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ABSTRACT 

We survey the literature of Artificial Intelligence, and 

other related work, pertaining to the modelling of 

mathematical reasoning and its relationship with the use 

of analogy. In particular, we discuss the contribution of 

Lenat's program AM to models of mathematical discovery and 

concept-formation. 

We consider the use of similarity measures to structure a 

knowledge space and their role in concept acquisition. 
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Preface 

This dissertation is intended to constitute "a criti- 
cal review of an area of the literature" of Artificial 
Intelligencel. It is perhaps necessary to justify why the 

at first sight diverse material treated constitutes an 

"area" worthy of treatment as a body. We shall hope to do 

this in the Introduction which follows this brief preface. 

In Al at present it is extremely difficult to draw 

precise boundaries around clearly defined and distinct 
topics; a study of one part of the subject almost invari- 
ably draws the student into many other regions. Thus, 

what is presented here is not, and by the nature of AI can 

not be, a study of a sel f-contained f ield, but is rather 

an examination of a spectrum of Al literature with two 

main foci of attention: "mathematical reasoning" and 

"analogy" . 

We shall hope to convince the reader that in fact 

analogical reasoning and representation are central to 

cognition, and that in particular they are essential to 

mathematical deduction and discover}, which we consider 

paradigmatic examples of rational thought. Hence the 

intersection of these two topics, i.e. "Analogy in 

Mathematical Reasoning", can be seen as a microcosm of a 

1 Henceforward usually abbreviated as "Al" 
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very wide range of cognitive activity; however, in order 

properly to understand the relationship between these two 

topics, it is necessary to consider each in a wider con- 

text. 

In the Introduction we shall present arguments which 

will justify in more detail the choice of literature to be 

discussed in the succeeding sections. This will be fol- 

lowed by a review of a substantial body of AI literature. 

Finally, we shall outline in a very general way a possible 

model of the assimilation of information by analogy, mak- 

ing use of the notion of similarity measures. 
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Introduction 

It is always hard to choose a title for a written 
text, and in view of this difficulty it is common to spend 

the first paragraph or so explaining what the work is 

really about. This survey is no exception to that rule. 

Since the author's principal interest lies in the 

field of Artificial Intelligence, the greater part by far 

of the survey will be devoted to computational systems. 

implemented or proposed, which attempt to simulate various 

aspects of discovery and creativity in mathematics, and of 

the use of analogy in reasoning and knowledge representa- 

tion. This does not mean that all the systems discussed 

take mathematics as their domain of activity; we shall, 
for example, consider a program to carry out IQ-test anal- 

ogy recognition problems ((Evansl967aI), and programs to 

learn concepts by induction from examples [Winstonl975a] 

and (Langleyl978a]. The criterion for inclusion is that 

each system discussed should carry out (or attempt to 

carry out) some task of direct and immediate relevance to 

either or both of our principal topics, mathematical rea- 

soning and analogy. As '*e shall hope to make clear in the 

rest of this introduction and in the subsequent sections, 

many such systems will be of much broader potential appli- 

cation than might be suggested by their apparent restric - 

tion to a relatively limited domain. 
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The choice of systems to be investigated will be seen 

to show two quite strong biases: for "analogy" systems, 

and against "conventional" theorem-provers. The reason 

for the pro-analogy bias is that we bel ieve that the 

recognition and use of analogies is absolutely fundamental 

to any form of discovery, creativity or inductive reason- 

ing. The reason for the exclusion of conventional 

theorem-proving programs is twofold: first, they are 

already extremely well studied in a number of sources (e.g 

[Nilssonl971a,Bledsoel977a]); second, we believe that 

although deduction can play a significant role in 

discovery, the detailed differences among the internal 

mechanisms of particular deduction systems are of little 
relevance to our present work. 

An essential component of reasoning is discovery; if 

we wish to produce a system which reasons intelligently, 

it is essential that it should be capable of learning from 

its previous experience. Thus much of our attention will 

be concentrated upon the notion of "mathematical 

discovery". This is a surprisingly hard concept to pin 

down: accurately. It includes the proposal of new conjec- 

tures, if possible with some indication of the grounds for 

believing a conjecture, the strength of those grounds, and 

an idea of how to go about verifying or refuting the con- 

jecture, the formation of new concepts, and the investiga- 

tio n of their properties; and the suggestion of interest 
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ing areas for potential further investigation by means 

beyond the present power or resources of the discoverer. 

We shall begin our survey by considering some of the 

non-computational studies of discovery and creativity: 
Hadamard [Hadamardl945a], (the most directly concerned 

with mathematics), Koestler [Koest1erl964a] and de Bono 

[Bonol967a]. We shall then, armed with a better under- 

standing of what problems are to be addressed, consider 

the notion of Lakatos [Lakatosl976a] that discovery is 

implicit in the nature of proof and refutation, and exam- 

ine one of the few detailed empirical accounts of 

mathematical creativity at work ([Waerdenl971a]). Also to 

be considered at this point is the very important work of 

Polya ([Po1yal945a], [Polyal954a], [Polyal962a], 

[Polyal965a]) on "heuristic". 

After this foray beyond the computational world, we 

shall withdraw to ground on which the author feels his 

footing more secure, and study the literature of Al to 

see what has been achieved, what has been attempted, and 

what remains up to now neglected. The most important 

works we shall consider (i.e. important in relation to the 

present enquiry) are those of Lenat [Lenat1976a] on a 

model of discover} in mathematics, of K. Brown 

[Brownl977a] on the construction and use of analogies for 

transferring "expertise" from one domain to another, and 

of Munver [Munyerl977a,Munyerl977b] on the use of analogy 
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as a "fuzzy" matching rule, similar to unification, in a 

deductive system. 

Before embarking on the critical part of the survey, 

we will state very briefly a few of our own views. To 

begin with, as already emphasised, a powerful analogy 

mechanism must underlie any discovery system. This is 

because a great deal of discovery stems from the drawing 

of generalisations from similar data, and in order for 

this to be possible there must first exist a criterion, 

and if possible a quantitative measure, of similarity 

between data. Furthermore, the very existence of any sort 

of taxonomic classification of the world requires the 

ability to discriminate between members and non-members of 

a class, whilst the fact that such classifications are, in 

the context of human learning, flexible and extensible 

necessitates a mechanism for acquiring new discriminatory 

criteria. It might be argued that the similarities used 

in such discrimination are simply in the form of the con- 

junction of common possession or non-possession of some 

set of characteristic properties, and that no more subtle 

analog} mechanism is needed; this argument fails on two 

grounds. First, it begs the question. How can it be 

determined whether an object possesses any given property? 

E%en in elementary cases, where the property seems to be a 

simple perceptual datum, e.g. "yellow", the decision is 

not always clear-cut; yellow is only meaningful to most 
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people as the common property of all things which they 

would call yellow2 which seems to lead the above position 

into circularity. In more complex cases it is clear that 

we are in danger of being thrown into a regress of defini- 
tions that, even if not infinite, is so unwieldy as to 

become at the very least implausible as a discriminatory 

mechanism to be applied indiscriminately. Second, many 

concepts are not at all well-defined, and are extremely 

"context-sensitive" Thus it is very unclear whether any 

simple conjunctive definition is sufficient to define as 

diffuse a concept as "chair", or indeed any disjunctive 

definition of manageable size - "chair" describes a set of 

mutually similar objects, a set with rather fuzzy boun- 

daries3 (consider for example a doll's chair and a 

packing-case as dubious boundary instances). We shall 

explore this idea further in our discussions of 

2 

3 

That the property does not have well-defined natural 
boundaries, which could for example be specified by 
giving a range of frequencies of light, is exempli- 
fied by the fact that the French "jaune", usually 
translated as "yellow", includes a range of colour 
which most English-speakers would usually term 
"brown" or "tan"; there is no French word correspond- 
ing precisely to the English concept "yellow". Hence 
the boundaries of a concept may be determined by con- 
vention (e.g. linguistic usage) rather than by an in- 
trinsic common distinguishing property. 

For a rather different apnrcach to the whole ques- 
tion, the reader is referred to "The Republic" 
(P1atoBC360a), in which the problem of class member- 
ship is resolved in terms of partaking of the form of 

an appropriate frame, or "ideal" as it has been 
translated in the past. 
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[Lakatosl976a] and [Winston1975a]. The reader may compare 

the above discussion with Wittgenstein's notion of a "fam- 

ily resemblance" among a collection of objects 

[Wittgensteinl953a]; individual instances of a concept, 

according to Wittgenstein, overlap in a loose and unsys- 

tematic way, leaving the precise boundary of the concept 

unclear. 

As will be clear from the foregoing remarks, we would 

hold that the need for a clear understanding of analogy 

goes far beyond the domain of mathematical discovery - in 

particular we see very close links with areas involving 

recognition of a datum as an instance of something fami- 

liar, such as the visual identification of objects. For 

example Shneier [Shneierl978a] has produced a visual 

recognition program whose mechanism he has shown to be in 

fact of considerable generality; as an example, he has 

used a version of the same program to correct spelling 

errors. It is clear in such a case that the processes 

involved in visual recognition are closely allied to those 

needed for feature recognition in general. We are limit- 

ing the main focus of our attention to mathematics merely 

in order to have for consideration an area of less 

intractable dimensions than the entire field of human cog- 

nition4. 

4 This is left as an exercise for the interested 
r e a d e r. 
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It should also be made clear that despite the 

emphasis which we have so far given to it, we do not 

believe that analogy alone is the key which will unlock 

all the secrets of intelligent behaviour. As we shall 

hope to point out during our analysis of other work, we 

would view an analogising and analogy-using system as 

forming only one component among many, albeit an essential 

one. Other serious problems which merit close attention 
include: the direction of attention towards significant 
tasks; the judgement of how best to perform those tasks 

(see especially our remarks on [Lenat1976a]); formal 

deduction (i.e. theorem-proving, although the connotations 

of the term are more closely bound up with purely 

mathematical activities than we would wish); knowledge 

retrieval ("memory"); and learning. Indeed, the list 
could be extended almost indefinitely. However, there 

seems to be one very important question which has up to 

now been addressed scarcely at all from a computational 

viewpoint, and which bears in some degree upon many of the 

facets of intelligence. how, given some new datum, can it 
be placed within the context of present knowledge? That 

is, how can it be determined what it resembles, and in 

what ways, and by how muchs? 

This, it should be noted, is a question both about 
the representations of present knowledge, and about 
the ways in which those representations are used in 
matching and retrieval. 
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This question may be borne in mind during the reading 

of this survey; although we shall find no complete 

answers, we may at least be able to pose some relevant 

further questions. It may be seen as a problem of assimi_ 

lation - a new datum is to be taken and accommodated6 

within a framework of existing knowledge in some manner - 

or of retrieval ("reminding" as Carbonell [Carbonelll981a] 

calls it) - those items within existing knowledge relevant 

to the new datum are to be extracted. It is clear that 

these are two sides of the same coin, and that any postu- 

lated mechanism for one has very strong implications for 

the other. 

The idea has been proposed of using similarity meas- 

ures on graphs as a measure of the strength of an analogy, 

e.g. in [Pot schkel982a]. There has not, I believe, been 

any discussion of the use of such measures in the search 

mechanism for analogy discovery. We shall therefore con- 

clude this survey by making some tentative suggestions for 

an approach towards achieving this. 

6 The term is taken from the theories of Piaget 
[Piagetl954a) on developmental psychology. 
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Non-computational Work on Analogical and Mathematical Rea_ 

Boning 

Before moving on to the main body of this thesis, we 

shall discuss briefly a few of the more important studies 

of discovery and creativity in mathematics and related 

fields which do not attempt to provide any sort of compu- 

tational model of the phenomenon which they examine. We 

consider two categories of work: informal and anecdotal 

discussions, exemplified by Koestler [Koestlerl964a] and 

de Bono [Bonol967a], and attempts at a more theoretical 

treatment (Polya [Polyal945a), [Polyal962a], 

[Polyal965a], [Polyal954a], and Lakatos [Lakatosl976a]). 

In his book "The Use of Lateral Thinking" 

[Bonol967a), de Bono attempts to contrast "vertical" with 

"lateral" thinking; neither term is given a formal defini- 
tion, but the former may be best described as analytical 
reasoning attempting to find a direct logical path from 

problem to solution, whereas the latter involves the deli- 
berate seeking of unexpected solution paths (cf. the 

famous quotation of Souriau, "Pour inventer it Taut penser 

A cot6", cited on p.145 of [Koestlerl964a]). be Bono's 

views are well summarised in the following extracts: 

"Vertical thinking has always been the only respect- 
able type of thinking; in its ultimate form as logic 
it is the recommended ideal towards which al l minds 
are urged to strive, no matter how far short they- 
fall. Computers are perhaps the best example. The 
problem is defined by the programmer, who also 
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indicates the path along which the problem is to be 
explored. The computer then proceeds with its uncom- 
parable logic and efficiency to work out the problem. 
The smooth progression of vertical thinking from one 
solid step to another solid step is quite different 
from lateral thinking". (P11) 

"One of the techniques of lateral thinking is to make 
deliberate use of this rationalizing facility of the 
mind. Instead of proceeding step by step in the 
usual vertical manner, you take up a new and quite 
arbitrary position. You then work backwards and try 
to construct a logical path between this new position 
and the starting point. Should a path prove possi- 
ble, it must eventually be treated with the full 
rigours of logic. If the path is sound, you are then 
in a useful position which may never have been 
reached by ordinary vertical thinking. Even if the 
arbitrary position does not prove tenable, you may still have generated useful new ideas in trying to 
justify it" . (P12) 

"New ideas depend on lateral thinking, for vertical 
thinking has inbuilt limitations which make it much 
less effective for this purpose". (P13) 

It may be noticed that in the first of these quotations he 

asserts that lateral thinking is fundamentally non- 

algorithmic, whilst in the second he attempts to outline 

an algorithm for it! Indeed, it would be trivial to 

incorporate in any conventional problem--solving computer 

program some heuristic such as "choose an arbitrary fact 

and attempt to incorporate it into a solution path". How- 

ever, the value of such a strategy is at best unclear; 

what would be required in addition is a mechanism for 

quickly reviewing a large number of possibilities and 

deciding which facts are candidates for further 
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consideration. On this subject, consistent with his view 

that lateral thinking is essentially not amenable to an 

algorithmic definition, de Bono has nothing to say. 

A number of writers have undertaken empirical studies 

of how creative thinking occurs in practice, in contrast 

to de Bono's prescriptive account of how it ought to 

occur; these are invariably founded upon introspection by 

creative thinkers, or, to be more accurate, on subjective 

post hoc reconstruction of introspection into the creative 

process. 

A pioneering work of this kind was the monograph by 

Hadamard, "The Psychology of Invention in the Mathematical 

Field" [Hadamardl945a]. In this he discusses the examples 

of Poincarb (quoted from "Mathematical Creation" 

(Poincarel913a]), Kekul6's discovery of the benzene ring, 

and a large number of other examples of "inspiration" 
among well-known mathematicians. However, his proposed 

"mechanism" for such creativity draws heavily on the 

unelaborated workings of the "unconscious mind", where he 

supposes that very many ideas are combined essentially at 

random, becoming accessible to consciousness (i.e. intros- 

pection) only when a fruitful combination is found. What 

constitutes an "idea" or a "combination" is left undis - 

cussed, and there is no consideration of how many 

attempted combinations may be required, nor how much pro- 

cessing is to be done on each combination. It is apparent 
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that it is necessary to postulate either a vast capacity 

for unconscious processing or else a filtering mechanism 

to enable only plausible combinations to be examined, if 
one makes the reasonable assumption that the number of 

"ideas" in the memory available for combination is large. 

Whilst it is perhaps possible to extract the germ of an 

algorithm from Hadamard's imprecise theory, it is clear 

that without an efficient mechanism for search control and 

selectivity, no practical computer program could be pro- 

duced to run on the hardware of the foreseeable future 

which would embody this theory. Indeed, it is clear that 

Hadamard was concerned rather to present a phenomenologi- 

cal account of the process of mathematical discovery than 

to provide a theory of its mechanism which would be 

testable and refutable. 

Another major study in this area is Koestler's "The 

Act of Creation" [Koestlerl964a], in which the horizons 

are broadened from mathematical discovery to creative 

thinking in general. Once again, much is left to the mys- 

terious, apparently non-algorithmic workings of "the 

unconscious", reinforced by the examples of Poincar6, 

Kekule, Ampere, Gauss and Hadamard (pp.116-118). However, 

Koestler does lay great stress on the essential role of 

analogy in the creative process; he coins a new term, 

bisociation to describe "perceiving of a situation or 

idea, L, in two self-consistent but habitually incompati- 
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ble frames of reference" (p.35), and goes on to develop 

this into the idea of constructing an analogy via L 

between these two frames of reference. He later makes the 

unequivocal assertion that "discovery consists in seeing 

an analogy which nobody had seen before" (p.104), and 

later (p.120) that "[the creative act] does not create 

something out of nothing; it uncovers, selects, re- 

shuffles, combines, synthesizes already existing facts, 

ideas, faculties, skills. The more familiar the parts, 

the more striking the new whole". However, he regards 

this process of selection, re-shuffling, etc. as being 

essentially non-algorithmic: 

"Here, then, is the apparent paradox. A branch of 
knowledge which operates predominantly with abstract 
symbols, whose entire rationale and credo are objec- 
tivity, verifiability, logicality, turns out to be 
dependent on mental processes which are subjective, 
irrational, and verifiable only after the event." 
(P.147) 

"The search for the improbable partner involves long 
and arduous striving - but the ultimate matchmaker is 
the unconscious." (P.201) 

It is, of course, an article of faith amongst AI 

researchers that the mystic unconscious processes invoked 

Koestler and Hadamard are modellable as computational 

processes, such faith must ultimately be justified by 

exhibiting appropriate models, and it is the attempts to 

do so, or to take steps towards doing so, which will form 
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the subject matter for the remaining sections of this 
thesis. 

Before leaving this review of non-computational stu- 

dies we should, however, consider some attempts to formal- 

ise rather more explicitly aspects of mathematical 

discovery. 

The most substantial and best-known of these is the 

work of Polya [Polyal945a, Polyal954a, Polyal962a, 

PoIyal965a]; in the earliest of these texts, "How To 

Solve It", he presents what is essentially a dialectic 
approach to problem-solving in which the problem - solver 

a sks himself a series of questions to guide his search, 

and to reveal possible alternative approaches, e.g. 

(pp.xvi-xvii) 

"Do you know a related problem? 

"Here is a problem related to yours and solved 
before. Could you use it? 

Can you use the result, or the method, for some 
other problem?" 

In the later, more substantial, works Polya presents a 

large number of detailed examples, from which he abstracts 

further general maxims, A principle akin to Koestler's 

idea of bisociation is abstracted from examples in 

geometric construction and subsequently widened very gen - 

erally, v iz, finding two "loci" for the solution to a 

problem and then finding their "intersection" [Polyal962a, 
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ch.6]7. However, the overall treatment which emerges from 

his work is still primarily anecdotal and unsystematic. 

The heuristics discussed are described informally, and 

frequently, as in the above instance, analogically. 

Whereas Polya's examples are generally "rational 
reconstructions" of how a discovery could be made, an 

interesting example is given by Van Der Waerden 

[Waerdenl971a] of how a proof was actually discovered in 

practice by a group of mathematicians in discussion. 

Plotkin [Plotkinl977a] has suggested that some of the 

discovery steps illustrated in this paper might be amen- 

able to inclusion in a very advanced theorem-proving sys- 

tem; certainly some of the heuristics - "try to obtain a 

stronger form of the theorem", "try to generalise the 

theorem", "use the strongest induction hypothesis possi- 

ble" - are extremely valuable in mathematical proof. Some 

of them have indeed been incorporated into systems such as 

those of Cohen [Cohenl980aI and of Boyer and Moore 

[Boyerl979aI; however, the sophisticated application of 

these described by Van der Waerden still seems to be 

beyond the scope of present programs, 

One possible route which work such as Polya's and Van 

Der Waerden's might indicate is the development of rule- 

It is interesting to notice in passing how analogy 
here puts in an appearance in the description of a 

problem-solution method. 
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based expert systems to incorporate the heuristics used by 

practising mathematicians. Lenat's program AM 

[Lenat1976a] can be seen as a step in this direction; how- 

ever, as we shall argue below. AM's "heuristics" are too 

low-level and the deductive power of the system too weak 

to be regarded as a true expert system, although Lenat's 

contribution is valuable in other respects. Perhaps more 

fruitful than a self-contained program such as AM would be 

an interactive system incorporating a proof engine and an 

expert adviser, the latter proposing directions of 

exploration to a user who could then use the former to 

test the consequences of those suggestions which seemed 

most potentially fruitful. One eventual goal of such a 

system would of course be the extraction and formalisation 

of the user's expertise for incorporation within the 

expert system itself, in the tradition of "knowledge 

refinement" as propounded by Michie and others. 

It is interesting to compare this suggestion with 

that of Micbener [Michenerl978a]. She attempts to define 

a detailed structure of mathematical knowledge (having 

many similarities with the structures used in the CAI work 

of Pask et al (Paskl975a]), dividing it into examples, 

results and concepts, with many further subdivisions and 

cross-links between these. She then proposes an interac- 

tive computer system which will "help neophytes understand 

mathematics and learn how to understand" by guiding them 
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through the knowledge-base. Finally, she suggests using 

this system in conjunction with "theorem provers, or 

analogy- or concept-generating programs that need to use 

previously established mathematics". The examples given 

of the sort of advice the system might give to a non- 

resolution theorem-prover look very similar to some of 

Polya's heuristics. 

We conclude this brief survey of non-computational 

studies of mathematical reasoning by considering the work 

of Lakatos [Lakatosl976a), whose approach is substantially 

more formal and more philosophical than any of the works 

discussed above. Lakatos is strongly influenced by the 

ideas of Popper [Popperl959a] on the nature of a scien- 

tific theory, and of empirical induction. Briefly, 
Popper's view is that a theory is only meaningful if it is 

falsifiable, i.e. in principle refutable as a consequence 

of some experiment or observation. For if a theory is not 

falsifiable, then it tells us nothing of substance about 

the world; like the unobservability of the lumeniferous 

ether, it makes no difference to our predicted observa- 

tions of events in the real world whether or not the 

theory holds. In "Proofs and Refutations" (the title an 

obvious parallel with Popper's "Conjectures and Refuta- 

[ions" [Popperl963a]) Lakatos extends the idea of empiri- 

cal theory formation to a domain not normally regarded as 

empirical, namely mathematical proof. He illustrates how 
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a theorem (e.g. Euler's relationship between faces, edges 

and vertices of a polyhedron) implicitly defines a collec- 
tion of objects for which the theorem holds, and how 

failed attempts to prove the theorem may lead to a more 

precise definition of the appropriate concept. Thus a 

particular proof of Euler's relationship may fail for a 

certain class of polyhedra with "holes" in; hence the new 

concept of a "simply-connected" polyhedron is introduced. 

This process of alternately refining a concept definition 
and re-working a proof has much in common with Young, 

Plotkin and Linz's "rational reconstruction" of Winston's 

work on concept formation (Youngl977a,Winstonl975a), to be 

considered in greater detail below, in which a concept is 

considered to have a "least upper bound" and a "greatest 

lower bound", i.e. a pair of definitions one of which is 

sufficient and the other necessary. The process of 

concept-formation consists of pushing these bounds closer 

together until (perhaps) they coincide8. Thus in Lakatos' 

example, at any stage of his dialectic process we can 

determine of most objects either that they definitely are, 

or that they definitely are not polyhedra; however, there 

is a certain class of objects about which our current 

definitions leave us uncertain. In addition to the above 

mentioned work of Young, Plotkin and Linz, this model of 

8 Of course, they need never merge - this may well be 
one way of capturing the "fuzziness" inherent in many 
concepts which was pointed out in our introduction. 
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concept formation and representation has been studied by 

Mitchell [Mitchell1978a). 

As presented by Lakatos, the notions of proof and of 

concept formation are seen to be dual aspects of mathemat- 

ical discovery. It is therefore appropriate that we begin 

our survey of Al work on mathematical reasoning with a 

survey of work on concept formation. As we shall see, 

this has close links with the formation of analogies. 
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Models of Concept Formation in AI 

This is an extremely broad area, and we can only 

touch here on a few of the most important or most relevant 

examples. One major piece of research in this area, 

Lenat's program AM [Lenatl976a], is deferred to a later 

section for more detailed consideration, since it is espe- 

cially important to our study of mathematical reasoning; 

the papers considered in the present section belong to the 

wider area of concept-formation in general, rather than 

being limited to the specific domain of mathematics. 

Following our remarks at the end of the previous sec- 

tion on Lakatos [Lakatosl976a], we begin with an examina- 

tion of the very well-known work of Winston on "Learning 

Structural Descriptions from Examples". 

Winston's Structural Description Learning Progra® 

In this discussion of Winston's concept-learning pro- 

gram [Winston1975a] we shall not be concerned with the 

initial scene- analysis component of the program, in which 

a descriptive network is obtained from a "blocks world" 

scene. Rather, we shall be concerned with the way in 

which successive "examples" and "near-misses" are used to 

ref ine the def ini Lion of the concept to be acquired, In 

an attempt to clarify terminology, we shall use the term 

"example" to mean "any scene presented to the program" 

this is not Winston's usage), "instance" for an example 
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which satisfies the concept's definition", and "non- 

instance" for "an example which fails to satisfy the 

concept's definition". 

Winston's representation of scenes as networks of 

nodes and arcs appears quite simple and natural for ele- 

mentary scenes (e.g. his figures 5.5, 5.6 on p.161). How- 

ever, as scenes become complex the networks become 

correspondingly unwieldy, and the set of "primitives" used 

to label nodes and arcs becomes both large and seemingly 

arbitrary. 

His use of the same network structure with some addi- 

tional primitives to represent concepts is, at best, 

confusing. Within a single network there are typically 
segments representing particular objects, segments 

describing relations between them, and segments describing 

properties of these relations (such as the "MUST-BE- 

SUPPORTED-BY" arc of Winston's figure 5.8). This flatten- 
ing of a conceptual hierarchy into a single uniform struc- 

ture does not aid clarity; nor does it appear to enhance 

the power of Winston's formalism -- if his claim to be able 

to handle further recursive levels of abstraction is 

indeed justified, then his representation would surely be 

enhanced by a more obviously hierarchical structure 

(although such structure can of course always be superim- 

posed by the reader upon the "flat" networks, given suffi- 
dent e ffort). 
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For a detailed criticism of Winston's work, and par- 

ticularly of his representations and their amenability to 

the algorithms he describes, see the review by Knapman 

[Knapmanl978a], which casts some doubt upon whether the 

mechanisms and representations described by Winston are in 

fact fully sufficient for the tasks which he claims that 

his program could carry out. A sympathetic account of 

Winston's thesis is given as clearly and succinctly as 

seems feasible by Boden [Bodenl977a]. 

For the rest of this discussion, we shall concern 

ourselves with what seems to be a fair abstraction of the 

essence of Winston's learning mechanism, already mentioned 

above in our discussion of Lakatos. Young, Plotkin and 

Linz [Youngl977a] have produced a "rational reconstruc- 

tion" implemented as a POP2 program, of the use of 

instances and near-misses to learn a conjunctive concept; 

more recently Bundy [Bundyl981a] has produced a short Pro- 

log program which embodies this model. The (strong) 

presupposition which underlies this model is that the set 

of possible attributes of objects and their relationships 

is arranged as a collection of well-defined, already known 

hierarchies.9 The question of how the concepts embodied in 

these hierarchies are themselves acquired is not 

9 Lattices in the Young-Plotkin-Linz model; we shall 
describe the model using hierarchies with an added 
"bottom" element, and then go on to observe how it 
may be extended trivially to general lattices. 
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considered by the authors; as we shall note below, their 

acquisition would appear to require a mechanism for the 

learning of disjunctive concepts. 

A simple example of a hierarchy might be a SHAPE 

hierarchy: 

SHAPE 
/ \ 

PYRAMID PRISM 
/ \ 

WEDGE BLOCK 

CUBE CUBOID 

where entries in the tree are subsumed by their "parent" 

nodes . 

In Bundy's program a concept is represented as a col- 

lection of constants which represent the objects composing 

the "ideal" instance of the concept, together with a set 

of property hierarchies, each with a pair of nodes marked 

as "upper bound" and "lower bound". Each hierarchy is 

associated with some object or group of objects in the 

"ideal", and represents the assertion that all the 

corresponding properties of the objects in any instance 

must lie below the upper bound, and that in any- non- 

instance at least one attribute will lie above the 

appropriate lower bound. That is, the upper bounds give 

necessary conditions for the concept, while the lower 

bounds give sufficient conditions. A very similar model 

is embodied in Mitchell's concept of version spaces 
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[Mitchel11978a), in which sets of rules are retained giv- 

ing the most specialised definition (lower bound) and most 

general definiton (upper bound) so far found to be appli- 

cable to a concept. 

When an example is presented, the first task is to 

match the objects of the example with the constants of the 

ideal. This is done on a somewhat ad hoc basis by both 

Winston's program and by Bundy's rational reconstruction; 

as Bundy has pointed out (private communication) there is 

obviously much scope for a clever matching algorithm to 

f ind the "best f it" between example and ideal . Such an 

algorithm would in effect be an analogy-finder of the sort 

which we shall see is required by any program which dis- 

covers and uses analogy. When a match has been made, by 

whatever means, the property hierarchies of the concept 

definition are compared with the attributes of the exam- 

ple. For each property there are three possibilities: 

1) The example lies below the lower bound; in this case 

one component of the conjunctive definition of the 

concept is satisfied. If all the relevant attributes 

of the example fall below the corresponding lower 

bound, then the example is an instance of the con- 

cept; 

2) The example lies above the upper bound; thus it fails 
to satisfy one component of the definition, and must 
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be a non-instance; 

3) The example lies in the "grey" area between the two 

bounds; in this case the program has the opportunity 

to refine its definition by adjusting either the 

upper or the lower bound, according as the example is 

a non-instance or an instance (the user provides this 

information). 

A point not observed by Bundy in the cited paper about 

case 3) is that a non-instance is useful only when pre- 

cisely one attribute falls in the grey area; otherwise the 

program does not know which upper bound should be lowered. 

It is for this reason that the choice of training sequence 

is critical; we shall give an example below where the same 

example may provide different information at different 

stages in the teaching sequence. It may also be noted 

that whereas a non-instance can lead to the adjustment of 

at most one upper bound, an instance may potentially lead 

to the simultaneous adjustment of all lower bounds, i.e. 

instances seem to convey more information than non- 

instances, in general. This point is considered in the 

survey paper by Bundy and Silver [Bundyl982a], where three 

cases are distinguished: instance, near-miss and far-miss 

(the last being the case when more than one attribute is 

"grey"). As alternatives to the conservative strategy of 

drawing no information from a far-miss, they offer the 

possibilities of either choosing an arbitrary attribute 
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and lowering its upper bound, or lowering the upper bounds 

of all grey attributes. It may easily be seen that each 

of these strategies may lead to incorrect definitions 
being formed, so that the system must record any such 

decisions and be prepared to backtrack over them if it 
finds it has made a wrong choice. 

As an example, consider the case where the concept to 

be learned is BLUE BLOCK, given a single object and the 

following two property hierarchies: 

SHAPE 
/ \ 

PYRAMID PRISM 
/ \ 

BLOCK WEDGE 
/ \ 

CUBE CUBOID 

COLOUR 

PLAIN PATTERNED 

BLUE GREEN STRIPED DOTTED 
/ \ 

NAVY AZURE 

Initially we have upper bounds (SHAPE,COLOUR) and lower 

bounds (BOTTOM,BOTTOM) - we introduce an arbitrary element 

BOTTOM into each hierarchy to con%ert it into a lattice 
with lower bounds always well-defined. 

The following table shows a learning sequence of 

examples, with the consequent revision of upper and lower 

bounds. The revised bounds at each stage of the sequence 
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are shown underlined. 

Example Instance? New bounds 
Upper Lower 

AZURE CUBE Yes 
STRIPED CUBE No 
NAVY WEDGE No 
AZURE CUBOID Yes 
NAVY CUBE Yes 
AZURE PYRAMID No 
NAVY WEDGE No 
GREEN CUBOID No 

(SHAPE, COLOUR) (BOTTOM, BOTTOM) 
(SHAPE,COLOUR) (CUBE,AE) 
(SHAPE, PLAIN) (CUBE,AZURE) 
(SHAPE,PLAIN) (CUBE,AZURE) 
(SHAPE,PLAIN) (BLOCX,AZURE) 
(SHAPE,PLAIN) (BLOCK,BLUE) 
(PRISM,PLAIN) (BLOCK,BLUE) 
(BLOCK,PLAIN) (BLOCH,BLUE) 
(BLOCK,BLUE) (BLOCK,BLUE) 

At this point all upper bounds coincide with all lower 

bounds, so the concept has been learned. It is interest- 
ing to compare this procedure with that of Langley's pro- 

gram BACON.1 [Langleyl978a], discussed below. 

We can make several observations about the above 

model. First of all, it requires a prior knowledge of the 

property hierarchies; this is a serious weakness since a 

fundamental part of concept formation is precisely the 

acquisition of a conceptual framework within which new 

concepts are to be assimilated. However, the condition 

that the knowledge be organised as hierarchies can be 

slightly weakened; the technique of converging upper and 

lower bounds can clearly be used on an arbitrary lat- 

t1ce10, should such a representation prove useful. It is 

-------------------------- 
The NAVY WEDGE gives no useful information at this 

point . 

but here it does! 

10 Note that we use "lattice" in the formal mathematical 
sense here, viz. a partially ordered set such that 

every pair of elements has a unique least upper bound 
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interesting to note at this point that, as we shall see 

later, a very similar criticism about a priori knowledge 

can be made of Lenat's concept-discovering program AN 

[Lenatl976a], which does indeed use a lattice to represent 

the organisation of its concepts. In Winston's original 

program, it is perhaps not completely obvious that the 

property hierarchies used by Young, etc. are explicitly 

present; they are in fact provided by his "A-KIND-OF" 

links, and our criticism can thus be applied to his 

apparently arbitrary choice of "primitive" nodes and their 

"A-KIND-OF" subsumption relations. 

A second major criticism is that only conjunctive 

concepts can be learned by this method. It can certainly 

be argued that such concepts are in practice more common 

than disjunctive ones, and that people find disjunctive 

concepts relatively hard to learn. However, the counter- 

argument that the nodes of the property hierarchies are 

themselves disjunctive concepts (e.g. BLUE is AZURE or 

NAVY), and that these concepts must themselves be 

acquired, is hard to answer, This aspect of concept for - 

mat i on, which can be seen as the creating of generalisa - 

tions, i s clearly- related to the processes which underlie 

analogy formation, since an analog, c.in be considered as a 

unifying generalisation of two disjti t concepts. 

and a unique greatest lower bound. 
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We may also observe, with Knapman [Knapmanl978a), 

that there is some doubt as to the psychological validity 
of a concept formation mechanism which relies heavily on 

the presentation of known non-instances. This point is 

related to the previous criticism of having a predefined 

space of attributes; without such an a priori organisation 

of knowledge the idea of an "upper bound" of a concept 

would be meaningless. 

Finally in our discussion of W1nston, we note that 

the model does not make the fullest use of the information 

presented to it; when presented with an example (such as 

the first occurrence of NAVY WEDGE in our above scenario) 

where more than one attribute falls into the "grey" area, 

no progress is made at all, even though it would in prin- 

ciple be possible to record that one or other of the pre- 

viously known upper bounds needed to be revised, and then 

to use subsequent examples to determine which - this would 

require that some "disjunctive" information be retained, 

contrary to the spirit of this model. 
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!&!!1'! program BACON.! 

In his paper [Langleyl978a] Langley describes a "gon- 

eral discovery system", BACON.1, which gathers data and 

attempts to induce laws governing regularities therein. 

Thus he is dealing with a particular, simplified instance 

of the general problem of assimilating new knowledge to an 

existing knowledge-base - "simplified" because in his pro- 

gram, as in Winston's [Winstonl975a], only a single "con- 

cept" is being assimilated at one time, and the program 

implicitly assumes that all input is relevant to this. 

Such an assumption is justified in the case of 

BACON.1 because the program is not merely a passive reci- 
pient of "instances" and "non-instances", but instead acts 

as a data-gathering agent by asking of its environment 

(i.e. the user) what values the dependent values of a 

relation will take given a particular set of independent 

values chosen by the program. Thus BACON.1 performs 

experiments upon its environment in order to infer laws 

governing its structure. 

%c shall describe here two tasks performed by 

BACON.1, and then discuss how these are carried out. 

The first task is the discover) of a simple numerical 

relationship: given the orbital distance d and period p of 

three planets, the program notices after examining succes- 

si%eIv ( d/p), (d (d/p)), and ((d/p) 4 (d * (d/p))) that 
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the last of these is constant. This is Kepler's third law 

of planetary motion. Since BACON.1 lacks any algebraic 

simplification rules, the final term above is not 

Id 
31 

translated to (, 
1p21 

The second task is a simple concept-formation in the 

style of [Winstonl915a]. The program is given three 

independent variables (shape, size and colour) and their 
domains of possible values, and one independent variable 

("feedback"). It then asks for various values of feedback 

and receives the successive responses: 

large blue square: no 
small blue square: no 
large red square: yes 
small red square: yes 

by which stage it has formulated the hypothesis 

colour=red => feedback=yes 
colour=blue => feedback=no 

which it then confirms by trying 

large blue circle 
small blue circle 
large red circle 
small red circle 

The disparity between the above two tasks suggests 

that either BACON.1 does indeed embody some general prin- 

ciples of discovery or else it possesses a mixture of 

methods apt for various different tasks. We shall argue 

that, while both of these contain a measure of truth, the 
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latter is in fact a more significant factor in the 

program's apparent versatility. 

BACON.1 is a production-rule system whose rules fall 
into five categories, totalling in all about 75 rules: 

Data-gathering - these govern the program's acquisition of 

"raw" data by means of a factorial experimentl0 in 

the independent variables. (Hence, the existing pro- 

gram is only suitable for handling variables with a 

finite domain). 

Identity-checking - these check that algebraic combina- 

tions (called by Langley "higher-level attributes") 

of the independent variables, proposed as relevant by 

the regularity-checking rules, have not previously 

been examined in another guise. They thus prevent 

the program from looping, and are for "housekeeping" 

purposes only. In principle they could be replaced, 

to the benefit of the program, by a set of general 

algebraic simplification rules. 

Attribute-evaluation - these obtain or compute the values 

of dependent variables, some of which are obtained 

from the environment while others are higher-level 

10 I .e. an experiment in which all possible combinations 
of the independent variables are systematically exam- 
ined. 
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attributes proposed by the regularity-checkers. 

Regularity-checking - these look for regularities in the 

input data (e.g. two numeric attributes increasing 

together) and propose new attributes as candidates 

for testing (e.g. the ratio of two numeric attri- 
butes). As a special case, constancy of an attribute 
is recognised, and the discovery of a constant attri- 
bute may be regarded as the goal of the program. 

Generalisation-testing - these check further data to 

determine whether a proposed law actually holds. 

It is the fourth category, the regularity-checking 

rules, which are of principal interest to the present dis- 

cussion since these embody the claimed general discovery 

mechanism of BACON.1. 

Let us look at the planetary motion example more 

closely. Only two rules are needed to find the regularity 

here: 

If two attributes increase together, consider their 

ratio. 

If one attribute increases as another decreases, con- 

sider their product. 

Clearly these two rules suffice for discovering any rule 

of the form: 
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ABbC°__L1Nm 
Noppaq .... YyZz 

= constant 

A further rule proposes linear combinations of attributes, 

thus allowing OACON.1 to discover constancy in any 

rational function of the independent variables. There is 

another rule which looks for periodicity (so that BACON.1 

can, for example. "explain" series such as 11121314151...) 

and proposes attributes of the form (a MOD b). 

Rules of the above type are described as "trend 

detectors", and operate only on numeric data. The remain- 

ing regularity Checkers are "constancy detectors" which 

work on either numeric or symbolic data. 

It would appear that this singling out of numeric 

data seriously weakens Langley's claim of generality. 

However, matters are not quite as bad as might at first be 

assumed; in particular periodic regularities in symbolic 

data11 are recognised, since the periodicity is itselt 
derived from a numeric attribute (viz, position in the 

sequence). However, it is very hard to imagine how com- 

plex non-numeric concepts such as Winston's "arch" could 

be acquired by this sort of rule; one problem is that in 

harder tasks like this it is not feasible to provide the 

program with a small fixed set of independent attributes, 

each with a finite domain. 

11 E.g. blue square, red circle, red square, blue cir- 
cle, red square, red circle 
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This comment leads us to what is probably the most 

serious weakness of BACON.1. By restricting its domain to 

"toy" worlds where the number of possible different inputs 

is finite, indeed small, and free of "noise". Langley has 

avoided all the problems of search control. It is clear 

that if the program were, for example, to be able to 

recognise more elaborate numerical relationships (exponen- 

ti al, logarithmic, sinusoidal, square-root, derivative, 

etc.) the number of candidates generated by the 

regularity-checkers would rise very greatly. Similarly, 

if even as few as six symbolic attributes with six legal 

values each were defined, BACON.1's factorial experiment 

would require about 50000 sets of independent data to be 

supplied, and would obviously become intolerably large. 

One notion which is lacking is any idea of 

hypothesis testing by the generation of crucial tests to 

decide between rival hypotheses. Armed with such a 

mechanism, BACON.1 could avoid performing the entire fac- 

torial experiment, and instead examine its hypotheses to 

choose those cases which might refute them. The only 

hypothesis testing described by Langley is, roughly, of i f 

the hypothesis is seen to be true for the first four sets 

of data encountered then it is accepted"; as a principle 

of induction this would scarcely satisfy the most prag- 

matic of positivists, let alone disciples of Popper, and 

can scarcely be regarded as an accurate model of Baconian 
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Scientific Method! 

In summary, we find Langley's claim for the general- 

ity of his program unconvincing. Furthermore, although 

his method produces quite elegant results in small 

domains, we doubt very much whether it could be extended 

to cope with large rule-sets, leading to very large search 

spaces where the number of alternative hypotheses would 

become unmanageable; it is also not easy to see how it 
could be made to handle noisy data, or data from continu- 

ous domains. Langley has failed to confront one of the 

central problems of discovery, and of Al as a whole, 

namely that of controlling search to defer the onset of 

the combinatorial explosion. 

In the above discussions of the programs of Winston 

and Langley we have seen two widely contrasted approaches 

to concept acquisition, each with a number of shortcom- 

ings. 

Perhaps the most immediately apparent distinction 
which may be drawn between the systems is the passivity of 

Winston's program contrasted with the positive data- 

gathering of Langley's; however, the latter is largely 

illusory since BACON.1 is in fact simply trying out every 

possibility within its search space; later versions, 

BACON.3 and BACON.4, behave rather more intelligently in 

this respect ([Langleyl979a], [Bradshawl980a]), as well 
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as being able to cope with a small amount of "noise" in 

the input data, but do not differ very significantly from 

the model described above. A more genuinely active 
explorer of a non-trivial search space is Lenat's program 

AM, which we shall describe in some detail below. This 

program not only chooses which examples it wishes to 

study, but also generates the appropriate data itself. In 

this respect, AM shows the true beginnings of a concept- 

learning program. Furthermore, AM assimilates its con- 

cepts within the same structure as its prior framework of 

knowledge, whereas Winston's description "primitives" seem 

to belong to an entirely different category of knowledge 

from the concepts which they are used to describe. 

Nevertheless, all of these programs are open to the 

question of where their initial knowledge-base derives 

from. In contrast, several workers have been working on 

the recognising of structure and pattern within input data 

with no prior collection of concepts or description primi- 

tives, e.g. Hedrick [Hedrickl976a] and Vere [Verel977a]. 

Other Work on Concept Formation 

There is a very large body of work on this topic, as 

remarked earlier; having considered what we regard as two 

paradigmatic examples, we shall not discuss the rest of 

this field in great detail - a thorough bibliography can 

be found in the SIGART special issue on machine learning 
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[Mitche111981a]. 

This reports, amongst many other items of research, 

the work of Shapiro [Shapirol982a] at Yale University, who 

claims to have developed a program which is capable of 

inducing, for example, the Peano axioms of arithmetic from 

facts such as 

"0 < succ(0)" is true 

"plus(succ(0),succ(0),succ(succ(0)))" is true 

"times(succ(0),0,succ(0))' is false 

Shapiro reports in his summary in SIGART that his model is 

based on Popper's methodology of conjectures and refuta- 

tions [Popperl963a]. Bundy and Silver [Bundyl982a] give a 

brief summary of his technique of "contradiction back- 

tracking", which discovers faulty rules. Unfortunately we 

have so far been unable to obtain further details of this 

interesting work. 

In Mitchell's paper on generalisation 

([Mitche111979a]) the distinction is drawn between model- 

driven and data-driven strategies for concept acquisition; 

the latter describes a passive program such as Winston's, 

while the former refers to programs which use their 

current state of knowledge to decide upon suitable 

discriminating examples. Mitchell also discusses the idea 

of upper and lower bounds on a concept definition in 

slightly more general terms than above; rather than 
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requiring that a prior hierarchy of features be completely 

known, he merely assumes that a partial ordering relation 
"is-more-specialized-than" can be defined upon such 

features. His discussion of the way in which instances 

and counterexamples of a concept can be used to bring 

these bounds closer together is very similar to that of 

Young, Plotkin and Linz. 

After this consideration of some of the principal 
ideas in concept-formation in general, we now go on to 

consider the role which such ideas play in mathematical 

discovery, and look at some of the other mechanisms which 

are introduced in a program which operates within this 

domain, Lenat's program AM [Lenatl976a]. 
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AM: a Proposed general model of mathematical discovery 

We shall now consider the most comprehensive and 

ambitious attempt to date to model the process of 

mathematical discovery, Lenat's program "AM", which is 

described in detail in his Ph.D. thesis12, and is summar- 

ised in his "Computers and Thought" lecture at the fifth 
IJCAI ([Lenatl977a]). This program is a large and com- 

plex piece of work, and it will be necessary to examine 

closely its claims, its achievements, and its shortcom- 

ings. Other critical surveys of Lenat's work can be found 

in the paper by Hanna and Ritchie [Hanna1981a] and in the 

chapter on concept formation in Bundy's book on mathemati- 

cal reasoning [Bundyl982b]. 

Briefly, the program begins with a body of 

knowledge about some domain chosen by the programmer (we 

shall discuss below the degree of domain-independence 

attained by Lenat), and uses a heuristic search tech- 

nique to broaden its knowledge of that domain. When 

started with a knowledge of elementary mathematical con- 

cepts (Relation, Equality, Structure, Operation, etc.) 

and set-theoretic objects (Set, List, Bag, Set-union, 

etc.), AM develops concepts of number, arithmetic opera- 

tions, and primeness, and proposes unique prime factori- 

A11 page references, Ctc. in this section are to 
[Lenatl976a] except where otherwise stated. 



- 45 - 

sation and Goldbach's conjecture13 among many other con- 

cepts and conjectures. Whenever a program displays a very 

high performance on a restricted collection of complex 

tasks, there are several questions which should be borne 

in mind while attempting to evaluate its achievement. In 

the case of AM we must consider the following: 

How sensitive was the precise choice of initial 
data? Was the quality of the result a consequence of 

a very carefully chosen starting configuration? 

How much were the program's heuristics "tuned" to 

produce the desired results? 

How well would AM adapt to other domains? 

How much further could AN have progressed if allowed 

to run for longer? 

13 

14 

Does the mod-' --ssess any psychological validity14? 

Alan Bundy [Bundyl982b] has pointed out that in the 
examples given in Lenat's thesis the conjecture 
called Goldbach's Conjecture is in fact a far more 
trivial conjecture, viz. that every even number is 
the sum of some number of primes (trivial because 
4=2+2, 6=2+2+2, 8=2+2+2+2, etc.); however, the exam- 
ples make it clear that AM could very easily have 
formed the correct conjecture by precisely analogous 
means - indeed it may well have done so on other 
runs. 

This is neither a necessary property of an Al 
program, nor one claimed by Lenat for AM; it is, 
however a relevant question to ask of any program 
performing intelligent activities. 
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If not, does it at least give any insight into the 

structure imposed by people upon their knowledge of 

the world? 

In order to attempt an answer to these questions, 
we shall now discuss in some detail the behaviour and 

internal structure of AM. We shall divide this into the 

following headings: 

Passive Dynamic Knowledge ("Concepts") 

Active Dynamic Knowledge ("Tasks") 

Active Static Knowledge ("Heuristics"). 

The reasons for this choice of labels should become clear 

as the terms are explained. 

Passive Dynamic Knowledge 

By this heading we mean those parts of the program 

which are essentially treated as a declarative data- 

base by AM. Since AM is a production system, we can also 

describe it as the long term memory of the program. 

this data-base is constantly being modified and enlarged 

by AM, and indeed a large part of the measure of the 

program's achievement is the final state of the data-base. 

(One must also take into account the directness of the 

route by which this state was achieved). 

The data-base is composed of a collection of 
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"concepts", which are structures similar to frames 

[Minskyl975a], in that each concept possesses a set of 

"facets", each containing a particular type of information 

about the concept. It should be noticed that the set of 

possible facets is permanently fixed, and is the same for 
all concepts; there is no notion of a "type of concept" 

with a particular corresponding set of facets (nor is it 
clear whether such a notion is necessary or useful). 

When a concept is first created (we shall discuss 

below how this can occur), many of its facets will be 

empty, or only partially filled in. In essence, the entire 

driving mechanism of AM is the attempt to fill in empty 

facets of known concepts. (This is similar to the 

control-structure of GUS [Bobrowl977a]). 

Typical facets are: Names, Definitions, Specializa- 

tions, Generalizations, In-Domain-Of (i.e. functions 

whose domain is the given concept), Worth, Analogies, 

Conjectures, Examples, Isas (i.e. concepts of which 

the given concept is an example). Also included as facets 

of a concept are "heuristics" (discussed in detail in 

the section after next) which tell the program how to fill 

in other facets of the concept, how to check existing 

entries for validity, how to estimate the concept's 

interest, and what activities pertinent to the concept 

might be worthwhile. 
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A typical concept might thus be (p.15): 

---------------------------------------------- TVAME: Prime Numbers 

DEFINITIONS: 
ORIGIN: 

Number-of-divisors-of(x)=2 
PREDICATE-CALCULUS: 

Prime(x)<=>(Vz)(zlx=>z=1 i z=x) 
ITERATIVE: 

(for x>1): For i from 2 to 'l(x),(ix) 
EXAMPLES: 2, 3, 5, 7, 11, 13, 17 

BOUNDARY: 2, 3 

BOUNDARY-FAILURES: 0, 1 

FAILURES: 12 

GENERALIZATIONS: 
Numbers, Numbers with even no. of divisors, 
Numbers with prime no. of divisors 

SPECIALIZATIONS: 
Odd primes, Prime pairs, Prime uniquely-addables 

CONJECTURES: 
Unique factorization, Goldbach's, 
Extremes of Number-of-divisors-of 

INTUITIONS: 
"A metaphor to the effect that Primes are the 
building blocks of all numbers" 

ANALOGIES: 
Maximally divisible numbers are converse 
extremes of Number-of-divisors-of; 
Factor a non-simple group into simple groups 

INTEREST: 
Conjectures tying Primes to TIMES, to 
Divisors-of, to closely related operations 

IWORTH_-800 

New concepts can be created in various ways as 

attempts are made to fill in facets; among the more obvi- 

ous are the creations of generalizations or specializa- 

tions. We shall defer full discussion of concept- 
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formation to the section below on AM's "heuristics". 

The particular facets "Examples" and "Ira's" relate 
together pairs of concepts in a lattice, as do the pair of 

facets "Specialisations" and "Generalisations"; the con- 

cepts are thus partially ordered by increasing specialisa- 
tion, with the concept "Any-Concept" at the top of the 

hierarchy of concepts (there is an item "Anything" which 

lies above "Any-Concept" - this is the most general 

category known to AM). It is this lattice structure which 

Lenat describes as AM's "concept hierarchy". 

Active Dynamic Knowledge 

We discuss here the control structure adopted 

by AM for scheduling its activities. One of the possi- 

ble effects of a heuristic is to create an object 

known as a "task". A task comprises: an activity to be 

carried out (e.g. "Fill in"); a concept and associated 

facet on which the task is to be carried out (e.g. "Exam- 

pies o f Number"); a value, indicating the worth of 

carrying out the task; and a list of reasons why the 

task was proposed. Tasks are arranged on an "agenda", 

which is a list ordered by the worth of the tasks. 

The flow of control of AM is repeatedly to pick a 

task from the agenda, allot resources to it, and then 

carry it out until it terminates normally or exceeds 

whichever comes first of its allotted resources of either 
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space or time. In the usual operation of the program the 

top task on the agenda (i.e. the one with highest worth) 

is always chosen. However, it is possible for the user to 

direct this choice interactively; also, Lenat carried out 

experiments in which the next task was chosen randomly 

from among the top twenty, or even randomly from the whole 

agenda - he reports that the first of these experi- 

ments led to a decrease in the "directedness" of the 

program's search, and about a threefold slowing in 

the rate of making "interesting" discoveries, whilst the 

second caused AM to thrash about vainly in a morass of 

expanding search-space. 

Tasks are proposed, i.e. added to the agenda, as a 

result of various activities of the program. It is 

possible for the same task to be proposed several times; 

in such a case it is important that the worth of the task 

be raised only if it is being proposed for a different 
reason than before. This is the justification for the 

inclusion of symbolic reasons in tasks. In general, the 

worth of a task is computed from the ratings associated 

with the reasons supporting it, and the worths attached 

to the activity, the facet, and the concept involved. 

Lenat gives a rather complicated formula for this, ori- 

ginally intended as an ad hoc first approximation. He 

asserts that in fact the precise formula used is unim- 

portant provided that it satisfies certain intuitively 
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plausible monotonicity properties, and that the original 
formula proved satisfactory. 

The programmer fines the worths mentioned above 

associated with symbolic reasons, activities and facets; 

again, Lenat asserts that the precise values used are of 

little consequence. 

Active Static Knowledge 

We use this description for AM's "heuristics" because 

it is these heuristics which govern the actions carried 

out by the program, but the heuristics themselves are 

immutable. 

Before going further, it is necessary to clear up a 

possible misunderstanding generated by Lenat's confusing 

terminology; in the view of AM as a heuristic search 

program, in the tradition of the Graph Traverser 

[Doranl966a], Lenat's "heuristics" do not correspond to 

the heuristics which control the search. Rather, they are 

the rules by which successor nodes in the search space 

are generatedls. The search is in fact governed by the 

15 This point is also made in Bundy's "rational recon- 
struction" of AM's search procedure [Bundyl982bI, in 
which he represents some of the heuristics as infer- 
ence rules, e.g. 

V Ex (ezample(C1,Ez) _> example(C2, Ex)) 
--------------------------------------- 

conjecture(C1, Cl C C2) 
which is to be read as 



- 52 - 

single heuristic "Use the worth of a task as an evalua- 

tion function; carry out the 'best' task"; thus, the 

nodes of the search space are tasks, and the generation of 

concepts and conjectures can be regarded as a side- 

effect of the search procedure. Having made this point, 
we shall from now on use Lenat's terminology without 

further comment. 

AM's heuristics are production rules of the form 

IF pre-conditions THEN action. 

The pre-conditions are a set of tests on the current 

environment, and are constrained to have no side- 

effects on any of AM's data structures; typical tests 

would be "more than half the allotted space for the 

current task has been used", "concept C has no Exam- 

ples", "the current task has found at least 10 entries for 

facet F of concept C", etc. Included amongst the 

tests there is always one of the form "the current task 
-------------------------- IF all examples of Cl are Examples of C2 

THEN add conjecture "Cl (- C2" 
to the conjectures facet of C1 

and others as "meta-level inference rules" to control 
the otherwise explosive search generated by these 
rules, e.g. 

19. To fill in examples of X, where I is 
a kind of Y, 

Inspect the examples of Y; some of 
them may be examples of % as well. 

The further removed Y is from %, the 
less cost-effective this rule is. 
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is to perform activity A on facet F of concept C"; this 

test is in fact used to index the heuristics, as an aid 

to efficient retrieval of the heuristics relevant to a 

particular task. 

The execution of a task involves gathering all the 

heuristics relevant to carrying it out (which in general 

involves "rippling" up the concept hierarchy to collect 
the heuristics associated with generalisations of the 

associated concept), and executing all those whose left- 
hand sides are satisfied, although this process may be 

affected by the restrictions imposed on the resources used 

by the task. To execute a heuristic, the action on 

the right-hand side is performed. 

A right-hand side can in general do one or more of 

the following: suggest a new task, create a new concept, 

create an entry for a facet of an existing concept. when 

a new concept is created, certain of its facets are 

filled in at once, e.g. its definition and its name; in 

general only those things which are easy to fill in at 

creation time but would be harder in a subsequent task 

(because the present context provides relevant informa- 

tion) are filled in at once. New tasks will be proposed 

to fill in each of the empty facets of the new concept. 

As an illustration of the creation of new concepts, 

Lenat gives the following example (p. 42) 
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Heuristic: If the current task was (Fill-in examples of F), 
and F is an operation from domain space A 

into range space B. 
and more than 100 items are known examples 

of A (in the domain of F), 
and more than 10 range items (in B) were 

found by applying F to these domain items, 
and at least 1 of these range items is a 

distinguished member (especially extremum) 
of B 

Then (for each such distinguished member 'b' 
in B) create the following new concept: 

-----------------------------------------------------I 
(Name: F-Inverse-of-B 
IDefinition: X(x) (F(x) is b) I 

(Generalization: A I 

(North: Average (Worth(A),Worth(F),Wortb(B), I 

I IlExamples(B)II) I 

lInterest: Any conjecture involving both this I 

_-___concept_and_eitherF_or_Inv_erse(F)___I 

In case the user asks, the reason for doing this 
is: 
"Worthwhile investigating those A's which 
have an unusual F-value, namely, those 
whose F-value is b" 

The total amount of time to spend right now on all 
of these new concepts is computed as: 

Half the remaining cpu time in the current 
task's time quantum. 

The total amount of space to spend right now on 
each of these new concepts is computed as: 

The remaining space quantum for the current 
task. 

We may note in passing that the entry on the Interest 

facet of the new concept seems to be the only form of new 

heuristic which is ever created by AM. 

This heuristic was triggered while AN was working on 

the task "Fill-in examples of number-of Divisors-of", and 

created (among others) the new concept "Divisors-of- 
Inverse-of-Doubleton", defined by "k(x) (Divisors-of(x) is 

a Donbleton)"; (note that the "Definition" of a concept is 
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in fact a predicate which is true if and only if its 
argument is an instance of the concept). Thus AM has 

defined the concept of prime number, and subsequently it 
goes on to explore this concept further, for example 

conjecturing that "the set of bags of primes whose product 

is x is always a singleton", i.e. the unique factorisa- 
tion theorem. (See Appendix 5, tasks 149, 152, 178-181). 

In addition to creating new concepts, heuristics can 

propose new tasks or fill in entries on a facet of an 

existing concept; rather than go into a detailed account 

of the ways in which this can happen, we shall consider 

one more illustrative example, in which a new conjecture 

gets proposed as a side-effect of the task "Check 

examples of Odd-primes" (p. 51). One of the relevant 

heuristics which is gathered for this task is 

(p.238): 

56. If the current task is to Check Examples of 
concept X, 

and (Forsome Y) Y is a generalization of I 
with many examples, 

and all examples of Y (ignoring boundary 
cases) are also examples of X, 

Then conjecture that I is really no more 
specialized than Y, 

and Check the truth of this conjecture on 
the boundary examples of Y, 

and see whether Y might itself turn out to 
be no more specialized than one of its 
generalizations. 

This heuristic was attached to the concept Any-Concept, 

and would thus be invoked for any "Check Examples ..." 
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task. When checking examples of odd primes, all examples 

of primes (ignoring the boundary cases) were found to be 

odd, and so an entry was added to the Examples facet of 

Conjectures: "All primes (other than '2') are odd primes". 

A new task was also proposed: "Check Examples of 

Primes", with the supporting reason "Just as Primes was no 

more general than Odd-primes, so Numbers may turn out 

to be no more general than Primes"; note that this task is 
a general one, in that all the heuristics relevant 

to "Check Examples of Primes" will be invoked, not merely 

the one relevant to determining whether all Numbers are 

Prime - thus the reason for proposing a task provides no 

guidance to AM on how to perform the task. 

Strengths and shortcomings of AM 

Having examined in some detail the working of AN, we 

are now in a position to consider its contribution to 

Al research, and the particular strengths and shortcomings 

which it exhibits. We can also attempt to answer some 

of the questions raised at the beginning of this section. 

One of the strong points of the program is that its 
basic control structure is extremely simple; not only is 

the loop "select a task; collect heuristics; execute them" 

very straightforward, but the number of different kinds 

of tasks which the system can perform is very small (viz. 

four - Fill-in, Check, Suggest, Interest). However, as 
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a corollary of the simple control structure, all the com- 

plex behaviour of the program has to be encoded in the 

heuristics and initial data - principally in the two hun- 

dred and fifty or so heuristics. 

The only limitation on the power of the task agenda 

as a control mechanism is that the sphere of AM's activity 
must be amenable to representation as a structure of 

frame-like concepts, with a reasonably limited set of 

possible "slots" in the frames. Such a formalism seems 

general enough to cover many or most learning 

tasks. Although it might be arguable that in general one 

needs to be able to construct new types of facet, and 

there are certainly facets (e.g. Justifications, 
Counter-examples) which would need to be added to Lenat's 

set, it seems intuitively implausible (at least to the 

present author) that such slot-types can be multiplied 
indef initely. 

Thus, as observed above, essentially all AM's 

knowledge of how to carry out a specific activity, 
such as mathematical discovery, is contained in the 

heuristics. The question now arises: To what extent 

are AM's initial heuristics applicable to working with 

databases other than the "primitive mathematics" one used 

by AM? Lenat describes a "geometry world" experiment 

with AM; however, this world is structurally so similar to 

the original one that very little can be deduced from the 
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experiment - in fact, beyond defining elementary concepts 

like congruence, AM seemed to spend such of its time 

rephrasing its number-theoretic work in terms of integer 

angles. 

This is a symptom of an important distinction which 

Lenat does not draw in his work on AN, between abstrac- 

tions and models. When AM has discovered "Bags-of-T" as 

interesting objects, it then goes on to explore their pro- 

perties; this is interpreted by the user as the discovery 

of numbers. However, what is in fact being investigated 

is a particular model of numbers, and like other models it 
possesses irrelevant properties (e.g. each "number" is a 

sub-bag of many other "numbers"). If we were to define 

numbers actually to be "Bags-of-T", we might eventually 

discover some closely analogous objects (e.g. "Lists-of- 
nil" or nested sequences of sets) which had very many pro- 

parties in common with "numbers" but were nonetheless 

quite different in other respects. At this stage a plau- 

sible possibility would be to define numbers purely inten- 

sionally, as the abstraction of the "interesting" common 

properties of "Bags-of-T", etc. - assuming that such pro- 

perties could be determined. Of course, for such a defin- 

ition to be useful one would require a system which had 

powerful tools for manipulating formal definitions, and 

this goes well beyond what Lenat has attempted in AM; we 

believe that one of the major limitations on AM's achieve- 
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sent is its need always to have "concrete" models to mani- 

pulate, since models of complex concepts are likely to be 

unwieldy, and many of their interesting properties may be 

more readily discovered by formal means than empirically. 

Of course, many of the heuristics are specifically 
attached to relatively specialised parts of the domain, 

but many others are of very general application - almost 

half of the heuristics are attached to the very 

high-level concept "Any-concept". One might hope, then, 

that many of the heuristics are indeed appropriate 

for a wide variety of discovery tasks, and in fact a 

large number of them do appear to possess great general- 

ity (see Appendix 3). 

However, careful study of the set of heuristics 

reveals a number of anomalies. Many heuristics seem to 

be at an excessively detailed level, containing informa- 

tion on how to decompose predicate calculus or 

recursive function definitions, or list-structure 
representations of objects. It seems that in his 

desire for structural uniformity, Lenat is in danger of 

confusing different levels of knowledge by according to 

what are essentially low-level manipulation routines the 

same logical status as is given to far more abstract rules 

of inference. Indeed, there may well be a case for 

replacing his single uniform rule-set with a multiple pro- 

duction rule system, i.e. a collection of rule-sets 
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organised so that certain of them are available only in 

particular contexts (note that this should be dis- 
tinguished from the indexing mechanism which Lenat uses to 

retrieve rules relevant to a particular task). It may 

also be remarked that many of Lenat's more general rules 

appear to be particular instances of even more general 

rule-schemas; a more economical, and cleaner, structure 

may be possible in which groups of syntactically and 

semantically similar rules are replaced by single meta- 

rules. For example, rules 47, 52 and 55 all essentially 

say "If (under various circumstances) a concept has few 

examples, try generalizing it", and the dual rules 48, 53 

and 54 say "If a concept has too MCit,yexamples, try speci- 

alizing it"; these could perhaps be subsumed into a pair 

of rules, and possibly even into a single rule with a form 

something like: "Non-trivial concepts should possess rea- 

sonable numbers of examples and non-examples; a way of 

reducing/increasing the number of examples is by 

specializing/generalizing the concept". In a more sophis- 

ticated AM-like program, which was capable of generating 

new rules, we might expect to see the duality of speciali- 

sation and generalisation captured by a meta-rule which, 

given a rule involving one produced the dual rule using 

the other. 

Of AM's 240 or so heuristics, about a quarter are 

principally concerned with directing AM's attention, espe- 
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cially with deciding which concepts are interesting and 

how interesting they are. These seem to fall into a dif- 
ferent category from, for example, those heuristics which 

create new concepts; they correspond more closely to the 

"classical" form of heuristic search, in that they provide 

an "evaluation function" on concepts, which is in turn 

part of an evaluation function on tasks. This corresponds 

to the distinction observed by Bundy, as mentioned in an 

earlier footnote, between those heuristics which are 

essentially inference rules and those which are instead 

"meta-level" rules to guide the search. 

There are slightly over 30 heuristics which expli- 
citly construct new concepts; in addition to this, how- 

ever, concepts can be created by the application of cer- 

tain other concepts - e.g. Compose applied to two Active 

concepts yields another Active concept. There seems to be 

a certain taxonomical untidiness about a system in which 

the function of concept-formation is thus distributed 
between two quite different mechanisms, as also about a 

system in which the examples of some concepts are con- 

cepts, whilst those of others are not. This untidiness 

appears to stem at least in part from a lack of any clear 

distinction between particular and general, a distinction 
which is indeed often hard to draw. (Is Add a particular 
instance of Operation, or is it a general class of triples 
(x, y, z) such that x+y=z? According to Lenat's taxonomy 
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it is both). It is not at all clear what would be a 

proper remedy for this, and we shall do no more here than 

suggest that there is room for substantial re-thinking of 

AM's underlying ontology, and for re-organising the 

heuristic rules so that the genuinely "heuristic" ones are 

separated from the "rule of play" ones - and furthermore, 

so that both of these are separated from those which 

encode knowledge about the particular representations 

adopted by AM (e.g. the fact that sets are represented as 

LISP-lists sorted in lexicographic order). 

We have criticised the "heuristics"; what of the 

choice of concepts in the original data base? Despite 

Lenat's claim that the initial set of concepts of the 

system corresponds approximately to those possessed by a 

child of about four (p. 113), the knowledge embodied in 

AM's starting state is articulated in ways such more 

formally sophisticated than would be implied by that 

claim. One important distinction which Lenat does not 

draw is that between possessing a concept at the level 

of being able to recognise instances of the concept as 

being members of a distinguished class with something 

in common (implicit possession of a concept), and possess- 

ing a concept explicitly, at the level of being able to 

introspect about the definition and structure of the con- 

cept. All of AM's concepts are of this second, explicit, 
kind; thus, it not only possesses concepts like Bag, Set, 
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Ordered Set, and List, but knows clearly about the rela- 

tionship and distinction between them, and possesses 

organising generalisations such as Ordered-structure, 

Structure-without-repeated-elements, etc. Thus, from the 

viewpoint of psychological validity, AM could be criti- 

cised for having its knowledge too well articulated. 

However, as we noted in our opening remarks, Lenat 

makes no strong psychological claims for AM. The second 

part of our original question on psychological validity 
was "[Does the program] give any insight into the struc- 
ture imposed by people upon their knowledge of the 

world?", and here the model of a hierarchical lattice of 

structured concepts acted upon by "heuristic" rules seems 

to be potentially very fruitful, and well worth further 
development. 

A serious alternative to a "psychological" view of AM 

is to consider it as a logical system. According to this 
view, the program's significance lies in the empirical 

methods used to extend the initial set of definitions and 

assertions, and in whether such a system could go on 

extending itself indefinitely, or whether it must ulti- 
mately be overwhelmed by the "combinatorial explosion", as 

AM appears to be. Lenat claims that the eventual degrada- 

tion of AM's performance is caused by the lack of new 

special-purpose heuristics to handle the new concepts 

defined; it is not clear that this is altogether the real 
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reason, and indeed the converse can also be argued - that 

what AM lacked was a sufficiently powerful a e t of very 

general focus-of-attention heuristics. In particular, a 

strong directing force which AN lacks is any sort of 

goal-driven activity; one would expect a such better per- 

formance from a program which could select interesting 

goals to work towards, although it is very much an open 

question how the relevance of candidate tasks to a goal 

might be estimated, and how the system could be kept from 

a dogged pursuit of one fata morgana after another. 

Another apparent anomaly, we would suggest, is that 

one of AM's concepts enjoys a special status which is 

not made explicit anywhere in Lenat's thesis. This is 

the concept of equality, which is present explicitly as 

Object-Equality. Equality plays a fundamental role in 

AM's discovery of Number; furthermore, according to 

Lenat, if Object-equality is excised from the initial 
database it is not rediscovered by AM. However, many of 

AM's heuristics include checking objects for equality 

(in the sense of identity) without referring directly to 

this concept. Indeed, this seems perfectly reasonable, 

since it seems clear that the recognition of identity and 

difference does indeed play a fundamental role in any 

reasoning process; it is merely a little strange that 

Lenat nowhere discusses this special status, but merely 

assumes it implicitly. 
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We may note in passing a slight peculiarity relating 

to noticing equality: in task 29, p.297, "Check Examples 

of Set-Union", AM notices that "often Set-union (x, y) was 

equal to one of its arguments", and goes on to define 

the Superset concept, crucial to later development, as a 

result of this observation. We have been unable to 

find a heuristic in the list given in Lenat's appendix 3 

which accounts for AM noticing this fact at all. 

Related to this is AM's limited ability to notice 

analogies; in general, its knowledge about analogies 

stems from those which it explicitly constructs, and from 

heuristics which instruct it to look for similarities 
between concepts with a common generalisation. It 
possesses no mechanism for noticing totally "unexpected" 

analogies between totally unrelated concepts. 

At the beginning of this section we posed the ques- 

tions "how sensitive was the choice of initial data?" and 

"to what extent were the heuristics tuned?". These ques- 

tions have also been raised by Hanna and Ritchie 

[Hannal981a], who suggest that the data and heuristics 

were indeed designed to produce the particular behaviour 

shown by AM. However, is a reply to this paper 

[Lenat1981a] Lenat strongly rebuts this suggestion, and 

asserts that almost all of the concepts and attached 

heuristics were designed before AM was coded, and that 

virtually none of them was subsequently modified. 
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Furthermore, AM failed to make some of the discoveries 

which its author had expected, and made a number of quite 

unexpected ones. Thus it appears that the answer to our 

questions is that both the rules and the initial concepts 

were not specially chosen to produce a given performance. 

Hanna and Ritchie also make a number of other 

detailed criticisms of Lenat's thesis; the essence of much 

of their criticism is that the thesis as it stands cannot 

be an accurate description of the program which produced 

the results described. Our own reading of the thesis 

would support this view to some extent, as is shown by the 

occasional detailed problem noted above; however, we would 

attribute the problem primarily to confusion engendered by 

Lenat's rather over-fanciful translations from LISP code 

to plain English. A question which remains unresolved is 

whether all of the heuristics were explicitly represented 

by the program as separate rules, or whether some of the 

"rules" cited are in fact merely a commentary on behaviour 

which was coded into the program to embody a number of 

interleaved rules. Lenat, in the reply cited above, seems 

to concede that this is indeed the case, but later goes on 

to say that the control mechanism was precisely as 

described in the thesis, with no hidden subtleties. These 

two statements seem to be mutually incompatible, and there 

remains some confusion about this point. 

A shortcoming which Lenat himself attributes to AM is 



- 67 - 

its lack of any formal proof methods, or even the 

concept of proof. Whilst these would be of value in 
rejecting invalid conjectures, confirming others (and 

possibly thereby leading to new concepts), and perhaps in 

rejecting obviously futile tasks, the real benefit of such 

an addition would be the goal-directedness which it could 

give to AM. We shall discuss this in the next section. 

The task of AM 

Having considered the method adopted by Lenat for 

his chosen task, we must now consider briefly the 

task itself. At this stage, we are in some danger of cri- 

ticising AM for not being what it lays no claim to be; 

these comments should be taken therefore less as a criti- 

cism of AM than as some ideas for further work arising 

from Lena t' s. 

The first, and most important, observation (already 

touched on above) is that AM models only a very lim- 

ited form of discovery, namely discovery by data-driven 

(or forward) search. In practice much (we are tempted 

to say "almost all") mathematical discovery (and here we 

are tempted to replace "mathematical" by "scientific" ) is 

the result of goal-directed activity. That is not to 

say that the mathematician deliberately embarks upon the 

task of making a particular discovery, or even of mak- 

ing a discovery of a particular form. Bather, 
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discoveries spring up as side-effects of trying to solve 

very specific problems; the discoveries may themselves 

be apparently remote from the problem being considered. 

One may instance here the considerable amount of mathemat- 

ics which has arisen from the (unsuccessful) attempts to 

prove Fermat's Last Theorem [Edwardsl977a]. 

Thus, an All-like system should benefit from the 

incorporation of a problem-solving mechanism, and a 

component which selects tasks according to their apparent 

relevance to the problem at hand. The design of 

such a problem-solver would of course be a very large 

research project in itself. 

The second observation is that AM searches for its 
discoveries within a formal domain. In many fields of 

science this is only the second stage of the discovery 

process, and not necessarily the harder. There must 

first come a stage of formalisation, developing the 

appropriate descriptive concepts and language16 from 

empirical data. It is unclear how an AM-like system 

might go about this task. In reply, it might be argued 

that, at least in the particular domain chosen by Lenat, 

the initial concepts are to be regarded as corresponding 

16 In reply to the argument that all knowledge is in 
some sense "formal", in that it is representable 
within some formalism, we would point out that some 
languages (e.g. English) are less amenable than oth- 
ers (e.g. lambda-calculus) to formal manipulation. 
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to "innate" knowledge, needing no prior concept- 

formation process. We find such an argument implausible 
if AM is to be regarded as having any psychological vali- 
dity - there seems no reason to assume that any of AM's 

starting concepts are "innate" in humans; of course, in 

the view of AM as a purely formal system, the entire argu- 

ment becomes irrelevant. 

Finally, we shall observe that the discovery under- 

taken by AM is a single-level process. That is, AM can 

discover concepts, but not new discovery techniques; the 

set of heuristics is essentially inextensible. The 

remedy proposed by Lenat is a further "flattening" of 

the program's structure, so that heuristics themselves 

become instances of a Heuristic concept. Attractive 

though this uniformity may be, it seems to us important to 

keep a clear distinction between levels of abstrac- 

tion. Thus, even though one may wish to keep a unitorm 

representation for all kinds of objects known to the 

system, these should be collected in groups as "concepts", 

"rules about concepts", "rules about rules", and 

possibly further meta-levels. This remark may be con- 

sidered in conjunction with our earlier suggestion that 

the heuristics may be better expressed as a multiple 

rule-set with rule schemas. 
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Paradigms for Deduction by Analogy 

In this section we shall consider two ways of using 

analogy as a deductive tool. The first is proposed by 

filing [filingl971a], the second by Munyer [Munyerl977a]. 

Before describing these, we should like to quote Bledsoe 

[Bledsoel977a] on the importance of analogy for deductive 

systems: 

"Perhaps the biggest error made by researchers in 
automatic theorem-proving has been in essentially 
ignoring the concept of analogy in proof discovery. 
It is the very heart of most mathematical activity 
and yet only filing (1971) has used it in an automatic 
prover. His paper showed how, with the use of 
knowledge, a proof in group theory would be used to 
help obtain a similar proof in ring theory. 

"We strongly urge that other workers in this field 
familiarize themselves with filing's work and extend 
and apply it more effectively." 

The work we shall describe by Munyer may be seen as 

an attempt to follow the advice in Bledsoe's second para- 

graph. Before discussing it, we must examine filing's con- 

tribution towards the understanding of the use of analogy 

as a deductive tool. 

filing's program ZZOHBA 

filing's fundamental idea is extremely simple: many 

resolution proofs are rendered intractably large because a 

very large search space is generated by the presence in 

the initial database of a large number of clauses 
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irrelevant to that particular proof. If the initial 
clause-set can somehow be filtered to include only those 

axioms which will directly contribute towards a proof, 
then the resulting such smaller search space is far more 

likely to lead to a proof being found. 

The means adopted for filtering the database is as 

follows: 

Given some theorem T to be proved, and an already 
proved theorem T' together with its proof P', an 
analogy mapping A from T' to T is constructed. This 
mapping is applied to the set of clauses used in P', 
and the resulting set of clauses used as a database 
for attempting to prove T. 

This, it is hoped, leads to a very substantial reduc- 

tion in the search space, and renders feasible a previ- 

ously impossibly explosive proof. 

Sling also suggests an extension of this algorithm, 

where the lemmas used in proving T' are mapped into 

corresponding lemmas for proving T; it is of course no 

longer necessarily the case that the generated lemmas are 

true, nor that they are relevant, but at least it seems 

plausible that some of them will contribute effectively 

towards a proof. 

Sling suggests that the lemmas be solved before 

attempting a proof of T; this is neither necessary nor 

obviously better than the alternative "lazy evaluation" 
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strategy of deferring their proof until it is known to be 

needed. There is yet a further step, which filing does not 

take, that seems to follow immediately from the previous 

ideas: one could take, in addition to the analogues of the 

lemmas used in the proof of T', the analogues of the 

clauses used in the proof, and it they were not already 

clauses in the database (as is required by the first algo- 

rithm described) treat them as lemmas to be used subject 

to verification of their validity; this is one of the 

bases of Munyer's approach. 

It should be noted that Iling's paradigm discards a 

great deal of useful information from the original theorem 

and proof; no attempt is made to use any information about 

the order in which clauses were used, nor which literals 
were resolved upon. To express the same point in a wider 

context, the proof P' may well be closely structurally 

analogous to some proof P of T (as is indeed the case with 

Kling's examples from abstract algebra); the above method 

discards almost the entire structure of P', 

the entire 

and repeats 

An extreme alternative to this method would be to 

-------------------------- 
17 Rather as though, possessing a recipe for lamb 

casserole, and wishing to cook a beef stew, we noted 
that we were likely to need beef, onions, potatoes, 
carrots, stock, salt, an oven, a knife, a dish and a 

work-surface, and then threw away the recipe book 
without reading the method of preparation. 
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take the entire analogue of P' as a "proof plan" for T, 

attempting to justify each step in turn; one could then 

envisage the entire process as a recursive one, each step 

of the proof plan being worked on by the analogy mechan- 

ism, This is indeed extremely close to what Nunyer does. 

A few further points should be noted about filing's 
work before we move on to consider Munyer. In filing's 
program ZORBA, it is the user who selects the analogous 

theorem T' and supplies its proof P'. Thus ZORBA consists 

essentially only of the analogy-formation mechanism, plus 

a resolution theorem-prover (QA3 [Greenl969a1). The anal- 

ogy mechanism is used repeatedly in the attempt to prove a 

theorem, constructing ever larger initial databases using 

ever laxer analogies until a proof is successfully found. 

filing's description of his algorithm for constructing 

analogies is very detailed, but lacks any clear overall 

summary; it appears essentially similar to the technique 

used by R.Brown [Brownl977a]. 

The user also supplies ZORBA with a set of "semantic 

templates", which provide type information about the func- 

tions and predicates used in the database; these templates 

are used to reduce the search for possible analogies by 

ensuring that argument-types are mapped consistently 18. 

18 R.Brown [Brownl977aJ points out that it is in general 
possible to determine these semantic templates au- 
tomatically by a simple syntactic criterion based on 
the structure of the assertions which contain the 
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The important point to note here is that the possible 

analogies are being restricted by semantic considerations; 

in this respect Sling has more to offer than Munyer, whose 

work we shall now examine. 

Analogy Viewed as a Cousin of Unification 

Munyer's philosophy can be summed up by two quota- 

tions from his later paper [Munyerl977a]: 

"Although the solution to a theorem-proving problem 
must be logically rigorous, the means by which it is 
discovered need not be." 

"How to use an analogy turns out to be at least as 
important as how to find an analogy". 

His proposed system follows both of these maxims, in 

that it makes steps which are not necessarily logically 

valid in its formation of proof plans, and in that the 

method by which an analogy is actually sought is an 

extremely naive exhaustive search. 

His approach resembles that of F. Brown [Brownl977b], 

or of STRIPS [Fikes1972a], insofar as his proposed system 

is an extensible deduction system, in which previously 

proved theorems are assimilated into the system and are 

used to contribute to further proofs. The way in which 

this is done is related closely to the STRIPS approach of 

using "MACROPS", since each proof known to the system (or 
-------------------------- predicates in question. We consider his work below. 
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any subsequence of it) is available as an operator which 
can be applied to an intermediate goal (using the term 
loosely) in a proof to generate a sequence of subgoals. 
The principal novel feature of Munyer's method is that the 

applicability of an operator is determined by an analogy 

match between the goal and the operator. 

The objective which Munyer's system seeks to achieve 

is to generate by analogy a proof plan for some theorem, 

in the form of a linear sequence of subgoals each of which 

can easily be verified by a simple conventional theorem- 

prover or proof-checker. The number of steps in a valid 
deduction of each subgoal from its predecessor should be 

very small, so that little or no search is done in going 

from the plan to a proof. 

Operators are of the form 

Tl => T2 

where Ti and T2 are predicate calculus terms. Associated 

with each operator are: an analogy match B between sub- 

terms in Ti and subterms in T2 (not in general either 

injective or surjective), and a "degree of certainty" 

(DOC), representing a heuristic estimate of the plausibil- 

ity of the derivation of T2 from Ti (DOC is a number 

between 0 and 1, and is 1 whenever (T1=>T2) is known to be 

a logically valid deduction). An operator can be applied 

either forwards or backwards, that is, either by matching 
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T2 against some goal-state T2' in a partial proof plan, or 

by matching T1 against some start-state19 Ti'. These two 

cases are precisely symmetrical; we shall describe the 

latter. 

Suppose some analogy match A has been found between 

T1 and T1 ' ; associated with this there will be a DOC 

reflecting the closeness of the match, which will be 1 

when the match is a valid unification. Then we wish to 

use the maps A and B to generate a new subgoal T2' such 

that T2' is to Ti' as T2 is to Ti; this is the "classical" 

analogy Problem as dealt with by Evans [Evansl967a]. We 

can represent the various formulae and mappings as fol- 
lows: 

T1 <-- A --> Ti' 
IB 

T2 <-- A'--> T2' 

Difficulty arises when, as is frequently the case, no such 

T2' exists; it is then necessary to construct a "best 

guess" . In any case, once a T2' has been found the step 

(T1'=>T2') can be added to the proof plan; associated with 

it will be a degree of certainty derived from the relia- 

bility of the analogies A and B, and the DOC of the opera- 

tor (T1=>T2), together with the likelihood that (T1'=>T2') 

--------------------------- 
19 "Start-states" are derived by forward reasoning from 

the preconditions, "goal-states" by backward reason- 
ing from the conclusion . 
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will be part of an eventual solution path. Thus, analogy 

is being used as a sort of "fuzzy unification" to match 

terms in a form of modus ponens reasoning. 

What we have just described is a "blind step" in the 

search for a proof: we have determined that an operator is 
applicable and applied it; a more desirable circumstance 

is that Ti and T2 simultaneously match via the same anal- 

ogy to a start state T1' and a goal state T2 both of 

which are already part of an existing plan, thus making it 
more likely that the operator will be relevant to an even- 

tual proof. When this occurs, the analogues of the inter- 
mediate steps of the (perhaps fuzzy) deduction of T2 from 

Ti can be directly mapped into a sequence of intermediate 

subgoals to be added to the proof plan. However, it is 

often the case that the analogies A between Tl and T1' and 

A' between T2 and T2' will be different; in this case, 

what Munyer calls a "skewed" plan is generated. We shall 

consider how to cope with skewed plans in due course, 

after considering the sort of analogy which Munyer's 

matcher will produce, and the ways of constructing a T2'. 

The analogy matches correspond for the most part to 

second-order unifications or generalisations; for example, 

identical terms match against each other (with a DOC of 

1), as do any pair of first-order unitiable terms. A pair 

of terms such as <f(a),f(b)> match fuzzily, as do pairs 

such as <f(a),g(a)>, <f(a,b),f(b,a)>, and <f(a,b),f(b)>. 
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The diagram below shows how corresponding symbols in pairs 
of terms may be mapped in a few instances. 

f (a) f (a) f (a) f (a, b) f (a, b) 
I I I I I I I \/ I / f (a) f (b) g (a) I /\ f (b) 

f (b, a) 

In cases such as (f(a,b) <--> f(b,a)) the DOC of the match 

will depend upon whether f is known to be commutative20. 

We may note that the matcher wil l always f ind some match 

between any two terms, and that it is not guaranteed 

always to find a valid second-order unification, even when 

one exists. 

The next matter to be considered is the generation of 

a term T2' from T1', T1, T2, A and B. In describing how 

this is done, Munyer has made some apparently arbitrary 
choices; he does not discuss the reasons for these partic- 
ular choices, and the only evident justification is the 

empirical observation that they work for the problems he 

has considered so far. We shall give a few examples of 

the construction of T2', paraphrasing JMunyer1977a, p5). 

"If a symbol in Tl' is mapped to a symbol in Ti which 
is in turn mapped without change to a symbol in T2 , 

then the symbol from Ti' appears in T2' (e.g. example 
1) . If however the symbol in Ti is mapped to a dif- 
ferent symbol in T2, then the symbol from T2 appears 
in T2' (example 2) . In either case, it the 
corresponding symbols in Ti' and Ti are different, 

20 
An interesting problem would be the automatic genera- 
tion of lemmas such as the commutativity of some 
function which was frequently used in such matches. 
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21 

22 

23 

the DOC of the step is lowered21 

"A permutation among the arguments of a function in 
going from T1 to T2 is copied among the symbols in 
Ti' to which they are mapped (example 3). A permuta- 
tion in going from Ti' to T1 does not affect the for- 
mula which is produced but it does lower the DOC 
unless the containing function symbol in either Ti' 
or T1 is marked as commutative. 

5) ." 

Ti T2 T1 ' T2 ' 

Example 1: f(a) f(a) f(b) f(b) 
Example 2: f(a) f(c) f(b) f(c) 
Example 3: g(b,a,c) g(a,c,b) f(a,b) f(b,a) 
Example 4: f(g(a)) f(g(b)) f(a) f(b) 
Example 5: f(a,b) f(b,a) f(a,g(b)) f(g(b),a) 

We can now consider how the system would go about 

"A symbol in T1 which does not map to a symbol in Ti' 
does not appear in T2'22 but the DOC is lowered 
unless an appropriate attribute23 is present (example 
4) . A symbol in Ti' which does not map to a symbol 
in T1 is considered to be unaffected by the operator 
and appears in T2', but the DOC will be lowered 
unless an appropriate attribute is present (example 

This decision appears arbitrary; it is not obvious 
that it would not be as good to copy the symbol from 

Ti' rather than from T2, in which case example 2 

would be replaced by 

T1=f(a); T2=f(c); T1'=f(b); T2'=f(b) 

This seems reasonable for his example 4, but consider 
T1=f(a,b,c); T2=g(a,b,c); T1'=f(b,a); 
it is not obvious that T2' should be g(b,a), as 
Munyer's rule implies, rather than g(b,a,c). 

An attribute is some feature such as commutativity, 
associativity, etc. which may be associated with a 

function symbol to indicate that certain kinds of 

match are exact, not "fuzzy". 
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seeking a proof of a theorem. The sequence of actions 

performed is as follows: 

24 

25 

A step to be worked on is chosen by a heuristic merit 

rating (which in general prefers the verification of 

plans to the taking of blind steps). 

If a blind step is to be taken, the appropriate for- 
mula (Ti' or T2' according as the step is backward or 

forward) is generated and added to a search lattice. 
If a plan is to be verified, the step with smallest 

DOC24 is found, and its start and goal added to the 

lattice; the plan is then ineligible for further con- 

sideration until this step has been 

Whenever a now formula F is added to the lattice, it 

is first checked for subsumption or identity with all 
other formulae already in the lattice, and any sub- 

sumptions found are marked appropriately (to avoid 

carrying out essentially the same tast several 

times). 

Next, all analogies between F and theorems in the 

database are found. For each (sufficiently good, one 

on the grounds if this fails there is no point wast- 
ing effort on the rest of the plan 

Another possibility would be to re-activate the plan 
as soon as the considered step had achieved a high 
enough DOC to be no longer the weakest link. 
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presumes, though Munyer does not say so explicitly) 
analogy found, the theorem is searched for a second 

analogy which can be used to form a plan (i.e. steps 

of the theorem are matched against formulae in the 

lattice). For each such plan, it is corrected it 
skewed (see below), otherwise an appropriate infer- 
ence link is added to the lattice, using the plan as 

an operator; it the DOC is not 1, the plan itself is 

marked as a candidate for future verification. If no 

plan is found for this analogy, it is instead used to 

propose one forward and one backward blind step. 

For each added inference link, adjust DOCs appropri- 

ately; if the link completes a plan step, re-activate 

the corresponding plan. 

Repeat the cycle until a solution is reached. 

We have mentioned "skewed" plans several times. 

These occur when an operator T1=>T2 matches against formu- 

lae Ti' and T2' by different analogies, so that a blind 

forward step from Ti' would result in T2" (ditferent from 

T2'), whereas a blind backward step from T2 ' would result 

in Ti" (different from Ti'). Munyer's brief explanation 

of how this is patched up is very sketchy, and his chosen 

example unilluminating; however, what he appears to be 

proposing is that consideration is given to replacing 

either T2' by T2" or Ti' by Ti" in the search lattice as 
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"plan-correcting step". 

The most important observation to make about this 

entire mechanism is that there is a very serious problem 

of controlling search. The mechanism is proposed as being 

itself a powertul tool for reducing the search space when 

seeking a proof: 

"It appears, based on this hand simulation, that the 
construction of the solution would be optimal in that 
no search (blind steps) is required ana no incorrect 
steps are actually generated." (LMunyerl977a], pp. 
9-10). 

However, this claim needs justification which Munyer does 

not offer; indeed the rather crude method used for seeking 

analogies is liable to become disastrously explosive as 

the database of theorems grows. Thus Munyer is replacing 

one search problem by another, and proposing no solution 

to this second problem. Once again, we are presented with 

the fundamental problem of how to recognise an analogy 

amongst a large body of existing knowledge. A question 

which Munyer does go far towards answering is that of how 

such an analogy might be used once it has been found; this 

accords precisely with his already quoted remark that "how 

to use an analogy turns out to be at least as important as 

how to find an analogy". 
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Brown's Work on Reasoning by Analogy 

In this section we consider the work of R. Brown 

[Brownl977a,Brownl976a] on the use of analogy mappings to 

transfer procedural "expertise" from one domain to 

another. 

Although this is not an appropriate place to go into 

a detailed critique of the relative merits of procedural 

and declarative representations of knowledge, it is neces- 

sary to observe, before proceeding further with discussion 

of Brown's work, that an issue of debate in Al has been 

whether knowledge is better represented "passively" by 

declarative descriptions, or "actively" by procedures 

which embody the application of that knowledge (or, it 
both are appropriate, which is better in given cir- 
cumstances). A more recent development has been the view 

that there is, in fact, little or no essential difference 

between these forms of representation; it is hard to gen- 

eralise fairly, but one could perhaps say that the major- 

ity of those who would still claim that there is a signi- 

ficant difference between procedural and declarative 

representation fall into the procedural camp. 

Brown's model of expertise consists of three tiers: 

(1) Code: the programs which are actually run in order to 

carry out tasks in the domain world; these programs 

are low-level and detailed, and contain information 
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governing flow of control; 

(2) Plans: these are essentially program outlines without 
any control flow information; they "specify goals, 

intentions and constraints"; 

(3) Descriptions: declarative assertions about the world, 

i.e. a set of definitions and axioms in a predicate- 
calculus-like language. 

The immediate impression made by Brown's examples of 

these three levels of his world model is that the objects 

at all three levels are, in fact, executable programs, 

written in successively higher level languages. Thus his 

code examples are imperative programs in LISP, complete 

with the full armoury of PROGs, GOs and SETQs to demon- 

strate that they are real live Programs in all their naked 

horror. His plans are essentially sequences of pattern- 

matching manipulations on the representations of objects 

in the model worlds, and as such bear a very close resem- 

blance to programs in some cousin of PLANNER 

[Hewittl969a]. His assertional descriptions are more or 

less predicate calculus clauses translated into LISP nota- 

tion, and would thus be regarded by many as executable 

programs in a logic interpreter similar to Prolog 

[Clocksinl981a]. 

Thus, by adopting his multi-level view of knowledge, 

Brown weds himself firmly to the "there is a difference t" 
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side of the procedural/declarative controversy- 
controversy, and comes down on the side of a low-level 
procedural representation of expertise; in taking this 
position, and in much of his subsequent development of the 

analogy mechanism, Brown's approach shows a close affinity 
with Sussman's in his program HACKER [Sussmanl973a). 

To summarise very briefly the very detailed technical 
description of Brown's analogy mechanism in (Brownl976a), 

analogies are constructed between some already known area 

of expertise (the domain) and some new area (the image) as 

follows: 

(1) Use the assertional descriptions to propose a mapping 

between domain names and image names; this process is 

essentially syntactic, although Brown uses "semantic" 

type constraints on, for example, mappings of func- 

tions and predicates (an extension of filing's use of 

"semantic templates" [Kling1971a]). 

(2) Use this map to translate plans and code in the 

domain world to plans and code in the image. 

(3) Use plan-justifications to prove the translated plans 

correct; it this fails, use the justifications and 

descriptions to debug the plans. Similarly, verify 

and debug the translated code. 

The debugging process appears similar to HACKER's. 



- R6 - 

It is clear that very sophisticated matching is required 
in order to determine which image-world assertion is suf- 
ficiently like which domain-world assertion to account for 
a "bug". and enable it to be fixed: indeed. such a match- 

ing would seem to constitute a large part of a general 

solution to the problem of producing analogies purely by 

inspecting descriptions. 

This last point leads to the observation that there 

is a strong case for arguing that the entire analogy pro- 

cess should indeed be carried out at a descriptive level 

That is not to say that predicate calculus without control 

information is necessarily a sufficient language to 

describe all domains of expertise; but languages like PRO- 

T.OG. have shown that it is possible to write programs with 

a declarative semantics. where the control structure is 

provided by the "machine" in which the program executes. 

rather than being an inherent property of the language. 

Tt is apparent in Rrown's work that most of the com- 

plexity arises from his multi-level representations. since 

he has to construct a whole sequence of maps between 

domains. and between levels within a domain. and then use 

compositions of these maps to construct hypothesised new 

pieces of "expertise". which still remain to be debugged. 

Whilst we would not wish to imply that the problem of con- 

structing and using analogies is anything other than 

extremely difficult. it does seem that Brown's choice of 
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knowledge representation formalism creates a great deal of 

added complexity without demonstrably providing greater 
expressive power than simpler options. 

We shall now look in rather more detail at the most 

interesting aspect of Brown's work: the construction of 

the analogy map between his descriptive assertions. 

The construction of an Analogy Map 

Brown's maps are constructed at the level of his 

descriptions. The first stage of constructing a map is 

the discovery of semantic templates, similar to Kling's; 
these are automatically extracted from the descriptions by 

using the observation that type-checking predicates are 

unary predicates which appear quantified on the left-hand 

sides of implications. Consider, for example, the 

descriptions below (taken from [33rown1976a)). Brown's 

LISP notation has been changed to that of predicate cal- 

culus. 
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/ss PLANE GEOMETRY DESCRIPTIONS **/ 
i'(A,B) [ pt(A) 8 pt(B) _> 

ln(line(A,B)) & in_ln(line(A,B),A) 
8 in_ln(line(A,B),B) I 

/* There is a line containing any two given 
points / 

V(A,B) [ distinct(A,B) & pt(A) & pt(B) _> 
(R(X,Y) (distinct(X,Y) & ln(X) & ln(Y) 

8 in_ln(X,A) & in_1n(Y,A) & in_1n(X,B) 
8 in_ln(Y,B))) I 

/ There is at most one line containing two given 
distinct points / 

IV(A,B,C) I pt(A) 8 pt(B) & pt(C) & between(A,B,C) _> 
-1(L) (ln(L) 8 in_ln(Y,A) & in_1n(Y,B) 

& in_ln(L,C)) I 

/* If B is between A and C then A, B, C are 
collinear / 

V(A,B) [ ln(A) & ln(B) & distinct(A,B) _> 
in_ln(A, intersect(A,B)) & in_ln(B, intersect(A,B)) I / The intersection of two lines lies in each of 

them */ 

The above rules form part of an axiom system for plane 

geometry, and it can be seen that the unary predicates 

which appear on left-hand sides are pt and In, which are 

thus assumed by the analogy algorithm to be type-checking 

predicates. 

The semantic templates which can then be constructed 

are: 

in-1n(1n,pt) 
line(pt,pt) 

i.e., the arguments of in-In must be of type In and pt 

respectively, and those of line must be of type pt. As 

Brown observes, this extraction of semantic templates is 

in fact a purely syntactic procedure. 
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Suppose we wish to construct an analogy map from this 

domain to the domain of solid geometry, which will include 

descriptions such as: / AXIOMS FOR SOLID GEOMETRY / / The first few axioms are identical with those for 
plane geometry / 

V(A,B,C) [ pt(A) 8 pt(B) 8 pt(C) 8 
non_collinear(A,B,C) => 
pl(plane(A,B,C)) 8 in_pl(plane(A,B,C),A) 
8 in_pl(plane(A,B,C),B) 8 
in_pl(plane(A,B,C),C) l 

/* There exists a plane containing 3 given 
non-collinear points */ 

'1(P) ( pl(P) _> -1(A) pt(A) 8 in_pl(P,A) l 

/* Every plane contains a point / 
The requirement for an analogy mapping is that once a map- 

ping has been defined for the type-checking predicates, it 
should be extended to the rest of the symbols in such a 

way that argument-types are mapped consistently. In the 

example of plane and solid geometry, the initial mapping 

is done by a heuristic which tries to map types of the 

same name in different domains to one another; this is 

obviously open to the criticism that the choice of names 

for predicates is a "secret" way of giving advice to the 

program (cf. the comments in [Hanna1981al on Lenat's use 

in AM of the rule "If the user has recently renamed this 

concept then it becomes more interesting"). Thus in the 

above example, the mapping 

In -> In 
pt -> pt 
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would be chosen by this heuristic26 

Subsequently, the formation of a consistent map can 

be viewed as a filtering problem for labellings of a 

graph, and as such can be handled by algorithms similar to 

that of Waltz [Waltzl975a]; it should be noted that in 

general Waltz's algorithm itself is not sufficient, since 

the analogy map requires global consistency of the label- 

ling, whereas Waltz's algorithm only ensures local con- 

sistency. (An extensive discussion of such algorithms is 

given in [Freuderl978a], while a discussion of the dif- 
ferent possible kinds of inconsistency in a graph label- 

ling is given in [Mackworthl977a]). 

Using the Analogy 1[a2 

If the entire process of constructing an analogy were 

as described above there would be little more to be said; 

however, the problem arises that such a mapping between 

the symbols in two domains is unlikely to be an exact 

analogy, in the sense that true statements and correct 

algorithms in one domain will not necessarily map to 

corresponding true statements and correct algorithms in 

the other. For example, the image of a theorem proof in 

26 It is interesting to note that without this heuris- 
tic, the mapping (ln->pt,pt->ln) would be investigat- 
ed; this is of course the first step of inventing 
projective geometry, as Brown observes in 
[Brownl976a]. 
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plane geometry may well not be a rigorous proof on solid 
geometry, but rather a sequence of lemmas which may con- 

stitute an outline proof, needing completion and possible 
correction. 

It is this need to "debug" inexact analogies which 

leads Brown to his rather baroque system of knowledge 

representation. Be considers that the ultimate goal of an 

analogy is to aid the transfer of expertise from one 

domain to another in the form o f programs. He achieves 

this by using the map constructed at the level of descrip_ 

tions to map plans between domains, and using the images 

of the plans to construct programs. To ensure the 

correctness of images of plans, he uses plan justifica- 
tions, which are proofs of plan correctness in terms of 

the axiomatic descriptions and definitions. Furthermore, 

he requires commentary attached to programs to show how 

they relate to plans. 

It is unclear why the ramifications of such a 

representation should stop at this point, rather than 

requiring, for example, "plan justification commentaries" 

to show how a plan justification corresponds to a plan, 

etc. Conversely, even if we accept Brown's implicit 

belief in the need for a procedural representation funda- 

mentally from the declarative one, it is not clear why his 

plans are not acceptable as such a representation, so that 

the goal of the analogy system becomes the transfer of 
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correct plans, without the added layer of complexity 

afforded by programs. 

It is not, then, surprising that the mechanism which 

Brown requires to carry out his many-layered mapping and 

debugging process between two of his domains is both 

cumbersome and confusing. While it may well be that such 

a degree of complexity is indeed required of an analogy 

system, this is by no means justified by the relatively 
simple instances given by Brown; his insistence on a low- 

level procedural representation of knowledge serves more 

to obfuscate the process of constructing and using analogy 

than to provide a clear explanatory model. 
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The Use of Analogy in Knowledge Representation 

We have gradually moved away from our first focus of 

attention, mathematical discovery, towards a consideration 

of the use of analogy in general. The remaining sections 

of this survey will consider a number of approaches to the 

use of analogy in reasoning and knowledge representation. 

We begin with a discussion of the design proposed by Moore 

and Newell for a system whose entire representation for- 
malism is based upon analogy, Merlin. 

Can Merlin U-nderstand? --- ------ --------- 

In their paper "How Can Merlin Understand?" 

[Moorel973a] Moore and Newell describe a proposed formal- 

ism for knowledge representation which is pertinent to the 

present discussion on analogy. According to their formal- 

ism, all concepts known to the system are potentially 

"viewable as" instances of other concepts, subject to a 

suitable mapping being made between the components of the 

two concepts. This is precisely the main goal of an 

analogy-finder (the subsidiary goal being to evaluate the 

strength of the analogy once found). 

Moore and Newell claim that their formalism is embed- 

ded within a system which "understands", and cite the fol- 

lowing criterion for use of the word "understand": 

[A subject) S understands knowledge K if S uses K 

whenever appropriate. 
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Applying this criterion to the question posed by the 

title of their paper, the answer appears to be that Merlin 

cannot understand at all, since Merlin (as they describe 

it) is simply an embodiment of their knowledge representa- 

tion formalism, and of rules for reorganising its 
knowledge in response to requests to do so, or in the 

course of assimilating new knowledge. Thus, although Mer- 

lin might conceivably serve as the underlying basis for an 

understanding system, any such system would require as a 

major further part an active component which would make 

use of Merlin's data-structures. Such a component would 

serve to provide an interpretation of Merlin's knowledge, 

without which Merlin cannot be said to "use" its knowledge 

at all, appropriately or otherwise; as we shall see, Mer- 

lin itself provides no such interpretation. 

However, the main point of interest here is what Mer- 

lin can do, which is to construct analogies and to assimi- 

late new data by analogy. Indeed, the entire knowledge 

base can be regarded as being organised by analogy, and in 

many ways the view of knowledge representation embodied in 

the program corresponds closely to the present author's. 

The fundamental building-block in Merlin is an object 

called by the authors a "n-structure" (chosen as a neutral 

name which leads to no preconceptions about its interpre- 

tation). A A-structure is denoted 
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a: [j al a2 ... ] 

read as "a is a A further specified by al, a2, 

The Components 0, al, a2, etc. are themselves A- 

structures. 

An interpretation of a A-structure is ,a can be 

viewed as a A given that al, a2, ..."; this interpretation 
corresponds to a datum a being assimilated to a known 

datum A, where the ai can be viewed as defining an analogy 

between a and A. A map from A-structure B1 to B2 is 

notated B1/B2, and corresponds to a way of viewing B2 as 

further specification of B1. 

As an example, consider the following, given by Moore 

and Newell: 

Suppose we have 

MAN: [MAMMAL NOSE:[...] HOME:[...]] 

PIG: [MAMMAL SNOUT:[...] STY:[...]] 

and wish to find an analogy between MAN and PIG (view a 

PIG as a MAN). The result will be 

PIG: [MAN SNOUT/NOSE STY/HOME] 

assuming that the maps SNOUT/NOSE and STY/HOME can be con- 

structed; the interpretation would be "a PIG can be viewed 

as a MAN if his SNOUT can be viewed as a NOSE and his STY 

as a HOME". 
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For a full explanation of this example, and further 
examples, the reader should refer to the original paper 

[Moorel973a]. There are two main difficulties with the 

approach taken by Moore and Newell, one practical and one 

philosophical. The philosophical problem is that, since 

there are no "primitive" P-structures, the whole knowledge 

edifice seems to be built on air27. In this, Merlin's 

knowledge-base is similar to that produced by Quillian 

[Quillianl968a] in his "Semantic Memory" system. Whether 

this is truly a problem depends upon one's point of view; 

on the one hand those with a foundation in mathematical 

logic and related disciplines are likely to be horrified 
at the idea of such a "baseless" system, while on the 

other hand there is a strong intuitive appeal (for some) 

in the notion of a system where every definition can be 

further refined in terms of other definitions as far as 

necessary in any particular circumstances. 

The final remark leads us to the practical problem: 

when does the recursive sequence of matching stop? This 

is a point on which Moore and Newell are most unclear; it 
is closely related to the question: under what cir- 

cumstances can an attempt to view X as Y fail? (since 

obviously a failure to match corresponding components of a 

u-structure would cause at least that branch of the recur- 

27 
Or perhaps supported on "turtles all the way down"? 
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sive watching process to terminate). Again, the answer is 

not readily to be drawn from the paper. 
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Algebraic Models of Analogy 

Two recent papers [Farrenyl982a] and [Potschkel982a], 

propose an algebraic model of analogy formation, in which 

an analogy is represented as a homomorphism between alge- 

bras or (equivalently) between graphs. 

Both papers represent the situations between which 

analogies are to be constructed as relational algebras. 

That is, a situation is described as a set of objects 

together with a collection of relations defined upon that 

set. For example ([Farrenyl982a]), the situation 

Romeo loves Juliet. 
Juliet loves Romeo. 
Romeo is a man. He is Italian. 
Juliet is a woman. She is beautiful. She is unmarried. 

consists of the set 

( Romeo, Juliet ) 

and the relations 

loves = ( (Romeo, Juliet), (Juliet, Romeo) ) 

Italian = ( (Romeo) ) 

man = ( (Romeo) ) 
woman = { (Juliet) ) 
beautiful (Juliet) ) 

unmarried (Juliet) ) 

where a relation is represented as a set of tuples from 

the underlying set. 

An analogy between two situations is now defined to 

be a mapping between the corresponding objects which 
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preserves (or nearly preserves) relations. In Ptitschke's 

paper, he first defines an analogy to be a strict homomor- 

phism between algebras, but then points out that this is 

not always guaranteed to exist, and goes on to mention 

briefly the idea of a "loose" analogy constructed from an 

approximate homomorphism. He indicates a possible measure 

of the closeness of such a mapping using the ideas of 

positive defect and negative defect of a mapping between 

labelled directed graphs - the number of edges which need 

to be added to the domain or deleted from the range, 

respectively, such that the mapping is a homomorphism. 

However, he does not give any indication of how such 

approximate mappings may be found; nor is it clear how he 

would represent a general situation, which may contain 

relations more complex than binary ones, as a labelled 

directed graph. 

The second half of his paper gives an algorithm for 

carrying out analogy-formation in the style of Evans 

[Evansl967a] given three graphs A, A' and B, and a map 

A--IA' . This involves the steps "Compute a maximal common 

partial graph of A and B" and "Generate a minimal set of 

substitutions S=(S1,...Sk) such that 

S(A)=S1(S2(...(Sk(A)...))=B". Both of these steps are 

liable to be computationally expensive, and he does not 

suggest algorithms for them. It should also be noted that 

"maximal", in the mathematical sense, does not mean "larg- 
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est possible", but rather "not enlargeable"; there may be 

many maximal common partial graphs of A and B, and he does 

not discuss the criteria for choosing between them. 

The examples which he gives are small; there is no 

indication of how effective his methods would be in con- 

structing analogies between complex situations. However, 

his use of positive and negative defects in measuring the 

looseness of an analogy may provide a possible "dissimi- 
larity metric" between concepts, in the sense discussed 

below. 

Farreny and Prade discuss at some length the possi- 

bility of using "semantic similarity" as a criterion for 

mapping one relation to another; they base their ideas on 

the notion of "fuzzy sets", as discussed by Zadeh 

[Zadehl979a]. They assume that properties to be matched 

by analogy denote "fuzzy" classes with associated proba- 

bility measures of the likelihood of a datum possessing 

the property. The degree of similarity between two pro- 

perties is then defined as the likelihood of a datum 

belonging to both classes. As the authors themselves 

admit, this is a far from general model. Whereas for 

adjectives such as "tall", "short", "old", "young", etc. 

it is clear what the appropriate universe of discourse is, 

and it seems apt to use possibility measures in such 

cases, there are obviously many cases where this is not 

so. In general, such a model is only appropriate where 
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the properties describe subsets of some quantitatively 
measurable overall attribute (e.g. "height", "age"). 
Although they refer to a need for further work in the area 

of measuring "semantic similarity", Farreny and Prade do 

not themselves go into detailed consideration of the pos- 

sibilities. 

The construction of a map between situations is 

presented as a problem of matching labelled graphs, as in 

the work of P%itschke and R.Brown discused above; there is 

no consideration of the details of an algorithm, but 

clearly the authors' intention is to map together semanti- 

cally similar properties; the degree of similarity would 

then provide a measure of the closeness of the analogy. 

This approach seems to neglect the view that often the 

most valuable analogies are those between apparently dis- 

similar concepts. 
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Analogy by Means-Ends Analysis 

We conclude this survey with an examination of 

Carbonell's work on problem solving by analogy 

[Carbonel ll98la] . Carbonell holds the view that such 

problem solving is very closely linked to learning by 

experience; previous knowledge is so structured as to be 

retrievable through similarity to new problem situations, 
and the success of plans developed by analogy can lead to 

fruitful generalisation of prior knowledge. 

His proposed problem solving strategy is an extension 

of classical Means-End Analysis28 as considered in depth 

by Newell and Simon [Newelll972a); a problem state is 

reduced to a solution state, or goal state, by the succes- 

sive application of operators which reduce the difference 

between the two states. An attempt to use previously 

known solutions as a means of reducing search in MEA was 

made in the program STRIPS [Fikesl972a), which stored all 
subsequences of previous solutions as compound operators 

("MACROPS"); as Carbonell points out, the search amongst 

applicable operators then becomes rapidly computationally 

infeasible, as the number of operators increases; thus 

STRIPS can be seen as replacing one form of search by 

another, with no clear evidence that the latter is ulti- 
mately more efficient (this is the same criticism which we 

28 Henceforward "MEA" 
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earlier applied to Munyer's work). 

Carbonell proposes a reminding process to compare the 

initial and final states of, and path constraints29 on, a 

new problem with those of previously solved ones, and to 

compare the applicability of operators in the old and new 

problem states. He then wishes to use MEA to transform a 

previous solution of a problem similar to the current one 

into a complete solution of the current problem. 

As a difference function in this transformed MEA 

problem, he proposes using the same difference function as 

is already used to compare the initial and goal states in 

a conventional MEA approach to the current problem; this 

difference function now becomes a "similarity metric" 

between different problems30. Having found an analogous 

problem, i.e. one with a high degree of similarity to the 

current one, MEA is applied to reducing the difference 

between this problem and the current one, thus leading to 

a solution of the new problem derived by analogy with the 

old, Thus MEA is being applied not to the current problem 

and its goal, but to the current problem/goal and a previ- 

29 A path constraint is a rule which prohibits certain 
operator sequences even though they made produce a 

solution, e.g. because the solution thus arrived at 
may be too costly. 

30 It is not, in fact, necessarily the case that this 
function be a "metric" in the strict mathematical 
sense; "measure" would be a more precise term. 
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ously solved problem/operator-sequence/goal. 

A number of (meta-)operators are proposed as useful 

for this higher-level KEA problem; these include insertion 
and deletion of operators from a sequence, adding new 

operator sequences at the start or end of a sequence, 

reordering operators, and "meshing" of two operator 

sequences - the last of these is considered as being in 

itself "an interesting and potentially complex problem" . 

The difference function between states of the 

transformed problem is a 4-tuple comprising the differ- 
ences between problem states, goal states, path con- 

straints and operator applicability. In general, it will 
not always be possible to reduce one component of this 4- 

tuple without at the same time increasing another. One 

possible way of avoiding this difficulty is to try always 

to reduce some linear combination of the four components. 

In order to make possible the retrieval of problems 

similar to the current one, it is clear that some form of 

memory organisation based upon similarity of problem 

states is required. The solving of a problem by analogy 

naturally I e a d s to the assimilation of the new problem 

within the existing structure; thus the activities of 

problem-solving, learning and analogisation are deeply 

linked. The structure of an "episodic" memory such as is 

required is regarded by Carbonell as "relatively simple"; 
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we would regard this as by no means self-evident, and 

would consider the development of a large practical pro- 

gram embodying Carbonell's ideas in a domain with a large 

collection of previously solved problems and of possible 

operators as a major achievement. There is an obvious 

danger that the search for an analogous problem will prove 

to be non-trivial, so that once again one has merely sub- 

stituted one form of search for another. A possible 

starting point for a large-scale implementation of 

Carbonell's ideas may be work such as that of Cohen 

[Cohenl98Oa] on an intelligent theorem prover which 

attempts to use theorems already proven as a guide to the 

proof or refutation of new conjectures. 
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The Use of Similarity Measures in Retrieval and Assimila_ 
tion 

use 

We have seen in the last few pages reference to the 

of similarity measures in the evaluation of the 

strength of analogies. However, there has been no sugges- 

tion that such measures might actually be used as a basis 

for knowledge organisation and retrieval. We describe 

here, in rather abstract terms, a possible use of similar- 
ity measures on formal structures for the large-scale 

organisation of knowledge. The assumptions are (i) that 

the knowledge to be organised can be divided (perhaps 

quite arbitrarily) into structured units (e.g. "concepts") 

and (ii) that there exists a collection of partial 
metrics31 [ai) upon these units which measure the degree 

of dissimilarity between them in various respects. There 

are no assumptions about the type of structure used (which 

could, for example, be a labelled directed graph 

representing a semantic net, or a collection of predicate 

calculus clauses), nor about what specific features are to 

be used to determine similarity; it is, however, highly 

31 
A partial metric is a function a such that: 

Vx a(x, x)=0 
vxvy a(x,y)=a(y,x) 
VxVyVz a(x,y)+a(y,z) > a(x,z) 

We do not require the condition 

i'xVy a(x,y)=0 => x=y 
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desirable in practice that the measures be cheap to com- 

pute. 

These measures can be seen as defining a "feature 

space", in which the distance between two points is a 

metric derived from the set of similarity measures (e.g. a 

Cartesian metric: the square-root of the sum of squares of 

the similarity measures). Carbonell [Carbonelll981a), for 

example, uses a set of four differences derived from a 

Means-Ends Analysis of a problem to define a distance 

between two problems, as discussed above. The use of a 

feature space has some affinity with the technique known 

as multidimensional scaling, in statistical taxonomy 

([Greenl972a]). There are, however, two significant 
differences. The first is that in multidimensional scal- 

ing, the goal is to reduce a large set of coordinates 

(i.e. a many-dimensional space) to a smaller set of linear 

combinations of these (i.e. a space of fewer dimensions), 

onto which a pre-viously given set of data may be projected 

with minimum loss of information. That is, the object of 

multidimensional scaling is to induce from given data what 

set of features may best be used to classify them. In 

contrast, we are supposing that the classification be 

given (the similarity measures), and that the data (which 

are potentially any items of representable knowledge what- 

soever) be not all explicitly available at the outset. 

The second difference is that the features normally con- 
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sidered in multidimensional scaling are scalar; that is, 
each corresponds to a single numerical coordinate. In our 

model, this need not be the case at all; there is no rea- 
son to assume that, for some measure a and objects A, B 

and C, that a(A,B)=a(A,C) implies that B is close to C. 

Our task, then, is to find a way of locating the 

close neighbours of some new datum amongst an existing 

knowledge base. For simplicity, 

single similarity measure, d. 

we shall consider only a 

We suppose that there is some set a of points, and 

some distance S10 such that for all already known points 

X, there is a point Y in a such that a(x,Y)<b1. It is 

clear that such a set can be chosen; we consider the 

points of a as representatives of regions of the feature 

space. Formally: 

Let K = (known points) 

VXeK --IYea (a(%,Y)<61) 

b1 is chosen sufficiently large that a is small. Suppose 

we wish to assimilate a new point, Z. Then the first step 

of the algorithm is to measure a(Z,Y) for each Y in a. If 

each such measure is greater than b1, then it is clear 

that Z is further than S1 from every known point; in this 

case we add Z to a, and conclude that it has no close 

neighbours. Otherwise, Z belongs in the neighbourhood of 
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some representative, say Y. This algorithm is applied 

recursively; this requires that with each point in a there 

is associated a set of representatives covering its neigh- 

bourhood to within a distance 62(<61), and so on. Hence, 

we use the computed distances to organise the feature 

space into a hierarchical set of neighbourhoods; then a 

new datum is assimilated by a process of "homing in" on 

ever smaller neighbourhoods until either we find other, 

sufficiently similar data, or discover that there are 

none . 

Formally, again, 

Let 61 > S2 > ... > Sn 

Choose a hierarchy of sets: 

a S. t. VXK IYea a(X,Y)<6 1 

{al:iea) s.t. VX d(X,i)<61 => {Yeai a(X,Y)<62 

(ai J:Jea1) s.t. i+h d(X,J)<6 2 => YE6i,] a(X,Y)<S3 

etc. 

Further, 

11 
a(X,Y)>6. (s) 
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Given t 

To find S = (q: 3(4,n)<6 ) 

Find S1= (iea: a(g,i)<S1) 

If S1= 

then insert into or 

return (S 

etc. 

else Find S2= (Si) 
where S1= (jeai:a(,j)<S2) 

The sparseness given by the condition (t) ensures that 

this will lead to minimum search. In the early stages of 

knowledge acquisition, it will often happen that a new 

datum has no close neighbours; in this case we insert it 
at an appropriate level of the hierarchy. If any of the 

sets of representatives becomes too large, it can itself 
be split into a hierarchy. 

One extreme of this approach is clearly to take 6 
1 

as 

zero; in this case the "hierarchy" becomes flat, and the 

algorithm is simply "compare 5 against every point in K". 

The other extreme is always to maintain the hierarchy as a 

binary tree. The first of these gives very large 

searches, but never requires a potentially expensive 

rebuilding of some part of the hierarchy; the latter leads 

to minimal searches but at the expense of frequently need- 

ing to add new points at high levels of the hierarchy. 
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We suggest that some algorithm based upon the above, 

in conjunction with a suitable collection of similarity 
measures such as those of Carbonell, could form a reason- 

able basis for the large-scale organisation of a knowledge 

base. 
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Summary and Conclusions 

In the foregoing pages we have covered a wide range 

of material from the literature of AI, linked together by 

the common strands of relevance to mathematical discovery 

and analogical reasoning. It is, we believe, clear that 

not only have none of the works discussed "solved" the key 

problems in these areas, but that few of them have even 

achieved convincing solutions to those subproblems which 

they chiefly addressed. Whilst it is true that it is 

always easier to criticise destructively than construc- 

tively, to find defects than to point to positive achieve- 

meats, it is nevertheless notable in how many of the works 

discussed there have been serious shortcomings. 

This may sound like bleak pessimism, a counsel of 

despair. For if the combined intellects of dozens of dis- 

tinguished workers in a field of enquiry cannot produce 

better solutions than this to a problem, must not the 

problem be close to insoluble? Our answer to this rhetor- 

ical question, however, is that such is not the case. It 
is indeed true that the problem of formulating a model of 

reasoning in which analogy plays a major role is extremely 

hard, whether psychological validity be sought or not. 

But progress has undoubtedly been made in a very diverse 

collection of relevant topics; we would point to the work 

of Munyer [Munyerl977b], Lenat [Lenatl976a], and R.Brown 

[Brownl977a] as being recent work of considerable value. 
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Lenat in particular, despite being open to criticism on a 

number of serious issues, has at least demonstrated that 
it is possible to build a program which is able to carry 

out a range of tasks in the exploration of a simple 

mathematical domain, including concept-formation and the 

proposal of hypotheses. He has abstracted a number of 

useful rules describing such a search process, and there 

is surely progress to be made from the incorporation of a 

similar body of "heuristics" within a cleaner framework, 

where the issue of flow of control and the details of 

implementation obtrude less upon the mechanism of the pro- 

gram. 

Overall, we can distinguish two principal lines of 

attack on the problems of mathematical reasoning; loosely 

speaking, we may categorise these as "theorem proving" 

(exemplified by Munyer, R.Brown, Kling [K1ing1971a], and 

Cohen [Cohenl980a]), and "rule-based system" (Lenat, Moore 

and Newell [Moorel973a], L,angley). R. Brown has also 

looked at the problems of search-control in analogy match- 

ing in a way which naturally leads to consideration of the 

topic of "node labelling" on graphs, area well-known in 

other areas of Al (Waltz [Waltzl975a], Shneier 

[Shneier1978a], etc.). No doubt a truly intelligent rea- 

soning program, if one is ever written, will make use of a 

mixture of all of these, together with others as yet unex- 

plored. 
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A promising area for enquiry is that of using a 

rule-based system for controlling search; something along 

these lines forms part of Bundy's PRESS system 

[Bundy1981b] for symbolic algebra. Similar ideas are 

embedded within Lenat's AM, where some of the "heuristics" 
are in fact search control mechanisms, and Davis 

[Davisl979a] has proposed building an expert system to 

advise on search strategies within large problem spaces. 

However, it must be re-iterated that the problems 

remaining are formidable. Indeed, as with many philosoph- 

ical enquiries (and there is no doubt that much research 

in AI is at least as much a philosophical undertaking as 

it is an experimental and mathematical one), the outstand- 

ing difficulty remains that of formulating the questions. 
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