

This thesis has been submitted in fulfilment of the requirements for a postgraduate degree

(e.g. PhD, MPhil, DClinPsychol) at the University of Edinburgh. Please note the following

terms and conditions of use:

• This work is protected by copyright and other intellectual property rights, which are

retained by the thesis author, unless otherwise stated.

• A copy can be downloaded for personal non-commercial research or study, without

prior permission or charge.

• This thesis cannot be reproduced or quoted extensively from without first obtaining

permission in writing from the author.

• The content must not be changed in any way or sold commercially in any format or

medium without the formal permission of the author.

• When referring to this work, full bibliographic details including the author, title,

awarding institution and date of the thesis must be given.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Edinburgh Research Archive

https://core.ac.uk/display/429706582?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Analogy and Mathematical Reasoning
A Survey

C.D.F. Miller

M. Phil

University of Edinburgh

1982

CONTENTS

Preface 3

Introduction 5

Non-computational Work 13

Models of Concept Formation 24

Winston's Program 24

Langley's Program BACON.1 34

Other Work on Concept Formation 41

Lenat's Program AM 44

Paradigms for Deduction by Analogy 70

Kling's Program ZORBA 70

Analogy as a Cousin of Unification 74

Brown's Work on Reasoning by Analogy 83

Analogy in Knowledge Representation 93

Can Merlin Understand? 93

Algebraic Models of Analogy 98

Analogy by Means-Ends Analysis 102

The Use of Similarity Measures 106

Summary and Conclusions 112

References 115

ABSTRACT

We survey the literature of Artificial Intelligence, and

other related work, pertaining to the modelling of

mathematical reasoning and its relationship with the use

of analogy. In particular, we discuss the contribution of

Lenat's program AM to models of mathematical discovery and

concept-formation.

We consider the use of similarity measures to structure a

knowledge space and their role in concept acquisition.

- 3 -

Preface

This dissertation is intended to constitute "a criti-
cal review of an area of the literature" of Artificial
Intelligencel. It is perhaps necessary to justify why the

at first sight diverse material treated constitutes an

"area" worthy of treatment as a body. We shall hope to do

this in the Introduction which follows this brief preface.

In Al at present it is extremely difficult to draw

precise boundaries around clearly defined and distinct
topics; a study of one part of the subject almost invari-
ably draws the student into many other regions. Thus,

what is presented here is not, and by the nature of AI can

not be, a study of a sel f-contained f ield, but is rather

an examination of a spectrum of Al literature with two

main foci of attention: "mathematical reasoning" and

"analogy" .

We shall hope to convince the reader that in fact

analogical reasoning and representation are central to

cognition, and that in particular they are essential to

mathematical deduction and discover}, which we consider

paradigmatic examples of rational thought. Hence the

intersection of these two topics, i.e. "Analogy in

Mathematical Reasoning", can be seen as a microcosm of a

1 Henceforward usually abbreviated as "Al"

4

very wide range of cognitive activity; however, in order

properly to understand the relationship between these two

topics, it is necessary to consider each in a wider con-

text.

In the Introduction we shall present arguments which

will justify in more detail the choice of literature to be

discussed in the succeeding sections. This will be fol-

lowed by a review of a substantial body of AI literature.

Finally, we shall outline in a very general way a possible

model of the assimilation of information by analogy, mak-

ing use of the notion of similarity measures.

- 5 -

Introduction

It is always hard to choose a title for a written
text, and in view of this difficulty it is common to spend

the first paragraph or so explaining what the work is

really about. This survey is no exception to that rule.

Since the author's principal interest lies in the

field of Artificial Intelligence, the greater part by far

of the survey will be devoted to computational systems.

implemented or proposed, which attempt to simulate various

aspects of discovery and creativity in mathematics, and of

the use of analogy in reasoning and knowledge representa-

tion. This does not mean that all the systems discussed

take mathematics as their domain of activity; we shall,
for example, consider a program to carry out IQ-test anal-

ogy recognition problems ((Evansl967aI), and programs to

learn concepts by induction from examples [Winstonl975a]

and (Langleyl978a]. The criterion for inclusion is that

each system discussed should carry out (or attempt to

carry out) some task of direct and immediate relevance to

either or both of our principal topics, mathematical rea-

soning and analogy. As '*e shall hope to make clear in the

rest of this introduction and in the subsequent sections,

many such systems will be of much broader potential appli-

cation than might be suggested by their apparent restric -

tion to a relatively limited domain.

6

The choice of systems to be investigated will be seen

to show two quite strong biases: for "analogy" systems,

and against "conventional" theorem-provers. The reason

for the pro-analogy bias is that we bel ieve that the

recognition and use of analogies is absolutely fundamental

to any form of discovery, creativity or inductive reason-

ing. The reason for the exclusion of conventional

theorem-proving programs is twofold: first, they are

already extremely well studied in a number of sources (e.g

[Nilssonl971a,Bledsoel977a]); second, we believe that

although deduction can play a significant role in

discovery, the detailed differences among the internal

mechanisms of particular deduction systems are of little
relevance to our present work.

An essential component of reasoning is discovery; if

we wish to produce a system which reasons intelligently,

it is essential that it should be capable of learning from

its previous experience. Thus much of our attention will

be concentrated upon the notion of "mathematical

discovery". This is a surprisingly hard concept to pin

down: accurately. It includes the proposal of new conjec-

tures, if possible with some indication of the grounds for

believing a conjecture, the strength of those grounds, and

an idea of how to go about verifying or refuting the con-

jecture, the formation of new concepts, and the investiga-

tio n of their properties; and the suggestion of interest

- 7 -

ing areas for potential further investigation by means

beyond the present power or resources of the discoverer.

We shall begin our survey by considering some of the

non-computational studies of discovery and creativity:
Hadamard [Hadamardl945a], (the most directly concerned

with mathematics), Koestler [Koest1erl964a] and de Bono

[Bonol967a]. We shall then, armed with a better under-

standing of what problems are to be addressed, consider

the notion of Lakatos [Lakatosl976a] that discovery is

implicit in the nature of proof and refutation, and exam-

ine one of the few detailed empirical accounts of

mathematical creativity at work ([Waerdenl971a]). Also to

be considered at this point is the very important work of

Polya ([Po1yal945a], [Polyal954a], [Polyal962a],

[Polyal965a]) on "heuristic".

After this foray beyond the computational world, we

shall withdraw to ground on which the author feels his

footing more secure, and study the literature of Al to

see what has been achieved, what has been attempted, and

what remains up to now neglected. The most important

works we shall consider (i.e. important in relation to the

present enquiry) are those of Lenat [Lenat1976a] on a

model of discover} in mathematics, of K. Brown

[Brownl977a] on the construction and use of analogies for

transferring "expertise" from one domain to another, and

of Munver [Munyerl977a,Munyerl977b] on the use of analogy

8

as a "fuzzy" matching rule, similar to unification, in a

deductive system.

Before embarking on the critical part of the survey,

we will state very briefly a few of our own views. To

begin with, as already emphasised, a powerful analogy

mechanism must underlie any discovery system. This is

because a great deal of discovery stems from the drawing

of generalisations from similar data, and in order for

this to be possible there must first exist a criterion,

and if possible a quantitative measure, of similarity

between data. Furthermore, the very existence of any sort

of taxonomic classification of the world requires the

ability to discriminate between members and non-members of

a class, whilst the fact that such classifications are, in

the context of human learning, flexible and extensible

necessitates a mechanism for acquiring new discriminatory

criteria. It might be argued that the similarities used

in such discrimination are simply in the form of the con-

junction of common possession or non-possession of some

set of characteristic properties, and that no more subtle

analog} mechanism is needed; this argument fails on two

grounds. First, it begs the question. How can it be

determined whether an object possesses any given property?

E%en in elementary cases, where the property seems to be a

simple perceptual datum, e.g. "yellow", the decision is

not always clear-cut; yellow is only meaningful to most

9

people as the common property of all things which they

would call yellow2 which seems to lead the above position

into circularity. In more complex cases it is clear that

we are in danger of being thrown into a regress of defini-
tions that, even if not infinite, is so unwieldy as to

become at the very least implausible as a discriminatory

mechanism to be applied indiscriminately. Second, many

concepts are not at all well-defined, and are extremely

"context-sensitive" Thus it is very unclear whether any

simple conjunctive definition is sufficient to define as

diffuse a concept as "chair", or indeed any disjunctive

definition of manageable size - "chair" describes a set of

mutually similar objects, a set with rather fuzzy boun-

daries3 (consider for example a doll's chair and a

packing-case as dubious boundary instances). We shall

explore this idea further in our discussions of

2

3

That the property does not have well-defined natural
boundaries, which could for example be specified by
giving a range of frequencies of light, is exempli-
fied by the fact that the French "jaune", usually
translated as "yellow", includes a range of colour
which most English-speakers would usually term
"brown" or "tan"; there is no French word correspond-
ing precisely to the English concept "yellow". Hence
the boundaries of a concept may be determined by con-
vention (e.g. linguistic usage) rather than by an in-
trinsic common distinguishing property.

For a rather different apnrcach to the whole ques-
tion, the reader is referred to "The Republic"
(P1atoBC360a), in which the problem of class member-
ship is resolved in terms of partaking of the form of

an appropriate frame, or "ideal" as it has been
translated in the past.

- 10 -

[Lakatosl976a] and [Winston1975a]. The reader may compare

the above discussion with Wittgenstein's notion of a "fam-

ily resemblance" among a collection of objects

[Wittgensteinl953a]; individual instances of a concept,

according to Wittgenstein, overlap in a loose and unsys-

tematic way, leaving the precise boundary of the concept

unclear.

As will be clear from the foregoing remarks, we would

hold that the need for a clear understanding of analogy

goes far beyond the domain of mathematical discovery - in

particular we see very close links with areas involving

recognition of a datum as an instance of something fami-

liar, such as the visual identification of objects. For

example Shneier [Shneierl978a] has produced a visual

recognition program whose mechanism he has shown to be in

fact of considerable generality; as an example, he has

used a version of the same program to correct spelling

errors. It is clear in such a case that the processes

involved in visual recognition are closely allied to those

needed for feature recognition in general. We are limit-

ing the main focus of our attention to mathematics merely

in order to have for consideration an area of less

intractable dimensions than the entire field of human cog-

nition4.

4 This is left as an exercise for the interested
r e a d e r.

- 11 -

It should also be made clear that despite the

emphasis which we have so far given to it, we do not

believe that analogy alone is the key which will unlock

all the secrets of intelligent behaviour. As we shall

hope to point out during our analysis of other work, we

would view an analogising and analogy-using system as

forming only one component among many, albeit an essential

one. Other serious problems which merit close attention
include: the direction of attention towards significant
tasks; the judgement of how best to perform those tasks

(see especially our remarks on [Lenat1976a]); formal

deduction (i.e. theorem-proving, although the connotations

of the term are more closely bound up with purely

mathematical activities than we would wish); knowledge

retrieval ("memory"); and learning. Indeed, the list
could be extended almost indefinitely. However, there

seems to be one very important question which has up to

now been addressed scarcely at all from a computational

viewpoint, and which bears in some degree upon many of the

facets of intelligence. how, given some new datum, can it
be placed within the context of present knowledge? That

is, how can it be determined what it resembles, and in

what ways, and by how muchs?

This, it should be noted, is a question both about
the representations of present knowledge, and about
the ways in which those representations are used in
matching and retrieval.

- 12 -

This question may be borne in mind during the reading

of this survey; although we shall find no complete

answers, we may at least be able to pose some relevant

further questions. It may be seen as a problem of assimi_

lation - a new datum is to be taken and accommodated6

within a framework of existing knowledge in some manner -

or of retrieval ("reminding" as Carbonell [Carbonelll981a]

calls it) - those items within existing knowledge relevant

to the new datum are to be extracted. It is clear that

these are two sides of the same coin, and that any postu-

lated mechanism for one has very strong implications for

the other.

The idea has been proposed of using similarity meas-

ures on graphs as a measure of the strength of an analogy,

e.g. in [Pot schkel982a]. There has not, I believe, been

any discussion of the use of such measures in the search

mechanism for analogy discovery. We shall therefore con-

clude this survey by making some tentative suggestions for

an approach towards achieving this.

6 The term is taken from the theories of Piaget
[Piagetl954a) on developmental psychology.

- 13 -

Non-computational Work on Analogical and Mathematical Rea_

Boning

Before moving on to the main body of this thesis, we

shall discuss briefly a few of the more important studies

of discovery and creativity in mathematics and related

fields which do not attempt to provide any sort of compu-

tational model of the phenomenon which they examine. We

consider two categories of work: informal and anecdotal

discussions, exemplified by Koestler [Koestlerl964a] and

de Bono [Bonol967a], and attempts at a more theoretical

treatment (Polya [Polyal945a), [Polyal962a],

[Polyal965a], [Polyal954a], and Lakatos [Lakatosl976a]).

In his book "The Use of Lateral Thinking"

[Bonol967a), de Bono attempts to contrast "vertical" with

"lateral" thinking; neither term is given a formal defini-
tion, but the former may be best described as analytical
reasoning attempting to find a direct logical path from

problem to solution, whereas the latter involves the deli-
berate seeking of unexpected solution paths (cf. the

famous quotation of Souriau, "Pour inventer it Taut penser

A cot6", cited on p.145 of [Koestlerl964a]). be Bono's

views are well summarised in the following extracts:

"Vertical thinking has always been the only respect-
able type of thinking; in its ultimate form as logic
it is the recommended ideal towards which al l minds
are urged to strive, no matter how far short they-
fall. Computers are perhaps the best example. The
problem is defined by the programmer, who also

- 14 -

indicates the path along which the problem is to be
explored. The computer then proceeds with its uncom-
parable logic and efficiency to work out the problem.
The smooth progression of vertical thinking from one
solid step to another solid step is quite different
from lateral thinking". (P11)

"One of the techniques of lateral thinking is to make
deliberate use of this rationalizing facility of the
mind. Instead of proceeding step by step in the
usual vertical manner, you take up a new and quite
arbitrary position. You then work backwards and try
to construct a logical path between this new position
and the starting point. Should a path prove possi-
ble, it must eventually be treated with the full
rigours of logic. If the path is sound, you are then
in a useful position which may never have been
reached by ordinary vertical thinking. Even if the
arbitrary position does not prove tenable, you may still have generated useful new ideas in trying to
justify it" . (P12)

"New ideas depend on lateral thinking, for vertical
thinking has inbuilt limitations which make it much
less effective for this purpose". (P13)

It may be noticed that in the first of these quotations he

asserts that lateral thinking is fundamentally non-

algorithmic, whilst in the second he attempts to outline

an algorithm for it! Indeed, it would be trivial to

incorporate in any conventional problem--solving computer

program some heuristic such as "choose an arbitrary fact

and attempt to incorporate it into a solution path". How-

ever, the value of such a strategy is at best unclear;

what would be required in addition is a mechanism for

quickly reviewing a large number of possibilities and

deciding which facts are candidates for further

- 15 -

consideration. On this subject, consistent with his view

that lateral thinking is essentially not amenable to an

algorithmic definition, de Bono has nothing to say.

A number of writers have undertaken empirical studies

of how creative thinking occurs in practice, in contrast

to de Bono's prescriptive account of how it ought to

occur; these are invariably founded upon introspection by

creative thinkers, or, to be more accurate, on subjective

post hoc reconstruction of introspection into the creative

process.

A pioneering work of this kind was the monograph by

Hadamard, "The Psychology of Invention in the Mathematical

Field" [Hadamardl945a]. In this he discusses the examples

of Poincarb (quoted from "Mathematical Creation"

(Poincarel913a]), Kekul6's discovery of the benzene ring,

and a large number of other examples of "inspiration"
among well-known mathematicians. However, his proposed

"mechanism" for such creativity draws heavily on the

unelaborated workings of the "unconscious mind", where he

supposes that very many ideas are combined essentially at

random, becoming accessible to consciousness (i.e. intros-

pection) only when a fruitful combination is found. What

constitutes an "idea" or a "combination" is left undis -

cussed, and there is no consideration of how many

attempted combinations may be required, nor how much pro-

cessing is to be done on each combination. It is apparent

- 16 -

that it is necessary to postulate either a vast capacity

for unconscious processing or else a filtering mechanism

to enable only plausible combinations to be examined, if
one makes the reasonable assumption that the number of

"ideas" in the memory available for combination is large.

Whilst it is perhaps possible to extract the germ of an

algorithm from Hadamard's imprecise theory, it is clear

that without an efficient mechanism for search control and

selectivity, no practical computer program could be pro-

duced to run on the hardware of the foreseeable future

which would embody this theory. Indeed, it is clear that

Hadamard was concerned rather to present a phenomenologi-

cal account of the process of mathematical discovery than

to provide a theory of its mechanism which would be

testable and refutable.

Another major study in this area is Koestler's "The

Act of Creation" [Koestlerl964a], in which the horizons

are broadened from mathematical discovery to creative

thinking in general. Once again, much is left to the mys-

terious, apparently non-algorithmic workings of "the

unconscious", reinforced by the examples of Poincar6,

Kekule, Ampere, Gauss and Hadamard (pp.116-118). However,

Koestler does lay great stress on the essential role of

analogy in the creative process; he coins a new term,

bisociation to describe "perceiving of a situation or

idea, L, in two self-consistent but habitually incompati-

- 1 7 -

ble frames of reference" (p.35), and goes on to develop

this into the idea of constructing an analogy via L

between these two frames of reference. He later makes the

unequivocal assertion that "discovery consists in seeing

an analogy which nobody had seen before" (p.104), and

later (p.120) that "[the creative act] does not create

something out of nothing; it uncovers, selects, re-

shuffles, combines, synthesizes already existing facts,

ideas, faculties, skills. The more familiar the parts,

the more striking the new whole". However, he regards

this process of selection, re-shuffling, etc. as being

essentially non-algorithmic:

"Here, then, is the apparent paradox. A branch of
knowledge which operates predominantly with abstract
symbols, whose entire rationale and credo are objec-
tivity, verifiability, logicality, turns out to be
dependent on mental processes which are subjective,
irrational, and verifiable only after the event."
(P.147)

"The search for the improbable partner involves long
and arduous striving - but the ultimate matchmaker is
the unconscious." (P.201)

It is, of course, an article of faith amongst AI

researchers that the mystic unconscious processes invoked

Koestler and Hadamard are modellable as computational

processes, such faith must ultimately be justified by

exhibiting appropriate models, and it is the attempts to

do so, or to take steps towards doing so, which will form

- 18 -

the subject matter for the remaining sections of this
thesis.

Before leaving this review of non-computational stu-

dies we should, however, consider some attempts to formal-

ise rather more explicitly aspects of mathematical

discovery.

The most substantial and best-known of these is the

work of Polya [Polyal945a, Polyal954a, Polyal962a,

PoIyal965a]; in the earliest of these texts, "How To

Solve It", he presents what is essentially a dialectic
approach to problem-solving in which the problem - solver

a sks himself a series of questions to guide his search,

and to reveal possible alternative approaches, e.g.

(pp.xvi-xvii)

"Do you know a related problem?

"Here is a problem related to yours and solved
before. Could you use it?

Can you use the result, or the method, for some
other problem?"

In the later, more substantial, works Polya presents a

large number of detailed examples, from which he abstracts

further general maxims, A principle akin to Koestler's

idea of bisociation is abstracted from examples in

geometric construction and subsequently widened very gen -

erally, v iz, finding two "loci" for the solution to a

problem and then finding their "intersection" [Polyal962a,

- 19 -

ch.6]7. However, the overall treatment which emerges from

his work is still primarily anecdotal and unsystematic.

The heuristics discussed are described informally, and

frequently, as in the above instance, analogically.

Whereas Polya's examples are generally "rational
reconstructions" of how a discovery could be made, an

interesting example is given by Van Der Waerden

[Waerdenl971a] of how a proof was actually discovered in

practice by a group of mathematicians in discussion.

Plotkin [Plotkinl977a] has suggested that some of the

discovery steps illustrated in this paper might be amen-

able to inclusion in a very advanced theorem-proving sys-

tem; certainly some of the heuristics - "try to obtain a

stronger form of the theorem", "try to generalise the

theorem", "use the strongest induction hypothesis possi-

ble" - are extremely valuable in mathematical proof. Some

of them have indeed been incorporated into systems such as

those of Cohen [Cohenl980aI and of Boyer and Moore

[Boyerl979aI; however, the sophisticated application of

these described by Van der Waerden still seems to be

beyond the scope of present programs,

One possible route which work such as Polya's and Van

Der Waerden's might indicate is the development of rule-

It is interesting to notice in passing how analogy
here puts in an appearance in the description of a

problem-solution method.

- 20 -

based expert systems to incorporate the heuristics used by

practising mathematicians. Lenat's program AM

[Lenat1976a] can be seen as a step in this direction; how-

ever, as we shall argue below. AM's "heuristics" are too

low-level and the deductive power of the system too weak

to be regarded as a true expert system, although Lenat's

contribution is valuable in other respects. Perhaps more

fruitful than a self-contained program such as AM would be

an interactive system incorporating a proof engine and an

expert adviser, the latter proposing directions of

exploration to a user who could then use the former to

test the consequences of those suggestions which seemed

most potentially fruitful. One eventual goal of such a

system would of course be the extraction and formalisation

of the user's expertise for incorporation within the

expert system itself, in the tradition of "knowledge

refinement" as propounded by Michie and others.

It is interesting to compare this suggestion with

that of Micbener [Michenerl978a]. She attempts to define

a detailed structure of mathematical knowledge (having

many similarities with the structures used in the CAI work

of Pask et al (Paskl975a]), dividing it into examples,

results and concepts, with many further subdivisions and

cross-links between these. She then proposes an interac-

tive computer system which will "help neophytes understand

mathematics and learn how to understand" by guiding them

- 21 -

through the knowledge-base. Finally, she suggests using

this system in conjunction with "theorem provers, or

analogy- or concept-generating programs that need to use

previously established mathematics". The examples given

of the sort of advice the system might give to a non-

resolution theorem-prover look very similar to some of

Polya's heuristics.

We conclude this brief survey of non-computational

studies of mathematical reasoning by considering the work

of Lakatos [Lakatosl976a), whose approach is substantially

more formal and more philosophical than any of the works

discussed above. Lakatos is strongly influenced by the

ideas of Popper [Popperl959a] on the nature of a scien-

tific theory, and of empirical induction. Briefly,
Popper's view is that a theory is only meaningful if it is

falsifiable, i.e. in principle refutable as a consequence

of some experiment or observation. For if a theory is not

falsifiable, then it tells us nothing of substance about

the world; like the unobservability of the lumeniferous

ether, it makes no difference to our predicted observa-

tions of events in the real world whether or not the

theory holds. In "Proofs and Refutations" (the title an

obvious parallel with Popper's "Conjectures and Refuta-

[ions" [Popperl963a]) Lakatos extends the idea of empiri-

cal theory formation to a domain not normally regarded as

empirical, namely mathematical proof. He illustrates how

- 22 -

a theorem (e.g. Euler's relationship between faces, edges

and vertices of a polyhedron) implicitly defines a collec-
tion of objects for which the theorem holds, and how

failed attempts to prove the theorem may lead to a more

precise definition of the appropriate concept. Thus a

particular proof of Euler's relationship may fail for a

certain class of polyhedra with "holes" in; hence the new

concept of a "simply-connected" polyhedron is introduced.

This process of alternately refining a concept definition
and re-working a proof has much in common with Young,

Plotkin and Linz's "rational reconstruction" of Winston's

work on concept formation (Youngl977a,Winstonl975a), to be

considered in greater detail below, in which a concept is

considered to have a "least upper bound" and a "greatest

lower bound", i.e. a pair of definitions one of which is

sufficient and the other necessary. The process of

concept-formation consists of pushing these bounds closer

together until (perhaps) they coincide8. Thus in Lakatos'

example, at any stage of his dialectic process we can

determine of most objects either that they definitely are,

or that they definitely are not polyhedra; however, there

is a certain class of objects about which our current

definitions leave us uncertain. In addition to the above

mentioned work of Young, Plotkin and Linz, this model of

8 Of course, they need never merge - this may well be
one way of capturing the "fuzziness" inherent in many
concepts which was pointed out in our introduction.

- 23 -

concept formation and representation has been studied by

Mitchell [Mitchell1978a).

As presented by Lakatos, the notions of proof and of

concept formation are seen to be dual aspects of mathemat-

ical discovery. It is therefore appropriate that we begin

our survey of Al work on mathematical reasoning with a

survey of work on concept formation. As we shall see,

this has close links with the formation of analogies.

- 24 -

Models of Concept Formation in AI

This is an extremely broad area, and we can only

touch here on a few of the most important or most relevant

examples. One major piece of research in this area,

Lenat's program AM [Lenatl976a], is deferred to a later

section for more detailed consideration, since it is espe-

cially important to our study of mathematical reasoning;

the papers considered in the present section belong to the

wider area of concept-formation in general, rather than

being limited to the specific domain of mathematics.

Following our remarks at the end of the previous sec-

tion on Lakatos [Lakatosl976a], we begin with an examina-

tion of the very well-known work of Winston on "Learning

Structural Descriptions from Examples".

Winston's Structural Description Learning Progra®

In this discussion of Winston's concept-learning pro-

gram [Winston1975a] we shall not be concerned with the

initial scene- analysis component of the program, in which

a descriptive network is obtained from a "blocks world"

scene. Rather, we shall be concerned with the way in

which successive "examples" and "near-misses" are used to

ref ine the def ini Lion of the concept to be acquired, In

an attempt to clarify terminology, we shall use the term

"example" to mean "any scene presented to the program"

this is not Winston's usage), "instance" for an example

- 25 -

which satisfies the concept's definition", and "non-

instance" for "an example which fails to satisfy the

concept's definition".

Winston's representation of scenes as networks of

nodes and arcs appears quite simple and natural for ele-

mentary scenes (e.g. his figures 5.5, 5.6 on p.161). How-

ever, as scenes become complex the networks become

correspondingly unwieldy, and the set of "primitives" used

to label nodes and arcs becomes both large and seemingly

arbitrary.

His use of the same network structure with some addi-

tional primitives to represent concepts is, at best,

confusing. Within a single network there are typically
segments representing particular objects, segments

describing relations between them, and segments describing

properties of these relations (such as the "MUST-BE-

SUPPORTED-BY" arc of Winston's figure 5.8). This flatten-
ing of a conceptual hierarchy into a single uniform struc-

ture does not aid clarity; nor does it appear to enhance

the power of Winston's formalism -- if his claim to be able

to handle further recursive levels of abstraction is

indeed justified, then his representation would surely be

enhanced by a more obviously hierarchical structure

(although such structure can of course always be superim-

posed by the reader upon the "flat" networks, given suffi-
dent e ffort).

- 26 -

For a detailed criticism of Winston's work, and par-

ticularly of his representations and their amenability to

the algorithms he describes, see the review by Knapman

[Knapmanl978a], which casts some doubt upon whether the

mechanisms and representations described by Winston are in

fact fully sufficient for the tasks which he claims that

his program could carry out. A sympathetic account of

Winston's thesis is given as clearly and succinctly as

seems feasible by Boden [Bodenl977a].

For the rest of this discussion, we shall concern

ourselves with what seems to be a fair abstraction of the

essence of Winston's learning mechanism, already mentioned

above in our discussion of Lakatos. Young, Plotkin and

Linz [Youngl977a] have produced a "rational reconstruc-

tion" implemented as a POP2 program, of the use of

instances and near-misses to learn a conjunctive concept;

more recently Bundy [Bundyl981a] has produced a short Pro-

log program which embodies this model. The (strong)

presupposition which underlies this model is that the set

of possible attributes of objects and their relationships

is arranged as a collection of well-defined, already known

hierarchies.9 The question of how the concepts embodied in

these hierarchies are themselves acquired is not

9 Lattices in the Young-Plotkin-Linz model; we shall
describe the model using hierarchies with an added
"bottom" element, and then go on to observe how it
may be extended trivially to general lattices.

- 27 -

considered by the authors; as we shall note below, their

acquisition would appear to require a mechanism for the

learning of disjunctive concepts.

A simple example of a hierarchy might be a SHAPE

hierarchy:

SHAPE
/ \

PYRAMID PRISM
/ \

WEDGE BLOCK

CUBE CUBOID

where entries in the tree are subsumed by their "parent"

nodes .

In Bundy's program a concept is represented as a col-

lection of constants which represent the objects composing

the "ideal" instance of the concept, together with a set

of property hierarchies, each with a pair of nodes marked

as "upper bound" and "lower bound". Each hierarchy is

associated with some object or group of objects in the

"ideal", and represents the assertion that all the

corresponding properties of the objects in any instance

must lie below the upper bound, and that in any- non-

instance at least one attribute will lie above the

appropriate lower bound. That is, the upper bounds give

necessary conditions for the concept, while the lower

bounds give sufficient conditions. A very similar model

is embodied in Mitchell's concept of version spaces

-28-
[Mitchel11978a), in which sets of rules are retained giv-

ing the most specialised definition (lower bound) and most

general definiton (upper bound) so far found to be appli-

cable to a concept.

When an example is presented, the first task is to

match the objects of the example with the constants of the

ideal. This is done on a somewhat ad hoc basis by both

Winston's program and by Bundy's rational reconstruction;

as Bundy has pointed out (private communication) there is

obviously much scope for a clever matching algorithm to

f ind the "best f it" between example and ideal . Such an

algorithm would in effect be an analogy-finder of the sort

which we shall see is required by any program which dis-

covers and uses analogy. When a match has been made, by

whatever means, the property hierarchies of the concept

definition are compared with the attributes of the exam-

ple. For each property there are three possibilities:

1) The example lies below the lower bound; in this case

one component of the conjunctive definition of the

concept is satisfied. If all the relevant attributes

of the example fall below the corresponding lower

bound, then the example is an instance of the con-

cept;

2) The example lies above the upper bound; thus it fails
to satisfy one component of the definition, and must

- 29 -

be a non-instance;

3) The example lies in the "grey" area between the two

bounds; in this case the program has the opportunity

to refine its definition by adjusting either the

upper or the lower bound, according as the example is

a non-instance or an instance (the user provides this

information).

A point not observed by Bundy in the cited paper about

case 3) is that a non-instance is useful only when pre-

cisely one attribute falls in the grey area; otherwise the

program does not know which upper bound should be lowered.

It is for this reason that the choice of training sequence

is critical; we shall give an example below where the same

example may provide different information at different

stages in the teaching sequence. It may also be noted

that whereas a non-instance can lead to the adjustment of

at most one upper bound, an instance may potentially lead

to the simultaneous adjustment of all lower bounds, i.e.

instances seem to convey more information than non-

instances, in general. This point is considered in the

survey paper by Bundy and Silver [Bundyl982a], where three

cases are distinguished: instance, near-miss and far-miss

(the last being the case when more than one attribute is

"grey"). As alternatives to the conservative strategy of

drawing no information from a far-miss, they offer the

possibilities of either choosing an arbitrary attribute

- 30 -

and lowering its upper bound, or lowering the upper bounds

of all grey attributes. It may easily be seen that each

of these strategies may lead to incorrect definitions
being formed, so that the system must record any such

decisions and be prepared to backtrack over them if it
finds it has made a wrong choice.

As an example, consider the case where the concept to

be learned is BLUE BLOCK, given a single object and the

following two property hierarchies:

SHAPE
/ \

PYRAMID PRISM
/ \

BLOCK WEDGE
/ \

CUBE CUBOID

COLOUR

PLAIN PATTERNED

BLUE GREEN STRIPED DOTTED
/ \

NAVY AZURE

Initially we have upper bounds (SHAPE,COLOUR) and lower

bounds (BOTTOM,BOTTOM) - we introduce an arbitrary element

BOTTOM into each hierarchy to con%ert it into a lattice
with lower bounds always well-defined.

The following table shows a learning sequence of

examples, with the consequent revision of upper and lower

bounds. The revised bounds at each stage of the sequence

- 31 -

are shown underlined.

Example Instance? New bounds
Upper Lower

AZURE CUBE Yes
STRIPED CUBE No
NAVY WEDGE No
AZURE CUBOID Yes
NAVY CUBE Yes
AZURE PYRAMID No
NAVY WEDGE No
GREEN CUBOID No

(SHAPE, COLOUR) (BOTTOM, BOTTOM)
(SHAPE,COLOUR) (CUBE,AE)
(SHAPE, PLAIN) (CUBE,AZURE)
(SHAPE,PLAIN) (CUBE,AZURE)
(SHAPE,PLAIN) (BLOCX,AZURE)
(SHAPE,PLAIN) (BLOCK,BLUE)
(PRISM,PLAIN) (BLOCK,BLUE)
(BLOCK,PLAIN) (BLOCH,BLUE)
(BLOCK,BLUE) (BLOCK,BLUE)

At this point all upper bounds coincide with all lower

bounds, so the concept has been learned. It is interest-
ing to compare this procedure with that of Langley's pro-

gram BACON.1 [Langleyl978a], discussed below.

We can make several observations about the above

model. First of all, it requires a prior knowledge of the

property hierarchies; this is a serious weakness since a

fundamental part of concept formation is precisely the

acquisition of a conceptual framework within which new

concepts are to be assimilated. However, the condition

that the knowledge be organised as hierarchies can be

slightly weakened; the technique of converging upper and

lower bounds can clearly be used on an arbitrary lat-

t1ce10, should such a representation prove useful. It is

The NAVY WEDGE gives no useful information at this

point .

but here it does!

10 Note that we use "lattice" in the formal mathematical
sense here, viz. a partially ordered set such that

every pair of elements has a unique least upper bound

- 32 -

interesting to note at this point that, as we shall see

later, a very similar criticism about a priori knowledge

can be made of Lenat's concept-discovering program AN

[Lenatl976a], which does indeed use a lattice to represent

the organisation of its concepts. In Winston's original

program, it is perhaps not completely obvious that the

property hierarchies used by Young, etc. are explicitly

present; they are in fact provided by his "A-KIND-OF"

links, and our criticism can thus be applied to his

apparently arbitrary choice of "primitive" nodes and their

"A-KIND-OF" subsumption relations.

A second major criticism is that only conjunctive

concepts can be learned by this method. It can certainly

be argued that such concepts are in practice more common

than disjunctive ones, and that people find disjunctive

concepts relatively hard to learn. However, the counter-

argument that the nodes of the property hierarchies are

themselves disjunctive concepts (e.g. BLUE is AZURE or

NAVY), and that these concepts must themselves be

acquired, is hard to answer, This aspect of concept for -

mat i on, which can be seen as the creating of generalisa -

tions, i s clearly- related to the processes which underlie

analogy formation, since an analog, c.in be considered as a

unifying generalisation of two disjti t concepts.

and a unique greatest lower bound.

- 33 -

We may also observe, with Knapman [Knapmanl978a),

that there is some doubt as to the psychological validity
of a concept formation mechanism which relies heavily on

the presentation of known non-instances. This point is

related to the previous criticism of having a predefined

space of attributes; without such an a priori organisation

of knowledge the idea of an "upper bound" of a concept

would be meaningless.

Finally in our discussion of W1nston, we note that

the model does not make the fullest use of the information

presented to it; when presented with an example (such as

the first occurrence of NAVY WEDGE in our above scenario)

where more than one attribute falls into the "grey" area,

no progress is made at all, even though it would in prin-

ciple be possible to record that one or other of the pre-

viously known upper bounds needed to be revised, and then

to use subsequent examples to determine which - this would

require that some "disjunctive" information be retained,

contrary to the spirit of this model.

- 34 -

!&!!1'! program BACON.!

In his paper [Langleyl978a] Langley describes a "gon-

eral discovery system", BACON.1, which gathers data and

attempts to induce laws governing regularities therein.

Thus he is dealing with a particular, simplified instance

of the general problem of assimilating new knowledge to an

existing knowledge-base - "simplified" because in his pro-

gram, as in Winston's [Winstonl975a], only a single "con-

cept" is being assimilated at one time, and the program

implicitly assumes that all input is relevant to this.

Such an assumption is justified in the case of

BACON.1 because the program is not merely a passive reci-
pient of "instances" and "non-instances", but instead acts

as a data-gathering agent by asking of its environment

(i.e. the user) what values the dependent values of a

relation will take given a particular set of independent

values chosen by the program. Thus BACON.1 performs

experiments upon its environment in order to infer laws

governing its structure.

%c shall describe here two tasks performed by

BACON.1, and then discuss how these are carried out.

The first task is the discover) of a simple numerical

relationship: given the orbital distance d and period p of

three planets, the program notices after examining succes-

si%eIv (d/p), (d (d/p)), and ((d/p) 4 (d * (d/p))) that

- 35 -

the last of these is constant. This is Kepler's third law

of planetary motion. Since BACON.1 lacks any algebraic

simplification rules, the final term above is not

Id
31

translated to (,
1p21

The second task is a simple concept-formation in the

style of [Winstonl915a]. The program is given three

independent variables (shape, size and colour) and their
domains of possible values, and one independent variable

("feedback"). It then asks for various values of feedback

and receives the successive responses:

large blue square: no
small blue square: no
large red square: yes
small red square: yes

by which stage it has formulated the hypothesis

colour=red => feedback=yes
colour=blue => feedback=no

which it then confirms by trying

large blue circle
small blue circle
large red circle
small red circle

The disparity between the above two tasks suggests

that either BACON.1 does indeed embody some general prin-

ciples of discovery or else it possesses a mixture of

methods apt for various different tasks. We shall argue

that, while both of these contain a measure of truth, the

- 36 -

latter is in fact a more significant factor in the

program's apparent versatility.

BACON.1 is a production-rule system whose rules fall
into five categories, totalling in all about 75 rules:

Data-gathering - these govern the program's acquisition of

"raw" data by means of a factorial experimentl0 in

the independent variables. (Hence, the existing pro-

gram is only suitable for handling variables with a

finite domain).

Identity-checking - these check that algebraic combina-

tions (called by Langley "higher-level attributes")

of the independent variables, proposed as relevant by

the regularity-checking rules, have not previously

been examined in another guise. They thus prevent

the program from looping, and are for "housekeeping"

purposes only. In principle they could be replaced,

to the benefit of the program, by a set of general

algebraic simplification rules.

Attribute-evaluation - these obtain or compute the values

of dependent variables, some of which are obtained

from the environment while others are higher-level

10 I .e. an experiment in which all possible combinations
of the independent variables are systematically exam-
ined.

- 37 -

attributes proposed by the regularity-checkers.

Regularity-checking - these look for regularities in the

input data (e.g. two numeric attributes increasing

together) and propose new attributes as candidates

for testing (e.g. the ratio of two numeric attri-
butes). As a special case, constancy of an attribute
is recognised, and the discovery of a constant attri-
bute may be regarded as the goal of the program.

Generalisation-testing - these check further data to

determine whether a proposed law actually holds.

It is the fourth category, the regularity-checking

rules, which are of principal interest to the present dis-

cussion since these embody the claimed general discovery

mechanism of BACON.1.

Let us look at the planetary motion example more

closely. Only two rules are needed to find the regularity

here:

If two attributes increase together, consider their

ratio.

If one attribute increases as another decreases, con-

sider their product.

Clearly these two rules suffice for discovering any rule

of the form:

- 38 -

ABbC°__L1Nm
Noppaq YyZz

= constant

A further rule proposes linear combinations of attributes,

thus allowing OACON.1 to discover constancy in any

rational function of the independent variables. There is

another rule which looks for periodicity (so that BACON.1

can, for example. "explain" series such as 11121314151...)

and proposes attributes of the form (a MOD b).

Rules of the above type are described as "trend

detectors", and operate only on numeric data. The remain-

ing regularity Checkers are "constancy detectors" which

work on either numeric or symbolic data.

It would appear that this singling out of numeric

data seriously weakens Langley's claim of generality.

However, matters are not quite as bad as might at first be

assumed; in particular periodic regularities in symbolic

data11 are recognised, since the periodicity is itselt
derived from a numeric attribute (viz, position in the

sequence). However, it is very hard to imagine how com-

plex non-numeric concepts such as Winston's "arch" could

be acquired by this sort of rule; one problem is that in

harder tasks like this it is not feasible to provide the

program with a small fixed set of independent attributes,

each with a finite domain.

11 E.g. blue square, red circle, red square, blue cir-
cle, red square, red circle

- 39 -

This comment leads us to what is probably the most

serious weakness of BACON.1. By restricting its domain to

"toy" worlds where the number of possible different inputs

is finite, indeed small, and free of "noise". Langley has

avoided all the problems of search control. It is clear

that if the program were, for example, to be able to

recognise more elaborate numerical relationships (exponen-

ti al, logarithmic, sinusoidal, square-root, derivative,

etc.) the number of candidates generated by the

regularity-checkers would rise very greatly. Similarly,

if even as few as six symbolic attributes with six legal

values each were defined, BACON.1's factorial experiment

would require about 50000 sets of independent data to be

supplied, and would obviously become intolerably large.

One notion which is lacking is any idea of

hypothesis testing by the generation of crucial tests to

decide between rival hypotheses. Armed with such a

mechanism, BACON.1 could avoid performing the entire fac-

torial experiment, and instead examine its hypotheses to

choose those cases which might refute them. The only

hypothesis testing described by Langley is, roughly, of i f

the hypothesis is seen to be true for the first four sets

of data encountered then it is accepted"; as a principle

of induction this would scarcely satisfy the most prag-

matic of positivists, let alone disciples of Popper, and

can scarcely be regarded as an accurate model of Baconian

- 40 -

Scientific Method!

In summary, we find Langley's claim for the general-

ity of his program unconvincing. Furthermore, although

his method produces quite elegant results in small

domains, we doubt very much whether it could be extended

to cope with large rule-sets, leading to very large search

spaces where the number of alternative hypotheses would

become unmanageable; it is also not easy to see how it
could be made to handle noisy data, or data from continu-

ous domains. Langley has failed to confront one of the

central problems of discovery, and of Al as a whole,

namely that of controlling search to defer the onset of

the combinatorial explosion.

In the above discussions of the programs of Winston

and Langley we have seen two widely contrasted approaches

to concept acquisition, each with a number of shortcom-

ings.

Perhaps the most immediately apparent distinction
which may be drawn between the systems is the passivity of

Winston's program contrasted with the positive data-

gathering of Langley's; however, the latter is largely

illusory since BACON.1 is in fact simply trying out every

possibility within its search space; later versions,

BACON.3 and BACON.4, behave rather more intelligently in

this respect ([Langleyl979a], [Bradshawl980a]), as well

- 41 -

as being able to cope with a small amount of "noise" in

the input data, but do not differ very significantly from

the model described above. A more genuinely active
explorer of a non-trivial search space is Lenat's program

AM, which we shall describe in some detail below. This

program not only chooses which examples it wishes to

study, but also generates the appropriate data itself. In

this respect, AM shows the true beginnings of a concept-

learning program. Furthermore, AM assimilates its con-

cepts within the same structure as its prior framework of

knowledge, whereas Winston's description "primitives" seem

to belong to an entirely different category of knowledge

from the concepts which they are used to describe.

Nevertheless, all of these programs are open to the

question of where their initial knowledge-base derives

from. In contrast, several workers have been working on

the recognising of structure and pattern within input data

with no prior collection of concepts or description primi-

tives, e.g. Hedrick [Hedrickl976a] and Vere [Verel977a].

Other Work on Concept Formation

There is a very large body of work on this topic, as

remarked earlier; having considered what we regard as two

paradigmatic examples, we shall not discuss the rest of

this field in great detail - a thorough bibliography can

be found in the SIGART special issue on machine learning

- 42 -

[Mitche111981a].

This reports, amongst many other items of research,

the work of Shapiro [Shapirol982a] at Yale University, who

claims to have developed a program which is capable of

inducing, for example, the Peano axioms of arithmetic from

facts such as

"0 < succ(0)" is true

"plus(succ(0),succ(0),succ(succ(0)))" is true

"times(succ(0),0,succ(0))' is false

Shapiro reports in his summary in SIGART that his model is

based on Popper's methodology of conjectures and refuta-

tions [Popperl963a]. Bundy and Silver [Bundyl982a] give a

brief summary of his technique of "contradiction back-

tracking", which discovers faulty rules. Unfortunately we

have so far been unable to obtain further details of this

interesting work.

In Mitchell's paper on generalisation

([Mitche111979a]) the distinction is drawn between model-

driven and data-driven strategies for concept acquisition;

the latter describes a passive program such as Winston's,

while the former refers to programs which use their

current state of knowledge to decide upon suitable

discriminating examples. Mitchell also discusses the idea

of upper and lower bounds on a concept definition in

slightly more general terms than above; rather than

- 43 -

requiring that a prior hierarchy of features be completely

known, he merely assumes that a partial ordering relation
"is-more-specialized-than" can be defined upon such

features. His discussion of the way in which instances

and counterexamples of a concept can be used to bring

these bounds closer together is very similar to that of

Young, Plotkin and Linz.

After this consideration of some of the principal
ideas in concept-formation in general, we now go on to

consider the role which such ideas play in mathematical

discovery, and look at some of the other mechanisms which

are introduced in a program which operates within this

domain, Lenat's program AM [Lenatl976a].

- 44 -

AM: a Proposed general model of mathematical discovery

We shall now consider the most comprehensive and

ambitious attempt to date to model the process of

mathematical discovery, Lenat's program "AM", which is

described in detail in his Ph.D. thesis12, and is summar-

ised in his "Computers and Thought" lecture at the fifth
IJCAI ([Lenatl977a]). This program is a large and com-

plex piece of work, and it will be necessary to examine

closely its claims, its achievements, and its shortcom-

ings. Other critical surveys of Lenat's work can be found

in the paper by Hanna and Ritchie [Hanna1981a] and in the

chapter on concept formation in Bundy's book on mathemati-

cal reasoning [Bundyl982b].

Briefly, the program begins with a body of

knowledge about some domain chosen by the programmer (we

shall discuss below the degree of domain-independence

attained by Lenat), and uses a heuristic search tech-

nique to broaden its knowledge of that domain. When

started with a knowledge of elementary mathematical con-

cepts (Relation, Equality, Structure, Operation, etc.)

and set-theoretic objects (Set, List, Bag, Set-union,

etc.), AM develops concepts of number, arithmetic opera-

tions, and primeness, and proposes unique prime factori-

A11 page references, Ctc. in this section are to
[Lenatl976a] except where otherwise stated.

- 45 -

sation and Goldbach's conjecture13 among many other con-

cepts and conjectures. Whenever a program displays a very

high performance on a restricted collection of complex

tasks, there are several questions which should be borne

in mind while attempting to evaluate its achievement. In

the case of AM we must consider the following:

How sensitive was the precise choice of initial
data? Was the quality of the result a consequence of

a very carefully chosen starting configuration?

How much were the program's heuristics "tuned" to

produce the desired results?

How well would AM adapt to other domains?

How much further could AN have progressed if allowed

to run for longer?

13

14

Does the mod-' --ssess any psychological validity14?

Alan Bundy [Bundyl982b] has pointed out that in the
examples given in Lenat's thesis the conjecture
called Goldbach's Conjecture is in fact a far more
trivial conjecture, viz. that every even number is
the sum of some number of primes (trivial because
4=2+2, 6=2+2+2, 8=2+2+2+2, etc.); however, the exam-
ples make it clear that AM could very easily have
formed the correct conjecture by precisely analogous
means - indeed it may well have done so on other
runs.

This is neither a necessary property of an Al
program, nor one claimed by Lenat for AM; it is,
however a relevant question to ask of any program
performing intelligent activities.

- 46 -

If not, does it at least give any insight into the

structure imposed by people upon their knowledge of

the world?

In order to attempt an answer to these questions,
we shall now discuss in some detail the behaviour and

internal structure of AM. We shall divide this into the

following headings:

Passive Dynamic Knowledge ("Concepts")

Active Dynamic Knowledge ("Tasks")

Active Static Knowledge ("Heuristics").

The reasons for this choice of labels should become clear

as the terms are explained.

Passive Dynamic Knowledge

By this heading we mean those parts of the program

which are essentially treated as a declarative data-

base by AM. Since AM is a production system, we can also

describe it as the long term memory of the program.

this data-base is constantly being modified and enlarged

by AM, and indeed a large part of the measure of the

program's achievement is the final state of the data-base.

(One must also take into account the directness of the

route by which this state was achieved).

The data-base is composed of a collection of

- 47 -

"concepts", which are structures similar to frames

[Minskyl975a], in that each concept possesses a set of

"facets", each containing a particular type of information

about the concept. It should be noticed that the set of

possible facets is permanently fixed, and is the same for
all concepts; there is no notion of a "type of concept"

with a particular corresponding set of facets (nor is it
clear whether such a notion is necessary or useful).

When a concept is first created (we shall discuss

below how this can occur), many of its facets will be

empty, or only partially filled in. In essence, the entire

driving mechanism of AM is the attempt to fill in empty

facets of known concepts. (This is similar to the

control-structure of GUS [Bobrowl977a]).

Typical facets are: Names, Definitions, Specializa-

tions, Generalizations, In-Domain-Of (i.e. functions

whose domain is the given concept), Worth, Analogies,

Conjectures, Examples, Isas (i.e. concepts of which

the given concept is an example). Also included as facets

of a concept are "heuristics" (discussed in detail in

the section after next) which tell the program how to fill

in other facets of the concept, how to check existing

entries for validity, how to estimate the concept's

interest, and what activities pertinent to the concept

might be worthwhile.

- 48 -

A typical concept might thus be (p.15):

-- TVAME: Prime Numbers

DEFINITIONS:
ORIGIN:

Number-of-divisors-of(x)=2
PREDICATE-CALCULUS:

Prime(x)<=>(Vz)(zlx=>z=1 i z=x)
ITERATIVE:

(for x>1): For i from 2 to 'l(x),(ix)
EXAMPLES: 2, 3, 5, 7, 11, 13, 17

BOUNDARY: 2, 3

BOUNDARY-FAILURES: 0, 1

FAILURES: 12

GENERALIZATIONS:
Numbers, Numbers with even no. of divisors,
Numbers with prime no. of divisors

SPECIALIZATIONS:
Odd primes, Prime pairs, Prime uniquely-addables

CONJECTURES:
Unique factorization, Goldbach's,
Extremes of Number-of-divisors-of

INTUITIONS:
"A metaphor to the effect that Primes are the
building blocks of all numbers"

ANALOGIES:
Maximally divisible numbers are converse
extremes of Number-of-divisors-of;
Factor a non-simple group into simple groups

INTEREST:
Conjectures tying Primes to TIMES, to
Divisors-of, to closely related operations

IWORTH_-800

New concepts can be created in various ways as

attempts are made to fill in facets; among the more obvi-

ous are the creations of generalizations or specializa-

tions. We shall defer full discussion of concept-

- 49 -

formation to the section below on AM's "heuristics".

The particular facets "Examples" and "Ira's" relate
together pairs of concepts in a lattice, as do the pair of

facets "Specialisations" and "Generalisations"; the con-

cepts are thus partially ordered by increasing specialisa-
tion, with the concept "Any-Concept" at the top of the

hierarchy of concepts (there is an item "Anything" which

lies above "Any-Concept" - this is the most general

category known to AM). It is this lattice structure which

Lenat describes as AM's "concept hierarchy".

Active Dynamic Knowledge

We discuss here the control structure adopted

by AM for scheduling its activities. One of the possi-

ble effects of a heuristic is to create an object

known as a "task". A task comprises: an activity to be

carried out (e.g. "Fill in"); a concept and associated

facet on which the task is to be carried out (e.g. "Exam-

pies o f Number"); a value, indicating the worth of

carrying out the task; and a list of reasons why the

task was proposed. Tasks are arranged on an "agenda",

which is a list ordered by the worth of the tasks.

The flow of control of AM is repeatedly to pick a

task from the agenda, allot resources to it, and then

carry it out until it terminates normally or exceeds

whichever comes first of its allotted resources of either

- 50 -

space or time. In the usual operation of the program the

top task on the agenda (i.e. the one with highest worth)

is always chosen. However, it is possible for the user to

direct this choice interactively; also, Lenat carried out

experiments in which the next task was chosen randomly

from among the top twenty, or even randomly from the whole

agenda - he reports that the first of these experi-

ments led to a decrease in the "directedness" of the

program's search, and about a threefold slowing in

the rate of making "interesting" discoveries, whilst the

second caused AM to thrash about vainly in a morass of

expanding search-space.

Tasks are proposed, i.e. added to the agenda, as a

result of various activities of the program. It is

possible for the same task to be proposed several times;

in such a case it is important that the worth of the task

be raised only if it is being proposed for a different
reason than before. This is the justification for the

inclusion of symbolic reasons in tasks. In general, the

worth of a task is computed from the ratings associated

with the reasons supporting it, and the worths attached

to the activity, the facet, and the concept involved.

Lenat gives a rather complicated formula for this, ori-

ginally intended as an ad hoc first approximation. He

asserts that in fact the precise formula used is unim-

portant provided that it satisfies certain intuitively

- 51 -

plausible monotonicity properties, and that the original
formula proved satisfactory.

The programmer fines the worths mentioned above

associated with symbolic reasons, activities and facets;

again, Lenat asserts that the precise values used are of

little consequence.

Active Static Knowledge

We use this description for AM's "heuristics" because

it is these heuristics which govern the actions carried

out by the program, but the heuristics themselves are

immutable.

Before going further, it is necessary to clear up a

possible misunderstanding generated by Lenat's confusing

terminology; in the view of AM as a heuristic search

program, in the tradition of the Graph Traverser

[Doranl966a], Lenat's "heuristics" do not correspond to

the heuristics which control the search. Rather, they are

the rules by which successor nodes in the search space

are generatedls. The search is in fact governed by the

15 This point is also made in Bundy's "rational recon-
struction" of AM's search procedure [Bundyl982bI, in
which he represents some of the heuristics as infer-
ence rules, e.g.

V Ex (ezample(C1,Ez) _> example(C2, Ex))

conjecture(C1, Cl C C2)
which is to be read as

- 52 -

single heuristic "Use the worth of a task as an evalua-

tion function; carry out the 'best' task"; thus, the

nodes of the search space are tasks, and the generation of

concepts and conjectures can be regarded as a side-

effect of the search procedure. Having made this point,
we shall from now on use Lenat's terminology without

further comment.

AM's heuristics are production rules of the form

IF pre-conditions THEN action.

The pre-conditions are a set of tests on the current

environment, and are constrained to have no side-

effects on any of AM's data structures; typical tests

would be "more than half the allotted space for the

current task has been used", "concept C has no Exam-

ples", "the current task has found at least 10 entries for

facet F of concept C", etc. Included amongst the

tests there is always one of the form "the current task
-------------------------- IF all examples of Cl are Examples of C2

THEN add conjecture "Cl (- C2"
to the conjectures facet of C1

and others as "meta-level inference rules" to control
the otherwise explosive search generated by these
rules, e.g.

19. To fill in examples of X, where I is
a kind of Y,

Inspect the examples of Y; some of
them may be examples of % as well.

The further removed Y is from %, the
less cost-effective this rule is.

- 53 -

is to perform activity A on facet F of concept C"; this

test is in fact used to index the heuristics, as an aid

to efficient retrieval of the heuristics relevant to a

particular task.

The execution of a task involves gathering all the

heuristics relevant to carrying it out (which in general

involves "rippling" up the concept hierarchy to collect
the heuristics associated with generalisations of the

associated concept), and executing all those whose left-
hand sides are satisfied, although this process may be

affected by the restrictions imposed on the resources used

by the task. To execute a heuristic, the action on

the right-hand side is performed.

A right-hand side can in general do one or more of

the following: suggest a new task, create a new concept,

create an entry for a facet of an existing concept. when

a new concept is created, certain of its facets are

filled in at once, e.g. its definition and its name; in

general only those things which are easy to fill in at

creation time but would be harder in a subsequent task

(because the present context provides relevant informa-

tion) are filled in at once. New tasks will be proposed

to fill in each of the empty facets of the new concept.

As an illustration of the creation of new concepts,

Lenat gives the following example (p. 42)

- 54 -

Heuristic: If the current task was (Fill-in examples of F),
and F is an operation from domain space A

into range space B.
and more than 100 items are known examples

of A (in the domain of F),
and more than 10 range items (in B) were

found by applying F to these domain items,
and at least 1 of these range items is a

distinguished member (especially extremum)
of B

Then (for each such distinguished member 'b'
in B) create the following new concept:

---I
(Name: F-Inverse-of-B
IDefinition: X(x) (F(x) is b) I

(Generalization: A I

(North: Average (Worth(A),Worth(F),Wortb(B), I

I IlExamples(B)II) I

lInterest: Any conjecture involving both this I

_-___concept_and_eitherF_or_Inv_erse(F)___I

In case the user asks, the reason for doing this
is:
"Worthwhile investigating those A's which
have an unusual F-value, namely, those
whose F-value is b"

The total amount of time to spend right now on all
of these new concepts is computed as:

Half the remaining cpu time in the current
task's time quantum.

The total amount of space to spend right now on
each of these new concepts is computed as:

The remaining space quantum for the current
task.

We may note in passing that the entry on the Interest

facet of the new concept seems to be the only form of new

heuristic which is ever created by AM.

This heuristic was triggered while AN was working on

the task "Fill-in examples of number-of Divisors-of", and

created (among others) the new concept "Divisors-of-
Inverse-of-Doubleton", defined by "k(x) (Divisors-of(x) is

a Donbleton)"; (note that the "Definition" of a concept is

- 55 -

in fact a predicate which is true if and only if its
argument is an instance of the concept). Thus AM has

defined the concept of prime number, and subsequently it
goes on to explore this concept further, for example

conjecturing that "the set of bags of primes whose product

is x is always a singleton", i.e. the unique factorisa-
tion theorem. (See Appendix 5, tasks 149, 152, 178-181).

In addition to creating new concepts, heuristics can

propose new tasks or fill in entries on a facet of an

existing concept; rather than go into a detailed account

of the ways in which this can happen, we shall consider

one more illustrative example, in which a new conjecture

gets proposed as a side-effect of the task "Check

examples of Odd-primes" (p. 51). One of the relevant

heuristics which is gathered for this task is

(p.238):

56. If the current task is to Check Examples of
concept X,

and (Forsome Y) Y is a generalization of I
with many examples,

and all examples of Y (ignoring boundary
cases) are also examples of X,

Then conjecture that I is really no more
specialized than Y,

and Check the truth of this conjecture on
the boundary examples of Y,

and see whether Y might itself turn out to
be no more specialized than one of its
generalizations.

This heuristic was attached to the concept Any-Concept,

and would thus be invoked for any "Check Examples ..."

- 56 -

task. When checking examples of odd primes, all examples

of primes (ignoring the boundary cases) were found to be

odd, and so an entry was added to the Examples facet of

Conjectures: "All primes (other than '2') are odd primes".

A new task was also proposed: "Check Examples of

Primes", with the supporting reason "Just as Primes was no

more general than Odd-primes, so Numbers may turn out

to be no more general than Primes"; note that this task is
a general one, in that all the heuristics relevant

to "Check Examples of Primes" will be invoked, not merely

the one relevant to determining whether all Numbers are

Prime - thus the reason for proposing a task provides no

guidance to AM on how to perform the task.

Strengths and shortcomings of AM

Having examined in some detail the working of AN, we

are now in a position to consider its contribution to

Al research, and the particular strengths and shortcomings

which it exhibits. We can also attempt to answer some

of the questions raised at the beginning of this section.

One of the strong points of the program is that its
basic control structure is extremely simple; not only is

the loop "select a task; collect heuristics; execute them"

very straightforward, but the number of different kinds

of tasks which the system can perform is very small (viz.

four - Fill-in, Check, Suggest, Interest). However, as

- 57 -

a corollary of the simple control structure, all the com-

plex behaviour of the program has to be encoded in the

heuristics and initial data - principally in the two hun-

dred and fifty or so heuristics.

The only limitation on the power of the task agenda

as a control mechanism is that the sphere of AM's activity
must be amenable to representation as a structure of

frame-like concepts, with a reasonably limited set of

possible "slots" in the frames. Such a formalism seems

general enough to cover many or most learning

tasks. Although it might be arguable that in general one

needs to be able to construct new types of facet, and

there are certainly facets (e.g. Justifications,
Counter-examples) which would need to be added to Lenat's

set, it seems intuitively implausible (at least to the

present author) that such slot-types can be multiplied
indef initely.

Thus, as observed above, essentially all AM's

knowledge of how to carry out a specific activity,
such as mathematical discovery, is contained in the

heuristics. The question now arises: To what extent

are AM's initial heuristics applicable to working with

databases other than the "primitive mathematics" one used

by AM? Lenat describes a "geometry world" experiment

with AM; however, this world is structurally so similar to

the original one that very little can be deduced from the

- 58 -

experiment - in fact, beyond defining elementary concepts

like congruence, AM seemed to spend such of its time

rephrasing its number-theoretic work in terms of integer

angles.

This is a symptom of an important distinction which

Lenat does not draw in his work on AN, between abstrac-

tions and models. When AM has discovered "Bags-of-T" as

interesting objects, it then goes on to explore their pro-

perties; this is interpreted by the user as the discovery

of numbers. However, what is in fact being investigated

is a particular model of numbers, and like other models it
possesses irrelevant properties (e.g. each "number" is a

sub-bag of many other "numbers"). If we were to define

numbers actually to be "Bags-of-T", we might eventually

discover some closely analogous objects (e.g. "Lists-of-
nil" or nested sequences of sets) which had very many pro-

parties in common with "numbers" but were nonetheless

quite different in other respects. At this stage a plau-

sible possibility would be to define numbers purely inten-

sionally, as the abstraction of the "interesting" common

properties of "Bags-of-T", etc. - assuming that such pro-

perties could be determined. Of course, for such a defin-

ition to be useful one would require a system which had

powerful tools for manipulating formal definitions, and

this goes well beyond what Lenat has attempted in AM; we

believe that one of the major limitations on AM's achieve-

- 59 -

sent is its need always to have "concrete" models to mani-

pulate, since models of complex concepts are likely to be

unwieldy, and many of their interesting properties may be

more readily discovered by formal means than empirically.

Of course, many of the heuristics are specifically
attached to relatively specialised parts of the domain,

but many others are of very general application - almost

half of the heuristics are attached to the very

high-level concept "Any-concept". One might hope, then,

that many of the heuristics are indeed appropriate

for a wide variety of discovery tasks, and in fact a

large number of them do appear to possess great general-

ity (see Appendix 3).

However, careful study of the set of heuristics

reveals a number of anomalies. Many heuristics seem to

be at an excessively detailed level, containing informa-

tion on how to decompose predicate calculus or

recursive function definitions, or list-structure
representations of objects. It seems that in his

desire for structural uniformity, Lenat is in danger of

confusing different levels of knowledge by according to

what are essentially low-level manipulation routines the

same logical status as is given to far more abstract rules

of inference. Indeed, there may well be a case for

replacing his single uniform rule-set with a multiple pro-

duction rule system, i.e. a collection of rule-sets

- 60 -

organised so that certain of them are available only in

particular contexts (note that this should be dis-
tinguished from the indexing mechanism which Lenat uses to

retrieve rules relevant to a particular task). It may

also be remarked that many of Lenat's more general rules

appear to be particular instances of even more general

rule-schemas; a more economical, and cleaner, structure

may be possible in which groups of syntactically and

semantically similar rules are replaced by single meta-

rules. For example, rules 47, 52 and 55 all essentially

say "If (under various circumstances) a concept has few

examples, try generalizing it", and the dual rules 48, 53

and 54 say "If a concept has too MCit,yexamples, try speci-

alizing it"; these could perhaps be subsumed into a pair

of rules, and possibly even into a single rule with a form

something like: "Non-trivial concepts should possess rea-

sonable numbers of examples and non-examples; a way of

reducing/increasing the number of examples is by

specializing/generalizing the concept". In a more sophis-

ticated AM-like program, which was capable of generating

new rules, we might expect to see the duality of speciali-

sation and generalisation captured by a meta-rule which,

given a rule involving one produced the dual rule using

the other.

Of AM's 240 or so heuristics, about a quarter are

principally concerned with directing AM's attention, espe-

- 61 -

cially with deciding which concepts are interesting and

how interesting they are. These seem to fall into a dif-
ferent category from, for example, those heuristics which

create new concepts; they correspond more closely to the

"classical" form of heuristic search, in that they provide

an "evaluation function" on concepts, which is in turn

part of an evaluation function on tasks. This corresponds

to the distinction observed by Bundy, as mentioned in an

earlier footnote, between those heuristics which are

essentially inference rules and those which are instead

"meta-level" rules to guide the search.

There are slightly over 30 heuristics which expli-
citly construct new concepts; in addition to this, how-

ever, concepts can be created by the application of cer-

tain other concepts - e.g. Compose applied to two Active

concepts yields another Active concept. There seems to be

a certain taxonomical untidiness about a system in which

the function of concept-formation is thus distributed
between two quite different mechanisms, as also about a

system in which the examples of some concepts are con-

cepts, whilst those of others are not. This untidiness

appears to stem at least in part from a lack of any clear

distinction between particular and general, a distinction
which is indeed often hard to draw. (Is Add a particular
instance of Operation, or is it a general class of triples
(x, y, z) such that x+y=z? According to Lenat's taxonomy

- 62 -

it is both). It is not at all clear what would be a

proper remedy for this, and we shall do no more here than

suggest that there is room for substantial re-thinking of

AM's underlying ontology, and for re-organising the

heuristic rules so that the genuinely "heuristic" ones are

separated from the "rule of play" ones - and furthermore,

so that both of these are separated from those which

encode knowledge about the particular representations

adopted by AM (e.g. the fact that sets are represented as

LISP-lists sorted in lexicographic order).

We have criticised the "heuristics"; what of the

choice of concepts in the original data base? Despite

Lenat's claim that the initial set of concepts of the

system corresponds approximately to those possessed by a

child of about four (p. 113), the knowledge embodied in

AM's starting state is articulated in ways such more

formally sophisticated than would be implied by that

claim. One important distinction which Lenat does not

draw is that between possessing a concept at the level

of being able to recognise instances of the concept as

being members of a distinguished class with something

in common (implicit possession of a concept), and possess-

ing a concept explicitly, at the level of being able to

introspect about the definition and structure of the con-

cept. All of AM's concepts are of this second, explicit,
kind; thus, it not only possesses concepts like Bag, Set,

- 63 -

Ordered Set, and List, but knows clearly about the rela-

tionship and distinction between them, and possesses

organising generalisations such as Ordered-structure,

Structure-without-repeated-elements, etc. Thus, from the

viewpoint of psychological validity, AM could be criti-

cised for having its knowledge too well articulated.

However, as we noted in our opening remarks, Lenat

makes no strong psychological claims for AM. The second

part of our original question on psychological validity
was "[Does the program] give any insight into the struc-
ture imposed by people upon their knowledge of the

world?", and here the model of a hierarchical lattice of

structured concepts acted upon by "heuristic" rules seems

to be potentially very fruitful, and well worth further
development.

A serious alternative to a "psychological" view of AM

is to consider it as a logical system. According to this
view, the program's significance lies in the empirical

methods used to extend the initial set of definitions and

assertions, and in whether such a system could go on

extending itself indefinitely, or whether it must ulti-
mately be overwhelmed by the "combinatorial explosion", as

AM appears to be. Lenat claims that the eventual degrada-

tion of AM's performance is caused by the lack of new

special-purpose heuristics to handle the new concepts

defined; it is not clear that this is altogether the real

- 64 -

reason, and indeed the converse can also be argued - that

what AM lacked was a sufficiently powerful a e t of very

general focus-of-attention heuristics. In particular, a

strong directing force which AN lacks is any sort of

goal-driven activity; one would expect a such better per-

formance from a program which could select interesting

goals to work towards, although it is very much an open

question how the relevance of candidate tasks to a goal

might be estimated, and how the system could be kept from

a dogged pursuit of one fata morgana after another.

Another apparent anomaly, we would suggest, is that

one of AM's concepts enjoys a special status which is

not made explicit anywhere in Lenat's thesis. This is

the concept of equality, which is present explicitly as

Object-Equality. Equality plays a fundamental role in

AM's discovery of Number; furthermore, according to

Lenat, if Object-equality is excised from the initial
database it is not rediscovered by AM. However, many of

AM's heuristics include checking objects for equality

(in the sense of identity) without referring directly to

this concept. Indeed, this seems perfectly reasonable,

since it seems clear that the recognition of identity and

difference does indeed play a fundamental role in any

reasoning process; it is merely a little strange that

Lenat nowhere discusses this special status, but merely

assumes it implicitly.

- 65 -
We may note in passing a slight peculiarity relating

to noticing equality: in task 29, p.297, "Check Examples

of Set-Union", AM notices that "often Set-union (x, y) was

equal to one of its arguments", and goes on to define

the Superset concept, crucial to later development, as a

result of this observation. We have been unable to

find a heuristic in the list given in Lenat's appendix 3

which accounts for AM noticing this fact at all.

Related to this is AM's limited ability to notice

analogies; in general, its knowledge about analogies

stems from those which it explicitly constructs, and from

heuristics which instruct it to look for similarities
between concepts with a common generalisation. It
possesses no mechanism for noticing totally "unexpected"

analogies between totally unrelated concepts.

At the beginning of this section we posed the ques-

tions "how sensitive was the choice of initial data?" and

"to what extent were the heuristics tuned?". These ques-

tions have also been raised by Hanna and Ritchie

[Hannal981a], who suggest that the data and heuristics

were indeed designed to produce the particular behaviour

shown by AM. However, is a reply to this paper

[Lenat1981a] Lenat strongly rebuts this suggestion, and

asserts that almost all of the concepts and attached

heuristics were designed before AM was coded, and that

virtually none of them was subsequently modified.

- 66 -

Furthermore, AM failed to make some of the discoveries

which its author had expected, and made a number of quite

unexpected ones. Thus it appears that the answer to our

questions is that both the rules and the initial concepts

were not specially chosen to produce a given performance.

Hanna and Ritchie also make a number of other

detailed criticisms of Lenat's thesis; the essence of much

of their criticism is that the thesis as it stands cannot

be an accurate description of the program which produced

the results described. Our own reading of the thesis

would support this view to some extent, as is shown by the

occasional detailed problem noted above; however, we would

attribute the problem primarily to confusion engendered by

Lenat's rather over-fanciful translations from LISP code

to plain English. A question which remains unresolved is

whether all of the heuristics were explicitly represented

by the program as separate rules, or whether some of the

"rules" cited are in fact merely a commentary on behaviour

which was coded into the program to embody a number of

interleaved rules. Lenat, in the reply cited above, seems

to concede that this is indeed the case, but later goes on

to say that the control mechanism was precisely as

described in the thesis, with no hidden subtleties. These

two statements seem to be mutually incompatible, and there

remains some confusion about this point.

A shortcoming which Lenat himself attributes to AM is

- 67 -

its lack of any formal proof methods, or even the

concept of proof. Whilst these would be of value in
rejecting invalid conjectures, confirming others (and

possibly thereby leading to new concepts), and perhaps in

rejecting obviously futile tasks, the real benefit of such

an addition would be the goal-directedness which it could

give to AM. We shall discuss this in the next section.

The task of AM

Having considered the method adopted by Lenat for

his chosen task, we must now consider briefly the

task itself. At this stage, we are in some danger of cri-

ticising AM for not being what it lays no claim to be;

these comments should be taken therefore less as a criti-

cism of AM than as some ideas for further work arising

from Lena t' s.

The first, and most important, observation (already

touched on above) is that AM models only a very lim-

ited form of discovery, namely discovery by data-driven

(or forward) search. In practice much (we are tempted

to say "almost all") mathematical discovery (and here we

are tempted to replace "mathematical" by "scientific") is

the result of goal-directed activity. That is not to

say that the mathematician deliberately embarks upon the

task of making a particular discovery, or even of mak-

ing a discovery of a particular form. Bather,

- 68 -

discoveries spring up as side-effects of trying to solve

very specific problems; the discoveries may themselves

be apparently remote from the problem being considered.

One may instance here the considerable amount of mathemat-

ics which has arisen from the (unsuccessful) attempts to

prove Fermat's Last Theorem [Edwardsl977a].

Thus, an All-like system should benefit from the

incorporation of a problem-solving mechanism, and a

component which selects tasks according to their apparent

relevance to the problem at hand. The design of

such a problem-solver would of course be a very large

research project in itself.

The second observation is that AM searches for its
discoveries within a formal domain. In many fields of

science this is only the second stage of the discovery

process, and not necessarily the harder. There must

first come a stage of formalisation, developing the

appropriate descriptive concepts and language16 from

empirical data. It is unclear how an AM-like system

might go about this task. In reply, it might be argued

that, at least in the particular domain chosen by Lenat,

the initial concepts are to be regarded as corresponding

16 In reply to the argument that all knowledge is in
some sense "formal", in that it is representable
within some formalism, we would point out that some
languages (e.g. English) are less amenable than oth-
ers (e.g. lambda-calculus) to formal manipulation.

- 69 -

to "innate" knowledge, needing no prior concept-

formation process. We find such an argument implausible
if AM is to be regarded as having any psychological vali-
dity - there seems no reason to assume that any of AM's

starting concepts are "innate" in humans; of course, in

the view of AM as a purely formal system, the entire argu-

ment becomes irrelevant.

Finally, we shall observe that the discovery under-

taken by AM is a single-level process. That is, AM can

discover concepts, but not new discovery techniques; the

set of heuristics is essentially inextensible. The

remedy proposed by Lenat is a further "flattening" of

the program's structure, so that heuristics themselves

become instances of a Heuristic concept. Attractive

though this uniformity may be, it seems to us important to

keep a clear distinction between levels of abstrac-

tion. Thus, even though one may wish to keep a unitorm

representation for all kinds of objects known to the

system, these should be collected in groups as "concepts",

"rules about concepts", "rules about rules", and

possibly further meta-levels. This remark may be con-

sidered in conjunction with our earlier suggestion that

the heuristics may be better expressed as a multiple

rule-set with rule schemas.

- 70 -

Paradigms for Deduction by Analogy

In this section we shall consider two ways of using

analogy as a deductive tool. The first is proposed by

filing [filingl971a], the second by Munyer [Munyerl977a].

Before describing these, we should like to quote Bledsoe

[Bledsoel977a] on the importance of analogy for deductive

systems:

"Perhaps the biggest error made by researchers in
automatic theorem-proving has been in essentially
ignoring the concept of analogy in proof discovery.
It is the very heart of most mathematical activity
and yet only filing (1971) has used it in an automatic
prover. His paper showed how, with the use of
knowledge, a proof in group theory would be used to
help obtain a similar proof in ring theory.

"We strongly urge that other workers in this field
familiarize themselves with filing's work and extend
and apply it more effectively."

The work we shall describe by Munyer may be seen as

an attempt to follow the advice in Bledsoe's second para-

graph. Before discussing it, we must examine filing's con-

tribution towards the understanding of the use of analogy

as a deductive tool.

filing's program ZZOHBA

filing's fundamental idea is extremely simple: many

resolution proofs are rendered intractably large because a

very large search space is generated by the presence in

the initial database of a large number of clauses

- 71 -

irrelevant to that particular proof. If the initial
clause-set can somehow be filtered to include only those

axioms which will directly contribute towards a proof,
then the resulting such smaller search space is far more

likely to lead to a proof being found.

The means adopted for filtering the database is as

follows:

Given some theorem T to be proved, and an already
proved theorem T' together with its proof P', an
analogy mapping A from T' to T is constructed. This
mapping is applied to the set of clauses used in P',
and the resulting set of clauses used as a database
for attempting to prove T.

This, it is hoped, leads to a very substantial reduc-

tion in the search space, and renders feasible a previ-

ously impossibly explosive proof.

Sling also suggests an extension of this algorithm,

where the lemmas used in proving T' are mapped into

corresponding lemmas for proving T; it is of course no

longer necessarily the case that the generated lemmas are

true, nor that they are relevant, but at least it seems

plausible that some of them will contribute effectively

towards a proof.

Sling suggests that the lemmas be solved before

attempting a proof of T; this is neither necessary nor

obviously better than the alternative "lazy evaluation"

- 72 -

strategy of deferring their proof until it is known to be

needed. There is yet a further step, which filing does not

take, that seems to follow immediately from the previous

ideas: one could take, in addition to the analogues of the

lemmas used in the proof of T', the analogues of the

clauses used in the proof, and it they were not already

clauses in the database (as is required by the first algo-

rithm described) treat them as lemmas to be used subject

to verification of their validity; this is one of the

bases of Munyer's approach.

It should be noted that Iling's paradigm discards a

great deal of useful information from the original theorem

and proof; no attempt is made to use any information about

the order in which clauses were used, nor which literals
were resolved upon. To express the same point in a wider

context, the proof P' may well be closely structurally

analogous to some proof P of T (as is indeed the case with

Kling's examples from abstract algebra); the above method

discards almost the entire structure of P',

the entire

and repeats

An extreme alternative to this method would be to

17 Rather as though, possessing a recipe for lamb

casserole, and wishing to cook a beef stew, we noted
that we were likely to need beef, onions, potatoes,
carrots, stock, salt, an oven, a knife, a dish and a

work-surface, and then threw away the recipe book
without reading the method of preparation.

- 73 -

take the entire analogue of P' as a "proof plan" for T,

attempting to justify each step in turn; one could then

envisage the entire process as a recursive one, each step

of the proof plan being worked on by the analogy mechan-

ism, This is indeed extremely close to what Nunyer does.

A few further points should be noted about filing's
work before we move on to consider Munyer. In filing's
program ZORBA, it is the user who selects the analogous

theorem T' and supplies its proof P'. Thus ZORBA consists

essentially only of the analogy-formation mechanism, plus

a resolution theorem-prover (QA3 [Greenl969a1). The anal-

ogy mechanism is used repeatedly in the attempt to prove a

theorem, constructing ever larger initial databases using

ever laxer analogies until a proof is successfully found.

filing's description of his algorithm for constructing

analogies is very detailed, but lacks any clear overall

summary; it appears essentially similar to the technique

used by R.Brown [Brownl977a].

The user also supplies ZORBA with a set of "semantic

templates", which provide type information about the func-

tions and predicates used in the database; these templates

are used to reduce the search for possible analogies by

ensuring that argument-types are mapped consistently 18.

18 R.Brown [Brownl977aJ points out that it is in general
possible to determine these semantic templates au-
tomatically by a simple syntactic criterion based on
the structure of the assertions which contain the

- 74 -

The important point to note here is that the possible

analogies are being restricted by semantic considerations;

in this respect Sling has more to offer than Munyer, whose

work we shall now examine.

Analogy Viewed as a Cousin of Unification

Munyer's philosophy can be summed up by two quota-

tions from his later paper [Munyerl977a]:

"Although the solution to a theorem-proving problem
must be logically rigorous, the means by which it is
discovered need not be."

"How to use an analogy turns out to be at least as
important as how to find an analogy".

His proposed system follows both of these maxims, in

that it makes steps which are not necessarily logically

valid in its formation of proof plans, and in that the

method by which an analogy is actually sought is an

extremely naive exhaustive search.

His approach resembles that of F. Brown [Brownl977b],

or of STRIPS [Fikes1972a], insofar as his proposed system

is an extensible deduction system, in which previously

proved theorems are assimilated into the system and are

used to contribute to further proofs. The way in which

this is done is related closely to the STRIPS approach of

using "MACROPS", since each proof known to the system (or
-------------------------- predicates in question. We consider his work below.

- 75 -

any subsequence of it) is available as an operator which
can be applied to an intermediate goal (using the term
loosely) in a proof to generate a sequence of subgoals.
The principal novel feature of Munyer's method is that the

applicability of an operator is determined by an analogy

match between the goal and the operator.

The objective which Munyer's system seeks to achieve

is to generate by analogy a proof plan for some theorem,

in the form of a linear sequence of subgoals each of which

can easily be verified by a simple conventional theorem-

prover or proof-checker. The number of steps in a valid
deduction of each subgoal from its predecessor should be

very small, so that little or no search is done in going

from the plan to a proof.

Operators are of the form

Tl => T2

where Ti and T2 are predicate calculus terms. Associated

with each operator are: an analogy match B between sub-

terms in Ti and subterms in T2 (not in general either

injective or surjective), and a "degree of certainty"

(DOC), representing a heuristic estimate of the plausibil-

ity of the derivation of T2 from Ti (DOC is a number

between 0 and 1, and is 1 whenever (T1=>T2) is known to be

a logically valid deduction). An operator can be applied

either forwards or backwards, that is, either by matching

- 76 -

T2 against some goal-state T2' in a partial proof plan, or

by matching T1 against some start-state19 Ti'. These two

cases are precisely symmetrical; we shall describe the

latter.

Suppose some analogy match A has been found between

T1 and T1 ' ; associated with this there will be a DOC

reflecting the closeness of the match, which will be 1

when the match is a valid unification. Then we wish to

use the maps A and B to generate a new subgoal T2' such

that T2' is to Ti' as T2 is to Ti; this is the "classical"

analogy Problem as dealt with by Evans [Evansl967a]. We

can represent the various formulae and mappings as fol-
lows:

T1 <-- A --> Ti'
IB

T2 <-- A'--> T2'

Difficulty arises when, as is frequently the case, no such

T2' exists; it is then necessary to construct a "best

guess" . In any case, once a T2' has been found the step

(T1'=>T2') can be added to the proof plan; associated with

it will be a degree of certainty derived from the relia-

bility of the analogies A and B, and the DOC of the opera-

tor (T1=>T2), together with the likelihood that (T1'=>T2')

19 "Start-states" are derived by forward reasoning from

the preconditions, "goal-states" by backward reason-
ing from the conclusion .

- 77 -

will be part of an eventual solution path. Thus, analogy

is being used as a sort of "fuzzy unification" to match

terms in a form of modus ponens reasoning.

What we have just described is a "blind step" in the

search for a proof: we have determined that an operator is
applicable and applied it; a more desirable circumstance

is that Ti and T2 simultaneously match via the same anal-

ogy to a start state T1' and a goal state T2 both of

which are already part of an existing plan, thus making it
more likely that the operator will be relevant to an even-

tual proof. When this occurs, the analogues of the inter-
mediate steps of the (perhaps fuzzy) deduction of T2 from

Ti can be directly mapped into a sequence of intermediate

subgoals to be added to the proof plan. However, it is

often the case that the analogies A between Tl and T1' and

A' between T2 and T2' will be different; in this case,

what Munyer calls a "skewed" plan is generated. We shall

consider how to cope with skewed plans in due course,

after considering the sort of analogy which Munyer's

matcher will produce, and the ways of constructing a T2'.

The analogy matches correspond for the most part to

second-order unifications or generalisations; for example,

identical terms match against each other (with a DOC of

1), as do any pair of first-order unitiable terms. A pair

of terms such as <f(a),f(b)> match fuzzily, as do pairs

such as <f(a),g(a)>, <f(a,b),f(b,a)>, and <f(a,b),f(b)>.

- 78 -

The diagram below shows how corresponding symbols in pairs
of terms may be mapped in a few instances.

f (a) f (a) f (a) f (a, b) f (a, b)
I I I I I I I \/ I / f (a) f (b) g (a) I /\ f (b)

f (b, a)

In cases such as (f(a,b) <--> f(b,a)) the DOC of the match

will depend upon whether f is known to be commutative20.

We may note that the matcher wil l always f ind some match

between any two terms, and that it is not guaranteed

always to find a valid second-order unification, even when

one exists.

The next matter to be considered is the generation of

a term T2' from T1', T1, T2, A and B. In describing how

this is done, Munyer has made some apparently arbitrary
choices; he does not discuss the reasons for these partic-
ular choices, and the only evident justification is the

empirical observation that they work for the problems he

has considered so far. We shall give a few examples of

the construction of T2', paraphrasing JMunyer1977a, p5).

"If a symbol in Tl' is mapped to a symbol in Ti which
is in turn mapped without change to a symbol in T2 ,

then the symbol from Ti' appears in T2' (e.g. example
1) . If however the symbol in Ti is mapped to a dif-
ferent symbol in T2, then the symbol from T2 appears
in T2' (example 2) . In either case, it the
corresponding symbols in Ti' and Ti are different,

20
An interesting problem would be the automatic genera-
tion of lemmas such as the commutativity of some
function which was frequently used in such matches.

- 79 -

21

22

23

the DOC of the step is lowered21

"A permutation among the arguments of a function in
going from T1 to T2 is copied among the symbols in
Ti' to which they are mapped (example 3). A permuta-
tion in going from Ti' to T1 does not affect the for-
mula which is produced but it does lower the DOC
unless the containing function symbol in either Ti'
or T1 is marked as commutative.

5) ."

Ti T2 T1 ' T2 '

Example 1: f(a) f(a) f(b) f(b)
Example 2: f(a) f(c) f(b) f(c)
Example 3: g(b,a,c) g(a,c,b) f(a,b) f(b,a)
Example 4: f(g(a)) f(g(b)) f(a) f(b)
Example 5: f(a,b) f(b,a) f(a,g(b)) f(g(b),a)

We can now consider how the system would go about

"A symbol in T1 which does not map to a symbol in Ti'
does not appear in T2'22 but the DOC is lowered
unless an appropriate attribute23 is present (example
4) . A symbol in Ti' which does not map to a symbol
in T1 is considered to be unaffected by the operator
and appears in T2', but the DOC will be lowered
unless an appropriate attribute is present (example

This decision appears arbitrary; it is not obvious
that it would not be as good to copy the symbol from

Ti' rather than from T2, in which case example 2

would be replaced by

T1=f(a); T2=f(c); T1'=f(b); T2'=f(b)

This seems reasonable for his example 4, but consider
T1=f(a,b,c); T2=g(a,b,c); T1'=f(b,a);
it is not obvious that T2' should be g(b,a), as
Munyer's rule implies, rather than g(b,a,c).

An attribute is some feature such as commutativity,
associativity, etc. which may be associated with a

function symbol to indicate that certain kinds of

match are exact, not "fuzzy".

- 80 -

seeking a proof of a theorem. The sequence of actions

performed is as follows:

24

25

A step to be worked on is chosen by a heuristic merit

rating (which in general prefers the verification of

plans to the taking of blind steps).

If a blind step is to be taken, the appropriate for-
mula (Ti' or T2' according as the step is backward or

forward) is generated and added to a search lattice.
If a plan is to be verified, the step with smallest

DOC24 is found, and its start and goal added to the

lattice; the plan is then ineligible for further con-

sideration until this step has been

Whenever a now formula F is added to the lattice, it

is first checked for subsumption or identity with all
other formulae already in the lattice, and any sub-

sumptions found are marked appropriately (to avoid

carrying out essentially the same tast several

times).

Next, all analogies between F and theorems in the

database are found. For each (sufficiently good, one

on the grounds if this fails there is no point wast-
ing effort on the rest of the plan

Another possibility would be to re-activate the plan
as soon as the considered step had achieved a high
enough DOC to be no longer the weakest link.

- 81 -

presumes, though Munyer does not say so explicitly)
analogy found, the theorem is searched for a second

analogy which can be used to form a plan (i.e. steps

of the theorem are matched against formulae in the

lattice). For each such plan, it is corrected it
skewed (see below), otherwise an appropriate infer-
ence link is added to the lattice, using the plan as

an operator; it the DOC is not 1, the plan itself is

marked as a candidate for future verification. If no

plan is found for this analogy, it is instead used to

propose one forward and one backward blind step.

For each added inference link, adjust DOCs appropri-

ately; if the link completes a plan step, re-activate

the corresponding plan.

Repeat the cycle until a solution is reached.

We have mentioned "skewed" plans several times.

These occur when an operator T1=>T2 matches against formu-

lae Ti' and T2' by different analogies, so that a blind

forward step from Ti' would result in T2" (ditferent from

T2'), whereas a blind backward step from T2 ' would result

in Ti" (different from Ti'). Munyer's brief explanation

of how this is patched up is very sketchy, and his chosen

example unilluminating; however, what he appears to be

proposing is that consideration is given to replacing

either T2' by T2" or Ti' by Ti" in the search lattice as

- 82 -

"plan-correcting step".

The most important observation to make about this

entire mechanism is that there is a very serious problem

of controlling search. The mechanism is proposed as being

itself a powertul tool for reducing the search space when

seeking a proof:

"It appears, based on this hand simulation, that the
construction of the solution would be optimal in that
no search (blind steps) is required ana no incorrect
steps are actually generated." (LMunyerl977a], pp.
9-10).

However, this claim needs justification which Munyer does

not offer; indeed the rather crude method used for seeking

analogies is liable to become disastrously explosive as

the database of theorems grows. Thus Munyer is replacing

one search problem by another, and proposing no solution

to this second problem. Once again, we are presented with

the fundamental problem of how to recognise an analogy

amongst a large body of existing knowledge. A question

which Munyer does go far towards answering is that of how

such an analogy might be used once it has been found; this

accords precisely with his already quoted remark that "how

to use an analogy turns out to be at least as important as

how to find an analogy".

- 83 -

Brown's Work on Reasoning by Analogy

In this section we consider the work of R. Brown

[Brownl977a,Brownl976a] on the use of analogy mappings to

transfer procedural "expertise" from one domain to

another.

Although this is not an appropriate place to go into

a detailed critique of the relative merits of procedural

and declarative representations of knowledge, it is neces-

sary to observe, before proceeding further with discussion

of Brown's work, that an issue of debate in Al has been

whether knowledge is better represented "passively" by

declarative descriptions, or "actively" by procedures

which embody the application of that knowledge (or, it
both are appropriate, which is better in given cir-
cumstances). A more recent development has been the view

that there is, in fact, little or no essential difference

between these forms of representation; it is hard to gen-

eralise fairly, but one could perhaps say that the major-

ity of those who would still claim that there is a signi-

ficant difference between procedural and declarative

representation fall into the procedural camp.

Brown's model of expertise consists of three tiers:

(1) Code: the programs which are actually run in order to

carry out tasks in the domain world; these programs

are low-level and detailed, and contain information

- 84 -

governing flow of control;

(2) Plans: these are essentially program outlines without
any control flow information; they "specify goals,

intentions and constraints";

(3) Descriptions: declarative assertions about the world,

i.e. a set of definitions and axioms in a predicate-
calculus-like language.

The immediate impression made by Brown's examples of

these three levels of his world model is that the objects

at all three levels are, in fact, executable programs,

written in successively higher level languages. Thus his

code examples are imperative programs in LISP, complete

with the full armoury of PROGs, GOs and SETQs to demon-

strate that they are real live Programs in all their naked

horror. His plans are essentially sequences of pattern-

matching manipulations on the representations of objects

in the model worlds, and as such bear a very close resem-

blance to programs in some cousin of PLANNER

[Hewittl969a]. His assertional descriptions are more or

less predicate calculus clauses translated into LISP nota-

tion, and would thus be regarded by many as executable

programs in a logic interpreter similar to Prolog

[Clocksinl981a].

Thus, by adopting his multi-level view of knowledge,

Brown weds himself firmly to the "there is a difference t"

- 85 -

side of the procedural/declarative controversy-
controversy, and comes down on the side of a low-level
procedural representation of expertise; in taking this
position, and in much of his subsequent development of the

analogy mechanism, Brown's approach shows a close affinity
with Sussman's in his program HACKER [Sussmanl973a).

To summarise very briefly the very detailed technical
description of Brown's analogy mechanism in (Brownl976a),

analogies are constructed between some already known area

of expertise (the domain) and some new area (the image) as

follows:

(1) Use the assertional descriptions to propose a mapping

between domain names and image names; this process is

essentially syntactic, although Brown uses "semantic"

type constraints on, for example, mappings of func-

tions and predicates (an extension of filing's use of

"semantic templates" [Kling1971a]).

(2) Use this map to translate plans and code in the

domain world to plans and code in the image.

(3) Use plan-justifications to prove the translated plans

correct; it this fails, use the justifications and

descriptions to debug the plans. Similarly, verify

and debug the translated code.

The debugging process appears similar to HACKER's.

- R6 -

It is clear that very sophisticated matching is required
in order to determine which image-world assertion is suf-
ficiently like which domain-world assertion to account for
a "bug". and enable it to be fixed: indeed. such a match-

ing would seem to constitute a large part of a general

solution to the problem of producing analogies purely by

inspecting descriptions.

This last point leads to the observation that there

is a strong case for arguing that the entire analogy pro-

cess should indeed be carried out at a descriptive level

That is not to say that predicate calculus without control

information is necessarily a sufficient language to

describe all domains of expertise; but languages like PRO-

T.OG. have shown that it is possible to write programs with

a declarative semantics. where the control structure is

provided by the "machine" in which the program executes.

rather than being an inherent property of the language.

Tt is apparent in Rrown's work that most of the com-

plexity arises from his multi-level representations. since

he has to construct a whole sequence of maps between

domains. and between levels within a domain. and then use

compositions of these maps to construct hypothesised new

pieces of "expertise". which still remain to be debugged.

Whilst we would not wish to imply that the problem of con-

structing and using analogies is anything other than

extremely difficult. it does seem that Brown's choice of

- 87 -

knowledge representation formalism creates a great deal of

added complexity without demonstrably providing greater
expressive power than simpler options.

We shall now look in rather more detail at the most

interesting aspect of Brown's work: the construction of

the analogy map between his descriptive assertions.

The construction of an Analogy Map

Brown's maps are constructed at the level of his

descriptions. The first stage of constructing a map is

the discovery of semantic templates, similar to Kling's;
these are automatically extracted from the descriptions by

using the observation that type-checking predicates are

unary predicates which appear quantified on the left-hand

sides of implications. Consider, for example, the

descriptions below (taken from [33rown1976a)). Brown's

LISP notation has been changed to that of predicate cal-

culus.

88 -
/ss PLANE GEOMETRY DESCRIPTIONS **/
i'(A,B) [pt(A) 8 pt(B) _>

ln(line(A,B)) & in_ln(line(A,B),A)
8 in_ln(line(A,B),B) I

/* There is a line containing any two given
points /

V(A,B) [distinct(A,B) & pt(A) & pt(B) _>
(R(X,Y) (distinct(X,Y) & ln(X) & ln(Y)

8 in_ln(X,A) & in_1n(Y,A) & in_1n(X,B)
8 in_ln(Y,B))) I

/ There is at most one line containing two given
distinct points /

IV(A,B,C) I pt(A) 8 pt(B) & pt(C) & between(A,B,C) _>
-1(L) (ln(L) 8 in_ln(Y,A) & in_1n(Y,B)

& in_ln(L,C)) I

/* If B is between A and C then A, B, C are
collinear /

V(A,B) [ln(A) & ln(B) & distinct(A,B) _>
in_ln(A, intersect(A,B)) & in_ln(B, intersect(A,B)) I / The intersection of two lines lies in each of

them */

The above rules form part of an axiom system for plane

geometry, and it can be seen that the unary predicates

which appear on left-hand sides are pt and In, which are

thus assumed by the analogy algorithm to be type-checking

predicates.

The semantic templates which can then be constructed

are:

in-1n(1n,pt)
line(pt,pt)

i.e., the arguments of in-In must be of type In and pt

respectively, and those of line must be of type pt. As

Brown observes, this extraction of semantic templates is

in fact a purely syntactic procedure.

- 89 -
Suppose we wish to construct an analogy map from this

domain to the domain of solid geometry, which will include

descriptions such as: / AXIOMS FOR SOLID GEOMETRY / / The first few axioms are identical with those for
plane geometry /

V(A,B,C) [pt(A) 8 pt(B) 8 pt(C) 8
non_collinear(A,B,C) =>
pl(plane(A,B,C)) 8 in_pl(plane(A,B,C),A)
8 in_pl(plane(A,B,C),B) 8
in_pl(plane(A,B,C),C) l

/* There exists a plane containing 3 given
non-collinear points */

'1(P) (pl(P) _> -1(A) pt(A) 8 in_pl(P,A) l

/* Every plane contains a point /
The requirement for an analogy mapping is that once a map-

ping has been defined for the type-checking predicates, it
should be extended to the rest of the symbols in such a

way that argument-types are mapped consistently. In the

example of plane and solid geometry, the initial mapping

is done by a heuristic which tries to map types of the

same name in different domains to one another; this is

obviously open to the criticism that the choice of names

for predicates is a "secret" way of giving advice to the

program (cf. the comments in [Hanna1981al on Lenat's use

in AM of the rule "If the user has recently renamed this

concept then it becomes more interesting"). Thus in the

above example, the mapping

In -> In
pt -> pt

- 90 -

would be chosen by this heuristic26

Subsequently, the formation of a consistent map can

be viewed as a filtering problem for labellings of a

graph, and as such can be handled by algorithms similar to

that of Waltz [Waltzl975a]; it should be noted that in

general Waltz's algorithm itself is not sufficient, since

the analogy map requires global consistency of the label-

ling, whereas Waltz's algorithm only ensures local con-

sistency. (An extensive discussion of such algorithms is

given in [Freuderl978a], while a discussion of the dif-
ferent possible kinds of inconsistency in a graph label-

ling is given in [Mackworthl977a]).

Using the Analogy 1[a2

If the entire process of constructing an analogy were

as described above there would be little more to be said;

however, the problem arises that such a mapping between

the symbols in two domains is unlikely to be an exact

analogy, in the sense that true statements and correct

algorithms in one domain will not necessarily map to

corresponding true statements and correct algorithms in

the other. For example, the image of a theorem proof in

26 It is interesting to note that without this heuris-
tic, the mapping (ln->pt,pt->ln) would be investigat-
ed; this is of course the first step of inventing
projective geometry, as Brown observes in
[Brownl976a].

- 91 -

plane geometry may well not be a rigorous proof on solid
geometry, but rather a sequence of lemmas which may con-

stitute an outline proof, needing completion and possible
correction.

It is this need to "debug" inexact analogies which

leads Brown to his rather baroque system of knowledge

representation. Be considers that the ultimate goal of an

analogy is to aid the transfer of expertise from one

domain to another in the form o f programs. He achieves

this by using the map constructed at the level of descrip_

tions to map plans between domains, and using the images

of the plans to construct programs. To ensure the

correctness of images of plans, he uses plan justifica-
tions, which are proofs of plan correctness in terms of

the axiomatic descriptions and definitions. Furthermore,

he requires commentary attached to programs to show how

they relate to plans.

It is unclear why the ramifications of such a

representation should stop at this point, rather than

requiring, for example, "plan justification commentaries"

to show how a plan justification corresponds to a plan,

etc. Conversely, even if we accept Brown's implicit

belief in the need for a procedural representation funda-

mentally from the declarative one, it is not clear why his

plans are not acceptable as such a representation, so that

the goal of the analogy system becomes the transfer of

- 92 -

correct plans, without the added layer of complexity

afforded by programs.

It is not, then, surprising that the mechanism which

Brown requires to carry out his many-layered mapping and

debugging process between two of his domains is both

cumbersome and confusing. While it may well be that such

a degree of complexity is indeed required of an analogy

system, this is by no means justified by the relatively
simple instances given by Brown; his insistence on a low-

level procedural representation of knowledge serves more

to obfuscate the process of constructing and using analogy

than to provide a clear explanatory model.

- 93 -

The Use of Analogy in Knowledge Representation

We have gradually moved away from our first focus of

attention, mathematical discovery, towards a consideration

of the use of analogy in general. The remaining sections

of this survey will consider a number of approaches to the

use of analogy in reasoning and knowledge representation.

We begin with a discussion of the design proposed by Moore

and Newell for a system whose entire representation for-
malism is based upon analogy, Merlin.

Can Merlin U-nderstand? --- ------ ---------

In their paper "How Can Merlin Understand?"

[Moorel973a] Moore and Newell describe a proposed formal-

ism for knowledge representation which is pertinent to the

present discussion on analogy. According to their formal-

ism, all concepts known to the system are potentially

"viewable as" instances of other concepts, subject to a

suitable mapping being made between the components of the

two concepts. This is precisely the main goal of an

analogy-finder (the subsidiary goal being to evaluate the

strength of the analogy once found).

Moore and Newell claim that their formalism is embed-

ded within a system which "understands", and cite the fol-

lowing criterion for use of the word "understand":

[A subject) S understands knowledge K if S uses K

whenever appropriate.

- 94 -

Applying this criterion to the question posed by the

title of their paper, the answer appears to be that Merlin

cannot understand at all, since Merlin (as they describe

it) is simply an embodiment of their knowledge representa-

tion formalism, and of rules for reorganising its
knowledge in response to requests to do so, or in the

course of assimilating new knowledge. Thus, although Mer-

lin might conceivably serve as the underlying basis for an

understanding system, any such system would require as a

major further part an active component which would make

use of Merlin's data-structures. Such a component would

serve to provide an interpretation of Merlin's knowledge,

without which Merlin cannot be said to "use" its knowledge

at all, appropriately or otherwise; as we shall see, Mer-

lin itself provides no such interpretation.

However, the main point of interest here is what Mer-

lin can do, which is to construct analogies and to assimi-

late new data by analogy. Indeed, the entire knowledge

base can be regarded as being organised by analogy, and in

many ways the view of knowledge representation embodied in

the program corresponds closely to the present author's.

The fundamental building-block in Merlin is an object

called by the authors a "n-structure" (chosen as a neutral

name which leads to no preconceptions about its interpre-

tation). A A-structure is denoted

- 95 -

a: [j al a2 ...]

read as "a is a A further specified by al, a2,

The Components 0, al, a2, etc. are themselves A-

structures.

An interpretation of a A-structure is ,a can be

viewed as a A given that al, a2, ..."; this interpretation
corresponds to a datum a being assimilated to a known

datum A, where the ai can be viewed as defining an analogy

between a and A. A map from A-structure B1 to B2 is

notated B1/B2, and corresponds to a way of viewing B2 as

further specification of B1.

As an example, consider the following, given by Moore

and Newell:

Suppose we have

MAN: [MAMMAL NOSE:[...] HOME:[...]]

PIG: [MAMMAL SNOUT:[...] STY:[...]]

and wish to find an analogy between MAN and PIG (view a

PIG as a MAN). The result will be

PIG: [MAN SNOUT/NOSE STY/HOME]

assuming that the maps SNOUT/NOSE and STY/HOME can be con-

structed; the interpretation would be "a PIG can be viewed

as a MAN if his SNOUT can be viewed as a NOSE and his STY

as a HOME".

- 96 -

For a full explanation of this example, and further
examples, the reader should refer to the original paper

[Moorel973a]. There are two main difficulties with the

approach taken by Moore and Newell, one practical and one

philosophical. The philosophical problem is that, since

there are no "primitive" P-structures, the whole knowledge

edifice seems to be built on air27. In this, Merlin's

knowledge-base is similar to that produced by Quillian

[Quillianl968a] in his "Semantic Memory" system. Whether

this is truly a problem depends upon one's point of view;

on the one hand those with a foundation in mathematical

logic and related disciplines are likely to be horrified
at the idea of such a "baseless" system, while on the

other hand there is a strong intuitive appeal (for some)

in the notion of a system where every definition can be

further refined in terms of other definitions as far as

necessary in any particular circumstances.

The final remark leads us to the practical problem:

when does the recursive sequence of matching stop? This

is a point on which Moore and Newell are most unclear; it
is closely related to the question: under what cir-

cumstances can an attempt to view X as Y fail? (since

obviously a failure to match corresponding components of a

u-structure would cause at least that branch of the recur-

27
Or perhaps supported on "turtles all the way down"?

- 97 -

sive watching process to terminate). Again, the answer is

not readily to be drawn from the paper.

- 98 -

Algebraic Models of Analogy

Two recent papers [Farrenyl982a] and [Potschkel982a],

propose an algebraic model of analogy formation, in which

an analogy is represented as a homomorphism between alge-

bras or (equivalently) between graphs.

Both papers represent the situations between which

analogies are to be constructed as relational algebras.

That is, a situation is described as a set of objects

together with a collection of relations defined upon that

set. For example ([Farrenyl982a]), the situation

Romeo loves Juliet.
Juliet loves Romeo.
Romeo is a man. He is Italian.
Juliet is a woman. She is beautiful. She is unmarried.

consists of the set

(Romeo, Juliet)

and the relations

loves = ((Romeo, Juliet), (Juliet, Romeo))

Italian = ((Romeo))

man = ((Romeo))
woman = { (Juliet))
beautiful (Juliet))

unmarried (Juliet))

where a relation is represented as a set of tuples from

the underlying set.

An analogy between two situations is now defined to

be a mapping between the corresponding objects which

- 99 -

preserves (or nearly preserves) relations. In Ptitschke's

paper, he first defines an analogy to be a strict homomor-

phism between algebras, but then points out that this is

not always guaranteed to exist, and goes on to mention

briefly the idea of a "loose" analogy constructed from an

approximate homomorphism. He indicates a possible measure

of the closeness of such a mapping using the ideas of

positive defect and negative defect of a mapping between

labelled directed graphs - the number of edges which need

to be added to the domain or deleted from the range,

respectively, such that the mapping is a homomorphism.

However, he does not give any indication of how such

approximate mappings may be found; nor is it clear how he

would represent a general situation, which may contain

relations more complex than binary ones, as a labelled

directed graph.

The second half of his paper gives an algorithm for

carrying out analogy-formation in the style of Evans

[Evansl967a] given three graphs A, A' and B, and a map

A--IA' . This involves the steps "Compute a maximal common

partial graph of A and B" and "Generate a minimal set of

substitutions S=(S1,...Sk) such that

S(A)=S1(S2(...(Sk(A)...))=B". Both of these steps are

liable to be computationally expensive, and he does not

suggest algorithms for them. It should also be noted that

"maximal", in the mathematical sense, does not mean "larg-

- 100 -

est possible", but rather "not enlargeable"; there may be

many maximal common partial graphs of A and B, and he does

not discuss the criteria for choosing between them.

The examples which he gives are small; there is no

indication of how effective his methods would be in con-

structing analogies between complex situations. However,

his use of positive and negative defects in measuring the

looseness of an analogy may provide a possible "dissimi-
larity metric" between concepts, in the sense discussed

below.

Farreny and Prade discuss at some length the possi-

bility of using "semantic similarity" as a criterion for

mapping one relation to another; they base their ideas on

the notion of "fuzzy sets", as discussed by Zadeh

[Zadehl979a]. They assume that properties to be matched

by analogy denote "fuzzy" classes with associated proba-

bility measures of the likelihood of a datum possessing

the property. The degree of similarity between two pro-

perties is then defined as the likelihood of a datum

belonging to both classes. As the authors themselves

admit, this is a far from general model. Whereas for

adjectives such as "tall", "short", "old", "young", etc.

it is clear what the appropriate universe of discourse is,

and it seems apt to use possibility measures in such

cases, there are obviously many cases where this is not

so. In general, such a model is only appropriate where

- 101 -
the properties describe subsets of some quantitatively
measurable overall attribute (e.g. "height", "age").
Although they refer to a need for further work in the area

of measuring "semantic similarity", Farreny and Prade do

not themselves go into detailed consideration of the pos-

sibilities.

The construction of a map between situations is

presented as a problem of matching labelled graphs, as in

the work of P%itschke and R.Brown discused above; there is

no consideration of the details of an algorithm, but

clearly the authors' intention is to map together semanti-

cally similar properties; the degree of similarity would

then provide a measure of the closeness of the analogy.

This approach seems to neglect the view that often the

most valuable analogies are those between apparently dis-

similar concepts.

- 102 -

Analogy by Means-Ends Analysis

We conclude this survey with an examination of

Carbonell's work on problem solving by analogy

[Carbonel ll98la] . Carbonell holds the view that such

problem solving is very closely linked to learning by

experience; previous knowledge is so structured as to be

retrievable through similarity to new problem situations,
and the success of plans developed by analogy can lead to

fruitful generalisation of prior knowledge.

His proposed problem solving strategy is an extension

of classical Means-End Analysis28 as considered in depth

by Newell and Simon [Newelll972a); a problem state is

reduced to a solution state, or goal state, by the succes-

sive application of operators which reduce the difference

between the two states. An attempt to use previously

known solutions as a means of reducing search in MEA was

made in the program STRIPS [Fikesl972a), which stored all
subsequences of previous solutions as compound operators

("MACROPS"); as Carbonell points out, the search amongst

applicable operators then becomes rapidly computationally

infeasible, as the number of operators increases; thus

STRIPS can be seen as replacing one form of search by

another, with no clear evidence that the latter is ulti-
mately more efficient (this is the same criticism which we

28 Henceforward "MEA"

- 103 -

earlier applied to Munyer's work).

Carbonell proposes a reminding process to compare the

initial and final states of, and path constraints29 on, a

new problem with those of previously solved ones, and to

compare the applicability of operators in the old and new

problem states. He then wishes to use MEA to transform a

previous solution of a problem similar to the current one

into a complete solution of the current problem.

As a difference function in this transformed MEA

problem, he proposes using the same difference function as

is already used to compare the initial and goal states in

a conventional MEA approach to the current problem; this

difference function now becomes a "similarity metric"

between different problems30. Having found an analogous

problem, i.e. one with a high degree of similarity to the

current one, MEA is applied to reducing the difference

between this problem and the current one, thus leading to

a solution of the new problem derived by analogy with the

old, Thus MEA is being applied not to the current problem

and its goal, but to the current problem/goal and a previ-

29 A path constraint is a rule which prohibits certain
operator sequences even though they made produce a

solution, e.g. because the solution thus arrived at
may be too costly.

30 It is not, in fact, necessarily the case that this
function be a "metric" in the strict mathematical
sense; "measure" would be a more precise term.

- 104 -

ously solved problem/operator-sequence/goal.

A number of (meta-)operators are proposed as useful

for this higher-level KEA problem; these include insertion
and deletion of operators from a sequence, adding new

operator sequences at the start or end of a sequence,

reordering operators, and "meshing" of two operator

sequences - the last of these is considered as being in

itself "an interesting and potentially complex problem" .

The difference function between states of the

transformed problem is a 4-tuple comprising the differ-
ences between problem states, goal states, path con-

straints and operator applicability. In general, it will
not always be possible to reduce one component of this 4-

tuple without at the same time increasing another. One

possible way of avoiding this difficulty is to try always

to reduce some linear combination of the four components.

In order to make possible the retrieval of problems

similar to the current one, it is clear that some form of

memory organisation based upon similarity of problem

states is required. The solving of a problem by analogy

naturally I e a d s to the assimilation of the new problem

within the existing structure; thus the activities of

problem-solving, learning and analogisation are deeply

linked. The structure of an "episodic" memory such as is

required is regarded by Carbonell as "relatively simple";

- 105 -

we would regard this as by no means self-evident, and

would consider the development of a large practical pro-

gram embodying Carbonell's ideas in a domain with a large

collection of previously solved problems and of possible

operators as a major achievement. There is an obvious

danger that the search for an analogous problem will prove

to be non-trivial, so that once again one has merely sub-

stituted one form of search for another. A possible

starting point for a large-scale implementation of

Carbonell's ideas may be work such as that of Cohen

[Cohenl98Oa] on an intelligent theorem prover which

attempts to use theorems already proven as a guide to the

proof or refutation of new conjectures.

- 106 -
The Use of Similarity Measures in Retrieval and Assimila_
tion

use

We have seen in the last few pages reference to the

of similarity measures in the evaluation of the

strength of analogies. However, there has been no sugges-

tion that such measures might actually be used as a basis

for knowledge organisation and retrieval. We describe

here, in rather abstract terms, a possible use of similar-
ity measures on formal structures for the large-scale

organisation of knowledge. The assumptions are (i) that

the knowledge to be organised can be divided (perhaps

quite arbitrarily) into structured units (e.g. "concepts")

and (ii) that there exists a collection of partial
metrics31 [ai) upon these units which measure the degree

of dissimilarity between them in various respects. There

are no assumptions about the type of structure used (which

could, for example, be a labelled directed graph

representing a semantic net, or a collection of predicate

calculus clauses), nor about what specific features are to

be used to determine similarity; it is, however, highly

31
A partial metric is a function a such that:

Vx a(x, x)=0
vxvy a(x,y)=a(y,x)
VxVyVz a(x,y)+a(y,z) > a(x,z)

We do not require the condition

i'xVy a(x,y)=0 => x=y

- 107 -

desirable in practice that the measures be cheap to com-

pute.

These measures can be seen as defining a "feature

space", in which the distance between two points is a

metric derived from the set of similarity measures (e.g. a

Cartesian metric: the square-root of the sum of squares of

the similarity measures). Carbonell [Carbonelll981a), for

example, uses a set of four differences derived from a

Means-Ends Analysis of a problem to define a distance

between two problems, as discussed above. The use of a

feature space has some affinity with the technique known

as multidimensional scaling, in statistical taxonomy

([Greenl972a]). There are, however, two significant
differences. The first is that in multidimensional scal-

ing, the goal is to reduce a large set of coordinates

(i.e. a many-dimensional space) to a smaller set of linear

combinations of these (i.e. a space of fewer dimensions),

onto which a pre-viously given set of data may be projected

with minimum loss of information. That is, the object of

multidimensional scaling is to induce from given data what

set of features may best be used to classify them. In

contrast, we are supposing that the classification be

given (the similarity measures), and that the data (which

are potentially any items of representable knowledge what-

soever) be not all explicitly available at the outset.

The second difference is that the features normally con-

- 108 -
sidered in multidimensional scaling are scalar; that is,
each corresponds to a single numerical coordinate. In our

model, this need not be the case at all; there is no rea-
son to assume that, for some measure a and objects A, B

and C, that a(A,B)=a(A,C) implies that B is close to C.

Our task, then, is to find a way of locating the

close neighbours of some new datum amongst an existing

knowledge base. For simplicity,

single similarity measure, d.

we shall consider only a

We suppose that there is some set a of points, and

some distance S10 such that for all already known points

X, there is a point Y in a such that a(x,Y)<b1. It is

clear that such a set can be chosen; we consider the

points of a as representatives of regions of the feature

space. Formally:

Let K = (known points)

VXeK --IYea (a(%,Y)<61)

b1 is chosen sufficiently large that a is small. Suppose

we wish to assimilate a new point, Z. Then the first step

of the algorithm is to measure a(Z,Y) for each Y in a. If

each such measure is greater than b1, then it is clear

that Z is further than S1 from every known point; in this

case we add Z to a, and conclude that it has no close

neighbours. Otherwise, Z belongs in the neighbourhood of

- 109 -

some representative, say Y. This algorithm is applied

recursively; this requires that with each point in a there

is associated a set of representatives covering its neigh-

bourhood to within a distance 62(<61), and so on. Hence,

we use the computed distances to organise the feature

space into a hierarchical set of neighbourhoods; then a

new datum is assimilated by a process of "homing in" on

ever smaller neighbourhoods until either we find other,

sufficiently similar data, or discover that there are

none .

Formally, again,

Let 61 > S2 > ... > Sn

Choose a hierarchy of sets:

a S. t. VXK IYea a(X,Y)<6 1

{al:iea) s.t. VX d(X,i)<61 => {Yeai a(X,Y)<62

(ai J:Jea1) s.t. i+h d(X,J)<6 2 => YE6i,] a(X,Y)<S3

etc.

Further,

11
a(X,Y)>6. (s)

- 110 -

Given t

To find S = (q: 3(4,n)<6)

Find S1= (iea: a(g,i)<S1)

If S1=

then insert into or

return (S

etc.

else Find S2= (Si)
where S1= (jeai:a(,j)<S2)

The sparseness given by the condition (t) ensures that

this will lead to minimum search. In the early stages of

knowledge acquisition, it will often happen that a new

datum has no close neighbours; in this case we insert it
at an appropriate level of the hierarchy. If any of the

sets of representatives becomes too large, it can itself
be split into a hierarchy.

One extreme of this approach is clearly to take 6
1

as

zero; in this case the "hierarchy" becomes flat, and the

algorithm is simply "compare 5 against every point in K".

The other extreme is always to maintain the hierarchy as a

binary tree. The first of these gives very large

searches, but never requires a potentially expensive

rebuilding of some part of the hierarchy; the latter leads

to minimal searches but at the expense of frequently need-

ing to add new points at high levels of the hierarchy.

- 111 -

We suggest that some algorithm based upon the above,

in conjunction with a suitable collection of similarity
measures such as those of Carbonell, could form a reason-

able basis for the large-scale organisation of a knowledge

base.

- 112 -

Summary and Conclusions

In the foregoing pages we have covered a wide range

of material from the literature of AI, linked together by

the common strands of relevance to mathematical discovery

and analogical reasoning. It is, we believe, clear that

not only have none of the works discussed "solved" the key

problems in these areas, but that few of them have even

achieved convincing solutions to those subproblems which

they chiefly addressed. Whilst it is true that it is

always easier to criticise destructively than construc-

tively, to find defects than to point to positive achieve-

meats, it is nevertheless notable in how many of the works

discussed there have been serious shortcomings.

This may sound like bleak pessimism, a counsel of

despair. For if the combined intellects of dozens of dis-

tinguished workers in a field of enquiry cannot produce

better solutions than this to a problem, must not the

problem be close to insoluble? Our answer to this rhetor-

ical question, however, is that such is not the case. It
is indeed true that the problem of formulating a model of

reasoning in which analogy plays a major role is extremely

hard, whether psychological validity be sought or not.

But progress has undoubtedly been made in a very diverse

collection of relevant topics; we would point to the work

of Munyer [Munyerl977b], Lenat [Lenatl976a], and R.Brown

[Brownl977a] as being recent work of considerable value.

- 113 -

Lenat in particular, despite being open to criticism on a

number of serious issues, has at least demonstrated that
it is possible to build a program which is able to carry

out a range of tasks in the exploration of a simple

mathematical domain, including concept-formation and the

proposal of hypotheses. He has abstracted a number of

useful rules describing such a search process, and there

is surely progress to be made from the incorporation of a

similar body of "heuristics" within a cleaner framework,

where the issue of flow of control and the details of

implementation obtrude less upon the mechanism of the pro-

gram.

Overall, we can distinguish two principal lines of

attack on the problems of mathematical reasoning; loosely

speaking, we may categorise these as "theorem proving"

(exemplified by Munyer, R.Brown, Kling [K1ing1971a], and

Cohen [Cohenl980a]), and "rule-based system" (Lenat, Moore

and Newell [Moorel973a], L,angley). R. Brown has also

looked at the problems of search-control in analogy match-

ing in a way which naturally leads to consideration of the

topic of "node labelling" on graphs, area well-known in

other areas of Al (Waltz [Waltzl975a], Shneier

[Shneier1978a], etc.). No doubt a truly intelligent rea-

soning program, if one is ever written, will make use of a

mixture of all of these, together with others as yet unex-

plored.

- 114 -

A promising area for enquiry is that of using a

rule-based system for controlling search; something along

these lines forms part of Bundy's PRESS system

[Bundy1981b] for symbolic algebra. Similar ideas are

embedded within Lenat's AM, where some of the "heuristics"
are in fact search control mechanisms, and Davis

[Davisl979a] has proposed building an expert system to

advise on search strategies within large problem spaces.

However, it must be re-iterated that the problems

remaining are formidable. Indeed, as with many philosoph-

ical enquiries (and there is no doubt that much research

in AI is at least as much a philosophical undertaking as

it is an experimental and mathematical one), the outstand-

ing difficulty remains that of formulating the questions.

- 115 -

References

Bledsoe1977a. W. Bledsoe, "Non-Resolution Theorem Prov-
ing", Artificial Intelligence Vol. 9(1) pp. 1-35
(1977).

Bobrow1977a. D. Bobrow and et al., "GUS: a Frame-Driven
Dialog System", Artificial Intelligence Vol.
8(1)(1977).

Boden1977a. M.E. Boden, Artificial Intelligence and
Natural Man, Harvester Press, Hassocks (1977).

Bono1967a. E. do Bono, The Uses of Lateral Thinking,
Jonathan Cape (1967).

Boyerl979a. R.S. Boyer and J S. Moore, A Theorem-pro_ver
for Recursive Functions. SRI International (1979).

Bradshaw1980a. G.L. Bradshaw, P. Langley, and H.A. Simon,
BACON.4: The Discovery of Intrinsic Properties, Proc. 12-11-
3rd National Conf. of the Canadian Society for Compu-
tational Studies of Intelligence (1980).

Brown1977b. F.M. Brown, "Towards the Automation of Set
Theory and its Logic", DAI Research Report no. 34,
Edinburgh University (1977).

Brown1976a. R. Brown, "Reasoning by Analogy: A Progress
Report", A.I. Working Paper 132, MIT (1976).

Brown1977a. R. Brown, Use of Analogy to Achieve New Exper_
tise, MIT (1977). (M.Sc. Thesis)

Bundy1981a. A. Bundy,
Learning Program,
Library (1981).

The Winston-Plotkin-Young-Lint
Edinburgh DAI Prolog Program

Bundy198lb. A. Bundy and L.S. Sterling, Meta-level Infer_
ence in Algebra, Department of Artificial Intelli-
gence, Edinburgh (1981). Working Paper 164

Bundyl982a. A. Bundy and B. Silver. A Critical Survey of

Rule Learning Programs, Department of Artificial
Intelligence, University of Edinburgh (1982).
Research Paper no. 169

Bundy1982b. A. Bundy, Artificial Mathematicians: the Com-
puter Modelling of Mathematical Reasoning, Academic
(1982).

- 116 -

Carbonell1981a. J.G. Carbonell, A Computational Model of
Analogical Problem Solving, Proceedings of IJCAI-7,
Vancouver (1981).

Clocksinl981a. W.F. Clocksin and C. Mellish, Programming
in Prolog, Springer (1981).

Cohen1980a. D. Cohen, Knowledge Based Theorem Proving and
Learning, CMU Dept. of Computer Science (1980).
(Ph.D. thesis)

Davisl979a. R. Davis, Seminar at University of Edinburgh,
Dept. of Artificial Intelligence 1979.

Doran1966a. J. Doran and D. Michie, Experiments with the

Graph Traverser Program, Proc. Royal Society (A)

(1966) .

Edwardsl977a. B.M. Edwards, Fermat's Last Theorem; A

Genetic Introduction to Algebraic Number Theory,
Springer, New York (1977). Graduate Texts in
Mathematics no. 50

Evansl967a. T.G. Evans, "A Heuristic Program to Solve
Geometry Analogy Problems", in Semantic Information
Processing, ed. M. Minsky,MIT (1967).

Farreny1982a. H. Farreny and H. Prade, About Flexible
Matching and its Use in Analogical Reasoning, ECAI-
82, Orsay (1982) . -

Fikesl972a. R.E. Fikes, P.E. Hart, and N.J. Nilsson,
"Learning and Executing Generalized Robot Plans",
Artificial Intelligence Vol. 3 pp. 251-288 (1972).

Freuderl978a. E.C. Freuder, "Synthesizing Constraint
Expressions", CACM Vol. 21(11) pp. 958-966 (1978).

Greenl969a. C. Green, "Theorem Proving by Resolution as a

Basis for Question Answering Systems", in Machine
Intelligence 4, ed. D. Michie & B. Me1tzer,Edinburgh
University Press (1969).

Green1972a. P.E. Green and V.R. Rao, Applied Multidimen-
sional Scaling: A Comparison of Approaches and Algo_
rithms, Holt Rinehart, New York (1972).

Hadamard1945a. J. Hadamard, The Psychology of Invention in

the Mathematical Field, Princeton University Press
(1945). (Reprinted by Dover, 1954)

- 117 -

Hannal981a. F.B. Hanna and G.D. Ritchie, AM: A Case Study
in A.I. Methodology, University of Kent Electronics
Laboratories (1981).

Hedrick1976a. C.L. Hedrick, "Learning Production Systems
from Examples", Artificial Intelligence Vol. 7 pp.
21-49 (1976).

Hewittl969a. C. Hewitt, PLANNER: A Language for Proving
Theorems in Robots, Proceedings of IJCAI-1, Washing-
ton (1969).

Kling1971a. R.E. Kling, "A Paradigm for Reasoning by Anal-
ogy", Artificial Intelligence Vol. 2 pp. 147-178
(1971) .

Knapmanl978a. J. Knapman, A Critical Review of Winston's
"Learning Structural Descriptions from Examples",
AISB Quarterly no. 31 (1978).

Koestlerl964a. A. Koestler, The Act of Creation, Hutchin-
son & Co. (1964).

Lakatosl976a. I. Lakatos, Proofs and Refutations, Cam-
bridge University Press (1976).

Langley1978a. P. Langley, "BACON .1: A General Discovery
System", CIP Working Paper No. 383, Carnegie-Mellon
University (1978).

Langley1979a. P. Langley, Rediscovering Physics with
BACON.3, Proceedings of IJCAI-6, Tokyo (1979).

Lenat1976a. D.B. Lenat, AM: An Artificial Intelligence
Approach to Discovery in Mathematics as Heuristic
Search, Stanford University (1976). (Ph.D. Thesis)

Lenat1977a. D.B. Lenat, The Ubiguity of Discovery,
Proceedings of IJCAI-5, Boston (1977).

Lenat1981a. D.B. Lenat, ARPAnet communication to P.Hayes
1981 .

Mackworthl977a. A.K. Mackworth, "Consistency in Networks
of Relations", Artificial Intelligence Vol. 8(1) pp.

99-118 (1977).

Michenerl978a. E.R. Michener, Representing Mathematical
Knowledge, MIT (1978).

- 118 -

Minsky1975a. M. Minsky, "A Framework for Representing
Knowledge", in The Psychology of Computer Vision, ed.
P.H. Winston,McGraw-Hill (1975).

Mitchell1981a. T. Mitchell, J.G. Carbonell, and R. Michal-
ski, Special issue on Machine Learning, ACM (SIGART)
(1981).

Mitchel11978a. T.M. Mitchell, Version Spaces: An Approach
to Concept Learning, Stanford University (1978).
(Ph.D. Thesis)

Mitchell1979a. T.M. Mitchell, An Analysis of Generalize=
Lion as a Search Problem, Proceedings of IJCAI-6,
Tokyo (1979).

Moorel973a. J. Moore and A. Newell, "How Can Merlin Under-
stand?", in Knowledge and Cognition, ed. L.
Gregg,Lawrence Erlbaum Associates (1973).

Munyerl977a. J.C. Munyer, Towards the Use of Analogy in
Deductive Tasks, Proceedings of IJCAI-5, Boston
(1977) .

Munyer1977b. J.C. Munyer, Analogy as a Heuristic for
Mechanical Theorem Proving, MIT (1977). (Workshop on
Automatic Deduction - extended abstract)

Newe111972a. A. Newell and H.A. Simon, Human Problem Solv-
ing, Prentice Hall, New Jersey (1972).

Nilssonl971a. N.J. Nilsson, Problem-LCol_ving Methods in
Artificial Intelligence, McGraw-Hill (1971).

Pask1975a. G. Pask, D. Kallikourdis, and B.C.E. Scott,
"The Representation of Knowables", International
Journal of Man-Machine Studies Vol. 17 pp. 15-134
(1975).

Piaget1954a. J. Piaget, The Construction of Reality in the
Child, Basic Books, New York (1954).

PlatoBC360a. Plato, The Republic Sphere (BC360).
(translated by B.Jowett)

Plotkinl977a. G.D. Plotkin, Lecture in the Dept. of Artif-
icial Intelligence, University of Edinburgh 1977.

Poincarel913a. H. Poincare, "Mathematical Creation", in

The Foundations of Science, The Science Press (1913).
(translated by G .B. Halstead)

- 119 -

Polyal945a. G. Polya, How to Solve It, Princeton (1945).

Polya1954a. G. Polya, Mathematics and Plausible Reasoning,
Princeton (1954).

Polyal962a. G. Polya, Mathematical Discovery, Wiley
(1962).

Polya196Sa. G. Polya, Mathematical Discovery, Wiley
(1965).

Popper1959a. K.R. Popper, The Logic of Scientific
Discovery, Hutchinson, London (1959).

Popper1963a. K.R. Popper, Coniectnres and Refutations,
Routledge and Began Paul, London (1963).

Potschkel982a. D. Potschke, Toward a Mathematical Theory
of Analogical Reasoning, ECAI-82, Orsay (1982).

Quillian1968a. Quillian, M.R., "Semantic memory", in

Semantic Information Processing, ed. M. Minsky,MIT
(1968).

Shapiro1982a. E. Shapiro, Inductive Inference of First
Order Theories from Facts, Yale Computer Science
Department (1982). (to appear as report no. 192)

and Shneierl978a. M.O. Shneier, Object 21!2
Recognition in Machine vision, Edinburgh University
(1978). (Ph.D. thesis)

Sussman1973a. G.J. Sussman, "A Computational Model of
Skill Acquisition", TR 297, MIT (1973).

Vere1977a. S.A. Vere, Induction of Relational Productions
in the Presence of Background Information, Proceed-
ings of IJCAI-5, Boston (1977).

Waerdenl971a. B.L. Van der Waerden, "How the Proof of
Baudet's Conjecture was Found", pp. 251-260 in Stu-
dies in Pure Mathematics (Presented to Richard Rado),
Academic Press, London (1971).

Waltz1975a. D. Waltz, "Understanding Line Drawings of
Scenes with Shadows", in The Psychology of Computer
Vision, ed. P.H. Winston,McGraw-Hill (1975).

Winston1975a. P.H. Winston, "Learning Structural Descrip-
tions from Examples", in The Psychology of Computer
Vision, ed. P.H. Winston,McGraw-Hill (1975).

- 120 -

Wittgensteinl953a. L. Wittgenstein, Philosophical In_vesti-
gations, Blackwell, Oxford (1953).

Young1977a. B.M. Young, G.D. Plotkin, and B.F. Linz,
Analysis of an extended concept-learning task,
Proceedings of IJCAI-5, Boston (1977).

Zadehl979a. L.A. Zadeh, "A Theory of Approximate Reason-
ing", pp. 149-154 in Machine Intelligence, Vo1. 9,

ed. L.I. Mikulich,Ellis Horwood (1979).

	PhD coversheet April 2012.pdf
	EDI-INF-MPHIL-82-001

