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Abstract

Chronic obstructive pulmonary disease (COPD) is a significant burden on individuals
with the disease and on healthcare resources. By 2020 it is projected to be the third

leading cause of death worldwide. COPD is a condition that is characterised by
chronic lung inflammation and damage. However, it is now known that COPD not

only affects the lungs, but also has systemic associations, effects and consequences.

These include osteoporosis, skeletal muscle wasting and dysfunction, depression,

anaemia, systemic inflammation and cardiovascular disease. Population based studies
have identified that COPD is a risk factor for cardiovascular morbidity and mortality,

independent of traditional risk factors including cigarette smoking. The mechanisms

responsible for this association have yet to be established.

In the studies in this thesis, I investigated a number of novel mechanisms that may
contribute to the increased cardiovascular risk in COPD. It is thought that the low-

grade systemic inflammation associated with COPD may have a role to play. In

addition, the enhanced systemic inflammatory response in exacerbations of COPD

may predispose these individuals to cardiovascular events. Activation of platelets and
interaction between platelets and monocytes are early processes in the pathogenesis of
atherothrombosis. I therefore measured markers of platelet activation in patients with
COPD and healthy controls. In a second study, platelet activation was measured in

patients admitted to hospital with an exacerbation of COPD and in convalescence.
Patients with COPD had higher platelet-monocyte aggregation in comparison to

controls matched for age and cigarette smoke exposure. This was further increased

during exacerbations.

In addition to platelet activation, vascular dysfunction predisposes to cardiovascular

morbidity and mortality. I undertook comprehensive assessments of vascular function

(arterial stiffness, endothelial vasomotor function and endogenous fibrinolysis) in

patients with COPD and healthy ex-smoking controls. I confirmed that patients with
COPD have increased arterial stiffness independent of cigarette smoking. However,
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contrary to prior popular assumption, endothelial vasomotor and fibrinolytic function
were not impaired in comparison to healthy controls matched for smoking history.

We had previously reported an association between emphysema severity and arterial
stiffness. I hypothesised that the mechanism for this association in COPD patients

may be increased elastin degradation, not only in the lungs, but also in the large
arteries. To test the hypothesis that COPD is a condition with systemic elastin

degradation, I measured elastin degradation in skin biopsies from patients with COPD
and healthy controls. There was increased cutaneous elastin degradation in COPD

patients. In addition, there was increased expression of matrix metalloproteinases in
COPD skin biopsies, which may be a mechanism for this observation. Furthermore,

emphysema severity and arterial stiffness were associated with cutaneous elastin

degradation.

These studies have identified platelet activation and arterial stiffness as novel
mechanisms for the development of cardiovascular disease in COPD. Platelet
inhibition and improvement of vascular function represent plausible targets for the

prevention of cardiovascular events in this population. In addition, I have provided
evidence for elastin degradation as a systemic effect of COPD and that systemic

upregulation of matrix metalloproteinases may be the unifying mechanism for this.
Focus on inflammatory pathways that result in this will provide more insight into the

pathogenesis ofCOPD and help direct future therapies.
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1.1 Definitions of chronic obstructive pulmonary disease

American Thoracic Society/European Respiratory Society consensus definition.

Having developed definitions for chronic obstructive pulmonary disease (COPD)

separately, the ATS and ERS derived a global definition of COPD in their consensus
statement in 2004 [Celli, 2004b]. This cemented the importance of obstructive

spirometry for a diagnosis of COPD and clarifies the criteria of chronic airflow
limitation - "not fully reversible". It acknowledges the most common aetiology and
local pulmonary pathological changes as an "abnormal inflammatory response of the

lungs to noxious particles or gases". Finally, reflecting current thinking, there is
reference to the association with "systemic consequences".

The complete definition is as follows:
"Chronic obstructive pulmonary disease (COPD) is a preventable and treatable
disease state characterised by airflow limitation that is not fully reversible. The

airflow limitation is usually progressive and is associated with an abnormal

inflammatory response of the lungs to noxious particles or gases, primarily caused by

cigarette smoking. Although COPD affects the lungs, it also produces significant

systemic consequences."

Global Initiative for Chronic obstructive lung disease (GOLD) definition
This joint project by the National Heart, Lung and Blood Institute and the World
Health Organisation originally published in 2001 was intended to reignite research
interest and to encourage a focussed worldwide effort to diagnose and correctly

manage COPD. This project provided a similar definition of COPD to that of the
ATS/ERS with references to spirometric diagnosis, pathological response of the lungs
to injury and systemic effects of this condition [Pauwels, 2001], This project is

dynamic and there have been regular updates to these guidelines on the internet but
with little change in the definition of the disease.

The complete definition follows:
"Chronic obstructive pulmonary disease (COPD) is a preventable and treatable
disease with some extra-pulmonary effects that may contribute to the severity in

individual patients. Its pulmonary component is characterized by airflow limitation
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that is not fully reversible. The airflow limitation is usually progressive and
associated with an abnormal inflammatory response of the lungs to noxious particles
or gases."

These guidelines allow clinicians to diagnose patients under an umbrella term of

COPD, partly in an attempt to discourage the use of the terms chronic bronchitis and

emphysema which can be confusing to both patients, families and healthcare

professionals alike. However, while terms such as 'pink puffer 'and' blue bloater' are
now historical, they do highlight the wide spectrum of disease that these definitions of
COPD encompass. Recently research studies have attempted to again describe

subtypes or phenotypes of the condition according to clinical, radiological and

pathological characteristics that may reflect differences in pathogenesis or responses

to treatment between groups [Han, 2010]. Interestingly recent work has shown that

patients with symptoms of chronic bronchitis (presence of expectoration of bronchial
secretions most days for 3 months a year, for two consecutive years) have increased

airway wall thickness demonstrable on CT scanning in comparison to those without

[Patel, 2008], and that individuals with emphysema have a lower body mass index
than non-emphysematous patients [Ogawa, 2009] - increasing the likelihood that we
will revisit the pink puffer and blue bloater again.
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1.2 Burden of disease

COPD is a major cause of mortality both in the UK and worldwide. It accounts for
4% of deaths globally and these figures are projected to increase in the next 10 years

[Murray, 1997], By 2020, it is thought that COPD will be the third leading cause of
death worldwide [World Health Statistics, 2008], Currently, of the top five
commonest causes of death, COPD alone is increasing in morbidity and mortality. In
Scotland however, the annual number of deaths among males, where COPD was the

primary underlying cause of death, fell 34% from 79.1 in 1981 to 52.6 per 100,000 in
2006 (Figure 1.1) [Scottish Public Health Observatory, 2010a].
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Figure 1.1 Mortality rate for COPD as primary underlying cause of death, by gender,
Scotland 1981 to 2006

(adaptedfrom Scottish Public Health Observatory, 2010)
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During the same period however, the rate for females increased by 93% from 21.2 to

40.9. In the UK, COPD accounted for 27,000 deaths in 2005, and was an important
comorbid feature, in nearly twice this number, in individuals dying of other causes.
For patients admitted to hospital with an exacerbation of COPD, the 90-day mortality
is 15% [Price, 2006],

COPD is a major burden on healthcare services worldwide. The National Institute for
Clinical Excellence (NICE) estimates that COPD accounts for £800 million in health
care costs and is the cause of 90,000 admissions per year, with an average length of

stay of 11 days [Burney and Jarvis, 2006], Furthermore, 31% of patients will be
readmitted within 90 days of their discharge.
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1.3 Causes of COPD

1.3.1 Active and passive cigarette smoking

Cigarette smoking is responsible for at least 90% of cases of COPD. Fifteen to twenty

percent of cigarette smokers develop clinically significant COPD [Lundback, 2003],

Despite health promotion campaigns worldwide, the prevalence of cigarette smoking

globally continues to increase. Stopping smoking is the single most effective way of

improving life expectancy and preventing an accelerated decline in lung function and
this is particularly the case in early quitters (ie prior to age 30) in comparison to late

quitters [Kohansal, 2009], Additionally it reduces frequency of exacerbations of

COPD, which in turn reduces the burden on healthcare services [Godtfredsen, 2002],

The effect of smoking on lung function was described by Fletcher and colleagues in
the 1960's [Fletcher, 1977]. They described an increase in the decline of airflow
limitation specifically in working men of 18mls/year in smokers in comparison with
non-smokers. A contemporary study that investigated this in over 4000 male and
female subjects from the Framingham offspring study [Kohansal, 2009], has shown
similar differences in lung function decline as those described by Fletcher. Male
smokers have an increased rate of decline of FEVi of 38mls per year and female
smokers have an increased rate of decline of 23mls per year in comparison to non-

smokers with 20mls and 18mls respectively. As a proportion, 33% of male and 24%
of female smokers developed airflow limitation, in comparison with 7 and 6%

respectively in the never smoker cohort indicating a specific susceptibility to cigarette
smoke.

The majority of research investigating the aetiology of COPD overwhelmingly
identifies personal active smoking as the primary causal factor. Considerably less has
been published regarding passive smoking as a risk factor in the development of
COPD [Eisner, 2006], Smoking is thought to be the major cause of indoor particulate

pollution in the developed world. Indoor levels of particulate matter with a diameter
less that 2.5 microns (PM 2.5) have been shown to be ten times higher in homes
where cigarette smoking is allowed in comparison to residences where it is not

allowed [Osman, 2007]. Additionally, the presence of continued indoor smoking was
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associated with greater respiratory symptoms even in ex-smokers with COPD. With
the introduction of indoor smoking bans across Europe and the concurrent

improvement of respiratory ailments in workers previously exposed to a smoky

environment, there is likely to be a reduction in COPD in individuals previously

exposed passively to cigarette smoke. Indeed the reduction in PM2.5 levels in Irish
bars has resulted in improvements in respiratory symptoms and lung function in non¬

smoking bar staff [Goodman, 2007].

1.3.2 Other inhalational exposures

Smoking cannabis is known to cause airflow limitation, and its effects are thought to
be significantly greater than cigarette smoke. One study from New Zealand reported
that one joint had the same effect on lung function as 2.5-5 cigarettes. Interestingly,
this seems likely to be due to small airway changes as cannabis inhalation was not

associated with emphysematous changes in comparison to cigarette smoking

[Aldington, 2007], However an Australian group describe early bullous disease in
cannabis smokers that occurs much earlier than in cigarette smokers [Hii, 2008].

As noted above, the major contributor of indoor particulate air pollution in the

developed world is smoking. In the developing world, indoor wood and other biomass
fuel burning stoves are a significant causal factor in the development if COPD,

particularly in women [Orozco-Levi, 2006; Ramirez-Venegas, 2006],

There is now an abundant literature linking COPD to exposure to dusts in the

workplace. An American Thoracic Society document investigating occupational

exposures and the development of respiratory conditions states that 15% of COPD is

likely to be work related [Eisner, 2006]. Groups at particular risk are coal miners,
hard rock miners, as well as workers exposed to mineral dusts and fine metal

particulate such as cadmium and vanadium.

The role of outdoor air pollution in the development of COPD remains unclear.

However, it does appear that air pollution increases morbidity and healthcare
utilisation due to exacerbations of both asthma and COPD [Halonen, 2008; Anderson,

1997],
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1.3.3 Socioeconomic class

Social class is an important determinant of healthcare utilisation, morbidity and

mortality. Lower socioeconomic class is associated with reduced lung function (both

FEVi and FVC) as well as DLco, independent of potential confounders including

anthropometric data (such as height and weight), smoking, race, sex and respiratory
illness [Flegewald, 2007; Welle, 2004], Large population-based studies have shown
associations between mortality from adult respiratory diseases and socioeconomic
class. One study from Denmark showed an association between the level of education
and respiratory mortality and an association between employment grade, household

income, housing conditions and cohabitation and respiratory mortality in males

[Prescott, 2003],

This is reflected in audit work performed by the Information Services Division (ISD)
in Scotland, a national organisation for health information [Information Services
Division (ISD) in Scotland, 2011]. In Scotland, there is a strong association between
COPD and deprivation, with the rate of emergency admissions for COPD increasing
with increasing levels of deprivation in Scotland (Figure 1.2) [Scottish Public Health

Observatory, 2010b].

12345 12345
MALES FEMALES

Quintile of SIMD score

Figure 1.2 Emergency admissions for COPD by age and deprivation, Scotland, 2006.
SIMD=Scottish Index ofMultiple Deprivation - 1 is least deprived

(adaptedfrom Scottish Public Health Observatory 2010)
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1.3.4 Genetics including alpha-l-antitrypsin deficiency

While cigarette smoke causes COPD, not all smokers develop this condition. Thus it
is thought that some individuals have a susceptibility to lung damage in response to

this insult. In addition, there is marked individual variability in the severity of disease

amongst cigarette smokers. Twin studies have enabled quantitative estimates of the

heritability of traits such as the FEVi and have suggested that approximately 50% of
the variation in FEVi is related to genetic influences. This is also the case regarding
the development of COPD [Zhai, 2007; Chen, 1999; Ingebrigtsen, 2010],

Furthermore, there is evidence of an increased risk of the development of COPD in
first degree relatives of early-onset cases in comparison with controls [Silverman,

1998], Familial studies show independent aggregation of airway wall thickening and

emphysema severity, the two major pathological abnormalities contributing to airflow
limitation in COPD [Patel, 2008].

Finally, in a minority of cases ofCOPD, deficiency of the antiprotease a-1-antitrypsin

(AAT) is the causative factor [Lomas, 2004], This autosomal recessive condition is
the best-defined genetic abnormality causing COPD. In line with other genetic
associations with COPD however, the rate of decline in lung function in individuals
with Pi (protease inhibitor)-ZZ genotype display marked variability [Black, 1978],

suggesting that other genetic factors and an interaction with environmental factors

may have a role. This will be dealt with in section 1.4.3.

Several specific loci have been identified as conferring increased susceptibility to

COPD such as SERPINA 1 and 3 and SERPINE 2 [Hersh, 2008], and a mutation in
the terminal exon of the elastin gene has been associated with early onset emphysema

[Kelleher, 2005], However none of these genes have been shown to be consistently
associated with COPD, and are generally seen in only a small proportion of affected
individuals. Furthermore, a large study investigating single nucleotide polymorphisms
in the tenninal exon of the elastin gene found no association with early onset

emphysema [Cho, 2009].
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1.3.5 Childhood factors

As mentioned previously, an analysis of lung function decline in the Framingham

Offspring cohort demonstrated that a third of male smokers and a quarter of female
smokers had accelerated lung function decline in comparison with non-smokers

[Kohansal, 2009], The decline in lung function was even more pronounced in
individuals with underlying respiratory symptoms or a respiratory diagnosis prior to
enrolment in the study (mean age of individuals at exam 1 was 36 years).

Many studies have associated early life factors with respiratory morbidity and

mortality in later life. Barker and colleagues reported an association between low
birth weight and adult respiratory function, and this relationship appeared to be

present in all socioeconomic classes [Barker, 1991], Low birth weight was also
associated with death from COPD. Bronchitis, pneumonia, or whooping cough in

infancy also was associated with decreased adult respiratory function, but not

mortality due to COPD. Associations between lung function and COPD mortality and

both low birthweight and childhood respiratory infections have since been reported
with statistical adjustment for potential confounders such as smoking and
socioeconomic class [Tennant, 2008; Galobardes, 2008]. In addition, exposure to one

or more 'childhood disadvantage factor' ie parental asthma, childhood asthma,
maternal smoking and childhood respiratory infections predispose to a lower FEVi
and future COPD [Svanes, 2010], Lung function in infancy has been shown to predict
airflow limitation at age 22, suggesting very early life factors influence future airways
disease [Stern, 2007].

1.3.6 Other causes

Further to studies investigating the protective effects of an antioxidant rich

Mediterranean diet in cardiovascular disease, recent work has suggested that diet may
be associated with development of COPD. A large epidemiological study reported
that a healthy diet of regular fruit, vegetables, fish and whole grain products was

potentially protective in comparison to an unhealthy "Western" diet (consisting of
refined grains, French fries and cured and red meats) [Varraso, 2007], The same

group extended their interest in the contribution of diet to COPD by theorising that
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cured meat consumption, rich in oxidant nitrites could influence development of
COPD [Jiang, 2007]. They investigated this in two cohorts and found that cured meat

consumption may influence development of COPD, while it does not exacerbate

development of chronic asthma. They suggest that the combination of smoking plus

consumption of cured meats may have a synergistic effect on the development of
COPD.
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1.4 Pathogenesis of COPD

1.4.1 Pulmonary and Systemic Inflammation

COPD is characterised by chronic inflammatory changes in the lungs. However, it is
unclear whether lung inflammation in COPD is a causative factor in the development
of COPD or a consequence of the disease. Given the enhanced inflammatory response

in the lungs of smokers who develop COPD and the fact that this persists in COPD

patients despite ceasing smoking [Willemse, 2005; Lapperre, 2006], it seems likely to

be both a cause and a consequence of lung damage.

Within the airway lumen in COPD, neutrophils predominate and their increased
activation results in secretion of cytotoxins including proteinases such as neutrophil
elastase and oxidants. Neutrophil elastase and reactive oxygen species upregulate

epithelial mucin gene expression and are likely to result in the symptoms of chronic
bronchitis [Fischer, 2002], Several studies have shown an association between airway

neutrophil burden and disease severity and progression measured by spirometry

[Gianetti, 2006; Parr, 2006; Stanescu, 1996].

Within the airway wall, macrophages and T-lymphocytes are increased in COPD

patients [Tetley, 2002; O'Donnell, 2006]. Indeed small airway narrowing and
occlusion is thought to play a key role in the development of airflow limitation and
the degree of airway narrowing is associated with mortality [Cosio, 1978; Hogg,

2007].

Within the lung parenchyma, COPD patients have increased numbers of lymphocytes,

particularly CD8+ [Cosio, 2002], Lymphocytes are associated with emphysema

severity as well as airflow limitation and are found in increased numbers in the

sputum of COPD patients and thus may have an important role in the pathogenesis of
COPD [Chrysofakis, 2004; Freeman, 2010],

As well as pulmonary inflammation, COPD is associated with increased systemic
inflammation. In a systematic review of fourteen original studies, Gan and co-workers
demonstrated that peripheral blood leukocyte count and C-reactive protein (CRP)
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levels were raised in COPD patients, compared to smokers without COPD [Gan,

2004], Systemic inflammation may also contribute to the extra-pulmonary features
associated with COPD, such as skeletal muscle dysfunction, osteoporosis, and an

increased risk of cardiovascular disease [Agusti, 2007]. In recent years, clinical

parameters such as reduced exercise capacity, high MRC dyspnoea score and low
BMI have been found to be important prognostic factors, along with the severity of
airflow limitation, in patients with COPD [Celli, 2004a].

1.4.2 Oxidative stress

There is now substantial evidence that oxidative stress, due to an imbalance of

oxidants and antioxidants, may underpin some of the pathogenic mechanisms
associated with COPD. Cigarette smoke contains many oxidants [Pryor, 1993],

Multiple studies have shown increased markers of oxidative stress in the lungs of

patients with COPD [Rahman, 1996; Ichinose, 2000], less so in comparison to healthy
smokers [Pierrou, 2007]. Oxidants may cause direct damage to the lung parenchyma
but also may activate proteases, inactivate antiproteases and interfere with lung repair
mechanisms [Strack, 1996; Cohen, 1982],

Increased levels of oxidants and breakdown products of oxidative stress have been
measured in exhaled breath condensate (hydrogen peroxide, nitrosothiol) [Corradi,

2001; Nowak, 1998], induced sputum (nitrotyrosine) [Ichinose, 2000] and broncho-
alveolar lavage (reactive oxygen species - ROS) in COPD [Verhoeven, 2000].
Oxidative stress increases with severity of airflow obstruction as measured by lipid

peroxidation products in induced sputum from COPD patients [Paredi, 2000],

There is also evidence of systemic oxidative stress which may lead to development of
the systemic effects associated with COPD, including muscle wasting and cachexia

[Rahman, 1996; MacNee, 2005]. Isoprostanes are produced by peroxidation of
arachidonic acid by free radicals, and are thus used as a marker of ROS activity.
Elevated F2oc-isoprostane has been observed in the urine of stable COPD patients and

during acute exacerbations of COPD [Practico, 1998]. Furthermore, peripheral blood

neutrophils from COPD patients have been shown to produce more ROS than normal
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subjects, and are associated with increased plasma levels of nitrotyrosine and products
of lipid peroxidation [Rahman, 1996; Clini, 1998].

1.4.3 Protease/antiprotease imbalance

It seems likely that an imbalance between proteases and antiproteases plays a key

role, not only in the pathogenesis of COPD, but also in other chronic lung diseases.

Indeed, an inherited deficiency of the antiprotease °c 1 -antitrypsin (AAT) causes

COPD, even in never smokers. However, a number of specific proteases have been
identified in cigarette smoke induced COPD and the individual proteolytic pathways
as yet are not well described.

The main role of AAT within the lung is to protect tissue from damage due to

neutrophil elastase [Lomas, 2004]. AAT is produced in the liver and individuals with
the most severe Z variant develop aggregations of AAT molecules resulting in slow

migration of AAT out of the liver and consequent lung deficiency. The consequences

of this deficiency are parenchymal destruction due to unprotected proteolytic damage
to the alveolar walls and subsequent pan-acinar emphysema. The resultant
accumulation of excess AAT in the liver can result in hepatocellular damage and
cirrhosis.

Neutrophil elastase is thought to be one of the key factors causing lung damage,

specifically emphysema in COPD. Several different studies support this view.
Instillation of neutrophil elastase in dogs causes emphysema [Janoff, 1977],

neutrophil elastase knockout mice are protected against emphysema when exposed to

cigarette smoke [Shapiro, 2010] and neutrophil elastase inhibitors prevent

emphysema in guinea pigs [Wright, 2002], Although neutrophil elastase inhibitors
have been shown to be safe in humans, their protective effects demonstrated in animal
models have not been replicated in humans [Luisetti, 1996],

It is now thought that matrix metalloproteinases (MMPs) are important in the

pathogenesis of COPD. MMPs comprise 24 zinc-dependent endopeptidases that play
a role in tissue remodelling and repair associated with development of inflammation
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by degrading collagen, laminin, and elastin [Yoshida, 2007]. The MMP family can be
classified into distinct subclasses - the collagenases (MMP-1, -8, -13), gelatinases

(MMP-2, -9), stromelysins (MMP-3, -10, -11), membrane-type MMP (MMP-14 to

MMP-25), matrilysin (MMP- 7), and macrophage metalloelastase (MMP-12). The

major physiological inhibitors of MMPs in vivo are beta-2 macroglobulin and the
tissue inhibitor of metalloproteinases (TIMP) family, which are naturally occurring

proteins specifically inhibiting these proteases, produced by different cell types. The
TIMP family comprises four structurally related members, TIMP-1, -2, -3 and -4. In
COPD pathogenesis, there has been particular interest in the gelatinases (MMP-2 and

-9) and macrophage metalloproteinase (MMP-12).

Several studies have linked MMP-2 with emphysema. Cigarette smoke increased
MMP-2 content in mice bronchoalveolar lavage fluid [Seagrave, 2004], Furthermore,
in human studies, MMP-2 protein expression, assessed using immunohistochemistry,
was increased in peripheral human lung tissue in COPD patients in comparison with

healthy smokers and non-smokers [Baraldo, 2007], MMP-2 expression was also
increased in alveolar macrophages in severe COPD in comparison with individuals
with mild/moderate disease, and this expression was also associated with emphysema

severity and airflow limitation. Finally increased MMP-2 activity has been
demonstrated in the sputum of COPD patients in comparison to healthy controls

[Cataldo, 2000],

Knockout models in mice do not support the hypothesis that MMP-9 contributes to

parenchymal destruction leading to emphysema [Atkinson, 2010], Furthermore, in

pathological specimens of human lung, the concentration of macrophage MMP-9
mRNA were similar in areas of lung with and without emphysema [Atkinson, 2010].

Flowever, transgenically altered mice that overexpress MMP-9 in alveolar

macrophages develop airspace enlargement [Foronjy, 2008], In guinea pigs, a dual
MMP-9/MMP-12 inhibitor reversed smoke-induced airspace enlargement [Churg,

2007] and MMP-9 promoter polymorphisms in humans are associated with upper

lung dominant emphysema [Ito, 2005], In addition, peripheral blood monocytes of
COPD patients release 2.5 times greater MMP-9 than controls [Aldonyte, 2003], and
COPD patients also have higher circulating levels of MMP-9 [Bolton, 2009].
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Therefore, there may also be a role for MMP-9 outwith the lung compartment in
COPD.

MMP-12 has also been implicated in the pathogenesis of COPD. MMP-12 knockout
mice are protected from emphysema despite prolonged cigarette smoke exposure

[Hautamaki, 1997], A single nucleotide polymorphism in the gene coding for MMP-
12 is associated with improved lung function in children and adults who smoke and a

reduced risk of COPD in adult smokers [Hunninghake, 2009], MMP-12 was increased
in the sputum of patients with COPD in comparison to controls [Demedts, 2006],
There is compelling data suggesting that genetic variation in genes coding for MMP-
12 can influence susceptibility to or protection against the development of COPD

[Haq, 2010],

1.4.4 The autoimmune hypothesis

The hypothesis that COPD has an autoimmune component that contributes to its

pathogenesis has been mooted in the last decade [Agusti, 2003], It is an attractive

theory as it accounts for airway inflammation that develops with exposure to cigarette
smoke persisting for subsequent years [Willemse, 2005], Furthermore, it may explain

why a minority of smokers are susceptible to lung damage on exposure to cigarette
smoke. Finally, the autoimmune theory helps us understand the development of
COPD as a condition with extra-pulmonary effects, in a similar way to connective
tissue disorders such as rheumatoid arthritis.

Autoimmune conditions are characterised by B- and T-cell responses to self-epitopes
and thus the demonstration of B-cell immunoglobulin production and/or T-cell

reactivity against autologous antigens is a defining feature of autoimmunity. Lee and

colleagues described anti-elastin antibodies in a cohort of emphysematous patients in

comparison with a non-emphysematous control group [Lee, 2007], In addition, they

reported enhanced T-helper cell responses in the emphysema cohort to elastin

peptides in comparison with healthy controls and an asthma control population, with
the production of both interferon-gamma and IL-10. Both cytokines were closely
associated with CT-quantified emphysema severity. The authors suggest that

exposure to cigarette smoke leads to proliferation and activity of B- and T-cells
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against elastin that propagates inflammation after withdrawal of a cigarette smoke
stimulus.

However, other groups have discordant results. Cottin et al examined a cohort of

patients with combined pulmonary fibrosis and emphysema (CPFE) and found no

differences in the presence of anti-elastin antibodies in comparison to control subjects

[Cottin, 2009], Although this was in a different specific condition, it seems likely that

patients with CPFE with CT-defined emphysematous changes would have been

expected to have some evidence of enhanced B-cell activity. Another group found
increased levels of circulating anti-elastin antibodies in controls compared to patients
with usual COPD and COPD due to AAT deficiency in comparison to healthy
controls [Wood, 2011], The authors suggest that local measurement of antibody

complexes rather than circulating levels may be more enlightening. In these negative

studies, a specific comparison between patients with and emphysematous phenotype
and non-emphysematous phenotype was not performed, but the lower levels in a

group of COPD patients compared to healthy controls does question the validity of
the conclusions of the initial study.

Another recent study reported increased titres of anti-nuclear antibodies and anti-
tissue antibodies in COPD patients in comparison with controls [Nunez, 2011], In

addition, anti-tissue antibodies were associated with the severity of airflow limitation
and reduced DLco. Antibodies to primary pulmonary epithelial cells were also

prevalent in patients with COPD, compared to healthy controls and a recent

manuscript described increased anti-endothelial cell antibodies in comparison to

controls [Karayama, 2010; Feghali-Bostwick, 2007], It is difficult to know whether
these antibodies are associated with a generalised enhanced immune response rather
than having a specific role in the pathogenesis of COPD.
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1.5 Causes of death in COPD

Traditional methods of assessing cause of death in COPD such as mortality data from
death certificates are unreliable, particularly when making international comparisons.
This should improve with standardisation of the definitions of COPD and

improvement in international communication.

A coding analysis in 2003 showed that ischaemic heart disease and lung cancer were

the commonest causes of death in COPD patients [Hansell, 2003]. In general it is

thought that COPD is under-reported on death certificates which makes large

epidemiological studies investigating cause of death unreliable [Jensen, 2006;

Hansell, 2006]. COPD is under-diagnosed [Mannino, 2006], and airways disease may

be misclassified - which results in lack of reporting of COPD as a contributing factor
to mortality [Hansell, 2006],

There is more reliable, recently available evidence from large randomised controlled
trials that examine mortality specifically as an end-point. TORCH (Towards a

Revolution in COPD Health) is a randomised placebo controlled trial investigating the
use of inhaled steroids alone or in combination with long-acting beta agonists in

moderate to severe COPD [Calverley, 2007], This study of 6184 subjects over three

years yielded 911 deaths. A clinical endpoint committee examined each death "using
the death certificate, medical records including emergency department and hospital

records, x-ray reports, laboratory reports, operative and procedure reports, histological

reports from biopsy specimens and necropsy reports". For deaths out with hospital,
the committee "attempted to obtain witness interviews to describe the circumstances
of the death, when the participant was last known to be alive and whether symptoms
were known to precede the death". Twenty-six percent of deaths were attributed to

cardiovascular causes, 35% to respiratory causes such as COPD and pneumonia and
21% to cancer (two-thirds of these were lung cancer). There were also disease-

specific mortality figures from UPLIFT (Understanding Potential Long-term Impacts
on Function with Tiotropium), another large randomised placebo controlled trial

investigating the long acting anti-cholinergic tiotropium and its effect on mortality

[Celli, 2009]. In this study only 16% of deaths were attributable to cardiovascular
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causes, 40% were due to respiratory causes and 33% to cancer (just over half were

lung cancer).

A further potentially reliable source of information is post-mortem studies. One such

study revealed that of those individuals with COPD who underwent post-mortem,
37% died of heart failure, 28% of pneumonia, 14% from respiratory failure secondary
to COPD and 9% of pulmonary embolism [Zvezdin, 2009], The difficulty with these
data is that this is not a consecutive series and thus not reflective of all patients dying
in a hospital setting with COPD, but merely those in which it was felt a post-mortem
was required ie if the cause of death was not established or those in which a post¬

mortem was permitted by the patient's family.
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1.6 COPD and comorbidity

COPD is now recognised to be a condition with systemic effects and is associated
with increased prevalence of other conditions. Cardiovascular disease, osteoporosis,
muscle wasting and dysfunction and anaemia are all more common in patients with
COPD. It is as yet unclear whether these associations are a consequence of symptoms
such as breathlessness, reduced exercise tolerance and treatment including oral

corticosteroids, or that COPD is an independent causal factor.

1.6.1 Osteoporosis

Patients with COPD have multiple risk factors for osteoporosis - these include
advanced age, limited exercise, corticosteroid use as well as certain sub-groups of
COPD with low BMI. Thus it is unsurprising that COPD is associated with

osteoporosis. A recent systematic review calculated an overall mean prevalence of
35% from 14 papers measuring bone mineral density in COPD [Graat-Verboom,

2009]. These individuals had a mean FEVi percent predicted of 47% and age of 63.

Consequently COPD patients are at increased risk of fractures. In a Norwegian study,
COPD patients had significantly higher risk of vertebral deformity than an age, sex

and BMI matched population-based control population [Kjensli, 2009]. Several

studies have shown bone mineral density to be associated with airflow limitation, in
some cases corrected for oral corticosteroid consumption [Vrieze, 2007; Kjensli,

2009] and BMI [Bolton, 2004; Incalzi, 2000].

However, recent studies have suggested that COPD is a risk factor for osteoporosis

independent of corticosteroid therapy. A study of Japanese men showed that the

severity of emphysema on computed tomography (CT) scanning and low body mass

index were independent predictors of reduced bone mineral density after adjusting for

age, sex, and smoking history, implying that COPD itself may be a risk factor for

osteoporosis. It is important to note, however, that this was a slightly unusual cohort,
naive to both inhaled and oral corticosteroids [Ohara, 2008].
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1.6.2 Muscle wasting and dysfunction

Reduced exercise tolerance is a cardinal measure of functional status in the

assessment of individuals with COPD. It is also a primary issue affecting quality of
life. One of the major factors limiting exercise tolerance is skeletal muscle wasting
and dysfunction. Indeed, BMI and fat free mass index (FFMi) are predictors of overall

mortality in COPD independent of the traditional spirometric assessment of the

severity of disease [Schols, 1998; Vestbo, 2006], In combination with other simple
measures of severity, BMI is one of the components of the BODE index, a simple
multifactorial tool that predicts mortality in COPD [Celli, 2004a],

The mechanism of skeletal muscle dysfunction in COPD is unclear. There is evidence
that oxidative stress, systemic inflammation, mitochondrial dysfunction and

deconditioning may all play a part [Man, 2009].

1.6.3 Anaemia

In common with other chronic diseases, patients with COPD are susceptible to

anaemia [Similowski, 2006]. However, COPD, and in particular severe COPD, is
associated with polycythaemia and therefore a raised haematocrit. The WHO

recognises anaemia as a disease associated with a low haemoglobin (males<13.0g/dl
and females<12g/dl) [Butterworth, 1968]. Two studies used the WHO definition of
reduced haemoglobin as a marker of anaemia. This showed a prevalence of 23% in
312 patients admitted to a German hospital with COPD as a diagnosis [John, 2006].
In another study, 17% of 677 predominantly male patients admitted to a Veterans

facility had a haemoglobin<13g/dl [Cote, 2007]. Anaemic patients had reduced
functional capability (lower exercise capacity and higher MRC dyspnoea score)

independent of lung function as well as increased mortality, but this was not

independent of other predictors ofmortality (age, comorbidities and BODE index).

However, anaemia can also be defined by a haematocrit, <39% in men and <36% in
women. In severe COPD, requiring long-term oxygen therapy, a reduced haematocrit
was associated with increased mortality, whereas a raised haematocrit was protective,
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independent of other markers of mortality [Chambellan, 2005], This indicates that
haematocrit may be a better measure of anaemia in COPD populations.

1.6.4 Pulmonary embolism (PE) and deep venous thrombosis (DVT)

Patients hospitalised with COPD have an increased risk of developing PE for a

number of reasons: sedentarism, heart failure, age and acute infection. COPD patients

may also have an increased thrombotic tendency - COPD is associated with raised
levels of [3-thromboglobulin, soluble P-selectin and P-selectin glycoprotein ligand

(markers of platelet activation) and thrombin-antithrombin III complexes (a marker of
a hypercoagulable state) [Ashitani, 2002; Ferroni, 2000; Schumacher, 2005]. The

prevalence of DVT in exacerbations of COPD has also been examined. A prospective

study showed that 10% of patients admitted with an exacerbation of COPD had
evidence of DVT [Schonhofer, 1998], In contrast, there is a DVT prevalence of 2.6%
in asymptomatic general medical admissions [Lawall, 2007],

1.6.5 Lung cancer

With the shared risk factor of cigarette smoking, it is hardly surprising that lung
cancer accounts for a significant proportion of the mortality associated with COPD.

Thirty-eight percent of individuals with asymptomatic airflow limitation recruited for
the Lung Health Study died of lung cancer [Anthonisen, 2002]. Interestingly, recent
work has suggested that emphysema and airflow limitation are risk factors for lung

cancer, independent of cigarette smoke exposure [Wilson, 2008], The pathogenesis
for this is unclear: chronic inflammation and associated lung damage may contribute

along with impaired lung repair mechanisms, while there are potential genetic links
between lung cancer and COPD and certain specific candidate gene loci [Schwartz,

2006], Indeed there are retrospective studies suggesting that reducing pulmonary
inflammation with inhaled corticosteroids or systemic inflammation with statin

therapy may reduce the risk of lung cancer in COPD [Parimon, 2007; van Gestel,

2009].
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1.6.6 Cardiovascular disease

The most significant non-respiratory contributor to both morbidity and mortality in
COPD is cardiovascular disease. The TORCH study found cardiovascular disease
accounted for 26% of the total deaths [Calverley, 2007], The increased cardiovascular

morbidity and mortality in COPD will be dealt with later.

There is an increased prevalence of heart failure and cardiac arrhythmias in COPD.
Heart failure is common in COPD and COPD is common in heart failure patients. A

study of 186 consecutive patients with left ventricular systolic dysfunction in a heart
failure clinic found that 39% had COPD diagnosed on spirometry, and those patients
with heart failure and severe COPD had a worse prognosis than patients with mild to

moderate COPD or normal lung function [Mascarenhas, 2008], Higher mortality was

again reported among patients with COPD compared with individuals without lung
disease in a study of 4132 patients hospitalized with cardiac failure in Norway [De

Blois, 2010]. Patients with COPD also have increased risk of cardiac arrhythmias

[Shih, 1988], Following surgery for non-small cell lung carcinoma, patients with

spirometric evidence of COPD have increased risk of supraventricular tachycardia,
and they tend to be refractory to first-line treatment [Sekine, 2001], Atrial fibrillation
is also more common in COPD following coronary artery bypass graft [Mathew,

2004],
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1.7 COPD and cardiovascular disease

1.7.1 Airflow limitation and cardiovascular risk

The association between FEVi and cardiovascular risk was established over 15 years

ago [Hole, 1996]. Subsequently this relationship has been confirmed in large

population-based studies, even in healthy individuals, and after adjustment for well
established risk factors for cardiovascular disease including age, sex, smoking,
cholesterol and education level/social class [Truelsen, 2001; Sorlie, 1989; Lee, 2010],
The Third National Health and Nutrition Examination Survey (NHANES III)

comprising healthy individuals aged 40 to 60, reported a 5-fold increase in
cardiovascular mortality in the quintile with the lowest FEVi in comparison with the

highest [Sin, 2005]. The authors also performed a systematic review of population
studies and reported the same findings (Figure 1.3).

Marcus 1.93 (1.46, 2.54), men

Hole 1.56 (1.26, 1.92), men

Hole 1.85 (1.44, 2.47), women

Schunemann 2.11 (1.2, 3.71), men

Schunemann 1.96^(0.99, 3.88), women

Pooled estimate 1.75 (1.54, 2.01)

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5

Relative risk of cardiovascular mortality
(Worst FEV, quintile vs best FEV, quintile)

Figure 1.3 Metanalysis of studies that reported relative risk of cardiovascular mortality
based on FEVi

Adapted from Sin, 2005; boxes represent relative risk and bars represent 95% confidence
intervals.

37



In addition, decline in FEVi is associated with increased cardiovascular mortality.
The Baltimore Longitudinal Study of Ageing showed that those individuals who had
the most rapid deterioration in FEVi over a follow up period of 16 years were three to

five times more likely to die from a cardiac cause than those with the slowest decline
in FEVi [Tockman, 1995], Both FEVi and decline in FEVi predict cardiovascular risk
even in never smokers, suggesting this association is independent of cigarette

smoking.

FEVi is also an independent predictor of cardiovascular mortality in COPD. The

Lung Health Study reported that for every 10% decrease in FEVi, there was an

increase of approximately 28% in fatal coronary events, and 20% in non-fatal

coronary events, amongst subjects with mild to moderate COPD [Anthonisen, 2002],

However, low FEVi is not specifically associated with increased risk of cardiac

mortality. FEVi predicts stroke mortality [Truelsen, 2001], as well as all-cause cancer

mortality [Eberly, 2003], and death from non-respiratory, non-cardiovascular causes

[Hole, 1996], Therefore FEVi may be a measure representing exposure to a wide

range of determinants of health which are difficult to adjust for statistically, such as

poor nutrition, and exposure to environmental pollution (including passive smoke).

However, another possibility is that individuals with lower FEVi might have an

enhanced inflammatory response or impaired healing to such stimuli. Only a

proportion of individuals, even with significant cigarette smoke exposure develop
COPD [Fletcher, 1977], and similar hypotheses have been suggested to explain this
observation [Young, 2007].

1.7.2 Cardiovascular mortality and morbidity in COPD

Cardiovascular disease contributes significantly to mortality in patients with COPD.
The Tucson Epidemiological Study of Obstructive Airways Disease examined cause

of death from death certification and reported that nearly 50% of patients with
obstructive airways disease as a contributing cause of death had a cardiovascular
event as the primary cause [Camilli, 1991]. Furthermore, a retrospective study of
Canadian healthcare databases including 11,493 patients with COPD found a two to

threefold increase in cardiovascular mortality in comparison with age and sex
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matched control subjects (relative risk 2.07; CI 1.82-2.36) [Curkendall, 2006], A
more cause-specific analysis found increased risk of congestive cardiac failure (RR

4.09), arrhythmia (RR 2.81) and acute myocardial infarction (RR 1.51)

In individuals with established cardiovascular disease, COPD is a risk factor for

cardiac death. In a three year follow up study of over 4000 patients treated for
cardiovascular disease, there was a mortality of 21% in patients with COPD compared
to 9% in those without [Berger, 2004], In a prospective study examining the year

post-myocardial infarction, mortality was significantly higher in subjects with COPD

(15.8 vs. 5.7%) [Salisbury, 2007],

The economic burden of COPD was addressed above, but the in-patient cost is not

limited to exacerbations of airways disease. In a retrospective matched cohort study
from the Northern California Kaiser Permanent Medical Care Programme involving

40,966 patients with COPD diagnosed between 1996 and 1999, the risk for

hospitalisation with cardiovascular disease was higher in COPD patients (RR 2.09; CI

1.99-2.20), than in age and sex matched control subjects [Sidney, 2005].

In these studies morbidity and mortality data were obtained from routine data sources

such as death certificates, which can lead to diagnostic misclassification. However, in
the TORCH trial, cause of death was accurately assessed by an adjudication panel.

Thirty-five percent of deaths were due to pulmonary causes and 26% to

cardiovascular disease [Calverley, 2007], Similarly in the Lung Health Study, an

independent mortality and morbidity review board established cause of death and

hospitalization in 5,887 COPD patients aged 35-60 with mild to moderate airways
obstruction over five years [Anthonisen, 2002], This cohort had a five year mortality
of 2.5% of which 25% died of a cardiovascular event, and cardiovascular disease

accounted for 42% of the first hospitalisation and 44% of the second hospitalisation
over a follow up period of 5 years in patients with relatively mild COPD, compared
with 14% of hospitalisations from respiratory causes.

Thus a range of general population studies and studies in COPD patients suggest that
airflow limitation and a diagnosis of COPD may be an important risk factor for
ischaemic heart disease and sudden cardiac death. The mechanism responsible for the
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increased risk of cardiovascular disease in COPD patients is not known, however a

number of hypotheses have been proposed.

1.7.3 Mechanisms of cardiovascular disease in COPD

Cardiovascular disease and COPD share a number of common risk factors. These

include smoking, sedentarism and low socio-economic class. There are a number of
other factors that may contribute to the increased risk.

1.7.3.1 Traditional risk factors

COPD is said to be associated with an increased risk of cardiovascular disease

independent of cigarette smoking. However, smoking is the causative factor in the

majority of individuals who develop COPD and these individuals are particularly

susceptible to cigarette smoke. It is therefore difficult to show in a COPD population
that any effect is due to COPD alone, as COPD and smoking are inextricably linked
and it is very difficult to fully correct for cigarette smoke exposure in studies by
statistical means. It seems likely that cigarette smoke plays an important role in the

development of cardiovascular disease in COPD. Interestingly, carotid intimal medial
thickness (a surrogate measure strongly associated with atherosclerotic plaque

burden) was measured using ultrasound in a group of healthy Japanese men, and was

significantly increased in individuals who smoke and have airflow limitation in

comparison to matched smokers and non-smokers [Iwamoto, 2008], This suggests

that smokers with a spirometric diagnosis of COPD have evidence of subclinical

atherosclerosis, independent of cigarette smoking.

Other traditional risk factors are common in COPD. Investigators reported an

increased prevalence of diabetes and hypertension in patients with COPD in

comparison with healthy individuals and this increased prevalence was even more

evident in GOLD stages 3 and 4 in the Atherosclerosis Risk in Communities Study

(ARIC) population [Mannino, 2008],
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1.7.3.2 Novel risk factors

Traditional risk factors for cardiovascular disease have long been established.

However, these do not fully explain all of the cardiovascular risk. More recently,
alternative novel, more mechanistic risk factors have been mooted and each of these

may play a role in the increased cardiovascular risk associated with COPD (Figure

1.4).

Figure 1.4 Putative mechanisms for cardiovascular disease in COPD: systemic

inflammation, oxidative stress, protease/antiprotease imbalance, endothelial

dysfunction, elastin degradation and autoimmune causes.

1.7.3.2.1 Inflammation

For over 20 years, systemic inflammation has been related to cardiovascular

morbidity and mortality. Measurement of CRP is known to predict cardiovascular
events not only in high risk, post-acute coronary syndrome populations, but also in

healthy individuals. The Framingham Risk Score, the most widely used tool for

predicting risk of cardiovascular events, is improved by adding CRP to prediction
models comprising of traditional risk factors [Wang, 2006], Recent work has shown
that intervening with statins may reduce cardiovascular events in individuals with

high levels of circulating inflammation but normal cholesterol levels [Ridker, 2008],

The pathophysiology of atherosclerosis and the role of inflammatory pathways in this

process is complex [Libby, 2002], The contribution of lipid metabolism to

atherosclerosis is long established. However, more recent studies have revealed the

importance of inflammation in plaque initiation, development, and rupture [Libby,

2002; Libby, 2005], The atherosclerotic process starts with injury to the vascular
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endothelium, which is made more permeable by a variety of factors, including

systemic inflammation and oxidative stress. Lipoproteins then enter the intima via the
vascular endothelium. Modified lipoproteins and systemic oxidative stress and
inflammation induce cytokine production and increase the expression of cell adhesion

molecules, such as 1CAM-1 and VCAM-1, on the vascular endothelium, allowing

circulating leukocytes to adhere to damaged endothelial surfaces. The release of
chemotaxins directs migration of these leukocytes to the vascular intima. In this

inflammatory environment, there is increased expression of scavenger receptors on

monocytes/macrophages that ingest modified lipid lipoprotein particles, promoting
the development of foam cells. Vascular smooth muscle cells then proliferate and may

migrate from the media into the intima. These muscle cells produce extracellular

matrix, which accumulates in the plaque with the formation of fibro-fatty lesions.
This results in vessel wall fibrosis and consequent smooth muscle cell death.

Calcification may occur, producing a plaque with a fibrous cap surrounding a lipid-
rich core.

A number of cells and molecules can both promote and amplify this inflammatory

process. Activated T-lymphocytes and macrophages can stimulate the release of

cytokines, resulting in endothelial activation. In addition to an increased expression of
adhesion molecules on activated endothelium, cytokines such as interleukin (IL)-l,

IL-6, and tumour necrosis factor alpha (TNF-a) can facilitate the deposition of

components of atheromatous plaque formation. C-reactive protein (CRP) is an acute

phase protein primarily produced by hepatocytes under the stimulation of IL-6 that is
released after vascular damage. CRP, when released into the circulation, can up-

regulate other inflammatory cytokines, activate complement, and promote the uptake
of low density lipoproteins by macrophages. CRP also interacts with endothelial cells
to stimulate the production of IL-6 and endothelin-1 [Verma, 2002; Yeh, 2001], CRP

is found in atheromatous lesions and may therefore have a causal role in atherogenesis

[Torzewski, 2000], Studies in vitro have shown that CRP may adversely affect
vasomotor endothelial function through the inhibition of endothelial nitric oxide

synthase and consequently the production of nitric oxide (NO). Endothelial

fibrinolysis is also impaired by CRP, which induces the production of PAI-1

(plasminogen activator inhibitor), an inhibitor of tissue plasminogen activator (t-PA)

[Venugopal, 2002; Devaraj, 2003]. A number of other inflammatory biomarkers have
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also been implicated in plaque formation, such as IL-6, IL-8, and fibrinogen [Luc,

2003; Boekholdt, 2004; Ridker, 2000a],

There is considerable evidence of increased systemic inflammation, both activated

circulating leukocytes and increased inflammatory mediators, in COPD [Wouters,

2005], The origin of the systemic inflammatory response in COPD has not been

clearly established, but a number of mechanisms have been proposed. These include
direct "spillover" of lung inflammation to the systemic circulation, an effect of lung

hyperinflation, tissue hypoxia, muscle dysfunction, and bone marrow stimulation.

Peripheral blood neutrophils are activated in patients with COPD to release reactive

oxygen species [Noguera, 2001], have increased expression of adhesion molecules

[Noguera, 1998], and demonstrate enhanced chemotaxis and extracellular proteolysis

[Burnett, 1987], mechanisms that are involved in the pathogenesis of atherosclerosis.
These include release of 2.5-fold greater amounts of matrix metalloproteinase-9

(MMP-9) from circulating monocytes of patients with COPD in comparison with
control subjects [Aldonyte, 2003], and MMP-9 has been implicated in the

pathogenesis of arteriosclerosis and in plaque rupture [Libby, 2005]. CRP is a

biomarker of systemic inflammation and is also a marker of increased cardiovascular

risk, while in COPD it is a marker of increasing severity of disease measured by
airflow limitation, body mass index and exercise capacity and increased mortality. In
a cohort of 1,302 individuals with airflow limitation selected from the Copenhagen

City Heart Study, individuals with baseline CRP greater than 3mg/L had a higher risk
of hospitalization and death from COPD (hazard ratios 1.4, 25% CI, 1.0-2.0; and 2.2,
25% CI, 1.2-3.9, respectively), compared with individuals with a baseline CRP less
than or equal to 3 mg/L adjusted for age, sex, FEV)% predicted, tobacco

consumption, and ischaemic heart disease [Dahl, 2006], However, it may be that CRP
is merely a marker and does not play an active role in formation of atheromatous

plaques since recent work with rabbits suggest that CRP does not promote

atherogenesis [Koike, 2009],

In an attempt investigate the link between inflammation and cardiovascular disease in

COPD, a Canadian group used the NHANES cohort to study the relationship between
the severity of airflow limitation, CRP concentrations and their relationship to the
cardiac infarction injury score (CIIS) [Albert, 2003], The CIIS is an
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electrocardiographic coding scheme to assess cardiac injury and is related to

cardiovascular mortality [Rautaharju, 1981]. In this study the cohort was divided

according to the degree of airflow limitation (none, mild, moderate, and severe) and
the groups matched for lipid profile, although blood pressure and smoking history
were higher in those with severe airflow obstruction. Patients with more severe

airflow limitation had both a higher CRP level and a higher CI1S. The presence of
severe airflow limitation and high CRP were associated with an even higher CIIS

[Sin, 2003]. However, this ECG scoring system has not been validated for a COPD

population, and so the results should be interpreted with caution.

1.7.3.2.2 Oxidative stress

COPD has been associated with both local pulmonary and systemic oxidative stress as

described above. No studies have specifically addressed the hypothesis that increased
oxidative stress in COPD increases cardiovascular risk. However, a number of studies

have been published on oxidative stress in CVD, and rather more have been published
on oxidative stress in COPD. Oxidative stress is an imbalance between the production
of reactive oxygen species (ROS, including free radicals, reactive oxygen and

nitrogen species) and protective antioxidants (such as superoxide dismutase and

glutathione peroxidase). Unopposed oxidation causes apoptosis, cell destruction and

necrosis, but also enhances inflammation through the activation of gene expression
for inflammatory mediators and adhesion molecules.

A major source of endogenous ROS is leakage from mitochondria along with other
cellular processes involving enzymes such as xanthine oxidase, ROS released from

inflammatory leukocytes via the NADPH oxidase system and cytochrome P450

[Harrison, 2003; Chen, 2003], Exogenous sources of oxidants include inhalation of

tobacco smoke and air pollution [MacNee, 2005],

Ischaemic heart disease has also been associated with systemic oxidative stress.

Several traditional risk factors including hypertension, hypercholesterolaemia,

smoking and diabetes are associated with increased production of oxygen free radicals
from the vascular endothelium and smooth muscle cells. ROS have been shown to

cause atherosclerosis by a number of mechanisms - up-regulation of cell adhesion
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molecules, proliferation of vascular smooth muscle, apoptosis of endothelium, lipid

oxidation, activation of matrix metalloproteinases and altered vasomotor activity

[Lee, 2001; Griendling, 1998; Aoki, 2001; Kameda, 2003]. NADPH oxidase is

particularly important in production of ROS from vascular cells. Angiotensin II
activates this enzyme and exacerbates the oxidative stress [Landmesser, 2003], This

may be one of the mechanisms by which angiotensin converting enzyme (ACE)
inhibitors confer vascular protection.

Measurement of ROS is problematic and addressing the issue of increased oxidative
stress in COPD and its effect on cardiovascular risk is therefore difficult. Nonetheless,

interesting recent studies suggest that inhaled particulate matter may cause abnormal
endothelial function by the effects of ROS on nitric oxide and similar mechanisms

may be present in COPD [Mills, 2005].

1.7.3.2.3 Physiological stresses

Patients with COPD are subject to hypoxia—either sustained hypoxia in patients with
severe disease and respiratory failure, or intermittent hypoxia, for example during
exercise or exacerbations. However, there is a threshold effect for hypoxia in patients
with COPD related to the severity of the airflow limitation, which does not seem to

apply to the relationship between pulmonary function and cardiovascular risk.

Hypoxia has been shown to have a number of effects that influence atherogenesis.
These include increasing systemic inflammation and oxidative stress, up-regulating
cell adhesion molecules, and inducing haemodynamic stress [Lattimore, 2005;

Ichikawa, 1997; Hartmann, 2000]. Increased foam cell production, a critical
constituent of unstable atherosclerotic plaques, is also stimulated when macrophages
are exposed to hypoxic conditions [Lattimore, 2005]. The cellular adhesion molecules
ICAM-1 and P-selectin have been shown to be up-regulated by hypoxic challenge in
human umbilical endothelial cells [Ichikawa, 1997], and CRP also increases in

response to hypoxia [Hartmann, 2000]. Hypoxia can also induce increased oxidative
stress. In an animal model, hypoxia produced atherosclerosis in the presence of

dyslipidemia and increased lipid peroxidation, a marker of oxidative stress

[Savransky, 2007], and reduced levels of the antioxidant superoxide dismutase are

found in the myocardial tissue of rats exposed to hypoxic environments [Chen, 2005],
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Hypoxia also induces haemodynamic stress [Thomson, 2006]. Normal subjects

exposed to a hypoxic challenge to reduce oxygen saturations to 80% for 1 hour

developed an increased heart rate and cardiac index. These effects of acute and
intermittent hypoxia may have relevance for individuals with COPD, who are

subjected to intermittent hypoxic episodes during exertion and exacerbations.

Hypoxia also affects the renal circulation, reducing renal blood flow and activating
the renin-angiotensin system, resulting in increased peripheral vasoconstriction and
oxidative stress [Skwarski, 1998].

Activation of the sympathetic nervous system (SNS) is associated with increased risk
of cardiovascular disease [Curtis, 2002], which, given that both COPD and chronic

respiratory failure are associated with SNS activation [Heindl, 2001], may contribute
to the cardiovascular morbidity and mortality observed in patients with COPD.
Several studies have found that a high resting heart rate is an independent risk factor

for cardiovascular morbidity and mortality in the general population, and resting

tachycardia is common in COPD [Cook, 2006], Furthermore, COPD is also
associated with reduced heart rate variability, a marker of abnormal cardiac
autonomic regulation, which has been found to predict mortality in the elderly [Tsuji,

1994; Volterrani, 1994], In view of the potential adverse effects of sympathetic

stimulation, and the beneficial effects of |3-receptor antagonists in heart failure, atrial

fibrillation, and myocardial infarction, several observational studies have examined
the effects of (3-agonists on cardiovascular morbidity and mortality, with conflicting

results [Suissa, 1996; Suissa, 2003; Au, 2002], However, the TORCH study found no

increase in all-cause or cardiovascular mortality in 1,521 patients treated with
salmeterol (a long-acting (3-agonist), compared with the 1,524 patients allocated to

placebo [Calverley, 2007],

In a meta-analysis including 131 patients with COPD randomised to either a

cardioselective (3-blocker or placebo, FEVi was not significantly different in patients

treated with (3-blockers [Salpeter, 2005], Moreover, evidence from observational

studies suggests that cardioselective f3-blockers reduce mortality in patients with

COPD after vascular surgery, myocardial infarction, or admission to hospital with
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acute exacerbations of COPD [Dransfield, 2008; Gottlieb, 1998; van Gestel, 2008],

although in such studies it is difficult to avoid residual confounding by disease

severity. Nevertheless, there remains a reluctance to use p-blockers in patients with
COPD [Egred, 2005], despite the joint recommendation of the American College of

Cardiology and American Heart Association that (B-blockers should not be routinely

withheld in patients with COPD who have heart failure or a recent non ST-elevation

myocardial infarction and a Cochrane systematic review advocating their safety

[Hunt, 2005; Anderson, 2007],

1.7.3.2.4 Endothelial dysfunction

The endothelium is a single celled layer that acts as the inner lining of all blood
vessels. As well as being a structural component of vascular walls, the endothelium
has a number of important active roles in maintaining vascular homeostasis. These
include control of vasodilatation, production of fibrinolytic factors and regulation of
both platelet activation and inflammation around the vessel wall.

The endothelium controls vasodilatation on a minute-to-minute basis, producing

powerful vasoactive mediators from the endothelium including nitric oxide (NO),
endothelium-derived hyperpolarizing factor (EDHF) and prostacyclins. Furchgott first
established that an intact endothelium produced molecules that cause vasodilation

following administration of acetylcholine and bradykinin [Furchgott, 1980], This
factor was later recognised to be NO. NO is generated from L-arginine by the action
of endothelial NO synthase (eNOS) in response to shear stress related to cardiac

output and to signaling molecules such as bradykinin, adenosine, vascular endothelial

growth factor, and serotonin. This gas diffuses to the vascular smooth muscle cells
and activates guanylate cyclase, which leads to cGMP-mediated vasodilatation

[Deanfield, 2007]. However, the endothelium continues to cause vasodilatation even

with administration of NO-antagonists and in mouse models that knock out

production of eNOS. This established the presence of a further factor, endothelium-
derived hyperpolarizing factor, EDHF. The exact mechanism of its actions remain

unclear [Luksha, 2009],
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Stable atherosclerotic plaques are characterised by a thick fibrous cap and relatively
little lipid accumulation. They progress relatively slowly and occlude the vessel

lumen, resulting in angina pectoris. Vulnerable plaques, which contain large amounts

of lipid and inflammatory cells, have a thin fibrous cap and are prone to rupture,

resulting in myocardial necrosis. After plaque rupture, lipids leak on to the arterial
lumen and produce vasoconstriction and thrombus formation. Acute release of tissue

type plasminogen activator (t-PA) from the endothelium in response to thrombus
formation causes fibrinolysis, dissolving the thrombus. t-PA causes proteolytic

degradation of fibrin to soluble fibrin degradation products by catalysing the
conversion of plasminogen to plasmin. The conversion of plasminogen to plasmin by
t-PA is accelerated in the presence of fibrin at the endothelial cell surface, ensuring

focused, localised action. The exact intracellular pathways are however still not clear

[Oliver, 2005],

Endothelial damage results in local activation of platelets by the release of a variety of

inflammatory mediators. This in turn causes platelet adhesion and recruitment of
other inflammatory cells including monocytes [Ramos, 1999], This is thought to be
the first step in the formation of an atherosclerotic plaque. Thus maintenance of the
endothelium is important in preventing progressive vascular disease.

There is now considerable evidence that impaired endothelial function is associated
with cardiovascular morbidity and mortality. Several studies have evaluated coronary

endothelial function in patients with coronary disease during coronary angiography

using acetylcholine, an endothelium-dependent vasodilator, showing that individuals
with endothelial dysfunction have increased risk of cardiac events [Widlansky, 2003],

Using the cold pressor test, this has also been shown in individuals with normal

coronary arteries [Schindler, 2003], Other aspects of endothelial dysfunction also

predict cardiovascular events. Impaired fibrinolysis, measured by stimulated release
of t-PA has also been shown to be a determinant of cardiovascular risk in patients
with coronary disease [Robinson, 2007].
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It is thought that endothelial dysfunction is one of the mechanisms by which
traditional risk factors predispose individuals to cardiovascular events. There is a

growing body of evidence that smoking causes endothelial dysfunction. Smoking is
known to impair release of t-PA in healthy smokers in comparison to matched non-

smokers [Newby, 2001; Jatoi, 2007]. These abnormalities have also been seen in

passive smoking [Celermajer, 1996], Hypercholesterolaemia causes impairment of

endothelium-dependent vasodilatation [Chowienczyk, 1992] and this is further
exacerbated by smoking [Heitzer, 1996]. Essential hypertension is also known to be
associated with abnormal endothelium-dependent vasorelaxation [Panza, 1990] and a

recent study has shown this to be subsequent to the development of hypertension, not
a precursor to it [Shimbo, 2010], There is significant evidence reporting vasomotor

dysfunction in type 1 diabetes and it is thought that endothelial function contributes to
this [Chan, 2003],

As well as traditional risk factors, more novel risk factors for cardiovascular disease

are also associated with endothelial dysfunction. It is difficult to ascertain whether

systemic inflammation has an active role in causing endothelial dysfunction or is

simply a marker of active vascular disease. As mentioned above, local inflammatory
cells and cytokines have a key role to play following endothelial denudation in

atherothrombosis. The same is true for reactive oxygen species. Thus, if patients with
COPD do have endothelial dysfunction it is likely to be due to a combination of both
traditional and novel risk factors in COPD.

1.7.3.2.5 Arterial stiffness

Mechanical changes in the large arteries may predispose to cardiovascular events. The
assessment of the gold standard of aortic pulse wave velocity (PWV) and more

peripheral measurement of brachial pulse wave velocity are non-invasive, robust and

reproducible measurements of arterial stiffness that are often used as a surrogate

measures of endothelial function [Laurent, 2006]. Aortic PWV is associated with
endothelial function [McEniery, 2006].

However, on administration of L-NMMA, a nitric oxide synthase inhibitor, changes
in pulse wave velocity can be explained by changes in mean arterial pressure and thus
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nitric oxide derived from the endothelium is not thought to play a major role in

changes in aortic PWV, although it may influence another measure of arterial

stiffness, augmentation index [Stewart, 2003; Wilkinson, 2002; Wilkinson, 2004],

Furthermore, studies in the elderly have shown a lack of relationship between arterial

stiffness and endothelial function [Lind, 2008]. Indeed, arterial stiffness is also
influenced by vascular smooth muscle and the extracellular matrix comprising of
elastin and collagen.

In order to calculate aortic (carotid-femoral) pulse wave velocity, the transit time for
the pulse wave to move from the heart to femoral artery is recorded using ECG gating
and a manometer (described in detail in Chapter 3).

Arterial stiffness is associated with all of the traditional cardiovascular risk factors

and it has been shown that increased arterial stiffness is associated with future

cardiovascular events and all-cause mortality [Vlachopoulos, 2010], Furthermore

low-grade systemic inflammation, measured by CRP, is associated with increased
arterial stiffness in healthy individuals [Yasmin, 2004],

There has been some research examining vascular function in COPD to try and elicit
the mechanisms for the increased cardiovascular risk established in population-based
studies. One initial manuscript reported increased arterial stiffness in COPD [Sabit,

2007], This case-control study described differences in aortic pulse wave velocity
between patients with COPD and healthy controls. However, these vascular measures
are affected by acute and chronic smoking [Jatoi, 2007] and the COPD population had
a higher proportion of current smokers and a significantly higher lifetime cigarette
smoke exposure which may, in part explain these differences. Another case-control

study showed increased augmentation pressure, another measure of arterial stiffness

[Mills, 2008], However, these changes were not independent of blood pressure (which
influences arterial compliance) and used a less reliable measure of arterial stiffness.
Our group also published a study describing an independent association between
brachial (carotid-radial) PWV and emphysema severity quantified by CT scanning

[McAllister, 2007b], Although this method of assessing arterial stiffness is not the

gold standard, the fact that this less sensitive test demonstrated a good correlation
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with emphysema severity, suggests that there may be an even closer relationship

using aortic PWV.
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1.8 Summary

COPD is a disease that is recognised to have associations with other comorbidities
and systemic effects. Cardiovascular disease contributes significantly to the morbidity
and mortality associated with COPD, and COPD is a risk factor for cardiovascular
disease independent of traditional risk factors. The cause of this is currently unclear.

Recent studies have implied that patients with COPD have abnormalities of systemic
vascular function which may predispose them to cardiovascular events. Additionally,
there may be a role for systemic inflammation and oxidative stress that are present in
COPD and may contribute to vascular damage.
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1.9 Aims and hypotheses

The principle aim of this thesis is to improve understanding of the systemic vascular

abnormalities associated with COPD. I will examine platelet activation in COPD

which may play a role in the pathogenesis of cardiovascular disease in this condition.

Furthermore, I will perform a comprehensive vascular assessment, particularly

assessing arterial stiffness and the contribution of endothelial dysfunction to this in
COPD. Finally I will determine whether there is evidence of systemic elastin

degradation in COPD. The following hypotheses will be addressed:

1. Patients with COPD have increased markers of platelet activation in

comparison to healthy subjects (Chapter 2)
2. Platelet activation is increased in patients with exacerbations of COPD in

comparison to convalescence (Chapter 2)
3. Patients with COPD have increased arterial stiffness in comparison to healthy

subjects (Chapter 3)
4. Patients with COPD have impaired endothelial vasomotor endothelial function

causing increased arterial stiffness (Chapter 3)
5. Patients with COPD have impaired endothelial fibrinolytic function

contributing to increased cardiovascular risk (Chapter 3)
6. Patients with COPD have increased skin elastin degradation in comparison to

healthy subjects (Chapter 4)
7. Patients with COPD have increased cutaneous matrix metalloproteinase

expression (Chapter 4).
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Chapter 2. Increased Platelet Activation in
Patients with Stable and Acute Exacerbation of

Chronic Obstructive Pulmonary Disease

Maclay JD, McAllister DA, Johnston S, Raftis J, McGuinnes C, Deans A, Newby DE,
Mills NL and MacNee W. Thorax. 2011:66:769-74
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2.1 Summary

Chronic obstructive pulmonary disease (COPD) is associated with systemic
inflammation and cardiovascular disease. Interactions between inflammatory cells and
activated platelets are important in the pathogenesis of atherothrombosis and may

contribute to cardiovascular risk in patients with COPD. Thus the aim of this study
was to assess platelet-monocyte aggregation in patients with COPD and matched

healthy controls, and in patients with an acute exacerbation of COPD. Eighteen men

with COPD and 16 healthy male controls matched for age and cigarette smoke

exposure were recruited. A further 12 patients were investigated during and at least 2
weeks following hospitalisation for an acute exacerbation. Platelet-monocyte

aggregation and platelet P-selectin expression were determined using flow-cytometry.
Patients with COPD had increased circulating platelet-monocyte aggregates,

compared with controls [meanfstandard deviation); 25.3(8.3)% versus 19.5(4.0)%,

p=0.01], Platelet-monocyte aggregation was further increased during an acute

exacerbation compared with convalescence [32.0(11.0)% versus 25.5(6.4)%, p=0.03].
Platelet P-selectin expression and soluble P-selectin did not differ between groups. In

conclusion, patients with stable COPD have increased circulating platelet-monocyte

aggregates compared to well-matched healthy controls. Platelet activation is further
increased in COPD patients during acute exacerbation. These findings identify a

novel mechanism to explain increased cardiovascular risk in COPD and suggest

platelet inhibition as a plausible therapeutic target.
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2.2 Introduction

Chronic obstructive pulmonary disease (COPD) is an independent risk factor for
cardiovascular disease [Curkendall, 2006], although the mechanisms responsible for
this association remain unclear. Systemic inflammation is recognised as an important
determinant of atherosclerosis [Ridker, 1997; Ridker, 2000b], and COPD is
characterised by both pulmonary and systemic inflammation. It has been postulated
that low-grade systemic inflammation in patients with COPD may explain this
increase in cardiovascular risk [MacNee, 2008]. Inflammatory pathways are

upregulated further during an acute exacerbation and may plausibly precipitate an

acute cardiovascular event [McAllister, 2007a].

Inflammatory cells and cytokines have been implicated in atheromatous plaque
formation and coronary thrombosis [Libby, 2002], Following vascular injury and
endothelial denudation, circulating platelets become activated, upregulating

expression of cell surface receptors such as P-selectin and CD40 ligand to facilitate
adhesion to the arterial wall. Activated platelets release inflammatory chemokines and
recruit inflammatory cells to form platelet-monocyte aggregates, an early process in
atherothrombosis [Davi, 2007]. As such circulating platelet-monocyte aggregates are

considered a sensitive measure of platelet activation, and are raised in patients with
acute coronary syndromes, smokers and in rheumatoid arthritis [Sarma, 2002;

Harding, 2004a; Joseph, 2001],

We hypothesised that platelet activation will be increased in patients with stable
COPD and acute exacerbations, and may represent a link between inflammation and

cardiovascular disease in these patients. We therefore measured markers of platelet

activation, including platelet-monocyte aggregates, in patients with stable COPD and

matched controls, and in patients during an acute exacerbation and in convalescence.
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2.3 Methods

We compared measures of platelet activation between patients with COPD and
matched controls (study 1) and examined the effect of acute exacerbation by

comparing platelet activation in patients during an exacerbation and in convalescence

(study 2). These studies were approved by Lothian Regional Ethics Committee and
conducted with the written informed consent of all participants.

2.3.1 Recruitment, inclusion and exclusion criteria

Study 1: Patients with COPD and matched controls

Eighteen male patients with COPD and 16 male controls were recruited from primary
care and a hospital respiratory outpatient clinic at the Royal Infirmary of Edinburgh,

Scotland, and matched for age and prior smoking habit. Ex-smokers of at least 6
months with a smoking history of >10 pack years were included. Control subjects had
normal spirometry and no history of respiratory symptoms. Subjects with COPD had
a history consistent with the disease, chronic airflow limitation on spirometry (post-
bronchodilator FEVj/FVC ratio <0.7), stable disease (no exacerbation of COPD
within the previous 6 weeks) and were not prescribed regular oral steroid therapy or

long-term oxygen therapy. Exclusion criteria in both patients and controls included
other respiratory disease, coronary artery disease, diabetes mellitus, hepatic and renal

failure, and any systemic inflammatory condition, such as rheumatoid arthritis or

psoriasis, or use of medication known to affect vascular and platelet function

(including statins, angiotensin-converting enzyme inhibitors and clopidogrel). Our

strict inclusion and exclusion criteria were used to allow us to try and separate the
effects of COPD on platelet activation from those of comorbid conditions known to

influence platelet function.

Subjects were fasted overnight and blood sampled between 08.00 and 10.00. Subjects
abstained from caffeine and alcohol for 24 hours prior to the study and avoided all
medications for at least 12 hours prior to attendance. Exhaled carbon monoxide
measurements (<5 ppm) ensured no acute cigarette smoke exposure. Height, weight,
and post-bronchodilator spirometry were measured (Alpha Spirometer; Vitalograph,
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Buckingham, UK) according to American Thoracic Society/European Respiratory

Society standards following venesection [Miller, 2005],

Study 2: Acute exacerbations of COPD

Twelve patients admitted to the Royal Infirmary of Edinburgh, Scotland, UK, with an

acute exacerbation of COPD were studied within 24 hours of admission and at least

two weeks following discharge from hospital when their condition was considered to

be clinically stable. The diagnosis of acute exacerbation of COPD was made by the

admitting respiratory physician. All patients had documented chronic airflow
limitation on spirometry when stable (post-bronchodilator FEVi/FVC ratio <0.7 and

FEVi percent predicted <80%), and a smoking history of >10 pack years. Subjects
with a suspected or proven alternative diagnosis for the acute deterioration in

symptoms, such as pneumonia, pulmonary embolism, or heart failure were excluded.
Patients were seen for their follow up visit at least 2 weeks post treatment for
exacerbation with improvement in their symptoms. No patients included in study 1
were enrolled in study 2.

2.3.2 Blood collection

Blood was drawn by clean venepuncture of a large antecubital vein using a 19-gauge
needle with care taken to ensure a smooth blood draw. Samples were collected into
tubes containing the direct thrombin inhibitor, d-phenylalanine-l-prolyl-l-arginine

chloromethyl (PPACK, Cambridge Biosciences, Cambridge, UK) as previously
described [Harding, 2007], Tubes were gently inverted to ensure mixing of whole
blood with anti-coagulant. Further blood samples were collected for the measurement

of haemoglobin, haematocrit, and differential leukocyte count (Sysmex, Norderstedt,

Germany), and for the measurement of blood glucose (fasting in the study 1, random
in study 2) and lipid profiles (Olympus Analyzers, Brea, CA, USA) in the regional
clinical laboratories at the Royal Infirmary of Edinburgh. Arterial blood gases were

measured at rest in study 1 (Bayer Rapidlab, Morristown, NJ, USA), as were d-dimer

(VIDAS assay; bioMerieux, Basingstoke, UK) and fibrinogen levels (ACL TOP

analyser, Instrumentation Laboratory, Warrington, UK). Soluble P-selectin was
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determined by an ELISA (R&D, Abingdon, UK) in platelet poor plasma. Serum C-

reactive protein (CRP) concentrations were measured using a highly sensitive

immunonephelometric assay (Behring BN II nephelometer, Hattersheim am Main,

Germany).

2.3.3 Immunolabelling and flow cytometry

Flow cytometry is a technique used to examine characteristics of individual cells

using the photons of light they emit or scatter as they pass through a light source. It
allows identification of specific cell types and analysis of sub-sets in conjunction with
monoclonal antibodies with attached fluorochromes [Michelson, 2000; BD

Biosciences, 2010],

A cell suspension is passed through a flow cell which focuses cells into single file,

passing through one or more light sources. Light is then scattered by diffraction,
reflection/refraction or emitted, and then collected by a series of detectors (typically

photomultiplier tubes) giving information about individual cells. This signal is

processed and analysed. Forward scatter (measured within 5° in-line with the light

source) collects light scattered by diffraction and is an approximation of cell size,
whereas side scatter collects refracted or reflected light and is a measure of cell

granularity. In addition, side scattered light is separated by wavelength using a series
of filters to identify light that is emitted from a single fluorochrome. This enables
selection of specific groups within a population of cells (gating).

In this study, five minutes following sample collection whole blood was immuno-
labelled at room temperature for subsequent flow cytometric analysis of platelet-

monocyte aggregates using monoclonal antibodies to phycoerythrin (PE)-conjugated
CD 14 (specifically binds to monocytes), fluoroscein isothiocynate (FITC)-conjugated
CD42a (specifically binds to platelets) and isotype matched controls (Biosource,

Renfrew, UK). After 20 minutes of incubation samples were fixed and red cells lysed
with FACS-Lyse solution (Becton Dickinson, Oxford, UK).
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In addition, whole blood was immunolabelled with FITC-conjugated CD42a, PE-

conjugated CD62P (specifically binds to P-selectin) and isotype matched controls

(Biosource, Renfrew, UK), fixed with paraformaldehyde for subsequent analysis with
flow cytometry to determine platelet surface expression of P-selectin.

Samples were analysed using a BD FACScan Flow Cytometer and data analysed

using FlowJo software (Treestar, Oregon, USA). A medium flow setting was used to

minimize leukocyte-platelet coincident events. Platelet-monocyte aggregates were

defined as monocytes positive for CD42a (Figure 2.1) and platelet expression of p-
selectin was defined as the percentage of platelets positive for CD62P. In our

laboratory, the mean coefficient of variation for the percentage of platelet-monocyte

aggregates is 7.8% [Din, 2008].
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Figure 2.1 Flow cytometric analysis of platelet-monocyte aggregates in whole blood.

Monocytes are gated according to size and granularity and a gate (Gl) is placed (panel A).

Monocytes positive for CD 14 are gated (G2 - panel B) and a quadrant plot separates CD 14-

positive monocytes and platelet-monocyte aggregates positive for both CD 14 and CD42a

(panel C).
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2.3.4 Data analysis

Results are presented as mean (standard deviation). Unpaired /-tests were used to

compare measures of platelet activation and haematological and biochemical indices
between patients and controls (study 1), and paired /-tests were used for within-

subject comparisons (study 2). C-reactive protein was log-transformed for positive
skewness and the data were presented as median (interquartile range). There was no

evidence of inhomogeneity of variance or departures from normality in any of the
other data.

In exploratory analyses, associations between platelet-monocyte aggregates, age,

markers of inflammation (blood neutrophils, blood leukocytes and highly sensitive c-

reactive protein), and markers of disease severity (post-bronchodilator FEV) and
arterial oxygen tension) were determined using Pearson's correlations. Statistical

significance was taken at p<0.05.
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2.4 Results

2.4.1 Study 1

Patients with COPD and healthy controls were well matched for age and smoking

history with a median pack year history of 36 and 35 respectively (Table 2.1). Patients
with COPD had moderate to severe airflow limitation (GOLD [Global Initiative in
Obstructive Lung Disease] stage 2-4) with a mean FEVi of 1.5 L and FEVi/FVC ratio
of 0.42.

Platelet-monocyte aggregates were increased in patients compared to matched healthy
controls [mean(standard deviation); 25.3(8.3)% vs 19.5(4.0)%, p=0.01] (Table 2.2,

Figure 2.2A). Platelet expression of P-selectin was higher in patients with COPD than

controls, but the difference was not statistically significant [1.6(1.2)% vs 1.1(0.8)%,

p=0.16]. Similarly, there was no difference in plasma soluble P-selectin
concentrations between patients and matched healthy controls. Interestingly there was

a close association between platelet monocyte aggregation and platelet-surface P-

selectin expression (r=0.59, p<0.001), but not with soluble P-selectin (r=0.30, p=0.10;

Figure 2.3).

Platelet-monocyte aggregates were compared with markers of inflammation and
disease severity across all subjects in study 1. Platelet-monocyte aggregates correlated
with total blood leukocyte count (r=0.45, p=0.007) and neutrophil count (r=0.36,

p=0.03). There was a weak association with FEV) (r=0.31, p=0.07). There were no

significant associations between platelet-monocyte aggregates and age, arterial

oxygen tensions or serum CRP concentration (Figure 2.4).
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Table 2.1 Baseline characteristics of patients with COPD and matched controls

Study 1 Study 2

Controls COPD COPD

n 16 18 12

Age, yrs 63 (6) 65 (5) 68 (12)

Male, n (%) 16(100) 18 (100) 5(42)

Body mass index, kg/m2 28 (4) 26(4) 24 (6)

Smoking history, pack/years* 35 (26-48) 36 (35-51) 45 (39-68)

Current Smoking 0 0 3(25)
Medications when stable

Short acting beta agonist 0 17 (94%) 8 (67%)

Long acting beta agonist 0 3 (17%) 7 (58%)

Inhaled corticosteroids 0 1 (6%) 8 (67%)

Oral corticosteroids 0 0 2 (17%)

Combined LABA/ICS 0 13 (72%) 7 (58%)

Anti-cholinergics 0 11 (61%) 7 (25%)

Oxygen Therapy 0 0 1 (8%)

Aspirin 1 (6%) 2(11%) 1 (8%)

Pulmonaryfunction

FEV1( litres 3.4 (0.5) 1.5 (0.7) 0.81 (0.3)

FVC, litres 4.2 (0.6) 3.5 (0.6) 2.0 (0.7)

FEV|% predicted 102 (10) 48 (20) 39 (17)

FVC% predicted 100(11) 85 (15) 90 (22)

FEV,/FVC ratio 0.79 (0.05) 0.42 (0.13) 0.42 (0.12)

Mean (standard deviation) or n (%) except where * indicates median (interquartile range);

LABA=Long acting beta-2 agonist; ICS=inhaled corticosteroid; FEVi=forced expiratory volume in
1 second; FVC=forced vital capacity
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2.4.2 Study 2

Patients with an acute exacerbation had a mean age of 68, with lung function
measured when stable similar to patients in study 1 (Table 2.1). However, other
indicators of disease severity, such as the long-term use of nebuliser therapy, oxygen

therapy, and oral corticosteroid were more prevalent in this group. During an acute

exacerbation, all subjects received controlled oxygen, nebulised bronchodilators, oral
corticosteroids and prophylactic low molecular weight heparin (enoxaparin 40mg),
for a median of six days following their first symptom. Clinical parameters were

consistent with an acute exacerbation and had returned to normal values by the follow

up visit.

Platelet-monocyte aggregates were increased during the acute exacerbation compared
to follow up [mean(standard deviation); 32.0(11.0) % vs 25.5(6.4) %, p=0.03] (Table

2.2, Figure 2.2B). Platelet expression of P-selectin was higher during the acute

exacerbation compared to follow up, but the difference was not statistically

significant [1.4(2.1) % vs 0.8(1.2) %, p=0.40], while there was no difference in
soluble P-selectin concentrations.
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Figure 2.2 Platelet-monocyte aggregates in healthy controls, stable COPD patients and

during exacerbations of COPD

Panel A: Patients with COPD have increased platelet-monocyte aggregates in comparison
with matched controls (p=0.01); Panel B: patients with an exacerbation of COPD have
increased platelet-monocyte aggregation in comparison to when their disease is stable

(p=0.03). Lines represent the median values of the groups.
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Table 2.2 Haematological and biochemical indices in patients with COPD and controls
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2.5 Discussion

Using a highly sensitive marker of platelet function we demonstrate that platelet
activation is increased in patients with stable COPD, compared to controls matched
for age and previous cigarette smoke exposure. Moreover, platelet activation is further
increased in COPD patients during acute exacerbation. Taken together these findings

suggest that platelet function may be modified as a consequence ofCOPD.

We suggest that platelet activation represents a novel mechanism linking COPD,

inflammation, and cardiovascular disease. Platelet activation is known to predict
adverse outcome in patients with stable coronary disease [Christie, 2008] and identify
those patients likely to have recurrent cardiovascular events following percutaneous

coronary intervention [Gianetti, 2006]. The interaction between platelets and

inflammatory cells stimulates release of chemokines and further recruitment of
immune mediators which are central to the development of atherosclerotic plaque.

Platelet activation has also been implicated in structural remodelling of the pulmonary

vasculature, and is thought to play a role in the pathogenesis of all forms of

pulmonary arterial hypertension [Humbert, 2004], Therefore, our findings are

potentially of relevance to the pulmonary vascular as well as systemic vascular
features of COPD. We discuss abnormal systemic vascular function in COPD in

Chapter 3. In this study we have looked at a distinct but equally important aspect of
atherothrombosis and cardiovascular risk: platelet activation.

Previous studies have suggested that COPD is associated with a pro-thrombotic and

hypercoagulable state [Ashitani, 2002; Davi, 1997], Few studies have measured

platelet activation, and none have employed a direct measure of platelet function.
Soluble P-selectin was increased in patients with COPD [Ferroni, 2000] and inversely
related to FEVi [Walter, 2008], However, soluble P-selectin is not a direct measure of

platelet activation, and may reflect P-selectin release from the endothelium and

platelet surface [Fijnheer, 1997]. Additionally, concentrations of soluble P-selectin

may not reflect platelet surface P-selectin expression [Gurbel, 2000; Kamath, 2002],
Our study adds to the literature by demonstrating increased platelet activation using
whole blood flow cytometry, which is both a sensitive and specific technique, in
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groups ofCOPD patients and controls well-matched for both age and, importantly, for

smoking history. Furthermore, our findings are consistent across two separate cohorts
with levels of platelet-monocyte aggregation identical in stable COPD patients from
both studies.

The effects of cigarette smoking on markers of platelet activation and platelet-

monocyte aggregates are well established [Harding, 2004a], In our case-control study
all patients and controls were ex-smokers, with normal exhaled CO levels, and were

matched for smoking history, yet we demonstrate that platelet-monocyte aggregates

were increased in COPD patients by approximately 30% compared to controls. The

magnitude of this difference was comparable to differences previously reported
between smokers and non-smokers [Harding, 2004a], This implies that platelet
function may be modified as a direct consequence of COPD, and that this potentially

pro-thrombotic manifestation may be as important as cigarette smoking in

determining cardiovascular risk in these patients. Our results are consistent with
differences that are seen in other inflammatory conditions associated with increased
cardiovascular risk, such as rheumatoid arthritis, where platelet-monocyte aggregate

levels were around 20% higher than matched controls [Joseph, 2001]. Higher platelet-

monocyte aggregation is found in acute coronary syndromes, with a 30-50% increase
in platelet-monocyte aggregation in comparison to patients with non-cardiac chest

pain, but these levels were found during acute arterial thrombotic events [Sarma,

2002; Michelson, 2001].

We have not identified the precise mechanism of platelet activation in patients with

COPD, but a number of variables, such as increased systemic inflammation,

hypoxaemia and haemodynamic stress that differed between patients and controls or

were enhanced during acute exacerbation, may be implicated.

Platelet activation is inextricably linked to local vascular inflammation, with activated

platelets causing release of chemokines, together with up-regulation of cell surface
adhesion molecules that drive monocyte recruitment, platelet-monocyte interaction
and adherence to denuded endothelium [Gawaz, 2005], Furthermore, leukocytes
recruited by chemotaxis cause activation of platelets [Del Maschio, 1990]. We

identified increases in the number of peripheral blood leukocytes and neutrophils as
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well as higher serum concentrations of CRP in patients with COPD compared to

control subjects. Circulating leukocyte and neutrophil concentrations were associated
with platelet-monocyte aggregates, supporting the hypothesis that systemic
inflammation in COPD may contribute to platelet activation in this condition. This
mechanism is thought to be important in other chronic inflammatory conditions with
increased platelet-monocyte aggregates, such as rheumatoid arthritis and type 1
diabetes mellitus. [Joseph, 2001; Harding, 2004b]. Although there was not a

significant relationship between CRP and platelet-monocyte aggregates, there was a

positive association, and a significant relationship may have been revealed in a study
of larger numbers.

Alternative mechanisms through which platelet activation may occur in patients with
COPD include hypoxia, tachycardia, and hyperglycaemia [Diodati, 1992; Vaidyula,

2006]. These factors may cause further platelet activation during acute exacerbation
and explain the association between lower respiratory tract infection and acute

myocardial infarction [Smeeth, 2004], Further studies using cellular and animal
models are necessary to elucidate the relative importance of these mechanisms.

Interestingly, patients with COPD had higher platelet counts than healthy controls

although levels remained within the normal range. An increase in platelet count per se
has been associated with adverse cardiovascular outcomes in both healthy persons and

patients with acute myocardial infarction [Thaulow, 1991; Ly, 2006]. Previous studies
have suggested anaemia is associated with an increased morbidity and mortality in
COPD patients independent of disease severity [Cote, 2007; Similowski, 2006], but
the relationship between platelet count and clinical outcome has not been examined.
Thus in comparison with controls, patients with COPD not only have greater platelet

activation, but also increased numbers of platelets, and both may increase
cardiovascular risk.

Platelet counts and platelet-monocyte aggregates may be more than simply markers of
cardiovascular risk, with platelet activation a potential target for therapy. Platelet-

monocyte aggregates form independently of the cyclooxygenase pathway and thus are

not modified by aspirin therapy [Klinkhardt, 2003], Population studies and controlled
trials are necessary to determine whether aspirin is an effective anti-platelet therapy in
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COPD and whether the regular use of anti-platelet agents could prevent

cardiovascular events in patients with COPD.

2.5.1 Limitations

Although selection bias is possible in all case-control studies, the groups in study 1
were well matched for age, smoking, and other clinical characteristics, and as such we
do not think this can explain the reported differences in platelet activation. We did not

match on weight or BMI as we were interested in the systemic effects of COPD, and
since reduced weight is a systemic effect of COPD, we did not want to over-match

patients and controls. We did not perform any post-hoc exploratory multivariate

analyses because this is problematic in case-control designs, and because the sample
sizes were comparatively small for such methods. In study 2, we examined platelet
activation within 24 hours of admission with an exacerbation of COPD, and at least

two weeks post exacerbation, while there is some evidence that the effects of acute
exacerbations may persist beyond 90 days [Seemungal, 2000], However, this would

likely cause an underestimation of an effect of exacerbation on platelet activation.

Additionally, we were unable to impose the same restrictions on patients with acute

exacerbations as we could in the stable condition, thus differences in medication,

dietary intake or other environmental factors may have contributed to the platelet-

monocyte aggregation observed during exacerbations. However, imposing such
restrictions is impractical in these patients, and medications used during acute

exacerbations, such as steroids and prophylactic low molecular weight heparin do not

influence platelet activation [Schuerholz, 2007; Harding, 2006],

71



2.6 Conclusion

Using a highly sensitive marker of platelet activation we demonstrate that platelet-

monocyte aggregates are increased in patients with stable COPD independent of

cigarette smoke exposure. Platelet activation was further increased in patients during
an acute exacerbation. Our findings suggest that platelet function may be modified as

a direct consequence of COPD, and identify platelet activation as an important

prothrombotic manifestation of the disease, which may be a useful therapeutic target

in COPD.
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Chapter 3. Vascular Dysfunction in Chronic
Obstructive Pulmonary Disease

Maclay JD, McAllister DA, Mills NL, Paterson FP, Ludlam CA, Drost EM, Newby
DE and MacNee W. Vascular dysfunction in COPD. American Journal ofRespiratory

and Critical Care Medicine 2009; 183:513-20
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3.1 Summary

Cardiovascular disease is a major cause of morbidity and mortality in patients with
chronic obstructive pulmonary disease (COPD), which may in part be attributable to

abnormalities of systemic vascular function. It is unclear whether such associations
relate to the presence of COPD or prior smoking habit. Thus the aim of this study was
to perform a comprehensive assessment of vascular function in patients with COPD
and healthy controls matched for smoking history. Eighteen men with COPD were

compared with 17 healthy male controls matched for age and lifetime cigarette smoke

exposure. Participants were free from clinically evident cardiovascular disease. Pulse
wave velocity (PWV) and pulse wave analysis were measured via applanation

tonometry at carotid, radial and femoral arteries. Blood flow was measured in both
forearms using venous occlusion plethysmography during intra-brachial infusion of

endothelium-dependent vasodilators (bradykinin, 100-1000 pmol/min; acetylcholine,
5-20 pg/min) and endothelium-independent vasodilators (sodium nitroprusside, 2-8

pg/min; verapamil, 10-100 pg/min). Tissue plasminogen activator (t-PA) was

measured in venous plasma before and during bradykinin infusions. Patients with
COPD had greater arterial stiffness [PWV, 11(2) vs 9(2) m/s; p=0.003: augmentation

index, 27(10) vs 21(6) %, p=0.028], but there were no differences in endothelium-

dependent and -independent vasomotor function or bradykinin-induced endothelial t-
PA release (p>0.05 for all). These findings show that COPD is associated with
increased arterial stiffness independent of cigarette smoke exposure. However, this

abnormality is not explained by systemic endothelial dysfunction. Increased arterial
stiffness may represent a mechanistic link between COPD and the increased risk of
cardiovascular disease associated with this condition.
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3.2 Introduction

Cardiovascular disease is a major cause of morbidity and mortality in patients with
COPD [Calverley, 2007; Camilli, 1991; Curkendall, 2006; Huiart, 2005; Sidney,

2005]. This interrelationship partly reflects common risk factors, such as cigarette
smoke exposure, low socio-economic class, and sedentarism. However, reduced
forced expiratory volume in one second (FEVj; most commonly caused by COPD)

independently predicts cardiovascular risk in the general population [Hole, 1996].

Moreover, individuals with COPD have an increased risk of cardiovascular morbidity
and mortality that is independent of traditional risk factors, including smoking

[Curkendall, 2006], Recent studies have identified increased arterial stiffness [Sabit,

2007] and altered vasomotor function [Eickhoff, 2008; Barr, 2007] in patients with

COPD, perhaps suggesting a role for systemic vascular dysfunction in mediating this
cardiovascular risk [Maclay, 2007], particularly as arterial stiffness predicts
cardiovascular events in the general population [Willum-Hansen, 2006]. The
structural components of the vessel wall all contribute to central arterial stiffness - the
extracellular matrix largely comprising elastin and collagen, vascular smooth muscle
and the endothelium [Zieman, 2005],

The endothelium plays a vital role in the control of blood flow, coagulation,

fibrinolysis and inflammation. In particular, release of the endogenous fibrinolytic

enzyme tissue plasminogen activator (t-PA) is vital for maintaining vessel patency by

preventing persistent thrombotic occlusion. Vasomotor dysfunction is associated with

atherosclerosis, traditional cardiovascular risk factors and, like arterial stiffness,

independently predicts adverse cardiovascular events [Halcox, 2002; Perticone, 2001;

Celermajer, 1992; Celermajer, 1996; Fichtlscherer, 2004; Mills, 2007],

Arterial stiffness, vasomotor dysfunction and impaired endogenous fibrinolysis are all
features of cigarette smoking [Jatoi, 2007; Newby, 1999; Pretorius, 2002; Lang, 2008]
and it remains unclear whether the observations of vascular dysfunction in patients
with COPD are attributable to cigarette smoking only or are a consequence of COPD
itself. We hypothesised that patients with COPD would have increased arterial
stiffness as a consequence of systemic endothelial dysfunction, impaired endogenous
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fibrinolysis and that this vascular dysfunction would be independent of their smoking
habit.

3.3 Methods

3.3.1 Study Subjects

Eighteen men with COPD and 17 healthy male controls were recruited from primary
care and a hospital respiratory out-patient clinic. Subjects were matched for age and

prior smoking habit. Men aged 40-80 years who were ex-smokers (smoking cessation
for at least 3 months) but with a smoking history of >10 pack years were included.
Exclusion criteria were a history of pulmonary fibrosis, tuberculosis, bronchiectasis,

lung cancer or lung resection, conditions known to affect vascular function including
obstructive sleep apnoea, cardiovascular, cerebrovascular, and peripheral vascular

disease, uncontrolled hypertension, diabetes, inflammatory conditions such as

rheumatoid arthritis or psoriasis, or taking drugs that affect vascular function

including statins, angiotensin-converting enzyme inhibitors and beta-blockers.

Healthy control subjects had normal spirometry and no history of respiratory

symptoms. Subjects with COPD had a history consistent with the disease, chronic
airflow limitation on spirometry (post-bronchodilator FEVi/FVC ratio <0.7), stable
disease (no exacerbation of COPD within the previous 6 weeks, defined as a sustained

change in symptoms requiring antibiotic or steroid therapy) and were not prescribed

regular oral steroid therapy or long-term oxygen therapy.

All studies were conducted at the Wellcome Trust Clinical Research Facility, Royal

Infirmary, Edinburgh. Height, weight, and pre- and post-bronchodilator spirometry
were measured (Alpha Spirometer; Vitalograph, Buckingham, UK) according to

American Thoracic Society/European Respiratory Society standards. All studies were

approved by Lothian Regional Ethics Committee and conducted with the written
informed consent of all participants.
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3.3.2 Arterial stiffness measurements

3.3.2.1 Subject preparation and ambient conditions

Subjects had fasted overnight and abstained from coffee, tea and alcohol for the 24
hours prior to the study. All medications were withheld on the morning of the study.
Exhaled carbon monoxide measurements (<5 ppm) ensured no acute cigarette smoke

exposure. Following 30 minutes of supine rest, peripheral systolic and diastolic blood

pressures were measured using an automated non-invasive oscillometric

sphygmomanometer (Omron 705IT; Milton Keynes, UK). Studies were performed in
the morning in a quiet, dimly lit, temperature-controlled room (22-25°C).

3.3.2.2 Pulse wave velocity and analysis

Arterial stiffness can be measured using several techniques all of which employ
similar equipment. The gold standard method is pulse wave velocity [Laurent, 2006;

Mackenzie, 2002], Carotid-femoral pulse wave velocity measures the speed of the

pulse wave across the aorta which is responsible for most of the pathophysiological
effects of increased arterial stiffness. Large vessels cushion the pressure created in

systole by ventricular contraction and this function is reduced in stiff arteries,

resulting in a faster pulse wave. Carotid-femoral (aortic) pulse wave velocity (PWV)
is increased with increased arterial stiffness. This measure is predictive of
cardiovascular events in healthy individuals, as well as an associated with mortality in

patients with ischaemic heart disease [Vlachopoulos, 2010; Willum-Hansen, 2006], It
is also possible to measure carotid-radial (brachial) pulse wave velocity across the
brachial artery. However, unlike aortic PWV, measurement of arterial stiffness across

this muscular artery is not associated with carotid intimal medial thickness, a non¬

invasive measure of atherosclerotic plaque burden. In addition, it is neither associated
with cardiovascular events nor mortality [Tillin, 2007; Laurent, 2006].

Pulse wave velocity (PWV) is calculated from distance (D)/time (At). The distance is

the surface distance between the two recording points (ie the carotid pulse and the
femoral pulse). Using applanation tonometry at the carotid and femoral arteries a

pressure waveform is recorded. The Sphygmocor system uses software which applies
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an intersecting tangent method to identify the onset of the wave and the difference in
transit time to the femoral and carotid arteries is taken as At (Figure 3.1).

PWV=D/At
Common carotid

Aortic arch

Abdominal aorta

Femoral artery

At

Figure 3.1 Carotid-femoral pulse wave velocity.
Measurement of carotid-femoral pulse wave velocity using the intersecting tangent method.

Pulse wave analysis is another non-invasive measure of arterial stiffness that can be
assessed using the Sphymocor kit [O'Rourke, 2001], This relies on wave reflection
from bifurcating vessels. In compliant blood vessels, the pulse wave is reflected back
to the aortic root in diastole. In stiff blood vessels, the wave is reflected earlier often

during systole, augmenting the systolic pressure. Time to wave reflection (Tr) is
reduced in the presence of stiff arteries. Using a radial pressure waveform measured

by applanation tonometry, the difference in the systolic peak from the peak caused by
the inflected waveform is the augmentation pressure (AP) (Figure 3.2). This

expressed as a percentage of pulse pressure is called the augmentation index (AIx).
AP and AIx are increased in the presence of stiff arteries. The main determinants of
AIx are age, heart rate (it is often corrected for this), diastolic blood pressure and
aortic pulse wave velocity. Alx-75 is the standard measure of augmentation index
corrected for a heart rate of 75 and is calculated using a transfer function. Pulse wave

analysis does not have the same predictive value as aortic PWV but it is still a useful
measure of arterial stiffness as it requires little technical expertise. AIx does predict
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mortality in end stage renal disease and cardiovascular events in hypertension

[London, 2001; Williams, 2006],

Reflected
wave

AP

Forward
wave pp

Tr

Cardiac cycle

Figure 3.2 Augmentation index.

An example of a radial pressure waveform. Augmentation index is calculated as AP

(augmentation pressure)/PP (pulse pressure) xlOO.

These studies were conducted as per the Expert Consensus Document on Arterial

Stiffness, assessing both pulse wave velocity and pulse wave analysis using a high-

fidelity micromanometer (Millar Instruments, Texas) and the SphygmoCorTM system

(AtCor Medical, Sydney) [Laurent, 2006],

3.3.3 Venous occlusion plethysmography

Forearm venous occlusion plethysmography is a relatively inexpensive and minimally
invasive technique used to study endothelial function in humans. Using this

technique, understanding of the physiology of vasomotor function has been greatly
enhanced. In addition, impairment of endothelial function has been demonstrated in

many conditions including stable ischaemic heart disease, cigarette smokers,

hypercholesterolaemia and type 1 diabetics [Heitzer, 2001; Newby, 1999;

Chowienczyk, 1992; Johnstone, 1993].
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3.3.3.1 Measurement offorearm bloodflow

This technique uses a mercury-in-sialastic strain gauge that encircles the widest part
of the forearm (Figure 3.3) [Wilkinson, 2001]. A pressure cuff is attached to the upper
arm and this is set to inflate above venous pressure. A further cuff is attached to the

wrist and is set to inflate higher than arterial pressure, excluding the hand circulation
from the analysis. For three minutes, the lower cuff is continuously inflated. Also

during this time, the upper cuff is set to inflate for nine seconds and deflate for four
on a continuous cycle. Thus venous drainage is prevented and arterial inflow
continues unchecked. The strain gauge records a linear increase in forearm volume (as
there is an increase in resistance as the gauge stretches with forearm circumference),
which is proportional to arterial inflow (Figure 3.4). This change in volume is

predominantly due to blood flow through skeletal muscle in the forearm.

Figure 3.3 Venous occlusion plethysmography

A cuff is placed around the wrist and inflated to

greater than systolic blood pressure to exclude
the hand circulation. A second cuff is placed on

the upper arm and intermittently inflated to

greater than venous pressure to prevent venous

return resulting in a linear increased in forearm
volume. Pressure cuffs are highlighted in green

and mercury-in-sialastic strain gauge in red.
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Figure 3.4 Forearm blood flow measurements.

Panel A is a baseline measurement with forearm volume increasing in a linear fashion with
inflation of the upper arm cuff. Panel B shows increased forearm blood flow in response to

bradykinin infusion. Note there is no change in blood flow in the non-infused arm.

3.3.3.2 Local drug administration

Administration of vasoactive drugs into the brachial artery allows assessment of
vasomotor function in the forearm vasculature. Drugs are given through a 27-gauge
cannula inserted under local anaesthesia. This cannula remains in situ for the length of
the study. This technique is relatively safe but vigilance is advised as occasionally the
needle becomes dislodged and requires to be replaced. Reassuringly, vasodilators can

be used at very low concentrations, and thus have only local action and do not have

any systemic effects, reducing risk.

In order to assess endothelial function, vasodilators are used which stimulate the

endothelium to produce vasoactive mediators like nitric oxide to cause vasodilation,
such as bradykinin and acetylcholine (Figure 3.4; Figure 3.5). In addition, to

distinguish any dysfunction of the endothelium from other structures affecting
vascular function, vasodilators that bypass the endothelium, acting directly on the
vascular smooth muscle are used such as the nitric oxide donor sodium nitroprusside,
and the calcium channel blocker verapamil.
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ENDOTHELIUM-DEPENDENT
VASODILATORS

Bradykinin/Acetylcholine

ENDOTHELIUM-INDEPENDENT
VASODILATORS
Sodium riitroprussideA/erapamil

EXTRACELLULAR
MATRIX

VASCULAR
SMOOTH
MUSCLE

VASCULAR
ENDOTHELIUM

Figure 3.5 Vasodilators.

Endothelium-dependent vasodilators stimulate production of vasoactive mediators eg nitric
oxide to cause vasodilation. Endothelium-independent vasodilators bypass the endothelium,

acting directly on the smooth muscle to cause vasodilation.

In these studies, under the same ambient conditions and subject restrictions for the
arterial stiffness measures, bilateral forearm blood flow was measured using venous

occlusion plethysmography. The endothelium-dependent vasodilators, bradykinin

(100, 300 and 1,000 pmol/min) and acetylcholine (5, 10 and 20 pg/min) and the

endothelium-independent vasodilators, sodium nitroprusside (2, 4 and 8 pg/min) and

verapamil (10, 30 and 100 pg/min) were infused via a 27-gauge intrabrachial needle

incrementally for 6 minutes at each dose. Vasodilators were separated by 15-min
saline infusions and given in random order except for verapamil, which was

administered last due to its slow offset of action. Plethysmograph traces were

recorded using Chart™ 5 software (ADinstruments) and were analysed by one

investigator who was blinded to subject identity. The mean of the last five waveforms
from each set of readings were used to calculate forearm blood flow.

3.3.4 Blood collection and assays

Venous cannulae (17-gauge) were inserted into both antecubital fossae. Baseline
blood samples were obtained for hemoglobin and hematocrit, and fasting blood

samples were obtained for both glucose and lipid profile measured in the clinical
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laboratories of the Royal Infirmary of Edinburgh (Sysmex, Germany and Olympus

Analyzers, USA). Arterial blood gases were measured at rest (Bayer Rapidlab, USA).
Blood was sampled at baseline, centrifuged and serum stored at -80°C for subsequent

analysis. Serum C-reactive protein (CRP) concentrations were measured using a

highly sensitive immunonephelometric assay (Behring BN II nephelometer,

Germany).

Infusion of intra-brachial bradykinin (100, 300 and 1,000 pmol/min) not only causes

endothelium-dependent vasodilatation but also stimulates endothelial tissue

plasminogen activator (t-PA) release [Newby, 1997; Wilkinson, 2001], Venous blood

(10 mL) was collected at baseline and during each dose of bradykinin into acidified
buffered citrate (Stabilyte tubes, Biopool International) for t-PA antigen, and into
citrate (Monovette, Sarstedt) for plasminogen activator inhibitor type 1 (PAI-1)

antigen estimation. Samples were collected onto ice, centrifuged at 2000g for 30 min
at 4°C and plasma was stored at -80°C until analysed. Plasma t-PA and PAI-1 antigen
concentrations were determined by enzyme-linked immunosorbent assays (TintElize

t-PA, Biopool EIA and Elitest PAI-1, Hyphen Biomed respectively).

3.3.5 Data analysis

Absolute t-PA release was calculated as the difference in the t-PA antigen
concentration measured in the infused and non-infused arms. Estimated net release of

t-PA antigen was calculated as previously described [Newby, 1997] as the product of
the infused forearm plasma flow (based on the mean haematocrit, [Hct], and the

infused forearm blood flow, [FBF]) and the concentration difference between the

infused ([t-PA]inf) and non-infused ([t-PA]Noninf) arms: Estimated net t-PA release =

FBFx(l-Hct)x([t-PA]inf -[t-PA]Noninf)- Data were analyzed using two-way analysis of
variance with repeated measures and Student's or Welch's (for groups with unequal

variances) unpaired t-tests as appropriate. Univariate comparisons were analyzed

using Pearson's correlations. C-reactive protein and PAI-1 were log transformed to

correct for positive skewness and were presented as median (interquartile range). All

analyses were performed using SPSS version 16.0 (Chicago, USA). Statistical

significance was taken at p<0.05.

83



3.4 Results

Men with COPD and healthy controls were well matched for age and smoking

history. As expected given the range of COPD severity (GOLD stage 1-4), patients
with COPD had lower mean arterial oxygenation and higher mean heart rate,

peripheral blood white cell count and hsCRP (Table 1). Forearm blood flow
measurements could not be completed in one subject, and venous samples for t-PA

analysis could not be obtained in a second subject. We were unable to measure

carotid-femoral pulse wave velocity in two subjects.

3.4.1 Arterial Stiffness

Measures of arterial stiffness were higher in patients with COPD (Table 2; Figure 1).
Carotid-femoral pulse wave velocity was higher in subjects with COPD compared
with controls [mean (standard deviation); 11(2) vs 9(2) m/s, p=0.003]. When
corrected for differences in heart rate, augmentation index was similarly increased in

patients with COPD [27(10) vs 21(6) %, p=0.028]. There was no difference in time to

wave reflection [142(21) vs 150(12) ms, p=0.13].

In all subjects, aortic pulse wave velocity correlated significantly with systolic blood

pressure (r=0.62, p<0.001) and measurements of airflow obstruction (FEVi, r=-0.38,

p=0.03; FEVi/FVC, r=-0.45, p=0.008), but there was no association with systemic
inflammation (circulating leukocytes, r=0.21, p=0.24; hsCRP, r=0.30, p=0.10) or

arterial oxygen tension (r=-0.05, p=0.80).
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Table 3.1 Subject demographics

COPD CONTROL p-value

n 18 17

Age, years 65 (5.4) 63 (6.0) 0.40

Body mass index (kg/m2) 26.4 (3.6) 28.4 (3.9) 0.13

Lung function

FEV] % predicted 47.6 (20.1) 101.6 (10.0) <0.001

FVC % predicted 85.3 (15.4) 100.6(10.7) 0.002

FEV,/FVC 0.42 (0.13) 0.79 (0.53) <0.001

Inhaled medications, number ofsubjects (%>)
Short acting beta agonist 17 (94%)

Anticholinergic 11 (61%)

Long acting beta agonist 3 (14%)
Inhaled corticosteroid 1 (6%)
ICS/LABA combination 13 (72%)

Traditional risk factors
Total cholesterol, mg/dL 215 (27) 191 (35) 0.04

CholesterokHDL ratio 4.0 (0.8) 3.8 (1.0) 0.66

Fasting glucose, mg/dL 92 (11) 95(11) 0.48

Pack years smoking* 35 (35-48) 34 (28-46) 0.13

Physiologicalparameters
Heart rate, bpm 68 (12) 58 (8) 0.002

Systolic blood pressure, mmHg 127(14) 126 (18) 0.86

Diastolic blood pressure, mmHg 75 (8) 78 (9) 0.33

Pa02, kPa 10.5 (1.8) 12.2(1.6) 0.005

Haematological measures

Haemoglobin, x 109/L 140.8 (13.5) 138.4 (10.9) 0.57

Haematocrit 0.42 (0.03) 0.41 (0.03) 0.16

Inflammatory markers
C-reactive protein, mg/L* 2.1 (1.4-5.3) 1.0(0.6-2.4) 0.03

Leukocytes, cells xl09/L 7.0(1.4) 5.3 (1.3) <0.001

Definition of abbreviations: ICS/LABA=lnhaled corticosteroid/long acting beta agonist.
Data presented as mean (standard deviation), except * median (interquartile range).Data
compared with Student's t-test or Welch's t-test (hsCRP log transformed), except pack years
smoking (Mann-Whitney U).
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Table 3.2 Haemodynamic measures including arterial stiffness in COPD patients and
matched controls

COPD Control p-value

Heart rate (beats/min) 68 (12) 58 (8) 0.002

Peripheral systolic blood pressure (mmHg) 128 (18) 130(14) 0.673

Peripheral diastolic blood pressure (mmHg) 77(11) 77 (9) 0.921

Peripheral pulse pressure (mmHg) 43 (14) 45(11) 0.618

Mean arterial pressure (mmHg) 95 (13) 96 (10) 0.894

Central systolic blood pressure (mmHg) 120(18) 123 (14) 0.690

Central diastolic blood pressure (mmHg) 78 (18) 78 (9) 0.985

Augmentation pressure (mmHg) 14(7) 14(6) 0.793

Augmentation index (%) 31 (9) 30(7) 0.524

Augmentation index-75 (%) 27 (10) 21 (6) 0.028

Time to wave reflection (ms) 142 (21) 151 (12) 0.13

Aortic pulse wave velocity (ms"1) 11 (2) 9(2) 0.003

Compared using Student's t-test or Welch's t-test.
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Figure 3.6 Patients with COPD have increased measures of arterial stiffness in

comparison to matched controls

Aortic pulse wave velocity (A) and augmentation index (B) are higher in patients with
chronic obstructive pulmonary disease (COPD) when compared with age and smoking habit
matched controls (t-test, p=0.003 and p=0.03). Symbols represent individual values and lines
the means.

87



3.4.2 Vasomotion

Baseline blood flow was similar at the start (p=0.43; table 3) and prior to infusion of
each vasodilator, and blood pressure and heart rate were unchanged throughout the
studies in both groups. All vasodilators caused a dose-dependent increase in forearm
blood flow (p<0.001 for all; Figure 2) that was similar in both groups (bradykinin,

p=0.73; acetylcholine, p=0.72; sodium nitroprusside, p=0.31; verapamil, p=0.80).

3.4.3 Fibrinolysis

Baseline plasma t-PA antigen concentrations were similar in patients with COPD and
controls [mean±SD; 13.2(5.0) vs 13.0(4.0) ng/mL, p=0.92; Table 3], Bradykinin
caused a dose-dependent increase in plasma t-PA antigen concentrations in both

groups (p<0.001 for both). There were neither differences in absolute t-PA antigen
release nor stimulated net t-PA release following bradykinin infusion in subjects with
COPD in comparison with controls [net t-PA release 63.2(102.7) vs 69.4(71.9)

ng/lOOmL of tissue/min at 1,000 pmol/min, p=0.90; Figure 3], Plasma PAI-1 antigen
concentrations were similar in both groups [median (interquartile range), baseline
30.9 (24.4 to 41.6) ng/ml vs 28.4 (18.1 to 53.9) ng/ml; p=0.38] and were unchanged

by bradykinin infusion (p=0.99).
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Table 3.3 Tissue plasminogen activator (t-PA) release and forearm blood flow in response to

increasing doses of bradykinin

Bradykinin infusion (pmol/min)

t-PA 0 100 300 1000

Infused p-value

COPD 13.2(5.0) 16.9(5.3) 19.3 (6.1) 23.6 (7.7) 0.92

Control 13.0(4.0) 15.5(5.2) 18.5 (6.5) 25.3 (8.9)
Non-infused arm

COPD 12.3 (4.5) 13.8 (4.2) 15.1 (4.4) 17.8 (5.0) 0.56

Control 12.0(4.5) 13.5(5.5) 13.7 (4.8) 16.3 (5.1)
Difference between infused and non-infused arms

COPD 1.0(1.6) 3.1(2.8) 4.1 (3.5) 5.7 (8.5) 0.60

Control 0.9 (2.0) 2.0 (4.2) 4.8 (6.2) 9.0 (9.2)

Net t-PA release, ng/100 mL

COPD 1.5(3.1) 14.8(11.3) 27.0 (20.8) 63.2 (102.7) 0.90

Control 0.8(4.8) 5.9(12.9) 25.2 (26.3) 69.4 (71.9)

Forearm bloodflow, mL/lOOmL

COPD

Control

2.7(1.1) 9.0(4.9)

2.5(1.3) 8.1(3.1)

11.9 (7.4)

11.3 (4.4)

16.0 (9.0)

15.6 (6.4)
0.73

Values represent mean (standard deviation).
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Figure 3.7 Forearm blood flow in response to endothelium-dependent and -independent
vasodilators is similar in COPD patients and healthy controls

Vasomotor function in response to two endothelial-dependent and independent vasodilators is

preserved in patients with chronic obstructive pulmonary disease (COPD; closed circles) in

comparison to age and smoking habit matched controls (open circles; repeated measures two-

way ANOVA; bradykinin, p=0.73; acetylcholine, p=0.72; sodium nitroprusside, p=0.31;

verapamil, p=0.80). Symbols represent the means and bars the standard errors of the means.
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Figure 3.8 Acute endothelial release of tissue plasminogen activator (t-PA) in response

to bradykinin in patients with chronic obstructive pulmonary disease in comparison to

age and smoking habit matched controls

COPD - closed circles, healthy controls - open circles; repeated measures two-way ANOVA,

p=0.90. Symbols represent the means and bars the standard errors of the means.
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3.5 Discussion

In order to explore the mechanisms of increased cardiovascular risk associated with

COPD, we performed a comprehensive panel of systemic vascular studies. We

compared endothelial vasomotor and fibrinolytic function as well as arterial stiffness
in men with COPD to a healthy male control group who were closely matched for

smoking history. Men with COPD had increased arterial stiffness, but two major

components of endothelial function, forearm vasodilatation and endogenous

fibrinolytic function, were similar in COPD and matched control subjects. These data

suggest that the increased arterial stiffness is an independent systemic manifestation
of COPD and is not due to endothelial dysfunction. We hypothesise that there may be
similar pathogenic processes involving breakdown of the extracellular matrix in the

lung and vasculature in patients with COPD that results in increase arterial stiffness.

3.5.1 Arterial Stiffness

Increased large artery stiffness results in greater central aortic systolic pressures,

increased left ventricular after-load and reduced diastolic coronary artery filling

[Safar, 2003], and as such may be an important determinant of cardiovascular risk in

patients with COPD. Previously, both Mills et al and Sabit et al have shown increased

aortic pulse wave velocity, elevated augmentation pressure and reduced time to wave

reflection in patients with COPD [Mills, 2008; Sabit, 2007]. However, these studies
were limited by use of suboptimal measures of arterial stiffness [Mills, 2008] and

inadequate matching of smoking exposure between study groups [Sabit, 2007], In

contrast, using recommended gold-standard measures of arterial stiffness (carotid-
femoral pulse wave velocity), we have demonstrated that arterial stiffness is increased
in patients with COPD compared to controls with similar cigarette smoke exposure.

This suggests an association between arterial stiffness and COPD that is independent
of the effects of cigarette smoke.
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3.5.2 Endothelial Vasomotor Function

While arterial stiffness of a conduit artery, such as the aorta, is influenced by the
extracellular matrix, vascular smooth muscle and the endothelium [Zieman, 2005],

regulation of blood flow in resistance vessels is governed primarily by vascular
smooth muscle and the endothelium. We have performed detailed studies of
endothelial function across resistance vessels in the forearm vascular bed using two

endothelium-dependent vasodilators (bradykinin and acetylcholine) and two

endothelium-independent vasodilators (sodium nitroprusside and verapamil). Using
the robust and well-validated technique of forearm plethysmography, we found no

differences in endothelium-dependent or -independent vasomotor function in patients
with COPD when compared to controls matched for smoking status. This is not to say

that patients with COPD do not have endothelial dysfunction. We have previously
demonstrated marked endothelial dysfunction in smokers [Newby, 1999] and it is

possible that the effects of chronic smoking or aging may dominate any effects of
COPD on resistance vessel vasomotor function.

In a previous study of vascular function in COPD, Barr et al [Barr, 2007] found that
flow-mediated dilation (FMD), a non-invasive measure of arterial vasomotor

function, was associated with both airflow obstruction and emphysema severity in
former smokers with and without COPD. FMD measures vasodilatation of the

brachial artery following reactive hyperaemia of the forearm [Corretti, 2002] which is

partly endothelium- and nitric oxide-dependent [Doshi, 2001], However, as the
authors concede, no endothelium-independent vasodilator (e.g. nitroglycerine) was

used as a control in this study, and therefore the abnormality described cannot be

definitively localised to the endothelium, and may be due to dysfunction of other

components of the arterial wall, such as the vascular smooth muscle or the
extracellular matrix. Indeed, a subsequent case-control study did employ a

nitroglycerine control and found that nitroglycerine-mediated dilatation was impaired
in the COPD group [Eickhoff, 2008]. This finding implies that the vascular

abnonnality in COPD is not restricted to the endothelium. In addition, there is
evidence that FMD is an unreliable measure of endothelial function in the presence of
stiff arteries [Lind, 2007; Witte, 2005], Interestingly, a pattern of vascular
abnormalities similar to that presented in this study is seen in patients with Marfan's
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syndrome who have large artery stiffness and preserved agonist-mediated
vasodilatation despite impairment of FMD [Wilson, 1999].

Both FMD and venous occlusion plethysmography are well established techniques for

assessing endothelial vasomotor function. Although the former technique examines
vasomotion in a conduit vessel and the latter in resistance vessels, endothelial

dysfunction is thought to be a systemic process and abnormalities are unlikely to be
restricted to one vascular bed. Assessments of vascular function in the peripheral

circulation, using either technique, closely relate to assessments of vasomotor

function in the coronary circulation [Anderson, 1995; Monnink, 2002] and are

predictive of cardiovascular events, even in individuals with no known atherosclerosis

[Modena, 2002; Perticone, 2001], Whilst there is evidence of selected abnormalities
of either resistance or conduit vessels in specific circumstances such as rare hereditary

arteriopathies [Stenborg, 2007], we think it unlikely that COPD preferentially affects
endothelial function in conduit vessels.

3.5.3 Endogenous fibrinolysis

In addition to endothelial vasomotor function, we measured release of the endogenous

fibrinolytic enzyme, tissue plasminogen activator (t-PA). Release of t-PA may be
more sensitive than vasodilatation as a marker of endothelial function [Robinson,

2007], One third of patients with acute coronary events undergo spontaneous

reperfusion of the occluded vessel within 12 hours of symptom onset [Armstrong,

1989; DeWood, 1980; Rentrop, 1989], and t-PA release is thought to be the
mechanism underlying this phenomenon. Impaired t-PA release has previously been
described in cigarette smokers, in hypertension, and following acute exposure to air

pollution [Hrafnkelsdottir, 1998; Mills, 2005], However, consistent with our

assessment of endothelial vasomotor function, we found that bradykinin-induced
release of t-PA was similar in patients with COPD and in matched controls. This

again suggests that COPD does not confer additional endothelial dysfunction above
that observed with smoking.
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3.5.4 Mechanisms

We found that COPD caused no impairment of endothelial vasomotor or fibrinolytic
function in addition to any abnormality that may be caused by age and cigarette
smoke exposure. However, COPD was associated with increased large elastic artery

stiffness, having controlled for age and smoking. This suggests that arterial stiffness
in COPD may be due to a structural defect in the extracellular matrix in the vascular
wall rather than a functional deficit in the endothelium.

The development of arterial stiffness is a complex and incompletely understood

process wherein endothelial and smooth muscle cells interact with the extracellular
matrix to modify vessel wall structure and function [Vlachopoulos, 2006], There are a

number of mechanisms that may contribute to increased arterial stiffness in COPD.
Our group previously reported that arterial stiffness was associated with emphysema

severity, and proposed that this may represent a systemic susceptibility to connective
tissue degradation [McAllister, 2007b]. Others have proposed that there may be

systemic susceptibility to elastin degradation in COPD. Lee et al [Lee, 2007]
demonstrated that subjects with emphysema have increased anti-elastin antibodies

compared to non-emphysematous subjects. In addition, skin wrinkling (characterised

by elastin breakdown in the skin) is also associated with CT emphysema severity,

suggesting a common mechanism of lung and systemic elastin degradation in COPD

[Patel, 2006],

Chronic systemic inflammation may be an important determinant of the increase in

large arterial stiffness in COPD. Systemic inflammation is an important risk factor for
cardiovascular disease [Ridker, 1997], and has been implicated as a contributing
factor to the increased cardiovascular risk associated with COPD [Sin, 2003],

Furthermore, arterial stiffness is positively associated with CRP in healthy individuals

[Yasmin, 2004] and circulating interleukin-6 levels are independently associated with

pulse wave velocity in a COPD population [Sabit, 2007], Although our study was not

powered to examine associations between arterial stiffness and inflammatory

variables, patients with COPD had higher circulating leukocytes and levels of CRP
than controls.
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There were also differences in both heart rate and arterial oxygen tension between the
COPD patients and controls. Sympathetic activation and subclinical autonomic

dysfunction are established features of COPD, and have been associated with reduced
arterial compliance [Boutouyrie, 1994], However, if autonomic dysfunction was the

principle cause of increased arterial stiffness in COPD, we would expect to have
observed differences in basal vascular tone and vasodilatation. Hypoxemia has

variable effects on vascular function [Vedam, 2009; Reboul, 2005] and within a

COPD population it is difficult to separate the roles of hypoxaemia and severity of

lung disease on vascular function.

3.5.5 Study Limitations

Aging is associated with endothelial dysfunction [Celermajer, 1994; Vanhoutte,

2002], and our subjects had a mean age of 65 years. Therefore the effects of age may

have superseded any effect of COPD on endothelial activity. It is possible that studies
of younger patients with COPD may have identified abnormalities in endothelial
function. Furthermore, we were not powered to look at the effects of disease severity
within the COPD group. Given our subjects had a mean FEVj percent predicted of
47% we think it is unlikely that we would have missed an abnormality of endothelial
function associated with mild to moderate COPD. It is possible that there may be
abnormalities of endothelial function in patients with more severe disease.

Additionally, we limited our study to male patients. Although vascular function
differs between the sexes, the difference almost disappears after the menopause,

which is thought to result from the loss of the protective effects of estrogens [Bush,

1998; Celermajer, 1994; Jensen-Urstad, 2001; Lieberman, 1994], However, given

apparent differences in the natural history of COPD between genders [Dransfield,

2007; Martinez, 2007], caution must be exercised when extrapolating these results to

women. We did not include an age-matched healthy life-long non-smoking control

group to confirm the presence of endothelial dysfunction in the patient and matched
control subjects. However, vascular dysfunction in smokers has been widely
described [Jatoi, 2007; Lang, 2008; Newby, 1999; Pretorius, 2002], The aim of our

study was not to replicate previous work but to establish whether vascular
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abnormalities are attributable to COPD independent of other confounding factors such
as smoking.

3.6 Conclusion

We have shown that men with COPD have significantly increased arterial stiffness,
but no impairment of systemic vasomotor or fibrinolytic endothelial function, in

comparison to control subjects well matched for age and smoking. We therefore
conclude that whilst abnormal endothelial function may be present in COPD, it is

likely due to the effects of age and smoking, whereas increased arterial stiffness in
COPD is independent of these factors. Increased arterial stiffness may represent the
mechanistic link between COPD and increased risk of cardiovascular disease

associated with this condition.

97



Chapter 4. Systemic elastin degradation in
Chronic Obstructive Pulmonary Disease

Submitted for publication by Maclay JD, McAllister DA, Rabinovich R, Maxwell S,
Hartland S, Connell M, Murchison J, Gray RD, Mills NL, and MacNee W. 2011
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4.1 Summary

COPD is associated with increased arterial stiffness which may contribute to the
increased risk of cardiovascular disease reported in this condition. Arterial stiffness
correlates with the severity of emphysema. We hypothesised that the mechanism of
the increased vascular stiffness in COPD is due to increase elastin degradation in the
extracellular matrix of large arteries. To look for evidence of systemic elastin

degradation, we examined both sun-exposed (exposed) and non-sun-exposed (non-

exposed) full thickness skin biopsies in 16 men with COPD and 15 healthy ex-

smokers matched for age and cigarette smoke exposure. Elastin degradation was

assessed by immunohistochemistry as the percentage area covered by elastin fibres in
the reticular dermis. Quantitative PCR of mRNA coding for MMP-2, -9, -12 and
TIMP-1 was performed on homogenised skin and zymography for protein expression
of MMP-2 and -9. Arterial stiffness was assessed as the carotid-femoral pulse wave

velocity and emphysema severity was measured using quantitative CT scanning. We
found that skin elastin degradation was greater in both exposed and non-exposed skin
of patients with COPD in comparison to controls (exposed COPD vs controls, mean

(SD); 43.5 (12.1)% vs 26.3 (6.9)%, p<0.001; non-exposed 22.4 (5.2)% vs 18.1

(4.3)%, p=0.02). Additionally, cutaneous expression of MMP-9 mRNA and proMMP-
9 protein concentrations were increased in the exposed skin of COPD patients

(p=0.004 and p=0.02 respectively), and these were associated with increased skin
elastin degradation (MMP-9 mRNA r=0.62, p<0.001). In exploratory analyses in the
entire cohort of ex-smokers, we showed associations between cutaneous elastin

degradation and FEVi (exposed r=-0.56, p=0.001, non-exposed r=-0.45, p=0.01),

emphysema severity (exposed r=0.51, p=0.006, non-exposed r=0.48, p=0.01) and

pulse wave velocity (non-exposed r=0.42, p=0.02). To summarise, patients with
COPD have increased skin elastin degradation in comparison to healthy ex-smoking
controls and this is related to emphysema severity. Thus we describe systemic elastin

degradation in patients with COPD. The increased expression of matrix

metalloproteinases may represent a shared mechanism for both pulmonary and
cutaneous elastin degradation.
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4.2 Introduction

Chronic obstructive pulmonary disease (COPD) is defined as a condition with extra¬

pulmonary effects and systemic consequences, including cardiovascular disease

[Pauwels, 2001; Celli, 2004b]. Systemic vascular dysfunction is emerging as a

specific mechanism that may contribute to the increased cardiovascular risk in COPD

[Maclay, 2009; Sabit, 2007; Eickhoff, 2008], We have demonstrated that systemic
arterial stiffness correlates with the severity of emphysema in COPD patients

[McAllister, 2007b], Thus we postulated that elastin degradation in the lung

parenchyma and systemic arterial walls is the mechanistic link between the

pulmonary and systemic vascular manifestations ofCOPD.

Elastin is an essential structural protein in the lungs, maintaining airway patency and

ensuring elastic recoil. Emphysematous changes are, in part, due to elastin fibre
breakdown which causes parenchymal destruction, reduced lung compliance and

airway collapse [Shifren, 2006]. An imbalance of proteases and anti-proteases in

COPD, with a net increase in elastolytic activity is thought to play an important role
in the pathogenesis of emphysema[Turino, 2007], and recent work has focussed on

the role of matrix metalloproteinases (MMPs) and their equivalent anti-proteases

[Hunninghake, 2009; Atkinson, 2010]. MMPs have also been implicated as a

pathogenic mechanism for the increased arterial stiffness that occurs with aging,
caused in part by elastin breakdown in the arterial wall [Zieman, 2005; Labella,

1963].

The hypothesis that COPD may be associated with both local lung and systemic
abnormalities in connective tissue was addressed by Smith et al in 1967. Having
shown abnormalities in the dermis of patients with obstructive lung disease, primarily
in collagen, the authors postulate that these changes may 'reflect a primary defect of
connective tissue in the body as a whole' [Smith, 1967], However, the smoking

history of the subjects not reported. More recent studies have suggested that elastin

degradation may occur outside the pulmonary compartment in COPD. Lee et al have

reported increased circulating elastin antibodies in the plasma of emphysematous

compared with non-emphysematous subjects [Lee, 2007], Furthermore, Patel et al
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reported that skin wrinkling was associated with emphysema in smokers, and

postulated that this may be due to changes in collagen and elastin [Patel, 2006].

We hypothesise that the increase in elastin degradation and protease-anti-protease
imbalance responsible for emphysema is present in systemic tissue, causing increased
arterial stiffness and skin wrinkling. We therefore examined skin biopsies from

patients with COPD and matched control ex-smokers for evidence of elastin

degradation.
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4.3 Methods

Of the thirty-five male ex-smokers recruited for the vascular studies reported in

chapter 3, 16 men with COPD and 15 male controls agreed to undergo skin biopsies.
The inclusion and exclusion criteria were identical to those listed in chapter 3. In

brief, the subjects with COPD had a history consistent with the disease and post-

bronchodilator spirometric evidence of airflow limitation (FEVj/FVC ratio<0.7),
while the controls had normal spirometry. All subjects were ex-smokers of at least 6
months and had a greater than ten pack year smoking history. They had no history of
vascular disease or any other systemic inflammatory condition. Pre- and post-

bronchodilator spirometry were measured (Alpha Spirometer; Vitalograph,

Buckingham, UK) according to American Thoracic Society/European Respiratory

Society standards [Miller, 2005], Serum C-reactive protein (CRP) concentrations
were measured using a highly sensitive immunonephelometric assay (Behring BN II

nephelometer; Global Medical Instruments, Ramsay, MN). All studies were

conducted at the Wellcome Trust Clinical Research Facility, Royal Infirmary,

Edinburgh, approved by Lothian Regional Ethics Committee and conducted with the
written informed consent of all participants.

4.3.1 Skin biopsy processing and staining

Two 4 mm punch biopsies were obtained from the sun-exposed skin of the dorsal
surface of the forearm and non-sun-exposed skin of the buttock. Tissue was fixed in
formalin and embedded in paraffin for morphometric analysis, snap-frozen and stored
at -80°C for protein extraction and stored in RNAlater solution (Applied Biosystems,

Carlsbad, CA) at -20°C for RNA extraction.

Histological evaluations were initially made in 3 pm thick elastic van gieson-stained

sections. Following rehydration of samples, antigen retrieval was performed by

microwaving in a pressure cooker in dilute citrate solution. Immunohistochemistry
was performed using a monoclonal primary antibody to elastin (anti-human,

Novocastra, Newcastle, UK) and a dextran polymer secondary antibody (Envision,
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Dako, Cambridge, UK - Figure 4.1). One sun-exposed skin biopsy from a COPD

patient was unsuitable for analysis.

A B

Figure 4.1: Immunohistochemistry in skin sections using and elastin antibodies

Immunohistochemistry was performed on 3 micron sections of paraffin embedded skin with
an human elastin-specific primary antibody and a dextran polymer secondary antibody
stained with DAB and lightly counterstained with H&E. Panel A shows a slide with severe

elastin degradation (sun-exposed; patient with COPD, aged 69, 55 pack years,

FEVl%predicted 44%) and panel B with mild elastin degradation (sun-exposed; control

subject, aged 71, 35 pack years, FEVl%predicted 124%) at lOx magnification.

4.3.2 Image processing and analysis

Images of each section were obtained using lOx magnification and processed with

QCapture Pro software (Media Cybernetics, Bethesda, MD). Consecutive images
were merged using Adobe Photoshop CS4 (San Jose, CA) to enable analysis of the
entire section (Figure 4.2). As elastin fibres degrade, they thicken and occupy a

greater relative area [Robert, 1988] which can be quantified to assess elastin

degradation in the skin [Frances, 1991; Just, 2007], We measured the area covered by
elastin fibres in the reticular dermis using semi-automated quantification with ImageJ

(NIH, Bethesda, MD) in a random order by the author, blinded to the subject
identities. This was expressed as a percentage of the total area measured [ImageJ User

Guide, 2011],
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Figure 4.2 Image analysis.

Overlapping images were taken of each section at lOx magnification (panels A-D). Images
were stitched to form a seamless panorama (panel E) and image J was used to select DAB-
stained elastin fibres which calculated the percentage area of the reticular dermis occupied by
elastin fibres (in red in panel F).

4.3.3 Protein and RNA extraction

Samples of skin tissue were homogenised in lysis buffer and an EDTA-free anti-

protease cocktail (Roche, Welwyn Garden City, UK) using the Qiagen tissuelyser

(Crawley, UK). Protein quantification was performed using a bicinchoninic acid

(BCA) assay.

RNA was isolated from skin following homogenisation using the RNeasy Mini Kit

(Qiagen, Crawley, UK). The steps employed a series of spin columns that bound
RNA to a silica-based membrane and washed away contaminants. The purified RNA

was eluted in water. All procedures were performed in an extractor fume hood in
sterile conditions to ensure no contamination.

Quality and quantity of the purified RNA was checked using a spectrophotometer.
Ratio of absorptions is the standard method to assess quality of the extracted RNA.
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Absorption is measured at wavelengths of 260 nanometres (nm) and 280nm. These
values are selected as RNA will absorb ultraviolet light most at 260nm and proteins
will absorb strongly at 280 nm. A sample is considered uncontaminated if the ratio of
260/280 is greater than 2. The quantity of RNA is measured by multiplying the

absorption at 260nm by 40. This is based on the assumption that at a concentration of
40 micrograms/ml, a purified RNA solution will have an optical density of 1. The

average yield of RNA was 43ng/mcl and the quality of RNA was 2.2, consistent with

high quality RNA.

4.3.4 Gene expression

Two-step real-time polymerase chain reaction (qRT-PCR) requires an initial process
of reverse transcription of total RNA into cDNA using reverse transcriptase. The
second stage is qPCR to establish a specific quantity of the gene of interest. This two-

step method allows multiple real-time PCR reactions.

4.3.4.1 Reverse transcription

Complementary DNA (cDNA) is synthesised from a mRNA template (Figure 4.3).
This single stranded DNA is more stable than mRNA and can be used for qPCR.
Total RNA (0.1 micrograms) was reverse transcribed in a reaction mix containing 4

mcl of 5 x reaction buffer, 2 mcl dithiothreitol (DTT) (0.1 M), 0.5 mcl

deoxynucleotides (dNTPs - 10 mM), 2 mcl of random hexamers, 0.5 mcl (200 U)

Superscript II reverse transcriptase and 0.5ml (40U) RNase inhibitor (all Amersham,

Buckinghamshire, UK). These cDNA samples were used to assess expression of

MMP-2, -9,-12 and TIMP-1.
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Figure 4.3 Reverse transcription.
mRNA is isolated from homogenised tissue (A). Random primers are introduced with reverse

transcriptase (B and C) and a paired complimentary DNA (cDNA) strand is formed (D).
cDNA is separated from the mRNA using heat (E).
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4.3.4.2 Quantitative PCR (qPCR)

qPCR is a sensitive method for detection of mRNA expression. A pair of PCR

primers is combined with a fluorogenic probe designed to bind to the DNA sequence

between the primers (Figure 4.4). The reverse transcribed cDNA is mixed with DNA

polymerase, dNTPs, a gene-specific forward primer, reverse primer and probe. The
reactions take place in a thermal cycler which heats and cools the plate and performs
fluorescence based absorption readings.

In this study, 0.1 microlitres of undiluted cDNA was used per reaction; the primer and

probe sets were custom probes (University of Edinburgh); these predesigned primers
are tested and standardised for reproducible expression analysis. Primer and cDNA

were added to the TaqMan universal PCR master mix (Applied Biosystems, Carlsbad,

USA) containing all the reagents for PCR. Experiments were performed in duplicate.

Quantification of the PCR products was performed with an ABI prism 7500 (Applied

Biosystems, Carlsbad, USA) using the relative standard curve method. cDNA that

positively expresses the gene of interest was used to create a dilution series with

arbitrary units. To ensure reproducibility, quantitative data were taken at a point in
which each sample was in the exponential phase of amplification. At this phase of the

reaction, there is doubling of DNA at each cycle and reagents are fresh and available
to facilitate this. There is a slowing in subsequent linear and plateau phases as

reagents are consumed due to exponential amplification. The threshold cycle is
consistent for all samples and allows comparative quantification.

The mean quantity of target gene expression was determined from the generated
standard curve. All samples were then normalised against an internal standard,
reference gene 18S in all quantitative PCR reactions. All data are presented as a

quotient relative to the control data.

107



Primer

C 6

G C

X
ilymerase

Probe

« „

G A

C G

G C C T C

cDNA

c "

I
C G

G C

»

*

C

G

C G G

G C C T C

nnri^
ill! I I

nTTTT

mrrr

Figure 4.4 Polymerase chain reaction.
cDNA is mixed with gene specific primers and probes with fluorochrome attached (F).

Polymerisation occurs, releasing the fluorochrome, detaching it from the quencher (G).

Subsequent cycles result in doubling of DNA numbers exponentially and release of more
fluorochromes (H).
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4.3.5 Gelatin zymography

Zymography is a method by which proteolytic activity and quantity can be assessed in
tissue extracts. It is often used to study matrix metalloproteinases and allowing

investigators to assess MMP precursors (pro-MMP), MMP activity and total MMP

(figure 4.5).

Sample separation was performed using precast 10% Tris-Glycine gels (7.5%),

containing 0.1% gelatin (Invitrogen, Paisley, UK), in 2 x non-reducing sample buffer
at 120V and Novex Tris Glycine SDS running buffer (Invitrogen, Paisley, UK). SDS
was removed using zymogram renaturing buffer (Invitrogen, Paisley, UK) for 60 mins
at room temperature. The gels were incubated overnight hours at 37°C in developing
buffer (Invitrogen, Paisley, UK) and then stained with 0.1% Coomassie blue in 40%
methanol and 10% acetic acid and destained until clear proteolytic bands appeared.

Densitometry was performed using ImageJ (NIH, Bethesda, MD). Normalisation
between gels was performed using 10 ng of recombinant MMP-2 (R&D Systems,

Abingdon, UK) before adjusting for total protein.

Figure 4.5 Gelatin zymography.
Gel demonstrating distinct bands for proMMP-2 and active MMP-2 visible with only

proMMP-9 present.
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4.3.6 CT scanning

All fifteen healthy controls and thirteen subjects with COPD agreed to low-dose CT

scanning performed at full inspiration using a 320-multidetector row CT scanner

(Aquilion One, Toshiba Medical Systems, Nasushiobara, Japan). Non-contrast
enhanced CT scans were obtained at 120kV, lOOmAs during coached inspiratory
breath-hold to total lung capacity. Images were reconstructed at 0.5-mm intervals with
0.5-mm thick slices using a FC-03 filter. The histogram of CT Hounsfield Units (HU)
was corrected for the air offset in Toshiba CT scanners (about -985 HU instead of the
nominal -1000 HU with the FC03 filter) using an extra-thoracic air calibration method

[Stoel, 2008]. Emphysema was quantified using in-house software as percentage low
attenuation voxels below -910 and -950 HU (%LAA-910 and %LAA-950) [Mair,

2009], While the latter, higher threshold distinguishes well between those subjects
with COPD and healthy controls, using the former, lower cut-off allows more uniform
distribution of emphysema across this cohort of former smokers.

4.3.7 Arterial stiffness

Studies were conducted as described in Chapter 3 as per the Expert Consensus
Document on Arterial Stiffness [Laurent, 2006], assessing carotid-femoral pulse
wave velocity using a high-fidelity micromanometer (Millar Instruments, Houston,

TX) and the SphyginoCorTM system (AtCor Medical, Sydney, Australia).

4.3.8 Data analysis

COPD and control groups were compared using Student's unpaired t-tests or an

appropriate non-parametric alternative for variables not normally distributed.
Associations between skin, post-bronchodilator spirometry, emphysema severity

using %LAA-910 and arterial stiffness measures were explored using Pearson
correlations and associations with emphysema severity using %LAA-950 were

explored using Spearman's rank correlation. C-reactive protein was log-transformed
for all analysis. All analyses were performed using SPSS version 18.0 (Chicago, IL)
and Graphpad prism (La Jolla, CA). Statistical significance was taken at p<0.05.

110



4.4 Results

Men with COPD and controls were well matched for age and smoking history.
Patients with COPD had a range of severity of airflow limitation (GOLD stage 1-4),
were taking medication consistent with their disease severity and had considerably
more emphysema than controls (Table 4.1).

Table 4.1: Subject characteristics

COPD CONTROL p-value

Age, years

Body mass index, kg/m2
Cigarette smoke exposure, pack years*
Inhaledmedications, number ofsubjects (%/

Short acting beta agonist

Anticholinergic

Long acting beta agonist
Inhaled corticosteroid

ICS/LABA combination

Post bronchodilator spirometry, %
FEV i % predicted
FVC % predicted
FEV,/FVC

Emphysema severity
%LAA-950

%LAA-910

Aortic pulse wave velocity, m/s

hsCRP, mg/L*

16

65 (5.2)
26.5 (3.8)
36 (34-54)

15 (94%)

10(63%)

2(12%)
1 (6%)

13 (81%)

47.8(18.5)

87.0(13.9)

41.6(11.8)

15

64 (5.7)
27.9 (3.8)
34 (28-46)

102.1 (10.2)

100.9(11.1)
79.2 (5.6)

26.3 (10.3-42.4) 2.5 (1.1-3.8)

59.9 (43.4-64.9) 26.3 (10.3-42.5)

10.4(2.0) 8.5(1.7)

2.1(1.3-5.5) 1.0(0.5-35)

0.83

0.33

0.58

<0.001

0.005

<0.001

<0.001

0.002

0.009

0.04

Data presented as mean (standard deviation) or n (%), except * median (interquartile
range). Groups compared using Student's t-test except for * where groups compared
with Mann-Whitney U. ICS: inhaled corticosteroid; LABA: long acting beta agonist;
%LAA-950: percentage low attenuation voxels below -950 Hounsfield units; %LAA-
910: percentage low attenuation voxels below -910 Hounsfield units; hsCRP: high-
sensitivity C-reactive protein
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Elastin degradation was greater in sun-exposed skin (exposed) in patients with COPD
in comparison to controls [mean (standard deviation); 43.5 (12.1)% vs 26.3 (6.9)%,

pO.OOl], Elastin degradation was also greater in non-sun-exposed skin (non-

exposed) in patients with COPD [22.4 (5.2)% vs 18.1 (4.3)%, p=0.02; Table 4.2;

Figure 4.6].

MMP-9 mRNA expression and proMMP-9 protein concentrations were increased in
the exposed skin of COPD patients in comparison to controls (Table 4.2). There was

little detectable MMP-9 activity present in any subject. There was greater MMP-2 and
TIMP-1 mRNA expression in the exposed skin of COPD patients, but these
differences were not statistically significant. MMP-2 and -9 expression were

positively associated with elastin degradation in exposed skin (MMP-2 r=0.55,

p=0.002; MMP-9 r=0.62, p<0.001; Figure 4.7). Differences in MMP expression
between COPD and controls were not seen in the non-exposed skin. There was little
MMP-12 mRNA expression in the skin of any of the subjects.

In exploratory analyses, examining the whole cohort as a group of ex-smokers, we
found that exposed and non-exposed skin elastin degradation were both related to

FEVi (exposed r=-0.56, p=0.001, non-exposed r=-0.45, p=0.01) and to emphysema

severity (%LAA-950: exposed r=0.46, p=0.01, non-exposed i=0.54, p=0.003). Elastin

degradation in non-exposed skin was associated with aortic pulse wave velocity

(r=0.42, 95%CI 0.06 to 0.68, p=0.02). An association of a smaller magnitude but in
the same direction was found for exposed skin but it was not statistically significant

(r=0.19, 95%CI -0.19 to 0.53, p=0.32). Aortic pulse wave velocity was associated
with emphysema severity (%LAA-910: exposed r=0.54, p=0.003, non-exposed

r=0.50, p=0.007; %LAA-950: exposed r=0.46, p=0.01, non-exposed r=0.54, p=0.005)
and high-sensitivity C-reactive protein (hsCRP, r=0.38, p=0.05); hsCRP was not

associated with cutaneous elastin degradation or emphysema. Age was neither
associated with emphysema severity nor skin elastin degradation.
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Table 4.2: Skin measurements

COPD CONTROL p-value

Area ofdermis occupied by elastin fibres, %

Sun-exposed-skin 43.5 (12.1) 26.3 (6.9) <0.001

Non-sun-exposed-skin 22.4 (5.2) 18.1 (4.3) 0.02

mRNA expression

SES MMP-2 1.2 (0.2) 1.0 (0.2) 0.06

SES MMP-9 1.4 (0.5) 1.0 (0.3) 0.004

SES MMP-12 Insufficient expressionfor analysis
SES TIMP-1 1.2 (0.2) 1.0 (0.2) 0.06

NSES MMP-2 1.0 (0.2) 1.0 (0.3) 0.6

NSES MMP-9 1.1 (0.8) 1.0 (0.7) 0.5

NSES MMP-12 Insufficient expressionfor analysis
NSES TIMP-1 1.0 (0.2) 1.0 (0.2) 0.6

Protein quantification, mg/mL *
SES ProMMP-2 22.3 (16.7-24.7) 20.8 (16.5-33.5) 0.85

SES MMP-2 activity 13.6(10.3-24.8) 22.7(13.0-29.4) 0.25

SES Total MMP-2 33.3 (22.9-36.5) 29.9 (23.7-45.8) 0.93

SES ProMMP-9 11.7(7.3-18.1) 7.7 (4.9-9.4) 0.02

NSES ProMMP-2 27.7(19.5-37.6) 35.6 (28.6-47.6) 0.08

NSES MMP-2 activity 10.1 (6.4-15.2) 9.9 (8.4-13.3) 1.0

NSES Total MMP-2 17.7(12.9-26.0) 23.5 (19.6-36.6) 0.06

NSES ProMMP-9 9.1 (6.1-11.5) 10.9 (8.9-12.2) 0.12

Data presented as mean (standard deviation) and analysed using Student's t-tests, except *
median (interquartile range) analysed using Mann-Whitney U. mRNA expression calculated
as a quotient relative to the control data. SES=sun-exposed skin; NSES=non-sun-exposed

skin; MMP=matrix metalloproteinase, TIMP=tissue inhibitor ofmetalloproteinase.
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4.5 Discussion

Patients with COPD have evidence of greater cutaneous elastin degradation than age

and smoking-matched controls. Our findings represent evidence of enhanced

degradation of elastin outside of the lung in COPD, and we believe that systemic
elastin degradation may be a novel systemic feature of COPD. Furthermore, we have
found increased expression of MMP-9 in the skin of patients with COPD, a protease

implicated in the pathogenesis of emphysema, and these data suggest a role in

systemic elastin degradation in COPD.

Elastin degradation in non-sun-exposed skin was associated with both emphysema

severity and aortic pulse wave velocity. We speculate that the systemic elastin

degradation demonstrated in the skin may also occur in other elastin-rich structures,

such as the walls of large conduit arteries, as an explanation for the increased arterial
stiffness in COPD.

Development of emphysema, arterial stiffness and elastin degradation are features of
normal aging, reinforcing the importance of matching our groups for age. Our

findings support the hypothesis that COPD is a disease characterised by accelerated

aging. Recent manuscripts have suggested that the arterial stiffness associated with
COPD may in part be due to increased vascular calcification, and that vascular
calcification is associated with emphysema severity [Bolton, 2011; Dransfield, 2010;

McAllister, 2011]. Indeed, this mirrors the medial elastocalcinosis seen in large
vessels as a feature of normal aging, [Atkinson, 2008], As the elastin in the vessel
wall is degraded, the calcium content is thought to increase. Thus measures of
vascular calcification in the aorta may also be a reflection of elastin degradation. In

addition, as malnutrition is associated with elastin degradation in the lungs and
vasculature [Riley, 1995] it is noteworthy that subjects with COPD had a similar
mean body mass index to the controls,

Both the ATS/ERS consensus definition and the GOLD guidelines classify COPD as

a disease with systemic consequences and extra-pulmonary effects [Celli, 2004b;

Pauwels, 2001], However, it is difficult determine whether this relationship is causal -
that is, due to a direct consequence ofCOPD - or results from a combination of shared
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risk factors for COPD and cardiovascular disease such as smoking, social deprivation
and a sedentary lifestyle. We have performed carefully controlled studies comparing

patients with COPD and controls matched for age and smoking history that suggest
arterial stiffness is an independent systemic manifestation of COPD [Maclay, 2009].
Furthermore emphysema severity is closely related to arterial stiffness independent of

cigarette smoking in patients with COPD [McAllister, 2007b], Together these

findings suggest a shared susceptibility to elastin degradation in the pulmonary and

systemic tissues ofCOPD patients.

Vascular samples from conduit arteries are not readily available, however previous
research on the dermatological manifestations of COPD suggested that skin may be a

suitable surrogate for assessing systemic elastin degradation. Using visual

categorisation of facial wrinkling, skin wrinkling has been associated with

emphysema severity and lung function in a cohort of patients with COPD [Patel,

2006]. Our study provides the first direct evidence of increased elastin degradation in
the skin in COPD patients, and importantly we are able to demonstrate that this
observation is independent of cigarette smoke exposure. Two previous studies have

reported increased cutaneous elastin degradation using biopsy specimens in cigarette
smokers [Frances, 1991; Just, 2005], and have shown relationships with lung function

[Just, 2005], In the study by Frances et al, lung function was not measured and thus
the potential contribution of lung disease to elastin degradation was not assessed in
these smokers. Just et al reported an association with airflow limitation that was

thought to be secondary to cumulative cigarette smoke exposure rather than a

manifestation of lung disease.

In order to investigate potential mechanisms for increased systemic elastin

degradation in COPD, we measured expression ofmRNA coding for MMP-2, MMP-

9, MMP-12 and TIMP-1 (the endogenous inhibitor of MMP-9). We selected these

proteases specifically as they have been implicated in the pathogenesis of both COPD
and arterial stiffness [Baraldo, 2007; Chung, 2009; Yasmin, 2005; Yasmin, 2006;

Aldonyte, 2003], MMP-9 mRNA expression was increased in patients with COPD,
and this finding was supported by the presence of increased proMMP-9
concentrations (an inactive precursor of MMP-9) in the skin in COPD patients.

Expression of MMP-2 and TIMP-1 was also higher in patients with COPD, but the
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differences were not statistically significant. Previous work has shown increased
MMP-2 in the peripheral lung of patients with early emphysema [Baraldo, 2007], In

addition, Aldonyte et al reported increased basal and LPS-stimulated release ofMMP-
9 from peripheral blood monocytes isolated from individuals with COPD in

comparison with controls [Aldonyte, 2003]. Both MMP-2 and MMP-9 have also been

implicated in the pathogenesis of arterial stiffness and atherosclerosis. MMP-2 is

upregulated in the arteries of patients with chronic kidney disease, a condition
associated with increased arterial stiffness, in comparison to matched donors.[Chung,

2009] In a healthy population, circulating MMP-9 levels are associated with arterial
stiffness and polymorphisms in the MMP-9 gene predispose to arterial stiffness

[Yasmin, 2005; Yasmin, 2006],

Expression ofMMP-2 and MMP-9 mRNA were increased in the skin of patients with
COPD. Taken together with previous work showing increased MMP-9 release from

circulating monocytes [Aldonyte, 2003], these observations suggest systemic

upregulation of proteases in COPD. The persistence of pulmonary and systemic
inflammation long after the cigarette smoke stimulus has been removed has raised the

possibility of the pathogenesis of COPD having an autoimmune component [Agusti,

2003], Thus cell-mediated immunity may drive both pulmonary and systemic elastin

degradation in emphysema [Lee, 2007], An alternative hypothesis is that the systemic
inflammation associated with COPD may increase production of MMPs from local

inflammatory cells. Inflammatory mediators known to be increased in COPD, such as

interleukin-8 and TNF-alpha, stimulate increased production of MMPs from

neutrophils [Chakrabarti, 2005; Chakrabarti, 2006].

Protease/anti-protease imbalance is thought to play a key role in the pathogenesis of
COPD and TIMP-1 is the anti-protease that inhibits MMP-9. However, although
TIMP-1 expression was increased in COPD, the differences were not significant

suggesting a protease/anti-protease imbalance causing elastin degradation is due to

upregulation ofMMP-9.

The novel finding of increased systemic elastin degradation in COPD is important for
a number of reasons. Firstly, these observations provide further evidence of a role for

proteases in the pathogenesis of COPD, and that they may contribute to extra-
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pulmonary manifestations of the disease. Secondly, the upregulation ofMMP-2 and -

9 specifically is interesting as these proteases, known as gelatinase A and B, are zinc-

dependent endopeptidases with similar structures and therefore may be potential

targets for treatment [Visse, 2003], Indeed, statins are reported to reduce MMP-2 and
MMP-9 production by human vascular smooth muscle cells [Luan, 2003] and MMP-9
secretion by lung fibroblasts [Kamio, 2010] and macrophages [Bellosta, 1998], Novel

anti-inflammatory compounds such as p38 mitogen-activated protein kinase inhibitors

specifically target activation and production ofMMPs and have been shown to reduce
MMP-9 release [Underwood, 2000]. Finally, the skin is a readily accessible tissue that

may reflect the cumulative effects of COPD and may therefore provide further

insights into the pathogenesis of the systemic manifestations of this complex disease.

Study limitations

Although there were differences in elastin degradation in both sun-exposed skin and

non-sun-exposed skin, in non-sun-exposed skin there were no differences in the

expression of proteases. There was generally reduced expression of MMPs in non-

sun-exposed skin in comparison with sun-exposed skin and production of cutaneous
MMPs in response to ultraviolet radiation is well described [Fisher, 1997], Thus, it

may be that sunlight exposure is a complementary factor which increases elastin

degradation in susceptible skin tissue, unmasking differences in protease production
between the patients with COPD and the healthy subjects. However, the

pathophysiology of both COPD and vascular disease is complex and the exact

inflammatory mechanisms are as yet unclear. Whilst we have specifically investigated
cutaneous matrix metalloproteinases, it is important to acknowledge that other

proteases may have a role in the pathogenesis of both vascular disease and the

development of emphysema. Serine proteases (eg neutrophil elastase) have been

implicated in both atherosclerosis and COPD in humans [Henriksen, 2008; Stockley,

2002] as have cysteine proteases (eg cathepsin K) in animal models [Lutgens, 2006;

Golovatch, 2009], Thus these other proteases may be involved in systemic elastin

degradation in COPD.

We did consider measuring elastin degradation products, but our protein extraction
methods were suitable to extract MMPs and not the relatively insoluble
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desmosine/isodesmosine from samples. In any case, a consistent and reliable

methodology for assessment of these proteins is yet to be established. Indeed,
desmosine levels in the lung parenchyma are similar in patients with severe COPD
and healthy donor lungs [Deslee, 2009]. Future studies could specifically assess

desmosine levels, its relationship with elastin degradation and its prospective use as a

local tissue biomarker.

Although we did exclude individuals on regular oral steroids, we were unable to

adjust for inhaled corticosteroid use, taken by the majority of patients with COPD.
Skin thinning, bruising and atrophy are recognised side effects of corticosteroid

therapy. A small biopsy study suggested that inhaled corticosteroids may affect

collagen synthesis [Autio, 1996], but in the largest study assessing the effects of long
term inhaled corticosteroids on skin there was no effect on skin collagen or thickness

[Haapasaari, 1998], No specific effect of inhaled corticosteroids on elastin fibres has
been described.

4.6 Conclusion

Patients with COPD have increased skin elastin degradation in comparison to age and

smoking-matched controls and cutaneous elastin degradation was related to both

emphysema severity and arterial stiffness. Furthermore, we identified upregulation of
MMP-9 in the skin of COPD patients, which is associated with elastin degradation.

Systemic elastin degradation due to increased proteolytic activity may represent a

novel shared mechanism for the pulmonary, vascular and cutaneous features of
COPD.
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Chapter 5. Conclusions and future directions
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5.1 Summary of thesis findings

Chronic obstructive pulmonary disease is now a condition recognised to have

systemic consequences, effects and associations in addition to chronic lung

inflammation and damage. Comorbidities contribute significantly to the morbidity
and mortality associated with COPD and as such add to the burden this disease places
on health services in the UK and abroad. With the increasing prevalence of COPD,
there is a focus on both long-term strategies of prevention of disease with improved
health education and the more medium-term strategies of reducing hospital
admissions. This, at least in part, will need to address prevention and treatment of
comorbid conditions.

It is well established that airflow obstruction, measured by FEVi is a risk factor for
cardiovascular mortality. Several population-based studies have now shown that
COPD is a risk factor for cardiovascular disease, independent of potential

confounding factors including traditional risk factors such as smoking. In addition to

the well-established traditional risk factors for cardiovascular disease, more

mechanistic novel risk factors have been established which are thought to play an

important role in the pathogenesis of cardiovascular disease.

The contribution of arterial walls and their structural components, along with the
constituents of the blood have long been known to be factors causing development of
atherothrombosis. The third arm of Virchow's triad is interruption of blood flow. A

healthy endothelium allows small alterations in blood flow by regulation of
vasomotion with release of vasodilators such as nitric oxide and prevention of

thrombosis with release of the endogenous fibrinolytic tissue-plasminogen activator

(t-Pa). Disruption of the endothelium is thought to be the primary step by which
atherothrombosis occurs. Initial injury of the endothelium results in disruption of
laminar flow, release of chemokines and initiation of an inflammatory cascade,
activation of platelets and adhesion of circulating platelets, monocytes and platelet-

monocyte aggregates to the denuded endothelium. Transmigration of monocytes and
their differentiation into macrophages is known to be an early step in the formation of
atherosclerotic plaques.
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In addition to dysfunction of the endothelium, arterial stiffness is a global measure of
vascular ill-health. Vascular compliance relies of the elastic properties particularly of
the large conduit vessels. This compliance cushions the onset of systole, preventing
end organ damage while contributing to blood delivery. Arterial stiffness increases
with age and is an independent risk factor for both cardiovascular and all-cause

mortality. Large artery stiffness is affected by their three main structural components:
the endothelium, vascular smooth muscle and the extracellular matrix.

Cigarette smoking is known to cause activation of platelets, impairment of endothelial
vasomotor and fibrinolytic function and increased arterial stiffness. We hypothesised
that patients with COPD would have platelet activation, endothelial dysfunction and
increased arterial stiffness contributing to their increased cardiovascular morbidity
and mortality.

5.1.1 Patients with COPD have increased platelet activation that is further

enhanced during exacerbations

In eighteen ex-smoking males with COPD and 16 ex-smokers matched for age and

cigarette smoke exposure we assessed platelet activation. Using a sensitive measure

of platelet activation, platelet-monocyte aggregation, we showed that patients with
COPD have increased platelet activation. This is higher still during exacerbations of
COPD. This is a mechanism by which the increased systemic inflammation associated
with COPD may contribute to the increased cardiovascular risk, and a conceivable
reason why patients with an exacerbation of COPD may be at further risk of
cardiovascular events.
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5.1.2 Patients with COPD have increased arterial stiffness that is not due to

endothelial dysfunction

Measures of arterial stiffness and endothelial function were performed on eighteen ex-

smoking males with COPD and 17 healthy ex-smokers matched for age and cigarette
smoke exposure. With stringent inclusion and exclusion criteria in addition to

matching for cigarette smoke exposure and age we sought demonstrate an effect of
COPD itself rather than potential confounders. We confirmed increased arterial
stiffness in COPD, but reported no difference in endothelial vasomotor function or

fibrinolytic function. Thus the arterial stiffness associated with COPD is likely to be
caused by dysfunction of an alternative structure in the arterial wall. Arterial stiffness
is plausibly related to the increased cardiovascular risk associated with this condition.

5.1.3 Patients with COPD have evidence of systemic elastin degradation which

may be due to increased expression of proteases

Previously published studies from our group had shown an association between CT-

quantified emphysema severity and arterial stiffness. Thus we postulated that patients
with COPD may have a shared susceptibility to elastin degradation in the lungs and
arterial walls. Thus we measured elastin degradation in the skin of 16 men with
COPD and 15 ex-smoking controls and related this to cutaneous matrix

metalloproteinase expression, emphysema severity and aortic pulse wave velocity.
There was increased cutaneous elastin degradation in the skin of COPD patients as

well as increased expression ofMMP-9. Skin elastin degradation was associated with
both emphysema severity and arterial stiffness. These studies suggest that elastin

degradation is both a local feature in the lungs in COPD causing emphysema, and a

systemic effect causing arterial stiffness and skin wrinkling. Global upregulation of
matrix metalloproteinases may represent a mechanism by which this occurs.
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5.2 Future directions

5.2.1 Platelet activation

Following the conclusion that platelet activation may contribute to the increased
cardiovascular risk associated with COPD, a prospective study addressing the use of

platelet-monocyte aggregates as a prognostic marker in stable COPD and during
exacerbations would allow evaluation of role of platelet activation as a potential
mechanism.

The precise mechanism of increased platelet-monocyte aggregation in COPD remains
unknown. Studies blocking binding sites between platelets and monocytes such as

CD40, CD40 ligand, P-selectin glycoprotein ligand (PSGL)-l and P-selectin would
shed further light on the cell-surface receptor interactions that contribute to platelet
activation in this condition. With this information, appropriate strategies for targeted
alteration of platelet function in COPD would be possible. Platelet-monocyte

aggregates form independently of the cyclooxygenase pathway and thus interventions
other than aspirin are likely to be beneficial in this condition.

5.2.2 Arterial stiffness

Although we have circumstantial evidence of elastin degradation in large arteries in

COPD, tissue to confirm this is considerably less accessible than skin. Cadaveric

samples are becoming less available. In addition, operative samples of large arteries
tend to only be available in vascular disease eg abdominal aortic aneurysm repair.

An alternative would be to use sections ofmesenteric arteries resected during surgery

for colonic carcinoma. In a significant number of resections there is no vascular
involvement and thus the vessels remain intact. A large number of procedures are

performed annually and given the prevalence of COPD in Scotland, a proportion of
those attending will have airways disease. Thus comparing arterial elastin degradation
with preoperative arterial stiffness measures and cutaneous elastin quantification
would allow confirmation of findings of elastin degradation in larger arteries in
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COPD and evaluation of the best, minimally invasive surrogate measure of arterial
elastin.

5.2.3 Skin elastin degradation

Our novel finding of elastin degradation in the skin of COPD patients and the

upregulation ofMMPs raised a number of questions. In the first instance, it would be
beneficial to try and establish the source of increased MMPs and whether this is due
to local or circulating inflammatory cells. Further investigation of therapies that

modify the production and/or effects of MMPs and in particular MMP-9 would add
further insights, specifically looking at their systemic effects. In addition skin biopsies
could be used as a less invasive alternative to examine the systemic effects of COPD
as well as systemic effects of novel therapies in COPD.

5.3 Conclusions

In this thesis I have provided novel mechanisms by which cardiovascular risk may be
increased in COPD. I describe increased platelet activation due to COPD, which may

further contribute to increased cardiovascular risk. In addition to this, few studies

have addressed the increased cardiovascular risk associated with exacerbations of

COPD. It is plausible that exacerbations of COPD may precipitate or be precipitated

by a cardiac event. As well as increased systemic inflammation, oxidative stress,

hypoxia and haemodynamic stresses which may add to the cardiovascular risk, there
is increased platelet activation during exacerbations of COPD.

Other groups have published manuscripts suggesting vascular dysfunction in COPD
was associated with endothelial dysfunction. These earlier publications did not control
well enough for cigarette smoking or perform optimum measures of vascular
function. In a comprehensive assessment of vascular function using gold-standard

methodology, I showed that, although smoking is known to cause endothelial

dysfunction, COPD itself does not seem to cause impairment of endothelial function
and thus the increased arterial stiffness associated with COPD is not due to

endothelial dysfunction.
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Finally, I describe a novel systemic effect of COPD: elastin degradation. In addition
there is upregulation of cutaneous matrix metalloproteinases which may be a

mechanism by which this occurs. This systemic effect may link the emphysema,
arterial stiffness and skin wrinkling associated with COPD.
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