenisation of trabecular bone: Effect of solid phase constitutive model. Proceedings

of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine,
DOI: 10.1177/0954411916676220.

Porosity is a key feature of bone, which is reported to be present at every hier-
archical scale (Smith et al., 2008). Tai et al. (2006) showed that bone behaves like
a cohesive-frictional material and that the increased yield properties in compression
may be explained by the friction between the mineral components, and that cohesion
is provided by the organic matrix. Several computational studies on the nanoinden-
tation behaviour of bone tissue have successfully modelled the mechanical response
found in nanoindentation experiments by using a Mohr-Coulomb (Tai et al., 2006) or a
Drucker-Prager (Carnelli et al., 2010) yield surfaces. Maghous et al. (2009) showed
that an eccentric-ellipsoid is the yield surface of an isotropic porous material the matrix
of which is modelled with a Drucker-Prager yield surface. Consequently, Schwiedrzik
and Zysset (2013) reported that an eccentric-ellipsoid could effectively approximate
the yield behaviour of bone tissue. Data on the post-yield hardening behaviour of the
solid phase of bone is not readily available and most of the simulations in nonlinear
homogenisation use 5% of the elastic slope as the linear hardening slope (Bayraktar
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et al., 2004a; Panyasantisuk et al., 2015b; Sanyal et al., 2015; Wolfram et al., 2012).
Some experimental studies have measured the hardening behaviour of the extracellular
matrix (Luczynski et al., 2015; Schwiedrzik et al., 2014), but this cannot be directly
employed for representing the solid phase of trabecular bone due to the difference in
scale.

At the macroscale, high BV/TV bone is prone to tissue yielding, while low BV/TV
bone is likely to fail via a mixture of large deformation failure mechanisms and tissue
yielding (Bevill et al., 2006; Morgan et al., 2004). At the microscale, total strains can be
large and a small strain approximation may be invalid (Stölken and Kinney, 2003). It is
important to note that local yielding or buckling may not imply simultaneous yielding, or
failure, of the homogenised structure; the latter results from a significantly compromised
stress carrying capacity. While all of this is true for macroscopic compression, it is
important to mention that bone at the organ level, when submitted to tensile loads,
suffers from pure fragile failures (Juszczyk et al., 2013).

Homogenisation techniques to obtain the macroscopic response of bone from its mi-
crostructure have been successfully employed for determining bone apparent anisotropic
elastic properties (Donaldson et al., 2011; van Rietbergen et al., 1996, 1995). Links
have also been established to relate elastic properties with BV/TV and fabric tensors
(Cowin, 1985; Turner et al., 1990; Zysset, 2003). However, homogenisation proce-
dures to find yield and post-yield properties of bone are much more computationally
expensive since they require evaluation of multiple load cases to assess the multiaxial
behaviour appropriately. Additionally, in order to capture nonlinear phenomena, FE
meshes need to be finer and each load step may require a number of iterations to obtain
a converged solution if an implicit time integration scheme is used. Only few studies
have attempted nonlinear homogenisation techniques on trabecular bone (Bayraktar
et al., 2004a; Panyasantisuk et al., 2015b; Sanyal et al., 2015; Wolfram et al., 2012). In
these studies, only Panyasantisuk et al. (2015b) used a Drucker-Prager criterion, while
the others used a simple bilinear criterion to represent the solid phase of bone.

To the knowledge of the author, there is only one previous study that has examined
the effect of different solid phase yield criteria on the macroscopic yield response of
trabecular bone (Baumann et al., 2016). However, this study only considered two simple
load cases, unconfined uniaxial compression and pure shear, and concluded that the
differences between macroscopic yield with different solid phase criteria were small
and any solid phase criterion with an appropriate strength asymmetry will perform
reasonably well. The aim of this Chapter is to evaluate the effect of two different solid
phase yield surfaces with the same uniaxial strength asymmetry, Drucker-Prager and
eccentric-ellipsoid, on the yield strains at the macroscopic level by using a nonlinear
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homogenisation approach, derived from multiscale theory (de Souza Neto et al., 2015;
Kruch and Chaboche, 2011), by applying a large range of load cases, including complex
normal and shear scenarios.

5.1 Methods

5.1.1 Sample extraction and imaging

Three cylindrical specimens of bovine trabecular bone (young cattle, <2.5 years old)
were extracted from bovine femoral greater trochanters, which were obtained from
a local abattoir. The extracted specimens had approximate dimensions of 10.7 mm
diameter and 30 mm length. Diamond-coated coring tools (Starlite Industries, Rosemont,
PA, USA) were used in the extraction of the specimens and the edges were cut with a
slow speed saw (Isomet 1000, Buehler, Düsseldordf, Germany) by using a diamond
wafering blade specially designed for bone; all these operations were performed under
constant irrigation to avoid excessive abrasion and overheating. After coring, the
specimens were submerged in phosphate buffered saline and scanned using a µCT
device (Skyscan 1172, Bruker, Zaventern, Belgium) with a resolution of 17.22 µm.
The scanning parameters were set to 94 kV, 136 mA, and 200 ms integration time; and
four scans in 720 equiangular radial positions were used. Binarisation of the grey scale
images was performed with an automatic thresholding algorithm (Gómez et al., 2013),
with no user intervention required.

Three virtual cubes of 5 mm length were extracted from the aforementioned cylin-
ders; this length is considered appropriate to capture the features of trabecular bone
(Harrigan et al., 1988; Sanyal et al., 2015; van Rietbergen et al., 1995). The MIL fabric
tensor (Harrigan and Mann, 1984) was evaluated using BoneJ (Doube et al., 2010) and
then used to align the coordinate axes of the images with the fabric. This approach
has been recently employed by Wolfram et al. (2012) and Panyasantisuk et al. (2015b).
After the 5 mm cubes were cropped, the alignment was rechecked to ensure that no
misalignment larger than 8° was found (Sanyal et al., 2015; Wolfram et al., 2012). If
the cropped cube was misaligned, the process was restarted by cropping a different
5 mm region, which resulted in a trial and error-based iterative process which was
repeated until the misalignment was lower than 8°. MIL is known to approximate the
macroscopic elastic orthotropy of trabecular bone (Odgaard et al., 1997) and thus the
samples can be considered to be aligned with these axes.

The samples can be seen in Fig. 5.1, and the following important morphological
indices of these three samples can be seen in Table 5.1: BV/TV, Degree of Anisotropy
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(DOA), Structure Model Index (SMI) and Connectivity (Conn). As it can be seen,
BV/TV ranges from relatively low (14.8%) to high (30.3%); the SMI ranges accordingly,
from a largely rod-like sample (SMI = 1.59) to a largely plate-like sample (SMI =
0.52).

Fig. 5.1 The three specimens used in increasing density from left to right. A detailed zoom of
the FE mesh of the most porous sample is shown.

Table 5.1 Morphological indices of the three specimens used.

Morphological index Porous sample Medium sample Dense sample
BV/TV (%) 14.8 23.1 30.3
DOA 2.65 2.09 2.67
SMI 1.59 0.98 0.52
Conn 209 813 1059

5.1.2 Solid phase constitutive model

The solid phase was modelled with a homogeneous isotropic elastoplastic constitutive
model, although it is recognised that its mechanical behaviour is actually better modelled
with transverse isotropy or orthotropy (Hellmich et al., 2004; Malandrino et al., 2012;
Wolfram et al., 2010a). The solid phase is also known to be heterogeneous in mineral
density (Blanchard et al., 2013; Renders et al., 2008). However, as Cowin (1997)
pointed out, there is little to no error in assuming tissue isotropy and therefore the
model with the least number of parameters was chosen. With respect to the solid phase
heterogeneity, Gross et al. (2012) stated that the effect of a heterogeneous TMD on the
apparent elastic properties of trabecular bone is minor.

The elastic regime of the solid phase was modelled by using Hencky’s hyperelastic
model, with a Poison’s ratio of 0.3 and a Young’s modulus of 12,700 MPa (Wolfram
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et al., 2012). Nonetheless, the value of Young’s modulus for the solid phase typically
ranges from around 7 to 25 GPa (Rho et al., 1993; Zysset et al., 1999). However, even
if the solid phase Young’s modulus or the solid phase yield values are changed, they are
not expected to change trends in the comparison as the main difference between the two
solid phase yield surfaces used in this study is kept (the presence or not of compressive
hydrostatic yielding). A sensitivity analysis assessing the effect of these parameters is
included in Section 4.2.3 of Chapter 4.

The yield surface of the solid phase was modelled by using the following yield
criterion (Schwiedrzik et al., 2013)

f (σσσ ,q) =
√

σσσ : F : σσσ +F : σσσ − (1+H isoκ) = 0, (5.1)

where H iso corresponds to 5% of the elastic slope (Bayraktar and Keaveny, 2004;
Sanyal et al., 2012; Wolfram et al., 2012). Equation 5.1 corresponds to a hyperbolic
approximation of a Drucker-Prager yield surface (Fig. 5.2b) when ζ0 = 0.49 in

F=−ζ0F2
0 (I⊗ I)+(ζ0 +1)F2

0 (I⊗ I) (5.2)

and an arbitrarily chosen ζ0 = 0.2 was used to define an eccentric-ellipsoid (Fig. 5.2a);
both these surfaces are defined in stress space and have the same uniaxial yield values.
Uniaxial yield strains of 0.41% in tension (ε+0 ) and 0.83% in compression (ε−0 ) (Bayrak-
tar and Keaveny, 2004) were converted to yield stresses by using following expressions
(Schwiedrzik et al., 2015):

σ
+
0 = Eµ ε

+
0 (5.3)

and
σ
−
0 = Eµ ε

−
0 . (5.4)

5.1.3 Computational methods

The three cubic specimens were meshed with a voxelised mesh by using trilinear
hexahedra, with the largest mesh having around nine million nodes. KUBC were used
to constrain the cubic VEs (Wang et al., 2009); the corresponding displacement BCs
were applied as

u = εεε0y ∀y ∈ ∂Ω
s
µ . (5.5)

Each VE was subjected to 144 strain load cases, as listed in Table 5.2. This number is
much higher than the 17 load cases used by Wolfram et al. (2012) and Panyasantisuk
et al. (2015b), and is of the same order as the 231 and 297 load cases of Sanyal et al.
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Fig. 5.2 (a) Eccentric-ellipsoid (ζ0 = 0.2). (b) Drucker-Prager (ζ0 = 0.49). Both surfaces are
plotted in normal stress space.

(2015) and Bayraktar et al. (2004a), respectively. This set of load cases was designed
to provide a thorough assessment of the yield surface in normal, shear and combined
normal and shear strain spaces. The macroscopic behaviour of trabecular bone is
relatively unknown in the combined normal and shear strain space, and only few studies
have considered it (Fenech and Keaveny, 1999; Sanyal et al., 2015); therefore, this
study considered a large number of load cases in this space.

The simulations were performed on a Cray XC30 MPP supercomputer, hosted
by ARCHER, UK National Supercomputing Service. The FE analyses were carried
out with an in-house developed finite strain elastoplasticity parallel implicit FE solver,
within the framework of ParaFEM (Section 4.2.4) (Margetts, 2002; Smith et al., 2013).
This code uses MPI to perform the parallelisation (Smith and Margetts, 2006; The MPI
Forum, 1993) and its high scalability is shown in Section 4.2.4 of Chapter 4. Usage of
this driver program permitted the simulation of 144×3 large µFE simulations (from
~10M to ~30M DOF) in a relatively short time, as each simulation took around ~12
minutes on 1,920 cores of ARCHER.

The local integration point-based CPPM equations were solved with the primal-
CPPM algorithm (Algorithm 2 in Chapter 3). The initial load increment size corre-
sponded to 0.1% macroscopic strain norm and could decrease to a minimum of 0.001%
if global convergence was not achieved. However, no convergence problems occurred
in these simulations. The simulation stopped when macroscopic yield, as defined in
Section 5.1.4, was achieved.
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Table 5.2 Description of the performed load cases. Clockwise and counter-clockwise shear
cases are differentiated by the sign of the off-diagonal terms of the macroscopic strain tensor.
Biaxial normal-shear cases have normal to shear ratios of 1 to 1, 0.25 to 0.75 and 0.75 to 0.25.

Type of analysis Description Number
Uniaxial normal
εii ̸= 0; ε j j = εkk = 0
εi j = εik = ε jk = 0

3 tensile and 3 compressive 6

Biaxial normal
εii = ε j j ̸= 0; εkk = 0
εi j = εik = ε jk = 0

1 analysis per quadrant 12

Uniaxial shear
εii = ε j j = εkk = 0
εi j ̸= 0; εik = ε jk = 0

3 clockwise and 3 counter-clockwise 6

Biaxial shear
εii = ε j j = εkk = 0
εi j = εik ̸= 0; ε jk = 0

1 analysis per quadrant 12

Biaxial normal-shear
εii ̸= 0; ε j j = εkk = 0
εlm ̸= 0; εln = εmn = 0

3 analysis per quadrant 108

i, j,k, l,m,n = 1,2,3
i ̸= j ̸= k
l ̸= m ̸= n

Total 144

5.1.4 Definition of macroscopic yield

Although a finite strain formulation needs to be taken into account when performing
the simulations involving the microstructure, strains at the macroscopic level can be
considered small due to their relatively small norms (Bayraktar et al., 2004a; Sanyal
et al., 2015; Wolfram et al., 2012), and thus a linear kinematic formulation could be
used as a simplification, and indeed in all our simulations the macroscopic strains never
exceeded 1.5%. The macroscopic yield points were described in the plane where the
x-axis is the Euclidean norm of the applied macroscopic Green-Lagrange strain tensor
and the y-axis is the Euclidean norm of the homogenised Second Piola-Kirchhoff stress,
which is described by

σσσ0 =
1
V

nel

∑
i=1

ngauss

∑
j=1

wi det (Ji j σσσ µ i j), (5.6)

where there is no summation implied over repeated indices. The 0.2% strain rule was
used to define the yield points (Panyasantisuk et al., 2015b; Sanyal et al., 2015; Wolfram
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et al., 2012), as defined in Fig 5.3. The 0.2% strain rule consists of establishing the yield
point where a line parallel to the elastic slope at 0.2% strain crosses the stress-strain
curve.

Fig. 5.3 Determination of the macroscopic yield points by using the 0.2% strain criterion for the
tensile and compressive uniaxial load cases of one sample. As it can be seen, the tensile and
compressive uniaxial cases have the same elastic slope, as expected.

5.2 Results

The samples have been labelled as Low density, Medium density and High density for
BV/TV of 14.8%, 23.1% and 30.3%, respectively. The macroscopic yield strains for
these three samples for the uniaxial normal and biaxial normal cases (rows 1 and 2 of
Table 5.2) are shown in Fig. 5.4. Further, since strain-based yield criteria have been
previously shown to be approximately isotropic, yield points in strain space were used.

When considering these two different yield surfaces for the solid face, it can be seen
that differences between macroscopic yield strains are not significant in tension-tension
quadrants (Fig. 5.4a-c, upper right quadrant) or even in tension-compression quadrants
(Fig. 5.4a-c, upper left and lower right quadrants). However, they become distinguish-
able in compression-compression quadrants (Fig. 5.4a-c, lower left quadrants).

The macroscopic yield strains for these three samples in uniaxial and biaxial shear
cases (rows 3 and 4 of Table 5.2) are shown in Fig. 5.5. It can be seen that there are
no significant differences in the macroscopic shear yield strains when using these two
different yield criteria for the solid phase.

Macroscopic yield strain norms were evaluated separately for load cases with only:
normal compressive components; normal tensile components; and shear components,
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Fig. 5.4 Macroscopic yield strains in normal-normal planes. The axes have been rearranged so
that the orthotropic Young’s moduli are descending in value E11 > E22 > E33. DP stands for
Drucker-Prager and EE stands for eccentric-ellipsoid.

Fig. 5.5 Macroscopic yield strains in shear-shear planes. DP stands for Drucker-Prager and EE
stands for eccentric-ellipsoid.

for both material models and all three samples. These are shown in Fig. 5.6. It can be
shown that the yield strain norm for tension-only and shear-only load cases is almost
the same, but differs by around 13% for compression-only load cases.

Macroscopic yield strains in normal-shear planes are shown in Fig. 5.7 (row 5
of Table 5.2). This figure shows that these yield strains differ for load cases which
have compressive components when considering these two different microscopic yield
surfaces, and this difference increases as the considered load case becomes more
compression-dominated (i.e. the load case has a higher proportion of compression over
shear) (Fig. 5.8). Figure 5.8 shows that this effect is also more prominent for the higher
density samples. This effect was also found to occur in normal-normal planes (Fig.
5.4).
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Fig. 5.6 Bar plot showing the average of the macroscopic yield strain norm for load cases
that only contain: compressive components, tensile components, and shear components, for
both eccentric-ellipsoid and Drucker-Prager (DP stands for Drucker-Prager and EE stands for
eccentric-ellipsoid). The error bars are the standard deviation of the macroscopic yield strain
norms. The minus sign (-) stands for compressive and the plus sign (+) stands for tensile.

5.3 Discussion

This Chapter shows that the effect of hydrostatic yield in the solid phase constitutive
model is significant for compression-dominated load cases and that this effect is larger
for high density samples. These findings agree with Baumann et al. (2016) who only
considered uniaxial unconfined compression and pure shear load cases and conse-
quently concluded that the solid phase strength asymmetry dominated the macroscopic
mechanical response.

Macroscopic yield strains in normal-normal planes (Fig. 5.4) show that the effects
of the two solid phase yield surfaces on the macroscopic behaviour is minimum except
for cases containing only compressive components (Fig. 5.4a-c, lower left quadrants).
When comparing the macroscopic yield strain norms for the two material models, it can
be seen that Drucker-Prager results in a norm which is around 13% larger than when
using eccentric-ellipsoid for compressive load cases (Fig. 5.6). The highly aligned
microstructure of trabecular bone is likely to partially reflect features of the solid phase
yield criterion, which in this case is a lack of hydrostatic compression yielding, resulting
in an increase of the macroscopic yield strain norms in compression-dominated load
cases. Figure 5.4 also shows that tension-dominated load cases are not affected when
using different solid phase yield surfaces.

When considering shear load cases, it can be seen that there are no differences in
macroscopic yield strains when using these two solid phase yield criteria (Fig. 5.5
and Fig. 5.7). This is consistent with Sanyal et al. (2012) in that tensile microscopic
strains predominate in macroscopic shear loading, which results in these load cases
being relatively unaffected when using these two solid phase yield surfaces. However,
it is important to point out that shear load cases in clockwise and counter-clockwise di-
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Fig. 5.7 Macroscopic yield strains in normal-shear planes, with the normal component in the
x-axis and the shear component in the y-axis. DP stands for Drucker-Prager and EE stands for
eccentric-ellipsoid.

rections can have different yield strains, especially in low BV/TV samples, as explained
in Chapter 6.

In normal-shear planes (Fig. 5.7a-i, upper and lower left quadrants), the macroscopic
yield strains follow a similar pattern to those in normal-normal planes (Fig. 5.4).
Specifically, the two solid phase yield criteria result in greater differences as the load
case becomes more compression-dominated, which is shown graphically in Fig. 5.8.
This figure shows the difference in macroscopic yield strains between the Drucker-
Prager and eccentric-ellipsoid in load cases which are pure shear, pure compression
or compression-shear. This difference increases as the compression/shear proportion
increases and also as the density increases; this means that higher density samples,
which are more continuum-like, demonstrate a greater difference between the two
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Fig. 5.8 Difference in macroscopic yield strain norm between Drucker-Prager and eccentric-
ellipsoid, for cases in normal-shear planes with a compressive component (εii ≤ 0; i = 1,2,3).
The first number in the proportion in the x-axis corresponds to the normal component, and the
second to the shear component.

solid phase material properties, as these properties are more directly mirrored at the
macroscale.

To the authors’ best knowledge, only one previous study has assessed the effect of
different solid phase yield criteria on the macroscopic yield strains (Baumann et al.,
2016). The load cases considered in this study were limited to unconfined compression
and shear. As a large number of complex load cases is considered in this Chapter, this
should be considered as a possible extension of the above cited study. Although the
material properties in this Chapter are different from those in Baumann et al. (2016),
and the way of assessing macroscopic yield is also different, it can be shown that shear
yield strains are very similar (the shear yield strains here need to be scaled by two to
be comparable, because these are shown as tensorial components); compressive yield
strains cannot be compared because the uniaxial compressive cases here are confined
and theirs are unconfined.

This study has some limitations. Validation for all the macroscopic yield strains is
not possible as these are very complex load cases which cannot be tested experimentally
and samples tested once cannot be retested. However, there have been some attempts
to perform complex load cases, such as multiaxial compression, on trabecular bone
samples (Keaveny et al., 1999; Rincón-Kohli and Zysset, 2009). For the solid phase
properties, homogeneous tissue properties were considered, which may result in an
overestimation of the macroscopic values (Blanchard et al., 2013; Renders et al., 2008).
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However, recent results suggest that µCT-based heterogeneous models underestimate
the apparent stiffness when compared to SRµCT-based heterogeneous models, which
are considered the gold standard in TMD measurement (Kaynia et al., 2014). However,
any over or underestimation of properties is likely to be similar for both the solid phase
models, and keeping the solid phase properties as homogeneous allows for these results
to be compared with the existing literature on the topic; furthermore, the effect of
heterogeneities at the solid phase on µFE models of trabecular bone with geometrical
nonlinearities is still unclear. The assumption that the solid phase can be modelled with
plasticity is also considered, which may not be true as localised tissue strains can cause
microcracks, possibly leading to an eventual fracture; these are effects that plasticity
models are not readily able to capture (Nawathe et al., 2013; Yeh and Keaveny, 2001).
Furthermore, although the meshes considered in this study were extremely detailed,
and thus these simulations were computationally expensive, only three samples were
considered, which may not deliver statistically conclusive results.





Chapter 6

Macroscopic yield behaviour using
nonlinear homogenisation

This Chapter evaluates the macroscopic yield surface of trabecular bone in strain space.
It also evaluates the symmetries of this macroscopic yield surface by means of fitted
closed-form quadric surfaces. This Chapter resulted in the following publication:
- Levrero-Florencio, F., Margetts, L., Sales, E., Xie, S., Manda, K., and Pankaj, P.
(2016). Evaluating the macroscopic yield behaviour of trabecular bone using a nonlinear
homogenisation approach. Journal of the Mechanical Behavior of Biomedical Materials.
DOI: 10.1016/j.jmbbm.2016.04.008.

The macroscopic elastic behaviour of bone has been mostly modelled using isotropic
linear elasticity at the organ level. Often, bone macroscopic properties are assumed
to be homogeneous with separate elastic properties being assigned to cortical and
trabecular bone (Completo et al., 2009; Conlisk et al., 2015). Sometimes, subject
specific macroscopic elastic properties are assigned using CT scans, which permit
inhomogeneity in the material properties on the basis of CT attenuations (Helgason et al.,
2008; Schileo et al., 2008; Tassani et al., 2011). However, it is important to note that
even if the constitutive properties are isotropic but heterogeneous, they could lead to an
overall structural anisotropy; however, this study is concerned about material symmetries
at the constitutive level. That said, the assumption of isotropy for the macroscopic
constitutive model is usually made since the reliability of any introduced anisotropy
is relatively poor due to the difficulty of measuring fabric anisotropy with standard
CT scans. It is, however, well recognised that the macroscopic behaviour of bone is
more accurately modelled with transverse isotropic or orthotropic constitutive laws,
provided that an accurate measure of fabric can be obtained. For trabecular bone, which
resembles open cell foams, the anisotropy is largely a consequence of its anisotropic
microarchitecture (Odgaard et al., 1997; Turner et al., 1990). An ultrasonic approach
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proposed by van Buskirk et al. (1981) was shown to provide a good approximation
of the nine orthotropic elastic constants if a heterogeneity correction was included.
In general, experimental mechanical techniques are unable to provide the complete
stiffness tensor at the resolution required for modelling (Odgaard et al., 1989).

While modelling bone as an elastic material may be adequate for a few applications,
a significant proportion of applications requires evaluation of its post-elastic response,
e.g. to evaluate implant loosening resulting in its failure. However, linear elastic
analyses may be sufficient for predicting failure in certain loading scenarios, for instance
the fragile failure of a whole femur under stance and fall loading configurations (Schileo
et al., 2014). Both stress and strain-based criteria have been used to describe the
macroscopic yield surface of bone (Keaveny et al., 1994; Keller, 1994; Kopperdahl and
Keaveny, 1998). In recent years a consensus appears to be emerging, that strain-based
criteria are easier to apply as trabecular bone behaviour in this space is “more isotropic”
and density independent than in stress space (Bayraktar et al., 2004a; Chang et al.,
1999; Pankaj and Donaldson, 2013). There is also now some evidence to suggest that
failure of bone is strain-controlled rather than stress-controlled (Nalla et al., 2003).
However, there is little consensus on the yield criterion that may be suitable for this
cellular material.

The aim of this Chapter is to characterise the macroscopic yield surface of trabecular
bone by using a numerical homogenisation approach, derived from multiscale theory
(Kruch and Chaboche, 2011; McDowell, 2010; Nguyen et al., 2012): using high reso-
lution µFE meshes obtained from µCT images; applying a wide range of load cases
which adequately describes the multiaxial behaviour of bone at the macroscale (in-
cluding complex normal and shear load combinations); incorporating both geometrical
and material nonlinearities; and with a validated pressure sensitive yield criterion for
the solid phase. A wide range of trabecular bone samples with varying BV/TV and
the efficacy of quadric surfaces as representatives for its macroscopic yield surface is
examined.

6.1 Methods

6.1.1 Sample extraction and imaging

Twenty virtual cubes were extracted, as a larger set, from the cylindrical trabecular
bone specimens mentioned in Chapter 5. The extraction and alignment procedures
were the same as discussed in Chapter 5. Important morphological indices of these 20
cubes are shown in Table 6.1. As it can be seen, BV/TV ranges from low (13.7%) to
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relatively high (30.3%); the range of SMIs is also considerably wide, ranging from a
largely rod-like sample (SMI = 1.59) to a largely plate-like sample (SMI = 0.52).

Table 6.1 Morphological indices of the 20 used specimens.

Number of specimen BV/TV (%) DOA SMI Conn
1 30.3 2.67 0.52 1059
2 25.5 2.20 0.94 1285
3 13.7 2.80 1.56 424
4 14.9 2.91 1.50 233
5 18.1 3.47 1.33 235
6 14.8 2.65 1.59 209
7 19.7 3.86 1.06 561
8 15.5 2.69 1.45 586
9 17.7 2.59 1.40 493
10 16.2 2.30 1.52 570
11 20.1 1.64 1.50 421
12 19.2 1.62 1.39 582
13 17.0 1.79 1.53 680
14 15.3 1.52 1.53 470
15 15.5 1.78 1.48 642
16 17.8 1.58 1.29 910
17 22.2 3.47 0.84 622
18 24.6 2.85 0.88 847
19 20.3 1.61 1.16 1030
20 26.9 2.55 0.79 627

6.1.2 Solid phase constitutive model

The solid phase constitutive law used in Chapter 5 was used in this Chapter as well
(with ζ0 = 0.49), except for its hardening, which in this case was set to perfect plasticity,
although a very small hardening modulus (H iso = 0.001 in q = H isoκ of Eq. 3.84
in Chapter 3) was included to aid in the prevention of a possible loss of ellipticity.
Although there have been some experimental studies which have evaluated hardening
of the extracellular matrix (Luczynski et al., 2015; Schwiedrzik et al., 2014), there is
no clear agreement on the hardening behaviour of the solid phase. Some studies have
assumed linear hardening (Bayraktar and Keaveny, 2004; Bevill et al., 2006) and some
others assumed perfect plasticity (Carnelli et al., 2010, 2011).
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6.1.3 Computational methods

The 20 specimens were meshed using a voxelised mesh, where every voxel corresponds
to a trilinear hexahedron. Each of them was then subjected to 160 strain-controlled load
cases, as described in Table 6.2. This number is much higher than the 17 load cases
used by Wolfram et al. (2012) and Panyasantisuk et al. (2015b), and is of the same
order as the 231 and 297 load cases of Sanyal et al. (2015) and Bayraktar et al. (2004a),
respectively. This set of load cases was designed to provide a thorough assessment of
the yield surface in normal, shear and combined normal and shear strain spaces. Triaxial
normal (eight cases) and triaxial shear (eight cases) load cases were added to the set of
load cases considered in Chapter 5 in order to have a more thorough description of the
yield behaviour in such loading regimes.

The employed boundary conditions were set to KUBC (Wang et al., 2009). All the
FE simulations were run on a Cray XC30 MPP supercomputer hosted by ARCHER.
The analyses were carried out with an in-house finite strain elastoplasticity parallel
implicit FE solver, as discussed in Section 4.2.4 of Chapter 4.

At the integration point level, in order to ensure global convergence of the plasticity
return-mapping Newton-CPPM scheme, a line search procedure was implemented as in
the primal-CPPM scheme developed as Algorithm 2 in Chapter 3. At the global level, a
Newton-Raphson scheme was used as the solution tracking method, and a PCG solver
was used to solve the resulting linear algebraic systems. Newton-Raphson and PCG
are relatively fasts algorithms if compared to possible alternatives, and if there are any
convergence problems, they may arise from the same origin, which is the possible loss
of positive-definiteness of the global stiffness matrix. However, convergence problems
were only encountered in a few of the porous samples (in 20 out of 3,200 simulations),
and they can be related to a limit point or large-deformation related failure mechanisms
(Bevill et al., 2006; de Souza Neto et al., 2008) as the number of PCG iterations
increased as this failure point was being reached. These points were marked with a
different marker in figures and included in the fitting procedure as yield (failure) points.
The considered initial load increment corresponded to 0.1% macroscopic strain norm
and could decrease to a minimum of 0.001% if global convergence was not achieved.
The simulations were stopped when macroscopic yield was reached, which was assessed
by the 0.2% rule, as described in Fig 5.3 in Chapter 5.

6.1.4 Different symmetries of the macroscopic yield surface

The macroscopic yield surface was examined by fitting a quadric surface (Schwiedrzik
et al., 2013) in strain space, through the minimisation procedure described in Section
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Table 6.2 Description of the performed load cases. Clockwise and counter-clockwise shear are
differentiated by the sign of the off-diagonal terms of the macroscopic strain tensor. Biaxial
normal-shear cases have normal to shear ratios of 1 to 1, 0.25 to 0.75 and 0.75 to 0.25.

Type of analysis Description Number
Uniaxial normal
εii ̸= 0; ε j j = εkk = 0
εi j = εik = ε jk = 0

3 tensile and 3 compressive 6

Biaxial normal
εii = ε j j ̸= 0; εkk = 0
εi j = εik = ε jk = 0

1 analysis per quadrant 12

Triaxial normal
εii = ε j j = εkk ̸= 0
εi j = εik = ε jk = 0

1 analysis per octant 8

Uniaxial shear
εii = ε j j = εkk = 0
εi j ̸= 0; εik = ε jk = 0

3 clockwise and 3 counter-clockwise 6

Biaxial shear
εii = ε j j = εkk = 0
εi j = εik ̸= 0; ε jk = 0

1 analysis per quadrant 12

Triaxial shear
εii = ε j j = εkk = 0
εi j = εik = ε jk ̸= 0

1 analysis per octant 8

Biaxial normal-shear
εii ̸= 0; ε j j = εkk = 0
εlm ̸= 0; εln = εmn = 0

3 analysis per quadrant 108

i, j,k, l,m,n = 1,2,3
i ̸= j ̸= k
l ̸= m ̸= n

Total 160

6.1.5 (Wolfram et al., 2012). This choice was based on the simplicity of the quadric
formulation, because it has been previously related to the microstructure of trabecular
bone (Cowin, 1986; Wolfram et al., 2012), and because it is a smooth surface and
therefore the use of several plastic multipliers is avoided. This quadric surface is
described in strain space as

g(εεεe) =
√

εεεe : G : εεεe +G : εεε
e−1 = 0, (6.1)

where G and G are respectively a fourth-order and a second-order tensor used to define
the shape, directionality and eccentricity of the yield surface. The fourth-order tensor
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G has major and minor symmetries (Gi jkl = Gkli j and Gi jkl = G jikl = Gi jlk = G jilk)
allowing it to be defined on a symmetric matrix space (Sym6), by 21 coefficients
(Mehrabadi and Cowin, 1990). G is a symmetric second-order tensor, and therefore
is defined by six coefficients. The convexity of the quadric surface, as discussed in
Section 3.2.3 of Chapter 3, is ensured if G is positive-semidefinite (Schwiedrzik et al.,
2013), which can be imposed in some cases by establishing some basic restrictions on
the coefficients defining G.

Three different symmetries were investigated: isotropy, orthotropy and anisotropy
(triclinic symmetry). The yield surface (Eq. 6.1) is said to be isotropic if

g(εεεe) = g(Qεεε
eQ), (6.2)

where Q is any orthogonal tensor (Q ∈ Orth3). If Q is restricted to a proper subset of
the orthogonal tensors (SOrth3 ⊂ Orth3), then Eq. 6.1 no longer represents an isotropic
function. If that was the case, Eq. 6.1 would become an orthotropic function if the
orthogonal group Orth3 was restricted to reflections about the three orthogonal planes
whose normal define each of the three directions of the material which have different
properties. Furthermore, Eq. 6.1 would become fully anisotropic if Q = ±I (Itskov,
2012).

In the isotropic case it is straightforward to observe that the second-order tensor G
in Eq. 6.1 is of the form g0 I, where g0 is a scalar defined as

g0 =
1
2

(
1

ε
+
0
− 1

ε
−
0

)
, (6.3)

where ε
+
0 and ε

−
0 are respectively the uniaxial tensile and the uniaxial compressive

yield strains. For G to be isotropic, it must be a linear combination of the fourth-order
tensors I⊗ I and I⊗ I. Specifically, G is of the form

G=−ξ0 G2
0(I⊗ I)+(ξ0 +1)G2

0(I⊗ I), (6.4)

where

G0 =
ε
+
0 + ε

−
0

2ε
+
0 ε
−
0

(6.5)

and ξ0 is an interaction parameter. To ensure the positive semi-definiteness of G, the
following inequalities must be satisfied:

ε
±
0 ≥ 0; −1≤ ξ0 ≤ 0.5. (6.6)
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It is important to note that the upper limit on the restrictions imposed on ξ0 recovers the
traditional Drucker-Prager yield surface, provided ε

−
0 > ε

+
0 .

In the orthotropic case the yield surface must be invariant under reflections about the
orthotropic axes. Representing the orthotropic axes by mi, i= 1,2,3, and corresponding
eigentensors by Mi = mi⊗mi, for orthotropy Mi = QMiQT if Q ∈ SOrth3 and SOrth3

is the set of orthogonal tensors which comprise of reflections about the orthotropic axes.
For example,

M1 =

1 0 0
0 0 0
0 0 0

= QM1QT =

−1 0 0
0 1 0
0 0 1


1 0 0

0 0 0
0 0 0


−1 0 0

0 1 0
0 0 1

 . (6.7)

The specific forms of G and G are given by

G=
3

∑
i=1

G2
ii Mi⊗Mi−

3

∑
i, j=1
i ̸= j

ξi j Gii G j j Mi⊗M j +
3

∑
i, j=1
i ̸= j

G2
i j

2
Mi⊗M j (6.8)

and

G =
3

∑
i=1

gi Mi , (6.9)

where

Gii =
ε
+
ii + ε

−
ii

2ε
+
ii ε
−
ii

; Gi j =
1

εi j
; gi =

1
2

(
1

ε
+
ii
− 1

ε
−
ii

)
; i = 1,2,3 (6.10)

and ε
+
ii and ε

−
ii are respectively the three uniaxial tensile and three uniaxial compressive

yield strains, εi j are the three shear yield strains and ξi j are the three interaction
parameters. All of the 12 parameters need to be defined for the orthotropic quadric.

Calculating the determinants of 1×1 and 2×2 principal minors of the projection
of G onto Sym6 permits establishment of basic restrictions on the coefficients to ensure
that G in the orthotropic case is positive-semidefinite, which are

ε
±
ii ≥ 0; εi j ≥ 0; |ξi j| ≤ 1; i, j = 1,2,3. (6.11)

The last restriction comes from applying Schur complements to the 3× 3 leading
principal minor of the projection of G onto Sym6, and is given by

2 G2
11 G2

22 ξ12 ξ13 ξ23−G2
11 G2

22 ξ
2
12−G2

11 G2
22 ξ

2
13−G2

11 G2
22 ξ

2
23+G2

11 G2
22 ≥ 0. (6.12)
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In the anisotropic case, the yield surface can present shear yield asymmetry (i.e. different
yield values in clockwise and counter-clockwise directions). For an anisotropic quadric,
normal yield strains are able to interact with shear yield strains and shear yield strains
are also able to interact amongst themselves (Theocaris, 1992; Tsai and Wu, 1971).
This means that in the triclinic case G and G have 21 and six independent coefficients,
respectively.

By performing uniaxial strain load cases, several coefficients of G and all the
coefficients of G can be determined. For G, the coefficients are

Gi j =


1
2

(
1

ε
+
i j
− 1

ε
−
i j

)
if i = j

1
4

(
1

ε
+
i j
− 1

ε
−
i j

)
if i ̸= j

i, j = 1,2,3. (6.13)

In the case of G, the six diagonal coefficients of the projection of G onto Sym6 are

Gi ji j =


( ε

+
i j +ε

−
i j

2ε
+
i j ε
−
i j

)
if i = j

1
2

( ε
+
i j +ε

−
i j

2ε
+
i j ε
−
i j

)
if i ̸= j

i, j = 1,2,3. (6.14)

The 15 remaining parameters to be determined correspond to three normal strain
interaction parameters, three shear strain interaction parameters and nine normal-shear
strain interaction parameters. These have expressions in the coefficients of G which are
related to the previously stated diagonal coefficients, as shown in Table 6.3.

These, together with the six uniaxial normal yield strains and six uniaxial shear yield
strains, add up to a total of 27 parameters. Calculating the determinant of 1×1 and 2×2
principal minors of the projection of G onto Sym6 allows for establishment of some
basic restrictions on some of the coefficients to ensure that G is positive-semidefinite,
which are

ε
±
i j ≥ 0; |ξkl| ≤ 1; i, j = 1,2,3; k, l = 1,2, ...,6 (6.15)

The remaining restrictions on the coefficients are not expressed analytically but checked
after the minimisation procedure to ensure positive-semidefiniteness of G. For every
considered symmetry and for every considered sample, the eigenvalues of the projection
of G onto Sym6 were checked to assure they were non-negative.

6.1.5 Minimisation procedure

The macroscopic yield envelope was fitted by using a minimisation procedure in
MATLAB. The sum of squares of the difference between the Euclidean norms of a yield
strain and the yield strain calculated through FE, for a corresponding macroscopic strain
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Table 6.3 Interaction parameters for the anisotropic quadric.

Coefficients

G1122 = ξ12

(
ε
+
11+ε

−
11

2ε
+
11ε
−
11

)(
ε
+
22+ε

−
22

2ε
+
22ε
−
22

)
Normal interaction G1133 = ξ13

(
ε
+
11+ε

−
11

2ε
+
11ε
−
11

)(
ε
+
33+ε

−
33

2ε
+
33ε
−
33

)
G2233 = ξ23

(
ε
+
22+ε

−
22

2ε
+
22ε
−
22

)(
ε
+
33+ε

−
33

2ε
+
33ε
−
33

)
G1213 = ξ45

(
ε
+
12+ε

−
12

2ε
+
12ε
−
12

)(
ε
+
13+ε

−
13

2ε
+
13ε
−
13

)
Shear interaction G1223 = ξ46

(
ε
+
12+ε

−
12

2ε
+
12ε
−
12

)(
ε
+
23+ε

−
23

2ε
+
23ε
−
23

)
G1323 = ξ56

(
ε
+
13+ε

−
13

2ε
+
13ε
−
13

)(
ε
+
23+ε

−
23

2ε
+
23ε
−
23

)
G1112 = ξ14

(
ε
+
11+ε

−
11

2ε
+
11ε
−
11

)(
ε
+
12+ε

−
12

2ε
+
12ε
−
12

)
G1113 = ξ15

(
ε
+
11+ε

−
11

2ε
+
11ε
−
11

)(
ε
+
13+ε

−
13

2ε
+
13ε
−
13

)
G1123 = ξ16

(
ε
+
11+ε

−
11

2ε
+
11ε
−
11

)(
ε
+
23+ε

−
23

2ε
+
23ε
−
23

)
G2212 = ξ24

(
ε
+
22+ε

−
22

2ε
+
22ε
−
22

)(
ε
+
12+ε

−
12

2ε
+
12ε
−
12

)
Normal-shear interaction G2213 = ξ25

(
ε
+
22+ε

−
22

2ε
+
22ε
−
22

)(
ε
+
13+ε

−
13

2ε
+
13ε
−
13

)
G2223 = ξ26

(
ε
+
22+ε

−
22

2ε
+
22ε
−
22

)(
ε
+
23+ε

−
23

2ε
+
23ε
−
23

)
G3312 = ξ34

(
ε
+
33+ε

−
33

2ε
+
33ε
−
33

)(
ε
+
12+ε

−
12

2ε
+
12ε
−
12

)
G3313 = ξ35

(
ε
+
33+ε

−
33

2ε
+
33ε
−
33

)(
ε
+
13+ε

−
13

2ε
+
13ε
−
13

)
G3323 = ξ36

(
ε
+
33+ε

−
33

2ε
+
33ε
−
33

)(
ε
+
23+ε

−
23

2ε
+
23ε
−
23

)

direction was minimised. The distance to a yield point, d, must satisfy the following
equation:

d

(√
εεεe

FE
∥εεεe

FE∥
: G :

εεεe
FE

∥εεεe
FE∥

+G :
εεεe

FE
∥εεεe

FE∥

)
−1 = 0, (6.16)

where ∥(·)∥ is the Euclidean norm of (·) (defined as ∥(·)∥ =
√
(·) : (·) for a second-

order tensor), εεεe
FE is the macroscopic yield strain for each of the load cases described
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in Table 6.2. To evaluate the goodness of fit, the fitting error was evaluated as

ErrorFIT =
1
N

N

∑
i=1

∥εεεe
f itted− εεεe

FE∥i

∥εεεe
FE∥i

, (6.17)

where N is the cardinality of a specific set of load cases. This error was evaluated for
four different sets: for all the load cases; for the load cases which are entirely contained
in the normal strain space (rows 1-3 of Table 6.2); for the load cases which are entirely
contained in the shear strain space (rows 4-6 of Table 6.2); and for the strain cases
which have a component in the normal strain space and a component in the shear strain
space (normal-shear strain space, row 7 of Table 6.2).

6.2 Results

6.2.1 Macroscopic yield strains

The macroscopic yield points in strain space for all considered samples in normal-
normal and shear-shear planes are shown in Fig. 6.1. These represent 36 of the 160
performed load cases for each sample, which are contained in the sets described in
rows 1-6 of Table 6.2; and no projections have been made, i.e. the yield strains shown
only contain out-of-plane components equal to zero. These macroscopic yield strains
suggest that the macroscopic yield surface of trabecular bone has a higher yield strain
in compression than in tension, which is expected due to the characteristics of the solid
phase, which are likely to be partially upscaled to the macroscale with a corresponding
decrease of the yield values due to the presence of porosity and the corresponding
increase in anisotropy due to the presence of an anisotropic microstructure.

It can be noticed that the tensile quadrant displays quasi-uniform macroscopic yield
strains across samples (Fig. 6.1a-c, upper right quadrant). The compressive yield strains
have some variability across samples, as can be seen from the spread of the yield points
in the lower left quadrant of Fig. 6.1a-c. The largest variation in the normal-normal
planes is in the tensile-compressive quadrants (Fig. 6.1a-c, upper left and lower right
quadrants).

The macroscopic yield strains in shear-shear planes show a large variation of yield
strains across samples (Fig. 6.1d-f). It can also be observed that shear yield strains of
trabecular bone are generally different in clockwise and counter-clockwise directions,
with absolute differences ranging from 0.0034% to 0.4463%. A statistical comparison
between these yield strains was performed for all pure uniaxial shear cases with a paired
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Fig. 6.1 Macroscopic yield points of the 20 samples in normal strain planes (a-c) and in shear
strain planes (d-f). The colour coding is on the basis of density and is used as a labelling
mechanism. Few of the obtained macroscopic yield points resulted in the loss of positive-
definiteness of the stiffness matrix, which are marked with empty circles.

t-test. This test suggests that paired clockwise and counter-clockwise shear yield strains
are statistically different (p < 0.01).

Macroscopic uniaxial (tensile, compressive and shear) yield strains were related
to BV/TV and fabric eigenvalues through multilinear regressions. No relationships
between yield strains and BV/TV or between yield strains and fabric eigenvalues were
found. Only compressive uniaxial yield strains were mildly related to BV/TV and fabric
eigenvalues (R2 = 0.44, p→ 0).

In order to examine the macroscopic yield strains in different quadrants (tension-
tension, compression-compression and tension-compression), the average of the macro-
scopic yield strain norms for each of the above three regimes was evaluated, as shown in
Fig. 6.2. As expected, the mean of the norms is the lowest for tension-tension, highest
for compression-compression and in between for tension-compression. Figure 6.2 also
shows the standard deviation of the evaluated norms. It can be seen that the deviation is
relatively small for the tension-tension regime, higher for compression-compression
regime and the highest for tension-compression regime.



118 Macroscopic yield behaviour using nonlinear homogenisation

Fig. 6.2 Bar plot of the mean of the macroscopic yield strain norms for tensile cases (εii ≥ 0; i =
1,2,3), compressive cases (εii ≤ 0; i = 1,2,3) and tensile-compressive cases (εii ≤ 0; ε j j ≥
0; i, j = 1,2,3; i ̸= j). The error bars correspond to the standard deviations of these values.

6.2.2 Solid phase strains

Strains at the microscale, or at the solid phase, were examined. Under uniaxial macro-
scopic tension more localised strains were found to occur at the solid phase, and there
were mostly no compressive solid phase strains anywhere in the specimens. However,
under uniaxial macroscopic compression the compressive solid phase strains were
more diffused and found to occur throughout the geometry. Further, under uniaxial
macroscopic compression large tensile solid phase strains were found to arise due to
bending and buckling of trabeculae. Figures 6.3 and 6.4 show this for a slice from one
typical porous sample.

Fig. 6.3 Distribution of the Green-Lagrange solid phase strain component E11 for a 0.5×5×5
mm slice of bone under macroscopic uniaxial tension. Direction 1 is in the direction denoted by
the arrows.
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Fig. 6.4 Distribution of the Green-Lagrange solid phase strain under macroscopic uniaxial
compression for a 0.5× 5× 5 mm slice of bone. Top - Tensile component E22. Bottom -
Compression component E11. Direction 1 is in the direction denoted by the arrows and direction
2 is the orthogonal in-plane direction.

6.2.3 Macroscopic yield surface and fitting errors

A macroscopic yield surface was fitted to each of the 20 samples by using isotropic,
orthotropic and fully anisotropic formulations of a quadric yield surface, using all of
the 160 load cases. The mean and standard deviation of the fitted parameters for the
anisotropic surface are shown in Table 6.4. Plots for the two samples with the highest
and lowest densities are shown in Fig. 6.5. The lower density sample shows a higher
level of anisotropy in comparison to the higher density sample. Further, if consecutive
macroscopic yield points of the porous sample are joined up, the homogenised envelope
does not always remain entirely convex in some of the planes (e.g. Fig. 6.5i-k).
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Table 6.4 Mean and standard deviation of the parameters of the anisotropic quadric yield surface.

Coefficients Value (mean ± standard deviation)

G1111

G1122

G1133

G1112

G1113

G1123

G2222

G2233

G2212

G2213

G2223

G3333

G3312

G3313

G3323

G1212

G1213

G1223

G1313

G1323

G2323

G11

G22

G33

G12

G13

G23

18,391.8±5,092.2
7,801.1±1,059.9
8,492.1±1,021.2

155.5±866.8
306.6±1,883.4
150.0±684.1

17,510.1±2,826.5
8,644.4±1,713.2
−83.4±800.1

84.0±744.1
495.5±1,619.2

20,689.0±4,299.2
12.2±628.9

260.1±1,616.6
538.9±1,787.2

4,557.3±688.8
228.2±374.2
287.8±482.6

5,016.1±724.8
−3.5±427.7

5,200.4±844.0
52.6±14.3
52.0±8.2
60.9±12.5
0.4±2.5
0.8±5.1
1.8±4.6

Mean fitting errors considering all samples and all strain cases are shown in Fig.
6.6. It can be seen that the isotropic assumption leads to the highest (∼11%) error,
followed by the orthotropic (∼10%) and the anisotropic (∼8%) assumptions. The
standard deviation of the fitting errors is also shown in the figure and it can be seen
that the error variation across densities with the isotropic assumption is similar to the
orthotropic case; the anisotropic assumption produces the smallest variations across
samples.
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Fig. 6.5 Macroscopic yield points for the densest and most porous samples and their corre-
sponding isotropic, orthotropic and anisotropic fitted quadric surfaces in normal strain planes
(a-c), shear strain planes (d-f), and combined normal and shear strain planes (g-o). Few of the
obtained macroscopic yield points resulted in the loss of positive-definiteness of the stiffness
matrix, which are marked with empty circles.

In general, fitting errors were not found to correlate with BV/TV (Fig. 6.7). In
normal strain space (Fig. 6.7a) the assumption of an isotropic quadric led to consistently
higher errors, while the orthotropic and anisotropic assumptions resulted in smaller
fitting errors. In the shear strain space (Fig. 6.7b), in the combined normal and shear
strain space (Fig. 6.7c) and in the general strain space (Fig. 6.7d) the assumption of
an anisotropic quadric had the smallest errors. A mild trend of errors decreasing with
increasing density was observed for the isotropic and orthotropic assumptions in shear
strain space. In the general strain space, the errors and the error differences between
assumptions also tend to reduce with increasing density.
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Fig. 6.6 Bar plot of the mean of the fitting errors across all samples for the isotropic, orthotropic
and anisotropic quadrics. All the strain cases are taken into account. The error bars correspond
to the standard deviations of these values.

Fig. 6.7 Fitting errors as described in Eq. 6.17 for the normal strain space (a), shear strain space
(b), combined normal and shear strain space (c), and in general strain space (d).

6.3 Discussion

This Chapter shows that the macroscopic yield surface of bone in normal strain space
is fairly uniform across a wide range of samples; this confirms findings of previous
research (Bayraktar et al., 2004a; Lambers et al., 2014; Pankaj and Donaldson, 2013).

The results shown also demonstrate that the full three-dimensional macroscopic
yield behaviour of trabecular bone can be reasonably well described using an isotropic
quadric yield surface, though orthotropic and anisotropic surfaces lead to smaller errors.
This is in agreement with previous studies in which the strain space yield surface was
reported to be isotropic (Bayraktar et al., 2004a), and more recently transverse isotropic
(Sanyal et al., 2015), and orthotropic (Wolfram et al., 2012). This being said, although
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the errors in the macroscopic yield surfaces in strain space with higher symmetries
are slightly smaller, the fact that more parameters are added to the constitutive model
increases its uncertainty due to the difficulty in measuring these parameters. Also, as
will be mentioned later, due to the fact that BV/TV and fabric do not seem to be strongly
related to the yield values in strain space, the isotropic yield surface is the obvious and
adequate choice as the macroscopic yield surface for trabecular bone in strain space.

Unlike the studies cited in the previous paragraph, the consideration of shear asym-
metry as separate loading cases showed that the differences in the two directions are
significant. This is probably because trabeculae are not symmetrically aligned with
respect to the axes of the material, which in this case were assessed through the eigen-
vectors of the MIL fabric tensor. It is important to note that the assumption of identical
macroscopic yield points in clockwise and counter-clockwise directions restricts the
system to orthotropy at best (Theocaris, 1992; Tsai and Wu, 1971). We also observed
predominance of tensile solid phase strains in pure macroscopic uniaxial shear, which
is consistent with Sanyal et al. (2012).

Multilinear regressions suggest that the macroscopic uniaxial yield strains are not
correlated with BV/TV and fabric (Matsuura et al., 2008; Morgan and Keaveny, 2001;
Panyasantisuk et al., 2015b). Only a mild dependence was found for the uniaxial
compressive yield strains (R2 = 0.44, p→ 0), with a positive slope for BV/TV and a
negative slope for fabric, which suggests that long trabeculae, i.e. trabeculae associated
with a high fabric eigenvalue, have lower macroscopic yield strain, as suggested by
Matsuura et al. (2008). This is because these trabeculae are prone to earlier buckling.
Since no clear relationship between fabric tensor and macroscopic yield strains was
found, use of an isotropic yield surface formulation in strain space is more practical for
real applications.

In uniaxial macroscopic tension, solid phase strains are almost exclusively tensile
and independent of density (Bayraktar and Keaveny, 2004; Lambers et al., 2014). The
highly oriented microstructure of trabecular bone results in yield strains at the solid
phase and at the macroscale being very similar in tension. When trabecular bone
is loaded in macroscopic compression, yield mechanisms are different: in this case
yielding at the solid phase was found to occur both due to tension, arising from bending
and buckling of trabeculae, and compression. As expected, considerable tensile strains
in trabeculae for low density samples were found, as has been previously reported
in the literature (Bevill et al., 2006; Morgan et al., 2004; Stölken and Kinney, 2003).
This “density dependence” results in macroscopic yield variation being displayed via a
small spread of yield points in compression-compression quadrants (Fig. 6.1a-c), as
shown by the mild relationship between compressive uniaxial yield strains and BV/TV
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and fabric. This also implies that solid phase uniaxial yield strain asymmetry is not
fully maintained at the macroscale and generally reduces with increasing porosity and
increasing fabric eigenvalues. These results are consistent with the experimental results
of Lambers et al. (2014) in the sense that the number of microscopic yielded sites in
macroscopic compression and in macroscopic tension are similar in number, but in
macroscopic tension the microscopic yielded zones have more localised strains, which
could be related to microcrack initiation and propagation.

Except for Panyasantisuk et al. (2015b), the few previous studies which have
evaluated the macroscopic yield surface of trabecular bone from its microstructure have
all used a bilinear criterion, with yield strain asymmetry. This constitutive model uses a
reduced stiffness beyond defined tissue yield values (Bayraktar et al., 2004a; Sanyal
et al., 2015; Wolfram et al., 2012). In this Chapter, the solid phase of trabecular bone
was modelled with a Drucker-Prager type criterion (hyperbolic approximation to the
cone), which has been validated via previous experimental studies (Carnelli et al., 2010;
Tai et al., 2006). This Chapter also considered macroscopic yield strains arising from
160 different load cases, while some recent studies have been limited to 17 load cases
(Panyasantisuk et al., 2015b; Wolfram et al., 2012). In order to compare the results
obtained here to those in literature, 17 strain cases similar to those in the cited studies
were considered, which resulted in errors of 11.4% for the isotropic case and 10.3% for
the orthotropic case. The errors for the same sample but taking into account all 160
strain cases were 11.2% for the isotropic case, 10.4% for the orthotropic case, and 7.8%
for the anisotropic case. In other words, the 17 strain cases lead to errors of a similar
magnitude to those obtained using all 160 strain cases.

In order to further examine the effect of the considered strain cases on the fitting error,
a single sample was considered with a different set of strain cases. The fitting errors
were evaluated considering all normal strain cases proposed by Wolfram et al. (2012)
(14 cases) and all the shear cases used in this study (26 cases). The obtained errors
were 18.0%, 16.3% and 7.6% for isotropic, orthotropic and anisotropic assumptions
respectively. With the 17 load cases mentioned previously, the errors reduce to 9.8%
and 6.5% for isotropic and orthotropic assumptions respectively. With all the 160 load
cases the errors were 13.3%, 12.9% and 9.1% for isotropic, orthotropic and anisotropic
assumptions respectively. This illustrates that shear cases contribute significantly to
anisotropy, and that the fitting errors clearly depend on the considered load cases,
which illustrates the importance of examining a large range of complex load cases.
With respect to combined normal and shear strain spaces, the shear component of the
macroscopic yield strain is often found to increase when there is a compressive normal
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component, indicating a typical cellular solid behaviour (Fenech and Keaveny, 1999;
Gibson and Ashby, 1999).

There is a certain number of limitations present in this study. A quadric yield surface
was chosen because of its simplicity and because it has been used in previous studies.
Quadrics require fewer parameters than higher-order criteria and they are smooth
surfaces, not requiring the use of several plastic multipliers. Although the primary aim
was to examine the effect of material symmetry assumptions on the macroscopic yield
surface of trabecular bone, the fitting errors clearly depend on the shape of the chosen
surface and on the considered load cases. While full anisotropy was examined with a
quadric yield surface, a previous study employed a higher-order polynomial surface (a
quartic), but restricted it to transverse isotropy (Sanyal et al., 2015); a restriction which
is clearly not supported by the results of this study. Also, hardening was not considered
in this study (Carnelli et al., 2010) because there is no agreement on the hardening law
at the solid phase level. Nonetheless, previous experimental and theoretical studies,
such as Schwiedrzik et al. (2014), Luczynski et al. (2015) and Fritsch et al. (2009)
showed that the extracellular matrix of bone has a hardening behaviour; however, the
extracellular matrix could be treated as a scale lower than the solid phase considered in
these µFE simulations.





Chapter 7

Post-yield macroscopic behaviour

This Chapter evaluates the macroscopic post-yield behaviour of trabecular bone, due
to the inclusion of not only hardening but also stiffness degradation at the solid phase
level. This chapter resulted in the following submission:
- Levrero-Florencio, F., Manda, K., Margetts, L., and Pankaj, P. (2017). Effect of
including damage at the tissue level in the nonlinear homogenisation of trabecular bone.
Biomechanics and Modeling in Mechanobiology (under review).

There is little information on the post-elastic macroscopic response of trabecular
bone, and on how it evolves with further loading; hardening is usually assumed to be
isotropic in computational models (Garcia et al., 2009; Schwiedrzik and Zysset, 2013).
It is not possible to experimentally test different load directions after yield in the same
sample since samples tested once cannot be retested as damage in one direction may
affect the rest of directions and finding two or more samples with highly resembling
microstructure is not possible. This makes it impossible to experimentally obtain the
macroscopic multiaxial post-yield behaviour of trabecular bone. The µFE approach
again presents an opportunity to understand this via computational means. To evaluate
the macroscopic post-yield response, once again, the solid phase constitutive model
needs to be provided. Bone shows two main mechanisms of energy dissipation after
yield: plastic deformation and elastic stiffness reduction, or damage (Schwiedrzik and
Zysset, 2013). With regard to hardening of the solid phase, it has been assumed to
be 5% slope of its elastic stiffness in previous homogenisation studies (Bayraktar and
Keaveny, 2004; Wolfram et al., 2012). A recent study showed that the hardening of the
extracellular matrix, which can be considered to be a scale below the solid phase of
trabecular bone, is, however, slightly nonlinear (Luczynski et al., 2015; Schwiedrzik
et al., 2014).

Damage behaviour of bone at different scales has been studied and modelled in
several studies (Garcia et al., 2009; Keaveny et al., 1999; Schwiedrzik and Zysset,
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2013). Garcia et al. (2009) developed a macroscopic constitutive model for bone - a
yield surface defined in stress space using the fabric-based elastic compliance tensor
and a damage threshold modelled with a halfspacewise generalisation of the Hill
criterion (Rincón-Kohli and Zysset, 2009). Schwiedrzik and Zysset (2013) developed a
constitutive model for bone which is potentially applicable to different length scales,
ranging from the ultrastructural to the macroscopic level. It includes anisotropic
elasticity based on a multiscale homogenisation scheme proposed by Reisinger et al.
(2010), an eccentric-elliptical surface which describes the onset of yield and damage
(Wolfram et al., 2012), and visco-plasticity described by a Perzyna formulation (Ponthot,
1998). The damage variable used in these two above cited studies is scalar and thus
describes isotropic damage evolution, i.e. damage equally affects all directions. While
this presents a relatively simple model it appears unlikely that damage due to loading in
one direction will affect stiffness components, isotropically, in all directions.

The primary aim of this Chapter is to evaluate how assumptions made for the solid
phase of trabecular bone affect its macroscopic post-yield behaviour. The Chapter first
assesses how the macroscopic stiffness components are affected by the initiation and
development of microscopic damage. It then considers how macroscopic damage is
related to the macroscopic strain norm and how well it can be predicted for different
load cases. Lastly, the Chapter assesses the evolution of the macroscopic yield surface,
in both strain and stress space.

7.1 Methods

7.1.1 Sample extraction and imaging

Twelve virtual cubes were extracted, as a larger set, from the cylindrical trabecular bone
specimens discussed in Chapter 5. The extraction of the cubes followed the process
discussed in Chapter 5. Important morphological indices of these 12 cubes can be found
in Table 7.1. As it can be seen, BV/TV ranges from low (14.8%) to relatively high
(30.3%); the range of SMIs is also considerably wide, ranging from a largely rod-like
sample (SMI = 1.59) to a largely plate-like sample (SMI = 0.52).

7.1.2 Solid phase constitutive model

The solid phase constitutive law used in this Chapter is an approximation to Drucker-
Prager as in Chapter 5, with the addition of the following damage law:

D = Dc(1− e−kp ε
p
), (7.1)
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Table 7.1 Morphological indices of the 12 used specimens.

Number of specimen BV/TV (%) DOA SMI Conn
1 30.3 2.67 0.52 1059
2 25.5 2.20 0.94 1285
3 18.1 3.47 1.33 235
4 14.8 2.65 1.59 209
5 16.5 2.13 1.37 740
6 15.5 2.69 1.45 586
7 17.7 2.59 1.40 493
8 22.2 3.47 0.84 622
9 24.6 2.85 0.88 847
10 20.3 1.61 1.16 1030
11 23.1 2.10 0.98 813
12 26.9 2.55 0.79 627

where Dc is the critical damage value, kp is the damage evolution constant, and ε
p is

the accumulated plastic strain (Euclidean norm of the plastic strain tensor).
In effective stress space, damage implies contraction of the yield surface. To prevent

that, the yield surface was defined in stress space (Schwiedrzik and Zysset, 2015), which
is

f (σσσ ,q) =
√

σσσ : F : σσσ +F : σσσ − (1+H isoε
p) = 0 (7.2)

and not in effective stress space, i.e.

f (σσσ ,q) =

√
σσσ : F : σσσ +F : σσσ

1−D
− (1+H isoε

p) = 0. (7.3)

This means that damage will not lead to softening of the yield surface; this assumption
is considered so that the desired hardening of 5% is preserved (Bayraktar and Keaveny,
2004).

7.1.3 Derivation and integration of the evolution equations

The residuals of the damaged quadric yield surface are{
Rσσσ

R f

}
=

{
σσσ − (1−D)De :

(
εεεe trial−∆ε

p N
∥N∥
)

√
σσσ : F : σσσ +F : σσσ − [1+H iso(ε

p trial +∆ε
p)]

}
, (7.4)

where N is defined in Eq. 3.89 and ε
p trial is the trial value of ε

p. Note the equivalence
between the increment in plastic strain defined in Eq. 3.88 and the increment in plastic
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strain defined as
∆εεε

p = ∆γ N = ∆ε
p N
∥N∥

. (7.5)

The residual of stresses in Eqs. 7.4 can be converted to a residual of elastic strains by
using εεεe = (1−D)−1(De)−1 : σσσ , as{

Rεεεe

R f

}
=

{
εεεe− εεεe trial +∆ε

p N
∥N∥√

σσσ : F : σσσ +F : σσσ − [1+H iso(ε
p trial +∆ε

p)]

}
. (7.6)

Therefore, the solution variables, x, in Eqs. 7.6 are

x =

{
εεεe

∆ε
p

}
. (7.7)

Equations 7.6 are then linearised as{
dεεεe trial

0

}
=

{[
I+∆ε

p ∂

∂εεεe

( N
∥N∥
)]

: dεεεe +d∆ε
p
[

N
∥N∥ +∆ε

p ∂

∂∆ε
p

( N
∥N∥
)]

N :
(

∂σσσ

∂εεεe : dεεεe + ∂σσσ

∂D D′d∆ε
p)−H isod∆ε

p

}
, (7.8)

and therefore the Jacobian of the CPPM becomes

[JCPPM] =

[
I+∆γ

∂

∂εεεe

( N
∥N∥
) N
∥N∥

∂ f
∂εεεe

∂ f
∂∆γ

]
=

[
A11 A12

A21 A22

]
, (7.9)

where the corresponding coefficients are shown in Table 7.2.

Table 7.2 Coefficients of the Jacobian of the CPPM of the generic quadric with damage
(Schwiedrzik and Zysset, 2013).

Coefficient Mathematical expression

A11 I+ 1−D
∥N∥

(
I− 1

(∥N∥)2 N⊗N
)

: ∂N
∂σσσ

: De

A12
N
∥N∥

A21 (1−D)N : De

A22 N : ∂σσσ

∂D D′−H iso

∂σσσ

∂D −De : εεεe

∂N
∂σσσ

F√
σσσ :F:σσσ

− (F:σσσ)⊗(σσσ :F)
(
√

σσσ :F:σσσ)3

D′ Dc kp e−kp(ε
p trial+∆ε

p)
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Derivation of the consistent tangent operator

From the first row of Eq. 7.8 the following is obtained:[
I+∆ε

p 1−D
∥N∥

(
I− 1

(∥N∥)2 N⊗N
)

:
∂N
∂σσσ

: De
]

: dεεε
e +

N
∥N∥

d∆ε
p = dεεε

e trial. (7.10)

The differential of stress can be obtained by using dεεεe = 1
1−D(D

e)−1 :
(
dσσσ− ∂σσσ

∂∆ε
p d∆ε

p),
as [

I+∆ε
p 1−D
∥N∥

(
I− 1

(∥N∥)2 N⊗N
)

:
∂N
∂σσσ

: De
]

: dεεε
e

=
[ 1

1−D
(De)−1 +∆ε

p 1
∥N∥

(
I− 1

(∥N∥)2 N⊗N
)

:
∂N
∂σσσ

]
:
(
dσσσ − ∂σσσ

∂∆ε
p d∆ε

p),
(7.11)

which, when applied to Eq. 7.10, becomes

dσσσ = P :
(

dεεε
e trial−d∆ε

p N
∥N∥

)
+

∂σσσ

∂∆ε
p d∆ε

p

= P : dεεε
e trial +

(
∂σσσ

∂∆ε
p −P :

N
∥N∥

)
d∆ε

p,

(7.12)

where the fourth-order tensor P is defined as

P=
[ 1

1−D
(De)−1 +∆ε

p 1
∥N∥

(
I− 1

(∥N∥)2 N⊗N
)

:
∂N
∂σσσ

]−1
. (7.13)

From the second row of Eq. 7.8, the following is obtained:

N : dσσσ +
(

N :
∂σσσ

∂D
D′−H iso

)
d∆ε

p = 0. (7.14)

By using Eqs. 7.12 and 7.14, we get to

N :
[
P : dεεε

e trial +d∆ε
p
(
−P :

N
∥N∥

+
∂σσσ

∂∆ε
p

)]
+
(

N :
∂σσσ

∂∆ε
p −H iso

)
d∆ε

p = 0

→ d∆ε
p =

N : P : dεεεe trial

N :
(
P : N
∥N∥ −2 ∂σσσ

∂∆ε
p

)
+H iso

,

(7.15)

which is then inserted into Eq. 7.12 to obtain

dσσσ = P : dεεε
e trial +

N : P : dεεεe trial

N :
(
P : N
∥N∥ −2 ∂σσσ

∂∆ε
p

)
+H iso

(
∂σσσ

∂∆ε
p −P :

N
∥N∥

)
. (7.16)
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The final expression of the, generally unsymmetric, consistent elastoplastic tangent
operator, Dep, is obtained by taking into account that Dep = ∂σσσ

∂εεεe trial , as

Dep = P+

(
∂σσσ

∂∆ε
p −P : N

∥N∥

)
⊗ (N : P)

N :
(
P : N
∥N∥ −2 ∂σσσ

∂∆ε
p

)
+H iso

. (7.17)

7.1.4 Computational methods

The set of load cases used in this Chapter was restricted to uniaxial cases, as shown
in Table 7.3. The used boundary conditions were KUBC (Wang et al., 2009). As in
previous chapters, the FE simulations were run on a Cray XC30 MPP supercomputer
hosted by ARCHER, UK National Supercomputing Service, and run with an in-house

finite strain elastoplasticity parallel implicit FE solver, developed within the framework
of ParaFEM. Elastic homogenisation was performed at each time increment of the
simulation, as described in Section 2.2.1 of Chapter 2 (van Rietbergen et al., 1996,
1995). This greatly increased the computation time needed for these simulations to
finish, as in each time increment, six linear algebraic systems (elastic homogenisation)
plus one per each global Newton-Raphson iteration are solved.

To enlarge the region of convergence of the Newton-CPPM scheme, the primal-
CPPM scheme was used instead, as developed in Algorithm 2 in Chapter 3; however,
this constitutive law does not follow the assumptions for global convergence as stated
in Section 3.2.3 of Chapter 3, due to the presence of damage. Therefore, to ensure
that a possible convergence fail of the local (integration point-based) CPPM scheme
does not influence the results of the global FE simulation, whenever this happens, this
information is broadcasted to all MPI processes in order to cut down the time increment
to half of its value, and then the time increment is restarted.

7.1.5 Definition of the macroscopic strain points

As in previous chapters, the macroscopic yield points were assessed with the 0.2%, as
described in Fig. 5.3 in Chapter 5. However, the slope used to asses these points was
calculated from the damaged macroscopic stiffness tensor as described below.

The homogenised macroscopic stiffness tensor was calculated at every time incre-
ment and the damage variable at each integration point was used to reduce the solid
phase stiffness tensor isotropically. Since the sample was already aligned according to
the directions described by the MIL fabric tensor, the resulting elasticity tensor was
assumed to be orthotropic and aligned with the MIL axes (Odgaard et al., 1997). Further
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Table 7.3 Description of the performed uniaxial load cases.

Type of analysis Description Number
ε11 > 0; ε22 = ε33 = 0
ε12 = ε13 = ε23 = 0

ε22 > 0; ε11 = ε33 = 0
ε12 = ε13 = ε23 = 0 Tensile normal 3

ε33 > 0; ε11 = ε22 = 0
ε12 = ε13 = ε23 = 0

ε11 < 0; ε22 = ε33 = 0
ε12 = ε13 = ε23 = 0

ε22 < 0; ε11 = ε33 = 0
ε12 = ε13 = ε23 = 0 Compressive normal 3

ε33 < 0; ε11 = ε22 = 0
ε12 = ε13 = ε23 = 0

ε11 = ε22 = ε33 = 0
ε12 ̸= 0; ε13 = ε23 = 0

ε22 = ε11 = ε33 = 0
ε13 ̸= 0; ε12 = ε23 = 0 Shear 3

ε33 = ε11 = ε22 = 0
ε23 ̸= 0; ε12 = ε13 = 0

Total 9

macroscopic points were defined at 0.3%, 0.4% and 0.5% macroscopic strain norm by
using the procedure described in Fig. 7.1.

The appropriate slope to define the macroscopic strain points is calculated for the
corresponding load case at each time increment. Each of these strain points is calculated
when the macroscopic strain norm immediately surpasses the corresponding value
(0.2%, 0.3%, 0.4% or 0.5%), and then it is linearly interpolated by using the values of
the homogenised stress and macroscopic strain norms of the current and previous time
increments. An example is presented here for a uniaxial case in direction 1.

In the following, the homogeneous stress is the projection of the macroscopic
elastic strain through the damaged macroscopic stiffness tensor; the first subscript
denotes a label and the following subscripts denote indices of the tensor. In the case of
superscripts, the first superscript denotes a label and the following superscripts denote
powers. Consider application of a normal uniaxial strain in direction 1, the elastic
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Fig. 7.1 Definition of the macroscopic strain points corresponding to macroscopic strain norms
of 0.2%, 0.3%, 0.4% and 0.5% for the compression case in direction 1 of the densest sample
(BV/TV=30.3%). The slope at 0.5% macroscopic strain norm is approximately 12% lower than
the undamaged slope. The stress and strain used are the Second Piola-Kirchhoff stress tensor
and Green-Lagrange strain tensor, respectively.

system can be then written in indicial notation as

σ0 i j = De
0 dam i j11ε

e
0 11 . (7.18)

When the norm of the corresponding homogenised stress is calculated, the following
expression can be derived by taking into account the orthotropy of the macroscopic
stiffness tensor, such as

∥De
0 dam i j11ε

e
0 11∥=

√
De 2

0 dam 1111εe 2
0 11 +De 2

0 dam 2211εe 2
0 11 +De 2

0 dam 3311εe 2
0 11 , (7.19)

and thus the damaged slope Kdam used to calculate the macroscopic yield points can be
expressed as

Kdam =
√
De 2

0 dam 1111 +De 2
0 dam 2211 +De 2

0 dam 3311 . (7.20)

7.1.6 Young’s moduli - density power relationship

In order to check whether the macroscopic orthotropic Young’s moduli (E11, E22 and
E33) may be estimated from BV/TV alone, the macroscopic on-axis Young’s moduli
was estimated by using a power relationship (Hernandez et al., 2001; Morgan et al.,
2003; Yang et al., 1998).
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A Young’s modulus−ash density power relationship which takes into account the
solid phase elastic modulus (Morgan et al., 2003; Yang et al., 1998) was used to estimate
the apparent on-axis modulus. This allows for comparison with the orthotropic elastic
moduli calculated through elastic homogenisation. This power law reads as

E0 = 1240Eµ BV/TV 1.8. (7.21)

7.2 Results

7.2.1 Macroscopic damage

The damaged orthotropic stiffness components (E11, E22, E33, G12, G13 and G23) are
obtained from the damaged macroscopic stiffness tensor. These are then normalised
by dividing them by the corresponding undamaged orthotropic stiffness and plotted for
every sample and for every considered load case (Fig. 7.2).

Figure 7.2 shows that in spite of isotropic damage being assumed at the solid phase
level, its effect on the macroscopic level is not isotropic. It can be seen that while all
stiffness components reduce in all load cases, the stiffness component corresponding
to the load case the sample is subjected to reduces the most. It is also interesting to
note that in the case of a uniaxial normal load case, the shear stiffness components
corresponding to the shear planes containing the loaded normal component reduce more
than the remaining shear component (e.g. if the normal case is in direction 1, G12 and
G13 reduce more than G23).

Stiffness reductions for each of the considered load cases were related to density,
corresponding initial orthotropic stiffness and macroscopic strain norm through multi-
linear regressions. Note that macroscopic strain norm could act as the plastic internal
variable defining post-yield evolution. Only relationships with respect to macroscopic
strain norms were found to be significant (p < 0.05). Therefore, these multilinear
regressions were re-evaluated as linear regressions, only with respect to macroscopic
strain norms. The coefficients of determination R2, the intercepts and the slopes of these
fits are shown in Table 7.4. Figure 7.3 illustrates these fits along with the actual data
points. It can be seen from this figure that damage development under uniaxial tension
and uniaxial compression can be reasonably well predicted by a linear relationship with
respect to the macroscopic strain norm, but not so well for shear, as the coefficients of
determination suggest. It is also important to point out that for the considered range of
plastic strains, damage development can be reasonably well approximated with a line
although the relationship between damage and accumulated plastic strain at the solid
phase is exponential (Eq. 7.1).
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Fig. 7.2 Normalised orthotropic stiffness components for all the samples, and for all the consid-
ered load cases: tensile loading in direction 1(a), 2(b) and 3(c) (row 1 of Table 7.3); compressive
loading in direction 1(d), 2(e) and 3(f) (row 2 of Table 7.3); and shear loading in plane 1-2(g),
1-3(h), 2-3(i) (row 3 of Table 7.3). The colour coding is on the basis of density and is used as a
labelling mechanism. A macroscopic strain norm of 0.5% has been considered here.

Table 7.4 Values of the coefficients of determination R2, intercepts and slopes for the linear fits
between damage and macroscopic strain norm, for all the considered load cases.

Load case +ε11 +ε22 +ε33 −ε11 −ε22 −ε33 ε12 ε13 ε23

R2 0.92 0.91 0.95 0.87 0.84 0.85 0.57 0.37 0.60

Intercept (%) 0.66 0.66 0.52 1.96 2.37 1.89 1.22 1.45 0.64

Slope (%) 833 874 880 1718 1727 1758 1211 1062 1102

Figure 7.4 shows the stiffness reduction for the most porous and densest samples,
for the load case in which tensile strains are applied in direction 1, for all the considered
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Fig. 7.3 Linear fits between damage and macroscopic strain norm, and the corresponding data
points, for each of the considered load cases.

macroscopic strain norm levels. As expected, the decrease in stiffness increases with
increasing strain norm. In the case of isotropic damage, it would be expected that
all orthotropic stiffness components were equally affected. Notwithstanding, this is
not the case; for example, for a tensile case in direction 1, E11 is more reduced than
the rest, and this effect is different for the two samples compared in Fig. 7.4. In the
denser sample, the difference in stiffness reduction between the stiffness component
corresponding to the load case the sample is subjected to and the others is smaller than
for the porous sample. Therefore, linear regressions between density and the difference
between the stiffness reduction in the component corresponding to the load case the
sample is subjected to and the average of the rest of the stiffness components were
considered. However, poor statistical significance was found (p > 0.05), indicating that
this was not a general trend.
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Fig. 7.4 Decrease in stiffness components for the most porous (BV/TV=14.8%) and densest
(BV/TV=30.3%) samples due to tensile loading in direction 1, and for all the considered
macroscopic strain norm levels.

7.2.2 Macroscopic hardening

Macroscopic yield stresses have been related to fabric and density in previous studies;
however, relationships between macroscopic yield strains and these microarchitectural
indices are not so clear (Panyasantisuk et al., 2015b; Wolfram et al., 2012). Also,
as previously stated, the orthotropic stiffness components have been related to these
microarchitectural indices (Odgaard et al., 1997; Zysset, 2003). Therefore, inclusion of
orthotropic stiffness in the regression for the macroscopic yield stresses was considered.
Macroscopic yield stress norms were related to the corresponding initial orthotropic
stiffness and the macroscopic strain norms through multilinear regressions. These fits
and the corresponding data points are shown in Fig. 7.5. It can be seen that higher
yield stress results from higher initial stiffness and higher macroscopic strain norm, as
expected. The coefficients of determination R2 and slopes of these fits are shown in
Tables 7.5 and 7.6. All of these fits were found to be statistically significant (p < 0.05).

Table 7.5 Values of the coefficient of determination R2 and slopes for the linear fits between
macroscopic yield stress norm, corresponding initial stiffness and macroscopic strain norm, for
all the considered normal load cases. The first slope is with respect to the initial stiffness and
the second slope is with respect to the macroscopic strain norm.

Load case +ε11 +ε22 +ε33 −ε11 −ε22 −ε33

R2 0.98 0.94 0.89 0.97 0.91 0.81

Slope (·10E−3) 3.73 5.19 3.40 11.31 17.44 10.83

Slope (MPa) 121.9 135.5 175.7 649.0 679.5 687.4
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Fig. 7.5 Macroscopic yield stress norms for all the considered samples, for all the considered
macroscopic strain norm levels, and for all the considered load cases. Str. stands for macroscopic
strain norm.

Table 7.6 Values of the coefficient of determination R2 and slopes for the linear fits between
macroscopic yield stress norm, corresponding initial stiffness and macroscopic strain norm, for
all the considered shear load cases. The first slope is with respect to the initial stiffness and the
second slope is with respect to the macroscopic strain norm.

Load case ε12 ε13 ε23

R2 0.94 0.76 0.85

Slope (·10E−3) 8.29 7.34 8.94

Slope (MPa) 362.6 344.1 339.2

Macroscopic yield strain norms were related to the macroscopic strain norms through
linear regressions. These fits and the corresponding data points are shown in Fig. 7.6.
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The coefficients of determination R2 and slopes of these fits are provided in Table 7.7.
All of these fits were found to be statistically significant (p < 0.05).

Fig. 7.6 Macroscopic yield strain norms for all the considered macroscopic strain norm levels,
for all the considered samples, and for all the considered load cases.

Table 7.7 Values of the coefficient of determination R2 and slopes for the linear fits between
macroscopic yield strain norm and macroscopic strain norm, for all the considered load cases.

Load case +ε11 +ε22 +ε33 −ε11 −ε22 −ε33 ε12 ε13 ε23

R2 0.85 0.98 0.88 0.70 0.88 0.66 0.48 0.30 0.63

Slope 1.21 1.18 1.07 2.06 2.00 1.81 1.91 1.79 1.59

7.2.3 Power law relationships

Power relationships between the on-axis elastic modulus of trabecular bone and its ash
density have been thoroughly researched in previous studies (Hernandez et al., 2001;
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Morgan et al., 2003; Schileo et al., 2007). One of the relevant power law relationships,
since it takes into account tissue elastic modulus (Yang et al., 1998), was used to estimate
the macroscopic on-axis Young’s modulus of the trabecular bone specimens. These
estimated values were then compared to the orthotropic Young’s moduli obtained from
the undamaged macroscopic stiffness tensor from the elastic homogenisation scheme
performed at the beginning of the corresponding µFE simulation. The Young’s moduli
estimates obtained through Eq. 7.21 and the orthotropic Young’s moduli obtained
through elastic homogenisation are shown in Table 7.8.

Table 7.8 Power law-estimated on-axis Young’s modulus (E0), and orthotropic Young’s moduli
obtained through elastic homogenisation (E11, E22 and E33).

Number of specimen E0 (MPa) E11 (MPa) E22 (MPa) E33 (MPa)
1 1,791 2,580 1,058 895
2 1,262 1,656 816 792
3 689 1,249 692 347
4 470 779 482 272
5 537 919 502 461
6 472 822 557 297
7 628 1,125 521 367
8 995 1,542 941 429
9 1,198 1,771 1,024 650
10 805 922 709 512
11 1,069 1,585 743 630
12 1,413 2,025 946 860

As it can be observed in Table 7.8, power law-estimated Young’s modulus are
generally lower than the largest orthotropic Young’s modulus obtained through elastic
homogenisation.

7.3 Discussion

The damage behaviour of trabecular bone at the macroscale has been assessed in some
previous studies for relatively simple load scenarios (Garcia et al., 2009; Sun et al.,
2010; Zioupos et al., 2008). Damage at the microscopic level has also been previously
considered (Gupta et al., 2006). This study aims to bridge both scales by investigating
the damage behaviour of trabecular bone at the macroscale through a homogenisation-
based multiscale approach and the use of multiple uniaxial load cases for trabecular
bone samples with very detailed geometry. Twelve µFE meshes of samples covering a
wide range of BV/TV and nine uniaxial load cases per sample were investigated, with
plasticity and damage included at the solid phase level.



142 Post-yield macroscopic behaviour

The constitutive behaviour of the solid phase, including its damage behaviour,
was considered to be isotropic. In this study, isotropic damage at the microscale
was considered, which results in an anisotropic macroscale damage response, which
depends on the loading scenario (Fig. 7.2). This means that the orthotropic stiffness
component related to the load case the sample is subjected to is more reduced than the
rest of components. It is also interesting to note that uniaxial compressive or tensile
loading results in damage not only in the direction of loading but also in other normal
and shear directions (Fig. 7.2). As an example, if a sample is subjected to tensile
loading in direction 1, E11 is more affected than E22 and E33; with respect to the shear
components, G12 and G13 are more affected than G23. Some previous studies which
have modelled damage at the macroscale have assumed an isotropic behaviour (Garcia
et al., 2009; Schwiedrzik and Zysset, 2013), which may be an acceptable assumption
for proportional loading, but not for changing loads, as would be expected during
physiological activities.

Damage can be linearly related to the macroscopic strain norm with high coefficients
of determination (R2 > 0.84), except for shear cases (R2 < 0.60) (Fig. 7.3). These
results also suggest that the evolution of damage at the macroscale is linear in the range
of considered macroscopic strains. Beyond these strain levels other effects, such as
cracking and fracture of trabeculae, can lead to structural failure and softening if further
loading is applied (Hosseini et al., 2014; Kopperdahl and Keaveny, 1998). These were
not considered in this study since it is expected that the relatively low levels of applied
macroscopic strain will not trigger these effects.

The values of the slopes of the linear fits are shown in Table 7.4; their values show
that damage propagation increases differently for uniaxial tension and compression load
cases, with the value for compression cases being around twice the value for tension.
This may be due to the fact that under compression, heterogeneous stress distributions
occur that include tensile stresses at the solid phase level due to bending and buckling
of trabeculae (Bevill et al., 2006; Stölken and Kinney, 2003). Additionally, damage and
plasticity in compression are far more diffused than in tension, where they are more
localised (Lambers et al., 2014). This leads to larger volumes of bone yielding (and thus
being damaged as well) throughout the compression process when compared to tension.
This is captured by the homogenisation procedure and expressed as a higher slope for
the damage progression during compression. Cracks are more localised and propagate
faster in tension than in compression, eventually leading to catastrophic fracture of
individual trabeculae. Moreover, it is also likely that cracks under compression exhibit
some partial closure since bone is a quasi-brittle material, leading to reduced effects of
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damage on the stiffness. Nonetheless, both these effects (fracture and crack closure)
have not been included in the solid phase constitutive model.

If individual samples are considered, it can be seen that damage evolves with
increasing macroscopic strain norm, and that the low density sample has a considerable
difference in damage between the stiffness component corresponding to the load case
the sample is subjected to and the rest of stiffness components, an effect which is not
observed in the high density sample (Fig. 7.4). However, the expectation that high
density, more continuum-like, trabecular bone samples would partially upscale the
isotropic damage behaviour of the solid phase was not supported by the statistical
analysis as density was not found to be a good predictor of this. Perhaps, more samples
with a wider range of densities and microarchitectures could lead to morphological
indices being related to damage.

Several previous studies performing nonlinear homogenisation used the 0.2% strain
rule to determine the macroscopic yield of trabecular bone (Panyasantisuk et al., 2015b;
Wolfram et al., 2012). However, this study shows that if damage is included, it results in
a stiffness reduction when the macroscopic strain norm reaches a value of 0.2% (Table
7.4), which is the value considered as macroscopic yield. This implies that a modified
elasticity tensor may need to be used once macroscopic yield is reached. This can be
done by considering a damaged slope obtained by joining the origin and the yield stress
at 0.2% macroscopic strain norm. Previous studies have employed this method with an
isotropic reduction of the elastic stiffness (Wolfram et al., 2012), however, this study
shows that the macroscopic damage is not isotropic.

With respect to the hardening of trabecular bone at the macroscale, the fits show that
yield points described in both stress and strain spaces show linear hardening for this
range of macroscopic plastic strains. However, as for damage propagation, the slopes
are found to be different for different load cases (Tables 7.5, 7.6 and 7.7); hardening in
compression, tension and shear are considerably different. Hardening in compression is
considerably larger than for the rest of the cases, which is likely to be due to the fact
that Drucker-Prager is used as the solid phase yield criterion, implying that the lack of
hydrostatic compression yield may be partially upscaled to the macroscale, resulting in
an increased evolution of the stress norm throughout the compression loading process.
Although most models of trabecular bone at the macroscale use nonlinear hardening
laws (Garcia et al., 2009; Schwiedrzik and Zysset, 2013), the results of this study show
a hardening which depends on the considered load case (i.e. tension, compression or
shear), and a linear relationship between the macroscopic yield stress/strain norms and
the macroscopic strain norm. However, in this study the considered range of plastic
strains is small and hardening may become nonlinear if further loading is applied.
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When the macroscopic strain norm was assessed, the orthotropic assumption for the
macroscopic elastic stiffness was used. The macroscopic strain is readily available since
it is directly applied through the considered boundary conditions. Nonetheless, in some
shear load cases the homogenised stress presents some non-zero normal components
(here non-zero means that a normal stress component is, at most, one order of magnitude
lower than the corresponding shear component of the stress tensor). This implies that
even for these highly aligned samples, in-plane trabeculae experience normal stresses
during macroscopic shear. It was shown by Sanyal et al. (2012) that macroscopic
shear load cases are dominated by tensile solid phase stresses in trabeculae which are
aligned 45°from the shear in-plane axes. The homogenisation procedure is likely to have
captured these tensile stresses when assessing the homogenised stress of the considered
VEs. This suggests that at the macroscopic level the normal and shear behaviours do
have some interaction, which may outline a possible limit of the orthotropic macroscopic
elastic assumption for trabecular bone.

Macroscopic on-axis Young’s modulus and macroscopic ash density power relation-
ships have been thoroughly studied in the past (Hernandez et al., 2001; Morgan et al.,
2003; Schileo et al., 2007). These estimated values were compared to the orthotropic
Young’s moduli obtained through elastic homogenisation, and the former were found
to be lower, approximately half to three quarters of the values obtained computation-
ally, and are always within the range established by the lowest to largest macroscopic
orthotropic Young’s moduli. Panyasantisuk et al. (2015a) found that the macroscopic
orthotropic components of trabecular bone with KUBCs in elastic homogenisation
may lead up to mean errors of 55% in comparison with the components obtained with
periodicity-compatible mixed uniform boundary conditions1, for samples of BV/TV
between 11.6% and 20.4%; there is a tendency of decreasing error with increasing
BV/TV, up to errors of 19.58% for samples of BV/TV between 32.8% and 40.0%. The
overestimation of macroscopic properties due to the use of KUBCs could indeed suffice
to explain the differences in the estimated Young’s modulus and those obtained from
elastic homogenisation (Table 7.8).

This study has a number of limitations. Damage behaviour of bone at the tissue
level has been researched in some previous studies (Schwiedrzik and Zysset, 2013,
2015), but the maximum damage value is not known (Schwiedrzik and Zysset, 2015),
so it was treated as 90% reduction of the initial stiffness as an approximation and to
avoid numerical difficulties related to the complete loss of stress carrying capacity in
some part of the model; more research on the damage behaviour at the solid phase is

1These boundary conditions yield similar results to PBCs for 5 mm cubes, as mentioned in Pahr and
Zysset (2008).
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needed. The effect of different maximum damage thresholds at the solid phase level
was also checked (including 100% maximum reduction) for one sample and found that
the non-isotropic trend in macroscopic damage is maintained and that the difference
of macroscopic damage values is relatively small between 90% and 100% maximum
reduction. There is plenty of experimental data on uniaxial load cases in literature
(Bayraktar and Keaveny, 2004; Keaveny et al., 1997; Manda et al., 2016; Sanyal et al.,
2012), but reproducing the uniaxial cases performed in this study is difficult because of
the considered boundary conditions. Therefore, validation was performed by comparing
macroscopic yield strains to data from similar studies. As in several previous studies
(Panyasantisuk et al., 2015b; Wolfram et al., 2012), in this study the solid phase was
assumed to be homogeneous. It has previously been shown that trabecular bone tissue
has, however, heterogeneous TMD, and thus heterogeneous properties (Blanchard et al.,
2013; Renders et al., 2008). Notwithstanding, the effects of these heterogeneities in
models with geometrical nonlinearities is still unknown and further research is needed to
establish comparisons. For the sake of simplicity, and to be able to compare these results
with published data, the solid phase properties were kept as homogeneous. The solid
phase was modelled as a damage-plastic material without fracture, which is perhaps
appropriate for the level of strains applied; larger strains are likely to cause fracture, an
effect which has been neglected in this study. It has been previously shown that ductile
solid phase behaviour overestimates the experimental yield properties, especially at
low BV/TV (Nawathe et al., 2013). Only uniaxial load cases for a relatively small
number of samples were evaluated. In order to describe the full multiaxial behaviour of
trabecular bone, more load cases are needed, which remains as future work. However,
the computational cost of performing a complete nonlinear simulation with the high
resolution used in this study and with damage, plasticity, and an elastic homogenisation
at each time increment is very high. It is also important to point out that as damage
grows, the stiffness matrix becomes increasingly unsymmetric, which decreases the
convergence rate of the used iterative linear algebraic solver (PCG), as this method is
only efficient at solving positive-definite linear algebraic systems.





Chapter 8

Conclusions and future work

This study evaluated the macroscopic mechanical behaviour of trabecular bone by
means of homogenisation-based multiscale techniques and large scale FE analyses. The
macroscopic yield surface of trabecular bone was thoroughly evaluated: the effect of
varying yield surfaces at the solid phase level on the macroscopic behaviour was assessed
and closed-form expressions of yield surfaces were fitted to the macroscopic yield strains
obtained through the µFE simulations. The post-yield macroscopic behaviour was also
studied by studying the macroscopic hardening and damage progression, which were
both assessed by including damage at the solid phase level and then upscaling its effect
to the macroscale.

It is expected that the knowledge of the macroscopic behaviour of trabecular bone
gained in this study helps in creating more precise continuum FE models of whole
bones to be able to more accurately predict bone failure and/or implant stability. This
work is also likely to lead to improved diagnosis of bone quality.

8.1 Conclusions

8.1.1 High-performance computing and nonlinear modelling

The developed driver program was created in order to be able to run large µFE simula-
tions of the nonlinear mechanical behaviour of trabecular bone, which was not possible
with the use of commercial packages.

The driver program was successfully incorporated into the parallel layer of ParaFEM,
and was found to maintain the high performance and scalability when used in large HPC
platforms, such as ARCHER, BlueGene/Q or Eddie. With this driver program, finite
strain elastoplasticity (i.e. geometrical and material nonlinearities) were implemented
and they were found to be robust and give meaningful results. These results were
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compared with the commercial package ABAQUS for the same problems and were
found to compare very well, within numerical tolerance of the used iterative methods
(iterative linear algebraic solvers were used in ParaFEM, whereas direct solvers were
used in ABAQUS; furthermore, the convergence criteria of the Newton-Raphson scheme
might have been slightly different).

8.1.2 Effect of the solid phase constitutive law on the macroscopic
behaviour

The study examined how yield at the macroscale is influenced by the yield criterion
employed for the tissue, or solid phase. The main difference between the two solid
phase yield criteria was the presence of compressive hydrostatic yielding, present in
one of them. Homogenisation-based multiscale techniques were then used to assess the
macroscopic yield strains for the two sets of yield properties and for three samples with
very different morphology.

It can be hypothesised that for a porous material like trabecular bone, yielding is
likely to be due to yielding of individual trabeculae as beams and struts. Consequently,
if the uniaxial tension and compression yield limits are properly set, the choice of yield
criterion should not make a large difference.

It was found that this hypothesis holds for porous samples but not for dense samples,
especially in compression-dominated load cases. In porous samples, buckling-related
effects reduce the strength in compression-dominated load cases and the solid phase is
less likely to experience hydrostatic compression. On the other hand, when a Drucker-
Prager yield surface is used, the denser, more continuum-like, sample suffers from an
overall stress/strain distribution which is closer to a hydrostatic compression. Therefore,
the choice of the solid phase yield criterion influences the macroscopic yield of denser
samples, particularly in compression-dominated load cases.

8.1.3 Macroscopic yield behaviour using nonlinear homogenisation

Nonlinear homogenisation-based multiscale techniques have been previously used to
assess the macroscopic yield surface of trabecular before, but have been limited to
either simple constitutive models, or to few load cases. A comprehensive analysis
was performed, in which a broad range of load scenarios (160 load cases) was used.
Closed-form expressions of quadric yield surfaces of different symmetries (isotropic,
orthotropic and anisotropic) were fitted to the set of obtained macroscopic yield strains.

It was found that trabecular bone is reasonably well approximated by an isotropic
yield behaviour in strain space, as has been previously reported. The study also shows
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that the macroscopic yield strains are largely independent of BV/TV. Evaluation of
clockwise and counter-clockwise shear as separate load cases, however, showed for the
first time that the shear behaviour in trabecular bone presents some asymmetry even for
highly aligned samples, possibly indicating anisotropy higher than orthotropy. However,
formulating a non-isotropic yield surface in strain space is difficult due to the weak
relationships between fabric and yield strains. The differences in fitting errors between
isotropic, orthotropic, and anisotropic assumptions are small. Therefore, an isotropic
criterion still presents itself as the most suitable approximation. Nonetheless, for shear
and normal-shear load cases, considerable differences between the yield criterion and
the actual macroscopic yield strain may arise.

With respect to the yield surface, an eccentric-ellipsoid may adequately represent the
macroscopic yield surface of trabecular bone as the fitting errors for all the considered
symmetries are reasonably small (from ~8% to ~11%). However, it is important to keep
in mind the asymmetry in shear yield strains and that in the normal-shear load cases,
the quadric may not be able to represent the macroscopic yield behaviour of trabecular
bone well because of the presence of cellular solid behaviour.

8.1.4 Post-yield macroscopic behaviour

Homogenisation-based multiscale techniques were used to study the macroscopic post-
elastic behaviour of trabecular bone. Macroscopic damage evolution and hardening
were examined by using nine uniaxial load cases for a small range of macroscopic
plastic strains.

It was found that macroscopic damage in trabecular bone is non-isotropic and can be
linearly related to the macroscopic plastic strain norm with high coefficients of determi-
nation, except for shear where the coefficients of determination are smaller. It was also
observed that damage in compression evolves faster than in tension, which is likely to
be related to the heterogeneity in the solid phase stress distribution under compressive
loading. The largest reduction in stiffness is in the component corresponding to the load
case the sample is being subjected to. The shear stiffness in shear planes containing
the normal direction of the load case the sample is subjected to is also slightly more
reduced than the rest of normal stiffness components and remaining shear components.

Macroscopic hardening was also found to be non-isotropic, with macroscopic
yield strains found to be linearly related to the macroscopic strain norm with high
coefficients of determination. Macroscopic yield stresses are multilinearly related to
undamaged orthotropic stiffness and macroscopic strain norm with high coefficients of
determination as well. Both the macroscopic yield strains and stresses were found to
have smaller coefficients of determination for the shear load cases. It was also observed
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that hardening in compression is greater than in tension, which is likely to be related to
the lack of compressive hydrostatic yielding in the solid phase yield criterion.

8.2 Future work

Solid phase properties have been considered as homogeneous throughout this study,
which could be seen as a potential limitation, but it allows for comparison with existing
results in the literature. A possible study which ParaFEM would allow is the study of
the effect of TMD heterogeneities at the solid phase on the macroscopic behaviour of
trabecular bone in the finite strain regime. TMD heterogeneities are likely to cause
strain concentrations in locations where the TMD, and thus the stiffness, is lower. These
strain concentrations may cause differences in macroscopic yield values when compared
to the case with homogeneous solid phase. A straightforward difficulty and possible
limitation is how solid phase yield limits are implemented in such a case − are they
properly scaled with the heterogeneous TMD, or are they kept homogeneous (and thus
independent of TMD)?

Another important consideration is to further study the sensitivity of macroscopic
yield to the solid phase yield criteria. Additional solid phase yield surfaces should be
studied, with a special emphasis on the asymmetric criterion in principal strain space
(an eccentric cube). This criterion has been widely used in µFE-related literature in
the previous 15 years, and it would allow to establish whether µFE simulations require
a very precise yield criterion for the solid phase or if only a proper asymmetric yield
criterion with uniaxial yield values within an appropriate range is needed.

A limitation which is constantly mentioned in literature is whether the use of ductile
plasticity at the solid phase level is appropriate for a material which is actually quasi-
brittle. A thorough comparison of fully ductile material models and models where
damage and eventually fracture are incorporated should be performed to fully assess
the sensitivity of the macroscopic results to these phenomena. Nonetheless, damage
and fracture could lead to strain localisations, which may result in mesh-sensitivity
of the results, and since these are issues that have not been properly resolved yet,
this remains as distant future work. Additionally, these phenomena could also lead
to eventual structural softening, which means that a Newton-Raphson scheme for the
global FE system will stop working at some point due to structural failure. In this
case, an arc-length scheme could be used instead, which would allow for tracking of
post-buckling solutions.

This study has provided useful information about the nonlinear behaviour of trabec-
ular bone, including its plastic and damage behaviour. However, all this information
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needs to be gathered together and translated into a FE implementation of a macro-
scopic constitutive law for trabecular bone. This constitutive law should include an
appropriate yield envelope, which could be described by an isotropic quadric in strain
space, appropriate hardening and damage evolution laws, and an orthotropic elastic
stiffness tensor. The evolution of the yield surface would be linear with respect to the
macroscopic plastic strain and it would depend on what load case is being considered,
i.e. tension, compression or shear. The damage evolution would also be linear with
respect to the macroscopic plastic strain, non-isotropic, and it would also be different
depending on the considered load case. It is also important to mention that the load
case affects differently the on and off-axis stiffness components. This constitutive law
should then be tested in an organ-level continuum FE simulation and compared with
experimental results to assess its validity.





References

Ammann, P. and Rizzoli, R. (2003). Bone strength and its determinants. Osteoporosis
International, 14 Suppl 3:S13–8.

Argyris, J., Doltsinis, J., and Kleiber, M. (1978). Incremental formulation in nonlinear
mechanics and large strain elasto-plasticity - Natural approach. Part II. Computer
Methods in Applied Mechanics and Engineering, 14(2):259–294.

Argyris, J. and Kleiber, M. (1977). Incremental formulation in nonlinear mechanics
and large strain elasto-plasticity - Natural approach. Part 1. Computer Methods in
Applied Mechanics and Engineering, 11(2):215–247.

Armero, F. and Pérez-Foguet, A. (2002). On the formulation of closest-point projection
algorithms in elastoplasticity - part I: The variational structure. International Journal
for Numerical Methods in Engineering, 53(2):297–329.

Arramon, Y. P., Mehrabadi, M. M., Martin, D. W., and Cowin, S. C. (2000). A
multidimensional anisotropic strength criterion based on Kelvin modes. International
Journal of Solids and Structures, 37(21):2915–2935.

Ashman, R. B., Rho, J. Y., and Turner, C. H. (1989). Anatomical variation of orthotropic
elastic moduli of the proximal human tibia. Journal of Biomechanics, 22(8-9):895–
900.

Atluri, S. N. (1984). On constitutive relations at finite strain: Hypo-elasticity and
elasto-plasticity with isotropic or kinematic hardening. Computer Methods in Applied
Mechanics and Engineering, 43(2):137–171.

Au, A. G., Liggins, A. B., Raso, V. J., and Amirfazli, A. (2005). A parametric analysis
of fixation post shape in tibial knee prostheses. Medical Engineering & Physics,
27(2):123–34.

Balay, S., Abhyankar, S., Adams, M. F., Brown, J., Brune, P., Buschelman, K., Dalcin,
L., Eijkhout, V., Gropp, W. D., Kaushik, D., Knepley, M. G., McInnes, L. C., Rupp,
K., Smith, B. F., Zampini, S., Zhang, H., and Zhang, H. (2016). PETSc Web page.
http://www.mcs.anl.gov/petsc.

Baumann, A. P., Shi, X., Roeder, R. K., and Niebur, G. L. (2016). The sensitivity of
nonlinear computational models of trabecular bone to tissue level constitutive model.
Computer Methods in Biomechanics and Biomedical Engineering, 19(5):465–73.

Bay, B. K., Smith, T. S., Fyhrie, D. P., and Saad, M. (1999). Digital volume correlation:
Three-dimensional strain mapping using X-ray tomography. Experimental Mechanics,
39(3):217–226.

http://www.mcs.anl.gov/petsc


154 References

Bayraktar, H. H., Gupta, A., Kwon, R. Y., Papadopoulos, P., and Keaveny, T. M. (2004a).
The modified super-ellipsoid yield criterion for human trabecular bone. Journal of
Biomechanical Engineering, 126(6):677–84.

Bayraktar, H. H. and Keaveny, T. M. (2004). Mechanisms of uniformity of yield strains
for trabecular bone. Journal of Biomechanics, 37(11):1671–8.

Bayraktar, H. H., Morgan, E. F., Niebur, G. L., Morris, G. E., Wong, E. K., and Keaveny,
T. M. (2004b). Comparison of the elastic and yield properties of human femoral
trabecular and cortical bone tissue. Journal of Biomechanics, 37(1):27–35.

Belytschko, T., Liu, W. K., and Moran, B. (2000). Nonlinear Finite Elements for
Continua and Structures. Wiley.

Bergot, C., Laval-Jeantet, A. M., Hutchinson, K., Dautraix, I., Caulin, F., and Genant,
H. K. (2001). A comparison of spinal quantitative computed tomography with dual
energy X-ray absorptiometry in European women with vertebral and nonvertebral
fractures. Calcified Tissue International, 68(2):74–82.

Bevill, G., Eswaran, S. K., Gupta, A., Papadopoulos, P., and Keaveny, T. M. (2006).
Influence of bone volume fraction and architecture on computed large-deformation
failure mechanisms in human trabecular bone. Bone, 39(6):1218–25.
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Perić, D., de Souza Neto, E. A., Feijóo, R. A., Partovi, M., and Molina, A. J. C. (2011).
On micro-to-macro transitions for multi-scale analysis of non-linear heterogeneous
materials: unified variational basis and finite element implementation. International
Journal for Numerical Methods in Engineering, 87(1-5):149–170.
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