

This thesis has been submitted in fulfilment of the requirements for a postgraduate degree

(e.g. PhD, MPhil, DClinPsychol) at the University of Edinburgh. Please note the following

terms and conditions of use:

• This work is protected by copyright and other intellectual property rights, which are

retained by the thesis author, unless otherwise stated.

• A copy can be downloaded for personal non-commercial research or study, without

prior permission or charge.

• This thesis cannot be reproduced or quoted extensively from without first obtaining

permission in writing from the author.

• The content must not be changed in any way or sold commercially in any format or

medium without the formal permission of the author.

• When referring to this work, full bibliographic details including the author, title,

awarding institution and date of the thesis must be given.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Edinburgh Research Archive

https://core.ac.uk/display/429706478?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Learning action representations using kernel

perceptrons

Kira M. T. Mourão

Doctor of Philosophy

Institute for Language, Cognition and Computation

School of Informatics

University of Edinburgh

2011

Abstract

Action representation is fundamental to many aspects of cognition, including language.

Theories of situated cognition suggest that the form of such representation is distinc-

tively determined by grounding in the real world. This thesis tackles the question of

how to ground action representations, and proposes an approach for learning action

models in noisy, partially observable domains, using deictic representations and kernel

perceptrons.

Agents operating in real-world settings often require domain models to support

planning and decision-making. To operate effectively in the world, an agent must be

able to accurately predict when its actions will be successful, and what the effects of its

actions will be. Only when a reliable action model is acquired can the agent usefully

combine sequences of actions into plans, in order to achieve wider goals. However,

learning the dynamics of a domain can be a challenging problem: agents’ observations

may be noisy, or incomplete; actions may be non-deterministic; the world itself may

be noisy; or the world may contain many objects and relations which are irrelevant.

In this thesis, I first show that voted perceptrons, equipped with the DNF family

of kernels, easily learn action models in STRIPS domains, even when subject to noise

and partial observability. Key to the learning process is, firstly, the implicit exploration

of the space of conjunctions of possible fluents (the space of potential action precon-

ditions) enabled by the DNF kernels; secondly, the identification of objects playing

similar roles in different states, enabled by a simple deictic representation; and lastly,

the use of an attribute-value representation for world states.

Next, I extend the model to more complex domains by generalising both the kernel

and the deictic representation to a relational setting, where world states are represented

as graphs. Finally, I propose a method to extract STRIPS-like rules from the learnt

models. I give preliminary results for STRIPS domains and discuss how the method

can be extended to more complex domains. As such, the model is both appropriate for

learning data generated by robot explorations as well as suitable for use by automated

planning systems. This combination is essential for the development of autonomous

agents which can learn action models from their environment and use them to generate

successful plans.

iii

Acknowledgements

Thanks are due to many people. First and foremost my supervisors, Mark Steed-

man, Ron Petrick and David Willshaw. Mark has been a source of insight, inspiration

and motivation throughout and it has been a privilege to be his student. Ron has been

a dedicated supervisor, always on hand with good advice and attention to detail, down

to the last comma, be it midnight or morning, on holiday or at work. David has always

encouraged me with his faith in my abilities, and I can only hope I have lived up to

those expectations. I would also like to thank my examiners, Benjamin Kuipers and

Subramanian Ramamoorthy, for the numerous corrections they proposed to the thesis:

these have very much improved the final submission.

In addition, I am particularly grateful to Luke Zettlemoyer for many fruitful discus-

sions, patient advice, enthusiasm, and overall his willingness to delve into the nitty-

gritty of problems, both during his time as a post-doc in Edinburgh and later from

Washington. I also benefited from meeting with many visiting researchers and would

especially like to thank Ross Gayler for an enjoyable and enlightening discussion. The

robot experiment was only possible thanks to Norbert Krüger’s kind permission, and

Dirk Kraft’s time and patience in setting up the robot for the experiment, and running

much of the data collection.

I have been lucky to have the support and companionship of other students in Mark

Steedman’s group, office mates past and present, and others, especially Catherine Ojo,

Tom Kwiatkowski, Benjamin Rosman, Chris Geib, Emily Thomforde, Michael Auli,

Lexi Birch, Prachya Boonkwan, Mark Granroth-Wilding, Christos Christodoulopou-

los and Aciel Eshky. More broadly, the Neuroinformatics Doctoral Training Centre

supported my work, more than just financially, but also through training, journal clubs,

the write-up club and other ventures. In particular, no DTC thesis would ever have

been completed without the efforts of Pat Ferguson, and latterly, Theresa Ironside, and

I am grateful for their guidance through many administrative minefields. Thanks also

to the EU Paco-Plus project which partially funded my research, both for the financial

support and the opportunity to participate in the project.

Finally, Elson and my parents have always been in the background, there when I

needed them. Alice contributed with her patient acceptance, and as a constant reminder

of what AI still has to achieve.

iv

Declaration

I declare that this thesis was composed by myself, that the work contained herein is

my own except where explicitly stated otherwise in the text, and that this work has not

been submitted for any other degree or professional qualification except as specified.

(Kira M. T. Mourão)

v

To Mrs F

vi

Table of Contents

1 Introduction 1

1.1 Overview and motivation . 3

1.1.1 Problem structure . 3

1.1.2 Problem settings . 4

1.1.3 Rule extraction . 4

1.2 Contributions . 5

1.3 Thesis outline . 5

2 Affordance learning in context 7

2.1 Affordances . 7

2.2 Action formalisms . 8

2.2.1 Fundamental issues for any formalism 9

2.2.2 STRIPS and related action languages 11

2.3 Representation . 12

2.3.1 Biases and related complexity results 13

2.3.2 Rule search . 15

2.4 Modelling abstractions . 17

2.4.1 Markov Decision Processes 17

2.4.2 Partially observable MDPs 18

2.4.3 Factored MDPs . 19

2.4.4 Relational (PO)MDPs . 21

2.5 Previous approaches to action learning 22

2.5.1 Learning grounded action models 22

2.5.2 Learning relational action models 25

2.6 Deictic reference . 26

2.7 Summary . 30

vii

3 Preliminaries 31

3.1 Definitions . 31

3.2 Using deictic references to shape the rule space 32

3.3 Data . 36

3.4 Data generation . 38

3.5 Models of noise and partial observability 40

4 Learning STRIPS action models 43

4.1 Strategy . 43

4.2 Representation . 45

4.3 Learning . 48

4.3.1 Kernel function . 53

4.4 Experiments . 53

4.4.1 Results . 54

4.5 Discussion . 59

4.5.1 Relation to other approaches in action dynamics learning . . . 60

4.5.2 Limitations . 62

4.6 Summary . 64

5 Learning action models beyond STRIPS 65

5.1 Moving to a graphical representation 65

5.1.1 Graphical representations of world state 66

5.1.2 Structure of the learning model 71

5.1.3 Classification . 77

5.1.4 Measuring similarity between situation graphs 78

5.1.5 Complexity . 84

5.2 Experiments and results . 85

5.2.1 Experiments in simulated planning domains 86

5.2.2 Robot experiment . 92

5.3 Discussion . 96

5.3.1 Relation between vector and graph representations 97

5.3.2 Related work . 98

5.3.3 Limitations and possible extensions 99

5.4 Summary . 102

viii

6 Extracting rules 103
6.1 Existing approaches to rule extraction 103

6.1.1 Pedagogical approaches . 104

6.1.2 Decompositional approaches 105

6.1.3 Feature selection methods 108

6.2 Extracting preconditions from (k-)DNF kernel perceptrons 109

6.2.1 Rule extraction from individual perceptrons 110

6.2.2 Incorporating voting . 115

6.3 Combining rules across output elements 115

6.3.1 Building pure conjunctive rules 116

6.4 Experiments . 124

6.4.1 Results . 125

6.5 Discussion . 133

6.5.1 Relation to other work . 135

6.5.2 Building disjunctive preconditions and conditional effects . . 136

6.5.3 Deriving probabilistic effects 137

6.5.4 Extending to the graphical representation 139

6.6 Summary . 140

7 Conclusions and Future Work 141
7.1 Contributions . 141

7.2 Future work . 142

7.2.1 Extensions to the learning algorithm 143

7.2.2 Connections to hippocampal-cortical circuit 147

7.2.3 The grounding gap . 149

A 151

Bibliography 159

ix

Chapter 1

Introduction

A key aspect of theories of situated cognition is that an agent’s internal representations

are grounded in its sensorimotor experience of the real world. Action representations

which are both grounded and yet capable of supporting high-level reasoning are there-

fore fundamental to cognitive processing such as planning, both in humans and cog-

nitive agents. Such a grounded representation must derive from unreliable low-level

interactions with the environment, yet provide sufficient structure to support reliable

reasoning about when an action may be performed and what its outcome might be.

This thesis tackles the question of how to ground action representations, proposing

an approach to learning action models in noisy, partially observable domains, using

deictic representations and kernel perceptrons. Given a sequence of actions and struc-

tured observations of the world, the learning problem is to derive a set of STRIPS-like

rules (Fikes and Nilsson, 1971) describing the preconditions and effects of each ac-

tion. The approach presented here relies on deictic representations to structure the rule

space, according to which a limited number of objects in the world are attended to. I

consider both a simple algorithm which learns to predict action successes and corre-

sponding effects in classical STRIPS domains, and a generalisation of this algorithm

to learn in extended STRIPS domains. Additionally, I present a technique to extract

STRIPS-like rules from the action models implicit in the original algorithms.

1

2 Chapter 1. Introduction

As an example of the learning problem in an extended STRIPS domain, namely

the ADL Briefcase domain (Pednault, 1989), a sequence of actions and corresponding

world states might be:

STATE: (is-at home) (in book) (in phone) (at pen home) (at book home) (at phone home)
ACTION 1: (move home office)
STATE: (is-at office) (in book) (in phone) (at pen home) (at book office) (at phone office)
ACTION 2: (take-out pen)
STATE: (is-at office) (in book) (in phone) (at pen home) (at book office) (at phone office)
ACTION 3: (move office home)
STATE: (is-at home) (in book) (in phone) (at pen home) (at book home) (at phone home)

The states describe the current world state in terms of the location of a briefcase

and other items (either at home or the office), where the other items may be inside

or outside the briefcase. Actions may move the briefcase, or insert or remove items.

Some actions may not be possible; for example, Action 2 attempts to take the pen

out of the briefcase, however, the preconditions of the action are unsatisfied since the

pen is not in the briefcase. In this case, the action is assumed to be a no-op and the

world state is unchanged. When an action is possible, the state of the world changes in

accordance with the effects of the action.

The task of learning action preconditions and effects in this scenario is already

beyond some approaches to learning action models, because of the indirect effect of the

move action, which not only moves the briefcase, but also moves the items inside the

briefcase. Additionally, an agent operating with unreliable sensors may take noisy or

incomplete observations, resulting in it observing the sequence above as the following

sequence of actions and observations:1

OBSERVATION: (in book) (at pen home) (at phone home) (is-at office) (not (in pen))
ACTION 1: (move home office)
OBSERVATION: (is-at office) (in phone) (at book office) (not (is-at home)) (not (in pen))
ACTION 2: (take-out pen)
OBSERVATION: (is-at office) (in pen) (at pen home) (at phone office) (not (at book office))
ACTION 3: (move office home)
OBSERVATION: (is-at office) (at pen home) (in phone) (at book home) (not (at pen office))

The learning problem takes as input a sequence of actions and observations such

as these and produces a description of the Briefcase action model. For example, the

description specifies that the (move ?m ?l) action is successful if the briefcase is at

1Here observations include false properties of objects, to differentiate between properties of the
world which are observed and those which are untrue. Whether to represent unobserved properties as
untrue is a representational choice considered in Chapter 4.

1.1. Overview and motivation 3

location m, and has the effect of moving the briefcase and its contents from location m

to location l. In PDDL (McDermott et al., 1998), this action has the form:

(:action move
:parameters (?m ?l - location)
:precondition (is-at ?m)
:effect (and (is-at ?l) (not (is-at ?m))

(forall (?x - portable) (when (in ?x)
(and (at ?x ?l) (not (at ?x ?m)))))))

1.1 Overview and motivation

This thesis proposes a new approach to learning relational action rules which can learn

from noisy, incomplete observations. The algorithm learns both an implicit action

model of the domain it is observing, and generates STRIPS-like rules from the implicit

model, thereby providing domain descriptions suitable for use by automated planning

systems.

1.1.1 Problem structure

The basis of the approach is the division of the learning problem into two parts: ini-

tially a classification method is used to learn an implicit action model, then explicit

rules are derived from the resulting action representations. A secondary decomposi-

tion also underlies the learning process: a predictive model for each element of the

state description is learnt separately, with the models only combined at the point of

constructing full rule descriptions in PDDL format.

There are a number of reasons to decompose the problem in this way. By breaking

the problem down into many simpler problems, it may be easier to solve. The effect of

noise and partial observability is reduced, since by deriving explicit rules from a previ-

ously learnt implicit action model, the rule derivation can avoid the problems of learn-

ing from noisy or incomplete observations: the rules are now derived from a model

which produces complete, noiseless training examples. Additionally, classification

methods more commonly perform incremental learning from noisy and incomplete

examples, while rule induction more often takes a batch approach. A structure which

plays to these characteristics should have a wider choice of applicable pre-existing

machine learning techniques.

4 Chapter 1. Introduction

1.1.2 Problem settings

The initial setting for the algorithm is action model learning in classical STRIPS do-

mains, with the aim of generalising to more complex domains where some of the

STRIPS assumptions are relaxed, in particular, the STRIPS scope assumption that

all objects which appear in the preconditions or effects of an action also appear in

the argument list of the action. The formulation of the STRIPS learning problem as

a classification problem is straightforward, as states can be represented by vectors in

a simple attribute-value representation. The vector representation facilitates a funda-

mental process of classification: comparisons of different states in order to identify

regularities in the sequence of actions and observations.

A challenge for generalising classification to settings without the STRIPS scope

assumption is that, when working with general relational representations, these com-

parisons rapidly lead to computational inefficiency due to the many possible ways to

match objects across different states when performing a comparison (Haussler, 1989).

The key step in this thesis is to formulate the state representations for both settings

in terms of deictic references. A deictic reference is a pointer to objects which have

a particular role in the world, with object roles coded relative to the agent or current

action (Agre and Chapman, 1987). This leads to a graphical representation of states in

terms of deictic references and a novel graph kernel which uses deictic references to

limit the number of object matches in comparisons.

1.1.3 Rule extraction

The two-stage learning approach means that post-processing is required to extract

STRIPS-like rules from the implicit learnt models. At this juncture it would be possi-

ble to apply an existing method for learning action dynamics to learn an explicit action

model from the implicit model, as observations can now be complete and noiseless.

However, this fails to take advantage of the structure already learnt and so is likely to

be inefficient. Similarly it would be possible to apply standard rule extraction tech-

niques to each classifier predicting some element of the state, followed by a process

to collate the rules into full action descriptions. Since these methods tend to produce

large numbers of rules and are often computationally intractable, this was also rejected.

Instead, a new method for rule extraction was developed with the goal of re-using

some of the structure already uncovered by classification learning. Rule extraction

is essentially a guided search through the space of possible rules, while the structure

1.2. Contributions 5

discovered by a voted perceptron classifier is encoded in its support vectors. The rule

extraction method combines these by using the support vectors to seed the search for

rules in an approach based on both rule extraction and feature selection methods. A

final rule combination step heuristically combines the individual rules into full action

descriptions. The resulting rules compare favourably to implicit models, with no statis-

tically significant differences between predictions using the rules or the models. The

method as presented only applies to classical STRIPS domain models, but there is

scope to extend it to include conditional effects, disjunctive preconditions, universally

quantified effects and possibly also to include probabilistic effects.

1.2 Contributions

In summary, the key contributions of this thesis are:

• a new approach to learning relational action models, using a two-stage learning

process which first learns an implicit action representation and then processes

the representation to form STRIPS-like action rules;

• a novel graph kernel based on deictic references;

• a novel rule extraction method; and

• a formulation of state representations in terms of deictic references.

1.3 Thesis outline

The remainder of this thesis is structured as follows. Chapter 2 covers the background

to the problem and reviews previous work on learning action models. Chapter 3 sets

out definitions and notation used in the thesis, and provides details of the training and

testing datasets. Chapter 4 covers learning of implicit STRIPS models in partially

observable and noisy domains, and Chapter 5 extends the approach to more complex

models. In Chapter 6 a method is given to extract explicit formal STRIPS rules from

implicit models of the type learnt in Chapter 4, with the potential to extend the method

to the models of Chapter 5. The final chapter concludes with a summary of the thesis

and a discussion of possible future work.

Chapter 2

Affordance learning in context

In this chapter I introduce affordances and how they relate to action model learning. I

discuss some of the different action formalisms available and cover previous work on

both grounding action models and relational learning of action models. Finally, I con-

sider the different representations used and the effects of the choice of representation

on computational tractability.

2.1 Affordances

Learning domain dynamics by exploration naturally leads to learning the action pos-

sibilities, or affordances, available to an agent in a domain. Gibson (1979) defined an

affordance as

a resource or support that the environment offers an animal for action. The
animal must possess the capabilities to perceive and act on it.

This can equally apply to any agent in an environment. The affordances of a situation

vary between agents and depend on the agent’s physical attributes, and sensory and

motor abilities. An apple affords eating or perhaps throwing or kicking, for a human,

but not for a cat. In different situations the affordances related to an object may vary:

an apple will not afford eating if full of maggots.

Gibson proposed that affordances are the basis of perception in animals, intimately

linking perception, action and the external environment. Defining an agent’s interac-

tion with the world in terms of affordances can lead to a common representation for

actions and objects which can be shared among agents with the same abilities. Addi-

tionally, if an agent perceives a set of affordances for a situation, it can also advance a

prediction about the outcome of performing an afforded action.

7

8 Chapter 2. Affordance learning in context

An affordance predicts an action on an object which will have some effect on the

environment. Usually the effects of an action are included in the affordance definition.

For example, Şahin et al. (2007) incorporate the effects of the behaviour, defining

an affordance as a relation between an entity in the environment and a behaviour of

the agent, such that applying the behaviour to the entity results in a particular effect.

Similarly, Steedman (2002) includes effects by formulating actions as functions from

preconditions to postconditions. The affordances of an object are then defined to be

the set of such actions which can be carried out on the object by an agent.

There is a good reason to include effects of actions within affordances: when we

learn the affordance relation by performing an action in the world, we also have the

effect information available. Since the afforded action must have some effect on the

environment (or at least the agent must believe1 there is some effect), learning an

affordance involves at least detecting that there was an effect. It seems implausible

that an effect of an action would be detected but not associated in some way with the

action, so in this thesis, affordances will be defined to include both the actions afforded

by a situation, and the effects of performing those actions.

2.2 Action formalisms

To represent affordances, we can look to the many action formalisms developed for

AI in the planning, common-sense reasoning and intelligent agents subfields. Van Ot-

terlo (2009) divides action formalisms into action languages and action logics. Action

languages focus on compactly representing and modelling actions to support compu-

tationally tractable planning. In contrast, the more formal action logics incorporate the

actions as axioms within the logic, supporting reasoning and inference on the actions.

Common to most single agent action formalisms is the expectation that actions

take place when the world is in some fixed state or situation, that actions are atomic

(instantaneous), blocking (only one can occur at a time), and are the only cause of

change in the world. Change is seen in the changing values of predicates describing the

world: fluents are predicates which may change as a result of some action, while static

predicates are predicates which never change. There is also the notion of an action

1In this thesis I do not consider belief-based learning, where an agent learns while taking into account
its own and other agent’s beliefs, and competes with other agents for resources within the world. Instead
here the agent does not consider and is unaware of the actions of other agents, and does not differentiate
between its own beliefs about the state of the world and the actual state of the world, similar to standard
reinforcement learning.

2.2. Action formalisms 9

precondition, which must be satisfied in order for an action to take place, and an action

effect, specifying the results of an action in the world (Schwind, 1999; Van Otterlo,

2009). Since the preconditions determine if an object affords particular actions in a

particular state, most action formalisms could be used to represent affordances.

2.2.1 Fundamental issues for any formalism

There are fundamental problems any action logic or language must handle. These

relate to how the action formalism supports tractable reasoning about the world (the

frame problem and associated qualification and ramification problems), and how the

formalism links its representation to the world (the symbol grounding problem, the

binding problem and the correspondence problem). These are discussed in detail be-

low.

2.2.1.1 The frame problem

The frame problem is the problem of describing both the effects and non-effects of ac-

tions without requiring an exhaustive description of every possible effect or non-effect

of every action (McCarthy and Hayes, 1969). Some means of determining non-effects

of actions is needed, otherwise it would be necessary to re-evaluate the state of the

world after every action, since it would not be known what else might have changed

besides the immediate effects of the action. The frame problem creates both represen-

tational and computational issues. Representationally, in a complete description of the

world, it can rapidly become impractical to represent vast numbers of frame axioms

describing non-effects of actions. Computationally, it is infeasibly slow to make infer-

ences from situations described mostly by large numbers of non-effect axioms. In the

context of a robot learning outcomes using a full description of the state of the world,

the frame problem is present in the sense that we have a set of exhaustive descriptions

of the world both before and after any action, and must generate the appropriate set of

rules relating prior and following states: the rules must deal with the frame problem in

both representational and computational aspects.

2.2.1.2 The ramification problem

Related to the frame problem, the ramification problem (Finger, 1987) concerns how to

represent and reason about the indirect effects of an action, arising as a consequence of

the direct effects of the action, and of the rules governing the world itself. For example,

10 Chapter 2. Affordance learning in context

in the Briefcase domain, when a briefcase is moved from one location to another, all

the objects inside the briefcase also move to the new location. The direct effect of the

briefcase changing location will be encoded in the action description, but the indirect

effect of the briefcase contents changing location may be derived from known causal

relations between the fluents. Alternatively, the indirect effects could be encoded as

direct effects, but this can lead to very large action descriptions.

2.2.1.3 The qualification problem

The qualification problem (McCarthy, 1977) is also related to the frame problem. Out-

side artificial domains, there are vast numbers of actual preconditions (qualifications)

of an action (although most of the time, most of them will be true). For instance, Mc-

Carthy discusses the “potato-in-the-tailpipe” scenario, where the action of starting a

car has the precondition that the key is in the ignition, but the success of the action

is also qualified by the preconditions that the car has petrol, the battery is connected,

there is no potato in the exhaust pipe, and any number of other possibilities. Check-

ing every possible qualification on the action is infeasible, and for most preconditions,

unnecessary.

2.2.1.4 The symbol grounding problem

The symbol grounding problem (Harnad, 1990) is related to the problem of assigning

meaning to arbitrary symbols. Some symbols can be defined in terms of other symbols,

but at least some symbols must be defined in some other way, or grounded, in order

to avoid infinite regression. In this project, the intention is to ground representations

of affordances in terms of associations between perceptual features and actions. If

objects are represented by their affordances then this grounds object representation in

sensorimotor experience — except that the representations of perceptual features and

actions themselves need to be grounded.

2.2.1.5 The binding problem

The binding problem (Treisman, 1998) is the problem of representing features in such

a way that (exactly) those features corresponding to the same entity are bound together.

In terms of learning affordances of objects, binding will be needed to understand which

features correspond to which objects. The present thesis assumes that perceptual bind-

ing is a property of the perceptual system, occurring before learning takes place.

2.2. Action formalisms 11

2.2.1.6 The correspondence problem

The correspondence problem (Aggarwal et al., 1981) is the problem of determining,

over the course of several observations, which object in one observation corresponds to

which object in another observation. Although usually considered a vision problem, a

solution is necessary for any action formalism which depends on discrete observations

of the world before and after an action. Correspondence may be achieved by matching

objects which have the same features but this can run into problems when there are

many similar or identical objects in a scene, or when observations are unreliable. This

thesis assumes that the perceptual system resolves the correspondence problem before

learning takes place.

2.2.2 STRIPS and related action languages

In this thesis, actions will be learnt as operators in the STRIPS (STanford Research In-

stitute Problem Solver) action language (Fikes and Nilsson, 1971), and its extensions.

In classical STRIPS, domains are assumed to be deterministic and states are fully ob-

servable. The state description is symbolic, with states represented by conjunctions

of ground predicates. Predicates not explicitly mentioned in the description are as-

sumed to be false (closed world assumption) and so states can be fully described by

conjunctions of only positive literals.

STRIPS operators consist of an action name, a set of preconditions, an add list

and a delete list. Preconditions are a conjunction of positive literals which must hold

for the action to be performed. The add list is a set of fluents whose values are true

after the action, and the delete list is a set of fluents whose values are false after the

action. Together the add and delete lists encode the effects of the action. Any fluent not

mentioned in the description of the action stays unchanged (the STRIPS assumption

(Waldinger, 1977)). Objects mentioned in the preconditions or the effects must be

listed in the action parameters (the STRIPS scope assumption (Walsh and Littman,

2008)). Finally, actions always succeed if their preconditions are satisfied (Russell and

Norvig, 2009).

STRIPS was subsequently extended to ADL (Action Description Language) (Ped-

nault, 1989). ADL is more expressive than STRIPS, while also relaxing some of the

associated constraints. The language is extended to include an equality predicate and

types. Actions may have negative preconditions, which in turn allows both open or

closed world reasoning. Preconditions may also have disjunctions, and both precondi-

12 Chapter 2. Affordance learning in context

tions and effects may include quantifiers. Actions may also have conditional effects,

where additional effects may occur as the result of an action, if secondary precondi-

tions are satisfied in addition to the main preconditions of the action.

PDDL (Problem Domain Description Language) (McDermott et al., 1998) is a

standardisation of action languages, including STRIPS and ADL as subsets. Origi-

nally devised to provide a common planning language for the International Planning

Competitions (IPCs)2 it is much more expressive than STRIPS or ADL, supporting,

for example, derived predicates, and notions of time and duration.

The STRIPS assumption provides a solution to the frame problem,3 as it avoids ex-

plicitly enumerating fluents which are unchanged by an action. ADL makes a similar

assumption (Pednault, 1989). The qualification and ramification problems are only re-

solved by requiring that any necessary precondition is explicitly listed, and that indirect

effects must be explicitly coded as direct effects.

2.3 Representation

An action precondition is a concept to be learnt. There are a variety of increasingly

more complex representations which could be chosen for a precondition. De Raedt

(2008) defines a hierarchy of representations which may be used in relational learning,

ranging from propositional to logical.

At its simplest, a precondition may be represented by a set of propositions, Boolean

attributes which take the value true or false. In this Boolean representation, only true

attributes need to be specified, since the remainder will then be false. For instance, the

example in Figure 2.1 could be represented as:

{clear-B, B-on-C, C-on-table, clear-D, D-on-table}.
A more expressive propositional representation is an attribute-value (AV) representa-

tion where attributes need not be Boolean-valued but could also take discrete or con-

tinuous values. For instance, the example in Figure 2.1 could be represented as:

{colour-B=blue, colour-C=blue, colour-D=red,

clear-B, B-on-C, C-on-table, clear-D, D-on-table}.
Attribute-value (AV) representations can be reduced to Boolean representations if the

domains of the attributes are discrete. However, AV forces each attribute to take a

single value whereas the corresponding Boolean representation permits an attribute to

2See ipc.icaps-conference.org.
3When states are described using only atomic formulae.

2.3. Representation 13

Figure 2.1: BlocksWorld state example

take multiple values. For example, {colour-B=blue} in an AV representation trans-

lates to a proposition {colour-B-blue} in a Boolean representation, but the Boolean

representation would also permit {colour-B-blue, colour-B-red}.
The propositional representations are not particularly suitable as representations of

action preconditions, since there is little support for relations. A more natural repre-

sentation would be a relational representation which, in contrast to the propositional

approaches, allows both objects and relations between objects to be represented. For

instance, the example in Figure 2.1 could be represented as:

{clear(B), on(B,C), ontable(C), ontable(D), clear(D),

colour(B)=blue, colour(C)=blue, colour(D)=blue}.
A relational representation can be reduced to an AV representation but it requires taking

the cross-product of the relations to produce a single universal relation enumerating

all possible relations in the world. Also, relational representations can be extended

to full-blown logical representations with functors and structured terms: this type of

representation is beyond the scope of this thesis.

In concept learning, most machine-learning methods have focused on attribute-

value learning. Grounded approaches to action model learning also tend to be AV,

because the problem of learning relations is still to be addressed, and because the

observed world features are naturally limited by the restricted amount of data available

from sensors. In contrast, relational approaches usually use relational representations.

2.3.1 Biases and related complexity results

Concept learning approaches may employ bias to constrain the search space of possi-

ble hypotheses. A common source of bias is to restrict the possible form a hypothesis

may take, reducing the size of the hypothesis space, for example, by permitting only

conjunctive concepts, k-DNF or k-CNF. Object types may be introduced, which then

14 Chapter 2. Affordance learning in context

restrict the potential arguments of actions and fluents by only allowing particular types,

again reducing the size of the hypothesis space. Additionally the system may be en-

dowed with a preference bias towards certain types of hypotheses, often shorter (and

therefore simpler) hypotheses.

The type of bias affects the tractability of learning. For instance, it is an open

problem in learning theory whether DNF expressions can be learnt efficiently. Since

kernel perceptrons will form the basis of the learning approach in this thesis, it should

be noted that it is known that the kernel perceptron cannot efficiently either learn or

PAC-learn DNF (Khardon et al., 2005).

All of these types of bias are used in the action learning literature. The robot-based

attribute-value learners typically assume conjunctive concepts, and this is generally

enough to make learning tractable since the set of attributes is relatively small. Re-

lational STRIPS learners will, by definition, assume conjunctive preconditions (and

effects) (Wang, 1995; Yang et al., 2007; Walsh and Littman, 2008).4 More complex do-

mains require more expressive hypotheses, so other learners assume hypotheses which

are small disjunctions of conjunctions (Rodrigues et al., 2010b), possibly with an ad-

ditional preference for shorter hypotheses (Benson, 1996; Pasula et al., 2007). Some

support quantifiers (Rodrigues et al., 2010b; Zhuo et al., 2010), logical implication

(Zhuo et al., 2010) or CNF (Amir and Chang, 2008).

In concept learning, with fully-observable, noiseless examples, conjunctions and k-

DNF in attribute-value representations are PAC-learnable (Valiant, 1984, 1985). How-

ever, finding a consistent hypothesis of minimum size is NP-hard (Haussler, 1988).

More recently, it has been shown that conjunctions and k-DNF are PAC-learnable un-

der partial observability where attributes are masked independently (Decatur and Gen-

naro, 1995) or arbitrarily (Michael, 2007). Furthermore, conjunctions and k-DNF are

PAC-learnable with combined classification noise and attribute noise, or both classi-

fication noise and partial observability (for k-DNF the noise levels must be known)

(Decatur and Gennaro, 1995).

Similarly, in deterministic, fully observable, noiseless domains, Walsh and Littman

(2008) show that STRIPS action models can be learnt efficiently, provided that precon-

ditions have at most k fluents. This restriction is due to a problem of exploration rather

than of learning: if a precondition is a conjunction of instances of all P predicates in a

world, then simply finding the state where the precondition holds, in order to generate

a positive example to learn from, can take in the worst case O(2P) steps. Clearly, learn-

4Wang (1995) also learns conditional effects and negative preconditions.

2.3. Representation 15

ing action models in other languages must be subject to the same constraint, so even if

there were an efficient DNF learner available, only preconditions in k-DNF could be

learnt efficiently.

Conversely, with a relational representation, conjunctions (and therefore k-DNF)

are neither learnable nor PAC-learnable, at least where the learner produces hypotheses

which are also existential conjunctive concepts (Haussler, 1989). This holds even when

the instance space is severely restricted with only unary relations, Boolean-valued at-

tributes and where every example consists of only two objects. Haussler (1989) notes

that the difficulty is with the ambiguity introduced by the lack of a fixed mapping be-

tween objects in different examples: the different hypotheses considered by the learner

must account for each of the possible mappings.

These results suggest that it may be possible to achieve tractable learning of pure

and extended STRIPS models even in partially observable, noisy domains. However, it

is unreasonable to expect tractable learning of more general models without significant

further constraints.

2.3.2 Rule search

Concept learning is often characterised as a search through the space of possible hy-

potheses for a concept which applies to a set of examples (Mitchell, 1982). The search

can be aided by structuring the space as a lattice ordered by a generalisation relation

on the hypotheses. However, the nature of the search depends on how the hypotheses

and examples are specified, and the choice of generalisation relations.

The learning problem may be modelled (De Raedt, 2008) in terms of:

• a language of examples Le consisting of descriptions of examples or observa-

tions,

• a language of hypotheses Lh consisting of hypotheses about examples or obser-

vations, and

• a covering relation c : Le ×Lh which determines if a hypothesis matches an

example.

The choice of languages and covering relation gives rise to different learning set-

tings. Two common settings are learning from entailment and learning from inter-

pretations (De Raedt, 2008). In learning from interpretations, Le is a set of inter-

pretations, usually Herbrand interpretations (informally, true ground facts which fully

16 Chapter 2. Affordance learning in context

describe a possible observation or situation), while Lh is a set of logical formulae.

For an example e ∈ Le and hypothesis H ∈ Lh, H covers e iff e is a model of H.

For instance, in a BlocksWorld domain if the example e ∈ Le is the interpretation

{UNSTACK(A,B)∧ON(A,B)∧ONTABLE(B)∧CLEAR(A)∧ARMEMPTY}

and H ∈ Lh is

UNSTACK(x,y) :- ARMEMPTY ∧ON(x,y)

then H covers e since for any θ chosen from the ground substitutions {x/A,y/B},
{x/B,y/A},{x/A,y/A} and {x/B,y/B}, Hθ is always true in e.

In learning from entailment, Le is a set of clauses (usually definite) while Lh is a set

of theories (sets of clauses). For an example e ∈ Le and hypothesis

H ∈ Lh, H covers e iff H � e (H and ¬e is unsatisfiable). For instance, in BlocksWorld

again, if e is

{UNSTACK(A,B),ON(A,B),¬ONTABLE(B)}
and H is

UNSTACK(x,y) :- ON(x,y)

then H covers e.

Learning from interpretations implicitly assumes that each example is completely

specified, a form of closed world assumption, and so it does not support incomplete

examples. The setting of learning from partial interpretations has been considered,

where a partial interpretation is a set of true or false ground facts describing a situ-

ation, and where some facts may be unknown. This setting does support incomplete

examples, but it is equivalent to learning from entailment (De Raedt, 1997). Since

learning from interpretations supplies a full set of facts about an example, much more

information than learning from entailment, learning from interpretations is an easier

and more tractable setting to work in.

Given a lattice of hypotheses in either the learning from interpretations or learning

from entailment settings, the search for a concept is structured by deciding the cover-

ing relation between examples and hypotheses, and eliminating unsuitable hypotheses.

Usually an approximation to logical entailment is used in the form of θ-subsumption

(Plotkin, 1970), which approximates c1 � c2 by a test for the existence of a substitution

θ such that c1θ⊆ c2. However, θ-subsumption is NP-complete (Kapur and Narendran,

1986). OI-subsumption (subsumption under Object Identity) restricts θ-subsumption

by forcing each term of a clause to be different. It therefore simplifies the structure of

2.4. Modelling abstractions 17

the search space by preventing substitutions where several terms can be collapsed into

one. It is also strictly weaker than θ-subsumption. Computationally, OI-subsumption

is equivalent to graph isomorphism, which is neither known to be NP-complete nor has

a known polynomial algorithm. In practice, however, OI-subsumption is more efficient

that θ-subsumption. Recently Rodrigues et al. (2010a) have learnt action rules using

the learning from interpretations setting and OI-subsumption.

2.4 Modelling abstractions

Learning action models from experience amounts to estimating a (possibly stochastic)

transition function5 from observations. Such transition functions can be learnt in the

context of state space models such as Markov Decision Processes (MDPs) (Puterman,

1994), and generalisations thereof. As discussed below, learning transition functions

in the context of MDPs corresponds to learning in propositional, fully observable do-

mains. While techniques exist to learn transition functions in this case, once we move

to relational and/or partially observable domains, the available techniques are much

more limited.

2.4.1 Markov Decision Processes

MDPs are a combination of states, actions, a transition function between states, and a

reward function. Actions control when the system changes from one state to another,

with the resulting state determined by the transition function. The reward function

assigns rewards to particular states, or performing particular actions in some states,

and is used to drive learning towards particular goals. A crucial assumption is that the

system is Markovian, that is, the result of an action depends only on the current state,

and not on previous actions or states (the Markov property). Thus knowledge of the

sequence of actions and states leading up to the current state is not necessary to make

an optimal decision about which action to take. Formally, MDPs are defined as below.

5In this thesis I assume the transition function is deterministic (the possibility of extending to stochas-
tic transition functions is discussed in Section 6.5.3).

18 Chapter 2. Affordance learning in context

Definition 2.4.1. A Markov Decision Process (MDP) is a tuple (S,A,T,R) where:

• S is a finite set of states;

• A is a finite set of actions;

• T : S×A×S→ [0,1] is a transition probability function, where T (s,a,s′) is the

probability of a transition occurring between state s and state s′ via action a; and

• R : S×A→ R is the expected reward function, where R(s,a) is the expected

reward for performing action a in state s.

Now learning the preconditions and effects of actions in a fully-observable world

amounts to learning the transition function T of an MDP. There are established algo-

rithms for learning the transition function in MDPs, for example, the EM-based algo-

rithm of Murphy (2002). However, a major issue with using MDPs in the relational

setting is that MDPs require an explicit enumeration of the state space. Even in a small

BlocksWorld with 5 blocks, the number of grounded fluents is 41, requiring a transi-

tion matrix with (an infeasible) (241)2 entries. Additionally, in an MDP it is assumed

that the states of the world are fully observable: an assumption which does not hold

for the scenarios considered in this thesis. The MDP abstraction has been extended in

a number of ways to deal with partial observability, large state spaces and relational

data. Below I discuss these extensions in turn.

2.4.2 Partially observable MDPs

If state observations are incomplete, the world can be modelled by a partially-observable

MDP (POMDP) (Kaelbling et al., 1998). In a POMDP the agent cannot observe the ac-

tual state, but only has an observation of the state, which may be obscured, or corrupted

by noise. This is modelled using a space of possible observations in combination with

an observation probability function, which determines the probability of an observation

given a state and an action. Formally:

Definition 2.4.2. A Partially Observable Markov Decision Process (POMDP) is a

tuple (S,O,A,B,T,R) where S,A,T and R are as for MDPs above, and:

• O is a finite set of observations; and

• B : O×A×S→ [0,1] is an observation probability function, where B(o,s,a) is

the probability of observation o occurring when action a is performed and the

resulting state is s.

2.4. Modelling abstractions 19

In place of knowledge about the state, the agent now only has available a belief

state, namely a probability distribution over the set of states, indicating the agent’s

belief about its current state. The belief state can be updated after an action and an ob-

servation by conditioning on the observation, and using the transition and observation

probability functions. The increased complexity of POMDPs also makes learning of

the transition model much more complex. For instance, Shani et al. (2005) simulta-

neously learn an underlying model and a POMDP solution, however the approach is

limited to small domains.

2.4.3 Factored MDPs

In the description so far, states have been modelled as monolithic entities, but often

states will have structure which can be exploited. Furthermore, intuitively the success

of an action typically depends on a few aspects of the state and not on others. For

instance, the success of a grasping action will usually depend on the current state of

the gripper and the object to be grasped, but not on the locations or colours of other

objects in the world. Factored MDPs (Boutilier et al., 1995) or factored POMDPs

(Boutilier and Poole, 1996) address this by modelling the state as a set of separate

factors. Formally:

Definition 2.4.3. A factored MDP is a finite MDP where the set of states S is described

by a set of n random variables X = {X1, . . . ,Xn}, so that each s ∈ S is a cross-product

of factors x1× x2× . . .× xn where xi ∈ Xi. Each Xi has a finite set of possible values.

Factored POMDPs are defined analogously.

As before, the associated transition matrix is infeasibly large, with size exponential

in n. However, factorisation means that the transition function may be compactly mod-

elled, for example, using Dynamic Bayes Nets (DBNs) (Dean and Kanazawa, 1989),

subject to the assumption that each factor depends only on a small number of factor

values in the previous timestep.

The DBNs are defined as follows. The transition model is described by a separate

DBN for each action a. Each DBN is a two-layer directed acyclic graph with nodes

{X1, . . . ,Xn} and {X′1, . . . ,X′n}, where Xi denotes the random variable Xi at time t,

and X′i denotes the random variable Xi at time t + 1. Edges may only link nodes in

{X1, . . . ,Xn} to nodes in {X′1, . . . ,X′n}. The set of parents of the node X′i in the graph

corresponding to action a is denoted by Parents(X′i, a). Each node X′i has an associ-

20 Chapter 2. Affordance learning in context

holding holding

holding reachable holding

1 1 1

1 0 1

0 0 0

0 1 0.8

reachable reachable
reachable reachable

1 0.9

0 0

is-red is-red
is-red is-red

1 1

0 0

Figure 2.2: An example DBN for a grasp action in a simple robot domain (see text). Con-

ditional probability tables associated with each node at time t +1 are shown in grey. The

value of the holding predicate depends on the values of the holding and reachable

predicates in the previous timestep. The grasp action is not always successful, even if

the object is reachable. The value of the reachable predicate only depends on the

previous value of the reachable predicate, but may change in response to a grasp ac-

tion, which could push the object out of reach instead of grasping. The value of is-red

does not change and so only depends on the previous value of is-red.

ated conditional probability table (CPT) Prob(X′i|Parents(X′i, a)). The state transition

probabilities are given by P(X ′|X ,a) = ∏n
i=1 Prob(X′i|Parents(X′i, a)).

For example, consider a toy domain where a robot can perform a grasp action in

a world with one object. The domain has predicates to indicate whether the robot is

holding the object (denoted by holding), whether the object is reachable by the robot

(denoted by reachable) and the colour of the object (denoted by is-red). The result

of the grasp action depends on whether the robot is already holding the object and

whether the object is reachable, but not on the colour of the object. Even if the object

is reachable, the grasp may sometimes fail. This situation is described by the DBN

shown in Figure 2.2. In this example, it is likely that reachable is in fact dependent on

holding but this would break the assumption that edges may only link nodes between

timesteps, and so is omitted.

The problem of learning the transition function by finding a DBN which best fits

some data set is the problem of structure learning. The structure learning problem for

2.4. Modelling abstractions 21

DBNs is NP-hard, however, recently approximate approaches have been developed for

structure learning in factored MDPs (Jonsson and Barto, 2007; Strehl et al., 2007; Diuk

et al., 2009; Chakraborty and Stone, 2011). One difficulty with using such approaches

to learn transition functions in relational domains is that the DBN representation re-

quires a node for each changing attribute of each object, hampering generalisation.

Additionally the relational predicates are often inter-dependent, breaking the assump-

tion that edges only link nodes between timesteps. As a consequence, these approaches

are not directly applicable to relational domains. Relational generalisations of the DBN

representation exist but have had limited application to the problem of learning transi-

tion functions (see PRMs in Section 2.4.4 below).

2.4.4 Relational (PO)MDPs

Beyond factored MDPs, first-order logical representations for MDPs have been pro-

posed, such as the Independent Choice Logic of Poole (1997); Probabilistic Rela-

tional Models (PRMs), a relational analogue of DBNs (Getoor et al., 2007); or rep-

resentations based on the situation calculus (an action logic, Section 2.2) (Reiter,

2001; Boutilier et al., 2000). With regard to partial observability, the latter represen-

tations have recently been extended to partially observable domains, to give relational

POMDPs (Wang and Khardon, 2010) or first-order POMDPs (FO-POMDPs) (Sanner

and Kersting, 2010). However, methods which operate within these frameworks to

learn the underlying transition model have yet to be developed. Restricting ourselves

to the fully observable case, transition functions encoded by PRMs may be learnt via

algorithms which extend structure learning for DBNs (Getoor et al., 2007). However,

although PRMs have been used to represent states in relational MDPs, it was assumed

that the relations between objects never change (Guestrin et al., 2003). For the types

of planning domains we consider, this assumption is clearly unrealistic. In summary,

although methods exist to learn transition functions in MDPs, and to some extent in

POMDPs and factored MDPs, these methods do not translate to learning in relational,

noisy, partially observable domains.

22 Chapter 2. Affordance learning in context

2.5 Previous approaches to action learning

The literature on learning action models divides into two main approaches. First, learn-

ing grounded action models by constructing transition rules from actions and robot

sensor data coded as sets of objects or raw sensor readings, and predicates derived

from this data. Second, learning relational action models by working within the space

of transition rules and attempting to exploit relational structure in order to improve

speed and generalisation performance. Both of these approaches are discussed in de-

tail below.

2.5.1 Learning grounded action models

A number of lines of research have been directed towards grounding objects, attributes,

relations and actions in sensorimotor experience. Typically this involves a robot

equipped with a variety of sensors, each producing a stream of continuous values.

The robot’s observations will be partially observable and noisy, due to either or both

its environment and limitations of its sensors. The task is to derive symbolic properties

of the world, from objects and attributes to descriptions of actions and relations.

Some approaches do not extend as far as identifying objects6 in the world, oper-

ating instead on holistic experiences defined by particular groupings of sensor values

(Schmill et al., 2000; Doğar et al., 2007). The actions available to the robot are as-

sumed to be known, and sensor readings before and after an action are recorded. The

readings may be a snapshot (Doğar et al., 2007) or a series (Schmill et al., 2000).

Broadly, sensor readings after an action are clustered into sets of similar “experiences”

or effects which are then associated with sensor readings before the action (e.g., us-

ing decision trees (Schmill et al., 2000) or feature selection and SVMs (Doğar et al.,

2007)). The result is a rudimentary operator model which can be used to form simple

plans.

A related approach is taken by Holmes and Isbell (2005) who also learn and refine

operators which predict (individual) sensor values based on current sensor readings

and a known action. In addition, when a prediction fails for some operator, they create

synthetic sensors corresponding to posited hidden or derived variables whose values,

if known, correspond to whether the operator would predict correctly or not. Although

the agent cannot observe the values of synthetic sensors, it can learn to predict their

values, thereby improving the reliability of its operators.

6Without objects, attributes and relations are not identified either.

2.5. Previous approaches to action learning 23

More sophisticated approaches are able to extract notions of objects and attributes

from sensor data. One extensive line of research has demonstrated how an autonomous

agent may learn the structure of its sensors (Pierce and Kuipers, 1997; Olsson et al.,

2006), identify objects in its environment and discover attributes of those objects (Mo-

dayil and Kuipers, 2004), and learn how the world changes in response to the agent’s

actions (Modayil and Kuipers, 2007, 2008).7 Here objects were identified by com-

paring sensor readings to a previously constructed static world model, and tracking

clusters of readings (in time and space) which were unaccounted for by this model.

Other approaches to identify objects are also based on the principle that movement can

be used to segment objects, by coordinating a visual system with manipulation (Metta

and Fitzpatrick, 2003; Kraft et al., 2010). The combination of the concept of an object

and sensor data which can be attributed to it permits derivation of simple features di-

rectly from the sensor readings, for example, the distance to or position of the object

at some point in time. More complex features such as shape may be constructed over

time from multiple sensor readings (Modayil and Kuipers, 2008; Kraft et al., 2010).

Once objects and their features are available, the problem of learning how object

features change in response to actions is an extension of the problem of learning global

changes in the world as a result of actions. The same principles apply. Firstly, regions

in variable space which may be considered to be the same or different are identified

by using clustering approaches to partition the space. It is then possible to identify

when an action changes a variable, in the sense of moving its value from one partition

of the space to another (Modayil and Kuipers, 2007, 2008; Montesano et al., 2008).

Very recent work additionally dispenses with the assumption that available actions are

known, requiring instead only knowledge of motor primitives (Slowinski and Guerin,

2011; Mugan, 2010). By treating the execution of a motor primitive as a variable in its

own right, the changes associated with each motor primitive can be learnt, followed by

increasingly complex hierarchical definitions of actions grounded in the motor primi-

tives. In a different vein, Mukerjee (2009) gives an unsupervised learning method for

both discriminating actions and determining their parameters using video sequences.

The method operates by clustering temporal data selected via an attentional mecha-

nism in the form of a saliency map. It was able to extract actions and parameters

from videos of interacting agents, and to differentiate between the different roles of

the action parameters (e.g., the agent following and the agent being followed).

To date the most comprehensive approach to grounded learning from sensorimo-

7As before, the actions available to the robot are assumed to be known.

24 Chapter 2. Affordance learning in context

tor experience is the QLAP algorithm (Mugan, 2010). QLAP (Qualitative Learner of

Actions and Perception) assumes as input a set of continuous variables describing the

environment, generated from the environment by a perceptual function or data factor-

ing process (e.g. Modayil and Kuipers, 2007). Outputs are primitive motor actions

which are converted to raw motor variables by a motor conversion process (e.g. Pierce

and Kuipers, 1997). QLAP discretises the continuous inputs by identifying landmarks,

points which meaningfully divide the continuous space of values. The set of landmarks

is recursively extended as actions are identified and refined. QLAP identifies contin-

gencies in the discretised description of the environment, where a change in a variable

(across a landmark point) is closely followed by change in another variable (typically

the first change will relate to a motor action). This change is encoded as a DBN where

the first change is encoded in the first time slice, and the second change in the sec-

ond time slice. QLAP then seeks additional context variables which may improve the

prediction of the DBN.

By creating DBN representations of actions, QLAP can convert the DBNs into

MDPs and use standard MDP learning techniques to generate policies and plans. Rather

than modelling the world as a single MDP, this models the world using many smaller

MDPs, reminiscent of the options framework. These MDPs may additionally be linked

together to form larger plans using goal-regression planning.

QLAP had been used exclusively on non-relational domains. Part of the reason for

this is that QLAP does not support learning of relational predicates, but ultimately the

underlying substrate of QLAP is propositional and not relational. For instance, even

if QLAP were provided with a predefined relational domain, contingencies would be

learnt from the full grounded state description. The problems with structure learning

in MDPs on grounded relational domains also apply here: the DBNs require a node for

each changing attribute on each object, making it difficult to generalise across states.

Similarly, even if relational contingencies were learnt, the relational counterparts of

DBNs and MDPs (e.g. PRMs and RMDPs) would be needed in order to model the

domain dynamics.

In summary, existing work has shown how a robot may autonomously acquire

knowledge of its sensors and motion primitives, as well as of the external environment

in terms of objects and their attributes. Rules governing how the robot’s actions cause

changes in its environment can also be learnt, even when the environment is noisy

or partially observable. However, none of the existing work on grounded models has

considered how to learn relations between objects, let alone how relations change as a

2.5. Previous approaches to action learning 25

result of actions. In general, learning grounded relations is an important open problem,

which recent studies are only just beginning to address (Rosman and Ramamoorthy,

2011; Sjöö and Jensfelt, 2011), and only in the context of supervised learning. Given

this existing body of work, in this thesis it will be assumed that a world representation

can be obtained consisting of symbols for objects, their attributes and relations, at-

tributes of the world, and actions. It is however clear that data derived from a grounded

representation of the world will be noisy and incomplete, even for data at the level of

objects and relations rather than at the level of sensor readings.

2.5.2 Learning relational action models

Most previous work on learning relational action models makes similar assumptions

to those discussed above. However, much work also relies on the provision of prior

knowledge of the action model. For example, strategies include seeding initial models

with approximate planning operators (Gil, 1994), making successful plans available to

the learner (Wang, 1995; Yang et al., 2007; Zhuo et al., 2010; Cresswell and Gregory,

2011), excluding action failures (Amir and Chang, 2008), or the presence of a teacher

(Benson, 1996). Such knowledge is unlikely to be available to an autonomous agent

learning the dynamics of its domain.

Furthermore, only a few relational approaches tackle learning under partial observ-

ability (Amir and Chang, 2008; Yang et al., 2007; Zhuo et al., 2010), or noise in any

form (Benson, 1996; Pasula et al., 2007; Rodrigues et al., 2010a). The types of partial

observability and noise may vary. Observations may be partially observable or noisy in

that some fluents are respectively missing (Amir and Chang, 2008) or altered (Benson,

1996; Rodrigues et al., 2010a). Alternatively, sequences of observations may be par-

tially observable in that entire observations may be missing, possibly in combination

with some missing fluents within observations (Yang et al., 2007; Zhuo et al., 2010).

Finally, observations may be fully observable and noiseless but actions with noisy out-

comes may be modelled (Pasula et al., 2007). Of particular note is that no relational

approaches currently attempt to learn action models under both partial observability

and noise. Similarly, very few approaches support probabilistic operators (Benson,

1996; Pasula et al., 2007; Safaei and Sani, 2007).

The expressiveness of rules which can be learnt also varies, ranging from STRIPS

(Halbritter and Geibel, 2007), possibly extended by conditional effects (Wang, 1995;

Zhuo et al., 2010; Rodrigues et al., 2010a), to rules which include quantifiers and

26 Chapter 2. Affordance learning in context

logical implications (Zhuo et al., 2010), or noisy deictic rules (Pasula et al., 2007).

Expressivity not only affects the kinds of domains which may be learnt, but also the

tractability of the approach (see Section 2.3). The learnt rules themselves are usually

explicitly stated, but need not be; instead the rules may be implicit in a model which

predicts the outcome of an action given an initial state (Halbritter and Geibel, 2007;

Xu and Laird, 2010). Another distinction is whether methods use online, incremental

approaches or learn in an offline manner. Most of the above cited approaches are online

and incremental but there are exceptions (Benson, 1996; Pasula et al., 2007; Yang et al.,

2007; Zhuo et al., 2010; Cresswell and Gregory, 2011).

In summary, in terms of learning action models representing the affordances avail-

able to an autonomous agent, there are a number of requirements which existing ap-

proaches do not meet in full. Suitable methods must not assume domain information

beyond the grounded symbols which could be expected to be learnt by the methods

discussed in Section 2.5.1. Methods must also work in partially observable, noisy

domains, which only Pasula et al. (2007) and Rodrigues et al. (2010a) handle to any

extent, and neither completely. Additionally, methods should learn in an online, incre-

mental fashion in order to learn from data generated by an agent exploring its world.

As mentioned above, although the MDP framework supports learning of proba-

bilistic transition functions, the existing methods do not support relational domains.

Most methods which use alternative abstractions to learn in relational domains do not

support probabilistic operators, with a few exceptions. Therefore in this thesis I also

focus on learning deterministic operators, although I discuss how the process might be

extended to probabilistic operators in Section 6.5.3.

2.6 Deictic reference

The notion of deictic reference is central to this thesis, underpinning both the state

representation used and the learning process. The term deixis originates from Ancient

Greek meaning “pointing” or “showing”. In language, deixis is the term for expres-

sions which refer to the context of an utterance, for example, “this” or “here” (Finegan,

1998). The context must be known for the expression to be correctly understood. De-

ictic expressions can operate on a spatial (“here”), temporal (“now”) or personal (“I”)

basis (among others). In particular, when used for spatial reference, deixis may require

a pointing gesture to distinguish the referent, and in general, deixis corresponds to a

pointing relation between a word and a context. The term indexicality is often used in-

2.6. Deictic reference 27

terchangeably with deixis, although in the philosophical tradition indexicality includes

deixis but is more general, covering any pointing or indicating relation, for instance,

smoke as an indicator or index of fire, or a sundial as an indicator of the time of day

(Peirce, 1931).

The idea of deixis has been adopted in the cognitive robotics field, where a deictic

reference is a pointer to objects which have a particular role in the world, with object

roles coded relative to the agent or current action. Agre and Chapman (1987) intro-

duced deictic references in the form of “indexical-functional entities” which refer to

objects in the game of Pengo in terms relative to the main agent in the game, e.g., “the-

block-I’m-pushing” or “the-bee-on-the-other-side-of-this-block-next-to-me”. Deictic

references are only maintained for objects close to the agent, so other objects are ef-

fectively invisible to it. As the state changes, objects may move in or out of range, and

change role. Each deictic reference must therefore be kept up-to-date so that it always

points to an object with the same role.

In the context of reinforcement learning, Whitehead and Ballard (1991) use deictic

references (markers) to point to target objects in the world. Their system uses two

types of marker, overt markers which are associated with overt actions that change

world state, and perceptual markers which are used to gather additional perceptual

information, and have associated perceptual actions which can change the object the

marker is bound to. Since the deictic representation entails incomplete state observa-

tions, to successfully learn a policy their system must additionally learn where to direct

its perceptual marker, in order to observe parts of the world state which distinguish be-

tween otherwise identical observations.8

Deictic references have also been used to recode a first-order description of the

world in terms of the arguments of the current action (Benson, 1996; Pasula et al.,

2007). Encoding a state using deictic reference involves assigning deictic terms to

objects in the world. Each deictic term uniquely defines an object or set of objects in

the current context. In the approach taken by Benson (1996) and Pasula et al. (2007),

each domain constant and each argument of the action is considered to be a deictic term

in its own right (referring to the actual object which is the argument for the specific

action instance, similar to Whitehead and Ballard’s overt markers). Then any object

can be assigned a deictic term if it is (positively) related only to objects which have

themselves already been assigned deictic terms. The new deictic term for the object is

written in terms of the existing deictic terms and the relationships with the object. The

8The problem of perceptual aliasing.

28 Chapter 2. Affordance learning in context

process is repeated until no further objects can be coded via deictic reference.

For example, consider a BlocksWorld-type action to pick up block X (PICKUP X),

where block X is on block Y (ON X Y) and Y is on block Z (ON Y Z). Writing the

deictic terms in the form 〈deictic term label〉:〈constraints〉, the deictic terms would be:

• arg1:(PICKUP arg1) [the-block-I’m-picking-up]

• dref1:(ON arg1 dref1) [the-block-under-the-block-I’m-picking-up]

• dref2:(ON dref1 dref2) [the-block-under-the-block-under-the-block-I’m-picking-up]

It is possible for a set of objects to have the same deictic term. Where more than

one object shares the same deictic term, Pasula et al. (2007) do not give a deictic term

to any of the objects in the set, while Benson (1996) does not specify how this situation

should be handled.

There are a number of benefits in using a deictic representation. It reduces the size

of the state representation, by limiting the observations to a small number of objects.

Providing the roles corresponding to the deictic references are relevant to the task, the

reduced representation makes learning of domain dynamics easier, as there are fewer

possible states and actions to consider. The relevant deictic terms may be themselves

learnt (Whitehead and Ballard, 1991) or be obtained by creating deictic terms for all

possible relevant roles (Benson, 1996; Pasula et al., 2007), although this leads to a

corresponding increase in the size of the state space. Additionally, deictic references

permit generalisation across different instances of the same action, as the observations

are described in terms of the action and the agent instead of specific objects.

How might a deictic representation arise? Any agent needs to be able to connect

its actions with the world. This is particularly apparent in situated cognition, where it

has been proposed that the external world could be used as an external visual memory

(Brooks, 1990; O’Regan, 1992), reducing (or in the extreme, removing) the need for

internal representation of the world. If the world is acting as a memory, this implies a

need for a mechanism to address this memory, so that parts of the visual scene can be

returned to when required.

A possible mechanism is given by the visual indexing hypothesis (Pylyshyn, 2000),

which proposes that humans can maintain pointers to objects in the world (a visual in-

dex or “FINger of INSTantiation” known as a FINST (Pylyshyn, 1989)). The main

purpose of a visual index is to bind an argument of a mental relational predicate or

motor command to a real-world object. Thus, a visual index differs from putative ob-

ject representations such as object files (Kahneman et al., 1992), event files (Hommel,

2.6. Deictic reference 29

2004) or object-action complexes (OACs) (Krüger et al., 2011), in that these are pro-

posed as temporary instantiations of the collection of features and affordances of an

object, whereas the visual index is the link between them and the object to which they

refer. Pylyshyn (1989) suggests that visual indices may be assigned by either bottom-

up or top-down processes, where the bottom-up approach operates at a preconceptual

level, on entities which the visual system rapidly identifies as possible objects (proto-

objects), in contrast to the top-down approach which may attach indices to conceptual

objects identified by their features. Experimental evidence suggests the availability

of a small number of visual indices, between 4 and 10 (Pylyshyn, 2000; Bullot and

Droulez, 2008), which point to (proto-)objects rather than locations (Kahneman et al.,

1992; Pylyshyn, 2000), and track those (proto-)objects over time (Pylyshyn, 2000).

There are clear parallels between visual indexing, deictic reference and attention.

A visual index is clearly a deictic reference: it points from the representation of an

object with a particular role (the argument of a mental relational predicate or motor

command) to an object in the world. Ballard et al. (1997) describe attention as a

“neural deictic device”, while Hurford (2003) explicitly identifies deictic reference

with attention, although Pylyshyn (2001, 2009) argues slightly differently that visual

indexing is one stage in a series of processes which constitute attention.

Moreover, Hurford (2003) proposes that there are neural correlates of the full

predicate-argument structure of a logical formula, where deictic references, in some

form, take the role of arguments in relational predicates. He relates the differential

processing of sensory inputs in the ventral and dorsal streams (Goodale and Milner,

1992) to the respective construction of predicates and arguments. The dorsal stream,

concerned with visuomotor control and the capture of egocentric locational properties

of objects corresponds to the maintenance of deictic references and thence arguments,

while the ventral stream, concerned with perception of object properties, corresponds

to the creation and maintenance of predicates.

Deictic representations therefore support the goal of grounding representations in

the real world while also enabling the creation and maintenance of predicate-argument

structures necessary for reasoning in relational domains. Since deictic coding may

come about through attentional mechanisms already well-explored in the literature

(e.g., saliency maps (Koch and Ullman, 1985; Itti et al., 1998)), the work in this thesis

will assume some form of deictic coding mechanism.

Furthermore, although not the main motivation for choosing a deictic representa-

tion, visual indexing provides solutions to both the correspondence problem and the

30 Chapter 2. Affordance learning in context

binding problem discussed in Section 2.2.1. By providing an object tracking mecha-

nism across different observations, object correspondence is maintained, while feature

binding is achieved since every feature of a specific object can be associated with a par-

ticular visual index. As a result, a solution to the binding and correspondence problems

will be assumed in the remainder of this thesis.

2.7 Summary

In this thesis I aim to induce action representations based on the actions of an agent

in the world, and grounded in the affordances the agent perceives. The resulting rep-

resentation is intended to support a planner by providing STRIPS-like rules encoding

the relationship between the state of the external world and the actions it affords, and

between affordances and the states resulting from the affordances. Previous work on

learning grounded action models has demonstrated that object, predicate and action

symbols (including action parameters) can be grounded in sensorimotor representa-

tions. Although there has been work on learning relational action models, none of the

approaches so far are suitable for learning in partially observable, noisy environments

typical of robot domains.

In setting up an algorithm to learn action models, the choice of representation is

important as it determines the set of domains which a method may be applied to, while

increasing expressiveness is also associated with decreasing computational efficiency,

to the extreme of intractability. Finally, deictic references generate state representa-

tions which are useful for action model learning and have been successfully employed

in previous work.

Chapter 3

Preliminaries

In this chapter I set out the formal definition of domains and states which will be used

in this thesis. I also define a form of object equivalence based on deictic reference,

which will underlie the learning models used in later chapters. Additionally I discuss

the use of simulated data generated from relational planning domains, which domains

are used, the process of generating the data, and how partial observability and noise

are modelled in this context.

3.1 Definitions

A domain D is defined as a tuple D = 〈O,P ,F ,A〉, where O is a finite set of world

objects, P is a finite set of predicate (relation) symbols, F is a finite set of function

symbols, and A is a finite set of actions. Each predicate, function, and action also has

an associated arity. A fluent expression is a statement of the form:

(i) p(c1,c2, . . . ,cn), where p ∈ P , n is the arity of p, and each ci ∈ O, or

(ii) f (c1,c2, . . . ,cn) = cn+1, where f ∈ F , n is the arity of f , and each ci ∈ O.

A state is any set of fluent expressions, and S is the set of all possible states. For

any state s ∈ S , a fluent expression φ is true at s iff φ ∈ s. The negation of a fluent

expression, ¬φ, is true at s (also, φ is false at s) iff φ 6∈ s.1 Each action a ∈ A is defined

by a set of preconditions, Prea, and a set of effects, Effa. Prea can be any set of fluent

expressions and negated fluent expressions.

I consider two kinds of action effects. Firstly, standard STRIPS effects, where each

1One of the properties of functions is that they have unique mappings. Thus, the specification of
fluent expressions over the same function, but with different mappings, could give rise to inconsistent
states (e.g., a state where f (a) = c and f (a) = d both held). However, the representations used in
Chapters 4 and 5 do not support this possibility.

31

32 Chapter 3. Preliminaries

e∈ Effa has the form add(φ) or del(φ), and φ is any fluent expression. Secondly, condi-

tional effects of the form Ce⇒ add(φ) or Ce⇒ del(φ). Here, Ce is any set of fluent ex-

pressions and negated fluent expressions, and is referred to as the secondary precondi-

tions of effect e. Action preconditions and effects can also be parameterised. An action

with all of its parameters replaced with objects from O is said to be an action instance.

For any fluent expression or action φ, the function args(φ) returns the set of arguments

of φ, {c1,c2, . . . ,cn}, and the function argsi(φ) returns the i-th argument of φ. For

any fluent expression or action φ, the function label(φ) returns its predicate or action

symbol.

3.2 Using deictic references to shape the rule space

In Chapters 4 and 5, I will discuss a model for learning action rules — effects and

preconditions of actions — given examples of actions and their prior and successor

states. The problem of learning rules is formulated as a classification problem, where

each classifier takes as input a state and an action, and outputs whether some substate

changes or not. Target outputs used for training will be in the form of deltas, the

difference between each prior and successor state.

There are three related issues with this approach which will be handled by using

deictic references. Firstly, the space of possible preconditions and effects is exponen-

tially large, as potentially any combination of fluents could constitute a precondition

or effect. As discussed in Chapter 2, most approaches to the problem of learning ac-

tion rules therefore restrict the space in some way; similarly, action languages used

for planning restrict the possible form of the rules. The approach here will also be to

constrain the rule space.

The specific restriction on the space of rules is based on intuition about how ac-

tions affect the world. Usually, an action only affects some small part of the world,

and the objects which are affected typically have some connection to the action, or to

objects involved in the action. For example, in a world of stacking blocks, stacking

one block on top of another changes the properties of the stacked block, and the block

being stacked upon, but not the properties of other blocks lying on the table. Often

the affected objects are parameters of the action, or are directly related to the action

parameters, as in the example above. Sometimes the affected objects may be indirectly

related via relationships with intermediary objects, such as if the bottom block in a

stack of several blocks is moved, causing all the blocks in the stack to fall on to the

3.2. Using deictic references to shape the rule space 33

table. Generally, though, objects are unaffected by an action if they have no relations

with the parameters of the action. Likewise, action outcomes are unaffected by the

state of objects which have no relations with the action parameters. The rule space can

therefore be reduced by ignoring objects which are unrelated to the action parameters,

essentially the same approach as that taken by Benson (1996) and Pasula et al. (2007).

A second issue is that if two different objects have the same role in an action,

the learning model should treat those objects in the same way. For instance, if a

BlocksWorld STACK action is to stack Block3 on Block5 with the result

(ON Block3 Block5) then we expect if we replace Block3 and Block5 with Block8

and Block1 that (STACK Block8 Block1) should result in (ON Block8 Block1):

the blocks’ labels have no significance. This is clearly desirable when the objects are

in the same position in the action parameters of different instances of an action: if the

states are identical in structure, we expect that the objects will be affected by the action

in the same way. The principle also extends to objects which are not action parame-

ters. If objects in different states have exactly the same set of relations with the action

parameters, we would expect that those objects would affect, and be affected by, the

action in the same way. Finally, if two objects in the same state have the same role

(which cannot be a shared position in the action parameter list, so must be an identical

set of relations with the action parameters), then we also expect that those objects will

affect, and be affected by, the action in the same way. One approach to handling this is

for the learning model not to use constants to represent individual objects, but instead

use a representation which accounts for object roles, a requirement which again may

be fulfilled by employing a deictic representation (Benson, 1996; Pasula et al., 2007).

Lastly, a similarity measure between states is needed to support the use of a

similarity-based classifier. States or deltas are not usually directly comparable since

the specific objects involved vary, so simply calculating a difference between states, as

used to construct deltas, is inadequate. One case is trivial: a comparison can be made

if the states are restricted so that each state only includes objects which are parame-

ters of the current action, as then a one-to-one mapping between objects in the same

parameter positions can be constructed. The issue of measuring the similarity between

states has mostly not arisen in prior work since either the learning models did not use

similarity-based classification, or the deltas were comparable because only the action

parameters were considered (Halbritter and Geibel, 2007). Xu and Laird (2010) do

present a form of similarity matching in this context, but their heuristic aims only to

find the previously seen state which is most structurally similar to the current state,

34 Chapter 3. Preliminaries

rather than giving states a similarity score.

Underlying all of these issues is the idea that objects should be represented by their

role in an action, where the role of an object depends on how it is related to the action

and the rest of the state. An object may be directly or indirectly related to an action,

where these are defined recursively as follows.

Definition 3.2.1. An object is directly related to an action if it is a parameter of the

action. An object is indirectly related to an action if it has a relation with another

object which is itself directly or indirectly related to the action.

Formally, I make the following assumptions:

Relatedness Assumption: An object’s state can only affect or be affected by an action

if the object is related to the action, either directly or indirectly.

Object Role Assumption: An object’s role in an action is determined by its proper-

ties, its relation to the action, and its relations with other objects in the current

state, relative to the action. That is, an object’s role is determined by its deictic

reference, relative to the action.

The Relatedness Assumption seems intuitive: we would not expect an action to change

something in the real world unless there was some sort of relation between the things

being acted upon and the things which changed. If we do not perceive or have knowl-

edge of a suitable relation we would probably posit the existence of one. Since such

predicate invention is beyond the scope of this thesis, it will be assumed that the set

of relations given in any state description is complete. As a result the set of objects

which have deictic references relative to the action are assumed to contain the objects

relevant to the preconditions or effects of an action, implicitly assumed in the work of

Benson (1996) and Pasula et al. (2007).

The Object Role Assumption is similar to the assumption of Sufficiency of Object

Properties made by Gardiol and Kaelbling (2007) where the function of an object is

assumed to be entirely determined by its attributes and relations with other objects

in the world, except that here the relation between the object and the current action

is included. The purpose of the Sufficiency of Object Properties assumption was to

support the definition of an equivalence relation on actions, via the idea that objects

are equivalent if they have the same attributes and relations with other objects in the

world, and that states are equivalent if every object in one state has an equivalent object

in the other state and vice versa. For instance, a BlocksWorld state where Block1 and

3.2. Using deictic references to shape the rule space 35

Block2 are on the table, and Block3 is on Block1 is equivalent to a state where Block4

and Block5 are on the table, and Block6 is on Block5, exactly because each block in

one state has an equivalent in the other state.

The Object Role assumption has two purposes. Firstly, it means that objects can

be represented in state descriptions and action rules by their deictic terms, instead of

their labels, forcing any model of state dynamics to treat objects with the same role in

the same way (as also in Benson (1996); Pasula et al. (2007)). One difference in im-

plementation in this work is that any objects which share a deictic term are represented

by that single deictic term, because those objects are indistinguishable to the action.

Secondly, the Object Role assumption serves a similar purpose to the Sufficiency

of Object Properties assumption in that it supports the definition of a similarity relation

between states via an equivalence relation on objects. By considering the roles of the

objects in two states or deltas, it is possible to map objects in one state or delta to

another. It can then be checked which relations hold in both states or deltas, to give a

measure of similarity between them.

Below I first give a formal definition of deictic terms (following Pasula et al.

(2007)), followed by a definition of the equivalence of objects discussed above.

Definition 3.2.2. A deictic term is a variable vi and an associated constraint ρi where

ρi either:

(i) is an equality relation with one of the arguments of the current action, or

(ii) is a set of literals defining vi in terms of other variables v j, where j < i, and at

least one literal is positive.2

(Since a deictic term may describe more than one object, I will also refer to the set

{v : ρi} as a deictic term.)

If an object x satisfies ρi then x has the deictic term vi : ρi. The set of all deictic terms

of x is denoted dterms(x).

Definition 3.2.3. Two objects x and y (in the same or different states with associated

actions) are equivalent (x∼ y) iff dterms(x) = dterms(y).

2The requirement for at least one positive literal is due to the open world assumption used in this
thesis (see Section 5.1.1.1), in contrast to the closed world assumption made by Pasula et al. (2007) and
Benson (1996).

36 Chapter 3. Preliminaries

The notion of equivalence can be extended to fluents as follows:

Definition 3.2.4. Relations r and r′ (in the same or different states) are equivalent

(r ∼ r′) iff:

• label(r) = label(r′), and

• args j(r)∼ args j(r′), ∀ j.

The equivalence relations in both definitions underlie the learning models used in

Chapters 4 and 5.

3.3 Data

The learning model will mostly be tested on simulated data, because of the difficulty

of obtaining relational observations from robots. As discussed in Section 2.5, au-

tonomous learning of relations is an unsolved problem. The alternative, using prede-

fined rules to determine relationships, is fragile, as it is not always clear-cut when a

relation holds, nor do predefined rules necessarily coincide with the context required

for a particular action. Therefore, as in much previous work in learning relational

action models (Pasula et al., 2007; Yang et al., 2007; Amir and Chang, 2008), I use

simulated data generated from relational planning domains.

The planning domains I use are taken from various incarnations of the International

Planning Competition (IPC).3 The domains are described in PDDL (McDermott et al.,

1998), the standard representation language of the IPC. An example PDDL descrip-

tion of the BlocksWorld domain is shown in Figure 3.1 (PDDL descriptions of other

domains used can be found in the Appendix). The domains differ in terms of their

complexity in several different dimensions: the number and arity of actions, predicates

and functions; the number and hierarchy of types; conditional effects; and precondi-

tions containing implications. The main characteristics of the domains are detailed in

Table 3.1.

The simplest domains in this set are the pure STRIPS domains (BlocksWorld, De-

pots, ZenoTravel and DriverLog). The rules describing the action models of these do-

mains only refer to objects listed in the parameters of the actions. There are no negative

preconditions, no quantifiers and no conditional effects. The effects and preconditions

are simple conjunctions of fluents. Although classed as a STRIPS domain, several of

3http://ipc.icaps-conference.org/

3.3. Data 37

(define (domain blocksworld)
(:requirements :strips)
(:predicates (arm-empty)
(clear ?x)
(ontable ?x)
(holding ?x)
(on ?x ?y))

(:action pickup
:parameters (?ob)
:precondition (and (clear ?ob) (on-table ?ob) (arm-empty))
:effect (and (holding ?ob) (not (clear ?ob)) (not (on-table ?ob)) (not (arm-empty))))

(:action putdown
:parameters (?ob)
:precondition (holding ?ob)
:effect ((and (clear ?ob) (arm-empty) (on-table ?ob) (not (holding ?ob))))

(:action stack
:parameters (?ob ?underob)
:precondition (and (clear ?underob) (holding ?ob))
:effect (and (arm-empty) (clear ?ob) (on ?ob ?underob) (not (clear ?underob))

(not (holding ?ob))))

(:action unstack
:parameters (?ob ?underob)
:precondition (and (on ?ob ?underob) (clear ?ob) (arm-empty))
:effect (and (holding ?ob) (clear ?underob) (not (on ?ob ?underob)) (not (clear ?ob))

(not (arm-empty)))))

Figure 3.1: PDDL description of the BlocksWorld domain.

the actions in the Rovers domain are unusual, in that some effects are not changes.

Instead these actions always (unconditionally) set a fluent p to true, regardless of p’s

previous value. In a system which learns effects as changes (as in this thesis), rather

than as values, the action behaves differently depending on whether p is false or true

(either p changes or does not). Such behaviour can be encoded by setting up the effect

as a conditional effect, e.g.,

(:action take_image
:parameters (?r - rover ?p - waypoint ?o - objective ?i - camera ?m - mode)
:precondition (and (calibrated ?i ?r) (on_board ?i ?r) (equipped_for_imaging ?r)

(supports ?i ?m) (visible_from ?o ?p) (at ?r ?p))
:effect (and (have_image ?r ?o ?m)(not (calibrated ?i ?r))))

becomes

(:action take_image
:parameters (?r - rover ?p - waypoint ?o - objective ?i - camera ?m - mode)
:precondition (and (calibrated ?i ?r) (on_board ?i ?r) (equipped_for_imaging ?r)

(supports ?i ?m) (visible_from ?o ?p) (at ?r ?p))
:effect (and (not (calibrated ?i ?r))

(when (not (have_image ?r ?o ?m))
(have_image ?r ?o ?m))))

38 Chapter 3. Preliminaries

Domain Actions Predicates
No. Max No. Max STRIPS Conditional Negative

arity (+types) arity effects preconditions
BlocksWorld 4 2 5 2 Y
Depots 5 4 6 (+6) 2 Y
ZenoTravel 5 6 8 (+4) 2 Y
DriverLog 6 4 6 (+4) 2 Y
Briefcase 3 2 3 (+2) 2 Y Y
Elevator 3 2 6 (+2) 2 Y Y
Rovers 9 6 25 (+7) 3 Y Y

Table 3.1: Domain characteristics

It is therefore this type of conditional rule which the models in later chapters must

learn for the Rovers domain, and so in Table 3.1, Rovers is listed as a conditional

effects domain. The more complex ADL domains (Briefcase and Elevator) have more

complex rules. Both have negative preconditions, conditional effects, and use universal

quantification.

3.4 Data generation

To simulate an agent “motor-babbling” in the world, sequences of random actions and

resulting states were generated from PDDL domain descriptions and used as train-

ing and testing data. All data was generated using a script, based on the Random

Action Generator 0.5 available at http://magma.cs.uiuc.edu/filter/. The script

requires a PDDL domain description and an initial state as input. The initial states

were generated at random by the BlocksWorld state generator (Slaney and Thiébaux,

2001); for ZenoTravel, Depots, DriverLog and Rovers4 by the IPC3 problem genera-

tor (http://planning.cis.strath.ac.uk/competition/domains.html); and for Brief-

case and Elevator (Miconic-SIMPLE domain) by the FF domain collection generators

(http://www.loria.fr/˜hoffmanj/ff-domains.html). The number of objects in the

state space was higher in the test data than in the training data, to demonstrate that

the learnt models could be applied across different instances of the same domain. The

4The IPC3 Rovers domain description contains several actions whose effects list contains both an
addition and deletion of the same fluent. This encoding is intended to restrict possible plans in the
domain, and is not relevant to the action dynamics. Therefore, for the purposes of learning an action
model, these superfluous effects are ignored.

3.4. Data generation 39

Domain Training Testing
BlocksWorld 13 blocks 30 blocks
Depots 1 depot 4 depots

2 distributors 4 distributors
2 trucks 4 trucks
3 pallets 10 pallets
3 hoists 8 hoists
10 crates 8 crates

ZenoTravel 5 cities 10 cities
3 planes 5 planes
7 people 10 people

DriverLog 3 road junctions 20 road junctions
3 drivers 5 drivers
7 packages 25 packages
3 trucks 5 trucks

Briefcase 50 objects 100 objects
50 locations 100 locations

Elevator 15 floors 30 floors
5 passengers 20 passengers

Rovers 2 rovers 4 rovers
4 waypoints 8 waypoints
3 objectives 4 objectives
3 cameras 4 cameras
3 modes 3 modes
2 stores 4 stores
1 lander 1 lander

Table 3.2: Numbers of each type of object in training and testing worlds

numbers of each type of object in training and testing worlds for each domain is shown

in Table 3.2.

To determine an error bound on the results, 10 runs with different randomly gen-

erated training and testing sets were used. Each training set was a sequence of 20000

actions, and each testing set a sequence of 2000 actions. Both sequences contained an

equal mixture of successful and unsuccessful actions (where some precondition of the

action was not satisfied, and so no change occurred in the world).

In some domains, portions of the state space can only be traversed once. For ex-

ample, in the Elevator domain, passengers are delivered by the elevator to their desti-

nations, and never re-enter the elevator. Once all the passengers have been delivered,

the only actions which can be performed are for the lift to travel up and down be-

tween floors, and so the opportunities for learning the action model are much reduced.

40 Chapter 3. Preliminaries

In these domains (Elevator, Rovers), multiple shorter sequences of 400 actions were

generated from randomly generated starting states.

3.5 Models of noise and partial observability

In the real world, an agent’s observations of the world state are subject to partial ob-

servability and noise. Partial observability can arise due to sensor failures (e.g., an

unreliable sensor sometimes does not give a reading for a particular property of the

world) or due to sensor limitations (e.g., usually an agent cannot detect objects which

are physically located elsewhere). Similarly, noise originates from noisy sensors and

effectors. If probabilistic outcomes are not being considered, world non-determinism

can also contribute to noise in the observations, since, like effector noise, it leads to

different outcomes from situations which are the same.

An agent interacts with the world by making observations and performing actions.

The action learning problem is to predict the new world state given the current world

state and an action. Formally, at time t, an agent observes the world state s̄t through its

(possibly noisy, unreliable) sensors, producing an observation z̄t . The raw sensor data

may be further refined into a set of percepts p̄t via a perceptual function f (Modayil

and Kuipers, 2008). The subsequent world state, s̄t+1, is determined (possibly stochas-

tically) by the previous state, s̄t , and whichever action at the agent chooses to perform

(using possibly noisy effectors). The resulting sequence of percepts and actions forms a

set of training examples where each 〈p̄i,ai〉 is an input with corresponding target p̄i+1.

The examples can then be used to train a learning model to predict the new world state,

as observed by the agent, i.e., to predict p̄t+1, given the current observation of world

state, p̄t , and an action at (Figure 3.2).

This world-level observation model holds for agents operating in the real-world,

but often the world and the agent must be simulated. One approach is to build a physi-

cal model of the agent and the world (Uğur and Şahin, 2010), for example, by using a

physics engine such as ODE (http://www.ode.org). Alternatively, data can be gener-

ated under the assumption that all behaviour is fully-observable and deterministic, and

then modified. A popular approach is to insert a blocking process (Schuurmans and

Greiner, 1997) which degrades the observations from a fully-observable, deterministic

world. For example, consider the case where the sensor data is a vector of Boolean val-

ues z̄ = 〈z1,z2, . . . ,zn〉, zi ∈ {0,1} and the set of possible observed states of the world

is Z = {0,1}n. A blocking process models partial observability by mapping each zi to

3.5. Models of noise and partial observability 41

World: s̄t f (z̄t) Learner
z̄t p̄t

at

p̄t+1

Figure 3.2: World-level observation model generating training data for the learner from

world state observations. At time t, the agent makes an observation z̄t which is con-

verted into percepts p̄t via some function f . The training data supplied to the learner

consists of inputs 〈p̄t ,at〉 and targets p̄t+1.

Simulated

Examples: s̄t
β f (z̄∗t) Learner

z̄t z̄∗t p̄t

at

p̄t+1

Figure 3.3: World-level blocked-observation model where observations are modelled

using a blocking process β on sensor readings and then percepts are derived from the

modified sensor values.

an unknown value ∗ with some probability. A trivial extension is to model noise by

mapping each zi to (1− zi) with some probability. The blocking process approach is

shown in Figure 3.3.

However, it can be difficult to define the perceptual function f which maps sen-

sor values to percepts. A domain expert can predefine the mapping, but the result

is a domain-specific mapping, which is likely to be inflexible in the face of unex-

pected situations. Alternatively, the mapping to percepts may be learnt. Research in

the autonomous robotics field has focused on learning non-relational percepts, such

as learning to identify objects and properties of objects (Modayil and Kuipers, 2008).

Little progress has been made in acquiring relational percepts, apart from recent work

by Rosman and Ramamoorthy (2011) on learning spatial relations between objects,

specifically, “on” and “is adjacent to”. As a result, generating observations of rela-

42 Chapter 3. Preliminaries

Simulated

Examples: s̄t
β Learner

x̄t x̄∗t

at

x̄∗t+1

Figure 3.4: Percept-level blocked-observation model) which models observations using

a blocking process β on examples which are simulated percepts.

tional data requires either a predefined mapping from sensory data to percepts, or the

use of simulated relational data. Therefore the model of the interaction between an

agent and the world is often further simplified (Figure 3.4). The world is modelled

in terms of percepts x̄t , and then a blocking process is applied to the set of generated

percepts at each time t (Yang et al., 2007; Amir and Chang, 2008; Bouthinon et al.,

2009; Rodrigues et al., 2010a).

Applying a blocking process (with noise) to observations, without accounting for

dependencies between components of the observation, whether sensor-based or percept-

based, can have the undesirable effect of generating inconsistent observations of the

world. For example, in BlocksWorld, 〈(on A B),(clear A),(on-table B)〉 could

be degraded to 〈(on A B),(holding A),(clear A),(on-table B)〉, where block

A is now both on block B and in the gripper. Applying noise and then somehow mak-

ing the observations consistent is more complex, since it requires knowledge of how

the relations in the world affect each other. Alternatively, observations without noise

can be used, with a randomly chosen, noiseless state used as the outcome, to model

the situation where the prior observed state was consistent, but incorrect, and there-

fore the action had an unexpected effect. All of these approaches to modelling noise

give rise to different forms of perceptual aliasing, where two distinct states cannot be

differentiated because their observed descriptions are the same.

Few reports in the literature relate to the application of noise to simulated sensor

data or percepts. The blocking process approach is used by Rodrigues et al. (2010a) to

apply random noise to percepts. Although not explicitly modelling noisy observations,

the approach in Pasula et al. (2007) models some outcomes as noise outcomes, which

could also cover unexpected outcomes resulting from perceptual aliasing.

Chapter 4

Learning STRIPS action models

The work presented in this chapter tackles the problem of learning action models in

noisy, partially observable STRIPS domains, which may additionally have conditional

effects. The contribution of the chapter is to demonstrate that decomposing the states

via deictic reference is a viable approach, which can then be generalised to learning

action models in more challenging domains. Below I describe the model’s state rep-

resentation, and how it is constructed using deictic references. I present a standard

learning model which can learn action models using this representation, and discuss

results from applying the approach in different planning domains.

4.1 Strategy

The task of the learning mechanism is to learn the associations between

action-precondition pairs and their effects, that is, rules of the form 〈A,PreA〉 → EffA.

My approach will be to encode the learning problem in terms of the inputs and outputs

of a set of classifiers: change to a single fluent for a particular action can be predicted

by a single classifier, taking as input a state description. The full set of changes to a

state as a result of an action can then be constructed by combining (by conjunction)

the changes predicted by each classifier. Note that whenever a classifier predicts that

a fluent will not change, it means that the preconditions for an action to change that

fluent are not satisfied. Thus, provided that action failures as well as successes are in-

put to the classifiers, preconditions as well as effects of actions can be learnt using this

approach. This learning strategy has implications for the types of action rules which

can be learnt. Since action effects are constructed by combining changes to individ-

ual fluents by conjunction, only conjunctive effects can be learnt. Conditional effects,

43

44 Chapter 4. Learning STRIPS action models

where in some situations there are extra effects of an action, can also be learnt, since

the conditions for change to each individual fluent are learnt separately.

However, predicting change for every possible fluent in a world can be computa-

tionally expensive, since for a world with n objects and with predicates whose maxi-

mum arity is m, the number of fluents to be predicted is O(
(n

m

)
). The same problem

affects the representation of the input states, since I will remove the closed world as-

sumption in order to differentiate between unobserved and false fluents when working

in partially observable domains.1 The first step towards representing the state for the

learning model is therefore to identify a set of objects to include, or attend to, in a

reduced state description. The aim is to reduce the number of represented objects in

order to make the learning problem more tractable, ideally without removing objects

which are relevant to the action.

The objects to include in the state description are identified via deictic references,

relative to the current action. The deictic references can be restricted to include more

or fewer objects, depending on how distantly related the objects are to the action pa-

rameters. The smallest set of objects would just be the set of action parameters; the

largest set would include the action parameters and any object which has a (true) re-

lation with an object already known to be in the set (i.e. the full transitive closure).

Here I use the simplest case where the state description only includes objects listed in

the action parameters. Note that, by the definition of STRIPS actions, this is sufficient

for learning action models in STRIPS domains, because of the STRIPS scope assump-

tion (Section 2.2.2) that all objects which appear in the preconditions or effects of an

action also appear in its argument list. In Chapter 5, deictic references beyond action

parameters are considered.

Figure 4.1a presents an example from the BlocksWorld domain, in which an agent

can manipulate a set of blocks on a table. Given the action (stack A B), to stack

block A on top of block B, the action parameters are {A,B}. Each parameter has a

deictic term based on its position in the action parameter list, e.g. arg1 is the deictic

term for A, and arg2 for B. The remaining objects are omitted from the learner’s state

description.

1A possible alternative to removing the closed world assumption would be to move to a knowl-
edge representation where all fluents are knowledge fluents of the form K f and K¬ f corresponding to
whether the agent has observed f or ¬ f to be true. In this case the closed world assumption means that
unobserved fluents are assumed to be unobserved. However, since all observed true and false fluents are
enumerated, the same problem arises, namely that the number of fluents to represent is large.

4.2. Representation 45

4.2 Representation

By restricting the state description to only those objects listed in the action parameters,

every possible fluent relating the objects can be defined in terms of its label and the

positions of its arguments in the action parameter list. As a consequence, states can be

represented using an attribute-value representation, where each attribute is a combina-

tion of fluent label and argument positions, and each value is the value of that fluent in

the state, such as in the vector representation described below.

An input vector, representing an observation of the state space before an action

is performed, is constructed as follows. Each action a ∈ A , and each 0-ary fluent, is

represented by a single element of the vector. Each possible fluent relating any object

in the action parameters is represented by an element og the vector. The value of an

element is 1 (−1) if the corresponding predicate is true (false), or if the corresponding

action is (not) the current action. For functions, the value of the element is just the

value of the function, if integer-valued, or an ordinal when the function is nominal-

valued. Where the fluent represented by an element is unobserved, the element is set

to an arbitrary value N. This value is simply a wildcard indicating that the element’s

true value is unknown, and is not used in any of the perceptron’s calculations. Since

different actions may take different numbers of parameters, the number of possible

fluents varies: vectors are padded with entries set to N up to the maximum possible

length of vector for a domain.

An ordering on the fluents in the vector is necessary, so that vectors can be con-

structed repeatably, and to facilitate similarity comparisons between vectors. The or-

dering is created by first establishing an ordering on both the predicates, and the ob-

jects. The predicates are given an arbitrary ordering p1, . . . , pm which is retained for

any example in the domain. The objects are ordered by order of appearance in the

action parameter list: ob j1, . . . ,ob jn. Obviously the actual objects in a particular po-

sition in the parameter list will vary between examples, but the fluents relating to the

i-th parameter will always be in the same position in the vector.

For each action parameter ob ji, all the fluents with that parameter as their first

argument are arranged in a contiguous block in the vector. The blocks are arranged in

the vector in object order. Within each block, all fluents with the same predicate are

arranged in a contiguous block, and this set of blocks is arranged in predicate order.

It remains to define an ordering on the remaining arguments of each predicate, to

give a full ordering for the vector. Since the first argument is fixed, the other arguments

46 Chapter 4. Learning STRIPS action models

(a) Example BlocksWorld state

Input vector Corresponding action/predicate

−1 pickup(arg1)
−1 putdown(arg1)

1 stack(arg1,arg2)
−1 unstack(arg1,arg2)

Actions

−1 armempty
. . .

}
Object independent
properties

1 holding
−1 ontable
−1 clear
−1 on-arg1
−1 on-arg2

. . .

Properties of arg1

−1 holding
−1 ontable

1 clear
−1 on-arg1
−1 on-arg2

. . .

Properties of arg2

(b) Input vector

Output vector Corresponding predicate

{
1 armempty

. . .

1 holding
−1 ontable

1 clear
−1 on-arg1

1 on-arg2
. . .

−1 holding
−1 ontable

1 clear
−1 on-arg1
−1 on-arg2

. . .

(c) Output vector

Figure 4.1: (a) Action stack(A,B) results in objects A and B being attended to, while
unrelated objects C, D, E and F are ignored. Objects A and B are referred to by the de-
ictic terms arg1 and arg2 respectively, in the vector representation shown in (b) and (c).

(b) Input vector representation of the (fully observable) BlocksWorld stack action and
prior state from (a). The first 4 entries correspond to the 4 domain actions. The entry for
stack is set to 1 since it is the current action. The 0-ary fluent armempty is represented
by a single element, set to −1 since the gripper is holding object A. The first set of
fluents represented in the vector are those for object A since it is the first parameter of
stack. The second set of fluents relate to object B, as the second parameter of stack.

(c) Output vector representation for the same action and prior state. There are
no entries for actions. Elements corresponding to fluents which changed have value 1,
and all other elements have value −1.

4.2. Representation 47

are drawn from every correctly sized (arity of predicate - 1) subset of the remaining

n−1 objects. For a ternary predicate p and first argument ob j1, with 10 action param-

eters the subsets to consider would be {ob j2,ob j3},. . . ,{ob j2,ob j10},{ob j3,ob j4},. . . ,

{ob j3,ob j10},. . . ,{ob j9,ob j10}. Note that within each subset there are multiple pos-

sible orderings of the objects which could be used to fill the remaining parameters of

the predicate. The set of subsets can be ordered lexicographically (e.g. as shown),

therefore for each predicate/first-argument combination, fluents whose remaining pa-

rameters are contained in the same subset are arranged in contiguous blocks in the

vector, with the blocks arranged in lexicographic order.

The ordering of the predicate arguments is important, so ob ji followed by every

permutation of each subset is a possible set of arguments to p j. Using the previous ex-

ample, this gives arguments (ob j1,ob j2,ob j3), (ob j1,ob j3,ob j2). . . ,

(ob j1,ob j2,ob j10),(ob j1,ob j10,ob j2) . . . , (ob j1,ob j9,ob j10), (ob j1,ob j10,ob j9). The

permutations of each subset can also be ordered lexicographically (as above), and this

is the ordering used for the fluents in the vector. If the domain has object types, these

can be used to reduce the number of possible fluents, since some types of relation will

only take certain types of objects at specific parameter positions.

The form of the output vectors representing an action’s effects on a state is iden-

tical to the input vectors, except that the actions are excluded from the vector. For

predicates, elements are set to 1 if the corresponding predicate changes, and −1 if the

corresponding predicate does not change, while elements corresponding to functions

are set to the result of subtracting the previous value from the new value. Elements

corresponding to unobserved predicates or functions are set to N as in the input vector.

Figure 4.1 shows an example of an input and output vector for the (stack A B) action

in the BlocksWorld domain.

Even with such a highly restricted set of objects, the number of possible fluents in

a state description is large. If the maximum number of action parameters is M, then

there are
(

M(M−1)
n−1

)
× (n− 1)! entries in the vector for each n-ary predicate. To

counter this, it will be assumed that n < 5 for any domain. This choice is motivated by

research showing that in human cognition, only relations of arity four or lower can be

processed directly; higher-arity relations must be decomposed in order to be processed

(Halford et al., 1988). Similarly, relations in language typically have a maximum arity

of four (Hayes et al. (2001):226, Hurford (2003)). It therefore seems reasonable to as-

sume that, firstly, most domains an agent will encounter will not have relations of arity

greater than 4, and, secondly, that if necessary, higher-arity relations can be processed

48 Chapter 4. Learning STRIPS action models

by splitting into many lower-arity relations. Typically, M is also relatively small: for

instance, the largest M in the IPC planning domains is 9 in the Woodworking domain

(6th IPC). With n and M bounded, the size of the vector representation grows linearly

with the number of predicates in a domain.2

4.3 Learning

The proposed structure of the learning approach is shown in Figure 4.2. Once the

world state is converted into a vector representation, the prediction of each element of

the output vector can be treated as a separate supervised learning problem, for which

there are a number of potentially suitable classifiers, e.g. SVMs, perceptrons, naive

Bayes, neural nets. However, in the context of an autonomous agent learning an action

model of its environment, the classifier should ideally be incremental and fast.

Figure 4.2: Structure of the learning model. World state is first converted into a vec-

tor representation. Then each element of the output state vector is learnt/predicted

by a different classifier taking as input the current state vector and the action to be

performed.

2Typically, many of the entries in the vector will be set to N and so it would be more economical to
use a sparse representation than the full vector representation discussed here. In particular, the graphical
representation discussed in Chapter 5 would meet this requirement.

4.3. Learning 49

I therefore use the perceptron (Rosenblatt, 1958), a simple yet fast, incremental

binary classifier. It maintains a weight vector w which is adjusted at each training step.

The i-th input vector xi ∈ Rn in a class y ∈ {−1,1} is classified by the perceptron us-

ing the decision function f (xi) = sign(〈w · xi〉). If f (xi) is not the correct class then

w is set to w + yxi; if f (xi) is correct then w is left unchanged. By the Perceptron

Convergence Theorem, provided the data is linearly separable, the perceptron algo-

rithm is guaranteed to converge on a solution in a finite number of steps (Block, 1962;

Novikoff, 1963; Minsky and Papert, 1969). If the data is not linearly separable then

the algorithm oscillates, changing w at each misclassified input vector.

One solution for non-linearly separable data is to map the input feature space into

a higher-dimensional space where the data is linearly separable. However, an explicit

mapping may lead to a massive expansion in the number of features, making the classi-

fication problem computationally infeasible. Instead, an implicit mapping is achieved

by applying the kernel trick to the perceptron algorithm (Freund and Schapire, 1999),

by noting that the decision function can be written in terms of the dot product of the

input vectors:

f (xi) = sign(〈w ·xi〉) = sign(
n

∑
j=1

α jy j〈x j ·xi〉),

where α j is the number of times the j-th example has been misclassified by the per-

ceptron. By replacing the dot product with a kernel function k(xi,x j) which calculates

〈φ(xi) ·φ(x j)〉 for some mapping φ, the perceptron algorithm can be applied in higher

dimensional spaces without ever requiring the mapping to be explicitly calculated.

Since in general the problem of learning action effects is not linearly separable, the

kernel perceptron is an appropriate choice for this problem. Kernel perceptrons obtain

reasonable accuracy at acceptable training and prediction speeds, allowing this ap-

proach to be used in practical planning applications. Alternative non-linear classifiers,

such as SVMs (Boser et al., 1992), can be substantially slower (Surdeanu and Cia-

ramita, 2007) while performance is not guaranteed to be better (Graepel et al., 2000).

To improve the speed of the classifier I use a variant of the kernel perceptron, the voted

perceptron (Freund and Schapire, 1999), which is computationally efficient and pro-

duces performance close to the best performing maximal-margin classifiers on similar

problems. Furthermore, it is known to tolerate noise (Khardon and Wachman, 2007),

essential for learning in noisy, partially observable domains.

The voted perceptron algorithm extends the perceptron algorithm so that instead of

maintaining a single weight vector w, it maintains a set of weight vectors {wk}. During

50 Chapter 4. Learning STRIPS action models

training, a new weight vector wk is created when a training example xi is classified

incorrectly. As well as setting wk := wk−1 + yxi, the previous weight vector wk−1 is

stored, along with ck−1, the count of the number of correct predictions this weight

vector made. At prediction, the decision function now takes the sign of the weighted

average of the predictions made by each of the weight vectors:

f (x) = sign(
n

∑
i=1

ci sign(〈wi ·x〉)).

As before, the kernel trick can be applied, giving a prediction function:

f (x) = sign(
n

∑
i=1

ci sign(
i

∑
j=1

α jy jk(x j ·x)))

for some kernel function k. I adopt the terminology used by Freund and Schapire

(1999), where the support vectors of the voted perceptron are those training examples

which are used in the prediction calculation, that is, any xi for which αi is non-zero.

The voted perceptron has a parameter T which sets the number of passes which

should be made through the training data. In all of the experiments presented in this

thesis, T = 1 and so is omitted in the algorithm description in Figure 4.3.

Training: Input: Training examples (x1,y1), . . . ,(xn,yn)
Output: Voted perceptrons (α1,c1), . . . ,(αn,cn)

k := 0,αi := 0,ci := 0 ∀i
for i = 1 . . .n do

ŷi := sign(
i

∑
j=1

α jy jK(x j ·xi))

if (ŷi = yi) then
ck = ck +1

else
αi := αi +1
ci = 1
k = i

Prediction: Input: Unlabelled instance x
Voted perceptrons (α1,c1), . . . ,(αn,cn)

Output: Prediction ŷ

ŷ := sign(
n

∑
i=1

ci sign(
i

∑
j=1

α jy jK(x j ·x)))

Figure 4.3: Kernelised voted perceptron algorithm.

4.3. Learning 51

Training: Input: Training examples (x1,y1), . . . ,(xn,yn)
Output: Parameter M

M := 0
for i = 1 . . .n do

ŷi := argmaxk
r=1〈Mr,xi〉

if (ŷi 6= yi) then
Mŷ := Mŷ +xi
Myi := Myi−xi

Prediction: Input: Unlabelled instance x, Parameter M
Output: Prediction ŷ

ŷ := argmaxk
r=1〈Mr,x〉

Figure 4.4: Multi-class perceptron algorithm in primal form

Some of the experimental domains include functions, so it is necessary to extend

the voted perceptron to perform multi-class classification. A simple approach would be

to decompose the multi-class classification problem into a set of binary classification

problems. This approach leads to methods such as one-versus-all classification (each

classifier separates one class from all the other classes) or all-pairs classification (each

classifier separates two different classes). The disadvantages with these approaches are

that many binary classifiers are needed to carry out a single multi-class classification,

and some areas of the feature space can end up without a classification, or with multiple

classifications.

Because of these disadvantages, the approach proposed by Singer and Crammer

(2003) is taken instead. Here, the perceptron weight vector is replaced with a matrix

M, with one row in the matrix for each class. At each step in the perceptron algorithm,

the dot product is calculated for the current training instance x and each row in the

matrix Mi. The prediction for x is the j-th class where j = argmaxi K(x̄,Mi). The

update rule is max-score multi-class update, one of a family of update rules defined

in Singer and Crammer (2003). The row of M corresponding to the correct class of x̄

is updated with x̄ while the row of M corresponding to the predicted class is updated

with −x̄. The multi-class perceptron algorithm is shown in Figure 4.4.

Voted perceptrons are linear classifiers, but can be kernelised to perform classifica-

tion in higher dimensional feature spaces, or with structures such as graphs. Applying

the kernel trick to the multi-class perceptron algorithm, note that for max-score multi-

52 Chapter 4. Learning STRIPS action models

Training: Input: Training examples (xi,yi) where yi ∈ {1, . . . ,r}, i ∈ {1, . . . ,n}
Output: Voted perceptrons ({α01, . . . ,α0r},c0), . . . ,({αn1, . . . ,αnr},cn)

αi j := 0,ci := 0 ∀i, j
for i = 1 . . .n do

ŷi := argmaxz∈GEN(xi)

i

∑
j=1

α jzK(x j,xi)

if (ŷi = yi) then
ck = ck +1

else
αiŷi := αiŷi−1
αiyi = αiyi +1
k = i+1

Prediction: Input: Unlabelled instance x
Voted perceptrons ({α01, . . . ,α0r},c0), . . . ,({αn1, . . . ,αnr},cn)

Output: Prediction ŷ

for i = 1 . . .n do

ẑ = argmaxz∈GEN(x)

i

∑
j=1

α jzK(x j,x)

votesẑ = votesẑ + ci
ŷ := argmaxy∈GEN(x) votesy

Figure 4.5: Kernelised multi-class voted perceptron algorithm.

class update, the row Mr is the sum of all the training examples where the r-th class

was the target class, less the sum of all the training examples where the r-th class was

the predicted class. Setting αir = 1 if the r-th class was the target (but not predicted)

class for example xi, and αir = −1 if the r-th class was the predicted (but not target)

class for example xi, then:

〈Mr,x〉= 〈
n

∑
i=1

αirxi,x〉=
n

∑
i=1

αir〈xi,x〉.

The inner product 〈xi,x〉 can now be replaced with a kernel function, namely, the kernel

described below in Section 4.3.1. It is straightforward to extend the kernelised multi-

class perceptron to include voting (Collins, 2002; Collins and Duffy, 2002). Following

Collins (2002), we define a function GEN, which enumerates all observed values for

a given element of the output vector. GEN thus provides the set of target classes. The

resulting kernelised multi-class voted perceptron algorithm is shown in Figure 4.5.

4.4. Experiments 53

4.3.1 Kernel function

A natural choice of kernel would be one which allows the perceptron algorithm to run

over conjunctions of features in the original input space, as this permits a more accurate

representation of the exact conjunction of features (action and preconditions) corre-

sponding to a particular effect. A suitable kernel is the DNF kernel,

K(x,y) = 2same(x,y), where same(x,y) is the number of elements with the same value in

both x and y (Sadohara, 2001; Khardon and Servedio, 2005). In the same(x,y) calcu-

lation, any element with an unobserved value in x or y is considered to have a different

value to the corresponding value in y or x. The DNF kernel has features which are all

possible conjunctions of fluents. However, using the DNF kernel may scale poorly. It

is an open question in computational learning theory whether DNF is PAC-learnable.

What is known is that DNF is not PAC-learnable by a perceptron using the DNF kernel,

as there exist examples on which it can make exponentially many mistakes (Khardon

et al., 2005).

I therefore also consider the k-DNF kernel, whose features are all possible conjunc-

tions of fluents of length ≤ k for some fixed k:

K(x,y) =
k

∑
l=0

(
same(x,y)

l

)
(Khardon and Servedio, 2005). An algorithm for PAC-

learning k-DNF is known (Valiant, 1984). Furthermore, a perceptron using the k-DNF

kernel has polynomial time updates (Sadohara, 2002) and a polynomial mistake bound

(Klivans and Servedio, 2004). Since a mistake-bound algorithm can be converted into

a PAC-learning algorithm (Angluin, 1988), k-DNF is also PAC-learnable by a percep-

tron using the k-DNF kernel.

4.4 Experiments

All experiments were run on the simulated data sets described in Chapter 3. Results

were compared for a standard (non-kernelised) perceptron, a voted (non-kernelised)

perceptron, and a voted kernel perceptron. Both the DNF kernel and k-DNF kernel

with k = 2,3 and 5 were tested.

Where the domains are fully observable and noiseless, the classifiers are only learn-

ing simple conjunctions of features, and so it is expected that a standard perceptron is

enough to learn the action models. The use of a voted perceptron is known to improve

performance when there is classification noise (Khardon and Wachman, 2007), due to

the majority vote mechanism, which stabilises the predictions. Since observations with

54 Chapter 4. Learning STRIPS action models

attribute noise can be interpreted as noiseless observations with noisy classifications, it

is expected that the voted perceptron will also perform better than the standard percep-

tron when there is attribute noise. Similarly, with partial observability, it is expected

that a kernel whose features are conjunctions of fluents will improve performance. The

redundancy in the representation means that small conjunctions of fluents can be com-

bined to give high weight to a larger rule conjunction, even if all the fluents forming

the full rule are never seen together in the training data.

4.4.1 Results

The fully observable, noiseless cases are easily learnt by any of the perceptrons tested,

and after 5,000 training examples, the F-score3 on the test set is 1, in almost all cases

(results for the voted perceptron with the 3-DNF kernel are shown in Figure 4.7). Per-

formance of the voted perceptron, with or without the various kernels, is almost iden-

tical (results not shown).

With the introduction of unobserved fluents or of noise, the voted perceptron per-

forms better than the standard perceptron, as expected. However, the DNF kernel does

not give improved performance, with the unkernelised voted perceptron learning sig-

nificantly more accurate action models. In contrast, the k-DNF kernels all produce

significantly more accurate models than with the DNF kernel or no kernel (p < 0.05)4.

Figure 4.6 gives a comparison of the relative performance of each model.

Although there was no statistically significant difference between the 2-DNF and

3-DNF kernels at 20,000 actions, in some cases with lower numbers of actions the 2-

DNF kernel produced worse results. This most likely reflects the 2-DNF kernel’s lower

redundancy and thus greater susceptibility to noise (see Section 4.5). Furthermore the

k-DNF kernels are unable to learn the (k+1)-variable parity function,5 and with lower

values of k, the more likely it is that a rule may be a (k+1)-variable parity function.

Therefore although the 2-DNF kernel is less complex, the 3-DNF kernel was selected

for further experiments.

3F-score is the harmonic mean of precision and recall (true positives/predicted changes and true
positives/actual changes, respectively) (Van Rijsbergen, 1979).

4Repeated measures ANOVA; post-hoc Bonferroni t-test
5For 1-DNF, i.e., the standard perceptron, this is the classic XOR problem.

4.4. Experiments 55

StandardVoted Voted
2-DNF

Voted
3-DNF

Voted
5-DNF

Voted
DNF

0.5

0.6

0.7

0.8

0.9

1.0

F-
sc

or
e

Average F-score by model

Figure 4.6: Comparison of the performance of different perceptron models on learning
action models from 20,000 random actions in STRIPS domains, averaged across all
domains, levels of noise and partial observability. Error bars are standard error. Per-
formance is significantly different between models which use a k-DNF kernel and those
which do not.

In the remainder of this section, the results of learning with the voted perceptron

using the 3-DNF kernel are presented and discussed. Plots of the average F-scores for

each domain, for different numbers of training examples, and at varying levels of noise

and partial observability are shown in Figures 4.7, 4.8 and 4.9.

Overall, the accuracy of the models decreases with lower levels of observability

and/or higher levels of noise. The rate of improvement of the F-scores decreases

sharply after around 3,000 examples. This is likely to be a consequence of the random

nature of the exploration of the domain, as the probability of seeing a useful example is

much less than if the exploration were directed by some sort of active learning process.

Without noise, typically the learnt models will correctly predict when an action

will be successful, and most of the fluents which change as a result, but not always

when the action will fail, or all of the effects: that is, the models learn the correct

effects but overly general preconditions. After 20000 examples, the F-scores for the

pure STRIPS domains reach above 0.8, and in Rover, above 0.5, even when only 10%

of the domain is observable. The F-scores for Rover are much lower than in the other

domains, but this is unsurprising since Rover is a substantially larger domain, with

conditional effects.

To give an idea of what this translates to in terms of the actual model, an example

from the ZenoTravel domain, without noise and 10% observability, achieves an F-

56 Chapter 4. Learning STRIPS action models

Action Over-general Missing Details

preconditions effects

Board 2% 34% over-general precondition for AT

missing prediction for IN

Debark - 34% missing prediction for IN

Refuel 3% - over-general precondition for FUEL LEVEL

Fly 6% - over-general precondition for AT

Zoom 7% 93% over-general precondition for AT, FUEL LEVEL

missing prediction for AT

Table 4.1: Results for a typical ZenoTravel example with no noise and 10% observ-

ability. After 20000 training examples, the model achieves an F-score of 0.87. The

errors in the preconditions and effects are shown above, indicating that the model will

mostly correctly predict when any action is successful, but will miss some changes in

its predictions for around a third of Board and Debark actions, and almost all Zoom

actions.

score of 0.87, with errors broken down as shown in Table 4.1. In this case, around

one-third of all Board and Debark actions will not have a change to the (in arg1

arg2) fluent predicted, while most of the Zoom actions will be missing a change to

the (at arg1 arg3) fluent. In less than 10% of cases the Board, Refuel, Fly and

Zoom actions will be wrongly predicted to change a small number of fluents, due to

over-general preconditions. For both over-general preconditions and missing effects,

the errors could (eventually) be corrected by further training.

With the introduction of noise, predictions often also include erroneous effects, in-

troduced by classification errors in the training data. This is most obvious in the results

for the Rover domain, which has proportionally higher numbers of irrelevant fluents

per object. After 20000 examples, the models learnt in noisy domains produce F-scores

of 0.7 or more, even with 10% observability, except in the Rover domain. Here there

appears to be a clear split in the results between the 25% and 10% observability levels,

for both 1% and 5% noise. At 25% observability and above, some learning is tak-

ing place and the F-scores increase, albeit slowly. At 10% observability, the F-scores

plateau: it seems the noise on irrelevant attributes drowns out the true action model.

4.4. Experiments 57

0 5000 10000 15000 20000
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Number of training examples

F-
sc

or
e

Fully observable
50% obs
25% obs
10% obs

(a) BlocksWorld

0 5000 10000 15000 20000
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Number of training examples

F-
sc

or
e

Fully observable
50% obs
25% obs
10% obs

(b) ZenoTravel

0 5000 10000 15000 20000
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Number of training examples

F-
sc

or
e

Fully observable
50% obs
25% obs
10% obs

(c) Depots

0 5000 10000 15000 20000
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Number of training examples

F-
sc

or
e

Fully observable
50% obs
25% obs
10% obs

(d) DriverLog

0 5000 10000 15000 20000
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Number of training examples

F-
sc

or
e

Fully observable
50% obs
25% obs
10% obs

(e) Rover

Figure 4.7: Results from learning actions in partially observable, noiseless, simulated

planning domains, using a voted perceptron with the 3-DNF kernel. Classifiers were

trained on varying numbers of examples, and tested on 2000 fully observed, noiseless

examples from worlds in the same domain as the training examples, but with more

objects.

58 Chapter 4. Learning STRIPS action models

0 5000 10000 15000 20000
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Number of training examples

F-
sc

or
e

1% noise - fully obs
1% noise - 50% obs
1% noise - 25% obs
1% noise - 10% obs

(a) Blocksworld (1% noise)

0 5000 10000 15000 20000
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Number of training examples

F-
sc

or
e

5% noise - fully obs
5% noise - 50% obs
5% noise - 25% obs
5% noise - 10% obs

(b) Blocksworld (5% noise)

0 5000 10000 15000 20000
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Number of training examples

F-
sc

or
e

1% noise - fully obs
1% noise - 50% obs
1% noise - 25% obs
1% noise - 10% obs

(c) ZenoTravel (1% noise)

0 5000 10000 15000 20000
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Number of training examples

F-
sc

or
e

5% noise - fully obs
5% noise - 50% obs
5% noise - 25% obs
5% noise - 10% obs

(d) ZenoTravel (5% noise)

0 5000 10000 15000 20000
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Number of training examples

F-
sc

or
e

1% noise - fully obs
1% noise - 50% obs
1% noise - 25% obs
1% noise - 10% obs

(e) Depots (1% noise)

0 5000 10000 15000 20000
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Number of training examples

F-
sc

or
e

5% noise - fully obs
5% noise - 50% obs
5% noise - 25% obs
5% noise - 10% obs

(f) Depots (5% noise)

Figure 4.8: Results from learning actions in simulated planning domains with varying

levels of noise (1%, 5%) and observability (100%, 50%, 25%, 10%), using a voted

perceptron with the 3-DNF kernel.

4.5. Discussion 59

0 5000 10000 15000 20000
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Number of training examples

F-
sc

or
e

1% noise - fully obs
1% noise - 50% obs
1% noise - 25% obs
1% noise - 10% obs

(a) DriverLog (1% noise)

0 5000 10000 15000 20000
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Number of training examples

F-
sc

or
e

5% noise - fully obs
5% noise - 50% obs
5% noise - 25% obs
5% noise - 10% obs

(b) DriverLog (5% noise)

0 5000 10000 15000 20000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Number of training examples

F-
sc

or
e

1% noise - fully obs
1% noise - 50% obs
1% noise - 25% obs
1% noise - 10% obs

(c) Rover (1% noise)

0 5000 10000 15000 20000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Number of training examples

F-
sc

or
e

5% noise - fully obs
5% noise - 50% obs
5% noise - 25% obs
5% noise - 10% obs

(d) Rover (5% noise)

Figure 4.9: Results from learning actions in simulated planning domains with varying

levels of noise (1%, 5%) and observability (100%, 50%, 25%, 10%).

4.5 Discussion

The experiments show that the action dynamics of fully observable, noiseless STRIPS

domains can be learnt using standard perceptrons. Such a result is to be expected since

there is a known algorithm for learning pure STRIPS action models in noiseless, fully

observable domains (Walsh and Littman, 2008). The experiments also show that by us-

ing a voted, kernelised perceptron, the speed and accuracy of learning in these domains

can be improved, and that action models can still be learnt in partially observable, noisy

domains.

The results for the different kernels demonstrate a trade-off not only between ex-

pressivity and computational efficiency, but also robustness to noise and partial observ-

ability versus computational efficiency. Increasing the maximum lengths of feature

60 Chapter 4. Learning STRIPS action models

conjunctions allowed by a kernel clearly increases its expressivity, since the space of

possible hypotheses is increased, at the expense of greater computational effort. How-

ever, by allowing features to effectively overlap each other, the kernels also introduce a

degree of redundancy, which improves learning in noisy and partially observable cases,

and leads to the improved accuracy of the k-DNF kernels relative to the unkernelised

perceptrons. Conversely, the costs of the larger search space of the full DNF kernel

outweigh the benefit of the redundant features, and so its accuracy is lower than the

k-DNF kernels.

4.5.1 Relation to other approaches in action dynamics learning

The structure of the learning model presented above is similar to the models used by

Halbritter and Geibel (2007) and Croonenborghs et al. (2007). They also decompose

the problem and use classifiers that learn to predict subsets of the action effects. How-

ever, both methods predict changes to individual predicate symbols, rather than fluents,

using SVM classifiers and relational probability trees respectively.

Learning via a classifier assigned to each predicate is more difficult than learning

via a classifier assigned to each instance of a fluent. Not only must a predicate classi-

fier learn to predict for each instance of a fluent involving that predicate, it must also

learn to differentiate between fluents with different predicted changes. Conversely,

a fluent classifier only learns to predict for its particular instance, with the distinc-

tion between different instances handled by the structure of the model. For instance,

in BlocksWorld, a predicate classifier learns when (on x y) changes for any x and

y in the set of action parameters {arg1,arg2}. The input to the classifier is the ac-

tion and the state description, which must be augmented with an additional input

indicating which of arg1 and arg2 is x, and which is y. In this case there are two

corresponding fluent classifiers, respectively predicting when (on arg1 arg2) and

(on arg2 arg1) change. The choice between learning to distinguish between differ-

ent instances of fluents, and building the distinction into the model structure, becomes

more important when working with representations beyond STRIPS, and is discussed

in Chapter 5.

Furthermore, Halbritter and Geibel (2007) use a separate classifier to predict

whether any action’s preconditions are met, and only use the remaining classifiers to

predict the effect of the action, given that it is known to be successful. They choose

this structure so that when predicting for an action whose preconditions are unsatis-

4.5. Discussion 61

fied, only one SVM calculation is needed, rather than a series of potentially expensive

prediction calculations for each type of relation in the world. Croonenborghs et al.

(2007) have an additional binary random variable which performs a similar function.

Note that the single “successful action” classifier is in effect doing most of the work, as

in the absence of conditional effects the remainder of any model is just mapping from

action type to change. The disadvantage of the alternative structure used by Halbritter

and Geibel, and Croonenborghs et al. is that conditional effects cannot be modelled,

since the same precondition is assumed to apply to every effect of an action.

The classification method used by Halbritter and Geibel is clearly also similar,

since the voted perceptron could easily be replaced by an SVM using the same kernel.

However, their representation is graph-based and so they use a graph kernel (the prod-

uct graph kernel). While this kernel is suitable for STRIPS domains, it is not expressive

enough to capture the rules underlying more complex domains. The preconditions are

limited to those which can be represented as a walk in the graph representation of the

state, namely, a conjunction of positive fluents without universal quantification. (We

return to this point in Chapter 5, section 5.3.3.2.) The effects which can be learnt are

restricted by their assumption that nodes affected by an action must be listed in the ac-

tion parameter list. Without this artificial restriction, effects with universal quantifiers

could be learnt, although with extra computational cost. Consequently, despite the ad-

ditional machinery, Halbritter and Geibel’s method does not learn more than STRIPS

action models, without conditional effects or negative preconditions.

Most existing methods for learning action models in partially observable domains

(Shahaf and Amir, 2006; Yang et al., 2007; Amir and Chang, 2008; Zhuo et al., 2010)

operate in different settings to the one used above, and do not handle noise. The ARMS

algorithm (Yang et al., 2007) learns STRIPS action models, but it learns from partially

observed plan traces. LAMP (Zhuo et al., 2010) learns action models in domains more

complex than STRIPS, again from partially observed plan traces. Both algorithms de-

pend on the assumption that when an action appears in a plan, its preconditions are

met, so noisy observations and action failures are not permitted. ARMS and LAMP

can therefore not be applied to the learning problem above. Conversely, my method

requires action failures in order to learn preconditions, and so is not applicable in the

ARMS/LAMP setting. Similarly, SLAF (Amir and Chang, 2008; Shahaf and Amir,

2006) tractably learns STRIPS action models in partially observable domains, but as-

sumes that either actions do not fail, or that the algorithm is provided with an indicator

that the action preconditions were not met. With these restrictions, SLAF only learns

62 Chapter 4. Learning STRIPS action models

action effects, and preconditions are generated via a heuristic. Also, noisy observations

are not permitted. Again, therefore, SLAF cannot be applied to the learning problem

above.

The exception is the LEa algorithm (Bouthinon et al., 2009), an attribute-value

learner which learns concepts (in DNF) from partially observed examples. Since the

vector representation effectively reduces the states to an attribute-value representation,

LEa could be applied to learning action models in the framework above. However, the

method is intolerant to noise.

Rodrigues et al. (2010a) take an Inductive Logic Programming (ILP) approach to

learning action models from noisy examples. They can represent STRIPS rules, and

also more complex forms, such as where preconditions are disjunctions of conjunc-

tions, or where objects listed in the preconditions or effects are not in the action pa-

rameters. Negative preconditions are not supported. Since they use the learning from

interpretations setting (De Raedt and Džeroski, 1994), the method does not directly

support partial observability, as learning from interpretations assumes that there are no

missing values. Their definition of noise also differs significantly: the percentage noise

parameter refers to the probability that an observed state is subject to any noise, and

an additional parameter nε specifies how many predicates in the state are affected. In

their experiments, nε is set to 2. Their training data is therefore substantially less noisy

than in the experiments presented earlier in this chapter. The main benefit of the ILP

approach over the classification approach is that rules are directly available after learn-

ing. However, to limit the effects of noisy examples on the learnt rules, the algorithm

requires several parameters whose best values are likely to vary with the domain and

level of noise. Furthermore, the approach is likely to scale poorly, because it learns full

DNF rules, and there are no steps to reduce the number of objects, or limit the number

of literals in each conjunct of the DNF hypotheses.

4.5.2 Limitations

The STRIPS scope assumption (Section 2.2.2) is very strong, since it is unlikely that

an agent will have actions conveniently defined with the relevant objects in the action

signature. Relaxing the assumption, by extending deictic references beyond the action

parameters, means that the deictic terms have a hierarchical structure, ordered by a gen-

erality relation. For example, in the ZenoTravel domain, if arg1 and arg2 are action pa-

rameters, the deictic terms {x : (in arg1 x) ∧ (at x arg2)} and

4.5. Discussion 63

{x : ¬ (in arg1 x) ∧ (at x arg2)} have a common, more general, deictic term

{x : (at x arg2)}. Whereas in the STRIPS case, objects with the same role in an

action had identical constraints in the deictic terms, now they have intersecting con-

straints, which poses a problem for the kernel calculation, as decribed below.

The kernel calculation on the vector representation relies on the assumption that

entries in the same position in different vectors are comparable, so that comparing

individual entries can form the basis of a similarity comparison. This in turn de-

pends on objects with the same role in an action occupying the same relative po-

sitions in the state vectors. This positioning is supported under STRIPS, because

there is a 1-1 mapping between deictic terms in different states. However, this is no

longer possible when a common role for two objects is only indicated by intersect-

ing rather than equal contraints in their deictic terms: the deictic term constraint of

an object in one state may intersect with several different objects’ constraints in an-

other state. For instance, in the ZenoTravel example above, an object with deictic term

{x :(in arg1 x) ∧ (at x arg2) } matches objects in another state with terms

{x :(in arg1 x) ∧¬(at x arg2) }, or {x : ¬(in arg1 x) ∧ (at x arg2) }.
In some simple cases, the problem can be handled by explicitly defining slots of

the vector for each possible deictic term. The model only manages to learn the action

dynamics by learning a separate rule for each possible deictic term, and is unable to

generalise across the deictic terms. Although this generalisation could be attempted as

a post-process, in larger domains, it is impractical to learn separate rules for all possible

combinations of some subset of deictic terms, as there will be exponentially many

potential rules to learn. Furthermore, having a slot in the vector for each deictic term

breaks down under partial observability, as the position of a partially observed object

in the vector becomes undefined. Ultimately, a different representation is needed to

capture the relational structure of the state descriptions when they include more general

deictic terms. This is the subject of Chapter 5.

An additional limitation is that the models learnt in this chapter do not produce

action definitions as explicit planning rules, but rather behave as a black box which

must be queried to discover what effects, if any, an action is predicted to have. This re-

striction makes it difficult to integrate the models with current planners, which expect

rules as input. The learnt models could be used as the world model in model-based re-

inforcement learning, e.g. in Dyna (Sutton, 1990). Alternatively rules can be extracted

from the models, as discussed in Chapter 6.

Finally, noise on irrelevant attributes activates classifiers on fluents which in noise-

64 Chapter 4. Learning STRIPS action models

less domains are never used. This affects the time to train the models (more classifiers

must be updated), and the accuracy of the results (many predicted changes are incor-

rect). When there are many fluents describing the domain, such as in the Rovers do-

main, and low levels of observability, there will be relatively fewer training examples

for the affected classifiers and so they are more likely to continue to make incorrect

predictions. An improvement to the accuracy would be to ignore the predictions of

classifiers with low reliability, or to track reliability against predictions of no change,

and choose the best one. A partial implementation of this solution is discussed in Sec-

tion 5.1.3. A more accurate noise model (Section 7.2.1.2) might also improve these

results since noise is likely to be concentrated on particular fluents rather than uni-

formly distributed across the fluents. Depending on the overlap between the actual

action model and the noisy fluents, fewer incorrectly predicted fluents should lead to

higher F-scores.

4.6 Summary

The problem of learning STRIPS action models can be converted into a set of classi-

fication problems which can be learnt by standard classifiers, such as the perceptron.

The approach depends on the (strong) STRIPS scope assumption that it is known which

objects are relevant to an action, and what their relative roles in the action are. By in-

corporating voting and using the k-DNF kernel, for some small k, noise and partial

observability in the world state can be handled by the perceptron learning model.

The same approach can also be used for extended deterministic STRIPS models,

where preconditions may be in DNF, although these are much harder to learn. For

tractability it is necessary to assume that the number of fluents in a precondition is

bounded by some constant.

Changes are needed if the approach is to be applied in domains where the STRIPS

scope assumption does not apply. The learning model will not be able to use an

attribute-value representation for world state. Crucially, this means that it will not

be possible to uniquely map objects which have the same roles in different states. It

follows that the kernels used in this chapter cannot be applied. Therefore both a new

representation and a new similarity measure are needed. Learning in such domains is

the focus of the next chapter.

Chapter 5

Learning action models beyond

STRIPS

In the previous chapter, the problem of effects learning was structured as a set of classi-

fication problems on vectors representing reduced descriptions of the world state. The

model easily learns the effects of actions in classical STRIPS planning domains, even

when partially observable or noisy. However, the vector representation fails in partially

observable or noisy domains where the STRIPS scope assumption does not apply (Sec-

tion 4.5.2). Comparisons between states can no longer rely on the vector to encode a

map between objects with the same role in a state. In this chapter, I introduce an al-

ternative graphical representation of the world state. I show how this representation

fits into the existing model framework and present results using the new representation

with noisy and partially observable STRIPS and non-STRIPS domains.

5.1 Moving to a graphical representation

With the earlier vector representation, learning proceeds as follows:

• reduce the descriptions of the world state before and after an action to the set of

predicates involving only objects which are action parameters;

• represent the resulting reduced states as vectors, and generate an effect vector by

calculating the difference between the state vectors before and after the action;

• learn each element of the effect vector as a separate classification problem using

voted kernel perceptrons with a k-DNF kernel;

• make predictions with the model or extract rules.

65

66 Chapter 5. Learning action models beyond STRIPS

The main problem with the vector representation is that it imposes ordering con-

straints on the objects represented in the vector. These can be avoided by using a

graphical representation instead. The learning mechanism must now itself determine

which objects have similar roles in each action, rather than relying on the positioning

within the state vector. Moving to a graphical representation entails not only changing

the representation, but also replacing the k-DNF kernel with a graph kernel function,

and determining the unit of prediction — the quantity that each classifier will predict.

5.1.1 Graphical representations of world state

Graphs are a natural way to represent objects and relations between them. Van Ot-

terlo (2009) discusses a range of applications of graphical representations to relational

learning. Of these, only relational attribute graphs are applied to representations of

world state (Gärtner et al., 2003a; Driessens et al., 2006; Dabney and McGovern, 2006;

Halbritter and Geibel, 2007). In relational attribute graphs, the world state is repre-

sented as a labelled directed graph with objects as nodes and instances of relations

between objects represented as edges. Edges are labelled with the name of the cor-

responding relation, and nodes with properties of the corresponding objects. Gärtner

et al. (2003a) and Driessens et al. (2006) go further and encode the next action and its

outcome in the graph, by treating objects before and after the action as different objects,

and inserting special edges between them, labelled with the action name. Edges may

additionally be labelled with the argument position, in order to disambiguate the edges

when the corresponding relation has more than two arguments (Gardiol and Kaelbling,

2007).

The drawback with relational attribute graphs is that the representation can be am-

biguous. For example, the graph shown in Figure 5.1 depicts two instances of the

ternary relation r, with the edges linking the first and second arguments labelled r1, and

the edges linking the second and third arguments labelled r2. However, this could rep-

resent either the pair of relations r(o1,o3,o4) and r(o2,o3,o5), or the pair r(o1,o3,o5)

and r(o2,o3,o4). The problem is that the representation does not uniquely distinguish

between all instances of the relation r(∗,o3,∗) (where ∗ is a wildcard which can be

filled by any object in the world).

To avoid the ambiguity, the representation must distinguish between relations (a

set of tuples in a Cartesian product space) and instances of that relation (a specific

tuple). This may be achieved by generalising relational attribute graphs to oriented

5.1. Moving to a graphical representation 67

o1 o2

o3

o4 o5

r1 r1

r2 r2

Figure 5.1: An example of an ambiguous relational attribute graph. Edges are labelled

with the relation name (r) and the argument position. The graph could represent ei-

ther the pair of relations r(o1,o3,o4) and r(o2,o3,o5) or the pair r(o1,o3,o5) and

r(o2,o3,o4).

hypergraphs. A hypergraph is a collection of a finite number of vertices V and edges

E, where edges can link more than two vertices; in an oriented hypergraph the vertices

linked by an edge are ordered, so E ⊆ S|V |
k=1V k. A hypergraph representing a world

state has a vertex for each object in the world, and an edge for each fluent. Having a

unique edge for each fluent ensures that each instance of a relation is unambiguously

represented in the hypergraph. It is trivial to extend the notation to include actions, by

treating an action on the state in exactly the same way as a fluent, with an edge for the

action containing an ordered tuple of the action parameters.

Oriented hypergraphs can be converted to an equivalent bipartite graph

G = 〈V ∪E,E ′〉 where E ′ = {(v,e) : v ∈ e} and the edge (v,e) is labelled with i iff

v is the i-th element of e. In the bipartite graph, objects are represented by nodes, as

before, but now instances of relations are also represented by nodes. For example, in

the BlocksWorld domain, with two objects A and B, the action (unstack A B), in a

state where block A is on block B, block A is clear, and block B on the table, would be

represented as in Figure 5.2. In the remainder of this chapter, bipartite graphs are used

to represent world states, or world states combined with an action.1 These state graphs

are formally defined below.

1This graphical representation is close to the working memory representation used in the Soar cog-
nitive architecture (Laird, 2008).

68 Chapter 5. Learning action models beyond STRIPS

clear unstack on ontable arm-empty

A B

1 2 1 2

Figure 5.2: Graphical representation of a state in the BlocksWorld domain. Here, block

B is on the table, block A is on block B, block A is clear, the gripper is empty, and the

action to be performed is (unstack A B).

Definition 5.1.1. Recall that a domain D is defined as a tuple D = 〈O,P ,F ,A〉, where

O is a finite set of world objects, P is a finite set of predicate (relation) symbols, F is

a finite set of function symbols, and A is a finite set of actions. For a state s ∈ S and

an action a ∈ A , the state graph is the bipartite graph G = 〈R∪C,E〉 where

• R = s∪{a} is the set of fluent nodes,

• C = {c : ∃φ ∈ R,c ∈ args(φ)} is the set of object nodes, and

• E = {(φ,c) : φ ∈ R∧ c ∈ args(φ)} are edges indicating which relations apply to

which objects.

Nodes and edges of the state graph are labelled by a labelling function label. Flu-

ent nodes are labelled with the corresponding predicate or action symbols, and object

nodes are labelled with the object name. Where an edge (φ,c) links a fluent node to an

object node, the edge label is an integer i, if c is the i-th argument of φ.

This definition of state graph follows from a closed world assumption, and so neg-

ative fluents do not need to be represented in R. As with the vector representation

under partial observability, using the closed world assumption with this representation

would make it impossible to distinguish between unobserved fluents and negative flu-

ents, adding unnecessary noise to target classes and making it difficult to learn negative

preconditions. Discarding the closed world assumption, I redefine a state s as any set

of negated or unnegated fluent expressions, subject to the constraint that if x ∈ s then

¬x /∈ s. The types of the arguments of negated fluents must match the type signature of

the fluent, to prevent negations of fluents which could never occur. Any (legal) fluent

expression not in s is unobserved. Unfortunately, states meeting this definition could

have a number of fluents exponential in the number of objects in the world, and so the

state size is reduced by filtering out objects via deictic reference, discussed below.

5.1. Moving to a graphical representation 69

5.1.1.1 The role of deictic reference

As before, deictic references are used to support generalisation across states, as well

as to reduce the set of objects considered by the learning model. In Chapter 4, deictic

references were restricted so that an object only had a deictic term if it was an action

parameter. This restriction was possible because of the STRIPS scope assumption.

Here I make the deictic scope assumption that objects mentioned in the preconditions

or effects are either action parameters2 or related to the action parameters. In this work

we restrict ourselves to a first-order deictic scope assumption, where related objects

must be directly related to the action parameters.3

Additionally, we add the constraint that for an object to have a deictic reference,

it must be linked by a positive fluent to either an action parameter, or another ob-

ject which has a deictic reference (the positive link assumption). This additional re-

striction accounts for the open world representation now in place, avoiding deictic

terms of the form “the-object-not-under-the-object-I-am-picking-up-and-not-on-the-

floor”, which will not usually be unique and seem counter-intuitive.

Every action parameter has its own unique deictic term, corresponding to its posi-

tion in the parameter list, while the deictic terms of other objects are their definitions in

terms of their relations with the action parameters. For example, in the Briefcase do-

main (Figure 5.3a) if the action were (move L1 L2) in the state shown in Figure 5.3b,

L1 and L2, as action parameters, would have deictic terms arg1 and arg2 indicating

their positions in the move action argument list. Relative to the (move L1 L2) action,

object A is referred to by the deictic terms x : at(x,arg1), x : in(x), x : ¬at(x,arg2), and

any conjunction of these. Object H has no positive relations with the action parameters

or other objects with deictic references, and so has no deictic reference in this case.

Apart from the action parameters, any object in a state may be referred to by several

deictic terms, and any deictic term may refer to several objects in a state. However,

since only deictic terms will be used to describe states for the learning algorithm,

objects with an identical set of deictic terms will have identical predictions. Thus

it is only necessary to consider one instance of each deictic term, by working with

equivalence classes of objects under deictic reference, defined as follows.

Recall (Definition 3.2.3) that deictic terms partition the set of objects in a state into

a set of equivalence classes, where any two members of an equivalence class share

2Thus the STRIPS scope assumption is a special case.
3Higher-order deictic references are possible, where objects are 2, 3 or more steps from the action

parameters, but this is left to future work.

70 Chapter 5. Learning action models beyond STRIPS

(define (domain briefcase)
(:requirements :adl)
(:types portable location)
(:predicates (at ?y - portable ?x - location)

(in ?x - portable)
(is-at ?x - location))

(:action move
:parameters (?m ?l - location)
:precondition (is-at ?m)
:effect (and (is-at ?l) (not (is-at ?m))

(forall (?x - portable) (when (in ?x)
(and (at ?x ?l) (not (at ?x ?m)))))))

(:action take-out
:parameters (?x - portable)
:precondition (in ?x)
:effect (not (in ?x)))

(:action put-in
:parameters (?x - portable ?l - location)
:precondition (and (not (in ?x)) (at ?x ?l) (is-at ?l))
:effect (in ?x)))

(a)

(b)

is-at move

arg1 arg2

in at at at

[A] [D] [F]

1 2

1

2

1

2

1

2

(c)

Figure 5.3: (a) A PDDL description of the Briefcase domain, (b) a state in the Briefcase
domain, and (c) its graphical representation (as a situation graph) when combined with
the move action. Objects are represented by their deictic terms: here, given the action
(move arg1 arg2), [A]={x:(at x arg1) ∧ (in x) ∧ ¬(at x arg2)},
[D]={x:(at x arg1) ∧ ¬(in x) ∧ ¬(at x arg2)}, and
[F]={x:(at x arg2) ∧ ¬(in x) ∧ ¬(at x arg1)}. For clarity, negative
relations are omitted in the graph.

the same set of deictic terms. Then x1 ∼ x2 if every deictic term which refers to ob-

ject x1 also refers to x2 and vice versa. Similarly, deictic terms also partition the set

of fluents in a state into a set of equivalence classes where for φ1,φ2 ∈ s, φ1 ∼ φ2 iff

label(φ1) = label(φ2) and ∀i argsi(φ1)∼ argsi(φ2). Extending the notion of arguments

to the fluent equivalence classes, argsi([φ1]) = [argsi(φ1)] and

args([φ1]) =
S

i{[argsi(φ1)]}.
By representing objects by their equivalence classes, a reduced form of the state

graph can be constructed, as in Figure 5.3b. It is an underlying assumption of the

learning procedure that this core situation encompasses the relevant information for

learning the action model.Thus states of the world are represented by situation graphs,

where nodes in the graph represent either the current action, or the equivalence classes

of fluents and objects defined above. Negated fluents are also included. Fluent nodes

are labelled with the corresponding predicate or action symbols, and object nodes with

the object name of a representative in the equivalence class. Edges link equivalence

5.1. Moving to a graphical representation 71

classes of fluents (or the current action) and their arguments, and are labelled with the

argument position.

Definition 5.1.2. For a state s ∈ S and an action a ∈ A , the situation graph

is the bipartite graph G = 〈R∪O,E〉 where

• the set of fluent nodes is R, where

R = {[r] : [r] = {x : x ∈ s∧ x∼ r∧args(x)∩args(a) 6= ∅}}∪{a},

• the set of object nodes is O, where

O = {[c] : ∃[r] ∈ R such that [c] ∈ args([r])}, and

• the set of edges is E = {([r], [c]) : [r] ∈ R∧ [c] ∈ O∧ [c] ∈ args([r])}.

Figure 5.3c shows a situation graph for the state depicted in Figure 5.3b in the con-

text of the (move L1 L2) action. The object equivalence classes are [arg1], [arg2], [A], [D]

and [F], since A∼ B∼C, D∼ E and F ∼ G.

5.1.2 Structure of the learning model

Using the situation graphs defined above, the structure of the learning model can now

be defined. Given a state s∈ S and an action a∈A , the model is to predict the successor

state s′. Equivalently, the set of fluents which change between s and s′ — the deltas —

can be predicted. Since it is assumed that each situation contains enough information

to learn the model, it is sufficient to predict deltas for situation graphs rather than full

state graphs. The strategy employed here is to first construct the situation graph from

the state, and then decompose the set of all possible fluent nodes into subsets (units

of prediction), each of which is associated with a separate classifier. Each classifier

predicts the delta for its subset of relations, given an input situation and an action.

The final prediction of the full delta is generated by combining (by conjunction) the

predictions of all the classifiers.

5.1.2.1 Unit of prediction

It makes sense to split the prediction problem along the dimensions of action, and type

of relation, since predictions are likely to be different for different actions and types

of relations. Without further decomposition, this amounts to a classifier per type of

relation. To make this work, an additional input is needed, to specify which particular

instance of a relation is being predicted, that is, to specify which objects are parameters

72 Chapter 5. Learning action models beyond STRIPS

arm-empty unstack

arg1 arg2 [A]

clear on on

1 2

1 2 1 2

Figure 5.4: BlocksWorld unstack example (only positive fluents shown).

of the relation. For example, if the situation graph shown in Figure 5.4 was input to

an on classifier, it would be necessary to indicate whether the classifier is to predict

change to (on arg1 arg2) or to (on arg2 [A]).

Alternatively, the problem can be decomposed further, with a classifier for every

possible instance of a relation. Then for the situation graph in Figure 5.4 there would

be a separate classifier for each of the on nodes and no further differentiation would

be needed. However, there remains a similar problem: if there are several classifiers

which predicted different on relations in previous examples, which one is to predict the

change to (on arg1 arg2) and which to (on arg2 [A])? In either case, the problem

is of consistently applying the classifiers to different input situations, namely that of

identifying a mapping between instances of relations in different situations, so that the

classifier is always assigned to objects playing the same role.

Using deictic reference resolves the problem by providing a mapping between ob-

jects in different situations: objects can be mapped to each other if their deictic terms

share a constraint. Note that, to be mapped, the deictic terms need not be identical;

only their constraints need intersect. This leads to two possible algorithm structures,

based on the discussion above. Firstly, for each action and type of relation, there is a

classifier which as well as taking a state and an action as input, also takes a combi-

nation of deictic terms which specify the particular relation instance(s) it is to predict.

In the unstack example above, there would be a single classifier for the unstack-on

case, and the deictic term input could take the form of (arg1,arg2), (arg2,arg1),

or (arg1,{x:(on arg2 x)}), etc., corresponding to requests to predict change to

(on arg1 arg2), (on arg2 arg1) or (on arg1 {x:(on arg2 x)}) respectively.

Secondly, for each action and type of relation, there is a classifier for each possible

combination of deictic terms which can form the arguments of the relation. This struc-

ture corresponds to a classifier for each possible node in any situation graph. In the

5.1. Moving to a graphical representation 73

unstack example above, there would be classifiers for each of the relation instances

(on arg1 arg2), (on arg2 arg1), (on arg1 {x:(on arg2 x)}), etc.

The first option has relatively fewer classifiers but the classification problem each

has is more complex. Each classifier must not only learn when a state affords a par-

ticular action, but also to differentiate between different instances of a relation. Con-

versely, the second option has many more classifiers, but each classifier only has to

learn whether its one instance of a relation changes when a state affords an action. The

first option involves learning part of the problem structure which is already known.

In the process it is likely to make many mistakes, which affects the time to learn the

prediction problem. The second option is therefore likely to be faster even although

it requires training more classifiers. Furthermore, the overhead in training is the ker-

nel calculation, whose results can be cached and re-used. Therefore in the following

sections the learning model is structured according to the second option, with one clas-

sifier per instance of a relation.

5.1.2.2 Learning algorithm

Actually generating a classifier for every possible node in a situation graph is undesir-

able, so classifiers are only instantiated when the training data requires it. Figure 5.5

describes the process, as follows. The algorithm is provided with a set of training ex-

amples, each consisting of a state description xi, an action ai, and a successor state xi
′.

Both state descriptions are converted into situation graphs, based on the action ai, as

described earlier. The algorithm also initially knows a set of action labels A, a set of

predicates P, and the number and types of their arguments.

The deltas from the training examples provide target values for each classifier. In

a fully observable, noiseless domain, it is trivial to calculate the delta yi for an exam-

ple, by comparing the two state graphs and identifying which fluents changed. This

depends on the underlying assumption that objects with the same deictic term will be

affected in the same way by an action. However, objects which are observed to have

the same deictic term may not be (or appear to be) affected in the same way by an

action operating in a partially observable or noisy domain. To handle this, the assump-

tion is weakened, and it is assumed only that most objects with the same deictic term

will be affected in the same way by an action. The delta for a specific deictic term is

then calculated by tracking all the objects with that deictic term in the prior state, and

finding the corresponding deictic term(s) in the successor state. The “true” successor

deictic term is assumed to be the one to which the most objects are mapped.

74 Chapter 5. Learning action models beyond STRIPS

Training: Input: Training examples X = {(x1,a1,δ1), . . . ,(xn,an,δn)},
Known action labels A, known predicates P

Output: Model parameters

Training:
Ca,p := ∅ ∀a ∈ A,∀p ∈ P
for all (x,a,δ) ∈ X do

for all p ∈ P do
M := f indArguments(x, p)
for all m ∈M do

if p(m) ∈ δ then
ym := 1

else
ym := 0

call f indClassi f ier(Ca,p,xm,ym)

procedure f indClassi f ier(C,xm,ym)
exactMatch := f alse
intersectMatches := ∅
for all c ∈C do

if deicticRe f s(xm)⊇ deicticRe f s(c) then
call learn(c,(xm,ym))
call updateReliability(c)

if deicticRe f s(xm) = deicticRe f s(c) then
exactMatch := true

else if deicticRe f s(xm)∩deicticRe f s(c) 6= ∅ then
intersectMatches := intersectMatches∪{c}

if (ym 6= 0)∧ (exactMatch = f alse) then
cnew := createNewClassi f ier(xm)
C := C∪{cnew}
for all i ∈ intersectMatches do

cnew := createNewClassi f ier(xm, i)
C := C∪{cnew}

Figure 5.5: Outline learning algorithm: each training example is a situation graph x with
the action a which was performed, and a target value δ giving the changes which were
observed.

5.1. Moving to a graphical representation 75

The algorithm builds a set of classifiers Ca,p for each action a and each predicate p.

Every member of Ca,p will be a classifier for a different combination of deictic terms

(which are valid arguments of p). The classifiers are constructed as required during

training.

Given a training example, each predicate p in the domain is considered in turn. A

set M of all possible combinations of objects in example xi which could be arguments

of p is generated (f indArguments). Objects are represented in M by their deictic terms.

Often the potential set of arguments can be limited by considering the types of the de-

ictic terms, and the types of the predicate’s arguments. For each combination of deictic

terms m ∈M, the current set of classifiers Ca,p is searched for any classifier which pre-

dicts for p(m) (findClassifier). There may be more than one matching classifier, as

some deictic terms can be more general than others. For example, consider the Brief-

case domain deictic terms dr1={x:(at x arg1)} and dr2={x:(at x arg1) ∧ ¬(in
x)}. dr1 is clearly more general than dr2. When considering the combination (dr2,

arg1), if Ca,p has classifiers for both (dr2,arg1) and (dr1, arg1), then both need

to be updated with the training example, since if p(dr2,arg1) changes then so must

p(dr1,arg1). The update involves calling the learning procedure for the classifier

(learn) and updating some measure of its reliability (updateReliability), to use during

prediction to choose a winning prediction from multiple matching classifiers.

The set of classifiers Ca,p also needs to be updated to include the combination of

deictic terms just seen (createNewClassifier). For instance, suppose when considering

the combination (dr2, arg1), there was no matching classifier. If the default predic-

tion of no change for p(dr2, arg1) is correct, there is no need to update Ca,p because

the prediction is already correct. Otherwise a classifier labelled with the (dr2,arg1)

deictic term is created: it will be trained to predict when action a on its input state

causes p(dr2,arg1) to change.

It might be that this deictic term is too specific, and then the preconditions can

be learnt, but there will be several classifiers which all predict the same change for

the same preconditions. To accommodate this possibility, whenever a new classifier is

added, classifiers for more general deictic terms are also added. It is undesirable to add

every possible more general deictic term combination, so only those supported by the

data are added: namely the least general generalisations of the new classifier’s deictic

terms with every other classifier’s deictic term. In the case of adding a new classi-

fier for (dr2,arg1) when there was already a classifier for (dr3,arg1), where dr3 is

{x:(at x arg1) ∧ (in x)} an additional classifier for the intersection case

76 Chapter 5. Learning action models beyond STRIPS

Prediction: Input: Unlabelled instance (x,a), model parameters Ca,p
Output: Prediction δ

Prediction:
for all p ∈ P do

M := f indArguments(x, p)
for all m ∈M do

ym := getPrediction(Ca,p,xm)
if ym = 1 then

δ = δ∪{p(m)}

function getPrediction(C,xm)
r := 0
for all c ∈C do

if deicticRe f s(xm)⊇ deicticRe f s(c) then
if r < reliability(c) then

y := predict(c,x)
r := reliability(c)

return y

Figure 5.6: Outline prediction algorithm: each test example is a situation graph x and
the action a whose effects are to be predicted.

({x:(at x arg1)}, arg1) = dr1 would be added, covering the possibility that the

real change is to p(dr1,arg1) rather than to p(dr2,arg1). This new classifier ini-

tially is a copy of the (dr3,arg1) classifier, since all the training examples for

(dr3,arg1) also apply to (dr1,arg1); however, it is then updated with the

(dr2,arg1) training example, and in future training steps it will receive training ex-

amples containing all three combinations of deictic terms.

Conversely, the deictic term might be too general, and then many training examples

this classifier sees will conflict, i.e., the same preconditions will sometimes be matched

with a change to p(dr2,arg1) and sometimes with no change. This problem could be

corrected for by considering the reliability of the predictions made by the classifier.

At prediction, given a test example x, again each predicate p is considered in turn,

all combinations of possible arguments m in x are found and the same search for match-

ing classifiers is performed. If no classifiers are found then the model predicts no

change for the fluent p(m). If exactly one classifier is found then its prediction is

used, and if there are multiple matching classifiers (at different levels of generality),

the classifier with the highest reliability score is used.

5.1. Moving to a graphical representation 77

5.1.3 Classification

The implementation of the learn, predict, updateReliability and createNewClassi f ier

procedures depends on the type of classifier used by the model. As before, a voted

perceptron classifier is used. Thus the learn and predict procedures are implemented

as previously described in Chapter 4.

For updateReliability, it is straightforward to create a simple measure of reliabil-

ity for the voted perceptron classifier. Each classifier has a set of n support vectors

si (i = 1, . . . ,n), and each si has an associated weight ci. The value of ci is initially

set to 1 and is incremented every time the corresponding hypothesis makes a correct

prediction. Therefore ci is a count of the number of correct predictions by the corre-

sponding hypothesis, plus 1. The number of support vectors, n, is the total number of

incorrect predictions made during learning. The reliability of the classifier can then

be calculated as the number of correct predictions (∑n
i=1 ci− n) divided by the total

number of predictions made (∑n
i=1 ci). This reliability measure is used when there are

several classifiers which could apply in the prediction of change to a particular relation:

the classifier with the highest reliability score is used.

There is an implicit assumption that each classifier is more reliable than the null

classifier, the classifier which predicts no change in any circumstance. Without noise

the assumption holds, but when observations are noisy, some classifiers’ positive train-

ing examples may just be noisy examples. In this situation, the null classifier should

make better predictions on the same training examples. Therefore the null reliability

— the reliability of the null classifier — is also calculated for each classifier. If the

null reliability is higher than the classifier’s reliability then, for the purposes of predic-

tion, the classifier is replaced by the null classifier, and its reliability score is replaced

by the null reliability. The null reliability is calculated as the number of training ex-

amples (seen by the classifier) which did not change, divided by the total number of

predictions made.

Finally, createNewClassifier is called during learning when an example x is pre-

sented which does not exactly match any of the existing classifiers, and the default

prediction of no change is wrong for the example. At this point createNewClassifier

sets up a new voted perceptron with x as its first support vector, and labelled with the

deictic terms present in x. Also, createNewClassifier is called when additional classi-

fiers are needed to cover the deictic terms whose constraints are intersections between

x’s and existing classifiers’ constraints. Each of these classifiers is initialised with all of

78 Chapter 5. Learning action models beyond STRIPS

the support vectors (and weights) from the parent classifier, since all examples which

are covered by the parent classifier are also covered by the new classifier. The new

classifiers are then updated with x, if the parent classifier misclassified x.

5.1.4 Measuring similarity between situation graphs

With the graph representation and structure of the learning model in place, it remains

to identify a suitable kernel function, which each voted perceptron classifier uses to

measure the similarity between situation graphs. The ideal kernel is one whose fea-

tures are also situation graphs, corresponding to the conjunctive preconditions in the

underlying rules. I define a family of kernels which operate on pairs of situation graphs

G1 and G2. The fluent nodes of G1 and G2 are denoted R1 and R2 below. The kernel

Kmap(G1,G2) counts the number of common subgraphs in G1 and G2, subject to a

mapping restriction map. Each map m ∈ map specifies a maximal mapping from the

nodes in R1 to nodes in R2. Thus no m ∈ map may be a subset of m′ ∈ map and each

map corresponds to a single maximum common subgraph of G1 and G2.

Definition 5.1.3. The kernel Kmap() is defined as:

Kmap(G1,G2) = ∑
m∈map

2samem(G1,G2), where

samem(G1,G2) = ∑
r1∈R1

∑
r2∈R2

samem(r1,r2),

samem(r1,r2) = 1 iff label(r1) = label(r2), and

∀i(argsi(r1),argsi(r2)) ∈ m

samem(r1,r2) = 0 otherwise.

If map contains all possible mappings between R1 and R2 then Kmap is the subgraph

kernel (Gärtner et al., 2003b). If map contains exactly one mapping between R1 and R2

then Kmap is the DNF kernel (Sadohara, 2001; Khardon and Servedio, 2005). Comput-

ing the subgraph kernel is NP-hard (Gärtner et al., 2003b), while even the simplest case

in this family of kernels, the DNF kernel, may scale poorly, since the PAC-learnability

of DNF is an open problem. In light of the results in Chapter 4, I therefore additionally

restrict the kernel family to Kmap,k() which counts common subgraphs with k or fewer

fluent nodes, so that the kernels now range between the k-DNF kernel and graphlet

kernels of size k (Shervashidze et al., 2009).

5.1. Moving to a graphical representation 79

Definition 5.1.4. The kernel Kmap,k() is defined as:

Kmap,k(G1,G2) = ∑
m∈map

k

∑
i=1

(
samem(G1,G2)

i

)
,

where samem is as in Definition 5.1.3.

5.1.4.1 The deictic reference kernel

I select one member of our family of kernels, the deictic reference kernel of size k,

whose particular map is one where object nodes must be mapped to nodes which have

a common deictic term. The additional constraints on the deictic reference kernel al-

low an iterative procedure to be defined to calculate it. The procedure is based on the

following observations. First, some nodes always have a fixed mapping: the i-th argu-

ments of the action are always mapped to each other, as are the i-th arguments of the

predicate the classifier is predicting. For example, if the kernel was being calculated

for two Briefcase situation graphs, with a move action, and for the (at [A] arg1)

classifier (see Figure 5.3c for a possible situation graph), then the arg1, arg2, and [A]

nodes would be fixed. Second, since the features of the kernel must also be situation

graphs, the subgraphs it considers must also satisfy the positive link assumption (Sec-

tion 5.1.1.1). Thus, any common subgraph considered by the kernel must contain a

core subgraph with only positive fluents, linking every object node to the action pa-

rameters. Figure 5.7 shows an example of a situation graph split into fixed, core, and

non-core relations. Furthermore, the number of positive fluents in a situation graph

is typically small relative to the number of negative fluents, and so the set of all core

subgraphs will typically be much smaller than the set of all subgraphs.

Fixed, core and non-core relations thus partition the set of possible subgraphs into

those which contain purely fixed relations (fixed subgraphs), those which contain fixed

and at least one core relation (core subgraphs), and those which also contain at least

one non-core relation. By definition any subgraph in the last set must contain a core

subgraph. The strategy is therefore to order the count of subgraphs so that fixed sub-

graphs are counted first (K0 in Definition 5.1.5), followed by subgraphs containing core

subgraphs, in order of increasing size of the core (Kn in Definition 5.1.5). We do so by

first generating the set corei of possible core graphs with i positive fluents, where i is

initally 1. Figure 5.9 gives an example of the sets of corei generated from two situation

graphs.

80 Chapter 5. Learning action models beyond STRIPS

action

+ −
+ − + + +

+

(a) A situation graph

action

+ −

(b) Fixed relations

action

+ + + +

(c) Core relations

action

−

+

(d) Non-core relations

Figure 5.7: Fixed, core and non-core relations. In the situation graph in (a), true re-

lations are denoted “+” and false relations “-”, while object nodes are empty. For the

purposes of the example, all relations in the situation graph are assumed to have the

same label. The sets of relations forming the fixed, core and non-core relations are

shown in (b), (c) and (d), respectively.

5.1. Moving to a graphical representation 81

action

+ −
+ − + + +

+

(a) G1

action

−
+ + − + +

+

(b) G2

action

+

action

+

action

+

(c) core1

action

+ +

action

+ +

action

+ +

(d) core2

action

+ + +

(e) core3

Figure 5.8: Situation graphs G1 and G2 with each set corei of subgraphs containing

only i defining relations. Each set corei is calculated from the previous set corei−1.

82 Chapter 5. Learning action models beyond STRIPS

Then, for each such core graph, calculate the number of possible common situation

subgraphs consisting of that core graph combined with any set of non-core fluents.4

Each set corei is used to generate corei+1, until there are no further possible common

situation subgraphs of size i + 1. By calculating the number of common situation

graphs in this way, it is straightforward to limit the calculation to graphs with k fluents

or fewer. In this case only core graphs of up to size k are ever considered. When

combining any element of corei with non-core fluents, only combinations which have

up to k fluent nodes are counted.

To calculate the number of common situation graphs with core corei, we maintain

for each g∈ corei a set of mappings mapsg, each of which contains all maps from R1 to

R2 which are consistent with g. When constructing corei+1 from corei, each g ∈ corei

is extended by adding each possible core fluent r1 ∈ R1 (duplicates can be avoided by

appropriate ordering of the fluents). At the same time mapsg is extended by every pair

of core fluents (r1 ∈ R1,r2 ∈ R2), provided the resulting mapping of deictic references

between G1 and G2 is injective. An example of the update to corei and mapsg is shown

in Figure 5.9.

We now use mapsg to count the number of common situation graphs with core g.

We first construct otherrels, the set of non-core relations in R1 whose arguments are

defined by g, that is, all the arguments of the relations have deictic references defined

by fluents already in g. It remains to count (not generate) the fluents in otherrels which

have a matching relation in R2, for each possible mapping in mapsg. Each m ∈ mapsg

defines a mapping from the subgraph g in G1 to a subgraph h in G2. A relation r ∈ R1

matches q ∈ R2 if they have the same label, and each argument of r is mapped by m to

the corresponding argument of q. The number of matched relations under mapping m

is denoted by otherrelsm. Then the number of situation subgraphs of size k generated

by a particular positive subgraph g and mapping m is the number of ways of choosing k

relations from the set of matched relations:
(

otherrelsm

k

)
. The full kernel calculation

is formalised in the kernel definition (Definition 5.1.5).

4Most non-core fluents will be negative fluents, but some positive fluents may be included, if their
parameter list does not include any action parameters.

5.1. Moving to a graphical representation 83

action

+ −
+ − + + +

+

rel1

action

−
+ + − + +

+

rel2

m1

m2

m3

(a) Mappings of nodes sharing the same deictic term in G1 (left) and G2 (right). Nodes marked +

and − are positive and negative fluents respectively, blank nodes are deictic terms. Mappings m1

and m2 map nodes which occur in sub-graphs g and h below, m3 maps nodes only occurring in h.

action

+

(b) Subgraph g ∈ core1:

mapsg = {{m1},{m2}}

action

+ +

(c) Subgraph h ∈ core2:

mapsh = {{m1,m3},{m2,m3}}

Figure 5.9: An example of updating corei and mapsg. G1 and G2 are the situation

graphs being compared by the kernel function. g and h are examples of graphs in core1

and core2 respectively. mapsg contains mappings between G1 and G2 which define

pairs of subgraphs which are isomorphic to g. When graph g is extended to h by adding

a new core relation rel1 ∈G1, we consider whether mapsg is compatible with rel1. First

locate candidate matching relations in G2, say rel2, and construct the mapping of deictic

terms between G1 and G2 given by mapping rel1 to rel2. Here that mapping is m3. Now

any mapping in mapsg can be extended by adding m3 to it, provided the mapping and

m3 do not conflict by mapping the same object in one graph to a different object in the

other. Here this does not happen and so mapsg is extended to mapsh by adding m3 to

each mapping in mapsg.

84 Chapter 5. Learning action models beyond STRIPS

Definition 5.1.5. The deictic reference kernel of size k, Kk(G1,G2) is defined itera-

tively as follows:

Kk(G1,G2) =
k

∑
i=0

Ki,k(G1,G2)

where Ki,k is the number of common subgraphs of G1 and G2 with core

of size i and containing up to k fluent nodes:

K0,k(G1,G2) =
k

∑
i=1

(
same0(G1,G2)

i

)
, where

same0(G1,G2) = ∑
r1∈R1

∑
r2∈R2

same0(r1,r2),

same0(r1,r2) = 1 iff label(r1) = label(r2)

and args(r1)⊆ args(a1)

and args(r2)⊆ args(a2)

and ∀i, j argsi(r1) = args j(a1) ⇐⇒ argsi(r2) = args j(a2),

same0(r1,r2) = 0 otherwise.

Kn,k(G1,G2) = ∑
g∈coren

∑
m∈mapsg

k−n

∑
i=0

k−n−i

∑
j=0

(
otherrelsm(G1,G2)

i

)(
same0(G1,G2)

j

)

5.1.5 Complexity

The complexity of the learning algorithm depends on the number of training examples,

the number of classifiers the algorithm generates and must update, and the complexity

of the kernel calculation.

The kernel calculation is dominated by the calculation of Kn,k(G1,G2), whose com-

plexity depends on the number of core relations in each graph, here denoted R+
1 and

R+
2 , and the number of non-core relations in each graph, denoted R−1 and R−2 . The

complexity is the product of the size of corei, the size of mapsg for any g ∈ corei

and the complexity of calculating otherrelsm for any m ∈ mapsg. The size of each

corei set is determined by the number of relations in R+
1 : |corei| ≤ |R+

1 |i. Whenever

an element of corei is extended by adding a new relation r1 ∈ R+
1 , the correspond-

ing map g for that element is extended by adding each r2 ∈ R+
2 which is a valid

5.2. Experiments and results 85

match. Thus the size of mapsg for each g ∈ corei is O(|R+
1 |i|R+

2 |i). Finally, cal-

culating otherrelsm for each m ∈ mapsg requires at most comparing every non-core

relation in R−1 with every non-core relation in R−2 to check it is consistent with m.

The number of comparisons is therefore O(|R−1 ||R−2 |) and the cost of comparison is

a search through mapsg, O(log(|R+
1 |i|R+

2 |i)). The overrelsm calculation therefore has

complexity O(|R−1 ||R−2 |log(|R+
1 |i|R+

2 |i)). Overall then the kernel calculation runs in

O(|R+
1 |2k|R+

2 |k|R−1 ||R−2 |log(|R+
1 |k|R+

2 |k)). With k set to 3 this is polynomial but may

not be particularly efficient in the worst case, as the sets of non-defining relations R−1
and R−2 could be large relative to the number of objects in the situation graph.

The number of classifiers generated during training depends on the deictic terms

encountered in the training set. Whenever a deictic term is encountered which does

not have a matching classifier, not only is a classifier for the deictic term created, but

also classifiers are created for any deictic terms with constraints which are intersec-

tions of the new deictic term constraint with a constraint of an existing classifier. This

process can lead to an exponential growth in the number of classifiers. In practice

this is mostly a problem when there are noisy observations, as many erroneous deictic

terms are encountered. Essentially the same problem exists in prediction, where the

resulting erroneous classifiers must be identified in order to prevent noisy predictions.

As discussed in section 5.1.3, this can be resolved in prediction by comparing the re-

liability of each classifier to the null classifier, and only accepting prediction from the

classifier if it is more reliable than the null classifier. A similar tactic could be adopted

to periodically clear out unreliable classifiers during learning.

5.2 Experiments and results

In the experiments in this chapter, examples are taken from a real-world robot domain,

and from simulations of standard planning domains used in the International Plan-

ning Competition, as described in Chapter 3. The robot domain is inherently partially

observable and noisy, and so corresponds to a world-level observation model. The per-

ceptual function, mapping sensor values to percepts, is hand-coded. In the case of the

standard planning domains, a percept-level observation model is used: observations

are simulated by generating fully-observable, noiseless descriptions of the world. The

model was also trained on the same data, modified by applying a blocking process, to

simulate noise and partial observability (Section 3.5).

86 Chapter 5. Learning action models beyond STRIPS

5.2.1 Experiments in simulated planning domains

As before, the model was evaluated using data simulated from STRIPS domains

(BlocksWorld, ZenoTravel, Depots, DriverLog and Rover) and in this case, also ex-

tended STRIPS domains (Briefcase, Elevator). The remaining parameters of the ex-

periments remained the same as in Chapter 4.

5.2.1.1 Results

Results of the experiments on noiseless domains are shown in Figures 5.10 and 5.11.

The results are qualitatively similar to those for the vector representation. The fully

observable cases are easily learnt and the F-score is 1 or very close to 1 after 1,000

training examples, with the exception of the Rovers domain; the extended STRIPS do-

mains appear to be slightly more difficult to learn, which is to be expected, since the

preconditions are more complex. In the partially observable cases, as expected, per-

formance degrades with lower numbers of observed fluents, but the model is clearly

producing reliable predictions which improve with increasing numbers of training ex-

amples.

The results for Rovers are considerably worse for the graphical representation com-

pared to the vector representation (Figure 4.7e). The only difference is that now first-

order deictic terms are included in the learning process. As a result there are now many

more possible hypotheses for each action precondition, to the extent that in Rovers the

learning model overfits the data. A possible solution to this problem would be to learn

using both zero-order and first-order deictic references and introduce a model selec-

tion step to choose the best model. Alternatively a bias towards simpler (i.e. zero-order

based) hypotheses could be used, similar to the approach of Pasula et al. (2007).

Results of experiments in noisy domains are shown in Figures 5.12 and 5.13, in the

latter, more difficult domains, only up to 10,000 training examples. Beyond 10,000 ex-

amples the algorithm starts to take longer times to run the 2,000 test cases (> 12 hours)

on these domains, as a consequence of the growing number of classifiers. As discussed

in Section 5.1.5, this could be resolved by considering the reliability of the classifiers

at intervals during learning. Alternatively, rule extraction (Chapter 5) could be used,

if extended to run on the graphical representation: by repeatedly “compacting” the

prediction function to a STRIPS-like rule from a kernel calculation using of the or-

der of 1,000 support vectors, both training and prediction times would be significantly

shortened.

5.2. Experiments and results 87

The results for the Rover domain were particularly adversely affected, and these

results are not shown. The Elevator domain also proved to be problematic for the fully

observable, noisy cases, to the extent that no results are available for this case. The

problem lies in the highly connected and redundant nature of the Elevator domain:

every floor is related to every other floor by the above predicate. The introduction of

noise makes matters worse, as normally deictic references force a grouping of floors

into those above or below various combinations of the action parameters, but noise

establishes multiple different additional groupings. As a consequence, the space of

possible preconditions and effects expands combinatorially. Since the algorithm is

able to learn reasonable action models when examples are additionally incomplete,

this is at least partly a problem with the coding of the domain, and is likely to affect

other learning algorithms similarly.

88 Chapter 5. Learning action models beyond STRIPS

0 5000 10000 15000 20000
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Number of training examples

F-
sc

or
e

Fully observable
50% obs
25% obs
10% obs

(a) Blocksworld

0 5000 10000 15000 20000
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Number of training examples

F-
sc

or
e

Fully observable
50% obs
25% obs
10% obs

(b) ZenoTravel

0 5000 10000 15000 20000
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Number of training examples

F-
sc

or
e

Fully observable
50% obs
25% obs
10% obs

(c) Depots

0 5000 10000 15000 20000
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Number of training examples

F-
sc

or
e

Fully observable
50% obs
25% obs
10% obs

(d) DriverLog

Figure 5.10: Results from learning actions in simulated planning domains, without

noise, and at varying levels of observability: BlocksWorld, ZenoTravel, Depots and

Driverlog.

5.2. Experiments and results 89

0 5000 10000 15000 20000
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Number of training examples

F-
sc

or
e

Fully observable
50% obs
25% obs
10% obs

(a) Briefcase

0 5000 10000 15000 20000
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Number of training examples

F-
sc

or
e

Fully observable
50% obs
25% obs
10% obs

(b) Elevator

0 2000 4000 6000 8000 10000
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Number of training examples

F-
sc

or
e

Fully observable
50% obs
25% obs
10% obs

(c) Rover

Figure 5.11: Results from learning actions in simulated planning domains, without

noise, and at varying levels of observability: Briefcase, Elevator and Rover

90 Chapter 5. Learning action models beyond STRIPS

0 5000 10000 15000 20000
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Number of training examples

F-
sc

or
e

1% noise - fully obs
1% noise - 50% obs
1% noise - 25% obs
1% noise - 10% obs

(a) Blocksworld: 1% noise

0 5000 10000 15000 20000
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Number of training examples

F-
sc

or
e

5% noise - fully obs
5% noise - 50% obs
5% noise - 25% obs
5% noise - 10% obs

(b) Blocksworld: 5% noise

0 5000 10000 15000 20000
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Number of training examples

F-
sc

or
e

1% noise - fully obs
1% noise - 50% obs
1% noise - 25% obs
1% noise - 10% obs

(c) Zeno: 1% noise

0 5000 10000 15000 20000
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Number of training examples

F-
sc

or
e

5% noise - fully obs
5% noise - 50% obs
5% noise - 25% obs
5% noise - 10% obs

(d) Zeno: 5% noise

0 5000 10000 15000 20000
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Number of training examples

F-
sc

or
e

1% noise - fully obs
1% noise - 50% obs
1% noise - 25% obs
1% noise - 10% obs

(e) Briefcase: 1% noise

0 5000 10000 15000 20000
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Number of training examples

F-
sc

or
e

5% noise - fully obs
5% noise - 50% obs
5% noise - 25% obs
5% noise - 10% obs

(f) Briefcase: 5% noise

Figure 5.12: Results from learning actions in simulated planning domains, with varying

levels of noise, and observability: BlocksWorld, Zeno, and Briefcase.

5.2. Experiments and results 91

0 2000 4000 6000 8000 10000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Number of training examples

F-
sc

or
e

1% noise - fully obs
1% noise - 50% obs
1% noise - 25% obs
1% noise - 10% obs

(a) Driverlog: 1% noise

0 2000 4000 6000 8000 10000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Number of training examples

F-
sc

or
e

5% noise - fully obs
5% noise - 50% obs
5% noise - 25% obs
5% noise - 10% obs

(b) Driverlog: 5% noise

0 2000 4000 6000 8000 10000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Number of training examples

F-
sc

or
e

1% noise - fully obs
1% noise - 50% obs
1% noise - 25% obs
1% noise - 10% obs

(c) Depots: 1% noise

0 2000 4000 6000 8000 10000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Number of training examples

F-
sc

or
e

5% noise - fully obs
5% noise - 50% obs
5% noise - 25% obs
5% noise - 10% obs

(d) Depots: 5% noise

0 2000 4000 6000 8000 10000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Number of training examples

F-
sc

or
e

1% noise - 50% obs
1% noise - 25% obs
1% noise - 10% obs

(e) Elevator: 1% noise

0 2000 4000 6000 8000 10000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Number of training examples

F-
sc

or
e

5% noise - 50% obs
5% noise - 25% obs
5% noise - 10% obs

(f) Elevator: 5% noise

Figure 5.13: Results from learning actions in simulated planning domains, with varying

levels of noise, and observability: Driverlog, Depots and Elevator.

92 Chapter 5. Learning action models beyond STRIPS

5.2.2 Robot experiment

The set-up for the robot experiment was an industrial robot arm (Stäubli RX-60B) with

6 degrees of freedom, a two finger parallel gripper with haptic sensing (Schunk PG 70),

and a Point Grey BumbleBee2 stereo camera. The robot’s world consisted of a set of

objects, each positioned on either a table or a shelf. The shelf space was restricted to

hold a maximum of two objects. The objects were open or closed cylinders of different

widths, heights and colours. The robot was able to grasp objects using three different

grasps (see Figure 5.14), put objects on the table or the shelf, and sense whether an

object is open or closed. The set of actions available to the robot, and the world and

object properties are shown in Figure 5.15.

(a) Inner grasp (b) Edge grasp (c) Over grasp

Figure 5.14: Robot grasp types

The robot detected the locations and radii of objects using a circle detection algo-

rithm applied to snapshots of the world taken by the camera (Başeski et al., 2009). The

perceptual function, mapping sensor values to percepts, was hand-coded. Object prop-

erties such as ontable and isin, and the number of object slots available on the shelf,

shelfspace, were automatically calculated at each observation, based on the circle

detection data. The exceptions were ingripper and gripperempty, which were de-

termined by haptic sensing; open, which was detected using a special sensing action

senseOpen; and knowWhetherOpen, which indicates whether senseOpen was used on

the object.

5.2. Experiments and results 93

(define (domain robot-stacking)
(:predicates (gripperempty)
(ingripper ?x)
(onshelf ?x)
(ontable ?x)
(clear ?x)
(open ?x)
(knowOpen ?x)
(reachableInner ?x)
(reachableEdge ?x)
(reachableOver ?x)
(aboveMinInnerRadius ?x)
(belowMaxInnerRadius ?x)
(aboveMinEdgeRadius ?x)
(belowMaxOverRadius ?x)
(isin ?x ?y)
(instack ?x ?y))

(:functions (shelfspace)
(radius ?x))

(:action innerGrasp
:parameters (?ob)
:precondition (and (reachableInner ?ob) (clear ?ob) (gripperempty) (ontable ?ob)

(aboveMinInnerRadius ?ob) (belowMaxInnerRadius ?ob))
:effect (and (ingripper ?ob) (not (gripperempty)) (not (ontable ?ob))))

(:action edgeGrasp
:parameters (?ob)
:precondition (and (reachableEdge ?ob) (clear ?ob) (gripperempty) (ontable ?ob)

(aboveMinEdgeRadius ?ob))
:effect (and (ingripper ?ob) (not (gripperempty)) (not (ontable ?ob))))

(:action overGrasp
:parameters (?ob)
:precondition (and (reachableOver ?ob) (gripperempty) (ontable ?ob)

(belowMaxOverRadius ?ob))
:effect (and (ingripper ?ob) (not (gripperempty)) (not (ontable ?ob))))

(:action putAway
:parameters (?ob)
:precondition (and (ingripper ?ob) (shelfspace > 0))
:effect (and (onshelf ?ob) (gripperempty) (not (ingripper ?ob)) (shelfspace=shelfspace-1)))

(:action putOntable
:parameters (?ob)
:precondition (ingripper ?x)
:effect (and (gripperempty) (ontable ?ob) (not (ingripper ?ob))))

(:action senseOpen
:parameters (?ob)
:precondition (and (not (knowWhetherOpen ?ob)) (ontable ?ob))
:effect (knowWhetherOpen ?ob)))

Figure 5.15: Representation of high-level actions in the object stacking domain

(adapted from Petrick et al. (2010))

94 Chapter 5. Learning action models beyond STRIPS

The robot’s observations and actions were noisy. When detecting objects, both

false positives and false negatives could occur. In experiments, 97.2% of objects

present were detected, and 72.9% of detected objects were actually present in the scene

(Başeski et al., 2009).5 Additionally, the size and/or location of a detected object could

be incorrect. This led to inaccuracies in the reachability calculations, and to objects

being incorrectly observed as inside other objects and vice versa. It also meant actions

could fail even when preconditions for the action appeared to be satisfied. For exam-

ple, if the object location or size were incorrect, the calculated grasp coordinates for

a grasping action might not match the actual position of the object, and so the action

would fail.

Additionally, the grasping actions were constrained in different ways. A grasp

action could only be performed on an object, firstly, if the gripper was empty, and

secondly, if the object was reachable (given by reachableInner, reachableEdge

and reachableOver), otherwise the robot performed a no-op. Also, some objects

could not be grasped by some grasps. The inner grasp could not be used on closed

objects, or on objects larger than the outer span of the gripper, or objects with radius

smaller than the size of the gripper fingers. The edge grasp could not be used on closed

objects, and the over grasp could not be used on objects larger than the inner span of

the gripper. The robot was allowed to attempt to use any grasp on any object.

The putting actions were also constrained. If the gripper was empty, or if the action

was putAway and shelfspace = 2, then a no-op was performed. Similarly, because

senseOpen was implemented by attempting to position the closed gripper inside an

object, a no-op was performed if the gripper was not empty.

The learning model was used to learn preconditions and effects of actions in the

robot domain (restricted to innerGrasp, edgeGrasp, overGrasp, putDown, putAway,

and senseOpen). An action-observation trace of the robot’s domain model was ob-

tained by performing a random walk through the state space. While generating train-

ing data, the robot’s world consisted of the table, shelf and four cylindrical objects

distributed around locations on the shelf and table. The four objects were selected

5This pattern of noise is somewhat different to that seen in the blocking process model. Here,
the accuracy of the fluents mostly depends on whether the object(s) involved were correctly detected.
Since this largely depends on light conditions, objects in stacks are typically more error-prone, and so
fluents relating to such objects, especially isin and instack fluents, will be noisier than other fluents.
Also size and reachability fluents are more likely to be wrong than ontable and onshelf, due to
differences in the granularity of measurements required. Since much noise is due to light conditions,
repeated observations could help to improve accuracy, although there is a limit to the extent to which
light conditions can be expected to change in a short timescale.

5.2. Experiments and results 95

0 200 400 600 800 1000
0.2

0.3

0.4

0.5

0.6

0.7

0.8

Number of training examples

F-
sc

or
e

10-fold cross-validation results

Learnt Model
Hand-coded Model
Extended Model

Figure 5.16: Results from the robot experiment: Mean F-scores from ten-fold cross-

validation for the learnt model, in comparison to mean F-scores for predictions from the

original hand-coded model, and an extended hand-coded model.

from a pool of objects of varying radii, depths and visual properties. Objects in the

world were occasionally swapped, by an experimenter, for another object from the

pool with different properties. In 40% of trials, some objects were turned upside-down

to act as closed objects.

At each step, the robot made an observation of the world state, performed a ran-

domly chosen action, and then made a new observation of the world. All actions

attempted by the robot were included in the sequence of action-observation steps,

regardless of whether the action was successful or not. The robot performed 1,000

action-observation steps in total over the course of a series of separate experiments,

with different sets of four objects, and then a model was learnt from the data.

5.2.2.1 Results

A ten-fold cross-validation procedure was used to test the performance of the learning

model, and was repeated across different numbers of training examples to assess how

many examples would be needed to learn an adequate model. The performance was

measured by considering the fluents which the model predicted would change versus

the fluents which did change, and calculating the balanced F-measure, the harmonic

mean of precision and recall (true positives/predicted changes and true positives/actual

changes, respectively).

96 Chapter 5. Learning action models beyond STRIPS

The results were compared to the predictions made by a baseline model: the hand-

coded domain description which had been used to define the behaviour of the robot

(see Figure 5.15). For more than 500 training examples, the learnt model performs

significantly better than the hand-coded domain model (p < 0.001). For example,

with 1,000 training examples, the learnt model has a mean F-score of 0.74, in contrast

to a mean F-score of 0.53 for the hand-coded domain. The superior performance of

the learnt model suggested that some regularities in the domain were not captured by

the hand-coded model. Therefore the hand-coded model was extended with as many

additional preconditions and effects as could be identified, namely:

• extra conditional effects for each grasp action, to indicate that any reachable

predicate which was true before a grasp would be false after a grasp:

(∀?x).(reachableInner ?x)⇒ (not(reachableInner ?x)) and analogously

for reachableEdge and reachableOver;

• corresponding extra effects for (putAway ?x) and (putOnTable ?x) to indi-

cate that objects which have been put down will be reachable (although

not always true, it is often the case): (reachableInner ?x),

(reachableEdge ?x) and (reachableOver ?x);

• the addition of gripperempty as an extra precondition for senseOpen, as a

consequence of the implementation of senseOpen on the robot;

• removal of all effects of graspOver, converting it into a no-op, since graspOver

usually fails in the training data.6

For 600 or more training examples, there is no significant difference between the mean

F-scores of the extended model and those of the learnt model (p > 0.05).

5.3 Discussion

The results show that the deictic reference kernel of size k is a suitable choice for

learning action models in both STRIPS domains and domains extended to include

conditional and quantified effects. As with the k-DNF kernel, the combination of the

6Such an action would be better learnt using a probabilistic representation of the action rules (e.g.
as discussed in Section 6.5.3) rather than as here, where only the most probable result is learnt. Alter-
natively, Mugan (2010) gives methods for learning progressively more reliable actions, even from very
low rates of success, in a continuous robotic world.

5.3. Discussion 97

deictic reference kernel of size k with voted perceptrons allows learning to take place in

noisy, partially observable domains. In contrast, using the full deictic reference kernel,

which is a form of subgraph kernel, would have been computationally intractable.

Although most of the experiments were run on simulated domains, the results from

the robot stacking domain give initial indications that the learning model will also

handle noise and partial observability occurring in more realistic scenarios. The actions

learnt in the robot domain did not include relational preconditions or effects: as such

it is only a limited test of the learning approach. Nevertheless, it learnt a good model

of the action dynamics which improved upon the original hand-coded specification of

the domain, despite incomplete, noisy observations and noisy actions.

5.3.1 Relation between vector and graph representations

The graphical representation is a generalisation of the vector representation used in

Chapter 4. The connections between the learning algorithms used for the vector and

graph representations are discussed below, by considering how to convert from the

vector-based algorithm to the graph-based one.

Any vector state description can be written as a situation graph, by putting the

action and its arguments as nodes in the graph, and then adding nodes (with corre-

sponding edges) for each fluent which has a 1 or −1 entry in the vector. In this graph,

the deictic references are restricted purely to the action parameters, and so the result-

ing graph remains a STRIPS description (and therefore only has 0-order deictic refer-

ences). However, it has the advantage of being a sparser representation than the vector,

since unobserved fluents are still assigned an entry in the vector, but not assigned a

node in the graph.

The number of classifiers used in either the vector or graph representations is the

same. In principle, there is a classifier for each entry in the vector, or equivalently, each

possible node in the situation graph. The classifiers are only activated as required,

based on the results of the kernel calculation. Since the kernel calculation in both

vectors and graphs is identical for a STRIPS domain (see below), the set of classifiers

used is also identical.

The kernel used by the vector representation is the k-DNF kernel, whereas the

graph representation uses the deictic reference kernel of size k. However, for two sit-

uation graphs G1 and G2 which only have 0-order deictic references, there is only one

possible mapping between the nodes of the two graphs: the action parameters must be

98 Chapter 5. Learning action models beyond STRIPS

mapped to each other, and as in this case fluents only relate action parameters, each flu-

ent node in one graph has either one or no corresponding fluent node in the other graph.

In terms of the kernel calculation described in Section 5.1.4.1 and Definition 5.1.5,

there are no core relations and so the calculation of Kk(G1,G2) simplifies to just

K0,k(G1,G2), that is, the number of common situation graphs is
k

∑
i=0

(
same0(G1,G2)

i

)
,

where same0(G1,G2) is the number of fixed fluent nodes common to G1 and G2. This

is exactly the calculation performed by the k-DNF kernel. The only difference is that

in the vector representation, common fluents are identified by comparing values of

matching entries in two vectors, whereas in the graph representation, Definition 5.1.5

suggests a pairwise comparison of all pairs of nodes in the graph in order to identify

matching fluents. Clearly this could be made more efficient by using a fixed-order

graph traversal, which would then have the same complexity as traversing a vector.

The learning algorithm for the graphical representation is thus identical to that of

the vector representation, for STRIPS domains, and with fixed-order graph traversal

the computational complexity will also be the same. Once the situation graphs use

higher-order deictic references, the calculation becomes more complex. In particular,

fixed-order graph traversal can no longer be used to match common fluents in the two

graphs, because any fluent in one graph may have multiple matching fluents in the

other graph. It is this difference which requires the graph-based learning algorithm to

take a subgraph isomorphism approach when matching graphs.

5.3.2 Related work

Since this chapter extends the approach in Chapter 4, much of the discussion on pre-

vious work in Chapter 4 also applies here. Further comment can be made on the

use of deictic references, which have previously been used to reduce the size of the

rule space and provide generalisation capabilities (Agre and Chapman, 1987; Finney

et al., 2002; Pasula et al., 2007; Rodrigues et al., 2010a; Xu and Laird, 2010).7 How-

ever, in addition, I use deictic references to compare states, by matching objects which

share deictic terms. Some approaches have used the simplest form of deictic reference

matching, matching only action parameters across states (Halbritter and Geibel, 2007).

This is only suitable for STRIPS domains where it is assumed that all objects which

have a role in the action are listed in the action parameters. The vector representa-

7Although not explicitly using deictic reference, the proximity heuristic used by Xu and Laird (2010)
has strong similarities.

5.3. Discussion 99

tion in Chapter 4 also included the assumption that objects with the same role would

fall in the same position in their vector state representation; these objects were then

matched for state comparisons. This is a simplified form of deictic reference match-

ing, since under partial observability or noise the position assumption can fail (but will

only strongly impact learning in non-STRIPS domains). The approach in this chapter

is a generalisation to full deictic reference matching, allowing learning in domains af-

fected by noise and partial observability. It also permits learning in domains where the

assumption no longer applies that objects in the preconditions or effects are listed in

the action parameters — namely domains such as Briefcase and Elevator.

5.3.3 Limitations and possible extensions

5.3.3.1 Extending beyond first-order deictic references

The state representation used in this chapter restricts the set of objects in the state

to those listed in the arguments of the action, or directly related to those arguments

(one step away from the action). This accordingly limits the action models which can

be learnt to those whose preconditions and effects only contain the restricted set of

objects. In many domains, such as the experimental domains used in this chapter, the

restriction to first-order deictic references is sufficient to learn the domain, but learning

in more complex domains may be affected.

Simply extending the set of objects to more distantly related objects is possible,

but each additional object extends the hypothesis search space and will increase the

computation time. One solution may be to learn or derive new predicates, which form

the direct relation needed between an object and the action parameters. For example,

when moving a tower of blocks, an instack relation might be required to relate each

block to the bottom block which is the only block being acted upon. Some predicate

invention of this nature has been carried out by Pasula et al. (2007).

A wider-reaching solution might be to proceed in a recursive manner, by allowing

effects to also include actions. Then the effect of an action can result in another action,

whose arguments are now the objects which were previously only related to the action

arguments. In this way a chain of effects could be specified. For instance, in the

Briefcase domain, learning the move action involves learning that objects inside the

briefcase also move. This change is specified in terms of changes to the locations of

those objects, but could be specified as a move action now performed on each object

inside the moved object. However, it is not clear how to learn that certain indirect

100 Chapter 5. Learning action models beyond STRIPS

effects correspond to actions, and such a representation is also quite different from

standard planning representations.

5.3.3.2 Alternative kernel calculations

Although the deictic reference kernel of size k is more efficient than the subgraph

kernel, it is still quite expensive to compute. There may be scope to use an alternative

graph kernel instead. The main issues to consider are the efficiency of the graph kernel,

and its expressivity: the extent to which it distinguishes between graphs representing

states with different outcomes, and identifies as similar graphs representing states with

the same outcome.

The deictic reference kernel described in this chapter is essentially the k-graphlet

kernel (Shervashidze et al., 2009), restricted so that the graphlets (or motifs) may only

match where the deictic terms also match. Shervashidze et al. (2009) improve the

speed of the kernel calculation by taking a sampling approach, which could also be

considered here. Of particular interest is that they additionally give an algorithm to

efficiently count graphlets up to size 5, where the graphs are of bounded degree, as is

the case for the relation nodes in situation graphs. A modification to this algorithm to

account for deictic references could potentially produce efficiency gains.

Other graph kernels are often based on walks and paths in graphs (Ramon and

Gärtner, 2003; Borgwardt and Kriegel, 2005). A walk in a graph G is a sequence

of edges 〈(v1,v2),(v2,v3), . . . ,(vk−1,vk)〉 where each (vi,vi+1) ∈ E(G), while a path

is a walk with no repeated vertices. An edge path is a walk with no repeated edges

(but vertices may be repeated). Gärtner et al. (2003a) define two kernels which count

matching walks in the two graphs being compared, where walks match either because

they start and end on vertices with the same pair of labels, or because they share the

same sequence of labels. Kashima et al. (2003) define a related kernel whose features

correspond to the probability a particular label sequence is generated by a random walk

in both graphs. These kernels are expensive (although tractable) to compute.

A more expressive kernel is the subtree pattern kernel (Ramon and Gärtner, 2003;

Shervashidze and Borgwardt, 2009). A subtree pattern can be defined inductively as

follows. If G(V,E) is a graph then every v ∈V is a subtree pattern. If t1, . . . tn are sub-

tree patterns, each rooted at ri (where ri 6= r j ∀i, j) and (v,ri) ∈ E ∀i then v(t1, . . . , tn)

is a subtree pattern. Note that this definition allows vertices to be repeated in subtree

patterns, so that in the same way as walks extend paths by allowing repeated vertices,

subtree patterns extend subtrees by allowing repetitions. Additionally this means that

5.3. Discussion 101

walks are special cases of subtree patterns. The original subtree kernel algorithm was

computationally expensive, but recent work has developed a significantly more effi-

cient algorithm (Shervashidze and Borgwardt, 2009), which makes it more efficient to

calculate than the walk and path kernels discussed above.

The hypergraph kernel (Wachman and Khardon, 2007) is also based on walks,

this time in hypergraphs, and uses walk types as the basis of the kernel. A walk

in a hypergraph is defined to be a sequence of hyperedges, where each pair of con-

secutive edges share at least one node, and no consecutive edges are equal. The

common node between each pair of edges must be specified. Hypergraph walks can

be represented as strings of the form P = p1i1 j1 p2i2 j2 . . . in−1 jn−1 pn where each pk

is a hyperedge, each ik is the exit position from pk and jk the entry position into

pk+1. For example, a hypergraph representing a state in the ZenoTravel domain is

{(board person aircraft city),(at person city),(at aircraft city)},
and one particular walk in this hypergraph is described by the string

(board person aircraft city),1,1,(at person city),2,2,(at aircraft city).

A walk type is a generalisation of a walk, where each edge is represented only by

its label, so the walk type of the walk above is (board,1,1,at,2,2,at). The hyper-

graph kernel Kn(H1,H2) then counts the number of common walk types of some fixed

length n in the two hypergraphs H1 and H2.

Could these kernels be used to learn action models instead of the deictic reference

kernel? In terms of efficiency, the subtree kernel is best, with the most recent imple-

mentation running in time linear in the number of edges in the graph, and the maximum

height of the subtrees considered. There can be many more edges in a situation graph

than there are nodes, for example, in densely connected domains such as the elevator

domain. The number of edges in a situation graph is bounded by the product of the

number of possible fluents and the maximum arity of any predicate in the domain, m.

The number of possible fluents is bounded by |P |(|objs|
m

)
where |objs| is the number

of objects from the original state represented in the situation graph. Thus the number

of edges is bounded by O(|objs|m) and for densely connected graphs even the subtree

kernel will be expensive to calculate.

A further issue is that without changes, all of the kernels could include features

composed entirely of negative deictic terms (e.g., “the block which is not under the

block I am unstacking and not on the floor”). This would lead to the kernels assigning

high similarity scores to situations which are only similar in what they are not. For

instance, where in one situation a block is on the table, and in another a block is stuck

102 Chapter 5. Learning action models beyond STRIPS

to the ceiling, the similarity calculation would be based on the fact that neither block

is on the floor, or on the shelf, or in the bag. This measure of similarity seems counter-

intuitive, and the deictic reference kernel was explicitly constructed to avoid it. Thus

using any of the alternative kernels would involve adjusting the calculation to exclude

cases of this form.

5.4 Summary

In this chapter the approach in Chapter 4 was generalised so that it could be applied

to extended STRIPS domains. The generalisation relies heavily on deictic reference.

It involved changing the representation of state observations from vectors to graphs

by identifying that the vectors implicitly coded deictic references, and making this

explicit in the graphical representation. The structure of the classification model was

generalised so that classifiers were explicitly associated with deictic terms. Finally, a

new graph kernel was defined, the deictic reference kernel of size k, which measures

similarities between situation graphs by matching deictic terms.

The result is an incremental learning algorithm which can learn action models in

both STRIPS and extended STRIPS domains even when observations are noisy and

partially observable. Experimental results show that the generalised approach still

performs well in STRIPS domains and also produces good action models in extended

STRIPS domains. An approach which handles both noisy and incomplete observations

is in itself novel in action model learning. In addition, the approach assumes only a

weak domain model where predicates, action labels, and argument numbers and types

are known, whereas many alternative approaches assume the availability of successful

plans or the presence of a teacher.

Chapter 6

Extracting rules

A major limitation of the classification-based approach to learning the dynamics of a

domain is that explicit rules are not generated by the model. Instead, it must be used

as a black-box to make predictions of state changes, given an action and initial state.

While such models can be used in model-based reinforcement learning (Sutton, 1990;

Halbritter and Geibel, 2007), most planners require PDDL-style rules. Moreover, sup-

porting a perceptron-based model of the world has practical problems relating to the

storage of ever-increasing numbers of support vectors, and a prediction calculation

which takes time proportional in the number of support vectors. Rules resolve the

problem by providing a compact representation of the perceptron models. Finally,

post-processing the perceptron models by extracting rules provides an opportunity to

further filter out the effects of noise in the training data. In this chapter, I present a

method to extract rules from classifiers trained on the vector-based state representation

of Chapter 4, and discuss how it could be extended to work with the graph-based state

representations of Chapter 5.

6.1 Existing approaches to rule extraction

The related problems of rule extraction from neural networks and from SVM classifiers

have been well explored in the literature (Tickle et al., 2000; Martens et al., 2008;

Barakat and Bradley, 2010). Many of these techniques could also be applied to extract

rules from the voted perceptron model. A distinction which will prove useful is given

by Tickle et al. (2000), who define the translucency of a rule extraction technique (for

neural nets) to describe whether it operates on the internal weights and structure of the

network (decompositional), or only on the external inputs and outputs (pedagogical).

103

104 Chapter 6. Extracting rules

Any pedagogical technique is immediately transferable between neural nets, SVMs

and voted perceptrons, and while decompositional techniques are unlikely to apply

directly, the underlying intuition may be reusable.

Tickle et al. (2000) also discuss other dimensions along which rule extraction tech-

niques may be categorised:

• language: whether rules are generated in the form of symbolic Boolean, propo-

sitional, or relational rules; or as fuzzy rules;

• quality: the accuracy of each rule relative to the domain, and relative to the

network from which it was extracted; the consistency of the rules extracted over

different training sessions of the network; comprehensibility;

• computational complexity;

• portability to other networks.

In the type of rule extraction required here, rules should be generated as symbolic

propositional or relational rules, in order to ultimately form PDDL rules (or similar)

which could be used by a planning system. The intention is to extract rules which

are as close as possible to those learnt by the perceptrons, with the assumption that

the models will have learnt a reasonable approximation of the world action dynam-

ics. It is important that the rules are consistent across different training sessions, as

the classifiers for different effects could ultimately be trained with different sets of

examples (e.g. under partial observability). If rules are to be combined across differ-

ent effects to produce full action rules, then the rules for different effects of the same

action-precondition pair need to coincide as much as possible. Clearly, computational

complexity should be minimised, while portability to other networks is of little con-

cern. The main choice, then, is whether to take a decompositional or a pedagogical

approach.

6.1.1 Pedagogical approaches

In the pedagogical approach, rules are derived based on the inputs and outputs of the

model, that is, based on the action, initial state and successor state tuples. This is

almost the same problem as learning the action dynamics from world observations, but

is significantly simplified, because, (i) observations can be selected as required, for

instance, to be fully observed, and, (ii) noise is eliminated, as the observations will

6.1. Existing approaches to rule extraction 105

always be consistent with the action dynamics learnt by the model. As a consequence,

existing techniques for learning planning operators, which require full observability

and/or noiseless examples, could be used to learn the rules describing the perceptron’s

model.

There are some disadvantages in taking this approach. The resulting rules can

only be as expressive as the two learning models combined. In particular, if learning

in a noisy environment, the perceptron model is likely to produce many rules with

conditional effects,1 which most other approaches do not handle, so these would be

lost or simplified in some way (not necessarily beneficially). Similarly, errors in the

perceptron model could be magnified by the addition of a second learning process.

6.1.2 Decompositional approaches

In the decompositional approach, rules are derived using information internal to the

model: the weights, biases, activation function and connections between nodes in a

neural network, or the support vectors and decision function of an SVM. Additionally,

the training data or model predictions may be used (also known as a hybrid or eclectic

approach).

Decompositional SVM rule extraction methods are typically classed in terms of

which aspects of the SVM model they use: the support vectors, the support vectors and

decision function, or the support vectors, decision function and training data (Barakat

and Bradley, 2010). However, it may be more useful to consider whether approaches

are data-driven (they aim to define regions of the feature space which cover positive

or negative training examples) or feature-driven (they aim to identify features which

discriminate between the classes).

Data-driven approaches build candidate regions of the input feature space which

are likely to contain mostly points of one class. The regions are adjusted to better

fit the training data, according to some criteria, and then translated into rules. The

initial creation of candidate regions may be achieved by clustering (of support vectors

or training data) to find prototype vectors for each class (Zhang et al., 2005b; Núñez

et al., 2008), and then using the prototypes, possibly in combination with the support

vectors, to define regions. Alternatively, for certain kernels, initial candidate regions

1With noise, the perceptron model will occasionally see training examples with a spurious effect.
The perceptron corresponding to the effect will usually learn that in general the effect does not occur,
as it will be presented with many examples where the effect is not present. However, test examples very
similar to those examples with the spurious effect may sometimes trigger a positive prediction from the
perceptron. This will manifest itself in rule extraction as a conditional effect.

106 Chapter 6. Extracting rules

can be hyperrectangles constructed by projecting lines parallel to each axis from each

support vector to the decision function (for non-linear RBF kernels), or from each

axis to the decision function (for linear classifiers) (Fu et al., 2004; Fung et al., 2005).

The data-driven approaches essentially approximate the SVM decision function with

partitions of the input space which are easier to translate into rules. Most produce rules

with low comprehensibility, as either all features are included in the rule antecedents

(Zhang et al., 2005b; Núñez et al., 2008; Fu et al., 2004) or large numbers of rules

are produced (Fung et al., 2005). This type of approach is therefore unsuitable for

extracting rules from the voted perceptron models.

Alternative, feature-driven approaches, aim to identify which input features and

values most contribute to the class prediction, and use only those features in classi-

fication rules. For instance, Barakat and Bradley (2007) determine the set of most

discriminative features in the support vectors, by comparing the mean values of each

feature in the positive and negative support vectors, and selecting those which give the

best true positive to false positive rate over the full set of support vectors. At each

stage in a sequential covering process, they refine a candidate rule by adding features

which are increasingly less discriminative, until the addition of a feature does not im-

prove on the rule prediction. At this point the rule is added to the rule set, all support

vectors covered by it are removed, and the process repeats. Chen et al. (2007) select

relevant features as part of the SVM training process, before generating hypercubes, in

a similar fashion to the data-driven approach of Fung et al. (2005). Another method,

specific to the families of DNF and polynomial kernels, is to attempt to identify the

most discriminative features by seeking the highest weighted features in the feature

space, and then conjoining those features to form rules (Zhang et al., 2004, 2005a).

These approaches tend to produce rules with more compact rule antecedents, but com-

prehensibility can still be affected by the large number of rules produced, as noted by

Barakat and Bradley (2010).

The principle behind decompositional neural network rule extraction methods is

very similar to the feature-driven SVM extraction methods: find inputs which activate a

neuron, by finding combinations of input weights which sum to more than the neuron’s

activation threshold. In the subset method (Fu, 1991; Towell and Shavlik, 1993; Kr-

ishnan et al., 1999), subsets of inputs which are guaranteed to fire a neuron are found.

This leads to rules of the form “if the antecedent is true, then . . . ”, where the antecedent

is in DNF: a disjunction of the conjunctions formed by each subset. Since the compu-

tational cost of finding all subsets which fire a neuron is proportional to 2n, where n is

6.1. Existing approaches to rule extraction 107

the number of inputs to a node, subset methods use various heuristics and constraints,

such as limiting the number of antecedents or number of rules. A related method is

the M-of-N method (Towell and Shavlik, 1993; Setiono, 2000) which extracts rules of

the form “if M of the following N antecedents are true, then. . . ”. The key observation

underlying the M-of-N method is that groups of antecedents form equivalence classes

where each member has (near) equal importance, indicated by similar weights on the

inputs. The equivalence classes can be identified by clustering antecedents with sim-

ilar weights, and then by extracting rules in terms of the equivalence classes. In the

final rule defining the behaviour of a neuron, members of an equivalence class can be

interchanged without affecting the outcome.

Neither the feature-driven SVM approaches, nor the decompositional neural net-

work approaches, can be directly used to extract rules from the voted perceptron model

of Chapter 4. Although the perceptron is a single-layer neural network, the use of the

DNF or k-DNF kernel implicitly introduces hidden layers whose connection weights

are unknown; or, equivalently, it expands the input space into the higher-dimensional

feature space of conjunctions of input features. The neural network methods rely on

knowing the network structure and the connection weights, so would have to work with

the expanded feature space and use the structure of a single-layer perceptron. In this

scenario, the connection weight w f on any feature f (a conjunction of input features) is

just the prediction calculation made by the perceptron, so

w f =
n

∑
i=1

αiyiK(f,xi) (6.1)

where K is either the DNF or k-DNF kernel, and the xi are the support vectors. Unfortu-

nately, working in the much larger feature space immediately brings (further) tractabil-

ity problems, since the extraction methods operate on every feature: e.g., with the DNF

kernel, the subset methods now run in time O(22n
) where n is the number of input fea-

tures.

Since the kernel perceptron also produces support vectors and a decision function,

the feature-driven SVM extraction methods could be applied to extract rules. One issue

is that the perceptron’s support vectors are not necessarily located close to the decision

boundary, as the SVM support vectors are. Methods designed for SVMs may there-

fore not work as well for perceptrons. More importantly, most of the feature-driven

methods perform feature selection on features in the input space, and do not account

for combinations of features being discriminative where individual features are not

(Barakat and Bradley, 2007; Chen et al., 2007). As preconditions are conjunctions of

108 Chapter 6. Extracting rules

features which jointly predict change but individually do not, such feature selection

processes could ignore features which are actually relevant. Even in the case of Zhang

et al. (2004, 2005a) where the rule extraction method was specifically designed for the

DNF family of kernels, the possibility that weights are spread across all subconjunc-

tions of a conjunction is not accounted for. The approach is still relatively successful,

since it favours smaller conjunctions which can be combined to form larger conjunc-

tions covering the true rules. However, this is likely to be why the method produces

many rules.

6.1.3 Feature selection methods

Rule extraction is also closely related to the problem of feature selection, where the

aim is to reduce the number of features used by a classifier during learning, in order

to reduce training and prediction times, or to improve accuracy. Feature selection

processes remove irrelevant or redundant features, a goal shared with rule extraction.

In fact, since in their simplest form action preconditions are conjunctions of relevant

features, removing the irrelevant features and conjoining the remainder is a reasonable

strategy to generate rules. For feature selection to work as a form of rule extraction it

is important that the features should be selected according to the learning algorithm,

since it is the features useful to the learning algorithm which are required.

Feature selection methods are usually split into filter methods, wrapper methods,

and embedded methods (Kohavi and John, 1997; Guyon and Elisseeff, 2003). Filter

methods perform pre-processing to identify relevant features based on characteristics

of the data, and so can be disregarded here, as the learning algorithm has no impact on

the choice of features to discard.

In contrast, a wrapper method explores the full feature powerset lattice, using the

learning algorithm as a black box to evaluate each subset of features it considers (and

so is similar to the pedagogical methods above). In this context, the lattice exploration

can use forward selection, where the search begins from the empty set, or backward

elimination, where the search begins from a full set of features. The search algorithm

chooses potential subsets of features, which are evaluated by estimating the accuracy

of the learning method on the training set, when only those feature subsets are used as

training data. Accuracy can be estimated, for example, by using cross-validation. Once

an acceptable level of accuracy is achieved, the search terminates. Suitable simple

search algorithms include hill-climbing or best-first search (Kohavi and John, 1997).

6.2. Extracting preconditions from (k-)DNF kernel perceptrons 109

Provided evaluation is not too expensive, wrapper methods could also be adapted to

extract rules from the perceptron models.

Embedded methods differ in that they are integrated into the learning algorithm

itself, but many are also based on the wrapper approach of exploring the feature lat-

tice. Of these, methods designed for SVMs are particularly closely related to the rule

extraction problem, acting in a similar way to the decompositional methods previously

discussed. Several approaches (e.g., Rakotomamonjy (2003); Weston et al. (2000))

are related to SVM Recursive Feature Elimination (SVM-RFE) (Guyon et al., 2002).

SVM-RFE uses backward elimination and proceeds by first training the SVM, ranking

each feature according to some ranking criterion and then deleting the feature with the

lowest rank. The procedure is repeated until no features remain. For a linear SVM,

the ranking criterion is w2
i , where w is the weight vector calculated by the SVM. The

criterion corresponds to the change in cost function resulting from removing the i-th

feature. As noted by Rakotomamonjy (2003), this ranking criterion measures the sen-

sitivity of w with respect to the inputs, similarly to methods used for neural network

feature selection and rule extraction. For non-linear SVMs using a kernel, the rank-

ing criterion is again the change in cost function when the i-th feature is removed.

This would lead to computationally expensive retraining of the SVM, except that it is

avoided by assuming that the set of support vectors remains the same. Instead only

(parts of) the kernel matrix must be recalculated to account for the deleted feature.

6.2 Extracting preconditions from (k-)DNF kernel per-

ceptrons

As discussed above, none of the existing decompositional rule extraction methods can

be applied to the problem of extracting preconditions from the voted perceptron models

learnt in Chapter 4. However, some of the underlying principles from the decompo-

sitional and feature selection methods can be used, namely, identifying discriminative

features by using the weights assigned by the model, and using information provided

by the support vectors and the decision function.

Working in the feature space of all conjunctions of fluents, each voted perceptron

learns a weight vector, assigning a weight to each conjunction. It is useful to think of

the feature space as a lattice where conjunctions or hypotheses are ordered by a gen-

eralisation relation. Depending on the representation used, the generalisation relation

110 Chapter 6. Extracting rules

corresponds to different forms of the subsumption relations discussed in Chapter 2.

When working in the vector representation, each hypothesis can be represented as a

vector, in the same way as the states. Elements corresponding to fluents which are

non-discriminative are set to N in the hypothesis. Thus, in the vector case, hypothesis

h subsumes or covers an example e if whenever an entry in h has value 1 or −1, the

entry at the same position in e has the same value. Here, the covering relation cor-

responds to propositional subsumption. Similarly, for the graph representation, each

hypothesis can be represented as a graph where only nodes for those fluents (positive

or negative) which are relevant to the hypothesis are present in the graph. Then a hy-

pothesis h covers an example e if h is isomorphic to a subgraph of e. Here, the covering

relation corresponds to OI-subsumption. In both cases, a set of hypotheses covers an

example if every hypothesis in the set covers the example.

The approach discussed below extracts preconditions from a voted perceptron via

decomposition approach, in that it requires access to the support vectors, and effec-

tively determines discriminative features in each support vector by using the coeffi-

cients of the weight vector in the feature space. There are also pedagogical aspects

to the approach, since it is a search through the lattice of possible hypotheses for a

conjunctive precondition, where the model is used as a black box to decide which hy-

pothesis to select next. However, the model must provide access to the full weight it

calculates for an input, rather than just the final prediction, as it would in a purely ped-

agogical approach. Since the models predict changes to each fluent separately, after

extracting preconditions for change to individual fluents, an additional step is required

to combine the preconditions and effects into a full description of the action.

6.2.1 Rule extraction from individual perceptrons

The perceptron’s model is entirely described by its support vectors. Each support vec-

tor is classed by the perceptron as positive or negative.2 The positive support vectors

are each instances of some rule the perceptron has learnt, and so they are used to “seed”

the search for rules. It is assumed that each positive support vector is covered by ex-

actly one conjunctive rule (but the full set of positive support vectors may be covered

either by a single conjunction or a disjunction of conjunctions). The extraction process

aims to identify and remove all irrelevant entries in each support vector, effectively

2Note the perceptron’s classification may differ from the target values associated with the support
vectors. For the purposes of seeding the rule search, the perceptron’s classifications are used, but for the
purposes of calculating the kernel function values, the original target values are used.

6.2. Extracting preconditions from (k-)DNF kernel perceptrons 111

navigating through the lattice of hypotheses from the support vector towards the maxi-

mally specific covering rule. Then the set of rules are combined to form either a single

conjunction or k-DNF, depending on the expected form of the preconditions.

Rules are extracted from a perceptron with a kernel K and a set of support vectors

SV = SV + ∪ SV−, where SV + (SV−) is the set of support vectors whose predicted

values are 1 (−1). For any vector x in the subsumption lattice, its weight is defined to

be the value calculated by the perceptron’s prediction calculation before thresholding

(Equation (6.1)). The predicted value for x is 1 if weight(x) > 0 and −1 otherwise. A

child of vector x is any distinct vector obtained by replacing a single element of x with

the value N. Similarly, a parent of x is any vector obtained by replacing an N-valued

element with either the value 1 or −1.

The basic intuition behind the rule extraction process is, as in both feature selec-

tion and the neural network subset methods, that more discriminative features will

contribute more to the weight of an example. By repeatedly deleting the feature which

contributes least to the weight, we should be left with the most discriminative features

underlying an example, which can be used to form a precondition. An example of the

process of extracting rules is shown in Figure 6.2, and an outline of the algorithm in

Figure 6.1, as follows. Take each positive support vector v in turn, and aim to find a

conjunction rulev which covers v and does not cover any negative training examples,

but where every child of rulev covers at least one negative example. Construct rulev by

a greedy algorithm which first takes v as a candidate rule and then repeatedly selects a

new candidate rule by taking the child of the current candidate whose parents have the

least difference in weight - that is, finding

argmin
xi∈{x1,...,xi,...,xn}

(weight(x1, . . . ,xi, . . . ,xn)−weight(x1, . . . ,¬xi, . . . ,xn)).

Removing the resulting xi removes the least discriminative entry in the current candi-

date rule. At each step the new candidate rule is tested against the training examples.

If it classifies a negative training example as positive, then the rule is too general and

rulev is set to the previous candidate rule, otherwise the process repeats.

112 Chapter 6. Extracting rules

for v ∈ SV + do
child := v
while every training example which child covers is positive do

parent := child
flip each valued element in parent to its negation in turn
pick the result child whose parents have the least difference in weight

rulev = parent

Figure 6.1: Rule extraction algorithm

-1 -1 1 1 w=-10 1 1 1 1 w=80 1 -1 1 1 w=100 1 -1 -1 1 w=90 1 -1 1 -1 w=-5

N -1 1 1 w=-5 1 N 1 1 w=60 1 -1 N 1 w=80 1 -1 1 N w=0

N -1 N 1 w=10 1 N N 1 w=40 1 -1 N N w=15

Figure 6.2: Part of the lattice of rule hypotheses, showing a simple example of the rule

extraction process. Each node contains a vector corresponding to a possible precon-

dition, and the weight w assigned to the vector by the voted perceptron model. Each

level of the lattice contains vectors with one fewer feature than the level above. Lines

join parent and children nodes: solid lines link the candidate parent rule at one level

with its children in the level below, and dashed lines link children to their alternative par-

ent. Shaded nodes are the preconditions selected at each iteration through the lattice.

The positive support vector “seed” is the vector 〈1 -1 1 1〉 with weight 100. The child

whose parents have the least weight difference, the vector 〈1 -1 N 1〉, is chosen as the

next candidate rule. The process ends with the rule 〈1 N N 1〉 as both children have a

negative counterexample in the training data (not shown).

The result is a set of rules for each action, predicting when a particular entry in

the output vector changes. There may be many rules, up to one per positive support

vector, each consisting of a set of preconditions which, if satisfied, predict the entry

in the output vector will change. The number of rules can be reduced by identifying

and deleting duplicates, and also via merging of rules when combining rules across

different entries of the vector (see Section 6.3).

6.2. Extracting preconditions from (k-)DNF kernel perceptrons 113

An example of the set of rules extracted for the BlocksWorld stack action is shown

in Table 6.1. For reference, the true rule is shown in Figure 6.3. Since the per-effect

rules are extracted from a perceptron trained on 1000 examples from a world with 5%

noise and 25% partial observability, it is expected there will be some errors in the rules.

Indeed, there is an extra effect (on-table ?x1), while many of the individual rules

have additional incorrect preconditions. However, all of the preconditions and effects

in the true rule are present. Overall, for this particular training instance, the perceptron

model produces an F-score of 0.72 on the test set, while the extracted per-effect rules

perform at a similar level, with an F-score of 0.71.

Per-effect rule Weight

arm-empty changes when:
(not (arm-empty)) (not (on-table ?x1)) 8

clear ?x1 changes when:
(not (clear ?x1)) (holding ?x1) (not (on ?x1 ?x2))
(not (clear ?x1)) (not (on-table ?x1)) (not (on ?x2 ?x1))
(clear ?x1) (on-table ?x1) (not (on ?x1 ?x2)) (clear ?x2) (not (on ?x2 ?x1))

14
12
8

on-table ?x1 changes when:
(not (on-table ?x1)) (not (on ?x1 ?x2))
(not (arm-empty)) (on-table ?x1) (not (clear ?x2))

6
4

holding ?x1 changes when:
(holding ?x1) 15

on ?x1 ?x2 changes when:
(not (on ?x1 ?x2)) 3

clear ?x2 changes when:
(clear ?x2) (on-table ?x2) (not (holding ?x2))
(not (arm-empty)) (not (clear ?x1)) (holding ?x1) (not (on ?x1 ?x2)) (clear ?x2)
(not (clear ?x1)) (clear ?x2) (not (on-table ?x2))

12
6
2

Table 6.1: Per-effect rules generated for the BlocksWorld stack action from 1000 ex-
amples in a world with 5% noise and 25% observability. Fluents in bold are neither in,
nor implied by, the true action specification.

114 Chapter 6. Extracting rules

True stack specification

(:action stack
:parameters (?x1 ?x2)
:precondition (and (holding ?x1) (clear ?x2))
:effect (and (arm-empty) (clear ?x1) (not (holding ?x1)) (on ?x1 ?x2)

(not (clear ?x2))))

Figure 6.3: Specification of the true BlocksWorld stack action, for comparison.

Note that the search through the lattice has to move from specific to general hy-

potheses rather than from general to specific. A general-to-specific search could op-

erate by starting with the empty hypothesis and navigating towards a specific support

vector by flipping vector elements from N to the corresponding value in the support

vector, choosing the highest weighted parent each time. However, the general-to-

specific option only identifies the highest weighted conjunction which could be a rule,

and it is not necessarily the correct rule or the only rule. In contrast, the specific-

to-general direction defines a set of possible rules, at least one of which will be the

“correct” rule.

The process is similar to performing a subset method on the single layer neural

network represented by the perceptron model, where the inputs are in the expanded

feature space. Such a network has all of the inputs connected to a single node, which

outputs the final classification. Only one input is ever active for any state observation:

the input which exactly matches the true and false fluents in the observation, with

the remainder unobserved. The weight on a connection with input x is weight(x). A

crucial difference is that the perceptron-based method has support vectors available to

it, and so can use these to focus the search only on weight combinations which cover

the positive support vectors. Also, the process does not identify all possible subsets

which are guaranteed to give a positive weight, but instead just finds the superset of

those subsets. Both of these substantially reduce the number of weight combinations

which have to be considered.

6.2.1.1 Computational complexity

In fact, if the state vectors have n elements, and r elements are removed, then discover-

ing each precondition requires ∑r
i=0(n− i) flips of an entry in the vector. Each time an

entry is flipped, the weight of the resulting hypothesis is calculated: the weight calcu-

lation takes O(n) time for the DNF kernel and O(nk) for the k-DNF kernel (Sadohara,

6.3. Combining rules across output elements 115

2002). The time complexity associated with flips is therefore O(n3) or O(n3k). Every

time an entry is removed, the resulting hypothesis is tested against all t training exam-

ples. If there are s support vectors this takes O(tsn) or O(tsnk) time for the DNF and

k-DNF kernels respectively. The number of support vectors is equal to the number of

mistakes the perceptron made during training and so is known to be polynomial in t for

the k-DNF kernel, but not for the DNF kernel. So overall, the rule extraction process

is polynomial in the number of training examples and the length of the state vectors

when using the k-DNF kernel, but not the DNF kernel.

6.2.2 Incorporating voting

So far the rule extraction process has only used the final perceptron produced by the

learning models, rather than the full voted perceptron. A number of ways to extend

the process to the full voted perceptron can be envisaged. I take the simplest ap-

proach of replacing the weight calculation with the voted perceptron prediction func-

tion. Whereas in the search guided by the standard perceptron, the aim is to navigate

through the space of hypotheses by removing entries which contribute least to the

weight of a support vector, in the voted perceptron analogue, the aim is to remove

entries which contribute least to the vote determining the prediction for the support

vector, i.e.,

weight(x) =
n

∑
i=1

ci sign
i

∑
j=1

y jα jK(x j,x).

Another possibility would be to perform the rule extraction process for each of the

perceptrons in the full voted perceptron model, and then combine the rules, taking into

account the number of votes associated with each perceptron. However, it is not clear

how best to combine the large number of weighted rules produced in this way.

6.3 Combining rules across output elements

Having extracted a precondition (a disjunction of conjunctions) for each output ele-

ment of a vector and action, it remains to combine these into rules for each action.

Recall that an action rule has an action name with parameters, a set of preconditions

and a set of effects. The preconditions and effects are conjunctions of fluents whose

parameters are defined in terms of the action parameters. There may also be condi-

tional effects, where if additional preconditions are satisfied, additional effects occur.

In the following section, we consider the case where it is known that there is a single

116 Chapter 6. Extracting rules

conjunctive rule for each action. It is left to the discussion (Section 6.5.2) to consider

how this preliminary step could be extended to disjunctive preconditions, which may

be modelled by allowing a single action to have multiple conjunctive rules.

6.3.1 Building pure conjunctive rules

In noiseless domains (partially or fully observable), if it is known that there is a single

conjunctive rule for each action, the rules for individual outputs can trivially be com-

bined by respectively concatenating all of the preconditions and all of the effects into

a single precondition and effect. Fluents in the resulting precondition cannot contra-

dict each other, provided there is only one rule per action and no noise in the domain,

as contradictory examples are never seen by the model, and hypotheses which do not

cover any examples are never considered. The resulting preconditions will tend to

be over-specific, but the alternative of taking the intersection of all preconditions will

fail in partially observable domains, as the preconditions will often be empty. Conse-

quently, a back-tracking step is used to try to identify unnecessary preconditions. For

any combination of rules, this will involve generating less specific alternatives, sug-

gested by the rules, and testing whether these alternatives are acceptable, according to

some scoring function.

If there is noise, but still only one rule per action, rule combination is further

complicated by the possibility of conflicts in the preconditions or effects. The rule

combination step must incorporate some means of resolving such conflicts. This may

produce several potential rule combinations, which again must be tested by the scoring

function to determine which is best, and whether it is better than not combining the

rules at all. Even once an acceptable rule combination is identified, the rule may still

contain incorrect preconditions or effects introduced by noise. As before, backtracking

combined with the scoring function is used to reject rules where this is likely.

6.3.1.1 The rule combination algorithm

The rule combination process aims to build a single conjunctive rule for each action. It

operates on all rules (〈precondition,effect〉 pairs) for an action produced by the earlier

rule extraction process. For each action it first initialises the baseline rule to a default

rule consisting of the precondition of the highest weighted rule, and no effects. The

baseline rule is then refined by attempting to combine it with each of the remaining

pairs in turn, in order of highest weight. Each time the process must generate a suit-

6.3. Combining rules across output elements 117

allRules := rules from rule extraction process
hwr := HighestWeighted(allRules)
baseline := (hwr.pre,∅)
locks = ∅
while allRules 6= ∅ do

next := HighestWeighted(allRules)
allRules := allRules\{next}
if CompatibleEffects(baseline,next) then

if CombinePrecons(baseline,next,newpre, locks) then
BacktrackPrecons(baseline,next,newpre)
if AcceptPrecons(baseline,next,newpre) then

baseline.pre := newpre
if AcceptEffect(baseline,next.eff) then

baseline.eff := baseline.eff ∪next.eff
BacktrackEffects(baseline)

Figure 6.4: Rule combination algorithm: pure conjunctions

able candidate rule, and then decide whether to accept or reject the candidate as the

new baseline. An outline of the rule combination algorithm is given in Figure 6.4,

with supporting functions in Figures 6.5 and 6.6. The functions are described in the

following section.

6.3.1.2 Assessing compatibility

Before attempting to combine the current baseline rule with a new rule, checks are

made to ensure this is worthwhile (CompatibleEffects). If the new rule’s effect con-

tradicts any effect in the baseline rule,3 the new rule is automatically rejected, since at

this point we assume only one rule per action, and the higher weighted baseline rule is

more likely to be correct.

6.3.1.3 Generating new rules

Rules can be combined on both effects and preconditions, and each of these is consid-

ered separately. First, an attempt is made to combine the rule preconditions with the

3Since effects in the learnt model are changes, it may seem strange that a change to an element
e in the effect vector given by the new rule could conflict with a change to the same element in the
effect of the baseline rule. However, since the rules are being converted into PDDL, where effects are
absolute, the value of an element in the effect vector is determined by the corresponding element in the
preconditions. Therefore if the corresponding element in the baseline precondition contradicts the same
element in the new rule’s precondition, the effects conflict.

118 Chapter 6. Extracting rules

baseline preconditions, to form a set of candidate preconditions (CombinePrecons). If

the preconditions of the two rules do not contradict, they can be combined by conjunc-

tion to form the candidate preconditions. Otherwise, the non-conflicting fluents are

conjoined as before, and an attempt is made to reconcile the conflicts.

For each conflicting fluent, three variants of the candidate preconditions are cre-

ated, where the fluent has value N, 1 or −1. The weight weighteff (for each effect eff

in the baseline effects) of each variant is calculated. The preferred variant is the one

where the fluent has value N, which means the fluent is omitted from the preconditions,

since this value indicates a non-discriminative feature. However, a variant is only ac-

ceptable if the weight of the resulting rule is positive for all of its effects. If accepted,

the fluent is also locked at that value, to prevent later, possibly noisy rules, from reset-

ting the value without any checks on whether N is still an acceptable value. This relies

on the assumption that when the weight calculation indicates an entry is irrelevant

for one rule vector, it remains irrelevant for another. If the N-variant is unacceptable,

then the (1)-valued or (−1)-valued cases are considered, provided they have positive

weights on all the effects. If both variants are acceptable, whichever variant has the

highest average weight over all the effects is selected. If neither variant is acceptable

then the conflict is unresolved for this fluent. As long as the conflicts on every fluent

are resolved, the rule combination process can continue with the new candidate rule.

If not, the whole attempt at combining the baseline with the current rule is abandoned,

since no suitable combination can be formed.

At this stage, a backtracking step (BacktrackPrecons) generates a number of al-

ternative, less specific preconditions from the candidate preconditions. For each flu-

ent in the candidate which does not exist in the original preconditions, an alterna-

tive candidate precondition is constructed, without that fluent. If the scoring function

(AcceptPrecons) rates the baseline precondition as worse than the alternative precon-

dition, then the fluent is removed from the candidate preconditions.

6.3.1.4 Testing new candidate rules

Next, the resulting candidate rule is compared with the baseline rule, using a separate

scoring function for the preconditions (AcceptPrecons) and effects (AcceptEffects). If

the precondition scoring function rates the candidate preconditions as acceptable, then

they become the new baseline preconditions. The process is similar for the candidate

effects. Candidate preconditions may be accepted without the effects, and vice versa.

The precondition scoring function (AcceptPrecons) accepts the candidate precon-

6.3. Combining rules across output elements 119

function CombinePrecons(baseline,next, precons, locks)
con f licts := ∅
for all p ∈ baseline.pre do

if p ∈ baseline.pre∧¬p ∈ next.pre then
con f licts := con f licts∪ p

else
precons := precons∪ p

if ∀e ∈ baseline.eff ,weighte(precons) > 0 then
locks := locks∪ con f licts

else
for all p ∈ con f licts do

posweight := ∑
e∈baseline.eff

weighte(precons∪{p})

negweight := ∑
e∈baseline.eff

weighte(precons∪{¬p})
if ∀e ∈ baseline.eff ,weighte(precons∪{p}) > 0 then

if posweight ≥ negweight then
precons := precons∪{p}

else if ∀e ∈ baseline.eff ,weighte(precons∪{¬p}) > 0 then
if negweight > posweight then

precons := precons∪{¬p}
else

return false
return true

procedure BacktrackPrecons(baseline,next, precons)
backtracks := ∅
for all p ∈ precons\{baseline.pre} do

alternative := precons\{p}
if AcceptPrecons(baseline,next,alternative) then

backtracks := backtracks∪{p}
precons := precons\backtracks

function AcceptPrecons(baseline,next, precons)
for all e ∈ baseline.eff ∪next.eff do

if weighte(precons)≤ 0 then
return false

else if coverse(precons) = 0 then
return false

else if Fprecons,e < 0.95×Fbaseline.pre,e then
return false

return true

Figure 6.5: Supporting functions used in the rule combination algorithm (preconditions).

120 Chapter 6. Extracting rules

ditions if they are no worse than the existing preconditions, when used to predict any

of the effects in the candidate rule. It makes use of both the weight calculation and

the training examples. Both coverage and weight should be considered, as weight

alone may permit rules for which there is no evidence in the training data (a positively

weighted rule can potentially cover no training examples), while coverage alone may

allow negatively weighted rules.

Firstly, a combination of two rules can be rejected if, for any of the resulting ef-

fects e, the resulting precondition p does not have a positive weight: weighte(p) ≤ 0.

Similarly, a rule combination can be rejected if, for any effect, it does not cover any

training example, as then there is no evidence in the training data to support the rule:

coverse(p) = 0. Here the definition of coverage is relaxed to account for incomplete

rules and examples. A rule r consists of an action a, preconditions r.pre and effects

r.eff , while a training example x consists of an action a, a prior state x.state and changes

x.changes. Rule r covers example x at effect e (coverse(r,x)) if none of the fluents in

the example state contradict the fluents in the rule preconditions, and e is in both the

example state changes and the rule effects. Formally,

coverse(r,x) ⇐⇒ compatible(r.pre,x.state)∧ e ∈ r.eff ∪ x.changes,

where compatible(A,B) ⇐⇒ (f ∈ A⇒¬ f /∈ B).

Now the coverage of rule r on the training set is defined to be:

coverse(r) = |{x : coverse(r,x)}|.

Secondly, the precondition scoring function uses differences in precision and recall

to identify and reject any rule which performs significantly worse than its comparison

rule. It rejects rules where either the precision or recall drops substantially for any of

the elements in the rules’ effect vectors. Since precision and recall is a trade-off, the

comparison is made using the F-score for precondition pre at effect eff : Fpre,eff . If the

new F-score Fnew,eff is less than εp times the baseline F-score Fbaseline,eff , on any effect

eff , then the new rule is rejected. In the results presented here, εp is set to 0.95.

The effects scoring function (AcceptEffect) is similar to the preconditions scoring

function, in that it compares F-scores. Instead of comparing the F-scores of two differ-

ent rules on each effect, it takes a single rule and compares the F-score of one selected

effect against the F-score for every other effect. This identifies effects which are in-

consistent with the other effects in terms of precision and recall. In particular, effects

which occur in far fewer examples than other effects are identified in this way: these

6.3. Combining rules across output elements 121

function CompatibleEffects(baseline,(pre,e))
if e⊆ baseline.eff then

if (e ∈ baseline.pre∧¬e ∈ pre)∨ (¬e ∈ baseline.pre∧ e ∈ pre) then
return false

return true

procedure BacktrackEffects(baseline)
backtracks := ∅
for all e ∈ baseline.eff do

if ¬AcceptEffect(baseline,e) then
backtracks := backtracks∪{e}

baseline.eff := baseline.eff \backtracks

function AcceptEffect(baseline, testeff)
for all e ∈ baseline.eff do

if Fbaseline.pre,testeff < 0.5×Fbaseline.pre,e then
return false

return true

Figure 6.6: Supporting functions used in the rule combination algorithm (effects).

are likely to be caused by noise, or could be conditional effects. An effect is rejected

by the function if its F-score is less than εe times the F-score on any other effect of the

same rule. In the results presented here, εe is set to 0.5.

Finally, the effects backtracking function (BacktrackEffects) tests if any of the ef-

fects should be removed from the rule, in light of the new preconditions. Each effect is

tested by the effects scoring function and, if rejected, removed from the rule’s effects.

6.3.1.5 Computational complexity

The computational complexity of rule extraction depends on the number of initial rules,

and the number of preconditions and effects in the baseline and candidate rules, as

well as on the complexity of the weight and coverage calculations. As mentioned in

section 6.2.1.1, the number of initial rules for a single effect is bounded by the number

of support vectors, which is polynomial in the number of training examples t. The

number of preconditions and effects is bounded by the length of the state vector n

(and in practice is substantially lower). The weight calculation, when using the k-

DNF kernel, is as previously noted, O(nk) for each effect, while the covers calculation

operates on each training example, and compares every element in the rule vector to

122 Chapter 6. Extracting rules

Function Complexity
CombinePrecons O(#precons).O(#effects).O(weight) = O(n3k)
AcceptPrecons O(#effects).(O(weight)+O(covers)) = O(n2(t + k))
BacktrackPrecons O(#precons).O(AcceptPrecons) = O(n3(t + k))
CompatibleEffects O(#effects) = O(n)
AcceptEffect O(#effects).O(covers) = O(n2t)
BacktrackEffects O(#effects).O(AcceptEffect) = O(n3t)

Table 6.2: Complexity of each of the supporting functions, where the length of the state
vector is n, the number of training examples is t, and the perceptron model uses the
k-DNF kernel. O(weight) and O(covers) denote the computational complexity of the
weight and covers calculations.

every element in the training example’s state vector, and so takes time O(nt). The

time complexities of the various supporting functions are summarised in Table 6.2.

BacktrackPrecons dominates, and is polynomial in n, t and k. Since the outer loop

runs for each rule, and the number of rules is polynomial in the number of training

examples and the number of effects, the full rule extraction process is also polynomial

in n, t and k.

6.3.1.6 Converting to PDDL

At this point in the process, the preconditions and effects are still written as vectors

rather than as readable rules, e.g., in PDDL format. The conversion from a vector

precondition to a PDDL precondition is straightforward: given the action and its pa-

rameters, the fluent and parameters corresponding to a particular position in the vector

are known, and the value at that position gives the value of the fluent. In the case of

the effects, the values only indicate whether a particular fluent changes, but not what

the change is from or to. If the fluent also exists in the preconditions then this can be

used to determine the correct value of the fluent in the effects; otherwise, the value can

be obtained from the support vector from which the rule for the element of the effect

vector originated.

The scenario of an effect occurring without a corresponding precondition is rela-

tively rare, typically occurring when the domain is fully observable and noiseless. In

these cases, the rule extraction process is often able to discard fluents from the precon-

dition, if they are implied by other fluents in the precondition. It is for this reason that

taking precondition values from an originating support vector is successful, since the

support vector will have a fully specified, correct, state description. The information

the support vector provides is effectively a proxy for background information about the

6.3. Combining rules across output elements 123

Actions/Fluents Precondition Changes Action/Preconditions Effects
vector vector

pickup(?x1)
putdown(?x1)
stack(?x1 ?x2) 1 stack(?x1 ?x2)
unstack(?x1 ?x2)
(arm-empty) -1 1 (not(arm-empty)) (arm-empty)
(holding ?x1) 1 1 (holding ?x1) (not(holding ?x1))
(on-table ?x1)
(clear ?x1) 1 (not(clear ?x1))[SV] (clear ?x1)[SV]

(on ?x1 ?x2) 1 [unknown]

(on ?x1 ?x3)
...
(holding ?x2)
(on-table ?x2)
(clear ?x2) 1 1 (clear ?x2) (not(clear ?x2))
(on ?x2 ?x2)
(on ?x2 ?x3)
...

Figure 6.7: Conversion of precondition and changes vectors to PDDL format for a hy-
pothetical BlocksWorld stack example. The Actions/Fluents column shows the actions
and fluents corresponding to each position in the precondition and changes vectors.
Entries in the vectors with value 0 are omitted for clarity. Entries in the preconditions
vector can be mapped directly to fluents, since −1 indicates a negated fluent, and 1
a positive fluent. Entries in the changes vector indicate only that the fluent changed,
but not what its new value is, and so can only be directly mapped if the value is also
given in the preconditions vector. Otherwise it may be possible to identify the value from
an originating support vector, which may also lead to an additional precondition, as in
the case of (clear ?x1). It may not always be possible to identify the effect value, in
which case the effect is not added to the PDDL description (see (on ?x1 ?x2)).

domain; equally then, if background information were available it could also be used

to fill in the missing data. For similar reasons, once any effects have been added, the

preconditions can be augmented with negations of any fluents occurring in the effects

list.

An example of the PDDL conversion is shown in Figure 6.7. Suppose the rule com-

bination algorithm produces a rule, consisting of the precondition vector and changes

vector shown in Figure 6.7. The PDDL preconditions can be read directly from the

preconditions vector:

((not arm-empty) (holding ?x1) (clear ?x2)).

Any effect with a corresponding entry in the preconditions has a value which is simply

the negation of the value in the preconditions, giving an initial effects vector:

(arm-empty (not (holding ?x1)) (clear ?x2)).

The values of the remaining effects cannot be derived from the preconditions. In-

124 Chapter 6. Extracting rules

stead, we look to an example which the rule was derived from, a support vector which

seeded the original search for rules. As a highly-weighted example is likely to be

more reliable, the highest weighted of these support vectors is selected to provide

the effect values. Supposing this highest weighted support vector in our example is

((not (arm-empty)) (not (clear ?x1)) (holding ?x1)), the additional effect

(clear ?x1) can be added to the effects. The final effect relating to the value of (ON

?x1 ?x2) is lost, however, as there is no information about which value it should take.

6.4 Experiments

Rule extraction was performed on the 3-DNF kernel perceptron models learnt in Chap-

ter 4. In all experiments, the rules are assumed to have purely conjunctive precondi-

tions. The quality of the extracted rules is evaluated, firstly, as in previous experiments,

by considering the F-score of the rule predictions on test sets of 2000 examples, and

secondly, by directly comparing the extracted rules with the true domain rules, using a

measure of error rate (Zhuo et al., 2010).

The error rate for a single action is defined as follows. The number of errors on

the preconditions of the action Epre is the sum of the number of extra preconditions

and the number of missing preconditions. The number of errors on the effects Eeff is

defined similarly. In practice Epre is obtained by comparing the rule preconditions to

a minimal set of true preconditions (to determine whether any necessary fluents are

missing) and also to a maximal set of true preconditions (to determine any extra flu-

ents). The maximal set includes any fluent implied by the minimal true preconditions.

Eeff is obtained likewise. The total number of possible fluents (in the preconditions

or effects), T , is just the number of possible grounded fluents in the domain, whose

arguments are any of the action parameters, and nothing else. Then the error rate of a

single action a is defined to be:

Error(a) =
1
2

(
Epre +Eeff

T

)
and the error rate of a domain model with a set of actions A is defined to be:

Error(A) =
1
|A| ∑a∈A

Error(a).

While the F-score of the rule predictions on the test set gives an indication of how the

rules may perform in practice, the error rate gives an absolute measure of the difference

between the generated and actual rules.

6.4. Experiments 125

6.4.1 Results

In general, the F-scores for predictions made by the rules closely parallel the F-scores

of the perceptron models for both partially observable, noiseless domains (see Figure

4.7) and partially observable, noisy domains (see Figures 4.8 and 4.9). In fact, there is

no statistically significant difference between the predictions made by the perceptron

models and those made by the extracted rules.4

The error rates similarly indicate that the learnt models are close to the actual

STRIPS domain definitions, falling below 0.1 after around 10,000 examples in all

cases. In particular, the correct STRIPS model is produced by rules in less than 2,000

training examples when the domains are fully observable and noiseless.

There are two key aspects in which the results differ from the raw perceptron mod-

els. Firstly, in the Rover domain, the rule predictions are worse than the perceptron

predictions. This result is expected, given that some actions in the Rover domain

were identified as requiring conditional rules in a representation which codes effects

as changes rather than absolute values (Section 3.3). Since the rules used here are

not conditional, they are not expressive enough to fully represent the Rover domain.

For example, in each of the ten training cases, after 20,000 examples the take image

action is learnt in a fully observable, noiseless world as either:

(:action take_image
:parameters (?x1 ?x2 ?x3 ?x4 ?x5)
:precondition (and (at ?x1 ?x2) (visible_from ?x3 ?x2) (calibrated ?x4 ?x1)

(supports ?x4 ?x5) (on_board ?x4 ?x1))
:effect (not (calibrated ?x4 ?x1)))

(7 cases, where 3 have slightly more specific preconditions than the true rule), or

(:action take_image
:parameters (?x1 ?x2 ?x3 ?x4 ?x5)
:precondition (and (at ?x1 ?x2) (visible_from ?x3 ?x2) (calibrated ?x4 ?x1)

(supports ?x4 ?x5) (on_board ?x4 ?x1)
(not(have_image ?x1 ?x3 ?x5)))

:effect (and (have_image ?x1 ?x3 ?x5) (not (calibrated ?x4 ?x1))))

(3 cases, where 2 have slightly more specific preconditions than the true rule). Around

70% of the errors on the test domains after training on 20,000 examples are due to

the TAKE IMAGE action, indicating that the lack of support for conditional effects is

affecting the performance of the rules.

4Repeated measures ANOVA, p > 0.05.

126 Chapter 6. Extracting rules

Secondly, across all the domains, rules learnt at the 5% noise level under full ob-

servability produce worse predictions than rules learnt with the same level of noise

where observations were incomplete. This result is slightly counter-intuitive, since

rules learnt from complete observations are usually better than those learnt from in-

complete observations, and rules learnt in noiseless environments are usually better

than those learnt in noisy environments. It might be expected that the effect of com-

bining noise and incomplete observations would be to worsen the predictions further

(which is the case for the raw perceptron models).

The discrepancy relates to how rules are combined from the individual voted per-

ceptrons. Each voted perceptron learns a precondition for the change of a single effect.

Without noise or partial observability, each voted perceptron for the same action will

learn the same preconditions. With noise or partial observability, different precon-

ditions may be learnt. For example, consider the precondition of the BlocksWorld

(pickup ?x1) action, where arm-empty, (clear ?x1) and (on-table ?x1) are

the discriminative features, while arm-empty, (clear ?x1), (on-table ?x1) and

(holding ?x1) are the features which change. Suppose the highest weighted rules

produced by the voted perceptrons are:

arm-empty ∧ (clear ?x1) predicts change to arm-empty, and,

arm-empty ∧ (on-table ?x1) predicts change to (on-table ?x1).

During rule combination, the first of these could be taken as an initial estimate of

the pickup rule. It will produce many errors on the training set, in the form of false

positives, as it ignores the values of (on-table ?x1) when making predictions. If

rule combination now attempts to refine the rule, it will consider the precondition

arm-empty ∧ (clear ?x1) ∧ (on-table ?x1) and the changes arm-empty and

(on-table ?x1). Without noise, the new rule will have fewer false positives and

no additional false negatives in the predictions, so its F-score will be higher than the

F-score of the original rule, and the new rule will be accepted. If the training set

is noisy, however, some positive examples correctly predicted by

arm-empty ∧ (clear ?x1) will be false negatives for the refined rule, as they will

not match the rule on (on-table ?x1). Conversely, some of the previous false posi-

tives will now be true negatives. The number of new false negatives will be the num-

ber of training examples where the initial state was arm-empty ∧ (clear ?x1) ∧
not(on-table ?x1), and arm-empty changed, while the number of new true neg-

atives will be the number of training examples where the initial state was the same

but arm-empty did not change. It is possible that the increase in true positives is out-

6.4. Experiments 127

stripped by the increase in false negatives, and then the F-score for the refined rule is

lowered and it may not be accepted. The longer the true rule, the worse this effect is.

If the training set is also partially observable, to a greater extent than it is noisy, then

it is more likely that the entries at (on-table ?x1) will be unobserved than noisy.

Then many of the previous false negatives will be true positives, as an unobserved

value is assumed always to match a rule. The F-score for the refined rule is therefore

higher than in the noisy, but fully observable case, and so the rule is more likely to be

accepted.

128 Chapter 6. Extracting rules

0 5000 10000 15000 20000
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Number of training examples

F-
sc

or
e

Fully observable
50% obs
25% obs
10% obs

(a) BlocksWorld

0 5000 10000 15000 20000
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Number of training examples

F-
sc

or
e

Fully observable
50% obs
25% obs
10% obs

(b) ZenoTravel

0 5000 10000 15000 20000
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Number of training examples

F-
sc

or
e

Fully observable
50% obs
25% obs
10% obs

(c) Depots

0 5000 10000 15000 20000
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Number of training examples

F-
sc

or
e

Fully observable
50% obs
25% obs
10% obs

(d) DriverLog

0 5000 10000 15000 20000
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Number of training examples

F-
sc

or
e

Fully observable
50% obs
25% obs
10% obs

(e) Rover

Figure 6.8: Results from learning rules in partially observable, noiseless, simulated

planning domains, using a voted perceptron with the 3-DNF kernel. Classifiers were

trained on varying numbers of examples, and rules were extracted and then tested

on 2,000 fully observed, noiseless examples from worlds in the same domain as the

training examples, but with more objects.

6.4. Experiments 129

0 5000 10000 15000 20000
0

0.1

0.2

0.3

0.4

Number of training examples

E
rr

or
ra

te

Fully observable
50% obs
25% obs
10% obs

(a) BlocksWorld

0 5000 10000 15000 20000
0

0.1

0.2

0.3

0.4

Number of training examples

E
rr

or
ra

te

Fully observable
50% obs
25% obs
10% obs

(b) ZenoTravel

0 5000 10000 15000 20000
0

0.1

0.2

0.3

0.4

Number of training examples

E
rr

or
ra

te

Fully observable
50% obs
25% obs
10% obs

(c) Depots

0 5000 10000 15000 20000
0

0.1

0.2

0.3

0.4

Number of training examples

E
rr

or
ra

te

Fully observable
50% obs
25% obs
10% obs

(d) Driverlog

0 5000 10000 15000 20000
0

0.1

0.2

0.3

0.4

Number of training examples

E
rr

or
ra

te

Fully observable
50% obs
25% obs
10% obs

(e) Rover

Figure 6.9: Error rates for different levels of observability in the domain.

130 Chapter 6. Extracting rules

0 5000 10000 15000 20000
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Number of training examples

F-
sc

or
e

1% noise - fully obs
1% noise - 50% obs
1% noise - 25% obs
1% noise - 10% obs

(a) Blocksworld (1% noise)

0 5000 10000 15000 20000
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Number of training examples

F-
sc

or
e

5% noise - fully obs
5% noise - 50% obs
5% noise - 25% obs
5% noise - 10% obs

(b) Blocksworld (5% noise)

0 5000 10000 15000 20000
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Number of training examples

F-
sc

or
e

1% noise - fully obs
1% noise - 50% obs
1% noise - 25% obs
1% noise - 10% obs

(c) ZenoTravel (1% noise)

0 5000 10000 15000 20000
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Number of training examples

F-
sc

or
e

5% noise - fully obs
5% noise - 50% obs
5% noise - 25% obs
5% noise - 10% obs

(d) ZenoTravel (5% noise)

0 5000 10000 15000 20000
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Number of training examples

F-
sc

or
e

1% noise - fully obs
1% noise - 50% obs
1% noise - 25% obs
1% noise - 10% obs

(e) Depots (1% noise)

0 5000 10000 15000 20000
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Number of training examples

F-
sc

or
e

5% noise - fully obs
5% noise - 50% obs
5% noise - 25% obs
5% noise - 10% obs

(f) Depots (5% noise)

Figure 6.10: Results from learning rules in simulated planning domains with varying

levels of noise (1%, 5%) and observability (100%, 50%, 25%, 10%), using a voted

perceptron with the 3-DNF kernel, and assuming pure conjunctive rules.

6.4. Experiments 131

0 5000 10000 15000 20000
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Number of training examples

F-
sc

or
e

1% noise - fully obs
1% noise - 50% obs
1% noise - 25% obs
1% noise - 10% obs

(a) Driverlog (1% noise)

0 5000 10000 15000 20000
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Number of training examples

F-
sc

or
e

5% noise - fully obs
5% noise - 50% obs
5% noise - 25% obs
5% noise - 10% obs

(b) Driverlog (5% noise)

0 5000 10000 15000 20000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Number of training examples

F-
sc

or
e

1% noise - fully obs
1% noise - 50% obs
1% noise - 25% obs
1% noise - 10% obs

(c) Rover (1% noise)

0 5000 10000 15000 20000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Number of training examples

F-
sc

or
e

5% noise - fully obs
5% noise - 50% obs
5% noise - 25% obs
5% noise - 10% obs

(d) Rover (5% noise)

Figure 6.11: Results from learning rules in simulated planning domains with varying

levels of noise (1%, 5%) and observability (100%, 50%, 25%, 10%), using a voted

perceptron with the 3-DNF kernel, and assuming pure conjunctive rules.

132 Chapter 6. Extracting rules

0 5000 10000 15000 20000
0

0.1

0.2

0.3

0.4

Number of training examples

E
rr

or
ra

te

1% noise - fully obs
1% noise - 50% obs
1% noise - 25% obs
1% noise - 10% obs

(a) Blocksworld (1% noise)

0 5000 10000 15000 20000
0

0.1

0.2

0.3

0.4

Number of training examples

E
rr

or
ra

te

5% noise - fully obs
5% noise - 50% obs
5% noise - 25% obs
5% noise - 10% obs

(b) Blocksworld (5% noise)

0 5000 10000 15000 20000
0

0.1

0.2

0.3

0.4

Number of training examples

E
rr

or
ra

te

1% noise - fully obs
1% noise - 50% obs
1% noise - 25% obs
1% noise - 10% obs

(c) ZenoTravel (1% noise)

0 5000 10000 15000 20000
0

0.1

0.2

0.3

0.4

Number of training examples

E
rr

or
ra

te

5% noise - fully obs
5% noise - 50% obs
5% noise - 25% obs
5% noise - 10% obs

(d) ZenoTravel (5% noise)

0 5000 10000 15000 20000
0

0.1

0.2

0.3

0.4

Number of training examples

E
rr

or
ra

te

1% noise - fully obs
1% noise - 50% obs
1% noise - 25% obs
1% noise - 10% obs

(e) Depots (1% noise)

0 5000 10000 15000 20000
0

0.1

0.2

0.3

0.4

Number of training examples

E
rr

or
ra

te

5% noise - fully obs
5% noise - 50% obs
5% noise - 25% obs
5% noise - 10% obs

(f) Depots (5% noise)

Figure 6.12: Results from learning rules in simulated planning domains with varying

levels of noise (1%, 5%) and observability (100%, 50%, 25%, 10%), using a voted

perceptron with the 3-DNF kernel, and assuming pure conjunctive rules.

6.5. Discussion 133

0 5000 10000 15000 20000
0

0.1

0.2

0.3

0.4

Number of training examples

E
rr

or
ra

te

1% noise - fully obs
1% noise - 50% obs
1% noise - 25% obs
1% noise - 10% obs

(a) Driverlog (1% noise)

0 5000 10000 15000 20000
0

0.1

0.2

0.3

0.4

Number of training examples

E
rr

or
ra

te

5% noise - fully obs
5% noise - 50% obs
5% noise - 25% obs
5% noise - 10% obs

(b) Driverlog (5% noise)

0 5000 10000 15000 20000
0

0.1

0.2

Number of training examples

E
rr

or
ra

te

1% noise - fully obs
1% noise - 50% obs
1% noise - 25% obs
1% noise - 10% obs

(c) Rover (1% noise)

0 5000 10000 15000 20000
0

0.1

0.2

Number of training examples

E
rr

or
ra

te

5% noise - fully obs
5% noise - 50% obs
5% noise - 25% obs
5% noise - 10% obs

(d) Rover (5% noise)

Figure 6.13: Results from learning rules in simulated planning domains with varying

levels of noise (1%, 5%) and observability (100%, 50%, 25%, 10%), using a voted

perceptron with the 3-DNF kernel, and assuming pure conjunctive rules.

6.5 Discussion

The experiments demonstrate that the extracted rules perform as well as the raw per-

ceptron models across a variety of different levels of noise and partial observability.

The rules can therefore be substituted for the perceptron models without loss of per-

formance, and will make faster predictions, since usually determining whether a rule

covers an example will be faster than carrying out the full voted perceptron calculation.

The actual rules are often approximate, in that they may have missing or additional

preconditions or effects. In terms of the impact such inaccuracies might have, the F-

scores show that for randomly generated examples, those for which the rules predict

134 Chapter 6. Extracting rules

wrongly, occur rarely. Similarly, the error rates indicate that the errors are often caused

by a single erroneous fluent in the full domain description.

Even with these inaccuracies, the domain models are useful. For instance, it has

been shown that humans find it much easier to modify approximate rules to the correct

domain model, than to generate the model from scratch (Zhuo et al., 2010). A set of

rules describing domain dynamics in PDDL form can be processed by most planners,

paving the way for combined autonomous learning and planning in noisy and incom-

plete domains, providing the planner itself can operate in such domains, and can handle

approximate models. A planner using rules acquired in a noisy or partially observable

domain is likely itself to be working with noisy or incomplete examples. In these situ-

ations the outcomes of actions even with the true domain model may be unpredictable,

so it seems reasonable to expect that the planner also can work with approximate ex-

amples. Some planners with these capabilities exist: for instance, the PKS planner can

handle incomplete knowledge (Petrick and Bacchus, 2002) while model-lite planning

(Yoon and Kambhampati, 2007) works with non-deterministic domains and approxi-

mate models. Planning with the approximate models generated by the rule extraction

process will probably work best where the learner and planner are working in tandem,

as in model-lite planning, so that errors discovered in the course of planning can be

used to update the model and the corresponding rules. Further work is required to

determine how inaccuracies in the domain model will affect downstream users of the

rules.

By compressing the information in the perceptron models, the rules enable efficient

storage of what has been learnt, supporting communication of domain information be-

tween agents, and potentially between different functions of the same agent. This

observation has further implications. An important area for future work is to consider

how rules might be converted back into the weighted lattice. While rules provide com-

pact storage, and enable communication of the learnt models, it should be possible to

modify them at a later stage. For instance, a partial rule communicated from another

agent will only aid learning if it can be combined with the experiential learning pro-

cess. Similarly, previous experience in an environment, resulting in incomplete rules

describing the world model, is more useful if the learning process can take advantage

of the rules already learnt.

6.5. Discussion 135

6.5.1 Relation to other work

In terms of rule extraction from voted perceptrons, or related classifiers such as SVMs

and neural nets, the work presented in this chapter is closest to Zhang et al. (2004,

2005a). They also aim to extract classification rules from an SVM trained with the

DNF kernel and some variants. Likewise, the approach makes use of the support vec-

tors and the weight function to identify useful rules. However, positive and negative

classification rules are extracted separately by decomposing the weight function into a

positive weight function (the part of the sum generated by the positive support vectors)

and a negative weight function (the part of the sum generated by the negative support

vectors). For the positive weight function, it initially constructs a set R1 of all conjunc-

tions of length 1 whose weights are greater than some user-defined threshold. It then

incrementally constructs Rn+1 from Rn and R1 so that r ∈Rn+1 if r is the conjunction of

r′ ∈ Rn and r′′ ∈ R1 such that the weight of r is greater than the threshold. The final set

of rules produced by the method is the union of the Ri. The same process is repeated

for the negative weight function.

The approach has several issues affecting its suitability for constructing rules from

planning domains. Firstly, it will tend to generate many rules, since in order to extract a

rule of length n, it must extract all of its 2n−1 subconjunctions. Secondly, it is likely to

generate contradictory rules, since the positive rules are generated without considering

the negative weights and vice versa. Lastly, the weight value calculated for a conjunc-

tion is individual, that is, it does not include the weights of its subconjunctions. This is

a critical issue, because, especially under partial observability, individual weights tend

to be higher on shorter subconjunctions and lower on longer subconjunctions of a rule.

As a result, the true rule conjunctions are likely to be rejected because their weights

are too low.

The rule extraction process also has strong parallels to the SVM-RFE algorithm.

Both operate using backward elimination, and determine which feature to remove next

by ranking features according to the sensitivity of the weight function to each fea-

ture. Crucially, however, while SVM-RFE works with a set of features, rule extraction

works with a set of features and their corresponding values, namely an example in the

form of a positive support vector. Thus rule extraction seeks features which are im-

portant in determining the class of a specific example, while SVM-RFE seeks features

which are important in determining the class of any example. The distinction is more

important when there are disjunctive rules, since SVM-RFE will locate features which

136 Chapter 6. Extracting rules

are discriminative in any rule, while rule extraction will locate features discriminative

in the context of a particular example. Therefore rule extraction generates sets of fea-

tures corresponding to different disjunctions of a rule, while SVM-RFE only generates

a single set of features.

The error rates calculated for the extracted rules permit a subjective comparison

with the ARMS algorithm of Yang et al. (2007), as they also calculate error rates for

their experiments. The ARMS algorithm learns STRIPS models, but only uses positive

examples in the context of successful plans, and only observes positive fluents. The

model of partial observability is similar to the one used here, as after each action a

small number of fluents are observed. For partial observability at level p%, the number

of observed fluents is p% of the estimated number of fluents in the full state, where the

estimate is the size of the set of all fluents ever seen in the preconditions, add and delete

lists of the full plan. ARMS was tested on the Depots, Driverlog, ZenoTravel, Rovers

and Satellite domains. Notably, the error rates for ARMS are much higher than for

rules extracted from the voted perceptron models, suggesting that if there is a choice

between learning from known plans with ARMS and learning from random exploration

with voted perceptrons, the latter option may be preferable. Rovers proves particularly

difficult, never achieving an error rate below 0.6 for partial observability between 10%

and 90%, with approximately 3700 training examples. The Depots, DriverLog and

ZenoTravel domains fare better, but still have error rates at higher levels than the rules

extracted from voted perceptrons. With around 1600, 4000 and 4000 training examples

respectively, error rates are above 0.2 at 10% observability, and remain above 0 at 90%

observability.

6.5.2 Building disjunctive preconditions and conditional effects

The rule combination process laid out in this chapter is limited to pure conjunctive

preconditions. While such preconditions are adequate for STRIPS rules, the percep-

trons are able to learn more expressive disjunctive rules and conditional effects which

a more sophisticated rule combination process could exploit. This would allow rules

for more complex domains to be generated.

Additionally, since disjunctive preconditions support the existence of multiple rules

for the same action label, the requirement that actions are distinguished by their labels

could be relaxed. So, for example, the rules will support action X with preconditions a,

b and c as well as action X with preconditions c and d, with the specific actions differ-

6.5. Discussion 137

entiated by their preconditions instead of their labels. Then the unrealistic assumption

that the action labels completely partition the action space can be dropped. In the limit,

actions could be represented as a set of component features, such as motor primitives,

enabling the learning process to leverage similarities between actions, in the same way

as it already leverages similarities between preconditions, in order to make predictions.

6.5.3 Deriving probabilistic effects

Modelling probabilistic effects requires the algorithm to consider multiple possible

effects of any action, however the perceptron model converges on the most prevalent

effect for each action, while less prevalent effects are essentially ignored (assumed to

be noise). Thus until now the learnt rules have been of the form:

a(x) : pre(x)→ eff (x),

where action a is applied to some set of terms x. If the preconditions pre(x) hold then

the action results in changes described by eff (x).

If in reality the domain is stochastic, it would be desirable to also identify alter-

native, less probable outcomes, namely to produce a set of noisy deictic rules (Pasula

et al., 2007) for each action a. Each rule is of the form:

a(x) : pre(x)→

p0 : eff 1(x)
...

pn−1 : eff n(x)

pn : noise outcome

where the action has n + 1 outcomes with corresponding probabilities such that

∑n
i=0 pi = 1. An important aspect of noisy deictic rules is the noise outcome, which

covers rare and noisy events which may be difficult or undesirable to model. Here it

is anticipated that noise outcomes may be populated by outcomes resulting from low

reliability classifiers.

A first step to generate a rule with probabilistic effects would be to first run the

existing learning and rule extraction processes. This will lead to a single explicit rule

for the action. It gives a precondition pre(x) and the most probable outcome eff 1(x),

as a conjunction of effects. The problem is then to identify lower probability outcomes

of the action in states which satisfy pre(x). Additionally, once a set of outcomes has

been identified, a probability must be assigned to each one.

138 Chapter 6. Extracting rules

In terms of identifying different possible outcomes, a simple approach would be

to use the first, most probable rule to eliminate matching training examples, followed

by retraining on the reduced training set, and extracting the next most probable rule,

constraining the preconditions to match pre(x). The process could be repeated until

no further outcomes are found. However, this approach is quite inefficient, since it

requires multiple training runs on the training data.

A more efficient approach would be to use the existing classifiers without retrain-

ing, as follows. Recall that each classifier is associated with a set of support vectors.

While the classifiers only generate one prediction (i.e. one most likely outcome), the

support vectors do contain data about less frequent outcomes. During learning by

the voted perceptron, the hypothesis is continually adjusted by support vectors which

either are or are not covered by the most probable rule. This rule prevails in rule

extraction simply because on average the adjustments keep the hypothesis near to it.

Removing the adjustments corresponding to the most probable rule from every classi-

fier, by removing the support vectors covered by the rule, allows the remaining support

vectors and weights to define a classifier for the next most probable rule.

Identifying support vectors covered by a rule is straightforward for complete, noise-

less training examples, but is more difficult with the introduction of partial observabil-

ity or noise, where a support vector may only partially match a rule, and may even

partially contradict it. However, the rule combination process provides an alternative

means of identifying support vectors to eliminate. Since at each iteration rule combi-

nation either incorporates a support vector into the current rule, or rejects the support

vector, the set of support vectors considered to be covered by a rule are just those

support vectors which were incorporated into the rule during rule combination.

It remains to assign specific probabilities to the set of possible outcomes of a rule.

Within the subset of training examples covered by the same precondition, if the out-

comes always cover disjoint training examples then the proportion of examples covered

by each outcome may be used as an estimate of the respective probabilities. Otherwise

Pasula et al. (2007) describe, in their LearnParameters algorithm, a gradient ascent

method which can be used if training examples are covered by multiple outcomes: it

calculates the probability distribution which maximises the log likelihood of the train-

ing examples covered by the rule. Additional measures would be needed to distinguish

between noise and low probability outcomes, which may be achieved through the reli-

ability score mechanism discussed in Section 5.1.3.

Noisy deictic rules can be used directly for planning. They have been used, for

6.5. Discussion 139

example, in an RMDP framework, where planning is performed by reasoning in a

grounded relational domain (Lang and Toussaint, 2010). Furthermore, Lang and Tou-

ssaint (2010) discuss how noisy deictic rules may be converted to probabilistic PDDL

rules, thus also enabling their use in other probabilistic planners such as RFF (Teichteil-

Königsbuch et al., 2010).

6.5.4 Extending to the graphical representation

The rule extraction process presented above is specific to the vector representation of

world states. Extending this approach to the graphical representation would enable

the model to learn more complex preconditions consisting of existential conjunctive or

k-DNF concepts. It is to be expected that moving to the graphical representation will

present tractability problems, since similarity comparisons in the graphical representa-

tion will require subgraph isomorphism calculations.

There are some positive results in PAC-learning existential conjunctive and k-DNF

concepts in structural domains with Boolean relations. Haussler (1989) gives a PAC

learning algorithm for existential conjunctive concepts, assuming a fixed bound on the

number of objects in a state, no noise, and the ability to make subset queries. A subset

query is when the PAC learner formulates a hypothesis about what the target concept

is and asks an oracle whether the hypothesis is contained in the target concept. In do-

mains where the preconditions are constrained to be conjunctions, the model learnt in

Chapters 4 and 5 can act as an oracle to answer subset queries (so Haussler’s algorithm

operates as a pedagogical rule extraction algorithm). Here the target concept is the

precondition learnt by the model, rather than the real world precondition. Haussler’s

algorithm can therefore be applied to generate the preconditions for each individual

effect. A post-processing step would then be needed to construct full PDDL rules from

the separate precondition-effect pairs for each action.

Additionally, existentially quantified k-DNF concepts are PAC-learnable, where

the number of variables in the expressions is bounded (Valiant, 1985), although the

complexity is exponential in k. While 3-DNF rules could be extracted for individual

effects, it would fall on the post-processing rule combination step to combine these

into fewer rules with more conjunctions. The existence of these positive PAC-learning

results suggests that it may be possible to tractably extract rules from models using the

graphical representation.

140 Chapter 6. Extracting rules

6.6 Summary

The rule extraction approach outlined in this chapter shows that it is possible to extract

STRIPS-like rules from voted perceptrons learning in noisy and partially observable

STRIPS domains. The method follows the principles of several existing methods for

extracting either rules or discriminative features from neural networks and SVMs, in

that it recursively identifies discriminative features in the support vectors, using the

weights assigned by each perceptron model. The derived per-effect rules are com-

bined using a heuristic, based on the F-score of candidate rules on the training data, to

determine which features should be combined to produce a final action rule.

The resulting rules are high quality, and close to the actual STRIPS rules for the

domains. The rules are therefore suitable for use by planners which use PDDL domain

descriptions, making it possible to combine the learning and planning processes. This

in turn would support autonomous exploration and learning of an environment, by

enabling a planner to direct exploration, rather than the random exploration currently

employed by the learner.

There are several potential directions for further development of the rule extrac-

tion mechanism. The approach has the potential to produce more expressive rules,

by extending it to extract disjunctive rules and conditional effects, and also rules with

probabilistic effects. Furthermore, the process could be reversed: rules learnt from

previous experience, or acquired from other agents, could be integrated with the learn-

ing process, either directly into the perceptron learning model, via the lattice weights,

or incorporated into the rule combination step. The ability to use rules acquired from

other sources is critical for an autonomous agent to participate in collaborative learn-

ing. The same mechanism may also be useful for transfer learning.

Chapter 7

Conclusions and Future Work

This thesis considers how an autonomous agent can learn grounded action representa-

tions in real world domains. The approach taken here depends on a central claim that

noisy, incomplete observations can be handled by using a two-stage learning process,

where first an implicit model is learnt and then explicit rules are extracted from the

model. This claim is supported by the work presented in Chapters 4, 5 and 6. Chapters

4 and 5 showed how implicit action models of STRIPS and extended STRIPS domains

could be learnt from noisy, incomplete observations, while Chapter 6 showed how

explicit rules could be extracted from the learnt models.

A subsidiary claim is that action models can be learnt using standard classifiers, by

encoding states in a representation based on deictic reference. In the classical STRIPS

case in Chapter 4 this leads to an attribute-value representation of the problem and

action model learning via voted kernel perceptrons using the k-DNF kernel. In the

extended STRIPS case in Chapter 5 this leads to a graphical representation and a novel

graph kernel based on deictic references, which together support action model learn-

ing, again via voted kernel perceptrons. The resulting algorithms can learn in classical

STRIPS domains and extended STRIPS domains which include negative precondi-

tions, conditional effects and universally quantified effects.

7.1 Contributions

The main contributions of this thesis are:

A new approach to learning action models: The two-stage approach to learning ac-

tion models provides a means to handle noisy, incomplete observations while

also generating comprehensible rules describing the learnt action model. The

141

142 Chapter 7. Conclusions and Future Work

split learning means that a fast, incremental learning algorithm can initially be

used to learn an implicit action model, while enabling a slower, possibly batch al-

gorithm to learn explicit rules. Furthermore, the work of inducing rules is much

simpler because the rules are not learnt directly from noisy, incomplete obser-

vations, but from observations which are generated by an implicit learnt model,

and which are not subject to noise or partial observability. As an incremental

learning approach which can operate in noisy, partially observable domains, this

represents a practical algorithm for autonomous agents learning the dynamics of

their world.

A novel graph kernel: The k-sitgraph kernel defined in Chapter 5 is a generalisation

of the k-DNF kernel, based on deictic references. The generalisation allows

the kernel to operate on graphical representations of states. The experiments

in Chapter 5 demonstrate that this kernel supports learning of accurate action

models. In terms of computational efficiency, the kernel is competitive with

state-of-the-art graph kernels when applied to situation graphs.

A novel rule extraction method: The rule extraction algorithm presented in Chapter

6 differs from other rule extraction methods in that it uses the voted perceptron

support vectors to seed the search through the hypothesis space of possible pre-

conditions. At the individual classifier level, the principle of this approach may

be applicable to kernels other than the k-DNF kernel. Once individual rules are

extracted from each classifier, the algorithm uses them to seed a further search

through the hypothesis space, to produce a final rule. When tested on STRIPS

domains, the algorithm produces rules appropriate for use in a standard planner.

Although only tested on voted perceptron models learnt using the k-DNF kernel,

there is scope to generalise the algorithm for use on voted perceptron models

learnt using situation graphs.

Evaluation against IPC planning domains: Both the learning algorithms and rule

extraction method were evaluated against a set of benchmark planning domains

taken from the International Planning Competition.

7.2 Future work

Some of the potential future directions have been discussed in earlier chapters, but

these have related directly to the aspects of the learning algorithm discussed in the

7.2. Future work 143

individual chapters, rather than across the learning as a whole. In this section I briefly

recap the earlier discussions, before considering future work which impacts the whole

approach described in this thesis.

7.2.1 Extensions to the learning algorithm

In Chapter 4 I proposed that the initial STRIPS learning algorithm should be extended

to more complex domains, and that explicit rules should be extracted from the im-

plicit models. These proposals were implemented in Chapters 5 and 6. The main issue

remaining in Chapter 5 is the limitation of the representation to first-order deictic ref-

erences, which it was suggested could be overcome by introducing predicate invention

or allowing effects to recursively reference actions.

In the rule extraction process, disjunctive preconditions and conditional effects are

not extracted although they are available in the implicit models. This must be addressed

in order to apply the full learning approach to more realistic domains. Additionally,

in Chapter 6 I discuss the possibility of reversing the rule extraction process to allow

rules provided by external sources to be integrated into the learning process. Further

extensions discussed below apply to the learning algorithm as a whole.

7.2.1.1 Directed Exploration

In this thesis I have used a basic random exploration strategy, where the next action

is chosen uniformly at random. In general this is inefficient and subject to the law of

diminishing returns. Furthermore, in some domains where “interesting” actions are

only present in a small part of the state space, random exploration may fail to generate

any useful examples at all. In the experiments, the effects of random exploration can

be seen in the plateauing of F-scores after several thousand training examples (e.g.

Section 4.4.1).

To overcome some of these limitations, one possibility is to adapt an approach

from the reinforcement learning community. The problem of choosing which ac-

tion to execute next is commonly found in reinforcement learning, where an agent

must choose between selecting an action which will maximise its reward based on

its current knowledge (exploiting), versus selecting an action which will increase the

agent’s knowledge of the world and potentially increase future rewards (exploration):

the exploration-exploitation tradeoff. Recent work has begun to extend solutions to the

exploration-exploitation problem in MDPs and POMDPs to the relational case.

144 Chapter 7. Conclusions and Future Work

In MDPs, the E3 (Kearns and Singh, 1998, 2002) and R-MAX (Brafman and Ten-

nenholtz, 2002) algorithms give near-optimal solutions to the exploitation-exploration

problem. E3 tracks known states, defined to be states which have been visited more

often than some threshold. Whenever the system is in an unknown state, E3 executes

balanced wandering, where it takes the action which has been taken least from the

current state. In known states, E3 will exploit, if it can find a policy which stays

within the known states with high probability, or alternatively, plan an exploration in

an alternative MDP where unknown states have high values, thus pushing exploration

into unknown states. R-MAX takes a similar approach, tracking known and unknown

states, and assigning the highest reward (Rmax) to unknown states. Unlike E3, it does

not make an explicit choice between exploration and exploitation.

These algorithms have also been extended to handle factored MDPs (Guestrin et al.,

2002; Kearns and Koller, 1999), while recent work has produced solutions for the

POMDP case (Doshi-Velez et al., 2012; Cai et al., 2009). However, these represen-

tations are non-relational, and as before (Section 2.4), are not appropriate for the re-

lational case because of the lack of generalisation across objects, and because of the

difficulties of working in the large state spaces characteristic of relational worlds.

As noted by Walsh (2010) and Lang et al. (2010), there has been very little research

on the exploration-exploitation problem in the context of relational domains. Such

research has focussed on the fully observable case. The REX algorithm (Lang et al.,

2010) is based on E3, with modifications to handle relational worlds. Whereas a state

was considered known in E3 if it had had a certain number of visits, in REX a density

function is estimated from previously seen states and a state is considered known if the

function assigns it a probability above some threshold. Similarly, the choice of action

to perform during balanced wandering is based not on the number of executions, but on

a confidence measure derived from the number of experiences covered by the (current)

abstract rule for the action. In contrast to the heuristic approach of REX, Walsh (2010)

derives sample complexity bounds on techniques based on extensions to the R-MAX

algorithm. Both approaches handle stochastic actions but assume a fully observable

world.

Finally, Rodrigues et al. (2011) carry out ε-active exploration. For a proportion

ε of the trials, a random action is chosen. For the remainder, they perform active

exploration where an action is selected which the agent believes will lead to a change

in the current action model, by increasing the set of counter-examples used to generate

rules. The choice of action is relatively conservative: an action may be selected if all

7.2. Future work 145

of its effects are false in the current state, which intuitively may lead to a generalisation

of the original action rule. This approach additionally assumes deterministic actions

as well as a fully observable world.

The exploration-exploitation problem is thus an area of active research which has

only recently begun to be explored, and the available techniques are designed for world

observations which are complete. As a consequence, most work in relational action

models learns, as in this thesis, from traces of actions and observations obtained via

random walks through the state space. Recently, however, Lang et al. (2010); Lang

(2011) used the rule-learning algorithm described by Pasula et al. (2007) in tandem

with REX to learn action models on a variety of simulated and real-world robot tasks.

Learning was faster in comparison to ε-greedy exploration where the agent exploited

with probability ε(= 0.1) and randomly explored otherwise.

It would also be possible to integrate the rule-learning approach described in this

thesis with REX or ε-greedy exploration in a similar fashion. In fact, the incremental

nature of my approach makes it better suited to this type of exploration (the approach of

Pasula et al. (2007) is batch). An alternative direction, closer to the work of Rodrigues

et al. (2011), would be to work with the rule lattice of Chapter 6, which encodes in-

formation about visited states in the form of weights assigned by the support vectors

to individual elements of the lattice. Working from the position of an existing action

rule in the lattice, it may be possible to identify parts of the lattice with little evidence

for including or excluding them from coverage by the rule. From there, states which

would provide more evidence can be identified, thereby generating more useful support

vectors for the learning process.

7.2.1.2 Noise models

The blocking process model used to simulate noise and partial observability (Sec-

tion 3.5) is a relatively poor approximation of perceptual uncertainty, since it assumes

all fluents are equally likely to be affected by noise or to be obscured. This ignores

dependencies between fluents in terms of both correlations and world constraints. In

reality some fluents are likely to be correlated, for instance, in a domain with balls

and blocks on a table, balls are more likely to be on the table than on a block, be-

cause a ball is more likely to fall on the table than to balance on a block. Similarly,

some fluents will be constrained to depend on others, such as in BlocksWorld where

whenever (armempty) is true, (holding x) should be false. Furthermore, it is likely

that particular objects may be affected by sensing difficulties (which also affects flu-

146 Chapter 7. Conclusions and Future Work

ents involving those objects), and also that particular relations may be more difficult to

determine than others. For instance, in the real robot domain in Chapter 5, the fluent

ontable is much less prone to errors than isin because of the difficulties in detecting

objects when they are within other objects.

One alternative would be to adopt the perceptual strategy of taking repeated ob-

servations, often used in robot localisation. For example, position probability grids

(Burgard et al., 1996) are populated by repeated measurements from multiple sensors

to estimate state to some required degree of certainty. State here is typically location

but could be generalised to the symbolic state space or the underlying sensor space.

Such a strategy (or assumption of) could significantly lower the level of noise on the

observed fluents, improving the performance of the action learning model described in

this thesis.

However, there are issues to overcome at both the symbolic and sensor levels.

Working with state estimations in this way at the symbolic, relational level requires

techniques to handle the explosion in the size of the state space, such as already dis-

cussed in the context of learning transition functions (Section 2.4.4) and exploration

(Section 7.2.1.1) in relational POMDPs. Working at the sensor level avoids the dimen-

sionality problem but requires a perceptual function to generate the symbolic represen-

tation: as previously discussed (Section 3.5), a full solution to generating perceptual

functions for relational data is still an open research topic. A perceptual function learnt

via supervised learning could be used, but if an oracle is available to label states then

this could as easily be used to label the states for the action learning process itself.

Again at the level of continuous observations from sensors, a more sophisticated

approach would be to begin with a Gaussian noise model on the raw observations. By

propagating the effects of this model through the perceptual function, noise models for

the symbolic percepts could be derived. However, the success of this approach depends

on the nature and existence of the perceptual function.

7.2.1.3 Introducing a world model

The learning process discussed in this thesis could be improved by the introduction

of world knowledge, independent of operator preconditions and effects. For example,

in some worlds there will be predicates which can be derived from other, more basic,

predicates. Derived predicates do not need to be predicted, but can be derived from

the predictions of the basic predicates, trivially improving the efficiency of learning.

Conversely, the addition of derived predicates to observations can improve predic-

7.2. Future work 147

tion quality, as they effectively merge fluents which otherwise would have to be learnt

as separate fluents in the precondition. Furthermore, a world model which describes

known dependencies between fluents could be used to identify certain combinations of

fluents as illegal. In turn, this would reduce the number of potential conjunctions to be

considered during learning, (and, in particular, the number of subgraphs in the case of

the graphical representation) thereby making learning more efficient.

7.2.1.4 Parallelism

The structure of the learning algorithm in Chapters 4 and 5 is embarrassingly paral-

lel: learning for each individual classifier could be performed in parallel without re-

quiring inter-process communication. Similarly, the initial stages of rule extraction in

Chapter 6 could be carried out concurrently. With the rapidly developing potential for

parallel processing in computer hardware, a parallel algorithm represents a significant

advantage over alternative serial approaches.

7.2.2 Connections to hippocampal-cortical circuit

Some parallels can be drawn between the structure of the learning model presented in

this thesis and the structure of the hippocampal-cortical circuit, which may perform

a similar function to the model (see Figure 7.1). Based on an extensive body of ex-

perimental evidence (e.g., Squire (1982)) it is generally accepted that the hippocampal

formation has a pivotal role in human learning and in the formation and retrieval of

declarative memories (memories of explicit events). The hippocampus receives inputs

from across the cortex, including all sensory areas, and so its inputs effectively rep-

resent the current state of the world, as represented in the cortex. Outputs from the

hippocampus are also widely distributed to both cortical areas and the cerebellum.

In particular, it has been proposed that the conjunctive, predictive representations

formed in the hippocampus are available to other learning systems in the brain (e.g., to

cerebellum and cortex) (Gluck et al., 2005). For instance, it has been widely conjec-

tured that the hippocampus participates in immediate, fast learning based on moment-

to-moment events, with the learnt representations subsequently supporting long-term

memory consolidation involving slower learning processes sited in the cortex (Mc-

Clelland et al., 1995). This dichotomy is broadly similar to the split between the voted

perceptrons building implicit action models from immediate experience, and the later

extraction of explicit rules from the resulting representation. Similarly, hippocampal

148 Chapter 7. Conclusions and Future Work

Rules or affordances

Reinforcement learning Implicit action models

Inputs:Observations and actions

Rule extraction

(a)

Cortex

Cerebellum Hippocampal formation

Multi-modal sensory inputs

Memory consolidation processes

(b)

Figure 7.1: Comparison between the structure of the hippocampal-cortical circuit and

the learning model. (a) The structure of the learning model. (b) The structure of the

hippocampal-cortical circuit (adapted from Gluck et al. (2005), and Steedman (2004)).

representations appear to support cerebellar reinforcement learning, while it has also

been noted in earlier chapters that the representations learnt by the voted perceptron

models could be used in reinforcement learning.

Moreover, there are correspondences between the functionality of components of

the learning model and postulated functionality of the main components of the hip-

pocampus. Within the hippocampus, the dentate gyrus acts on its input representations

to produce sparse, conjunctive representations, which differentiate between different

contexts or outcomes. This is similar to the action of a kernel function, a correspon-

dence which has been previously noted (Baker, 2003). The hippocampal subfield CA3

is thought to perform an autoassociative function, because there are many recurrent

widely distributed projections within the subfield (Norman and O’Reilly, 2003). A re-

7.2. Future work 149

lated proposal is that the recurrency in CA3 supports sequence learning and temporal

processing where previous and current contexts (or current and predicted contexts) are

compared (Levy, 1996). The CA1 subfield may have a similar role but over longer

time intervals. The voted perceptron model needs similar functionality, to be able to

calculate deltas — differences between the current and previous states — and also to

compare the current state with support vectors, that is, previously stored states. The

voted perceptron’s requirement for access to previously stored states also coincides

with the broad function of the hippocampus as a store for episodic memories.

Thus potentially the hippocampus has available to it the basis for storing observed

states (or support vectors), a function which compares consecutive states (calculates

deltas), a function which sparsifies inputs (part of the function of a kernel), and a func-

tion which compares temporally distant states (also part of the function of a kernel).

Additionally, the hippocampus is implicated in the learning of action models by hu-

mans.

The similarities between the learning model and the hippocampal-cortical circuit

suggest that it may be possible to adapt existing models of the hippocampus to perform

the task of learning action models, by basing a transformation on the structure of the

model presented in this thesis. Such an adaptation could have a number of benefits,

providing an alternative biologically plausible model of action learning, giving insight

into how the hippocampus itself might perform action learning, and into how deictic

references might be realised in the hippocampus.

7.2.3 The grounding gap

Learning grounded action models depends upon the existence of grounded relations,

yet a process for grounding relations in sensorimotor experience is so far just begin-

ning to be addressed in the research literature (Pierce and Kuipers, 1997; Modayil and

Kuipers, 2008; Mugan, 2010). This grounding gap needs to be resolved in order to

fully ground action models.

One approach is suggested by the two different definitions of an object which un-

derlie the representations used in this thesis. In terms of affordances, an object is

defined as the set of actions which it affords in a given context. In terms of deictic

references, an object is defined as the set of relations which it participates in, in a given

context. Equating the two definitions suggests that a set of relations is in some way

equivalent to a set of actions. Relations could be considered to encode potential ac-

150 Chapter 7. Conclusions and Future Work

tions (and therefore also previous actions). For instance, an object may be “on” a table

because specific actions have placed it there, or because specific actions may cause it

to no longer be there. Since affordances are by definition grounded in sensorimotor

experience it follows that relations are also embodied and can be grounded in sensori-

motor experience, in contrast to attempts to ground relations in the visual perception

of physical regularities of the world (e.g., Regier and Carlson (2001)).

In recent work Vankov (2010) makes a very similar proposal, that relations are

grounded in action. However, the actions considered are those involved in visual atten-

tion, namely saccades and head movements. Moreover Vankov does not demonstrate

how to acquire grounded relations, but only shows how pre-defined spatial relations

may be represented in terms of (attentional) actions.

An important step for future work is therefore to consider the possibility that rela-

tions may be grounded in sensorimotor experience. Regardless of its exact nature, the

grounding of relations is essential for true autonomous learning of domain dynamics,

and so is a critical future direction.

Appendix A

This appendix contains PDDL files describing BlocksWorld, ZenoTravel, Depots, Driver-

Log, Briefcase, Elevator and Rover domains.

(define (domain blocksworld)
(:requirements :strips)
(:predicates (arm-empty)
(clear ?x)
(ontable ?x)
(holding ?x)
(on ?x ?y))

(:action pickup
:parameters (?ob)
:precondition (and (clear ?ob) (on-table ?ob) (arm-empty))
:effect (and (holding ?ob) (not (clear ?ob)) (not (on-table ?ob)) (not (arm-empty))))

(:action putdown
:parameters (?ob)
:precondition (holding ?ob)
:effect ((and (clear ?ob) (arm-empty) (on-table ?ob) (not (holding ?ob))))

(:action stack
:parameters (?ob ?underob)
:precondition (and (clear ?underob) (holding ?ob))
:effect (and (arm-empty) (clear ?ob) (on ?ob ?underob) (not (clear ?underob))

(not (holding ?ob))))

(:action unstack
:parameters (?ob ?underob)
:precondition (and (on ?ob ?underob) (clear ?ob) (arm-empty))
:effect (and (holding ?ob) (clear ?underob) (not (on ?ob ?underob)) (not (clear ?ob))

(not (arm-empty)))))

Figure A.1: PDDL description of the BlocksWorld domain.

151

152 Appendix A.

(define (domain briefcase)
(:requirements :adl)
(:types portable location)
(:predicates (at ?y - portable ?x - location)

(in ?x - portable)
(is-at ?x - location))

(:action move
:parameters (?m ?l - location)
:precondition (is-at ?m)
:effect (and (is-at ?l) (not (is-at ?m))

(forall (?x - portable) (when (in ?x)
(and (at ?x ?l) (not (at ?x ?m)))))))

(:action take-out
:parameters (?x - portable)
:precondition (in ?x)
:effect (not (in ?x)))

(:action put-in
:parameters (?x - portable ?l - location)
:precondition (and (not (in ?x)) (at ?x ?l) (is-at ?l))
:effect (in ?x)))

}

Figure A.2: PDDL description of the Briefcase domain.

153

(define (domain zeno-travel)
(:requirements :typing)
(:types aircraft person city flevel - object)
(:predicates (at ?x - (either person aircraft) ?c - city)
(in ?p - person ?a - aircraft)
(fuel-level ?a - aircraft ?l - flevel)
(next ?l1 ?l2 - flevel))

(:action board
:parameters (?p - person ?a - aircraft ?c - city)
:precondition (and (at ?p - person ?c - city) (at ?a - aircraft ?c - city))
:effect (and (not (at ?p - person ?c - city)) (in ?p - person ?a - aircraft)))

(:action debark
:parameters (?p - person ?a - aircraft ?c - city)
:precondition (and (in ?p - person ?a - aircraft) (at ?a - aircraft ?c - city))
:effect (and (not (in ?p - person ?a - aircraft)) (at ?p - person ?c - city)))

(:action fly
:parameters (?a - aircraft ?c1 - city ?c2 - city ?l1 - flevel ?l2 - flevel)
:precondition (and (at ?a - aircraft ?c1 - city) (fuel-level ?a - aircraft ?l1 - flevel)

(next ?l2 - flevel ?l1 - flevel))
:effect (and (not (at ?a - aircraft ?c1 - city)) (at ?a - aircraft ?c2 - city)

(not (fuel-level ?a - aircraft ?l1 - flevel))
(fuel-level ?a - aircraft ?l2 - flevel)))

(:action zoom
:parameters (?a - aircraft ?c1 - city ?c2 - city ?l1 - flevel ?l2 - flevel ?l3 - flevel)
:precondition (and (at ?a - aircraft ?c1 - city) (fuel-level ?a - aircraft ?l1 - flevel)

(next ?l2 - flevel ?l1 - flevel) (next ?l3 - flevel ?l2 - flevel))
:effect (and (not (at ?a - aircraft ?c1 - city)) (at ?a - aircraft ?c2 - city)

(not (fuel-level ?a - aircraft ?l1 - flevel))
(fuel-level ?a - aircraft ?l3 - flevel)))

(:action refuel
:parameters (?a - aircraft ?c - city ?l - flevel ?l1 - flevel)
:precondition (and (fuel-level ?a - aircraft ?l - flevel) (next ?l - flevel ?l1 - flevel)

(at ?a - aircraft ?c - city))
:effect (and (fuel-level ?a - aircraft ?l1 - flevel)

(not (fuel-level ?a - aircraft ?l - flevel)))))

Figure A.3: PDDL description of the ZenoTravel domain.

154 Appendix A.

(define (domain Depot)
(:requirements :typing)
(:types place locatable - object
depot distributor - place
truck hoist surface - locatable
pallet crate - surface)

(:predicates (at ?x - locatable ?y - place)
(on ?x - crate ?y - surface)
(in ?x - crate ?y - truck)
(lifting ?x - hoist ?y - crate)
(available ?x - hoist)
(clear ?x - surface))

(:action Drive
:parameters (?x - truck ?y - place ?z - place)
:precondition (and (at ?x ?y))
:effect (and (not (at ?x ?y)) (at ?x ?z)))

(:action Lift
:parameters (?x - hoist ?y - crate ?z - surface ?p - place)
:precondition (and (at ?x ?p) (available ?x) (at ?y ?p) (on ?y ?z) (clear ?y))
:effect (and (not (at ?y ?p)) (lifting ?x ?y) (not (clear ?y)) (not (available ?x)) (clear ?z)

(not (on ?y ?z))))

(:action Drop
:parameters (?x - hoist ?y - crate ?z - surface ?p - place)
:precondition (and (at ?x ?p) (at ?z ?p) (clear ?z) (lifting ?x ?y))
:effect (and (available ?x) (not (lifting ?x ?y)) (at ?y ?p) (not (clear ?z)) (clear ?y)

(on ?y ?z)))

(:action Load
:parameters (?x - hoist ?y - crate ?z - truck ?p - place)
:precondition (and (at ?x ?p) (at ?z ?p) (lifting ?x ?y))
:effect (and (not (lifting ?x ?y)) (in ?y ?z) (available ?x)))

(:action Unload
:parameters (?x - hoist ?y - crate ?z - truck ?p - place)
:precondition (and (at ?x ?p) (at ?z ?p) (available ?x) (in ?y ?z))
:effect (and (not (in ?y ?z)) (not (available ?x)) (lifting ?x ?y))))

Figure A.4: PDDL description of the Depots domain.

155

(define (domain driverlog)
(:requirements :typing)
(:types location locatable - object
driver truck obj - locatable)

(:predicates (at ?obj - locatable ?loc - location)
(in ?obj1 - obj ?obj - truck)
(driving ?d - driver ?v - truck)
(link ?x ?y - location) (path ?x ?y - location)
(empty ?v - truck))

(:action LOAD-TRUCK
:parameters (?obj - obj ?truck - truck ?loc - location)
:precondition (and (at ?truck ?loc) (at ?obj ?loc))
:effect (and (not (at ?obj ?loc)) (in ?obj ?truck)))

(:action UNLOAD-TRUCK
:parameters (?obj - obj ?truck - truck ?loc - location)
:precondition (and (at ?truck ?loc) (in ?obj ?truck))
:effect (and (not (in ?obj ?truck)) (at ?obj ?loc)))

(:action BOARD-TRUCK
:parameters (?driver - driver ?truck - truck ?loc - location)
:precondition (and (at ?truck ?loc) (at ?driver ?loc) (empty ?truck))
:effect (and (not (at ?driver ?loc)) (driving ?driver ?truck) (not (empty ?truck))))

(:action DISEMBARK-TRUCK
:parameters (?driver - driver ?truck - truck ?loc - location)
:precondition (and (at ?truck ?loc) (driving ?driver ?truck))
:effect (and (not (driving ?driver ?truck)) (at ?driver ?loc) (empty ?truck)))

(:action DRIVE-TRUCK
:parameters (?truck - truck ?loc-from - location ?loc-to - location ?driver - driver)
:precondition (and (at ?truck ?loc-from) (driving ?driver ?truck) (link ?loc-from ?loc-to))
:effect (and (not (at ?truck ?loc-from)) (at ?truck ?loc-to)))

(:action WALK
:parameters (?driver - driver ?loc-from - location ?loc-to - location)
:precondition (and (at ?driver ?loc-from) (path ?loc-from ?loc-to))
:effect (and (not (at ?driver ?loc-from)) (at ?driver ?loc-to))))

Figure A.5: PDDL description of the DriverLog domain.

156 Appendix A.

(define (domain miconic)
(:requirements :adl :typing)
(:types passenger - object

floor - object)

(:predicates
(origin ?person - passenger ?floor - floor)
(destin ?person - passenger ?floor - floor)
(above ?floor1 - floor ?floor2 - floor)
(boarded ?person - passenger)
(served ?person - passenger)
(lift-at ?floor - floor))

(:action stop
:parameters (?f - floor)
:precondition (lift-at ?f)
:effect (and

(forall (?p - passenger)
(when (and (boarded ?p)

(destin ?p ?f))
(and (not (boarded ?p))

(served ?p))))
(forall (?p - passenger)

(when (and (origin ?p ?f) (not (served ?p)))
(boarded ?p)))))

(:action up
:parameters (?f1 - floor ?f2 - floor)
:precondition (and (lift-at ?f1) (above ?f1 ?f2))
:effect (and (lift-at ?f2) (not (lift-at ?f1))))

(:action down
:parameters (?f1 - floor ?f2 - floor)
:precondition (and (lift-at ?f1) (above ?f2 ?f1))
:effect (and (lift-at ?f2) (not (lift-at ?f1))))

)

Figure A.6: PDDL description of the Elevator domain.

157

(define (domain Rover)
(:requirements :typing)
(:types rover waypoint store camera mode lander objective)

(:predicates (at ?x - rover ?y - waypoint)
(at_lander ?x - lander ?y - waypoint)
(can_traverse ?r - rover ?x - waypoint ?y - waypoint)
(equipped_for_soil_analysis ?r - rover)
(equipped_for_rock_analysis ?r - rover)
(equipped_for_imaging ?r - rover)
(empty ?s - store)
(have_rock_analysis ?r - rover ?w - waypoint)
(have_soil_analysis ?r - rover ?w - waypoint)
(full ?s - store)
(calibrated ?c - camera ?r - rover)
(supports ?c - camera ?m - mode)
(available ?r - rover)
(visible ?w - waypoint ?p - waypoint)
(have_image ?r - rover ?o - objective ?m - mode)
(communicated_soil_data ?w - waypoint)
(communicated_rock_data ?w - waypoint)
(communicated_image_data ?o - objective ?m - mode)
(at_soil_sample ?w - waypoint)
(at_rock_sample ?w - waypoint)
(visible_from ?o - objective ?w - waypoint)
(store_of ?s - store ?r - rover)
(calibration_target ?i - camera ?o - objective)
(on_board ?i - camera ?r - rover)
(channel_free ?l - lander))

Figure A.7: PDDL description of the Rover domain (preamble).

158 Appendix A.

(:action navigate
:parameters (?x - rover ?y - waypoint ?z - waypoint)
:precondition (and (can_traverse ?x ?y ?z) (available ?x) (at ?x ?y) (visible ?y ?z))
:effect (and (not (at ?x ?y)) (at ?x ?z)))

(:action sample_soil
:parameters (?x - rover ?s - store ?p - waypoint)
:precondition (and (at ?x ?p) (at_soil_sample ?p) (equipped_for_soil_analysis ?x) (store_of ?s ?x)

(empty ?s))
:effect (and (not (empty ?s)) (full ?s) (have_soil_analysis ?x ?p) (not (at_soil_sample ?p))))

(:action sample_rock
:parameters (?x - rover ?s - store ?p - waypoint)
:precondition (and (at ?x ?p) (at_rock_sample ?p) (equipped_for_rock_analysis ?x) (store_of ?s ?x)

(empty ?s))
:effect (and (not (empty ?s)) (full ?s) (have_rock_analysis ?x ?p) (not (at_rock_sample ?p))))

(:action drop
:parameters (?x - rover ?y - store)
:precondition (and (store_of ?y ?x) (full ?y))
:effect (and (not (full ?y)) (empty ?y)))

(:action calibrate
:parameters (?r - rover ?i - camera ?t - objective ?w - waypoint)
:precondition (and (equipped_for_imaging ?r) (calibration_target ?i ?t) (at ?r ?w)

(visible_from ?t ?w)(on_board ?i ?r))
:effect (calibrated ?i ?r))

(:action take_image
:parameters (?r - rover ?p - waypoint ?o - objective ?i - camera ?m - mode)
:precondition (and (calibrated ?i ?r) (on_board ?i ?r) (equipped_for_imaging ?r) (supports ?i ?m)

(visible_from ?o ?p) (at ?r ?p))
:effect (and (have_image ?r ?o ?m)(not (calibrated ?i ?r))))

(:action communicate_soil_data
:parameters (?r - rover ?l - lander ?p - waypoint ?x - waypoint ?y - waypoint)
:precondition (and (at ?r ?x)(at_lander ?l ?y)(have_soil_analysis ?r ?p)

(visible ?x ?y)(available ?r)(channel_free ?l))
:effect (and (not (available ?r))(not (channel_free ?l))(channel_free ?l)

(communicated_soil_data ?p)(available ?r)))

(:action communicate_rock_data
:parameters (?r - rover ?l - lander ?p - waypoint ?x - waypoint ?y - waypoint)
:precondition (and (at ?r ?x)(at_lander ?l ?y)(have_rock_analysis ?r ?p)

(visible ?x ?y)(available ?r)(channel_free ?l))
:effect (and (not (available ?r))(not (channel_free ?l))(channel_free ?l)

(communicated_rock_data ?p)(available ?r)))

(:action communicate_image_data
:parameters (?r - rover ?l - lander ?o - objective ?m - mode ?x - waypoint ?y - waypoint)
:precondition (and (at ?r ?x)(at_lander ?l ?y)(have_image ?r ?o ?m)(visible ?x ?y)

(available ?r)(channel_free ?l))
:effect (and (not (available ?r))(not (channel_free ?l))(channel_free ?l)

(communicated_image_data ?o ?m)(available ?r))))

Figure A.8: PDDL description of the Rover domain (continued).

Bibliography

Aggarwal, J. K., Davis, L. S., and Martin, W. N. (1981). Correspondence processes in
dynamic scene analysis. Proceedings of the IEEE, 69(5):562–572.

Agre, P. E. and Chapman, D. (1987). Pengi: An implementation of a theory of activ-
ity. In Proceedings of the 6th National Conference on Artificial Intelligence (AAAI
1987), pages 268–272.

Amir, E. and Chang, A. (2008). Learning partially observable deterministic action
models. Journal of Artificial Intelligence Research, 33:349–402.

Angluin, D. (1988). Queries and concept learning. Machine Learning, 2(4):319–342.

Başeski, E., Kraft, D., and Krüger, N. (2009). A hierarchical 3D circle detection algo-
rithm applied in a grasping scenario. In Proceedings of the International Conference
on Computer Vision Theory and Applications (VISAPP 2009), pages 497–502.

Baker, J. L. (2003). Is there a support vector machine hiding in the dentate gyrus?
Neurocomputing, 52-54:199–207.

Ballard, D. H., Hayhoe, M. M., Pook, P. K., and Rao, R. P. (1997). Deictic codes for
the embodiment of cognition. Behavioral and Brain Sciences, 20(4):723–742.

Barakat, N. and Bradley, A. P. (2010). Rule extraction from support vector machines:
A review. Neurocomputing, 74(1-3):178–190.

Barakat, N. H. and Bradley, A. P. (2007). Rule extraction from support vector ma-
chines: A sequential covering approach. IEEE Transactions on Knowledge and
Data Engineering, 19(6):729–741.

Benson, S. S. (1996). Learning Action Models for Reactive Autonomous Agents. PhD
thesis, Stanford University.

Block, H. (1962). The perceptron: A model for brain functioning. Reviews of Modern
Physics, 34:123–135.

Borgwardt, K. M. and Kriegel, H.-P. (2005). Shortest-path kernels on graphs. In
Proceedings of the 5th IEEE International Conference on Data Mining, pages 74–
81.

Boser, B. E., Guyon, I. M., and Vapnik, V. N. (1992). A training algorithm for optimal
margin classifiers. In Proceedings of the 5th Annual Workshop on Computational
Learning Theory (COLT 1992), pages 144–152.

159

160 Bibliography

Bouthinon, D., Soldano, H., and Ventos, V. (2009). Concept learning from (very) am-
biguous examples. In Proceedings of the 6th International Conference on Machine
Learning and Data Mining in Pattern Recognition (MLDM 2009), pages 465–478.

Boutilier, C., Dearden, R., and Goldszmidt, M. (1995). Exploiting structure in policy
construction. In Proceedings of the 14th International Joint Conference on Artificial
Intelligence (IJCAI 1995), pages 1104–1111.

Boutilier, C. and Poole, D. (1996). Computing optimal policies for partially observ-
able decision processes using compact representations. In Proceedings of the 13th
National Conference on Artificial Intelligence (AAAI 1996), volume 2, pages 1168–
1175.

Boutilier, C., Reiter, R., Soutchanski, M., and Thrun, S. (2000). Decision-theoretic,
high-level agent programming in the situation calculus. In Proceedings of the 17th
National Conference on Artificial Intelligence and 12th Conference on Innovative
Applications of Artificial Intelligence, pages 355–362.

Brafman, R. I. and Tennenholtz, M. (2002). R-max — a general polynomial time
algorithm for near-optimal reinforcement learning. Journal of Machine Learning
Research, 3:213–231.

Brooks, R. A. (1990). Elephants don’t play chess. Robotics and Autonomous Systems,
6(1&2):3–15.

Bullot, N. and Droulez, J. (2008). Keeping track of invisible individuals while explor-
ing a spatial layout with partial cues: Location-based and deictic direction-based
strategies. Philosophical Psychology, 21(1):15–46.

Burgard, W., Fox, D., Hennig, D., and Schmidt, T. (1996). Estimating the absolute
position of a mobile robot using position probability grids. In Proceedings of the
13th National Conference on Artificial Intelligence (AAAI 1996) Volume 2, pages
896–901.

Cai, C., Liao, X., and Carin, L. (2009). Learning to explore and exploit in POMDPs.
In Advances in Neural Information Processing Systems (NIPS 22), pages 198–206.

Chakraborty, D. and Stone, P. (2011). Structure learning in ergodic factored MDPs
without knowledge of the transition function’s in-degree. In Proceedings of the 28th
International Conference on Machine Learning (ICML 2011), pages 737–744.

Chen, Z., Li, J., and Wei, L. (2007). A multiple kernel support vector machine scheme
for feature selection and rule extraction from gene expression data of cancer tissue.
Artificial Intelligence in Medicine, 41(2):161–175.

Collins, M. (2002). Discriminative training methods for Hidden Markov Models: The-
ory and experiments with perceptron algorithms. In Proceedings of Empirical Meth-
ods in Natural Language Processing (EMNLP 2009), pages 1–8.

Bibliography 161

Collins, M. and Duffy, N. (2002). New ranking algorithms for parsing and tagging:
Kernels over discrete structures, and the voted perceptron. In Proceedings of the
40th Annual Meeting of the Association for Computational Linguistics (ACL 2002),
pages 263–270.

Cresswell, S. and Gregory, P. (2011). Generalised domain model acquisition from
action traces. In Proceedings of the 21st International Conference on Automated
Planning and Scheduling (ICAPS 2011), pages 42–49.

Croonenborghs, T., Ramon, J., Blockeel, H., and Bruynooghe, M. (2007). Online
learning and exploiting relational models in reinforcement learning. In Proceedings
of the 20th International Joint Conference on Artificial Intelligence (IJCAI 2007),
pages 726–731.

Şahin, E., Çakmak, M., Doğar, M. R., Uğur, E., and Üçoluk, G. (2007). To afford or
not to afford: A new formalization of affordances towards affordance based robot
control. Adaptive Behavior, 15(4):447–472.

Dabney, W. and McGovern, A. (2006). The thing we tried that worked: Utile distinc-
tions for relational reinforcement learning. In Proceedings of the ICML Workshop
on Open Problems in Statistical Relational Learning (SRL 2006).

De Raedt, L. (1997). Logical settings for concept-learning. Artificial Intelligence,
95(1):187–201.

De Raedt, L. (2008). Logical and Relational Learning (Cognitive Technologies).
Springer, first edition.

De Raedt, L. and Džeroski, S. (1994). First-order jk-clausal theories are PAC-
learnable. Artificial Intelligence, 70:375–392.

Dean, T. and Kanazawa, K. (1989). A model for reasoning about persistence and
causation. Computational Intelligence, 5(2):142–150.

Decatur, S. E. and Gennaro, R. (1995). On learning from noisy and incomplete ex-
amples. In Proceedings of the 8th Annual Conference on Computational Learning
Theory (COLT 1995), pages 353–360.

Diuk, C., Li, L., and Leffler, B. R. (2009). The adaptive k-meteorologists problem and
its application to structure learning and feature selection in reinforcement learning.
In Proceedings of the 26th Annual International Conference on Machine Learning
(ICML 2009), pages 249–256.

Doshi-Velez, F., Pineau, J., and Roy, N. (2012). Reinforcement learning with limited
reinforcement: Using Bayes risk for active learning in POMDPs. Artificial Intelli-
gence, 187-188:115–132.

Doğar, M. R., Çakmak, M., Uğur, E., and Şahin, E. (2007). From primitive behaviors
to goal directed behavior using affordances. In Proceedings of the International
Conference on Intelligent Robots and Systems (IROS 2007), pages 729–734.

162 Bibliography

Driessens, K., Ramon, J., and Gärtner, T. (2006). Graph kernels and Gaussian pro-
cesses for relational reinforcement learning. Machine Learning, 64(1):91–119.

Fikes, R. E. and Nilsson, N. J. (1971). STRIPS: A new approach to the application of
theorem proving to problem solving. Artificial Intelligence, 2:189–208.

Finegan, E. (1998). Language: Its Structure and Use. Heinle & Heinle Publishers,
third edition.

Finger, J. J. (1987). Exploiting constraints in design synthesis. PhD thesis, Stanford
University, Stanford, CA, USA.

Finney, S., Gardiol, N. H., Kaelbling, L. P., and Oates, T. (2002). The thing that
we tried didn’t work very well: Deictic representation in reinforcement learning.
In Proceedings of the 18th International Conference on Uncertainty in Artificial
Intelligence (UAI 2002), pages 154–161.

Freund, Y. and Schapire, R. (1999). Large margin classification using the perceptron
algorithm. Machine Learning, 37:277–96.

Fu, L. (1991). Rule learning by searching on adapted nets. In Proceedings of the 9th
National Conference on Artificial Intelligence (AAAI 1991), pages 590–595.

Fu, X., Ong, C., Keerthi, S., Hung, G. G., and Goh, L. (2004). Extracting the knowl-
edge embedded in support vector machines. In Proceedings of the IEEE Interna-
tional Joint Conference on Neural Networks (IJCNN 2004), volume 1, pages 291–
296.

Fung, G., Sandilya, S., and Rao, R. B. (2005). Rule extraction from linear support vec-
tor machines. In Proceedings of the 11th ACM SIGKDD International Conference
on Knowledge Discovery in Data Mining (KDD 2005), pages 32–40.

Gardiol, N. H. and Kaelbling, L. P. (2007). Action-space partitioning for planning. In
Proceedings of the 22nd National Conference on Artificial Intelligence (AAAI 2007),
pages 980–986.

Gärtner, T., Driessens, K., and Ramon, J. (2003a). Graph kernels and Gaussian pro-
cesses for relational reinforcement learning. In Proceedings of the International
Conference on Inductive Logic Programming (ILP 2003), pages 146–163.

Gärtner, T., Flach, P., and Wrobel, S. (2003b). On graph kernels: Hardness results and
efficient alternatives. In Proceedings of the 16th Annual Conference on Computa-
tional Learning Theory and 7th Kernel Workshop (COLT 2003), pages 129–143.

Getoor, L., Friedman, N., Koller, D., Pfeffer, A., and Taskar, B. (2007). Introduction
to Statistical Relational Learning, chapter 5. The MIT Press.

Gibson, J. J. (1979). The Ecological Approach To Visual Perception. Lawrence Erl-
baum Associates.

Bibliography 163

Gil, Y. (1994). Learning by experimentation: Incremental refinement of incomplete
planning domains. Proceedings of the 11th International Conference on Machine
Learning (ICML 1994), pages 87–95.

Gluck, M. A., Myers, C., and Meeter, M. (2005). Cortico-hippocampal interaction
and adaptive stimulus representation: A neurocomputational theory of associative
learning and memory. Neural Networks, 18(9):1265–1279.

Goodale, M. A. and Milner, A. D. (1992). Separate visual pathways for perception and
action. Trends in Neurosciences, 15(1):20–25.

Graepel, T., Herbrich, R., and Williamson, R. C. (2000). From margin to sparsity. In
Advances in Neural Information Processing Systems (NIPS 13), pages 210–216.

Guestrin, C., Koller, D., Gearhart, C., and Kanodia, N. (2003). Generalizing plans
to new environments in relational MDPs. In Proceedings of the 18th International
Joint Conference on Artificial Intelligence (IJCAI 2003), pages 1003–1010.

Guestrin, C., Patrascu, R., and Schuurmans, D. (2002). Algorithm-directed exploration
for model-based reinforcement learning in factored MDPs. In Proceedings of the
19th International Conference on Machine Learning (ICML 2002), pages 235–242.

Guyon, I. and Elisseeff, A. (2003). An introduction to variable and feature selection.
Journal of Machine Learning Research, 3:1157–1182.

Guyon, I., Weston, J., Barnhill, S., and Vapnik, V. (2002). Gene selection for cancer
classification using support vector machines. Machine Learning, 46(1-3):389–422.

Halbritter, F. and Geibel, P. (2007). Learning models of relational MDPs using graph
kernels. In Proceedings of the 6th Mexican International Conference on Advances
in Artificial Intelligence (MICAI 2007), pages 409–419.

Halford, G. S., Wilson, W. H., Phillips, S., Siegler, R., Flavell, J., Kotovsky, K., Mc-
clelland, J., Baddeley, A., Tsotsos, J., Shastri, L., and Berch, D. (1988). Processing
capacity defined by relational complexity: Implications for comparative, develop-
mental, and cognitive psychology. Behavioral and Brain Sciences, 21(6):803–864.

Harnad, S. (1990). The symbol grounding problem. Physica D: Nonlinear Phenomena,
42(1-3):335–346.

Haussler, D. (1988). Quantifying inductive bias: AI learning algorithms and Valiant’s
learning framework. Artificial Intelligence, 36(2):177–221.

Haussler, D. (1989). Learning conjunctive concepts in structural domains. Machine
Learning, 4(1):7–40.

Hayes, B., Curtiss, S., Szabolcsi, A., Stowell, T., Stabler, E., Sportiche, D., Koopman,
H., Keating, P., Munro, P., Hyams, N., and Steriade, D. (2001). Linguistics: An
introduction to linguistic theory. Wiley-Blackwell.

164 Bibliography

Holmes, M. and Isbell, C. (2005). Schema learning: Experience-based construction
of predictive action models. In Advances in Neural Information Processing Systems
(NIPS 17), pages 585–562.

Hommel, B. (2004). Event files: Feature binding in and across perception and action.
Trends in Cognitive Sciences, 8(11):494–500.

Hurford, J. R. (2003). The neural basis of predicate-argument structure. Behavioral
and Brain Sciences, 23(6):261–283.

Itti, L., Koch, C., and Niebur, E. (1998). A model of saliency-based visual attention
for rapid scene analysis. IEEE Transactions on Pattern Analysis and Machine Intel-
ligence, 20(11):1254–1259.

Jonsson, A. and Barto, A. (2007). Active learning of Dynamic Bayesian Networks in
Markov Decision Processes. In Proceedings of the 7th International Conference on
Abstraction, Reformulation, and Approximation (SARA 2007), pages 273–284.

Kaelbling, L. P., Littman, M. L., and Cassandra, A. R. (1998). Planning and acting in
partially observable stochastic domains. Artificial Intelligence, 101(1-2):99–134.

Kahneman, D., Treisman, A., and Gibbs, B. J. (1992). The reviewing of object files:
Object-specific integration of information. Cognitive Psychology, 24(2):175–219.

Kapur, D. and Narendran, P. (1986). NP-completeness of the set unification and match-
ing problems. In Proceedings of the 8th International Conference on Automated
Deduction, pages 489–495.

Kashima, H., Tsuda, K., and Inokuchi, A. (2003). Marginalized kernels between la-
beled graphs. In Proceedings of the 20th International Conference on Machine
Learning (ICML 2003), pages 321–328.

Kearns, M. and Koller, D. (1999). Efficient reinforcement learning in factored MDPs.
In Proceedings of the 16th International Joint Conference on Artificial Intelligence
(IJCAI 1999), pages 740–747.

Kearns, M. and Singh, S. (1998). Near-optimal performance for reinforcement learn-
ing in polynomial time. In Proceedings of the 15th International Conference on
Machine Learning (ICML 1998), pages 260–268.

Kearns, M. and Singh, S. (2002). Near-optimal reinforcement learning in polynomial
time. Machine Learning, 49(2-3):209–232.

Khardon, R., Roth, D., and Servedio, R. A. (2005). Efficiency versus convergence of
Boolean kernels for on-line learning algorithms. Journal of Artificial Intelligence
Research, 24:341–356.

Khardon, R. and Servedio, R. A. (2005). Maximum margin algorithms with Boolean
kernels. Journal of Machine Learning Research, 6:1405–1429.

Bibliography 165

Khardon, R. and Wachman, G. M. (2007). Noise tolerant variants of the perceptron
algorithm. Journal of Machine Learning Research, 8:227–248.

Klivans, A. R. and Servedio, R. A. (2004). Learning intersections of halfspaces with a
margin. In Proceedings of the 17th Annual Conference on Learning Theory (COLT
2004), pages 348–362.

Koch, C. and Ullman, S. (1985). Shifts in selective visual attention: Towards the
underlying neural circuitry. Human Neurobiology, 4(4):219–227.

Kohavi, R. and John, G. H. (1997). Wrappers for feature subset selection. Artificial
Intelligence, 97(1-2):273–324.

Kraft, D., Detry, R., Pugeault, N., Baseski, E., Guerin, F., Piater, J. H., and Kruger, N.
(2010). Development of object and grasping knowledge by robot exploration. IEEE
Transactions on Autonomous Mental Development, 2(4):368–383.

Krishnan, R., Sivakumar, G., and Bhattacharya, P. (1999). A search technique for rule
extraction from trained neural networks. Pattern Recognition Letters, 20(3):273–
280.

Krüger, N., Geib, C., Piater, J., Petrick, R., Steedman, M., Wörgötter, F., Ude, A.,
Asfour, T., Kraft, D., Omrčen, D., Agostini, A., and Dillmann, R. (2011). Object-
Action Complexes: Grounded abstractions of sensorimotor processes. Robotics and
Autonomous Systems, 59(10):740–757.

Laird, J. E. (2008). Extending the soar cognitive architecture. In Proceedings of the
2008 Conference on Artificial General Intelligence, pages 224–235.

Lang, T. (2011). Planning and Exploration in Stochastic Relational Worlds. PhD
thesis, Freie Universität Berlin.

Lang, T. and Toussaint, M. (2010). Planning with noisy probabilistic relational rules.
Journal of Artificial Intelligence Research, 39(1):1–49.

Lang, T., Toussaint, M., and Kersting, K. (2010). Exploration in relational worlds.
In Proceedings of the European Conference on Machine Learning (ECML PKDD
2010), pages 178–194.

Levy, W. B. (1996). A sequence predicting CA3 is a flexible associator that learns and
uses context to solve hippocampal-like tasks. Hippocampus, 6(6):579–590.

Martens, D., Huysmans, J., Setiono, R., Vanthienen, J., and Baesens, B. (2008). Rule
extraction from support vector machines: An overview of issues and application in
credit scoring. In Studies in Computational Intelligence (SCI), pages 33–63.

McCarthy, J. (1977). Epistemological problems of artificial intelligence. In Pro-
ceedings of the 5th International Joint Conference on Artificial Intelligence (IJCAI
1977), volume 2, pages 1038–1044.

166 Bibliography

McCarthy, J. and Hayes, P. J. (1969). Some philosophical problems from the stand-
point of Artificial Intelligence. In Meltzer, B. and Michie, D., editors, Machine
Intelligence 4, pages 463–502. Edinburgh University Press.

McClelland, J. L., McNaughton, B. L., and O’Reilly, R. C. (1995). Why there are
complementary learning systems in the hippocampus and neocortex: Insights from
the successes and failures of connectionist models of learning and memory. Psycho-
logical Review, 102(3):419–457.

McDermott, D., Ghallab, M., Howe, A., Knoblock, C., Ram, A., Veloso, M., Weld,
D., and Wilkins, D. (1998). PDDL - The Planning Domain Definition Language.
Technical report, CVC TR-98-003/DCS TR-1165, Yale Center for Computational
Vision and Control.

Metta, G. and Fitzpatrick, P. (2003). Early integration of vision and manipulation.
Adaptive Behavior, 11(2):109–128.

Michael, L. (2007). Learning from partial observations. In Proceedings of the 20th
International Joint Conference on Artificial Intelligence (IJCAI 2007), pages 968–
974.

Minsky, M. L. and Papert, S. A. (1969). Perceptrons. The MIT Press.

Mitchell, T. (1982). Generalization as search. Artificial Intelligence, 18(2):203–226.

Modayil, J. and Kuipers, B. (2007). Where do actions come from? Autonomous robot
learning of objects and actions. In Proceedings of the AAAI 2007 Spring Symposium
on Control Mechanisms for Spatial Knowledge Processing in Cognitive/Intelligent
Systems, pages 41–46.

Modayil, J. and Kuipers, B. (2008). The initial development of object knowledge by a
learning robot. Robotics and Autonomous Systems, 56(11):879–890.

Modayil, J. and Kuipers, B. J. (2004). Bootstrap learning for object discovery. In
Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS 2004), volume 1, pages 742–747.

Montesano, L., Lopes, M., Bernardino, A., and Santos-Victor, J. (2008). Learning ob-
ject affordances: From sensory–motor coordination to imitation. IEEE Transactions
on Robotics, 24(1):15–26.

Mugan, J. (2010). Autonomous Qualitative Learning of Distinctions and Actions in a
Developing Agent. PhD thesis, University of Texas at Austin.

Mukerjee, A. (2009). Using attentive focus to discover action ontologies from percep-
tion. In Proceedings of the 5th International Workshop on Neural-Symbolic Learn-
ing and Reasoning (NeSy 2009).

Murphy, K. (2002). Dynamic Bayesian Networks: Representation, Inference and
Learning. PhD thesis, UC Berkeley.

Bibliography 167

Norman, K. A. and O’Reilly, R. C. (2003). Modeling hippocampal and neocortical
contributions to recognition memory: a complementary-learning-systems approach.
Psychological Review, 110(4):611–646.

Novikoff, A. B. (1963). On convergence proofs for perceptrons. In Proceedings of the
Symposium on the Mathematical Theory of Automata, volume 12, pages 615–622.

Núñez, H., Angulo, C., and Català, A. (2008). Rule extraction based on support and
prototype vectors. In Studies in Computational Intelligence (SCI), volume 80, pages
109–134. Springer.

Olsson, L. A., Nehaniv, C. L., and Polani, D. (2006). From unknown sensors and
actuators to actions grounded in sensorimotor perceptions. Connection Science,
18(2):121–144.

O’Regan, J. K. (1992). Solving the “real” mysteries of visual perception: The world
as an outside memory. Canadian Journal of Psychology, 46(3):461–488.

Pasula, H. M., Zettlemoyer, L. S., and Kaelbling, L. P. (2007). Learning symbolic
models of stochastic domains. Journal of Artificial Intelligence Research, 29:309–
352.

Pednault, E. P. D. (1989). ADL: exploring the middle ground between STRIPS and the
situation calculus. In Proceedings of the 1st International Conference on Principles
of Knowledge Representation and Reasoning, pages 324–332.

Peirce, C. S. (1931). The collected papers of Charles Sanders Peirce. Harvard Univer-
sity Press.

Petrick, R., Geib, C., and Steedman, M. (2010). Integrating low-level robot/vision
with high-level planning and sensing in PACO-PLUS. Technical report, University
of Edinburgh.

Petrick, R. P. A. and Bacchus, F. (2002). A knowledge-based approach to planning
with incomplete information and sensing. In Proceedings of the 6th International
Conference on Artificial Intelligence Planning and Scheduling (AIPS 2002), pages
212–221.

Pierce, D. and Kuipers, B. J. (1997). Map learning with uninterpreted sensors and
effectors. Artificial Intelligence, 92(1-2):169–227.

Plotkin, G. D. (1970). A note on inductive generalization. Machine Intelligence,
5:153–163.

Poole, D. (1997). The independent choice logic for modelling multiple agents under
uncertainty. Artificial Intelligence, 94(1–2):7–56.

Puterman, M. L. (1994). Markov Decision Processes: Discrete Stochastic Dynamic
Programming. Wiley-Interscience.

168 Bibliography

Pylyshyn, Z. (1989). The role of location indexes in spatial perception: A sketch of
the FINST spatial-index model. Cognition, 32(1):65–97.

Pylyshyn, Z. W. (2000). Situating vision in the world. Trends in Cognitive Sciences,
4(5):197–207.

Pylyshyn, Z. W. (2001). Visual indexes, preconceptual objects, and situated vision.
Cognition, 80(1-2):127–158.

Pylyshyn, Z. W. (2009). Perception, representation and the world: The FINST that
binds. In Dedrick, D. and Trick, L. M., editors, Computation, Cognition and
Pylyshyn, pages 3–48. MIT Press.

Rakotomamonjy, A. (2003). Variable selection using SVM-based criteria. Journal of
Machine Learning Research, 3:1357–1370.

Ramon, J. and Gärtner, T. (2003). Expressivity versus efficiency of graph kernels.
In Proceedings of the First International Workshop on Mining Graphs, Trees and
Sequences, pages 65–74.

Regier, T. and Carlson, L. A. (2001). Grounding spatial language in perception: An
empirical and computational investigation. Journal of Experimental Psychology:
General, 130(2):273–298.

Reiter, R. (2001). Knowledge in Action: Logical Foundations for Specifying and Im-
plementing Dynamical Systems. The MIT Press.

Rodrigues, C., Gérard, P., and Rouveirol, C. (2010a). Incremental learning of rela-
tional action models in noisy environments. In Proceedings of the International
Conference on Inductive Logic Programming (ILP 2010), pages 206–213.

Rodrigues, C., Gérard, P., Rouveirol, C., and Soldano, H. (2010b). Incremental learn-
ing of relational action rules. In International Conference on Machine Learning and
Applications (ICMLA 2010), pages 451–458.

Rodrigues, C., Gérard, P., Rouveirol, C., and Soldano, H. (2011). Active learning of
relational action models. In Proceedings of the 21st International Conference on
Inductive Logic Programming (ILP 2011), pages 302–316.

Rosenblatt, F. (1958). The perceptron: a probabilistic model for information storage
and organization in the brain. Psychological Review, 65(6):386–408.

Rosman, B. and Ramamoorthy, S. (2011). Learning spatial relationships between ob-
jects. International Journal of Robotics Research, 30(11):1328–1342.

Russell, S. and Norvig, P. (2009). Artificial Intelligence: A Modern Approach. Prentice
Hall, third edition.

Sadohara, K. (2001). Learning of Boolean functions using support vector machines. In
Proceedings of the 12th International Conference on Algorithmic Learning Theory
(ALT 2001), pages 106–118.

Bibliography 169

Sadohara, K. (2002). On a capacity control using Boolean kernels for the learning of
Boolean functions. In Proceedings of the 2002 IEEE International Conference on
Data Mining (ICDM 2002), pages 410–417.

Safaei, J. and Sani, G. G. (2007). Incremental learning of planning operators in
stochastic domains. In Proceedings of the 33rd Conference on Current Trends in
Theory and Practice of Computer Science (SOFSEM 2007), pages 644–655.

Sanner, S. and Kersting, K. (2010). Symbolic dynamic programming for first-order
POMDPs. In Proceedings of the 24th AAAI Conference on Artificial Intelligence
(AAAI 2010), pages 1140–1146.

Schmill, M. D., Oates, T., and Cohen, P. R. (2000). Learning planning operators in real-
world, partially observable environments. In Proceedings of the 5th International
Conference on Artificial Intelligence Planning and Scheduling (AIPS 2000), pages
246–253.

Schuurmans, D. and Greiner, R. (1997). Learning to classify incomplete examples. In
Computational Learning Theory and Natural Learning Systems: Volume IV: Making
learning systems practical, pages 87–105.

Schwind, C. (1999). Causality in action theories. Electronic Transactions on Artificial
Intelligence, 3:27–50.

Setiono, R. (2000). Extracting M-of-N rules from trained neural networks. IEEE
Transactions on Neural Networks, 11(2):512–519.

Shahaf, D. and Amir, E. (2006). Learning partially observable action schemas. In Pro-
ceedings of the National Conference on Artificial Intelligence (AAAI 2006), pages
913–919.

Shani, G., Brafman, R. I., and Shimony, S. E. (2005). Model-based online learning of
POMDPs. In Proceedings of the 16th European Conference on Machine Learning
(ECML 2005), pages 353–364.

Shervashidze, N. and Borgwardt, K. M. (2009). Fast subtree kernels on graphs. In
Advances in Neural Information Processing Systems (NIPS 22), pages 1660–1668.

Shervashidze, N., Vishwanathan, S. V. N., Petri, T., Mehlhorn, K., and Borgwardt,
K. M. (2009). Efficient graphlet kernels for large graph comparison. Journal of
Machine Learning Research - Proceedings Track, 5:488–495.

Singer, Y. and Crammer, K. (2003). Ultraconservative online algorithms for multiclass
problems. Journal of Machine Learning Research, 3:951–991.

Sjöö, K. and Jensfelt, P. (2011). Learning spatial relations from functional simulation.
In Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS 2011), pages 1513–1519.

Slaney, J. and Thiébaux, S. (2001). Blocks world revisited. Artificial Intelligence,
125(1-2):119–153.

170 Bibliography

Slowinski, W. and Guerin, F. (2011). Learning regions for building a world model
from clusters in probability distributions. In Proceedings of the IEEE International
Conference on Development and Learning (ICDL 2011), volume 2, pages 1–6.

Squire, L. R. (1982). The neuropsychology of human memory. Annual Review of
Neuroscience, 5(1):241–273.

Steedman, M. (2002). Plans, affordances, and combinatory grammar. Linguistics and
Philosophy, 25:723–753.

Steedman, M. (2004). Where does compositionality come from? In Levy, S. and
Gayler, R., editors, Proceedings of the AAAI Fall Symposium on Compositional
Connectionism in Cognitive Science, pages 59–62.

Strehl, A. L., Diuk, C., and Littman, M. L. (2007). Efficient structure learning in
factored-state MDPs. In Proceedings of the 22nd National Conference on Artificial
Intelligence (AAAI 2007), volume 1, pages 645–650.

Surdeanu, M. and Ciaramita, M. (2007). Robust information extraction with percep-
trons. In Proceedings of the NIST 2007 Automatic Content Extraction Workshop
(ACE07).

Sutton, R. S. (1990). Integrated architecture for learning, planning, and reacting based
on approximating dynamic programming. In Proceedings of the 7th International
Conference on Machine Learning (ICML 1990), pages 216–224.

Teichteil-Königsbuch, F., Kuter, U., and Infantes, G. (2010). Incremental plan aggre-
gation for generating policies in MDPs. In Proceedings of the 9th International
Conference on Autonomous Agents and Multiagent Systems (AAMAS 2010), vol-
ume 1, pages 1231–1238.

Tickle, A., Maire, F., Bologna, G., Andrews, R., and Diederich, J. (2000). Lessons
from past, current issues, and future research directions in extracting the knowledge
embedded in artificial neural networks. In Hybrid Neural Systems, pages 226–239.

Towell, G. G. and Shavlik, J. W. (1993). Extracting refined rules from knowledge-
based neural networks. Machine Learning, 13(1):71–101.

Treisman, A. (1998). Feature binding, attention and object perception. Philosoph-
ical Transactions of the Royal Society of London. Series B, Biological sciences,
353(1373):1295–1306.

Uğur, E. and Şahin, E. (2010). Traversability: A case study for learning and perceiving
affordances in robots. Adaptive Behavior, 18(3-4):258–284.

Valiant, L. G. (1984). A theory of the learnable. Communications of the ACM,
27(11):1134–1142.

Valiant, L. G. (1985). Learning disjunctions of conjunctions. In Proceedings of the 9th
International Joint Conference on Artificial Intelligence (IJCAI 1985), volume 1,
pages 560–566.

Bibliography 171

Van Otterlo, M. (2009). The Logic of Adaptive Behavior. IOS Press.

Van Rijsbergen, C. J. (1979). Information Retrieval. Butterworth-Heinemann, 2nd
edition.

Vankov, I. I. (2010). Grounding relations and analogy-making in action. PhD thesis,
New Bulgarian University.

Wachman, G. and Khardon, R. (2007). Learning from interpretations: A rooted kernel
for ordered hypergraphs. In Proceedings of the 24th International Conference on
Machine Learning (ICML 2007), pages 943–950.

Waldinger, R. J. (1977). Achieving several goals simultaneously. In Elcock, E. and
Michie, D., editors, Machine Intelligence 8, pages 91–136. Ellis Horwood, Ltd.

Walsh, T. J. (2010). Efficient Learning of Relational Models for Sequential Decision
Making. PhD thesis, Rutgers, The State University of New Jersey.

Walsh, T. J. and Littman, M. L. (2008). Efficient learning of action schemas and web-
service descriptions. In Proceedings of the 23rd National Conference on Artificial
Intelligence (AAAI 2008), pages 714–719.

Wang, C. and Khardon, R. (2010). Relational partially observable MDPs. In Pro-
ceedings of the 24th AAAI Conference on Artificial Intelligence (AAAI 2010), pages
1153–1158.

Wang, X. (1995). Learning by observation and practice: An incremental approach for
planning operator acquisition. In Proceedings of the 12th International Conference
on Machine Learning (ICML 1995), pages 549–557.

Weston, J., Mukherjee, S., Chapelle, O., Pontil, M., and Vapnik, V. (2000). Feature
selection for SVMs. In Advances in Neural Information Processing Systems (NIPS
13), pages 668–674.

Whitehead, S. D. and Ballard, D. H. (1991). Learning to perceive and act by trial and
error. Machine Learning, 7(1):45–83.

Xu, J. Z. and Laird, J. E. (2010). Instance-based online learning of deterministic re-
lational action models. In Proceedings of the 24th AAAI Conference on Artificial
Intelligence (AAAI 2010), pages 1574–1579.

Yang, Q., Wu, K., and Jiang, Y. (2007). Learning action models from plan examples
using weighted MAX-SAT. Artificial Intelligence, 171(2-3):107–143.

Yoon, S. and Kambhampati, S. (2007). Towards model-lite planning: A proposal for
learning and planning with incomplete domain models. In ICAPS 2007: Workshop
on AI Planning and Learning.

Zhang, Y., Li, Z., and Cui, K. (2005a). DRC-BK: Mining classification rules by using
Boolean kernels. In Proceedings of the International Conference on Computational
Science and Its Applications (ICCSA 2005), pages 214–222.

172 Bibliography

Zhang, Y., Li, Z., Tang, Y., and Cui, K. (2004). DRC-BK: Mining classification rules
with help of SVM. In Proceedings of the 8th Pacific-Asia Conference on Knowledge
Discovery and Data Mining (PAKDD 2004), pages 191–195.

Zhang, Y., Su, H., Jia, T., and Chu, J. (2005b). Rule extraction from trained support
vector machines. In Proceedings of the 9th Pacific-Asia Conference on Knowledge
Discovery and Data Mining (PAKDD 2005), pages 92–95.

Zhuo, H. H., Yang, Q., Hu, D. H., and Li, L. (2010). Learning complex action mod-
els with quantifiers and logical implications. Artificial Intelligence, 174(18):1540–
1569.

	PhD coversheet April 2012
	phdthesis

