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Abstract 

Mammalian cell types and tissues have diverse functional roles within an organism but 

can be derived by the differentiation of the embryonic stem cells (ESCs). ESCs are pluripotent 

cells with self-renewal properties. During development subsets of genes in ESCs are activated 

or silenced for manifestation of the cell type specific function. Gene expression changes occur 

transiently in early developmental stages, through signals received and executed by a variety 

of transcription factors (TFs), regulatory elements (promoters, enhancers) and epigenetic 

modifications of chromatin. 

Post-translational modifications of the histone tails are regulated by chromatin modifiers 

and transform the chromatin architecture. Polycomb (PcG) and Trithorax (TrxG) group 

proteins are the most commonly studied histone modifiers. They were first discovered as 

repressors (H3K27me3) and activators (H3K4me3) respectively of Homeobox (Hox) genes in 

Drosophila and they are conserved in mammals. Bivalent chromatin is defined as the 

simultaneous presence of silencing (H3K27me3) and activating (H3K4me3) histone marks and 

was first discovered as a feature of many developmental gene promoters of ESCs. Bivalent 

promoters are thought to be in a ‘poised’ state for later activation or repression during 

differentiation due to the presence of the two counter-acting histone modifications and a 

pausing variant of RNA polymerase II (RNAPII) accompanied with intermediate-low levels of 

expression.  

By integrative analysis of publicly available ChIP sequencing (ChIP-seq) datasets in 

murine and human ESCs, we predicted 3,659 and 4,979 high–confidence (HC) bivalent 

promoters in mouse and human ESCs respectively. Using a peak-based method, we acquire a 

set of bivalent promoters with high enrichment for developmental regulators. Over 85% of 

Polycomb targets were bivalent and their expression was particularly sensitive to TF 

perturbation. Moreover, murine HC bivalent promoters were occupied by both Polycomb 

repressive component classes (PRC1 and PRC2) and grouped into four distinct clusters with 

different biological functions. HC bivalent and active promoters were CpG rich while 

H3K27me3-only promoters lacked CpG islands. Binding enrichment of distinct sets of 

regulators distinguished bivalent from active promoters and a ‘TCCCC’ sequence motif was 

specifically enriched in bivalent promoters.  

Using the recent technology of single cell RNA sequencing (scRNA-seq) we focused on 

gene expression heterogeneity and how it may affect the output of differentiation. We collected 

single cell gene expression profiles for 32 human and 39 murine ESCs and studied the 
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correlation between diverse characteristics such as network connectivity and coefficient of 

variation (CV) across single cells. We further characterized properties unique to genes with 

high CV. Highly expressed genes tended to have a low CV and were enriched for cell cycle 

genes. In contrast, High CV genes were co-expressed with other High CV genes, were enriched 

for bivalent promoters and showed enrichment for response to DNA damage and DNA repair. 

Bivalent promoters in ESCs grouped in four distinct classes of variable biological 

functions according to Polycomb occupancy and three RNAPII variants. To study the dynamics 

of epigenetic and transcription control at promoters during development, we collected ChIP-

seq data for two chromatin modifications (H3K4me3 and H3K27me3) and RNAPII (8WG16 

antibody) as well as expression data (RNA-seq) across 8 cell types (ESCs and seven committed 

cell types) in mouse. Hierarchical clustering of 22,179 unique gene promoters across cell types, 

showed that H3K4me3 peaks are in agreement with the expression data while H3K27me3 and 

RNAPII peaks were not highly consistent with the hierarchical tree of gene expression. 

Unsupervised clustering of ChIP-seq and RNA-seq profiles has resulted in 31 distinct profiles, 

which were subsequently narrowed down to nine major profile groups across cell types. TF 

enrichment at individual clusters using ChIP sequencing data did not fully agree with the 

classification of 8 major profile groups.  

Considering all the above results, three major epigenetic profiles (active, bivalent and 

latent) seem to be conserved across the species and cell types in our study. These states could 

recapitulate only a fraction of the transcriptional information - adding other chromatin marks 

could enrich it - since they are seemingly unaffected by their respective expression profiles. 

H3K27me3 only state has low CpG density and shows stronger signatures at differentiated cell 

types. Transcriptional control is tighter in active than bivalent promoters and the different 

occupancy levels of PcG subunits and RNAPII can be reflected at the expression variance of 

bivalent genes, where a fraction of them are involved in developmental functions while others 

are more tissue-specific. Last, there is a striking similarity in the pausing patterns of RNAPII 

in the progenitor cell types, which suggests that RNAPII pausing is correlated with the 

developmental potential of the cell type. 

Finally, this analysis will serve as a resource for future studies to further understand 

transcriptional regulation during development. 

 

 



  v 

Lay of summary 

All the different types of organs and tissues in a mammalian organism, derive from one 

single cell type named Embryonic Stem Cells (ESCs). ESCs have some unique properties that 

distinguish them from other cell types, such as their ability to give rise to all the cells of the 

organism and self-renew indefinitely. The diverse characteristics of the different cell types in 

the body, even though they all contain the same genetic code (DNA), are acquired by 

expression of different subsets of genes. Expression of genes in each cell type is guided by a 

specific set of instructions known as epigenetic control of development. Special developmental 

proteins called transcription factors (TFs) bind to specific areas of the genome (promoters) and 

are involved in the regulation of transcription of their nearby genes.  

DNA is wrapped around proteins called histones, forming the so called chromatin, getting 

compacted and more easily stored at the limited space of the cell nucleus. Protruding tails of 

histone proteins, are susceptible to being modified by proteins called chromatin modifiers. 

Modifications of histone tails lead to subsequent recruitment of other transcription factors that 

either create a more compacted chromatin structure (silent chromatin) or a more permissive 

structure (active chromatin) where the transcriptional machinery can initiate transcription of 

the adjacent gene. Two histone modifications associated with silencing and activating of 

chromatin respectively are H3K27me3 and H3K4me3. Surprisingly, those two histone marks 

were found co-existing at the promoter regions of multiple developmental genes in ESCs, 

raising questions for their functionality and significance in differentiation. Gene promoters 

associated simultaneously with both of these marks were called bivalent. Bivalent genes are 

thought to have this mixed chromatin state, known as poised, so that they are easily recognised 

by the transcriptional machinery and become easily activated or repressed depending on the 

differentiation signals.  

A high-throughput sequencing technique called Chromatin Immunoprecipitation followed 

by sequencing (ChIP-seq) is used for the accurate mapping of the genomic location where 

histone marks and TFs are found. Integrating multiple ChIP-seq datasets from previously 

published studies in human and mouse ESCs, we managed to detect bivalent promoters that 

were found in the majority of the studies, thus increasing their confidence levels. 3,659 high 

confidence (HC) bivalent promoters in mouse and 4,979 HC bivalent promoters in human 

ESCs, were particularly enriched for developmental protein functions and were shown to be 

easily perturbed when the expression levels of many TFs was altered. Bivalency seems to be 

the rule rather than the exception for H3K27me3 silenced genes in ESCs. A ‘TCCCC’ sequence 
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motif, specific to bivalent promoters, was also detected, possibly allowing regulators to bind 

those regions with high specificity. 

To assess gene expression heterogeneity in ESCs, we also gathered expression data 

derived from single cells (scRNA-seq) in both human and mouse ESCs. This allowed us to 

classify genes dependent on their variation of gene expression and co-expression patterns with 

other genes. A subset of bivalent genes was represented in the group of genes with high 

variation, which were found being co-expressed with other highly variant genes and were 

associated with DNA damage and DNA repair functions. 

In an effort to follow the fate of bivalent promoters in other cell types we gathered 

chromatin modification (ChIP-seq) and gene expression (RNA-seq) data in ESCs and seven 

other committed cell types like progenitor motor neurons, Macrophages and B cells. Using 

machine learning techniques, we clustered the promoters across cell types, according to their 

chromatin marks and expression profiles. H3K4me3 mark was fully agreeing with the gene 

expression across cell types, whereas H3K27me3 was not. Nine major profile groups emerged, 

ranging from fully active to fully silenced in terms of expression and chromatin status.  
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Chapter 1 Introduction 

1.1.1  Gene regulation during development 

The diverse range of mammalian organs and tissues is a product of underlying 

differences in the gene expression programme of different cell types with the same 

DNA sequence. Subsets of genes are activated or silenced during development 

according to a set of instructions which includes epigenetic control mechanisms (Reik, 

2007). Throughout development and differentiation, the fate of each cell type is 

primarily controlled by gene regulation (Pearson et al., 2005) where genomic 

regulatory elements receive and execute transcriptional signals, dependent on their 

epigenetic state and chromatin accessibility, controlling the expression of key 

developmental factors (Wilson et al., 2010).  

Gene expression changes occur transiently during the early stages of development, 

influenced by transcription factors (TFs) and epigenetic modifications (Bird, 2002; Li, 

2002; Morgan et al., 2005; Turner, 2007), such as DNA methylation at CpG 

dinucleotides (Bird, 2002; Li, 2002) and histone modifications at the tails of 

nucleosomal histones (Turner, 2007).  To gain a better view of the changes taking 

place during development, we need a deeper understanding of the basic elements of 

chromatin. DNA is wrapped around the core histone proteins, creating a structure of 8 

histone proteins (2 copies of H2A, H2B, H3, H4) and 147 base pairs (bp) of DNA 

around them, named the nucleosome (Kornberg, 1974). Higher-order chromatin is 

formed through compaction of the nucleosomes, with the assistance of various 

assembly and packaging related proteins (Li, 2002). Two main distinct chromatin 

states are ‘Euchromatin’ and ‘Heterochromatin’. A more open chromatin environment 

in which the nucleosomes are spaced far apart and the DNA becomes accessible to 

transcriptional machinery characterizes euchromatin where the majority of active 

genes localize. However, euchromatin is not marked uniformly with epigenetic and 

transcriptional signals i.e. more histone modifications are present in regions with high 

density of transcription factor binding sites (TFBS), typically regions where either 

regulation or transcription takes place (Barski et al., 2007). On the other hand, 

heterochromatin is characterised by a more compact environment where inactive 
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genes, non-coding DNA and repetitive elements reside (Bannister and Kouzarides, 

2011). Like euchromatin, heterochromatin has non-uniform epigenetic and 

transcription status distribution that can be distinguished into two groups, facultative 

and constitutive. Genes with high differential expression throughout development 

often reside within facultative heterochromatin. These regions are switched off when 

the cell acquires its new identity. In contrast, constitutive heterochromatin is gene 

poor, rich in repetitive elements, mainly found in centromeres and telomeres and 

silenced indefinitely. 

Chromatin structure is tightly organized with the assistance of the numerous 

histone modifications and a potential cross-talk between them provides an extra level 

of complexity to the chromatin architecture (Kouzarides, 2007). Histone amino (N)-

terminal tails extend beyond the main nucleosome body, interacting with neighbouring 

nucleosomes and are subject to modifications that can influence the inter-nucleosomal 

relationship and chromatin structure. Of various histone modifications, the most well 

studied types are methylation, acetylation, phosphorylation and ubiquitination 

(Bannister and Kouzarides, 2011).   

Histone modifications influence chromatin mainly in two ways. Firstly and 

primarily, the modifications affect directly the structure of the chromatin over a long 

or short distance. Histone modifications can recruit DNA binding proteins and 

chromatin re-modellers, consequently leading to the relocation of nucleosomes 

(Margueron et al., 2005). Hence, nucleosome removal could open the chromatin and a 

possible binding motif could be revealed, or instead, newly recruited nucleosomes 

could conceal a binding motif, affecting transcriptional machinery recruitment at the 

locus. Histone modifications also work jointly with DNA methylation, to allow or 

inhibit specific protein binding. For example KDM2A (Lysine (K)-Specific 

Demethylase 2A) binds only to nucleosomes that present histone H3 Lysine 9 tri-

methylation (H3K9me3) where DNA is un-methylated (Bartke et al., 2010). 

A number of studies have connected specific histone modifications to a variety of 

processes with discrete functionalities (Margueron et al., 2005; Nightingale et al., 

2006). The emergent term ‘histone code’ or ‘epigenetic code’ tries to assign an 

associated function to multiple combinations of histone modifications and DNA 

methylation, linking them to the presence or absence of transcriptional activity and 
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genomic functional elements (Jenuwein, 2001; Turner, 2007). For example, H3K4me1 

is present at regulatory elements called enhancers (defined later in this section, page 

5) and is widely used to predict their location (Hon et al., 2009). H3K4me3 is highly 

enriched at the Transcription Start Site (TSS) of actively transcribed genes (Barski et 

al., 2007; Schneider et al., 2004) and H3K36me3 is found on the gene body of genes 

under transcription (Bannister et al., 2005). Also, high levels of H3K9me3 are 

associated with constitutive heterochromatin (Trojer and Reinberg, 2007). Figure 1.1 

is a graphical representation of the ‘histone code’. 

 

 

Figure 1.1 Representation of the post-translational modifications of the histone tails. 
The modifications are divided according to their association with activation (Active 
marker – green panel) and repression (Repressive marker – orange panel) of 
transcription. Image taken from (Kim, 2014). 

Histone modifications occupy various regulatory sequence elements across the 

genome in a dynamic fashion across development (Zhou et al., 2011). One of these 
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elements is the promoter element, which overlaps with the TSS of a gene and is 

typically composed of two main regulatory regions: the core promoter and the region 

immediately upstream of the core promoter, the proximal promoter. The core promoter 

area (including the TSS) is necessary for the initiation of transcription. The RNA 

polymerase II (RNAPII) is recruited at the core promoter of many protein-coding 

genes. The proximal promoter is the region where many TFs bind; it acts in 

collaboration with the core promoter (Juven-Gershon et al., 2006).  

The architecture of the promoters is dynamic during differentiation and evolution, 

acquiring distinct functional and regulation patterns according to the type of genes. 

The promoters associated with RNAPII are divided in 3 different classes (Lenhard et 

al., 2012). Genes expressed uniquely in mature cell types mostly belong to the Type I 

promoters, with characteristics such as TATA-box enrichment, sharp TSS, great 

distance from CpG islands and ‘fuzzy’ nucleosomes. Housekeeping genes belong to 

Type II promoters, which have a wide TSS region, well-positioned nucleosomes and 

are close to CpG islands. Type III promoters are mainly allocated to developmentally 

regulated genes. Type III promoters demonstrate a sharper TSS (more so than Type I 

promoters), they usually have more than one CpG island in their direct proximity and 

often in the gene body, and they are associated with silencing by Polycomb Group 

proteins (PcG). Moreover, some developmental TFs, cell adhesion genes and mediator 

genes feature some very specific characteristics in their loci that allow them to create 

their own unique promoters category (Akalin et al., 2009). 

One cannot fully explain the innumerable gene expression patterns observed 

throughout development and differentiation by only focussing on the promoter types, 

since most of regulation of the metazoan genome happens with the assistance of 

enhancer regions, which are another well studied group of regulatory elements 

(Heintzman et al., 2009; Thurman et al., 2012; Yip et al., 2012). Enhancer elements 

can be up to hundreds of base pairs long and they can bind numerous TFs and 

chromatin regulators, regulating the level of expression of their target genes in a unique 

spatiotemporal pattern. Distance or direction of enhancers with respect to their target 

gene appear unrelated with their efficiency (Maston et al., 2006; Vavouri et al., 2006),  

although recent evidence suggests CTCF binding sites (CBSs) may influence 

enhancer/promoter interactions within the topologically associated domain (TAD) in 
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which they reside, regarding their orientation (Guo et al., 2015; Narendra et al., 2015). 

Enhancers can be found in intergenic regions (upstream or downstream) (Sanyal et al., 

2012), in the introns of the same gene that is regulated or the neighbouring genes 

(Kikuta et al., 2007a) or in coding exons of their own or of neighbouring genes 

(Birnbaum et al., 2012; Lampe et al., 2008). In most of the cases enhancers remain 

close to their target genes, even after genome duplication (Kikuta et al., 2007b). A 

simulation study analysing the promoter-enhancer interactions in 12 human cell types, 

used real enhancer-promoter pairs with median distance around 15-17 kb as training 

sets for their prediction (He et al., 2014). Also, there are some trans-acting enhancer 

elements that are found on a different chromosome from their target gene (Bateman et 

al., 2012). It has been documented that genes associated with cell lineage commitment 

are regulated by super-enhancers (Whyte et al., 2013). Super-enhancers are fairly 

larger than normal enhancers, are bound by the mediator and important master TFs 

and they mainly regulate cell identity genes. The underlying biology of the super-

enhancers remains unclear and some view them as clusters of classical enhancers with 

no additional properties (Hay et al., 2016; Whyte et al., 2013).  

In Embryonic Stem Cells (ESCs), the majority of promoters with high CpG 

content have un-methylated DNA. During differentiation however, some of them 

become methylated, acquiring their final transcriptionally silenced identity (Mohn et 

al. 2008). The promoters that remain methylated through differentiation are mainly un-

transcribed and are related with Type I promoters/tissue specific genes (Isagawa et al., 

2011). Developmental genes show high inconsistency at the level of their methylation 

and they seem to be regulated from multiple enhancers, found both near and far 

(Mikkelsen et al., 2010).  Active genes are located at euchromatin regions and they 

interact with a restricted number of enhancers (Soler et al., 2011). The causal 

relationship of the interaction between promoters and enhancers across the various 

differentiation pathways and the implication of histone modifications in it has not yet 

been deciphered.    
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1.1.2  Polycomb group and Trithorax group families in 

ESCs 

To unravel key developmental transitions that lead to different cell identities, 

ESCs offer a valuable model for examination (Thomson et al., 1998). ESCs can 

replicate themselves indefinitely and give rise to progenies with the same 

developmental pluripotency i.e. the capability of differentiating into all the cell types 

and tissues of an adult organism during development and adult life (Thomson et al., 

1998; Voigt et al., 2013). Azuara et al.(2006) proposed that particular histone 

modifications and the chromatin structure features (Thomson et al., 1998; Voigt et al., 

2013) assist in the formation of the special ESC properties. Histone methylation takes 

place predominantly on the side chains of Lysine and Arginine amino acid residues of 

the histone tails. It does not generate any difference in the charge of the histone protein 

but acts as a binding site for effector proteins (Chromo, Tudor and WD40-repeat 

domains interact with histone lysine methylation) that subsequently bear changes in 

chromatin or transcriptional output (Ng et al., 2009). Lysines are subject to mono-, di- 

or tri-methylation while Arginines are subject to mono- and symmetrical or 

asymmetrical di-methylation (Ng et al., 2009). The lysine methyltransferases (KMTs) 

methylate the Lysine with the assistance of a SET (Su(var)3-9, Enhancer of Zeste, 

Trithorax) domain, which is responsible for the enzymatic activity (Rea et al., 2000), 

using an S‐adenosyl‐L‐methionine (SAM) as a methyl donor (Lanouette et al., 2014). 

The SET-domain proteins present sequence and domain similarities and are roughly 

classified in seven groups (Dillon et al., 2005): SUV3/9, SET1, SET2, SMYD, EZ, 

SUV4‐20 and RIZ (Lanouette et al., 2014) . SUV3/9, SET1, SET2, SMYD and EZ 

family proteins are capable of catalysing the methylation of both histone and non-

histone proteins (He et al., 2012; Huang et al., 2006; Lu et al., 2010; Rathert et al., 

2008; Zhang et al., 2005) . The role of histone KMTs (HKTMs) appears to be very 

specific, since they catalyse the methylation of a particular lysine of the histone tail 

and to a certain degree (i.e. mono-, di- or tri-methylation) using a catalytic domain 

involved in determining the degree of the methylation (Zhang et al., 2003). 
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Histone modifications are regulated by many TFs that act as chromatin modifiers 

(Niwa, 2007). Two of the most commonly studied histone modifications are H3K4me3 

and H3K27me3. They are associated with activation (H3K4me3) and repression 

(H3K27me3) of chromatin (Bannister and Kouzarides, 2011). Polycomb (PcG) and 

Trithorax (TrxG) group proteins catalyse H3K27me3 and H3K4me3 respectively, 

regulating development and differentiation (Ringrose and Paro, 2004).  

PcG proteins were first described as suppressors of Homeobox (Hox) genes in 

Drosophila  (Kennison, 1995; Lewis, 1978; Schuettengruber et al., 2007) and there is 

a strong conservation of their function in mammals. The PcG proteins can form various 

complexes. Polycomb Repressor Complex 1 (PRC1) and Polycomb Repressor 

Complex 2 (PRC2) are the most well-studied (Margueron and Reinberg, 2011). PRC2 

di- and tri-methylates the lysine 27 of histone H3, establishing transcriptional 

repression at those sites (Czermin et al., 2002) (Figure 1.2). On the other hand, PRC1 

catalyses the mono-ubiquitination of lysine 119 of histone H2A, which also represses 

gene transcription (Endoh et al., 2012) and more specifically stops transcriptional 

elongation (Stock et al., 2007a). PRC1 also compacts chromatin (Endoh et al., 2012) 

to impair transcription but its function is not only limited to transcriptional repression. 

The H2AK119ub modification that PRC1 facilitates is also responsible for the proper 

removal of PRC1 from chromatin, so that under the appropriate developmental cues 

gene transcription can be activated (Richly et al., 2010) (Figure 1.2). 
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Figure 1.2 A) PRC2 catalyses H3K27me3 and then B, C) recruits canonical PRC1 that 
mono-ubiquitinates H2A, D) KDM2B facilitates the recruitment of non-canonical PRC1 
to un-methylated CpG regions, without the PRC2 involved. Taken from (Aloia et al., 
2013).  

 

The core proteins that provide PRC2 its enzymatic activity are the histone 

methyltransferases Enhancer of Zeste 1 (EZH1) and Enhancer of Zeste 2 (EZH2) 

(Margueron et al., 2008). Furthermore, Suppressor of Zeste 12 (SUZ12) and 

Embryonic Ectoderm Development (EED) facilitate the assembly of PRC2 complex 

and when bound with EZH1 or EZH2, the methyltransferase property of the complex 

is activated (Blackledge et al., 2015; Cao and Zhang, 2004). PRC2 recruitment to 

chromatin has been attributed to Jumongi/ARID domain containing (JARID) protein 

and the Polycomb-like family members (PCL) proteins (Peng et al., 2009). These two 

protein families target a different set of genes with different mechanisms (Walker et 

al., 2010) and they do not co-exist in the same complex (Ballaré et al., 2012), 

Molecular functions of PRC1 and PRC2. 

Luigi Aloia et al. Development 2013;140:2525-2534
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suggesting that in mammals there are several mechanisms and complexes for different 

sets of genes. JARID2 binds to un-methylated GC and GA dinucleotides through its 

ARID domain, while PCL proteins, through their TUDOR domain, bind at sites that 

are enriched with H3K36 methylation, which is related to elongation of transcription 

(Ballaré et al., 2012). Thus, PCL proteins target genes that are already actively 

transcribed whereas JARID2 protein is recruited at sites where DNA methylation is 

removed, through the action of Ten-eleven translocation methylcytosine dioxygenase 

(TET) proteins (Tan and Shi, 2012). 

PRC1 can be found in different compositions corresponding to the cell 

environment (Gao et al., 2012). The proteins Ring Finger Protein 1 (RING1A) and 

Ring Finger Protein 2 (RING1B) are members of all the PRC1 complexes. They are 

E3 ubiquitin ligases that are responsible for the addition of a ubiquitin group at the 

lysine 119 of histone H2A (de Napoles et al., 2004; Wang et al., 2004). There are two 

categories of PRC1 complexes based on the presence of Chromobox (CBX) proteins 

in the complex. The canonical PRC1 complex interacts with PRC2 complex after 

recognizing and binding to the H3K27me3 mark through the CBX proteins, leading to 

gene repression. It is also hypothesized that the interaction between PRC1 and PRC2, 

stabilizes the repressive effects in key genes during development and differentiation 

(Bracken et al., 2006; Schuettengruber et al., 2007). On the contrary, non-canonical 

PRC1 complexes usually have RING1 and YY1 Binding Protein (RYBP), Lethal(3) 

Malignant Brain Tumor-like Protein 2 (L3MBTL2) or Lysine-specific Demethylase 

2B (KDM2B) (García et al., 1999; He et al., 2013; Qin et al., 2012) and they are known 

to target different genes from the canonical PRC1 (Morey et al., 2013). In stem cells 

though, there exists a shared set of genes regulated by both canonical and non-

canonical PRC1 complexes, indicating possible overlap at a molecular level (Morey 

et al., 2013). 
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Figure 1.3 COMPASS family in yeast, Drosophila and human is divided into three sub-
groups: Set1/COMPASS, trithorax-containing and trithorax-like. Red shows the SET-
domain containing enzymes, green highlights common in eukaryotes, blue and purple 
show the specific subunits to each complex and magenta highlights Host Cell Factor 1 
(HCF1) that is found in some members of the Complex Proteins Associated with SET1 
(COMPASS) family (figure taken from Shilatifard 2012a). 

TrxG proteins, first discovered activating Hox genes in Drosophila, are a highly 

conserved group of proteins from yeast to mammals, consisting of H3K4 

methyltransferases (Schuettengruber et al., 2007; Shilatifard, 2012a). The mixed 

lineage leukemia (MLL) gene was the first recognised homologue of the Drosophila 

trx gene in mammals. Initial studies of MLL’s Saccharomyces cerevisiae (yeast) 

homologue, SET Domain Containing 1 (Set1), confirmed its methyltransferase 

activity. To isolate Set1 in yeast, a complex of associated proteins was extracted and 

was given the name complex of proteins associated with Set1 (COMPASS) (Miller et 

al., 2001). SET1/COMPASS methyltransferases can mono-, di- and tri- methylate 

H3K4 residues, with SET1 gaining its methyltransferase activity only when it is a 

member of the COMPASS complex (Krogan et al., 2002; Miller et al., 2001). 
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Some of the enzymes that TrxG complex consists of in mammals are SET1A-B 

and MLL1-4 (Figure 1.3). MML1 and MLL2 are considered crucial for the H3K4me3 

modification at the promoters of mouse ESCs (Hu et al., 2013). MLL2 specifically is 

necessary for the deposition of H3K4me3 at all Homeobox gene clusters, the most 

well-studied developmental genes (Hu et al., 2013). MLL1 drives the program of 

haematopoiesis through the mid to late stages of development (Ernst et al., 2004) 

whereas MLL2 is detected at the very early stages of development regulating genes 

that are very important for cell commitment and differentiation (Hu et al., 2013). 

 

1.1.3  Bivalent promoters 

Several specific genomic loci in ESCs exhibited simultaneous counteracting 

histone modifications at promoter regions (Zhou et al., 2011). The observed 

combinatorial signals of activating (H3K4me3) and repressing (H3K27me3) 

chromatin were named “bivalent” and they appeared to mark developmental gene 

promoters in ESCs (Bernstein et al., 2006a). Initially, Bernstein et al. (2006) were 

intrigued by the highly conserved non-coding elements (HCNEs) that were found in 

the proximity of genes encoding for developmental transcription factors. They used 

chromatin immunoprecipitation (ChIP) and tilling array (ChIP-chip) techniques, 

studying the patterns of the co-existing H3K4me3/H3K27me3 marks in HCNEs in 

mouse ESCs (mESCs). They performed sequential ChIP, which verified that 

promoters of certain genes carried H3K4me3 and H3K27me3 marks at the same time, 

which until then were considered mutually exclusive.  

Initially, bivalent domains were assumed as a distinctive feature of ESCs, since 

during differentiation developmental gene promoters that were occupied by both 

marks in ESCs, were typically occupied by a single mark (monovalent) which typically 

expanded in size. In 2007, Mikkelsen et al. combined ChIP and next generation 

sequencing (ChIP-seq)1 to examine the bivalent marks and construct genome-wide 

chromatin state maps for various cell types such as mESCs, neural progenitor cells 

                                                 

1 ChIP-seq method and challenges using this technology are described in detail in section 1.2.1 
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(NPCs) and mouse embryonic fibroblasts (MEFs). They distinguished three categories 

of gene promoters, determined by their chromatin marks (H3K4me3/H3K27me3), 

namely: expressed (only H3K4me3), poised for expression (both marks, i.e. bivalent) 

and repressed (only H3K27me3) (Mikkelsen et al., 2007).  Their study also showed 

for the first time, that bivalent domains exist also in cells of restricted potency. During 

the differentiation of mESCs to NPCs and mESCs to MEFs, 8% (~202) and 43% 

(~1085) of bivalent domains, respectively, retained their bivalent mark (Mikkelsen et 

al., 2007).  Moreover, Mohn et al. (2008) indicated that in mESCs that were terminally 

differentiated (ESCs to NPCs to neurons), ~1000 bivalent domains were lost, whereas 

~340 new bivalent domains emerged, suggesting that reduced potency cells may have 

bivalent genes that are not present in the pluripotent cells. Hence, bivalent domains are 

not specific to ESCs, but they appear in unipotent cells as well, as demonstrated by a 

number of studies (Adli et al., 2010; Barski et al., 2007; Cui et al., 2009; Roh et al., 

2006). Bivalent genes were also detected in human ESCs (hESCs) (Pan et al., 2007; 

Zhao et al., 2007) and the majority of them were shared with the bivalent genes in 

mESCs. Specifically, there were ~ 2,000 bivalent genes overlapping between mouse 

and human (consensus number made from more than 60% of the studies) (Mikkelsen 

et al., 2007; Pan et al., 2007; Sharov and Ko, 2007; Zhao et al., 2007). Consistent with 

the studies in mice, hESCs bivalent genes are functionally enriched with 

developmental transcription factors and genes, with most of them gradually losing the 

repressive H3K27me3 mark during differentiation (Pan et al., 2007; Zhao et al., 2007). 

Bivalent chromatin was also found in epiblast stem cells of mouse embryos 

(Rugg-Gunn et al., 2010) confirming their presence  in developing organisms where 

pluripotency is transient and not artificially pluripotent as in cultured ESCs. However, 

the H3K9me3 mark seemed to replace H3K27me3 in bivalent domains of other 

pluripotent cell lines derived from the blastocyst (trophoblast and extraembryonic 

endoderm stem cells), possibly due to lower efficiency of PRC2 silencing mechanisms 

(Rugg-Gunn et al., 2010). 

Ku et al. (2008) found that in mouse ESCs there are two distinct categories of 

bivalent domains according to the occupation of PcG complex proteins. The first class 

consists of domains where only PRC2 exists (“PRC2 only”) and the second one, called 

“PRC1-positive”, where PRC2 domains are also occupied by PRC1. “PRC2 only” 
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bivalent domains include non-developmental groups of genes and they are not highly 

conserved. There is an association of PRC1 with clearly broader bivalent regions, 

which are highly conserved, which have high maintenance levels of H3K27me3 and 

which are linked to numerous developmental promoters (Ku et al., 2008a). These two 

distinct types of bivalent domains may suggest that different classes of bivalent 

promoters do exist, requiring the recruitment of PcG proteins in a different way.  

 

Figure 1.4 Members of the COMPASS family are priming all the un-methylated CpG 
loci with H3K4me3. If there are enough activators and transcription factors in the 
regions, gene is activated, while PcG proteins are depositing repressing marks in the 
absence of activators, leading to the formation of bivalent domains (figure taken from 
Voigt et al., 2013). 

 

 

1.1.4  Functional relevance of bivalent chromatin 

Various regulatory mechanisms prevent ESCs from losing their pluripotency, e.g. 

DNA methylation that would silence important genes indefinitely is prevented. 

Bivalent genes include developmental factors that are thought to be poised for 
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activation or repression at the right moment during the differentiation process (Voigt 

et al., 2013). H3K4me3 impedes the activity of DNA (Cytosine-5)-Methyltransferase 

3 Alpha (DNMT3A) and DNA (Cytosine-5)-Methyltransferase 3 Beta (DNMT3B), 

both de-novo methyltransferases capable of catalysing the transfer of methyl-groups 

at cytosine residues of the DNA (Ooi et al., 2007; Zhang et al., 2010). Moreover, TET 

enzymes safeguard CpG islands from DNA methylation, ensuring the plasticity of 

bivalent genes is retained (Williams et al., 2011). Nevertheless, an ultra-permissive 

chromatin would allow RNAPII and associated TFs to be recruited at the loci and 

initiate transcription. Bivalent genes were found to produce abortive transcripts 

(Brookes et al., 2012a; Kanhere et al., 2010; Min et al., 2011; Walker et al., 2010), yet 

PcG proteins were actively regulating the binding of RNAPII in both its initiation and 

elongation forms (Chopra et al., 2011; Min et al., 2011; Stock et al., 2007a). 

H3K27me3 is deposited by PRC2 to counterbalance the effects of H3K4me3 and TrxG 

machinery, adjusting the levels of expression. The repressive mark may inhibit the 

deposition of H3K36me3 at the same nucleosome, since these two histone 

modifications have an opposing effect and cannot be present simultaneously at the 

same histone tail (Schmitges et al., 2011; Voigt et al., 2012). Furthermore, H3K27me3 

assists at the recruitment of PRC1 complex, which in turn catalyses H2Aub1, creating 

a barrier for RNAPII and the pre-initiation complex, preventing their recruitment at 

the highly compacted chromatin (Francis et al., 2004; Grau et al., 2011; Lehmann et 

al., 2012; Min et al., 2011) .  

Voigt et al. (2013) proposed a model for the generation of bivalent domains in 

ESCs, where CpG rich promoters are marked with different levels of H3K4me3 with 

the assistance of the SET1A/B and MLL complexes. In their hypothetical model, 

activation occurs only at those loci where there is an abundance of TFs recruited by 

regulatory elements (Voigt et al. 2013). Bivalency arises at loci with insufficient 

transcriptional machinery, where the PRC2 complex is able to deposit its repressing 

mark at the opposite tail of the deposited H3K4me3. In order to strengthen the 

repression, PRC1 is recruited at some bivalent domains by PRC2. It is observed that 

the higher the CpG density, the more efficient the PRC2 recruitment is at loci already 

occupied by activation marks (Voigt et al. 2013). This seems to help the PRC2 

complex to compete against SET1/MLL complexes only at the bivalent genes, but not 
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at the active genes where the transcription is well established and protected with many 

TFs. One way of controlling bivalency is by controlling the load of transcription 

activation that the gene is subject to, until the appropriate environmental cues initiate 

the differentiation process. PRC1 and PRC2 recruit each other and establish stable 

bivalent domains (Figure 1.4). The bivalent state may protect the plasticity of 

developmental genes between the anticipated activation or repression. When genes 

need to be activated, activating stimuli recruit all the activating TFs, the H3K27 

demethylases and the H2A de-ubiquitinases, and transform bivalent regions to active 

regions. Correspondingly, H3K4 demethylases are reinforced and robust silencing 

machinery is gathered at the bivalent loci in case of repression necessity (Voigt et al., 

2013).  

Voigt et al. (2013) further proposed that as soon as the differentiation process 

begins, genes should switch on only after a specific threshold of developmental cues 

is reached. Repressed genes demand a particularly high developmental signal in order 

to become activated in an efficient manner. Genes lacking both repressing and 

activating marks could start being transcribed before the required threshold. Bivalent 

genes, however, are not fully repressed or constitutively active, since they contain 

repressive marks at levels that could easily be removed in order for transcription to be 

induced after the desirable developmental threshold (Voigt et al., 2013).   

Many studies have argued against the ambiguous function of “poised” bivalent 

genes, finding the original hypothesis too simple to be accurate. Interestingly, even 

though PRC2 ablation in ESCs has caused developmental factors to be abnormally 

expressed (Boyer et al., 2006), it did not affect their pluripotent properties 

(Chamberlain et al., 2008). Likewise, various trxG components (Dpy-30, RbBP5 and 

WDR5) knocked down in ESCs caused variable effects with conflicting phenotypes. 

There was hindering of differentiation in one case (Jiang et al., 2011a) and failure of 

cells to self-renew in another (Ang et al., 2011). Additionally, the observation that 

bivalency is present not only in ESCs but also committed cell types (Adli et al., 2010; 

Barski et al., 2007; Cui et al., 2009; T. Mikkelsen et al., 2007; Mohn et al., 2008; Roh 

et al., 2006), arguably poses a question to the functional relevance of bivalent 

chromatin in association to ESC differentiation. 
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Using ChIP-qPCR and expression analysis, in both bulk populations and single 

cells, in a well-defined bivalent locus in ESCs like α globin, De Gobbi et al. (2011) 

showed a clear positive correlation between gene expression and 

H3K4me3/H3K27me3 ratio. Basal levels of transcription at the bivalent α globin 

promoter, backed up by variable levels of H3K4me3 at bivalent promoters of multiple 

genes (Barski et al., 2007; Roh et al., 2006) suggest an alternative scenario for 

bivalency. Bivalent genes may be mainly regulated by PcG proteins and their 

corresponding repressive marks, whereas H3K4me3 might appear in variable 

intensities, reflecting the low transcriptional signal. Hence, the apparent bivalency of 

some genes can be attributed to low levels of stochastic expression of those genes due 

to multi-lineage priming (De Gobbi et al., 2011). For example, in many highly-potent 

and progenitor cells it is observed that stochastic gene expression of tissue-specific 

genes occurs (Hu et al., 1997). In hematopoietic multipotent cells, for example, 

enhancer elements are subject to multi-lineage priming before the cells commit to the 

lymphoid or myeloid fate (Mercer et al., 2011). This comes in contrast to the proposed 

scenario of competing TrxG and PcG proteins where both TrxG and PcG proteins are 

present at the specific locus so that bivalency is retained in every cell division until the 

cell activity changes. Alternatively, De Gobbi et al. (2011) propose that PcG proteins 

could lose their efficiency in the role of suppression and elimination of transcriptional 

noise along the various differentiation pathways.  Hence, PcG proteins may constitute 

the main controllers of bivalent genes, subsequently clearing the way for TFs to act 

upon a transcriptional plan based on the cell lineage commitment (Raser and O’Shea, 

2004).  

Interestingly, MLL2 knock-down in mouse ESCs has resulted in reduction of 

H3K4me3 at bivalent loci, but there was no notable difference in their induction 

kinetics when treated with retinoic acid (RA) and forced to differentiate (Hu et al., 

2013). Moreover, H3K27me3 levels at bivalent promoters of Hox genes remained 

unchanged, suggesting a more peripheral role for bivalency and the proposed 

competition between TrxG and PcG proteins. Undoubtedly, genome-editing tools such 

as CRISPR-Cas9 will assist in experiments where the absence of both PRC2 and 

MLL2 at bivalent targets will be simultaneously assessed in vivo, and the functional 

relevance of bivalency will be contested in the physiological context of development. 
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1.1.5  Controversies around bivalency 

Co-existence of both H3K4me3 and H3K27me3, at the same allele or nucleosome, 

cannot be validated through ChIP assays conducted independently for each mark. 

Bivalency might be due to cellular heterogeneity of the bulk cell population used in 

ChIP experiments. Nevertheless, the heterogeneous cell population argument does not 

seem to fully explain the occurrence of bivalent domains at committed cell lineages 

(sorted populations of T cells and MEFs) that are more homogeneous (Pan et al., 2007; 

Roh et al., 2006).  

Arguments supporting cellular heterogeneity have blamed this diverse epigenetic 

landscape of ESCs on the serum culture where various components allow for 

heterogeneous expression of several pluripotency factors like Nanog Homeobox 

(NANOG) (Chambers et al., 2007; Singh et al., 2007), RNA Exonuclease 1 Homolog 

(REX1) (Toyooka et al., 2008) and Developmental Pluripotency Associated 3 

(DPPA3, STELLA) (Hayashi et al., 2008). To establish a better understanding of the 

heterogeneous cell population that acts as the inducer of bivalency, Marks et al. (2012) 

have examined the landscape of epigenetic factors in naïve pluripotent ESCs. The 

serum obstacle can be avoided using two inhibitors (2i), signalling proteins Mitogen-

Activated Protein Kinase 1 (MEK1) and Glycogen Synthase Kinase-3 (GSK3) (Ying 

et al., 2008). These 2i conditions result in a more homogeneous ESC population and 

keep the expression of developmental genes consistently low. These naïve ESCs show 

remarkably lower levels of H3K27me3 at the promoters, leading to the detection of 

fewer bivalent genes (Marks et al., 2012). Even though the computationally imposed, 

arbitrary signal cut-off is definitely affecting the number of identified bivalent genes, 

it is clear that confident bivalent domains can still be detected in highly homogeneous 

populations of ESCs. 

Brookes et al. (2012) have combined genome-wide ChIP-seq data of histone 

marks (H3K4me3, H3K27me3) and RNAPII in multiple conformations according to 

its phosphorylated C-terminal domain (CTD). They identified ~3600 bivalent genes in 

mouse ESCs grown under normal serum conditions, with the majority of them (~2400) 

being bound by RNAPII phosphorylated at Ser5 (S5P), a conformation found at 

promoters during initiation of transcription. Sequential ChIP on multiple bivalent loci 
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confirmed the co-occurrence of Polycomb subunits PRC1 and PRC2 with RNAPII 

S5P. The remaining 1/3 of bivalent genes, were also bound by RNAPII S2P, which is 

related with elongation of transcription, and their transcription was significantly 

elevated compared with the rest of bivalent genes. Since H3K27me3 and 

transcriptional elongation were considered incompatible (Schmitges et al., 2011), 

Fluorescent in Situ Hybridization (FISH) analysis was performed on Left-Right 

Determination Factor (LEFTY) locus and the results indicated that its promoter in 

some cells was marked by the silencing PRC2 subunit (repressed) and in others by the 

elongating RNAPII S2P form (active transcription) (Brookes et al., 2012a). Further 

integration of expression data and functional enrichment analysis, has uncovered 

multiple groups of Polycomb regulated genes initially classified bivalent, only due to 

cell population differences. In particular, the PRC target group accompanied by the 

RNAPII S2P form showed alternate active and PRC-silenced states within the cell 

population and was significantly enriched for genes involved in metabolic processes. 

Additionally, cell-intrinsic heterogeneity of allele mark variation might be a 

contributing factor in the numbers of genes detected as bivalent. By predicting 

monoallelic expression (MAE) using chromatin signatures of H3K36me3 and 

H3K27me3, Nag et al. (2013) have found ~20% of house-keeping genes and >30% of 

tissue-specific genes could confer MAE signature at their locus across multiple human 

cell lines. Intriguingly, more than 80% of bivalent genes in hESCs were also predicted 

as MAE in at least one of the used cell lines. This high overlap suggests that there is a 

need for single-cell allele specific approaches in order to unravel accurately the 

bivalent landscape.  

Despite the evidence provided by sequential ChIP in T cells (Roh et al., 2006), 

human ESCs (De Gobbi et al., 2011; Pan et al., 2007), mouse ESCs (Voigt et al., 2012) 

and other cell types or organisms (Alder et al., 2010; Seenundun et al., 2010; 

Vastenhouw et al., 2010; Xie et al., 2012) using sonication of chromatin or 

micrococcal nuclease (MNase) digested mononucleosomes, their results cannot extend 

beyond the scope of a few single genes, making the assay inappropriate for the 

confirmation of the large number of bivalent genes detected through ChIP-seq. In an 

effort to address quantitatively the issue, Voigt et al. (2012) used mass spectrometry 

(MS) of ChIP-ed mononucleosomes and discovered a quite significant number of H3 
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histones in ESCs that carry both histone modifications. Further analysis of isolated H3 

histones showed that the majority of bivalent nucleosomes in ESCs were having the 

tails of the opposite H3 copies modified concomitantly by H3K4me3 and H3K27me3, 

suggesting an asymmetrical deposition of the competing marks (Voigt et al., 2012). 

However, MS cannot answer the question of exact genomic location. In a new method, 

isolated mononucleosomes with ligated biotinylated adaptors at their DNA ends, were 

combined with antibody-based histone mark detection that was followed by an in-situ 

single molecule sequencing-by-synthesis reaction (Shema et al., 2016). This allowed 

the detection of combinatorial modification state of a mononucleosome along with its 

respective DNA sequence (Shema et al., 2016). About 0.5% of total nucleosomes in 

ESCs were marked by both histone modifications, being enriched relative to random 

expectation based on H3K4me3 and H3K27me3 abundance (Shema et al., 2016).  

More strikingly, Weiner et al. (2016) have developed combinatorial ChIP (co-

ChIP), a method for the genome-wide identification of co-incident histone 

modifications at the same nucleosome. Each of the two rounds of immunoprecipitation 

(IP) (each antibody separately, second round uses a pooled set of nucleosomes) are 

followed by DNA barcoding which allows for the identification of the specific histone 

marks after the tags are mapped back to the genome. Mutually exclusive histone 

modifications (H3K27ac and H3K27me3) showed a random distribution of reads 

across the genome and the order of the antibodies used in the IPs did not alter 

significantly the detected regions of co-existing histone marks (Weiner et al. 2016). 

They used co-ChIP to assess bivalent marks in a comparative manner across naïve (2i) 

and primed (serum) ESCs as well as in various differentiated tissues. They observed 

that bivalency is more widespread at the primed pluripotent state and it disappears or 

re-forms in a highly tissue specific manner (Weiner et al. 2016). 

Despite the general credit that bivalency has received as an important regulatory 

characteristic of development, there is still a certain degree of controversy around it. 

Emergence of single nucleosome ChIP techniques accompanied by singe cell 

expression measurement will undoubtedly shed more light in the field. 
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1.1.6  RNAPII pausing and poising  

In order to understand the regulatory mechanisms that produce and maintain the 

pluripotent state of ESCs or the precise differentiation pathways, it is pivotal to use 

methods that can capture the complete transcriptional activity at different steps of 

transcription, as the regulation of transcription happens at multiple stages in eukaryotes 

(Min et al., 2011). Formation of the pre-initiation complex (PIC) at the promoter, with 

recruitment of general TFs and the hypo-phosphorylated RNAPII, is usually followed 

by initiation of transcription and release of RNAPII from the promoter region. Many 

genes are regulated at the stage of RNAPII recruitment (Nevado et al., 1999), but 

genome-wide studies of RNAPII chromatin immuno-precipitation have shown that 

~40% of genes maintain high levels of RNAPII localized at their 5’ end (Guenther et 

al., 2007; Kim et al., 2005; Muse et al., 2007; Rahl et al., 2010; Zeitlinger et al., 2007). 

This is due to either the formation of a paused RNAPII complex (with the assistance 

of DRB sensitivity-inducing factor (DSIF) and Negative Elongation Factor (NELF) 

protein complexes) or a transcriptionally arrested complex immediately after the PIC 

formation. Even though these are distinct transcriptional regulation steps, they are 

effectively indistinguishable through the ChIP assays (Adelman et al., 2005; Rougvie 

and Lis, 1988). 

When the early transcription elongation complex is controlled by NELF and 

DSIF, RNAPII stops elongating after producing a short nascent transcript of about 25-

50 nucleotides and is held firmly at the promoter proximal region, a phenomenon 

known as RNAPII pausing (Cheng and Price, 2007; Williams et al., 2015). RNAPII 

pausing has been proposed as a mechanism which facilitates the poised state of several 

bivalent promoters of developmental genes. Preliminary RNAPII loading of those 

promoters would offer them an advantage in the anticipation of activation according 

to the appropriate developmental signals. (Adelman and Lis, 2012; Bernstein et al., 

2006a; Brookes et al., 2012a; Ku et al., 2008a). 

The CTD of the biggest RNAPII subunit comprises of 52 repeats of a heptapeptide 

sequence (Y1-S2-P3-T4-S5-P6-S7) that is subject to modifications by the Positive 

Transcription Elongation Factor b (P-TEFb). The distinct CTD modifications can 

attract chromatin modifying enzymes and RNA processing factors that could lead to 
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gene activation (Brookes and Pombo, 2009). Phosphorylation of Serine 5 residue 

(S5P) is recognized by histone methyltransferase (HMT) SET1, which deposits the 

H3K4me3 mark, and by the RNA capping machinery (Komarnitsky et al., 2000; Ng 

et al., 2003). Serine 2 phosphorylation (S2P) is associated with elongation, H3K36me3 

HMTs recruitment, splicing and polyadenylation (Krogan et al., 2003; Proudfoot et al., 

2002). 

ChIP-seq has been widely performed on cell populations using various antibodies 

to capture the conformations of these distinct RNAPII complexes thus providing the 

genome wide distribution profiles of RNAPII in many cell types. Brookes and Pombo 

(2009) have classified genes in ESCs into three categories according to their 

transcription levels and RNAPII variant profiles at their promoters (Figure 1.5). Low 

levels of RNAPII S5P and 8WG16 (recognizes hypo-phosphorylated CTD of RNAPII) 

(Komarnitsky, Cho, & Buratowski, 2000a) are observed in a very small confined 

region at the promoters of paused genes. Active genes, on the other hand, show 

increased levels of RNAPII S5P and S2P that extend into the gene body. 8WG16 is 

also present, but only at the promoter region. Lastly, poised genes show high levels of 

RNAPII S5P solely. All three transcriptional states show also characteristic histone 

mark profiles. H3K4me3 is ubiquitous in all three states, changing its position slightly 

depending on the promoter of the gene. Paused genes have a distribution of H3K4me3 

that matches exactly the confined promoter profiles of S5P and 8WG16. In active 

genes, H3K4me3 is wider at the promoter and is accompanied by H3K36me3 at the 

gene body. The poised promoters show a characteristic bivalent histone mark 

combination of H3K4me3 and H3K27me3. Thus, there is a clear association between 

histone modifications and RNAPII pausing characteristics with a likelihood that some 

of the marks (i.e. H3K36me3) are deposited due to the effect of RNAPII elongation 

and not the opposite (Brookes and Pombo, 2009). The terms ‘paused’ and ‘poised’ are 

used in a variety of contexts in scientific literature. Here, we define poised promoters 

as occupied by H3K4me3, H3K27me3 and having preloaded RNAPII, being in a ready 

state for transcription while paused promoters show variable levels of RNAPII S5P, 

high pausing index and are mostly H3K4me3 marked, but sometimes bivalent as well. 
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Figure 1.5 RNAPII variants and histone modification profiles at promoters classified 
according to their expression potential (figure taken from Brookes & Pombo, 2009) 

 

The typical measurement widely used to infer the relationship between pausing 

and elongation is the pausing index. The pausing index or travelling ratio is given by 

the ratio of RNAPII density at the promoter to the density in the gene body, defined in 

the following formula (Muse et al., 2007): 

𝑆 = 𝑙𝑜𝑔2 (𝑑(𝑅𝑁𝐴𝑃𝐼𝐼𝑝𝑟𝑜𝑚𝑜𝑡𝑒𝑟)) − 𝑙𝑜𝑔2(𝑑(𝑅𝑁𝐴𝑃𝐼𝐼𝑔𝑒𝑛𝑒𝑏𝑜𝑑𝑦)) 

where 𝑑 stands for the number of reads per nucleotide (nt) in the given region.  

The difference between the densities in log base 2 units equals to the ratio of fold 

enrichment in these regions, meaning a value of 1 would represent a 2-fold greater 

enrichment of RNAPII signal at the promoter region rather than in the gene body 

(Muse et al., 2007). The genes with 𝑆 value greater than 2 standard deviations from 

the mean (for the distribution of 𝑆 across all genes), are the ones that present promoter 

proximal enrichment of RNAPII or promoter proximal pausing (Muse et al., 2007). 

Due to inherent difficulty of imposing a threshold on continuous data and the 

differences in the underlying methods used in RNAPII experiments, there have been 

studies reporting that ~30% to ~90% of mouse ESCs genes present promoter proximal 

pausing (Adelman and Lis, 2012). This variance might not reflect actual biological 

differences, but the various statistical thresholds imposed to define RNAPII pausing. 

Using the global run-on sequencing (GRO-seq)2 method (Core et al., 2008), there has 

                                                 
2 GRO-seq is a method used to measure the RNAPII elongation rate genome-wide. Short nascent 

RNAs associated with engaged RNAPII are tagged with bromo (BrU) domains, isolated and 

subsequently sequenced with Next Generation sequencing techniques (Core et al., 2008; Jonkers and 

Lis, 2015). 
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been a consistent ~30% of genes displaying promoter proximal pausing of RNAPII 

across species and developmental stages (Adelman and Lis, 2012). 

In contrast with the perception that RNAPII pausing represents a gene silencing 

mechanism, RNAPII pausing has been found to occur at genes with wide gene 

expression range (Core et al., 2008; Min et al., 2011). RNAPII pausing reduction at 

the promoter does not always lead to increased gene expression, but it can often induce 

the opposite results (Min et al., 2011). Bivalent genes occupied by PRC components 

show variable levels of RNAPII variants, being mostly interconnected with the 

RNAPII-S5P species (Brookes et al., 2012a). Interestingly, there are also genes that 

not only feature PRC occupancy but also relatively high levels of gene expression, the 

elongating form of RNAPII (S2P) and H3K36me3 (related with transcription 

elongation as mentioned before). This intriguing conformation at the promoters of 

several metabolic and developmental genes could be attributed to differences in the 

alleles of the genes or even cellular heterogeneity in ESCs (Brookes et al., 2012a). 

Furthermore, using ESCs grown in 2i media, where ESCs show high levels of 

homogeneity since the expression of lineage markers is low (no priming) (Marks et 

al., 2012), RNAPII pausing was mainly found occurring at cell cycle and signal 

transduction genes (Williams et al., 2015). There was no silencing of developmental 

genes observed due to RNAPII poising, but there was attenuation of differentiation 

pathways due to lack of it (Williams et al., 2015). 

Overall, these data suggest that RNAPII pausing and poising are associated with 

the fine-tuning of expression of genes that participate in signalling networks, 

regulating in turn developmental genes marked as bivalent and affecting the cell’s 

differentiation potential.   

1.2  Next Generation Sequencing and applications 

Over the past decade, Next Generation Sequencing (NGS) technologies have 

increased tremendously the range of genomic analyses that are available to laboratories 

around the world. One of the important factors being the cost, NGS technologies have 

dramatically reduced sequencing costs in comparison with the automated Sanger 

method, almost 100-fold, from $10.00 to $0.10 per finished base pair (Metzker, 2010; 
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Morozova and Marra, 2008; Wetterstrand K., 2013). In the recent years, costs dropped 

significantly more and the record low of $1000 for sequencing an entire human 

genome was achieved, making sequencing one of the most promising clinical tools 

(Goodwin et al., 2016). 

NGS technologies can be sub-grouped in the short-read and long-read approaches. 

Short read sequencing approaches are further divided in two categories: sequencing by 

ligation (SBL) and sequencing by synthesis (SBS). SBL platforms include SOLiD 

(Valouev et al., 2008) and Complete Genomics (Drmanac et al., 2010), whereas SBS 

platforms include Illumina and Qiagen (cyclic reversible termination - CRT)(Guo et 

al., 2008; Ju et al., 2006), 454 and Ion Torrent (single nucleotide addition - SNA) 

(Margulies et al., 2005; Rothberg et al., 2011). In long read sequencing platforms, 

single-molecule long-read sequencing platforms (PacBio and Oxford Nanopore 

Technologies) (Clarke et al., 2009; Eid et al., 2009) compete with synthetic long-read 

technologies (Illumina and 10x Genomics) (Voskoboynik et al., 2013).  

Illumina currently holds the largest share in the short read sequencing industry, 

due to its mature technology, flexibility between platforms and wide application range. 

Diversified sequencing instruments such as MiniSeq (lower throughput) to HiSeq X 

(the latest high throughput sequencer), offer many options to laboratories, adapted to 

their needs for runtimes, read lengths and budgets (Goodwin et al., 2016; Metzker, 

2010). Illumina short-read technology and its applications relevant to the thesis are 

described below.  

The Illumina CRT system belongs in the category of clonal template generation 

approaches. A DNA template (after DNA fragmentation) binds covalently through the 

adapter sequence to oligos found on a glass slide containing a number of lanes (flow 

cell). Amplification of templates (solid-phase bridge amplification) leads to the 

formation of clusters of templates, placed in great proximity with each other, but they 

do not overlap. After the completion of several amplification rounds, tens to hundreds 

of millions of clusters are formed on the flow cell, depending on the sequencing 

platform (Goodwin et al., 2016). The sequencing process then starts with an addition 

of a sequence complementary to the adapter region, to facilitate polymerase binding 

to the double stranded DNA. Each cycle is comprised of a terminally blocked, 

fluorophore-labelled nucleotide addition, followed by imaging in four or two laser 
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channels of the colour emitted, depending on the added base. Lastly, fluorophore 

cleavage and washing from the flow cells is followed by 3’-OH group regeneration 

(Goodwin et al., 2016). The flow cell clusters are then sequenced in a massively 

parallel manner. 

NGS raw data are stored as image data, sequence reads (FASTQ format3) or as 

aligned reads to the genome (SAM/BAM format4) (Park, 2009). Storing the image data 

could be useful, to keep up to date with the development of new base calling 

technologies, albeit expensive. It is a common policy to discard the image data and 

keep only the sequence reads in FASTQ format. Labs producing data from various 

NGS experiments, are obliged to deposit them to public databases such as Gene 

Expression Omnibus (GEO) accompanying their publications (Barrett et al., 2013). 

Because of large file sizes, FASTQ data uploading or downloading from GEO 

repository can result in failure. Thus, the National Center for Biotechnology 

Information (NCBI), the European Bioinformatics Institute (EBI) and the DNA 

Databank of Japan (DDBJ), generated databases assuring that the research 

communities worldwide could retrieve sequencing data along with other useful details 

for each experiment (meta-data) in a secure and robust way. They have created the 

Sequence Read Archive (SRA) which allows retrieval, movement and storage of large 

scale NGS datasets (Cochrane et al., 2009; Sayers et al., 2009).  

Out of the many applications of NGS, here we introduce epigenetic applications 

such as Chromatin Immunoprecipitation followed by sequencing (ChIP-seq) (Park, 

2009) and transcriptomics applications such as RNA-seq (Wang et al., 2009). Both 

applications were used in our project. 

                                                 
3 FASTQ format was initially developed by the Wellcome Trust Sanger Institute as a means of 

storing a FASTA sequence along with its quality score per base. It has now been recognised as the 

standard file format for storing the output of NGS instruments (Cock et al., 2010).   
4 SAM format stands for Sequence Alignment Map and it is a text-based representation of 

biological sequences mapping to a reference genome. BAM stands for Binary Alignment Map and has 

been developed as a  

means of compressing data from SAM format (Li et al., 2009). 
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1.2.1 ChIP-seq 

The ChIP sequencing technology successfully achieves mapping of protein-DNA 

interaction at the exact chromosomal locations that they occur. ChIP-seq (Barski et al., 

2007; Mikkelsen et al., 2007; Robertson et al., 2007) has been used for the profiling 

of histone modifications and protein-binding sites, allowing a better mapping of TF 

target regions (promoters, enhancers) and subsequent identification of specific 

sequence motifs in case of TFs.  

In a typical ChIP-seq experiment, the cross-linking of a DNA-binding protein to 

DNA in vivo is followed by chromatin shearing using sonication. DNA fragments 

range between 200-600 bp in length. IP of the DNA-protein complexes is carried out 

using an antibody that specifically recognises the protein of interest or one of its 

isoforms. Experiments targeting specific histone modifications can be achieved 

without cross-linking, and sonication is frequently substituted by MNase digestion for 

the chromatin fragmentation. Thus, a more accurate representation of each nucleosome 

is achieved. In the event of cross-linking, after a reverse cross-linking step, DNA 

fragments are purified and the sequencing library is constructed according to the steps 

of the sequencing platform (Park, 2009). Illumina Genome Analyzer (I and II) and 

HiSeq 2000 are the most prevalently used platforms for most ChIP-seq experiments 

(Park, 2009). Issues concerning experimental designs (lack of replicates, lack of 

positive and negative controls, lack of validation, etc) plague the ChIP-seq assay, like 

many other assays, often affecting the integrity of results. Some of the factors are 

elaborated below. 

Antibody specificity: Variable sensitivity of antibodies that fluctuate 

considerably between batches can easily affect the quality of a ChIP-seq experiment. 

Cross-reactive antibodies recognizing more than one histone modification (i.e. di- and 

tri- methylation of lysine residues) or TFs is a common phenomenon that needs 

thorough testing. Validating different antibodies (for example through western 

blotting) before the choice of the most suitable one is highly recommended (Park, 

2009). There have been cases where comparison between experiments that have used 

different antibodies for the same protein has not yielded a high degree of overlap 

(Devailly et al., 2015).  
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Sample sizes: The average amount of DNA necessary for a ChIP-seq experiment 

using the Illumina platform ranges around 50 ng. However, the initial DNA material 

for an experiment is highly dependent on the quality of antibody used and quantity of 

the target protein or histone modification (Park, 2009).  

Control experiments: Various steps along the ChIP-seq pipeline are prone to 

incorporate some artefacts. DNA fragmentation, for example, is highly biased towards 

open chromatin regions, resulting in a non-uniform distribution of DNA fragments. In 

order to tackle this limitation, labs have been using control samples. These samples 

can be: 1. Input DNA, where part of the initial DNA material is used before IP, 2. 

Mock IP DNA, which is taken after IP but without the use of antibodies and 3. DNA 

from non-specific IP, where an antibody such as immunoglobulin G is used, targeting 

a protein not involved in DNA binding or identification of a histone modification 

(Park, 2009).  Unfortunately, inherent difficulties in purification of adequate material 

from the input experiments, in order to acquire high numbers of reads (trying to avoid 

sampling bias), lead to higher costs. Consequently, some labs might avoid it and try to 

deal with the problem at a later stage during the computational analysis.  

Sequencing depth: The number of sequenced reads for a ChIP-seq experiment is 

highly reliant on the financial resources of each lab. It is expected that if a protein 

binds more across the genome or a histone modification covers broader regions, more 

reads should be necessary to cover completely the corresponding regions, resulting in 

higher enrichment levels compared with a control sample. One would expect that after 

a certain number of reads, there should not be more significantly enriched binding sites 

(or histone marks) to be detected. Hence, there should be a sequencing depth value 

where a saturation point could be met. Although there have been arguments against 

this saturation point using simulations after read sampling, peak enrichment threshold 

between experiment and control can confirm that saturation exists only at peaks with 

significantly higher enrichment than the control (Kharchenko et al., 2008). Currently, 

most ChIP-seq experiments in public domain have a depth between 10 and 100 million 

reads. 

Spike-in normalisation: The nature of ChIP-seq method is not quantitative 

enough to allow for a direct comparison between samples coming from non-identical 

cell types or cells that have been chemically treated (Orlando et al., 2014). Hence, 
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differential TF binding or global histone modification landscape changes cannot be 

adequately assessed only with a sample size normalisation. This would merely 

quantify the distinct sample signals as a percentage of the total number of mapped 

reads, potentially equating them incorrectly and missing valuable information (Chen 

et al., 2015).   

Adding ‘spike-in’ epigenome molecules as a reference can internally normalise 

the read counts of each sample. The choice of the reference molecules should be from 

a distant species from the species of interest, where a minimal mapping of one genome 

to another should take place. A known abundance of the reference epigenome can 

accurately determine when the global level of a histone modification would decrease 

in the sample of our interest due to the increasing number of total reads mapping back 

to the reference epigenome or ‘spike-in’ (Orlando et al., 2014). However, this method 

is still dependent on the antibodies used for IP, which they need to recognise the 

protein isoforms from both species (Orlando et al., 2014). 

Data analysis and management: The most important step in the downstream 

computational analysis of ChIP-seq data is the alignment to the reference genome of 

the organism. All the subsequent results are directly dependent upon the alignment 

outcome. There are several aligning algorithms suitable for this kind of data (Trapnell 

and Salzberg, 2009) such as Eland (default Illumina pipeline aligner), MAQ (Li et al., 

2008) (more suitable for single nucleotide variant (SNV) calling) and Bowtie 

(Langmead et al., 2009) which is known for its speed and efficiency and was the 

chosen aligner in our study. Interestingly, many aligners have options that do not allow 

the alignment of reads that map to more than one site in the genome. Considering that 

many areas of the mammalian genomes can be quite repetitive, for example TFBSs 

and promoters of lineage specific genes (Huda et al., 2009; Polavarapu et al., 2008), 

one needs to be cautious with the parameter choices of the alignment step.  

The enriched regions are subsequently called with the assistance of peak calling 

algorithms (Kharchenko et al., 2008; Xu et al., 2014; Zhang et al., 2008). Genome 

regions selected for identification of greater numbers of reads than in the control are 

called peaks. A simple fold enrichment ratio of ChIPed tags in a sample in comparison 

to the control does not contain enough information or account for bias of the region 
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such as the underlying chromatin structure. There are peak calling algorithms using 

distribution models or the inherent bi-directionality of the reads to tackle the problem.  

The Poisson model used by MACS, a peak caller widely used for protein binding 

peak detection, effectively combines the fold enrichment ratio and the absolute number 

of reads at the region (Zhang et al., 2008). Using the inherent characteristics of ChIP-

seq experiments, such as read bi-directionality and size, distributions of reads mapping 

to both strands are formed (Schmid and Bucher, 2007). In a putative peak site, the 

reads mapping at each strand are added together after they have been extended towards 

the centre intersection of the two distributions, and the combined signal is smoothed. 

From the comparison of the underlying signal probability distributions (using dynamic 

λ for the Poisson distribution, which allows for capturing of the local biases) of the 

actual experiment and the input control, false discovery rates (FDR) are calculated and 

account for the significance of the enriched sites. 

Protein binding sites usually have a sequence length of 4 to 30 bp (Borneman et 

al., 2007), which is not clearly portrayed at the combined fragment of ChIP-seq reads 

that can reach up to a few hundred base pairs. MACS empirically models the distance 

between the aligned reads at the forward and reverse strands, shifting all the reads by 

“distance/2” towards the 3’ prime, bringing them closer to the putative binding site 

(Zhang et al., 2008). The peak resolution is highly improved and a more accurate 

distance from the peak summit is computed.   

However, the majority of peak callers do not account for the variant width of 

histone modifications, which can be sharp, broad or mixed. Histone modification peaks 

for H3K27me3 are mostly broad, extending in many kilobases, in contrast with 

H3K4me3 which is located sharply at promoter proximal regions (Park, 2009). SICER 

(Xu et al., 2014) uses a spatial clustering method specialized on the identification of 

histone modification patterns. By combining multiple signals from nucleosomes that 

are recognised with the same histone modification, it increases the signal to noise ratio, 

especially for regions where the signal is not sufficiently higher than the input but 

covers a wide region. Enrichment scores are subsequently calculated for each putative 

peak, comparing the signals of the ChIP experiment with the signal in the respective 

input control.  
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Scores accounting for statistical significance of the peaks in the experiment are 

highly dependent on the quality of the input control experiment. When there is no 

control experiment available, randomised reads from the ChIP experiment can be used 

as the null distribution instead. In a ChIP experiment the reads that map to adjacent 

regions on the genome are not entirely independent, affecting directly the generated 

random distribution used as a control and subsequently the number of significantly 

enriched regions (Park, 2009). 

In this thesis, we have chosen to use SICER for the histone marks ChIP-seq 

experiments and MACS for the protein-binding sites. 

 

1.2.2 Transcriptome sequencing  

Modern transcriptomics studies aim to discover all transcript species including 

mRNAs, non-coding RNAs or small RNAs, and their accurate quantification between 

distinct developmental stages or conditions (Wang et al., 2009). The advent of NGS 

methods has led to the development of RNA-seq, a method for transcriptome mapping 

and quantification that is superior to the previously used hybridization-based 

approaches, like genomic tilling microarrays (Bertone et al., 2004; Clark et al., 2002) 

or Expressed Sequenced Tags (ESTs) that require complementary DNA (cDNA) 

cloning (Adams et al., 1991). In a typical RNA-seq experiment, an mRNA population 

(depleted of ribosomal RNA (rRNA) or enriched for poly-adenylated RNAs) is 

fragmented and converted to a cDNA library. Next, adaptors are ligated to one or both 

sides of the cDNA fragments, which are later amplified and sequenced with the 

respective sequencing platform. Short read sequences can be obtained either from one 

or both ends of the fragment, hence the names single and paired end sequencing (Wang 

et al., 2009). RNA-seq can be utilized for discovery of novel transcripts, differential 

expression between samples and alternative splicing studies (Sims et al., 2014). 

Despite the advantages of RNA-seq to older transcript quantification methods, there 

are some challenges using this technology.  

Sequencing depth: Coding and non-coding transcripts show different levels of 

expression, requiring a minimal number of reads to be precisely quantified.  The ability 
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to detect transcripts of lower abundance is determined by the sequencing depth of a 

sample and is not known a priori. According to Tarazona et al. (2011), more than 200 

million paired-end reads would adequately detect all transcripts and alternative 

isoforms in a human sample. 

Spike-in normalisation: In all genome-wide expression analyses, there is an 

underlying hypothesis that wants the populations of cells in comparison, to generate 

total RNA at very similar levels (Lovén et al., 2012). Transcription signal 

normalisation is akin to the fact that some cells can produce two to three times more 

RNA in total, making them unsuitable to compare with other cells of lower RNA 

production (Lovén et al., 2012). Spike-in control can safeguard and address this issue 

with a normalisation to cell number of each population. The use of synthetic spike-ins 

(Jiang et al., 2011b) or known transcripts of known quantity from a distant species can 

prevent the introduction of bias that the usual normalisation to the average brings 

(reads per million of transcripts).  

Biological replicates: Given cost limitations, in a differential expression analysis 

set up, it is a common practice to sacrifice the precision feasible by higher sequencing 

depth for the sake of biological replicates. Even though this compromise offers a more 

precise portrayal of the biological variation, thus allowing for a more robust detection 

of differentially expressed genes, the number of replicates must be carefully 

considered (Sims et al., 2014). In a recent study, investigative analysis of 48 biological 

replicate experiments has shown that 3 or more replicates could be enough to avoid 

the misinterpretations caused by unsuccessful replicates (Gierliński et al., 2015). 

Library construction: Large RNA molecules (>200 bp) have to be fragmented 

before adaptor ligation and subsequent sequencing. On the other hand, many small 

RNAs, like microRNAs (miRNAs) or piwi-interacting RNAs (piRNAs) directly bind 

to the adaptor without prior fragmentation. RNA fragmentation or cDNA 

fragmentation are known for incorporating different degrees of bias in the library 

construction process by favouring the identification of the transcript body (Mortazavi 

et al., 2008) or the 3’ prime end of the transcript (Nagalakshmi et al., 2008) 

respectively. 

Bioinformatics challenges: Data generated from RNA-seq technology faces 

similar limitations as other high throughput sequencing applications, namely storage, 
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fast retrieval and easy processing of the data are the main issues. Fast processing 

pipelines have been implemented to align the data when a reference genome is 

available and complete a successful statistical analysis in a reasonable length of time.  

Identification and quantification of transcripts is a challenging task, starting from 

the step of RNA-seq read alignment. There are two routes depending on the availability 

of a reference genome: mapping to the reference genome or to the annotated 

transcriptome (Conesa et al., 2016). Genome mapping allows for the identification or 

discovery of novel transcripts and their quantification, whereas transcriptome mapping 

is limited to identify and quantify already annotated transcripts. When mapping to a 

reference genome, gapped aligners such as TopHat (Trapnell et al., 2009) or STAR 

(Dobin et al., 2013) are used as a first step. Then using an annotation file (GFF5), 

known transcripts are identified and counted. For novel transcripts no annotation file 

is necessary. Cufflinks (Trapnell et al., 2012) is one of the traditionally used programs 

for this step of the analysis. The common measure for the transcript abundance is 

Fragments per Kilobase of transcript per Million mapped reads (FPKM), which is a 

way to normalize the data by RNA length and total number of reads enabling the 

comparison between samples. 

Mapping to a reference transcriptome (FASTA file of annotated transcripts) is 

done by first using an un-gapped aligner such as Bowtie (Langmead et al., 2009). 

Programs such as RSEM (Li et al., 2011) and kallisto (Bray et al., 2016) are used for 

the next step of transcript identification and counting. In both methods described 

above, there is a major limitation when reads map to more than one location. This 

happens extremely often, due to high repetitiveness of the genome and existence of 

paralogous genes. The transcriptome mapping is more prone to genomic multi-

mapping, since a read can map multiple times to transcripts that share one exon 

(Conesa et al., 2016).  

When there is no reference genome available for the organism studied, de novo 

transcript aligning algorithms are used. Packages such as Trinity (Brown et al., 2012) 

are used to reconstruct ab-initio the reads into transcriptome contigs. Next, the reads 

                                                 
5 GFF format stands for General Feature Format and is used for gene annotation, containing tabular 

information with 9 fields per line. Names of the features in order of their appearance are: sequence, 

source, feature (i.e. “gene” or “exon”), start, end, score, strand, frame or phase and attributes. 
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are remapped to the resulting transcriptome from the first step using and un-gapped 

aligner, followed by quantification and functional annotation (Conesa et al., 2016). 

Overall, RNA-seq is a great tool in the hands of modern biology scientists. Until 

recent years, the transcriptome profiles of multiple types of cells and tissues were 

generated using bulk cell populations and quantifying an average number of transcripts 

across the population (Shapiro et al., 2013). Nevertheless, in many cases in biology 

the underlying cell population is composed of distinct cell types and their stochastic 

expression needs to be systematically assayed (Raj et al., 2008). Single cell RNA-seq 

(scRNA-seq) (Tang et al., 2010) is a recently developed advanced technique that opens 

new ways in answering posed biological questions that were previously impossible to 

reach.   

 

1.2.3 Single cell transcriptomics (scRNA-seq) 

Single cell RNA-seq (scRNA-seq), is a high throughput gene expression profiling 

technology that is based on material provided by a single cell (Islam et al., 2011; 

Ramsköld et al., 2012; Tang et al., 2009). Novel biological insights can be obtained 

from a deeper characterization of a cell population, uncovering hidden heterogeneity. 

Small numbers of rare cells can now be clustered according to their expression levels 

and comprise potential categories of previously undocumented cells (Stegle et al., 

2015). Using single cell RNA-seq, cells are classified according to their developmental 

pathways and put in order across the differentiation cascade. Moreover, differential 

expression analysis and estimation of alternative transcript usage among the cell types 

can identify new marker genes, coming up with novel regulatory networks impossible 

to detect without the scRNA-seq technology.  

Another interesting aspect of transcription that is explored using scRNA-seq 

technology is kinetics of gene expression. Even though the method is not appropriately 

measuring expression changes in one gene over time  (Raj et al., 2006), overall rate of 

transcription between individual cells can be acquired and approximately represent the 

stochasticity of expression of a vast number of genes.  Allelic biases in gene expression 
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can also be investigated with studies already examining stochastic allelic expression 

in early embryogenesis (Deng et al., 2014). 

Protocols used for this high-throughput technique require single cell isolation 

either sorting them manually or using microfluidics (Kalisky and Quake, 2011). The 

cell is then lysed and the captured polyadenylated-mRNAs are reversed transcribed to 

cDNA. PCR amplification, or in vitro transcription of the cDNA, increases the material 

that is going to be used for sequencing with the appropriate NGS technology (Tang et 

al., 2009). Bulk RNA-seq data analysis has given us multiple tools that can be used for 

scRNA-seq data as well. However, the new technology carries some unique features 

that create challenges specific to it.  

Quality control of individual cells:  The same tools can be used in order to map 

the reads to the reference genome, as in bulk RNA-seq data. Inspection of the fraction 

of reads mapping back to the genome can be a valuable metric of the library quality 

for that cell. Another complementary approach uses principal component analysis 

(PCA) or a similar approach such as zero-inflated factor analysis (ZIFA- takes into 

account the high numbers of zero values), performed on the matrix of the obtained 

gene expression values. High quality cells are expected to form tight clusters whereas 

low-quality ones tend to be the outliers. There are however cases, where poor-quality 

cells form their own clusters, blurring the lines. A comprehensive quality control with 

more than one metric is sensible for discarding true low quality samples (Stegle et al., 

2015). Discarding results from multiple cells can have a negative effect on someone’s 

study, since the number of singe cells used in any experiment is already limited due to 

high costs. A simulation study tried to uncover the threshold up to which single cells 

could approach the transcriptome library complexity of bulk cell populations, and has 

concluded that 30 cells could be enough (Marinov et al., 2014).   

Technical variation: scRNA-seq expression outcomes are highly susceptible to 

technical noise dependent on the single-molecule capture efficiency, i.e. the fraction 

of mRNA molecules that are captured, amplified and subsequently sequenced from 

each cell (Marinov et al., 2014; Stegle et al., 2015). To address this limitation spike-in 

quantification of molecules of known abundance and sequence have been used 

(Mortazavi et al., 2008). Whole-transcriptome spikes from a distantly related organism 

or a set of artificial spike-in mix (ERRC) (Jiang et al., 2011b) is added to each cell 
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extract. Another layer of control is the use of unique molecular identifiers (UMIs), 

which are short DNA sequences added before the step of amplification uncovering 

related biases and estimating the absolute number of some of the transcribed molecules 

(Islam et al., 2013). Extending the measurement of technical noise, pool/split 

experiments are yet another way of control. RNA pooled from multiple cells is 

subsequently divided in separate reactions consisting of equal material, which is used 

for the libraries’ construction. Variation in the pool/split experiment will be solely 

attributed to technical noise whereas in the single cell libraries with spike-ins is both 

technical and biological (Marinov et al., 2014). Genes with low levels of expression 

tend to suffer from high experimental noise, in contrast with highly expressed genes. 

Batch effects: In contrast with the conventional bulk RNA-seq methods, in single 

cell transcriptomics, cells representing one condition are not prepared for sequencing 

along with the cells of another condition. There is no parallel preparation of their 

libraries, which are not dispersed in multiple lanes of a flow cell as it would happen in 

a bulk RNA-seq experiment in an effort to moderate batch effect as much as possible 

(Stegle et al., 2015). This inevitably leads to unwanted mixing of batch effects with 

biological variation and consequently wrong conclusions. An impossible in-parallel 

capture of cells for multiple conditions could only be resolved with several repetitions 

of each experiment, isolating cells for each condition multiple times. In this way, 

modelling of confounding variation could be more feasible since there are multiple 

replicates of cells for the same condition.   

Cell cycle variation: Cell heterogeneity in a sample of differentiating cells reflect 

biological variation related with differentiation signals obscuring the other biological 

variability under study. If the cells in the sample are not synchronized for a cell cycle 

stage, there is a need for modelling of the cell cycle noise. Recently, cell-cycle 

variation was modelled using Gaussian processes, followed by linear regression, thus 

allowing the removal of noise caused by cell cycle (Buettner et al., 2015). 

1.3 Aims of study 

 

The advent of low-cost next generation sequencing technologies has contributed 

to the development of a plethora of genomic, epigenomic and transcriptomic datasets 
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in multiple cell types, tissues and species.  Bivalent chromatin is one of the most 

studied chromatin signatures, however the concerns raised around its conformation 

and importance during development have not been adequately answered. The 

associated studies published so far, have mainly investigated bivalency in isolation, 

therefore a comprehensive comparison between species and cell types is pertinent. 

In this study we set with a goal to investigate bivalent chromatin in mammalian 

cells and reveal its characteristics, through a meta-analysis of publicly available 

relevant datasets. Our primary aim is to develop a method for the identification of a 

robust list of bivalent promoters that would prevent outliers of each incorporated study 

permeating in our results. Initially, the use of data derived from mouse and human 

ESCs is imperative, as we need a point of reference for the detection of high-confident 

bivalent promoters. Next, we characterize bivalent promoters regarding their 

conservation across species, biological function, TF occupancy, sequence motif and 

expression. We also include single cell transcriptomics to address the heterogeneity of 

ESC populations and inspect the expression variation of bivalent genes. Last, we 

investigate the dynamics of epigenetic states and RNAPII pausing at promoters across 

pluripotent and differentiated cell lineages. 

We aim to develop a useful resource for further studies trying to unveil the aspects 

of bivalent chromatin and its association with transcriptional regulation. 
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Chapter 2 Comparative analysis of bivalent 
domains in mammalian embryonic 
stem cells 

2.1 Chapter Introduction  

 

This chapter was published as a conference publication (Third International 

Conference, IWBBIO 2015, Granada, Spain, April 15-17, 2015, Proceedings, Part I) 

in the book with title Bioinformatics and Biomedical Engineering, under the DOI: 

10.1007/978-3-319-16483-0_39. Here we introduce a comparison between two 

approaches we have used for the detection of high confident bivalent promoters. The 

conclusions of this analysis were subsequently used in Chapter 3 where we present a 

more detailed characterization of bivalent promoters. 

2.2 Introduction 

The key cellular processes determining the fate of each cell type during 

development and differentiation are thought to be controlled by gene regulation 

(Pearson et al., 2005). Genomic regulatory elements such as promoters receive and 

execute transcriptional signals, dependent on their epigenetic state and chromatin 

accessibility, controlling the expression of key developmental factors (Wilson et al., 

2010). Apart from the transcription control at the promoters and enhancers, gene 

expression is also controlled epigenetically, by post-translational histone 

modifications, which transform the chromatin structure and thereby control gene 

expression (Bannister and Kouzarides, 2011).   

To unravel key developmental transitions that lead to different types of cell 

identities, embryonic stem cells (ESCs) offer a valuable model (Thomson et al., 1998) 

as they have an unlimited potential to self-renew as well as to differentiate in specific 

lineages when suitable external stimuli are provided. In ESCs, the majority of 

promoters with high CG content are un-methylated. During differentiation though, 

some of them become methylated, assisting to the acquisition of their final cell identity 

(Mohn et al., 2008). Azuara et al., 2006 proposed that particular histone modifications 
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and chromatin structure (Thomson et al., 1998; Voigt et al., 2013) are characteristic of 

ESCs. Two of the most commonly studied histone modifications related to activation 

and repression of chromatin respectively are H3K4me3 and H3K27me3 (Bannister 

and Kouzarides, 2011). Polycomb (PcG) and Trithorax (TrxG) group proteins catalyze 

H3K27me3 and H3K4me3 respectively, regulating genes involved in development 

and differentiation (Ringrose and Paro, 2004). Bernstein et al., 2006 observed 

activating (H3K4me3) and repressing (H3K27me3) chromatin signals in promoters of 

several developmentally regulated genes in murine ESCs. These activating and 

repressive marks were previously thought to be mutually exclusive and therefore the 

promoters marked with both modifications were named ‘bivalent’. Mikkelsen et al., 

2007 used the ChIP sequencing technique to examine the bivalent status and construct 

chromatin state maps across three cell types: mouse ESCs, mouse neural progenitor 

cells (NPCs) and  mouse embryonic fibroblasts (MEFs). Their study showed for the 

first time, that bivalent domains also exist in cells of restricted potency and 8-43% of 

them retained their signature during differentiation (Mikkelsen et al., 2007).  

Moreover, Mohn et al., 2008 indicated that bivalent genes that are not present in the 

pluripotent cells may arise in reduced potency cells.  

Bivalent genes were detected also in human ESCs (Pan et al., 2007; Zhao et al., 

2007) and the majority of them were shared with bivalent genes in mouse ESCs. 

Specifically, in two out of three studies there were 2,157 common bivalent genes 

(Mikkelsen et al., 2007; Pan et al., 2007; Sharov and Ko, 2007; Zhao et al., 2007). In 

agreement with the studies in mice, human ESCs bivalent genes were functionally 

enriched with developmental transcription factors and genes and most of them lose the 

repressive H3K27me3 mark during differentiation (Pan et al., 2007; Zhao et al., 2007).  

ESCs employ various mechanisms to avoid losing their pluripotency. For 

example, they manage to prevent DNA methylation that would silence important genes 

indefinitely. Bivalent genes belong to an important category of genes full of 

developmental factors that need to be poised for activation or repression at the right 

moment during the differentiation process (Voigt et al. 2013). The bivalent state 

preserves the plasticity of the developmental genes until certain environmental cues 

lead to proper differentiation.   
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Though bivalent genes have been identified across multiple species in ESCs as 

well as differentiated cells, there is no study so far collecting multiple data sets to build 

a high-confidence bivalent gene set. We therefore collected genome wide ChIP-seq 

data of H3K4me3 and H3K27me3 in murine ESCs from eight different studies. We 

then used two complementary approaches; peak-based and cutoff-based approach to 

define high confidence bivalent promoters. The high confidence bivalent promoters 

detected by peak-based method were more enriched for developmental genes than the 

cutoff-based. Finally, we collected data to identify bivalent promoters in human ESCs 

and pig induced pluripotent cells (iPSCs) to study the evolutionary conservation of 

bivalency. By performing the comparative analysis of bivalent domains across three 

species we highlighted the functional relevance of coexistence of these marks on the 

developmental promoters. 

2.3 Methods 

2.3.1 Data collection and processing 

 Murine ChIP sequencing data for H3K4me3 and H3K27me3 histone marks in 

ESCs was obtained in fastq format from Gene Expression Omnibus (GEO) database 

(Barrett et al., 2013). Accession numbers for mouse are: SRX001923, SRX001921 

(Mikkelsen et al., 2007), SRX185810, SRX085431 (Yue et al., 2014), SRX122629, 

SRX122633 (Yu et al., 2013), SRX172574, SRX172569 (Jia et al., 2012), 

SRX266816, SRX266814, SRX266817, SRX266815 (Cao et al., 2013), SRX305910, 

SRX305921, SRX305911 and SRX305922 (Wamstad et al., 2012). Details for 

accession numbers, antibodies used and cell lines shown in Table 2.2. 

Human ChIP-Seq data (fastq format) for H3K4me3 and H3K27me3 histone marks 

in hESCs was obtained from Roadmap Epigenomics (Bernstein et al., 2010) and Gene 

Expression Omnibus (GEO). Accession numbers for human are: SRX003843, 

SRX003845 (Ku et al., 2008a), SRX006874, SRX006237, SRX012368, SRX012501, 

SRX027857, SRX027864, SRX040598, SRX027865, SRX056700, SRX056719 

(Bernstein et al., 2010; Hawkins et al., 2010), SRX007379, SRX007385, SRX019898, 

SRX019896 (Bernstein et al., 2010), SRX027484, SRX027487 (Rada-Iglesias et al., 
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2011), SRX064487, SRX064486 (Kim et al., 2011), SRX189254, SRX189253 

(Akdemir et al., 2014). Details for accession numbers, antibodies used and cell lines 

shown in Table 2.1. 

 

Table 2.1 Accession numbers, type of cell line, growth media and antibodies for the 
samples gathered for human ESCs (Millipore 07-449 and Upstate 07-449 have no 
difference) 

 

 
Table 2.2 Accession numbers, type of cell line, growth media and antibodies for the 
samples gathered for mouse ESCs (Millipore 07-449 and Upstate 07-449 have no 
difference) 

 

 

ChIP sequencing data for H3K4me3 and H3K27me3 in pig (Sus Scrofa) induced 

pluripotent stem cells (iPSCs) was downloaded from a published study with accession 

number GSE36114 (Xiao et al., 2012). After downloading all the raw sequence files 

for all the experiments, each technical and biological replicate was imported into 

FastQC 0.10.1 (S. Andrews, 2010) for quality control. Alignment of reads was done 

GSE13084_1 SRX003843 Upstate 07-449 SRX003845 Abcam 8580 H1 DMEM

GSE16256_1 SRX006874 Upstate 07-449 SRX006237 Millipore 04-745 H1 CDI-protocol

GSE16256_2 SRX012368 Upstate 07-449 SRX012501 Abcam 8580 H1 mTESR

GSE16256_3 SRX027857 Millipore 07-449 SRX027864 Millipore 04-745 H1 mTESR

GSE16256_4 SRX040598 Millipore 07-449 SRX027865 Millipore 04-745 H9 mTESR

GSE16256_5 SRX056700 Millipore 07-449 SRX056719 Millipore 04-745 H9 mTESR

GSE17312_1 SRX007379 Upstate 07-449 SRX007385 Abcam 8580 H1 TESR

GSE17312_2 SRX019898 Millipore 07-449 SRX019896 Millipore 07-473 H1 TESR

GSE24447_1 SRX027484 Active Motif 39536 SRX027487  Active Motif 39159 H9 mTESR

GSE29422_1 SRX064487 Upstate 07-449 SRX064486 Abcam 8580 H9 DMEM

GSE39912_1 SRX189254 Millipore 07-449 SRX189253 Millipore 04-745 H9 DMEM

HUMAN

Cell line

H3K27me3 

SRA 

EXPERIMENT

H3K4me3 SRA 

EXPERIMENT
Samples Growth medium

Antibody Antibody

GSE12241_1 SRX001921 Upstate 07-449 SRX001923 Abcam 8580 v6.5 DMEM

GSE31039_1 SRX185810 Millipore 07-449 SRX085431 Millipore 07-473 ES-Bruce4 DMEM

GSE38596_1 SRX122629 Millipore 07-449 SRX122633 Abcam 1012 ES-E14 DMEM

GSE39513_1 SRX172574 Abcam 6002 SRX172569 Cell Signaling 9751 V6.5 DMEM

GSE46134_1 SRX266816 Millipore 07-449 SRX266814 Millipore 07-473 - DMEM

GSE46134_2 SRX266817 Millipore 07-449 SRX266815 Millipore 07-473 - DMEM

GSE47949_1 SRX305910 Millipore 07-449 SRX305921 Millipore 07-473 ES-E14 IMDM+HAM'S F12

GSE47949_2 SRX305911 Millipore 07-449 SRX305922 Millipore 07-473 ES-E14 IMDM+HAM'S F12

Cell line Growth mediumSamples

H3K27me3 

SRA 

EXPERIMENT

H3K4me3 SRA 

EXPERIMENT

MOUSE

AntibodyAntibody
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using Bowtie 0.12.9 (Langmead et al., 2009) using reference genomes mm10 for 

mouse, hg19 for human and susScr3 for pig. For all the species we used single end 

alignment, seed length=28. We then performed the bowtie execution using custom 

bash scripts and the samtools (Li et al., 2009) pipeline to convert the sam format files 

to bam format for each sample. The bam files that belonged to the same experiment 

(technical replicates) were merged into a common bam file in order to proceed with 

the further analysis. The biological replicates of each experiment were not merged. We 

downloaded the Gencode (Harrow et al., 2012a) genes for human (Gencode 19) and 

mouse (Gencode M2). We filtered out and kept only the genes from the initial GTF 

files. Also, we created bed files for the promoter regions, keeping the areas that were 

(-1000 bp, +2000 bp) from the Transcription Start Site (TSS). For mouse there were 

38,922 promoter regions and for human 57,818. Since there was not a Gencode file 

available for pig, we downloaded the ensembl gene file available from Biomart 

(Haider et al., 2009). After doing the same procedure as mentioned above in order to 

keep only the promoter regions, we ended up with 21,116 regions for pig promoters. 

Using BEDtools (Quinlan & Hall 2010) and the bedGraphToBigWig (Kuhn et al. 

2009) script from UCSC database, we created bigwig format files for each sample and 

we uploaded them to UCSC genome browser (Kuhn et al. 2009). Representative tracks 

for mouse and human datasets are shown below in Figure 2.1 and 2.2.  

 

 

Figure 2.1Representative tracks of normalized number of reads (histogram-tracks) in 
H3K4me3 (green) and H3K27me3 (red) samples, for the genes Bmp2, Gata6 and Foxp2 
in mouse ESCs. The line marks on top of the histograms represent the detected peaks. 
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Figure 2.2 Representative tracks of normalized number of reads (histogram-tracks) in 
H3K4me3 (green) and H3K27me3 (red) samples, for the genes BMP2, GATA6 and FOXP2 
in human ESCs. The line marks on top of the histograms represent the detected peaks. 

 

To inspect the trends of the signal over the gene promoters, for each of the samples 

in both species, we created plots for the average normalized ChIP-seq signal around 

the TSS region (-2500 bp, +2500 bp). Figure 2.3 and 2.4 show the average signal at 

the promoter regions for mouse and human ChIP-seq samples respectively. 

 

 

Figure 2.3 Average normalized ChIP-seq signal (reads per million-RPM) across the gene 
promoters (±2500bp) for each of the samples in mouse ESCs.  
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Figure 2.4 Average normalized ChIP-seq signal (reads per million-RPM) across the gene 
promoters (±2500bp) for each of the samples in human ESCs. 

 

2.3.2 Peak calling method 

 We used SICER (Zang et al., 2009), a tool that is recommended for enrichment 

analysis of histone modification data, since it outperforms MACS and FindPeaks in its 

category for peak calling specific to histone modifications of higher peak width (Zang 

et al., 2009). The input controls were used when they were provided. When input was 

available, the SICER parameters were:  for H3K4me3, window=200 and gap size=200. 

For H3K27me3, window=200 and gap size=2x300, since this histone mark is found 

covering wider chromatin domains. The rest of the parameters (same for both 

H3K4me3 and H3K27me3) were effective genome fraction =0.7, false discovery rate 

(FDR) = 0.01, redundancy threshold = 1 and fragment size = 150 (the fragment size 

was chosen having in mind the nucleosome size where approximately 146 bp of DNA 

are wrapped around the histone octamer). When a control library was unavailable, the 

FDR value parameter was replaced by the E-value parameter equal to 100. We 

intersected the resulting files after peak calling with the promoter files using the 

intersect command from BEDtools (Quinlan and Hall, 2010). 
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2.3.3  Cutoff method 

 We obtained the read density only at the regions we were interested in, the 

promoters. Using custom scripts and the coverageBed (BEDtools) (Quinlan and Hall, 

2010) command, we created bed files for each sample. In the resulting bed files, the 

column that we kept was the one that contained the number of reads in the promoter 

regions. We applied logarithmic scale (natural logarithm - ln) to the read densities of 

all samples, followed by quantile normalization for H3K4me3 and H3K27me3 

samples separately to define a threshold that would reveal the real enrichment for 

H3K4me3 and H3K27me3 and even out the variability across samples. We generated 

scatterplots of the same histone modification samples against each other to examine 

what type of normalization to choose.  To further increase the accuracy of the cutoff 

method, we created promoter files with sliding windows. Every promoter region was 

divided in windows of 200bp, with a sliding step of 50bp. For all the window regions 

corresponding to the initial promoter region, the maximum coverage value was chosen 

as the representative for this region. The distribution pattern of H3K4me3 reads is very 

close to the bimodal distribution. Following that, we used the mixtools package 

(Benaglia et al., 2009) in order to fit the bimodal distribution to all of our samples, 

both for H3K4me3 and H3K27me3. Bimodal distribution was fitted successfully for 

most of H3K4me3 samples. In contrast, most H3K27me3 samples were not following 

the bimodal distribution. For the successfully fitted H3K4me3 samples we kept the 

mean and standard deviation of the second curve of each distribution. After subtracting 

the standard deviation value from its respective mean value, we obtained the initial 

threshold values for each sample. The final threshold value for all the H3K4me3 

samples was the average of all the initial values. In the case of H3K27me3 

distributions, since we had no successful fitting bimodal distribution, we chose 

empirically 3 different thresholds and chose the one that would give results best 

matching to previous studies. The final threshold values used were 4.57 for H3K4me3 

and 3.00 for H3K27me3. We used the study of Mikkelsen et al., 2007 to compare and 

assess how accurate were the peak-based and the cut-off methods. 
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2.3.4 Functional enrichment analysis 

We conducted gene ontology functional analyses for the bivalent promoters for 

both approaches, using DAVID (Dennis et al., 2003).  

2.3.5 Overlap between species 

 To obtain a list of common bivalent, expressed and repressed genes between the 

species, we used only the orthologous genes that mouse and pig share with human 

(18,255 genes). We got the common list of genes for all three species, but also for each 

combination by two (human-mouse, human-pig, mouse-pig). 

2.3.6 P-value calculation 

 To calculate if the overlap of two gene lists can happen due to random chance, 

we used the hypergeometric test. Specifically, to compare two lists we used the phyper 

function in R. When we were comparing more than two lists we used random 

permutation of the rows and columns of the results table (species in columns, genes in 

rows) simulated for 1000 times. We used the permatfull function from the vegan 

package (Oksanen et al., 2013) in R. Then we compared the mean of all the simulations 

with our result of common genes in order to assess whether there is significant 

difference between them. 

2.4 Results  

2.4.1 Peak-based method to detect high-confidence bivalent 

promoters  

Bivalent promoters are defined by the presence of both active (H3K4me3) and 

repressive (H3K27me3) chromatin modifications. In ESCs, they are highly enriched 

for developmental genes and therefore the identification of high confidence bivalent 

promoters might lead to discovery of novel developmental regulators. With this 

rationale, we set to look for high confidence bivalent marked promoters in murine 

ESCs and collected data for eight paired (H3K4me3 and H3K27me3) ChIP sequencing 
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samples from eight studies in GEO (methods for details). The samples varied in read 

length, ranging from 27 bp to 115 bp and their total number of mapped reads to the 

mouse genome, ranging from 14 million to 200 million reads per sample. We called 

peaks using SICER (Zang et. al., 2009), the best suited algorithm for peak detection in 

histone modification data. For eight samples of H3K4me3, between 16 thousand and 

66 thousand peaks were identified while for H3K27me3, between 9 thousand and 26 

thousand peaks were identified. To check if this variation in peak number can be 

attributed to the variability in total number of reads across samples, we calculated 

Pearson’s correlation coefficient between number of reads and number of peaks 

detected across eight samples and found a high correlation. The correlation coefficient 

for H3K4me3 was 0.84 while for H3K27me3 was 0.75. The only way to adjust for the 

sequencing depth using a peak based method would be to consider the same number 

of reads across samples (i.e. same as the sample with the fewer number of reads) for 

peak calling. However, this would not allow us to use most of the available data. Thus, 

we defined an approach complementary to the peak-based approach – a cutoff-based 

method (described in detail in the following section). As annotation  in mouse we used 

38,922 genes from GENCODE (Harrow et al., 2012a) and defined promoters as -1kb 

and +2kb region around the transcription start site of each transcribed unit. We then 

intersected these promoters with H3K4me3 and H3K27me3 peaks. Despite the large 

variance in the number of H3K4me3 peaks identified in individual samples, the 

number of peaks within promoters was very consistent across samples ranging from 

18 thousand to 20 thousand H3K4me3 marked promoters. This suggests that most 

promoters have a high peak height of H3K4me3 and therefore H3K4me3 is a 

distinguishing mark for promoters. In contrast, the number of H3K27me3 promoter 

peaks showed a large variability ranging from 3 thousand to 9 thousand peaks. The 

Pearson’s correlation coefficient value between the total H3K27me3 peaks and the 

fraction of these in promoters was 0.5. This suggests that H3K27me3 does not show 

preference to promoters and therefore is not a distinguishing mark for promoters. The 

number of bivalent marked promoters varied between 2 thousand and 7 thousand 

across eight samples. Pearson’s correlation coefficient between the number of 

H3K4me3 promoters and bivalent promoters was 0.58 while between H3K27me3 

promoters and bivalent promoters was 0.98. This shows that the classification of a 
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promoter as a bivalent promoter highly depends upon identification of H3K27me3 

modification rather than H3K4me3 modification.   

To identify the high confidence bivalent promoters, we calculated cumulatively 

the number of promoters identified with the H3K4me3 modification in ‘n’ or more 

samples. Over 20 thousand promoters were H3K4me3 marked in at least one sample, 

while about 15 thousand promoters were H3K4me3 marked in all eight samples. This 

demonstrates that H3K4me3 modification on promoters across samples is quite stable 

(Table 2.3). On the contrary, over 11 thousand H3K27me3 promoters were detected 

in at least one sample of which only about 2 thousand were H3K27me3 marked in all 

samples (Table 2.3). The rate of decrease in the number of bivalent promoters (ratio 

of six or more to one or more) was 0.44, in H3K4me3 promoters was 0.81 and in 

H3K27me3 promoters was 0.37 in ‘n’ or more samples. This again demonstrates that 

the number of high confidence bivalent promoters is dependent on the H3K27me3 

histone mark. We noticed that over 80% of H3K27me3 promoters were consistently 

marked bivalent (Table 2.3). This means that most H3K27me3 marked promoters also 

have H3K4me3 modification present. This demonstrates that the co-existence of these 

two chromatin modifications on promoters initially thought as a surprise, is rather a 

rule than exception. ChIP enrichment signals can be missed during peak calling 

procedure or by experimental error in an individual sample. Peaks detected in all 

samples are likely to miss true bivalent promoters. As the ratio of bivalent to 

H3K27me3 marked promoters was highly consistent when 4, 5 or 6 or more samples 

are taken into account, we used an arbitrary cut off of six or more to define high 

confidence bivalent promoters. This resulted into identification of 16,885 high 

confidence H3K4me3 marked, 4,239 high confidence H3K27me3 marked and 3,740 

high confidence bivalent promoters (Table 2.3). 

We then investigated whether the high confidence detection was biased towards 

any individual study or was true representative of all eight studies. About 50% of high 

confidence peaks were present in individual H3K4me3 samples while the fraction of 

high confidence H3K27me3 peaks in individual sample varied between 40 and 70%. 

This again demonstrates that H3K4me3 is consistent while H3K27me3 varies on the 

promoters. 
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MOUSE (WITH PEAK CALLING METHOD) 

Samples     H3K4me3 H3K27me3 Bivalent Bivalent/H3K27me3  

1 or more 20761 11610 8515 0.73 

2 or more 19980 8931 7252 0.81 

3 or more 19358 7413 6343 0.85 

4 or more 18523 6198 5458 0.88 

5 or more 17848 5175 4679 0.90 

6 or more 16885 4239 3740 0.88 

7 or more 16062 3287 2764 0.84 

8 or more 14720 2236 1555 0.69 

Table 2.3 Cumulative count of three categories of promoters in mESCs with the peak 
based method. The cells with bold font (6 or more) represent the high confidence cut 
off chosen. 

 

2.4.2 Cutoff-based method to detect high-confidence bivalent 

promoters 

As the peak calling method is highly sensitive to the sequencing depth, we defined 

another independent method to identify enriched genomic regions for a specific 

histone modification, henceforth called cutoff-based method. We calculated the 

number of reads mapping to each promoter in each H3K4me3 and H3K27me3 sample 

by using custom scripts and the BEDtools suite (Quinlan & hall 2010). To normalize 

the reads across multiple samples, the logarithmic scaled promoter read counts across 

all H3K4me3 and H3K27me3 experiments were quantile normalized (separately for 

each histone mark, see Methods). The H3K4me3 normalized promoter read density 

followed a clear bimodal distribution separating H3K4me3 unmarked from marked 

promoters (Figure 2.5a). We further noticed that the H3K4me3 positive and H3K4me3 

negative sets were conserved across samples. On the contrary, the normalized 

promoter read density for H3K27me3 did not show a clear bimodal distribution 

making it hard to distinguish between the H3K27me3 positive and H3K27me3 

negative sets (Figure 2.5b). Moreover, although the H3K27me3 mark was coherent 

across samples, the distinction of two groups was not clear as in the case of H3K4me3 
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(Figure 2.5).  We fitted a bimodal distribution to the normalised H3K4me3 promoter 

read density and consistently obtained a cut-off of 4.57 to distinguish between 

H3K4me3 positive and negative promoters (Figure 2.5a). On the other hand, the 

bimodal distribution failed to fit to the normalised H3K27me3 read density, thus we 

defined an arbitrary cut-off of 3.00 to distinguish between H3K27me3 positive and 

negative promoters (Figure 2.5b). The cutoff based method identified consistently 

about 7 thousand H3K27me3 marked promoters and about 13 thousand H3K4me3 

marked promoters.  

To identify high confidence bivalent promoters using the cutoff method, we 

calculated cumulatively the number of promoters identified with a given modification 

in ‘n’ or more samples. Both H3K4me3 and H3K27me3 marks showed a large 

variability across samples. Over 15 thousand promoters were H3K4me3 marked in at 

least one sample while only about 11 thousand promoters were H3K4me3 marked in 

all eight samples (Table 2.4). Similarly, over 16 thousand H3K27me3 promoters were 

detected in at least one sample from which only about 3 thousand were H3K27me3 

marked in all samples (Table 2.4). The ratio levels were not as consistent as in the case 

of the peak calling method but for most of the cases (except for the extremes) more 

than 50% of the bivalent promoters were part of the H3K27me3 marked promoters. 

Like the peak calling procedure, we used a threshold of six or more to define high 

confidence bivalent promoters. This resulted into the identification of 13,034 high 

confidence H3K4me3 marked, 4,660 high confidence H3K27me3 marked and 2,396 

high confidence bivalent promoters. 
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Figure 2.5 Representative histograms and density plots for normalised number of reads 
in a) H3K4me3 and b) H3K27me3 samples in mouse ESCs. The vertical dotted red line 
marks the threshold used.  
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MOUSE (WITH CUTOFF BASED METHOD) 

Samples H3K4me3 H3K27me3 Bivalent Bivalent/H3K27me3 

1 or more 15668 16624 7711 0.46 

2 or more 14895 10327 5428 0.52 

3 or more 14389 7748 4400 0.56 

4 or more 13942 6419 3685 0.57 

5 or more 13478 5479 3027 0.55 

6 or more 13034 4660 2396 0.51 

7 or more 12378 3846 1708 0.44 

8 samples 11190 2829 945 0.33 

     

Table 2.4. Cumulative count of three categories of promoters in mESCs with the cutoff 
based method. The cells with bold font (6 or more) represent the high confidence cutoff 
chosen. 

 

2.4.3 Systematic comparison of peak-based and cutoff-based 

method 

We performed a systematic comparison of the peak-based and cutoff-based 

method. Across individual samples, the variability in the total number of peaks 

identified by cutoff-based method was much lower compared to the peak-based 

method for both H3K4me3 and H3K27me3 data sets. Though the cutoff-based method 

showed high consistency across samples for both modifications, it showed higher 

variability when the cumulative analysis was performed (Tables 2.3 & 2.4). We then 

compared the high confidence bivalent promoters obtained by both methods by 

defining the same threshold of six or more samples. The cutoff-based method 

concluded that only about 50% of H3K27me3 marked promoters were bivalent 

whereas the peak-based method predicted this fraction to be over 80%. The peak-based 

method results are thus in agreement with the literature (Mikkelsen et al., 2007). This 

is expected as peak calling approaches are widely used in the literature. Over 80% of 

bivalent peaks detected by the cutoff method, were also found by the peak calling 
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method. The peak-based method is therefore able to identify high confidence bivalent 

promoters missed by the cutoff method (Figure 2.6a). Finally, we calculated functional 

enrichment for bivalent promoters using both approaches. Although both set of high 

confidence promoters were enriched for developmental categories such as anatomic 

structure development and developmental process as expected, the enrichment was 

higher for the peak method than the cutoff one (Figure 2.6b). Taken together, the peak-

based method was more reliable in detecting high confidence bivalent promoters.   

 

2.4.4 Comparison of high-confidence bivalent promoters in 

serum-grown ESCs and 2i ESCs 

Having established that the peak detection method reliably predicts high 

confidence bivalent promoters, we used the bivalent promoters detected by the peak-

based method for further analysis. Murine ESCs can be maintained in two distinct 

culture conditions in vitro, 2i (with inhibitors of two kinases Mek and GSK3) and 

serum. All eight samples used for high confidence bivalent promoter detection were 

grown in serum culture condition. Marks et al., 2012 identified 1,014 bivalent genes 

in murine ESCs grown under 2i media and 2,936 bivalent genes grown in serum and 

stated that the identification of fewer bivalent genes in ‘2i’ was in agreement with the 

postulated naïve ground state of ESCs grown in ‘2i’ and not in serum. If this were the 

case, the high confidence bivalent promoters should show a higher overlap with 2i 

grown bivalent genes than bivalent genes detected in a serum grown sample. 76% of 

2i-grown bivalent genes and 68% of serum-grown bivalent genes overlapped with our 

high confidence bivalent promoters respectively. This suggests that the high confident 

bivalent promoters defined in this study show greater similarity with the ones found at 

the naïve pluripotent state. A fraction of 2i-grown bivalent genes were not identified 

bivalent in any of the samples grown in serum. This suggests that there are genes 

specifically bivalent marked in 2i and not in serum culture condition. 
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Figure 2.6 a) Common bivalent promoters between the cutoff based method, the peak 
based method and from Mikkelsen et al., 2007 b) Functional enrichment values (-
log10Pvalue) for the most enriched gene ontology terms for the two methods (P-value 
indicated on top of each bar, Fisher’s exact test). 
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2.4.5 Identification of bivalent regions in other mammalian 

species 

To investigate if the high confidence bivalent regions are conserved across 

species, we collected genome wide ChIP-seq data for H3K4me3 and H3K27me3 in 

human ESCs and pig induced pluripotent cells (iPSCs). We gathered 11 paired samples 

in humans from six studies with reads ranging from 13 million to 60 million in 

individual samples. We used the peak based method to call peaks in individual 

samples.  These peaks were then mapped to promoters of 57,818 transcribed units 

defined by GENCODE (Harrow et al., 2012a). Similar to mouse, the number of 

H3K4me3 promoter peaks were highly consistent across samples (mean 19,219.73, 

SD 462.88) while the number of H3K27me3 promoter peaks was more variable (mean 

8,035.73, SD 2,626.27). To identify high confidence human bivalent promoters, we 

considered bivalent promoters identified in ‘n’ or more samples. The rate of decrease 

for the number of bivalent promoters (ratio of six or more to one or more) was 0.39, 

for H3K4me3 promoters was 0.89 and for H3K27me3 promoters was 0.31 (Table 2.5). 

The fraction of bivalent to H3K27me3 promoters was consistently higher than 80% 

(Table 2.5). We used an arbitrary threshold of eight or more samples to define high 

confidence bivalent promoters. This resulted into the identification of 18,744 high 

confidence H3K4me3 marked, 5,841 high confidence H3K27me3 marked and 5,116 

high confidence human bivalent promoters (Table 2.5). 

In pig (Sus Scrofa), only one study was available in the public domain hindering 

detection of high confidence bivalent promoters in pig. Using 21,116 promoter regions 

in pig we detected 8,383 H3K4me3 marked, 2,816 H3K27me3 marked and 1,561 

bivalent marked promoters again demonstrating that over half of H3K27me3 marked 

promoters also contain an H3K4me3 modification. 
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HUMAN (WITH PEAK CALLING METHOD) 

Samples H3K4me3 H3K27me3 Bivalent Bivalent/H3K27me3 

1 or more 21167 18701 13206 0.70 

2 or more 20275 12066 9778 0.81 

3 or more 19865 9825 8236 0.83 

4 or more 19602 8560 7308 0.85 

5 or more 19341 7789 6713 0.86 

6 or more 19123 7102 6177 0.86 

7 or more 18944 6480 5660 0.87 

8 or more 18744 5841 5116 0.87 

9 or more 18489 5171 4505 0.87 

10 or more 18189 4087 3495 0.85 

11 samples 17678 2771 2202 0.79 

Table 2.5 Cumulative count of three categories of promoters in mESCs with the peak 
based method. The cells with bold font (8 or more) represent the high confidence cut 
off chosen. 

 

2.4.6 Comparative analysis of bivalent and promoters across 

three species 

Finally, we computed the overlap of bivalent promoters across three species by 

considering only one-to-one mapping orthologues. The bivalent promoters were less 

conserved across three species compared to the active promoters (Figure 2.7a and 

2.7b). Specifically, less than 10% of human bivalent promoters were conserved across 

three species while over 25% of H3K4me3 marked promoters were conserved across 

three species. The functional enrichment of common bivalent genes resulted in 

development processes, more specifically embryogenesis, such as pattern specification 

process, embryonic morphogenesis and embryonic organ development, suggesting 

that the three species have more commonalities during embryonic development. 
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Figure 2.7 Venn diagram of a) bivalent and b) K4marked promoters between human, 
mouse and pig using the peak calling method. 

 

2.5 Conclusion 

In summary, we identified high confidence bivalent domains in murine ESCs by 

integrating data across eight studies using two methods; peak-based and cutoff-based, 

and demonstrated that the peak-based method is more reliable. We then identified 

bivalent promoters in human and pig and performed a multi-species comparative 

analysis of bivalent promoters to show that the conserved bivalent promoters were 

highly enriched for embryonic developmental processes. 
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Chapter 3 CpG island erosion, Polycomb 
occupancy and sequence motif 
enrichment at bivalent promoters in 
mammalian embryonic stem cells  

3.1 Chapter Introduction  

This chapter was published in 2015 in Scientific Reports under DOI: 

10.1038/srep16791. Here we use the peak calling method, which was evaluated to be 

more suitable for the purpose of our study (Chapter 2), to detect a robust list of bivalent 

promoters in human and mouse ESCs. We also proceed with characterization of the 

properties of high confidence bivalent promoters. Variant expression levels among 

distinct groups of bivalent promoters, have subsequently led us to incorporate single 

cell transcriptomics data. Detailed transcriptomics analysis, under the scope of its 

relevance with bivalency, is presented in Chapter 4. 

 

Abstract  

In embryonic stem cells (ESCs), developmental regulators have a characteristic 

bivalent chromatin signature marked by simultaneous presence of both activation 

(H3K4me3) and repression (H3K27me3) signals and are thought to be in a 'poised' 

state for subsequent activation or silencing during differentiation. We collected eleven 

pairs (H3K4me3 and H3K27me3) of ChIP sequencing datasets in human ESCs and 

eight pairs in murine ESCs, and predicted high-confidence (HC) bivalent promoters. 

Over 85% of H3K27me3 marked promoters were bivalent in human and mouse ESCs. 

We found that (i) HC bivalent promoters were enriched for developmental factors and 

were highly likely to be differentially expressed upon transcription factor perturbation; 

(ii) murine HC bivalent promoters were occupied by both Polycomb repressive 

component classes (PRC1 and PRC2) and grouped into four distinct clusters with 

different biological functions; (iii) HC bivalent and active promoters were CpG rich 

while H3K27me3-only promoters lacked CpG islands. Binding enrichment of distinct 

sets of regulators distinguished bivalent from active promoters. Moreover, a 'TCCCC' 

sequence motif was specifically enriched in bivalent promoters. Finally, this analysis 
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will serve as a resource for future studies to further understand transcriptional 

regulation during embryonic development. 

 

3.2 Introduction 

Embryonic stem cells (ESCs) have the unique ability to self-renew indefinitely as 

well as to differentiate in response to internal as well as external stimuli (O’Shea, 

2004). These two properties of ESCs pose specific constraints on the genome, as self-

renewal requires maintenance of cellular memory that specifies its pluripotent 

capacity, while differentiation potential requires pluripotent ESCs to be highly plastic 

to enter any one distinct differentiation pathway. While the pluripotent state of ESCs 

is controlled through a network of core transcription factors (Takahashi and 

Yamanaka, 2006), emerging data point to a key role for epigenetic mechanisms such 

as chromatin dynamics and histone modifications in pluripotency (Meshorer and 

Misteli, 2006). Histone proteins and their post-translational modifications define the 

chromatin status of a cell and are correlated with the transcriptional status of genes. 

Mono-methylation of lysine 4 of histone protein 3 (H3K4me1) and acetylation of 

lysine 27 of histone protein 3 (H3K27ac) mark active enhancers while H3K4me3 and 

H3K27me3 mark active and repressed promoters, respectively (Bannister and 

Kouzarides, 2011). Other epigenetic marks are also associated with promoters and 

enhancers. For example, H4K16 acetylation marks active genes and enhancers in ESCs 

(Taylor et al., 2013). Set/MLL histone methyltransferases, the mammalian 

homologues of the trithorax group proteins (trxG), catalyse the H3K4me3 marks and 

Polycomb (PcG) group proteins catalyse H3K27me3. Both complexes are thought to 

regulate expression of important differentiation and developmental genes 

(Schuettengruber et al., 2007; Shilatifard, 2012b). These two chromatin modifications 

previously thought to be mutually exclusive were observed co-existing on promoters 

in murine ESCs and were named ‘bivalent’ promoters (Bernstein et al., 2006b). 

Bivalent genes are typically silenced or expressed at a very low level in ESCs, and by 

the presence of both active and repressive marks, are thought to be poised for 

activation or repression during the differentiation process (Azuara et al., 2006; 

Mikkelsen et al., 2007). Bivalent genes in ESCs either lost the H3K27me3 mark and 
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were expressed, or lost H3K4me3 and were silenced when differentiated into the 

neuronal lineage (Mikkelsen et al., 2007). Upon receiving endoderm differentiation 

signals, the bivalent BRACHYURY and NODAL promoters in human ESCs were 

unilaterally resolved to activation of the associated genes by losing H3K27me3 (Loh 

et al., 2014). 

Bivalency of chromatin has therefore become an important property to investigate 

the functional relevance of a gene through development, and the presence of bivalent 

genes in human and mouse ESCs has been validated by many studies independently 

(Jia et al., 2012a; Ku et al., 2008a; Mikkelsen et al., 2007; Pan et al., 2007; Zhao et al., 

2007). Here we performed a systematic identification and characterisation of bivalent 

genes and their functions by integrating all publicly available pairs (H3K4me3 and 

H3K27me3 measured on the same samples) of ChIP sequencing datasets in human and 

mouse ESCs, and identified and characterised a set of 4,979 and 3,659 high–

confidence (HC) bivalent promoters respectively.  

 

3.3 Methods 

3.3.1  Data collection and processing 

Covered in section 2.3.1 of Chapter 2. However, pig datasets were not used in this 

chapter. 

3.3.2 Peak Calling Method 

Covered in section 2.3.2 of Chapter 2. However, addition of input controls that 

were not previously integrated in Chapter 2, led in slight differences in the numbers of 

detected peaks and subsequently numbers of HC promoters. 

3.3.3 Detection of High Confidence (HC) bivalent, H3K4me3-

only, H3K27me3-only and latent promoters 

 As mentioned before, we acquired ChIP-seq data (H3K4me3 and H3K27me3) 

from 8 studies for mouse and 11 studies for human. The resulting files after peak 
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calling were intersected with the promoter files. Our aim was to find whether or not 

the peaks were overlapping with the regions around the promoters. We used the 

intersect command from BEDtools (Quinlan and Hall, 2010). The resulting bed files 

for each sample contained the peaks that were found only in promoter regions. In 

Tables 3.1 and 3.2, we present the peaks at promoter areas for human and mouse 

respectively. After the intersection with the promoter areas, we created a matrix that 

contained the values of all the samples (the rows represent each region and the columns 

represent the number of peaks that overlap with each region for each sample).  For the 

further analysis, we created R scripts in order to keep the bivalent promoters where 

both histone mark peaks were identified, the H3K4me3-only promoters where 

H3K4me3 peak was identified and not H3K27me3, and the H3K27me3-only 

promoters where only H3K27me3 peak was identified and the latent promoters where 

peak for neither mark was identified. We obtained all the possible numbers of bivalent 

regions taking into account combinations for 1 or more data samples until the total 

numbers of samples (Tables 3.3 and 3.4). The level of stringency was increased as we 

took into consideration more samples. We defined high-confidence (HC) bivalent 

promoters as ones identified in 70% or more samples. Therefore, for mouse we would 

consider a locus as bivalent if it was found in 6 or more samples (6/8 studies) and in 

human if it was found in 8 or more samples (8/11 studies). We applied the same 

definition for the H3K4me3-only, H3K27me3-only and latent high-confidence 

promoters. 

3.3.4 Read density at the promoter regions 

 Using BEDtools (8) (coverageBed command) we calculated the coverage at the 

promoter regions in all different groups for each histone mark sample.  

3.3.5 Peak height and overlap with top peaks 

 Using BEDtools (Quinlan and Hall, 2010) we intersected the peak files for all the 

samples in both species with the high-confidence (HC) bivalent regions we had 

previously detected. We classified the peaks in bivalent and non-bivalent depending 

on whether they were found or not in HC bivalent promoters. We performed peak 
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height (read density) normalization in each sample then converting it in the logarithmic 

scale (log10). After checking the significance of the difference of peak height between 

bivalent and non-bivalent promoters (Student’s t-test), we also checked whether the 

top peaks of the H3K27me3 samples could give us the same list of HC bivalent 

promoters. Taking the top high peaks of each H3K27me3 sample, as many as the HC 

bivalent peaks of the same sample, we checked the degree of overlap between them.  

3.3.6 Functional enrichment analysis 

 We conducted gene ontology functional analyses for the bivalent promoters using 

DAVID (Dennis et al., 2003) and AmiGO (Carbon et al., 2009).  

3.3.7 Overlap between Species 

 To obtain a list of common HC bivalent, H3K4me3-only, H3K27me3-only and 

latent genes between the species, we used the one2one orthologous regions between 

human and mouse (16,639 genes from ensembl BioMart) (Guberman et al., 2011). We 

calculated the percentage of conservation for each species individually taking into 

account the corresponding orthologous regions and their chromatin state for the other 

species.  

3.3.8 Clustering using published ChIP-seq data 

We downloaded ChIP-seq data from published studies and used them for further 

classification of our HC bivalent promoters in mouse embryonic stem cells. We 

gathered four different forms of RNAPII, RNAPIIS5P, RNAPIIS7P and 8WG16 

(Brookes et al., 2012a), PRC2 component, Suz12 (Morey et al., 2013), PRC1 subunits, 

Cbx7  and Ringb (Morey et al., 2013) in murine ESCs. We also downloaded Jarid2 

(Tee et al., 2014), H3K27ac (Yu et al., 2013), Utf1 (Jia et al., 2012a) and Ring1b (Ku 

et al., 2008a). We used seqMINER (Ye et al., 2011) to integrate the multiple TFs and 

histone modifications and visualize the patterns that are formed genome wide at the 

HC bivalent promoters.   



 Results - Chapter 3  

 

62 

 

3.3.9 CpG overlap for the HC promoters 

We calculated the overlap of the HC bivalent, H3K4me3-only, H3K27me3-only 

and latent regions with the CpG island regions as given from the UCSC tracks CpG 

islands for hg19 and mm10 (Karolchik et al., 2014). We calculated the percentage of 

overlap with the total number of genes for Gencode 19 and Gencode M2, with the 

protein coding genes and with the all the HC groups we have detected previously in 

our analysis. 

3.3.10 CpG density and H3K27me3 read density across 

species 

 We calculated the CpG density as the ratio of observed to expected CpG counts 

(Gardiner-Garden and Frommer, 1987) for -5Kb, +5kb around the TSS for 100 bp 

window. The regions we have used were the bivalent regions for each species and their 

corresponding regions in other species (human/mouse) using the UCSC liftOver tool 

(Karolchik et al., 2014). We created heatmaps using custom R scripts for the 

visualization of the CpG density and H3K27me3 read density ordered by the CpG 

density of the targeted species.  

3.3.11  Transcription and Epigenetic Factors’ enrichment 

using published ChIP-Seq data 

 We have used data from 49 and 99 ChIP-seq experiments for several transcription 

factors (TFs), chromatin remodellers and methyltransferases in human and mouse 

ESCs  respectively (Sánchez-Castillo et al., 2015). Initially, we intersected the peak 

files of all the factors with the promoter regions we have created for the Gencode gene 

sets. The resulting files were finally intersected with the HC promoters for all the 

categories and we found the levels of enrichment. For each promoter region we also 

counted the total number of factors binding significantly at the region. We calculated 

the numbers of factors binding across the different promoter categories.  
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3.3.12  RNA sequencing levels 

 We downloaded a mouse RNA-seq experiment (Yu et al., 2013) in fastq format. 

After aligning the reads to the mouse reference genome (mm10) using Bowtie 0.12.9 

(Langmead et al., 2009), we found the FPKM values using cufflinks 2.2.1 (Trapnell et 

al., 2012). For human we used RNA-Seq (FPKM values – transformed in natural 

logarithm-ln scale) data for H1-hESCs from (Djebali et al., 2012) . We created three 

different classes according to the expression level. We defined as highly expressed 

genes with expression greater than log (FPKM) > 4. Low expression was defined as 0 

< log (FPKM) < 4. Finally, genes with expression equal to zero belonged to the no 

expression category. 

3.3.13  Single cell RNA Sequencing 

Using single cell RNA sequencing data (Streets et al., 2014), we inspected the 

number of genes that had zero levels of expression. We selected genes that belonged 

to the low expression class (0 < log (FPKM) < 4) for all the HC promoter categories. 

We then intersected the low expression sets with the FPKM values of the 

corresponding genes from single RNA-seq. For each gene we counted the number of 

occurrences of zero expression along the 63 single cell RNA sequencing experiments.  

3.3.14  Gain and loss of function perturbation 

  We collected differentially expressed gene lists (both up- and down-regulated) 

after over expression of 54 transcription factors and deletion of 37 transcription factors 

individually in murine ESCs (Xu et al., 2013). We then intersected the gene lists for 

both gain and loss of function with our HC promoters for all the categories. We 

checked the levels of perturbation among the promoter types and also which were the 

genes that were over-perturbed for the majority of the TFs.  

3.3.15  Motif enrichment using HOMER 

 We used the gene based analysis with the command findMotifs.pl from HOMER 

(Heinz et al., 2010). We performed the analysis for the HC bivalent and H3K4me3 
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marked promoters using them both as main and background files to each other. 

Similarly, the same was applied to all peak list from Najafabadi et al. (2015) C2H2 

ChIP-seq experiments. 

3.3.16  P-value calculation 

Covered in section 2.3.6 of Chapter 2. In this chapter we corrected all P-values 

for multiple hypotheses testing using FDR correction. 

3.3.17  Robustness of High Confidence definition 

 The number of samples we chose as a cut-off for the detection of HC promoters 

was 6 for mouse and 8 for human. To validate that the results did not depend on this 

choice of cut off, we conducted key steps of the analysis for one less and one more 

samples for both human and mouse. Firstly, we checked the overlap of CpG islands 

with the HC bivalent, H3K4me3-only, H3K27me3-only and latent promoters.  Then, 

we checked the number of factors binding across the various HC promoter categories 

and which are the enriched factors for each category. Lastly, we performed  de-novo 

motif discovery using HOMER (Heinz et al., 2010). All the analysis is shown in Figure 

3.2 demonstrating the robustness of our findings. 

3.4 Results 

3.4.1 High-confidence bivalent promoters in human and 

mouse ESCs are enriched for developmental regulators 

Bivalent promoters are distinguished by the presence of both H3K4me3 and 

H3K27me3 modifications and are thought to mark developmental regulators in ESCs. 

To determine a robust set of bivalent promoters, we collected 11 pairs (i.e., generated 

by the same lab using same ES cell samples) of H3K4me3 and H3K27me3 ChIP 

sequencing (ChIP-seq) datasets for human ESCs and 8 pairs for mouse ESCs from the 

Gene Expression Omnibus (GEO) database and the Roadmap Epigenomics Project 

(Tables 2.1, 2.2 and Methods). After aligning reads to the respective genomes, peaks 

were called in each dataset using SICER (Zang et al., 2009) and were overlapped with 
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57,818 human promoters from GENCODE 19 (Harrow et al., 2012b) and 38,922 

murine promoters from GENCODE M2 (Harrow et al., 2012b).  

The number of H3K4me3 marked promoters across data sets was highly 

consistent (human: mean 18,632.55 relative SD 2.8%, mouse: mean 17,554.25 relative 

SD 11%), in contrast to the number of H3K27me3 marked promoters (human: mean 

7,523.45 relative SD 37%, mouse: mean 6,128.75 relative SD 35%) (Tables 3.1 and 

3.2). Moreover, the same promoters were consistently identified as H3K4me3 marked 

across samples, as demonstrated by incrementally intersecting the peaks from multiple 

datasets (Figure 3.1A, green curve). In contrast, the H3K27me3 marked promoters 

(Figure 3.1A, purple curve) varied across datasets, strongly influencing the number of 

bivalent promoters detected (Figure 3.1A, yellow curve). Assigning a bivalent status 

to a promoter is therefore largely subject to H3K27me3 peak identification on the 

promoter. Over 85% of H3K27me3 marked promoters in both human and mouse were 

bivalent promoters (Figure 3.1A, Tables 3.3 and 3.4). Thus, we reconfirm that 

bivalency at the H3K27me3 marked promoters is rather a rule than an exception (Pan 

et al., 2007).  

Table 3.1 Total reads and peaks detected at promoters for 11 samples of H3K27me3 and 
H3K4me3 histone modifications in human ES cells 

 

GSE13084_1 21,672,220 10,904      22,955,497 30,373    6,284              19,719         

GSE16256_1 17,173,545 8,353         7,763,232   19,338    5,354              18,027         

GSE16256_2 19,825,041 24,326      22,053,477 19,423    5,266              17,894         

GSE16256_3 57,540,895 13,058      20,360,983 22,756    10,588            19,005         

GSE16256_4 19,847,708 14,941      17,950,910 21,622    7,274              18,540         

GSE16256_5 60,534,166 12,309      37,036,236 23,600    4,202              18,732         

GSE17312_1 12,682,151 9,355         13,730,204 24,133    6,641              18,799         

GSE17312_2 12,946,346 11,058      14,190,726 21,873    7,889              18,004         

GSE24447_1 15,925,532 39,528      17,211,980 22,607    14,221            18,626         

GSE29422_1 53,468,516 12,822      21,930,525 22,917    7,670              18,896         

GSE39912_1 28,364,855 12,061      39,595,351 21,042    7,369              18,716         

HUMAN

Peaks K27 at  

promoters

Peaks K4 at  

promotersSamples Reads K27 Peaks K27 Reads K4 Peaks K4
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Table 3.2 Total reads and peaks detected at promoters for 8 samples of H3K27me3 and 
H3K4me3 histone modifications in mouse ESCs 

 

Table 3.3 Number of identified promoters in each category as the samples taken into 
account increase in human ESCs 

 

Table 3.4 Number of identified promoters in each category as the samples taken into 
account increase in mouse ESCs 

 

GSE12241_1 17,748,450     17,406      19,618,320       33,732        7,334              17,487         

GSE31039_1 106,488,411   22,326      42,655,393       32,304        8,807              17,759         

GSE38596_1 14,552,549     6,534         7,474,539          16,904        3,346              15,092         

GSE39513_1 95,910,319     20,674      208,490,886     65,538        4,475              19,735         

GSE46134_1 29,913,075     7,038         20,167,316       20,605        4,366              15,899         

GSE46134_2 31,256,236     8,739         30,157,341       19,243        5,246              15,375         

GSE47949_1 99,957,560     26,234      88,198,720       62,081        9,097              19,303         

GSE47949_2 107,076,939   14,727      105,069,233     66,243        6,359              19,784         

Peaks K27 at  

promoters

Peaks K4 at  

promotersSamples Reads K27 Peaks K27 Reads K4 Peaks K4

MOUSE

1 7254 5497 20732 18975 12881 31589 0.67884058

2 6778 2122 19753 12036 9542 31589 0.792788302

3 6581 1349 19318 9698 8007 31589 0.825634151

4 6470 1001 19039 8445 7111 31589 0.842036708

5 6355 772 18773 7638 6528 31589 0.854673998

6 6257 617 18523 6966 6001 31589 0.861469997

7 6199 506 18333 6358 5511 31589 0.866782007

8 6135 397 18120 5708 4979 31589 0.872284513

9 6049 330 17842 5048 4374 31589 0.866481775

10 5959 234 17526 3998 3400 31589 0.850425213

11 5833 151 16999 2732 2164 31589 0.792093704

Samples

HUMAN

H3K4me3 

only

H3K27me3 

only 

H3K4me3 

marked

H3K27me3 

marked 
Bivalent Latent

Bivalent/H3K27me3 

marked

1 11797 2912 20615 11730 8480 15395 0.722932651

2 11114 1585 19690 8981 7190 15395 0.800579

3 10685 916 19023 7407 6276 15395 0.847306602

4 10130 514 18049 6162 5369 15395 0.871308017

5 9722 270 17287 5137 4600 15395 0.895464279

6 9336 152 16262 4184 3659 15395 0.874521989

7 9015 81 15422 3222 2706 15395 0.839851024

8 8478 52 14086 2207 1534 15395 0.695061169

Samples

MOUSE

Bivalent/H3K27me3 

marked

H3K4me3 

only

H3K27me3 

only 

H3K4me3 

marked

H3K27me3 

marked 
Bivalent Latent
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Figure 3.1 Identification of high confidence bivalent promoters in human and mouse 
ESCs. A. The number of H3K4me3 (green), H3K27me3 (purple) and bivalent (yellow) 
promoters detected in ‘n’ or more samples (x axis) in human (left) and mouse ESCs 
(right). The red dotted line represents cut off used to define high-confidence bivalent 
promoters. B. H3K27me3 read density (in log scale-natural logarithm-ln) at bivalent and 
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H3K27me3 only promoters in each sample designated by their GEO accession number 
(x axis) in human (left) and mouse (right) ESCs (*** P-value<10-4). C. Gene Ontology 
terms enriched in HC bivalent promoter list (yellow) or non HC bivalent promoter list 
(grey) in human (left) and mouse (right) ESCs with their corresponding P-value. 

 

The sequencing depth across samples varied from 14 million to over 100 million 

which might contribute to the variation of bivalent promoter detection in individual 

datasets. Indeed, there was a high correlation between the number of reads and number 

of peaks across murine datasets (for H3K27me3 Pearson’s correlation coefficient (r) 

= 0.75, for H3K4me3 r = 0.84), but not across human datasets (for H3K27me3 r = -

0.20, for H3K4me3 r = 0.14). There are other factors contributing to the variation 

between samples, for example ESCs were grown in diverse culture conditions, and 

using different cell lines as well as various antibodies across datasets (Tables 2.1 and 

2.2). We therefore defined bivalent promoters identified in more than 70% of the 

datasets (eight or more human datasets and six or more murine datasets) as high 

confidence (HC), resulting in 4,979 human and 3,659 murine HC bivalent promoters 

(Figure 3.1A). Eight HC bivalent regions were validated by ChIP qPCR for the 

presence of H3K27me3 modification (Mikkelsen et al., 2007) (Table 3.5). Adding or 

removing a sample in defining HC promoters did not change the key findings of the 

downstream analysis (Figure 3.2). There was no strong correlation between the 

fraction of HC bivalent promoters detected in a sample and the sequencing depth of 

that sample for both histone modifications (Pearson’s Correlation: Human: r=-0.34 

H3K27me3, r=-0.38 H3K4me3, Mouse: r=0.35 H3K27me3, r=-0.112H3K4me3) 

(Figure 3.3). 

 

Table 3.5 Overlap of validated regions with ChIP-PCR from Mikkelsen et al. with our 
promoters. 

 

chr2 118702259 118702859 K27 chr2 118701963 118704964 - Ankrd63 ENSMUSG00000078137 bivalent

chr15 102955841 102956427 K27 chr15 102953426 102956427 + Hoxc11 ENSMUSG00000001656 bivalent

chr5 139907676 139908276 K27 chr5 139906942 139909943 + Elfn1 ENSMUSG00000048988 bivalent

chr10 121310040 121310640 K27 chr10 121309189 121312190 - Tbc1d30 ENSMUSG00000052302 bivalent

chr3 104961044 104961644 K27 chr3 104959709 104962710 - Wnt2b ENSMUSG00000027840 bivalent

chr4 115056768 115057368 K27 chr4 115055425 115058426 + Tal1 ENSMUSG00000028717 bivalent

chr5 140606626 140607226 K27 chr5 140606340 140609341 + Lfng ENSMUSG00000029570 bivalent

chr19 10303905 10304505 K27 chr19 10302877 10305878 - Dagla ENSMUSG00000035735 bivalent

Marked
Chr 

Mikkelsen

Start 

Mikkelsen

End 

Mikkelsen

Histone mark 

Mikkelsen
Chr Ensembl IDStrandEndStart

Gene 

Name
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Figure 3.2 Results for CpG enrichment, factor occupancy and factor enrichment remain 
unchanged when we remove or add one sample from the cut-off. The p-values shown 
to be 0, should be noted as p-value < extremely small value close to zero. For example, 
p-value < 1e-256.   
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a 
b 

 
 

Figure 3.3 Overlap of HC bivalent promoters with bivalent promoters in each sample in 
a) human and b) mouse ESCs. The correlation of the overlapping HC with the reads of 
each sample was: For human, r=-0.34 for H3K27me3 samples (purple) and r=-0.38 for 
H3K4me3. For mouse, r=0.35 for H3K27me3 and r= -0.112 for H3K4me3. 

 

HC bivalent promoters had higher H3K27me3 read density than H3K27me3-only 

promoters in any individual dataset (Student’s t-test, P-value < 0.0001) (Figures 3.1B 

and 3.4), while H3K4me3 read density at HC bivalent promoters was lower than at 

H3K4me3-only promoters (Student’s t-test, P-value < 0.0001) (Figures 3.5 and 3.6). 

To test whether integration of multiple samples simply resulted in selecting the peaks 

with the strongest signal (peak height) from individual H3K27me3 samples, we 

selected the top (highest H3K27me3 signal) 4,979 human and 3,659 murine bivalent 

promoter peaks in each dataset and calculated the overlap with HC bivalent promoters. 

Less than 2/3rd of H3K27me3 top promoters in any individual dataset overlapped with 

HC bivalent promoters (Figure 3.7). 
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b 

 

 

Figure 3.4 Levels of H3K27me3 read density at the promoters according to their 
classification across samples in a) Human and b) Mouse ESCs 
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b 

 

 

Figure 3.5 Levels of H3K4me3 read density at the promoters according to their 
classification across samples in a) Human and b) Mouse ESCs 
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a 
b 

 
 

Figure 3.6 H3K4me3 read density at bivalent promoters vs H3K4me3 only promoters in 
a) human and b) mouse ESCs. (*** P-value<10-4) 

a 
b 

  

Figure 3.7 Overlap of H3K27me3 top promoters with HC bivalent promoters in any 
individual dataset in a) Human and b) Mouse ESCs  

 

 

We also checked whether the peaks of H3K27me3 and H3K4me3 modifications 

were present at the same genomic location within a promoter region and found that 

over 95% of H3K27me3 and H3K4me3 peaks overlapped in each pair of samples at 

HC bivalent promoters. Both chromatin modifications were indeed present at the same 

genomic location (Figure 3.8). We compared the functional enrichment between high-

confidence and non-high-confidence (detected as bivalent in less than 70% of datasets) 
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bivalent promoters and found that only the high-confidence promoters were strongly 

enriched for processes such as ‘cell differentiation’ and ‘system development’ (Figure 

3.1E and 3.1F). Interestingly, metabolic processes were enriched in murine but not 

human HC bivalent promoters. 

In summary, by integrating data from multiple studies we identified HC human 

and murine bivalent promoters, which could not be identified by simply selecting the 

top peaks from individual samples. The HC bivalent promoters were highly enriched 

for developmental regulators compared to non-HC bivalent promoters. 

a 

 

b 

  

Figure 3.8 Mean distance between H3K27me3 and H3K4me3 peaks in all samples in a) 
Human and b) Mouse ESCs 

 

3.4.2 High-confidence bivalent promoters are marked by 

PRC1, PRC2 and RNA Polymerase II 

Bivalent promoters are known to show variation in their levels of occupancy by 

RNA polymerase II (Brookes et al., 2012b) and PRC complexes (Ku et al., 2008a) . 

To further characterize HC bivalent promoters, we gathered ChIP-seq data in murine 

ESCs for various forms of RNAPII phosphorylated in different residues (RNAPIIS5P 

and RNAPIIS7P) as well as RNAPII8WG16 (an antibody that recognizes mostly un-

phosphorylated RNAPII) (Brookes et al., 2012b), together with ChIP-seq data for the 

SUZ12, a subunit of PRC2, responsible for catalysing the histone modification 
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H3K27me3, the RING1B  and CBX7 subunits of PRC1(Morey et al., 2013), 

responsible for catalysing H2Aub1 and for compacting chromatin, and Jarid2 (Tee et 

al., 2014). Jarid2 is a co-factor of PRC2 and is methylated by PRC2 which in turn 

promotes PRC2 activity (Sanulli et al., 2015). All HC bivalent promoters were marked 

by both PRC1 and PRC2 components albeit at different levels (Figure 3.9A).  
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Figure 3.9 Four groups of HC bivalent promoters with distinct biological features A. HC 
bivalent promoters in murine ESCs classified in four subgroups based on occupancy 
of PRC1 components (Ring1b, Cbx7), PRC2 (Suz12), Jarid2 and RNA polymerase II 
(ser7p, ser5p and 8wg16). Each line represents one single promoter while colour code 
summarized ChIP-seq read densities, from -5kb to +5Kb around TSS. For each cluster, 
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mean read coverage around TSS is shown on the right. B. Expression levels in mouse 
ESCs using RNA sequencing data for each of the four clusters. FPKM: Fragment per 
kilo-base per million (*** P-value<10-4). 

 

HC bivalent promoters could be classified in four distinct clusters based on the 

presence of PRC1 components and forms of RNAPII (Figure 3.9A). The first two 

clusters had low PRC1 (Ring1b) levels and high RNAPII (8WG16) levels compared 

to clusters 3 and 4. The second cluster distinguished from the first cluster by the 

presence of RNAPII (8WG16 and S5P) modifications as a sharp peak on the promoter. 

The second cluster consisted of the only group of bivalent promoters marked with 

RNAPII (S7P). This cluster was enriched for genes involved in metabolic processes. 

The third and fourth clusters were marked by strong PRC1 (Ring1b), PRC2 (Suz12) 

and RNAPII (S5P) modifications. Cluster 3 and 4 were distinguished based on the fact 

that PRC components formed wide domains on cluster 3 and narrow peaks on cluster 

4 promoters. Cluster 3 promoters were enriched for regulation of transcription (P value 

< 10-51) while cluster 4 promoters were enriched for developmental functions such as 

organ morphogenesis (P value < 10-27). Cluster 3 promoters contained transcription 

factors important for specific lineages like haematopoiesis factors Gfi1 and Meis1, 

whereas Cluster 4 contained multiple members of transcription factor families 

controlling development such as winged helix/forkhead box (Fox) and Hox families. 

We noted that bivalent promoters could be distinguished into two groups based 

on PRC1 occupancy: PRC1 low (cluster 1 & 2) and PRC1 high (cluster 3 & 4). Ku et 

al. (2008) suggested that PRC1 was absent in our PRC1 low bivalent promoter (Figure 

3.10). Ring1b ChIP sequencing at higher sequencing depth confirms that all bivalent 

promoter are bound by PRC1 albeit at different levels. The PRC1 high group separated 

into two distinct groups each enriched for a distinct functional category, namely cluster 

3 for transcription factors and cluster 4 for developmental controllers. Based on 

RNAPII occupancy, PRC1 low consisted of two distinct gene sets: RNAPII-low (S7P) 

and RNAPII-high (S7P). The difference in chromatin signature of these two clusters 

was also reflected in the expression level namely RNAPII-high (cluster 2) promoters 

were expressed at higher levels than RNAPII-low or cluster 1 promoters (Kruskal-

Wallis test P-value < 0.0001) (Figure 3.9B).  
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In summary, all HC bivalent promoters are occupied by components of both PRC1 

and PRC2. There exists a distinct set of metabolic genes (cluster 2) which though 

bivalently marked has RNAPII (S7P) and is expressed at a higher level than other 

bivalent genes. 

 

Figure 3.10 Clustering of HC bivalent promoters in mouse ESCs reveals four different 
groups of bivalent promoters with either low or high levels of PRC1 (Ring1b). Ring1b-
Ku (Ku et al., 2008a) sample shown almost no signal in the first two clusters where 
Ring1b is low. Utf1 (Jia et al., 2012a) is present throughout all the clusters. 

 

3.4.3 Bivalent promoters are lowly expressed and highly 

sensitive to perturbations in ESCs 

RNAPII may be present but stalled at the promoters of bivalent genes and short 

(abortive) transcripts may be detected at their promoters (De Gobbi et al., 2011). To 

check whether bivalent genes indeed show a low or leaky expression, we collected 

RNA sequencing data for murine (Yu et al., 2013) and human (Djebali et al., 2012) 

ESCs and calculated the mean expression level for the following categories of 
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promoters. We classified promoters into four HC groups (Appendix Tables 1 and 2) 

depending on the presence or absence of one or both chromatin modifications in over 

70% of samples as bivalent promoters, promoters marked only with H3K27me3 

(H3K27me3-only), promoters marked only with H3K4me3 (henceforth called 

‘active’) and latent promoters (unmarked for H3K27me3 and H3K4me3). Promoters 

that belonged to any of the previous four categories in less than 70% of the samples, 

and thus were not considered in that category were marked as unclassified. In human 

and mouse ESCs, most active promoters were expressed at higher levels than bivalent 

promoters, and latent promoters were mostly not expressed (FPKM = 0) (Kruskal-

Wallis test, P-value < 0.0001) (Figure 3.11A). Low expression can result from two 

scenarios: either a gene is expressed at low levels in most cells or few cells express a 

gene while others do not. To determine whether lowly expressed genes in the four 

groups can be classified into one of the two scenarios, we downloaded single cell RNA 

sequencing data for 63 mouse ESCs (Streets et al., 2014). Lowly expressed (i.e. FPKM 

< 4, or log(FPKM) < 1.4) active promoters were expressed in a similar number of 

single cells as lowly expressed bivalent promoters (Kruskal-Wallis test, P-value > 

0.05) (Figure 3.11B) demonstrating that single cell gene expression data cannot 

distinguish between bivalent and active lowly expressed genes.   
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Figure 3.11 Bivalent promoters are lowly expressed in ESCs, are more likely to be 
differentially expressed upon perturbation. A. Expression levels according to human 
(left) or mouse (right) ESCs RNA-seq for HC bivalent promoters (yellow), promoters 
marked with H3K27me3 only (purple), promoters marked with H3K4me3 only (green), 
latent promoter (blue), or unclassified promoters (grey, see text) (***P-value<10-4). B. 
From single cell RNA-seq data of mouse ESCs, percentage of cells non expressing the 
lowly expressed genes (i.e. FPKM < 4) was computed for different classes of promoters 
(bivalent, H3K27me3 only, H3K4me3 only and latent) (*** P-value <10-4). C. HC bivalent 
promoters are hypersensitive to changes in the transcription network perturbation.  
Differentially expressed gene lists were collected from studies overexpressing one of 
54 factors (gain of function) or down-regulation of one of 37 factors in ESCs. Percentage 
of significantly overlapping (P value < 1e-3) bivalent, H3K27me3 only, H3K4me3 only 
and latent genes with differentially expressed in at least one of the experiments is 
represented (*** P-value<10-4). 
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As bivalent genes are thought to be poised for activation or repression, we 

hypothesised that these genes might be more likely to be differentially expressed upon 

perturbation of ESCs. We therefore used a collection of differentially expressed genes 

upon deletion or over-expression of 91 transcription and epigenetic factors in mouse 

ESCs, and found that 98% of differentially expressed gene sets by the overexpression 

of at least one TF significantly overlapped (Hypergeometric test, P value < 1e-3) with 

bivalent genes, and 89% differentially expressed gene sets by the down-regulation of 

at least one TF (Figure 3.11C). To check whether this is a property of bivalent genes 

or lowly expressed genes in general, we also calculated the overlap of active and latent 

lowly expressed genes with the differentially expressed gene sets upon transcription 

and epigenetic factor perturbation. We confirmed that bivalent genes are highly 

susceptible to perturbations compared to active or latent lowly expressed genes 

(Kruskal-Wallis test, P-value < 0.001) (Figure 3.12).  

   

          

Figure 3.12 Perturbation of lowly expressed HC bivalent, lowly expressed HC H3K4me3 
only and lowly expressed HC latent genes when there is gain or loss of function. 
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3.4.4 Over 50% of bivalent promoters maintain their 

chromatin status as well as gene expression profile 

across species 

To perform a systematic comparison of chromatin status between human and 

mouse promoters in ESCs, we used 16,639 one-to-one orthologous genes between the 

two species (Guberman et al., 2011). We classified orthologous promoters into four 

HC groups – active (H3K4me3-only), H3K27me3-only, bivalent and latent. Promoters 

that did not belong to any of the previously mentioned groups were designated as 

‘unclassified’. We confirmed that HC H3K27me3-only and active promoters indeed 

had low or no other chromatin modification (Figures 3.4 and 3.5). We then calculated 

the overlap of the five groups across species (Figure 3.13A). Over 40% of murine 

orthologous promoters (n=6964) contain an activating mark (H3K4me3-only), in 

contrast to only 24% of human orthologous promoters (n=3961). There was a 47% 

overlap of murine active promoters with human active promoters; while 84% of human 

active promoters overlapped with murine active promoters i.e. most active promoters 

in human are also active in mouse but not vice versa. Bivalent promoters constitute 

17% (n=2854) and 20% (n=3342) of mouse and human orthologous genes 

respectively. 66% of murine bivalent promoters are also bivalent in human and 56% 

of human bivalent promoters are bivalent in mouse. The promoters with the 

H3K27me3-only modification form a very small fraction of orthologous promoters 

reaching merely 0.2% (n=45) and 0.3% (n=66) in mouse and human respectively. 

About 20% of H3K27me3-only promoters in one species are bivalent in the other 

species. Conserved bivalent promoters were enriched for functional categories 

developmental protein (P value < 10-71) and transcription factor activity (P value < 10-

65); whereas species-specific promoters were not enriched for the two above terms 

(Table 3.6). Specifically, the mouse-specific bivalent promoters were enriched for 

membrane (P value < 10-16) and glycoprotein (P value < 10-13) and the human-specific 

for plasma membrane part (P value < 10-5) and alternative splicing (P value < 10-3).  
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Table 3.6 Gene ontology terms for the conserved and unique to species HC bivalent 
genes in Human and Mouse ESCs 

Figure 3.13 Over 50% of bivalent promoters maintain their chromatin status as well as 
gene expression profile across species A. Overlap of high confidence (HC) H3K4me3 
only (green), H3K7me3 only (purple), bivalent (yellow) and latent (blue, absence of both 
H3K4me3 and H3K7me3 modifications) in human ESCs with the corresponding 
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categories in mouse ESCs (left), and vice versa (right). Grey: Unclassified promoters 
(see text). B. Expression levels in human (right) and mouse (left) ESCs using RNA 
sequencing data for each of the five groups of orthologous genes identified in A (*** P-
value<10-4).  

 

To check whether the chromatin status across species is reflected in the gene 

expression status, we focused on five groups of promoters (Figure 3.13B): three groups 

(I, II and III) with conserved chromatin status and two groups with divergent chromatin 

status (IV and V) across species. The gene expression profiles of conserved chromatin 

groups across species were also conserved. Specifically, active promoters (II) were 

expressed at higher level than bivalent promoters (I) which in turn were expressed at 

higher level than latent promoters (III) in both human and mouse ESCs (Kruskal-

Wallis test, P-value < 0.0001) (Figure 3.13B). The divergence of chromatin status 

promoters across species was not reflected in the gene expression level. For example, 

the orthologous promoters with bivalent status in human and active status in mouse 

(IV) were expressed at intermediate levels between active (II) and bivalent promoters 

(I) in both species (Figure 3.13B). 

3.4.5  Bivalent promoters are CpG-rich while H3K27me3-only 

promoters are CpG-poor 

As shown in the first section, the bivalent status of promoters is primarily 

determined by the detection of an H3K27me3 modification (Figure 3.1A). CpG islands 

(CGIs) have been implicated in Polycomb recruitment and therefore H3K27me3 

modification (Deaton and Bird, 2011; Farcas et al., 2012; Riising et al., 2014). CGIs 

are CpG-rich genomic regions and are sites of transcription initiation (Saxonov et al., 

2006). CGI promoters are silenced by either DNA methylation or Polycomb group 

proteins with approximately a fifth of CGI promoters accounting for bivalent 

promoters in ESCs (Ku et al., 2008a). About 35% of all GENCODE genes in both 

human and mouse overlapped with at least one CGI. When only protein coding genes 

were considered, this overlap increased to 67% for human and 54% for mouse (Figure 

3.14A). Mouse promoters in most categories showed lower overlap with CGIs than 
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human promoters (Figure 3.14A). 89% of human active (H3K4me3-only) as well as 

82% of murine active promoters contained at least one CGI (Figure 3.14A).  

Over 90% of our HC bivalent promoters in ESCs in both species overlap with at 

least one CGI region, whereas only 8% (37 of 397) of human H3K27me3 only 

promoters contained a CGI and no mouse H3K27me3 only promoters (none of 152) 

contained a CGI (Figure 3.14A). Previously CGIs have been associated with 

H3K27me3 modification in mammalian ESCs (Lynch et al., 2012; Mendenhall et al., 

2010), but our results show that this is the case for bivalent promoters but not for 

H3K27me3 only promoters. We confirmed that the lack of CGIs on active promoters 

is not due to the CGI detection threshold and that the CpG density at repressed 

promoters is indeed significantly lower than at CGIs (Kruskal-Wallis test, P-value < 

0.0001) (Figure 3.14B). It has been proposed that a high density of un-methylated CpG 

is sufficient for vertebrate Polycomb recruitment (Mendenhall et al., 2010). The fact 

that H3K27me3-only promoters are specifically CpG-poor (Figure 3.14A and 3.14B), 

suggests that, although highly unmethylated CpG islands might be sufficient for 

Polycomb recruitment, they might not be necessary. 
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Figure 3.14 Bivalent promoters are CpG island rich while H3K27me3 only are CGI poor. 
A. Percentage of promoters overlapping with one or more CpG island in human (grey) 
or mouse (black). B. CpG ratio at H3K27me3 only promoters is similar to non-CGI 
promoters in human (top) and mouse (bottom) ESCs (*** P-value<10-4). C. Relationship 
between CpG density, H3K27me3 modification and H3K4me3 modification in human 
and mouse ESCs. There is a loss of human CGI promoters in mouse (bottom, below 
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marked black line) but no loss of mouse CGI promoters in human (top). This loss is 
linked with decreasing H3K4me3 and H3K27me3 in mouse as compare with human. Left 
panels indicate mean CpG densities, mean H3K27me3 read densities and mean 
H3K4me3 densities in human and mouse. D. Exemplar murine promoters where CGI 
loss on promoters does not correspond to the loss H3K27me3 modification. These 
promoters despite losing CGI keep bivalent promoter status in murine ESCs.  

 

The loss of H3K27me3 in rodents (mouse and rat) compared to human ESCs at 

many developmental genes has been associated with depletion of CGIs; mouse CGI 

erosion has been characterised at MYO1G, CLEC4G and MYF6 gene loci with 

corresponding H3K27me3 loss(Lynch et al., 2012). We performed a cross-species 

comparison of CpG density, H3K4me3 and H3K27me3 profiles of bivalent promoters 

(Figure 3.14C). Indeed, about 5% of bivalent human promoters lost CGIs in mouse but 

not vice versa (indicated by black horizontal line). There was a high correlation 

between CpG density and H3K4me3 as well as H3K27me3 profiles within each 

species as well as across species (Figure 3.14C), but the concordance between 

loss/gain of CGIs and H3K4me3 and/or H3K27me3 mark does not always hold true. 

Of 70 orthologous CpG-rich bivalent promoters in human where CGI was lost in 

mouse and analysed their chromatin status, only 18% of these promoters had clearly 

lost their H3K27me3 mark in mouse ESCs, of which half were classified as H3K4me3-

only and the rest as latent in murine ESCs (Figure 3.15). Despite losing CGI on murine 

promoters, 20% of these orthologous promoters maintained a bivalent chromatin status 

including Col4a3, Cd34 and Slc6a3 (Figure 3.14D).  
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Figure 3.15 Chromatin status low CpG density promoters in mouse ESCs where 
corresponding human promoters are CpG-rich and bivalent. 

 

In summary, the H3K27me3-only CpG-poor promoters demonstrate that 

Polycomb recruitment does not only depend on CpG density. Although the CpG 

density largely correlates with H3K4me3 and H3K27me3 profiles across promoters, 

the loss of CGI on a promoter does not always imply a corresponding loss of the 

H3K4me3 and/or H3K27me3 modification on that promoter. 

3.4.6 Bivalent promoters are occupied by fewer transcription 

factors than active promoters and are specifically 

enriched in a ‘TCCCC’ sequence motif 

As both active (H3K4me3-only) and bivalent promoters are CpG-rich, we 

investigated possible modes of distinction between the two in ESCs. Voigt, Tee, and 

Reinberg (2013) proposed a model where the density of transcription factors at the 

promoters determines establishment of bivalent domains. Specifically, the model 

suggests that PcG proteins are inhibited from binding at active promoters by an 

abundance of transcription factors, while at promoter sites with a low occupancy of 

transcription factors, PcG proteins can easily be recruited at CpG islands to establish 

the H3K27me3 modification. To test this model, we used publicly available genome-
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20% H3K4me3 

only
9%
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wide TF and epigenetic modifier binding profiles (ChIP-seq data) in murine and 

human ESCs (Pooley et al., 2014) and calculated the number of transcription factors 

bound (TF density) at the four classes of promoters. Indeed, the TF density decreases 

from active to bivalent to H3K27me3-only promoters in both human and mouse ESCs 

(Kruskal-Wallis test, P-value < 0.0001) (Figure 3.16A).  

To identify factors preferentially binding to bivalent promoters, we calculated the 

overlap between transcription and epigenetic factor binding sites (peaks) and bivalent 

promoters. Four out of 49 and eleven out of 99 factors characterised by ChIP-seq 

preferred bivalent promoters in human and mouse respectively (Figure 3.16B). As 

expected, members of the PcG family were enriched at both human and mouse bivalent 

promoters (P value < 10-256). Moreover, the co-repressor c-terminal binding protein 2 

(CTBP2), required for PcG recruitment in Drosophila (Srinivasan and Atchison, 

2004), and the RBBP5 (MLL subunit) were enriched at human bivalent promoters (P 

value < 0.005). The components of both PRC2 (Ezh2, Suz12) and PRC1 (Cbx7, 

Ring1b) together with two Polycomb-like proteins (Mtf2, Phf9) were enriched at 

mouse bivalent promoters. Mtf2 and Phf19 recruit the PRC2 complex and are thought 

to silence transcriptionally active loci (H3K36me3) by recruiting H3K36me3 histone 

demethylases such as Kdm2b to further recruit PRC2 components for H3K27me3 

(Ballaré et al., 2012; Brien et al., 2012; Musselman et al., 2012). Accordingly, Kdm2b 

was also enriched at mouse bivalent promoters (P value < 10-3). Four other epigenetic 

regulators, Utf1, Tet1, Rest and Setdb1 were highly enriched at mouse bivalent 

regions. Utf1 (P value < 10-256) was recently identified as a component of bivalent 

chromatin by acting as a buffer against full activation of bivalent genes (Jia et al., 

2012a).  
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Figure 3.16 A ‘TCCCC’ sequence motif is specifically enriched in bivalent promoters. A. 
The average occupancy of factors at HC H3K4me3-only promoters (green) is higher 
than at HC bivalent promoters (yellow) which is higher than at HC H3K27me3 only 
promoters (red) and unmarked promoters (blue) in human (left) and mouse (right) ESCs 
(*** equals to <10-4). B. Transcription and epigenetic factors with statistically significant 
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overlap with HC bivalent promoters from ChIP sequencing data for 49 in human (up) 
and 99 factors in mouse (down) ESCs. C. A ‘TCCCC’ sequence motif is specifically 
enriched in HC bivalent promoters in both human and mouse ESCs. Similarly a 
‘CGGAA’ motif is enriched HC H3K4me3 promoters in both human and mouse ESCs. 
Each motif was then mapped to the genome, and motif densities around TSSs of 
bivalent (black), H3K4me3-only (yellow) and latent (blue) promoters are shown in the 
left (human) and right (mouse) panels. 

 

As expected, many TFs (33 out of 49 factors in human and 39 out of 99 factors in 

mouse) were enriched at active (H3K4me3-only) promoters. This included known 

regulators of pluripotency in ESCs such as Klf4, Esrrb, Oct4, Sox2, and Nanog (Table 

3.7). Only two factors enriched in bivalent promoters, Kdm2b and Tet1, were also 

enriched at active promoters. All other factors showed preference to either bivalent 

promoters or active but not both. For example, C-Myc can stimulate Pol II elongation 

(Brien et al., 2012) and was enriched in active promoters in both human and mouse 

ESCs but not in bivalent promoters.   

The observation that some factors are enriched specifically at bivalent promoters 

suggests that sequence motifs specific to bivalent promoters may determine their 

binding. We performed de novo motif identification on bivalent promoters by 

providing active promoter sequences as background in HOMER software (Heinz et 

al., 2010) and found several AG-rich and GC-rich motifs specific to  bivalent 

promoters (Figure 3.17). These resemble the sequence motifs of Jarid2 (Peng et al., 

2009) and Utf1 (Jia et al., 2012a) identified from ChIP-seq data. Interestingly, a 

‘TCCCC’ sequence motif was enriched and found in about 50% of bivalent promoters 

in both human and mouse (Figure 3.16C). This motif was not enriched in active 

promoters in either of the species (the number of repressed promoters was not large 

enough to perform a reliable de novo motif discovery). The ‘TCCCC’ motif was most 

similar to the known binding sequence of the Mzf1 transcription factor (Morris et al., 

1994). The Mzf1 promoter both in mouse and human ESCs is characterized as HC 

H3K4me3 only and belonged to the low expressed genes in our analysis. However, in 

recent Mzf1 ChIP-seq experiment performed in HEK293 cell line (Najafabadi et al., 

2015), the “TCCCC” motif was not enriched in Mzf1 peak list (Table 3.8). When de 

novo motif enrichment was performed on active human and mouse promoters using 

bivalent promoter sequences as background, they were enriched for a ‘CGGAA’ motif 



 Results - Chapter 3  

 

95 

 

found in 40% of the active promoter sequences, which was not enriched in bivalent 

promoters. This motif is the most similar to the known motif for Elk1 transcription 

factor (Figure 3.16C). 

 

 

 

Table 3.7 Factors binding at bivalent, H3K4me3-only and H3K27me3-only promoters in 
a) human and b) mouse ESCs. The p-values shown to be 0, should be noted as p-value 
< extremely small value close to zero. For example, p-value < 1e-256. 

 

 

 

 

TF p.value TF p.value

EZH2 0 CBX7 0

SUZ12 0 EZH2 0

CTBP2 4.49E-170 MTF2 0

RBBP5 1.43E-05 PHF19 0

RING1B 0

SUZ12 0

UTF1 0

TET1 1.41E-127

KDM2B 1.80E-103

REST 3.46E-14

ESET 2.39E-08

TF p.value TF p.value

RAD21 0.002623818 P300 0.015437307

TCF12 0.004344503 NCOA3 0.049054496

RXRA 0.006824955

SUZ12 0.011210966

POU5F1 0.013921241

b)H3K27me3 only Mouse

a)Bivalent  Human

a)H3K27me3 only Human

b)Bivalent mouse
TF p.value TF p.value

CHD1 0 DPY30 0

CHD2 0 E2F1 0

KDM5A 0 NELFA 0

POLR2A 0 nMYC 0

SIN3A 0 RBBP5 0

SP1 0 SIN3a 0

SP4 0 TAF3 0

TAF1 0 TBP 0

TAF7 0 YY1 0

TBP 0 ZFX 0

YY1 0 KLF4 2.13E-225

GTF2F1 6.42E-313 AFF4 7.83E-209

RBBP5 4.20E-290 NFYA 4.37E-187

GABPA 3.08E-266 WDR5 3.95E-157

MXI1 1.08E-264 KDM2B 4.33E-123

SIX5 1.17E-239 TAF1 2.35E-116

NRF1 2.35E-219 ELL2 3.23E-81

MYC 1.46E-204 CTR9 1.16E-79

SP2 1.38E-197 MED1 2.62E-73

ATF3 6.84E-194 MAPK8 3.01E-66

JUND 7.21E-168 MED12 7.65E-51

ATF2 5.19E-166 TCFCP2L1 8.19E-51

SRF 5.35E-161 TET1 2.94E-49

BRCA1 2.98E-158 Pou5f1 5.76E-43

EGR1 1.00E-115 MED1 4.43E-35

EP300 9.46E-102 TFE3 2.25E-28

ZNF143 1.16E-99 ESRRB 1.95E-27

MAX 1.80E-98 STAT3 3.90E-23

USF2 2.29E-69 CHD7 5.35E-10

USF1 3.48E-69 NANOG 2.26E-09

BACH1 2.01E-55 BRG1 2.92E-07

TEAD4 8.70E-30 SOX2 4.62E-06

CEBPB 4.80E-27 P300 1.48E-05

HDAC2 3.35E-23 ESET 7.02E-05

JUN 6.96E-18 NCOA3 0.000531554

RFX5 4.68E-16 MCAF1 0.023647718

FOSL1 1.45E-12

REST 4.46E-12

TCF12 1.37E-06

RXRA 1.14E-05

NANOG 9.55E-05

MAFK 0.004454397

POU5F1 0.01209505

a)H3K4me3 only Human b)H3K4me3 only Mouse
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A                                 Bivalent mouse with K4 background 

 

B                                 Bivalent human with K4 background 
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C                            H3K4me3 only mouse with bivalent background  

 

D                            H3K4me3 only human with bivalent background 

 

Figure 3.17 De novo motif enrichment for a) bivalent promoters in mouse ESCs, b) 
bivalent promoters in human ESCs, c) H3K4me3 only promoters in mouse ESCs and d) 
H3K4me3 only promoters in human ESCs. 
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Table 3.8 TCCCC motif enrichment in C2H2 ChIP-sequencing peaks from Najafabadi et 
al. in Human ESCs. Rank N means that N-1 non TCCCC motif were more enriched. 

 

 

In summary, bivalent promoters are bound by fewer transcription factors than 

active (H3K4me3-only) promoters, but more than H3K27me3 only and latent 

promoters. Active promoters were preferentially occupied by pluripotency factors. On 

the other hand, bivalent promoters were enriched for Polycomb factors as well as other 

chromatin modifiers. The factors enriched at bivalent promoters show very little 

C2H2 TF P-value
% of peaks 

with motifs
Rank

CTCF - - -

KLF10 - - -

KLF14 - - -

MZF1 - - -

YY1 1.00E-1603 9.87% 13

ZBTB12 - - -

ZBTB18 - - -

ZFP3 1.00E-46 9.16% 4

ZIC2 - - -

ZNF136 - - -

ZNF16 - - -

ZNF189 1.00E-39 0.24% 16

ZNF200 - - -

ZNF250 - - -

ZNF264 - - -

ZNF273 - - -

ZNF317 - - -

ZNF322 1.00E-45 4.19% 16

ZNF33A - - -

ZNF35 1.00E-25 17.63% 23

ZNF382 - - -

ZNF415 - - -

ZNF416 - - -

ZNF41 - - -

ZNF454 - - -

ZNF45 1.00E-140 2.46% 2

ZNF467 - - -

ZNF519 - - -

ZNF528 1.00E-196 0.88% 7

ZNF574 - - -

ZNF621 - - -

ZNF653 - - -

ZNF669 1.00E-209 8.73% 4

ZNF675-2 - - -

ZNF675 - - -

ZNF684 1.00E-04 3.98% 10

ZNF692 1.00E-12 0.55% 7

ZNF71 1.00E-25 43.73% 7

ZSCAN22 - - -

ZSCAN31 - - -
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overlap with the ones enriched at active promoters. These finding are consistent with 

the observed spatial segregation of transcriptional networks in ESCs where Nanog and 

Polycomb proteins were shown to occupy distinct nuclear spaces (Denholtz et al., 

2013). Finally, we identified a ‘TCCCC’ sequence motif specifically at bivalent 

promoters and a ‘CGGAA’ sequence motif at active promoters. 

3.5 Discussion 

Bivalent chromatin domains bearing both H3K4me3 and H3K27me3 

modifications have been shown to be a key feature of developmentally regulated genes 

in ESCs (B. E. Bernstein et al. 2006; Mikkelsen et al. 2007; Jia et al. 2012; Xiao Dong 

Zhao et al. 2007; Pan et al. 2007b). These domains are thought to be ‘poised’, with an 

ability to quickly become active (losing H3K27me3) or inactive (losing H3K4me3) 

during differentiation (Mikkelsen et al., 2007; Mohn et al., 2008). While many studies 

have produced ChIP-seq data for both H3K4me3 and H3K27me3 in ESCs in both 

humans (Pan et al., 2007; Zhao et al., 2007) and mice (Jia et al., 2012a; Mikkelsen et 

al., 2007), differences in species, ES growth conditions, ChIP protocols (shearing, 

cross link, antibodies used) and high throughput sequencing setup (with or without 

replicate, with or without input) have rendered a comparison across studies 

challenging. By systematic integration of available data, we identified robust lists of 

4,979 and 3,659 high confidence bivalent promoters in human and mouse respectively. 

Since our work is using the data of previous studies using H3K4me3 and H3K27me3 

ChIP-seq to define bivalency in ESCs, we are biased toward a confirmation of the 

original studies, as their data is integrated in our dataset. However, our integrative 

approach (see methods) renders this analysis resistant to any outlier experiments. By 

cumulatively integrating the samples, it became evident that the detection of bivalency 

on promoters is dependent on the reliable detection of the H3K27me3 modification. 

Over 85% of H3K27me3 promoters were bivalent, i.e. they also had the H3K4me3 

mark. This confirms that bivalency in ESCs is rather the rule than the exception. The 

three main chromatin states on promoters in ESCs are thus active, bivalent and latent 

(no mark). Correspondingly, active promoters were expressed, bivalent were lowly 

expressed and latent were mostly not expressed. 
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Bivalent promoters are thought to be poised for rapid activation or inactivation 

during differentiation (Jia et al., 2012a; Voigt et al., 2013). To tease out whether the 

low expression at bivalent promoters is a result of some cells expressing the genes 

while others not, or the genes are expressed at low levels in most cells, we used single 

cell gene expression data. Bivalent genes were expressed in a similar number of single 

cells as lowly expressed active genes. It is therefore unlikely that bivalency is a result 

of mixture of cell populations in ESCs. Similarly, H3K27me3 read density was higher 

at HC bivalent promoters than at H3K27me3-only promoters, again arguing in 

disfavour of a mix-population model. The low transcription level can be interpreted as 

a “leaking” transcription rate, in the absence of a strong repressive chromatin 

environment. During development, these poised domains have been shown to resolve 

as either active (by losing the H3K27me3 mark) or inactive (by losing the H3K4me3 

mark), and in some cases gaining DNA methylation (Deaton and Bird, 2011), 

depending on the cellular lineage. In agreement with this model, we have found that 

>90% of differentially expressed (either up-regulated or down-regulated) gene sets 

when any one of a set of 91 transcription factors was either overexpressed or knocked 

down in mouse ESCs were enriched for bivalent genes. This finding suggests that 

bivalent genes are hypersensitive to most perturbations of the regulatory network in 

ESCs. 

We computed binding profiles of PRC components (PRC1 and PRC2) and various 

forms of RNA polymerase II at bivalent promoters in murine ESCs. All HC bivalent 

promoters were marked by Suz12, Jarid2, Ring1b and Cbx7. To note, the PRC2-only 

group defined by (Ku et al., 2008a) overlapped with PRC1-low clusters, the PRC1 

signal detected due to higher sequencing depth in latter case (Figure 3.10). Thus all 

bivalent promoters were occupied by both PRC1 and PRC2. Accordingly, H2Aub 

showed enrichment at HC bivalent promoters (Figure 3.18). Recent studies have 

suggested that true bivalency is better associated with H2Aub than H3K27me3 

(Brookes et al., 2012b).  We note that H2Aub predominantly but not exclusively marks 

bivalent promoters (Table 3.9) as it also marks a fraction of H3K4me3-only expressed 

gene promoters (Figure 3.19). Based on PRC1 and RNAPII occupancy, bivalent 

promoters grouped into four clusters. Clusters 1 and 2 had low PRC1 occupancy and 

high RNAPII (8WG16) levels while Cluster 3 and 4 were PRC-rich with low RNAPII 
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(8WG16) levels. Cluster 2 was enriched for metabolic genes and marked with RNAPII 

(S7P) and cluster 2 genes were expressed at higher levels than the other three clusters. 

The bivalent promoters therefore consist of sub-groups of genes which at functional, 

epigenetic and transcriptional level are quite different from each other.  

 

Figure 3.18 Signal of H2Aub1, H3K27me3 and H4K4me3 histone modifications at the HC 
bivalent promoters in mouse ESCs. 

 

 

Table 3.9 Overlap of HC promoters in all categories with H2Aub1/H3K4me3 promoters. 
(In total 4518 H2Aub1 peaks where found in promoters and the majority of them were 
accompanied by H3K4me3)   

 

Bivalent 3659 2916 72.39325

H3K27me3 only 152 0 0

H3K4me3 only 9336 451 11.19662

Unclassified 10354 661 16.41013

Latent 15391 0 0

Number of HC 

promoters

Overlap with 

H2Aub1/H3K4me3 

promoters (4028)

PercentageMarked in HC
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Figure 3.19 Expression levels of HC bivalent, H3K4me3 only and Unclassified 
promoters overlapping with the H2Aub1 bivalent promoters.  

 

More than half of high-confidence bivalent promoters were conserved between 

human and mouse, suggesting the existence of a set of genes bivalently marked across 

most mammalian ESCs (Appendix tables 1 and 2). These genes were very highly 

enriched for transcription regulators and developmental factors, compared to the 

species specific bivalent promoters. On the other hand, divergence of epigenetic status 

across species did not imply divergence of gene expression i.e. promoters with bivalent 

chromatin status in human and active chromatin status in mouse did not have gene 

expression profiles similar to bivalent genes in human and active genes in mouse. 

Further analysis is necessary to understand whether the differences between mouse 

and human ESCs are indeed species-specific or developmental stage specific as human 

ESCs do not share the same developmental state as mouse ESCs (Takashima et al., 

2014; Tesar et al., 2007). 

Since a high density of un-methylated CpG is sufficient for vertebrate Polycomb 

recruitment (Farcas et al., 2012; Mendenhall et al., 2010; Riising et al., 2014), it is 

assumed that the presence of CpG islands determines H3K27me3 modification. Over 

90% of bivalent promoters contained a CpG island while few to none of the 

H3K27me3-only promoters had a CpG island. Wachter et al. (2014) recently suggested 

that bivalency is the default chromatin structure for CpG-rich, G+C-rich DNA 
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(Wachter et al., 2014). The presence of H3K27me3 on CpG-poor promoters without 

H3K4me3 modification in ESCs (Figures 3.10 and 3.21) suggests mechanisms other 

than CpG islands for Polycomb recruitment. 

 

Figure 3.20 Examples of H3K27me3-only promoters in human ESCs 

 

 

 

Figure 3.21 Examples of H3K27me3-only promoters in mouse ESCs 
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On bivalent promoters, the CpG density and H3K27me3 modification are highly 

correlated. By performing a cross-species comparison, a small fraction (~5%) of 

human CpG-rich HC bivalent promoters has the corresponding CpG eroded in the 

mouse genome, while no CpG-rich bivalent promoters in mouse are eroded in human. 

This erosion of CpG density was correlated with the loss of H3K27me3 and H3K4me3 

(Lynch et al., 2012). However, in about 20% of the cases, the CpG density loss in 

mouse compared to human did not correspond to a loss of H3K27me3. This reiterates 

the finding that CpG density might be sufficient but not necessary for H3K27me3 

modification. 

It is intriguing how bivalent domains are established in ESCs. Voigt et. al (2013) 

proposed a model where H3K4me3 marked promoters occupied by a low number of 

transcription factors allowed the establishment of H3K27me3 modification. Indeed, 

HC bivalent promoters were bound by fewer factors than active promoters in human 

and mouse ESCs. HC bivalent promoters were specifically enriched in ChIP-seq peaks 

for many members of the PRC1, PRC2 and MLL complexes as expected. We also 

found enrichment for several additional proteins known to be involved in recruiting 

these complexes, including CTBP2, Mtf2 and Phf19. Other factors frequently binding 

to HC bivalent promoters included Kdm2b, Utf1, Tet1, Rest and Stedb1. These factors 

are involved in establishing diverse epigenetic modifications suggesting the complex 

epigenetic regulation of these regions.  

As active (H3K4me3-only) and bivalent promoters are both CpG rich, it is key to 

unravel the distinguishing factors between these two groups. De novo motif discovery 

at HC bivalent promoters identified a ‘TCCCC’ motif in both human and mouse ESCs 

which was not enriched at active promoters. This motif was present in about half of 

the HC bivalent promoters and is similar to the sequence motif of MZF1 (Morris et al., 

1994), although this was not confirmed in recent MZF1 ChIP-seq experiment in 

HEK293 cell line (Najafabadi et al., 2015) (Table 3.8). Similarly, a ‘CGGAA’ motif 

was enriched specifically at active promoters and is similar to the sequence motif of 

ELK1. Further experiments are mandate to establish whether these sequence motifs 

indeed play a role at bivalent and active promoters, and if yes, through which factors? 
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Characterising factors associated with these motifs will be the first step to study their 

functional relevance. 

In summary, this meta-analysis revealed several novel aspects of bivalency in 

mammalian ESCs and will serve as a resource for future studies to further understand 

transcriptional regulation during embryonic development. Further work will be aimed 

at understanding how the HC bivalent promoters identified here are resolved in 

different cellular lineages during differentiation. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 Results - Chapter 3  

 

106 

 

 



 Results - Chapter 4  

 

107 

 

Chapter 4 Gene expression variability in 
mammalian embryonic stem cells 
using single cell RNA-seq data 

 

4.1 Chapter Introduction 

 

This chapter was published in 2016 in Computational Biology and Chemistry (for 

Asia Pacific Bioinformatics Conference 2016, San Francisco) under DOI: 

http://dx.doi.org/10.1016/j.compbiolchem.2016.02.004. Here we assess in detail the 

gene expression heterogeneity observed in ESC populations, with a specific interest in 

the expression patterns of bivalent genes that we detected in Chapter 3. 

 

Abstract 

Gene expression heterogeneity contributes to development as well as disease 

progression. Due to technological limitations, most studies to date have focused on 

differences in mean expression across experimental conditions, rather than differences 

in gene expression variance. The advent of single cell RNA sequencing has now made 

it feasible to study gene expression heterogeneity and to characterise genes based on 

their coefficient of variation. We collected single cell gene expression profiles for 32 

human and 39 mouse embryonic stem cells and studied correlation between diverse 

characteristics such as network connectivity and coefficient of variation (CV) across 

single cells. We further systematically characterised properties unique to High CV 

genes. Highly expressed genes tended to have a low CV and were enriched for cell 

cycle genes. In contrast, High CV genes were co-expressed with other High CV genes, 

were enriched for bivalent (H3K4me3 and H3K27me3) marked promoters and showed 

enrichment for response to DNA damage and DNA repair. Taken together, this 

analysis demonstrates the divergent characteristics of genes based on their CV. High 

CV genes tend to form co-expression clusters and they explain bivalency at least in 

part. 

  

http://dx.doi.org/10.1016/j.compbiolchem.2016.02.004
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4.2 Introduction  

Transcription control is fundamental to mammalian system in defining gene 

expression programs that establish and maintain specific cell states during 

development. Any aberration to this process can result into disease phenotype. 

Microarray technology enables a genome-wide snapshot of the transcription landscape 

during development and disease by parallel quantification of large numbers of 

messenger RNA transcripts from different cell types and tissues (Schulze and 

Downward, 2001). This technology is widely used for differential gene expression 

analysis where studies are performed on a pool of hundreds of thousands of cells with 

an assumption that the variation across multiple samples from a cell population is 

largely due to experimental noise. Difference between mean values of gene expression 

is therefore the focus of such analyses and rarely the variability across the samples 

(Mar et al., 2011).  

The breakthroughs in sequencing technology have now made it feasible to 

generate gene expression data for hundreds of individual cells from a cell population 

(Pan, 2014) providing new insights into early development (Tang et al., 2010) and 

differentiation (Shalek et al., 2013). Single cell RNA-seq sequencing is used for 

characterisation of hidden subpopulations of rare cell types, as closely related cells 

with the same phenotype can be discriminated to distinguish functionally each 

subgroup (Buettner et al., 2015). Importantly, the gene expression quantification by 

single-cell RNA-seq is consistent with the existing gold standards (Wu et al., 2013). 

The single cell gene expression data is variable between individual cells in contrast to 

the high concordance across replicates of populations of cells (Shalek et al., 2013).  

Though part of variation across individual cells is attributed to various confounding 

factors such as random technical noise mainly due to transcription bursts (Brennecke 

et al., 2013), protein fluctuations (Karwacki-Neisius et al., 2013) or mRNA 

fluctuations in response to cell cycle (Singh et al., 2013), there is no doubt about the 

biological relevance of variation in development (Xue et al., 2013), evolutionary 

adaptation, and disease (Feinberg and Irizarry, 2010).  

Importantly, variation at a single cell level in genetically identical organisms in 

homogeneous environments indicates its role in generating diversity (Raj et al., 2010). 
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Achieving such diversity is particularly important in the context of stem cells. The 

pluripotent state is a delicate equilibrium between the ability of self-renewal and 

differentiation, hence an imbalance (the variation of key pluripotency factors) could 

lead tipping the scale in favour of differentiation (Karwacki-Neisius et al., 2013). 

Accordingly, a high concordance was noted between global gene expression 

variability and heterogeneity of human pluripotency states (Mason et al., 2014). The 

differences between gene sets at the two ends of the spectrum of variation 

demonstrated that low variance genes were highly connected in the regulatory 

networks providing a causal hypothesis for their low variance (Mar et al., 2011). 

Highly variable genes, on the other hand, are thought to represent elements which 

fluctuate as the stem cell population moves between self-renewal and differentiation-

potential (Mason et al., 2014). We collected single cell RNA sequencing data in human 

(Streets et al., 2014) and mouse (Yan et al., 2013) embryonic stem cells and identified 

‘High CV’ (CV: Coefficient of Variation) gene sets. The multi-facetted bioinformatic 

analysis was based on CV enabled systematic characterisation of differences between 

the stable and variable gene sets.  

 

4.3 Methods 

4.3.1 Data collection and processing  

Single cell RNA-seq data was obtained from Gene Expression Omnibus (GEO) 

database (Barrett et al., 2013) in fastq format. We downloaded 63 mouse single ES 

cell  RNA-seq data (paired end) (GSE47835, SRP025171) (Streets et al., 2014) and 32 

human single ES cell RNA-seq data (single end) (GSE36552, SRP011546) (Yan et al., 

2013). After quality control using FastQC 0.11.2, alignment was done with TopHat 

2.0.9 (Trapnell et al., 2009) using mm10 and hg38 as reference genomes and the 

GENCODE(Harrow et al., 2012b) annotations (M4 and 22) for mouse and human 

respectively. Expression values for each single cell were calculated following the 

Cufflinks 2.2.1(Trapnell et al., 2010) pipeline. The aligned reads were converted to 

expression values using the cuffquant command. Gene expression values for all single 



 Results - Chapter 4  

 

110 

 

cell libraries were generated using the cuffnorm command with the default library 

normalization method (geometric). 39 mouse ESCs were selected for final analysis 

after discarding 24 cells due to low read quality, poor alignment scores or failure to 

map to the reference genome. The quality of the samples was further assessed using 

the ‘read_distribution.py’ module from the RSeQC package, which is used as an RNA-

seq QC package (Wang et al., 2012). The percentages of mapped reads in total, to 

exons and to introns are shown in Tables 4.1 and 4.2 for human and mouse ESCs 

respectively.  

 

 

Table 4.1 Percentages of total mapped reads, reads mapping to exons and reads 
mapping to introns for the human ESCs. No single cells were discarded, since they 
presented a satisfactory percentage of mapping reads back to the reference genome. 
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Table 4.2 Percentages of total mapped reads, reads mapping to exons and reads 
mapping to introns for the mouse ESCs. In red we show the single cells that were 
discarded at the second step of quality check, since they presented a non-satisfactory 
percentage of mapping reads back to the reference genome. 
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4.3.2 Biological over technical variation threshold 

 From the initial normalized FPKM value matrix, we discarded the genes with 35 

or more, zero expression values for mouse and 28 or more, zero expression values for 

human. We calculated the mean FPKM values (mean expression) across all cells for 

each of the remaining genes. We selected 229 (mESCs) and 217 (hESCs) highly 

expressed genes (> 150 FPKM is each single cell) as highly confident sets. The 

remaining genes were sorted according to their mean expression levels and divided in 

windows of 1,000 genes each (16 windows mouse, 19 windows human). The lowest 

windows (1,259 genes in mouse, 1,025 genes in human) were comprised of genes with 

the lowest mean expression levels, hence suffering from high levels of technical 

variation. We calculated the Pearson correlation coefficient for each pair of highly 

expressed genes with each gene in each window. For each window, (except the lowest 

one) we compared the distribution of correlation of all the gene pairs with the 

distribution of correlation of the lowest window using a t-test. We kept the genes with 

significantly higher correlation (probability distribution shifted to the right) compared 

to the lowest window (comparable to random noise). CV was determined as the ratio 

of standard deviation to mean for each gene across single cells. 

4.3.3 Transcription factor enrichment 

 We used data from 49 and 99 ChIP-seq experiments for transcription factors and 

chromatin remodellers in human and mouse embryonic stem cells respectively (Pooley 

et al., 2014). We selected peaks in promoter regions (+/- 1kb from the TSS) of the two 

groups (High CV and Non High CV). For each promoter region, we also counted the 

total number of factors binding at the region.  

4.3.4 miRNA target interactions 

Data of miRNA target interactions in ESCs were retrieved from the ESCAPE 

database (Xu et al., 2013). From 693,552 interactions, we kept only the interactions 
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that their target genes were in our one-to-one orthologs list and divided the number of 

miRNA interactions per gene in 3 bins (1-50, 51-100, >100). 

4.3.5 Protein-protein interactions 

Data of protein-protein interactions were retrieved from the ESCAPE database 

(Xu et al., 2013). One-to-one orthologs were used to map the genes for each category 

and for the total list of interactions. The number of proteins interacting with each gene 

were divided in four bins (1, 2, 3, >3). 

4.3.6 Overlap with bivalent and active genes 

 We overlapped our genes with genes that were classified as bivalent or active 

(H3K4me3 marked) in human and mouse ESCs using previous work from our lab 

(Mantsoki et al., 2015) and studied their differences at the level of CV. 

4.3.7 Overlap with CpG islands and TATA box promoters 

 We calculated the overlap of the promoters of the genes with the CpG island 

regions as given from the UCSC tracks unmasked CpG islands for hg38 and mm10 

(Karolchik et al., 2014). 2,742 murine and 2,010 human TATA-box motif promoters 

were retrieved from the Eukaryotic Promoter Database(Dreos et al., 2015). 

4.3.8 Gene type classification 

We calculated the fraction of genes that belonged to a specific gene type (from 

GENCODE annotation files). We selected only the types of genes with at least 30 

genes in all the groups and plotted the CV for each category.  

4.3.9 High variation threshold 

For the sets of genes that were above the threshold of technical noise we calculated 

the coefficient of variation (CV) using the standard definition of ratio of the standard 

deviation to the mean, and divided them in four groups (quartiles) according to their 

CV. The High variation (High CV) genes were the ones that were falling in the fourth 
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quartile of the CV. The rest of the genes were defined as Non High CV. Gene ontology 

enrichment was performed using DAVID (Dennis et al., 2003). 

4.3.10  Correlation co-expression analysis 

 We calculated the Pearson correlation coefficient between all the pairs of High 

CV genes using FPKM values. We randomly permutated the FPKM values between 

cells for each gene to generate random data. The correlation distributions of High CV 

genes were significantly different (Wilcoxon test) than the random ones and we 

investigated their co-expression patterns by hierarchical clustering (flashClust package 

in R) visualised with heatmaps (heatmap.2 in R).    

4.3.11  Conservation analysis 

17,009 one-to-one orthologs from ensembl BioMart (Guberman et al., 2011) were 

used to calculate CV values in each species. After intersecting the orthologs with the 

4,000 genes (for both mouse and human) we end up with a gene set containing 2,363 

orthologous genes.  

4.3.12  Topological associated domains 

 A lists of topological associated domains (TADs) for mouse and human ESCs 

(Dixon et al., 2012) was used to calculate the number of genes per TAD for the High 

CV and Non High CV genes in our analysis.   

4.3.13  Bulk expression data 

For the bulk RNA analysis we used 3 biological replicates of Microarray data 

from mouse ESCs (GSM1326660-2) (Zhang et al., 2014) and 4 biological replicates 

of RNA-seq data from hESCs (GSE33480) (Djebali et al., 2012). 

4.3.14  Sequence conservation 

The sequence conservation scores where obtained from PhyloP100way (Human) 

and PhyloP60way (Mouse) tracks available at UCSC. 
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4.4 Results  

4.4.1 Correlation based approach to identify genes with 

significant biological variation in mammalian Embryonic 

Stem cell single RNA-seq data  

To study the gene expression variability across individual cells, we collected RNA 

sequencing data for 32 human and 39 mouse single ESCs. After normalising the data 

across cells, we calculated FPKM values for 43,345 mouse and 60,468 human 

GENCODE (Harrow et al., 2012b) genes in each single cell. Single cell sequencing 

data suffers from low genome coverage and high amplification bias. These biases 

contribute to technical variation (noise) which hinders capturing biological variation 

across individual single cells. To distinguish the genes with significantly higher 

biological variation over technical variation, we developed a correlation-based 

approach. As highly expressed genes tend to have lower technical noise, we selected 

top 229 (mouse) and 217 (human) highly expressed genes (see Methods) across single 

cells. We then binned the genes based on their mean expression level. We calculated 

the correlation of genes in each bin with the highly expressed genes. We noted that 

technical noise was inversely related to the mean expression of gene sets i.e. higher 

the gene expression, lower the technical noise. We selected a threshold on expression 

value where the correlation with highly expressed genes was statistically significant 

over correlation with gene sets with technical noise (see Methods). This procedure 

resulted in selection of 4229 genes over 2.9 mean expression (natural logarithm 

transformation- ln) threshold (log(FPKM+1)) in murine ESCs (Figure 4.1A and 4.2) 

and 4217 genes over log mean expression threshold of 3.1 in human ESCs (Figure 

4.1B and 4.3) with significantly higher biological noise than technical noise. 

Gene expression variability was negatively correlated with the mean expression 

level i.e. highly expressed genes had low CV while lowly expressed genes spanned a 

wide spectrum on CV range (Figure 4.1A and 4.1B). The functional enrichment of low 

CV genes resulted in enrichment for cell cycle functional category specifically the ‘M 
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phase’ of mitotic cell cycle for both human and mouse ESCs. We further calculated 

the functional enrichment for highly expressed genes irrespective of CV values. They 

were also enriched for cell cycle functional category in both human and mouse ESCs. 

We therefore inferred that highly expressed genes tend to have low CV and are 

involved in cellular functions such as cell cycle.  

We further checked if different gene categories provided by GENCODE (Harrow 

et al., 2012b) demonstrate variability comparable to protein coding genes (Figure 4.1C 

and 4.1D). The lincRNAs had higher CV values in both human (t-test, P-value < 0.01) 

and mouse ESCs (t-test, P-value < 0.05). An overwhelming fraction of murine 

processed pseudogenes had low CV (t-test, P-value < 0.05). In contrast, a significant 

fraction of human processed pseudogenes had CV higher than protein-coding genes 

(t-test, P-value < 0.001). Processed transcripts and antisense transcripts on the other 

hand show no significant difference, possibly due to low sample numbers.  
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A B 

  

C D 

  

Figure 4.1 Correlation based approach for the identification of genes above the 
threshold of technical variation (A, B) Scatterplots showing genes according to their 
mean expression (log (mean FPKM+1)) and coefficient of variation in Mouse and Human 
ESCs. The genes highlighted in black were chosen for the analysis, since they were 
more correlated with the highly expressed genes. (C, D) Gene types in Mouse and 
Human ESCs and their respective CV levels (shown only the genes types that were 
found in 30 genes or more).  
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Mouse ESCs 
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Figure 4.2 Distributions of correlation of high expression genes with genes in 15 
windows of mean expression compared with the lowest mean expression window, in 
Mouse ESCs. The genes of Windows 1 to 4 were chosen as the ones that are above the 
threshold of technical variation. 
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Human ESCs 
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Figure 4.3 Distributions of correlation of high expression genes with genes in 18 
windows of mean expression compared with the lowest mean expression window, in 
Human ESCs. The genes of Windows 1 to 4 were chosen as the ones that are above the 
threshold of technical variation. 

 

4.4.2 Genes occupied by many transcription factors have a 

lower CV 

In order to study the level of transcription control among three groups of 

promoters, we calculated the number of factors binding at each promoter using ChIP 

sequencing compendia for transcription and epigenetic factors in human and mouse 

ESCs (Pooley et al., 2014). The mean CV for genes bound by less than 10 factors was 

significantly higher than the mean CV for genes bound by more than 10 factors in both 

human (t-test, P-value < 0.001) and mouse (t-test, P-value < 0.001) ESCs (Figure 4.4A 

and 4.4B).  
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A B 

  

C D 

  

 E F 

  

Figure 4.4 Mean CV levels according to quantification of transcription factors, miRNA 
targets and protein-protein interactions. (A, B) Transcription and epigenetic factor 
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occupancy (number of factors binding) at the promoters of genes is inversely 
correlated with their Mean CV in Mouse (99 ChIP-seq TFs) and Human (49 ChIP-seq TFs) 
ESCs. (C, D) Bins of miRNAs targeting each gene and their responding Mean CV levels 
(only interactions with genes in orthologs one2one list have been used) in Mouse and 
Human ESCs. (E, F) Genes (only interactions with genes in orthologs one2one list have 
been used) with known protein-protein interactions for Mouse and Human ESCs and 
their responding Mean CV levels. 

 

This result was consistent when average binding of individual factors was tested 

as well i.e. genes more likely to be bound by more factors tended to have low CV. We 

obtained the number of putative binding sites of transcription factors in gene promoters 

from UCSC. Again, number of putative binding sites varied inversely with the CV 

value (Figure 4.5). 

 

Figure 4.5 Number of putative Transcription Factor Binding Sites (TFBS) per gene 
(shown in 3 bins) and their corresponding Mean CV values. There was no statistically 
significant difference between means 

 

To test the regulation at post-transcriptional level, we collected putative miRNA 

targets predicted by four miRNA prediction methods(Xu et al., 2013).  Unlike TF 

targets, there was no bias towards the number of miRNA targets with respect to their 

mean CV, either in human or mouse ESCs (Figure 4.4C and 4.4D).  

Finally we collected known protein-protein interactions (PPI) in mouse and 

human ESCs(Xu et al., 2013) and calculated the number of known interacting partners 
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for each of the genes. Similarly, to miRNA targets, there was no statistically significant 

difference between the mean CV values based on the number of interacting partners at 

protein level in either human or mouse ESCs (Figure 4.4E and 4.4F). 

 

4.4.3 High expression variability genes correlate with DNA 

repair and bivalency 

The activity of signalling pathways such as TGF-β-related signalling pathways 

are thought to prime cells for differentiation contributing to the heterogeneity between 

cells in ESCs (Galvin-Burgess et al., 2013). The CV value did not distinguish any 

particular signalling pathway. The differences in micro-environments sensed by the 

signalling pathway can manifest in large expression changes of its downstream target 

genes. We therefore tested whether transcription factor and chromatin remodeller 

binding prefers or avoids gene promoters based on their CV measure using the ChIP 

sequencing data compendium for 49 and 99 factors in mouse and human ESCs 

respectively(Pooley et al., 2014). Unsurprisingly, many promoter specific factors such 

as E2F1, TAF1, and YY1 did not show any bias for the CV. High CV genes in mouse 

ESCs showed an exclusive binding preference of  the following four factors: NCOA3 

(Hypergeometric test, P-value < 0.0001), p300 (Hypergeometric test, P-value < 

0.0001), MCAF1 (Hypergeometric test, P-value < 0.01) and p53(Hypergeometric test, 

P-value < 0.05).  

NCOA3 is a nuclear receptor activator with a histone acetyltransferase activity, 

recruiting the chromatin modifying proteins p300, CARM1 and CBP at the Nanog 

locus (Wu et al., 2012). NCOA3 is thought to be critical for both the induction and 

maintenance of pluripotency, acting as an essential Esrrb coactivator (Percharde et al., 

2012). ESRRB is downstream of NANOG which is a direct target of TGF-β  mediated 

SMAD signalling(Xu et al., 2008). NANOG targets did not show any bias with respect 

to CV.  

MCAF1 is a nuclear protein associated with heterochromatin, shown to colocalize 

with SETDB1 in PML bodies (Sasai et al., 2013). PML is a protein involved in the 

senescence pathway through the p53 signalling, and its overexpression leads to 
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premature senescence (Pearson et al., 2000). p53 is a sequence specific transcription 

factor with tumour suppressor activity, regulating cell cycle arrest, apoptosis, 

senescence and stem cell differentiation, acting as an activator or suppressor of its 

downstream targets (Vousden and Prives, 2009). Upon DNA damage, p53 activates 

differentiation associated genes and represses self-renewal genes, affecting the status 

of ESCs (Li et al., 2012).  

Accordingly, high CV genes showed enrichment for biological processes such as 

cellular response to stress (Fisher’s exact test, adjusted P-value < 10-4), response to 

DNA damage stimulus (Fisher’s exact test, adjusted P-value < 10-3) and DNA repair 

(Fisher’s exact test, adjusted P-value < 10-3) in both murine and human ESCs.  

The genes overlapping with bivalent promoters had statistically significant higher 

CV values than the ones overlapping with the active promoters (presence of H3K4me3 

and absence of H3K27me3 modifications) in both human (Hypergeometric test, P-

value < 0.001) and mouse (Hypergeometric test, P-value < 0.001) ESCs (Figure 4.6A 

and 4.6B). Genes with high CV showed a weak functional enrichment for embryonic 

development and transcription control; the functional categories associated with 

bivalent genes (Bernstein et al., 2006b).  

As specific promoter structures such as presence of TATA boxes have been 

previously associated with genes with highly fluctuating single-cell levels within 

populations(Choi and Kim, 2009), we calculated TATA and CpG island fraction for 

all human and mouse promoters (-/+ 1Kb from TSS). The CpG-rich promoters showed 

lower CV values than the CpG-poor promoters and the difference was statistically 

significant in both human and mouse ESCs (t-test P-value<0.001) (Figure 4.6C and 

4.6D). Unlike CpG promoters, TATA box promoters could not be distinguished based 

on the CV value (Figure 4.6E and 4.6F). 
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Figure 4.6 Chromatin modifications and sequence features of genes and their 
corresponding coefficient of variation.  (A, B) Overlapping genes with bivalent and 
active (H3K4me3 marked) gene promoters in response to their CV, in Mouse and Human 
ESCs. Bivalent genes show significantly higher CV levels than all the promoters 
(irrespective of overlap) and the active promoters (pairwise t-test, P-value < 0.001) (C) 
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CV levels of genes having a CpG island and a non- CpG island promoter. (D) CV levels 
of genes having a TATA box and a non-TATA box promoter.  
 

4.4.4 High CV genes form dense highly co-expressed clusters 

In order to study the characteristics of genes with high variability, we defined 

genes with CV value greater than 0.92 (3rd quartile value) as High CV in mouse (Figure 

4.7A) and genes with CV value greater than 1.45 (3rd quartile value) in human ESCs 

(Figure 4.7B). We then checked whether the expression of High CV genes varies 

concordantly across single cells by calculating Pearson’s correlation coefficient 

between all pairs of High CV genes. A subset of High CV genes was significantly 

more correlated with each other compared to expected from a random permutation 

(Figures 4.7C (mouse) and 4D (human)).  

The highly correlated network (Pearson’s correlation coefficient > 0.95) of High 

CV genes grouped them mainly into only few tightly co-expressed clusters in both 

human and mouse ESCs (Figure 4.8 and 4.9). Interestingly, the genes in each cluster 

were highly expressed only in one individual cell (Figure 4.7E (mouse) and 4.7F 

(human)). We firstly confirmed that these single cells (e.g. single cell 24 and 26 in 

humans) did not suffer from poor technical quality of samples (Figure 4.10). We also 

removed these two cells and redefined the High CV gene set (Figure 4.11) to find a 

similar result. This assured that the significant co-expression among High CV genes 

is not an artefact of few aberrant single cells. 

 

 

 

 

 

 

 

 

 

 

 



 Results - Chapter 4  

 

130 

 

A B 

  

C D 

  

E F 

  



 Results - Chapter 4  

 

131 

 

Figure 4.7 High variance genes are more correlated than expected by chance (A, B) 
Scatterplot of genes in response to their CV and mean expression. Highlighted in purple 
are the High variance genes, selected based on their CV (CV value greater than the third 
quartile of the distribution). (C, D) Correlation coefficient distributions for the High 
variance (High CV) genes in Mouse and Human ESCs (statistically significant difference 
(p<0.001, Wilcoxon test) between the real and random distributions).   (E, F) Heatmaps 
of gene expression (in log(FPKM+1) values) for the High variance genes (High CV) in 
Mouse and Human ESCs. 

 

 

Figure 4.8 Heatmap of gene expression values (in log(FPKM+1)) of 170 highly correlated 
and highly variable (High CV) genes in Mouse ESCs. 
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Figure 4.9 Heatmap of gene expression values (in log(FPKM+1)) of 771 highly correlated 
and highly variable (High CV) genes in Human ESCs. 
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Figure 4.10 Boxplot of FPKM values for all cells in human 

 

 

Figure 4.11 Heatmap of High CV genes in Human ESCs after discarding cells 24 and 26 
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The co-expressed genes derived from large-scale analyses of mammalian 

expression data have demonstrated that neighbouring genes tend to have similar 

expression profiles(Lercher et al., 2002). As high CV genes formed tight co-expression 

clusters, we checked whether they tend to be in gene neighbourhoods with each other 

compared to other genes. We did not observe any tendency of genes clustering based 

on CV value. We also checked whether there was any bias towards similar CV genes 

co-existing in topological associated domains (TADS) inferred from Hi-C chromatin 

capture data in human and mouse ESCs (Dixon et al., 2012). There was no bias towards 

associating similar CV value genes with same TADS.  Also, tightly co-expressed High 

CV genes in each cluster were not specifically enriched for any biological process nor 

primed for specific lineage. 

 

4.4.5 CV values are conserved across species 

In order to check whether the CV values are conserved between bulk and single 

cell experiments, we obtained gene expression values for bulk RNA in human and 

mouse ESCs. The CV values of genes from single cells and bulk RNA showed no 

correlation in both human (Pearson’s correlation coefficient r=0.09) and mouse 

(Pearson’s correlation coefficient r=0.06) ESCs (Figure 4.12A and 4.12B).  

To test whether gene expression variability from single and bulk RNA-seq is 

conserved across species, we collected one-to-one orthologs between human and 

mouse (Guberman et al., 2011). The gene expression tends to be conserved across 

species for single (Pearson’s correlation coefficient r=0.23) (Figure 4.12C) i.e. 

orthologs of genes with lower CV in mouse are more likely to have lower expression 

variance across human single ESCs and vice versa. We confirmed that the distribution 

of CV values for orthologous genes in mouse was not significantly different from 

mouse-specific genes (Figure 4.12D). We further checked whether the expression 

conservation goes hand-in-hand with the conservation at the sequence level. Indeed, 

sequence conservation showed a negative correlation with the CV values in both 

human and mouse ESCs in their 5’UTR, their 3’UTR and their exons (Figure 4.12E 
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and 4.12F).  Thus tight regulation of gene expression level is a feature that appears to 

be conserved and selected during evolution. 

A B 

  

C D 

  

E F 

  

Figure 4.12 Conservation of expression variability across technologies and species. (A, 
B) Scatterplot of CV values in a bulk expression study against CV values in a single cell 
RNA–seq study in Mouse and Human ESCs. There is a positive correlation between the 
CV values of the two technologies (Pearson’s r=0.06 for mouse, r=0.09 for human). (C) 
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Scatterplot of CV values of orthologous genes between human and mouse from single 
RNA-seq studies in ESCs. There is a positive correlation of CV values between species 
(Pearson’s r=0.23) and 10% of High CV genes (highlighted in purple) are conserved as 
highly variant between species (D) Boxplot of CV values of orthologous and non-
orthologous genes between human and mouse in ESCs (3,675 orthologs and 554 non-
orthologs out of 4,229 genes in our analysis). (E, F) Sequence conservation scores and 
their corresponding Mean CV values for 5’UTR, Exons and 3’UTRs in Mouse and Human 
ESCs.  

 

4.5 Discussion  

Single cell RNA-seq data holds a great promise for studying variability across 

individual cells with the hindrance of large technical noise inherent to these data. 

Though availability of data from a limited number of cells (32 in human, 39 in mouse) 

could influence the results, it has been recently shown that 30 cells is the lower limit 

of sample size to sufficiently converge to the complexity of large cell populations 

(Marinov et al., 2014).  We used a correlation based approach to define a set of genes 

with biological variation significantly higher than technical variation across single 

cells. We then studied the characteristics of expression variability for 4,217 genes in 

human and 4,229 genes in mouse single ESCs, where the estimated biological 

variability was significantly greater than the technical variability. We noted that highly 

expressed genes tended to have lower CV (Figure 4.1A & 4.1B). Since ESCs are not 

synchronized in their cell cycle and can belong to different development stages, we 

specifically looked whether genes with high CV were developmental stage specific or 

involved in specific function, but did not find a strong evidence for it. 

High CV genes form co-expression clusters. Tightly co-expressed High CV genes in 

each cluster were highly expressed only in one or a few single cell(s) and genes in each 

cluster were not specifically enriched for any biological process. This fits with the 

notion of pluripotent cells to alternate between different transient and reversible cell 

states where transient states do not show any functional bias or lineage priming. High 

CV genes showed enrichment for response to DNA damage and DNA repair and were 

exclusively bound by regulators of DNA damage and senescence pathways like 

MCAF1 and p53. They also showed significant overlap with bivalent genes in human 

and mouse ESCs. Indeed, it has been previously shown that genes whose promoters 
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are bound by Polycomb regulators can produce highly variant levels of transcripts per 

cell (scRNA-seq data used) despite the co-incidence of H3K27me3 at the locus 

(Kumar et al., 2014). More specifically, Polycomb bound genes expressed at higher 

levels, showed weaker H3K27me3 signatures than the ones with transcripts detected 

in fewer cells. This confirms that at least a subset of bivalent genes can indeed be 

attributed to heterogeneity in ESCs.  

Though many characteristics of CV genes are conserved across species, there are 

some differences. Interestingly the vast majority of murine processed pseudogenes 

have lower CV than protein-coding genes while human processed pseudogenes have 

higher CV than protein-coding genes. Processed pseudogenes have recently been  

demonstrated to play a regulatory role by  competing with other genes for the binding 

of small RNAs (Poliseno et al., 2010).  This potential species specific regulatory aspect 

needs to be explored in detail. 

Taken together, genes with lower CV tend to be highly expressed, tightly 

regulated at transcriptional level as they are likely to be central to many cellular 

processes. High CV genes, on the other hand, are highly expressed only in individual 

single cells which possibly partly explains the bivalent genes (with both active and 

inactive chromatin status) observed in bulk studies. 
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Chapter 5 Chromatin dynamics and RNAPII 
pausing at murine promoters in eight 
cell lineages 

5.1 Chapter Introduction  

 

This chapter contains unpublished work and it was written in a manuscript format 

following the general format of the previous chapters. Here we have integrated 

epigenetic and transcriptomic data in ESCs and differentiated lineages with a focus on 

promoter chromatin state dynamics and more particularly the resolution of bivalency 

after ESC differentiation. Data was collected only for mouse cell types.  

5.2 Introduction 

The vast versatility of mammalian cell types is generated with the assistance of 

epigenetic features and transcription factors which control the transcription of genes 

that reside at the shared genome across all the cell types of an organism (Reik, 2007; 

Rivera and Ren, 2013). Large collaborative efforts including ENCODE  (ENCODE 

Project Consortium, 2012) and Roadmap Epigenomics (Bernstein et al. 2010) have 

generated genome-wide profiles of epigenetic features, chromatin accessibility, 

transcription factor (TF) DNA binding and gene expression (Mortazavi et al., 2008; 

Park, 2009; Wang et al., 2009; Zhou et al., 2011), across hundreds of cell types and 

tissues. This publicly available data constituted the building blocks of many studies 

which assessed the variability of the epigenetic landscape during development or 

disease onset (Maurano et al., 2012; Thurman et al., 2012; Xie et al., 2013; Zhu et al., 

2013). 

Multivariate statistical models have been instrumental to classify the chromatin 

into biologically meaningful states that correspond not only to coding regions of the 

genome but also to non-coding regulatory elements such as promoters and enhancers 

(Birney et al., 2007; Guenther et al., 2007; Heintzman et al., 2007). Furthermore, 

combinatorial patterns of multiple epigenetic datasets have been evaluated in 

individual (Ernst and Kellis, 2010) or multiple cell types (Ernst et al., 2011) and tissues 

(Kundaje et al., 2015) giving rise to a plethora of distinct chromatin states. The 
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combinatorial approach of multiple epigenetic data sets has particularly focussed on 

the  study of poised promoters (Ernst and Kellis, 2010; Ernst et al., 2011), a set of 

regulatory regions that exhibited both activating (H3K4me3) and silencing 

(H3K27me3) histone marks and were previously described as bivalent promoters 

(Bernstein et al., 2006b; Mikkelsen et al., 2007). Many developmental factors showed 

bivalent promoter status in embryonic stem cells (ESCs) as well as in other non-

pluripotent cell types (Mikkelsen et al. 2007; Mohn et al. 2008; Roh et al. 2006; Barski 

et al. 2007; Cui et al. 2009; Adli et al. 2010). Bivalency is thought to safeguard genes 

from terminal silencing (DNA methylation), therefore allowing ESCs to retain their 

plasticity (Williams et al. 2011; Voigt et al. 2013). 

Bivalent chromatin has been closely associated with specific variants of 

phosphorylated RNA polymerase II (RNAPII) that is engaged at the promoter of the 

genes but not proceeding to productive elongation (Brookes and Pombo, 2009; 

Brookes et al., 2012b). This phenomenon, known as RNAPII promoter proximal 

pausing (Guenther et al. 2007; Muse et al. 2007; Zeitlinger et al. 2007; Krumm et al. 

1995), was subsequently found at promoters of genes with a wide range of expression 

and biological function (Guenther et al., 2007; Min et al., 2011; Williams et al., 2015). 

Bivalent promoters in ESCs cultured in serum were divided in groups that featured 

distinct variants of phosphorylated RNAPII (S5P only, S5P and S2P) and variable 

levels of gene expression (Brookes et al., 2012b). However, follow up studies have 

shown that naïve ESCs exhibit increased levels of RNAPII at promoter sites (Marks et 

al., 2012), combined with extreme pausing at cell cycle genes and signalling factors 

rather than at developmental genes (Williams et al., 2015). These findings suggest that 

RNAPII pausing plays an important role in the expression fine-tuning of gene sets with 

diverse functional output, affecting the differentiation potential of the cell. While the 

implications of RNAPII pausing have been studied mainly in ESCs and Drosophila 

(Muse et al., 2007; Zeitlinger et al., 2007), its role in mammalian differentiation and 

cell lineage commitment is essentially unknown. 

The specific combinations of bivalency marks with RNAPII and their respective 

biological functions are largely undetermined in ESCs as well as lineage committed 

cell types. Here we perform an integrative analysis of histone modification (H3K4me3, 

H3K27me3), RNAPII (8WG16) binding and expression profiling data, at the promoter 
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regions of genes in eight different murine cell types. The promoter profiles across eight 

cell types clustered in nine major profile subgroups with distinct functional 

characteristics and divergent roles during mammalian development.  

5.3 Methods 

5.3.1 ChIP-seq data collection and processing 

Murine ChIP-seq datasets for H3K4me3, H3K27me3 and RNAPII (8WG16) were 

collected in fastq format from Gene Expression Omnibus (GEO) (Barrett et al., 2013) 

for eight cell types (ESCs, PMNs, MEFs, BMDMs, DCs, B cell, MBs, MTs) (Table 

5.1). Alignment of reads was done using Bowtie 2 using the mm10 reference genome 

and the default parameters (Langmead and Salzberg, 2012). SAM to BAM conversion 

of the aligned files was done using the SAMtools pipeline (Li et al., 2009). Total 

number of reads aligned to the genome is shown at Table 5.2. The bam files that 

belonged to the same experiment (technical replicates) were merged into a single bam 

file in order to proceed with the further analysis. 

 

 

Table 5.1 ChIP-seq samples, accession numbers, cell types, names given and 
antibodies used 

Name

Library 

Layout

Sample 

Name Cell type

Experim

ent Antibody

H3K27me3_1_ESC_GSE46134 SINGLE GSM1124780 Embryonic Stem Cells SRX266816 07-449

H3K4me3_1_ESC_GSE46134 SINGLE GSM1124778 Embryonic Stem Cells SRX266814 07-473

8WG16_ESC_GSE34518_all SINGLE GSM850469 Embryonic Stem Cells SRX112178 8WG16(MMS-126R)

PMN_H3K27me3 SINGLE GSM968714 Progenitor motor neurons SRX160499 ab6002

PMN_H3K4me3 SINGLE GSM968715 Progenitor motor neurons SRX160500 ab8580

PMN_PolII_8WG16 SINGLE GSM968717 Progenitor motor neurons SRX160502  8WG16(MMS-126R)

MEF_H3K27me3_2 SINGLE GSM1382349 Mouse Embryonic Fibroblasts SRX535294 07-449

MEF_H3K4me3_all SINGLE GSM769029 Mouse Embryonic Fibroblasts SRX085452 07-473

MEF_PolII_8WG16_all SINGLE GSM918761 Mouse Embryonic Fibroblasts SRX143853 8WG16(MMS-126R)

BMDM_H3K27me3 SINGLE GSM1314676 Bone marrow derived macrophages SRX450325 07-449

BMDM_H3K4me3_all SINGLE GSM1000065 Bone marrow derived macrophages SRX185786 07-473

BMDM_PolII_8WG16_all SINGLE GSM918720 Bone marrow derived macrophages SRX143812 8WG16(MMS-126R)

DC_H3K27me3 SINGLE GSM1384949 classical Dendritic Cells SRX835927 NA

DC_H3K4me3 SINGLE GSM1384941 classical Dendritic Cells SRX835919 17-614 

DC_Pol2 SINGLE GSM1199835 mouse dendritic cells SRX330713 NA

Bcell_H3K27me3 SINGLE GSM1048209 CD43 negative splenic B cells SRX208211 ab6002

Bcell_H3K4me3 SINGLE GSM1509364 CD43 negative splenic B cells SRX707681 ab8580

Bcell_PolII_8WG16 SINGLE GSM1048213 CD43 negative mouse resting B cellsSRX208215 8WG16(MMS-126R)

MB_H3K27me3_all SINGLE GSM628007 Proliferating Myoblasts SRX031886 17-622

MB_H3K4me3_all SINGLE GSM628005 Proliferating Myoblasts SRX031884 07-473

MB_PolII_8WG16_all SINGLE GSM628011 Proliferating Myoblasts SRX031890 8WG16(MMS-126R)

MT_H3K27me3_all SINGLE GSM628008 48-hours differentiated Myotubes SRX031887 17-622

MT_H3K4me3_all SINGLE GSM628006 48-hours differentiated Myotubes SRX031885 07-473

MT_PolII_8WG16_all SINGLE GSM628012 48-hours differentiated Myotubes SRX031891 8WG16(MMS-126R)
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Table 5.2 ChIP-seq data, number of reads, reads mapping back to the genome and 
number of peaks called 

 

5.3.2 Peak calling 

SICER (Xu et al., 2014) was used to detect peaks for the histone marks (H3K4me3 

and H3K27me3). Input controls were not used for any of the samples in any of the cell 

types. Specific parameters were defined for H3K4me3, such as window=200 and gap 

size=200. For H3K27me3 on the other hand, window=200 and gap size=2x300, since 

this mark covers wider chromatin domains. The rest of the parameters (same for 

H3K4me3 and H3K27me3) were effective genome fraction=0.7, redundancy 

threshold=1, fragment size=150 and E-value=100. MACS (Zhang et al., 2008) was 

used for the detection of peaks for the RNAPII samples, using the default parameters 

Name Total reads 

Reads mapping  

to the genome

% reads 

mapping to 

the genome

Number 

of peaks

H3K27me3_1_ESC_GSE46134 29913075 13525738 45.22% 7038

H3K4me3_1_ESC_GSE46134 20167316 13437685 66.63% 20605

8WG16_ESC_GSE34518_all 32465308 23166679 71.36% 25120

PMN_H3K27me3 22964988 11374610 49.53% 4584

PMN_H3K4me3 21072673 9256509 43.93% 18867

PMN_PolII_8WG16 6843975 5244475 76.63% 19113

MEF_H3K27me3_2 33178460 32509163 97.98% 22472

MEF_H3K4me3_all 41470370 17110146 41.26% 20214

MEF_PolII_8WG16_all 71713121 51805888 72.24% 71969

BMDM_H3K27me3 13682117 12623558 92.26% 20310

BMDM_H3K4me3_all 26150869 24787557 94.79% 28651

BMDM_PolII_8WG16_all 61935086 55287733 89.27% 115667

DC_H3K27me3 205643964 201922110 98.19% 47861

DC_H3K4me3 196128930 193145895 98.48% 28563

DC_Pol2 15414031 15005191 97.35% 22754

Bcell_H3K27me3 76454312 73329993 95.91% 16002

Bcell_H3K4me3 31800729 30468857 95.81% 17971

Bcell_PolII_8WG16 47662490 36098123 75.74% 29673

MB_H3K27me3_all 23133748 21765658 94.09% 10774

MB_H3K4me3_all 34143979 33074892 96.87% 23699

MB_PolII_8WG16_all 48387677 46362196 95.81% 47118

MT_H3K27me3_all 21278916 19870534 93.38% 9755

MT_H3K4me3_all 30967336 29877440 96.48% 21639

MT_PolII_8WG16_all 51400978 49311337 95.93% 43711
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and no control. The total number of peaks detected for each sample are shown at Table 

5.2. 

5.3.3 RNA-seq data collection and processing 

Murine RNA-seq datasets were collected from GEO (Barrett et al., 2013) in fastq 

format for all of the eight cell types mentioned previously (Table 5.3). Alignment was 

done with TopHat 2.0.9 (Trapnell et al., 2009) using mm10 as reference genome and 

the GENCODE.vM4 (Harrow et al., 2012) as annotation file. Expression values for 

each cell type were calculated following the Cufflinks 2.2.1 (Trapnell et al., 2010) 

pipeline. The aligned reads were converted to expression values using the cuffquant 

command with library-type=fr-unstranded. A bam file with FPKM values was created 

for each of the samples. Also, a file with gene expression values for all cell types was 

generated using the cuffnorm command with the default library normalization method 

(geometric), creating a matrix where each row was representing a gene and each 

column a cell type.  

 

 

Table 5.3 RNA-seq samples, accession numbers, cell types and names given 

 

 

Name LibraryLayout Run Sample Name Cell type Experiment

ES cells_run1 SINGLE SRR391028 GSM850476 Undifferentiated ES cells (ES-OS25) SRX112175

ES cells_run2 SINGLE SRR391029 GSM850476 Undifferentiated ES cells (ES-OS25) SRX112175

ES cells_run3 SINGLE SRR391030 GSM850476 Undifferentiated ES cells (ES-OS25) SRX112175

ES cells_run4 SINGLE SRR391031 GSM850476 Undifferentiated ES cells (ES-OS25) SRX112175

PMN_RNASeq PAIRED SRR1610573 GSM1524263 ESC-derived motor neuron progenitors SRX731072

MEF_RNASeq_run1 SINGLE SRR496251 GSM929719 Mouse Embryonic Fibroblast SRX147592

MEF_RNASeq_run2 SINGLE SRR496252 GSM929719 Mouse Embryonic Fibroblast SRX147592

BMDM_RNASeq_run1 SINGLE SRR496223 GSM929705 Bone marrow derived macrophage SRX147578

BMDM_RNASeq_run2 SINGLE SRR496224 GSM929705 Bone marrow derived macrophage SRX147578

DC_RNASeq SINGLE SRR2040609 GSM1696234 immature DC SRX1038966

Bcell_RNASeq_3 PAIRED SRR628317 GSM1048203 CD43 negative mouse resting B cells SRX208221

 MB_RNASeq_run1 SINGLE SRR074113 GSM628028 Proliferating Myoblasts SRX032210

 MB_RNASeq_run2 SINGLE SRR074114 GSM628028 Proliferating Myoblasts SRX032210

MT_RNASeq_run1 SINGLE SRR074115 GSM628029 Confluent Myoblasts SRX032211

MT_RNASeq_run2 SINGLE SRR074116 GSM628029 Confluent Myoblasts SRX032211
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5.3.4 Hierarchical trees for histone marks and gene expression  

GENCODE.vM4 (Harrow et al., 2012a) was the chosen annotation for the 

creation of custom promoter regions (22,179 unique genes with gene length > 300 bp). 

The promoter BED file was created by taking the -5 kb, +5 kb area around the TSSs 

of GENCODE genes as promoter. Peak BED files were intersected with the custom 

promoter file using the intersectBED command from the BEDtools suite (Quinlan and 

Hall, 2010). The intersected peak-promoter files from all cell types were merged into 

one file, where each row was representing a gene promoter. In the columns, binary 

values of 0 or 1, would represent the absence or existence respectively, of a peak at 

that promoter for that cell type. For the hierarchical tree of gene expression, the output 

matrix from cuffnorm command was used. Hierarchical clustering was performed 

using the hclust function from the fastcluster package in R (Müllner, 2013). The 

Euclidean distance of the columns of each matrix (cell types) was used as a 

dissimilarity matrix and the method chosen was complete. 

5.3.5 Clustering of gene promoters across cell types 

 We loaded the peak files in R for all the ChIP-seq datasets and converted them to 

GRanges objects. The bam files for each RNA-seq sample were also loaded in R 

creating custom coverage files with the GRcoverageInbins function (as object we used 

the promoter file (32,840 regions) converting it to GRanges, Nnorm=TRUE, 

Snorm=FALSE, Nbins=20) from the compEpiTools package (Kishore et al., 2015) in 

Bioconductor (Huber et al., 2015). For each of the cell types, we subsequently created 

a combined matrix of histone marks, RNAPII, RNA-seq coverage (normalized by 

library size in each cell type), CpG island regions (from UCSC) and gene annotation 

for sense and antisense transcripts (Gencode.vM4). Using the heatmapData function 

from compEpiTools (Kishore et al., 2015) we created a 140 column matrix (20 bins 

for each of the features) where the first 20 columns were representing the H3K27me3 

peaks, columns 21-40 were H3K4me3 peaks, columns 41-60 were RNAPII peaks, 

columns 61-80 were RNA-seq coverage, columns 81-100 were CpG islands, columns 

100-120 were sense transcript annotation and columns were 120-140 antisense 
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transcript annotation. RNA-seq coverage was log2-scaled and transformed (values 

only in the (0,1) range) for each cell type separately. 

We combined the matrices from all the cell types to acquire an initial super-matrix 

of 32,840*8=262,720 rows. Each row had a distinctive name of the ensembl gene id 

and the cell type it belonged to. We subsequently discarded the rows where more than 

80% of the columns (only columns 1 to 80 were considered) had a zero value. This 

resulted in a matrix of 117,438 rows where each gene promoter was found in at least 

one cell type. This would essentially mean that we kept only the gene promoters that 

were presenting a signal in at least one of the histone marks, RNAPII or expression. 

Hierarchical clustering of the gene promoter matrix was performed using the 

hclust function from the fastcluster package in R (Müllner, 2013). As a dissimilarity 

matrix we used the Euclidean distance of the rows of the matrix only for histone marks, 

RNAPII and expression values. The method used in hclust function was complete. 

After inspection of the initial clustering, through heatmap visualisation, we cut the 

resulting tree in groups using the cutree function from stats package in R (Team, 2016) 

and specifying k=60. The high number of groups specified facilitated the detection of 

groups that even though they had small number of genes, they presented a highly 

unique pattern of marks or expression. 

We created a custom function in R to merge the clusters presenting highly similar 

patterns. The central function incorporated in our function was clusterSim 

(method=”centroid”) from the flexclust package in R (Leisch and Friedrich, 2006). 

clusterSim computed the pairwise distances between all centroids of the 60 groups and 

scaled them between (0,1). The similarity value was then given by subtracting the 

distance from 1. In our function we merged clusters whose similarity values were over 

the 99th quantile of the similarity values distribution for all pairwise comparisons. The 

newly merged clusters along with the ones that were not similar with any other cluster 

were renamed. Clusters having less than 100 genes were discarded.  

The final clusters were visualised with the heatmap.2 function from the gplots 

package in R (Gregory R. et al. 2016). The final clustered matrix contained 116,741 

gene promoters which translated in 22,179 unique genes across all cell types.  
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5.3.6 Over and under representation of cell types in clusters 

Significance of over or under representation of each cell type in each cluster was 

assessed using the hypergeometric test in R (phyper) from stats package. Since the cell 

types were not equally represented in the total population, we calculated the test using 

normalised values for the number of genes across clusters. The number of genes in any 

one cluster for any one cell type were divided by the total number of genes for that cell 

type and then multiplied by 10,000, resulting in a matrix where virtually the total 

number of genes would be 8 (cell types) *10,000=80,000.   

5.3.7 Functional enrichment analysis 

Gene Ontology (GO) enrichment analysis was done using the topGO package 

(Alexa and Rahnenführer, 2016) in Bioconductor (Huber et al., 2015) and the 

statistical test used to quantify the significance of the  GO terms was  fisher’s exact 

test. GO term enrichment was done for the total number of genes in each cluster, but 

also separately for cell type specific genes in each cluster.  

5.3.8 Maximum parsimony trees 

 After the clustering of gene promoters, we acquired lists of genes that belonged 

in each cluster, specified by their cell type. For each cluster gene list we created a 

matrix where the rows were the unique ensembl gene ids of that cluster and the 

columns were the names of the 8 cell types. If a gene was found in that cluster for a 

particular cell type a value of 1 was put at that specific cell, else the value was 0. The 

downstream analysis was conducted for each cluster separately and the binary matrices 

were the inputs for the next step where we used the ape package in R (Paradis et al., 

2004). First we calculated the pairwise distances between the genes in the matrix using 

the dist.gene function. The neighbor joining tree estimation (Saitou and Nei, 1987; 

Studier and Keppler, 1988) was performed with the nj function using as input the result 

from the right previous step. Finally, the reconstruction of the most parsimonious 

ancestral states (Hanazawa et al., 1995; Narushima and Hanazawa, 1997) was done 

using the MPR function were we used as inputs the initial binary matrix, the resulting 
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tree from the previous step, ESCs  as outgroup and we kept only the lower values of 

the reconstructed sets for each ancestral node. 

5.3.9 Average profiles and profile similarities 

We calculated the average values for the columns of the matrix representing the 

10kb region around the TSS, for the histone marks, RNAPII and RNA-seq of each 

cluster. This resulted in one row matrices containing, mean profiles for all the variables 

used for clustering of the promoters. To assess the general profile patterns shared 

between groups of clusters, we performed a hierarchical clustering for all the mean 

profile matrices. We used the hclust function from the fastcluster package in R 

(Müllner, 2013). The Euclidean distance of the rows was used as a dissimilarity matrix 

and the method chosen was complete.  

5.3.10 Gene overlap between clusters and cell types 

We calculated the overlap of genes between pairwise combinations of “Cell type 

- Cluster” sets of genes. For example, the overlap of genes between the genes that 

belonged in B cells in Cluster 1 with the genes of ESCs in Cluster 3. 

Only movements of genes moving between clusters were taken into account and 

not movements within clusters. The significance of the overlap was assessed by the 

hypergeometric test in R (phyper) from stats package. As mentioned previously, the 

genes were not equally represented in each cell type, thus the normalized number of 

genes was used. Hence, in phyper, q was the number of genes overlapping, m was the 

number of genes in the “Cell type - Cluster” of origin, n was the total number of genes 

in the cell of origin minus m and k was the total number of genes in the “Cell type - 

Cluster” of arrival.  

For subsequent analysis we kept only the gene movements within clusters for 

which p-value <10-10 and the number of overlapping genes was larger than 50. To 

visualize the interactions between the “Cell type - Cluster” of origin and arrival, we 

used the chordDiagram function from the circlize package (Gu et al., 2014) in R. The 

size of the links is defined by the number of genes moving and the colour is a mix 

between the colours defining the clusters of interaction. 
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We also calculated the movement of genes across triplets of “Cell type - Cluster” 

sets of genes. We did not assess for the significance of the overlap but we kept only 

the interactions where more than 50 genes were overlapping. 

5.3.11 Transcription factor enrichment 

We downloaded data from 683 ChIP-seq experiments of TFs in multiple murine 

cell types from the CODEX database (Sánchez-Castillo et al., 2015). We calculated 

the overlap of the TF binding regions with the regions 1 kb around the TSS of each 

gene in each cluster. We used the function countOverlaps from the GenomicRanges 

package (Lawrence et al., 2013) in Bioconductor (Huber et al., 2015). To assess the 

significance of the overlaps we used the hypergeometric test in R (phyper) from stats 

package. Since TFs tend to bind more regularly at promoter regions, this would bias 

the p-value calculation. Hence, we narrowed down the total number of regions to only 

the regions that overlapped with a promoter.  

5.3.12 Motif enrichment 

 Using the unique ensembl gene ids from the gene promoters in each cluster we 

used the findMotifs.pl command from the HOMER suite (Heinz et al., 2010) and 

searched for known and de-novo motifs at the 1kb areas flanking the TSSs. We 

systematically discarded the putative results of de-novo motifs that were represented 

in less than 15% of the regions and had a p-value > 10-10. Similarly, known motifs 

were discarded when found in less than 15% of the regions and had a p-value > 10-5. 

5.3.13 RNAPII pausing index calculation 

The formula we used to calculate the RNAPII pausing index (travelling ratio) is 

given by Muse et al. 2007 and is the following: 
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which essentially is the ratio of RNAPII read density at the promoter area to the 

RNAPII read density in the gene body. d stands for the number of reads per nucleotide 

(nt) in the given region. The difference between the densities in log2 units equals to 

the ratio of fold enrichment in these regions, meaning a value of 1 would represent a 

2-fold greater enrichment of RNAPII signal at the promoter region rather than in the 

gene body (Muse et al. 2007). We created two GRanges objects: 1) The promoter area 

ranging 600 bp around the TSS of the gene and 2) the gene body area ranging +600 

from the TSS until the Transcription Ending Site (TES) of the gene. Using the 

GRcoverage function (as objects we used the previously mentioned promoter and gene 

body files (22,179 regions), Nnorm=FALSE, Snorm=TRUE) from the compEpiTools 

package (Kishore et al., 2015) in Bioconductor (Huber et al., 2015) we computed the 

read coverage at those regions for each cell type and gene in our clusters. This resulted 

in 2 column matrices (separately for each cell type) where the first column was the 

normalized (by region width in bp) read density at the promoters and the second 

column the normalized read density at the gene body. Finally, we calculated the ratio 

of the read densities using the pausing index formula.  

Among other groups of genes, we calculated pausing indices for four more 

categories, namely the developmental, cell cycle, pro-pluripotency, pro-differentiation 

and ES signalling genes.  To get a list of ensembl gene ids for the above groups of 

genes we used the same GO terms that were used by Williams et al. 2015 for 

developmental and cell cycle genes, whereas the genes involved in the ES pluripotency 

network were given by the Signaling pathways regulating pluripotency of stem cells - 

Mus musculus (mmu04550 entry) from KEGG pathways database (Kanehisa et al., 

2016). For developmental genes the GO terms were : GO:0045165, GO:0048864, 

GO:0007498 and for cell cycle genes were: GO:0007049. We narrowed down the 

selection of genes in the ES pluripotency network to pro-pluripotency (stem cell 

population maintenance – GO:0019827, negative regulation of cell differentiation – 

GO:0045596), pro-differentiation (positive regulation of cell differentiation – 

GO:0045597) and ES-signalling genes (cytokine activity – GO:0005125, regulation of 

MAPK cascade – GO:0043408). 
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5.4 Results 

5.4.1 H3K27me3, H3K4me3, RNAPII and expression at 

promoters in eight murine cell types 

To study the dynamics of epigenetic and transcription control at promoters during 

development, we collected ChIP-sequencing data for two chromatin modifications 

(activating – H3K4me3 and silencing – H3K27me3) and RNA polymerase II (8WG16) 

as well as expression data (RNA sequencing) across murine embryonic stem cells 

(ESCs), progenitor motor neurons (PMNs), embryonic fibroblasts (MEFs), bone 

marrow derived macrophages (BMDMs), dendritic cells (DCs), B cells, myoblasts 

(MBs) and myotubes (MTs) (see Methods). The gene expression quantified at 22,179 

(see Methods) GENCODE.vM4 (Harrow et al., 2012b) promoters using RNA 

sequencing (RNA-seq) reflects low variation of expressed promoters (FPKM>1, 

Figure 5.1) across cell types (11178±396) with PMNs showing the highest number of 

expressed promoters (11,604) and BMDMs the lowest (10,582). The hierarchical 

clustering of cell types using expression data matched the known developmental 

relationships across cell types (Figure 5.2A) with the three hematopoietic cell types (B 

cells, BMDMs and DCs) clustering together and the two progenitor cell types (PMNs 

and ESCs) forming a separate cluster. BMDMs and DCs clustered tightly together 

despite large technical variation between samples (Figure 5.2B). MEFs clustered with 

MBs and MTs, albeit close to the progenitor cells.   
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Figure 5.1 Gene expression distribution for all the genes used in the study (22,179) 
across cell types. The dashed line at log2 (FPKM+1) = 1 represents the threshold 
imposed to classify genes as expressed and not-expressed. 
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Figure 5.2 Distribution of the RNA-seq reads (reads per million) at the promoter regions 
(-5KB, +5KB from the TSS) shows comparable levels across all cell types.  
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Figure 5.3 Expression, H3K4me3, H3K27me3 and RNAPII (8WG16) signatures at 
promoters of 22,179 genes in eight murine cell types. A) Hierarchical clustering of 
normalized expression values (see Methods) across eight cell types results in a tree 
where relationships between cell types are largely reconstituted. B) Average normalized 
RNA-seq signal (reads per million -RPM) across the gene promoters (±5kb) per cell type 
displays signal variability across cell types. C) Hierarchical clustering of H3K4me3 
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marked promoters across all cell types is positively correlated with the expression data 
and results in a tree in agreement with the known developmental relationships between 
cell types. D) The average number of H3K4me3 detected peaks at the promoters is 
highly consistent across all the cell types. E) The average H3K4me3 signal at common 
peaks across all cell types is highly variable, with BMDMs showing the strongest signal. 
F) Hierarchical clustering of RNAPII (8WG16) binding is closely correlated with the 
H3K4me3 tree, rather than the expression tree. G) The average number of RNAPII peaks 
at the promoters is consistent across cell types, however less than in H3K4me3 marked 
promoters. H) The average RNAPII signal at common peaks at the promoters is highly 
variable with ESCs displaying the strongest signal. I) Hierarchical clustering of 
H3K27me3 marked promoters across all cell types, results in a tree where only the 
relationships of MBs and MTs are reconstituted. J) The average number of H3K27me3 
peaks at the promoters is variable across the cell types, with B cells showing the largest 
number of detected peaks in all cell types. K) The average H3K27me3 signal at common 
peaks is highly variable across cell types with MEFS showing the strongest signal.  

 

We then assessed the presence or absence of H3K4me3, H3K27me3 

modifications and RNA polymerase II (RNAPII) binding at the promoters across eight 

cell types by peak calling in each sample using SICER (Xu et al., 2014) and focussed 

on the peaks at the 10 Kilobase (KB) region flanking the Transcription Start Site (TSS) 

of the 22,179 genes. Though the variation in the number of H3K4me3 marked 

promoters across cell types (15686 ±804) was larger compared to the expression data, 

H3K4me3 modification was consistent with gene expression (Pearson’s correlation 

coefficient: 0.34, Table 5.4) at the promoters across 8 cell types.  

Accordingly, the hierarchical tree of H3K4me3 peaks at promoters across 8 cell 

types (Figure 5.2C) was largely in agreement with the one obtained using expression 

data (Figure 5.2A). Interestingly, H3K4me3 profiles closely associated PMNs with 

MEFs rather than ESCs. We confirmed this was not due to technical issues such as 

over detection of peaks in one sample rather than the other (Figure 5.2D).  BMDMs 

and B cells clustered together despite a high signal variability at common H3K4me3 

peaks found across all cell types (Figure 5.2E). To study the dynamics of H3K4me3 

modification between cell types, we used a maximum parsimony based approach (see 

Methods). Maximum parsimony approach predicts the chromatin modification status 

at each intermediate node of a tree by allowing minimum number of epigenetic 

changes within the tree (Hanazawa et al., 1995; Narushima and Hanazawa, 1997). 

Over 80% of promoters (15690 out of 19022 promoters with H3K4me3 mark across 

all 8 cell types) retained H3K4me3 modification across cell types (Figure 5.4).  
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Signature ESCs PMN MEF BMDM DC B cell MB MT 

Expressed 11372 11604 11575 10582 11227 10723 10894 11451 

Not 

expressed 

10807 10575 10604 11597 10952 11456 11285 10728 

H3K4me3 

marked 

15980 16207 16231 16295 16393 14184 15260 14937 

Not H3K4me3 

marked 

6199 5972 5948 5884 5786 7995 6919 7242 

H3K4me3 only 

marked 

11904 13077 10455 11467 12451 8047 13225 12895 

Not H3K4me3 

only marked 

10275 9102 11724 10712 9728 14132 8954 9284 

H3K27me3 

marked 

4578 3359 7918 7107 5510 9793 3573 3342 

Not H3K27me3 

marked 

17601 18820 14261 15072 16669 12386 18606 18837 

H3K27me3 only 

marked 

502 229 2142 2279 1568 3656 1538 1300 

Not H3K27me3 

only marked 

21677 21950 20037 19900 20611 18523 20641 20879 

Bivalent 4076 3130 5776 4828 3942 6137 2035 2042 

Not 

bivalent 

18103 19049 16403 17351 18237 16042 20144 20137 

RNAPII 

bound 

14296 12546 15953 16512 10503 11235 13255 11625 

Not RNAPII 

bound 

7883 9633 6226 5667 11676 10944 8924 10554 

Table 5.4 Classification of 22,179 gene promoters in each cell type according to 1) 
expression levels (Expressed when log2 (FPKM+1) >1), 2) H3K4me3 marks, 3) H3K4me3 
only – H3K4me3 marks that do not overlap with H3K27me3 marks, 4) H3K27me3 marks, 
5) H3K27me3 only – H3K27me3 marks that do not overlap with H3K4me3 marks, 6) 
Bivalent marks – H3K4me3 and H3K27me3 peaks overlapping at the region, 7) RNAPII 
bound promoters 
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Figure 5.4 H3K4me3 dynamics at the promoter regions (-5Kb, +5Kb) across the cell 
types. More than 80% promoters (15,690 shared out of 19,022 promoters with H3K4me3 
mark across all 8 cell types) retain H3K4me3 modification across cell types. This is a 
maximum parsimony tree representing the minimum number of changes necessary 
(gain of genes with a H3K4me3 peak shown in green, loss of genes without a H3K4me3 
peak shown in red) for the reconstruction of the tree of relationships between the cell 
types. 
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The hierarchical clustering of RNAPII (8WG16) modification at the promoters 

was not as consistent with the expression (Pearson’s correlation coefficient: -0.10) as 

the H3K4me3 tree (Figure 5.2F). Notably, the number of RNAPII marked promoters 

varied highly across cell types (13240±2197) where BMDMs had over 16,000 RNAPII 

occupied promoters while DCs had only about 10,000 RNAPII occupied promoters 

(Figure 5.5). Accordingly, DCs and B cells clustered together in the RNAPII 

hierarchical tree (Figure 5.2F). The parsimony tree using RNAPII peaks at promoters 

showed that RNAPII peaks were shared to a lesser extent (about 66%, 13,192 of 19758 

promoters with RNAPII peaks across all 8 cell types) than H3K4me3 between cell 

types (Figure 5.5). Similarly, we tested the technical variability between samples by 

calculating average RNAPII peak strength in each cell type across common peaks 

(Figure 5.2H). The RNAPII peak strength showed low correlation with the number of 

RNAPII peaks (Figure 5.2G).  
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Figure 5.5 RNAPII (8WG16) dynamics at the promoter regions (-5Kb, +5Kb) across the 
cell types. More than 66% promoters (13,192 shared out of 19,758 promoters with 
RNAPII binding across all 8 cell types) retain RNAPII binding across cell types. This is 
a maximum parsimony tree representing the minimum number of changes necessary 
(gain of genes with a RNAPII peak shown in green, loss of genes without a RNAPII peak 
shown in red) for the reconstruction of the tree of relationships between the cell types. 
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The number of H3K27me3 marked promoters were highly dynamic across cell 

types (5647±2405) with B cells, BMDMs and MEFs marked with H3K27me3 at a 

large number of promoters (7,000 to 10,000). PMNs, MBs and MTs on the other hand, 

were the cell types with the smallest number of H3K27me3 marked promoters (about 

3,000) (Table 5.4). The hierarchical tree of H3K27me3 promoter peaks across cell 

types also did not agree with expression data where MEFs clustered with B cells and 

BMDMs, while DCs clustered with progenitor type cells (Figure 5.2I). We verified 

that this variability is not solely due to technical reasons by calculating average number 

of detected peaks across all promoters (Figure 5.2J) and average H3K27me3 signal at 

common peaks in each cell type (Figure 5.2K). In the H3K27me3 parsimony tree, only 

about 16% (2,523 of 15,005 H3K27me3 marked promoters) of H3K27me3 promoters 

were shared across all cell types (Figure 5.6).  

Bivalent promoters are defined as those marked with both repressing 

(H3K27me3) and activating (H3K4me3) modifications and are enriched for 

developmental regulators (Bernstein et al., 2006b; Mikkelsen et al., 2007). We sub-

classified H3K27me3 promoters into bivalent and H3K27me3-only promoters 

depending on presence or absence of H3K4me3 modifications at the same promoter in 

the same cell type. Over 90% of H3K27me3 promoters in ESCs and PMNs were 

bivalent while only about 60% of H3K27me3 promoters in B cells were bivalent 

(Table 5.4). Interestingly, around 21% of bivalent promoters (2,598 out 11,919 

bivalent promoters in all 8 cell types) were shared across cell types (Figure 5.7) and 

were enriched for pattern specification process (Fisher’s exact test, P-value < 10-8) and 

developmental protein (Fisher’s exact test, P-value < 10-15). Complementarily, ESCs 

and PMNs had the lowest (6-10%) and MBs, MTs and B cells had the highest (37-

43%) numbers of H3K27me3-only promoters (Table 5.4).  MBs and MTs clustered 

tightly together for all epigenetic modifications. 
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Figure 5.6 H3K27me3 dynamics at the promoter regions (-5Kb, +5Kb) across the cell 
types. Only around 17% promoters (2,523 shared out of 3,359 promoters with 
H3K27me3 mark across all 8 cell types) retain H3K27me3 modification across cell types. 
This is a maximum parsimony tree representing the minimum number of changes 
necessary (gain of genes with a H3K27me3 peak shown in green, loss of genes without 
a H3K27me3 peak shown in red) for the reconstruction of the tree of relationships 
between the cell types. 
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Figure 5.7 Bivalency dynamics at the promoter regions (-5Kb, +5Kb) across the cell 
types. Only around 22% promoters (2,598 shared out of 11,919 promoters with 
H3K27me3 mark across all 8 cell types) retain H3K27me3 modification across cell types. 
This is a maximum parsimony tree representing the minimum number of changes 
necessary (gain of genes with a bivalent peak shown in green, loss of genes without a 
bivalent peak shown in red) for the reconstruction of the tree of relationships between 
the cell types. 
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Taken together, the cell type relationships established using RNAPII binding and 

H3K27me3 modifications at promoters did not agree with those using expression data 

across eight cell types.  

 

5.4.2 Nine major epigenetic and expression profiles at 

promoters across cell types 

In the previous section, we noted that the chromatin modifications at promoters 

across cell types does not fully agree with expression dynamics. To further 

systematically analyse the patterns of chromatin and expression dynamics at promoters 

across cell types, we clustered H3K4me3, H3K27me3 and RNAPII peaks as well as 

RNA-seq signal at 22,179 GENCODE.vM4 gene promoters in eight cell types. 

Promoters occupied by RNAPII can either be active or paused depending upon 

whether or not the RNAPII signal is more enriched at the core promoter than in the 

gene body (Brookes and Pombo, 2009; Brookes et al., 2012b). To capture such 

relevant features of chromatin modifications, we defined a wide window (±5kb) 

around the TSS to characterise each modification at a promoter level in a given cell 

type (see Methods).  

We obtained epigenetic and transcription profiles (4 data types) at each promoter 

in a given cell type for a total of 117,438 promoter-cell types (each gene promoter was 

found in at least one cell type, see Methods). We clustered promoter-cell types by 

hierarchical clustering using the Euclidean distance as a distance measure (see 

Methods), resulting in 31 clusters with distinct patterns across four data types (Figure 

5.8A). The number of promoter-cell types in each cluster varied largely across clusters. 

Cluster 19 consisted over 54,000 promoter-cell types while cluster 8 consisted of only 

105 promoter-cell types (Table 5.5). As expected H3K4me3 and RNAPII 

modifications largely overlapped with expressed promoters; most of which belonged 

to cluster 19 (Figure 5.8A).  
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Figure 5.8 Identification of nine major epigenetic and expression profiles, comprised of 
31 distinct clusters. A) Hierarchical clustering of the combined profiles of H3K27me3 
(peaks), H3K4me3 (peaks), RNAPII (peaks) and expression signal (reads per million) 
across 117,438 distinct gene promoters-cell type. 31 clusters of distinct signatures were 
detected. B) Hierarchical clustering of the average profile signals across clusters 
results in the identification of 9 major profile sub-groups. C) Average number of 
peaks/Average RNA-seq signal at all 31 clusters, which belong in the following sub-
groups: i) bivalent-narrow-H3K27me3, ii) bivalent-wide-H3K27me3, iii) H3K27me3-only, 
iv) bivalent-wide-active, v) wide-active, vi) antisense-active, vii) highly-active, viii) 
bivalent-highly-active, ix) boundary-H3K27me3-active. D) Enrichment of cell types in 
each cluster (significance was assessed with hypergeometric test) E) Under-
enrichment of cell types per cluster (significance was assessed with hypergeometric 
test). 
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Cluster Total number of 

genes 

Unique genes Ratio 

Unique/total number of 

gene promoters 

1 4543 3124 0.6876513 

2 6185 4328 0.6997575 

3 7679 4564 0.5943482 

4 1400 1140 0.8142857 

5 3275 2649 0.808855 

6 823 679 0.8250304 

7 158 118 0.7468354 

8 105 100 0.952381 

9 1464 1236 0.8442623 

10 486 393 0.808642 

11 137 134 0.9781022 

12 289 254 0.8788927 

13 924 615 0.6655844 

14 196 166 0.8469388 

15 687 514 0.7481805 

16 304 262 0.8618421 

17 3002 2396 0.7981346 

18 212 161 0.759434 

19 54580 13185 0.241572 

20 1520 663 0.4361842 

21 12250 5854 0.4778776 

22 361 309 0.8559557 

23 166 109 0.6566265 

24 285 149 0.522807 

25 115 72 0.626087 

26 9746 3750 0.3847732 

27 124 103 0.8306452 

28 118 97 0.8220339 

29 3428 2212 0.6452742 

30 1705 1047 0.6140762 

31 474 406 0.8565401 

Table 5.5  Total clusters detected (31) ordered by how they are displayed in the heatmap 
in Figure 2A. Total number of gene promoters-cell type in each cluster, unique number 
of gene promoters in each cluster independently of cell type information, and ratio of 
unique to total number of genes. The clusters in black background displayed a ratio 
lower than 0.6, indicating clusters with gene promoter signatures conserved across cell 
types.    
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To facilitate biological interpretation of the 31 clusters, we further grouped them 

into 9 major sub-groups namely: i) bivalent-narrow-H3K27me3, ii) bivalent-wide-

H3K27me3, iii) H3K27me3-only, iv) bivalent-wide-active, v) wide-active, vi) 

antisense-active, vii) highly-active, viii) bivalent-highly-active, ix) boundary-

H3K27me3-active, based on the patterns of the four data types across promoters 

(Figure 5.8B and 5.8C). For example, boundary-H3K27me3-active cluster 17 (Figure 

5.8C (ix)) showed H3K27me3 modification upstream of TSS and H3K4me3, RNAPII 

signal and weak transcription at the TSS and downstream. Bivalent clusters marked 

simultaneously with H3K27me3 and H3K4me3 modifications were divided into four 

groups. They were grouped as bivalent-narrow-H3K27me3 (Figure 5.8C (i)) and 

bivalent-wide-H3K27me3 (Figure 5.8C (ii)) based on the H3K27me3 pattern at the 

promoter and were grouped into bivalent-wide-active (Figure 5.8C (iv)) and bivalent-

highly-active (Figure 5.8C (viii)) according to the RNA-seq signal at the promoter. 

Bivalent-wide-H3K27me3 cluster 10 was enriched for ‘pattern specification process’ 

(Fisher’s exact test , P-value < 10-30) and ‘Embryonic morphogenesis’ (Fisher’s exact 

test, P-value < 10-30) and cluster 3 was enriched for ‘nervous system development’ 

(Fisher’s exact test , P-value < 10-30). On the other hand, bivalent-narrow-H3K27me3 

cluster 2 was highly enriched for ‘cell-cell signalling’ (Fisher’s exact test , P-value < 

10-30) and cluster 5 was enriched for genes involved in ‘cell development’ (Fisher’s 

exact test , P-value < 10-18). 

We have previously noted that H3K27me3-only promoters lacked CpG islands in 

mouse ESCs (Mantsoki et al., 2015). We therefore calculated CpG density at 

promoters in all 9 major groups and clusters. The H3K27me3-only clusters were 

indeed mostly CpG poor (only ~25% to 50% overlapped with a CpG island) (Figure 

5.9C) and were among the clusters with the lowest mean CpG density (group mean 

CpG density=0.39, see Figure 5.9A and 5.9B).  Active and bivalent clusters were 

enriched for CpG islands (Figure 5.9C) across all cell types studied. The subgroups 

with mean CpG densities higher than 0.70 were the highly-active (vii) and Boundary-

H3K27me3-active (ix) (Figure 5.9A).  

We then investigated if particular cell types were over or under-represented in the 

clusters by hypergeometric testing after correcting for cell type specific differences 

(see Methods). In over half of the clusters all cell types were equally represented 
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(Figure 5.8D). ESCs were underrepresented while B cells were over-represented in 

‘H3K27me3-only’ clusters (Figure 5.8D and 5.7E). Bivalent-wide-H3K27me3 cluster 

3 had MEFs, B cells and BMDMs over-represented, whilst the rest of the cell types 

were under-represented. Surprisingly, ESCs were over-represented only in bivalent 

cluster 5 (bivalent-narrow-H3K27me3) and cluster 11 (bivalent-wide-H3K27me3) 

(Figure 5.8D and 5.8E). PMNs, MEFs and BMDMs were also represented in bivalent 

cluster 5, whereas DCs, B cells, MBs and MTs were under-represented.  

To identify clusters with promoters shared across cell types, we calculated the 

ratio of unique number of promoters to total number of promoters in each cluster 

(Table 5.5). This ratio was the lowest for cluster 19 (0.24, Table 5.5) with expressed 

genes enriched for ‘cellular macromolecule catabolic process’ (Fisher’s exact test , P-

value < 10-30). To understand in greater detail, the gene gains and losses in each cluster 

across cell types, we reconstructed the maximum parsimony trees for each cluster (see 

Methods, Figures 5.9.1-5.9.31).  
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Figure 5.9 A) Boxplot of normalised CpG density across promoters for each of the 9 
major profile sub-groups. The groups are ordered from the highest to the lowest 
according to the mean CpG density across the clusters belonging in that sub-group 
(the line at the middle of the boxplots denotes the median of the distribution). B) Boxplot 
of normalised CpG density across promoters for each of the 31 clusters. The clusters 
are ordered from the highest to the lowest according to the mean CpG density across 
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the promoters belonging in that cluster (the line at the middle of the boxplots denotes 
the median of the distribution. C) Percent of overlap of the promoter regions (± 500 bp 
from the TSS) in each cluster with CpG islands in the mouse genome. Clusters are 
ordered according to the ordering of the clusters in Figure S6B.      

 

Six clusters with a ratio lower than 0.6 (Table 5.5) contained genes conserved 

across cell types. Genes in active clusters 19, 20, and 21, bivalent clusters 3 and 24, 

and wide-active cluster 26 showed high gene overlap across cell types (Figure 5.11). 

Clusters 19, 20 and 21 with high levels of H3K4me3 and RNAPII, accompanied by 

high expression signals (Figure 5.11A) were enriched for protein coding genes (P-

value < 0.001, hypergeometric test, Figure 5.11B). In bivalent-wide-H3K27me3 (ii) 

cluster 3, 15% of genes in ESCs were shared across other seven cell types (Figure 

5.10.3).  In contrast, bivalent-narrow-H3K27me3 cluster 5 contained highly cell type 

specific genes with only 3% of genes in ESCs shared across other seven cell types and 

very few common genes shared at the later states (Figure 5.10.5).  Finally, cluster 26 

was amongst the highly conserved clusters with over 20% of genes in ESCs shared 

with other seven cell types (Figure 5.10.26). Cluster 26 consisted largely of processed 

pseudogenes and sense intronic RNA genes (P-value < 0.0001, hypergeometric test, 

Figure 5.11B) and showed functional enrichment for G-protein coupled receptor 

signalling pattern (Fisher’s exact test, P-value < 10-10) and sensory perception of 

chemical stimulus (Fisher’s exact test, P-value < 10-7).  

 

 

 

 

 

 



 Results - Chapter 5  

170 

 



 Results - Chapter 5  

171 

 

 

 



 Results - Chapter 5  

172 

 



 Results - Chapter 5  

173 

 

 

Figure 5.10.1-5.9.31 Maximum parsimony trees for all of the 31 clusters defined in the 
analysis. The white labels signify the number of genes that are shared across the cell 
types at the respective ancestral states or the number of genes that are unique in one 
cell type (if the label is positioned underneath the cell type name). The green and red 
labels signify the number of genes gained or lost respectively, from one ancestral 
states to another.  
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Figure 5.11 A) Clusters with ratio of unique to total number of genes lower than 0.6 
showed similar profiles across the 8 cell types. Clusters 19, 20 and 21 (active) were 
showing high levels of H3K4me3 and RNAPII, accompanied by high expression signals. 
Cluster 3 and 24 are bivalent clusters that share few genes at the ancestral states 
(Figure S9 and S30) and their underlying profile across the 8 cell types. Clusters 26 is 
showing only an expression signal across the 10kb area flanking the TSS of the 
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promoters and the profile is conserved across cell types. B) Enrichment of various gene 
types as annotated from ENCODE in all 31 clusters.  

 

In summary, the chromatin and expression profiles of promoters in 8 cell types 

showed 9 major groups enriched for specific functional properties and six clusters 

shared their signal profiles in genes across cell types. 

 

5.4.3 Promoter dynamics across cell types and chromatin 

states 

Bivalent promoters in ESCs are thought to become either active or repressed after 

differentiating into mature cell types (Mikkelsen et al., 2007; Pan et al., 2007; Zhao et 

al., 2007). To systematically study major chromatin state transitions across cell types 

we calculated the number of overlapping genes across cell types in individual clusters. 

The statistical significance of the number of promoters shared between cell types 

across clusters was calculated using a hypergeometric test after correcting for the cell 

type bias of each cluster (see Methods). About 2.2% of all possible promoter overlaps 

between cell types across clusters were statistically significant (hypergeometric test, 

P-value <0.01) with the majority of them representing promoters moving across 

clusters belonging to the same sub-group. For example, 632 genes belonged to cluster 

19 in PMNs and cluster 29 in ESCs. Though these genes are expressed in both cluster 

19 and 29, they show divergent epigenetic profiles in two cell types namely a wide 

H3K4me3 and RNAPII signal upstream of TSS in ESCs while a sharp narrow 

H3K4me3 and RNAPII signal at the promoter in PMNs. We further specifically 

focussed on the significant overlaps across clusters between sub-groups (Figure 

5.12A).  
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Figure 5.12 Promoter dynamic across cell types and chromatin states. A) Significant 
chromatin state transitions across cell types and clusters. Four major chromatin state 
changes across cell type pairs emerged, namely H3K27me3-only <-> bivalent-wide-
H3K27me3, H3K27me3-only <-> bivalent-narrow-H3K27me3, bivalent-narrow-
H3K27me3 <-> bivalent-active and bivalent-active <-> highly-active. B) Bivalent-wide-
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H3K27me3 cluster 3 promoters in ESCs overlapped highly H3K27me3-only cluster 1 
promoters in B cells and were enriched for ‘pattern specification process’ (P-value < 10-

30). Bivalent-narrow-H3K27me3 cluster 5 promoters in ESCs overlapped highly with 
bivalent-wide-H3K27me3 cluster 3 promoters in B cells and were enriched for ‘Nervous 
system development’ (P-value < 10-30). Highly-active cluster 19 promoters in ESCs 
overlapped highly with boundary-H3K27me3-active cluster 17 promoters in B cells and 
were enriched for ‘ncRNA metabolic process’ (P-value < 10-22). C) Significant sets of 
genes overlapping in 3 distinct cell types and clusters. 98 genes enriched for ‘cell fate 
commitment’ (P-value < 10-6) were present in B cells in cluster 1, in DCs in cluster 2 and 
in BMDMs in cluster 3. 

 

There were four major chromatin state changes across cell type pairs namely 

H3K27me3-only  bivalent-wide-H3K27me3, H3K27me3-only  bivalent-narrow-

H3K27me3, bivalent-narrow-H3K27me3  bivalent active and bivalent active  

highly-active. H3K27me3-only promoters in B cells were either bivalent-narrow-

H3K27me3 or bivalent-wide-H3K27me3 in most other cell types. Similarly, bivalent 

active promoters in B cells were active in most other cell types. To exclude the 

possibility that the aberrant H3K27me3 modification at the promoters in B cells 

compared to the other cell types is due to a technical problem of that sample, we 

replaced the H3K27me3 sample used in B cells with another H3K27me3 ChIP-seq 

replicate in B cells from the same study and found the same result despite a small 

decrease in the H3K27me3 signal (Figure 5.13A and 5.13B).  
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Figure 5.13 A) Representative heatmaps for clusters 1, 2 and 3, which show extremely 
high levels of H3K27me3 across the 10 kb regions flanking the TSS of the genes. These 
profiles are plotted using the H3K27me3 sample from B cells that was originally used 
throughout the study. B) We have replaced the H3K27me3 sample in B cells with 
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another replicate to assess if there are extremes differences at the signal. There is a 
minimal decrease, but not significant enough since the H3K27me3 is still strong. 

 

Bivalent-wide-H3K27me3 cluster 3 promoters in ESCs overlapped highly with 

H3K27me3-only cluster 1 promoters in B cells and were enriched for ‘pattern 

specification process’ (Fisher’s exact test, P-value < 10-30) (Figure 5.12B). Bivalent-

narrow-H3K27me3 cluster 5 promoters in ESCs overlapped highly with bivalent-

wide-H3K27me3 cluster 3 promoters in B cells and were enriched for ‘Nervous system 

development’ (Fisher’s exact test, P-value < 10-30) (Figure 5.12B). Highly-active 

cluster 19 promoters in ESCs overlapped highly with boundary-H3K27me3-active 

cluster 17 promoters in B cells and were enriched for ‘ncRNA metabolic process’ 

(Fisher’s exact test, P-value < 10-22) (Figure 5.12B).  

We further calculated statistical significance for the overlap of the promoters 

belonging to three different clusters in three cell types. The majority of the significant 

cluster triplets consisted of promoters in clusters 1 in B cells present in cluster 2 and 

cluster 3 in other two cell types. For example, 98 genes enriched for ‘cell fate 

commitment’ (Fisher’s exact test, P-value < 10-6) were present in B cells in cluster 1, 

in DCs in cluster 2 and in BMDMs in cluster 3 (Figure 5.12C). 

Taken together, we noted significant patterns of epigenetic dynamics across cell 

types predominantly between 6 clusters (clusters 1, 2, 3, 17, 19 and 21). Importantly, 

the major epigenetic dynamics across cell types were not reflected at the expression 

level. 

 

5.4.4 Transcription factor binding and motif enrichment 

across clusters 

To investigate whether any of the specific cluster patterns were associated with 

binding of transcription regulators, we calculated transcription-related factor binding 

enrichment using the CODEX (Sánchez-Castillo et al., 2015) ChIP sequencing data 

compendium (see Methods). All clusters were significantly enriched (P-value < 0.01, 

hypergeometric test) for at least one factor (Figure 5.14A). Highly-active clusters 19, 
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21 and 29 were enriched for binding of most of the TFs in the analysis while clusters 

4, 6, 7, 20 and 26 were not enriched for binding of most of them. H3K27me3-only 

cluster 1 and bivalent-narrow-H3K27me3 cluster 2 were both highly enriched for 

Polycomb components binding (Suz12, Ezh2, Rnf2, Mtf2 and Ring1b) as well as 

Kdm2b, Notch1 and Klf2. Bivalent cluster 2 was additionally enriched for binding of 

Hdac2, Ldb1 and Foxa2.  

The similarities between the epigenetic profiles of clusters were not in full 

agreement with the similarities in their transcription-related factor binding i.e. the 

hierarchical clustering of TF enrichment at each cluster promoter (Figure 5.14A) did 

not result in the same sub-grouping as obtained using similarities between the profiles 

(Figure 5.8B). For example, bivalent-wide-H3K27me3 cluster 3 and bivalent-narrow-

H3K27me3 cluster 5 were enriched for binding of very similar factors despite the 

differences in H3K27me3 signal and RNAPII occupancy. Nevertheless, many clusters 

belonging to the same sub-groups showed similar transcription control i.e. clusters 19, 

21, 29 and 31 classified as highly-active and showed enrichment for more than half of 

the TFs in this analysis. Bivalent-wide-H3K27me3 clusters (8, 11, and 16) also 

clustered very close to each other showing significantly high enrichment for Polycomb 

complex components. Interestingly, clusters 20 and 26 of the sub-grouping wide-

active (v) were significantly enriched for binding of similar TFs. More specifically, 

eight-twenty-one 2 (Eto2), T-cell acute lymphocytic leukaemia protein 1 (Tal1), LIM 

Domain Only 2 (Lmo2) and Gata2 were significantly enriched (P-value < 0.05, 

hypergeometric test), all TFs involved in hematopoietic development (Anguita et al., 

2004; Soler et al., 2010; Vicente et al., 2012).  

Clusters 3 and 5 were also bound uniquely by some TFs that showed dissimilar 

gene ontologies (Table 5.6). TFs binding at bivalent-wide-H3K27me3 cluster 3 were 

associated with positive regulation of transcription (Fisher’s exact test, P-value < 

0.01), somatic stem cell population maintenance (Fisher’s exact test, P-value < 10-6) 

and regulation of transcription for RNAPII promoter in response to stress (Fisher’s 

exact test, P-value < 10-4). On the other hand, the TFs binding uniquely to bivalent-

narrow-H3K27me3 cluster 5 (Table 5.6) were enriched for regulation of cytokine 

biosynthetic process (Fisher’s exact test, P-value < 0.01), liver development (Fisher’s 
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exact test, P-value < 0.01) and regulation of myeloid cell differentiation (Fisher’s exact 

test, P-value < 0.01).   
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Figure 5.14 Transcription factor binding and motif enrichment across the clusters. A) 
Transcription-related factor binding enrichment using the CODEX ChIP-seq data 
compendium (see Methods). All clusters were significantly enriched (hypergeometric 
test - P value < 0.01) for at least one factor. B) Thirteen clusters showed at least one de-
novo motif enrichment with more than 15% of targets and P value < 10-10.  
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Figure 5.15 Transcription factor binding enrichment using the CODEX ChIP-seq data 
compendium. The clustering was done on the log10 transformed P-values, derived from 
a hypergeometric test. 

 

Considering that clustering the raw P-values might give us a non-trustworthy 

clustering of the TF binding profiles across clusters (the result could be driven solely 

by the high P-value, due the existence of zero P-values), we used the log10 transformed 

P-values from the hypergeometric tests. This has resulted in a more expected and 

cleaner distinction of clusters for the TF binding profiles (Figure 5.15). More 

specifically, the bivalent (Cluster 3 and 5) and H3K27me3-only cluster (Cluster 1) (at 

the bottom of the heatmap) had greater distance from the active clusters (Cluster 19, 

21,29). This adds more value to our study, confirming that bivalent and active clusters 

are highly likely to be regulated by very dissimilar TF networks. 

We further performed de-novo and known motif discovery for all clusters using 

HOMER (Heinz et al., 2010). Thirteen clusters showed at least one de-novo motif 

enrichment with more than 15% of targets and P value < 10-10 (Figure 5.14B). Bivalent 
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clusters 2, 3, 5, and 15 were enriched for GC rich motifs. More specifically, bivalent 

clusters 3 and 5 were enriched for the same ‘TCCCC’ sequence motif, a motif we 

previously identified enriched at bivalent promoters in ESCs (Mantsoki et al., 2015). 

H3K27me3-only cluster 7, Boundary-H3K27me3-active clusters 14 and 17 showed 

enrichment of diverse GC rich motifs. Highly-active clusters 19 and 29 were enriched 

for GC-rich ETS factor motifs (‘CCGGAA’) while cluster 21 for a zinc-finger 

matching motif ‘AGGCCGG’. Bivalent-wide-active clusters had motifs enriched in 

more than 16% of the target sequences with ‘ATCCACTT’ for cluster 24 and 

‘GGGTTG’ for cluster 28. Finally, cluster 26 was enriched for a GC-rich motif 

(‘CCAGGCC’) in more than 31% of the target sequences, which matches to the Zinc 

Finger Protein, X-Linked (ZFX).  

In conclusion, clusters with divergent epigenetic profiles were enriched for 

binding of similar factors. Nevertheless, they were enriched for specific de-novo 

sequence motifs. 

5.4.5 RNAPII pausing across clusters and cell types 

We incorporated RNAPII (8WG16) in our analysis, since it has been established 

that RNAPII pausing regulates the transcription of many genes involved in 

development, cell cycle and metabolism (Marks et al., 2012; Min et al., 2011; Tee et 

al., 2014). Differences in RNAPII occupancy were present across clusters and profile 

subgroupings (Figure 5.8C), thus we studied RNAPII variability across clusters in 

greater detail by calculating the RNAPII pausing index (Muse et al. 2007) defined as 

the ratio of RNAPII signal at the core promoter to RNAPII signal within the gene body 

(see Methods). When the clusters were ordered according to their respective mean 

pausing index (Figure 5.16A), they followed a general trend where the active 

subgroupings (highly-active (vii), boundary-H3K27me3-active (ix)) were followed by 

the bivalent subgroupings (bivalent-narrow-H3K27me3 (i), bivalent-wide-H3K27me3 

(ii)). Active clusters 19, 17, 29 and bivalent cluster 11 presented the highest pausing 

indices (in dark red background in Figure 5.16A), while active bi-directional (26, 13, 

20) and H3K27me3-only (4, 1, 7) clusters presented very low (in yellow background, 

Figure 5.16A) or no pausing at all (shown in grey background, Figure 5.16A). 
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There was a moderate correlation between the average pausing index and average 

mRNA expression levels between clusters (Pearson’s correlation coefficient: 0.53). 

The majority of active clusters had elevated levels of engaged RNAPII at the core 

promoter, in contrast with the bivalent and H3K27me3-only clusters that showed 

divergent patterns of pausing ranging from mid to no pausing at all. This is in 

agreement with a recent publication demonstrating that high pausing index is more 

associated with highly expressed genes involved in cell cycle regulation rather than 

bivalent developmental regulators (Williams et al. 2015). The clusters with the highest 

pausing index were not among the ones with highest expression levels. Clusters with 

mid-range pausing index including active cluster 30 and bivalent active clusters 22, 18 

and 28 were among the clusters with the highest mean expression values (Figure 

5.16B). Bivalent clusters 11 (high pausing), 5, 16, 9, 12 (mid-pausing) and 10 (low-

pausing) were expressed at low levels.  Also, the majority of the low-pausing (3, 2, 26) 

and no-pausing (6, 1) clusters showed extremely low expression values (Figure 5.16B). 

Williams et al. (2015) proposed that RNAPII pausing in ESCs is a regulatory 

mechanism which facilitates the retaining of their self-renewal properties. We noted 

that cell types of higher developmental potential (ESCs and PMNs) and MEFs, 

displayed a high mean pausing index (Figure 5.17A). In contrast, cells with reduced 

developmental potential (BMDMs, DCs, B cells, MBs, MTs) had a mid-range mean 

pausing index (Figure 5.17A). We further calculated the pausing indices for genes 

involved in cell cycle and developmental genes (see Methods), accompanied by groups 

of different histone modification patterns (bivalent, H3K4me3-only and H3K27me3-

only) in our study (Figure 5.17B). Cell cycle and H3K4me3-only genes presented high 

levels of RNAPII pausing, while developmental and bivalent genes presented mid 

levels of RNAPII pausing. In all groups, RNAPII pausing reduced from progenitor to 

committed cell types (Figure 5.17B). Developmental genes belonged to H3K27me3-

only cluster 1, bivalent clusters 2 and 3 and active clusters 19 and 21 (Figure 5.17C), 

while cell cycle genes were mostly found in active clusters 19 and 21 (Figure 5.17D). 

To assess in detail the RNAPII pausing in relation to the regulatory networks 

governing ESCs we used genes involved in the pluripotency network of mouse ESCs 

from KEGG pathways (Kanehisa et al., 2016) (see Methods) and we kept only the 

developmental and cell cycle genes that were also annotated in that list. Genes 
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annotated as in favour of self-renewal (Pro Pluripotency) exhibited extremely high 

RNAPII pausing (pausing index > 4) accompanied by high expression is ESCs 

(Mapk1, Stat3, Rif1) and MEFs (Mapk1, Stat3) (Figure 5.16C). Map2k1 (or Erk1) is 

the only Pro differentiation gene that is highly expressed and shows high levels of 

expression in both ESCs and MEFs (Figure 5.16C). 

 Jak2 and Wnt9a (Pro differentiation) were highly paused and lowly expressed in 

ESCs but they showed elevated levels of expression in MEFs retaining their high 

pausing. Interestingly, the changes in expression of Jak2 and Wnt9a between ESCs 

and MEFs were also marked by a change in the underlying clustering classification 

(Figure 5.16D). More specifically, they both convert to active states (Jak2-cluster 21, 

Wnt9a-cluster 14) in MEFs from bivalent states in ESCs (Jak2-cluster 3, Wnt9a-cluster 

5. 
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Figure 5.16 RNAPII pausing across clusters and cell types. A) Distribution of pausing 
indices across gene promoters in all 31 clusters in our study. Clusters are ordered 
according to their mean pausing index and the point shown in the middle of the 
distribution denotes the mean, flanked by the error bars of standard deviation. The 
colours in the background denote the level of RNAPII pausing - grey: no pausing, 
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yellow: low pausing, red: mid pausing, dark red: high pausing. B) Distribution of 
expression levels (log2(FPKM+1)) of genes in each cluster. The clusters were in the 
same order as in Figure 5A and the point in the middle of the distribution denotes the 
mean, flanked by the error bars of standard deviation. The colour background denotes 
a threshold on expression (log2 (FPKM+1) =1) as defined in Figure S1 – grey: not 
expressed, green: expressed. C) RNAPII pausing versus expression (log2(FPKM+1)) for 
genes annotated as: 1) Pro pluripotent, 2) Pro Differentiation, 3) ES signalling (see 
Methods). Genes annotated as in favour of self-renewal (Pro Pluripotency) exhibited 
extremely high RNAPII pausing (pausing index > 4) accompanied by high expression is 
ESCs and MEFS. D) RNAPII pausing vs expression values genes in Figure 5C. The 
colours and numbers imposed display the respective cluster colour where each gene 
belonged. E) RNAPII pausing vs expression for developmental and cell cycle genes 
(involved in the ESCs pluripotent network, see Methods) across all cell types. F) RNAPII 
pausing vs expression for genes in Figure 5E. The colours and numbers imposed 
display the respective cluster colour where each gene belonged.   

 

Next, cell cycle and developmental genes involved in the pluripotency network 

were assessed in terms of their expression versus RNAPII pausing. We decided to 

proceed narrowing down these two gene sets, because of the high number of the 

annotated cell cycle genes and their extreme levels of high RNAPII pausing, which 

was obscuring the developmental genes’ patterns (Figure 5.17E and 5.17F). Mapk1 

and Rif1, were annotated as cell cycle and Pro pluripotency genes and as previously 

noted, they presented a highly paused-highly epxressed pattern. Developmental genes 

Smad4/2 were highly expressed and paused across ESCs, PMNs and MEFs and 

Acvr1b/2a, Wnt9a and Fgf2 were highly paused albeit lowly expressed in the 

progenitor cells (Figure 514E and Figure 514F ).  

In conclusion, RNAPII pausing patterns are maintained at high levels for 

progenitor cells. Pro pluripotency and cell cycle genes present a highly paused-highly 

expressed pattern across ESCs, PMNs and MEFs, which is in accordance with the gene 

classification in active clusters and supports strongly the theory that RNAPII pausing 

assists cells to retain their pluripotent characteristics. Finally, developmental genes 

involved in pluripotency network present similar RNAPII pausing levels with cell 

cycle genes and they belong to active chromatin states rather than bivalent, especially 

for progenitor cells.  
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Figure 5.17 A) Boxplot of the pausing index distribution across the 8 cell types used in 
the study. Cells were ordered according from the highest to lowest mean pausing index 
value (the line at the middle of the boxplots denotes the median of the distribution). B) 
Boxplots of the pausing index distribution across all cell types, only for the genes that 
belonged to the following categories according to gene ontology: 1) Developmental 
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(GO:0045165, GO:0048864, GO:0007498), 2) Cell cycle (GO:0007049), 3) Bivalent (having 
both H3K4me3and H3K27me3 in this study), 4) H3K4me3 only and 5) H3K27me3 only. 
C) Distribution of developmental genes across clusters and cell types. D) Distribution 
of cell cycle genes across clusters and cell types. E) Scatterplots of RNAPII pausing vs 
expression (log2 (FPKM+1)) values for developmental and cell cycle genes across all 
cell types. F) Scatterplots of RNAPII pausing vs expression (log2 (FPKM+1)) values for 
developmental and cell cycle genes across all cell types. The colours imposed display 
the respective cluster colour where each gene belonged. 

 

5.4.6 Discussion 

In this study, we have conducted integrated analysis of epigenetic marks 

(H3K4me3, H3K27me3), RNAPII (8WG16) binding and expression (RNA-seq) in 

eight mouse cell types of variable developmental potential. Hierarchical clustering of 

cell types for any of the datatypes did not fully overlap with each other demonstrating 

that all four data types bring non-redundant information into the downstream analysis. 

Considering a fixed region around the promoter of each gene would certainly 

impact the transcriptional signal due to variable numbers of intronic regions among 

individual genes. This could cause variable levels of average read signal, not 

necessarily reflecting biological variation. For that reason, it would be wiser if we have 

used the total FPKM value for each gene, rather than the transcriptional signal at the 

promoter. But because we were interested in RNAPII dynamics, we decided to go on 

with the first approach, recognising that the average transcriptional signal for each 

gene might be obscured by the concentration of intronic regions at the +5 kb region 

after the promoter. However, there have been cases in the literature, where RNA-seq 

reads map to intronic sequences, for almost 40% of the total number of reads (Ameur 

et al., 2011; Gaidatzis et al., 2015). This could make our analysis more robust, given 

that the percentage of reads mapping to introns versus exons would range in 

comparable levels across the samples.   

 The hierarchical tree using H3K27me3 modification at promoters was greatly 

discordant with the known developmental relationships between cell types. 

Specifically, B cells had a very large number of H3K27me3 marked promoters. The 

average number of H3K27me3 peaks was not uniformly distributed (Figure 5.8J) and 

this was not a result of ChIP sequencing quality, estimated by the signal at the common 
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peaks (Figure 5.2K). This suggests that there might be a real biological difference 

separating B cells from the rest of the cell types. 

We clustered profiles of silencing (H3K27me3) and activating (H3K4me3, 

RNAPII and RNA-seq) signals across gene promoters for all the cell types in our study. 

This resulted into nine major profile sub-groups, comprising of 31 distinct clusters. 

The active expression patterns (clusters 19, 20, 21) were retained to a very high degree 

among cell types, followed by the bi-directional expression patterns (cluster 26) and 

lastly the bivalent patterns (cluster 3 and 24) tended to be cell type specific (Figure 

5.11 and Table 5.5). 

The epigenetic and expression state transitioning between cell types was divided 

predominantly in two groups. H3K27me3-only cluster genes in one cell type were 

likely to be bivalent in another cell type and active cluster genes in one cell type were 

likely to be boundary H3K27me3 in another cell type (Figure 5.12A). There were only 

a handful of cases transitioning between bivalent and active states (Bcell_3  

ESCs_17, Bcell_3  MEFS_17, Bcell_3  BMDMS_17, MTs_13  MBs_21 and 

MTs_13  MEFS_21) implying that bivalency is not the predominant intermediate 

state for switching on or off transcription during differentiation. B cells, unlike other 

cell types, were highly enriched for H3K27me3 either at the core promoter or at the 

boundary upstream the TSS. Further investigation is needed to know whether B cells 

are more prone to acquire or retain longer Polycomb silencing than other cell types 

and what are the mechanisms involved. 

Hierarchical clustering of TF enrichment for clusters revealed the major profile 

sub-groups for the highly-active clusters (19, 21, 29, 31), two of the bi-directional 

expression clusters (20, 26) and some of the bivalent clusters (8, 16, 11, 12, 9) (Figure 

5.14A). Clusters 3 and 5 belonged to different sub-groups but had closely associated 

TF binding patterns. Interestingly, they shared similar binding patterns for most 

transcription regulators and a common de-novo motif (‘TCCCC’) which was 

previously recognised at the sequences of high confident (HC) bivalent promoters in 

human and mouse ESCs (Mantsoki et al., 2015). Of note, they also were bound 

uniquely by some TFs and bivalent-wide-H3K27me3 cluster 3 was uniquely enriched 

for binding of Nanog, Oct4 and p300 (Table 5.6). Our results suggest that the bivalent 
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genes in cluster 3 are involved in developmental regulatory functions across multiple 

cell types and are possibly directly affected by active pluripotency and signalling 

factors (Figure 5.16C, Table 5.6) that exhibit RNAPII at their promoters (Williams et 

al., 2015). In contrast, bivalent genes in cluster 5 are more tissue-specific and show 

higher levels of expression possibly due to transcription leaking (De Gobbi et al., 

2011). 

 

Cluster Unique TFs enriched 

  

Cluster3 Rbbp5, Pou5f1, Sin3A, Nanog, Tcf3, Prep, Chd4, HoxB4, Cbx8, Runx1, Rbpj, 

Gfi1b, PU.1, Mxi1, Sfpi1, Cebpb, Runx2, Jun, p300 

Cluster5 Ebf1, Ldb1, Stat5B, E2f1, Irf1, Maff, Rel, Egr1, Rad21, Stat3, Ncoa3, Tfe3, 

Sox2, Tal1, Ctcf, Cebpa, Rela, Meis1, Scl, Gata6, Eto2, Ldb1, Mtgr1, Ascl2, 

Fosl2 

Table 5.6 Unique TFs enriched specifically in Cluster 3 or Cluster 5 (P value < 0.05) 

 

We used ChIP-seq data for RNAPII (8WG16) which shows a very high overlap 

with global run-on sequencing (GRO-seq) (Core et al., 2008) data, used for the 

calculation of RNAPII pausing (Williams et al., 2015). RNAPII pausing index was not 

highly correlated with the expression across clusters, however the majority of active 

clusters exhibited a highly paused-highly expressed configuration (Figure A and B). 

Bivalent clusters showed mid-pausing levels followed by H3K27me3-only clusters at 

low or no pausing at all (Figure 5.16A). ESCs, MEFs and PMNs had persistently 

higher pausing indices than the rest of the cell types independently of gene type (Figure 

5.17A). MEFs show high concordance with ESCs both in terms of expression and 

pausing, indicating that they retain their ES-like characteristics more than other cell 

types of similar developmental hierarchy (Yusuf et al., 2013). MEFs are frequently 

used in induced pluripotent stem cells (iPSCs) experiments  (Takahashi and 

Yamanaka, 2006), thus it would be very interesting to assess the utility of pausing 

index in suggesting candidate cell types for reprogramming research. 

In conclusion, we have successfully integrated omics datasets of epigenetic marks, 

transcription factors and gene expression, conducting a promoter-level analysis for 

eight cell types of different developmental potentials. We have functionally 
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characterised nine major promoter profile signals and the transcriptional control that 

governs them, offering a valuable resource for further studies in the regulation of 

transcription during development. Future work would entail the incorporation of 

multiple histone modifications and components of complexes involved in RNAPII 

pausing, investigating the signatures at promoter and enhancer elements as well.  
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Chapter 6 Discussion 

6.1 Overview of data analysis and challenges in data 
integration from multiple sources 

 

The characteristics of bivalent chromatin (H3K4me3 and H3K27me3) have been 

assessed by many studies across mouse and human cell types mainly through ChIP-

seq protocols (Adli et al., 2010; Barski et al., 2007; Cui et al., 2009; Ku et al., 2008b; 

Mikkelsen et al., 2007; Pan et al., 2007; Zhao et al., 2007). Most of the studies have 

generated lists of bivalent genes in isolation and their pairwise comparisons have not 

yielded high overlap (Marks et al., 2012).  Here, we systematically assessed the degree 

of overlap among available published studies in search of a robust list of bivalent 

promoters. Direct comparison of bivalent gene sets across studies is challenging, due 

to different experimental protocols and subsequent data analysis steps followed by 

each lab. Due to low sample numbers we could not assess systematically the role of 

different antibodies in the detection of histone mark enriched regions and bivalency 

per se. Therefore, the choice of a reliable method for the detection of enriched regions 

bearing the histone marks under investigation is important. The principal aim of our 

analysis was to detect similarly enriched regions across multiple samples. However, 

most of the algorithms already developed, employed strenuous quantitative 

comparisons for the identification of differentially enriched regions between pairs of 

samples usually after a peak-calling step (Heinig et al., 2015; Schweikert et al., 2013; 

Shao et al., 2012).  

Peak-calling (Kharchenko et al., 2008; Xu et al., 2014; Zhang et al., 2008) is the 

most widely used method in the literature where enriched regions (with respect to 

background noise) are assigned with a level of confidence (p-value). In this study we 

have used a peak-based method, being aware that we might have a large number of 

false positives due to the great range of read depth across the samples, which 

incorporates variant signal to noise (S/N) ratios in the results. To adjust for the 

variability in the read depth across samples we would have to limit the number of reads 

in all samples similar to the sample with the fewest number of reads for each histone 

mark. This would lead to undesirable loss of information, thus we developed a 
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complementary cutoff-based method, initially generating the normalised read 

coverage (reads per million) for each sample which was subsequently quantile 

normalised across samples. There was a clear signal for promoters highly enriched in 

H3K4me3, after fitting the bimodal distribution on the normalised H3K4me3 read 

density distribution. Unfortunately, H3K27me3 normalised read density was not 

following the same pattern and a set of arbitrary thresholds were chosen. 

The limitation of the cut-off approach is that it does not take into consideration 

the unique pattern of H3K27me3 which, as it became apparent in later stages of our 

analysis, is found in various forms across the mammalian promoters and cell types. 

Retrospectively, having confirmed that H3K27me3 is the defining mark for bivalency 

and the majority of H3K27me3 promoters seem to be bivalent in ESCs, we could have 

employed a different method uniquely applying to the H3K27me3 characteristics. For 

instance, after peak calling we would examine the normalised signal of H3K27me3 in 

common peaks across the samples and divide it into two distributions depending on 

whether the peaks would be bivalent or H3K27me3-only. Then we would define 

thresholds as in the cut-off based approach, with the benefit of having two separate 

distributions with uniform characteristics (H3K27me-bivalent and H3K27me3-only). 

Finally, we would apply the thresholds on the entire set of reads in each sample after 

isolating the bivalent peaks from the H3K27me-only peaks. This proposed method is 

based on the assumption that H3K27me3 in bivalent regions is deposited under the 

same mechanisms by PRC2, hence the H3K27me3 read distribution should be 

identical. On the contrary, H3K27me3-only regions show wider and less enriched 

signals, suggesting a different mechanism from the one at bivalent promoters. 

The peak-based method generated better results than the cut-off, where a higher 

number of bivalent promoters was overlapping with bivalent promoters from previous 

studies (Mikkelsen et al. 2007) and developmental factors based on gene ontology 

enrichment. The cumulative intersection of peaks across samples, corrected to a certain 

degree the bias of outlier peaks in each experiment, deriving either from antibody 

specificity or read depth sensitivity. Nevertheless, an alternative explanation for the 

high replication of previous results might be that we use a similar approach to detect 

histone mark enrichment from the same primary material (ChIP-seq experiment).   
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We have identified high confidence promoters bearing both marks (HC bivalent), 

with their expression at low levels in accordance with the literature. The low 

expression level of genes with bivalent promoters has been attributed to transcription 

leaking at those genes due to failure of Polycomb repressors in silencing them 

efficiently (De Gobbi et al. 2011) or due to mixed cell populations, where some cells 

express them and others do not express them at all (Brookes et al. 2012). To address 

this issue we used single cell transcriptomics data from human and mouse ESCs. 

Single cell RNA-seq (scRNA-seq) can capture the variation of expression across 

individual cells from a cell population (Pan 2014), yet high technical noise, due to low 

starting material and high amplification bias, overshadows the real biological variation 

(Marinov et al. 2014; Stegle et al. 2015). 

Technical variation is anti-correlated with the mean expression of genes across 

cells, thus we chose sets of consistently highly expressed genes and measured their 

correlation with windows of genes of declining mean expression. Our correlation-

based approach could separate and discard the genes with extreme technical variation, 

however it suffers from one major caveat. The characterisation of a portion of bivalent 

genes in terms of their expression variation is hindered, since the majority of them are 

lowly expressed, hence not adequately captured by the scRNA-seq techniques and 

consequently discarded when they do not meet our thresholds. Recent studies have 

implemented more sophisticated statistical methods taking into account the 

confounding factor of expression level and increasing the power of the results with 

larger populations of single cells. A deconvolution approach deploys a distance to the 

median (DM) as a gene expression variability measure, which does not depend as 

strongly on the mean expression levels of each gene as the CV (Kolodziejczyk et al., 

2015). A noise decomposition method was applied for the assessment of noise in allele 

stochastic expression, accounting for cell-to cell variability and dividing biological 

from technical variation with the assistance of spike-in controls (Kim et al., 2015). Our 

method could potentially evolve and take into account more confounding factors that 

cause noise. However, no further analysis was done in this project since it was beyond 

the scope of bivalent chromatin. 

To investigate the dynamics of bivalent chromatin in combination with expression 

patterns and RNAPII pausing we integrated ChIP-seq and bulk RNA-seq data in 8 
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murine cell types of diverse developmental potential. Similar with the concerns raised 

for the integrative analysis in ESCs, different read sequencing depths, antibodies used, 

and protocols across studies, have rendered the accurate division of promoter profiles 

a challenging task. The clusters were diversely populated both in terms of numbers of 

genes and cell type representation. This phenomenon could arise either due to real 

biological difference or because of experimental artefacts such as read coverage bias. 

Average profiles of binary peaks were compared with the normalised read numbers at 

the common peaks across all ChIP-seq samples and cell types. The apparent variation 

in the average number of peaks was not correlated with the signal at the common 

peaks, even for H3K27me3 which was the most divergent mark in the analysis. The 

issue raised above could have been prevented if we had detected clusters of chromatin 

and expression patterns separately for each cell type. Thus, we could have also 

identified cell type specific states that would not be burdened with the bias of variable 

read depth and would not be discarded due to limited numbers of genes. On the other 

hand, integration of similar profiles across cell types would be computationally costly 

due the large numbers of pairwise comparisons between states. 

The meta-analysis has generated results which were in accordance with previously 

published results, adding value to the reproducibility of the data. We also made new 

observations improving our understanding of the studied mechanisms, as discussed 

below. 

6.2 Chromatin status and expression signatures 
across species and cell types 

 

A systematic comparison of chromatin signatures between human and mouse 

ESCs, using orthologous genes, showed that more than half of HC bivalent promoters 

retain the same chromatin configuration and are far more enriched for developmental 

regulators than the species specific bivalent promoters. The conserved set of bivalent 

promoters across mammalian ESCs implies that bivalent chromatin is an important 

feature of epigenetic regulation accompanied by the other conserved patterns such as 

H3K4me3-only and latent. Gene expression levels between species were highly 

maintained, irrespective of whether their chromatin state was conserved or divergent. 
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For example, orthologous genes that were detected as latent in human and H3K4me3 

only in mouse, maintained equivalent expression profiles similar to active genes. This 

could mean that expression of actively transcribed genes in human could be regulated 

by a more complex network of histone modifications (i.e. H3K27ac, H3K9,14Ac, 

H3K79me3) (Guenther et al., 2007; Kouzarides, 2007) and TFs that were not 

incorporated in our study, hence they were detected as latent. Also, deposition of 

activating histone modifications could be happening after, and thus be a consequence 

of, transcription initiation induced by RNAPII recruitment, and the transcriptional 

machinery could later preserve those marks at the promoter of the locus for as long as 

gene transcription takes place (Rybtsova et al., 2007). However, it remains elusive 

whether these differences in chromatin states constitute species specificity or just 

differences between the pluripotent states of mouse and human ESCs. Human ESCs 

seem to be closer to the primed state of epiblast stem cells (EpiSCs) rather than the 

naïve pluripotency of mouse ESCs (Takashima et al., 2014). Further work using ESCs 

cultured with media that induce naïve pluripotency features in mouse (Marks et al., 

2012) and human (Chan et al., 2013; Gafni et al., 2013; Hanna et al., 2010; Theunissen 

et al., 2014; Ware et al., 2014), could shed a light on the degree of conservation of the 

bivalent state across mammalian ESCs. 

In the promoter-wise analysis of 8 developmentally distinct cell types, 31 clusters 

emerged that could be narrowed down to 9 major profile subgroups. The ratio of 

unique to total number of genes in each cluster, along with the maximum parsimony 

trees built for each cluster, have yet again pointed to the conservation of three major 

profiles: the active profile, the bivalent profile and the bi-directional expression profile 

which lacked any of the two histone marks included in this study, and could be 

associated with the latent signature. Interestingly, the bi-directional expression profile 

was enriched for processed pseudogenes but was mainly void of gene type annotation, 

suggesting that we ought to elucidate the function of this unknown set of genes. 

We have also systematically studied the major chromatin transitions across cluster 

and cell types. Only 2.2% of possible promoter transitions showed a significant 

number of genes overlapping, mainly representing promoters moving across clusters 

of very similar profiles. Outside the spectrum of profile similarity, gradual transitions 

from H3K27me3-only state through to bivalent state and finally to highly active state, 
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were again not reflected at gene expression, where comparable levels of promoter 

transcriptional signals were noted throughout the comparisons. 

The apparent conservation of the three chromatin patterns between cell types of 

the same species but also across species, supports their high degree of involvement in 

the transcriptional regulation. However, since the expression profiles seem to be quite 

unaffected we could postulate that 1) the chromatin marks in our study seem to be a 

consequence of the transcriptional activity at the promoter locus rather than a direct 

cause that recruits the transcription initiation machinery, and/or 2) that these chromatin 

marks recapitulate only a subset of the transcriptional information (which could be 

assessed by integrating other histone marks and non-histone epigenetic marks as well 

as TFs).  

 

6.3 Different occupancy levels of Polycomb 
components and RNAPII could be reflected by the 
expression variance of bivalent genes 

 

PcG complexes (PRC1 and PRC2) are the main repressive regulators of bivalent 

genes (Lewis 1978; Kennison 1995; Schuettengruber et al. 2007; Margueron & 

Reinberg 2011) and are considered to be recruited in a sequential manner at the loci 

about to be silenced, where PRC2 deposits H3K27me3 (Czermin et al. 2002) which 

consequently assists PRC1 to be recruited and establish a more robust silenced 

chromatin structure with H2Aub deposition (Endoh et al., 2012; Stock et al., 2007b). 

Bivalent promoters have been divided in PRC2-only and PRC1-PRC2, with the ones 

bound by both complexes considered to be more conserved across species (Ku et al., 

2008b). Having assessed the binding profiles of PRC1 and PRC2 components in HC 

bivalent promoters of mouse ESCs, all HC bivalent promoters were bound by Suz12 

and Jarid2 (PRC2), Ring1b and Cbx7 (PRC1), albeit in different levels. We could thus 

postulate that previously identified PRC2-only promoters are a group of bivalent 

promoters where low levels of PRC1 were simply considered insignificant due to low 

sequencing depth of the original experiments. Furthermore, incorporating H2Aub has 



 Discussion 

201 

 

also validated that all HC bivalent promoters in mouse ESCs are enriched for this 

histone modification which is a result of PRC1 recruitment.  

ChIP-seq profiles of Polycomb components and RNAPII divided bivalent 

promoters into distinct groups with variable epigenetic signatures, expression levels 

and functional outputs, with similar patterns emerging at mouse ESCs (Chapter 3) and 

at the promoter-wise hierarchical clustering across cell types. The TF binding 

enrichment analysis uncovered very similar binding patterns for the bivalent clusters 

3 and 5 (Chapter 5). However, those two clusters were also uniquely bound by some 

TFs. In addition, their differences in RNAPII occupancy led us to hypothesize that 

these gene sets might be sensitive to different signalling pathways. Also, a set of HC 

bivalent promoters was characterized by highly variable expression (using single cell 

RNA-seq in Chapter 4), and was associated with response to DNA damage and DNA 

repair. Furthermore, highly variable genes formed tight co-expressed clusters in only 

one or a few single cells. 

The above findings suggest that a fraction of bivalent genes are involved in more 

general developmental regulatory functions while others are more tissue-specific. The 

high variance in expression among single ESCs supports the model of ESCs moving 

transiently between developmental states but not committing. Our results and recent 

findings in the literature (Illingworth et al., 2016) support that ESCs are free to explore 

potential differentiation pathways with the assistance of bivalent genes, but not commit 

until certain developmental and environmental cues reach the appropriate thresholds. 

 

6.4 Transcriptional control is tighter in active than 
bivalent promoters and sequence motifs are 
conserved between species 

 

A possible model proposes that the dissimilarity in TF occupancy between active 

and bivalent loci is responsible for the uninhibited activity of the PRC complexes that 

leads to the generation of bivalent promoters (Voigt et al., 2013). High abundance of 

TFs at the active promoters does not allow the Polycomb components to decorate the 

histone tails with repressive marks and eventually silence the adjacent genes. In 
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Chapter 3 we show that indeed TF density at the promoter sites decreases as we move 

from active (H3K4me3-only) to bivalent and last H3K27me3-only promoters, in both 

human and mouse ESCs. Moreover, active promoters are exclusively bound by  

pluripotency regulators such as Klf4, Essrb, Pou5f1 (Oct4), Sox2 and Nanog, whereas 

bivalent promoters are mostly targeted by Polycomb (Ezh1, Suz12, Cbx7, Ring1b) and 

Polycomb-like (Mtf2, Phf9) components, and Utf1 which is considered to shield away 

transcription leaking from bivalent loci (Jia et al., 2012b). In Chapter 5, bivalent sub-

groupings were less populated by TFs (~ ¼ of the total TFs in the analysis), displaying 

a largely dissimilar set of TFs from the highly active clusters, which were occupied by 

more than ¾ of the TFs used in the analysis. 

The above findings suggest that active promoters are subject to a tighter 

transcriptional control than bivalent ones. What is more, bivalent genes highly 

overlapped (>90%) with differentially expressed genes (up or down regulated) when 

a set of 91 TFs were over-expressed or knocked-down (each TF separately) in mouse 

ESCs. It seems that active promoters are regulated by a highly abundant network of 

TFs with redundant functions, which safeguards their expression equilibrium. This 

redundancy could dampen the dependency of active genes to only a small set of TFs, 

in contrast with bivalent genes that exhibit a high degree of volatility in their 

expression when the function of only one TF is disrupted. 

It is intriguing how those two classes of gene promoters (bivalent and active), 

which are both highly abundant in CpG islands, are distinguishably bound by such a 

diversified set of TFs and consequently acquire distinct properties. De-novo motif 

analyses in our studies have successfully detected underlying sequence motifs that 

could uniquely identify these two promoter classes. Active promoters in ESCs were 

consistently enriched for GC-rich ETS factor motifs (‘CCGGAA’) and bivalent 

promoters showed enrichment for a motif conserved across species which contained 4 

consecutive cytosine bases (‘TCCCC’). Further research is needed to understand if 

these motifs are of any biological relevance, especially for the case of bivalent 

promoters. The similarity of the bivalent promoters’ motif to that of MZF1 (Morris et 

al., 1994) was not assessed any further, due to poor results after assessing for binding 

sites for several zinc finger proteins from the HEK293 cell line (Najafabadi et al., 

2015). It would be rather interesting to perform the same analysis using ChIP-seq 
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experiments deriving from ESCs, which could potentially uncover a novel role for 

MZF1, specific to the early stages of development. 

As it was previously discussed, bivalent genes seem to be more likely to show 

discrepancies in their expression than active genes, even when the pluripotency 

network is minimally distressed. It could be argued that Polycomb is the facilitator of 

this behavior since it is uniquely enriched at bivalent sites. However, the underlying 

mechanisms that control and define bivalent genes’ sensitivity are still to be 

determined. In the years to come epigenome editing techniques could target 

specifically the histone modifications at bivalent promoters and probe the function of 

the complexes that regulate them (PcG, TrxG) independently of the modifications that 

they catalyze (Voigt and Reinberg, 2013). More interestingly, knock out of chromatin 

modifiers specifically at bivalent regions could prevent the out of target genome-wide 

effects that obscure their real association with bivalency. 

 

6.5 H3K27me3 only promoters have lower CpG 
density than the active and bivalent promoters 
and show stronger signatures at cells of lower 
developmental potential 

 

Over 85% of H3K27me3 marked promoters in ESCs co-incited with H3K4me3, 

suggesting that bivalency is the default signature for Polycomb silenced promoters in 

ESCs. It has been shown that high CpG density, un-methylated CpG islands (CGIs) 

can sufficiently recruit Polycomb components in vertebrates (Farcas et al., 2012; 

Mendenhall et al., 2010; Riising et al., 2014) and thus define the presence of 

H3K27me3 in the locus. Moreover, incorporation of synthetic G+C-rich, CpG-rich 

DNA sequences in the ESC genome has resulted in creation of bivalent domains, 

reinforcing their status as the default chromatin state of CGIs in ESCs (Wachter et al., 

2014). In a cross-species analysis between human and mouse ESCs both in our study 

and in the literature (Lynch et al., 2012), there was clear CGI erosion correlating with 

loss of both H3K27me3 and H3K4me3 at the mouse genome, while no CpG-rich 

bivalent promoters in mouse were eroded in human. Nevertheless, in a small fraction 
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of genes, absence of a CGI in mouse was not followed by the loss of bivalent signature. 

We could thus argue that bivalency can act as a proxy for the recognition of CGIs in 

ESCs, when CpG density levels do not pass the arbitrary thresholds necessary for CGI 

detection.  

HC bivalent promoters were most enriched for CGIs, along with the H3K4me3-

only promoters. Surprisingly, none or few H3K27me3-only promoters contained a 

CGI, disagreeing with the model where PcG proteins can be attracted only by CGI 

promoters. Low numbers of HC H3K27me3-only promoters in ESCs restrained the 

power for subsequent analysis, so we were very interested to discover that there was a 

major sub-group marked only by H3K27me3 in our promoter-wise multiple cell type 

analysis. H3K27me3-only clusters were amongst the clusters with the lowest CpG 

density and only about half of them overlapped with a known CGI. Higher numbers 

of identified H3K27me3-only sites have revealed that not all of them lack a CGI, but 

the findings still suggest that presence of H3K27me3 on CpG-poor promoters could 

involve an unknown mechanism of Polycomb recruitment, not dependent on CGIs. 

 B cells, MEFs and BMDMs, were over-represented in the H3K27me3-only 

cluster 1 and the higher average number of H3K27me3 peaks at those cell types did 

not agree with the average H3K27me3 signal patterns at the common peaks across cell 

types. This suggests that there might be a real biological variation where non-

pluripotent cell types tend to have H3K27me3 domains (not necessarily accompanied 

by H3K4me3) which occupy wider regions in the genome. Indeed, studies have shown 

that the refractory nature of pluripotent chromatin does not allow Polycomb to silence 

broad domains of the genome and it gets concentrated at the bivalent promoters 

(Hawkins et al., 2010; Xie et al., 2013; Zhu et al., 2013). In contrast, there is a genome-

wide repopulation of the chromatin by H3K27me3 at differentiated cell types, 

reflecting higher Polycomb efficiency. There is also supporting evidence that some 

CpG-poor promoters bear only H3K27me3 and are largely found in broad intergenic 

H3K27me3 domains (Xie et al., 2013), which is in accordance with our results.  
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6.6 RNAPII pausing levels in poised and active 
promoters correlate with the developmental 
potential of the cell type 

 

Our understanding of the diverse aspects of bivalent chromatin can be enlightened 

by examining its close association with specific variants of phosphorylated RNAPII. 

More specifically, RNAPII phosphorylated at Serine 5 (S5) was found at the promoters 

of bivalent genes, indicating that those genes were poised for transcription but the 

engaged RNAPII could not proceed to productive elongation (Brookes et al. 2012; 

Brookes & Pombo 2009). RNAPII promoter proximal pausing (Guenther et al. 2007; 

Muse et al. 2007; Zeitlinger et al. 2007; Krumm et al. 1995) occurs at a wide variety 

of genes with distinct expression levels and biological functions and it is not solely 

related with poised chromatin (Guenther et al. 2007; Min et al. 2011; Williams et al. 

2015). We have previously shown that RNAPII variants can classify bivalent 

promoters in distinct groups of variable expression and Polycomb component 

occupancy (Brookes et al. 2012). Recently, more studies have shed a light on the role 

of RNAPII pausing in naïve ESCs, where increased levels of RNAPII (Marks et al. 

2012) are accompanied by high pausing at cell cycle genes and not in poised 

developmental genes as previously thought (Williams et al. 2015). 

In chapter 5, we incorporated ChIP-seq data from RNAPII (8WG16) in 8 cell 

types and calculated the RNAPII pausing at the clusters that emerged, but also at a cell 

type average approach. GRO-seq is the most commonly used type of data for the 

reliable calculation of RNAPII pausing (Core et al. 2008). Unfortunately, not all the 

cell types in our study had available GRO-seq experiments. However, the antibody we 

have used (8WG16) can recognize multiple variants of RNAPII that are not heavily 

phosphorylated, is considered to highly overlap with GRO-seq data (Williams et al. 

2015) and is thus appropriate for the calculation of RNAPII pausing index. 

High pausing was more associated with H3K4me3 and high expression signal at 

the promoter sites, rather than bivalent chromatin and intermediate expression. 

Surprisingly, when expression was calculated for the whole gene transcript (FPKM), 

there was a moderate correlation with RNAPII pausing. This could be an indication 

that highly paused genes do not produce a fully functional transcript (Guenther et al., 
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2007) which leads to lower numbers of reads mapping to the exons of the gene body. 

Moreover, we confirmed that cell cycle genes exhibit higher pausing at their promoter 

than developmental genes. There are striking similarities in the pausing levels of cell 

cycle genes with the ones belonging to the H3K4me3 only state and developmental 

genes with the bivalent state. This result however needs to be validated with more data.  

Genes in ESCs, PMNs and MEFs showed higher levels of pausing than in the 

other cell types. The calculation of the average RNAPII pausing in each cell type 

demonstrated once more consistently higher levels of pausing for these three cell types. 

Since ESCs, PMNs and MEFs were the cell types closer to pluripotency in our 

analysis, we argued that this might provide an explanation for this phenomenon, hence 

we examined their ES-like characteristics evaluating expression and pausing of genes 

involved in the pluripotency network of mouse ESCs. There too, ESCs, PMNs and 

MEFs showed the highest levels of pausing for pro self-renewal, pro-differentiation 

and ES-signalling genes. 

It is quite intriguing that mammalian genes bearing active chromatin signatures 

and being involved in cell cycle would be subject to this type of transcriptional 

regulation such a RNAPII pausing which is mainly a control step for developmental 

genes in Drosophila (Muse et al., 2007; Zeitlinger et al., 2007). There is a striking 

similarity in the pausing patterns of progenitor cells which supports further that 

RNAPII pausing is deployed by precursor cells as a means to preserve their pluripotent 

characteristics. MEFs in particular are one of the main cell types used in 

reprogramming experiments of iPSCs (Takahashi & Yamanaka 2006). Further 

possible candidate cell types could be inferred if we systematically assess pausing 

index similarities of important genes involved in the pluripotency network.  

 

6.7 Future research 

 

This study is a meta-analysis of available datasets looking into epigenetic 

regulation during development with a special focus on the bivalent chromatin. We 

have so far discussed the challenges we have met in our effort to integrate multiple 

datasets produced from diverse high throughput experimental techniques and have 
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addressed the major findings. Bivalent promoters in ESCs seem to act as a shelter from 

an imminent DNA methylation wave that could silence them indefinitely (Voigt et al., 

2013) and would not allow them to respond to developmental cues. The major caveat 

in our analysis is the inconsistencies between the experimental protocols used across 

the studies we have integrated. The inherent heterogeneity of ESCs (Carter et al., 2008; 

Graf and Stadtfeld, 2008) should be addressed through comparisons of ESCs grown 

both in 2i and serum media. As more datasets become available from ESCs grown in 

2i media, it could be feasible to detect robust lists of bivalent promoters and compare 

them with the HC confident promoters in our study. 

Another way to address heterogeneity would require the integration of single 

nucleosome combinatorial chromatin immunoprecipitation techniques (Sadeh et al., 

2016; Weiner et al., 2016) with single cell transcriptomics (Tang et al. 2009; Islam et 

al. 2011; Ramsköld et al. 2012). Cell population variability should be simultaneously 

assessed with cell-intrinsic variability where allelic differences might influence the 

resolving of bivalent promoters into monoallelically expressed genes. Combination of 

prediction of monoallelic expression through molecular signatures and quantification 

of allele-specific expression of bivalent genes in multiple cell clones (allele specific 

targeted sequencing – AST-Seq) (Nag et al., 2013) would assist in the discovery of a 

reliable list of bivalent/random monoallelic expressed genes. 

In terms of the functionality and establishment of bivalency, our analysis indicates 

that expression of the adjacent genes seems to be crucial for the deposition of the 

respective marks. There is growing evidence suggesting that bivalent genes are 

regulated with the assistance of miRNAs (Graham et al., 2016) and lncRNAs that bind 

with high affinity to PRC2 components leading them to the silenced to be loci (Rinn 

et al., 2007). It is possible that the motif we have discovered here be a common 

denominator that facilitates the recruitment of regulatory RNAs. Recognition of 

ncRNA hybridization sites at the transcripts produced by bivalent genes could 

potentially highlight prospective candidates. 

Chromatin organization changes radically during differentiation (Phillips-

Cremins et al., 2013) and mapping of epigenetic states of promoters should definitely 

be combined with enhancer regulatory elements. Chromosome conformation 

techniques (Dostie et al., 2006) will be instrumental for the discovery of alternating 
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chromatin loop configurations that take place depending on cell fate commitment 

trajectories. The transcriptional machineries recruited at the interaction points between 

promoters and enhancers, involve numerous TFs and chromatin modifiers whose 

function is still mostly undetermined. Orchestration of more large-scale studies 

encompassing chromatin regulators, histone modifications, transcription initiators and 

consequently gene expression, could potentially interpret the causal relationship of 

epigenetic marks and transcription.  
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