
Annotated Transition Systems for Verifying

Concurrent Programs

Pawel Pczkowski

Doctor of Philosophy

University of Edinburgh

1990

Abstract

We propose what we view as a generalization of an assertional approach to the

verification of concurrent programs. In doing so we put an emphasis on reflecting
the semantic contents of programs rather than their syntax in the adopted pattern
of reasoning. Therefore assertions annotate not a text of a program but a transi-

tion system which represents an object derived from the operational semantics, the

control flow of a program. Unlike in the case of sequential programs, where anno-
tating a program text and its control flow amounts to the same, those two possible

patterns of attaching assertions are different in the presence of concurrency.

The annotated transition systems (annotations, in short) that we introduce
and the satisfaction relation between behaviours and annotations are intended to

capture the basic idea of assertional reasoning, i.e. of characterizing the reachable
states of computations by assertions and deriving program properties from such

characterizations.

We emphasize the role of control flow as, on the one hand, a separable ingre-

dient of the operational semantics and, on the other hand, as a major concern in

formulating properties ofoncurrent programs and verifying them. The rigorous

definition of control flow proves important for analysing deadlock freedom and

mutual exclusion.

We develop proof techniques for showing partial correctness, mutual exclusion,
deadlock freedom, and termination of concurrent programs. The relative ease in

establishing soundness and completeness of the proposed proof methods is due

to the fact that the semantics is given a priority in suggesting the pattern of

reasoning and the abstractions of program behaviours. Moreover, as annotations
can faithfully represent control flows of programs, no need for auxiliary variables
arises.

We consider also a method which allows us to isolate some inessential inierleav-

ings of concurrent actions and ignore them in correctness proofs, where a partial
commutativity relation on actions is exploited. The concepts of trace theory pro-
vide a convenient framework for this study. Investigating this particular issue in
an assertional framework was in fact an important objective from the outset of
this work.

1

Acknowledgement

I would like first of all to express my gratitude to Colin Stirling, my supervisor,

for his advice, encouragement and many stimulating discussions.

I thank Hardi Hungar, who supplied important references and comments, and

also Mads Dam, Stefan Sokolowski, Bernhard Steffen and Sun Young for help-

ful conversations. The idea of exploiting trace equivalences was influenced by a

conversation with Antoni Mazurkiewicz.

The Department and the LFCS have provided a very stimulating environment

throughout my studies and I thank everyone who contributed to this.

I was financially supported by a University of Edinburgh Studentship and ORS

Award. The University of Gdaiisk granted a long term leave of absence.

Thank you so much to Agnieszka; your support and understanding were all

important for completing this work.

2

Declaration

I have composed this thesis myself. The presented work is my own, apart from the

quoted results which are explicitly indicated. Part of the material of Chapter 4

was presented at CONCUR'90 [Pczkowski 90]. The full version of this paper,

[Pczkowski 89], includes also some results of Chapter 3.

3

Table of Contents

Introduction
	

7

Programs and behaviours
	

19

	

2.1 	Basic definitions 20

2.1.1 	Transition systems20

2.1.2 An assertion language and its interpretation22

2.2 Programming languages23

2.3 Semantics27

2.3.1 	Control flow of S,,27

2.3.2 	Control flow of S 28

2.3.3 	Operational semantics31

2.3.4 	Behaviours of programs33

Annotations for partial correctness

	

3.1 	Annotations39

	

3.2 	Partial correctness45

3.2.1 	Soundness and completeness45

3.2.2 	Examples48

	

3.3 	Mutual exclusion56

4

Table of Contents 	 5

	

3.3.1 	Soundness and completeness 56

	

3.3.2 	An example 58

4. Total correctness 60

4.1 	Deadlock freedom 61

4.1.1 	Deadlockable configurations 62

4.1.2 	Annotations for relativized deadlock freedom 66

4.1.3 	Examples 70

4.2 	Termination 73

4.2.1 	Soudness and completeness 73

4.2.2 	An example 78

Expressiveness issues 	 80

5.1 Expressiveness for annotations81

5.2 Concurrency adds to expressiveness

requirements 86

	

5.3 	Sufficient conditions88

Reducing nonessential interleavings 	 96

	

6.1 	Trace equivalence98

	

6.2 	Reductions of control flows101

6.3 Verification methods revisited109

	

6.4 	Examples 114

Conclusions 	 118

	

7.1 	Overview 118

	

7.2 	Action refinement120

	

7.3 	Other topics122

Table of Contents

Bibliography 	 124

Chapter 1

Introduction

It is widely recognized that for reasoning about computer programs a reliable

basis of a sound formal system is necessary. Formal frameworks are especially

indispensable for verifying concurrent programs whose behaviours tend to be more

complex than those of sequential ones making the intuitive analysis of programs

particularly prone to mistakes (see, for example, the comments in [Knuth 661 or

[Gries 77]).

A verification methodology or a logic of programs needs to be founded on some

notion of program semantics. For sequential programs, it is usually sufficient to

take the input-output relation determined by a program as a representation of its

behaviour. Then, Hoare logic is a suitable logical tool for compositional reasoning

about the abstracted behaviours of programs. Moreover, the Hoare triple, the

primitive concept of Hoare logic; is an adequate logical counterpart of the adopted

semantic abstraction of program behaviour in the sense that program equivalence

induced by the logic coincides with the semantic equivalence permitting, in ef-

fect, one to use bare logic as an axiomatic definition of sequential programming

languages [Meyer 86].

Providing a mathematical abstraction of concurrent beahviours that has the

virtues of the input-output characterization of sequential programs presents prob-

lems. Despite a number of existing partial results, as pointed out in the recent sur-

vey [GMS 891, 'it is currently an open problem to define fully abstract denotations

for concurrent interleaved statements'. The consequence for logics of programs

7

Chapter 1. Introduction 	 8

is that there is no universally applicable semantic object which could underlie a

logical abstraction of a program behaviour. In Thee circumstances objects derived

from operational semantics are in most cases taken to represent programs for the

purpose of reasoning. Although such representations of program behaviours are of-

ten too concrete there is a prevailing advantage of having a clean and conceptually

simple semantic framework on which the reasoning can be based. The structural

operational semantics [Plotkin 81] is well suited to such a role. Admittedly, some

denotational semantics have been successfully used to give a basis for reasoning

about certain properties of concurrent programs. However, since the employed

domains contain action strings or variants thereof, such semantics though denota-

tional in style are operational 'in spirit'.

Temporal logics provide a powerful tool for reasoning about properties of com-

putation paths generated by operational semantics. Applying these logics to veri-

fying and specifying concurrent programs was originated in [Pnueli 77] and by now

several temporal calculi employing a variety of temporal operators have been used

in this role. Almost any reasonable property of concurrent programs can be stated

and proved in temporal logics and also semantics of programs can be defined by

temporal logic formulas.

Interesting variants of temporal reasoning were obtained by refining the un-

derlying semantic model. In [BKP 84] transitions of operational semantics are

labelled in such a way that a distinction may be made between actions performed

by a particular process and its concurrent environment. The labels can be sensed

by suitable predicates provided in the logic. This enabled compositional formu-

lation of proof rules, though, admittedly, at the price of introducing a powerful

'iterated combine' temporal operator.

Another interesting variant is obtained when instead of strings of actions equiv-

alence classes of strings generated by a program are used to form a model for a

temporal logic. Interleaving Set Temporal Logic exploiting this idea was proposed

in [Katz Peled 871.

Despite the versatility of temporal logics it seems desirable to look for reasoning

techniques operating on a higher level of abstraction than direct reasoning about

Chapter 1. Introduction 	 9

computation paths even if the class of properties that could be handled would have

to be restricted. In other words, the reasoning rooted in Floyd-bare tradition,

often referred to as assertional, seems to be an attractive alternative to temporal

techniques.

There has been a lot of interest in a.ssertional reasoning about concurrent pro-

grams and, in fact, those techniques were historically first to be investigated. As

a result numerous proposals were put forward for a logical abstraction of program

behaviour. As one of the first attempts, in [Ashcroft 761, a collection of first or-

der formulas attached to edges of a flow graph representing a program was used.

More generally, in [Keller 76], a behaviour is characterized by a first order formula

involving references to program control points.

A similar idea has been exploited in [Lamport 80] and [Gerth 84]. This time

structured programs are discussed and characterized logically by pairs of assertions

that resemble bare triples but are equipped with different semantic interpreta-

tions. In both cases the rule of parallel composition does not decompose the

assertions forcing in effect to contain in the assertions a global description of a

program and its concurrent environment and thus bearing similarity to the ap-

proaches of Ashcroft and Keller. Here, instead of program control points location

predicates are used to enable reference to programs' state of control.

In [Oicki Gries 76a, Levin Gries 81] the usual Hoare triple describing the

input-output semantics was used as the characterization of program behaviours

while in a related approach [AFR 801 the Hoare triple is augmented with a global

invariant. In these proof systems, however, the inference rules used for dealing with

the parallel composition in fact manipulate proof outlines, or annotated programs,

that record Hoare logic proof trees. Therefore proof outlines rather than Hoare

triples can be seen as the logical abstraction of program behaviours that was

employed in these systems. This is the view adopted in [de Roever 85 : Hoornan

de Roever 86, Schneider Andrews 861.

A different point of view is taken in a program development method proposed

in [Jones 83] and a program logic presented in [Stirling 881. An Owicki-Gries style

rule for parallel composition is given a compositional formulation by introducing

Chapter 1. Introduction 	 10

a more abstract logical description of program behaviours than that offered by a

proof outline, namely, Hoare triple extended with rely-guarantee conditions that

specify the interference of a program with its concurrent context. Notably, the

semantics developed in [Stirling 881 for the logic proposed there employs essentially

the same principle (attributed to Aczel) as [BKP 84]. Compositionality achieved

for the semantic model results in compositionality of the logic.

For communicating protocols or other programs in which communications

carry the main bulk of computation, the interaction of concurrent components

can be often naturally represented by the history of communication. Several

proof systems were proposed that exploit this idea by incorporating into pro-

gram semantics a mechanism for recording performed communication and extend-

ing the assertion language with primitives for explicit reasoning about commu-

nication histories. Program behaviour is then characterized logically by a Hoare

triple [Soundararajan 831 or its various extensions [ZRE 85, Misra Chandy 81,

Pandya Joseph 851, but note that the input-output relation of programs captured

by a Hoare triple or its extensions contains now the information on how the commu-

nication histories changed during the computation. The techniques that rely on the

use of communication histories allow compositional reasoning but for many pro-

grams, where all information needed to do a correctness proof is contained in pro-

gram state (understood as a valuation of program variables), including the history

of communication into the reasoning would seem excessive and then these tech-

niques loose their appeal. In particular, this is the case when the history mecha-

nism is used to deal with concurrency based on shared variables [Soundararajan 84,

Owe 90].

In contrast to the approaches discussed above, where the structure of objects

proposed as logical characterizations of program behaviours was intended to reflect

the syntax of programs, in [Brookes 85, Brookes 86] the structure of the seman-

tic model, i.e. the operational semantics, is used to suggest a suitable shape of

correctness formulas. In operational semantics the meaning of a program is rep-

resented by a transition system and hence the correctness formulas proposed by

Brookes are branching structures of predicates of first order logic. Also the proof

Chapter 1. Introduction 	 11

rules have a strong connection to the operational semantics and, moreover, are

compositional. For example, in the case of the parallel composition, an analog of

the expansion theorem of CCS suggests the shape of the rule.

Unfortunately, Brookes's correctness formulas represent program behaviours

rather concretely and seem impractical in use. However, the idea that a natural

proof technique should correspond to the semantic model seems justified and

worth pursuing.

As we pointed out above, the structured operational semantics offers a safe

semantic framework for verifying concurrent programs. One can distinguish two

aspects of the operational account of an imperative program: the changes in valua-

tion of program variables, i.e. program state, that are caused by executing atomic

actions of the program and the flow of control that governs the order in which

atomic actions are executed.

In reasoning about partial or total correctness of sequential programs there is

no need for explicit referen'to the control flow of a verified program. Whether

Floyd's method or 'Hvwe~ is used, the pattern of reasoning naturally reflects the

flow of control in a program and the judgements of partial and total correctness

abstract from the control flow details.

This is no longer the case for concurrent programs. On the one hand, important

properties of concurrent programs, like mutual exclusion, are in fact properties of

control flow and therefore for verifying such properties the control flow has to be

somehow represented in the logical abstraction of program behaviours. On the

other hand, the interactive nature of concurrent behaviours forces one to provide

some means of referring to control flow in the logical abstractions of program

behaviours used.

The latter point was rigorously argued in [Keller 76], where Ashcrofts method

was shown not to be able to prove that the parallel composition of two identical

assignments x := x + 1 is partially correct with respect to the initial predicate

x = 0 and the final predicate x = 2 because attaching assertions to program control

points is a too restrictive way of referring to control flow. For the same reason the

Chapter 1. Introduction 	 12

proof outline based approaches and the more general logic of [Stirling 88] permit

adding auxiliary variables and statements to programs as a means of enriching

program state with some representation of control flow.

To illustrate further these points, we identify the following mechanisms for

dealing with control flow in the proof techniques mentioned above. Location vari-

ables [Ashcroft 76, Keller 76] and location predicates [Lamport 80, Gerth 8 4],

provide a direct way of referring to control flow. Similarly, the temporal logics

rely on location predicates in expressing properties of programs. In a less direct

way control flow is represented in history variables and, as we explained above,

can be handled with the help of auxiliary variables. In Brookes' approach the

flow of control of the verified program is essentially hardwired into the branching

structure of a correctness formula but carefully chosen conjunctions of assertions

are required in certain cases to provide an adequate representation of control flow.

Reasoning about the flow of control is an essential ingredient of verification

techniques for concurrency but also an intricate one. This is indicated by many

nontrivial problems encountered in the study of uninterpreted action systems in-

volving concurrency (Petri nets, CCS, TCSP, ACP) which can be viewed as con-

cerning the flow of control in concurrent programs. It is not surprising then, that

the part of an assertional proof system that deals with the flow of control can

be substantial as can be seen in [Lamport 80, Cousot Cousot 89, Apt Delporte-

Gallet 831, where location predicates are used and their properties axiomatized.

On the other hand when reasoning about control flow is done implicitly through

auxiliary variables the references to control flow become entangled in state predi-

cates and can obscure the clarity of argument.

In this thesis a framework for verifying concurrent programs is developed that

takes into account the concerns discussed above. We adopt the principle em-

phasized by Brookes that formal reasoning should reflect the underlying semantic

model, in our case, a structured operational semantics.

We have indicated the important role the handling of control flow plays in

verification of concurrent programs. In the account of Plotkin, configurations of

Chapter 1. Introduction 	 13

operational semantics consist of two ingredients: a valuation of program variables

and a control part represented by a statement that remains to be executed. We

put forward the following argument for a special treatment of the control part

of configurations of operational semantics. For a practically important class of

programs the state of control ranges over a finite set of possible values while at

the same time the space of combined configurations consisting of pairs: control

flow position, valuation of program variables, is infinite. This is the case for

programming languages with loops or recursion restricted to the tail recursion only.

Factoring out the finite representation of control flow could create possibilities for

automatizing the part of a verification technique that is concerned with the flow

of control, a potential which is lost when references to control flow are mixed in

assertions with the information concerning the state of program.

In order to exploit this observation we will extract from the operational seman-

tics an object representing control flow. Similarly as operational semantics this

object will be a labelled transition system.

A logical abstraction on behaviours supposed to reflect the adopted semantic

framework will also have a structure of a labelled transition system. We will call it

an annotation. An annotation will be defined as a finite labelled transition system

whose configurations contain formulas of a first order assertion language. The

transition system underlying the annotation will represent the control flow of a

verified program, the formulas of the annotation will characterize program states

that can be reached in computations.

Annotations can be viewed as a generalization of proof outlines. We observe

that by annotating the text of a program with assertions, what is done in order

to exhibit a proof outline, a correspondence is established between assertions and

control points of a program. This correspondence is exploited, for example, in

reasoning about deadlock freedom using proof outline based verification methods

[Owicki Gries 76a, AFR 80, Levin Gries 811. We make that correspondence ex-

plicit and rather than attach assertions to the text of a program we annotate a

suitably chosen transition system. As part of the verification process the transition

system underlying an annotation will be shown to correspond to the control flow

Chapter 1. Introduction 	 14

of the verified program. Thus, reasoning on control flow will be factored out as a

separate step of the correctness proof which will eliminate the need for auxiliary

variables or program locations in assertions. As an additional benefit this step of

the correctness proof can be mechanized.

The ability to mechanize the part of the proof that concerns control flow is a

modest development, when compared with automatic model checking techniques

that were originated in [CES 86, Queille Sifakis 811. There, proof construction

is unnecessary and replaced by a model theoretic approach which mechanically

determines whether the program meets a specification expressed in a temporal

logic. However, automatic model checking and related approaches are, in general,,

limited to finite state programs. If the verified program manipulates infinite data
CQM

structures, for instance the integers, only in special cases e verification process

• be fully mechanized. In our approach we make provisions for at least a part

of the proof to be delegated to the machine even if the state space of the program

is infinite.

Adopting such an approach we develop proof techniques for showing partial

correctness, deadlock freedom, mutual exclusion and total correctness where no

information on program locations needs to be encoded in assertions. We show

soundness of the proposed proof techniques. Completeness in the sense of Cook

is proved for partial correctness deadlock freedom and mutual exclusion, the com-

pleteness result for total correctness is obtained after the usual restriction to arith-

metical interpretations.

The resulting proof methodology can be viewed as a generalization of Floyd's

method of program verification. Concurrency is reduced to nondeterminism in

a systematic way and then Floyd's verification principle is used. Clearly, this

reflects the adopted semantic basis. We emphasize, however, that the reduction

of concurrency to nondeterminism is done in a structural way, where the word

'structural' should be read as in a phrase structural operational semantics. Thanks

to this our correctness proofs increase the understanding of analyzed programs

which would not be possible had the program been translated syntactically into a

nondeterministic counterpart as is done, for example, in [Flon Suzuki 811.

Chapter 1. Introduction
	

15

The proposed approach is not compositional in the sense that proving a prop-

erty of a parallel composition S 1 11 S2 is not decomposed into proofs of properties

of S1 and S2 . Again, this is a reflection of the underlying operational semantics

which is not compositional. In order to achieve compositionality one would have to

introduce operations on annotations that would correspond to programming con-

structs. This idea has been pursued by Brookes resulting in a compositional, but

rather impractical proof system. We compromise on the issue of compositionaJity

putting more emphasis instead on the potential for mechanization and conceptual

simplicity of the method.

Furthermore, rather than investigating the methods of decomposing proofs

accordingly to the structure of programs we explore a different way of reducing

the complexity of proofs. The idea is to avoid considering all possible action

interleavings, the source of state explosion in verification of concurrent programs.

It is often the case that two actions of different concurrent components can be

performed in either order with the same effect, moreover, syntactic considerations

are often sufficient to isolate such situations. Clearly, only one of two possible

interleavings needs to be represented in the correctness proof. A limited use of

this observation can be found in [AFR 80].

We adopt the trace theory originated in [Mazurkiewicz 77] as a suitabk setting

for more systematic development of the idea sketched above. Trace theory, one of

several proposed noninterleaving models of concurrency. has been predominantly

used in semantic studies and only recently was applied as a basis for a temporal

logics for concurrency [Katz Peled 87, Peled Pnueli 901. Here we adopt a useful

notion of trace equivalence which is instrumental in defining a reduced representa-

tion of control flow by abstracting from inessential action interleavings. The use of

so reduced representation of control flow allows us to abstract from the inessential

action interleavings also in annotations.

In fact, developing the idea indicated above was one of important motivations

for our work. We do this in isolation from compositionality concerns as they

usually add greatly to the complexity of proof systems.

Chapter 1. Introduction
	 16

Having indicated the topic and main concerns of our research we proceed to

describe the organization of the thesis.

The chapter following this introduction, Chapter 2, contains preliminary def-

initions and introduces two programming languages chosen to illustrate the veri-

fication techniques. Two programming languages are used in order to cover two

different styles of concurrent programming: concurrency with shared variables

and concurrency with message passing primitives. A parallel while language rep-

resents the former, a CSP like language the latter style. Both languages contain

the parallel composition operator which is given the interleaving semantics which

is additionally enhanced with a form of synchronisation in the case of the CSP like

language. The (deliberate) use of fairly standard programming constructs allows

us to rework the traditional examples from the literature in a natural manner.

Nevertheless, the general pattern of our methodology will be clearly seen not to

depend on the choice of particular programming languages. The only significant

restriction is that the mechanization of reasoning about control flow that we pro-

pose is possible for languages with loops but not for languages with recursion (the

control flow must be presented by a finite transition system).

The notion of control flow is formalized in Chapter 2 and used to derive the

operational semantics of the introduced languages. Instead of giving the rules

of structural operational semantics that describe simultaneously changes of the

program state and the flow of control we factor out the description of control

flow from the definition of the-semantics. As a result of such factorization, the

operational semantics is obtained by adding the state information to the control

flow. This we consider to be an inessential modification of the standard procedure

of defining operational semantics pioneered in [Plotkin 81] in this respect that the

resulting semantics is not changed.

Chapter 3 defines annotations already mentioned above and develops a proof

methodology for partial correctness. A proof of partial correctness will consist

of two steps. Firstly, an annotation will be exhibited and shown to simulate the

control flow of the verified program. This step of the proof will be shown to

be mechanizable. Then, local correctness of the annotation will be demonstrated;

Chapter 1. Introduction 	 17

This part of the proof will be done in the first order logic of the assertion language.

Theorems stating soundness and completeness in the sense of Cook of proposed

verification technique will be proved. In fact, the annotations used for partial

correctness proofs contain information on the intermediate states of a program,

not just about the initial and final one, and thus have a wider scope of applications

than reasoning on input-output relation of programs, which will be demonstrated

by using annotations to prove mutual exclusion property.

The technique for verifying partial correctness is extended in Chapter 4 to han-

dle deadlock freedom and termination, i.e. to verifying total correctness. In order

to capture deadlock freedom a more refined correspondence between a program's

control flow and an annotation characterizing the program will be required. Also

the notion of annotation will be refined. Termination proofs will be done by in-

corporating the standard technique of well founded loop counters. Soundness and

completeness of the proposed proof methods will be shown; Cook completeness for

the deadlock freedom proof technique and, for the termination, completeness for

arithmetical interpretations of the assertion language.

Chapter 5 contains important discussion about the expressiveness issues that

arise when completeness of assertional proof systems is investigated. Complete-

ness proofs of Chapters 3 and 4 depended on a natural expressiveness assumption

which is shown in Chapter 5 to coincide with the usual condition of definability of

the strongest postconditions (or, equivalently, the weakest preconditions) in the

assertion language. We also study the degree of expressiveness that is required

for completeness results about. concurrent programs as compared to the sequen-

tial case. We reinterpret facts known about the the expressive power of Dynamic

Logic vs Deterministic Dynamic Logic and show that verification of concurrent

programs demands, in fact, more expressive power of the assertion language than

it is needed for verification of sequential ones. However, we also prove a theorem

demonstrating that this can happen only in rather pathological cases of very weak

interpretations of the assertion language.

In Chapter 6 we introduce the notion of a reduction of control flow, where

inessential action interleavings are ignored. The proof techniques developed thus

Chapter 1. Introduction

far are then adapted to use the reduced representations of control flow. This is

preceded by a brief exposition of basic ideas of trace theory which we employ as a

useful formal setting. We also use an undecidability result on equality of trace lan-

guages to discover a limit in automated checking whether a reduced representation

of control flow adequately represents the full interleaving of actions.

As we develop our proof techniques in Chapters 3, 4 and 6, we illustrate them

with examples.

In the final Chapter 7 some possible directions for further research are indi-

cated.

Chapter 2

Programs and behaviours

This chapter has a preliminary character. We define here two concurrent pro-

gramming languages for which correctness proof techniques will be developed in

the sequel. The languages we consider, a parallel while-language and a CSP-like

language with synchronous message passing over channels, are typical represen-

tatives of two main styles in concurrent programming: concurrency with shared

variables and concurrency with message passing. We do not spend much time

explaining the syntax nor the intended meaning of program statements because

what we present is fairly standard.

We equip the programming languages with a structural operational semantics

in whose definition we depart slightly from the standard procedure. First, we

construct a labelled transition system representing just possible control flows in

programs. Then the actual operational semantics is obtained by providing the

transitions of control flow with a semantic meaning.

From the operational semantics one more semantic concept is derived, the

behaviour of a program. In contrast to operational semantics which contains

information on possible computations of all programs, a behaviour represents the

possible computations of a given single program only. Behaviours are objects

which will be our principal concern later as we will express and verify properties

of behaviours.

19

Chapter 2. Programs and behaviours 	 20

2.1 Basic definitions

This section introduces the notions that are frequently used in the sequel and

fixes notation. We start by recalling the notion of a labelled transition system and

supply some related definitions. Next, the assertion language is briefly outlined.

2.1.1 Transition systems

A labelled transition system (its in short) is a triple (Conf, Act, -)), where Conf

is a set of configurations, Act is a set of actions and -i C Conf x Act x Conf

is a transition relation. We write c --* c' if (c, a, c') E -

When the set of configurations is defined as a term algebra the transition

relation may be defined in a structural way [Plotkin 811 by providing a little

inference system for deriving transitions of terms such as F(c1 ,. .. , c,,) from the

transitions of its components c1c.

We will be also considering extended its's (Con!, Act, -) I, E), where

(Con!, Act, -*) is an its and I, E are two distinguished subsets of Conf called

extensions. I will be a set of distinguished initial configurations of an extended its,

The interpretation of the other extension will vary according to need, for example

E might contain configurations interpreted as the final ones, deadiockable, etc. If

the distinguished set has only one element. say I = {i}, instead of {i} we will

write i, possibly with some indices, in the definition of an extended its.

An (extended) its is finite when its sets of configurations, actions and transi-

tions are finite.

Set theoretically, a finite extended its is equivalent to a finite automaton. How-

ever we are not concerned with equivalence of languages accepted by automata

or other typical issues of automata theory but view extended its's as a variant

of labelled transition systems and therefore we use the name extended Its rather

then automaton or infinite automaton. Presumably, for the same reason labelled

Chapter 2. Programs and behaviours 	 21

transition systems themselves are not called semiautomata or state machines, as

the similarity of the structures could suggest.

Definition 2.1 A path in a its is a finite or infinite sequence of its transitions

I
c1 -

a +t
p c, i = 0,1,... such that c 	 01 	02 = c21 . If c0 -i c 1 -* 	- c. where

n > 0, is a path we say that c, is reachable from c0 .

The following procedure for deriving an extended Its from an its will be used

latter. Suppose T = (Conf, Act, -p) is an Its and I a subset of Conf.

is called a restriction of T to the part reachable from I if T, consists of those

configurations, actions and transitions that can be reached from some configuration

belonging to I, i.e.

Tr = (COflfr,ACtr, 	
r

where

COflf r = {c e Conf I c is reachable from some configuration c0 E I}

-* = _4 fl COflf,. x Act x COflf r

ACt,. = {a E Act I c --'i r c' for some c,c' E Conf,.}

Then, I and some other subset E of Conj+ can be added to Tr to give an extended

Its.

We introduce the following important notion

Definition 2.2 Let T1 = (Conf,Act 2 , -* 1j , Ej for i = 1, 2. We say that

p is a simulation from T 1 to T2 , denoted p : T, -* T, if p is a function from

configurations of T 1 into configurations of T2 such that

p preserves the distinguished sets, i.e. if c E I (E1) then p(c) E 12 (E2)

if c -- c' then p(c) 	 2 p(c')

We also say that T2 simulates T 1 if a simulation p: T 1 -* T2 exists.

The notion of simulation is closely related to various notions of automata

morphisms considered in automata theory, for example compare [Ginsburg 68,

Chapter 2. Programs and behaviours 	 22

Eilenberg 741, although we have not found an exactly matching definition in the

literature. Clearly, this reflects the fact that morphisms of automata serve differ-

ent purposes than simulations defined above. We will use simulations to relate

behaviours of programs to more abstract objects.

The name 'simulation' invites also a comparison to the notion of bisimula-

tion [Park 811, the standard equivalence relation associated with its's. Contrary

to what the name could suggest, simulation is not obtained by skipping one of

the symmetric conditions in the definition of bisimulation because, apart from

the extra condition concerning the extension E, simulation is a function rather

than a relation. Relation-based simulations were considered in order to deal with

program refinement [Gerth 89, He 891 and could be employed in the proof tech-

niques we develop, however, the, fact that completeness results were possible even

with function-based simulations allowed us to avoid using relations which are more

cumbersome to deal with than functions.

If there is a bijective simulation from T 1 into T2 whose converse is also a

simulation we say that T 1 and T2 are isomorphic.

We end this subsection by observing that a composition of simulations is a

simulation.

2.1.2 An assertion language and its interpretation

In the following we assume some first order assei'tion language P with equality.

Terms t and formulas p of P are given by the following abstract syntax, where

X, f and P stand for a variable, function and predicate symbols of the language,

respectively.

t ::= x I f(t 1 ,.. . , t)

p::=P(t1,,t,)lti=t2!-ipIpiAp2IpiVp2IpiDp2Ipip2IVxpIxp

Symbols true and false abbreviate the formulas x = x and -(x = x). The terms

and quantifier free formulas of the assertion language will be used as, respectively,

Chapter 2. Programs and behaviours 	 23

assignable expressions and boolean expressions of programming languages we will

be dealing with.

The symbol 	will normally be used to denote syntactical identity.

Usually we will be assuming some fixed algebraic structure J serving as an

interpretation of P. Valuations of variables, i.e. functions from the set of variables

of 7' into the domain of the interpretation, will be called states. St will denote

the set of all states and a will range over it. A natural extension of a to terms,

denoted also by ci, is defined recursively

a(f(t 1 ,. . . , ta)) = f(a(t 1),... ,

where fj is the function that an interpretation J associates with a function symbol

f of P. The standard definitions of validity in a given interpretation and the

satisfaction of a state by a formula are assumed as well as the usual notation

p, a =j p. Normally the interpretation is implicitly assumed and we omit the

index indicating it. This should not lead to confusion as we never consider logical

validity (validity in all interpretations).

For a predicate p belonging to P DI will denote the set {a E St I a = pj.

will range over subsets of St. We write E = p when Va E E a = p.

p[t/xJ will stand for a formula obtained by substituting term t for all free

occurrences of variable x in p. For a state a and an element v of an interpre-

tation domain, a[v/x] will denote the state obtained by updating a with v at x,

a[v/x](x) = v, a[v/z](y) = a(y) if y 0 X.

2.2 Programming languages

Basically, we follow an established tradition in the literature with the choice and

definitions of programming languages below.

We assume some set of atomic programs ranged over by a and comprising

assignments of the form x := t, where x and t are, respectively, a variable and

Chapter 2. Programs and behaviours 	 24

a term of P. The quantifier free formulas of P, ranged over by b, will serve as

boolean expressions in programs.

The first of our two languages, a parallel while-language, is a slightly modified

version of the language that was used in the classical paper [Owicki Gries 76a].

We denote our language by S. The abstract syntax of its statements is as follows:

S ::= a await b then aIifb then S else SI while bdoSIS;SISllS.

In order to avoid syntactical ambiguities we sometimes insert parentheses or,

more traditionally, keywords begin and end into the statements.

To be mathematically precise, by the 'abstract syntax' above we meant (fol-

lowing [GTWW 77], for example) that programs are actually viewed as elements

of an appropriate (many sorted) term algebra which has in its signature the oper-

ations of atomic statements, await statements, conditional, while-loop, sequential

and parallel composition.

In [Owicki Gries 76a] arbitrary composite statements are allowed as bodies

of await statements, but it is postulated there that awaits are executed as unin-

terruptible actions. Although we have allowed only atomic statements as bodies

of await statements we are free to choose the atomic actions so that they would

correspond semantically to composite statements and recover in such a way the

full expressive power of the await statement. Such a procedure amounts to a sim-

ple form of action refinement. We will discuss this issue in Chapter 7 and argue

that the proof techniques we develop can be naturally extended to cover action

refinement in this sense.

The second language, called S, is based on CSP [Hoare 78] and has primitives

for synchronous message passing through channels as a distinctive feature. Using

channels rather than process names of the original CSP for addressing messages

was considered as early as in Hoare's proposal [bare 781 and became a frequent

practice later.

The atomic statements and boolean expressions of S are as in S. The com-

munication statements, ranged by c, can be of two kinds: sending ch! t or receiving

Chapter 2. Programs and behaviours 	 25

ch? x, where t is a term of 1, x a variable and ch a channel name. Channel names

constitute just a set without any structure presupposed and are assumed to be

different from the symbols of P. Below follows the abstract syntax of guarded

statements C and statements S of S.

G ::= b =S I b;c =S I Gil G

S ::= aIcJdoGodifGfifS;SlSIjS

Again, parentheses may be used to avoid syntactical ambiguities.

In contrast to the original CSP we allow nesting of parallelism but unlike in

some extensions of CSP (e.g. [Plotkin 82, ZRE 851) we do not impose any scoping

rules on channels: channel names are global and we do not introduce any hiding

mechanism for them, whether by explicit restrictions or implicitly by the parallel

composition operator. We remark, however, that we could easily handle channel

hiding in our proof technique. A similar version of communication mechanism

appears in [BKMOZ 861.

We do not assume at this point that variables used in statements that are

composed in parallel are disjoint. Such an assumption is irrelevant to the proof

techniques developed in the next two chapters. Moreover, it has been noted in

[Lamport 821 that separating variables of parallel components does not necessarily

help to structure similarly the assertions that characterize program states because

in program verification one is usually interested in properties relating variables of

different parallel components. However, in Chapter 6 we will see that separating

variables of parallel statements facilitates isolating inessential action interleavings

and this seems to be a fruitful way of exploiting that syntactic constraint.

Similarly as in [Plotkin 821 we are faced with notational inconvenience due to

the fact that a communication statement c can appear both as a free standing

statement and also as a constituent of a guard b; c. In order to achieve a uniform

treatment of those two cases we distinguish a syntactic category of rionsynchroriized

communications ranged over by 'y and containing communication statements c and

guards b; c. Further, with each nonsynchronized communication y we associate a

Chapter 2. Programs and behaviours 	 26

boolean expression cond('y) defined

f true i'isc
cond(7)=1 b
	if7isb;c

Two communication statements are called matching if one them is an input

statement and the other is an output statement, both with the same channel name.

Matching extends in an obvious way to the nonsynchronized communications:

-xi, '12 are matching if the communication statements appearing in -y,,'12 are

matching.

For each of the above languages we introduce the notion of atomic action (not

to be confused with atomic statement).

Definition 2.3 The set of atomic actions of S,, comprises the atomic statements,

await statements and boolean expressions. The set of atomic actions of S consists

of atomic statements, boolean expressions and constructs 'Ii II '12 representing

performed communications and called communication actions, where '1i and '12

are a matching pair of nonsynchronized communications.

Typically, a, ,3 will range over atomic actions.

For convenience we introduce a few syntactic abbreviations

	

skip 	x:=x

	

if b then S 	if b then S else skip

	

loop 	while x = x do skip

where x is an arbitrary variable.

Various notions and objects appearing later on will have subscripts w or c to

point out the particular language we mean at the moment. If the subscripts are

omitted, we mean both cases simultaneously.

Chapter 2. Programs and behaviours 	 27

2.3 Semantics

The structural operational semantics for the above programming languages can be

defined in a standard way along the lines of [Plotkin 811. So defined operational

semantics is an Its whose configurations are pairs (a, S), where a is a state and

S is a statement which "remains to be executed". The statement part of the

configuration indicates the position where control flow resides at a given moment

of computation. The transition rules are defined in a structural way and describe

both the state and control changes.

We find it useful to separate the descriptions of control flow and state transi-

tions. First we define an Its describing only possible flows of control in programs.

The actual operational semantics will be obtained by interpreting semantically

transitions of control flow. Thus instead of a typical transition rule of operational

semantics
(a) S) --* (a',S')

(a,S;T) -* (a,S;T)

we are going to have a transit1o6 control flow

s a —*s
S;T -- S';T

and a general rule for interpreting semantically transitions of control flow

,-. a 	ç/ 	 a

a (a I rTI\ (a,.) -p 	, j

2.3.1 Control flow of S

Control flow of S,,, is a labelled transition system denoted CF., and defined as

follows. The statements of S together with an additional symbol E representing

the end of computation constitute the set of configurations of CP. The transitions

are labelled with atomic actions of S. A transition S -- T is to be understood

as a possibility of statement S to perform an action a after which statement T

will remain to be executed. Table 2-1 presents the axioms and rules for deriving

Chapter 2. Programs and behaviours

S –3 T1 I T2 abbreviates the two rules
S' --+TflT

transitions of CF.,,. As is usually done,

	

rp 	C?

	

_____ 	 2 Note, that the metavariables S, T, S',T' used in Table 2-1
S'--T 1'' S'--+T16

a a -+ 6

it b await b then a await then a
 £

if b then S else T b -* S

if b then S else T -.b-' T

while b do S -+ e

while b do S -- S; while b do S

I S—*S 16

S ; T -- 5'; T I T

- S -- S'IE 	 T --- T'IE

SlIT -- S'IITIT 	SIfT -- SIlT'IS

Table 2-1. Inference system for transitions of CF.,.

range over statements of S but not over £ which is distinguished in the rules as

a separate case.

2.3.2 Control flow of S

The its representing control flow of S will be called CF. The set of configurations

of CF consists of the statements of S plus the additional symbol 6 for the finished

computation.

The transitions of CF are defined in two steps. First an auxiliary transition re-

lation - is defined (subscript P stands for potential transitions), then -,

is restricted to give -p , the actual transition relation of CF.

Chapter 2. Programs and behaviours
	

29

Transitions -4 are labelled with atomic actions of S, transitions
co

be additionally labelled with nonsynchronized communications b; c.

can

We let now

a, 3 range over so extended set of labels.

The following rule defines -f as a restriction of

(Restr)
,- 	a
-E for a an atomic action of S

C
	-,F

) -' b I £

In the rule above, the metavariable S ranges over statements of S. We let G

range over guarded statements.

Potential transitions are defined as those that can be derived in the inference

system presented in Table 2-2. Two kinds of potential transitions appear there.

There are transitions of statements, S --- P S' and S ---O'ip e, which can be used

in the premise of the restriction rule and transitions of guards which play an

auxiliary role and have the form G
P

S or G --+ fail, where fail is an extra

symbol for a configuration obtained when all tests fail in a guarded statement.

Again, the metavariables G. S, T, possibly decorated, are assumed not to range

over E and fail and there are special provisions in the rules for t those extra symbols.

Notably, for handling the communication two rules had to be provided in order to

cover all combinations of statement-epsilon pairs.

Let us briefly comment on the proposed inference rules. The top four lines

of Table 2-2 deal with transitions of guarded statements. The remaining rules

describe transitions of statements. The rules in lines (6) and (7), which have as

• premise a transition of a guarded statement and a transition of a statement as

• conclusion, connect the parts of the inference system concerning the transitions

of guarded statements and statements.

Note that no transition is possible from if G fi when all transitions from G

lead to fail. This creates a deadlock. Deadlocks might also result from the lack

of matching communications required by rules (10) and (11). A comprehensive

discussion of deadlock, where interpretation of boolean conditions is taken into

account, is postponed to Chapter 4.

I-

Chapter 2. Programs and behaviours

(b =S) -- S 	(b =,S) —+,, fail

(b;c =S)
bc

	

 -- S 	(b:c => S) —- fail

Gi pS 	 C2—
a

' ____ 	 P

	

C1 0 C2 -- S 	G1 G --*.,, S

G1 --+,, fail 	C2 —-', fail
b,Ab2

C1 0 C2 — fail

a 	 c

ifGfi

C —,, S I fail
doGod 	S;doGodIE

a

	

S 	S'j E

S;T 	S';T1T

, a S 6 	 T 	T' I 6

	

SIIT - S'JITIT 	SIIT - SIIT'IS

	

S1 -Y, S.Ie 	52 —,S2
7 1172 	

for matching 71,72
S1 S2 —,, S1 II S2 I S.

72

5i 	I 	S2 	 for matching 71,72 71 II 7
s1is2 	1

1

30

Table 2-2. Inference system for transitions of CF.

Chapter 2. Programs and behaviours
	

31

According to the presented inference rules the possible transitions from a state-

ment S lead either to another statement S' or to E. This justifies the decision not

to include the guarded statements G into the set of configurations of CF. We
a. allow "formulas" G --'P S, G --4 fail only in the derivations of transitions

S ---P S I , S -- but not in CF itself.

We have defined transitions of CF by providing an inference system for de-

riving the potential transitions - and then restricting - to the actual

transitions -p by means of the restriction rule (Restr). An alternative solu-

tion we investigated is to provide a direct inference system for deriving the actual

transitions of CF. A suitable framework for this is provided by natural deduction

proof systems [Prawitz 651 which permit introducing and discharging assumptions,

in this case, assumptions about potential communications. Yet another approach
il C2 was considered in [BKMOZ 86], where a communication axiom c 1 JJc2 cl-- 6 is

provided as well as rules for enriching this transition gradually with a bigger con-

text. Such an approach seems to be impractical, however, for languages with a

rich control structure because of a large number of rules needed to cover all pos-

sible contexts. The choice to use the potential transitions and the restriction rule

apart from being the simplest solution has the advantage that in a similar manner

a general restriction construct [Milner 80] could be handled giving the ability to

handle channel hiding.

2.3.3 Operational semantics

It remains to define the state transitions in order to complete the definition of

operational semantics.

We associate with each atomic action a of S or S its relational semantics
st&e wient

a] C St x St. First, for each atomic I a other than assignment we assume

some predefined relation For the remaining cases of assignment, boolean test,

communication action and the await statement Ea is defined as follows.

Chapter 2. Programs and behaviours 	 32

(ci, or') E fr := 	 if or' = cr[o-(t)/x]

(or, ci') E f[b]] 	 if or = b and ci' = or

(a, a') e FY1 11721 	if or = cond(71) A cond('y2) and ci' =

where ch! t and ch? x are the (matching) com-

munication statements appearing in 'Yi and 12
(a, ci ') e await b then al if ci = b and (a, a') e

Now, the state transitions are exactly those determined by III:

ci -- ci' 	if 	(a,a') E [a]

so that our general rule for transitions of operational semantics can be rewritten

as

(Sem) 	
S 	S JE 	(a) a')E

(a, S) - (a , S)

From the operational semantics the input-output relation of programs can be

derived.

Definition 2.4 The input-output semantics of a program S is a relation SI C

St x St such that (a, a') E if there is a path (ci, S) --* ---* (a', E) in the

operational semantics.

Note that the input-output relation of programs is defined in such a way that

for programs which are atomic actions (assignment, await statement, ciIIc2) it

coincides with the assumed relational semantics for atomic actions, hence the

same notation.

We remark that the Its representing operational semantics, whose transitions

are defined by the rule (Sern), can be viewed as a categorical product of two its's,

one of which is CF,, (CF,) and the other comprises the state transition of atomic

actions:

(St, Act, {ci --- ci' I (a,a') E c}).

It is a matter of routine checking that labelled transition systems with simula-

tions as morphisms constitute. a category, products exists in this category and

Chapter 2. Programs and behaviours
	

33

operational semantics defined by us is indeed a categorical product of CF (CF)

and the its given above. This remark gives more meaning to our so far informal

description that control flow is factored out from operational semantics.

2.3.4 Behaviours of programs

We omit here indices c, w as the following definitions apply to both cases. We

let the letters X, Y range over all configurations of control flow, that is over

statements and the special symbols E and fail as well.

Definition 2.5 Control flow of a program S; denoted CF(S), is an extended

Its obtained by restricting CF to the part reachable from the configuration S and

adding the following extensions. S is distinguished as the only initial configuration.

The other extension E will vary according to need. For example, {e} will be

sometimes taken as E and considered as the set of final configurations in CF(S).

As an example we give a pictorial representation of the control flow of a program

(while b do a1) II a2 (Figure 2-1).

a2 a2 	
C

(while b do a 1) 11 02 	
a2 	

. 	while b do a1

b 	
I a, 	 b 	I a,

(a 1 ; while bdoai)11a2 	
a2 	

. a1 ; while bdoa1

Figure 2-1.

Proposition 2.6 For any S E S (S E S) CF.(S) is a finite Its.

Proof. We do the proof for S E S. The case of S E S,, is simpler and done

analogously.

Chapter 2. Programs and behaviours 	 34

We characterize below the set of configurations of CF(S) without appealing

to the transition relation of CF(S). For each statement S of S and each guarded

statement G we define sets of statements MS) and CI(G) (Cl stands for closure)

as the least solutions to the following set of recursive equations:

Cl(b 	S)

Cl(b;c =-S)

Cl(G1 D G)

CI(a) = {a}

Cl(c) = {c}

Cl(if G fi)

Cl(do G od)

Cl(S1 ; S2)

C4S1 II S2)

Cl(S)

CI(S)

CI(G 1) U CI(G2)

Cl(G) u {if G fi}

(Cl(G); {do G od}) U {do C od}

(Cl(S1) ; { S2 }) U Cl(S2)

(Cl(S1) 11 CIA)) U Cl(s 1) U Cl(s2)
1

where the operations ; and 11 on sets of statements are defined elementwise:

= {S;T!SE,TE}

-911T = { SIlTISe,TET}

We easily observe that S e Cl(s). Next, we prove that if S 	5'

(G ---* 5') is a potential transition (derived by axioms and rules of Table 2-2)

then CI(s1) C Cl(S) (Cl(S') C Cl(G)). This can be done by structural induction.

For example, let S be do G od. Consider a possible transition of S obtained by

application of the rule

G — S'

doGod —,,S'; do God

By induction Cl(S') C Cl(G). From the definitions it follows

Cl(S'; do G od) =

= (Cl(S t); {do G od}) U Cl(do G od) C

C (Cl(G); {do G od}) U Cl(do G od) =

= (Cl(G); {doGod})U(Cl(G);{doGod})U (doGod}=

= Cl(do G od)

Chapter 2. Programs and behaviours 	 35

The property shown above ensures that all configurations reachable from S, i.e.

all configurations of CF(S), are contained in Cl(S) U {e}. But from the definition

of Cl(S) it follows by obvious induction that for any S the set CI(S) is finite. This

completes the proof. 0

Proposition 2.7 There is an effective procedure for constructing the control flow

of a program.

Proof. 	In order to construct CF(S) we start from an extended its

CO = ({ S}, 0,0,5). Let C 1 be obtained by adding to C2

the transitions that can be derived from configurations of C2 by using the

(primitively recursive) rules of control flow, and

configurations and actions of transitions added in (1).

CF(S) is a finite transition system so after a finite number of steps the above

procedure will stabilize and CF(S) will be constructed. 0

Similarly as with the control flow, the operational semantics can be also re-

stricted to describe the behaviour of a single program.

Definition 2.8 For a program S. and a set of states E the behaviour of S from

initial states E, denoted Beh(S, E), is defined as an extended its obtained by

restricting the operational semantics to the part reachable from the set of config-

urations 'Beh = {(o, S) I o E E} and distinguishing the extensions: 'Beh will be

taken as the set of initial configuration and another extension EBeh, left here as a

parameter, will be added. For example,

{ (u,E) I (a,e) is reachable from some initial configuration}

may be distinguished as the set of final configurations.

In contrast to CF(S), behaviours can be infinite. Moreover, since deriving a

transition of the operational semantics may involve checking whether a formula is

Chapter 2. Programs and behaviours 	 36

satisfied by a state, for instance, when a transition of an if-statement is derived,

there is no general effective procedure for deriving transitions of the operational

semantics. Therefore, there is also no effective procedure for constructing a be-

haviour. It is our task for the following chapters to provide finitary characteriza-

tions of potentially infinite program behaviours.

Behaviours and control flows of programs are extended labelled transition sys-

tems and hence are parametrized by the extensions that can be added to them.

In the sequel, the extensions of behaviours will be always induced by extensions

added to control flows of programs. That is, if an extension E is added to the

control flow of a program S

CF(S) = (Con!, Act, - , I, E)

then, unless stated otherwise, a behaviour Beh(S,) will be assumed to have a

similar structure

	

Beh(S,>) = (COTh! B ,ACt Be h 	 IB eh,EB eh),

where

EB eh = {(cr, X) I (o, X) is a configuration of Beh(S, E) and X E E}.

Note that we have conformed to this rule in defining the final configurations of

behaviours. It will be always clear from the context which set of configurations of

control flow is used to induce an extension of a behaviour.

Proposition 2.9 CF(S) simulates Beh(S, E) for any 5, E.

Proof. First we check that if (a, X) is a configuration of Beh(S, E) then X is a

configuration of CF(S), i.e. X is reachable in CF(S) from the initial configuration

S. (a, X) is a configuration of Beh(S, E) if there is a path

a1 	 a2 	 1

(u0 , S) 	(a 1 ,X1) 	
a,_

(a_ 1 ,X_ 1) 	(a,X),

where a0 E E. By the rule (Sem) (a', X') -- (a", X") is a transition of opera-

tional semantics if X I a' -) X II is transition of control flow. Therefore

a2
S -+ X1 .__ ... -- X,_ 1 -* X

Chapter 2. Programs and behaviours 	 37

is a path in CF which demonstrates that X is reachable from S in CF.

Consequently, ir((o, X)) = X is a well defined function and it is easy to check

that ir is a simulation. 0

Chapter 3

Annotations for partial correctness

Partial correctness is a principal property of interest in an analysis of sequential

programs. Although in concurrent programming there is a multiplicity of impor -

tant properties that can be required of programs, partial correctness is still widely

studied. Thus, verification of partial correctness is a good starting point for the

introduction of our proof technique and the tools it requires.

We start this chapter by introducing, in Section 1, our main tool for the ver-

ification of concurrent programs, the annotation. Annotations will be defined as

extended labelled transition systems to whose configurations assertions are at-

tached. Transitions of annotations will be labelled with atomic actions of the

considered programming languages. We view annotations as a generalization of

the well known concept of proof outlines, or annotated programs, used in Hoare

style correctness proofs of both sequential and concurrent programs. We define a

satisfaction relation between annotations and behaviours and develop techniques

for verifying satisfaction.

In Section 2 partial correctness is derived from the general notion of satisfac-

tion. The technique for verification of satisfaction gives rise to sound and complete

proof methods for partial correctness in the sense of Cook. Two example partial

correctness proofs are developed.

In a similar fashion the developed framework of annotations is used in Section 3

to reason about the mutual exclusion property.

WN

Chapter 3. Annotations for partial correctness 	 39

3.1 Annotations

Let us recall the standard definition of partial correctness.

Definition 3.1 A program S is partially correct wrt an input predicate p and

an output predicate q if whenever a = p and (a, a') E ISI then a' = q. We will

adopt the usual Hoare triple notation and say that {p} S {q} holds if S is partially

correct wrt p and q.

Partial correctness can be formulated as a property of behaviours.

Proposition 3.2 {p} S {q} holds if and only if for any final configuration (a, e)

of Beh(S,I{pI) a=q.

Proof. Assume {p} S {q} holds'. (a, e) is a final configuration of Beh(S, l[I) if there

is a path (a 0 , S) -- ... --* (o, e) in Beh(S, [pU. But Beh(S, I[1) is a restriction

of the operational semantics, so the path above is also a path in the operational

semantics. Hence (a0 , a) E and, by partial 'correctness of S, a = q.

For the converse implication, let a0 1= p and (a0 , a) E 	By definition of the

input output semantics, there is a path (cr0 , S) 	•.. -- (o,, ,-) in the opera-

tional semantics. (a0 , S) belongs to the set of initial configurations of Beh(S, [pfl

and the path above shows that' (a, E) is reachable from this initial configuration,

hence (a, E) must be a configuration of Beh(S, [pfl. Consequently, a = q. 0

Partial correctness relates only initial and final configurations of behaviours.

There are, however, properties of concurrent programs where the internal con-

figurations of behaviours need to be characterized. Mutual exclusion, deadlock

freedom and invariance of an assertion throughout computations can serve as ex-

amples here. We will discuss mutual exclusion later in this chapter and deadlock

freedom in Chapter 5, but first a general framework for characterizing behaviours

will be developed which takes into account all configurations and thus will have a

wider scope of application than partial correctness only.

Chapter 3. Annotations for partial correctness
	

40

Our definition is inspired by the notion of proof outline, or annotated program,

a concept often used for presenting program correctness proofs developed in Hoare

logic. We discuss proof outlines below indicating some of their aspects relevant to

our framework.

Formal considerations of proof outlines are not common in the literature de-

voted to verification of sequential programs as the proof outlines are used there

merely as a notational convention and, in fact, are not an ingredient of Hoare logic

whose formulas are just partial correctness triples. Instead a rather informal an-

count describing a proof outline as a text of a program annotated with assertions

has been adopted frequently.

Early Hoare style approaches to concurrent programs [Owicki Gries 76a, Levin

Gries 81, AFR 80] also put forward Hoare triples as the basic judgements of the

proposed logics. This time, however, proof outlines need to be formally discussed

for two reasons.

Firstly, the rules for parallel composition proposed in the papers cited above

appeal to whole proof trees of correctness formulas. This takes the form of nonin-

terference condition in [Owicki Gries 76a], noninterference and satisfaction condi-

tion in [Levin Gries 811 and cooperation test in [AFR 801. As the proof trees are

represented by proof outlines it is convenient to view proof outlines as the objects

that are in fact manipulated by the proof rules for the parallel composition [de

Roever 85, Hooman de Roever 86, Schneider Andrews 86].

Secondly, for reasoning about deadlock freedom or mutual exclusion the inter-

mediate assertions of a proof outline are equally important as the initial and the

final one.

Therefore for proving soundness of proof outline based techniques one needs

to formalize the notion of a proof outline and provide a definition of validity for

a proof outline. A natural notion of validity [Owicki Gries 76a, Apt 831 relates a

proof outline to the behaviour of an annotated program. Roughly, assertions are

associated with configurations of control flow of a program and a proof outline is

Chapter 3. Annotations for partial correctness 	 41

valid if whenever the control in a properly initialized program reaches an assertion

then the current state satisfies the assertion.

However, assertions of proof outlines are attached to the text of a program

which results in a restricted correspondence between assertions and configuration

of control flow. As a result not all configurations of control flow can be given

distinct assertions leading to the well known inability to derive

{x = 01 := x + 1 11 x := x + 1{x = 21

in Owicki-Gries's logic without using auxiliary variables.

We propose to associate assertions directly with configurations of control flow.

Associating assertions with points in programs' texts has the advantage of syntax

directedness. On the other hand, when the assertions are associated with configu-

rations of control flow a closer relation is established with the semantics. We chose

the latter option.

Let Ind be a set of indices, which is assumed to be disjoint from the symbols

of P.

Definition 3.3 An annotation is a finite extended its (P, Act, -) , i, E) whose

configurations are indexed formulas of the assertion language, P C P x _Td, the

actions Act are included in the set of atomic actions of the considered programming

language and i is a distinguished initial configuration. The extension E will vary

according to needs.

The indices are used to allow the same formula to appear in different configu-

rations of an annotation. Otherwise the indices are not important, in particular,

they cannot be referred to in assertions and do not affect the satisfaction of for-

mulas. We will say that a configuration c = (p, j) is satisfied by a state a, written

or = c,when the formula-part p of the configuration is satisfied on a. We will also

sometimes identify configurations of annotations with their formula-parts when

there is no danger of confusion. To make the terminology more suggestive we

will often refer to configurations of annotations as the formulas or assertions of

annotations. For example, i will be called the initial assertion.

Chapter 3. Annotations for partial correctness
	

42

In order to define an annotation, rather than attaching assertions to the text

of a program as it is in a proof outline, an arbitrary transition system is adorned

with formulas. The transition relation of an annotation is supposed to represent

the control flow of a program. In a proof outline, the positioning of assertions in

the program establishes their correspondence with the control flow of the program.

Below we define a satisfaction relation which allows us to characterize be-

haviours by annotations.

Definition 3.4 Beh(S, E) = A (behaviour satisfies an annotation) if there exists

a simulation p: Beh(S, E) -f A such that

o = p((o, X)) for any configuration (o, X) of Beh(S, E) 	(3.1)

Note that the simulation ensures that the transition relation of annotation A

is indeed an abstract representation of the control flow of program S.

A special case in the definition of annotations can be distinguished, where as

the set of indices Ind the set of configurations of CF(S), for some program S, is

taken and the transition relation of the annotation is induced by CF(S). Such

an annotation can be seen as the control flow of S annotated with assertions and

hence will be called an annotated control flow of S.

Our next aim is to propose a procedure for checking that a behaviour sat-

isfies an annotation. Firstly, verification of condition (3.1) will be approached

systematically.

Let A be an annotation. There is a natural requirement on the transitions

(p, j) --+ (p',j') of A that can be used to ensure that (3.1) holds for any simulation

p: Beh(S,) - A. Before we give the definition, let us note that since an input-

output relation was assumed to be given for atomic actions the definition of partial

correctness extends to atomic actions (which are not necessarily statements). We

extend the bare triple notation to cover this case.

Definition 3.5 Annotation A is locally correct if for any transition

(p, j) -- (p'j') of Athe following partial correctness condition holds

{p}cx{p'} 	 (3.2)

Chapter 3. Annotations for partial correctness
	

43

Local correctness is an internal property of annotations which we can use as a

replacement for the less convenient condition (3.1).

Proposition 3.6 If A simulates Beh(S, E), A is a locally correct annotation and

I= 'A then Beh(S,E) 1=A.

Proof. Let p : Beh(S,) - A be a simulation and consider any configuration

(ci, X) of Beh(S, E). By induction on the length of a path from any initial config-

uration of Beh(S, E) to (o,, X) we show that ci = p((a,X)).

If (ci, X) is reachable by a path of length zero, then (ci, X) is an initial configu-

ration of the behaviour. In such case ci E E, so by the assumption of the proposi-

tion, ci = i. As simulations preserve initial configurations we have p((o, X) =

which implies ci = p((ci, X) as required.

If there is a path of length greater than zero from some initial configuration of

the behaviour to (ci, X), let (ci 	
a' , X) -* (ci, X) be the last transition of this path.

Then, the rule (Sem) of operational semantics guarantees, that (or ', ci) E 	p

is a simulation so p((ci', X')) --* p((ci, X)) is a transition in A. By the inductive

assumption ci' = p((ci', X'). But A is locally correct so or = p((ci, X). 0

Let us emphasize that we consider it more basic and simpler to prove local

correctness rather than property (3.1). Checking local correctness involves analysis

of atomic actions of programs which are the basic ingredients of the considered

programming languages. Hence, it is reasonable to assume that we have a sufficient

knowledge about those basic operations to verify the condition (3.2).

For simplicity we used the semantic condition {p} o {p'} in the definition of

local correctness above. However, we can exploit familiar ideas of Hoare logic and

reduce this condition to the satisfaction of a formula of the assertion language.

The following cases are simple

{p} x := t {p'} 	holds if p3 p'[t/x}

{p} b {p'} 	holds if p A b 3 p'

{p}ch!tJI ch?x{p'} holds if pjp'[t/x]

Chapter 3. Annotations for partial correctness
	 44

Also, for an arbitrary atomic statement a, if we can provide a formula Pa

expressing the weakest precondition of p' wrt a, i.e.

a = p' if Val (a, a1) e I[a] 	0'1 = p'.

then

{p} a {p' } 	holds if p D

{p} await b then a {p'} holds if p A b D P'a

Note that, in fact, Floyd's method and Hoare style logics also build correctness

proofs starting from partial correctness of atomic actions, the same property that

we required in the definition of local correctness.

Proposition 2.9 ensures that ir : Beh(S, E) —* CF(S) defined by ir((crX)) =

X is a simulation. Hence, if there is a simulation Po from CF(S) to A then

the composition p = lrp0 is a simulation from Beh(S, E) to CF(S). This is an

important observation because it introduces a potential for mechanizing a part of

the verification process.

Proposition 3.7 There is an algorithm for checking whether an annotation sim-

ulates control flow of a program.

Proof. Follows from the fact that only finite transition systems are involved. 0

Combining Propositions 3.6 and 2.9 we obtain

Proposition 3.8 If A simulates CT(S), A is a locally correct annotation and

1= 2A then Beh(S,) = A. 0

P-poL+on 3.8 summarizes the procedure we propose for establishing that a

behaviour satisfies an annotation. Two separate steps can be distinguished in

verification of satisfaction, each dealing with a different aspect of the behaviour:

1. establishing the existence of a simulation, a step which concerns analysis of

the flow of control

Chapter 3. Annotations for partial correctness 	 45

2. checking the local correctness, an internal property of the annotation, which

involves reasoning about formulas of the assertion language without making

references to the control flow

In the next section we derive partial correctness, and later other correctness

criteria, as instances of the introduced notion of satisfaction. The general verifica-

tion procedure developed above will become universally applicable to verification

of the discussed properties resulting in sound and complete proof techniques. This

motivates further the introduction of annotations and our definition of satisfaction

relation between annotations and behaviours.

3.2 Partial correctness

Extended its's representing control flow, behaviours, and annotations are param-

etrized by extensions, i.e. distinguished sets of configurations that might be incor-

porated into the structure of those transition systems. Note that the definitions

of simulation and, consequently, the satisfaction relation between behaviours and

annotations take into account the possible extensions. Namely, it is required that

the distinguished configurations are preserved by simulations.

In this section we show that by an appropriate choice of the extensions the

satisfaction of an annotation by a behaviour can be specialized to partial correct-

ness. In the next section we do the same for mutual exclusion in entering critical

sections.

3.2.1 Soundness and completeness

For verification of partial correctness we assume that control flows of programs and

behaviours are equipped with sets of initial and final configurations which were

described when definitions of control flow and behaviour were given. Similarly,

annotations used in this section will be assumed to have an initial and a final

Chapter 3. Annotations for partial correctness 	 46

assertion. Those distinguished configurations of an annotation A will be denoted

A and fA respectively, the initial and the final one.

Proposition 3.9 If Beh(S, I[]I) = A and IA D q is valid then {p} S {q} holds.

Proof. By Proposition 3.2 {p} S {q} holds if for any final configuration (a, ,-) of

BeIi(S, p) = q. A simulation from Beh(S, [p]]) to A maps final configu-

rations of the behaviour into the final assertion IA of A. Hence the assumption

Beh(S, f{}1) = A guarantees that 1= fA• But we assumed that IA D q which

ends the proof. 0

Note that the condition Beh(S, I[) = A implies that p D iA-

Proposition 3.9 enables the reduction of partial correctness proofs to verifying

whether a behaviour satisfies a suitably chosen annotation. Hence the procedure

for verifying the satisfaction gives rise to a sound proof technique for partial cor-

rectness.

Corollary 3.10 If A simulates CF(S), A is a locally correct annotation, p

and IA D q are valid then {p} S {q} holds.

Proof. By Proposition 3.8 Beh(S, I[) = A so Proposition 3.9 applies. 0

Now we show completeness of the verification technique justified by Corol-

lary 3.10. This is in fact equivalent to showing completeness of Floyds verifi-

cation technique and has been already done in purely relational setting in [de
A

Bakker Meertens 751Yimilar result can be found in [Cousot 81]. Here we are also

concerned with expressiveness issues which were not addressed in the mentioned

references.

Consider a behaviour Beh(SjJpfl for some program S and an assertion p defin-

ing the set of initial states. Define for each configuration X of CF(S) a set of

states

= {cr I (a, X) is a configuration of Beh(S, p]I)}. 	(3.3)

Chapter 3. Annotations for partial correctness 	 47

An assertion language P will be called expressive if for any S and p the sets Y2 ç

are definable in 7, i.e. there exists formulas Px such that Ex = [PxI.

In Chapter 5 we discuss comprehensively expressiveness issues motivated by the

requirements of the theorem below. There the notion of expressiveness introduced

above will be related to the standard Cook's notion of expressiveness.

Theorem 3.11 (Cook completeness for partial correctness) Assume that the as-

sertion language is expressive. If {p} S {q} then there exists a locally correct an-

notation A simulating CF(S) such that p D iA and IA D q are valid.

Proof. By expressiveness, for any configuration X of CF(S) there is a formula

Px in the assertion language such that

or 1 = Px if (a, X) is a configuration of Beh(S, ftp)

Let A be the annotated control flow of S obtained by attaching to each configura-

tion X of CF(S) a formula Px That is, configurations of CF(S) play the role of

indices in A, configurations of A are pairs (Px, X), the transition relation as well

as initial and final configurations are induced from CF(S) so that iA = (PS, S),

Ct

IA = (P6, 6) and (Px, X) -' (Px', X') if X -* X'.

Obviously, A simulates CF(S). For the local correctness, consider a transition

(px ,X) --+ (pi, X') of A. Let a = Px and (a,a') E jaj. By the definition of px,

(a) X) is a configuration of Beh(S, [pU. Transition Px Px' must be induced

by the transition X --* X' of CF(S) which, together with (a, a') E ga, gives a

transition (a, X) --i (a', X') of operational semantics and, hence, of Beh(S, [)

as well. Thus, (a', X') is a configuration of Beh(S, I[p) so a' = Px' giving local

correctness.

To see that p implies the initial assertion of A note that if a = p then (a, 5) is

an (initial) configuration of Beh(S, [pfl. By definition of Ps this gives or

Finally, let a = P• Then (o,, ,-) is a configuration of Beh(S, ([pfl. We assumed

partial correctness {p} S {q} so, by Proposition 3.2, for any configuration (o , , E) in

Beh(S, [[p]) a J= q. This guarantees that the final assertion of A implies q. 0

Chapter 3. Annotations for partial correctness

Note, that for the above completeness proof we did not need to extend our

programs with any auxiliary statements and variables nor did we need to use any

extra global invariant.

The formulas Px attached to the configurations of CF(S) in the proof above

can be viewed as the strongest postconditions of some initial segments of S. We

explain this in Chapter 5, but now we remark that the proof of Theorem 3.11

can be alternatively based on the weakest preconditions of the assertion q wrt

some final segments of S. In fact, this would be technically simpler However,

the adopted construction that employs postconditions Px can be reused in the

completeness proofs for deadlock freedom and mutual exclusion in contrast to the

precondition based approach.

3.2.2 Examples

For an introductory example we take a program

S 	x:=x+1y:=y+1

interpreted over integers, i.e. the language of arithmetic is the assertion language

P and the integers with standard operations are the interpretation of P. We show

that {x = y} S {x = y} holds.

Below, we give pictorial representations of CF(S) and annotation A that will

be used to do the proof.

x:=x±1 II y:=y+l

x:=x 	 y+1

y:=y±l 	x:=x+1

Y:=Y\+J 	 +1

E

(x = y,o)

x:=x,/ 	_+i

(x=y±1,o) 	(x+1=y,o)

:=\ /x.=x+l

(x =y,.)

Chapter 3. Annotations for partial correctness
	

49

Assertions of A are indexed with elements of the set {o, .}, (x = y, o) is the

initial and (x = y,.) the final one.

There is an obvious simulation from CF(S) to A. The following evident im-

plications guarantee that A is locally correct.

x=y D (x=y+1)[x+1/x]

x=y D (x+1=y)[y+1/y]

x=y+1 D (x=y)[y±1/y]

x+1=y D (x=y)[x--1/x]

By Corollary 3. 10, {x = y} S {x = y} holds.

A proof of the same partial correctness property based on noninterference of

parallel components would require using auxiliary variables to encode the position

of control flow during computation.

Proposition 3.12 The partial correctness triple {x = y} S {x = y} cannot be de-

rived in the proof system of Owicki and Gries [Owicki Gries 76a] without adding

auxiliary statements to program S.

Proof. Let us recall the parallel composition rule proposed by Owicki and Gries.

proofs {p 1 } S 1 {q 1 } {P2} S2 {q2 } are interference free

{Pi Ap 2 } S1 S2 {q 1 Aq 2 }

Suppose {x=y} x:=x+1 11 y:=y+l {x=y} can be derived in the proof

system of Owicki and Gries without using auxiliary variables. Then, there must

exist' noninterfering derivations of

{Pi} x := x + 1 {q 1 } 	 (3.4)

{P2} y:=y+l {q2 }

where the implications

x=y D p1 Ap 2 	 (3.5)

q1 Aq 2 D x=y 	 (3.6)

Chapter 3. Annotations for partial correctness 	 50

are valid.

The noninterference conditions are

{p 1 Ap2 } x:=x+1 {P2}

{Pi A q21 x 	x + 1 {q2} 	 (3.7)

{p1 Ap9 } y:=y+l {Pi}

{q 1 Ap 2 } y:=y+1 {q1 }

Since the Hoare logic rules are sound, the partial correctness triples that were

assumed to be derivable are valid.

Let us take now any a 0 such that uo 1= x = y. There is or such that (o, o) E

Next, we notice that the derivation of {x = y} S {x = . yj assumed above can

be modified to derive {x = y} S {q 1 A q2 }. Therefore the soundness of Owicki and

Gries's proof system implies a = q1 A q2 . But then or 	x = y by (3.6) and also

or 1= P A P2 A q1 A q2 by (3.5). Consider now a' such that (a, a') e fr 	x + 1.

By (3.4) a' = q1 and by (3.7) cr' = q2 . Hence, by (3.6), a' = x = y which clearly

contradicts a=x=y and (a,a')efr:=x+1. 0

The second example, also of an introductory nature, illustrates that an anno-

tation does not need to be isomorphic to the control flow of the verified program.

Let S be a program

(x 	x+ 1;x := x+ 1) 1 (y := y+ 1;y 	y+ 1).

As before, we show that {x = y} S {x = y}. CF(S) is schematically shown

below, in Figure 3-1. The arrows with no labels are assumed to be labelled as the

arrows parallel to them.

The annotation A presented in Figure 3-2 is used to show the desired partial

correctness property. This time all formulas of A are different so we do not need

to use indices to differentiate between them. Formally, the set of indices is a one-

element set and the indices have been omitted in Figure 3-2. The formula x = y

serves as the initial and final configuration of A.

Chapter 3. Annotations for partial correctness 	 51

S
z:=x+ ,," \=y+1

	

X, 	x3
x

:=X
+,,/ \\ // \\= y + 1

	

X2 	x4 	x6

	

• . x5 	x7

E

Figure 3-1.

x=y+2 	x=y+1 	xy 	x+1=y

	

x:=x+1 	 r:rx+1

Figure 3-2. Annotation A 1 .

It is easy to see that A is locally correct. The function that maps configurations

of CF(S) to assertions of A as tabularized below is clearly a simulation from CF(S)

to A.

S,X 4 ,e i- 	x=y

	

X1, X5 	x=y+1

	

X3, X7 	x+1=y

F-4 x=y+2

X6 	i-# x+2=y

By CoroLtc*.r .3.10 {x = y} S {x = y} holds.

Note that since the used annotation has fewer configurations and transitions

-

Blot.

rM

Chapter 3. Annotations for partial correctness
	 52

than CF(S) the number of cases that need to be considered to verify local correct-

ness of the annotation is reduced.

Next, we work out a standard example, partitioning of a set, [Dijkstra 82,

AFR 80, Barringer 851. Given two disjoint nonempty sets of integers So and T0 ,

S0 UT0 has to be partitioned into two subsets Sand T such that I SI = ISO !, ITI =

T0I and max(S) < min(T). The following predicate will be used to express the

property that two sets are a partition of S 0 U T0 .

ispartition(U, V) 	U U V = So U T0 A U fl V = 0

The program Set-Part presented in Table 3-1 is a solution of the above prob-

lem. In contrast to [Dijkstra 82, AFR 80] we do not adopt the distributed termi-

nation convention but we achieve an equivalent effect by using the same boolean

condition for termination of loops in both parallel components, i.e. we claim that

our solution behaves in the same way as its counterpart which uses the distributed

termination convention.

SeLPart 	Small II Large

Small
mx := max(S)
ch! mx
S:=S—{mx};
ch'?x;
S := S U {x} ; mx := max(S)
do
mx>x;ch!mx

S:=S—{mx};
ch?x
S := S U {x} ; mx := mar(S)

od

Large

ch?y;
T := T U {y} ; mn := min(T)
cli! mm;
T:=T—{mn};
do
mx>x;ch?y =

T:=TU{y};mn:=min(T);
cli! mn;
T:=T—{mm}

od

Table 3-1. Program for set partitioning.

The partial correctness property we want to prove is {Po} Set-Part {p14 where

Po 	S=S0 A T=T0 A SUT=S0 UT0 A S0 flT0 =0 A SJ

P14 	I SI= ISO I A ITI = ITO I A is_partitiom(S, T) A max(S) < minT)

Chapter 3. Annotations for partial correctness
	

53

We show this property following the pattern set in Corollary 3.10. We give a

locally correct annotation A which simulates CF(SeLPart) and has Po and P14 as

the initial and final assertions, respectively.

First, in Figure 3-3 we schematically show CF(SeLPart). Figure 3-4 contains

the graphical presentation of transitions of A. The formulas Pi . are listed

below:

Pi 1St = 1S0 1 A I TI = 1T0 1 A is..partition(S,T) A mx E S

P2 Pi A mx=y

P3 ISI = JS0 1 A ITI = 1T0 1 + 1 A is_partition(S - {mx},T) A mx E S

= p3 A mn = min(T)

St = IS0 I —1 A I TI = IT0 I A is_partition(S,TU {y}) A y 0 T

Pa ISI = IS0 I - 1 A ITI = IT0 I + 1 A zs_paTtztion(S, T)

p6 A mn = min(T)

P8 Pa A mn = x = min(T)

= S0 I A ITI = ITO ! ± 1 A is_partition(S,T - {mn}) A

mn=x=min(T) A S -
Pio p9 A mx = max(S)

Pil ISI = 	—1 A IT! = Tot A is.partition(SU {x},T) A

x < min(T) A x 	S

P12 ISI = ISO 	A ITt = IT0 ! A is_partition(S,T) A x < min(T)

P13 P12 A mx = max(S)

Local correctness of A can be easily checked by examining all transitions. By

comparing Figures 3-3 and 3-4 it is easy to see that A simulates CF(Set_Part).

Moreover, as we observed earlier, checking this could be automatic and then there

would be no need for explicitly presenting CF(SeLPart).

In order to avoid the above list of formulas we could define just P13 and say

that the remaining ones can be obtained by pushing P13 backwards, i.e. by doing

appropriate substitutions in P13• We listed explicitly all the assertions in a readable

form because we believe they give information on how the program behaves. -

Chapter 3. Annotations for partial correctness
	

54

xo

max(S)

X,

ch!mc U ch?y

X2

S:=S_{rnx/ \:=TU{y}

X, x3

\\ // 	 min(T)

X6 	 x4

X7

mx>x;ch!mxljmx>x;ch?ii ch?x 1 1 ch!mn

X8

S:=SU{z>/
\-T:= T

— fmn'f

X9 	 x11
mx 	ma4/ \\ 	\mx > x)

x10 x12 	x17

X 15 	 X 13 	 X is

X16 x19

X 14

Figure 3-3. CF(Set_Part). Arrows not marked with labels are assumed to

have the same labels as the arrows parallel to them. X 0 5, X14

Chapter 3. Annotations for partial correctness
	

55

M

Po

mx max(S)

Pi

ch'mx 	ch?y

S:=S_{m/ \:;TU{V}

P5 	 P3

\mn:=min(T)

P6

mx>x;ch!mzflmx >x;ch?y

\p7/

ch?z 11 ch!rnn

P8

S:= S U {x/

	

T - {mn}

Pg 	 Pii

mx max(V \ / —(

MX > x)

,—Pio 	 Pi
(m>z)U \ / 0

P 30

_(Mx > x)

P14

Figure 3-4. Transitions of annotation A. Arrows not marked with labels :sre

assumed to have the same labels as the arrows parallel to them.

Chapter 3. Annotations for partial correctness 	 56

3.3 Mutual exclusion

Protocols for ensuring mutual exclusion in entering critical sections are among the

most frequently discussed problems in concurrent programming (see [Raynal 861

for a survey). Generally, the problem can be presented as follows. Let S be a

concurrent program which has parallel components S 1 ,. .. , S,. Each Si is alter-

nately executing a critical and a noncritical section. No two components S i are

ever allowed to execute their critical sections concurrently. If this restriction is

obeyed we say that the mutual exclusion property is satisfied by S.

In order to express formally the mutual exclusion property in our framework

we observe that this property reduces to the requirement that the configurations of

CF(S) that violate the mutual exclusion principle are never reached during com-

putations of properly initialized S. It will become apparent in the example below

that such prohibited configurations can be distinguished by analyzing programs

syntactically.

3.3.1 Soundness and completeness

Let us assume thai we have isolated a set E of prohibited configurations of CF(S).

Definition 3.13 A behaviour Beh(S, E) satisfies the mutual exclusion property

specified by a set of prohibited configurations E if for any configuration (a, X) of

Beh(S,E) XE.

Let us assume the following structure of the extended transition systems used

in this section. Clearly, for reasoning about mutual exclusion the set of prohibited

configurations will be adopted as the formal extension E in the control flow of a

program. Extensions of behaviours will be induced from control flows, as described

on page 36. Any annotation A is assumed to have the initial configuration iA and

some set EA of distinguished configurations.

Chapter 3. Annotations for partial correctness 	 57

Proposition 3.14 Let E be a set of configurations of CF(S) specifying a mutual

exclusion requirement and EBeh the extension of Beh(S, >) induced by E. Let EA

be the corresponding extension in an annotation A such that false is the formula-

part of every configuration in EA. If Beh(S,) = A then Beh(S, E) satisfies the

mutual exclusion property specified by E.

Proof. Suppose there is a configuration (a, X) of Beh(S, E) such that X € E.

But then (a, X) E EBeh because EBeh is induced by E. A is satisfied by Beh(S, E)

so there is a simulation p : Beh(S, J) - A such that ci j= p((cr, X)) Since p is

a simulation p((o, X)) E EA which, by the choice of extension EA, means that

a = false leading to a contradiction. 0

Similarly like in the case of partial correctness, Proposition 3.8 implies the

following corollary that proposes a technique for verification of mutual exclusion

property and states soundnessof the proposed method.

Corollary 3.15 Let E and AE be as in the proposition above. If A simulates

CF(S), p D iA is valid and A is locally correct then Beh(S, [p]) satisfies the

mutual exclusion property specified by E. 0

The next theorem gives a completeness result.

Theorem 3.16 (Cook completeness for mutual exclusion) Assume that the asser-

tion language is expressive. If Beh(S, [p) satisfies the mutual exclusion property

specified by an extension E of SF(S) then there exists a locally correct annotation

A simulating CF(S) such that p D iA is valid and false is a formula-part of every

configuration in the extension EA of A.

Proof. We repeat the construction done in the proof of Theorem 3.11. As a

result we obtain a locally correct annotation A which simulates CF(S) and whose

initial assertion iA implies p, as. required. Insted of a final assertion, this time A

has an extension EA induced from CF(S) and therefore comprising configurations

(Px, X), where X E E. Since Beh(S, p]) was assumed to satisfy the mutual

Chapter 3. Annotations for partial correctness 	 58

exclusion property specified by E, there are no configurations (a, X), where X

in the behaviour. Therefore, by the equation 3.3 that defines sets E, >x = 0 for

X E E. Hence the formulas Px that define such sets E X can be indeed taken to

be false, which completes the definition of the required annotation A. 0

3.3.2 An example

A simple mutual exclusion protocol expressed in the language S is presented in

Table 3-2. An await statement is used to synchronize processes S 1 ,... , S,.

S 	= S1jI ... IIS

Si = while true do 	 Ni - noncritical part of S
begin 	 C, - critical section of Si

Ni ; 	 b 	- a variable not appearing
await b then b := false; 	 in any of C2 , Ni .

b:= true
end

Table 3-2.

The prohibited configurations of CF(S) have the shape T 11
•..

Ti,. k < n,

where each Ti, is a configuration of CF(S,) and at least two of Ti, represent

control flow positions inside the critical sections, or to put it formally. Ti,
nan-esZ(on

	

b := true; Si ., where 	is 	figuration of cF(G,). Let E be the set of all

such prohibited configurations of CF(S).

In order to show mutual exclusion in executing critical sections of Beh(S,

the behaviour of our solution S initiated with b = true, we exhibit an annotation

A (Figure 3-5).

Jise
We take b as the initial assertion of A. Formula will be taken as the extension

EA corresponding to the set E of prohibited configurations of CF(S).

A is locally correct: this can be checked by examining all transitions and taking

into account that the actions of N1 and G do not change b. Next, we claim that

await b then b:= false r,r— 	 — I fl
b then b := false

Chapter 3. Annotations for partial correctness
	

59

Figure 3-5. Annotation A. The loop from false to false represents

transitions labelled with all atomic actions of S. The remaining unla-

belled arcs represent transitions labelled with all atomic actions of S

other than await b then b := false and b := true.

there exists a simulation p : CF(S) - A. This can be argued as follows. The

initial configuration S of CF(S) is mapped to the initial configuration b of A. The

configurations of CF(S) that belong to E are mapped to false. Then, the rest of

p can be determined by the property that p preserves transitions. Alternatively, if

the substatements N, Ci are known and n is fixed,existence of p can be checked

mechanically. Note however, that whichever way of establishing the existence of

a simulation p we choose we have to check that for any X E E p maps X to the

formula false of A.

By Corollary 3.15, Beh(S, jb]) satisfies the mutual exclusion property specified

by the set E of prohibited configurations.

Chapter 4

Total correctness

Following [Apt 83], we say that a concurrent program S is totally correct wrt

predicates p and q if S is partially correct wrt p and q and all computations of

S started from states satisfying p are deadlock free and terminating, where the

precise meaning of the two latter properties will be defined in the sequel. Hence,

total correctness proofs split naturally into three parts, each establishing one of

the properties mentioned above. Partial correctness has been already dealt with

in Chapter 3 so it remains to address deadlock freedom and termination proofs.

We do this here, devoting the first section to the development of proof techniques

for deadlock freedom and the second section to termination.

Within the framework of assertional reasoning, deadlock freedom and termina-

tion are usually dealt with by extending proof techniques for partial correctness.

Similarly, our general framework of annotations which we have specialized already

to handle partial correctness proofs will be now reused as a base for deadlock

freedom and termination proof techniques. Deadlock freedom will be handled by

considering those configurations that have some deadlock potential instead of the

final ones, as in the case of partial correctness.

Such deadlockable configurations of control flow will be distinguished by syn-

tactic means and formally added as extensions to control flows of programs. For

termination proofs, the technique of loop counters ranging over a well founded set

will be adapted to the framework of annotations.

M.

Chapter 4. Total correctness
	

61

From this brief description it is clear that we are using familiar ideas to handle

deadlock freedom and termination. The completeness results that we supply and

prove for our methodology are however not presented in related papers [Owicki

Gries 76a, Apt 83 ; Levin Gries 811, where similar ideas are exploited in Hoare-style

formalism. Termination and deadlock freedom are dealt with in [Owicki Gries 76a,

Levin Gries 81] but completeness of the proof systems is not investigated there;

The proof system of [AFR 80] can be also modified so as to handle total correctness

[Apt 831 but again the completeness proof for the extended proof system was not

given there.

4.1 Deadlock freedom

Definition 4.1 Behaviour Beh(S, E) is deadlock free if for any of its nonfinal

configurations (U; X) there exists a transition originating from (a, X).

In this definition of deadlock freedom no distinction is made between deadlocks

resulting from incorrect interaction of concurrent statements - blocked await

statements, unresolved communications - and the situations where the blocking

of computations is not caused by concurrency - an atomic action gives no result,

or no boolean guard of an if-statement of S is satisfied.

In our operational semantics both these cases manifest themselves in the same

way, by the lack of a transition in the operational semantics. Moreover, the fol-

lowing example shows that distinguishing whether it is the concurrency that is

responsible for deadlock is not a trivial task and, in fact, of not clear importance,

which motivates further our decision to disregard such a distinction.

S 	(ch?b ; if b =skip fi) 11 ch!'false 11 ch! true 11 ch?b1

(if b 	skip fi ; ch?b) 11 ch! false I(ch! true 11 ch?b1

Here, the interaction of parallel statements can cause deadlock of S while in a very

similar program T the possibility of blocking is independent of concurrency.

Chapter 4. Total correctness
	

62

Let us consider, informally first, deadlock possibilities in the programs of S,,

and S. We can observe that not all statements have a deadlock potential. An

examination of the transition rules of the operational semantics convinces us that

the possible sources of deadlocks are the await statements in programs of S. and,

in programs of S, communication statements and the if statements. Additionally,

in both programming languages the atomic statements might not be totally defined

resulting in configurations of the operational semantics with no transitions.

This observation is the basis of typical assertional approaches to verifica-

tion of deadlock freedom. The idea employed in [Owicki Gries 76a, AFR 80,

Levin Gries 81] is to isolate potentially deadlockable situations and characterize

them by state formulas which are extracted from partial correctness proof out-

lines. If the formulas characterizing deadlocking situations of a program are not

satisfiable then deadlock is not possible. Similarly, in [Flon Suzuki 81, Apt 86]

the formulation of deadlock freedom property. relies on isolating the potentially

deadlockable situations.

We notice, that in order to distinguish deadlockable situations an analysis of

the control flow of a program is necessary and this, in fact, is done in the papers

cited above by exploiting the implicit correspondence between proof outlines and

programs' control flows, or a particular form of ihe verified program in [Flon

Suzuki 81, Apt 861.

We are going to adopt a similar approach which is especially natural in our

framework, where a rigorous definition of control flow has been provided.

4.1.1 Deadlockable configurations

We formalize here the observation made above, concerning different deadlocking

potentials of program statements.

Definition 4.2 We will say that a configuration X of CF is semantically dead-

lockable if X is not & and there is a E St such that there are no transitions of the

Chapter 4. Total correctness 	 63

operational semantics from (o-, X). A configuration X which is not semantically

deadlockable will be called semantically nonbiocking.

The qualifier 'semantically' is used to distinguish the notions defined above

from another understanding of deadlockable and nonbiocking configurations to

be adopted in the next subsection. Throughout this subsection, however, we

discuss only semantically deadlockable and nonblocking configurations so the word

'semantically' will be skipped.

Nonbiocking configurations of CF can be ignored, in the sense that will become

clear later, during verification of deadlock freedom as they never lead to deadlock.

Examination of the remaining, deadlockable, configurations will be necessary in

our deadlock freedom proofs. Therefore it is important to provide procedures for

distinguishing the nonbiocking configurations, so that they might be eliminated

from the consideration, thus simplifying proofs.

Unfortunately, in general, there is no hope for obtaining an effective procedure

for deciding whether a configuration is blocking or not. To see this, consider the

following simple configurations of CF and CF, respectively,

await -b then skip 	if -ib 	skip fi.

Take the language of arithmetic as the assertion language and assume the standard

interpretation. Each of the two configurations above is noublocking if and only

if the quantifier free formula -b is valid, that is, if b is not satisfiable. But we

can take b to be a Diophantine equation of the form p(x 1 ,... , x) = q(x 1 ,. . . ,

where p, q are polynomials with natural coefficients. A negative answer to Hubert's

tenth problem [Matijasevië 701 implies, that there is no decision procedure for

satisfiability for such kind of formulas b.

Nevertheless, below we show that practically useful classes of nonblocking con-

figurations can be isolated just by syntactic consideration or by examining transi-

tions of control flow, provided some basic knowledge about deadlock potentialities

of atomic statements is available.

Let us assume that we know whether any atomic statement a, considered as

a configuration of CF, is deadlockable or not. In other words, we postulate that

Chapter 4. Total correctness 	 64

we are able to tell whether the domain of 	is properly included in St, in which

case a is deadlockable, or is equal to St, and then a is nonbiocking.

Proposition 4.3 Define the following sets of configurations of CF.

1. The least such subset D 1 of S that

a e D1 	 for any deadlockable atomic statement a of S

await b then a E D1 for any boolean, expression b and atomic action a

T;SED 1 , TIIT'EDi for any T,T'ED 1,SES.

. The set D 2 of those configurations of CF from which only transitions la-

belled with await statements or deadlockable atomic statements originate.

Each of the sets D 1 and D2 contains all dead lockable configurations of CF. There

is an effective procedure for deciding whether a configuration belongs to D 1 (D2).

Proof. By induction on the structure of a configuration of CF,,, we can show that

D1 c D2 . Hence it is enough to prove that D 1 contains all deadlockable configura-

tions. Let X be a configuration of CF. By definition E is not deadlockable, so we

can assume that X is a statement of S. By induction on the structure of X we

show that if X is deadlockable then X E D 1 . Await statements and deadlockable

atomic statements are included in D1 . If X is a while- or if-statement with a

boolean condition b, then either there is a transition from (a, X) labelled with b,

when a J= b, or a transition labelled with -b, if a = -'b. Hence such X is not

deadlockable. When X is a sequential composition S 1 ; S2 then from the definition

of the operational semantics it follows that for S 1 ; S2 to be a dèadlockable config-

uration S1 has to be deadlockable. Then, by the induction hypothesis, S 1 E D1

which implies S1 ; 8 e D 1 . The case when X is a parallel composition S S 2 is

handled analogously.

To justify the second statement of the proposition note that analyzing (a finite

number of) substatements of X allows us to decide whether X is in D 1 or not.

As far as D2 is concerned, the inference rules for transitions of CF give an

Chapter 4. Total correctness 	 65

effective procedure for deriving all transitions from a given configuration X which

is sufficient for deciding the membership of X in D2 . 0

A similar proposition dealing with deadlockable configurations of CF can be

proved analogously.

Proposition 4.4 Define the following sets of configurations of CF

The least such subset D3 of S, that

a E D3 	 for any deadlockable atomic statement a offSc

c E D3 	 for any communication command c

if G fi E D3 	 for any guarded statement G of S

do God e D3 	for any guarded statement G with at least one

communication guard

T;SED 3 , TIIT'ED3 for any T,T'ED3,SESc

The set D 4 of those configurations of CF, from which there are no transitions

labelled with rionbiocking atomic statements.

Each of the sets D 3 and D4 contains all deadlockable configurations of CF. There

is an effective procedure for deciding whether a configuration belongs to D 3 (D4).

0

Let us explain now the role the deadlockable configurations will play in sim-

plifying deadlock freedom proofs. Suppose, a set D of configurations of CF(S) is

known such that D contains all deadlockable configurations among the configura-

tions of CF(S) and let us consider a behaviour Beh(S, E). If for any configuration

(a, X) of Beh(S,), where X E D, there is a transition from (a, X) then Beh(S, E)

is deadlock free. Hence, only the configurations (a,X), where X D need to be

checked for nonblocking.

This motivates the following definition of relativized deadlock freedom:

Definition 4.5 A behaviour Beh(S,) is deadlock free relative to a set D of

configurations of CF(S) if for any configuration (a, X) of Beh(S, E) such that

X E D there is a transition from (o,, X).

Chapter 4. Total correctness

The discussion above can be now concisely summarized in the following propo-

sition:

Proposition 4.6 If D contains all semantically dead lockable configurations of

CF(S) and Beh(S,) is deadlock free relative to D then Beh(S, E) is deadlock

free. D

Proposition 4.6 reduces proving deadlock freedom to distinguishing a set D con-

taining all deadlockable configurations of CF(S) and verifying deadlock freedom

relative to the distinguished set. Techniques for finding deadlockable configura-

tions are provided in Propositions 4.3 and 4.4. Now we address the problem of

verifying the relativized deadlock freedom from which, as explained above, the

standard property of deadlock freedom can be inferred.

4.1.2 Annotations for relativized deadlock freedom

For verification of relativized deadlock freedom we postulate the following struc-

ture of extended lts's. In the control flow of a program, CF(S), apart from the

usual initial configuration we assume a distinguished set D of configurations rela-

tive to which deadlock freedom has to be proved,

CF(S) = (Conf,Act, -) ,S,D).

We will refer to D as the set of deadlockable configurations of CF(S) although now

D is just a formal extension to CF(S), not necessarily consisting of semantically

deadlockable configurations of CF in the sense of the definition in the previous

subsection. D will be always assumed not to contain E. This assumption will be

emphasized by letting T rather than X range over the elements of D. Extensions

of behaviours are induced from control flows of programs. Any annotation A

is, similarly, assumed to have its initial configuration and a set of deadiockable

configurations,

A=(ConfA,ActA, 	
A

,iA,DA),

where DA is just a distinguished set of configurations of A.

Chapter 4. Total correctness 	 67

We need some notation. We have already defined predicates cond(7) for non-
(see p..6)

synchronized communicati 	'.Ncw, we extend the definition of cond to atomic

actions of 	and S. For any atomic statement a we assume a predefined pred-

icate cond(a) such that if a = cond(a) then a is in the domain of 	For the

remaining atomic actions we define

cond(b) = b

cond(await b then a) = b A cond(a)

cond(71) = cond(71) A cond(7 2)

If c is a configuration of any (extended) its with a transition relation -+ let

Act(c) denote the set of all those actions which label transitions starting at c,

Act(c) = { a I 3c, c -- c'}.

Finally, since we consider transition systems whose transitions are labelled

with atomic actions of S or S, we can once more extend the range of cond and

associate a formula corid(c) with any configuration c of control flow, behaviour or

annotation:

cond(c) = V{cond(a) I a E Act(c)}.

The empty alternative is understood here as falsehood. When cond is used in

the sense described above, in order to avoid ambiguities, we will often indicate

the transition system to which cond applies by indexing cond appropriately, for

example cond CF(s) (X), condA(p), COfldB eh ((a, X)).

It follows from the definitions above, the assumed relational semantics of atomic

actions and the rule for deriving transitions of operational semantics that if X is

a configuration of CF(S) then cond cF(s) (X) is a formula of the assertion language

which defines a range of states on which X is guaranteed not to be blocked, i.e.

if a = cond Gls) (X) then there is a transition from (a, X). Note however, that

cond(c) is obtained just by syntactic manipulations once the transitions from a

configuration c are inferred. -

It is clear now, that in order to guarantee relativized deadlock freedom it is

enough to ensure that for any configuration
(

01, T), where T E D, a 1= condCF(s)(T).

Chapter 4. Total correctness 	 68

Proposition 4.7 If Beh(S,) = A and the simulation p establishing the satis-

faction of A by the behaviour satisfies

	

p((o,T)) cond cF(S) (T) for any T e 	 (4.1)

where D is the set of deadlockable configurations of CF(S), then Beh(S, E) is

deadlock free relative to D.

Proof. Follows from definitions. By definition of satisfaction a p((a, T)). Hence

a = cond CF(S) (T), so, by the remark that preceded the proposition, Beh(S, E) is

deadlock free relative to D. 0

Corollary 4.8 If A is a locally correct annotation, p j iA is valid and there is a

simulation p: CF(S) -+ A such that

	

p(T) D cond CF(S) (T) for any T E D 	 (4.2)

then Beh(S, p) is deadlock free relative to D.

Proof. By Proposition 3.8 Beh(S, I[r) = A, where the simulation p' establishing

the satisfaction is defined by p'((a, T)) = p(T). Hence, the proposition above

applies. 0

Note that we did not make any use of the deadlockable configurations of A in

the facts established above. The deadlockable configurations of annotations will

be exploited below.

Corollary 4.8 provides a method for verification of relativized deadlock free-

dom. However, such an approach, imposing a semantical side condition (4.2) on

the simulation, is in disagreement with our intention of separating control flow

considerations from assertional reasoning. In particular, it is necessary to exhibit

the simulation for verification of (4.2) unlike in partial correctness proofs, where

we could rely on mechanical checking that an annotation simulates program's con-

trol flow and did not need to specify the concrete simulation. Therefore we now

refine our framework slightly in order to replace (4.2) with conditions that fit our

general approach.

Chapter 4. Total correctness 	 69

Definition 4.9 An annotation A is deadlock free if whenever p E DA then the

implication p 3 condA(p) is valid.

Definition 4.10 Simulation p: CF(S) - A, where both CF(S) and A are ex-

tended its's with deadlockable configurations, is deadlock preserving if for any

T E D Act(p(T)) = Act(T)

Note that it can be checked mechanically whether there exists a deadlock pre-

serving simulation from a control flow to an annotation.

Proposition 4.11 If there is a deadlock preserving simulation from CF(S) to a

locally correct deadlock free annotation A and p 3 iA is valid then Beh(S, I[) is

deadlock free relative to the set of deadlockable configurations of CF(S).

Proof. Let p be the deadlock preserving simulation and T E D. Since p is a

simulation, p(T) E DA. A is deadlock free so p(T) 3 cond A (p(T)) is valid. As p is

deadlock preserving, the predicates condA (p(T)) and cond CF(S) (T) are equivalent.

Combining these facts together we obtain (4.2). Thus, assumptions of Corollary 4.8

hold which implies that Beh(S, L[I) is deadlock free relative to D.

Conversely, we show that the proof method justified by the proposition above

is complete under the same expressiveness assumption as in the case of partial

correctness (see page 47).

Theorem 4.12 (Cook completeness for deadlock freedom) Assume that the as-

sertion language is expressive. If Beh(S, I[I) is deadlock free relative to a distin-

guished set D of configurations of CF(S) then there exists a locally correct deadlock

free annotation A and a deadlock preserving simulation CE(S) -p A such that the

implication p 3 2A is valid.

'Proof. We proceed in a similar way to the proof of Theorem 3.11. Formulas Px de-

fined there are attached to configurations of CE(S) giving the required annotation

A. This time, however, we do not distinguish the final configuration in A but the

Chapter 4. Total correctness 	 70

set Of deadlockable configurations induced from CF(S): DA = {(pT,T) [T E D}.

The obvious isomorphism from CF(S) to A is a deadlock preserving simulation.

It was shown in the proof of Theorem 3.11 that p implies the initial assertion

2A of so constructed annotation A . It remains to show that A is deadlock free.

Let T E D (recall, that E V D, so T is not E). A was obtained by annotating

CT(S), so condA (pT ,T) and cond cF(S) (T) coincide. Thus, we need to show that

PT D cond Cs) (T). Let a [= PT This means that (a,T) is a configuration of

Beh(S, [[p]J). The behaviour is deadlock free relative to D, so there is a transition

(a, T) -- (a', T'). The rule of operational semantics guarantees that this can only

happen when a E Act(T) and a [= comd(a). Hence a [= cond CF(S) (T). U

4.1.3 Examples

As the first example we will show that our solution to the mutual exclusion prob-

lem presented in Table 3-2 is deadlock free. Our solution contains unspecified

statements N, C. We will abstract from deadlock potentialities possibly con-

tamed in these statements by assuming, that Ni and C2 are nonbiocking atomic

statements. Also, it is postulated that N and C2 do not modify the value of b.

Proposition 4.3 provides the method for distinguishing a set of deadlockable

configurations D of CF(S) such that D contains all semantically deadlockable

configurations.

Figure 4-1 describes the annotation A which, as we will argue below, satisfies

the requirements of Proposition 4.11, hence proving that Beh(S, [[b) is deadlock

free.

The formulas of A are indexed in order to distinguish two appearances of

b, {o, .} is taken as the set of indices. We take (b,.) as a single deadlockable

configuration of A. (b, o) is the initial configuration in A.

There is a deadlock preserving simulation from CF(S) to A. Simply, all dead-

lockable configurations of CF(S) have to be mapped into (b,.) and the initial

S into (b, o). The remaining configurations of CF(S) are mapped similarly as

Chapter 4. Total correctness 	 71

await b then b false

C(b,___ o) 	'- (b, .) await b then b := false (-ib o) I
b:=iriLe 	 Ii

b := true I await b then b := false

(falll1j
Figure 4-2. Annotation A. The loop from (false, o) to (false, o) rep-

resents transitions labelled with all atomic actions of S. The remaining

unmarked arrows represent transitions labelled with all atomic actions

of S other than the explicitly shown ones.

for verification of mutual exclusion (see page 59).

A is deadlock free because cond((b, .)) 	b. Finally, A is locally correct; this

can be checked by examining all transitions and taking into account that the

actions N and C8 do not change b.

For the next example we show deadlock freedom of the program for set parti-

tioning of Table 3-1, precisely, that Beh(Set_Part, S =A O) is deadlock free.

First, we distinguish a set D containing all semantically deadlockable confi gu-

rations of CF(SeLPart). We have to start from saying which atomic statements

of Set-Part are deadlockable. Let us assume that all assignments appearing in

Set-Part are nonbiocking. In particular, we assume that mx := max(S) and

mn min(T) can be executed even if S or T are empty. We will make sure,

however, that such situations will not occur.

to
Let D' be a set of those configurations of CF(Set_Part) that belonj 4 of

Proposition 4.4. Hence, D' contains all semantically deadlockable configurations of

CF(Set_Part). Examining Figure 3-3 we can easily see that

= 1X1 , X 7X 13 , X 16 , X19 }. It is however clear, that X 1 , X7 , X13 are semantically

nonbiocking configurations of CF(SeLPart). Let us then take D = {X 16 , X19 } as

Chapter 4. Total correctness 	 72

the set of distinguished deadlockable configurations of CF(Set.Part). We have just

argued that D contains all semantically deadlock-able configurations of

CF(SeLPart), so in order to establish that Beh(SeLPart, [S :A 011) is deadlock

free it is enough to. show that this behaviour is deadlock free relative to D.

We construct an annotation A satisfying requirements of Proposition 4.11. A

is defined as an annotated control flow of SeLPart obtained by attaching to each

configuration X2 of GF(SeLPart) (Figure 3-3) a formula p i specified below:

Po SoO

Pi max(S) < mx

P2 P5 max(S) < mx A mx = y

P3=P6 max (S)<rnxET

O7 max(S) 	mx A mn 	mx

P8 Pu max(S) 	mx A x < mx

P9 P12 max(S)<mxAx<mxAxES

P17 max(S) < mx A mx = x

P18 max(S) < mx A mx = x A x E S

Pio P13 max(S) < mx

P15 P16 P19 	P14 	mx 	x

- P16 and P19 are taken as the deadlockable configurations of A (without causing

ambiguities we skip the indices Xi when talking about configurations of A). The

obvious isomorphism from CF(SeLPart) to A is a deadlock preserving simulation.

It can be easily checked that A is locally correct. A is also deadlock free as

cortdA(p) = i(mx > x) for i = 16, 19, so pi J coridA (p) holds for i = 16, 19.

This, by Proposition 4.11 ensures that Beh(Set...Part, [S]) is deadlock free

relative to D.

Note that the formulas of A ensure that S and T are nonempty when the

minimum and maximum of those sets are computed.

Chapter 4. Total correctness 	 73

4.2 Termination

Definition 4.13 Beh(S, E) is terminating if there are no infinite paths in it.

Such a definition of termination is consistent with intuition only under the

assumption, which we adopt, that the atomic actions represent terminating corn-

putations.

We adopt the familiar idea of well founded loop counters. We assume that the

assertion language and its interpretation enable the definition of counters ranging

over a well founded set, i.e. there are

a well founded set WF in the domain of the interpretation

a unary predicate wf such that or = wf(l) if a(l) E WF

a binary predicate -< interpreted as the ordering relation on WF

It is assumed that all formulas appearing in configurations of annotations used

in this section have a designated free variable 1 which will be interpreted over WF

(to ensure this, each formula p has an implicit conjunct wf(l)). The symbol will

be used for the obvious reflexive counterpart of -<.

4.2.1 Sàündness and completeness

In order to deal with the termination we distinguish in any CF(S) a set L of

such configurations that any loop in CF(S), i.e a path which starts and ends on

the same configuration, has at least one configuration belonging to L. In other

words, L is a set of configuration which cut every loop in CF(S). L is added as

an extension to CF(S).

One particular choice of L is to take the set of all configuration of CF(S) as

L [Pczkowski 901. It is , however, practically more convenient to choose a possibly

smaller set L. -

Chapter 4. Total correctness
	 74

Observe that since CF(S) is a finite transition system it can be mechanically

checked whether a given set L of configuration of CF(S) indeed cuts all loops in

CF(S).

As usual, the extension L of CF(S) induces an extension LB Ch of a behaviour

Beh(S,). Also, a corresponding extension LA is assumed in any annotation A

used for termination proofs, where LA is just a distinguished set of configurations

of A.

Definition 4.14 An annotation A is decreasing in I if for each transition

(p, j) --* (q, j') the partial correctness triple

{p} a {l' 1' -< 1 A q[l'/l]} 	if (p,j) E LA, or

{p} a {l' I'--< 1 A q[l'/l]} 	if (p, j) 0 LA

is valid.

The following proposition proposes a sound method of doing termination proofs.

Proposition 4.15 If A simulates CT(S), A is decreasing in 1 and p D 31 iA is

valid then Beh(S, {p) is terminating.

a2
Proof. 	Suppose there is an infinite path (o, S) -*

aj (o, X 1) -* 	in

Beh(S, [pU. This implies that S --* X1 --* 	is an infinite path in CF(S).

There must be an infinite subsequence X 1 , X 321 .. of the sequence S. X 1 ,...

such that Xjk E L. To see this, suppose to the contrary that for some n

Vi > n X 2 L. Then, X X 1 is an infinite path. CF(S) has

a finite number of configurations so there must be a loop in this path and by the

choice of L there must be a configuration in L cutting the loop so assumption

Vi > n Xi 0 L leads to contradiction.

Let p be a simulation from CE(S) to A. For the initial configuration S we have

P(S) = iA, and denoting p. = p(X), by properties of simulation, we obtain a path

Pi ___ ... in A. 012 i

Chapter 4. Total correctness
	 75

Since A is a decreasing in 1 and cr0 = p there exist elements w1 E WF such

that a0 [wo /1} 1= iA, o[will] = pi and

w21 -<Wi if Pi E LA 	
(4.3)

W+i:_-<Wi 	pi V

Recall, that X, 1 , X22 ,... is an infinite sequence of configuration belonging to

L. Simulations preserve distinguished configurations, so

pj1 = p(X31) , pj2 = p(X 2) ,

is an infinite subsequence of 2A,P1,P2,•- such that Pj E LA.

By (4.3) this implies that w, w 32 ,... is an infinite decreasing sequence in WF,

which is excluded. The obtained contradiction shows that there are no infinite

paths in Beh(S, I[pJI). °
Proposition 4.15 sets a familiar by now pattern for doing termination proofs.

The flow of control in computations of a program S is represented by the branching

structure of an annotation A. This is formalized by postulating that A simulates

CF(S), which can be checked mechanically. Then, the rest of the proof is reduced

to proving that A is decreasing in 1, that is, to characterizing transitions of A,

where no references to the flow of control are needed.

We show completeness of the proposed proof technique for arithmetical inter-

pretations. Such a relativized notion of completeness, as well as the definition of

arithmetical interpretation below, are taken from [Harel 791.

Definition 4.16 J is called an arithmetical interpretation of an assertion lan-

guage P if

'P contains the symbols of arithmetic (0 1 1 1 k,.. <) and a unary predicate

mat.

J contains the natural numbers in its domain, provides the standard inter-

pretation for the arithmetical symbols and interprets nat(x) as the predicate

defining the natural numbers within the domain of J.

Chapter 4. Total correctness 	 70

3. There exists a predicate R in P such that for any natural number n the

following formula holds

Vv 1 . . . v, y(Vv Vi(nat(i) A n > i) D (R(v, i, y) 	v = vi)) 	(4.4)

providing the ability to encode finite sequences of elements of the interpre-

tation domain in single elements.

Theorem 4.17 Assume that the interpretation is arithmetical. If Beh(S, [p) is

terminating then there exists an annotation A such that A is decreasing in 1,

simulates CF(S) and p D 31 iA is valid.

Proof. Obviously, the numerals contained in the domain of the arithmetical

interpretation are taken as the well founded set needed for termination proofs.

Let us replace wf and -< by more suggestive symbols nat, <.

Denote by x 1 the vector of all free variables that appear in S or p. Let n, 1

be fresh variables. For each configuration X of CF(S) we will define a predicate

compx(xi, n), which is satisfied of a state a if and only if a path of length a(n)

starts from (a, X) in Beh(S, I[pJ).

The required annotation A is then obtained by attaching to each configuration

X of CF(S) a formula

Px = nat(l) A (Vn> 1 -lcompx(xi, n)).

In other words, the above formula is satisfied of a state a if there are no Paths of

length greater than a(l) from (o ,, X).

We have to specify the extension LA of A. Take LA to be the set of all con-

figurations of A. Then, whatever extension L was assumed in CRS), A simulates

CF(S).

It is easy to see that A is decreasing in 1.

Let us check that p D 31 Ps (Ps is the initial predicate of A). Let a 	p.

Although Beh(S, f[p) is not necessarily a tree, it is strightforward to unwind the

Chapter 4. Total correctness 	 77

behaviour obtaining thus a tree which is simulated by Beh(S, I[I) and, similarly as

the behaviour, is finitely branching and has no infinite paths. By König's lemma

such a tree is finite. Hence, Be.h(S, f{p) is also finite and as a result there exists a

bound on the length of path in it. Therefore if a = p then a = al

It remains to define compx. In order to facilitate the notation let us number

the configurations of CF(S) with naturals. Let u 1 , z1 be vectors of fresh vari-

ables of the same length as x 1 and let x 0 , u0 , z0 be yet another fresh (single)

variables which will be interpreted as configurations of control flow. To this end,

configurations of CF(S) are numbered and a configuration is identified with its

number which can be stored in x 0 , u0 or z0 . Finally 'u, z, x will stand for vectors

(u0 , 'a1), (z0 , z1), (x0 , x 1). Thus the configurations of Beh(S, [) can be encoded

in x, U, Z.

We define an auxiliary predicate traris(u, z) expressing 'there is a transition in

Beh(S, I{) from the configuration encoded in it to the configuration encoded in

Z'. Precisely, we want to achieve

a = trans(u, z) if (a[o(u1)./xi1, a(u0)) --* (a[a(zi)/x i], a(z0)).

The predicate trarts(u, z) is defined as a disjunction of the following formulas: for

each transition i --* j in CF(S) take as a disjunct

nat(uo) A. nat(z0) A U0 = i A z0 = j A sp(x 1 = u 1 ,ct)[z 1 /1 1],

where sp(x1 = u, a) denotes the formula expressing the strongest postcondition

of x 1 = u1 wrt a. The postcondition is expressible because the interpretation is

arithmetical.

Accordingly to the definition of arithmetical interpretation there exists a pred-

icate R such that for any natural n (4.4) holds. As a shorthand we will allow

v,, v to be tuples rather than single variables.

Predicate R enables us to define comp(x 1 ,n) by encoding computations in

single elements of the interpretation domain. Namely,

cornp1 (x 1 , n) = nat(n) A 3y (R(x. 1, y) A x 0 = i A

Vk <n uz R(u, k. y) A R(z, k + 1, y) A trans(u, z)). 0

Chapter 4. Total correctness
	 fI;]

4.2.2 An example.

We will show that the program SeLPart presented in Table 3-1 terminates, pre-

cisely, that Beh(SeLPart, JS 54 O) is terminating. We follow the pattern set in

Proposition 4.15. L = {X2 } will be taken as the set of loop-cutting configurations

of CF(Set_Part) (see Figure 3-3).

We supply an annotation A having the same transition relation as the annota-

tion we used for the proof of partial correctness (Figure 3-4). We take L4 = {P2}•

This will ensure that A simulates CF(S). The new formulas Po,• for con-

figurations of A will be provided below.

A counter 1 ranging over the well founded set of integers that are greater than

—2 will appear in the formulas of A . The idea behind A is during an

execution of the loop of the statement Small either the action S := S - {mx}

decreases the number of elements of S which are greater than min(T), or the next

test of the loop guards in statements Small, Large terminates both loops. The

formulas appearing in A handle those two cases differently.

In order to shorten the notation define d(S,T) = Ifs E S J .s > min(T)J,

where IUI denotes the cardinality of a set U. The formulas of A are listed below.

P0 = 	l=d(S,T) A SO

P1 =1 = d(S, T) A mx = max (S)

P2 =l=d(S,T) A mx=y= max (S)

P3 1 = d(S,T) —1 A mx = max(S) A TO O

P4 l=d(S,T)-1 A mx=max(S) A. mn=min(T)

P5 (I= d(S,T) V (max(S) 	min (T) A 1 = —1)) A y> max(S)

P6 (1 = d(S,T) V (max(S) <min(T) A 1 = —1)) A TO 0

P7 (1 = d(S,T) V (max(S) 	min(T) A 1 = -1) A mm = min(T)

P8 (1 = d(S,T) V (max(S) <x A 1 = -1)) A x = mn = min(T)

P9 (1 = d(S,T) V (max(S) = x A 1 = -1)) A SO 0

Pio (1 = d(S,T) V (mx = x A 1 = -1)) A mx = max(S)

Pu (1 = d(S,T) V (max(S) <x A 1 = -1)) A x < min(T)

P12 (1 = d(S,T) V (max (S) = x A 1 ='- 1)) A S 0 0

P13 (1 = d(S,T) V (mx = x A 1 = -1)) A mx = max(S)

P14 l=-2

Chapter 4. Total correctness
	

79

Annotation A defined above is decreasing in 1. For example, let us check that

for the transition P2
S:=mz}

p5 the triple

{P2} S := S - {mx} {l' 1' < 1 A p5 [1/l]}

is valid, i.e.

{l = d(S,T) A mx = y = max(S)}

S:= S - {mx}

{l' 1 <- 1' A (1' = d(S,T) V (max (S) < min (T) A 1' = —1)) A y> max (S)}.

This can be readily verified by considering two cases: either d(S, T) > 0 and

then the statement S := S - {mx} decreases d(S,T) or d(S,T) = 0 which implies

that max(S) < min(T) holds after the execution of S := S - {mx} thus ensuring

that 1' can be taken equal to —1.

Finally, for each i = 1,—, 14 the implication p2 J (1 > —2) is valid which

ensures that 1 ranges over a well founded set.

Chapter 5

Expressiveness issues

In this chapter we discuss expressiveness issues which are important for the com-

pleteness proofs of Chapters 3 and 4. The problem of expressiveness arose first in

Hoare logics. It was observed in [Cook 78, Wand 781 that if the assertion language

is not expressive enough then Hoare logics for sequential while-programs might

fail to be complete. Such incompleteness is considered to be rather pathological

because its source is in the weakness of the assertion language and not in the

program logic itself. Thus, a weaker kind of completeness, Cook's completeness, is

commonly accepted as satisfactory for assertional logics of programs. Cook's com-

pleteness means completeness under the assumption that the assertion language

is strong enough to express the strongest postconditions of programs.

Within the framework of annotations we also relied on some expressiveness

assumptions made on the assertion language. In Section 5.1 we recall the as-

sumption which emerged naturally in the proofs of Theorems 3.11, 3.16 and 4.12.

That assumption is only slightly different from the above mentioned definability

of the strongest postconditions and we will actually show that both conditions are

equivalent, so our assumption coincides with the standard one.

By definability of postconditions' we meant here definability of the strongest

postconditions wrt all programs of the considered programming language, in our

case a parallel one. A natural question to ask is whether concurrency adds anything

to the requirements on the expressive power of the assertion language. We answer

affirmatively this question in section 5.2 observing, that known results concerning

Chapter 5. Expressiveness issues 	 81

determinism vs. nondeterminism can be adopted and used to this end. We would

like to emphasize here that although at the technical level we merely adopt some

otherwise known facts we discover their relevance to the verification of concurrent

programs.

In section 5.3 we give some sufficient conditions under which Cook's expressive-

ness assumptions for concurrent and sequential programs coincide. We prove that

this is the case when Lipton's boundedness condition, first formulated in [Lipton

771, does not hold which means that only for rather degenerate interpretations of

the assertion language is there any difference between sequential and concurrent

cases as far as expressiveness is concerned.

Throughout this chapter care is taken to avoid unnecessary assumptions on

the assertion language and its interpretation. Some of the proofs below could be

simplified if we assumed a Herbrand interpretation or an assertion language con-

taining at least two differently interpreted constants. We considered it a matter

of elegance to avoid relying on such unnecessary assumptions even at the expense

of added complexity to the proofs.

5.1 Expressiveness for annotations

The usual requirement made on assertion languages in order to ensure complete-

ness of various program logics is that the expressiveness condition introduced first

in [Cook 78] is satisfied. We recall Cook's definition of expressiveness but first we

need some notation.

Let R C St x St be a relation. S a program and p a formula. The strongest

postconditions and the weakest (liberal) preconditions are defined and denoted as

shown below:

sp(p,R) 	= Jul I luo cr0 1p A (oo) E R}

sp(p,S) 	= sp(p,JS)

wlp(p,R) = { a c, I(o0,u1)ER D cr1P}

wlp(p, 5) = wlp(p, ESU

Chapter 5. Expressiveness issues

Definition 5.1 An assertion language P and its interpretation J are called Cook

expressive wrt to a class of programs S if for any p E P and S e S the strongest

postcondition sp(p, S) is definable in P. Sometimes we say in short that P is

expressive (J is expressive) if the interpretation J (assertion language P) is known

from the context.

From the above definitions it is clear that for the analysis of expressiveness

issues it is enough to consider the input-output semantics of programs, abstracting

from the more detailed information contained in programs' behaviours. At this

level of abstraction concurrency boils down to the nondeterminism of the input-

output relation.

Commenting on the definition of expressiveness let us note that if P is a first or-

der language with equality then expressibility of strongest postconditions is equiva-

lent to expressibility of weakest preconditions. This fact was shown in [Olderog 831

for programs with possibly nondeterministic input-output relation so applies also

to the concurrent programming languages S,, S.

Recall our notational convention of writ ing S, Act, CF without any of the

subscripts c or w when we mean both cases simultaneously.

In Theorems 3.11, 3.16 and 4.12 a different assumption than expressibility of

pre-/post- conditions was made. Namely, we required that for each program S

and formula p E P, for any configuration X of CF(S) the set of states

EX= {o I (u, X) is a configuration of Beh(S, ([p)}

is definable in P. Ex contains all possible states of computation which may appear

when the flow of control resides at configuration X and, roughly, corresponds to the

strongest postcondition of some initial part of S. This initial part is not, in general,

semantically equivalent to a statement of S, or S . Nevertheless the proposition

below ensures that the requirement of definability of all E x is not a stronger

condition than the usual expressiveness assumption. Conversely, definability of

all Ex implies expressiveness since E e = sp(p, S). Combining those two facts we

arrive at the main statement of this section: the expressiveness condition we

postulated is equivalent to Cook's notion of expressiveness.

Chapter 5. Expressiveness issues 	 IN

Proposition 5.2 Each EX is definable in a Cook expressive assertion language.

Proof. The proof is split into two lemmas below. We introduce a language of

regular programs as an intermediate step. By Lemma 5.3 Ex = sp(p, ex) for some

regular program ex. Then, Lemma 5.4 states that if P is Cook expressive than

any sp(p, C) can be defined in P. 0

proof -f the
The proposition above mentions regular programs. We give the required def-

initions now. Consider Act as an alphabet over which we can build words and

languages. Regular programs are just regular expressions over Act in the sense

of language theory and are defined, as usual' , as the least set containing Act

and closed under the operations of concatenation, sum and Kleene star. If e is a

regular expression over Act let L(e) be the language defined by e, i.e. L(a) = {a}

for a e Act, L(e U f) = L(e) U L(f), L(ef) = L(e)L(f), L(e*) = U' (L(e).

The relational semantics [] of actions can be extended in an obvious way to

words and languages over Act: if a,, .. . , E Act then ia l . . . a,j is defined as

the composition of relations [aJ o o [aj; for a language L C Act ILI is defined

as UWEL ftt4

We can now talk of pre-/post-conditions of languages and regular expressions

understanding by this pre-/post-conditions wrt the input-output semantic relation

induced by them. For example sp(p, L) = sp(p, sp(p, e) = sp(p, L(e)fl.

Lemma 5.3 For each Ex there exists a regular program CX over Act such that

Ex = sp(p,eX).

Proof. Consider CE(S) as a nondeterministic finite automaton over the alphabet

Act taking S as the initial configuration and X as the final one. Let LX be the

language (set of action sequences) accepted by such an automaton. By a simple

induction we can check that F x = sp(p, Lx). The basics of the automata theory

(e.g. [AHU 74]) ensure that the the language Lx can be defined by some regular

expression ex over Act, i.e. Lx = L(ex) and, consequently, sp(p, L) = sp(p, ex).

0

Chapter 5. Expressiveness issues 	 84

Lemma 5.4 Assume the assertion language P and its interpretation are Cook

expressive for S (Se). Then, for any regular program e over Act (Act) and a

formula p the strongest postcondition sp(p, e) is definable in P.

Proof. We handle separately the trivial case of a one-element interpretation do-

main. If the interpretation of P has only one element in its domain then sp(p, e)

is trivially definable because the formulas true and false define all possible post-

conditions.

Let us then assume that the interpretation domain has more than one element.

We consider separately the cases of 	and S. Let us deal with S, first.

For any regular expression e over Act we define a program S which is a

'translation' of e into The only problem is with expressing nondeterrninistic

choices of e. Although there is no explicit nondeterminism in S we can simu-

late nondeterministic choices with a simple parallel statement and deterministic

branching. This is straightforward if there are at least two distinct constants in

the assertion language, say true and false: For example, nondeterministic choice

between S1 and S2 can be then expressed as follows: -

(z := true 11 z := false) ; if z = true then S1 else S2 .

Below we define Se without assuming anything about the existence of constants in

the assertion language. Two distinguished variables z0 and z 1 will play the role of

constants instead. We have assumed that the interpretation domain has at least

two elements so z0 and z 1 can be actually given different values and serve as two

distinct constants. The variables z0 , z 1 and yet another variable z are assumed to

be fresh variables, i.e. not appearing in p or e. The cases when e is just an atomic

action are straightforward:

Se 	a 	 if e is an atomic statement a

if b then skip else loop if e is a boolean expression b

Se 	await b then a 	if e is await b then a

Chapter 5. Expressiveness issues 	 85

In each case I[SeJl = Eel. For a composite e we proceed by structural induction:

Sef 	Se ;Sf

S 	(z := z0 z := z 1) ; if z = z 0 then S else S1

Se * 	(z:=zoIz:=zi); while z=zo do(Se ;(z:=zo IIz:=zi))

Now we can say precisely in what sense Se is a 'translation' of e. Let y denote

the tuple of variables z, z0 , z1 and let c, c0 range over three-element tuples of values

of the interpretation domain. It is not difficult to see (although cumbersome to

prove in detail) that S e defined above has the following two properties:

if (ao ,o) e Eel then (u0 [co /y],a[c/y]) E IS,] for some c0 ,c

if (a0 , a) E ISJ then (a0 [c/y], a[c/y]) E Eel for any c 	(5.2)

Informally, apart from possible differences on values of variables y the input-output

relations of S and e are the same. This is enough to express the postcondition

of e by means of a postcondition of Se . We assumed that the assertion language

is Cook expressive so there exists a formula q defining sp(p, Sc). Using (5.1) and

(5i) above and taking into account that e does not affect z0 and z1 we can check

that

aesp(p,e) if a=yq

so sp(p, e) is definable in P.

The case of S is analogous. We only need to supply a different program S.

For e which is just an atomic action we take

8e 	a
	

if e is an atomic statement a

Se 	if =skip fi if e is a boolean expression b

Se 	z:=t
	

if e is a communication action c? x 11 c! t

For a composite e

Se ;Si

SeUf 	ifz=z =Se Oz=z 	S1 fi

S. 	z:=z0 ; do z=z0 = (Sc ; z:=z0) j z—z0 	z:=z1 od

U

Chapter 5. Expressiveness issues 	 86

5.2 Concurrency adds to expressiveness

requirements

In this section we examine closer the assumption that the strongest postcondi-

tions of all programs are definable in the assertion language. We would like to

investigate whether expressiveness wrt concurrent programming languages S, S

is a stronger property than expressiveness wrt their sequential counterparts. Note

that by Proposition 5.2 the term "expressiveness" refers now both to Cook expres-

siveness and our definition of expressiveness.

We can immediately notice that in the case of S concurrency adds nothing to

the expressiveness requirement. Let S E S and let p be a formula. We observe

that sp(p, S) = EE . From Lemma 5.3 we know that EE = sp(p, e) for some regular

expression e over Act. It was shown in the proof of Lemma 5.4 that sp(p, e) can be

defined by means of sp(p, Se), for some program Se E 5c Moreover, the program

Se we gave there did not contain any parallel composition. So, within S, the

strongest postconditions of statements, whether they contain parallel composition

or not, can be expressed by means of postconditions of sequential statements. This

observation is not surprising because at the level of the input-output semantics

concurrency is reduced to nondeterminism and there is a separate construct for the

nondeterministic choice in S apart from the nondeterminism arising from parallel

compositions.

In the case of the while-language S, whose sequential counterpart is deter-

ministic the situation is different. Let S 3 denote the sequential counterpart of

S, i.e. the subset of those statements of S, which do not contain the parallel

composition.

Proposition 5.5 There exists an assertion language P and its interpretation J

such that P and J are expressive wrt S3 and not expressive wrt S,.

Proof. Any of the two examples [Stolboushkin Taitslin 83, Urzyczyn 83] which

were developed in order to show that Dynamic Logic of regular programs (DL in

Chapter 5. Expressiveness issues 	 87

short) is stronger than Deterministic Dynamic Logic (DDL) can be adopted to our

purpose. Essentially, in each of the above cited papers such a first order assertion

language P and its interpretation J are given that, when interpreted over J,

Every formula of DDL is equivalent to some formula of P.

There is a formula ço of DL (containing a nondeterministic program) such

that çü is not equivalent to any first order formula.

This is enough to show that DDL is not equivalent to DL but at the same time

this serves our aim. Namely, it follows from (1) that P and J are expressive wrt

Srn,. Further, we argue that if 'P and J were expressive wrt S,, then ço would

have been equivalent to some first order formula of P. This follows from the

fact that 5L can simulate nondeterministic regular programs (as has been done

in Lemma 5.4) and that expressibility of strongest postconditions amounts to the

same as expressibility of weakest preconditions which, in turn, are sufficient to

express formulas of DL. 0

We feel obliged to make some comments here. Firstly, we acknowledge Hardi

Hungar for supplying the references above tous and for useful comments. Next,

we point out that although [Stolboushkin Taitslin 83, Urzyczyn 83] contain most

of the technical details needed for the proof of the proposition above they fail to

connect their result to the expressiveness issues.

Such a connection was first done in [Hungar 851, where it was stated and proved'

(independently of what could be concluded from [Stolboushkin Taitslin 83, Urzy-

czyn 83]) that expressiveness in Cook's sense wrt nondeterministic while-programs

is a stronger property than expressiveness wrt deterministic while-programs. Here,

in Proposition 5.5 we point out that the results of [Stolboushkin Taitslin 83,

Urzyczyn 83, Hungar 851 can be also reinterpreted in the context of concurrency.

It is interesting to note that P and its interpretation used for the proof of

Proposition 5.5 are very weak. This is not a coincidence. The next section shows

that for rather pathological interpretations only is there a difference between con-

Chapter 5. Expressiveness issues 	 88

current and sequential programming languages as fax as the expressiveness is con-

cerned.

5.3 Sufficient conditions

This section contains some results giving sufficient conditions under which ex-

pressiveness wrt sequential S3 implies expressiveness wrt concurrent S. Those

conditions essentially ensure that the structure in which formulas and programs

are interpreted is rich enough to allow us to simulate nondeterministic programs

by deterministic ones.

For a motivation let us consider the case when the natural numbers are included

in the domain of the interpretation J and P contains the symbols of arithmetic

which receive their standard meaning in J. Then we can assume an encoding

scheme under which each natural number represents a sequence of binary digits.

For example, binary representations of numbers can serve as the encoding scheme.

Now we can see that for any such an interpretation expressiveness wrt S implies

expressiveness wrt Namely, a concurrent program S can be simulated by a

nondeterministic regular program having the same input-output relation as S (as

it was done in Lemma 5.3). But the nondeterministic program can be simulated by

a deterministic one, let us call it Sd, which replaces nondeterministic choices with

choices determined by a sequence of binary digits encoded in a single variable. Let 1

be the variable used for this encoding. All possible nondeternilnistic computations

can be covered by quantifying over the variable 1 so that, finally. sp(p, S) can be

defined as 31 q where q defines sp(p, Sd).

Above we have used an interpretation and a language containing arithmetic.

We will propose a weaker condition under which expressiveness wrt the sequential

S3 implies expressiveness wrt the concurrent S. The idea is that instead of

including arithmetic in the assertion language it is enough to have programs in

simulating arithmetical operations.

Chapter 5. Expressiveness issues

We are inspired by an interesting result first announced by Lipton in [Lipton

77] which relates behaviours of programs in a given interpretation to definability of

arithmetical operations by first order formulas of the assertion language. Lipton's

theorem originally formulated for deterministic, so called, acceptable languages

applies to S. We quote a strengthened version of Lipton's theorem taken from

[Hungar 87]. As usually. P is a first order assertion language with equality and J

its interpretation.

Theorem 5.6 If J is expressive wrt S then either

1 is weakly arithmetic, or

Lipton's boundedness condition holds.

0

The definitions of weakly arithmetic interpretation and the boundedness con-

dition follow below.

Definition 5.7 We say that Liptons bondedness condition holds for a class of

programs S if for each program S E S there exists a natural number n such that

 Czk
for any path (0

,, S) --) (u 1 , X1) -- ... 	* 	in Beh(S,St) there are at

most n distinct states among a, U1, 	a, i.e. S reaches at most n distinct states

in any computation.

The notion of weakly arithmetic interpretation will not be important in the

rest of this section but we spell out the definition for the completeness.

Definition 5.8 Interpretation J is weak.y arithmetic if there are first order for-

mulas N(x), E(x,y), Z" x), S(x. y), A(x.!],z), M(x,y,z) in P (where x,y,z are

k-element tuples of variables for some k) such that

(1) E(x, y) defines an equivalence relation on dom(J)c such that if u, v, w

dom (J)lc and [u] denotes the equivalence class {v E dom(J)k I E(u,v)}

Chapter 5. Expressiveness issues 	 !JjJ

then there exists a bijection 	{[u] I =j N(ii)} - .Af (i¼1 is the set

of natural numbers)

=j N(u) A Z(u) if ([u]) = 0

=j N(u) A N(v) A S(u, v) if ([u]) + 1 = ço([v])

l=j N(u) A N(v) A N(w) A A(u, v, w) if ço([u]) + go([v]) = ço([w])

(4) =j N(u) A N(v) A N(w) A M(u,v,w) if ([u]). co([v]) = ço([w])

In other words, W above can be viewed as a partial function from dom(J)c onto

A1 while the formulas N(x), E(x, y), Z(x), S(x, y), A(x, y, z), M(x, y, z) define,

respectively, the domain of çü, equality, zero, successor, addition and multiplication

according to W.

Now we prove the main theorem of this section, in which we observe that Lip-

ton's boundedness condition can be used to distinguish interpretations for which

expressiveness wrt S3 implies expressiveness wrt In the proof we use a simu-

lation technique similar to the one used in the proof of Lipton's theorem in [CGH

831 but we manage to avoid the assumption made there that the interpretation is

Herbrand definable.

Theorem 5.9 If Lipton's boundedness condition does not hold for S, then ex-

pressiveness wrt S, implies expressiveness wrt S W .

Proof. The proof idea is as follows. Assuming Lipton's boundedness condition

does not hold we will provide an encoding of naturals within the set of states St

and define two operations on the encoded naturals corresponding to taking the

reminder modulo 2 and dividing by 2. This is enough to compute binary represen-

tations of naturals, i.e. sequences of zeroes and ones. Then the argument sketched

at the beginning of this section can be applied. An execution of a concurrent

program can be reduced to a nondeterministic computation whose nondetermin-

istic choices can be replaced by a sequence of choices determined by a sequence

Chapter 5. Expressiveness issues 	 VI

of zeroes and ones generated as indicated above. By quantifying the pest-condition

of the deterministic program over the variables used for encoding natural num-

bers all sequences of zeroes and ones can be covered and, as a result, all possible

nondeterministic computation too.

Now details. Let S0 be a program in 	for which the boundedness condition

does not hold. That means for any natural n there is a path

(o0,S0) -* 	 ... -+ (o, X)

in Beh(S 0 , St) with at least n + 1 distinct states among UO,Uk

As a first step we will use S0 to develop a procedure for generating n + 1

consecutive different states. Unmodified S 0 is not good enough because the states

1k generated by So can contain repetitions. We will define a statement

of S3 called Step whose consecutive executions will have the same effect on the

variables of S0 as the execution steps of S 0 itself but Step will be additionally

encoding the configurations of control flow S 0 , X1 , Xk in some extra variables

thus distinguishing the states that otherwise would be repeated.

Let x be the vector of all variables that appear in S. Let Y0 ,. Y be all

configurations of CF(S0) numbered in such a way that Y0 is the initial configu-

ration of CF(S0), Y0 S, and m is the final one, Y, e. We will introduce

fresh, that is disjoint with x, variables z0 , z 1 , d0 , ... , d. The variables z0 and z 1

will play the role of two different constants, like in the proof of Lemma 5.4. There-

fore we have to assume that the interpretation domain has at least two elements

so that z0 and z 1 can be given different values. (The theorem holds trivially for

interpretations with one-element domain because such interpretations are always

expressive.) The variables d0d will be used to encode the configurations of

CF(S0). The encoding will work as follows. We will make sure that at any time

throughout the computations of Step only one di among d0 ,.. . , dm is equal

to z 1 and the remaining d, are equal to z0 . Such a valuation of variables will be

understood to encode the configuration Y.

Chapter 5. Expressiveness issues 	 92

We need some notation. For c, an atomic action of Sn,, we define a boolean

expression bool(cr) and a statement op(a) as shown below:

bool(a) = true 	 OP(a) = a

bool(b) = b
	 op (b) = skip

bool(await b then a) = b 	op(await b then a) = a

Note that a] = if bool(a) then op(c.

Now we are ready to define Step.

Step 	if d0 = z1 then transition1

if dm = z1 then transitionm

where transition, is a statement defined as follows depending on the number of

transitions originating from configuration Yj in CF(So):

(0) no transitions from Yj

transition, = skip

one transition Y, --*

transition, 	if bool(a) then (op(a) ; d, := z0 ; d3 := z 1)

two transitions Yj
a -p. 	-p

transition, 	if bool(cx) then (op(a) ; d, := z0 ; d3 := z 1)

else (op(/3) d, := z0 ; d 1 := z 1)

Since S0 does not contain the parallel composition it follows from the derivation

rules of control flow that there are at most two transitions from any configuration

of CF(S0) and if there are two transitions then they must be a result of an if

statement or a while loop. Thus a and 0 labelling the transitions Y, ' and

Y above must be boolean expressions and one is a negation of the other.

Consider now the states r0 ,. .. , r such that

Chapter 5. Expressiveness issues
	

93

- To possibly differs from a 1 only on variables z0 , z1, 4. .. , d and r0 en-

codes, in the way described above, configuration 1'0, that is, 7-0 (z0)ro (z 1),

= 'r0(z1) and ro (d2) = r0 (z0) for i = 1,. .. .

- (r, +1)EStep for i=O,...,n—1

It is easy to see that i(y) = u2 (y) for y V {z o ,z 1 ,do ,. . . ,d} and Tj = r3 if

(ui , X) = (ui , Xi). Now, m..... T must all be different, otherwise, by the obser-

vation above, the path

' (o,, X2)
2'

(go, S0) (o f , X) -~ ... 	 —p ... -4 (Q, Ak)

would contain a repetition of some configuration: (o, X) = (up X,), i < j <

n. But S0 is deterministic, so starting from (o,, X) only the repetitions of the

preceding configurations would appear contradicting the assumption that there

are at least n different states among °,•• , 0 k.

The argument above can be repeated for any natural n, so we conclude that

for any n there is such a state 'r0 that n consecutive executions of Step staring

from To give mutually different states r1 ,.. . , r,,, (, 74) E jStep j .

The program Step enables us to provide an encoding of natural numbers in

the states. Let u1 denote the tuple of variables x, z0 , z 1 , d0 ,... , d and let u2 be a

tuple of fresh variables of the same length as u1 . A state r will represent a number

n if the program

while u1 0 'u2 do Step

does exactly ii repetitions of its loop when started from the state r. We write then

num('r) = n. The properties of Step guarantee that for any natural n there exists

such a state r that num('r) = n. Namely, we have seen that for any n we can have

n + 1 different states r0 ,. . . , r. (Tj, ±1) E Step. It is enough then to ensure

that the loop will halt after exactly n repetitions. That can be done by modifying

To so that it gives an appropriate valuation for u 2 : if we take' = T0[r7 u1)/u2]

then nuc'n(-r) = n. O

As a next step we show how to perform division by 2 and the modulus opera-

tions on numbers encoded in the states. Consider the program Seq defined below,

Chapter 5. Expressiveness issues 	 94

where t 1 is another vector of fresh variables of the same length as ti1 and z a single

fresh variable:

Seq 	z:= z0
 ;

t :=Uj
;

while tL1 0 u2 do

if z = z0 then (z := z 1 ; Step Step[i i /u1])

else (z := z 0 Step)

:= t 1

We note the following property of Seq: if (r, 'r') E [Seq] and 7-(z 0)

and num(r) = n then

mum('r') = n div 2,

T'(z) = 'r'(z0) if ii mod 2 = 0

'r'(z) = r'(z1) if n mod 2 = 1.

Thus consecutive executions of Seq started from a state T encoding any number

n = num('r) can be used to generate a sequence of binary choices (z = zo or z = z1).

So generated sequence corresponds to the binary representation of the number n so

by changing the starting state r we are able to cover all possible choice sequences.

Finally, we are able to prove the thesis of the theorem. We show that sp(p, T)

is definable in P for any program T E S, provided P is expressive wrt S.

By Lemma 5.3 sp(p, T) = 	= sp(p, e) for some regular program e over Act.

We can assume that all variables in Seq above are disjoint from variables of e

and p. Similarly as in the proof of Lemma 5.4 we show how to simulate e by

a sequential program Sc E The clauses for atomic actions and sequential

composition remain unchanged. The remaining clauses are as follows:

Su - 	Seq ; if z = z0 then S, else Sf

Seq ; while z = z0 do (Se Seq)

The rest of argument is analogous as in Lemma 5.4 and, finally, sp(p, T) = sp(p, e)

is definable as 3u1 3u23t 1 q, where q expresses sp(p, Sc). 11

Combining Theorem 5.9 with Lipton's Theorem we obtain

Chapter 5. Expressiveness issues 	 95

Corollary 5.10 If the interpretation J is weakly arithmetic then expressiveness

wrt S implies expressiveness wrt SW. 0

We end the section with a remark on interpretations that have finite domains.

The proposition below appeared in [Clarke 791 but the proof apparently relied

on ability to express any element of the interpretation domain by a term of the

assertion language. We remove this assumption.

Proposition 5.11 If the domain of J is finite and psconditions of atomic state-

ments of S,, are definable in P then J is expressive wrt S, (hence also wrt S 3).

Proof. Let S E SW and p be a formula. By Lemma 5.3 sp(p, S) = EE = sp(p, e)

for some regular program e. Denoting by L the language L(e) we have

sp(p,e) = sp(p,L) = U sp(pjwfl
wEL

But the sum over w E L can be presented as a finite sum. To see this, let

x denote the vector of all variables appearing in p or e and note that if a E

sp(p, w) then for any a' such that a(x) = a'(x) a' E sp(p, Further, since

dom(J) is finite there are only finitely many different valuations of variables x.

Those two observations guarantee that the sum above can be in fact presented as

sp(p, w 1flU.. .Usp(p, [wj) for some w 1 ,... , w E L. The strongest postconditions

of atomic actions are assumed to be expressible in P. Hence the postconditions

sp(p, w1l) are also expressible. Finally, the alternative of the formulas expressing

sp(p, w 1) defines the finite sum of sp(p 0

Note that if the atomic statements of S are just assignments, like in [Clarke

79], the assumption about definability of po5tconditions of atomic statements is

satisfied for any first order assertion language with equality.

Theorem 5.9 and Proposition 5.11 justify our claim that only for rather unusual

interpretations there is a difference between the expressiveness requirements for the

sequential (deterministic) and parallel (nondeterministic) programs. On one hand

such interpretation has to be infinite, on the other hand Lipton's boundedness

condition must hold for the sequential programs.

Chapter 6

Reducing nonessential interleavings

The proof methods developed in previous chapters were founded on the concepts

derived from operational semantics of programs: one-step transitions and control

flow. This resulted in a global approach, where the whole program was reasoned

about at once. Although this allowed us to propose a conceptually simple verifica-

tion principle for which soundness and completeness results were readily obtained

it is apparent that the size of annotations might grow very rapidly with the size of

programs. In this chapter we address this problem and provide a method of reduc-

ing the size of annotations by exploiting the fact that not all action interleavings

need to be considered when certain commutativity conditions hold for the actions.

The idea of relying on some commutativity assumptions in analysis of concur-

rent systems appears already in [Keller 71] but systematic study of concurrent

systems whose actions are equipped with a partial commutativity relation started

in [Mazurkiewicz 771. The approach proposed by Mazurkiewicz has since been re-

searched under the name of trace theory and used primarily to describe behaviours

of Petri nets (see [Aalbersberg Rozenberg 88] for a survey). Mathematically equiv-

alent theory, the algebraic theory of partially commutative monoids, had been re-

searched even earlier, starting from [Cartier Foata 691, where the main motivation

came from the combinatorial problems arising from rearrangements of strings.

Numerous applications of trace theory or otherwise expressed assumptions on

commutativity of actions in concurrent behaviours were proposed, mostly how-

ever, in the context of modelling or defining semantics of concurrent systems.

Chapter 6. Reducing nonessential interleavings 	 97

Exploiting these ideas in logical reasoning on concurrency is a more recent de-

velopment. Interleaving Set Temporal Logic, proposed in [Katz Peled 87] and

systematically developed since then, is a temporal calculus based upon trace se-

mantics of programs. In [Back 88, Back Sere 90] nonsymmetric commutativity

assumptions are used to ensure that refining atomicity of actions preserves total

correctness of programs. Other, applications of independence or commutativity as-

sumptions in reasoning about concurrent behaviours can be found in [Zielonka 80,

Lamp ort Schneider 89].

Here, we will use the basic concepts of trace theory as a convenient tool for

defining a reduced representation of program control flows, where some nonessen-

tial action interleavings are ignored. By doing this we demonstrate that commu-

tativity of semantically independent actions can be exploited also in an assertional

framework.

A rather overlooked point that will become clear in our approach is that al-

though considering all action interleavings can be avoided by appealing to trace

equivalence, verifying whether such an abstraction faithfully represents the orig-

inal behaviour of a program is not decidable, in general. Therefore apart from

developing proof techniques that use reduced representations of program control

flows we propose a mechanizable (though obviously not a complete) method of

checking that a reduction adequately represents the full interleaving of actions.

The necessary background on trace theory will be given in Section 6.1 below.

Section 6.2 will introduce the notion of reduction of control flow and deal with

decidability issues. In Section 6.3 the proof techniques developed so far will be

modified so as to exploit the introduced notion of reduction. Finally, in Section 6.4

examples will be worked out.

Chapter 6. Reducing nonessential interleavings 	 98

6.1 Trace equivalence

In order to capture the idea of inessential interleavings of actions we use trace

equivalence, the basic notion of trace theory. Below, we set up the necessary frame-

work, following in principle standard presentations of trace theory [Mazurkiewicz

88, Aalbersberg Rozenberg 88].

Let us consider Act, the set of actions of either of our programming languages,

as an alphabet over which words and languages can be formed, so that (Act, , A)

is a monoid with the operation of concatenation and the empty word A.

The primitive concept underlying trace equivalence is an independence relation

on actions. Since we deal with interpreted actions, we impose an extra semantic

condition on the independence relation which is normally not used in trace theory,

where uninterpreted action systems are considered.

Definition 6.1 A symmetric relation I on actions, 1C Act x Act, satisfying

if a113 then [j3] = [6fla (6.1).

will be called an independence relation on actions.

When cJ/3 we say that actions a and ,@ are independent. The word 'commu-

tative' would perhaps be more suitable in this context but we decided to follow a

predominant terminology of trace theory.

In trace theory, which is concerned with causal dependence or independence

of actions, it is customary to assume that the independence relation is irreflexive.

We do not make this assumption; in fact, in our case I can be always assumed to

be reflexive because (6.1) is trivially satisfied for /3 a. We will see, however, that

the definition of trace equivalence, the crucial notion of trace theory, is insensitive

to this little difference.

We note that although (6.1) appeals to the semantics of actions, syntactic

considerations are often sufficient to establish that (6.1) holds. For example, if

Chapter 6. Reducing nonessential interleavings 	 99

two assignments x 1 := t 1 and x2 	t2 obey the syntactic restriction (known as the

Bernstein condition) that x 1 V var(t2), x2 V var(t1) and x 1 	x2 , where var(t1)

denotes the set of variables appearing in the term t, then (6.1) obviously holds

for the two assignments. This observation extends to boolean and communication

actions, and can be also applied to atomic statements a and containing them await

statements provided that for each atomic a two sets of variables modified(a) and

var(a) are distinguished by analogy to the case of assignment, that is, satisfying

modified(a) civar(a)

if (u, o') e a] and x V modified(a) then a(x) = o'(x)

if (,!) E 	and x 0 var(a) then (a[v/x],cr'[v/x]) E fta

(v stands for arbitrary element of the interpretation domain). Then, a syntac-

tic condition var(a1) fl modified(a 2) 	0 = modified(a l) fl var(a) ensures that

Ea 	= a2 ftaj.

Also, syntactic constraints imposed in definitions of some concurrent program-

ming languages ([Hoare 78, Owicki Gries 76b]) restricting sharing of variables be-

tween program statements composed in parallel translate naturally into particular

independence relations on actions.

We remark that in [Best Lengauer 891 a related notion of semantic indepen-

dence is defined which generalizes Bernstein condition. Semantic independence is

a stronger requirement than commutativity of actions and takes into consideration

the possibility of concurrent implementation and execution of actions on disjoint

pieces of memory. For our purposes the commutativity condition (6.1) is sufficient

but clearly a stronger requirement like semantic independence could be adopted

instead.

An independence relation on actions gives rise to an equivalence on strings of

actions, the trace equivalence.

Definition 6.2 Let '-4 be a relation on Act* defined

= {(wc/3v,w/3cv) I cJf3, w,v E Act*}.

Chapter 6. Reducing nonessential interleavings
	

100

The reflexive transitive closure of '-'., denoted '-..' is called the trace equivalence

determined by I. Equivalence classes of Act* wrt '-' will be called traces and [w] 1
will denote the equivalence class of w E Act*.

The definition implies that two words w, v over Act are trace equivalent if and

only if there exists a sequence of words w = w 1 , w2 , ..., w,, = v such that w, 1 is

obtained from wi by a transposition of two consecutive independent actions.

Note that since 	is defined as a reflexive transitive closure, trace equivalences

and I2 determined by independences 11 and 12 = 11 U Id, where Id stands for

identity relation, are identical. Hence, reflexivity or irreflexivity of the indepen-

dence relation is indeed immaterial as far as the definition of trace equivalence is

concerned.

We illustrate the introduced definitions with simple examples provided below.

Example 6.3 Let Act = {a 1 ,a2 ,d1 ,d2 } and let aId for i,j = 1, 2. Then

[a1 d1 a2 d2] 1 = { a1 a2djd2 , a1 d1 a2 d2 , d1 a1 a2 d2 , a1 d1 d2a2 , d1 a1 d2 a2 , d1 d2 a1 a2 }

I
(a1a2 d1 d2)

' 	
(a1 a2)

ri
 (d1 d2)

0

We note the following fact often taken as the definition of trace equivalence.

Proposition 6.4 '-.'1 is the smallest congruence in the monoid (Act,., A) con-

taming I. 0

The semantic condition (6.1) imposed on independence relation allows us ro

state

Proposition 6.5 If a 1 ... an 	. . ./3, then Jall ... 	= P1 1 ... JBJ 0

Chapter 6. Reducing nonessential interleavings
	

101

6.2 Reductions of control flows

Consider the control flow of a program S,

CF(S) = (Conf,Act, -

where E is some extension. Let us assume some independence relation I on Act.

Definition 6.6 An extended Its 7?. will be called a reduction of CF(S) if

7?. is a substructure of CE(S) whose distinguished configurations coincide

with those of CE(S),

7?. = (Conf, Act-R, - , 5, E),

for any path S -* -s..'- 	 V.
-p ... - 	in CE(S), where X, E B, there is a

'

	

X 	 ' ' 5 	 X in 	such that —). path 	 1 	 n-i 	 7?.

a1 an —1 a1 a. n

Figure 6-1 shows schematically CE(S) and its two reductions 7?., R., where

S is a simple program (a 1 ; a2
)

11 (dl ; d2) . The independence relation is assumed

to be the same -as in Example 6.3, the initial configuration S and the final E are

taken as the extensions in MS).

Even from this simple example it is clear that a reduction of CE(S) can be

a considerably smaller transition system than CE(S) provided the independence

relation is generous enough. In the next section we demonstrate that reductions

can be used in place of CE(S) in the proof techniques developed so far hence

scaling down the size of annotations and the task of program verification. Here

we discuss the problem of finding reductions of a given control flow of a program.

Unfortunately, there is no hope that verifying whether 7?. is a reduction 'of

CE(S) can be always done mechanically. This is implied by the result taken from

[Aalbersberg Hoogeboom 871 which provides a necessary and sufficient condition

Chapter 6. Reducing nonessential interleavings 	 102

S 	 S 	 S

/a2
A.

E

CF(S)

Figure 6-1.

for decidability of equality for trace languages. Traces are considered there from

the point of view of formal language theory, that is, uninterpreted alphabets and

languages are considered. Let us adopt this point of view for a while. Let then

be any alphabet, ie. a set of symbols, over which words and languages are consid-

ered. Let us drop the semantic condition (6.1) from our definition of independence

(Definition 6.1) and so let I be a reflexive relation on determining trace equiv -

alence on (the omited clause of the definition of independence was not used in

defining the trace equivalence). If L is a string language over let [L]1 denote the

trace language determined by L defined in a natural way: [L]1 = {[w] 1 I w E L}.

If L is a regular string language, [L]1 is called a regular trace language.

Theorem 6.7 (Aalbersberg and Hoogeboom) Let 'E", I be as described above. It

is decidable for arbitrary regular string languages L, K whether [K]1 = [LI1 if and

only if I is transitive. 0

This result translates into our framework of interpreted actions allowing us to

formulate

Theorem 6.8 The necessary and sufficient condition for the existence of a pro-

cedure which would take a program S and a substructure R. of CF(S) and decide

Chapter 6. Reducing nonessential interleavings 	 103

whether 7Z is a reduction of CF(S) is that only transitive independence relations

are allowed.

Proof. Consider CF(S) and R. as finite automata, taking S as the initial config-

uration and E as the set of final configurations. Condition (2) of the definition of

reduction (Definition 6.6) is equivalent to requiring that the trace languages de-

termined by CF(S) and 7?. are equal. This means that 7?. is a reduction of CT(S)

if and only if condition (1) of Definition 6.6 and the above language equality hold.

Since satisfaction of (1) of Definition 6.6 is evidently decidable, deciding whether

7?. is a reduction of CE(S) amounts to deciding equivalence of trace languages

determined by 7?. and CE(S).

Therefore, Theorem 6.7 clearly implies that transitivity of independence rela-

tion guarantees decidability of whether 7?. is a reduction of CE(S).

In order to show that transitivity of independence relation is a necessary con-

dition for the decidability postulated in this theorem, it is enough to show that

any instance of the equality problem of regular trace languages can be reduced to

equality of trace languages determined by CF(S) and 7?., for some appropriately

chosen S and 7?.. Although CF(S) and 7?. are rather special kinds of automata as

CF(S) is a control flow of a program and 7?. is a substructure of CF(S), it turns

out that such a reduction is always possible. Roughly, this is because both S,, and

S contain the necessary means for simulating regular expressions. Details of this

argument are moved to the lemma below. El

Lemma 6.9 Let K and L be two regular string languages over an alphabet and

let I be an independence relation on . There exist a program S of 5w (Sc);

£USfruc&.ires k,Rof CE(S) and an equivalence relation I' on the atomic actions of S

such that [K]1 = [L] 1 if and only if l?. 	reductionsof CF(S).

Proof. Without loss of generality we can assume that K and L are defined

by regular expressions eK and eL respectively. Taking into account the equality

[K U L] 1 = [K] 1 U [U 1 (c.f. [Aalbersberg Rozenberg 881, for example) we observe

Chapter 6. Reducing nonessential interleavings
	

104

that 	[K] 1 = [L] 1 if [K U L] 1 = [K] 1 and [K U L] 1 = [L] 1 .

Accordingly, below we construct a program S and a substructure R 1 of S such

that R is a reduction of CF(S) if and only if [eK U eLII = [CK]I. A symmetric

argument can give fl.2 such that fl. 2 is a reduction of CF(S) if [eK U eLlI = [eL]I.

Let us assume that the symbols of the alphabet E are assignments of the

form x := x, where a different variable is used for each symbol of E. Such an

assumption amounts to a possible one-to-one, renaming of the symbols of EE and

hence does not affect equality of languages [K] 1 and [L] 1 . Since different variables

are used for different symbols of , the independence relation on E satisfies the

semantic restriction (6.1) we requested of independent atomic actions of programs,

so interpreting the symbols of as assignments is admissible.

Furthermore, let us assume that y and z are two variables not appearing among

the variables involved in representing symbols of and let b denote the hoolean

condition y = y and a the assignment z := z. We add b, -ib, ---b and a to the

alphabet E and extend the independence relation I in such a way that the added

symbols are independent of all the remaining symbols of E. Again the assumption

about y and z guarantees that (6.1) is not violated. The resulting independence

relation will be taken as the required I'.

Suppose that e is a regular expression over (extended) EE whose actions are

different and independent from actions appearing in eK and eL. We note that

[eK U eL]I = [eK]1 if [e(eK U eL)]I = [eeK]I. 	 (6.2)

Below we will take e to be

(ba)b)(ba)*(i b)

where the assumptions about y and z ensure that actions of e are independent

and disjoint from actions of eK and eL.

Let T denote the statement

(while b do a) ; (while -'b do a)

Chapter 6. Reducing nonessential interleavings 	 105

of S,,, or the statement

do =aod; do-'b =aod

of S, depending on the language we are dealing with. CF(T), when considered as

a finite automaton, determines the regular trace language language [e]1 .

Next, by induction on the structure of a regular expression f a program Sf will

be defined such, that when control flows of programs are considered as automata

defining regular languages the following will hold

[CF(T;Sf)]I = [ef]. 	 (6.3)

For the case of S the program S1 is defined as follows

S1 	f if f is a symbol of E

S1 if2 	S ; Sc2

S1112 	if b then (a; S11) else (a; S12)

S1 . 	 while bdo(a;S1); a

and analogously for the case of S.

Sf defined above satisfies (6.3). In establishing this property ,,we strongly rely

on the ability to permute the independent actions b, -tb, -i-'b, a with the remaining

actions of

Consider now CF(T; SeKUeL) which, according to the definition of S1 , is equal

to CF(T ; if b then a; SeK else a; SeL). Figure 6-2 below presents schematically

this control flow.

Let Rbe a substructure of this its obtained by cutting off the dotted part.

T and S1 were defined in such a way that

[CF(T; Se K eL)]I = [e(eK U eL)]I

and

Pill = [CFI:T;SeK)]I = [eeK]I

Chapter 6. Reducing nonessential interleavings
	

106

T; Se K Ue L

JT

a

Figure 6-2. CF(T;SC K Ue L)

By (6.2) we conclude that R, is a reduction of CRT; SeKUCL) if and only if

[eK U eLII = [eK]I which ends the proof. 0

In our case, when the independence relation on actions is determined by the

semantic condition (6.1), transitivity does not hold as a rule. To see this, consider a

simple example of a program S (a1 ; a2)1Id. Typically, while d can be independent

of both a1 and a2 , the statements a 1 , a2 are not independent as they belong to the

same process and operate on the same variables. But this violates the transitivity

requirement.

Faced with the undecidability implied by the theorem above we propose a

sufficient condition for R to be a reduction of CF(S). Verification of this weaker

condition can be done mechanically.

Let us replace the condition (2) of Definition 6.6 by the weaker requirement

(2') below.

Definition 6.10 Let R be a substructure of CF(S). Assume a set C of config-

urations of R. is known such that C contains all distinguished configurations of

Chapter 6. Reducing nonessential interleavings 	 107

CF(5)

CF(S) and that every loop in `-", has a configuration belonging to C. R. is called a

strong reduction of CF(S) if

(1) 7? is a substructure of CF(S) whose distinguished configurations coincide

with those of CF(S),

(2') for every path X0 -- 	-- X,, in CE(S), where X0,X E C and X2 C

	

_ 	a 	___

	

for 0 < i <n, there exists a path X 0 -2_4 X 1 	.' 	.' X_ 	X in

7. such that c 1 . . . an 'i n

Note, that C is required to be the set of loop-cutting configurations just like

the extension L of program control flows used for termination proofs. This time,

however, we do not add C as an extension to the control flow and we use a different

symbol to emphasize this. Also, note that (1) above coincides with condition (1)

of the definition of reduction, Definition 6.6.

Proposition 6.11 A strong reduction R. of CF(S) is a reduction of CE(S). 'To

be a strong reduction' is a decidable property.

Proof. We have to check that (2) of Definition 6.6 is implied by (2') above. Let

X7 be a path in CE(S) such that X0 S and X E E. Denote

this path by LI. Since X0 , X E C , H can be decomposed into a sequence of

segments

H = H 1 .. 	 H = 	
ayj 	ai .1

 Hk,

where X. e C and the configurations between X , and X 1 do not belong to C.

By (2') there are paths ll, in 7Z,

a' 	 a' 	a' . 	 a' ... 	,+1 .,.' 	,+2 	 ,,i 1 	 12+1

	

11. = A . -+ A. 	A. 	-4
J 	 z,+i-]. 	 23+1

such that a +1 . 	' i a+ 	- 1 .. 	 is a congruence, so for the path

.. . H we have a 1 .. . a, ' a. . . a which ends the proof that 7?. is a

reduction of CE(S).

Checking whether condition (1) holds can be clearly done mechanically as

CE(S) is a finite its. To see that verifying (2') can be also done algorithmically

Chapter 6. Reducing nonessential irzterleavings

note that for any path X 0 -p 	-p X, in CE(S) such that X 0 , X,, E C and

X C for 0 <i <n we have X1 0 X, for 0 < i,j <n. Otherwise, there would be

a loop in the path above and, by the choice of C, there would be a configuration

in C cutting this loop contrary to the assumption that X C for 0 <i <n.

Being a finite its CE(S) has only a finite number of configurations so there can

be only finite number of paths X0 -- - X in CE(S) with pairwise disjoint

X2 for 0 <i < n. Thus, the number of paths that have to be considered to verify

(2') is now guaranteed to be finite. 0

Example 6.12 Consider a program S while b do (a1 ; a2 11 d). Let a1 , a2 be

independent of d. Assume that the initial configuration S and the final E are

the extensions added to CE(S). Figure 6-3 pictorially presents CE(S) and its

substructure 7.

b
_

/a2

J-b
Figure 6-3.

Transitions of CF(S) are indicated with solid or dotted arrows, while 7. has

only the transitions represented by solid arrows. Only the configurations reachable

from S by solid arrows belong to R. According to the proposition above, in order

to show that 1?. is a reduction of CE(S) it is sufficient to select a set C = {S, } of

configurations of 7?. and check that conditions (1) and (21) above hold. 0

Chapter 6. Reducing nonessential interleavings 	 109

6.3 Verification methods revisited

The point in introducing the notion of reduction is that a reduction 7. of CF(S)

can be used instead of CF(S) in the proof techniques developed so far.

The following approach is now possible. The definition of behaviour of a

program can be easily generalized to give an analogous definition of behaviour

Beh(7,) of a reduction R or, as a matter of fact, of behaviour of any Its whose

actions can be interpreted as relations on states. Also by analogy to the way

properties of program behaviours were defined (partial correctness, etc.) proper -

ties of behaviours of reductions can be defined. The proof methods established for

programs can be also generalized to proof methods for properties of Beh(R.,),

by formally replacing CF(S) with R. Finally, the definition of reduction was so

chosen that a reduction 1Z adequately represents CF(S) for proving properties of

S. Precisely, if Beh(7?..,) satisfies some partial correctness, mutual exclusion or

deadlock freedom property then Beh(S,) has the same property.

Carrying out the development sketched above would require repeating much

of already done work with only slight modifications. Therefore we take a shortcut

and prove the following technical lemma which will facilitate establishing the coun-

terparts of propositions/corollaries 3.10 3.15 4.8 4.11. Those propositions stated

soundness of proof techniques, were a simulation between program control flow

and an annotation was used. Now we are going to require that a reduction of

control flow is simulated by an annotation.

Lemma 6.13 Let R, be a reduction of CF(S) and E an extension in CF(S) (and

also in R). If there is a simulation p from R. to a locally correct annotation A and

1= iA then there is an annotation A' and a simulation p': BehS, E) -+ A' such

that

a j= p'((a, X)) for any configuration (a, X) of Beh(S, E)

thus establishing that Beh(S, E) 	A' and, additionally,

p(X) if X E E. 	 (6.4)

Chapter 6. Reducing nonessential interleavings
	

110

Proof. The diagram below illustrates the situation:

&h(S, E)

ir

CF(S) 	A'

I I _______

ir is the simulation defined ir((o, X)) = X. t is the inclusion, 	is an isomor-

phism between CF(S) and A' defined below. The condition (6.4) establishes a

correspondence between extensions of A and A'.

For the proof, an annotated control flow of S is taken as A', where to each

configuration X of CF(S) a formula Px is attached giving a configuration (px, X)

of A. We define
PX 	I p(X) if

true otherwise.

P' is defined as a composition of ir and the isomorphism between CF(S) and A':

P, ((a, X)) = (Px, X). So defined p' is obviously a simulation and (6.4) evidently

holds.

It remains to show that Beh(S, E) = A' through simulation p'. Consider a

configuration (u, X) of Beh(S, E). If X iZ E then p'((u, X)) = (true, X) and

u = p((o, X)) trivially holds. Let then X E E. By definition of behaviour there

is a path

al
C11-1(a0,S) —* (cT 1 ,X 1

)
—3 	 —+ (a_11 X_) -- (cr,X)

in Beh(S,). This means that

ai
S -4 •.. —4 xn_1 —4 X

is a path in CF(S), (u 1 , o) E 	for i = 1,... , ii — I and (Or, a) E fr,,j. By

the definition of reduction there is a path

x —4 . . . —4 	-1

Chapter 6. Reducing nonessential interleavings 	 111

in R. such that a 1 . . . cç '-' c4. . . a. The latter equivalence gives c 1j ... Jan] =
F 	 / rr Fn 	n

Ia JJ .. . ia so there are o 1 ,. . . 	such that (o, o) E c41J, (o_, o) E
Ui 	Ufl

(cr,_ ,or) E l[cx'j.

Since p is a simulation from 7Z. to A, p(S) = A and

P(S) —-* p(X) F p(X_ 1) —p p(X)

is a path in A. For the initial (an , S) we have a0 E E so a0 = 2A- Local correct-

ness of A implies that also or' = p(X), ... , = p(X_ 1), a = p(X). X

was assumed to belong to E. therefore p'((a,X)) = p(X) and a = p'((cr,X)) is

established. 0

The techniques for doing correctness proofs will be reexamined now. We as-

sume the usual extensions in transition systems used for proving particular pro-

gram properties, i.e. an initial and a single final configuration for partial correct-

ness, initial and the prohibited configurations for mutual exclusion, initial and

deadlockable configurations for relativized deadlock freedom. We start from par-

tial correctness.

Proposition 6.14 If A simulates R., A is a locally correct annotation, p 3 iA

and fA D q are valid then {p} S {q} holds.

Proof. Let p' and A' be as guaranteed by Lemma 6.13. Hence, a J= p'((a, e)) for

any configuration (u,,-) of Beh(S, Taking into account (6.4), the particular

choice of extensions for partial correctness in CT(S) and A and the assumption

fA Dq we obtain p'((a,)) <=> p(s) == fA i q. Hence, a q and Proposition 3.2

ensures that {p} S {q} holds. 0

Proposition 6.15 Let E be a set of configurations of CF(S) specifying a mutual

exclusion requirement. Let EA be the corresponding extension in an annotation A

such that the predicate-part of every configuration in EA is false. If A simulates

7?.., A is locally correct and p 3 iA is valid then Beh(S, p) satisfies the mutual

exclusion property specified by E.

Chapter 6. Reducing nonessential interleavings 	 112

Proof. Let p' and A' be provided by Lemma 6.13. Suppose, (a, X), where X E E,

is a configuration of Beh(S, ([p]). By Lemma 6.13 ci = p'((ci, X)). But p'((ci, X)) <

p(X) 	false leading to a contradiction. Hence Beh(S, l[v) satisfies the mutual

exclusion property specified by B. 0

Proposition 6.16 If A is a locally correct annotation, p D iA is valid and there

is a simulation p: RI. -p A such that

p(T) cond(T) for any T E D,

where D is the set of deadlockable configurations of CF(S), then Beh(S) I[) is

deadlock free relative to D.

Proof. Consider a configuration (or, T) of Beh(S, l{pU, where T E D. Using p'

provided by Lemma 6.13 we get ci = p'((a,T)) and p'((ci,T)) p(T). Hence, by

the assumption of the proposition, ci = cond(T). RI. is a substructure of CF(S)

so cond(T) D cond Cs) (T) and then the properties of cond guarantee that there

is a transition from (ci, T). 0

Corollary 6.17 If there is a deadlock preserving simulation from 7?. to a locally

correct deadlock free annotation A and p 3 iA is valid then Beh(S, l[) is deadlock

free relative to the set of deadlockable configurations of CF(S).

Proof. Proceeding analogously like in the proof of Proposition 4.11 we can show

that for a deadlock preserving simulation p : 7?. - A, where A is deadlock free,

p(T) D cond(T). This allows us to use the previous proposition to complete the

argument. 0

We have not given a counterpart of Proposition 4.15 which dealt with termina-

tion. The reason why the procedure used above does not work in this case is that

reductions of control flows that would be adequate for doing termination proofs

have to represent not only finite paths in programs' control flows but also the

infinite ones. Hence, more refined reductions are required. An approach adopted

in [Peled Pnueli 90] for proving liveness properties in Interleaving Set Temporal

Chapter 6. Reducing nonessential interleavings 	 113

Logic could be adopted to this end. There, sequences of pairwise consistent traces

rather than single traces are taken to represent program computations, where the

traces t 1 , t 2 are consistent if there exists a trace t which subsumes both t 1 and t2 ,

that is, t 14 = t and t2t'2 = t for some 4, t. However, in view of the undecidability

result of Theorem 6.8 we confine ourselves here to a method which is weaker but

more tractable.

It turns out, that the strong reductions defined by algorithmically verifiable

conditions are suitable for dealing with termination.

Assume that labelled transition systems are equipped now with extensions as

required for termination proofs (see Section 4.2), in particular, each CE(S) has a

distinguished set L of loop-cutting configurations.

Proposition 6.18 Let 7. be a strong reduction of CE(S). If an annotation A

simulates R., A is decreasing in I and p D 31 iA is valid then Beh(S, I[) is termi-

nating.

Proof. We combine the arguments used for proving Propositions 4.15 and 6.11.

Suppose there is an infinite path

H = (OO, X 0) -21 * (o, X 1)

in Beh(S, l[pU where X0 	
a1

S. This implies that X0 -)
- 0-2 	 is an infinite

path in GE(S). In the proof of Proposition 4.15 we have argued that there is

infinitely many configurations belonging to L among X0 , X1 ,

Relying on this we can decompose path H into an infinite sequence of segments

H = H, 112 ,... 	H = X ii
a•_+i

where Xj, E L and the configurations between X j, and X +1 do not belong to L.

Without any loss of generality we can assume that the extension L is actually

the set C of loop-cutting configurations which is required for defining a strong

Chapter 6. Reducing nonessential interleavings 	 114

reduction 7Z (see Definition 6.10). By the definition of strong reduction, for each

H there is a path

= x. 2' x' '+2 	 j+1 X. 	 x2
3 	 tj+1

	

ir 	ii 	ir 	ii in 7?. such that c' 	. . . a!
j±l 	2j±1 'i a,+1 	 hence also aa. 	jj... a.

i+1

This implies that for each j there is a path

rlpeh = 	 (a+i,X+i>
a2 •. 	 X 1 	

Cki

 ±

Note that any Xk in this path is a configuration of 7?. and X, X 1 e L.

Juxtaposing segments H Bch we obtain 'a path

Bch 	Bch Bch ri =H0 ,H 1

Let us summarize, that we have constructed an infinite path 11 Bch in Beh(S, p)

which starts from (u0 , S), where O' = p, for every configuration (cr, X) in H"

X is a configuration of 7?. and there is an infinite number of configurations (o, X)

in H B ch with X E L. This is enough to repeat the argument used in the proof

of Proposition 4.15 and derive an infinite decreasing sequence in the well founded

set WF. The obtained contradiction proves that there are no infinite paths in

Beh(Sjpfl. 0

6.4 Examples

We reexamine the proofs of properties of Set-Part, starting from partial correct-

ness.

Let Act denote the set of atomic actions labelling transitions of CF(Set_Part).

Taking into account the semantic condition required of independent actions we

can assume the independence relation on Act consisting of the pairs of actions

Chapter 6. Reducing nonessential interleavings 	 115

listed below plus their symmetric counterparts.

(S:=S-{mx},T:=TU{y})

(S := S .- {mx} , mn := min(T))

(S:=SU{x} ,T:=T-mn)

S:=SU{x} , -'(MX >x)

(mx := max(S) , T:= T - mn)

(-i(MX >x) , T:=T-mn)

(-i(MX >x) , '(MX >x)

Figure 6-4 shows a reduction 7Z of CF(SeLPart).

To facilitate the comparison of those two transition systems, the transitions

and configurations of CF(SeLPart) are shown as well. Dotted lines are used for

transitions of CF(SeLPart) not belonging to R. We assumed that extensions of

CF Set.. rt) are as required for proving partial correctness, i.e. X 0 Set-Part is

distinguished as an initial configuration and X 14 as the final one. Both these

configurations are in 7Z 1 and together with X 2 they constitute the set C needed

to verify that 7Z 1 is a strong reduction of CF(SeLPart).

The assumed independence relation can be interpreted in Figure 6-4 as corn-

mutativity of all squares made of transition arrows, apart from the square whose

vertices are X12 , X13 , X19 , X18 .

Now, the annotation A pictorially presented in Figure 3-4 can be largely simpli-

fied. Namely, let A 1 be an annotation obtained by removing from A configurations

P5,P6,P9,P10 and the eight trans Itions leading to or starting from the deleted con-

figurations. It is easy to see that A 1 satisfies assumptions of Proposition 6.14 so

A 1 can be used instead of A to prove partial correctness of Set-Part.

Identical argument applies to the termination proof of Set-Part as 'R 1 remains

a reduction of GF(SeLPart) when this control flow is equipped with the extension

L = {X2 } in place of the final configuration.

For the proof of deadlock freedom. D = {X 16 , X 19 1 was taken as an extension in

CF(Set_Part). We take a reduction R 2 of so extended CF(SeLPart) differing from

	

Chapter 6. Reducing nonessential interleavings
	

116

xo

:= max(S)

X,

ch!inx 1 1 ch?y

.x2
S:=S—{mz}/ \:=TU{y}

	

X5 	 x3
\mn:=min(T)

	

X6 	 x4

X7

mx>x;ch!maitmx>z;ch?y 	 ch?xIch!mn

X8

S:=SU{x}/

	

X9 	 x11

	

inx:=max(S)/ -'(mx>z)

	

X1O 	 x12 	 -17

	

......... 	/ \
0 X15J 	 X 13 	 X 18

	

16 	 gig

X14

Figure 6-4. R and CF(SeLPart).

Chapter 6. Reducing nonessential iriterleavings
	

117

R. only in that configuration X 16 and transitions X13 -' X 161 X 16 -*

are additionally included in R.

Similarly as in the case of partial correctness, instead of the annotation A

specified on page 72 a smaller annotation A 2 can be used to prove deadlock freedom

of Set-Part. The annotation A 2 satisfying assumptions of Proposition 6.17 is

constructed by removing from A configurations P5 P6, Pg, Pio P15, P17 and the twelve

transitions that start or end at the deleted configurations. In other words, A 2 is

isomorphic to 7 rather than to CF(SeLPart) as A was.

Chapter 7

Conclusions

We start this concluding chapter with an overview of the presented work and then

we point out some directions for further research. Among these, action refinement

will be offered more attention and a separate section.

7.1 Overview

We proposed what we view as a generalization of an assertional approach to the

verification of concurrent programs. In doing so we put an emphasis on reflect-

ing the semantic contents of programs rather than their syntax in the adopted

pattern of reasoning. Therefore assertions annotated not a text of a program but

a transition system which represented an object derived from the operational se-

mantics, the control flow of a program. Unlike the case of sequential programs,

where annotating a program text and its control flow amounts to the same, those

two possible patterns of attaching assertions are different in the presence of con-

currency. The annotations we introduced and the satisfaction relation between

behaviours and annotations were intended to capture the basic ideassertiona1

reasoning, i.e. of characterizing the reachable states of computations by assertions

and deriving program properties from such characterizations.

We emphasized the role of control flow as, on the one hand, a separable ingre-

dient of the operational semantics and, on the other hand, as a major concern in
Irl

118

Chapter 7. Conclusions 	 119

formulating properties of concurrent programs and verifying them. The rigorous

definition of control flow proved important for analysing deadlock freedom and

mutual exclusion.

The relative ease in establishing soundness and completeness of the proposed

proof methods for partial and total correctness was due to the fact that the seman-

tics was given a priority in suggesting the pattern of reasoning and the abstractions

of program behaviours.

We considered also a method which allowed us to isolate some inessential inter-

leavings of concurrent actions and ignore them in correctness proofs. Investigating

this particular issue in an assertional framework was in fact an important objective

from the outset of this work. We view the reduction of the level of action inter-

leavings as an important means of managing the inherent complexity of reasoning

about concurrency. Also, guidelines on how programs should be constructed can

be obtained by taking this issue into account.

We considered it important to provide proof techniques where verified programs

are not translated into an intermediate language which, perhaps, would be more

convenient to handle theoretically. Verifying a translation does not necessarily

increase the understanding of the original program, in particular, a failure to

establish a desired property usually gives little information about the changes

required to the original program. We chose to reason directly about programs that

contain constructs commonly used for formulating algorithms in practice. Such

languages are less tractable theoretically than their imaginable idealizations, for

example, we could have considered regular programs extended with parallelism and

communication primitives ([de Bakker Zucker 82]). As a result of our choice we had

to face an increased complexity of some proofs in Chapter 5 and in Theorem 6.8,

where the particular shape of program control flow required special attention.

Chapter 7. Conclusions
	 120

7.2 Action refinement

A simple form of action refinement involves replacing an atomic statement with

an uninterruptible but composite statement. Semantic discussion of such a form

of refinement can be found, for instance, in [Boudol 891. The proof methods

presented by us easily extend to cover this case. We note that allowing an arbitrary

statement as a body of an await statement can be viewed as a particular form of

action refinement in the above sense and to give the idea of how to approach the

general case we outline the extensions to the developed proof methods that suffice

to cover the particular case of refining the await statements.

Let then await b then S be a new version of the await statement of S. Oper-

ational semantics can be easily extended to cover the new construct. We introduce

an axiom of control flow

await b then S awaitbthenS 	-*

which conveys the idea of uninterruptible execution of the await statement. Ac-

cording to our account of the operational semantics it is now enough to provide

input-output relations for the new kind of atomic actions await b then S. This

is done by recurring on the level of nesting of await statements in the clause

(or, 0") € await b then S] if a 	b and (a, or') e [SJ.

The manner in which semantics of await statements was dealt with dictates

the modifications required to the proof methods. For the reminder of this section

let 5 denote an atomic action await b then S.

In order to establish local correctness of an annotation which contains a transi-

tion (p, j) _L (p', j') we need to verify that {p} 3 {p'} holds. But this is equivalent

to establishing that {p A b} S {p ' } holds so our proof method for partial correctness

can be recursively applied. This procedure extends our proof technique for partial

correctness to the case of the extended await statements.

Chapter 7. Conclusions 	 121

When proving total correctness, we proceed analogously with checking validity

of partial correctness triples

{p}/3 {31' 1' -< 1 A q[l'/l]} or {p}/3 {1' 1' -< 1 A q[l'/l]}

that need to be considered for establishing that an annotation is decreasing in

a counter 1. Additionally, since we assumed that executions of atomic actions

terminate we need to establish that Beh(S, p) is a terminating behaviour for
(pJ)

each transit6if anannotation used for proving a termination property.

For establishing deadlock freedom, apart from checking local correctness of

annotations, which we have already shown how to handle, we require to know

predicates cond(a) such that whenever a = corid(a) then a is in the domain

of In the case of an await statement /3 this amounts to showing that for a

suitably guessed formula q the behaviour Beh(S, q) is terminating and deadlock

free. A formula q for which the above holds can be taken as cond(3). Therefore,

a recursive application of our proof methods does the job also in this case.

Action refinement that allows one to refine the atonicity of actions requires

more care and is left for further research. A first, intermediate, step to take in this

direction is to consider the case where atomic actions of a statement S that replaces

an atomic statement a are required to be independent, in the sense of Chapter 6,

from actions of the concurrent context of a. Then, the methods of Chapter 6

can be used to prove that such an refinement is equivalent to the uninterruptible

execution of S. Even if not all actions of a refining statement S are independent

from the concurrent context of a, the approach taken in Chapter 6 seems to be an

interesting path to follow in the further research on action refinement.

Chapter 7. Conclusions
	

122

7.3 Other topics

We feel that development of verification methods should be in equal measures

guided by theoretical considerations as by practical applicability of the method.

Therefore we recognize the need for more examples to be worked out hoping that

useful hints might be obtained.

Even now, it seems evident that in order to tackle larger examples some work

is required in two areas. On the practical side, mechanical support tools could

help to manage the verification process. Construction of program control flows

can be automatic as well as various checks concerning control flow: the existence

of a simulation or a deadlock preserving simulation, correctness of choices of loop

cut-points and reductions of control flows.

On the theoretical side, methods of structuring proofs need to be investigated.

Action refinement, one possible solution, was already discussed above. Another

direction is to introduce operations on annotations corresponding to constructs

of programming languages and attempt a compositional development of proofs.

In view of the known difficulties with obtaining a compositional proof system

for concurrency this seems to be a hard way to follow. Perhaps more suitable

is an approach such as presented in [Larsen 86], where compositionality is taken

relative to a fixed context. Following Larsen's idea an attempt can be made to

reflect relativized stepwise refinement of statements (not necessarily atomic this

time) with similarly relativized refinements of annotations. Schematically, if a

statement S' is refined to a statement S" within a context C the hypothetical

corresponding refinement of annotations would lead to a proof rule

Beh(C[S'],) 1= A[A'] 	!C A' j A"

Beh(C[S"], E) J= A[A"]

where A[A'} should be read as an annotation A' within a larger annotation-context

A and =c A' D A" denotes some suitable notion of relativized annotation refine-

ment.

Chapter 7. Conclusions 	 123

For the purpose of structuring annotation based proofs a provision of some

syntax for annotations would be useful.

Other topics of further research that are related closer to the already presented

account of annotations include examining relation based simulations and a search

for stronger but decidable methods of verifying whether a substructure of a pro-

gram control flow is its reduction, in the sense of Chapter 6. Also, verification of

program properties other than the ones we considered could be attempted.

We used a first order language as a source for the assertions of annotations.

One can considered alternatives to this choice. Adding temporal operators to the

assertion language is one possible option worthy of further study. -

Bibliography

[AHU 74] A.V. Aho, J.E. Hoperoft, J.D. Ullman, The Design and Analysis of

Computer Algorithms, Addison-Wesley Publishing Company, 1974.

[Aaibersberg Hoogeboom 871 I.J. Aalbersberg, H.J. Hoogeboom, Decision prob

lems for regular trace languages, in: Proceedings ICALP 87, (G. Goos, J. Hart-

maths, Eds.) pp. 250-259, LNCS 267, Springer-Verlag, 1987.

[Aalbersberg Rozenberg 88] I.J. Aalbersberg, G. Rozenberg, Theory of traces,

Theoretical Computer Science 60, pp. 1-82 (1988).

[Apt 831 K.R. Apt, Formal justification of a proof system for Communicating Se-

quential Processes, Journal of the ACM 30(1), pp. 197-216 (1983).

[Apt 841 K.R. Apt, Ten years of Hoare 's Logic: a survey - Part II: nondeter-

rninism, Theoretical Computer Science 28, pp. 83-109 (1984).

[Apt 861 K.R. Apt, Correctness proofs of distributed termination algorithms, ACM

TOPLAS 8(3), pp. 388-405 (1986).

[Apt Delporte-Gallet 83] K.R. Apt, C. Delporte-Gallet, Syntax directed analysis

of liveness properties of while programs, Information and Control68, pp. 223-253

(1986).

[AFR 80] K.R. Apt, N. Francez, W.P. de Roever, A proof system for communi-

cating sequential processes, ACM TOPLAS vol. 2(3), pp. 359-384 (1980).

[Ashcroft 761 E. Ashcroft, Proving assertions about parallel programs, Journal of

Computer and System Sciences 10(1), pp. 110-135 (1976).

124

Bibliography 	 125

[Back 881 R.J.R. Back, Refining atomicity in parallel algorithms, Reports on Com-

puter Science & Mathematics, Ser. A, No 57, Abo Akademi, Department of

Computer Science, 1988.

[Back Sere 901 R.J.R. Back, K. Sere, Stepwise refinement of parallel algorithms,

Science of Computer Programming 13(2-3), pp. 133-180 (1990).

[BKMOz 86] J.W. de Bakker, J.N. Kok, J.-J.Ch. Meyer, E.-R. Olderog. J.I.

Zucker, Contrasting themes in the semantics of imperative concurrency, in: Cur-

rent Trends in Concurrency. Overviews and Tutorials. (J.W. de Bakker, W.P.

de Roever, G. Rozenberg, Eds.), LNCS 224, Springer-Verlag, 1986.

[de Bakker Meertens 751 J.W. de Bakker, L.G.T. Meertens, On the completeness

of the inductive assertion method, Journal of Computer and System Sciences

11, pp. 323-357 (1975).

[de Bakker Zucker 821 J.W. de Bakker, J.I. Zucker, Processes and the denotational

semantics of concurrency, Information and Control 54, pp. 70-120 (1982).

[Barringer 85] H. Barringer, A Survey of Verification Techniques for Parallel Pro-

grams, LNCS 191, Springer-Verlag, 1985.

[BKP 84] H. Barringer, R. Kuiper, A. Pnueli, Now you may compose temporal

logics specifications, Proceedings 16 ACM Sjmposium on Theory of Computing,

pp. 51-63, 1984.

[Best Lengauer 891 E. Best, C. Lengauer, Semantic independence, Science of Com-

puter Programming 13(1), pp. 23-50 (1989).

[Boudol 891 G. Boudol, Atomic actions, Bulletin of the EATCS 38, pp.136-144

(1989).

[Brookes 851 S.D. Brookes, An axiomatic treatment of a parallel programming lan-

guage, in: Proceedings 1985 Logics of Programs Conference, Brooklyn. LNCS

193, Springer-Verlag, 1985.

Bibliography 	 126

[Brookes 861 S.D. Brookes, A semantically based proof system for partial correct-.

ness and deadlock in CSP, in: Proceedings 1986 LICS, pp. 58-65

[Cartier Foata 691 P. Cartier, D. Foata, Problemès Combinatoires de Commuta-

tion et Rearrangements, Lecture Notes in Mathematics 85, Springer-Verlag 1969.

[Clarke 79] E.M. Clarke, Programming language constructs for which it is impos-

sible to obtain good Hoare axiom systems, Journal of the ACM 26(1) pp. 129-147

(1979).

[CES 861 E.M. Clarke, E.A. Emerson, A.P. Sistla, Automatic verification of finite-

state concurrent systems using temporal logic specifications, ACM TOPLAS 8(2)

pp. 244-263 (1986).

[CGH 831 E.M. Clarke Jr., S.M. German, J.Y. Halpern, Effective axiomatizations

of Hoare logics, Journal of the ACM 30(3), pp. 612-636 (1983).

[Cook 781 S.A. Cook, Soundness and completeness of an axiom system for program

verification, SIAM Journal of Computing 7(1), pp. 70-90 (1978).

[Cousot 811 P. Cousot, Semantic foundations of program analysis, in: Program

Flow Analysis. Theory and Applications. (S.S. Muchnick, N.D. Jones, Eds.),

Prentice Hall, 1981.

[Cousot Cousot 89] P. Cousot, R. Cousot, A language independent proof of the

soundness and completeness' of generalized Hoare logic, 'Information and Com-

putation 80, pp. 165-191 (1989).

[Dijkstra 82] E.W. Dijkstra, A correctness proof for communicating processes -

A small exercise, in: Selected writtings on Computing: A Personal Perspective.

Springer Verlag, 1982.

[Eilenberg 741 S. Eilenberg, Automata, Languages, and Machines volume A, Aca-

demic Press, 1974.

Bibliography
	 127

[Flon Suzuki 811 L. Flon, N. Suzuki, The total correctness of parallel programs,

SIAM Journal of Computing 10(2), pp. 227-246 (1981).

[Floyd 671 R. W. Floyd, Assigning meanings to programs, in: Mathematical As-

pects of Computer Science. (J.T. Schwartz, Ed.), pp. 19-32, Proceedings Sym-

posium in Applied Mathematics, vol. 19, American Math. Soc., Providence,

1967.

[Gerth 841 R.T. Gerth, Transition logic: how to reason about temporal properties

of programs in a compositional way, in: Proceedings STOC 1984.

[Gerth 891 R.T. Gerth, Foundations of compositional program refinement, in: Pro-

ceedings ReX Workshop, S tepwise Refinement of Distributed Systems, (J.W. de

Bakker, W.-P. de Roever, G. Rozenberg, Eds.) pp. 777-807, LNCS 430, Springer-

Verlag 1989.

[Ginsburg 68] A. Ginsburg, Algebraic Theory of Automata, Academic Press,

1968.

[GTWW 771 J.A. Goguen, J.W. Thatcher, E.G. Wagner, J.B. Wright, Initial al-

gebra semantics and continuous algebras, Journal of the ACM 24(1), pp. 68-95

(1977).

[Gries 771 D. Gries, An exercise in proving parallel programs correct, Communi-

cations of the ACM 20(12), pp. 921-930 (1977).

[GMS 891 C.A. Günter, P.D. Moses, D.S. Scott, Semantic Domains and Deno-

tational Semantics, MS-CIS-89-16 Logic and Computation 04, University of

Pennsylvania, 1989 (to appear in North Holland's Handbook of Theoretical

Computer Science).

[Harel 791 D. Harel, First-Order Dynamic Logic, Springer-Verlag, 1979.

[He 891 He Jifeng, Various simulations and refinements, in: Proceedings ReX

Workshop, Stepwise Refinement of Distributed Systems, (J.W. de Bakker, W.-P.

de Roever, G. Rozenberg, Eds.) pp. 340-360, LNCS 430, Springer-Verlag 1989.

Bibliography
	 128

[bare 781 C.A.R. Hoare, Communicating sequential processes, Communications

of the ACM 21(8), pp. 666-677 (1978)

[Hooman de Roever 861 J. Hooman, W.P. de Roever, The quest goes on: a survey

of proofsystems for partial correctness of CSP, in: Current Trends in Concur-

rency. Overviews and Tutorials. (J.W. de Bakker, W.P. de Roever, G. Rozen-

berg, Eds.), LNCS 224, Springer-Verlag, 1986.

[Hungar 85] Untersuchungen ueber die Ausdruckskraft von logischen Formein

bezueglich des Ein/Ausgabeverhaltens von Programmen, MSc Thesis, Inst. f.

Informatik u. Prakt. Math., Christian-Albrechts-Universität, Kiel 1985.

[Hungar 871 H. Hungar, A characterisation of expressive interpretations, Bericht

8705, Inst. f. Informatik u. Prakt. Math., Christian-Albrechts-Universitãt, Kiel

(1987).

[Jones 831 C.B. Jones, Tentative steps toward a development method for interfer-

ing programs, ACM TOPLAS 5(4), pp. 596-619 (1983).

[Katz Peled 87] S. Katz, D. Peled, Interleaving set temporal logic, in: Proceedings

6th ACM Symposium on Principles of Distributed Computing, Vancouver, pp.

178-190, 1987.

[Keller 711 R.M. Keller, A solvable program schema equivalence problem, in: Pro-

ceedings 5th Annual Princeton Conf. on Information Sciences and Systems,

Princeton, pp. 301-306, 1971.

[Keller 76] R.M. Keller, Formal verification of parallel programs, Communications

of the ACM 19 (7), pp. 371-384, (1976).

[Knuth 66] D. E. Knuth, Additional comments on a problem in concurrent pro-

gramming control, Communications of the ACM 9(5) pp. 321-322, 1966.

[Lamport 80] L. Lamport, The Hoare Logic" of concurrent programs, Acta In-

formatica 14, pp. 21-37 (1980).

Bibliography 	 129

[Lamport 82] L. Lamport, An assertional correctness proof of a distributed algo-

rithm, Science of Computer Programming 2, pp. 175-206 (1982).

[Lamport Schneider 891 L. Lamport, F.B. Schneider, Pretending atomicity, Re-

search Report 44, Digital Systems Research Center, 1989.

[Larsen 861 K.G. Larsen, Context-Dependent Bisimulation Between Processes

Ph.D. Thesis, Department of Computer Science, University of Edinburgh, 1986.

[Levin Gries 811 G.M. Levin, D. Gries, A proof technique for communicating se-

quential processes, Acta Informatica 15, pp. 159-172 (1981).

[Lipton 77] R.J. Lipton, A necessary and sufficient condition for the existence of

Hoare logics, in Proceedings 18th IEEE Symp. on Foundations of Computer

Science (Providence, R. I., 1977), IEEE New York, 1977, pp. 1-6.

[Matijasevi 70] Yu.V. Matijasevi, Diofantovost perechislimekh mnozhestv, Dok-

lady Akad. Nauk USSR 191(2), pp.279-282 (1970); English translation: Enu-.

merable sets are Diophantine, Soviet. Math. Doki. 11(2) pp.354-357 (1970).

[Mazurkiewicz 77] A. Mazurkiewicz, Concurrent program schemes and their in-

terpretations, DAIMI Report PB-78, Aarhus University, 1977.

[Mazurkiewicz 88] A. Mazurkiewicz, Trace semantics, in: Petri Nets: Applications

and Relationships to Other Models For Concurrency, (W. Brauer, W. Reisig,

G. Rozenberg, Eds.) LNCS 255, Springer-Verlag, 1987.

[Meyer 86] A.R. Meyer, Floyd-Hoare logic defines semantics: preliminary version,

in: Proceedings LICS 1986, pp. 44-48, 1986.

[Milner 801 R. Milner, A Calculus of Communicating Systems, LNCS 92,

Springer-Verlag 1980.

[Misra Chandy 811 J. Misra, K.M. Chandy, Proofs of Networks of Processes, IEEE

Transactions on Software Engineering, vol. SE-7(4), pp. 417-426 (1981).

Bibliography 	 130

[Olderog 831 Ernst-Rüdiger Olderog, On the notion of expressiveness and the ride

of adaptation, Theoretical Computer Science 24, pp. 337-347 (1983).

[Owicki Gries 76a] S. Owicki, D. Gries, An axiomatic proof technique for parallel

programs I, Acta Informatica 6, pp. 319-340 (1976).

[Owicki Gries 76b] S. Owicki, D. Gries, Verifying properties of parallel programs:

an axiomatic approach, Communications of the ACM 19(5), pp. 279-285 (1976).

[Owe 901 0. Owe, Axiomatic treatment of processes with shared variables revisited,

Institute of Informatics, University of Oslo, 1990.

[P.czkowski 89] Proving total correctness of concurrent programs without using

auxiliary variables ECS-LFCS-89-100, LFCS Report Series, University of Edin-

burgh, 1989.

[Pczkowski 90] Proving termination of communicating programs, in: Proceed-

ings CONCUR'90, (J.C.M. Baeten, J.W. Kiop, Eds.), pp. 416-426, LNCS 458,

Springer-Verlag, 1990.

[Pandya Joseph 85] P.K. Pandya, M. Joseph, P-A logic - a compositional proof

system for distributed programs, a manuscript.

[Park 811 D. Park, Concurrency and automata on infinite sequences, in: Proceed-

ings 5th GI Conf., pp. 167-183, LNCS 104, Springer-Verlag 1981.

[Peled Pnueli 901 D. Peled, A. Pnueli, Proving partial order liveness properties,,

in: Proceedings 17th ICALP, (M.S. Paterson Ed.) pp. 553-571, LNCS 443,

Springer-Verlag 1990.

[Plotkin 811 G.D. Plotkin, A Structural Approach to Operational Semantics,

DAIMI Report FN-19, Aarhus University, 1981.

[Plotkin 821 G.D. Plotkin, An operational semantics for CSP, Internal Report

CSR-114-82, University of Edinburgh, 1982.

Bibliography 	 131

[Pnueli 771 A. Pnueli, The temporal semantics of concurrent programs, in: 18

Symposium on Foundations of Computer Science, Providence, pp. 46-57.

[Prawitz 651 D. Prawitz, Natural Deduction, Almqvist & Wiksell, Stockholm

Göteborg Upsala, 1965.

[Queille Sifakis 81] J.P. Queille, J. Sifakis, Specification and verification of con-

current systems in CESAR, in: Proceedings Fifth International Symposium on

Programming, Torino, pp. 337-351, LNCS 137, Springer-Verlag, Berlin, 1982.

[Raynal 861 M. Raynal, Algorithms for Mutual Exclusion, (English translation)

North Oxford Academic Publishers Ltd, London 1986.

[de Roever 85] W.P. de Roever, The quest for compositionality: a survey of as-

sertion based proof systems for concurrent programs. Part 1, Technical Report

RUU-CS-85-2, University of Utrecht, 1985.

[Schneider Andrews 861 F.B. Schneider, G.R. Andrews, Concepts for concurrent

programming, in: Current Trends in Concurrency. Overviews and Tutorials.

(J.W. de Bakker, W.P. de Roever, G. Rozenberg, Eds.), LNCS 224, Springer-

Verlag, 1986.

[Soundararajan 831 N. Soundararajan, Correctness proofs of CSP programs, The-

oretical Computer Science vol. 24(2), pp. 131-141 (1983).

[Soundararajan 84] N. Soundararajan, A proof technique for parallel programs,

Theoretical Computer Science.31, pp. 13-29 (1984).

[Stirling 88] C. Stirling, A generalization of Owicki-Gries's Hoare logic for a con-

current while language, Theoretical Computer Science, 58, pp1988).

[Stolboushkin Taitslin 83] A.P. Stolboushkin, M.A. Taitslin, Deterministic Dy-

namic Logic is strictly weaker than Dynamic Logic, Information and Control

57, pp. 48-55 (1983).

Bibliography 	 132

[Urzyczyn 831 P. Urzyczyn, Nontrivial definability by flow-chart programs, Infor-

mation and Control 58, pp. 59-87 (1983).

[Wand 781 M. Wand, A new incompleteness result for Hoare 's system, J. ACM

25(1) pp. 168-175 (1978).

[Zielonka 801 W. Zielonka, Proving assertions about parallel programs by means of

traces, ICS PAS Report 424, Institute of Computer Science, Polish Academy of

Sciences, Warsaw, 1980.

[ZRE 85] J. Zwiers, W.P. de Roever, P. van Emde Boas, Compositionality and

concurrent networks: soundness and completeness of a proofs ystem, in: Pro-

ceedings of ICALP 85, LNCS 194, pp. 509-519, 1985.

