

THE UNIVERSITY of EDINBURGH

This thesis has been submitted in fulfilment of the requirements for a postgraduate degree (e.g. PhD, MPhil, DClinPsychol) at the University of Edinburgh. Please note the following terms and conditions of use:

- This work is protected by copyright and other intellectual property rights, which are retained by the thesis author, unless otherwise stated.
- A copy can be downloaded for personal non-commercial research or study, without prior permission or charge.
- This thesis cannot be reproduced or quoted extensively from without first obtaining permission in writing from the author.
- The content must not be changed in any way or sold commercially in any format or medium without the formal permission of the author.
- When referring to this work, full bibliographic details including the author, title, awarding institution and date of the thesis must be given.

Analogy and Mathematical Reasoning A Survey

C.D.F. Miller

M. Phil
University of Edinburgh
1982

CONTENTS

Preface 3
Introduction 5
Non-computational Work 13
Models of Concept Formation 24
Winston's Program 24
Langley's Program BACON. 1 34
Other Work on Concept Formation 41
Lenat's Program AM 44
Paradigms for Deduction by Analogy 70
Kling's Program ZORBA 70
Analogy as a Cousin of Unification 74
Browns Work on Reasoning by Analogy 83
Analogy in Knowledge Representation 93
Can Merlin Understand? 93
Algebraic Models of Analogy 98
Analogy by Means-Ends Analysis 102
The Use of Similarity Measures 106
Summary and Conclusions 112
References 115

Abstract

We survey the literature of Artificial Intelligence, and other related work, pertaining to the modelifing of of angalogy. In particular, we discuss the contribution of Lenat's program AM tomodels of mathematical discovery and concept-formation.

We consider the use of similagrity meag-ures to structure a knowledge space and their role 1 n concept acquisition.

Preface

This dissertation is intended to constitute "aritical review of an area of the literature" of Artificial Intelligence ${ }^{1}$. It is perhaps necessary to justify why the at first sight diverse material treated constitutes an "area" worthy of treatment as a body. We shall hope to do this in the Introduction which follows this brief preface.

In AI at present it is extremely difficult to draw precise boundaries around clearly defined and distinct topics; a study of one part of the subject almost invariably draws the student into many other regions. Thus, what is presented here is not, and by the nature of AI can not be, a study of a self-contained field, but is rather an examination of a spectrum of AI literature with two main foci of attention: "mathematical reasoning" and "analogy".

We shall hope to convince the reader that in fact analogical reasoning and representation are central to cognition, and that in particular they are essentala to mathematical deduction and discovery, which we consider paradigmatic examples of rational thought. Hence the intersection of these two topics, \quad.e. "Analogy in Mathematical Reasoning", can be seen as a microcosm of a

[^0]very wide range of cognitive activity; however, in order properly to understand the relationship between these two topics, it is necessary to consider each in a wider context.

In the Introduction we shall present arguments which will justify in more detall the choice of literature to be discussed in the succeeding sections. This will be followed by a review of a substantial body of AI literature. Finally, we shalloutline in a very general way a possible model of the assimilation of information by analogy, making use of the notion of simplagity measures.

Introductionn

```
It is always hard to choose a title for a witten text, and in view of this difficulty it is common to spend the first paragraph or so explaining what the work is really about. This survey is no exception to that rule.
Since the author's principal interest lies in the facld of Artificial Intelligence, the greater part by far of the survey will be devoted to computational systems. mplemented or proposed, which attempt to simulate various aspects of discovery and creativity 1 m mathematics, and of the use of analogy in reasoning and knowledge representation. This does not mean that all the systems discassed take mathematacs as theqr domain of actavity; we shall, for example, consider a program to carry out IQ-testanalogy recognition problems ([Evans1967a]), and programs to learn concepts by induction from examples [Winstonig75a] and [Langleyl978a]. The criterion for laclusion is that each system discussed should carry out (or attempt to carry out) some task of direct and ammedate relevance to either or both of our principal topics, mathematical reasoning and analogy. As we shall hope to make clear in the rest of thas antroductaon and in the subsequent sections. many such systems will be of much broader potentalappication than maght be suggested by their apparent restriction to a relatively limited domain.
```

The chorce of systems to be investigated will be seen to show two quite strong biases: for "analogy" systems, and againgst "conventional" theorem-provers. The reason for the pro-analogy bias is that we believe that the recognition and use of analogies is absolutely fundamental to any form of discovery, creativity or inductive reasoning. The reason for the exclusion of conventional theorem-proving programs is twofold: first, they are already extremely well studied in a number of sources (e.g [N11ssonl971a, Bledsoel977a]); second, we believe that although deduction can play a significant role in discovery, the detailed differences among the internal mechanisms of particular deduction systems are of little relevance to our present work.

An essential component of reasoning is discovery; if we wish to produce a system wich reasons inteligently, 1t is essential that it should be capable of learing from 1ts previous experience. Thus much of our attention will be concentrated upon the notion of mathematical discovery". This is a surprisingly hard concept topin down accurately. It includes the proposal of new conjectures, $1 f$ possibje with some indication of the grounds for belfeving a conjecture, the strengthof those grounds, and an idea of how to go about verifying or refuting the conjecture, the formation of new concepts, and the investigation of their properties; and the suggestion of interest -
ing areas for potential further investigation by means
beyond the present power or resources of the discoverer.

We shall begin our survey by considering some of the non-computational studies of discovery and creativity : Hadamard [Hadamardi945a], (the most directly concerned with mathematics), Koestler [Koestlerl964a] and de Bono [Bonol967a]. We shall then, armed with a better understanding of what problems are to be addressed, consider the notion of Lakatos [Lakatosl976a] that discovery is implicit in the nature of proof and refutation, and examine one of the fer detailed empirical accounts of mathematical creativity at work ([Waerdenf97la]). Alsoto be considered at this point is the very important work of Polya ([Polyal945a], [Polyal954a], [Polyal962a], [Polya1965a]) on "heuristic".

After this foray beyond the computational world, we shall withdraw to ground on which the author feels his footing more secure, and study the literature of AI to see what has been achieved, what has been attempted, and What remains up to now neglected. The most important works we shall consider (i.e. important in relation to the present enquiry) are those of Lenat [Lenat1976a] on a model of discovery \quad mathematics. of R. Brown [Brownl977a] on the construction and use of analoges for transferring "expertise" from one domain to another, and of Munyer [Munyerl977a, Munyerl977b] on the use of analogy
as a "fuzzy" matching rule, similar to unification, in a deductive system.

That the property does not have well-defined natural boundaries, which could for example be specified by giving a range of frequencies of light, is exemplifred by the fact that the French "Jaune", usually translated as "yellow", includes a range of colour which most English-speakers would usually term "brown" or "tan"; there is nofrench word corresponding precisely to the English concept "yellow". Hence the boundaries of a concept may be determined by convention (e.g. linguistic usage) rather than by an intrinsic common distinguishing property.

For a rather different appreach to the whole question, the reader is referred to "The Republic" [P1atobC360a], an which the problem of class membership is resolved in terms of partaking of the form of an appropriate frame, or "ideal" as it has been translated in the past.
[Lakatos1976a] and [Winston1975a]. Thereader may compare the above discussion with Wittgenstein's notion of a fam1ly resemblance" among a collection of objects [Wittgensterng93a]; individual instances of a concept, according to Wittgenstein, overlap in a loose and unsystematic way, leaving the precise boundary of the concept unclear.

As will be clear from the foregoing remarks, we would hold that the need for a clear understanding of analogy goes far beyond the domain of mathematical discovery-in particular we see very close links with areas involving recognition of a datum as an instance of something familiar, such as the visual identification of objects. For example Shnerer [Shneierig78a] bas produced a visual recognition program whose mechanism he has shown to be in fact of considerable generality; as an example, he has used a version of the same program to correct speling errors. It is clear in such a case that the processes involved in visual recognitionare closely allied to those necded for feature recognition ingeneral. We are limiting the main focus of our attention tomathematics merely in order to have for consideration an area of less intractable dimensions than the entirefield of human cognit1on ${ }^{4}$.

4
This is left as an exercise for the interested reader.

This, $1 t$ should be noted, is a question both about the representations of present knowledge, and about the ways which those representations are used in matchang and retrieval.

This question may be borne in mind during the reading of this survey; although we shall find no complete answers, we may at least be able to pose some relevant further questions. It may be seen as a problem of agsime 1ation - a new datum is to be taken and accoommodated ${ }^{6}$ within a framework of existing knowledge in some manner or of retrieval ("reminding" as Carbonell [Carbonel11981a] calls it) - those items within existing knowledgerelevant to the new datum are to be extracted. It is clear that these are two sides of the same coin, and that any postulated mechanism for one has very strong implications for the other.

The idea has been proposed of using similarity measures on graphs as a measure of the strength of an analogy, e.g. in [Potschkel982a]. There has not, l believe, been any discussion of the use of such measures in the search mechanism for analogy discovery. We shall therefore conclude this survey by making some tentative suggestions for an approach towards achieving this.

6
The term is taken from the theories of piaget [Piaget1954a] on developmental psychology.

Non-computational Work on Analogical and Mathematical Rea= s으프표

Before moving on to the main body of this thesis, we shall discuss briefly a few of the more mportant studies of discovery and creativity in mathematics and related fields which do not attempt to provide any sort of computational model of the phenomenon which they examine. We consider two categories of work: informal and anecdotal discussions, exemplified by Koestler [Koestlerl964a] and de Bono [Bonol967a], and attempts at a more theoretical treatment [Polya [Polya1945a], [Po1ya1962a], [Polyal965a], [Polyal954a], and Lakatos [Lakatosi976a]). In bis book "The Use of Lateral Thinking" [Bonol967a], de Bono attempts to contrast "vertical" with "lateral" thinking; neither term is given a formal definition, but the former may be best described as analytical reasoning attempting to find a direct logical path from problem to solution, whereas the latter involves the delaberate seeking of unexpected solution paths (cf. the famous quotation of Souriau, "Pour inventer il faut penser A côte", cited on p. 145 of (Koestlerl964a]). De Bono's views arewell summarised in the following extracts:

> "Vertical thinking has always been the only respectable type of thinking; in its ultimate formas logic it is the recommended ideal towards which all minds are urged to strive, no matter bow far short they fally Computers are perhaps the best example. The problem is defined by the programmer, who also
indicates the path along which the problem is to be explored. The computer then proceeds ith its uncomparable logic and efficiency to work out theproblem. The smooth progression of vertical thinking from one solid step to another solid step is quite different from lateral thinking". (P11)
"One of the techniques of lateral thinking is tomake deliberate use of this rationalizing facility of the mind. Instead of proceeding step by step in the usual vertical manner, you take up a new and quite arbitrary position. You then work backwards and try to construct a logacal path between this new position and the starting point. Should a path prove possible, it must eventually be treated with the full rigours of logic. If the path is sound, you are then in a useful position which may never have been reached by ordinary vertical thanking. Even if the arbitrary position does not prove tenable, you may still have generated useful new ideas in trying to justify it". (P12)

[^1]It may be noticed that in the first of these quotations he asserts that lateral thanking is fundamentally nonalgorithmic, whilst in the second he attempts toutine an algorithm for it! Indeed, it would be trivial to incorporate \quad n any conventional problem-solving computer program some heuristic such as "choose an arbitrary fact and attempt to incorporate it into a solution path". However, the value of such a strategy is at best unclear; what would be required in addition is a mechanism for quickly reviewing a large number of possibilities and deciding which facts are candidates for further

```
consideration. On this subject, consistent with his view
that lateral thinking is essentially not amenable to an
algorithmic definition, de Bono has nothing to say.
```


A pionetring work of this kind was the monograph by Hadamard, "The Psychology of Invention in the Mathematical Field" [Hadamard1945a]. In this hediscussesthe examples of Poincare (quoted from Mathematical Creation" [Poincare1913a]), Kekule's discovery of the benzene ring. and a large number of other examples of "inspiration" among well-known mathematicians. However, his proposed "mechanism" for such creativity draws heavily on the unelaborated workings of the "unconscious mind", where he supposes that very many ddeas are combined essentially at random, becoming accessible to consciousness (i.e. introspection) only when a fruitful combination is found. what constitutes an "1dea" or a "combination" is left undiscussed, and there is no consideration of how many attempted combinationsmay be required, nor how much processing is to be done on each combination. It is apparent
that 1 t is necessary to postulate either a vast capacity for unconscious processing or else a filtering mechanism to enable only plausible combinations to be examined, if one makes the reasonable assumption that the number of "1deas" in the memory available for combination is large. Whilst it $1 s$ perhaps possible to extract the germ of an algorithm from Hadamard's imprecise theory, it is clear that without an efficient mechanism for search control and selectivity, no practical computer program could be produced to run on the hardware of the foreseeable future which would embody this theory. Indeed, $1 t$ is clear that Hadamard was concerned rather to present a phenomenological account of the process of mathematical discovery than to provide a theory of its mechanism which would be testable and refutable.

Another major study in this area is koestler's "The Act of Creation" [Koestlerl964a], in which the horizons are broadened from mathematical discovery to creative thinking ingeneral. Once again, much is left to themy mor terious, apparently non-algorithoic workings of "the unconscious", reinforced by the examples of Porncare, Kekule, Ampere, Gauss and Hadamard (pp.116-118). However, Koestler does lay great stress on the essential role of analogy \quad n the creative process; he coins a new term,
 1dea, L, 1 n two self-consistent but habitually incompati-

Abstract

bleframes of reference" (p.35), and goes on to develop this into the idea of constructing an analogy via L between these two frames of reference. He later makesthe unequivocal assertion that "discovery consists in seeing an analogy which nobody had seen before" (p.104) and later (p.120) that "[the creative act] does not create something out of nothing; it uncovers, selects, reshuffles, combines, synthesizes already existing facts, ldeas, faculties, skills. The more familiar the parts, the more striking the new whole". However, he regards this process of selection, re-shuffling, etc. as being essentially non-algorithmic:

"Here, then, is the apparent parador. A branch of knowledge which operates predominantly with abstract symbols, whose entire rationale and credo are objectivity, verifiability, logicality, turns out to be dependent on mental processes wich are subjective, irrational, and verifiable only after the event." (P.147)
"The search for the improbable partner involves long and arduous striving - but the ultimate matchmaker is the unconscious." (P. 201)

It is, of course, an article of faith amongst AI researchers that the mystic unconscious processes invoked by Kocstler and Hadamard are modellable as computational processes, such faith must ultimately be justified by exhibiting appropriate models, and it is the attempts to do so, or to take steps towards doing so, which will form
the subject matter for the remaining sections of this thesis.

Before leaving this review of non-computational studies we should, however, consider some attempts to formalise rather more explicitly aspects of mathematical discovery.

The most substantial and best-known of these is the work of Polya Polyal945a, Polyal954a, Polyal962a, Polyal965a]; 1 n the earliest of these texts, "How To Solve $I t^{\prime \prime}$, he presents what 1 s essentially a dialectic approach to problem-solving in which the problem-solver asks himself a series of questions to guide his search, and to reveal possible alternative approaches, e.g. (pp.xvi-xvii)
"Do you know a related problem?
"Here is a problem related to yours and solved before. Could you use it?
"Can you use the result, or the method, for some other problem?"

In the later, more substantial, works polya presents a large number of detaxled examples, from whech he abstracts further general maxims. A principle akin to Koestler's idea of bisociation \quad a abstracted from examples in geometrac construction and subsequently widened very generally, viz. finding two "loci" for the solution to a problem and then finding thér"intersection" [Polyal962a,
ch. 6 ${ }^{7}$. However, the overall treatment which emerges from his work is still primarily anecdotal and unsystematic. The heuristics discussed are described informally, and frequently, as in the above instance, analogically.

Whereas Polya's examples are generally "rational reconstructions" of how a discovery could be made, an interesting example is given by Van Wer Werden [Waerdeni971a] of how a proof was actually discovered in practice by a group of mathematicians in discussion. Plotkin [Plotkinlg77a] has suggested that some of the discovery steps illustrated in this paper might be amenable to inclusion in a very advanced theorem-proving system; certandy some of the heuristics - "try to obtain a stronger form of the theorem". "try to generalise the theorem", "use the strongest induction hypothesis possible" - are extremely valuable in mathematical proof. Some of them have indeed been incorporated into systems such as those of Cohen [Cohenl980a] and of Boyer and Moore [Boyerl979a]; however, the sophisticated application of these described by Van der Haerden still seems to be beyond the scope of present programs.

One possible route which work such as Polya's and Van Der Waerden's might indicate is the development of rule7

It is interesting to notice in passing how analogy here puts in an appearance in the description of a problem-solution method.

```
based expert systems to incorporate the heuristics used by
practising mathematicians. Lenat's program AM
[Lenat1976a] can be seen as a step in this direction; hom-
ever, as we shall argue belov, AM's "heuristics" are too
low-level and the deductive power of the system too weak
to be regarded as a true expert system, although Lenat's
contribution is valuable in other respects. Perhapsmore
fruitful than a self-contained program such as AM would be
an interactive system incorporating a proof engine and an
expert adviser, the latter proposing directions of
exploration to a user who could then use the former to
test the consequences of those suggestions which seemed
most potentially fruitful. One eventual goal of such a
system vonld of course be the extraction and formalisation
of the user's expertise for incorporation within the
expert system itself, in the tradition of "knowledge
refinement" as propounded by Micbie and others.
```

 It is interesting to compare this suggestion with
 that of Machener [Michenerl978a]. She attemptstodefine
a detailed structure of mathematical knowledge (having
many similarities with the structures used in the CAI work
of Pask et al (Paskig75a]), dividing it into examples,
results and concepts, with many further subdivisions and
cross-1inks between these. She then proposes an interac-
tive computer system whach whl "help neophytes understand
mathematics and learn hor to understand" by guiding them
through the knowledge-base. Finally, she suggests using this system in conjunction with "theorem provers, or analogy- or concept-generating programs that need to use previously established mathematics". The examples given of the sort of advice the system might give to a nonresolution theorem-prover look very similar to some of Polya's heuristics.

We conclude this brief survey of non-computational studies of mathematical reasoning by considering the work of Lakatos [Lakatosl976a], whose approach is substantially more formal and more philosophical than any of the morks discussed above. Lakatos is strongly influenced by the ideas of Popper [Popper1959a] on the nature of a scientific theory, and of empirical induction. Briefly, Popper's view is that a theory is only meaningful if it is falsifigble, $1 . e$. in principle refutable as a consequence of some experiment or observation. For if a theory is not falsifiable, then $1 t$ tells us nothing of substance about the world; like the unobservability of the lumeniferous ether, \quad makes no difference to our predicted observations of events in the real world whether or not the theory holds. In "Proofs and Refutations" (the title an obvious parallel with Popper's "Conjectures and Refutatıons" (Popperi963a]) Lakatosextends the 1 dea of empracal theory formation to a domain not normally regarded as empirical, namely mathematical proof. He illustrates how

```
a theorem (e.g. Euler's relationship between faces, edges
and vertices of a polyhedron) implicitly defines a collec-
tion of objects for which the theorem holds, and how
failed attempts to prove the theorem may lead to a more
precise definition of the appropriate concept. Thus a
particular proof of Euler's relationship may farl for a
certain class of polyhedra vith "holes" in; hence the new
concept of a "simply-connected" polyhedron is introduced.
Thas process of alternately refining a concept definition
and re-working a proof has much in common with Young,
Plotkin and Linz's "rational reconstruction" of Winston's
work on concept formation [Young1977a,Winstonl975a], to be
considered in greater detail below, in which a concept is
considered to have a "least upper bound" and a "greatest
lower bound", l.e. a pamr of definitions one of which is
sufficient and the other necessary. The process of
concept-formation consists of pushing these bounds closer
together until (perhaps) they coincide8. Thus in Lakatos'
example, at any stage of his dialectic process we can
determine of most objects either that they definitely are,
or that they definitely are not polyhedra; however, there
is a certain class of objects about which our current
definitions leave us uncertain. In additaon to the above
mentioned work of Young, Plotkin and Linz, thas model of
8
    Of course, they need never merge - thas may well be
        one way of capturing the "fuzziness" inherent in many
        concepts which was pointed out in our introduction.
```

concept formation and representation has been studied by M1tchell【M1tchel11978a].

As presented by Lakatos, the notions of proof and of concept formation are seen to be dual aspectsof mathematral discovery. It is therefore appropriate that webegin our survey of $A I$ work on mathematical reasoning with survey of work on concept formation. As we shallse. this has close links with the formation of analogies.

Models of Concept Eormation in Al

Abstract

This is an extremely broad area, and oen only touch here on few of the most important or mostrelerant examples. One major piece of research in this area, Lenat's program $A M$ [Lenat1976a], is deferred to a later section for more detarled consideration, since it is especially important to our study of mathematacal reasoning; the papers considered in the present section belong to the wider area of concept-formation in general, rather than being limited to the specific domain of mathematics.

Following our remarks at the end of the previous section on Lakatos [Lakatos1976a], ve begin with an examanation of the very well-known ork of winston on "Learning Structural Descriptions from Examples".

WInston's Structural Description Legrning Progxay

In this discussion of winston's concept-learning program [Winstonl975a] we shall not be concerned with the initial scene-analysis component of the program, in wheh a descriptive network is obtained from a "blocks world" scene. Rather, we shall be concerned with the was in Whach successive "examples" and "near-misses" are used to refine the definition of the concept to be acquired. In an attempt to clarify terminology, we shall use the term "example" to mean "any scene presented to the program" (this is not Winston's usage), "instance" for "an example

```
which satisfies the concept's definition", and "non-
instance" for "an example which fails to satisfy the
concept's definition'.
```

Winston's representation of scenes as netrork of nodes and arcs appears quite simple and natural for elementary scenes (e.g. his figures 5.5, 5.6 on p.161). However, as scenes become complex the networks become coriespondingly unwieldy, and the set of "primitives" used to label nodes and arcs becomes both large and seemingly arbitrary.

His use of the same netrork structure with some additional primitives to represent concepts is, at best, confusing. Within a single network there are typically segments representing particular objects, segments describing relations betwen them, and segments describing properties of these relations (such as the "MUST-BE-SUPPORTED-BY" arc of Winston's figure 5.8). Thas fiattening of a conceptual bierarchy into a single uniform structure does not ald clarity; nor does it appear to enbance the powe of Winston's formalism - if has claim to be able to handle further recursive levels of abstraction is indeed justified, then his representation would surely be enhanced by more obviousli hierarchical structure (although such structure can of course alway be superimposed by the reader upon the "flat" networks, given sufficuent effort).

Abstract

For a detailed criticism of Winston's work, and partacularly of his representations and therimamability to the algorithms he describes, see the review by gapman [Xnapmanig78a], which casts some doubt upon whether the mechanisms and representations described by winstonare in fact fully sufficient for the tasks which he claims that has program could carry out. A sympathetic account of Winston's thesis is given as clearly and succinctly as seems feasible by Boden [Boden1977a].

For the rest of this discussion, we shall concern ourselves with what sefms to be a fair abstraction of the essence of winston's learning mechanism, alreadymentioned above in our discussion of Lakatos. Young, plotkin and Linz [Young1977a] have produced a "rational reconstruction", implemented as a POP2 program, of the use of instances and near-misses to learn a conjuctive concept; more recently Bundy [Bundy1981a] has produced a short Prolog program which embodies this model. The (strong) presupposition which underlies this model is that the set of possible attributes of objects and their relationships is arranged as a collection of well-defaned, already known hierarchies. ${ }^{9}$ The question of how the concepts embodiedin these hierarchies are themselves acquired is not

9 Lattices in the Young-plotkin-Linz model; we shall describe the model using hierarchies with an added "bottom" element, and then go on to observe how it may be extended trivially to general lattices.

```
considered by the authors; as we shall note below, theit
acquisition would appear to require a mechanism for the
learning of disjunctive concepts.
```

```
A simple example of a hierarchy might be a SHAPE
```

hierarchy:

where entries in the tree are subsumed by their "parent" nodes.


```
[M1tchel11978a], in which sets of rules are retained giv-
ing the most specialised definition (lower bound) and most
general definiton (upper bound) so far found to be appli-
cable to a concept.
```

When an example is presented, the first task is to match the objects of the example with the constants of the ideal. This is done on a somewhat ad hoc basis by both Winston's program and by Bundy's rational reconstruction; as Bundy has pointed out (private communication) there is obviously much scope for a clever matching algorithm to find the"best fit" between example and ideal. Such an algorithmould in effect be an analogy-finder of the sort which we shall see is required by any program which discovers and uses analogy. When a match has been made, by whatever means, the property hierarchies of the concept definition are compared with the attributes of the example. For each property there are three possibilities:

1) The example lies below the lower bound; in this case one component of the conjunctive definition of the concept is satisfied. If all the relevant attrabutes of the example fall below the corresponding lower bound, then the example is an instance of the concept;
2) The example lies above the upper bound; thus it fails to satisfy one component of the definition, and must
be a non-instance:
3) The example lies in the"grey" area between the two bounds; in this case the program has the opportunity to refine its definition by adjusting either the upper or the lower bound, according as the example is a non-instance or an instance (the user provides this 1nformation).

A point not observed by Bundy in the cited paper about case 3) is that a non-instance is useful only when precisely one attribute falls in the grey area; othervise the program does not know which upper bound should be lowered. It is for this reason that the choice of training sequence is critical; we shall give an example below where the same example may provide different information at different stages in the teaching sequence. It may also be noted that whereas a non-instance can lead to the adjustment of at most one upper bound, an instance may potentially lead to the simultaneous adjustment of ally lower bounds, i.e. instances seem to convey more information than noninstances, in general. This point is considered in the survey paper by Bundy and Silver [Bundyl982a], where three cases are distinguished: anstance, near-miss and far-miss (the last being the case when more than one attribute is "grey"). As alternatives to the conservative strategy of drawing no information from a far-miss, they offer the possibilities of either choosing an arbitrary attribute


```
    As an example, consider the case where the concept to
be learned is BLUE BLOCK, given a single object and the
following two property hierarchies:
```


Initially we have upper bounds (SHAPE, COLOUR) and lower bounds (BOTTOM, BOTTOM) - we introduce an arbitrary element BotTom into each hierarchy to convert it into a latice with lower bounds always well-defined.

The following table shows a learing sequence of examples, with the consequent revision of upper and lower bounds. The revised bounds at each stage of the sequence
are shown underlined.

Example Instance? New bounds

Example	Instance?	New bounds	
		Upper	Lower
-	-	(SHAPE, COLOUR)	(BOTTOM, BOTTOM)
AZURE CUBE	Yes	(SHAPE, COLOUR)	(CUBE, AZUBE)
STRIPED CUBE	No	(SHAPE, PLLEIN)	(CUBE, AZORE)
NAVY WEDGE	No	(SHAPE, PLAIN)	(CUBE, AZURE) *
AZURE CUBOID	Yes	(SHAPE, PLAIN)	(BLOCE, AZURE)
NAVY CUBE	Yes	(SHAPE, PLAIN)	(BLOCK, BLUE)
AZURE PYRAMID	No	(PRISM, PLAIN)	(BLOCE, BLUE)
NAVY WEDGE	No	(BLOCX, PLAIN)	(BLOCX, BLUE) *
GREEN CUBOID	No	(BLOCK, BLLE)	(BLOCK, BLDE)

At this point all upper bounds coincide with all lower bounds, so the concept has been learned. It is interest1ng to compare this procedure with that of Langley's program BACON. [Langleyl978a], discussed below.

We can make several observations about the above model. First of all, it requires a prior knowledge of the property hierarchies; this is a serious weakness since a fundamental part of concept formation is precisely the acquisition of a conceptual framework within which new concepts are to be assimilated. However, the condition that the knowledge be organised as hierarchies can be slightly weakened; the technique of converging upper and lower bounds can clearly be used on an arbitary lattice ${ }^{10}$, should such a representation prove useful. It is - The NAVY WEDGE gives no useful information at this point ...

* ...but here $1 t$ does!

10 Note that we use"lattice" in the formal mathematical sense here, viz. a partially ordered set such that every pair of elements has a unique least upper bound

A second major criticism is that only conjunctive concepts can be learned by thas method. It can certainly be argued that such concepts are in practice more common than disjunctive ones, and that people find disjunctive concepts relatively hard to learn. However, the counterargument that the nodes of the property hierarchies are themselves disjunctive concepts (e.g. BLUE is AZURE or NAYY) and that these concepts must themselves be açuired. is hard to answer. This avpect of concept for mation, whach can be seen as the creating of gencealisathons, as clearly related to the processes which underlie analogy formation, sance an analog. can be considered as a unifyang generalisation of two disjuint concepts.

```
    and a unique greatest lower bound.
```


Langley's program BACON.

```
In his paper [Langleyl978a] Langley describes ageneral discovery system", BACON. 1 , which gathers data and attempts to induce laws governing regularitife therein. Thus he is dealing with particular, simplified instance of the general problem of assimilating new knowledge to an existing knowledge-base - "simplified" because in his program, as in Winston's [Winstonl975a], only a single "concept" 1 s being assimilated at one time, and the program 1mplicitly assumes that all input is relevant tothis.
```

Such an assumption is justitied in the case of BACON. \quad because the program is not merely a passive recipient of "instances" and"non-instances", but instead acts as a data-gathering agent by asking of its environment (1.e. the user) what values the dependent values of a relation will take given a particular set of independent values chosen by the program. Thus BACON. 1 performs experiments upon its environment in order to infer laws governing its structure.

We shall describe here twe tasks performed by BACON. 1 , and then discuss how these are carried out.

Thefirst taskis the dascovery of a sompenumerical relationship: gaventhe orbital distance dand period pof three planets, the program notaces after examining successavely $(\underline{d} / \underline{p}),(\underline{d} *(\underline{d} / \mathrm{p}))$, and $((\underline{d} / \mathrm{p}) *(\underline{d} *(\underline{d} / \mathrm{p})))$ that
the last of these is constant. This is Kepler's third lat of planetary motion. Since BACON.1 lacks any algebraic simplification rules, the final term above is not translated to $\left\{\frac{d^{3}}{2}\right\}$.

The second task is a simple concept-formation in the style of [Winstonl97Sa]. The program is given three independent variables (shape, size and colour) and their domains of possible values, and one independent variable ("feedback"). It then asks for various values of feedback and receives the successive responses:

large	blue	square:
smo		
large	blue	square: no
small	red	square: yes

by which stage it has formulated the hypothesis

> colour=red $\quad \Rightarrow$ feedback=yes
> colour=blue \Rightarrow feedback=no
which it thenconfirms by trying

large	blue	circle
small	blue	circle
large	red	circle
small	red	circle

The disparity between the above two tasks suggests that either BACON. 1 does indeed embody some general principles of discovery or else it possesses a mixture of methods apt for various different tasks. We shall argue that, while both of these contain a measure of truth, the
latter is in fact a more significant factor in the program's apparent versatility.

BACON. 1 is a production-rule system whose rules fall intofive categories, totalling in allabout 75 rules:

Data-gathering - these govern the program's acquisition of "raw" data by means of a factorial experiment ${ }^{10}$ in the independent variables. (Hence, the existing program is only suitable for handing variables with a finite domain).

Identity-checking - these check that algebraic combinations (called by Langley "higher-level attributes") of the independent variables, proposed as relevant by the regularity-checking rules, have not previously been examined in another guise. They thus prevent the program from looping, and are for "housekeeping" purposes only. In principle they could be replaced, to the benefit of the program, by a set of general algebraic simplification rules.

Attribute-evaluation - these obtain or compute the values of dependent variables, some of which are obtained from the environment while others are higher-level

10
I.e. an experiment in which all possible combinations of the independent variables are systematically examined.
attributes proposed by the regularity-checkers.

Generalisation-testing - these check further data to determine whether a proposed 1 aw actually holds.

It is the fourth category, the regularity-checking rules, which are of principal interest to the present discussion since these embody the claimed general discovery mechanism of BACON. 1 .

Let us look at the planetary motion example more closely. Only two rules are nefded tofind the regularity here:

```
If two attributes increase together, consider their
ratio.
If one attribute increases as another decreases, con-
    sider their product.
Clearly these two rules suffice for discovering any rule
``` of the form:


Afurther rule proposes linear combinationsof attributes, thus allowing bACON.1 to discover constancy in any rational function of the independent variables. There is another rule which looks for periodicity (so that BACON. 1 can, for example, "explain" seriessuch as 11121314151 ...)

Rules of tye above type are described as "trend detectors", and operate only on numeric data. Theremaining regularity checkers are"constancy detectors" which work oneither numeric or symbolic data.

It would appear that this singling out of numeric data seriously weakens Langley's claim of generality. However, matters are not quite as bad as might at first be assumed; in particular periodic regularities in symbolic data \({ }^{11}\) are recognised, since the periodicity is itselt derived from a numeric attribute (viz. position in the sequence). However, it is very hard to imagine how complex non-numeric concepts such as winston"s"arch" could be acquired by this sort of rule; one problem is that in harder tasks like this it is not feasible torovide the program with a small fixed set of independent attributes, each with a finite domain.

11 E.g. blue square, red circle, red square, blue circle, red square, red circle

This comment leads us to what is probably the most serious weakness of BACON. 1 . By restricting its domain to "toy" worlds where the number of possible different inputs is finite, indeed small, and free of "noise", Langley bas avoided all the problems of search control. It is clear that if the program were, for example, to be able to recognise more elaborate numerical relationships (exponential, logarithmic, sinusoidal, square-root, derivative, etc.) the number of candidates generated by the regularity-checkers would rise very greatiy. Similarly, if even as few as six symbolic attributes with six legal values each were defined, BACON. \({ }^{\prime}\) 's factorial experiment would require about 50000 sets of independent data to be supplied, and would obviously become intolerably large.

One notion which is lacking is any idea of hypothesis testing by the generation of crucial tests to decide between rival hypotheses. Armed with such a mechanism, BACON. 1 could avord performing the entirefactorial experiment, and instead examine its hypotheses to choose those cases which might refute them. The only hypothesis testing described by Langley is, roughly, "if the hypothesis is seen to be true for thefirst four sets of data encountered then it is accepted"; as arinciple of induction this would scarcely satasfy the most pragmatic of positivists, let alone disciples of popper, and can scarcely be regarded as an accurate model of Baconian

Scientific Method!

\begin{abstract}
In summary, we find Langley's claim for the generality of his program unconvincing. Furthermore, although his method produces quite elegant results in small domains, we doubt very much whether it could be extended to cope with large rule-sets, leading to very large search spaces where the number of alternative hypotheses widd become unmanageable; it is also not easy to see how it could be made to handle noisy data, or data from continuous domains. Langley has failed to confront one of the central problems of discovery, and of AI as a whole. namely that of controlling search to defer the onset of the combinatorial explosion.
\end{abstract}

In the above discussions of the programs of inston and Langley we have seen two widely contrasted approaches to concept acquisition, each with a nober of shortcomings.

Perhaps the most immediately apparent distinction which may be drawn between the systems is the passivity of Winston's program contrasted with the positive datagathering of Langley's; however, the latter is largely flusory since BACON.lis in fact simply trying out every possibility within its search space; later versions, BACON. 3 and BACON. 4 , behave rather more intelligently in this respect ([Langleyl979a], [Bradshawl980a]), as well

\begin{abstract}
as being able to cope with small amount of "noise" in the input data, but do not differ very significantly from the model described above. A mote genuinely active explorer of a non-trivial search space is Lenat's program AM, Which we shall describe in some detail below. This program not only chooses which examples it inshes to study, but also generates the appropriatedata itself. In this respect, AM shows the true begingings of a conceptlearning program. Furthermore, AM assimilates its concepts within the same structure as itspror framemorkof knowledge, whereas Winston's description"primitives" seem to belong to an entirely different category of knowledge from the concepts which they are used to describe.
\end{abstract}

Nevertheless, allof these programs are open to the question of where their initial knowledge-base derives from. In contrast, several workers have been working on therecognising of structure and pattern within input data with no prior collection of conceptsor description primitives, e.g. Hedrick [Hedrick1976a] and Veref[Vere1977a].

\section*{Other Worty on Concept Formation}

There is a very large body of work onthis topic, as remarked earlier; having considered what we regard as two paradigmatic examples, we shall not discuss the rest of this field in great detail-aghorough bibliography can be found in the SIGART special issue on machine learning
[Mitche111981a].

This reports, amongt many other items of research, the work of Shapiro [Shapirol982a]at Yale University, who claims to have developed a program wich is capable of inducing, for example, the Peano axioms of arithmetic fom facts such as
```

"0<succ(0)" is true
"plus(succ(0), succ(0), succ(succ(0)))" is trac
"times(succ(0),0,succ(0))" is false

```

Shapiro reports in his summary in SIGART that his model is based on Popper's methodology of conjectures and refatations [Popper1963a]. Bundy and Silver [Bundyl982a]give a brief summary of his technique of "contradiction backtracking", which discovers fauly rules. Unfortunately we have so far been unable to obtain further details of this interesting work.

requiring that a prior hierarchy of features beopletely known, he merely assumes that a partial ordering relation \(" \underline{i s}\)-more-specialized-than" can be defined upon such features. His discussion of the way in which instances and counterexamples of ancept can be used to bring these bounds closer together is very similar to that of Young, Plotkin and Linz.

After this consideration of some of the principal ideas in concept-formation in general, we now go on to consider the role wich such ideas play in mathematical discovery, and look at some of the other mechanisms which are introduced in a program which operates within this domain, Lenat's program AM [Lenat1976a].

\section*{AM: a proposed general model of mathematical discoyery}

We shall now consider the most comprohensive and ambitions attempt to date to model the process of mathematical discovery, Lenat's program "AM", which is described in detail in his Ph. D. thesis \({ }^{12}\), and is sumarised in his "Computers and Thought" lecture at the fifth IJCAI ([Lenat1977a]). This program is a large and complex piece of work, and it will be necessary to camine closely its claims, its achievements, and its shortcomings. Other critical surveys of Lenat's work can be found in the paper by Hanna and Ritchie 【Hannal981a] and in the chapter on concept formation in Bundy's book onmathomatical reasoning 〔Bundy1982b].

Briefly, the program begins with a body of knowledge about some domain chosen by the programer (wo shall discuss below the degree of domain-independence attained by Lenat), and uses acuristic search technique to broaden its knowledge of that domein. When started with a kowledge of elementary mathematical concepts (Relation, Equality, Structure, Operation, etc.) and set-theoretic objects (Set, List, Bag, Set-union, etc.). AM develops concepts of number, arithmetic operations, and primeness, and proposes unique prime factori-

\begin{abstract}
sation and Goldbach's conjecture among many other concepts and conjectures. Whenever a program displays very high performance on a restricted collection of complex tasks, there are several questions which should be borne in mind while attempting to evaluate its achievement. In the case of \(A M\) mest consider the following:
\end{abstract}
- How sensitive was the precise choice of initial data? Was the quality of the result a consequence of a very carefully chosen starting configuration?
- How much were the program's heuristics "tuncd" to produce the desired results?
- How well would AM adapt to other domains?
- How much further could AM have progressed if allowed to run for longer?
- Does themodel nossess any psychological validity \({ }^{\mathbf{1 4}}\) ?

13 Alan Bundy [Bundy1982b] has pointed out that in the examples given in Lenat's thesis the conjecture called Goldbach's Conjecture is in fact a far more trivial conjecture, viz. that every even number is the sum of some number of primes (trivial because \(4=2+2, \quad 6=2+2+2,8=2+2+2+2\), etc.); however, the examples make it clear that AM conld very easily have formed the correct conjectire by precisely analogons means - indeed it may well have done so on other runs.

14
This is neither a necessary property of an AI program, nor one claimed by Lenat for AM; it is, however a relevant question to ask of any program performing intelligent activities.

If not, does it at least give any insight into the structure imposed by people upon their knowledge of the world?

Passive Dynamic Knowledge ("Concepts")

Active Dynamac Knowledge ("Tasks")

Active Static Knowledge ("Heuristics").

The reasons for this choice of labels should become clear as the terms are explained.

\section*{Passive Dynamic Knowledge}

By this heading we mean those parts of the program which are essentially treated as actarative database by AM. Since AM is a production system, we can also describe it as the long term memory of the program. This data-base is constantly being modified and enlarged by \(A M\), and indeed a large part of the measure of the program's achievement is the final state of the data-base. (One must also take into account the directiness of the route by which this state was achieved).

The data-base ls composed of a collection of

When a concept is first created (we shall discuss below how this can occur), many of its facets will be empty, or only partially filled in. In essence, the entire driving mechanism of \(A M\) is the attempt tofillinempy facets of known concepts. (This is similar to the control-structure of GUS [Bobrowig77a]).

Typical facets are: Names, Definitions, Specializations, Generalizations, In-Domam-of (i.e. functions whose domain is the given concept), Worth, Analogies, Conjectures, Examples, Isas (i.e. concepts of which the given concept is an example). Also included as facets of a concept are "heuristics" (discussed in detail in the section after next) which tell the program how tofill in other facets of the concept, how to check existing entries for validity, how to estimate the concept's interest, and what activities pertinent to the concept might be worthwile.

A typical concept might thus be (p.15):
```

TNAME: Prime Numbers
DEFINITIONS:
ORIGIN:
Number-of-divisors-of(x)=2
PREDICATE-CALCULUS:
$\operatorname{Prime}(x)<\Rightarrow(y z)(z \mid x=>z=1 \quad z=x)$
ITERATIVE:
(for $x>1$ ): For ifrom 2 to $\mathcal{V}(x), 7(i \mid x)$
|EXAMPLES: 2, 3, 5, 7, 11, 13, 17
BOUNDARY: 2, 3
BOUNDARY-FAILURES: 0, 1
FAILURES: 12
| GENERALIZATIONS:
Numbers, Numbers with even no. of divisors,
Numbers with prime no. of divisors
|SPECIALIZATIONS:
| Odd primes, Prime pairs, Prime uniquely-addables
| CONJ ECTURES:
Unique factorization, Goldbach's,
EItremes of Number-of-divisors-of
INTUITIONS:
"A metaphor to the effect that Primes are the
building blocks of all numbers"
|ANALOGIES:
| Maximally divisible numbers are converse
extremes of Number-of-divisors-of;
Factor a non-simple group into simple groups
IINTEREST:
Conjectures tying Primes to TIMES, to
Divisors-of, to closely related operations
1WORTH: 800
New concepts can be created in various rays as
attempts aremade to fill in facets; among themore obvi-
ous are the creations of generalizations or specializa-
tions. We shall defer full discussion of concept-

```
formation to the section below on AM's "heuristics".

The particular facets"Examples" and"Isa's" relate together pairs of concepts in a lattice, as do the palr of facets"Specialisations" and" Generalisations"; the concepts are thus partially ordered by increasing specialisation, with the concept"Any-Concept" at the top of the hierarchy of concepts (there is an item"Anything" which lies above "Any-Concept" - this is the most general category known to AM). It is this lattice structure which Lenat describes as \(A M^{\prime} s " c o n c e p t h i e r a r c h y " . ~\)

\section*{}

We discuss here the control structure adopted by AM for scheduling its activities. One of the possible effects of a heuristic is to create an object known as a"task". A task comprises: an activity to be carried out (e.g. "Fill in") ; a concept and associated facet on which the task is to be carried out (e.g. "Examples of Number'); a value, indicating the worth of carrying out the task: and a list of reasons why the task was proposed. Tasks are arranged on an "agenda", which is a list ordered by the worth of the tasks.

The flow of control of AM is repeatedly to pick a task from the agenda, allot resources to it, and then carry it out until it terminates normally or exceds whichever comes first of its allotted resources of either

\begin{abstract}
space or time. In the usuel operation of the progranthe top task on the agenda (i.o. the one with highest worth) is always chosen. However, it is possible for tho user to direct this choice interactively; also, Lenat carried ont experiments in which the next task was chosen randomiy from among the top twenty, or even randomig from the whole agenda-hereportsthat the first of these experiments led to a decrease in the "directedness" of the program's search, and about a threfold slowing in the rate of making "interesting* discoverios, whilst the second cansed \(A M\) to thrash about vainly in a morass of expanding search-space.
\end{abstract}

Tasks are proposed, i.e. added to the agenda, as a result of varions activitios of the program. It is possible for the same task to be proposed soveral times; in such a case it is important that the worth of the task be raised only if it is being proposed for a different reason than before. This is the justification for the inclusion of symbolic reasons in tasks. In gencral, the worth of a task is computed from the ratings associated with the reasons supporting it, and the worths attached to the activity, the facet, and the concept involved. Lenat gives a rather complicated formula for this, originally intended as an ad hoc first appoximation. He asserts that in fact the precise formila used is unimportant provided that it satisfies certain intuitively
```

plausible monotonicity properties, and that the original
formula proved satisfactory.

```

The programmer fixes the worths mentioned above associated with symbolic reasons, activities and facets; again, Lenat asserts that the precise values used are of littleconsequence.

Active Static Gnowledge
```

    We use this description for AM's "heuristics" becanse
    it is these heuristics which govern the actions carried
out by the program, but the heuristics themselves are
immutable.

```
 Before going further, it is necessary to clear upa
possible misunderstanding generated by Lenat's confusing
terminology; in the viet of \(A M\) as a heuristicesearch
program, in the tradition of the Graph Traverser
[Doran1966a], Lenat's "heuristics" do not correspond to
the heuristics which control the search. Rather, they are
the rules by which successor nodes in the search space
are generated \({ }^{15}\). The search is in fact governed by the
15 This point is alsomade in Bundy's "rational recon-
 struction" of AM's search procedure [Bundy1982b], in
 Which he represents some of the herristics as infer-
 encerules, e.g.
 ท Ex (example(C1, Ex) \(\Rightarrow\) example(C2, Ex))
 conjecture(C1, C1 C2)
 which is to be read as

```

        - 52 -
    single herristic "Use the rorth of a task as an evalua-
tion function; carry out the 'best' task"; thus, the
nodes of the search space are tasks, and the generation of
concepts and conjectures can be regarded as a side-
effect of the search procedure. Having made this point,
we shall from now on use Lenat's terminology without
further comment
AM's beuristics are production rules of the form
IF pre-conditions THEN action.
The pre-conditions are a set of tosts on the current
environment, and are constrained to have no side-
effects on any of AM's data structures; typical tests
would be "more than half the allotted space for the
current task has becen nsed", "concept C has no Exam-
ples", "the current task has found at least 10 entries for
facet F of concept C", etc. Included amongst the
tests there is almays one of the form "the current task
IF
THEN add conjecture"C1 EC2"
to the conjectures facet of C1
and others as "meta-level inferencerules" to control
the otherwise explosive search generated by these
rules, e.g.
19. To filll in eramples of X, where X is
a kind of Y,
Inspect the eramples of Y; some of
them may be examples of X as well.
The further removed Y is from X, the
less cost-effective this rule is.

```
is to performactivity A on facet fof concept cer this test is in fact nsed to index the henifstics, as an aid to efficient retrieval of the heuristics relevant to a particular task.

The execution of task involves gathering all tho henristics relevant to caryying itont (which ingeneral involves"rippling" up the concept hierarchy to collect the heuristics associated with generalisations of the associated concept), and execnting all those whose lefthand sides are satisfied, although this process may be affected by the restrictions imposedontheresonrecs used by the task. To execute aciristic, the acton on the right-hand side is performed.

A right-hand side can in general do one or more of the following: suggost a new task, create ant concept, create anentry for a facet of anexisting concept. When a net concept is created, cortain of its facets are filled in at once, e.g. its definition and its nage: in general only those things which are easy to fill in at creation time but would be harder in a subsequent task (because the present context provides relevant inforgation) arefillodinat once. Net tasks ill be proposed tofill in each of the empty facets of the new concept.

As an illustration of the creation of new concepts, Lenat gives the following example (p. 42)
```

Henristic:
If the current task was (Fill-in oxamples of F),
and F is an operation from domain space A
into range space B,
and more than 100 items arc known examples
of A (in tho domein of F).
and more than 10 renge items (in B) were
found by applying F to these donain items,
and at least l of these range items is a
distinguished menber (especially extremum)
of B
Then (for each such distinguished member 'b'
in B) create the following new concept:

```
\begin{tabular}{|c|c|}
\hline Tame: & F-Inverse-of- \\
\hline l Dofinition: & \(\lambda(x)(F(x)\) is \(b\)) \\
\hline Generalization: & A \\
\hline |worth: & Average (Worth(A), Worth(F), Worth(B), \\
\hline & ||Examples(B)|l) \\
\hline |Intorest : & Any conjecture involving both this \\
\hline & concept_and_either_F_or_Invorse(f) \\
\hline
\end{tabular}

In case the user asks, the reason for doing this is:
Worthwhile investigating those \(A^{\prime}\) shich have an unusual f-valuo, namely, those whose F-value is \(b^{\prime \prime}\)
The total amonnt of time to spend right now on all of these new concepts is computed as:
Half the remaining cputime in the current task's time quantum.
The total amount of sace to spend right now on each of these new conceptsis computed as:
The remaining space quantum for the curient task.

We may note in passing that the ontry on the Interest facet of the new concept sooms to be the only form of new heuristic which is ever created by AM.

This heuristic was triggered while AM was working on the task"fill-inexamples of number-of Divisors-of", and created (among others) the new concept "Divisors-of-Inverse-of-Donbleton", defined by " \(\boldsymbol{\lambda}(\mathrm{x})\) (Divisors-of(x) is a Doubleton)" (note that the"Definition" of a conceptis

56. If the current task is to Check Examples of concept \(X\),
and (Forsome \(Y\)) \(Y\) is acneralizationof \(x\) with many examples,
and allexamples of \(\quad\) (ignoring boundary cases) are also cxamples of \(X\).
Then conjecture that \(X\) is really no more specialized than \(Y\),
and Check the truth of this conjecture on the bonndary examples of \(Y\),
and see whether \(Y\) ight itselfturn out to be no more specialized than one of its generalizations.

This hencistic was attached to the concept Any-Concept. and would thus be invoked for any"Check Examples..."
task. When checking examples of odd primes, allexamples of primes (ignoring the boundary cases) werefound to be odd, and so an entry was added to the Examples facet of Conjectures: "All primes (other than '2') aroodd primes". A new task mas also proposed: "Check Examples of Primes", with the supporting reason "Justas Primes was no more general than odd-primes, so Numbers may turn out to be no more general than Primes"; note that this taskis a general one, in that all the heuristics relevant to "Check Examples of Primes" will be invoked, notmerely the one relevant to determining whether all Numers are Prime - thus the reason for proposing ask provides no gaidance to AM on how to perform the task.

\section*{Strongths and shortcomings of AM}

Having oxamincd in some detail the working of \(A H_{\text {, we }}\) are now in position to consider its contribution to AI research, and the particular strenghs and shortcomings which it exhibits. We can also attempt to answer some of the questions raised at the beginning of this section.

One of the strong points of the program is that its basic control structure is extremely simple; not only is the loop"select a task; collect heuristics; execute theq" very straightformard, but the number of different kinds of tasks wich the system can performis very smalifiz. four-Fill-in, Check, Suggest, Interest). However, as

\begin{abstract}
a corollary of the sinple control structure, all the conplex behaviour of the progran has to be encoded in the heuristics and initial data - principally in the two hundred and fifty or so henristics.
\end{abstract}

The only limitation on the power of the task agenda as a control mechanism is that the sphere of AM's activity must be amenable to representation as a structure of frame-like concepts, with a reasonably limited sot of possible"slots" in the frames. Such a formalism sects
 tasks. Although it might be arguable that in general one needs to be able to construct nef types of facet, and there are certainly facets (e.g. Justifications, Counter-examples) which wonld need to be added tolenat's set, it seems intuitively implansible (at least to the present anthor) that such slot-types can be multiplied indefinitely.

Thus, as observed above, essentially all AM's knowledge of how to cariy out acific activity, such as mathematical discovery, is contained in the heuristics. The question now arises: To what ertent are \(A M^{\prime} s\) initial benristics applicable to working with databases other than the"primitive mathematics" one used by AM? Lenat describes a "geometry world" experieent with AM; however, this world is structurally so sinilar to the original one that very little can be deduced from the

\begin{abstract}
experiment - infact, beyond defining elementary concepts like congruence, AM seened to spend mech of its tine rephrasing its numbertheoretic work in terms of integer angles.
\end{abstract}

This is a symptom of an imortant distinction wich Lenat does not draw in his work on \(A M\), between abstractions and models. When AM has discovered "Bags-of-T" as interesting objects, it then goes on to explore their properties; this is interpreted by the user as the discovery of numbers. However, what is in fact being investigated is a particular model of numbers, and ike other models it possesses irrelevant properties (e.g.each "number" is a sub-bag of many other "numbers"). If ve vere to define numbers ectualy to be "Bags-of \(\mathrm{T}^{\prime \prime}\), ve might oventually discover somo closely analogons objects (e.g. Nists-ofnil" or nested sequences of sets) which had very many properties in common ith "numbers" but were nonetheless quite different in other respects. At this stage alansible possibility would be to define numbers purely intensionally, as the abstraction of the"interesting" common properties of "Bags-of-T", etc, - assuming that such properties could be determined. Of course, for such a definition to be useful one would require a system wich had powerful tools for manipulating formal definitions, and this goes well beyond wat Lenat has attempted in \(A M\); we believe that one of the major limitations on AM's achieve-

\begin{abstract}
ment is its need always to have "concrete" models tomaipulate, since models of complex concepts arelikely to be unvieldy, and many of their interesting properties may bo more readily discovered by formal means than ompirically.

Of course, many of the heuristics are specifically attached to relatively spocialised parts of tho domain. but many others are of very genoral application - almat half of the heuristics are attached to the very high-level concept "Any-concept". One might hope, then, that many of the heuristics are indecd appropriate for a vide variety of discovery tasks, and inact a large number of them do appear to possoss great gonorality (see Appendiz 3).
\end{abstract}

Hovever, careful study of the set of houristics reveals a number of anomiles. Many houristics soem to be at an excessively detailed level, containing information on how to decompose predicate calculus or recursive function definitions, or list-structure representations of objects. It seems that in his desire for structural uniformity, Lenat is in danger of confusing different levels of knowledge by acording to what are essentially low-level manipulation routines the same logical status as is giventofarmorebstractrules of inference. Indeed, there may well be a case for replacing his single unitorm rale-set with multiple production rule system, i.e. a collection of rule-sets

\begin{abstract}
organised so that certain of then are avaliable only in particuler contexts (note that this should be distinguished from the indoxing mechanism whinh Lenat nsesto retrieve rules relevant to a paricular task). It asy also be remarked that many of Lenat's gore general rules appear to be particular instances of even more general rule-schemas; a more oconomical, and cleaner, structure may be possible in which groups of syntacticalig and semantically similar rules are replaced by single metarules. For example, rules 47, 52 and 55 all ossontially say "If (under various circumstances) a concept has fen cxamples, try genexalizing it", and the dual rules 48, 53 and 54 say "If a concept has too moryexamples, try specializing it": these conld perhaps be subsumed into a pair of rules, and possibly even into a ingle rule itherorm something like: Non-trivial concepts should possess reasonable numbers of examples and non-examples; a tay of reducing/increasing the number of examples is by specializing/generalizing the concept". In a more sophisticated \(A M-1 i k e\) program, \(\quad h i c h\) as capable of gencrating new rules, we might expect to see the duality of specialisation and generalisation captured by a meta-rule which, given a rule involving one produced the dual rule using the other.
\end{abstract}

Of AM's 240 or so heuristics, about querter are principally concerned with directing AM's attention, esper
```

cislly with deciding vhich concepts ere interesting and
how interesting they are. These seem to fall into a dif-
ferent category from, for example, those heuristics which
create net concepts; they correspond more closely to the
"classical" form of heuristic search, in that they provide
an"evaluation function" on concepts, which is ingturn
part of an evaluation function on tagks. This corresponds
to the distinction observed by Bundy, ss montioned in an
earlier footnote, between those heuristics mhich are
essentially inference rules and those which are instead
"meta-level" rules to guide the search.

```

There are slightiy over 30 heuristics which oxplicitly construct now concepts; in addition to this, however, concepts can be created by the application of certain other concepts-e.g. Compose applied to two Active concepts yields another Active concept. There seens to be a certain taxonomical untidiness about system in which the function of concept-formation is thus distributed between two quite different mechanisms, as also abouta system in which the examples of some concepts are concepts, whilst those of others are not. This untidiness appears to stem at leastinpart from a lackofany clear
 which is indeed often hard to dran. (Is Add a particular instance of Operation, or is it a general class of triples (x, \(y, z\)) such that \(x+y=z ?\) According to Lenat's tazonong
```

it is both). It is not at all clear vhat would be a
proper remedy for this, and we shall do no more here than
suggest that there is room for substantial re-thinking of
AM's underlying ontology, and for re-orgenising the
heuristic rules so that the genuinely "heuristic" ones are
separated from the "rale of play" ones - and furthermore.
so that both of these are separated from those vhich
encode knowledge about the particular representations
adopted by AM (e.g. the fact that sets are represented as
LISP-lists sorted in lexicographic order).

```

We have criticised the "heuristics"; whet of the choice of concepts in the original data base? Despite Lenat's claim that the initial sot of concepts of the system corresponds approximately to those possossed by a child of about four (p. 113), the knowledge embodiod in AM's starting state is articulated in ways much more formally sophisticated than would be implied by that claim. One important distinction which lenat does not draw is that between possessing a concept at the level of being able to recognise instances of the concept as being members of a distinguished class vith something in common (implicit possession of aconcept), and possessing a concept explicitiy, at the level of being able to introspect about the definition and structure of the concept. All of AM's concepts are of this second, explicit, kind; thos, it not only possesses concepts like Bag, Set,
```

Ordered Set, and List, but knows clearly about thec rela-
tionship and distinction betwecn then, and possesses
Organising generalisations such as Ordered-structure,
Structure-without-repeatcd-clements, etc. Thus, fromethe
viewpoint of psychological validity, AM could be criti-
cised for having its knowledge too well articulated.

```

However, as we noted in our opening remarks, Lenat makes no strong psychological claims for AM. The second part of our original question on psychological validity *as "[Does the program] give any insight into the structure imposed by people upon their knowledge of the vorld?", and here the model of a hierarchical lattice of structured conceptsectedupon by "heuristic" rules seems to be potentially very friftifl and woll worth further development.

A serious alternative to "psychological" viem of AM is to consider it as a logical system. According to this view, the program's significance lics in the empirical methods used to extend the initial set of definitions and assertions, and in whether such a system could go on extending itself indefinitely, or whether it mast uitimately be overwhelmed by the"combinatorial explosion". as AM appears to be. Lenat claimsthat the eventual degradation of \(A M^{\prime} s\) performance is caused by the lack of nev special-purpose heuristics to handle the new concepts

\begin{abstract}
reason, and indeed the converse can also be argued - that What AM lacked was a officiently powerful set of very genergl focus-of-attention henristics. In particular, a strong directing force which AM lacks is any sort of goal-driven activity; one wouldexpect a moch better performance from a program which could select interesting gosls to work towards, although it is very moch an open question how the relevance of candidate tasks to a gol might be estimated, and how the system could be kept from a dogged pursuit of one fata morgana after anothor.
\end{abstract}

Another aparent anomaly, we vould sugest, is that one of AM's conceptsenjoys special status vhich is not made explicit anywhere in Lenat's thesis. This is the concept of equality, which is present explicitiy as Object-Equality. Equality plays a fundamental role in AM's discovery of Number; furthermore, according to Lenat, if Object-equality is excised from the initial database it is not rediscovered by AM. However, many of AM's heuristics include checking objects for equality (in the sense of identity) without refering directly to this concept. Indeed, this seems perfectiy reasonable. since it seems clear that the recognition of identity and difference does indeed play a fundamental role in any reasoning process; it is merely a litile strange that Lenat nowhere discusses this special status, but merely assumes it implicitly.

\begin{abstract}
We may note in passing sifgt pecaliarity relating to noticing equality: in task 29, p. 297 , "Checkeramples of Set-Union", AM notices that "often Set-union (x, y) vas equal to one of its arguments", and goes on to dofino the Superset concept, crucial to later developmont, as a result of this observation. We have been unable to find a heuristic in the list given in Lenat's appondix 3 which accounts for AM noticing this fact atall.
\end{abstract}

At the beginning of this section we posed the questions "how sensitive was the choice of initial datag" and "to what extent were the heuristics tuned?". These questions bave also been raised by Hanna and Ritchie [Hangalgila], who suggest that the data and heuristics were indeed designed to produce the particular behaviour shom by AN. However, in a reply to this paper [Lenatig81a] Lenat strongly rebuts this suggestion, and asserts that almost all of the concepts and attached heuristics were designed before AM was coded, and that virtually none of them was subequently modified.

Furthermore, AM figiod to make some of the discoveries which its author hadexpected, and made anaber of quite unexpected ones. Thus it appears that the answero onr questions is that both the rules and the initial concepts were not specially chosen to produce a given performance.

Hanna and Ritchie also make a number of other detailed criticisms of Lenat'sthesis; the essence of much of their criticism is that the thesis as it standsannot be an accurate description of the program wich produced the results described. 0 ur onn reading of the thesis would support this viev to some extent, as is shon by the occasional detailed problem noted above; hovever, we wid attribute the problem primarily to confusionengendered by Lenat's rather over-fanciful translations from LISP code to plain English. A question which remains uncesolvod is
 by the program as separate rules, or whether some of the "rules" cited are in fact merely a commentary on behaviour which was coded into the program to embody aumer of interleaved rales. Lenat, in the reply cited above, seems to concede that this is indeed the case, but later goes on to say that the control mechanism was precisely as described in the thesis, with no hidden subtleties. These two statements sefm to be mutully incompatible, and there remains some confusion about this point.

A shortcoming which Lenat himselitatributes to AM is

\begin{abstract}
its lack of any forinal proof methods, or even the concept of proof. Whilst these would be of value in rejecting invalid conjectures, confirming others (and possibly thereby leading to new concepts), and perhaps in rejecting obviously futile tasks, the real benefitof such an addition would be thegoal-directedness which it could give to AM. We shall discuss this in the next section.
\end{abstract}

The task of AM

The first, and most important, observation (already touched on above) is that AM models only a very imited form of discovery, namely discovery by data-driven (or forward) search. In practice much (we are teapted to say "almost all") mathematical discovery (and here we are tempted toreplace "mathematical" by "scientific") is the result of goal-directed activity. That is not to say that the mathematician deliberately embarks upon the task of making a particular discovery, or even of making a discovery of aticular form. Rathor,
```

discoveries spring up as side-effects of trying to solvo
very specific problems; the discoveries may thegselves
be apparently remote from the problem being considered.
One may instance here the considerable amount of mathomat-
ics which has arisen from the (unsuccessful) attempts to
prove Fermat's Last Theorem [Edwards1977a].

```

Thus, an AM-like system should benefit from the incorporation of a problem-solving mechanism, and a component which selects tasks according totheir apprent relevance to the problem at hand. The dosign of such a problem-solver vould of conrse be a very large research project in itself.

The second observation is that \(A M\) searches for its discoveries within a formal domain. In many fields of science this is only the second stage of the discovery process, and not necessarily the harder. There gist first come a stage of formalisation, developing the appropriate descriptive concepts and 1 anguage 16 from empirical data. It is unclear how an AM-like system might go about this task. In reply, it might be ergued that, at least in the particular domain chosen by Lenat, the initial concepts are to be regarded as corresponding

16

\footnotetext{
In reply to the argument that all knowledge is in some sense "formal", in that it is representable within some formalism, we woud point out thet some languages (e.g. English) are less amenable than others (e.g. lambda-calculus) to formal manipulation.
}

\begin{abstract}
to "innate" knowledge, needing no prior concoptformation process. ve find such anargument implanible if AM is to be regarded as having any psychological validity - there seems no reason to assume that any of AM's starting concepts are"innate" in humans; of course. in the viet of AM as a purely formal system, the entireargument becomes irrelevant.
\end{abstract}

Finally, we shall observe that the discovery undertaken by AM is a single-level process. That is, AM can discover concepts, but not new discovery techniques; the set of heuristics is essentially inextensible. The remedy proposed by Lenat is a further "flattening" of the program's structure, so that henristics theaselves
 though this uniformity may be, it seems to ns important to keep a clear distinction between levels of abstaction. Thus, even though one may wish tokeep anitorm representation for all kinds of objects known to the system, these should be collected ingroups as "concepts". "rules about concepts", "rules abont rules", and possibly further meta-levels. This remark may be considered in conjunction withour earlier sugestion that the heuristics may be better oxprossed as a mitiple rule-setwith rule schemas.

\section*{Paradigms for Deduction by Analogy}

\begin{abstract}
In this section we shall considor two ways of nsing analogy as a deductive tool. Tho first is proposed by K1ing [K1ing1971a], the second by Munyer [Munyorig77a]. Before describing these, we should like to quote Blodsoo [Bledsoel977a] on the importance of analogy for doductive systems:
\end{abstract}
```

* Perhaps the biggest error made by researchors in
automatic theorem-proving has been in essontially
ignoring the concept of angloggy in proof discovery.
It is the very heart of most mathomatical activity
and yet only Kling (1971) has used it in an antomatic
prover. His paper showed how, with the nec of
knovledge, a proof in group theory wonld be used to
help obtain a similar proof in ring theory.
"We strongly urge that other workers in this field
familiarize themselves with Eling's work and extend
and apply it more offoctively."

```

The work we shall describe by Munyer may be son as an attempt to follow the advice in Bledsoo's second para-
 tribution towards the ninderstanding of the nse of anagy as a deductive tool.

\section*{}
```

    Kling's fundamental idea is extremely simple: many
    resolution proofs are rendered intractably large becanse a
very large search space is generated by the presence in
the initial database of a large nomber of clanses

```
```

irrelevant to that particular proof. If the initial clause-set can somehor be filtered to include only those axioms which will directly contribute towards aroof, then the resulting much sealler search space is far more likely to lead to aroof being found.

```

The means adopted for filtering the database is as follows:

Given some theorem \(T\) to be proved, and an already proved theorem \(T^{\prime}\) together ith its proof \(P^{\prime}\), an analogy mapping \(A\) from \(T^{\prime}\) to \(T\) is constructed. This mapping is applied to the set of clausos used in \(\boldsymbol{p}^{\prime}\), and the resulting set of clauses used as a database for attempting to prove T.

This, it is hoped, loads to very substantial reduction in the search space, and renders feasible proviously impossibly oxplosive proof.

Kling also suggests an extension of this algorithme Where the lemmas used in proving \(T\) are maped into corresponding lemmas for proving \(T\); it is of courso no longer necessarily the case that the gencrated lemas are true, nor that they are relevant, but at least it soems plausible that some of them will contributeffectively towards a proof.

Kling suggests that the lemaas be solved before
 obvionsly better than the alternative "lazy evaluation"
strategy of defering their proof until it is knowno be necded. There is yet further step, which King does not take, that seems to follov inmediately from the previous ideas: one could take, in addition to the analoges of the legmas used in the proof of \(T^{\prime}\), the analogios of the clanges used in the proof, and it they were not already clanses in the database (as is required by thefirstalgorithm described) treat them as lemmas to be used subject to verification of their validity; this is one of the bases of Munyer's approach.

It should be noted that Kling's paradigm discards a great deal of useful information from the original theorem and proof; no attempt is made to uso any informationabout the order in which clauses were used, nor which literals were resolved \(u\) pon. To oxpress the same point in aider context, the proof \(P^{\prime}\) may wil bo closely structurally analogous to some proof \(P\) of (as is indecd the case with Kling's cxamples from abstract algebra) ; the above method discards almost the entife stracture of p' and repeats the entire search \({ }^{17}\).

An extreme alternative to this method would be to

Rather as though, possessing acipe for lab casserole, and wishing to cook beef ster, we noted that we were likely to necd becf, onions, potatoes, cariots, stock, salt, an oven, a kite, a dish anda work-surface, and then threw avay the recipe book without reading the method of preparation.

\begin{abstract}
take the entire analogue of \(P\) " as aproof plan" for \(T\), attempting to justify each step in turn; one couldehen envisage the entire process as accurive one, each step of the proof plan being worked on by the analogy nechanism. This is indeed extremely close to what Mnyer does.
\end{abstract}

A fet further points should be noted about Kifig's work before we move on to consider Munyer. In Ging's program ZORBA, it is the user who selects the enalogons theorem \(T^{\prime}\) and supplies its proof \(P^{\prime}\). Thus ZORBA consists essentially only of the analogy-formation mechanism, plus a resolution theorem-prover (QA3 [Green1969a]). The analogy mechanism is used repeatedly in the attempt toprove a theorem, constructing ever larger initamedatabases using ever laxer analogies until a proof is successfully found. Kling's description of his algorithm for constructing analogies is very detailed, but lacks any clear overall summary; it appears essentialiy similar to the technique used by R.Brown [Brown1977a].

The user also supplies ZORBA with a set of "emantic templates", which provide type information about the functions and predicates used in the database; these tenplates are used to reduce the search for possible analogies by ensuring that argument-types are mapped consistently \({ }^{18}\).

18
R.Brown [Brownig77a] points out that it is in general possible to determine these semantic templates automatically by a simple syntactic criterion basedon the structure of the assertions which contain the

The important point to note here is that the possible analogies are being restricted by semantice considerations; in this respect \(K\) ing has more to offer than Munyer, whose work we shal now examine.

Munyer's philosophy can be summed up by two quotationsfrom his later paper [Munyer1977a]:
*Although the solution to a theorem-proving problem must be logically rigorous, the means by which it is discovered need not be."
"How to use an analogy turns out to be at least as important as how tofind an analogy".

His proposed system follows both of these maxims, in that it makes steps which are got necessarily logically valid in its formation of proof plans, and in that the method by which an analogy is actually sought is an extremely naive exhaustive search.

His approach resembles that of F.Brown [Brownl977b]. or of STRIPS [Fikesl972a], insofar as his proposed system is an extensible deduction system, in which previously proved theorems are assimilated into the systemand are used to contribute to further proofs. The way in whach this is done is related closely to the STKIPS approach of using MACROPS", since each proof known to the system (or predicates 1 n question. we consider his work below.
```

any subsequence of it) is available as an operator vhich
can be applied to an intermediate goal (using the term
loosely) in a proof to generate a sequence of subgoals.
The principal novel feature of Munyer's method is that the
applicability of an operator is determined by an analogy
match between the goal and the operator.

```

The objective which Munger's system seck to achiove is to generate by analogy aroof plan for some theorem, in the form of a linear sequence of subgoals each of which can easily be verified by a simple conventional theoremprover or proof-checker. The number of steps in ald deduction of each subgol from its predecessor should be very small, so that iftle or no search is done in going from the plan to a proof.

Operators are of thoforn
\[
T 1 \Rightarrow T 2
\]
where T1 and T2 are predicate calculus terms. Associated with each operator are: an analogy match b betyeen subterms in \(T 1\) and subterms in \(T 2\) (not ingeneral either injective or surjective), and a "degree of certainty" (\(D 0 C\)), representing a heuristicestimate of the platibility of the derivation of T2 from T1 (DOC is a nuber between 0 and 1 , and is 1 whenever (T1 \(=>\) T2) is knotn to be a logically valid deduction). An operator can be applied either forwards or backwards, that \(1 s\), either by matchang

T2 againat some goal-state T2, in a partial proof plan, or by matching \(T 1\) against some start-state \({ }^{19}\) T1. These two cases are precisely symmetrical; we shall describe the later.

Suppose some analogy match \(A\) has been found betreen T1 and T1'; associated with this there will be a DOC reflecting the closeness of the match, which will be 1 when the match is a valid unitication. Then we wish to use the maps and \(B\) to generate a new subgoal T2' such that T2' is to T1' as T2 is to T1; this is the "classical" analogy problem as dealtwith by Evans [Evansig67a]. We can represent the various formulae and mappings as fol1ows:

Difficulty arises when, as is frequently the case, no such T2' exists; it is then necessary to construct abest guess". In any case, once a \(T 2^{\prime \prime}\) has becn found the step (T1' \(=>T 2^{\prime}\)) can be added to the proof plan; associated witn it will be a degree of certainty derived from the reliability of the analogies \(A\) and \(B\), and the DOC of the operator (\(\mathrm{T} 1 \Rightarrow \mathrm{~T} 2\)), together with the likelihood that (\(\mathrm{T}^{\prime} \Rightarrow \mathrm{T} 2^{\prime}\))

19
"Start-states" are derived by forward reasoning from the preconditions, "goal-states" by backward reasoning from the conclusion.
will be part of an eventual solution path. Thus, analogy is being used as a sort of "fuzzy unitication" to atch terms in a form of modus pongens reasoning.

What we have just descrabed is a "blind step" in the search for a proof: we have determined that an operator is applicable and applied it; a more desirable circunstance is that \(T 1\) and \(T 2\) simultaneously match via the same analogy to a start state T1 and a goal state T2, both of which are already part of an existing plan, thus making it more likely that the operator will berelevant to an eventual proof. Whenthis occurs, the analogues of the intermediate steps of the (perhaps fuzzy) deduction of T2 from T1 can be directly mapped into a sequence of intermediate subgoals to be added to the proof plan. However, it is often the case that the analogies A between T1 and Tíand \(A^{\prime}\) between \(T 2\) and \(T 2^{\prime}\) will be different; in this case, what Munyer calls a "skewed" plan is generated. We shall consider how to cope with skewed plans in due course, after considering the sort of analogy which Munyer's matcher will produce, and the ways of constructing a T2. .

The analogy matches correspond for the most part to second-order unificationsorgeneralisations; for example. identical terms match against each other (with a DOC of 1), as do any pair of first-order unitiable terms. A pair of terms such as 〈f(a),f(b) match fuzzily, as do pazas \(s u c h\) as \(\langle f(a), g(a)\rangle,\langle f(a, b), f(b, a)\rangle, a n d\langle f(a, b), f(b)\rangle\).

The diagram below shows hov coryesponding symbols in pairs of terms may be mapped in a few instances.
\begin{tabular}{|c|c|c|c|c|}
\hline (a) & \(f\) (a) & f (2) & (\(\mathrm{a}, \mathrm{b}\)) & f (\(2, b\)) \\
\hline 11 & 11 & 1 I & 1/ & 1 / \\
\hline \(f\) (\({ }^{\text {a }}\) & \(f\) (b) & \(g\) (a) & / & \(f\) (b) \\
\hline & & & (b, a) & \\
\hline
\end{tabular}

In cases such as (f(a,b) \(\langle->f(b, a))\) the DOC of the match will depend upon whether fiskown to be commetation . We may note that the matcher will always find some match between any two terms, and that it is not gurantecd always tofind a valid second-order unification, even when one exists.

The next matter to be considered is the generation of a term T2, from T1', T1, T2, A and B. In describing how this is done, Munyer has made some apparently arbitrary choices; he does not discuss the reasons for these particular choices, and the only evident justitication is the empirical observation that they work for the problems he has considered so far. We shaldgive a few examples of the construction of \(T 2\), paraphrasing [Munyerl977a, p5].
```

"If a symbol in T1' is mapped to a symbol in T1 which
is in turn mapped without change to a symbol in T2,
then the symbol from T1' appears in T2' (e.g.example
1). If however the symbol in T1 is mapped to a dit-
ferent symbol in T2, then the symbol from T2 appears
in T2, (example 2). In either case, it the
corresponding symbols in T1, and T1 are ditferent,

```

An interesting problem would be the automatic generation of lemmas such as the commutativity of some function wheh was fequently used in such matches.
the DOC of the step is lowered \({ }^{21}\).
```

"A permutation among the arguments of a function in
going from T1 to T2 is copied among the symbols in
T1' to which they are mapped (example 3). A permuta-
tion in going from T1' to T1 does not aftect the for-
mula which is produced but it does lover the DOC
unless the containing function symbol in either Ti'
or T1 is marked as commutative.

```
"A symbol in T1 which does not map to a symbolin T1' does not appear in T2, but \(\quad\) the DOC is lowered unless an appropriate attribute \({ }^{23}\) is present (example 4). A symbol in T1' which does not map to aymbol in T1 is considered to be unaftected by the operator and appears in T2', but the DOC will be lowered unless an appropriate attribute is present (erample 5)."
\begin{tabular}{|c|c|c|c|c|c|}
\hline & & T1 & T2 & T1' & T2 \({ }^{\prime}\) \\
\hline Example & & f (a) & f (a) & \(\mathrm{f}(\mathrm{b})\) & \(f(b)\) \\
\hline Example & 2: & \(f(a)\) & f(c) & \(f(b)\) & \(f(c)\) \\
\hline Example & 3 : & g (b, a, c) & g (a, c, b) & \(f(a, b)\) & \(f(b, a)\) \\
\hline Example & 4 : & \(f(\mathrm{~g}(\mathrm{a})\)) & \(f(\mathrm{~g}(\mathrm{~b})\)) & \(f(\mathrm{a})\) & \(f(b)\) \\
\hline Example & 5 : & \(f(a, b)\) & \(\mathrm{f}(\mathrm{b}, \mathrm{a})\) & \(f(a, g(b))\) & \(f(\mathrm{~g}(\mathrm{~b})\) \\
\hline
\end{tabular}

We can now consider how the system would go about

This decision appears arbitrary; it is not obvious that it would not be as good to copy the symbol from T1' rather than from T2, in which case example 2 would be replaced by \(T 1=f(a) ; T 2=f(c) ; T 1^{\prime}=f(b) ; T 2^{\prime}=f(b)\)

This seems reasonable for his erample 4, but consider \(T 1=f(a, b, c) ; T 2=g(a, b, c) ; T 1^{\prime}=f(b, a) ;\) it is not obvious that T2' should be g(b,a), as Munyer's rule implies, rather than \(g(b, a, c)\).

23
An attribute is some feature such as commutativity, associativity, etc. which may be associated with a function symbol to indicate that certain kinds of match are exact, not "fuzzy".
secking a proof of a theoren. The sequence of actions performed is as follows:

A step to be worked on is chosen by a henristic merit rating (which ingeneral prefers the verification of plans to the taking of blind steps).

If a blind step is to be taken, the appropriate formula (T1' or T2' according as the step is backward or forward) is generated and added to a search lattice. If a plan is to be verified, the step with smallest DOC \({ }^{24}\) is found, and its start and goal added to the lattice; the plan is then ineligible for further consideration until this step has been verified \({ }^{\mathbf{2}}\).

Whenever a net formula \(F\) is added to the lattice, it is first checked for subsumptionor identity with all other formulae already in the lattice, and any subsumptions found are marked appropriately (to avoid carrying out essentially the same tast several times).

Next, all analogies between fond theorems in the database arefound. For each (sufticiently good, one
on the grounds if this fails there is no point wast ingefiort on therestof the plan

Another possibility would be to re-activate the plan as soon as the considered step had achieved a high enough DOC to be no longer the wakest ink.
```

presumes, though Munyer does not say so explicitily)
analogy fonnd, the theorem is searched for a second
analogy which can be used to forma plan (i.e. steps
of the theorem are matched against formulae in the
lattice). For each such plan, it is corrected if
skewed (see below), otherwise an appropriate infer-
ence link is added to the lattice, using the plan as
an operator; it the DOC is not 1, the plan itseli is
marked as a candidate for future verification. If no
plan is found for this analogy, it is instead used to
propose one formard and one backward blind step.

```

For each added inference link, adjust DOCs appropriately; if the link completes a plan step, re-activate the corresponding plan.

Repeat the cycle until a solntion is reached.

We have mentioned "skeved" plans several times. These occur when an operator \(T 1 \Rightarrow\) matches against formalae \(T 1^{\prime}\) and \(T 2^{\prime}\) by different analogies, so that alina forward step from T1' would resultin T2" (ditferent from T2'), whereas a blind backward step from T2' would result in \(T 1^{n}\) (different from \(T 1^{\prime}\)). Munyer's briet explanation of how this is patched up is very sketchy, and his chosen example unilluminating; however, what he appears to be proposing is that consideration is given to replacing either \(T 2^{\prime \prime}\) by \(T 2^{\prime \prime}\) or \(T 1^{\prime}\) by \(T 1^{\prime \prime}\) in the search latitice as
"plan-correcting step".

The most important observation to make about this entire mechanism is that there is a very serious problem of controlling search. Themechanism is proposed as being itself a powertul tool for reducing the search space wen secking a proof:
"It appears, based on this hand simulation, that the
construction of the solution would be optimal in that
no search (blind steps) is required ana no incorrect
steps are actually generated." (LMunyerl977al. pp.
9-10).

However, this claim needs justitication which Munyer does not offer; indeed the rather cride method used for sefing analogies is liable to become disastrously explosive as the database of theorems grovs. Thus Munger is replacing one search problem by another, and proposing no solution to thas second problem. Once again, we are presented wirh the fundamental problem of how to recognise an analogy amongst a large body of existing knowiedge. A question Whach Munyer does go far towards answering is that of how such an analogy might be used once it has been found; this accords precisely with his already quoted remark that "how to use an analogy turns out to be at leastas important as how to find an analogy".

\section*{Brong's Mory on Reasoning by Analogy}

\begin{abstract}
In this section we consider the work of R. Brovn [Brovn1977a, Brovni976a] on the use of analogymappings to transfer procedural "expertise" from one domain to another.
\end{abstract}

Although this is not an apropriate place to go into a detailed critique of the relative merits of procedural and declarative representations of knoledge, it is necessary to observe, before proceding further with discussion of Browns work, that an issue of debate in Al has been Whether knowledge is better represented "passively" by declarative descriptions, or "actively" by procedures Which embody the application of that knowedge (or, it botn are appropriate, which is better in given circumstances). A more recent development has been the vien
 between these forms of representation; it is hard to generalise farry, but one could perhaps say that the majority of those who wid still chaim that there is a significant difference betreen procedural and declarative representation fall into the procedural camp.
```

Brown's model of expertise consists of three tiers:

```
(1) Code: the programs which are actually run in order to carry out tasks in the domain world; these programs are low-level and detailed, and contain information
governing flow of control;
(2) Plans: these are essentially program outlines without any control flow information; they "specify goals, intentions and constraints";
(3) Descriptions: declarative assertions about the world, i.e. a set of definitions and axioms in a predicate-calculus-1ike language.

The immediate impression made by Browns examples of these three levels of his world model is that the objects at all three levels are, in fact, executable programs, Written in successively higher level langages. Thus his code eramples are imperative programs in LISP, complete With the fall armoury of PROGs, GOs and SETQs to demonstrate that they are real live Programs in alf their naked horior. His plans are essentially sequences of patternmatching manipulations on the representations of objects in the model worlds, and as such bear a very close resemblance to programs in some cousin of PLANNER [Hewittl969a]. His assertional descriptions aremore or less predicate calculus clansestanslated into LISP notation, and would thus be regarded by many as executable
 [C10cksin1981a].

Thus, by adopting his multi-level viev of knowedge, Brown weds himself firmly to the "theze is a differencel"
```

side of the procedural/declarative controversy-
controversy, and comes down on the side of a low-level
procedural representation of expertise; in taking this
position, and in much of his subsequent development of the
analogy mechanism, Brown's approach shows a close aftinity
with Sussman's in his program HACKER [Sussmanig73a].

```

To summarise very briefly the very detailed technical description of Browns analogy mechanism in [Brownig76a], analogies are constructed betwen some already knownarea
 follows:
(1) Use the assertional descriptions to propose amaping between domain names and image names; thas process is essentially syntactic, although Brown uses "semantic" type constraints on, for example, mappings of functions and predicates (an extension of king's use of "semantic templates" [X1ing1971a]).
(2) Use thas map to translate plans and code in the domain world to plans and code in the image.
(3) Use plan-justifications to prove tne translated plans correct; it this fails, use the justifications and descriptions to debug the plans. Similarly, verify and debug the translated code.

The debugging process appears similar to HACXER's.
```

Tt is clear that very sophisticated matching is required
in order to determine which image-world assertion is suf-
ficiently like which domain-world assertion to account for
a "bug". and enable it to be fixed: indeed. such a match-
ing would seem to constitute a large part of a general
solution to the problem of producing analogies purely by
inspecting descriptions.

```

This last point leads to the observation that there is a strong case for arguing that the entire analogy process should indeed be carried out at a descriptive level That is not to say that predicate calculuswithout control information is necessarily a sufficient languge to describe all domains of expertise: but languages like PROI.Or have shown that it is possible to write programs with a declarative semantics. where the control structure is provided by the "machine" in which the program executes. rather than being an inherent property of the language.

It is apparent in Rrown's work that most of the complexity arises from his multi-level representations. since he has to construct a whole sequence of maps between domains. and between levels within a domain. and then use compositions of these maps to construct hypothesised new pleces of "expertise". which still remain to be debugged. Whilst we would not wish to imply that the problem of constructing and using analogies is anything other than extremely difficult. \(1 t\) does seem that Brown's choice of
```

knowledge representation formalismereates a great deal of
added complexity without demonstrably providing greater
expressive power than simpler options.

```

We shall now look 1 n rather more detail at the most interesting aspect of Browns work: the construction of the analogy map between has descriptive assertions.

The construction of an Analogy Map

Brown's maps are constructed at the level of his degcriptions. The first stage of constructing a map is the discovery of semantic templates, similar to Kling's; these are automatically extracted from the descriptions by using the observation that type-checking predicates are unary predicates which appear quantified on the left-hand sides of implications. Consider, for example, the descriptions below (taken from [browni976a]). Browns LISP notation has been changed to that of predicatecalculus.

\section*{/** PLANE GEOMETRY DESCRIPTIONS **/}
```

v(A,B) l pt(A) \& pt(B) =>
ln(1ine(A,B)) d in_ln(1ine(A,B),A)
8 in_1n(1ine(A,B),B)]
/* There is a line containing any two given
points*/
V(A,B) [ disstinct(A,B) \& pt(A) \& pt(B) =>
T (目(X,Y) (disstinct(X,Y) \& ln(X) \& ln(Y)
\& in_ln(X,A) \& in_ln(Y,A) \& in_ln(X,B)
\& in_ln(Y,B))) ]
/* There is at most one line containing two given
distinct points */
V(A,B,C) [pt(A) \& pt(B) \& pt(C) \& between(A,B,C) \#
Z(L) (ln(L) \& 1n_ln(L,A) \& in_ln(L,B)
Q 1n_ln(L,C)) ]
/* If B is between A and C then A, B, C are
collinear */
v(A,B) [ ln(A) \& ln(B) \& disstinct(A,B) =>
1n_ln(A, intersect(A,B)) \& in_ln(B, intersect(A,B)) l
/ The intersection of two liñes lies in each of
them */
The above rules form part of an axiom system for plane geometry, and it can be seen that the unary predicates which appear on left-hand sides are pt and lon, wich are thus assumed by the analogy algorithm to be typerhecking predicates.

```

The semantic templates which can then be constructed are:
\[
\begin{aligned}
& \ln \ln (\ln , p t) \\
& \ln \ln (p t, p t)
\end{aligned}
\]
1.e., the arguments of ing_ln must be of type lin and pt respectively, and those of line must be of typert. As Brown observes, this extraction of semantic templates is in fact a purely syntactic procedure.
```

    Suppose we wish to construct an analogy map from this
    domain to the domain of solid geometry, which will include
descriptions such as:
/** AXIOMS FOR SOLID GEOMETRY **/
/* The first fem axioms are identical with those for
plane geometry*/
\#(A,B,C) [ pt(A) \& pt(B) \& pt(C) \&
non_collinear(A,B,C) =>
pl(plane(A,B,C)) \& in_pl(plane(A,B,C),A)
\& in_pl(plane(A,B,C),B) \&
in_pl(plane(A,B,C),C) ]
/* There exists a plane containing 3 given
non-collinear points */
v(P) [pl(P) = \exists
/* Every plañecontains a point */

```

The requirement for an analogy maping is that onco ampping has been defined for the type-checking predicates, it should be extended to the rest of the symbols in such a way that argument-types are mapped consistentiy. In the example of plane and solid geometry, the initial mapping is done by a heuristic which tries to map types of the same name in different domains to one another; this is obviously open to the criticism that the choice of names for predicates is a "secret" way of giving advice to the program (cf. the comments in [Bannal981a] on Lenat's use in \(A M\) of the rule "If the user has recently renamed this concept then it becomes more interesting"). Thus in the above example, the mapping
\[
\begin{aligned}
& 1 \mathrm{n}-> \\
& \mathrm{pt}->
\end{aligned} \mathrm{pt}
\]
would be chosen by this heuristic \(\mathbf{2 b}^{6}\)

Subsequently, the formation of a consistent map can be viewed as a filtering problem for labellings of a graph, and as such can be handled by algorithms similar to that of Waltz [Waltz1975a]; it should be noted that in general Waltz's algorithm itself is not sufficient, since the analogy map requires global consistency of the labelling, whereas Waltz's algorithm only ensures logal consistency. (An extensive discussion of such algorithms is given in [Freuderig78a〕, while a discussion of the different possible kinds of inconsistency in graph labelling is given in [Mackworth1977a]).

\section*{Using the Anglogy Map}

If the entire process of constructing an analogy were as described above there wonld be little more to be sad; however, the problemarises that such a maping between the symbols in two domains is unlikely to be an exact analogy, in the sense that true statements and correct algorithms in one domain will not necessarxly map to corresponding true statements and corect algorithms in the other. For example, the image of a theorem proof in

26 It is interesting to note that without this heuristic, the mapping (ln->pt,pt->1n) would be investigated; this is of course the first step of inventing projective geometry, as Brown observes in [Brown1976a].

\begin{abstract}
plane geometry may vell not be a rigorous proof on solid geometry, but rather a sequence of lemass ohich may constitute an outline proof, needing completion and possible correction.
\end{abstract}

It is this need to "debug" inexact analogies ohich leads Brown to his rather baroque system of knowledge representation. He considersthat the ultimategoal of an analogy is to aid the transfer of expertise from one domain to another in the form of programs. He achieves this by using the map constructed at the level of degcrip= tiong to map plang between domains, and using the images of the plans to construct programs. To ensure the correctness of images of plans, he uses plag ingeifica= tions, which are proofs of plan correctness in terms of the axiomatic descriptions and definitions. Furthermore, he requires commentary attached to programs to show how they relate to plans.

It is unclear why the ramifications of such a representation should stop at this point, rather than requiring, for example, "plan justification commentaries" to show how a plan justification corresponds to a plan, etc. Conversely, even if we acept Browns implicit belief in the need for a procedural representation fundamentally from the declarative one, it is not clear why his plang are not acceptable as such a representation, so that the goal of the analogy system becomes the transfer of
coriect plans, without the added layer of complexity afforded by programs.

It is not, then, surprising that the mechanism which Brown requires to carry out his many-layered mapping and debugging process between two of his domains is both cumbersome and confusing. While it may well be that such a degree of complexity is inded required of an analogy system, this is by no means justified by the relatively simple instances given by Brown his insistence on amlevel procedural representation of knowledge serves more to obfuscate the process of constructing and using analogy than to provide a clear explanatory model.

\section*{The Use of Anglogy in Knowledge Representation}

We have gradually moved away from our first focus of attention, mathematical discovery, towards a consideration of the use of analogy in general. The remaining sections of this survey will consider a number of approachestothe use of analogy in reasoning and knowledge representation. We begin with a discussion of the design proposed by Moore and Newell for a system whosentire representation formalism is based upon analogy, Merlin.

\section*{Can Merlin Understand?}

In their paper "How Can Merlin Understand"" [Moorel973a] Moore and Newell describe a proposed formalism for knowledge representation which is pertinent to the present discussion on analogy. According to their formalism, all concepts known to the system are potentially "viewable as" instances of other concepts, subject to a suitable mapping being made between the components of the two concepts. This is precisely the main goal of an analogy-finder (the subsidiary goal being to evaluate the strength of the analogy once found).

Moore and Newell claim that their formalism is embedded within a system wheh "understends", and cite the following criterion for use of the word "understand":
[A subject] \(S\) understands knowledge \(K\) if \(\quad\) uses \(K\) whenever appropriate.

Applying this criterion to the question posed by the title of their paper, the answer appears to be that Merlin cannog understand at all, since Merlin (as they describe it) is simply an embodiment of their knowledge representation formalism, and of rules for reorganising its knowledge in response to requests to do so, or in the course of assimilating new knowledge. Thus, although Merlin might conceivably serve as the underlying basis for an understanding system, any such system would requireas a major further part an active component which would make use of Merlin's data-structures. Such a component would serve to provide an intergretation of Merlin's knowledge, without which Merlin cannot be said to "use" its knowledge at all, appropriately or otherwise; as we shall see, Morlin itself provides no such interpretation.

However, themain point of interest here is what Merlin cang do, which is to construct analogies and to assimilate new data by analogy. Indeed, the entire knowledge base can be regarded as being organised by analogy, and in many ways the view of knowledge representation embodied in the program corresponds closely to the present author's.

The fundamental building-block in Merlin is an object called by the authors a "B-structure" (chosen as a neutral name which leads to no preconceptions about its interpretation). A \(\beta\)-structure is denoted
\(\alpha:\left[\begin{array}{llll}\beta & \alpha 1 & \alpha 2 \ldots\end{array}\right]\)

\begin{abstract}
read as "a is a further specified by al, a2, ...". The components \(\beta\), \(\alpha 1, \alpha 2\), otc. are thenselves \(\beta\) structures.
\end{abstract}
```

    An interpretation of a \beta-structure is "a can be
    viewed as a \beta given that al, a2, ..."; this interpretation
corresponds to a datum a being asgimilated to a known
datum \beta, where the ai can be vieved as defining an analogy
between a and \beta. A map from \beta-structure B1 to B2 is
notated B1/B2, and corresponds to a way of viewing B2 as
further specification of B1.

```

As an example, consider the following, given by More and Newel1:

Suppose we have

MAN: [MAMMAL NOSE:[...] HOME:[...]]
PIG: [MakMal Snout:[...] Sty:[...]]
and wish to find an analogy between man and PIG (viem a PIG as a MAN). The resultwill be

PIG: [MAN SNOUT/NOSE STY/BOME]
assuming that the maps SNOUT/NOSE and STY/HOME can be constructed; the interpretation would be"a PIG can be viewed as a MAN if bis SNOUT can be viewed as a NOSE and bis STY as a HOME".

For a full explanation of this example, and further examples, the reader should refer to the original paper [Moorel973a]. There are two main difficulties with the approach taken by Moore and Newell, one practical and one philosophical. The philosophical problem is that, since there are no "primitive" \(\beta\)-structures, the wholeknowedge edifice seems to be built on air \({ }^{27}\). In this, Merlin's knowledge-base is similar to that produced by Quillian [Quil1ian1968a] in his "Semantic Memory" system. Whether this is truly a problem depends upon one's point of view; on the one hand those ith a foudation in mathematical logic and related disciplines are likely to be horified at the idea of such a "baseless" system, while on the other hand there is a strong intuitive appeal (for some) in the notion of a sytem where every definition can be further refined in terms of other definitions as far as necessary in any particular circumstances.

The final remark leads us to the practical problem: when does the recursive sequence of matching stop? This is a point on which Moore and Newell are most unclear; it is closely related to the question: under what circumstances can an attempt to view \(X\) as \(\quad\) fail? (since obviously a failure tomatch corresponding componentsof a \(\beta\)-structure would cause at least that branch of the recur-

27 Or perhaps supported on "turtles all the way down"?
sive matching processtoterminatel. Again, the answer is not readily to be drawn from the paper.

\section*{Algebraic Modelg of Anglogy}
```

    Two recent papers [Farreny1982a]and [Potschke1982a],
    propose an algebraic model of analogy formation, in which
an analogy is represented as a homomorphism between alge-
bras or (equivalently) between graphs.
Both papers represent the situations between wich analogies are to be constructed as regational algebras. That is, a situation is described as a set of objects together with a collection of relations defined upon that set. For example ([Farrenyl982a]), the situation

```

Romeo loves Juliet. Juliet loves Romeo. Romeo is a man. He is Italian. Juliet is a roman. She is beantiful. She is unmaried. consists of the set
\{ Romeo, Juliet \}
and the relations
```

loves = {(Romeo, Juliet), (Juliet, Romeo) }
Italian= { (Romeo) ]
man = {(Romeo) }
woman= ((Juliet))
beautiful={(Juliet) }
unmarried={(Juliet)}

```

Where a relation is represented as act of tuples from the underlying set.

An analogy between two situations is now defined to be a mapping between the coriesponding objects which

\begin{abstract}
preserves (or nearly preserves) relations. In prtschke's paper, hefirst defines an analogy to be a strict homomorphism between algebras, but then points ont that this is not always guaranteed to exist, and goes on to mention briefly the idea of a " loose" analogy constructed froman and approximate homomorphism. He indicates a possible measure of the closeness of such a maping using the ideas of positive defect and negative defectof a mapping between labelled directed graphs-the number of edges which need to be added to the domain or deleted from the range, respectively, such that the mapping is a homomorphism. However, he does not give any indication of how such approximate mappings may be found; nor is it clear howhe would represent a general situation, which may contain relations more complex than binary ones, as a labelled directed graph.
\end{abstract}

The second half of his paper gives an algorithm for carrying out analogy-formation in the style of Evans [Evans1967a] given threegraphs A, A' and B, and a map \(A \rightarrow A^{\prime}\). This involves the steps" Compute amaximal common partial graph of \(A\) and \(B^{\prime \prime}\) and "Generate a minimal set of substitutions \(S=\{\) S1...Sk \(\} \quad\) such at \(S(A)=S 1\left(S 2(\ldots(S k(A) \ldots))=B^{\prime \prime} . \quad\right.\) Both of these steps are liable to be computationally expensive, and he does not suggest algorithms for them. It should also be noted that "maximal", in themathematical sense, does not mean " larg-
est possible", but rather"not enlargeable"; there may be many maximal common partial graphsof and be and he does not discuss the criteria for choosing between them.

The examples which he gives are small; there is no indication of how effective his methods would be in constructing analogies between complex situations. However, his use of positive and negative defects in measuring the looseness of an analogy may provide a possible"dissimilarity metric" between concepts, 1 nthe sensediscussed below.

Farreny and Prade discuss at some length the possibility of using "semantic similarity" as a criterion for mapping one relation to another: they base their ideas on the notion of "fuzzy sets", as discussed by Zadeh [Zadeh1979a]. They assume that properties to be matched by analogy denote"fuzzy" classes with associated probability measures of the likelihood of a datum possessing the property. The degree of similarity between two properties is then defined as the likelihood of a datum belonging to both classes. As the authors themselves admit, this is a far from general model. whereas for adjectives such as "tall", "short", "old", "young", etc. 1 is clear what the appropridte universe of discourse is, and \(1 t\) sems apt to use possibility measures in such cases, there are obviously many cases where this is not so. In general, such a model is only appopriate where
the properties describe subsets of some quantitatively measurable overall attribute (e.g. "height", "age"). Although they refer to need for further work in the area of measuring"semantic similarity". Farreny and Prade do not themselves go into detailed consideration of the possibilities.

The construction of map between situations is presented as a problem of matching labelled graphs, as in the work of PGtschke and R.Brown discused above; there is no consideration of the details of an alorithm, but clearly the anthors intention is to map together semantically similar properties; the degree of similarity would then provide measure of the closeness of the analogy. This approach seems to neglect the view that often the most valuable analogies are those between apparently dissimilar concepts.

\section*{Angiogy by Means-Ends Anglysis}

earlier applied to Munyer's work).

Carbonell proposes a reqminding process to compare the initial and final states of, and path constraints \({ }^{2} 9\) on, a new problem with those of previously solved ones, and to compare the applicability of operators in the old and new problem states. He then wishes to use MEA to transforma previous solution of aroblem similar to the current one into a complete solution of the current problem.

As a difference function in this transformed MEA problem, be proposes using the gage difference function as is already used to compare the initial and goal states in a conventional MEA approach to the current problem; this difference function now becomes a "similarity metric" between different problems \({ }^{30}\). Having found an analogous problem, i.e. one with a high degree of similarity to the current one, MEA is applied to reducing the difference between this problem and the current one, thus leading to a solution of the new problem derived by analogy with the old. Thus MEA 1 s being applied not to the current problem and its goal, but to the current problem/goal and arevi-

A patb constraint is a rule which prohibits certain operator sequences even though they made produce a solution, e.g. because the sclution thus arrived at may be toocostly.

30
It is not, in fact, necessarily the case that this function be a "metric" in the strict mathematical sense; "measure" would be a more precise term.
ously solved problem/operator-sequence/goal.

A number of (meta-) operators are proposed as useful for this higher-level MEA problem; these include insertion and deletion of operators from a sequence, adding new operator sequences at the start or end of acquef, reordering operators, and "meshing" of two operator sequences - the last of these is considered as being in itself"an interesting and potentially complex problem".

The difference function between states of the transformed problem is a-tuple comprising the differences between problem states, goal states, path constraints and operator applicability. In general, it will not always be possible to reduce one component of this 4tuple without at the same time increasing another. one possible way of avoiding this difficulty is to try always to reduce some linear combination of the four components.

In order to make possible the retrieval of problems similar to the current one, it is clear that some formof memory organisation based upon similarity of problem states is required. The solving of a problem by analogy naturally leads to the assimilation of the new problem within the existing structure; thus the activities of problem-solving, learning and analogisation are deeply linked. The structure of an "episodic" memory such as is required is regarded by Carbonellas "relatively simple";
we would regard this as by no means self-evident, and would consider the development of a lage practical program embodying Carbonell's ideas in a domain with a large collection of previously solved problems and of possible operators as major achievement. There is an obvious danger that the search for an analogous problem ill prove to be non-trivial, so that once again one has merely substituted one form of search for another. fossible starting point for arge-scale implementation of Carbonell's ideas may be work such as that of Cohen [Cohenig80a] on an intelligent theorem prover which attempts to use theorems already proven as a gide to the proof or refutation of new conjectures.

The Use of Similarity Measures in Retrieyal and Assimila= ti음
```

We have seen in the last fev pages reference to the use of similarity measures in the evaluation of the strength of analogies. However, there has beon no sugestion that such measures might actualy be used as a basis for komedge organisation and retrieval. We describe bere, in rather abstract terms, a posible use of similarity measures on formal structures for the large-scale organisation of kowledge. The assumptions are (i) that the knowledge to be organised can be divided (perhaps quite arbitrarily) into structured units (e.g. "concepts") and (ii) that there exists a collection of partial metrics ${ }^{31}\left(\partial_{i}\right\}$ upon these units which measure the degree of dissimilarity betweon them in various respects. There are no as sumptions about the type of stricture used (which could, for example, be abelled directed graph representing amantic net, or collection of predicate calculus clauses), nor about mat specific features are to be used to determine similarity; it is, however, highly
31 A partigl metric is a function $\begin{gathered}\text { such that: }\end{gathered}$

```
```

\forallx \partial(x,x)=0

```
\forallx \partial(x,x)=0
vxy \partial(x,y)=\partial(y,x)
vxy \partial(x,y)=\partial(y,x)
\forallx\forally\forallz \partial(x,y)+\partial(y,z)\geq\partial(x,z)
\forallx\forally\forallz \partial(x,y)+\partial(y,z)\geq\partial(x,z)
We do not require the condition
\[
\forall x \forall y \partial(x, y)=0 \Rightarrow x=y
\]
```

desirable in practice that the measures be cheap to conpute.

These measures can be seen as defining a "feature space", in which the distance between two points is a metric derived from the set of similarity measures (e.g. a Cartesian metric: the square-root of the sum of squares of the similarity measures). Carbonel1 [Carbonel11981a], for example, uses a set of four differences derived from a Means-Ends Analysis of a problem to define a distance between t⿴o problems, as discussed above. The use of a feature space has some affinity with the technique known as multidimensional scaling, in statistical taxonomy ([Green1972a]). There are, however, two significant differences. The first is that in multidimensional scaling, the goal is to reduce a large set of coordinates (i.e. a many-dimensional space) to a smaller set of inear combinations of these (i.e. a space of fewer dimensions). onto which a pregiogusly gigen set of data may be projected with minimum loss of information. That is, the object of multidimensional scaling is to induce fromgiven data what set of features may best be used to classify them. In contrast, we are supposing that the ćlassification be given (the similarity measures), and that the data (which are potentially any items of representable knowledge whatsoever) be nó all explicitly available at the outset. The second difference is that the features normally con-

```
sidered in multidimensional scaling are scaglar; that is.
each corresponds to a single numerical coordinate. In our
model, this need not be the case at all; there is no rea-
son to assume that, for some measure a and objects A, B
```


Our task, then, is to find a way of locating the
close neighbours of some new datum amongst an existing
knowledge base. For simplicity, we shall consider only a
single similarity measure, d.

We suppose that there is some set of ofoints, and some distance $\delta_{1}$, such that for all already known points $X$, there is a point $Y$ in $O$ such that $\partial(X, Y)<\delta_{1}$. It is clear that such a set can be chosen; we consider the points of of representatives of regions of the feature space. Forma11y:

Let $K=$ [known points]

$\delta_{1}$ is chosen sufficiently large that oformall $\quad$ suppose we wish to assimilate a new point, L . Then thefirst step of the algorithm is to measure $\partial(Z, Y)$ for each Y in of. If each such measure is greater than $\delta_{1}$, then it is clear that $Z$ is further than $\delta_{1}$ from every known point; in this case we add $Z$ to o, and conclude that it has no close neighbours. Otherwise, Z belongs in the neighbourhood of

```
some representative, say Y. This algorithm is applied
recursively; this requires that with each point in o there
is associated a set of representatives covering its neigh-
bourhood to within a distance \delta (< (< (\delta) , and so on. Hence,
we use the computed distances to organise the feature
space into a hierarchical set of nerghbourhoods; then a
new datum is assimilated by a process of "homing in" on
ever smaller neighbourhoods until either we find other,
sufficiently similar data, or discover that there are
none.
```

Formally, again,

Let $\delta_{1}>\delta_{2}>\ldots>\delta_{n}$
Choose a hierarchy of sets:

$$
\begin{aligned}
& \left\{\sigma_{1}: 1 \varepsilon \sigma\right\} \text { s.t. } \forall X d(X, 1)<\delta_{1} \Rightarrow-Y \varepsilon \sigma_{i} \partial(X, Y)<\delta_{2} \\
& \left\{\sigma_{i, j}: \jmath \varepsilon \sigma_{1}\right\} \text { s.t. } \forall \lambda \partial(X, \jmath)<\delta_{2} \Rightarrow \exists Y \varepsilon \sigma_{i, j} \partial(X, Y)<\delta_{3} \\
& \text { etc. }
\end{aligned}
$$

Further,

$$
\begin{equation*}
\forall X, Y \in \sigma_{1}, \ldots, i_{j} \partial(X, Y) \geq \delta_{j} \tag{*}
\end{equation*}
$$

```
Given \(\boldsymbol{\xi}\)
To find \(S=\left(\eta: \partial(\xi, \eta)<\delta_{n}\right\}\)
Find \(\quad S_{1}=\left(i \varepsilon \sigma: \partial(\xi, i)<\delta_{1}\right\}\)
If
 \(S_{1}=\emptyset\)
 then insert \(\boldsymbol{\xi}\) into \(\sigma\)
 return 0
 else Find \(S_{2}=\left\{S_{i}\right\}\)
 where \(S_{1}=\left\{j \varepsilon \sigma_{i}: \partial(\xi, j)\left\langle\delta_{2}\right\}\right.\)
```

etc.

The sparseness given by the condition (*) ensures that this will lead to minimum search. In the early stages of knowledge acquisition, it will often bappen that a new datum has no close neighbours; in this case we insertit at an appropriate level of the hierarchy. If any of the sets of representatives becomes too large, it can itself be split into a hierarchy.

```
 One extreme of this approach is clearly to take \delta { as
zero; in this case the "hierarchy" becomes flat, and the
algorithm is simply "compare 弓 against every point in K".
The other extreme is always to malntamn the bierarchy as a
binary tree. The first of thesc gives very large
searches, but never requires a potentially expensive
rebuilding of some part of the hicrarchy; the latter leads
tominimal searches but at the expense of frequently need-
Ing to add new points at high levels of the haerarchy.
```

We suggest that some algorithm based upon the above, in conjunction with a suitable collection of similarity measures such as those of Carbonell, could form a reasonable basis for the large-scale organisation of knowledge base.

## Sumpary and Conciusions

In the foregoing pages we have covered a wide range of material from the literature of AI, linked together by the common strands of relevance tomathematical discovery and analogical reasoning. It is, we believe, clear that not only have none of the works discussed "solved" the key problems in these areas, but that few of them have even achieved convincing solutions to those subproblems wich they chiefly addressed. Whilst it is true that it is always easier to criticise destructively than constructively, to find defects than to point to positive achievewents, it is nevertheless notable in hommany of the works discussed there have been serious shortcomings.

This may sound like bleak pessimism, a counsel of despair. For if the combined intellects of dozens of distinguished workers in field of enquiry cannot produce better solutions than this to aroblem, must not the problem be close to insoluble? Our answer to this rhetorical question, however, is that such is not the case. It is indeed true that the problem of formulating a model of reasoning in wich analogy plays a major role is extremely hard, whether psychological validity be sought or not. But progress has undoubtedly been made in a very diverse collection of relevant topics; we would point to the work of Munyer [Munyer1977b], Lenat [Lenat1976a], and R.Brown [Browni977a] as being recent work of considerable value.

Lenat in particular, despite being open to criticism on a number of serious issues, has at least demonstrated that it is possible to build a program which is able to carry out a range of tasks in the exploration of a simple mathematical domain, 1 ncluding concept-formation and the proposal of hypotheses. He has abstracted a number of useful rules describing such a search process, and there 2s surely progress to be made from the incorporation of a similar body of "heuristics" within a cleaner framework, where the issue of flow of control and the details of lmplementation obtrude less uponthe mechanismof theror gram.

Overall, we can distinguish two principal lines of attack on the problems of mathematical reasoning; loosely speaking, we may categorise these as "theorem proving" (exemplified by Munyer, R.Brown, Kling [Kling1971a], and Cohen [Cohen1980a]), and "rule-based system" (Lenat, Moore and Newel1 [Moorel973a], Langley). R.Brown has also looked at the problems of search~control in analogy matching in a way which naturally leads to consideration of the topic of "node labelling" on graphs, area well-known in other areas of $\quad$ (Waltz [Waltzl975a], Shneier (Shnexerl978a), etc.). No doubt a truly intelligent reasoning program, if one is ever written, will make use of a mixture of all of these, together with others as yet unex plored.


#### Abstract

A promising area for enquify is that of using a rule-based systom for controlling search; something along these lines forms part of Bundy's PRESS system [Bundy1981b] for symbolic algebra. Similar ideas are embedded within Lenat's AM, where some of the "heuristics" are in fact search control mechanisms, and Davis [Davis1979a] has proposed building an expert system to advise on search strategies within large problem spaces.

However, it must be re-iterated that the problems remaining are formidable. Indeed, as with many philosophical enquiries (and there is no doubt that much research in AI is at least as mochamilosophical undertaking as it is an experimental andmathematical one), the outstanding difficulty remains that of formulating the questions.


## References

Bledsoel977a. W. Bledsoe, "Non-Resolution Theorem Proving", Artificial Intelligence Vol. 9(1) pp. 1-35 (1977) .

Bobrowi977a. D. Bobrow and et al., "GUS: a Frame-Driven Dialog System", Artificial Intelligence Vol. 8(1) (1977).

Bodeni977a. M.E. Boden, Artificial Intelyigence and Natural Man, Harvester Press, Hassocks (1977).

Bonol967a. E. de Bono, The Useg of Lateral Thinging, Jonathan Cape (1967).

Boyer1979a. R.S. Boyer and J S. Moore, A Theorem-prover fogr Recursiye Functions, SRI International (1979).

Bradshaw1980a. G.L. Bradshaw, P. Langley, and H.A. Simon, BACON. 4 : The Discogyery of Intixigsic Properties. Proc. 3 rd National Conf. of the Canadian Society for Computational Studies of Intelligence (1980).

Browni977b. F.M. Brown, "Towards the Automation of Set Theory and its Logic", DAI Research Report no. 34, Edinburgh University (1977).

Browni976a. R. Brown, "Reasoning by Analogy: A Progress Report", A.I. Working Paper 132. MIT (1976).

Brownig77a. R. Brown, Use of Agglogy to Achieye Neq Exper= tise, MIT (1977). (M.Sc. Thesis)

Bundy1981a. A. Bundy, The Wingston-plotkin-Yongg-Linz Léarnigg Prograg, Edinburgh DAI Prolog Program Library (1981) .

Bundy1981b. A. Bundy and L.S. Sterling, Meta-leyel Infer= enge ing Algebra, Department of Artificial Intelligence, Edinburgh (1981). Working Paper 164

Bundyl982a. A. Bundy and B. Silver, A Critical Suryey of Rule Léarnigg Programs, Department of Artificial Intelligence, University of Edinburgh (1982). Research Paper no. 169

Bundy1982b. A. Bundy, Artificial Mathematicians: the Cog=
 (1982).

Carbone111981a. J.G. Carbone11, A Computational Model of Analoǵㅡㄷal Problem Solying, Proceedings of IJCAI-7, Vancouver (1981).

Clocksin1981a. W.F. Clocksin and C. Mellish, Programming


Cohenl980a. D. Cohen, Knowledge Based Theorem Proving and Learning, CMU Dept. of Computer Science (1980). (Ph.D. thesis)

Davisig79a. R. Davis, Seminar at University of Edinburgh, Dept. of Artificial Intelligence 1979.

Dorani966a. J. Doran and D. Michie, Experiments with the Graph Trayerser Program, Proc. Royal Society (A) (1966) .

Edwards1977a. H. M. Edwards, Fermat's Lastitheorem: A
 Springer, New York (1977). Graduate Texts in Mathematics no. 50

Evansi967a. T.G. Evans, "A Heuristic Program to Solve Geometry Analogy Problems", in Semantic Information Progesssing, ed. M. Minsky, MIT (1967).

Farreny 1982 a. $H$. Farreny and $H$. Prade, Abont Flexible Matching and its Use in Analogical Reasoning, ECAI82, Orsay (1982).

Fikesig72a. R.E. Fikes, P.E. Hart, and N.J. Nilsson, "Learning and Executing Generalized Robot Plans", Artificial Intelligence Vol. 3 pp. 251-288 (1972).

Freuderig78a. E.C. Freuder, "Synthesizing Constraint Expressions", CACM Vol. 21(11) pp. 958-966 (1978).

Grefil969a. C. Green, "Theorem Proving by Resolution as a Basis for Question Answering Systems", in Machinge Intelligence 4 , ed. D. Michie 8 B. Meltzer, Edinburgh University Press (1969).

Greeni972a. P.E. Green and V.R. Rao, Applied Multidimen= siongal Scaling: A Comparison of Approaches and Algo= rithms, Holt Rinehart, New York (1972).

Hadamard1945a. J. Hadamard, The Psychology of Invention $1 \underline{n}$ the Mathematical Field, Princeton University Press (1945). (Reprinted by Dover, 1954)

Hanna1981a. F.K. Hanna and G.D. Ritchie, AM: A Case Study in A.I. Methodology, University of Kent Electronics Laboratories (1981).

Hedrick1976a. C.L. Hedrick, "Learing Production Systems from Examples", Artificial Intelligence Vol. 7 pp. 21-49 (1976).

Hewitt1969a. C. Hewitt, PLANNER: A Langugge for Proving
 ton (1969).

Kling1971a. R.E. Kling, "A Paradigm for Reasoning by Analogy' Axtificial Intelligence Vol. 2 pp . 147-178 (1971).

Knapmani978a. J. Knapman, A Critical Review of Winston's "Learning Structural Descriptiong frog Examples", AISB Quarterly no. 31 (1978).

Koestlerl964a. A. Koestler, The Act of Creation, Hutchinson \& Co. (1964).

Lakatosi976a. I. Lakatos, Progofs and Refutationg, Cambridge University Press (1976).

Langleyl978a. P. Langley, "BACON.1: A General Discovery System", CIP Working Paper No. 383, Carnegie-Melion University (1978) .

Langleyl979a. P. Langley, Redigcovering Physics rith BACON. ${ }^{3}$, Procedings of IJCAI-6, Tokyo (1979).

Lenati976a. D.B. Lenat, AM: An Átificial Intelligence Approach to Disccovery in Mathematics as Heuristic Search, Stanford University (1976). (Ph.D. Thesis)

Lenatigita. D.B. Lenat, The Ubiquity of Disgovery, Procedings of IJCAI-5, Boston (1977).

Lenatig81a. D. B. Lenat, ARPAnet communication to P. Hayes 1981 .

Mackworth1977a. A.K. Mackworth, "Consistency in Networks of Relations", Artificial Intelligence Vol. 8(1) pp. 99-118 (1977).

Michenerig78a. E.R. Michener, Representigg Mathequatical Ḱㅡㅇㅢ́edge, MIT (1978).
 Knowledge", in The Psychology of Cogruter Vision, ed. P.H. Winston, McGraw-Hill (1975).

Mitchellig81a. T. Mitchell, J.G. Carbonell, and R. Michal-
 (1981).

Mitchellig78a. T.M. Mitchell, Version Spaces: An Approach to Concept Learning, Stanford University (1978). (Ph.D. Thesis)

Mitchelli979a. T.M. Mitchell, An Analysis of Generaliza= tion as a Search Probleg, Proceedings of IJCAI-6, Tokyo (1979).

Moorel973a. J. Moore and A. Newell, "How Can Merlin Understandi", in Knowledge and Cognition, ed. L. Gregg, Lawrence Erlbaum Associates (1973).

Munyerig77a. J.C. Munyer, Torards the Use of Anglogy in Deductive Tasks, Proceedings of IJCAI-5, Boston (1977).

Munyer1977b. J.C. Munyer, Anglogy as a 胃exristic for Mechanical Theorem Proving, MIT (1977). (Workshopon Automatic Deduction - extended abstract)
 ing, Prentice Ha ll, New Jersey (1972).

Nilssonl971a. N.J. Nilsson, Probleg-Sglying Methods ín Artificial Intelligence, McGraw-Hill(1971).

Paskig75a. G. Pask, D. Kallikourdis, and B.C.E. Scott, "The Representation of Knowables", Intergationgal
 (1975) .

Piaget1954a. J. Piaget, The Constrgction of Reality $\underline{\underline{n}} \underline{\underline{n}}$ the Child, Basic Books, New York (1954).

P1atobC360a. P1ato, The Republic, Sphere (BC360). (translated by B.Jovett)

P1otkinl977a. G.D. Plotkin, Lecture in the Dept. of Artificial Intelligence, University of Edinburgh 1977.

Poincarel913a. H. Poincare, "Mathematical Creation", in
 (translated by G.B. Halstead)

Polyal945a. G. Polya, Hog to Solye It, Princeton (1945).
Polyal954a. G. Polya, Mathematics and Plagsible Reasoning, Princeton (1954).

Polyal962a. G. Polya, Mathematical Discogery, Wiley (1962).

Polyal965a. G. Polya, Mathematical Discogery, Wiley (1965).

Popperig59a. K.R. Popper, The Logic of Scientific Díscorery, Hutchinson, London (1959).

Popper1963a. K.R. Popper, Coniectures and Refutations, Routledge and Kegan Paul, London (1963).

Potschkel982a. D. Potschke, Toward a Mathematical Theory of Analogical Reasoning, ECAI-82, Orsay (1982).

Quillian1968a. Quillian, M.R., "Semantic memory", in Segmantic Information Processsing, ed. M. Minsky,MIT (1968) .

Shapirolg82a. E. Shapiro, Inductive Ingerence of First Óㅓㅇㅢ Thegories from Fagcts, Yale Computer Science Department (1982). (to appear as reportno. 192)

Shneierig78a. M. O. Shneier, object Representation and Recoggnition in Machinge Yision, Edinburgh University (1978). (Ph.D. thesis)

Sussmani973a. G.J. Sussman, "A Computational Model of Skill Acquisition", TR 297, MIT (1973).

Verel977a. S.A. Vere, Induction of Relational Productions
 ings of IJCAI-5, Boston (1977).

Waerdeni971a. B.L. Van der Waerden, "How the Proof of Baudet's Conjecture was Found", pp. 251-260 in Stúa dies in Pure Mathematics (Presented to Richard Rado), Academic Press, London (1971).

Waltz1975a. D. Waltz, "Understanding Line Drawings of Scenes with Shadows", in The Psychology of Computer Vision, ed. P. H. Winston, McGraw-Hill(1975).

Winstonl975a. P. W. Winston, "Learing Structural Descriptions from Examples", in The Psychology of Computer Visiong, ed. P.H. Winston, McGrav-Hill(1975).

Wittgenstein 953 a. L. Wittgenstein, Philosophical $\underline{\text { Investía }}$ gations, Blackwell, Oxford (1953).

Young1977a. R.M. Young, G.D. Plotkin, and R.F. Linz, Analysis of an extended concept-learning task, Procedings of IJCAI-5, Boston (1977).

Zadeh1979a. L.A. Zadeh, "A Theory of Approximate Reasoningn. pp. 149-154 in Machine Intelligence, Yol. g. ed. L.I. Mikulich, Ellis Horwood (1979).


[^0]:    1 Henceforward usually abbreviated as "AI"

[^1]:    "New ideas depend on lateral thinking, for vertical thinking has inbuilt limitations wich make it much lesseffective for this purpose". (P13)

