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Abstract 

The structural, vibrational, and electronic properties of anisotropic materials under 

compression are comprehensively investigated in this thesis. Recent developments 

in the techniques of high-pressure X-ray diffraction and Raman scattering, and sig-

nificant advances in first principle simulations provide detailed high-pressure studies 

of condensed matter systems. In view of the widely disparate strength of cohesive 

forces, these studies consist of ionic compounds, quasi-two dimensional semiconduc-

tors, quasi-molecular solids, and end with liquid crystals. As a result of the coexistence 

of different heirarchical interactions in anisotropic systems, evidence of preferential 

pressure-induced enhancement of weak bonding is found not only in the structural re-

sponse to external hydrostatic pressure but also in vibrational and electronic behaviour. 

Further, the understanding of pressure-induced breakdown of rigid-layer vibrations (ex-

plored in layered compounds), pressure-induced electron transfer in molecular crystals, 

and strong overlap of inter- and intra-molecular vibrational modes of liquid crystals 

provides insight into the essential physics of flexible molecular systems. 
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Chapter 1 

Pressure Effects on Solids: 

Overview 

1.1 Introduction 

In thermodynamics, the equations of state of substances play an essential role connect-

ing the macroscopic measurements and microscopic quantum mechanical models. All 

equations of state can be expressed in terms of the thermodynamical variables pressure, 

volume, and temperature. Temperature and pressure have been applied to materials 

to identify the energy state of a system for many years. However, the temperature 

factor is easily coupled with other intrinsic physical variables which complicates the 

thermal effects on systems. On the contrary, hydrostatic pressure furnishes a "clean" 

variable with which to explore the phase behaviour of materials. In addition to con-

densed matter science, high pressure studies have been also of sustained interest in geo 

and planetary physics where relevant pressures reach as much as several Mbar (iMbar 

106  atm = 10 12  dyne/cm 2  = 100 Gigapascal (GPa)). 

Recent progress in pressure equipment and techniques extended static pressure 

regimes to ' S-' 5 Mbar [1] which already exceeds the pressure at the earth's centre ( 
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CHAPTER 1. PRESSURE EFFECTS ON SOLIDS: OVERVIEW 	 2 

3.5 Mbar) and has provided a wide enough compression regime to explore phase transi-

tions of all well-known elements and compounds [1]. On the other hand, recent advance-

ment in computational schemes (with the support of increasing computer power) makes 

quantum-mechanical calculations for large scale electronic systems feasible. The appli-

cation of the modern first principles calculations assists us in understanding material 

properties. Moreover, the marriage of new high-pressure experimental and computa-

tional technologies has led to successful interpretation of subtle pressure effects in many 

solids characterised predominately by isotropic bonding. 

Nevertheless, for high pressure studies, there still exists a frontier - anisotropic 

materials which have not been systematically studied at pressure. Based on the mature 

high pressure methodologies pointed out above, the obstacles to studying anisotropic 

materials can be circumvented. Therefore, it is a suitable time and also the main goal 

of this thesis to perform extensive studies of anisotropic matter under compression. 

1.2 Heirarchical Cohesion in Materials 

The physical and chemical properties of substances under hydrostatic pressure are dom-

inated by the nature of the interaction among individual basic constituents. Therefore, 

information on heirarchical cohesion is a vital background for understanding pressure 

effects on materials. In general, coupling can be categorised briefly in terms of the 

strength of cohesive forces as follows. 

ionic bond: In an ionic crystal, like NaCl, the ions are coupled to each other by 

means of the transfer of electrons between cations and anions. Since the valence 

electrons associated with each ion are not appreciably distorted, the strong ionic 

bonding force is in essence contributed from the very long-range electrostatic 

Columbic attractive potential between heteropolar ions. The strength of this 

ionic bond is estimated to be about 7 ' 16 eV/molecule. 
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covalent bond: Covalent bonding arises from the sharing of valence charges between 

homopolar atoms. This interaction is due to the hybridisation of various electron 

orbitals between same species of atoms which then forms a directional bond to 

construct a covalent solid, such as diamond. The binding energy of the covalent 

bond mechanism can be calculated from its band structure and it is in the range 

of 5 12 eV/molecule. 

metallic bond: For the metallic elements, the valence electrons of atoms are eas-

ily released to form nearly-free electrons among metallic cores composed of a 

nucleus and inner electrons. Hence, the metal solid is built by nondirectional 

metallic bonds which hold the positively charged atom cores together by mutual 

attraction to free valence electrons. The strength of metallic bonds is about 1 

8 eV/molecule. 

hydrogen bond: A hydrogen bond corresponds to a specific configuration in which a 

hydrogen atom is ajoint connecting two ions together. Therefore, this asymmetric 

bond is characterised by partly covalent and partly ionic bonding type. The 

hydrogen bond plays a central role in ice crystals and the secondary structure 

of protein molecules and DNA molecules. The binding energy of this relatively 

weak cohesion is approximate 0.2 eV/molecule. 

van der Waal's force: In the noble gases or molecular crystals, the gas atoms or 

identifiable molecular subunits are held together by van der Waal's forces which 

are due to the quantum-mechanical dipole fluctuations between polarised atoms 

or molecules. This long-range secondary attractive cohesion is proportional to the 

product of atomic polarisabilities and decays with interatomic or intermolecular 

distance as r 6 . The magnitude of van der Waal's attraction is of order 0.1 

eV/molecule. 
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thermal-Casimir force and exponential force: In conventional thermotropic liq-

uid crystals, two secondary attractive forces, other than the van der Waal's force, 

have been reported recently [2]. As with van der Waal's interactions, the dipole-

dipole interactions between the thermal fluctuation induced dipole moments of 

the liquid crystal molecules accounts for the long-range thermal-Casimir forces. 

Corresponding to different mesomorphic phases of liquid crystals, there exist the 

nematic- and the smectic-thermal-Casimir force. The strength of these forces is 

of the same order as that of van der Waal's force, however, it dies off as r 5  at 

large separation. Another effective force observed in phase transitions of liquid 

crystals is due to the surface-enhanced exponential decays of smectic the order 

parameter [3]. This effective force is therefore recognised as an exponentially 

decaying short-range force. 

1.3 Generic Pressure Effects in Isotropic Semiconductors 

The structure of isotropic crystals is predominately formed by a specific type of cohe-

sion discussed previously. For instance, under ambient conditions, Silicon (Si) adopts a 

diamond structure. It is a typical isotropic tetrahedral semiconductor which is specified 

by a covalent bonding geometry. The hydrostatic pressure effects on Si can be repre-

sented by three characteristics: pressure-induced dense polymorphs, phonon-frequency 

shift, and metallisation. 

From sensitive high-pressure structural determinations [4], diamond structure Si 

was found to undergo a phase transition to a more packed configuration with a six-fold 

3-Sn crystal structure at 125 kbar. However, the generic pressure-induced phase tran-

sition route in Si is more complicated with hysteresis effects which have been discussed 

in detail in some review works [5]. In addition, the vibrational character of diamond Si 

can be displayed in its Raman spectra at different pressure. It is found that the first-

order Raman peaks, such as the mode at 520 cm- , shift linearly toward higher energy 
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with increasing hydrostatic pressure from ambient to 125 kbar [6] but without changing 

shape. This phenomena can be interpreted as the enhancement of strength of covalent 

bonds in Si by compression. Furthermore, the semiconductor electronic properties of 

ambient Si are also affected by the application of pressure. In fact, as the result of 

the resistivity measurements of Si during pressurisation process [7], a pressure-induced 

metallisation has been found and the Si with /3-Sn structure corresponds to a metallic 

phase. 

1.4 Anisotropic Materials under High Pressure 

Many materials are formed or synthesised by condensing atoms or molecules in such a 

way that their structures are principally governed by a variety of bonding types. For 

example, a crystal of 12 includes covalent bonds to hold two isolated iodines together 

and a weak intermolecular force to bond the individual molecules to form the crystalline 

structure. According to the admixture of heirarchical cohesion, the properties of these 

materials will show some degree of anisotropy at equilibrium. Further, this anisotropy 

is expected to be substantially enhanced by perturbations because of the different types 

of bonds. In view of the advantages of recently developed high pressure techniques, 

insight into manifold bonding forces can be obtained systematically by the application 

of compression to general anisotropic matters. 

As with isotropic crystals, the influence of external pressure on anisotropic materi-

als is reflected in structural, vibrational, and electronic properties. To obtain a com-

prehensive picture of compressional effects, both experimental and theoretical methods 

dedicated to high pressure investigations for anisotropic solids are employed in this the-  
- 

sis. Before exploring several case studies, an outline of well-established experimental 

techniques and devices for determining the structural details and zone-centre phonons 

of materials as a function of pressure is given in Chapter 2. The theoretical analysis 

methods are discussed in Chapter 3 which are used to perform the quantum-mechanical 
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calculations of structural stability and lattice dynamics of solids under high pressure. 

From the consideration of macroscopic network dimensionality, the remainder of this 

thesis is organised as follows. In Chapter 4, the structural and electronic properties 

of the less anisotropic three-dimensional ionic semiconductor CuC1 under hydrostatic 

compressional circumstance are discussed. It is shown that the calculated high-pressure 

polymorphism of this tetrahedral compound is consistent with experimental observa-

tions. Subsequently, anisotropic layered semiconductors are studied in Chapter 5 and 

6. The structural and electronic responses to pressure of typical quasi-two-dimensional 

layered semiconductors, GeS and GeSe, are displayed in Chapter 5, whereas the ex-

tensive studies of pressure-dependent vibrational properties of these layered solids are 

presented in Chapter 6. To further explore pressure effects on highly anisotropic mat-

ter, examples of zero-dimensional quasi-molecular crystals of Group-V metal triiodides 

are given in the first part of Chapter 7. However, for a soft condensed matter system, 

such as a liquid crystal, correspondly rich phase behaviour can be achieved by applying 

relatively low pressure. The strength of the perturbation provided by this low pressure 

range is easily accessible in experiments. Therefore, in the second part of Chapter 7, 

the vibrational properties of liquid crystals are discussed, and the further extension of 

this research is given at the end of this thesis. 



Chapter 2 

High-Pressure Experimental 

Techniques 

2.1 Introduction 

The progressive developments of high pressure technology over last few decades provide 

a unique means by which to study materials because, generally, hydrostatic pressure 

offers a stronger and more direct perturbation on materials than does temperature. 

Under compression, the static and dynamic properties of materials will undergo a 

dramatic change such as pressure-induced volume collapse, phase transition, frequency 

shift of the vibrational spectra, etc.. In order to construct a high pressure environment, 

not only are specific devices which can bear high compression required but also mature 

high-pressure techniques are necessary. This chapter is concerned with the experimental 

techniques and equipment which are devoted to structural and vibrational studies under 

external hydrostatic pressure. The principles pressure devices will be highlighted in the 

following section. 

7 
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2.2 Pressure Instrumentation and Calibration 

The rich physical phenomena under pressure has attracted much attention from scien-

tists for a long time. The more interesting pressure region is much higher than ambient 

pressure, therefore, the specific pressure equipment is necessary to support the high 

pressure investigations. Recently, significant improvements in the diamond anvil cell 

technique make the ultra-high pressure (es'  Mbar) feasible and the diamond device is 

still at the forefront of modern compression technologies. 

2.2.1 Diamond Anvil Cell (DAC) 

Since the pioneering work using diamonds for high-pressure studies up to 20 kbar 

[8] the DAC has opened a fruitful field of high pressure science. The importance 

of the DAC is not only because diamond has a inherent high compressive strength 

but also because diamond possesses a natural wide transmission range to radiation 

sources. These characters of diamond guarantee the capabilities for ultra-high-pressure 

generation. After the innovations in DAC techniques, pressures up to a few Mbar can 

be produced for specific purposes. The rapid extension of the pressure range provides 

opportunities to tackle sophisticated studies of pressure-induced phase transitions and 

other high-pressure phenomena of materials. 

The basic idea of the DAC is to use two diamond anvils to squeeze materials from 

opposite directions and the hydrostatic pressure is formed inside the materials. The 

generic arrangement of a DAC is shown in Fig. 2.1(a). In general, the diamond is 

cut specially to form a diamond anvil with a small culet face(the diameter about few 

hundreds /2m) shown in Fig. 2.1(b). The shape and the area of culet face depends 

on the different type of DAC and determines the maximum pressure of the specific 

DAC. Research for higher pressure and large volume points to larger diamonds. On 

the contrary, the price and the purity of diamond will limit the size of itself. Some 

typical designs of DAC for different purposes are presented as follows. 



diamond 
anvils 

culet face 
metal 
gasket 

i ruby and 
dium 
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(a) 
	

(b) 

Figure 2.1. Schematic diagram of (a) DAC and (b) basic design a diamond anvil 

Merrill-Bassett Cell 

Based on similar design to the Bridgman anvil [9], the compact Merrill-Bassett cell [10] 

has been extensively used in high-pressure X-ray diffraction studies. As shown in Fig. 

2.2(a), two diamond anvils are set in the beryllium (Be) supports which fit individually 

into two steel platens. The wide conical angle (100 0) of this cell facilitates more data 

collection of angle-dispersive X-ray diffraction. After careful centering and alignment of 

diamonds, the sample is placed between anvils which can be pressurised by tightening 

the three symmetrically located (120° apart) screws. The Merrill-Bassett cell can be 

mounted easily on an X-ray goniometer head for an X-ray diffraction setup. The upper 

pressure limit of a standard Merrill-Bassett with 400 /Lm-diameter culet face is about 

200 kbar. 

DXR X-ray Cell 

The arrangement of the DXR cell is similar to the Merrill-Bassett cell but a few im- 

provements have been made. As shown in Fig. 2.2(b), this piston-cylinder type cell 
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(a) 
	

(b) 

Be su 
ghtenin 

upper 
metal 
lower 

0 

Figure 2.2. (a)Merrill-Bassett cell and (b) DXR X-ray cell 

preserves diamond alignment easily during pressure increase. A further contribution 

comes from the new design of the Be backing plates which sustain a stronger stress and 

also make the light path equal within Be. Pressure is applied from the two symmetri-

cally situated screws. Normally, pressures up to 300r-400 kbar can be reached using a 

DXR cell with 400/Lm diameter diamonds. 

Diacell B-05 Diamond Anvil Cell 

This specific version of DAC is similar to a versatile pressure cell developed by Weir 

et al. [11]. For high-pressure spectroscopic measurements, type ha diamonds (low 

fluorescence) with 500/Lm diameter culet face have been chosen to be the optical window 

of the Diacell B-05 DAC because of its highly transparent property over a wide spectral 

range. In Fig. 2.3, the applied force from the screwing knob can be transferred via the 

lever-arm to push the piston of the Diacell (shown in Fig. 2.3). This optical pressure 

cell has been tested as high as 500 kbar. 

Different types of DAC have been built for various applications. For instance, the 

DAC for single crystal [12] and powder [13] X-ray diffraction, Raman scattering [14], 
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screwing knob 

pressure 

Figure 2.3. A cross-sectional view of Diacell B-05 DAC. 

high-pressure measurements with thermal perturbation [15], etc. The details of DAC 

techniques can be found elsewhere [16, 17]. 

2.2.2 Pressure Transmitting Media and Metal Gasket 

In order to generate uniform stress on the samples, a pressure-transmitting medium 

is needed to translate the uniaxial thrust into hydrostatic pressure. Considering the 

constraints of the pressure medium, such as chemical inertness, low compressibility, 

easy filling in gasket aperture, etc., some candidate organic fluid mixtures [18] and 

condensed gases [19] have been studied. It was found that a 4:1 methanol-ethanol 

mixture maintains pressure homogeneity when pressurised up to 200 kbar [18]. This 

pressure medium has been widely used for the last twenty years. However, many 

pressure media are not suitable for the samples with moisture sensitivity. 

Beside the pressure transmitting fluid, the gasket is another auxiliary device in 

DACs. Before the use of metal gaskets, high-pressure studies only could be implemented 

in a DAC without a pressure medium and the pressure gradient in the sample was very 

high. Indeed, the lower pressure regions of sample around the edges of diamond culet 
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faces act as a supporting gasket for the central high-pressure area. The first metal 

gasket in the DAC was developed to maintain a hydrostatic medium within the sample 

space of the DAC. As depicted in Fig. 2.1(a), the metal gasket with a few-hundred-

pm diameter hole for sample and compression medium has been indented between the 

diamond anvils and the extruded metal forms a supporting ring around the edge of 

the diamond culet face. This extruded ring protects the diamond-face edge from the 

concentration of stresses at the edge under high pressure. Mao and Bell [20] proposed 

beveling the edges of the diamond anvils to reduce the stress gradients more efficiently 

to reach higher pressure. Usually, harder material, such as tungsten (W), is needed for 

ultra-high pressure experiments. 

2.2.3 The Ruby Pressure Gauge 

How to determine the magnitude of pressure with accuracy is a crucial for high pressure 

research. A trivial way to measure the pressure is to use the primary pressure gauge 

which is based on the fundamental definition of pressure, force per unit area. However, 

the uncertainties in force measurement inside the pressure cell prohibit this method. 

Alternatively, using the systematic property change of materials with compression, a 

secondary pressure gauge provides a more reliable determination of pressure. The ruby 

pressure gauge is one of the secondary pressure gauges and is widely used in the DAC. 

The ruby pressure static scale measures the pressure response of sharp ruby (R i  

line) fluorescence (at 6942A ). It was developed by Forman et al. The main advantage 

of using the ruby pressure scale is the linear dependence between R 1  line shift ii and 

external hydrostatic pressure P over a modest pressure-region (0 to 100 kbar) [21], 

P(kbar) = -1.321(v - vo)(cm) 	 (2.1) 

where vo=1/6942 cm - 1 . The accepted pressure-induced shift rate (0.757 cm 1 /kbar) 

and sharp linewidth (7.5 A) of the ruby R 1  fluorescence yield a reasonably precise 
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pressure determination. Due to the high intensity of the ruby R1 line only a small 

ruby chip (- 2.7 x 10 5 mm3 ) is needed to make the pressure measurement accessible 

especially in the small working volume within a DAC. 

However, there are different arguments concerning the linearity of the extrapolated 

dependence of pressure-induced ruby R1 line shift beyond 200 kbar [22, 23]. Mao et 

al. [24] have done the ruby pressure calibration up to 1 Mbar and observed that the 

linear ruby scale underestimates by about 10% at high pressure. They suggested a new 

calibration curve to fit the ruby data, 

P(kbar) = 3.808 1 	- 1 1 (cm) 	 (2.2) 
ii 	.1 

Beside the uncertainty of ruby calibration at very high pressure, the doublet spin 

transition (2  E -* 2 A4 ) and significant temperature sensitivity ((dA/dT)/(dA/dP)= 0.186 

kbar/K) [25] of ruby fluorescence also limit the precision of ruby pressure scale. 

Although corrections to the ruby scale will certainly be required, the ruby sensor 

is still generally accepted up to 200 kbar. For the case studies in this thesis, which are 

mainly below 200 kbar, the ruby sensor is especially convenient and reliable. 

2.3 Angle-dispersive X-ray Powder Diffraction Method 

Since the invention of X-rays in 19th century, X-ray has been used frequently to probe 

the atomic world. The most successful application of X-ray techniques is to elucidate 

the structural detail of materials. Lots of diffraction methods have been developed and 

the most direct evidence of crystal structure can be read from a single crystal diffraction 

method. However, during high pressure structural studies, the pressure gradient inside 

the specimen will increase dramatically. This effect causes strong stresses on single 

crystals, and impedes high-pressure single crystal diffraction. Therefore, the powder 

method is more suitable for high pressure study. The angle-dispersive powder method 

using a fixed monochromatic X-ray beam will be discussed in this section. 
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2.3.1 Powder Diffraction 

The mechanism of powder diffraction method is similar to the single crystal diffrac-

tion except the specimen is in polycrystalline form. Traditionally, the powder method 

was suited to materials for which single crystal forms are not available. However, 

the technique has attracted more interest since the introduction of modern refinement 

techniques which can accurately extract 3-dimensional information of materials from 

1-dimensional powder diffraction pattern. The rapid development of data analysis en-

larges the application field of the powder method and nowadays, the powder diffraction 

technique is extensively used in material science. 

X-ray Scattering from Crystals 

The basic mechanism of X-ray diffraction by crystalline materials is represented clearly 

by W. L. Bragg who explained the diffraction phenomena with a simple model in 

which atoms of perfect crystals are arranged regularly to form many parallel lattice 

planes with an infinite boundary condition. In this model, constructive diffraction can 

happen only if the reflections of a strictly monochromatic X-ray from successive planes 

are coherent, i.e. the difference of X-ray path between two neighbouring lattice planes 

must be an integral number of incident X-ray wavelengths (as shown in Fig. 2.4). 

Then, the Bragg's law can be formulated as, 

nA = 2d sin 9 
	

(2.3) 

where A is the wavelength of incident X-ray. d is the space between lattice planes. 9 

is the angle between incident X-ray and the lattice surface. The integer ii is the order 

of the corresponding reflection. Using the monochromatic X-ray source, the diffracted 

sharp peaks with special diffraction angles provide information on the possible shape 

and size of the unit cell. 



I 

dd4nt 

CHAPTER 2. HIGH-PRESSURE EXPERIMENTAL TECHNIQUES 
	

15 

Figure 2.4. Diffraction of X-rays by a crystal. 9 is the half of diffraction angle and 
d is the distance between two parallel lattice planes. The light path difference is 2a 
where a = d sin 9. 

Angle-dispersive Powder Method 

Under the stringent requirement of the Bragg's law, the incident fixed A X-ray brings 

about only a few observable diffraction events for a given crystal. By changing 0 during 

the experiment, the angle-dispersive powder diffraction method can overcome this ob-

stacle. The powdered sample is a assemblage of tiny crystals with random orientations 

with respect to the incident X-ray. The randomly oriented polycrystalline arrangement 

is equivalent to a single crystal rotating around each possible axes. The crystal rotation 

with a specific axis generates a conical sheet of diffraction for which the cone angle is 

equal to twice the corresponding diffraction angle. A whole diffracted sphere is built 

up by superimposing all diffracted rings if the powder stacking is random enough to 

diffract the incident beam in all possible directions (as shown in Fig. 2.5). The angle-

dispersive powder method is more suitable for the sample under high pressure because 

the stress gradient on powder is much lower than on single crystals. Nevertheless, the 
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X. 

Figure 2.5. Formation of a diffracted sphere of radiation in the angle-dispersive 
powder method. 20 and 202  denote the diffraction angle with respect to two different 
diffracted cones. 

full picture of crystal structure is deduced from the combination of the unit cell deter-

mination and the intensity knowledge of each diffraction peaks which is dominated by 

the atomic arrangement in the unit cell. The detail of the diffraction profile will now 

be discussed. 

The Output of X-ray Powder Diffraction 

Following the rigorous condition of the Bragg's law, the profile of each diffraction of the 

ideal crystal using pure monochromatic X-ray should be a sharp 6 function for which 

intensity depends on the radiation source and structural parameters within a unit 

cell. However, the intrinsic imperfection of samples and the extrinsic perturbation, 

such as the nominally monochromatic X-ray and instrument geometry, cause peak 

broadening curves and unavoidable background scattering. Then, the measurement 

of the integrated intensities defined as the areas under diffraction curves are more 

important than the maximum intensities. 
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Table 2.1. The important factors affecting the integrated intensity of random powder 
scattering. N is the number of atoms within the basis of unit cell. The f,-, and r = 

(x n ,yn ,zn ) are the form factor and the positional vector of the nth atom, respectively. 
The hkl represents a special reflection with Miller index hkl which corresponds to a 
reciprocal vector K with respect to a diffraction angle is 20. The parameter p depends 
on the polarisation of the incident beam (e.g. p = 1 for an unpolarised X-ray). The 
thermal agitation parameter M is a function of the half-diffracted angle 0 and the 

thermal vibration amplitude u. 

Structure factor 	 Fhkl = i'=i f,, exp2( 	n+lzn) = >i::'= 	exp' 

2  Lorentz-polarisation factor LP = si 1+pcos 0 
n2  O cos 0(1-f-p) 

Multiplicity factor 	mhk, 

Absorption factor 	A(0) 

Temperature factor 	T(u, 0) = exp_M(uO) 

Rather than for a single crystal, there are more crucial parametrised factors [26] 

listed in Table 2.1 which must be taken into account in calculating the the integrated in-

tensity of diffraction peaks in the powder diffraction method because of the randomised 

crystalline distribution of powdered sample. As formulated in Table 2.1, the structure 

factor Fhkl depends on atomic scattering form factors f,, which decreases rapidly while 

sin 0/A increases. The Lorentz-polarisation factor describes the geometrical condition 

of the sample and the polarisation of the incident radiation. The multiplicity is a fac-

tor which concerns the contribution from reflection planes with different Miller indices 

having the same geometric spacing. The absorption factor is considered to multiply the 

calculated intensity. Moreover, the thermal diffuse background of diffraction pattern 

resulting from the thermal fluctuation can be modeled as a Debye form [26]. 

Therefore, the basic expression of the integrated intensity at 29, corresponding the 
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hkl reflection of a randomly distributed powder sample using X-ray can be written as 

II.:.1(20i)6i) - 
- I0 A 3v 

IFhkII 2 mhklA(0)T(u, 0) LP 	 (2.4) 
 v2 

where I, and A are the intensity and the wavelength of the incident X-ray, respectively. 

The V is the volume of the unit cell and the v is the diffracting sample volume. 

From Eqn. (2.4), the 3-dimensional information of the atom arrangement can be 

systematically studied from the measurement of each 1-dimensional diffraction peak. 

However, in the total pattern, the peak-overlapping from neighbouring reflections exists 

and this 'scrambling' feature becomes more severe when the density of the reflection 

lines increases. In order to figure out the individual integrated intensity, a robust 

method which can correctly simulate the contribution of neighbouring diffraction lines 

is necessary and will be discussed in Sec. 2.3.3. 

2.3.2 Instrumentation 

The instrumentation for high-pressure powder diffraction includes synchrotron radia-

tion and the image plate system. Owing to the advantages of strong intensity, small 

cross section and tunable wavelength of output X-ray radiation, synchrotron radiation 

has been widely accepted for detailed structure study of materials. Another crucial 

technique, the image plate, has been developed recently and provides a promising re-

sult for high pressure study. Both techniques will be described as follows. 

Generation of X-rays in a Synchrotron Radiation Source 

The basic idea of synchrotron radiation is that electromagnetic radiation is emitted 

from accelerating charged particles. The radiation frequency can be extended to the 

X-ray region when light charged particles, such as electrons, are accelerated to close to 

the speed of light c. (c 3 x 108  m/sec). 

The outline of the facility at SRS Daresbury is shown in Fig. 2.6. The electrons 
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are generated and speeded up from a linear accelerator, then boosted in the booster 

in order to be injected into the storage ring in which the charges circulate around for 

several hours. Under the magnetic field of the long bending magnets, the electrons will 

lose energy and emit radiation which energy can be enhanced by a insertion magnetic 

device, wiggler. The lost energy is compensated when the electrons go through a radio-

frequency cavity inside the ring. According to the Lorentz transformation, the output 

photon with the instantaneous velocity v emitted along the tangent of the electron 

orbit with momentum P11 and energy E will induce an effective momentum on the 

plane perpendicular to the the tangent direction in the laboratory frame 

1 abII = 'ii 
	 (2.5) 

Plab± - 
	E 

(2.6) 

	

- c\/1— 	C 

where, for photons, /3 = 	1, and P11c = E beacuse of the Einstein relativity formula. 

Then, the radiation can be detected within a emission cone with a very small cone 

angle T (< 1 mrad) 

ltan= 1 lablI . (2.7) 
Plab± 	7 

Within the small cross-section corresponding to the cone angle, synchrotron radia-

tion provides a brighter source than the conventional electron-impact X-ray generator 

does. Synchrotron radiation with a strong intensity source will shrink the exposure time 

and produce high-resolution data. Another remarkable advantage of using SRS is that 

the synchrotron generates X-rays not only a shorter wavelength but also with a wide 

working range of tunable radiation which can be used to probe small polycrystalline 

structures. 

As shown in Fig 2.6, the X-ray source on Powder Diffraction Station 9.1 at the 

SRS Daresbury comes from a multipole 5 Tesla wiggler magnet and then through a 
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Figure 2.6. Schematic diagram of SRS at Daresbury. LINAC is the linear accelerator. 
RF and LB denotes the radio-frequency cavity and the long bending magnets. 

monochromator housing to allow a proper size and wavelength of collimated beam. 

The monochromator housing is composed of a Si(111) monochromator which selects 

the operating wavelength (0.42 .-.' 0.9A ) and tungsten-carbide (WC) slits which reduce 

the beam size (0.5 x 0.5mm 2 ). 

Image-Plate Detector 

At high pressure, the very small sample volume is of order 5 x 10 5 ,1m3  within the DAC. 

This gives a fairly weak signal and a poor powder average which limits the quality 

of one-dimensional data collection by a conventional Debye-Scherrer film. In order 

to accumulate enough scattering intensity, a modern two-dimensional area detector 

technique, image-plate (IP) system, has been developed recently [27, 28] and used to 

perform angle-dispersive powder diffraction under pressure [29]. 

The design of the synchrotron-based IP system on Station 9.1 is illustrated in Fig 

2.7. The stray radiation of the collimated beam from the monochromator housing 

is absorbed by a Pb shield and then passes through a WC tube. At the end of the 



CHAPTER 2. HIGH-PRESSURE EXPERIMENTAL TECHNIQUES 	 21 

Pb Shield 

Monochromator 

Housing 

Figure 2.7. A schematic diagram of a image-plate setup at SRS. The pinhole is 
mounted on a motorised XYZ stage and the pressure cell on another adjustable stage 
where both are not shown here. The axes used to define beam and plate geometry are 
also defined in this diagram. 

WC tube, a pinhole with a spark-eroded hole 300tm was mounted to eliminate the 

contamination from A/3 radiation which surrounds the incident A beam. The charac-

teristic K-absorption edge of Pt (at 0.15817 A ) is more suitable for this attenuation 

for A < 0.4745 A . However, a further reduction of the A/3 halo is implemented by 

another small Pb shield with a tiny hole (1mm) attached at the front of DAC window. 

Then, a cleaner beam results and the full diffracted cone is detected by a 20 x 25cm 2  

Kodak storage-phosphor image plate. 

The two-dimensional pattern recorded on an image plate is read by means of a 

Molecular Dynamics 400A Phosphorlmager which extracts the 2800 x 2000 pixels data 

from the A4 sheet image plate. As shown in Fig. 2.7, the relationship between pixel 

position (Xv , Y,, 0) and the Bragg diffracted angle 0 for a ideal flat plate geometry is 
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formulated as, 

(X - X 8 , Y - Y3 , — Z3) (X - X8 , 1' - Y3 , —Z3) 	
(2.8) cos 20 

I(X—X3 ,Y—Y3 ,—Z8 )I I(X—X8 ,1'—Y3 ,—Z8 ) 

where the sample position and the center of strike beam are represented as (X 3 , 1's , Z3 ) 

and (Xe , Y, 0) respectively. 

However, in real cases, the intensity integration of a 2-dimensional Debye-Scherrer 

ring is still affected by a few uncertainties from the geometry and a robust algorithm is 

needed to overcome this hamper. The PLATYPUS program developed at Edinburgh 

is a powerful and reliable program to translate 2D image data into 1D diffraction 

profiles. Using PLATYPUS, the raw 2800 x 2000 pixels data are firstly divided into 

160 sectors and the data size is reduced to 160 x 2500 points. Then, the uncertain 

parameters (such as the sample to image plate distance and the unit direction vector of 

the incident beam) are adjusted by a algorithm designed to maximise profile sharpness 

[27]. After determining all unknown parameters, the 2D pixels are rebinned into 1D 

pixels pattern (shown in Fig. 2.8). Moreover, the converting relation of the pixel 

number into 20 coordinates can be obtained by collecting the pattern of a material 

(e.g. Si) with well-defined lattice parameters and index of each reflection at the given 

distance. After this calibration, the diffraction profile as a function of 20 is eventually 

deduced. 

2.3.3 Structure Determination 

The comprehensive characters of diffraction patterns include mainly two components: 

the diffraction line positions and line intensities. The unit cell parameters are deter-

mined by the angular positions of all diffraction lines. Meanwhile, the detailed location 

of atoms within a unit cell is dominated by the relative intensity of the lines. In order to 

decipher detail of the crystal structure, the diffraction pattern is modeled as a function 

of structural parameters and a matching process between the observed and calculated 
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Figure 2.8. The procedure of the data conversion algorithm in PLATYPUS. 

pattern is repeated until the accurate structure is found. 

The structure-searching procedure can be implemented straightforwardly on a com-

puter as an iterative programme to minirnumise the difference between calculated and 

observed results. Before searching the optimal structural parameters, an appropriate 

initial trial structure which is close to the destination structure is needed to reduce the 

computation cost. In general, this initial trial configuration of an unknown structure 

can be obtained by means of, for example, a pattern indexing program DICVOL91 [30] 

in which the size and shape of a unit cell is determined by an optimised successive 

scheme. However, most structural studies in this thesis were started from well-defined 

configurations and the initial structural parameters for finding real structures can be 

acquired from previous structural surveys [31]. 

Once the possible size and shape of the unit cell have been found, the detailed 

structure can be determined by a refinement procedure which can routinely search 

the possible structural solutions. A profile refinement method introduced initially by 

Rietveld in 1969 [32] is accepted widely and applied in many fields. There are a lot of 

computer programs based on Rietveld's method have been developed and widely used. 

Two Rietveld method programs, MPROF [33] and DBWS [34], are employed to do the 
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profile refinement in this thesis. 

The Rietveld method is a minimisation technique which looks for an optimised 

line-profile matching between calculation and observation. Before the searching of the 

correct structure detail, a precise model of the observed diffraction pattern is needed. 

For total pattern fitting, the reflection lines contain structural and nonstructural parts 

in Rietveld's model. As pointed out in Sec. 2.3.1, the structural information is in-

cluded in the intensity of an idealised individual diffraction peak which is expressed 

as a function of structural parameters (Eqn. (2.4)). The nonstructural component of 

Rietveld model is an analytical function. Thus, the Rietveld method does not require 

the integrated intensity for each reflection. In other words, the whole diffraction profile 

is calculated. 

Considering the overlap from neighbouring contributing reflections, the Rietveld 

calculated intensity of 20i is 

Scai(29i) = 	Icai(29j)Y(29ij) + B(29) 	 (2.9) 

where V is the analytical profile function which is normalised to unit area and L20 ZJ  = 

29, - 29g . B(29 2 ) is the background at 20i and can be simulated by a function of the 

polynomial fitting of chosen observed background intensities. The summation is over 

all Bragg peaks which neighbour and contribute the intensity at 20. 

There are different types of analytical profile functions commonly used, such as 

Gaussian function [32], Pearson VII function [35], Voigt function [36], etc.. All of the 

analytical functions are basicly composed by a combination of the Lorentzian function 

and the Gaussian function which are defined as 

Lorentzian: Y1(A29) = Y(00) 	
(FWHM1)2 	

(2.10) 
(FWHM1) 2  + 4(29)2 

	

29 	)2 	(2.11) Gaussian: Y(i20) = Y(Oo)exp_4ln2(FWHM 
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where the subscripts 1 and g represent the Lorentzian and the Gaussian function, re-

spectively. Y(O o ) is the maximum intensity the function at Oo  and z29 is the difference 

from position of maximum position. FWHM is the full width at half maximum intensity 

and is a function of angular position [37] 

(FWHM(9)) 2  = Utan2 (9) + Vtan(9)  + W 	 (2.12) 

where U, V and W are the halfwidth parameters. 

The widely accepted Pseudo-Voigt function [38] which is also used throughout this 

thesis is a linear combination of the Lorentzian and the Gaussian. The profile is for-

mulated as 

Yp_v(L29) 	iY(L2O) - (1 - i)Y9 (L29) , 0< ,q:51 	(2.13) 

where i is the pseudo-voigt mixing parameter. 

The distribution of stacking directions in a powder has to be considered as well in 

pattern modeling. Especially in anisotropic materials which is the focus of this thesis, 

the sample is easily cleaved along a special axis and the crystallites tend to have rod-

or disk-like shape. This anisotropic character will lead a natural preferred orientation 

of sample crystallites during the sample loading. 

The preferred orientation effect can be reduced by careful sample preparation but 

cannot be removed completely. In this case, the calculated intensity in Eqn. (2.9) 

should be modified as 

Sr  ai(20i) = 	Icai(293 )Y(L20jj)Pj + B(29) 	 (2.14) 

where P3  is a preferred-orientation function corresponding the reflection at 29 g . Two 

different correction schemes for preferred orientation effects are introduced in MPROF 
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Figure 2.9. A schematic diagram showing the preferred-orientational (P0) geometry 
in a powder diffraction for an anisotropic material. 

and DBWS individually. In MPROF, the original Rietveld form is taken, 

P = exp(—Gc) (2.15) 

On the other hand, a empirical preferred orientation correction, March-Dollase function 

[39], is used in DBWS within a commercial package CERIUS, 

P, = (r cos j +r_l  sin  2 aj )_3/2 	 (2.16) 

where G and r are adjustable coefficients. aj is the angle between the scattering vector 

at 20i and the preferred-orientational direction (as sketched in Fig. 2.9). 

Thus, the minimisation process of the Rietveld method is implemented by a least-

squares fitting between the calculated and observed intensities of the whole pattern. 

The cost function F which has to be minimised with respect to all structural and 

nonstructural parameters discussed above is 

1 
F= >W(29i){Sobs(291) - Sca1(29i)}2 1 W(29) 

= Sobs (20 i )
(2.17) 
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where W(20) is the observation weight of the reflection at 29 . The summation is 

over all the independent observations. The quality of minimisation can be evaluated 

by different reliability factors [40]. The R-weighted pattern factor R,,p  is normally used 

to indicate the goodness-of-fit and is defined as 

	

= 100 x 	
_ 1 (S0bs (201) - Sca1(29i))2 	 (2.18) 

Iri (S0b3 (29)) 2  

where N is the number of observations. 

Starting from a proper initial point in the configuration space with respect to all 

refined parameters, the Rietveld refinement process is carried out with different trial 

parameters set until the R,,p  factor converges to a minimum. A small value of 

represents a good fitting between calculated and observed profiles. Another comple-

mentary indicating factor x2  which is a ratio of the cost function F (Eqn. (2.17)) to 

the number of degrees of freedom is also used in MPROF method. The value of x2  

closes to unity when the fitness is very good. Furthermore, based on the Gaussian 

statistic model within the least-squares algorithm, the error of each refined parameter 

p, is described by an estimated standard deviation a(p) 

	

a(pi) 	

1 (2.19) 
M11 (N— P+C) 

where Mij  is the matrix of the least-squares algorithm, N is the number of observations, 

P denotes the number of adjustable parameters during refinement, and C is the number 

of constraints. 

2.4 High-resolution Raman Scattering 

In order to study the dynamics of materials, the technique of vibrational spectroscopy 

has been developed and broadly used. In accordance with different mechanisms, the 

vibrational spectroscopic technique can be classified as two branches: light absorption 
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and light scattering. Unlike light absorption using infrared radiation, the techniques 

of light scattering spectroscopy are ba.sicly designed to detect the induced fluctuations 

of charge density of a medium during the light scattering process. Raman scattering is 

a standard spectroscopic tool to study the inelastic light scattering process. The first 

part of this section is devoted to the Raman effect. This is followed by description of 

pressure-induced Raman effects and experimental considerations. 

2.4.1 Raman Effect 

The Raman effect studied first by C. V. Raman in 1921 describes the interaction of 

electromagnetic radiation with materials. When electromagnetic radiation impacts on 

matter, the atoms within the system are perturbed by the applied electric field and 

oscillate around their equilibrium positions. The vibrations which are in phase of all the 

atoms are observed in spectroscopy as a band and named as normal modes of vibration. 

The total number of normal modes of a general three-dimensional system comprised 

N atoms is 3N-6 which is derived from the number of degrees of freedom of N atoms 

minus those of three pure translations and of another three pure rotations of the whole 

system. 

For each normal mode of vibration of the atoms, the charge distribution within the 

system undergoes a deformation and an induced dipole moment is generated. Based 

on the classical electromagnetic theory, the creation of the induced dipole moment jAj 

is deduced from the variation of an electric field, 

pi = cE = aEo  cos (2irvot) 	 (2.20) 

where E0  is a vector of the amplitude of electric field of incident radiation. vo is 

frequency of incident monochromatic radiation and t is time. a is the polarisability 
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which can be expressed in the Cartesian coordinate system as, 

I a  a y  axz  

ct = 	= I 	a 	c 	I 	(2.21) 

&z azy azz ) 

where the second rank tensor a, 3  depends on the nature of structure and direction 

of bonds within material. For example, the polarisability of an isotropic material 

adopts spherical symmetry and is represented as a symmetric tensor with equal diagonal 

e1ements,a = a = a.1 . Then, the average polarisability a is 

45Z  = 1
T(a + ayy  + a) = axx 	 (2.22) 

However, for an anisotropic system, the polarisability tensor is an ellipsoid symmetry 

and this deviation can be evaluated by the anisotropy 

21 = 	- a)2  + (a 	azz  + (a - axr) 2  +6 (a + 	+ aj] (2.23) 

Based on the adiabatic approximation, the polarisability tensor can be expanded 

as a Taylor's series in normal coordinate Q, 

	

ct = ao + ()oQ  + high order terms 
	

(2.24) 

where a0  is the polarisability associate with the equilibrium of the system. The small 

atomic vibration of the normal coordinate Q with amplitude q and frequency Uph is 

given by 

	

Q = qcos(27rxiht) = 
'21q1 cos(27rvht) 
	

(2.25) 

where 4 and  lI is the unit vector and the value of the amplitude vector q, respectively. 
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Under the vibration Q, the polarisability a 0  oscillates and the induced dipole mo-

ment is formed as 

aoEo cos(2irvot) + l ( 
Oa 

 )oqE0{cos[27r(vo - vph)t] + cos[2ir(uo  + vh)t]} 

+high order terms (2.26) 

where the first order term on the right side accounts for the one-phonon process with 

a fundamental frequency shift (vh), whereas the two-phonon scattering referred to as 

an overtone is described by the high order term. 

Consequently, in Eqn. (2.26), three components with respect to three different 

types of scattered radiation which can be observed. The elastic Rayleigh Scattering is 

described by the first term of jt, with the same frequency go  as the incident radiation. 

The second and the third term with a specific frequency-shift from u 0  corresponds to 

two inelastic scatterings in which Stokes Raman scattering is specified by the frequency 

vo  t'ph and anti-Stokes Raman scattering by P0+1/ph. Then, the Rayleigh band, Stokes 

Raman band, and anti-Stokes Raman band are separated by a reasonable distance 

in frequency axes and make themselves detectable using a spectrometer with enough 

resolution. Actually, the inelastic Raman scatterings happen only under the condition 

(aa/OQ) 0  0 which is different from the constraint necessary condition for the infrared 

absorption (Ojz/OQ) 0. 

The phenomenon of Raman scattering is easily understood by taking into account 

the interaction between photons and phonons (which are the quantisations of atomic 

vibrations). As the schematic interpretations in Fig. 2.10, the Rayleigh scattering is 

explained as follows. The material with initial energy hv o  is excited up to a virtual 

state by incident radiation hv0  and then returns to the original state accompanied by 

scattered radiation without any energy loss. However, in Stokes Raman scattering, the 
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Figure 2.10. Transition between the vibrational energy levels with respect to scat-
tering bands. E0, E, and E1  denotes the energy level of the ground electronic state, 
virtual state, and excited electronic state, respectively. v is the vibrational level. The 
incident and the phonon frequency is represented by u0 and vu,, respectively. 
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inelastic scattering process is due to phonon absorption during the energy transition be-

tween initial and final state which is constrained by the selection rule for the fundamen-

tal transition, LIv = ±1, and thus the scattered frequency is uo-(vv=o—v v= i) = VOVph. 

Also, the anti-Stokes Raman scattering is characterised by phonon emission within the 

transition and increases the frequency of scattered radiation to v0 + Uph. Furthermore, 

under conservation of wavevector during the scattering process, the wavevector of the 

induced phonon kph ".' 0, therefore, the general one-phonon Raman scattering permits 

routine studies of the zone-center phonons. 

By classical electromagnetic theory, the intensity of an oscillating dipole moment is 

defined as 

16ir4v4 2 
= 3c3 	

(ôa/OQ)o I 2 qI 2 	 (2.27) 

where (aa/OQ)04 is defined as a Raman tensor wich is a second rank tensor possessing 

all point group symmetry of the material. The power spectrum is denoted by 1q1 2  and, 

for the one-phonon Stokes process, is expressed as 

2 qI - - _
h 

 (npi + 1)L ph(v) 	 (2.28) 

where N is the number of phonons in the specimen. flph  and Lh(v) is the Bose thermal 

population factor and the Lorentzian line-shape function. 

71ph = 	1 	 (2.29) 
exp(2'j - 1) 

- 	(FWHM) 2  
(2.30) Lph(v) - (

FWHM) 2  + (vh - v)2 

Due to the Placzek's theory [41], Uph << vo  and hv0  is much smaller than the energy 

difference between two electric states, the intensity of Rayleigh scattering is about a 
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Figure 2.11. One possible Feynman diagram for one-phonon Stokes scattering process. 

Ii > and If > are initial and final states of the system. le, > and 1e2 > denotes the 
first and the second intermediate state, respectively. e+  represents the hole which will 
recombine with electron eventually. v, v 3 , and Uph stands for the frequency of the 
incident, scattered, and phonon, respectively. 

thousand times that of Stokes Raman scattering. Also, the intensity ratio of Stokes to 

anti-Stokes Raman scattering is larger than unity because there is a greater population 

of oscillators in the lowest energy state. 

In addition to the classical picture mentioned above, the detailed procedure of 

Raman scattering does include the electron-photon and electron-phonon interactions. 

Using quantum field theory, the Raman scattering process for one-phonon generation 

can be expressed by a Feynman diagram shown in Fig. 2.11. 

The scattering probability at each vertex can be expressed in a perturbation theory 

series via the Fermi Golden Rule [42]. For example, the scattering probability at the 

first vertex of Fig. 2.11 referring to the transition between initial state Ii > and the 

first intermediate state lei > is, 

2 

<eijHerIi> 
[hv - (Ee 

el> 	
i  - Ei)] 	

(2.31) 
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where Her is the electron-radiation interaction Hamiltonian and E is the energy of 

state n. Then the magnitude of the polarisability which is a function of scattering 

probability of the whole Feynman loop can be calculated by third order perturbation 

theory [43] as proportional to, 

< fIHerIe2 >< e2IHpIei >< 	> 

Ie1>,1e2> [hzi 
	Z' hh - (Ee2  - E)][hvj - (Eei - Ei)] 	

(2.32) 

where Hep  is the electron-phonon interaction Hamiltonian. 

The polarisation properties of materials contribute strongly to the scattered radi-

ation especially for crystal structure and therefore, each Raman-active mode can be 

identified by measuring the depolarisation ratio p of scattered radiation which is given 

by 

I-I-  - 	 (2.33) 
Ill 

where I_L  is the component of scattered intensity which is perpendicular to the polari-

sation of incident radiation and I is parallel component of scattered intensity. Thus, 

the different compositions of polarisations of the incident radiation and the specimen 

permit the measurement of p which yields the assignment of each vibrational mode by 

using group theory. 

Besides the general Raman effect discussed above, there are other special Raman 

techniques which are widely applied in different systems. For example, the prereso-

nance and resonance Raman effect [44] and Surface-enhanced Raman Spectroscopy [44] 

which has been used to study the biomolecules absorbed on a metallic surface. Thus, 

the versatility of Raman effect proves that it is a sophisticated method to investigate 

materials. 
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2.4.2 Pressure-induced Modification of Raman Effect 

As described above, during one-phonon Raman scattering, the scattered Raman lines 

mainly arise from the Raman tensor and the power spectrum. The Raman tensor 

reflects symmetry and the interactions within the specimen and the power spectrum 

describes the frequency and the output profile of each Raman line. It is expected that 

these two factors will be affected when external pressure is applied and can be observed 

from the Raman spectrum. 

Firstly, the force constants of the bonds inside the structure are modified under 

compression and the pressure-induced spectral shifts of Raman lines with specific force 

constants are expected. Moreover, the rate of pressure-induced phonon frequency shift 

is used to define the Grüneisen parameter which characterises the nature of different 

types of bonds and the cohesion arising from each chemical bond. These can be clas-

sified by scaling laws which will be discussed in detail in Chapter 6. Also, considering 

the artharmonic interactions, the lifetime of the phonons is affected and the profile of 

Raman line will be changed by pressure. 

Secondly, the magnitude of each component of the Raman tensor will be also af-

fected substantially by pressure. Taking into account Eqn. (2.32), the electron-phonon 

interaction can be described schematically in Fig. 2.12. The direct electronic bandgap 

hv9 (= Ee2 - E in Eqn. (2.32)) will be modified by applying the compression and then 

the components of Raman tensor are changed which yield a pressure-induced intensity 

variation. Finally, the symmetry of Raman tensor components and Raman selection 

rules will change while a pressure-induced structural phase transition corresponding to 

the change of space group takes place. 
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V, 	
hvg 

E 

Figure 2.12. Schematic diagram of two-band process of Raman scattering. k and E 
denotes the wavevector and energy respectively, v9  is the frequency corresponding to 

the energy gap. li >= If > locates at the valence band and le i  >(or 1e2 >) at the 

conduction band. The rest notations are the same as Fig 2.11 

2.4.3 Experimental Aspects of Raman Scattering 

A typical setup for a general Raman scattering experiment includes three main appa-

ratuses: the exciting source, auxiliary optics, and the spectrometer. Unlike the conven-

tional Raman scattering, the Light Amplification by Stimulated Emission of Radiation 

(LASER) is widely used as a modern exciting source to routinely study the Raman 

effect. Also, various optics have also been designed to enhance the Raman signal and 

to identify the polarisation of the Raman peak. Meanwhile, the recent developments of 

optical techniques provide high-resolution spectrometers which enrich the application 

fields of the Raman scattering dramatically. The discussion of these three parts used 

in this thesis is given as follows. In addition, different scattering geometries for specific 

purposes will be exhibited at the end of this section. 

Exciting Source: LASER 

A laser is a device that depends on emission by stimulated processes. The basic design 

of a typical laser is to use a plasma tube with two end mirrors to confine and excite 
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specific gas atoms. In this evacuated glass tube, the photons emitted by some gas atoms 

ricochet backward and forward between two end mirrors to induce more photons. Once 

sufficient numbers of photon accumulate to penetrate one partially transparent ending 

mirror , a laser light source can be tapped. In principle, the emission process inside a 

laser tube is described briefly as follows. 

Optical Pumping - The atoms or ions are initially stay in ground state and then, 

are excited up to the excited state by photons till the majority population of 

atoms are in the high electronic level. 

Spontaneous Emission - Few atoms in the excited state emit the energy and 

return to the lower state during this process in order to trigger the stimulated 

emission. 

Stimulated Emission - This effect is due to a spontaneous and synchronising 

emission from all atoms in the excited state. This procedure gives rise to a 

directly polarised and coherent output radiation with high power. 

According to the nature of the above procedure, the emitted radiation of a laser is 

a monochromatic, highly coherent and high power light source with a well-defined 

polarisation and a small cross section. These properties of the laser overcome the 

problem of the low efficiency of Raman scattering and the wide frequency working 

range makes the Raman studies of semiconductors feasible. 

Depending on the property of emitted radiation, there are two types of lasers, 

continuous-wave(CW) and pulsed, which are normally used. In this thesis work, two 

CW types of Ar+  and  Kr+  lasers are chosen where emission frequencies include, 5145, 

5017, 4880, 4765 and 4579 A , and 6764, 6471, 5682, 5309 and 4762 A regions, respec-

tively. 
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Figure 2.13. Schematic of a laser filter monochromater. The light with a special 
frequency can be chosed by tuning the grating (G). L, 5, and CM denotes the lens, slit, 
and concave mirror, respectively. 

Auxiliary Optics 

As discussed in Sec. 2.4.1, the Raman effect is intrinsically weak and directly related to 

the polarisability of specific materials. In order to fit the requirement of depolarisation 

and also to improve the intensity of spectra, some optical devices shown as follows are 

necessary. 

Laser Filter Monochromater - Although the laser light source is highly monochro-

matic, the output laser line with a specific frequency is still admixed with weak 

nonlasing lines which will affect the sensitive Raman signal. However, this con-

tamination can be reduced by introducing a laser filter monochromater (as shown 

in Fig. 2.13) which can separate the admixture of light with very close frequencies 

and then block the noise from the laser plasma. 

Focus Lens - For the applications, eg. DAC, which require a small sample volume, 

a focus lens is usually placed at front of the sample to increase photon density at 

the sample. By adjusting the position of the focus lens, the Raman signal can be 

substantially enhanced when the sample is situated at the focus of the lens. 
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3. Polariser - In solid state, the existence of specific Raman peaks is determined 

by the geometry of the substance. This depolarisation measurement can be per-

formed using the polariser which eliminates the component of light whose di-

rection of the electric field vector differs from that of the required orientation. 

Normally, the polarisers are set at front of the focus lens and the at spectrometer 

to specify the polarisation of the incident and scattered light, respectively. 

Spectrometer: Coderg T800 

Modern spectrometers are composed of high resolution optical devices which help to 

detect the weak Raman signal and also reduce the background noise. As a commercial 

triple-grating scanning spectrometer, the Coderg T800, has been built up in Edinburgh 

University with three important components and is shown in Fig. 2.14 

Monochromator - It is a device of diffraction gratings to allow the dispersion 

of radiation. More gratings give low noise from imperfection in the ruling of 

gratings. In the Coderg T800, three monochromators are arranged as shown in 

Fig. 2.14 and the first two monochromators are symmetrically mounted. 

Photomultiplier - It is designed to make the original low intensity of Raman 

signals detectable. Utilisation of the photocathode, the consecutive arranged 

dynodes, and the anode increases the weak signal up to six orders of magnitude. 

Two photomultiplier devices, phototubes, are supplied in the Coderg T800 and 

an automatic exciting line suppression device is mounted at the front of the 

phototubes to prevent the overloading of phototubes from stray light. 

Recoder - The output of photomultiplier is detected by the detection amplifier 

and then fed into the external PC controller for data recording. 

The scan range of 10000-24500 (cm - ') can be achieved by accurately tunning three 

gratings inside Coderg T800. In addition, the mechanical slit width which can be 
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Figure 2.14. Diagram of the Coderg T800 spectrometer. The three monochromators 
are composed of mirrors(M) and gratings(G). The signal is collected by the entrance 
lens(L) and then filtered by four slits(S). The output photons is finally detected by two 
photomultipliers(PM). 

adjusted over the range from 0 to 2000 jm determines the resolution of output data 

from a calibration curve of slit width versus wavelength accuracy. Moreover, the balance 

between scanning speed, slit width, and the time constant imposed needs to be kept to 

enhance the quality of spectrum. 

Scattering Geometry 

For different applications, two scattering geometries have been performed in Edinburgh 

for pressure and temperature Raman studies. The arrangements are presented as fol-

lows 

1. Backscattering Geometry - As discussed in Sec. 2.2.1, only two optical windows 

are available for DAC and, thus, the optimised setup for the high-pressure Ra-

man study is the backscattering (180° scattering) geometry. According to the 

limitation of the DAC, an extra mirror and focus lens is needed to change the 

route of laser to pass through the window of the DAC. The experimental setup 

is shown in Fig. 2.15(a). 
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Coderg T800 

EI Kr laser  S. 

Figure 2.15. Schematic diagrams of experimental arrangements for (a) high-pressure 
backscattering and (b) low-temperature 900  scattering Raman spectroscopies. In (a), 
M and L denote the mirror and the lens. 5, VC, T, and C in (b) represents the sample, 
vacuum chamber, temperature controller, and cryostat, respectively. 

2. 900  Scattering Geometry - To study temperature effects on Raman scattering, 

the specimen is fitted in a vacuum chamber with four optical windows and is 

mounted directly to a cryostat and a temperature controller. Then, the 900  

scattering geometry is a simple setup for low temperature study. The arrangement 

is depicted in Fig.2.15(b). 



Chapter 3 

First Principles Computer 

Simulations 

3.1 Introduction 

Certain material equilibrium properties such as crystal structure, lattice dynamics and 

binding energy are directly related to the ground state total energy. For theoretical 

high-pressure studies of materials, total energy calculations provide scope to explore 

physical features under compression. For example, in equilibrium, the static structural 

properties of solids, like bulk modulus B, can be obtained by fitting the total energy 

(Etotai)volume (V) curve to an equation of state (EOS). The Murnaghan EOS is often 

used according to which 

I 	 ____ 
Etotai(V) = 

B' 
BV  
(B' - 1) [B' (V_Vo) + ()

Bl 

- i] } Etotai(V0) 	(3.1) 

where B' is the pressure derivative of bulk modulus and V0  is the equilibrium volume. 

In addition, the relative structural stability of different phases can be determined by 

comparing associated E vs V curves in which the structure with minimum total energy 

corresponds to the equilibrium one. Furthermore, pressure-induced phase transition 

42 



CHAPTER 3. FIRST PRINCIPLES COMPUTER SIMULATIONS 	 43 

ci 

0 

II 

AE 

AV 	 AE 

Volume 

Figure 3.1. E - V diagram for a pressure-induced structural phase transition. The 
transition occurs at the pressure P1,11 for which the common-tangents of the energy-
volume curves of phase I and II. 

can also be represented by the Gibbs free energy G in terms of total energy, thermal 

and compressional contributions 

G = Etotai TS+PV 
	

(3.2) 

and the transition pressure P1,11 between phase I and II can be evaluated from a 

common tangent to both EV curves as shown in Fig. 3.1 

Hence, the quality of theoretical studies of high pressure physics relies on the accu-

racy of total energy calculations. However, the total energy is a many-body quantum-

mechanical quantity which implies that the exact solution can never be achieved by 

brute-force solving a many-body Schrödinger equation. Therefore, some intelligent 

approximations must be involved in order to make the calculations feasible. Much 

effort has been invested in modelling accurate potentials in terms of analytically pa-

rameterised forms [45]. These models are known as empirical potential models which 

brought spectacular success in electronic band structure calculations, phonon studies, 

etc., with relatively cheap computation cost. For example, the pair potential in an 

empirical pseudopotential model (EPM) is usually parameterised three terms which 
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can be determined by fitting data to associated experiments. Based on the EPM, 

pressure-induced phase transitions, surface reconstructions, and defect formation can 

be systematically studied [46]. Nevertheless, the main drawback of all empirical treat-

ments is that the empirical potentials lack transferability which limits the applications 

of these models. 

Instead of empirical models, potentials can be also constructed from a knowledge of 

atomic wavefunctions and the corresponding quantum-mechanical modelling is called 

'first principles' method. There exist a wide variety of first principles (or ab initio) 

calculations which have been built to deal with this computational challenge. One 

of the outstanding schemes, ab initio total-energy pseudopotential calculation, will be 

discussed in detail in this chapter. Based on this robust technique, pressure-induced 

structural, vibrational, and electronic properties of materials can be comprehensively 

studied not only for small atomic systems but also for large-scale condensed matter. 

3.2 Structure Study: Ab-initio Total-energy Calculations 

Total energy calculations of crystals always deal with systems having coupling between 

electrons and nuclei. However, the large difference between electronic and ionic mass 

yield a useful assumption in which the nuclei can be treated as an adiabatic background 

for instantaneous motion of electrons. This adiabatic principle is known as the Born-

Oppenheimer (BO) approximation and it is adopted by almost all quantum-mechanical 

calculations. Unfortunately, the total energy calculations are still impossible if only 

the BO approximation is included. To perform an accurate and efficient ab initio total 

energy calculation, other assumptions and computational skills are necessary and are 

explained as follows 
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3.2.1 Density Functional Formalism - An Efficient Approach for Many-

electron Systems 	 - - 

The method of handling the multi-electron system is the density-functional (DF) ap-

proach which treats electrons as continuous media, like jelly, and then all physical 

properties can be represented as a functional of the total electron density p(r)= 1h1!1 2 . 

The advantage of DF theorem is to replace the N-dimensional electron wave function 

of the N-electron system by a simple three-dimensional electron density. The idea of 

DF methods is proposed by Thomas and Fermi to derive the ground-state electron 

configuration of N-electron atoms. In the traditional Thomas-Fermi (TF) model, the 

Hamiltonian of an atom with N electrons contains the kinetic energy (TTF), electron-

nucleus attractive energy (Vne ( TF)), and electron-electron repulsive energy (Vee (TF)). 

Based on a locally homogeneous electron approximation, the functional TTF can be 

determined exactly. Also, the explicit form of Vne(TF)  and Vee(TF)  can be derived from 

the classical electromagnetic model. Thus, the TF total energy functional (ETF[p]) is 

given by 

ETF[p(r)] = TTF[p(r)] + Vne(TF)[p(r)]  + Ve(TF)[p(r)] 

3(37r2)2/3Jp5/3 	'p(r) 	I JJp(r i )p(r 2 ) 
(r) - Z I —dr+ 

J 	
rJr, —1---dridr2(3.3) 

10 

where Z is the valence and r 1  ,r 2  denote locations of different electrons. According to 

the variational principle, the ground state electron density of an atom can be obtained 

from minimising the energy functional subject to the constraint of charge conservation. 

The constrainted variational principle and the Euler-Lagrange equation of the Lagrange 

multiplier, ATF,  are formulated as 

f ETF[P(r)] - 	p(r)dr - N)} = 0 	 (3.4) 
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6ETF[p(r)]1 	 _ __________ 	 Z 	r 
P(r)  dr' 	(3.5) 5p(r) ATF = 	

= (3n. 2) 2/3p2/3(r) - - + I r 	j r-r'I 

However, this oversimplified model and subsequent modifications cannot provide the 

precisely quantitative predictions in most cases. 

The renaissance of the DF scheme was revived by Hohenberg and Kohn (HK) 

in their remarkable density-functional theory (DFT) for nondegenerate systems [47]. 

First, the HK-DFT proved rigorously that the charge density p(r) is a well-defined 

basic variable which determines all ground-state physical properties. The rationale 

of the HK-DFT is to reformulate the exact energy functional EHK  of an N-electron 

system under the external potential (r) in terms of the v 0 -dependent and v 0 -

independent components. 

EHK[p(r)] = {T[p(r)] + Vee[p(r)]}  + Vne[p(r)] 

FHK[p(r)] + V[p(r)] 

FHK[p(r)] + J v1 0 (r)p(r)dr 	 (3.6) 

where T (kinectic energy) and Vee  (electron-electron interaction energy) are both v 0 - 

independent, however, Vne  which represents the interaction between electrons and an 

external field contributed from nuclei is solely determined by the external potential 

This energy functional suggests a universal functional FHK[p] can be applied to 

any multi-electron system once the explicit form of FHK  is obtained. 

In the 2nd HK theorem, the ground state can be achieved by an energy variational 

principle (like Eqn. (3.4)) and the associated Euler-Lagrange equation is 

öEHK[p(r)] - v 
	

6FHK[p(r)] 
(3.7) AHK = 	6p(r) 	

- 0 (r) + 	6p(r) 

where )HJ<  is the Lagrange multiplier with respect to the electron number conservation 
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constraint 

N = I p(r)dr 
	

(3.8) 

The HK theorems have also been confirmed in a more general degenerate system in 

which the ground state density is not associated with the external potential v 0 (r) only 

[48, 49]. However, the N-representable total electron density of this general system is 

not as well-behaved as the v10 -representable charge density in a simple nondegenerate 

system. The modified universal functional FIK  corresponds to the minimum value of 

FHK which is obtained from different wave functions '4' associated with a particular 

density p 

F,K[p] mm 	+ V,,IIF> 	 (3.9) 

where T and V is the operator corresponding to T[p] and Vee[p], respectively. This gen-

eralisation of HK theorems also gives the possibility to build up the finite-temperature 

DFT [50]. 

Based on the HK theorems, an independent-particle form of the DFT was proposed 

by Kohn and Sham [51]. In the Kohn-Sham (KS) model, the kinetic energy (T3 [p]) 

derived from noninteracting electrons is included in the KS universal functional FKS. 

In addition, the electron-electron interaction Vee is separated into a classical electron-

electron repulsive energy J[p] and a quantum-mechanical exchange-correlation energy 

G[p]. So, the KS total energy functional EKS[P]  is 

EKS[p(r)] = FKS[p(r)] + Vne[p(r)] 

= T[p(r)] + J[p(r)] + G[p(r)]  + J v 0 (r)p(r)dr 	(3.10) 

The total electron density still satisfies the constraint of Eqn. (3.8). Thus, the Euler 



CHAPTER 3. FIRST PRINCIPLES COMPUTER SIMULATIONS 	 48 

equation of the KS model becomes 

AKS = {vion (r) + 
6j[p()] 

 + 	
+ 5T3[p(r)] 

	

6p(r) 	5p (r) J 	6p(r) 

= {vion(r) 
+[p(r') 

 dr' + vc(r)} 
+ 6T3[p(r)] 

	

J Ir-r'I 	 Sp(r) 

= vjj(r) + 
5T3(r)] 	

(3.11) 
Sp(r) 

where v, and Veil 15 the exchange-correlation potential and effictive potential, respec-

tively. From Eqn. (3.11), the real multi-electron interacting system can be simulated by 

the noninteracting electrons under the influence of the effective potential Veil. Thereby, 

the total electron density of the N-electron system can be decomposed into N single-

particle wavefunction 0 of each independent electron 

N 

p(r) = 	 (3.12) 

In this expression, the KS kinetic energy functional T3 [p] can be calculated indirectly 

but exactly as 

T3 [p(r)] = 

= 	(_)J(r)V2 i (r)dr 	 (3.13) 

The variation principle therefore leads to a one-electron KS equation for a specific 

wavefunction /,, (r) 

	

{_V2 + veff(r)} &(r) = qj(r) 	 (3.14) 

where q is the KS eigenvalue which, strictly speaking, has no simple physical meaning. 

Hence, the self-consistent one-electron wavefunction 'ç&, can be obtained by iteratively 

solving the KS equation Eqn. (3.14), just like the Hartree-Fock scheme but without 
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any coupling between different orbitals, and the total electron density is determined 

from Eqn. 3.12. The ground-state total energy can be derived from calculated KS 

eigenvalues € and the ground-state electron density p(r) 

N 	1 p(r)p(r') 
E = 	- 

J 	
+ G[p(r)] - J v(r)p(r)dr 	(3.15) 

However, the solution of the canonical KS equation (Eqn. (3.14)) is feasible provided 

that the effective potential Veff is known. Among the components of Vef j (Eqn. 3.11), 

the explicit form for 6J[p]/Sp and v 0  can be regarded as the electrostatic potentials. 

The challenge is to describe the exchange-correlation component v x, precisely. The 

simplest but essential assumption of the exchange-correlation energy is the local density 

approximation (LDA) in which GXC[p]  is a function of g - the exchange-correlation 

energy per particle of a uniform electron gas of density p. Then, the local representation 

of the nonlocal exchange-correlation energy functional and corresponding potential v 

are 

	

Jp(r)g c [p(r)]dr 	 (3.16) 
XC 

	

vA(r) - öG 	[p(r) ] 

 = gxc [p(r)] + p(r) 
Sgxc[p(r)] 

(3.17) 
T, C - 	5p(r) 	 5p(r) 

where the functional g,jp] can be split into two parts: exchange component gx[p]  and 

correlation component gc[p].  The analytic form for g and g c  can be determined from 

the Hartree-Fock exchange-energy functional [50] and quantum Monte Carlo calcula-

tions [52], respectively. 

Moreover, the generic quantum-mechanical nonlocal electron-correlation effect in 

real systems can be visualised by the exchange and correlation hole in the real-space 

electrostatic integral expression of G .,c  [53] 

If  Pxc(r, r')
Jp(r) 
	Ir- r'I 

dr'}dr 	 (3.18) 
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where pxc (r, r') is composed of the exchange hole density p x (r, r') and the correlation 

hole density p c (r, r'). The p(r, r') describing Pauli-exclusion parallel-spin electrons 

around a given electron is strictly negative. Nevertheless, pc (r, r ')r'r < 0 according 

to the Columbic repulsion between electrons with same spins, and p(r, r')r'>>r > 0 is 

due to the accumulation of repelled charges. Indeed, the p  and  Pc  satisfies 

	

Jpx (r, r')dr' = —1 	 (3.19) 

	

JPc (r, r')dr' = 0 	 (3.20) 

Therefore, any proper model for exchange-correlation effect must satisfy the sum rules 

of Eqn. (3.19) and (3.20). This is the main reason to account for the significant 

success of the simple KS-LDA model. Further, an improved local-spin-density (LSD) 

approximation including an extra variable of spin has also been developed [54] and 

which allows different electron distributions with respect to various spin configuration. 

The comparison between the exchange-correlation hole of LDA and LSD is made and 

illustrated in Fig. 3.2. 

However, the LDA (or LSD) takes into account the strictly localised electron be-

haviour only and ignores the nonlocal contribution of total energy. This approxima-

tion gives rise to an underestimate of calculated equilibrium structure parameters (eg. 

lattice constants) within LDA. Recently, a nonphenomenological gradient functional, 

generalised gradient approximation (CGA), was introduced to extend the strict locali-

sation of LDA into a semi-local region [55]. In GCA, the exchange-correlation energy 

GDA of Eqn. (3.17) is replaced by a general form which includes the variable of the 
XC 

gradient of electron density 

G 4 [p(r)] = Jc[p(r),Vp(r)]dr 	 (3.21) 
XC 

where g is a functional of two functions p and Vp. For small atomic and molecular 
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Figure 3.2. Schematic diagram for the exchange-correlation hole in LDA (a) LSD (b). 
A given electron is denoted as a circle and small arrows represent electron spins. It 
can be seen that the charge distribution , p - in LDA is an average of ones which 
has parallel-spin (solid curve) and antiparallel-spin (dashed curve) with respect to the 
given electron, respectively, in LSD 

systems, the GGA gives more precise predictions of physical quantities than does LDA 

[56]. However, in the stronger long-range interacting solids, a more generalised consid-

eration of the fully-nonlocal model is needed to obtain the exact exchange-correlation 

energy. 

The applications of DFT are exploited in many fields, such as atoms, molecules, 

clusters, surface properties, liquids, plasmas, and even superconductors. Recent de-

velopments lift the zero-temperature limitation of the original DFT explained above 

and also enable the calculations including realivistic effects [57]. Also, the progres-

sive growth of time-dependent DFT [58] provides a computational technique to tackle 

the dynamical properties of materials. Furthermore, the DFT extension into van der 

Waals interactions regime [59] implies that DFT is a versatile approach for complex 

many-body systems. 

/ 
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3.2.2 Periodic Boundary Conditions 

In spite of the decoupling of electron-electron mutual interactions in the DFT, the total 

charge density in the form of Eqn. (3.12) is still formidable since there exist an enor-

mous number of non-interacting electrons in typical materials (N 1023).  However, in 

crystalline solids having highly long-range order, this impractical problem can be over-

come by involving Bloch's formulation [60]. In this theorem, Bloch's electrons obey 

the one-electron Schrödinger equation (like Eqn. (3.14)) with a periodic background 

potential. Each associated wavefunction can be expressed by a product of a wavelike 

component and a cell-periodic function 1(r) expanded as a discrete plane-wave basis 

set 

Oj (r) = f3 (r) exp[ik r] 

=
Cj,K exp[iK. r] exp[ik. r] 

1:= 	c2 ,kK exp[i(K  + k) . r] 	 (3.22) 
K 

where k is the wave vector of the wavelike part and K is the reciprocal lattice vectors of 

the crystal. According to the periodicity of the crystal structure, only a set of k points 

within the first Brillouin zone in the reciprocal space are needed for electronic states 

calculations. However, the electronic potential in the bulk solid is composed of finite 

electronic states at each point of the infinite k-point set and the infinity of the plane-

wave expansion of electron wavefunction of Eqn. (3.22) remains. Therefore, another 

approximation must be introduced to make large scale electronic structure calculations 

available. 

In view of the continuity of electron wavefunctions, the k-space can be discretised 

as finite domains in which the electron wavefunctions associated with different k points 

in the same region are almost identical and the whole BZ can be approximated by a 

finite set of special k points corresponding to specific k-space domains. Based on this 
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assumption, the infinite electron states calculation is mapped onto a feasible calculation 

of electron wavefunctions at finite special k points. It is obvious that the error of this 

simplification can be systematically reduced by using a more dense special k-point set. 

Many methods [61, 62, 63] have been employed to construct efficient special sets of k 

points at which occupied electronic states give rise to very accurate approximations to 

the electronic potential and the contribution to the total energy. A common scheme 

for BZ integrations proposed by Monkhorst and Pack [64] was implemented in the 

following calculations in this thesis. 

In the Monkhorst-Pack method, the BZ is discretised as a three-dimensional grid 

in which only a few special k-space lattice points are needed to describe the average 

behaviour of the BZ integral for any physical quantity. In the general case, a cubic 

Monkhorst-Pack grid of size N 3  is used and the wave vector for each lattice point within 

a coordinate frame having a central origin is defined as 

	

2n1 —N--1 	2n2 —N-1 	2n3 —N-1 
kMp(n) = 	2N 	

b 1  + 	
2N 	

b2  + 	
2N 	

b3 	(3.23) 

where {bIi = 1, 2, 3} is the set of primitive reciprocal vectors and {nIi = 1, 2, 3} is 

the index of each Monkhorst-Pack lattice point. Thus, any smoothly varying periodic 

function in reciprocal space F(k) can be expanded in terms of a Fourier series 

00 

F(kMp) =Fm exp[ikMp(m) . r] 	 (3.24) 

where Fm is the Fourier coefficient. Under the effects of the lattice point group op-

erations {T1 1i = 1 . . . nT}, the periodic function has complete symmetry of lattice is 

formulated as 

	

1  1:F(kMp) = 	F(TIkMp) 

00 

	

= 	Fm 	exp[ikMp r] 
T m1 	IrI=Cm 
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00 

= 	
(3.25) 

where the new basis Am is a set of lattice vectors within the k-space shell of a radii 

Cm. In addition, the average value of the Fourier coefficient Tm  corresponding to a 

specific Cm can be evaluated by 

p(N) 

=E wjF(kj)A m (kj ) 	 (3.26) 
j=1 

where p(N) is the symmetry-dependent number of points k3  in kMp.  w3  is the weight 

associated with k3  and is the ratio of the order of the whole {T1} to the order of the 

point group of the wave vector at k3 . So, the average value of the BZ integration for 

F can be implemented by summing up average values of Fm with respect to different 

radius within the primitive cell volume v 

00 - I 	(k)dk = = 	m '4m (k) 	 (3.27) 
870 Z 	 m=1 

However, the infinity in Eqn. (3.27) can be removed since the orthonormal A m  

satisfies the restriction 

IrI < 	-* I rl = Cm 	(in the cubic grid) 	 (3.28) 

Hence, for a chosen Monkhorst-Pack grid {KMp}, the special point k 2  which represents 

all the points k, in the set of p(N) (in Eqn. (3.26)) is determined from symmetry 

elements of the crystal. From Eqn. (3.26), the weight factors of different special k 

points can be obtained from the lattice point group. The physical properties (such as 

electron density, electron wave function, etc) over whole BZ are therefore derived from 
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Figure 3.3. Graphs showing relative total energy versus unit cell volume for several 
different special k-point sets of GeSe. The results for the 4-, 8-, and 20-k-point set are 
shown as squares, triangles, and circles, respectively. However, the unit cell parameters 
were not optimised at every volume in these convergence tests. The curves through the 
calculated data are guides to the eye. 

Eqn. (3.27) and evaluated by summing finite terms which satisfy Eqn. (3.28) 

BZJ F(k1) = >mAm(ki) 
 m 

(3.29) 

Further, for some less-symmetric Bravais lattices, a noncubic Monkhorst-Pack grid may 

be chosen to get a more appropriate interpolation for the associated BZ. 

Usually, the Monkhorst-Pack k-point sampling scheme provides an accurate ap-

proximation for the total energy of insulators and semiconductors. The error due to 

a inadequately coarse grid of k points can be reduced by using a finer mesh k points. 

For example, the calculated total energy of a semiconductor GeSe as a function of vol-

ume for different k-point samplings is shown in Fig. 3.3. Three Monkhorst-Pack grids, 

2 x 4 x 4, 4 x 4 x 4 and 4 x 4 x 10 corresponding to 4, 8, and 20 special k points, re-

spectively, are used. It is evident that only a few k points are needed to give converged 

total energies of semiconductors. However, extremely large numbers of k points are 

required for metallic systems since the periodic functions are not smooth around the 
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Fermi surface and, actually, they become discontinuous at the Fermi surface [65]. 

Another issue of the computational difficulty comes from the infinite discrete plane-

wave basis set as shown in Eqn. (3.22). This disadvantage of the choice of basis set 

can be removed using a kinetic energy cut-off E,,t-,ff to truncate the infinite series 

of plane waves since the coefficients cj,k+K  in Eqn. (3.22) referred to higher kinetic 

energy (h2/2m)Ik + KI are very small while comparing with the terms with lower 

kinetic energy. The magnitude of error due to the introduction of the kinetic energy 

cut-off can always be diminished and by increasing the value of Et_0f.  j. Thus, the 

KS equation (Eqn. (3.14)) can be reformulated in terms of finite Bloch's electron 

wavefunctions 

i _Ik+KI 2 KK,  + Veff(KK')] Cj,k+KI = EjCI,k+K 

K' L2m 

Hk_K,k_Klcj,k+KI = €jCjk+K 	 (3.30) 

where Veff(KK') is the recriprocal expression of the effective potential in Eqn. (3.11). 

The solution of the secular equation Eqn. (3.30) is obtained by a diagonalisation of 

the Hamiltonian matrix H. However, the complexity of solving this secular equation 

scales as 0 (N 3 ) and a higher kinetic energy cut-off giving a large size of matrix H 

makes Eqn. (3.30) intractable. In order to reduce the matrix size of H and decrease 

the cutoff energy, the pseudopotential approximation which describes the core and 

valence electrons is introduced and will be discussed in Sec. 3.2.3. Moreover, the 

periodic treatment presented in this section can be generalised to apply to aperiodic 

configurations of atoms by simply constructing a large unit cell containing this special 

configuration in the space having virtual periodicity [66]. 

3.2.3 Pseudopotential Approximation for Electron-Ion Interactions 

It is well known that most physical and chemical properties of solids are governed 

mainly by the valence as opposed to core electrons. However, inside the core region, 
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Figure 3.4. Schematic illustration of the pseudoelectron ii,'5  (dashed curves) and real 
all-electron 0 (solid curves) wavefunctions and associated potentials UPS  and Z/r as 
a function of r. The pseudoelectron is identical to a real one while r beyonds the core 
radius r. 

the tightly bound core orbitals and the rapidly oscillating valence wavefunctions are 

always represented by a large number of plane waves. As pointed out in the preced-

ing discussion, this requirement for the plane-wave expansion of core electrons yields 

computational impracticality. In order to remove this hurdle, a pseudopotential (intro-

duced initially by Fermi) is used to separate electrons into outer valence and inner core 

types. In fact, in the pseudopotential approximation, the core electrons are removed 

and the strong ionic potential is replaced by a weaker and smooth pseudopotential act-

ing on an associated pseudo wavefunction in the core region. A schematic illustration 

of all-electron and pseudoelectron potentials and their corresponding wavefunctions is 

depicted in Fig. 3.4 

Generally, based on the fundamental quantum-mechanical collision theory [67], the 

asymptotic form of a electron wave function 01with particular angular momentum I 
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scattered by an attractived potential U is given by 

01(r);z:~ Y,j.(0,0)f 1 sin [kr_ 	+ol(k)]} 	 (3.31) 

where Yim  (0, 4) is the special harmonic and is the scattering phase shift. The corre-

sponding 1-dependent potential U1 is thus derived from inverting a radial Schrödinger 

equation 

h2 	

[d21(r)' 	

1(1+ 1) 

2t&j(r) 	dr2 	
+Ei — 	

r2 	
(3.32) 

where y and E1 denotes the reduced mass and the eigenvalue with respect to occu-

pied orbitals 01 , 
respectively. Thereby, for the pseudopotential within the core region, 

the phase shift produced by the radial nodeless pseudo wavefunction depends on 

various angular momenta and, thus, a general form for the associated 1-dependent 

pseudopotential UL  referred to nonlocal pseudopotential is 

UL = I Yim > UI <Yi m l 	 (3.33) 
Em 

where U1 is the pseudopotential for angular momentum 1 and the bra (IYirn >) and 

ket (< YimI) project out the l, m component of r• A special case in which the pseu-

dopotential is a constant for different angular momentum components is called a local 

pseudopotential U 8 . Using the U 8 , the complexity of the operation of Hamiltonian on 

the wavefunction expanded as N plane waves can be substantially reduced from 0(N 2 ) 

Of UL  to 0(N In N) [68]. However, this local pseudopotential is not appropriate for 

every atom. 

As shown in Fig. 3.4, the pseudopotential and the pseudo wavefunctions should be 

identical to the true ionic potential and the true valence wavefunctions, respectively, 

beyond the core radius r to preserve the scattering phase shifts of real valence electrons. 

Also, the equality of valence electron density of pseudo electrons and of true electrons 
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outside the core is necessary for maintaining the accurate description of the exchange-

correlation energy functional Taking into account the above restrictions, two 

constraints [69] should be satisfied for any generated pseudo wavefunction ?I,Ps(r) 

I0rc  jrr- 
kb(r)I 2rd3r 

	
Ihp8 (r)I 2r2 d3r 	 (3.34) 

and 

d Id 
T: 1fl cbi) rc  = 	( - lnbr) 	 (3.35) 

 rc  

where Eqn. (3.34) indicating the conservation of the pseudo and real electron density 

within the core region is referred to the norm conservation requirement. Also, the 

well-behaved logarithmic derivative of the 1-component of a good pseudo wavefunction 

in Eqn. (3.35) guarantees that the scattering phase shifts are the same to 1st order 

in energy and the associated potential is transferable. The corresponding pseudopo-

tential derived from the above pseudo wavefunctions is named the norm-conserving 

pseudopotential which can be applied in various atomic situations. 

In view of the expensive computational cost of implementing the nonlocal pseudopo-

tential in Eqn. (3.33), Kleinman and Bylander [70] suggested an efficient transformation 

to generate the UL. In Klein man-Bylander pseudopotentials UE, the 1-component 

of a norm-conserving pseudopotential is separated into a local part UL and a small 

variation 8U1 

U1'WL = UL + Jul 	 (3.36) 

and, under the LDA given in Sec. 3.2.1, Eqn. 3.33 can be rewritten as 

U/if = UL + > 	
1 > <öUiq I (3.37) 

Im <I8UiI41> 
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where 00.  are the wavefunctions of the pseudoatom. Since the U NKLB projects the wave-

function onto a single basis state rather than a radically complete basis set for spherical 

harmonic components, the degree of transferability of the Kleinman-Bylander pseu-

dopotential is not high [71]. This low transferability can be improved by some modifi-

cations: a proper choice of UL, reducing the core radius r, etc [72]. 

Concerning the characteristic requirements of pseudopotentials mentioned above, 

much effort [73, 74] has been devoted to generate good pseudopotentials, especially soft 

ones, which lead to rapid convergence in solids. Among different schemes, the recently 

developed kinetic energy filter tuning, also called Qc  tuning, method [75] was used 

here to generate optimised pseudopotentials. Like other contemporary approaches, 

the Qc  tuning scheme starts from an all-electron atomic calculation with a selected 

exchange-correlation energy, GA  or GGA,  to determine all the atomic states of axC 

given configuration. In this procedure, the all-electron valence charge wavefunction 

can be obtained and will be the basis to generate a pseudo wavefunction. Following 

the criterion of the continuity of pseudopotentials proposed by Rappe et.al  [73], the 

1-component pseudo wavefunction 0' inside the core regime can be described by a 

linear combination of specially chosen spherical Bessel functions ji(k 1 r) with a boundary 

ae condition in which the logarithmic derivates of j1(kr) match those of 'i4'(r) at r 

n 	 j(k1r) - ae!() 
= > a,j1(k1r) (for 0 < r < 	

. 

	

r) jj(kr) - ae(rc) 	
(3.38) 

Beyond the core radius, the pseudo wave function is identical to the all-electron one 

= 1'(r) (for i' ~ r) 	 (3.39) 

In addition to the constraints of the norm conversation and the continuity of the first 
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derivate of 04 8 (r) at r = 

dT8 (r) I - dre(r)I 
dr 	I' - 	dr 	

(3.40) 
re   

The proper soft pseudo wavefunction is thus generated from the minimisation of the 

kinetic energy beyond the adjustable cutoff parameter Q 

mm 	k2j8(k)J2d3k  ' 

Q 
1 s*(r)V 2 b(r)dr_ 

  

o 

J o 	
r k2I?/3(k)I2d3kI fO  

} 

(3.41) 

The improvement the Q tuning method achieved is that only three Bessel functions 

are utilised in Eqn. (3.38) and Q was found as an effective controlling parameter to 

minimise Eqn. (3.41). Hence, for a good choice of r which assures the high transfer-

ability of the pseudopotential, the pseudo wavefunctions can be determined by tuning 

Q to obtain the best fit of the logarithmic derivate curve of the all-electron wave-

function. Once the pseudo wavefunctions are found, the optimised pseudopotential is 

derived by inverting Schrödinger equation (like Eqn. (3.32)). A minor difficulty of the 

Q tuning approach is that the logarithmic derivate test is re-independent and cannot 

provide any hint of the value of PC.  Thus, for various applications, systematic tests 

for the optimised pseudopotentials with respect to different r must be done to verify 

the pseudopotential approximation in solid state calculations. The examples of some 

ionic- pseudopotential tests can be found elsewhere [75]. 

3.2.4 Molecular Dynamics for Electronic Ground-state 

Although the pseudopotential approximations significantly reduce the size of plane-

wave expansion of electron wave functions, the computational cost of total energy 

calculations is still dominated by a conventional matrix diagonalisation for obtaining 

KS orbitals (Eqn. (3.30)) which needs 0(N 3 ) operations. An efficient procedure, the 
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Car-Parrinello scheme [76] determines the KS eigenstates for a given ionic configuration 

by solving a set of molecular-dynamics equations of motion. 

On the BO potential energy surface, Car and Parrinello introduced the electron 

wavefunctions as dynamical variables. Then, as with classical molecular dynamics, the 

fictitious dynamics of wavefunctions and the KS energy functional EKS  (Eqn. (3.10)) 

accounts for the kinetic-energy and potential terms, respectively, and the specialised 

Car-Parrinello Lagrangian £'cp  for the electronic system is defined as 

mj 	11(r,t)1Ob1(r,t) 
> — EKS[{1},{RI},{a}] 	(3.42) 

at 	at I 

where mj is the fictitious mass of the electron wavefunction Oi. RI and o is the 

ionic configuration and the unit cell parameters, respectively. Moreover, in order to en-

sure orthonormality of wavefunctions propagating along associated molecular-dynamics 

paths, the constrained Lagrangian £'Cp_cofl is 

mj 	O&(r, t) 1 80i (r, t) 
'CP—con = 	< 	at 	at 	

> —EKS[{ibI}, {R1}, {a}] + 
I 

A1 {J/:(rt)tirt)d3r - Jjj 
ij 

(3.43) 

where A 3  is the Lagrange multiplier. According to the fixed ionic and unit-cell con-

figuration, the parameters of RI and o are constants with respect to wavefunctions 

and the constrained molecular-dynamics equation of motion for the wavefunctions is 

therefore derived from the Lagrange equations of motion 

O2 b1 (r,t) 	5EKS 
m1 	

at2 	= 	6(r,t) + 
	A 23 t,1 3 (r,t) 

3 

= - [HKS - 	A] (r, t) 	 (3.44) 
j 

where HKS is the KS Hamiltonian. 
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In practice, the orthonormal constraint is implemented by two steps: normalisation 

and orthogonalisation to avoid evaluating Aii at infinitely small time steps. First, The 

normalisation procedure is performed by relaxing the orthogonality in the constrained 

equations of motion Eqn. (3.44) and thus the partially constrained equations of motion 

can be derived 

O2 b2 (r,t) - 
mj 	- - [HKS- < '1f.'(r,t)IHKsI(r,t) >]b(r,t) 	(3.45) 

After the integration of Eqn. (3.45) at the end of each time step, the orthogonality 

of wavefunctions is imposed using the Gram-Schmidt orthogonalisation scheme [77] in 

which the orthonormal wavefunction is constructed by a set of linearly independent 

wavefunctions from the intergration of the equations of motion and is ensured to be 

orthogonal to all lower-energy states. Thereby, for a given ionic configuration and an 

initial set of trial wavefunctions, the KS eigenstates are obtained from the iterative 

processes of solving Eqn. (3.45) and orthonormalisation until the wavefunctions are 

stationary and the corresponding minimum of EKS[P]  is consequently recognised as 

the total energy of the solid. 

However, in the multidimensional configuration space of EKS[p], the indirect search 

for the self-consistent HKS described above will lead the problem of instability and fluc-

tuation of the min Ej<S[p] in large scale systems due to an improper choice of time step 

in integrating equations of motion. This disadvantage can be overcome using direct 

minimisation of EKS[P]  since it is believed that the EKS[p]  has a global well-defined 

minimum value. In current numerical methods, a well-established optimisation scheme, 

conjugate-gradients method [78], provides an efficient searching strategy to find the ex-

tremum of functions. Superior to the conventional steep-descents method [78], the 

conjugate-gradients searching approach surveies all independent directions determined 

from the local minimum values and their derivates of previous searches. This algo-

rithm gives an upper bound on the number of minimisation steps which is equal to 
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Ed P1 

Figure 3.5. Schematic illustration for the minimisation of the Kohn-Sham energy 
functional EKS[P]  by means of a conjugate-gradients scheme. The searching directions 
(dashed lines) are a functional of a set of wavefunctions {',}. 

the dimensionality of the configuration space. The search procedure of applying the 

conjugate-gradients method on the total energy calculations is shown schematically in 

Fig. 3.5. Considering that the ill-conditioned conjugate-gradiented operator (associ-

ated with HKS  in total energy calculations) causes expensive computation in every 

minimisation step, a preconditioned conjugate-gradients technique is proposed [79] to 

speed up the convergence of direct minimisations by reshaping the conjugate-gradients 

operator as a well-conditioned one which has a relatively narrow spectrum of eigen-

values. So, the minimisation of EKS  with large number of plane-wave basis sets and 

higher cutoff energies is tractable. 

3.2.5 Structural Relaxation 

The constraints of frozen ionic positions and the fixed unit cell are now removed and 

the whole structure of the solid is allowed to relax to its equilibrium configuration while 

introducing additional structural degrees of freedom {Rj} and {,,}. Then, the original 

Car-Parrinello Lagrangian containing the kinetic energy terms of the ion and unit cell 

X 
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can be derived from Eqn. (3.42) 

LCP = L' p + at 	 at 

	

= s-... mj 	(r, t) O'i(r,t) 
> +> 	MI(  

	

L2 	at 	at 	- 	ORI -) 2  + 

V¼l 0a 
, 1v( 	

2 
) — EKS{{'çb} , {RI}, {a}] 	 (3.46) 

where M1 is the physical mass of the ion I and 77, is a fictitious mass of specific unit 

cell defined by {'Zj}. Two further sets of equations of motion related to structural 

parameters can be generated: first sets describe the force acting on an ion will induce 

a acceleration along the direction of the applied force, 

02 R1 	OEKS MI 

lit2  = — OR1 	
(3.47) 

and another sets present the stress-induced changes of lattice parameters 

02a 	'9EKS 
1v lit2  = — Oa 	

(3.48) 

At first glance, the above two equations imply that ionic and volume-strain relax-

ation could be achieved simultaneously by simplely integrating equations of motion 

and the equilibrium structure could be obtained trivially. Nevertheless, the mutual 

interaction between electronic and ionic configurations in the dynamics of ions and the 

electron-volume coupling in stresses calculations restrict the direct integrations of Eqii. 

(3.47) and (3.48). These quantum-mechanical considerations for ionic and unit-cell 

coordinates will be addressed as follows and these features play an essential role in 

implementing ab-initio dynamical simulations of solids. 
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Ionic Position Relaxation 

As displayed in Sec 3.2.4, the minimum of KS energy functional EKS  has physical 

meaning only within the BO approximation. Any change of the ionic configuration 

must be accompanied by a redistribution of the electron density with respect to the 

modification of the set of electron wavefunction {&} in order to hold the whole system 

on the BO energy surface. This change in the wavefunction set affects the minimum 

value of EKS  and contributes to the force on ions situated at the instantaneous po-

sitions. Therefore, the general form of the force acting on an ion at R1 can be given 

by 

dEKS 
F1 

= dRj 

- OEKS 	OEKS 00 	OEKS 80* I—
ORI 

 
- 	

- [I joi.. 
	

+ 
' 

9' 	
(3.49) 

In the special case where is an exact eigenstate of HKS,  the component of Fj 

inside the square brackets of Eqn. 3.50 is equivalent to a function of the derivative 

0 < oil7pi > /OR, which is cancelled due to the normalisation of Oi. According to the 

Hellmann-Feynman theorem, the force on the ion I is expressed as 

OEKS 
FHF,I = - OR1 (3.50) 

and is called Hellmann-Feynman force. Under the constraint of BO approximation, the 

Hellman n-Feyn man theorem therefore enforces that the calculations of forces cannot 

be performed until the wavefunctions converge completely. 

For the ionic relaxation, the force on each ion in the initial ionic configuration can 

be simply determined from Eqn. (3.50) when the electron wavefunctions are near their 

ground states. Then, the ions are driven by the calculated I-Iellmann-Feynman forces 

toward a new configuration which satisfies the equations of motion Eqn. (3.47). This 

molecular dynamics of ionic relaxation is performed by a general conjugate-gradients 
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minimisation scheme. Furthermore, the electron wavefunctions must be recalculated for 

the new ionic configuration to ensure the system remains on the BO surface. Therefore, 

this procedure is implemented iteratively until the ionic system is relaxed to a minimum 

energy configuration which is associated with the equilibrium ionic structure. However, 

the inevitable deviation of the electron wavefunctions from ground states in a self-

consistent calculation will propagate into FHF,I  which may cause the ionic configuration 

to drift away from the local minimum. Therefore, a fine tolerance of convergence of 

the wavefunctions is necessary in each ionic relaxation step to prevent instabilities. 

Strictly speaking, the force Fj is also influenced by the variation of the basis set of 

the electron wavefunction. Actually, a correction term attributed to the derivative of 

the basis states Oi with respect to the ionic positions for the Hellmann-Feynman force 

FHF,I is needed to account for this contribution and Eqn. (3.50) can be revised as 

I 	 OEKS v I9EKS dçb1 
FHF,I= -  

 8R1 
+ 	a1 	

(3.51) 

The second term on the right-hand-side of Eqn. (3.51) is named the Pulay force [80]. 

Usually, this Pulay force cannot be ignored and the direct calculation is awkward using 

general basis sets. However, d4 2 /Rj vanishes for the plane-wave basis set since they 

are independent of ionic positions. So, the Pulay force is zero for a plane wave basis 

set. 

Unit Cell Optimisation 

Now, we consider the degrees of freedom related to the unit cell and the computational 

techniques for relaxing the unit cell are introduced. Similar to the FHF  in Eqn. (3.50), 

a Hellman n-Feyn man integrated stress allF,
, 

can be obtained 

I9EKS 
aHF,v = 	 (3.52) 
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If the unit cell is treated as a classical continuum object, the dynamics of unit cell 

can be presented by the stresses on it. For a general unit cell defined by a tensor h0  

comprising three lattice constants {a, b, c}, a small strain & with respect to a deformed 

tensor = ( 1 + a)ho  is induced by a stress & which can be formulated generally as 

Eqn. (3.52) 

- 1dEKS 
- (3.53) 

where is the volume of the unit cell and tv denotes the specific components of the 

stress tensor a . The equilibrium structure is therefore achieved by relaxing the unit 

cell until the all the components of a are identical to zero. 

In view of the change of the size and shape of unit cell in real space during relaxation, 

the basis set of wavefunctions in reciprocal space will be affected as will E 0jj. In 

principle, this effect is expected to be minor if the E0jj is sufficiently large. However, 

this disadvantage of finite basis sets can be overcome by the introduction of an explicit 

correction [81]. For the stress calculations, the procedure of using a constant E 0jj is 

performed for updating the basis set because the change of unit cell causes increasing 

number of basis states which give more reliable results. In practice, the calculation can 

be split into two components with respect to constant numbers of basis set (Npw) and 

constant cutoff energy (E0jj).  Under the approximation of homogeneous distribution 

of plane waves, the corrected stress is derived from Eqn. 3.53 

- 	 I9EKS 	OEKS 	dNpw 
INp + ONpw 

cutof f d& 

= 7Np+aP 	 (3.54) 
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where constant-Npw stress aNp, is determined from the quantum-mechanical calcu-

lations [82] and the isotropic correction, Pulay stress (op), is 

2 OEKS 
UP 

= 3O(lnEt0jj) 	
(3.55) 

and the associated Pulay correction to total energy can be obtained by integrating 

over the unit cell 

2 9EKg(E j0ff) N ac  
EKs(ECj0ff) = EKS(NPW) 

	

- 3 ô(ln E0j) 
In( E ) 	 (3.56) 

Nt  

where Nac is the number of plane waves actually used in calculations and Nt  is a 

theoretical number of homogeneously distributed plane waves in the unit cell of a cell 

volume 

A further molecular dynamics scheme which optimise the size and shape of unit cell 

under the stress effects has been developed recently [83, 84]. For a unit cell specified 

by a lattice tensor ii = {a,b,c} with a cell volume , the individual ionic position 

ri  of N ions can be represented by the fractional coordinates si in which ri = hs. 

In order to separate the ionic and unit cell parameters, a metric tensor = hTYi is 

utilised. A fictitious unit-cell mass W is also used to construct a Lagrangian. Since the 

deformation of unit cell is derived by the stresses which act on the cell faces, a further 

tensor fo = OG (where initial cell faces are defined by Q 0  = { bo xco , c0 xa0 , ao xbo }) 

is introduced as a variable and then a Lagrangian invariant against different choice of 

the unit cell is defined as 

-, mi ds1 T 
Linv 

 
( 	

)iJ)T 	FE=N— ( - ) 	) - U(r) + 	Tr ( 	(3.57)1 	I  
j=1 

where P is an external isotropic pressure. In Eqn. (3.57), the first term accounts for 

the ionic kinetic energy, the potential energy is given in the second term. Particularly, 

a fictitious kinetic energy of the unit cell is also included in this Lagrangian and the 
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external compressional perturbation is allowed at the end. This Lagrangian can be 

regarded as a generalisation of Lcp  (Eqn. (3.46)). Hence, the equations of motion for 

describing the dynamics of the lattice tensor h can be obtained from the Lagrange's 

equation and is given by 

(3.58) 

where a is the ab-initio stress tensor. 

Integration of Eqn. (3.58) in performed by the Verlet algorithm [85] and W is a 

function of the integrating time step. Further, as explained previously, the effect of the 

basis-set change in performing the unit cell dynamics requires a modification of E 0jj 

and a is approximated by the corrected stress of Eqn. (3.54). The Pulay component 

of the stress can be obtained straightforwardly from the derivative of total energy EKS 

with respect to the logarithm of cutoff energy E0jj. Moreover, the optimal unit cells 

with respect to various pressures are also determined using this atomic first principles 

structural relaxation approach under different compressional conditions. In addition, 

a quenched molecular dynamics scheme is used here to find the equilibrium lattice 

parameters. However, it is found that the alternate relaxation of the ionic and unit cell 

parameters can achieve a faster convergence which may be attributed to the coupling 

between ionic and unit cell degrees of freedom. 

3.3 Lattice Dynamics Study: Zone-centre Phonon Calcu-

lations 

The traditional theoretical studies for the lattice dynamics of crystals are performed 

with the help of group theory. However, this symmetry method gives only a qualitative 

picture of lattice vibrations. On the contrary, quantitative descriptions of phonons in 

crystals can be generated from either empirical or first principles modelling. In the 
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empirical approach, the potential in solids is modelled by a series of parameters which 

are determined from experimental measurements. On the other hand, reliable lattice 

dynamics calculations can be also obtained using the results of accurate ionic and 

unit cell relaxations generated from ab initio molecular dynamics simulations given in 

preceding sections. Some empirical models and the first principles calculation for the 

vibrational studies of materials are included here. 

3.3.1 Empirical Models 

Calculation of vibrational properties in crystals have been made by many empirical 

models. The common requirement is to fit the parameters of models to experimen-

tally determined physical quantities and each model serve to extrapolate from these 

observations to the whole lattice dynamics of materials. A complete survey for various 

empirical phonon modelling schemes can be found elsewhere [86]. Here, only some 

successful models which are still widely used are outlined. 

To account for the electronic polarisability, a shell model was developed by Dick 

et al. and Cochran. In this model, the ionic system is split into a non-polarisable 

core and a electronic shell formed by the valence charge. As illustrated in Fig. 3.6(a), 

each core and valence shell is coupled to each other by a simple spring model with the 

specific force constant. Hence, the interaction between ions contains both short-range 

couplings and long-range Coulomb interactions. Usually, the potential requires about 

10 parameters and can provide reasonably good results. However, this shell picture is 

not suitable for covalent solids in which valence electrons are shared between different 

ions rather than localised on ionic positions. This disadvantage of the shell model limits 

its application no matter how many parameters are used to expand the potentials. 

Another popular approach is the valence force field (VFF) model which analyses the 

lattice vibrations in terms of the valence force fields for the effect of bond stretching 

and bond bending. For example, the phenomenological potential within a unit cell 
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(a) 

ky 

(b) 
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ky 

Figure 3.6. Illustrations for two empirical models: shell model (a) and linear-chain 
model (b). In the shell model, the coupling force constant for nearest electron-nucleus, 
electron-electron, nucleus-nucleus, and next-nearest electron-nucleus interaction is de-
noteds as k, K, k", and k', respectively. In the linear-chain model (b), an example 
of layered MoS 2  is depicted in which Mo and S atoms are designated by small grey 
and large blank circles, respectively. The intralayered (solid lines) force constant is k, 

whereas the weaker intèrlayer (dashed lines) is k'. 

containing only two atoms X, Y can be expressed as 

UVFF _ 	{ k rgj 	(5r)2  + krik 	(5r1k) 2  +r 2  keij,  E (8jk)2 
2 ,2 	 i,k 	 Yxy 

+rkek, > (8) + rokr$je$jk  >1 (seI3k)(8r) 
xYx 	 Yxy 

+rokf k e kZ 	(6ekI)(6rk) +" II 	 (3.59) 
xYx 

where the indices j, k denotes the nearest and next-nearest neighbours of the atom 

i; 5rjj is the change of bond length from its equilibrium value r0  and 8ek is the 

corresponding change of the angles between the i - j and i - k bonds. kr j , ke I , k , 

and kr$jel)k  is the the force constant for the interaction between bonds, angles, and 

bond—angle, respectively. Fortunately, the vibrational behaviour for a specific bond 

is mainly characterised by the bond-stretch and bond-bending force constant and this 

VFF model is easily transferred into other molecular systems containing the same type 

of bonds. 
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For some particular atomic arrangements, there may exist a special empirical model 

(not the general case) which provides a particularly efficient means to obtain the force 

constants and phonon frequencies. A typical model for layered solids is the linear-

chain model [87]. This model transfers the layered structure, eg. MoS2 , into a simple 

one-dimensional chain which connects the atoms by the springs with different force 

constants. The schematic diagram of the linear-chain model is depicted in Fig. 3.6(b). 

Based on the eigenvectors determined from group theoretical analysis, the force con-

stants with respect to different types of spring can be obtained from fitting the param-

eters to a few observed zone-centre modes frequencies. However, layered solids treated 

by means of the linear-chain model must satisfy the following requirements: the ions 

of unit cells should lie on a series of parallel planes in which every plane contains only 

one ion; the eigenvectors for normal modes should be parallel or normal to the chain, 

and the cohesion across adjacent layers should be restricted to nearest neighbours. 

3.3.2 First Principles Calculations 

Despite of the efficiency of some empirical methods, most have very low transferability 

between different structures. From this view point, ab initio methods are necessary 

to gain insight into lattice vibrations. Once the Hellman n-Feynman forces on ions are 

determined very precisely by ab initio scheme shown in Sec 3.2.5, a dynamical matrix 

diagonalisation method based on quantum-mechanical calculations is possible accom-

plished to evaluate the frequencies of phonons. The central concept of this phonon 

calculation originates from a classical harmonic approximation in which the Hamilto-

nian H for a perfect crystal can be expressed as 

H H0  + Hharm 	 (3.60) 

where H0  is the Hamiltonian with respect to all the ions at equilibrium positions 

and Hharm  is due to the small ionic dispacements. For a given configuration, the 



CHAPTER 3. FIRST PRINCIPLES COMPUTER SIMULATIONS 	 74 

displacement from the equilibrium of the vth ion with a mass MV in the pth unit cell 

is un,,. Within the harmonic approximation Hharm  is 

Hharm 
= M11  (du,11, 

)2 + > Upv 	 (3.61) 
2 	dt 

where 	describe the interaction between u, and u,'. The equations of motion 

for ion u 1 ,, is derived and the force on it can be defined as 

d2u,, 
F, = M( 	= 	KPII,IL'PlUIhliI! 	 (3.62) 

dt2   

and K is therefore regarded as the force constant. 

However, the displacement u,, of the uth ion at x,, in the jith unit cell can be 

related to the displacement u 0  of the corresponding ion in the origin unit cell. It can 

be formulated as 

UA V = uov  exp[iq• (x 1, - x0 ,) - .'t] 	 (3.63) 

where q and w denotes the wave vector and frequency, respectively. By substituting 

Eqn. (3.63) into (3.61), the equations of motion for u 0  becomes 

Mw 2 uo,, = 	exp[iq. (x, - xo')]uo,' 	 (3.64) 

Following a mass-modified Fourier transformation of IC, the dynamical matrix 	(q) 

is obtained. If the directions of displacements are taken care, the general dynamical 

matrix is 

Dap ( 
q = 	1 	

exp[—iq. (x - xo')] 	(3.65) 
vv) \1M1I M' , 

where o, 0 represent the displacing directions of ions. Consequently, Eqn. 3.64 can be 
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transformed as a secular equation of the form 

> ID-0 	- 251 C01' = 0 	 (3.66)
16  

where C,,i = 	 is the phonon eigenvector. So, at each wave vector q, the 

eigenvalues w 2  and associated eigenvectors are determined from a diagonalisation of 

the dynamical matrix D,,p (i,). Further, the resultant eigenvalue as a function of wave 

vector gives the phonon dispersion curves within the first Brillouin zone. 

However, this clumsy calculation is reduced to a one unit cell simulation if only 

the zone-centre phonons (F-point modes) are concerned. The dynamical matrix D(,,) 

is thus simplified and its elements can be evaluated directly from forces. Based on 

Newton's third law, a small displacement r of the v'th ion from equilibrium along /3 

will induce a force on the vth ion along a. The same procedure is employed under the 

Hellmann-Feynman theorem for which detail was given in Sec. 3.2.5. In general, the 

dynamical matrix for a unit cell of N ions needs 3N displacing operations to fill the 

matrix. Each component of this 3N x 3N matrix is given 

1 FHF 

Dao 	 (3.67) 
- /M1vI' 7j3 

and the zone-centre phonons are derived from diagonalising the matrix. The compu-

tation effort of this ab initio force constants calculations can be reduced even further 

by introducing symmetry operations. If a set of symmetry elements S = {S1} map the 

ith and the jth ion to the kth and the lth ion, respectively, within a unit cell, then the 

force constants can be propagated by 

ICkl = S1C,ST 
	

(3.68) 

Once a subset of the possible 3N distortions are performed, the full dynamical matrix 

is then constructed by the symmetry mapping of Eqn. 3.68. It should be noted that 
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the symmetry of transformation matrices may be lower than that of the point group 

adopted by the equilibrium structure because of the possible symmetry breaking of the 

displaced configuration. 

In the harmonic approximation, the magnitude of the distorted displacement should 

match this criterion. Hence, the tests for the appropriate value of r have to be done to 

ensure the phonon calculations within the harmonic regime. In practice, this testing 

scheme is performed by displacing the ion in opposite directions with the same mag-

nitude for different r. The merit of each r can be judged by the difference of FVX F 

related to each pair of distortions. Moreover, to minimise the effect of the possible 

residual force of equilibrium configuration from incomplete convergence of calculated 

Hellmann-Feynman forces, the largest value of the displacement satisfying the harmonic 

requirement is used. Ultimately, diagonalisation of the resulting appropriate dynami-

cal matrix gives all 3N eigenvalues and eigenvectors of IF-point modes and this method 

can be extended for calculating arbitrary wave-vector modes by using a superlattice 

calculation. 

3.3.3 Frozen Phonon Method 

Before the modern quantum-mechanical phonon calculations introduced above, F point 

phonon frequencies were calculated by an indirect approach known as the frozen phonon 

method. In this method, a specific phonon frequency is deduced from the total energy 

difference between the equilibrium structure and the distorted lattice with a particular 

displacement pattern. For example, Wendel et al. [88] calculated the total energies of 

the equilibrium structure of silicon (Si) and the deformed structure in which two sub-

lattices are distorted by a displacement r along [111] direction. The energy difference 

can be expanded in terms of r 

2 2 - E0  = 	1TO(F) 7 + -_/__Y_ 7 + 	 ( 3.69) 
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Figure 3.7. Schematic diagram for the frozen phonon calculation of a typical layered 
semiconductor GeS. The Ge and S atoms are represented by small and large circles, 
respectively. A F-mode corresponding to a compressive shift of the rigid layers against 
to each other can be simplified as a spring model in which a pair of slabs are linked by 
a spring with force constant k. 

where psi is the reduced mass of Si and 	is a coefficient. The F-point transverse 

optical modes WTO(F)  is thereby obtained. Also, It has been shown that the other 

modes can be calculated from various static displacements [88, 89]. 

Based on this concept, a direct frozen-phonon calculation can be implemented by 

combining first principles force calculations and the fixed displacement pattern for 

a specific zone-centre phonon. For instance, instead of building up the dynamical 

matrix, the calculation of the rigid-layer compressive phonon frequency of a typical 

layered semiconductor GeS (detail see Sec 6.5.3) can be performed by the Hellmann-

Feynman forces calculations for a displacement pattern which assumes that the layers 

shift rigidly against to each other (shown in Fig. 3.7). After a sufficient convergence of 

calculated force, the Ge and S atoms in the same layer are displaced as a rigid unit and 

the effective force on this layer is approximated by a summation of individual forces 

on each atom. As illustrated in Fig. 3.7, the frequency of this rigid-layer compressive 

mode is therefore determined directly by a simple Hook's law. 
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Since the harmonic criterion is also held in this method, the appropriate displace-

ment tests are necessary to guarantee the calculation is within the harmonic regime. 

However, frozen phonon approach cannot provide detailed eigenvectors of vibrational 

modes. In fact, it utilises assumed eigenvectors, usually from the group theoretical 

analysis, as the input condition for the calculation and its accuracy will be easily af-

fected by nonambient environments. This essential issue will be addressed in Chapter 

6. 

3.4 Summary 

From reviewing the background techniques for ab initio total energy pseudopotential 

simulations in this chapter, it is found that the quantum-mechanical calculations for 

the ground-state electronic configurations of large systems are accessible by density 

functional theory, plane-wave basis set, pseudopotential, k-point sampling, and Car-

Parrinello molecular dynamics scheme. Further, the stable structure is determined by 

the Hellmann-Feynman forces and the corrected stresses which can be derived from the 

minimum of Kohn-Sham total energy and self-consistent wavefunctions. All the features 

have been implemented computationally in ab initio molecular dynamics package --

CAmbridge Serial Total Energy Package (CASTEP) [68]. A flow chart of the calculation 

procedure of CASTEP is briefly shown in Fig. 3.8. 

Also, based on this ab initio modelling, insight into zone-centre vibrational modes 

can be probed by the first principles phonons calculation. The computational procedure 

is sketched in Fig. 3.9. Superior to empirical approaches, the first principle dynami-

cal matrix diagonalisation method provides not only eigenvalues but also eigenvectors 

which the detail displacement patterns for specific vibrational modes. In addition, 

the dispersion curves can be obtained by performing this calculation on a supercell 

environment. 

It is worth to mention that the infrared-active vibrations may involve long-range 
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Generate Pseudopotential [3.2.3] 
Initialise wavefunctions 
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I Construct KS equation [3.2.2] I 

Conjugate-Gradients 
minimisation'P [3.2.4] 

'P self-consistent? i'-  

Calculate F and move ions by 
conjugate-gradients method [3.2.5] 
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Calcualte 	and adjust the unit 
by quench scheme [3.2.5] 

sufficiently small )__~Y  

I STOP I 

Figure 3.8. Flow chart describing the procedure for the electronic, ionic, and unit cell 
relaxation of solids with ab initio molecular dynamics simulation. The computational 
detail of processes can be found in the related sections which are noted in square 
brackets. 
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Figure 3.9. Flow diagram for the first principles phonons calculation. 

dipolar forces which will affect the calculated infrared eigenvalues. Nevertheless, this 

dipolar effect was not included in our first principles phonon calculations. On the con-

trary, Raman-active modes with respect to the inversion symmetry are free from dipolar 

forces and the corresponding phonon calculations should be more accurate. Recently, a 

technique combining density functional theory with linear-response technique has been 

developed [90] to impelment lattice-dynamics calculations in semiconductors. It would 

be of interest to apply this density functional perturbation approach to address the 

missing long-range dipolar force effect in phonon calculations. 



Chapter 4 

Pressure Studies of Ionic 

Semiconductor: CuC1 

4.1 Introduction 

The CuC1 is one of the most ionic of tetrahedral semiconductors. According to its 

strong ionicity, the CuC1 is easily influenced by external fields. Therefore, complexity 

of structural and electronic properties is expected to be found in CuC1 under pressure 

and temperature. In fact, the high-pressure structural, chemical and electrical prop-

erties of CuC1 have been the subject of extensive experimental study [91, 92]. Also, 

unusual vibrational properties of CuC1 associated with the extreme anharmonicity [93], 

unexpectedly large negative thermal expansion [94], and anomalies in the first-order 

Raman spectrum [95], have been of sustained interest for many years. Further, it is an-

ticipated that the electronic properties of CuCl will differ from the covalent tetrahedral 

materials. These have been already investigated in detail elsewhere [96. 97]. 

CuCl is distinct from its Ill-V or IT-VT counterparts in that copper 3d electrons 

hybridise strongly with chlorine 3p states. The hybridisation causes more electrons to 

be involved in bonding and this situation leads to a serious computational obstacle to 

the application of the conventional pseudopotential method. Nevertheless, advances in 



CHAPTER 4. PRESSURE STUDIES OF IONIC SEMICONDUCTOR: CUCL 82 

ab-initio pseudopotential total energy calculations given in previous chapter make it 

possible to theoretically study the structural and electronic properties of this complex 

system. Hence, in this chapter, entirely parameter-free calculation is used to prospect 

the detail of pressure-induced polymorphs of CuCl. 

In addition to the perception of exotic behaviour of CuC1 itself, another motivation 

of this study is to elucidate the pressure effects on the three-dimensional ionic network 

semiconductors in which cohesion is much larger than the typical anisotropic solids. 

In view of cohesive strength, it is worth probing the influence of hydrostatic pressure 

on the highly ionic solids before entering the pressure studies of highly anisotropic 

materials of the next chapters. 

Thus, this chapter is organised as follows. The theoretical definition of ionicity and 

the prediction of structural stability are reviewed in Sec.4.2. In Sec.4.3 the structural 

detail of CuCl-IV and ab-initio structural studies are outlined. The study of electronic 

properties is also presented in Sec-4-4. Consequently, a conclusion is made in Sec.4.5. 

4.2 lonicity of The Bond in Crystals: Historical Perspec-

tive 

The nature of chemical bonds in crystals has been studied for many years since they 

provide an understanding of fundamental crystalline properties. In order to study the 

characteristic of chemical bonds, the concept of ionicity of bond has been introduced. 

However, as a non-directly observable quantity, different scales of ionicity have been 

proposed in terms of thermochemical criteria [98] and dispersion theory [99]. Recently, 

a measure of asymmetry of charge density distribution derived from first-principle cal-

culations has been also used to gauge the ionicity of bond [100]. A comparison between 

various ionicity scales of the ionic semiconductor CuCl at ambient condition is made 

in this section. Moreover, using total-energy calculations, the structural stability of 

tetrahedral compounds under compression can be expressed as a function of ionicity 



CHAPTER 4. PRESSURE STUDIES OF IONIC SEMICONDUCTOR: CUCL 83 

and bondlength [101]. The methodology to predict the pressure-induced phase transi-

tion of binary compounds ANBS_N  using pseudopotential calculations coupled with an 

empirical ionicity scale is reviewed. As a result of this calculation, the empirical scales 

of the transition pressure of CuCI from ambient structure to a high-pressure phase are 

shown here as well. 

4.2.1 lonicity Scales for Octet Binary Compounds A"B 8 ' 

Considering the formation of bonds connecting individual atoms, the ionicity of chem-

ical bonds was initially defined by Pauling [98] as a function of the atomic electronega-

tivity. The concept of electronegativity (X) as a scale to measure the power of electron-

attraction of an atom and can be determined from the formation energies (D) of the 

bonding. In principle, the relationship of bond formation energies and the difference 

between elemental elect ronegativities of the bonding atom A and B , XA - XB, is given 

by 

I  
IXA_XBIOV  DAB _ DAA+DBB

2 
(4.1) 

where DAB,  DAA, and DBB  denotes the heat of formation for the AB, AA, and BB 

bond, respectively. Thus, Pauling's ionicity (Ipaui jng ) of bonds in ANBS_N  crystals 

with the coordination number M is defined as 

Ipauijng(AB) = 
_IXAXfl 2  

M—Ne 4 

M 
and 0 < Ip uijng (AB) < 1 	(4.2) 

However, the Pauling's ionicity scale includes not only individual bond energies but 

also the energies due to bond-bond interactions which will introduce the inaccuracy of 

the ionic character of a chemical bond [102]. 

An improved definition of ionicity, Phillips' ionicity scale, was established from spec- 

troscopic dispersion [99]. This scale of ionicity is obtained from the transition energy 
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Figure 4.1. A sketch of the energy gap between the bonding and antibonding state 
as a function of ionic properties of the given bond. The gap for the homopolar and 
heteropolar diatomic system is denoted as Eg  and E,, respectively. The schematic 
wave function which can be described as a linear combination of ground state OA and 

?I)B of individual atom A and B with a combination coefficient A is also shown for the 

corresponding state. 

between bonding and antibonding states of semiconductors. Based on the fundamental 

quantum-mechanical model for diatomic systems, the ground state of each electron in 

the diatomic molecular potential can be separated into bonding and antibonding lev-

els and this gives rise to an energy gap between two diatomic states [103]. Fig. 4.1 

shows that the bonding state with respect to lower energy is specified by heaping up 

the wavefunctions between two atoms while the antibonding state with higher energy 

corresponds to the antisymmetric wave function with a cusp within the bond region. 

For more quantitative studies, in homopolar diatomic molecules, the band gap of 

bonding-antibonding splitting corresponding to the bond between identical atoms Al 

and A2 is characteristed by the hopping intergal Eh = 2HA 1 A 2  = 2 < IJA1IHI'PA2 > 

which is the off-diagonal element of the Hamiltonian matrix. However, as illustrated in 

Fig. 4.1 , the energy gap will be enhanced according to the difference between on-site 

Hamiltonian matrix elements on unlike bonding atoms in heteropolar molecules. Hence, 
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the average valence-conduction band gap E. in ANBS_N  crystals can be formulated as 

E9 =E+C2  (43) 

where C is a function of I < AIHI?I'A > - < BIHkI'B > I . Therefore the ionicity of 

the bond, 'Phillips, is defined as 

C2 	C2  
'Phillips = E2  = E -+ C 2 	

(4.4) 

where Eh and C are responsible for the covalent and ionic components of the average 

band gap Eg , respectively. In practice, the homopolar part Eh depends on the lattice 

constant a and can be estimated from the optical gap of a pure covalent system, such 

as Si, in which E9  = Eh 

Eh 	a(Si) 
log 

Eh 	
2.5 log 	 (4.5) 

(Si) =  a 

Further, based on the theoretical calculations of the response functions [104], the av-

erage energy gap E9  (AB) of ANB 8_N compounds can be obtained spectroscopically 

from the real part of complex electronic dielectric constant 0 (AB), 

f o (AB) - 1 x Eg(AB) -2 	 (4.6) 

Then, the C(AB) can be derived from Eqn. (4.3). In addition, Phillips defined an 

ionicity phase angle (tan = C/Eh) and found a critical angle W, giving I = 0.785 

which identifies a boundary separating the domain of fourfold coordinated structures 

from the stable region of sixfold coordinated structures of ANB 8_N crystals on the C 

versus Eh diagram. 

In addition to empirical definitions of ionicity, the character of charge asymmetry in 
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crystals can be evaluated by first-principles calculations [100]. Theoretically, by choos-

ing the origin at the middle of the bond, the symmetric and antisymmetric component 

of the calculated valence charge density p(r) contributing to the covalent and ionic 

properties of the given bond, respectively, are expressed as 

psymm. 	
p(r) + p(—r) 	

(4.7) (r) = 
2 

= p(r) - p(—r) 
(4.8) 

	

Pantisymm. (r) 	2 

Technically, the charge asymmetry calculation is performed using the Fourier transfor-

mation of the valence charge density. Then, the symmetric and antisymmetric part of 

charge density in reciprocal space G are given by 

p(G) + p* (G) 
(4.9) psymm.(G) = 	2 

P 
(G) - p* (G) (4.10) Pantisymm. (G) = 	2 

where p*(G)  is the complex conjugate of the charge desnity. The charge asymmetry 

coefficient g, a measure of ionicity, is therefore defined as 

2 	Santjsyrnm. - 	G Ipar.tisymm.(G)12 	 (4.11) = 	 >1
-  -' .,ymm. 	>1G IPsymm.(G)1 2  

where the S3ymm. and Santisymm. represents the value of symmetric and antisymmetric 

charge density over whole unit cell, respectively. 

As the result of calculations, the g values of ANB8_N  compounds were found very 

close to corresponding IPhillip, except for the compounds containing first-row elements 

without core p states. However, a clear structural separation still can be obtained using 

charge asymmetry calculations: similar to the parameters of Eh and C in Phillips' ionic-

ity, Ssymm. and  Santisymm. can be used to group the stable structures of ANBS_N  com-

pounds having the same coordination as the separated lines on the Ssymm.Santisymm. 
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phase diagram. 

Using empirical and first-principle scales defined above, different values of ionic-

ity for CuC1 are determined as Ipauung (CUC1) = 0.67, IPhlu8(CuCl) = 0.746, and 

g(CuC1) = 0.741. The ionicity of CuC1 in the Phillips scale is smaller than the critical 

value of 0.785 and suggests CuCL will favour the fourfold zinc-blende structure under 

ambient condition. This conclusion is consistent with the result of the first-principle 

charge asymmetry calculation. Further, Iph2u5(CuCl)  is close to the critical value 

I,at which zinc-blende structure becomes unstable with respect to the more closely 

packed structures, wurtzite or rocksalt. This inherent structural stability implies the 

possibility of a large number of pressure- or temperature-induced polymorphs existing 

for CuCl which will be outlined in Sec. 4.3. 

4.2.2 Prediction of High-Pressure Phase Transition in Tetrahedral 

Semiconductors: The lonicity Scale Method 

High-pressure structure stability of tetrahedral semiconductors in diamond or zinc-

blende structures was systematicly studied by Chelikowsky using a combination of 

ab - initio total energy calculations and the empirical Phillips ionicity scale [101]. 

Following Chelikowsky's approach, the phase transitions in binary compounds ANB 8_N 

from zinc-blende structure to either the metallic /-Sn structure or the ionic rocksalt 

structure under compression can be well-defined by the parameters of bondlength and 

ionicity. In general, the transition pressures of the binary octets family predicted by 

this methodology are in good agreement with observed results. Before determining 

the pressure-induced structural trends of CuC1, the background of this treatment is 

addressed below. 

In order to understand the effect of ionicity on the structural properties, Che-

likowsky performed total-energy calculations using a self-consistently screened ionic 

pseudopotential [69] in a structure-independent Gaussian basis set. The ionicity of 

the potential could be gradually modified by changing the Gaussian potential well on 
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both anions and cations. Thus, stability of different crystal structures at a specific 

pressure is determined from the minimisation of calculated total-energies of various 

electronic configurations. However, to obtain a more precise description of phase be-

haviour of zinc-blende semiconductors, Chelikowsky rescaled the calculated transition 

pressure P which represents the transition from zinc-blend structure to high-pressure 

structure c at a given reference volume V2  by a volume-independent scaling factor S'. 

The transition pressure P is therefore formulated as 

Pt (Iphill ps ,V) = P,'(IphlIi3,Vi)S(V - Vi) 	 (4.12) 

where 'Phillips  is the Phillips ionicity scale (defined in Eqn. (4.4)) and V is the volume. 

c denotes only two possible types of structure, /3-Sn and rocksalt, in Chelikowsky's 

investigation. 

As a result of this calculation applyed to various species of octet binary corn-

pounds, a global phase diagram (shown in Fig. 4.2) of high-pressure transitions for 

zinc-blende materials is constructed in terms of bondlength and ionicity. In this dia-

gram, compounds located in the ionic domain corresponding to a larger value of the 

ionicity ('Phillips > 0.6) are predicted to undergo a transition to the ionic rocksalt 

structure while more covalent semiconductors transform predominately to the metal-

lic /3-Sn structure under hydrostatic pressure. As displayed in Fig. 4.2, the range of 

bondlengths was set from 2.25 to 2.8 A according to the scaling law of Eqn. (4.12) 

is no more appropriate for structures having bondlength less than 2.25 A and, on the 

other hand, systems with longer bondlength than 2.8 A become unstable in zinc-blende 

structure at ambient pressure. In addition, the calculated transition pressure increases 

with decreasing bondlength for constant ionicity. 

With the coordinate specified by the bondlength of 2.35 A and the ionicity of 

0.746, the zinc-blende CuCl was predicted to transform from the zinc-blende structure 

to rocksalt type structure at 63.5 kbar. However, the calculated transition pressure 
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Figure 4.2. High-pressure domains for tetrahedral semiconductors with a contour of 
calculated transition pressures. The location of CuCl indicates that structure of CuCI 
will transform from the zinc-blende to the rocksalt modification at 63.5 kbar. 

is not consistent with the experimental data for which an intermediate phase of CuC1 

was observed at about 50 kbar. This missing prediction reveals an oversimplification 

of Chelikowsky's phase diagram since it includes only two high-pressure structures. It 

therefore can not provide detailed pressure behaviour of tetrahedral compounds with 

intermediate phases like CuCl. A first principle method which will be discussed in the 

next section is therefore needed to explore the structural response of CuC1 to external 

pressure. 

4.3 First-principle structural Stability Determination for 

Exotic Structures of CuC1 

The phase behaviour of the ionic binary compound CuC1 has been extensively studied 

under external pressure and temperature [92, 91, 105]. The P-T phase diagram of 

CuCl was reported by Merrill [106] and is shown in Fig. 4.3. As illustrated in this 

diagram, a wurtzite structure phase (CuC1-I) has been found at high temperature (400 

425 °C) and ambient pressure [92]. Decreasing the temperature to the ambient, CuC1 
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has been observed in the zinc-blende structure (CuC1-I1) having space group F43m. 

During the pressurising procedure, a phase transition from CuC1-Il to a more dense 

rocksalt structure is expected by the theoretical ionicity prediction as discussed in 

the preceding section. However, unlike Ill-V and group-IV compounds which exhibit 

a direct transformation between fourfold zinc-blende structures to sixfold rocksalt-

type or eightfold CsC1-type metallic modifications [5], an intermediate tetrahedrally 

coordinated phase has been observed in CuCl using high-pressure X-ray diffraction 

[107]. The crystal structure of CuC1-IV was then recognised as a tetragonal structure 

although no atomic positions could be assigned. Recently high pressure powder neutron 

measurements revealed that the CuC1-IV can be represented as a simple cubic crystal 

structure [108] for which structural details will be given latter. 

In this section, the vital structural information of CuC1-IV is described in detail 

in order to compare with the relevant structures of the Group-IV and Ill-V family of 

semiconductors. To determine the structural phase transitions from CuC1-I1 to CuC1-

IV and then to CuC1-V, the pseudopotential method is therefore performed for total 

energy calculations of all three structures. The computational details and calculated 

results are presented in the second part of this section. It is found that structural 

properties and relative stability of three modifications of CuC1 are fairly well described 

by this ab-initio pseudopotential approach. 

4.3.1 Structural Detail of CuC1-IV 

Similar to the BC8 structure which is a dense metastable polymorph found in Si and 

Ge after decompression from metallic phases [5], a simple cubic SC16 structure was 

found to be adopted by the CuC1-IV [108]. The analogy between the BC8 structure 

and the SC16 structure is drawn in Fig. 4.4. As displayed in Fig. 4.4(a), the BC8 

structure is body-centered cubic containing 16 identical atoms per conventional cell 

or 8 atoms per primitive cell. The nature of bonding for homopolar solids in the 
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Figure 4.3. The P - T phase diagram of CuCl including the ambiguous superconduc-
tive phase CuC1-1Ia. 

BC8 structure is dominated by a four-fold bonding feature which gives rise to a even-

member ring feature. The binary version of BC8 is derived from replacing 8 atoms 

in the conventional cell with another species of atom which results in a simple cubic 

structure with a basis of 16 atoms as shown in Fig. 4.4(b). However, a distorsion of 

the perfect binary analogue of the BC8 structure is induced by the different electronic 

properties between two species of atoms. Then, the SC16 structure with bonds between 

unlike species of atoms having lower symmetry than BC8 is illustrated in Fig. 4.4(c). 

Unlike the perfect BC8 structure (shown in Fig. 4.4(c)), the SC16 CuCl-IV is corn-

posed of eight CuCl formula units (16 atoms). The CuCl-TV structure has spacegroup 

Pa3 and is fully specified by a single lattice constant parameter and two free atomic 

positional parameters ('ac and uci)  for anions and cations, respectively. The locations 

of each species of atom are at the 8c sites of the Pa3 spacegroup and expressed as 

±(u, 'U, 'u) 

- U, + 'u) 

1 	1 
+( —u,+u,u) 

- u) (4.13) 

In the special case for which the anion and cation are identical and IUaniOn - Uj0Tj = 

1/2, the SC16 structure reduces to the BC8 with spacegroup 1a3 like Si-Ill and Ge-TV. 
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(b) Binary BC8 

0 0 ........ 0 
(a) BC8 

Figure 4.4. Structural similarity between the (a) BC8 for group-IV semiconductors, 
the (b) binary version of BC8, and the (c) binary analogue SC16 for the I-Vu com-
pound, eg. CuC1. The cations and anions are denoted as large and small circles, 
respectively. Elevations in fractional units of c/10 are indicated by the numbers inside 
the circles. The fourfold bonding feature of BC8 is represented by solid lines in (a) 
whereas the virtual bonds in the binary version of BC8 are shown as dotted lines in 
(b). In (c), a sixfold ring of SC16 structure is displayed as solid and dashed lines for 
different depth along the c-axis direction. Two characteristic bonds (Ba  and Bb)  with 

four bond angles ( 0, 0ba, 9bbl, and 86b2)  are also indicated in (c). 
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Moreover, Fig. 4.4(c) shows that the bonding of the SC16 CuC1-IV structure without 

centrosymmetry is characterised by two different bondlengths Ba  and Bb 

B. = ao/[1 - (uc + uci)] 
	

(4.14) 

Bb = a0j2[1 - (UCu  + ucl)]2 - [1 - (uc + uC,)] + 1/4 	(4.15) 

where a0  is the lattice constant of the simple cubic structure. 

As a result of the structural refinement of the neutron powder spectra at 55.2 kbar, 

the unit cell parameter and two internal structural parameters ucu  and uc was deter-

mined to be 6.416 A , 0.6297(3) and 0.1527(3), respectively. Using these parameters, 

a three-dimensional illustration of the CuC1-IV in SC16 structure is therefore depicted 

in Fig. 4.5. The bondlengths Ba  and Bb derived from the structural parameters are 

given as 2.42 and 2.29 A , respectively, which comprise of a sixfold ring with two pairs 

of bond angles of 0ab = 93.9° and 9ba = 98.2° and two other close angles 9bb1 = 118.0° 

and 0bb2 = 119.5° defined in Fig. 4.4(c). The average bond length of SC16 CuC1-IV 

similar to that found in zinc-blend CuC1-I1 structure (2.35 A ). Nevertheless, the near-

est non-bonded separation of Cu-Cu (2.88 A ) and Cl- -Cl-  (3.44 A 
) 

along the 

[111] direction of SC16 CuC1-IV are much smaller than the corresponding non-bonded 

distance in zinc-blende CuCl-II (3.83 A ). Further, the response of UCu  to pressure is 

insignificant, being within quoted experimental uncertainties, whereas the ucl increases 

slightly to 0.1540(3) at a pressure of 92.4 kbar [108]. 

4.3.2 Ab-initio Study of Pressure-Induced Polymorphism in CuC1 

In addition to the first-principle determination of phase transitions presented in Sec. 

4.2.2, relative structural stability of the zinc-blende CuCl-II and rocksalt CuC1-V phases 

have also been investigated by means of the three-body potential model associated with 

the effect of charge-transfer mechanism under compression [109]. This three-body in-

teractions improve the prediction of the transition pressure give a better description 
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Figure 4.5. Illustration of the SC16 structure for CuCl-IV containing two unit cells 
along the a-axis direction. The Cu and Cl atoms are denoted as small and large spheres, 

respectively. 

of high-pressure elastic behaviour of CuCl [110]. More recently the structural poly-

morphism of CuC1 including CuC1-IV has been fairly well described using ab-initio 

structural stability calculations combined with the pseudopotential and full-potential 

models [111]. 

To perform the total-energy pseudopotential calculations for CuCl, nonlocal, norm-

conserving ionic pseudopotentials for copper and chlorine are necessary. As shown 

in Sec. 3.2.3, the Kleinman-Bylander separation method is implemented to handle 

the nonlocal pseudopotential. The soft pseudopotential for Cl was generated using a 

RRKJ optimisation scheme [73]. The electronic configuration for the s, p, and d po-

tential of Cl was 3s2003p500, 
3S2 

-003p5-00 , and 3s' 003p3753d°25 , respectively. The core 

radius was 0.9 A . However, another scheme for generating optimised pseudopotentials 

[112, 113], Q tuning method (highlighted in Sec 3.2.3), was employed to build the 

pseudopotential of Cu. The electronic configuration for all s, p, and d potentials of 

Cu was 3d 004s°754p°25  with cutoff radius of 1.06 A . Using the tuning parameters 

of q c (s) = 0.8, qc(p) = 1.0, and q(d) = 1.175, the pseudopotential of the copper is 
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Figure 4.6. Nonlocal pseudopotential for Cu with a core radius of 1.06 A (2.00 a.u.). 

The 3d, 4s, and 4p eigenstate of Cu is denoted as the solid, dashed and dotted line, 
respectively. 

shown in Fig. 4.6. Before implementing ab-initio total energy calculations of CuCl, the 

optimised Cu pseudopotential was tested in the calculation of metallic copper using an 

8 x 8 x 8 Monkhorst-Pack k-point grid with a face-centered-cubic unit cell containing 

four atoms. The calculated total energy was found to be converged to 0.1 eV for the 

energy cutoff of 650 eV and gave rise to an underestimate of lattice constant of 0.3% 

with a small overestimate of bulk modulus by 1.8% [114] 

In view of the hybridisation of Cu-3d states and CI-3p states, ten 3d electrons of Cu 

were involved in the calculation and the number of valence electrons per formula unit 

of CuC1 becomes 18. Thus, the total energy calculations of different phases of CuC1 

are performed using the Perdew-Zunger parametrisation [115] of the Cepperley-Alder 

exchange-correlation potential [116]. To perform the Brillouin Zone intergrations, a 

4 x 4 x 4 Monkhorst-Pack grid corresponding to 10, 4, and 10 special k points for 

zinc-blende, SC16, and NaCl structure, respectively, has been used to give convergence 

of total energy calculations to 0.01 eV/cell. Electronic degrees of freedom for all phases 

of CuC1 were relaxed using a preconditioned conjugate-gradient scheme (shown in Sec 

3.2.4). Unlike the well-defined internal structural coordinates of the zinc-blend and 
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Figure 4.7. The unit cell volume dependence of total energy for the zinc-blende 
(circles), SC16 (triangles), and rocksalt (squares) structure of CuCl. The Murnaghan 
fitting of data for each structure is indicated by a solid curve. The common-tangent 
construction for the pressure-induced phase transition of zincblende-SC16 and SC16-
rocksalt is denoted as P i  and P, 2 , respectively. 

rocksalt phase, the equilibrium atomic positions of SC16 CuCl-IV were optimised by 

relaxing ions under the Hellmann-Feynman forces (see Sec. 3.2.5) at different volumes. 

The calculated total energy as a function of the unit cell volume for CuC1-II (zinc-

blende), CuCl-IV (SC16), and CuCl-V (rocksalt) is displayed in Fig. 4.7 

As the calculated results in Fig. 4.7, the zinc-blende structure (CuCI-IT) transforms 

first to the SC16 (CuCl-IV) while CuC1 is pressurised up to 12 kbar. The stability of the 

SC16 structure of CuC1 persists up to 94 kbar where the rocksalt structure is expected 

to be more favourable. The calculated equilibrium lattice constants, bulk modulus, 

and transition pressures for three phases of CuCl are listed in Table 4.1 in which a 

comparison with experimental data is also made. 

From the data of Table 4.1, it can be found that the ab-initio pseudopotential 

method accounts for the structural behaviour of three phases of CuCl as does the 

full potential linear augmented plane-wave (FP-LAPW) technique [117, 111]. How-

ever, both first-principle simulations lead to an underestimate of transition pressures 
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Table 4.1. Calculated structural parameters for the zinc-blende (ZB), SC16, and 

rocksalt (NaC1) phases of CuCl as determined using the pseudopotential and FP-LAPW 
methods. Experimental results are also shown for comparison. The unit for lattice 

constant (ao), bulk modulus (B 0), and transition pressure (P t ) are in A , Mbars, and 

kbars, respectively. 

Method a3  B0  Pt  

ZB SC16 NaCl ZB SC16 	NaCl ZB 	SC16 NaCl 

FP-LAPW [111] 5.273 6.421 4.893 0.756 0.839 	0.927 - 	 37 87 

Pseudopotential 5.343 6.483 5.021 0.619 0.636 	0.803 - 	 12 94 

Expert. [108] 5.424 6.418 4.929 0.650 0.660 	- - 	 55 105 

between zinc-blende and SC16 and between SC16 and rocksalt structure. There are 

some possible reasons to account for these disagreements between theoretical and ex-

perimental results. Firstly, the hysteresis effects in the experiment may lead to an 

overestimate of the transition pressure upon upstroke. Unfortunately, no measurement 

of the transition pressures during decompression has been done for CuCl to determine 

the magnitude of this effect. However, they are not expected to be as pronounced as 

in covalent network compounds such as InSb [29] and GaAs [118]. 

Another possible cause is that the formation of local regions of SC16 CuC1 may 

occur at pressures lower than the pressure at which the long-range order of the high 

pressure phase has been established. Indirect evidence suggests that a minority of 

SC16 CuC1 has been found at a lower pressure of 49.8 kbar in neutron scattering 

measurements [108]. Nevertheless, the similarity between bond lengths in zinc-blende 

and SC16 CuC1 will bring about a disadvantage for the precise identification of this 

pressure-induced short-range structural changes. 

According to the high t em perature-sensitivity of CuCI, the observations of elastic 

properties shows a strong pressure-temperature coupling effect on the phase behaviour 

of CuC1 [119]. It implies that temperature effects could give the dominant reason for the 

underestimate of calculated transition pressures. These measurements suggested that 
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the transition pressure between CuCl-II and CuC-IV decreases substantially with de-

creasing temperature. Very recent reports on two-phonon absorption in CuC1 show that 

the characteristic luminescence peak from CuC1-IV can be observed at pressure about 

40 kbar when the sample is cooled down to 6 K [120]. Hence, the zero-temperature con-

dition of our ab-initio calculations presented here is responsible for the lower calculated 

transition pressures than those found experimentally at ambient temperature. 

4.4 Electronic Properties of CuCl polymorphs 

The electronic properties of modifications of CuCI are essentially characterised by the 

admixture of the copper-3d and chlorine-3p orbitals. As a result of calculations, the 

valence charge density of SC16 CuC1 indicates that the bonding in this strongly hy-

bridised compound can be accurately described by the nonlocal ionic pseudopotentials. 

Moreover, upon close inspection of electronic band structures, this p - d hybridisation 

taking place close to the Fermi energy will affect the energy gap between the top of 

valence band and the bottom of conduction band. Indeed, the orbital-overlapping of 

CuCl associated with a band gap of few eV is stronger than that of family IV and Ill-V 

semiconductors in which d orbitals corresponding to very low energies can be treated 

as localised core states [117]. In order to explore the change in the electronic properties 

of CuCl under pressure, the band structures of different phases of CuC1 are discussed 

in detail here. 

4.4.1 Valence Charge Density of CuC1-IV 

It is well known that the charge density gives detailed information of bonding properties 

which are of interest to structural chemists. The bonding in SC16 CuC1-IV can be 

explained using ab-initio pseudopotential calculations given in the preceding section. 

Since calculations for SC16 CuC1-IV are performed including d orbitals, the charge 

density illustrated in Fig. 4.8 is composed of the contributions from Cu(3d'04s') and 
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Figure 4.9. Band structure of CuC1 in the zinc-blende (a) and rocksalt (b) modifi- 
cations as determined from pseudopotential (solid line) and all-electron (dashed line) 
methods. Two calculated band structures are aligned at the twofold degenerate d level 

F 12 . 

4.4.2 Band Structure Calculations 

Electronic band structures for the CuCl-II (zinc-blende) and CuC1-V (rocksalt) are cal-

culated using ab-initio pseudopotential method with respect to the relevant equilibrium 

lattice constant shown in Table 4.1. The results are compared with all-electron FP-

LAPW calculations. In view of the interaction between 3p and 3d states of Cl and Cu, 

respectively, only the valence bands are shown here. The calculated band structures 

along the high-symmetry directions for these two modifications of CuCl are given in 

Fig. 4.9. The band structure of SC16 CuC1-IV obtained from FP-LAPW method is 

also shown in Fig. 4.10. 

In Fig. 4.9, two methods show similar band structures in which the lowest-energy 

band gaps are direct in the zinc-blende phase and indirect in the rocksalt phase. Both 

phases are found to be insulating without band overlap in the Brillouin-zone regions 

studies. The result of Fig. 4.10 also indicates that CuCl-IV is not metallic. These 

results are consistent with the previous self-consistent scalar-relativistic linear muffin-

tin-orbitals (LMTO) combination and the non-self-consistent Korringa-Kohn-Rostoker 
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Figure 4.10. Brillouin zone of the SC16 structure (a) and band structure of SC16 
CuC1-IV as determined from all-electron calculations (b). 

(KKR) methods [121]. More convincing evidence comes from the optical measurements 

of absorption edges [122] and electrical studies [123] which found no metallic phase of 

CuCl under compression up to 120 kbar. 

From a more careful inspection of band structures, the influence of the p-d hy-

bridisation on CuCl in different phases can be qualitatively determined by symmetry 

considerations. Based on the tight-binding approximation [124], the energy band can 

be interpreted as a linear combination of orbital interactions (also called overlap pa-

rameters) with coefficients of the geometrical structural factor. Also, the degeneracies 

of bands at specific k point (eg. F) are predominantly determined by the structural 

symmetry. Therefore, the absence of the inversion symmetry of zinc-blende CuCl-1I is 

responsible for the splitting of top five 3d bands at F point, shown in Fig. 4.9(a), which 

corresponds to the p - d interaction. Similar band behaviour is also found in the band 

structure of Cud-TV (Fig. 4.10) adopting the SC16 structure without the inversion 

symmetry. However, this p - d hybridisation is not allowed for rocksalt CuCl-V at the 

zone centre since the inversion symmetry of the rocksalt structure excludes the p - d 

mixing according to the different parities of the two states. The top d bands of the 
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rocksalt phase are unmixed and degenerate as shown in Fig. 4.9(b). In addition, the 

symmetry forbidden p-d hybridisation accounts for the indirect band gap of the rocksalt 

modification of CuC1 [121]. 

Considering the quantitative description of band structures, the comparison of the 

lowest band gap obtained from various theoretical methods and optical measurements 

is made for all three phases of CuC1 and listed in Table 4.2. It can be seen that three 

self-consistent band calculations (pseudopotential, FP-LAPW, and LMTO) give a dis-

crepancy between the calculated and observed energy gap. Further, by comparing the 

band gaps and band structures of the zinc-blende structure calculated by pseudopo-

tential and FP-LAPW methods, the inequivalence is deduced from different minimum 

energy lattice constants as given in Table 4.1. Actually, the resulting differences in 

calculated band structures are found to be consistent with the deformation potentials 

of CuC1 in this structure [121]. However, in the rocksalt phase, not only the change of 

bandwidths but also the maximum of the valence band obtained from two calculations 

are different. Again, the change of bandwidths in the rocksalt modification of CuCl is a 

consequence of deformation potentials. Moreover, the indirect band gap of F -+ L and 

L - X predicted by pseudopotential and FP-LAPW approach, respectively, is similar 

to the indirect transition obtained from LMTO (L -+ X) and KKR (F -~ L) methods 

[121]. Since the KKR method provided more accurate energy gap and deformation po-

tential, the F -* L indirect band gap determined by this non-self-consistent calculation 

is therefore regarded as the actual indirect transition. 

405 Conclusion 

The structural and electronic behaviour of the pressure-induced modifications of the 

highly ionic compounds CuC1 have been comprehensively studied by the first-principles 

method using nonlocal ionic pseudopotentials. Results from calculations successfully 

account for the observed pressure-induced transition sequence observed experimentally 
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Table 4.2. The lowest band gaps calculated by pseudopotential (Pseudop.), FP-
LAPW, self-consistent LMTO, ans non-self-consistent KKR methods for three phases of 
CuCl. The results of optical measurements are also included for comparison. According 
to different conclusions obtained from these calculations (see in text), the indirect band 
gap of the rocksalt modification is indicated in individual parenthesis. The unit for 
energy is in electron-volt (eV). 

Pseudop. 	FP-LAPW LMTO KKR 	Expt. 

Structure 	 [111] 1121 7 117] [121] 	[121] 

-blende (F -* F) 	0.351 	0.707 0.5 3.21 	3.17 

SC 16 (F -+ F) 	- 	 0.526 1.66* - 	 2.9 

rocksalt 	0.224 	0.577 	0.6 	3.97 	3.0 

(indirect gap) 	(1' -4 L) 	(L -+ X) 	(F -* L) (L -+ X) 

* calculation for the PbO-like structure of CuC1-IV [117] 

in this material. The prediction and observation implies that the SC16 structure is 

a stable high-pressure polymorph of both 111-V and I-Vil compound semiconductor 

families though it appears that kinetic factors preclude its formation in the Ill-V corn-

pounds [5]. The observed differences in structure adoption therefore appear to depend 

sensitively on the details of the transition mechanisms. Moreover, the electronic energy 

band structures of different dense polymorphs have been also discussed in this chapter. 

The issue of electron-orbital hybridisation corresponding to energy band gaps still can 

be well addressed by ab-initio band structure calculations although the main simplifi-

cation of this approach (density functional theory) is only appropriate for ground-state 

calculations. Finally, in view of the substantial pressure effects on highly ionic solids, 

a potentially fruitful issue will be to investigate the response of highly anisotropic ma-

terials to hydrostatic compression which will be concentrated upon in the rest of this 

thesis. 



Chapter 5 

Compressional Mechanism and 

Pressure-induced Electronic 

Effects in Layered Compounds 

5.1 Introduction 

In view of the coexistence of different heirarchical cohesion in some structures, quasi-

two-dimensional layered materials have been the subject of sustained interest for many 

years. For more open-type structure of layered solids (than those of covalently bonded 

semiconductors), knowledge of the weak interlayer and stronger intralayer interaction is 

a preliminary stage to the study of more complex materials, such as chained materials, 

molecular solids, liquid crystals, etc., with potential applications. 

Recent developments in both experimental and computational methods achieved a 

great successful step in understanding the pressure-induced structural and electronic 

effects in semiconductors, such as structural polymorphism of Ill-V semiconductors 

[125] and CuC1 presented in previous chapter. However, with respect to the unique 

bonding properties of anisotropic structures, even stronger and richer pressure effects 

104 
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in layered compounds are expected. This gives another motivation to implement high 

pressure techniques on quasi-two-dimensional layered semiconductors. 

Therefore, in this chapter, modern established measurement techniques and sim-

ulation schemes have been used to probe the structural and electronic properties of 

layered compounds, GeS and GeSe, under compression. The organisation of this chap-

ter is as follows. A fundamental discussion of the layered crystal structure of GeS 

and GeSe is introduced in Sec. 5.2. Experimental and computational detail will be 

also included here. In Sec. 5.3, systematic studies of the pressure-induced structural 

behaviour will be presented. Finally, the electronic properties corresponding to these 

anisotropic structures will be investigated under pressure. 

5.2 Homology of Structure in GeS and GeSe at Ambient 

Pressure 

5.2.1 Structural Details and Theoretical Classification 

The ambient pressure structures of two germanium chalcogenides, GeS and GeSe, have 

been studied using a conventional single crystal X-ray diffraction method [126, 127] 

and the analysis showed the crystal structures of both GeS and GeSe are characterised 

by a black-phosphorus-like layered structure which is often regarded as a distorsion 

of a rocksalt configuration. In fact, the isostructural semiconductors GeS and GeSe 

adopt a double-layered orthorhombic crystal structure with the Pcmn(D) at ambient 

pressure. There are eight atoms(four Ge and four chalcogens) contained in the unit cell. 

Choosing the c-axis to be perpendicular to the plane of layers, the atomic positions can 

be completely determined by the space group symmetry. The locations of four Ge(or 

chalcogens) are defined by the additional specification of two free atomic positional 

parameters(u and v) and are expressed as 

and ±(—u,,+v) 	 (5.1) 
4 	 2 
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Thus, the ambient pressure crystal structure of the orthorhombic germanium chalco-

genides is illustrated in Fig. 5.1. 

A b  

— ------- — ------ 

I 

 a 	 La 

Figure 5.1. (a) Illustration of the germanium chalcogenide orthorhombic crystal struc-
ture showing the threefold covalent coordination in the layers. Four unit cells are shown 
(doubled in the a and b direction). In (b), it is shown a projection of the structure 

of space group Pcmn along the b axis. Ge and S (or Se) are represented as small 

and big spheres, respectively. The B ab bond and B bond are specified in (a). Three 

distinct bond angles (A ab, A1, and  A2)  are defined in both (a) and (b). The intralayer 
thickness and the interlayer separation are also shown in (b). 

In Fig. 5.1, each unit cell consists of two double layers which are formed by co-

valently bonded anion (chalcogens)-cation (Ge) pairs with threefold coordinated atoms. 

There are two distinct bond lengths which are specified to be normal and parallel to 

the layer plane and denoted as B and B a b in Fig 5.1 , respectively. Three bond an-

gles related to the threefold bonded structure can be also observed inside each layer 

unit. However, the cohesion between layers is a weak interaction (with strength of the 
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same order as for van der Waal's interactions) which accounts for the easy cleavage of 

the crystal perpendicular to c-axis and also for the substantial anisotropic properties. 

The interlayer separation and intralayer thickness is defined as 2vGc and 2( - 

respectively. 

The structural stability of compounds can be theoretically classified by a quantum 

mechanical dual-coordinate scheme [128] which takes into account the covalency and 

ionicity of the material itself. In order to examine the chemical trends, Littlewood has 

proposed two modified coordinates to study the correlations between three phases of 

nine IV-VI semiconductors [129]. These two coordinates are formulated by the linear 

combinations of the radii of s and p orbitals to evaluate the electronegativity difference 

and the s-p energy splitting between Ge and chalcogen. It was found that a relativistic 

effect enhances the s-p splitting and then yields the stable rocksalt structure of the 

heavy members, Pb chalcogenides, of the IV-VI family. The strong ionicity referring 

to the larger s-p splitting suppresses the sp hybridisation and results in the formation 

of sixfold ionic p orbitals. Nevertheless, the relativistic effect becomes weaker for the 

lighter compounds and the reduction of s-p energy splitting enhances the directional 

s-p orbitals. Therefore, the covalently bonded orthorhombic structure is allowed and 

expected to be more stable for the lighter IV-VI semiconductors, GeS and GeSe. 

5.2.2 Experimental Structural Determination 

Angle-dispersive powder X-ray diffraction method (with the image plate technique) 

(Sec. 2.3) has been used to determine the crystal structure of GeS [130] and GeSe 

[131] under ambient pressure. The powder samples of GeS and GeSe were obtained 

by grinding a melt-grown single-crystal sample at liquid nitrogen temperature. The 

uniform finest powders(grain size < 5gm) were placed in DACs and careful loadings 

of samples were maintained to reduce the preferred orientation for both layered com-

pounds GeS and GeSe. Using the Si (111) monochromator, the wavelength of the 

synchrotron beam was set to 0.4447A for GeS and 0.4652A for GeSe individually. The 
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incident beam was collimated to a diameter of 75 ftm and the distance between the 

sample and the image plate was approximately 300 mm for each experimental setup. 

The exposure time was about 4 hours in length. The PLATYPUS software package 

(Sec. 2.3.2) was employed to integrate the two-dimensional image patterns and convert 

those to one-dimensional diffraction patterns. The observed powder patterns of GeS 

and GeSe at ambient pressure are presented in Fig. 5.2. 

During the subsequent Rietveld refinement procedures, the preferred orientation 

correction was taken into account to record accurate relative intensities of the diffrac-

tion peaks. The preferential directional staking of disk-shaped samples deduced from 

the easy cleavage normal to the c-axis of the layered crystals is responsible for a certain 

degree of misrepresentation of the relative intensities of the relevant (hkl) reflections. 

Therefore, it is naturally expected that the (001) axis is the dominant preferred orien-

tational direction of GeS and GeSe. However, there is no guarantee that the incident 

beam direction and preferred orientation direction coincide. To find the appropriate 

preferred orientation axis, many trial preferred orientation directions have been exam-

ined and it was found a pure (001) does fit the observed data best. 

Indeed, the real preferred orientational direction is composed of either several pre-

ferred orientation axes or a distribution of such directions. These complex phenomena 

can be dealt with using recently developed sophisticated preferred orientation analysis 

methods [132, 133]. However, it is shown that, in these cases, a single preferred di-

rection provides a reasonable approximation to the combination of different preferred 

orientation axes. 

The MPROF Rietveld method using the form of preferred orientation correction 

in Eqn. (2.15) with (001) preferred direction was used to refine both GeS and GeSe 

data. The refinement reliability can be evaluated by two parameters: R and x2  
which are given from the output of MPROF package. In the cases of GeS and GeSe, 

R(GeS)14.80% and x 2 (GeS)=0.076 while R(GeSe)=14.63% and X 2 (GeSe)=0.147. 

The least-squares fits to the ambient powder patterns are shown in Fig. 5.2 and the 
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Figure 5.2. Rietveld refinements of powder patterns of (a) GeS and (b) GeSe obtained 
at ambient pressure. The wavelength of the incident beam was 0.4447 A and 0.4652 A 

for GeS and GeSe, respectively. The fit shown here has been obtained using a (001) 

preferred orientation correction for both GeS and GeSe. The observed data are denoted 
as '+' symbols and the symbol of 

'' 

represents the calculated reflection. The solid line 
is the calculated profile. The dashed line is the difference between the calculation and 

observation. 

details of structural parameters of GeS and GeSe determined by refinement proce-

dures are shown in Table 5.1. For comparison, the previous single crystal data are also 

exhibited in this table. 

The bond lengths and bond angles at ambient pressure can be completely deter-

mined from the information contained in Table 5.1. In the case of GeS, the Bab and 

B bond lengths defined in Fig 5.1 are 2.494A and 2.283A respectively, and which are 

2.578A and 2.439A in GeSe. Three distinct bond angles in the GeS structure, Aa5, A1 

and A2 are measured as 95.4°, 105.5°, and 91.1°, respectively, and the revalent data 

are 95.9°, 105.4°, and 90.1 0  for GeSe. As shown in Fig 5.1, a double-layer presents two 

nonbonded separations between the next nearest neighbours of different species. These 

distances are approximately 3.305A and 3.94A for GeS and 3.494A and 4.034A for 
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Table 5.1. Observed structural parameters for GeS and GeSe at ambient conditions. 
For comparison, the previous single crystal results are also shown. The units for cell 
dimensions (a, b, and c) are in A and the positional parameters are in fractional 

coordinate units. 

Compound 	Data a b c UGe VGe Us (U5) VS(VSe) 

GeS 	this work 4.29 3.64 10.46 0.123 0.123 0.498 -0.153 

 4.30 3.64 10.47 0.127 0.122 0.499 -0.151 

 4.30 3.65 10.44 0.106 0.121 0.503 -0.148 

GeSe 	this work 4.38 3.83 10.85 0.110 0.124 0.504 -0.156 

[135] 4.40 3.85 10.82 0.111 0.121 0.500 -0.146 

GeSe, respectively. Also, two double-layers constitute a unit cell and are characterised 

by an interlayer separation and intralayer thickness. The experimental value of the 

interlayer separation of GeS and GeSe is 2.656A and 3.038A respectively, whereas the 

intralayer thickness is 2.573A in GeS and 2.387A in GeSe at ambient pressure. 

5.2.3 First-principle Simulation of Structure 

The computational determination of the equilibrium structures were performed using 

ab-initio pseudopotential total-energy package, CASTEP, which is already discussed 

in detail in Chapter 3. In CASTEP, the local density approximation (LDA) based on 

the parameterisation of Perdew and Zunger [136] form was employed to describe the 

exchange-correlation interactions, within the Kohn-Sham equation (Eqn. (3.14)). 

The nonlocal ionic pseudopotentials of Ge, 5, and Se are in the Klein man-Bylander form 

and were generated by the Q tunning approach (Sec. 3.2.3). Then, a preconditioned 

conjugate gradient scheme was used to minimise the total energy of the system and to 

relax the ions under the influence of the Hellmann-Feynman forces (Sec. 3.2.4). 

For both GeS and GeSe, the energy cutoff of 300 eV for the plane wave basis 

set expansion has been tested and implemented. This cutoff value corresponds to 

approximately 2000 and 2500 plane waves per band per k-point in GeS and GeSe, 
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respectively. It was found that the total energies at this cutoff converge to better than 

0.1 meV/ cell in GeS and 0.2 meV/cell in GeSe. In order to perform the Brillouin 

zone(BZ) integrations, the Monkhorst-Pack special points scheme (Sec. 3.2.2) was 

used. After the examination of the k-point sampling, the 4 x 4 x 4 and 4 x 4 x 10 grid 

corresponding to 8 and 20 special k points provide full convergence of total energies of 

GeS and GeSe, respectively. 

However, two different strategies were performed to search the equilibrium structure 

configurations of GeS and GeSe individually. To find the equilibrium structural pa-

rameters at ambient pressure, a unit cell optimisation method which parameterises the 

external pressure as an input factor was employed in the studies of the GeS structure. 

As discussed in Sec. 3.2.5, this automatic searching technique relaxes and optimises 

the lattice constants under the stresses on the unit cell which can be calculated from 

first principles. During this ab-initio simulation process, the change of cell parameters 

is accompanied by a change of the plane basis set which gives rise to a modification 

of the energy cutoff, This effect can be balanced by adding a Pulay correc-

tion to the stress calculation. Based on the definition of the Pulay correction in Eqn. 

(3.55), the correction coefficient, 9E1O(lnE t0ff), of GeS is derived from the slope of 

a linear fitting curve in Fig. 5.3 and it is found the value of the derivative is —2.85. 

Thus, a quenched molecular dynamics scheme with alternate relaxation of the cell and 

structural parameters is launched from a set of reasonable initial parameters to find 

the stable structure. 

As a test of this automatic relaxation method, a conventional exhaustive searching 

scheme is applied to determine the equilibrium configuration of the GeSe structure. An 

efficient approach is to calculate the best ratio of lattice constants which corresponds 

to the local minimum of total-energy for a fixed volume size and then repeat this 

process for different volumes. Therefore, the total-energy of the system is described 

as a function of volume and the pressure of each calculated volume can be determined 
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Figure 5.3. The calculated total energy as a function of the logarithm of the cutoff 
energy. The calculated total energies corresponding to different cutoff energies are 
denoted as solid squares. The solid line is a linear fit to the calculated data and is 
defined as the Pulay coefficient. 

from the tangent of the energy-volume curve at the relative volume. Thus, a well-

defined global minimum of the total-energy with respect to the optimum volume size 

and cell parameters can be easily found from the minimum of the energy-volume curve 

to specify the calculated ambient system. 

The calculated ambient structural parameters of GeS and GeSe are both shown in 

Table. 5.2. Comparing with the experimental data in Table. 5.1, it is evident that 

the calculated lattice constants are roughly 2% smaller than room temperature exper-

imental values. Because this first-principles method corresponds to zero temperature 

condition, a part of this discrepancy can be contributed from the effect of thermal 

expansion. However, it is believed that this underestimate is dominately attributed to 

the well-known tendency of the LDA methods to overbind (Sec. 3.2.1). 
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Table 5.2. Calculated structural parameters for GeS and GeSe at ambient pressure. 
The units for cell dimensions (a, b, and c) are in A and the positional parameters are 

in fractional coordinate units. 

a b c UGe VGe US(USg) Vs(Vse) 

GeS 	4.184 3.556 10.123 0.123 0.117 0.499 -0.148 

GeSe 	4.293 3.744 10.576 0.107 0.118 0.498 -0.146 

5.3 Structural Response to Pressure: Experiment and 

Computation 

This section will include experimental and theoretical studies of the structural re-

sponse of GeS and GeSe to hydrostatic pressures. The equations of state for both Ge 

chalcogenides will be described and the compressional mechanism of these anisotropic 

materials will be explained by the calculated structural parameters corresponding to 

different pressure. 

5.3.1 Equations of State for GeS and GeSe 

Under compression, the equations of state (EOS) for GeS and GeSe can be studied 

experimentally using synchrotron powder X-ray diffraction with image plate area de-

tectors for optimal signal to noise ratios and accurate relative peak intensities. The 

powder samples are placed in the DAC with a chip of ruby for pressure determination 

and a 4:1 methanol-ethanol mixture as the pressure transmitting fluid for generating 

hydrostatic pressures. The detail of experimental techniques and setup can be found 

in Chapter 2. The structural properties of GeS and GeSe have been studied up to 94 

and 130 kbar, respectively. The observed profiles and refinement patterns of GeS at 94 

kbar and of GeSe at 130 kbar are both shown in Fig. 5.4. 

From the powder diffraction data, it was found that the GeS structure retains the 
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Figure 5.4. Rietveld refinements of powder patterns of (a) GeS obtained at 94 kbar 
and (b) GeSe obtained at 130 kbar. The radiation sources and the preferred orienta-
tion directions have been mentioned in Fig. 5.2. The observed data (shown as 
calculated reflections (shown as 'I') calculated pattern (solid line), and discrepancy 
(dashed line) are exhibited and the refinement reliability factor R of GeS and GeSe 
is 16.03 and 15.63, respectively. 

layered orthorhombic crystal structure up to 94 kbar. Also, there is no evidence in these 

experiments to reveal a pressure-induced structural phase transformation of GeSe up 

to 130 kbar. Decompression of both GeS and GeSe from high pressure to ambient 

pressure was also studied. It resulted in diffraction patterns almost identical to those 

obtained from the starting material albeits only with slightly broadened peaks. 

Using ab initio simulations, the structure stability can be systematically studied by 

comparing with the calculated total energies of different structure phases. Two possible 

crystal structures of Ge chalcogenides, rocksalt (NaCl) and orthorhombic, were taken 

into account. The computational parameters are the same as the ambient calculation 

presented in Sec. 5.2.3. The results of calculated total energy as a function of unit cell 

volume of the two phases are shown in Fig. 5.5. It is revealed that the orthorhombic 
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Figure 5.5. Relative total energy versus the unit cell volume determined by ab initio 
calculations. The hydrostatic pressure response was determined by optimisation of the 
unit cell parameters. At every volume, internal ionic positional parameters were relaxed 
under the influence of Heilman n-Feynman forces. The calculated total energies of 
orthorhombic and NaCl structure are denoted as solid squares and circles, respectively. 
The solid and dashed lines are the third-order polynomial fit to the total energy versus 
unit cell volume. 

structure of two Ge chalcogenides is more stable than the NaCl phase and there is no 

tendency of pressure-induced structural transformation from the orthorhombic to the 

rocksalt phase under hydrostatic pressure. Furthermore, in Fig. 5.5, the decreasing 

of total energy difference between orthorhombic and NaCl structure with going down 

the Group-VT family implies that the stable structure of the heavier Ge chalcogenide, 

GeTe, favours the NaCl-like crystal structure. Indeed, the equilibrium GeTe has been 

found to adopt a rhombhedral structure which can be regarded as a distortion of the 

NaCl type. [137]. 

Thus, the EOS for GeS and GeSe can be clearly described by results of the refine-

ment data from X-ray diffraction patterns and ab-initio calculations as shown in Fig. 

5.6. Fig. 5.6 shows the variation of the unit cell volume as a function of pressure for 

GeS and GeSe. It is seen that the pressure response of unit cell volumes of these or-

thorhombic crystal structures can be well accounted for by first-principle calculations. 
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In order to obtain the bulk modulus B0  and its pressure derivative B at ambient 

pressure, the 3rd-order Birch-Murnaghan EOS form [138] has been fitted to the curves. 

P = 3Box(1 + 2x)5/2[1  + cx] 	 (5.2) 

where 

1 [(V
0" 213  X = 
	i) 	'] 

C = 	(Bol  

The fitting curves of experimental data are also shown in Fig. 5.6 and the bulk 

modulus and their 1st derivative for GeS and GeSe are listed in Table 5.3. Never-

theless, the overestimate of bulk modulus in ab-initio calculations in Table 5.3 is the 

consequence of the underestimate of unit cell volumes in calculations with the LDA 

approximation. 

Table 5.3. The experimental and calculated bulk modulus (Bo ) of GeS and GeSe. 

under ambient condition. The 1st-order derivative of B0  to pressure (Bc) are also 

shown here. 

Compound 	Data B0  (kbar) B 
GeS 	expt. 399 4.8 

calc. 461 4.3 

GeSe 	expt. 379 5.3 
calc. 412 5.1 

Both experimental and computational results of the EOS of GeS and GeSe are 

consistent with Chattopadhyay's measurements [139] in which the structures of GeS 

and GeSe are studied using energy-dispersive X-ray diffraction where no structural 

transition has been found up to 340 kbar. Furthermore, the bulk modulus at zero-

pressure reported in [139] are higher than present work because the previous data were 
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Figure 5.6. The dependence of normalised unit cell volume, V/V0 (V0 is the equilib-
rium unit cell volume at ambient pressure), as a function of hydrostatic pressure of (a) 
GeS up to 100 kbar and of (b) GeSe up to 130 kbar. The open symbols represent the 
experimental data as determined using angle-dispersive powder X-ray diffraction and 

solid ones denote ab-initio calculations. The solid lines are the fitting curves of experi-
mental points to the 3rd-order Birch-Murnaghan equation which gives the information 
of the bulk modulus shown in Table 5.3. 

obtained over a much wider pressure range ( 50 kbar). 

However, the above compressional behaviour of Ge chalcogenides is in contrast to 

the observations of Bhatia êt al. [140] who report a significant drop of resistivity 

for GeSe under presure. The authors claim that a single crystal GeSe undergoes a 

pressure-induced first-order structural phase transition to a metallic NaCl structure at 

approximate 60 kbar. Moreover, Bhatia et al. found the equilibrium lattice constant 

of NaCl-like GeSe after decompression to be 7.37 A which is substantially larger than 

the first-principle value (5.483 A ) which corresponds to the minimum of the total 

energy curve of GeSe in the NaCl structure shown in Fig. 5.5. It is believed that the 

phase transitions reported in Bhatia's paper suffers from nonhydrostaticity and that 

the recovered sample has a more complex structure rather than a simple NaCl-like 

structure. The isostructural metallisation transition of GeS and GeSe will be discussed 
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Figure 5.7. Variation of unit cell parameters with pressure of (a) GeS and (b) GeSe. In 
(a), cell parameters of GeS refined from experimental data are shown as open symbols 
and the calculated lattice constants, intralayer thickness, and interlayer separation is 
denoted as solid symbols, 'k',  and 'X', respectively. Solid and dotted lines are guides 
to eye. In (b), the normalised experimental and calculated lattice constants of GeSe 
are denoted as open and solid symbols, respectively. The dashed and dash-dotted lines 
represent the calculated intralayer thickness and interlayer separation, respectively. 

in Sec. 5.4. 

5.3.2 Pressure Dependence of Layered Structure Properties 

The pressure dependences of unit cell parameters of GeS and GeSe as a function of 

hydrostatic pressure up to 94 and 130 kbar, respectively, are shown in Fig. 5.7. The 

results of first-principle calculations are also included in this figure for comparison. 

First of all, an anisotropic pressure response of the unit cell under hydrostatic pres- 

sure is expected because of the anisotropic features of the layered structure. As is 
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Figure 5.8. The calculated hydrostatic pressure response of the normalised bond 
angles of GeS and GeSe. The bond angle in the a-b plane (A ab) and along the c-axis 

direction (A2) is denoted as solid circles and squares for GeS and open circles and 
squares for GeSe, respectively. The solid and dashed lines are guides to eye. 

evident from Fig. 5.7, for both Ge chalcogenides , the a axis is the most compressible 

direction among three lattice constants, whereas the b axis is least sensitive to pressure. 

The calculated interlayer separation and intralayer thickness are also presented in Fig. 

5.7 and, as would be expected, the interlayer separation corresponding to a weak co-

hesion is the most rapidly pressure-induced decreasing while the intralayer thickness is 

insensitive to external pressures. 

However, as shown in Fig. 5.7, the surprise is that the c axis (to which the layer 

planes are normal) is not the most pressure sensitive in spite of the most compressible 

parameter (interlayer separation) being along the c-axis direction. This unexpected 

pressure dependent phenomena can be understood by inspecting the compressional 

behaviour of bond angles. As an example, the calculated pressure dependence of two 

bond angles, defined as A ab and A2 in Fig. 5.1, are shown in Fig. 5.8 for both GeS 

and GeSe. It is found that the angle for the intralayer bond (A 2 ) is much softer than 

the angle for the bond in the a-b plane (A ab) under compression. This result suggests 
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that the dominant compression mechanism of the layered Ge chalcogenides is due to 

the bending of intralayer bonds along the a-axis direction. 

Also, the calculated internal positional parameters of GeS and GeSe, UGe, VG,, 

us(or Use), and vs(or VSe), as a function of pressure are shown in Figs. 5.9(a)- 5.9(d), 

separately. It reveals that not only the pressure response of global structural parame-

ters (lattice constants), but also the variation of fine structural parameters (fractional 

atomic positions) of two Ge chalcogenides are very similar to each other. 

On the other hand, the hydrostatic variation of two intralayer-bond lengthes, Bab 

and B(shown in Fig. 5.1), and two shortest interlayer atomic separations are shown 

in Fig. 5.10. The results suggest the compression mechanism performed by pushing 

layers together yields to the interlayer atomic separation approaching to the intralayer 

bond length and implies the loss of structural anisotropy while these two distances 

are comparable under very high pressure. However, in Fig. 5.10, the calculated data 

show that the interlayer atomic distances are larger than the intralayer bonds and 

this suggests the structures of two Ge chalcogenides are still characterised by highly 

anisotropic bonding under the highest pressure studied here. 

5.4 Electronic Structure under Compression 

The electronic properties of materials can be systematically studied from the careful in-

spection of the band structures. According to the marked anisotropy, the electron bands 

of GeS and GeSe will show a unique pattern to reflect the layered crystal structure. 

Corresponding to the pressure-induced structural behaviour studied in the previous 

section, the electron distribution will be affected by external compression and it can be 

observed using band structure calculations. In this section, the method and symme-

try consideration for the band structure calculations of GeS and GeSe are highlighted 

initially. A comparison between experimental and calculated results are also provided. 
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Figure 5.9. The variation of the calculated internal structural parameters of GeS and 
GeSe with pressure. For GeS, uQe , VG,, us, and vs,  are denoted as solid symbols, 

whereas, open symbols represent the UGe, VG,, use, and VSe  of GeSe. Four parameters 
are shown in (a), (b),(c), and (d) independently. The internal structural parameters 
are in the fractional unit. 



0 	50 	100 	150 0 	50 	100 

(a) (b) 

-C r. 

PW

C  

I.. 

a 

CHAPTER 5. COMPRESSIONAL MECHANISM AND ... 	 122 

Pressure (kbar) 

Figure 5.10, Pressure dependence of the intra and interlayer bond length of (a) GeS 
and (b) GeSe. Solid squares and triangles represent the intralayer bond on a-b plane 

(Bab) and along the c-axis direction (B e ), respectively. Two shortest distances between 

atoms of unlike species within different double layers are denoted as the symbols of 
solid circles and '*' The solid lines are guides to eye. 
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Z 

Y 

Figure 5.11. Brillouin zone for the primitive orthorhombic structure with high sym-
metry points and directions labelled. In this convention, the x, y, and z directions 
correspond to c, b and a crystallographic axes, respectively. 

Then, the pressure effects on electron bands will be demonstrated and finally, the na- 

ture of bonding will be interpreted by the valence charge densities at different pressure 

conditions. 

5.4.1 Electronic Structure Study - Band Structure Calculations 

The band structures of GeS and GeSe were calculated using the density functional 

formalism. In order to evaluate band energies at many k points along high-symmetry 

directions in the Brillouin zone (BZ), the self consistent eigenfunctions of the Kohn-

Sham Hamiltonian corresponding to the full relaxed structural parameters shown in 

last sections were used and the correct Hamiltonian can be constructed. Meanwhile, 

unlike variational total-energy calculations discussed in Chapter 3, a full matrix diag-

onalisation method is performed to calculate eigenvalues at each k point in the BZ. 

Before implementing the band structure calculations, it is worth showing the sym-

metry properties of the points and lines inside the BZ for the orthorhombic CeS and 

GeSe. In Fig. 5.11, the high symmetry vertices and edges of the irreducible 1 BZ are 
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well characterised by the nonsymmorphic group D. Taking both space-group sym-

metry and time-reversal symmetry into account, all the vertices are double degenerate 

except F (singlet), S (fourfold degenerate) and R (fourfold degenerate). Also, there 

are three singlet edges (, A, and A) and one fourfold-degenerate edge (Q) which are 

different from the double degenerate symmetry of the rest [141]. 

At ambient pressure, the calculated energy band structures of GeS and GeSe are 

both shown in Fig. 5.12 along different symmetry lines in the BZ. As the members of 

the IV-VI family, GeS and GeSe with four Ge-chalcogen pairs in the unit cell provide 

40 valence electrons which can be filled in 20 electron bands which are shown at the F 

point in Fig. 5.12. In these calculations, bands were degenerated at some special high 

symmetry k points, such as the double degeneracy of Z and fourfold degeneracy of S. 

The degeneracy of calculated eigenvalues at each k point is consistent with the previous 

symmetry analysis. In addition, X-ray photoemission (XPS) valence-band spectra of 

GeS [141, 1421 and GeSe [143] and relative calculated density of states (DOS) are shown 

in Fig. 5.12 for comparison. The measured calculated energies of the DOS peaks for 

GeS and GeSe are also listed in Table 5.4. Remarkable agreement between the observed 

photoemission density of states (PDOS) and ab-initio calculations was found. 

Moreover, an indirect band gap between the top of the valence bands and the lowest 

conduction band has been found along the A direction (between F and Z) in both GeS 

and GeSe. However, the calculated indirect band gap E of GeS and GeSe is 0.65 and 

0.36 eV, respectively, which is smaller than the experimental measurements (E,(GeS) 

1.65 eV [144] and E(GeSe)1.1 eV [145]). This underestimate of band gap is to be 

expected in view of that the the unoccupied excited states cannot be described properly 

using the density functional theory. 

The response of band structure of GeS to pressure is shown in Fig. 5.13. As is 

evident from Fig. 5.13 , the indirect energy gap decreases more dramatically than the 

other valence bands with increasing pressure. As a matter of fact, the calculated band 

gap of GeS is closed at 50 kbar. The same presure-induced indirect band closure can 
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Figure 5.12. Calculated band structure for (a) GeS and (b) GeSe. 20 valence bands 

and 3 conduction bands are presented here. Calculated DOS (solid line) and PDOS 
(dashed line) obtained from XPS (using X-ray with hi.' = 1486.6 eV [141, 143]) for GeS 
and GeSe are also shown in (a) and (b), respectively. Calculated energies are referred 
to the top of the valence bands and experimental energies are referred to the Fermi 
level of the spectrometer. Five observed peaks are denoted as A, A', A", B, and C. 
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Table 5.4. Observed (E(XPS)) and calculated (E(calc.)) energies of DOS peaks for 
GeS and GeSe. The energy in the unit of eV is referred to the top of the valence bands 
and notation of peaks is the same as Fig. 5.12 

Compound 	Peak E(calc.) E(XPS) 
GeS 	A 1.3 1.2 

A' 2.5 2.4 
A" 4.0 4.2 
B 8.1 8.5 
C 13.6 13.1 

GeSe 	A 1.3 1.2 
A' 27 24 
A" 4.0 3.7 
B 8.6 8.3 
C 13.6 13.5 

be also found in GeSe [131] under modest pressure (' 40 kbar). The calculated results 

suggest that GeS and GeSe undergo a semiconductor-to-semimetal phase transition 

under compression. This conclusion can explain the large drop in electrical resistivity 

of GeSe at 60 kbar observed by Bhatia et al [140]. However, the calculated metallisation 

pressure may also be subject to underestimates arising from the overbinding of LDA 

within first principle calculations. 

5.4.2 Nature of bonding - Valence Charge Densities 

The information on bonding can be extracted from inspection of the valence charge 

distribution. As mentioned above, the lowest 20 valence bands of layered Ge chalco-

genides are occupied by 40 valence electrons contributed from four Ge(4s 2 4p2 ) and four 

S (3S 2  3p') (or Se(4s 2 4p4 )) within the unit cell. To understand the roles of different 

valence bands playing in the bonding picture, at ambient pressure, a portion of band 

structure (along line A) of GeSe shown in Fig. 5.12(b) was chosen as an example and 

the 20 valence bands of GeSe were separated into five independent groups. The valence 
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Figure 5.13. Evolution of the electron band structure of GeS at different pressures. 
The pressure is indicated at the top of each separated window of bands. A pressure-
induced closure of indirect band gap between vertices F and Z has been predicted 
in these calculations. Energies are referred to the top of the valence bands which is 
represented as the dashed lines. 
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charge densities for each groups was a by-product of the band structure calculation. 

The three-dimensional electron densities for five groups are presented independently 

in Fig. 5.14. As a result in Fig. 5.14(a), it is clear that the lowest four bands with 

little dispersion correspond to a predominately spherical charge distribution around 

the Se atoms and are referred to the deeper s orbital of Se. In Fig. 5.14(b), the second 

lowest four bands are mainly derived from the Ge s level. The remaining three groups 

correspond to the combinations of 4p orbitals of Ge and Se. From the Fig. 5.14, the 

majority of the charge of group (c) (band 9-10), (d) (band 11-16), and (e) (band 17-20) 

is obviously located along three crystallographic c, b, and a axes, respectively. Also, 

these three groups display more information of bonding character of the orthorhombic 

crystal structure. 

It should be mentioned that the lower bands of GeSe along the lines A and D are 

very similar to each other. As shown in Fig. 5.15, the nearly parallel nature of the lower 

bands along A implies a splitting from the bands along relative higher symmetry line, 

D, and the splitting within a pair of bands is small (0.5 eV for the Se(4s) bands and 

0.8 eV for Ge(4s) bands). The same feature can be found in GeS along A and G and 

the energy splitting is 0.5 and 0.8 eV for S(3s) and Ge(4s) bands, respectively. This 

similarity can be also found in any pair of lines which are normal to the x direction of 

the BZ. The reason for this effect is that the weak electronic interaction between two 

double-layers will lift the degeneracy of energy bands along the edge normal to the x 

direction of the BZ (corresponding to the direction of layer plane in real space). If a 

single layer is treated, without any cohesion between layers, the space group D will 

be reduced to the point group C2 and the dispersion of bands along line A should 

be identical to which along line D. Therefore, the band energy splitting of can be 

proposed as a reasonable measure of the interlayer interaction. 

Finally, the three-dimensional valence electron density of the whole 20 valence bands 

of GeSe at ambient pressure is shown in Fig. 5.16(a). Four unit cells (double the a and 

b crystallographic axis) are shown. It is evident that a significant amount of electron 
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combination of experimental and theoretical approaches. The pressure-induced elec-

tronic properties have been also routinely investigated using first-principle density func-

tional pseudopotential calculations. 

The results from angle-dispersive powder X-ray diffraction and ab-initio simulation 

reveal that GeS and GeSe doesn't undergo any structural phase transition up to 94 

and 130 kbar, respectively. Also, an ariisotropic response of these layered structures 

to the hydrostatic pressure has been found in both experimental and computational 

data which show a pressure-induced nonhomogeneous bond bending responsible for this 

anisotropy. More specifically, the band structure study under compression suggests that 

the previous reported discontinuity of resistivity of GeSe at 60 kbar can be accounted 

for by a pressure-induced indirect band gap closure rather than a first-order structural 

metallic phase transition. 

According to the superb agreement between observations and ab-initio calculations, 

it is realised that density functional methods are capable of adequately describing the 

compressional mechanism of structural and electronic properties in spite of the highly 

anisotropy of crystal structures. The tremendous success of this methodology will bring 

a lot of confidence in the pressure studies on other properties, such as the vibrational 

behaviour under pressure which will be discussed in next chapter. 



Chapter 6 

Vibrational Properties of Layered 

Materials 

6.1 Introduction 

The vibrational properties of low-dimensional layered compounds have been the subject 

of sustained interest for many years because of different chemical bonding in the unit 

cell. However, the nature of weak interlayer interaction is still not very well understood. 

In order to develop a detailed picture of layered solids and also to probe the interlayer 

coupling, the vibrational studies of layered Ge chalcogenides (as the examples) will 

be comprehensively studied under pressure using a combination of group theory, high-

resolution Raman scattering and ab-initio simulation. 

According to the structural information provided previously, the lattice dynamics 

of layered Ge chalcogenides can be directly analysed by well-established group theory. 

The symmetry properties and optical selection rules derived from group theory consid-

erations give an overall description of the lattice vibrations. However, the distinctively 

anisotropic features of this quasi-two-dimensional crystal structure can be described 

more precisely by a diperiodic group (DG) which was developed to model structures 

133 
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with two-dimensional periodicity and an appreciable thickness along the third dimen-

sion. In the limiting case of zero interlayer interaction, DC predicts a Raman-infrared 

degeneracy of the isolated layer vibrations. Since Davydov-like degeneracy will be lifted 

by interlayer interaction, a good quantitative estimation of the weak interlayer cohesion 

can be made by comparing the frequencies of Raman-infrared pairs. 

Another distinctive feature of the vibrational properties of layered solids is the exis-

tence of low-frequency vibrational rigid-layer modes in which the layers move relative to 

each other as rigid units. These rigid-layer vibrations originate from the restoring force 

due to the interlayer interaction and are located at the very low-frequency region with 

a frequency separation from the intralayer vibrational frequencies. The understanding 

of rigid-layer modes is therefore helpful to characterise the anisotropy of layered solids. 

Since the strength of interlayer coupling is normally of few orders smaller than that 

of the intralayer binding, it is expected that hydrostatic pressure will have preferential 

effects on the weak interlayer cohesion. Then, all interlayer properties, such as Davydov 

splitting and rigid-layer vibrations, are also expected to be modified under compression. 

The objective of the work in this chapter is to explore different pressure dependence 

for heirarchical binding in layered materials. 

Thus, the organisation of this chapter is as follows. The fundamental group theo-

retical tools are outlined in Sec. 6.2. The detail of lattice vibrations in GeS and GeSe 

which include experimental observations and computational calculations at ambient 

presure are given in Sec. 6.3. The DG analysis and systematic investigations of in-

terlayer coupling are shown in Sec. 6.4. Pressure effects on layered materials , a new 

scaling law, and the examination of RL approximation under compression are discussed 

in Sec. 6.5. Eventually, the conclusion is summarised in Sec. 6.6. 
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6.2 Symmetry Considerations 

It is well known that the vibrational properties of solids are related to the symmetries 

of the crystal structures. Since the symmetry properties can be properly described by 

the group theory, it is helpful to demonstrate general group-theoretical analyses for 

understanding the lattice vibrations before entering into the detailed investigations of 

specific layered materials. 

The normal mode is defined as a lattice vibration in which all atoms vibrate from 

their equilibrium positions in a specific frequency called the normal frequency. How-

ever, the atomic oscillation is confined by the space group symmetry of the crystal 

structure and conventional group theory [146] is therefore a useful tool to describe the 

vibrational properties for normal modes. Based on the group theory, Bhagavantum 

and Venkatarayudu (BV) utilised a group decomposition approach to determine the 

irreducible representations and selection rules for the normal modes of materials with 

specific space groups. This BV method which will be discussed in Sec. 6.2.1 can be 

applied generally to any crystal structure with symmetry properties. 

A more elegant correlation method is presented in the second part of this section. 

The correlation method developed by Hornig builds up the connection between the 

factor group and its subgroups - site groups. Because the lattice vibrations are the 

combination of the individual atomic oscillation around their equilibrium sites, the 

symmetries for site groups will reflect the symmetry properties of lattice vibrations. 

Therefore, this correlation provide an efficient means to study the symmetries, selection 

rules, and even the directions of the atomic displacements for normal vibrations in the 

crystal. 

Considering the long wavelength lattice vibrations, this section focuses on the zone-

centre phonons of layered compounds. The case studies of GeS and GeSe are provided 

using both the BV and correlation method. This theoretical result will be found con-

sistent with the experimental data in the next section. 
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6.2.1 Bhagavantum-Venkatarayudu (BY) Method 

To study the zone-centre phonons, the first step of the BV procedure is application of 

factor-group operations which are isomorphic to the relevant point-group operations to 

all the atoms inside an unit cell. A reducible representation of the factor group is then 

constructed by the atoms which are invariant under factor-group symmetry operations. 

Nevertheless, the reducible representation F can be reduced to a linear combination of 

irreducible representations p('), 

11 = 	 (6.1) 

According to the little orthogonality theorem (LOT) of group theory [146], the reduction 

coefficient a(l) of each irreducible representation r(') is given by 

1  1:a(l) = 	X (1) RyXR 	 (6.2) 
R 

where h is the order of the group, X (') (R)* and (R) is the character of each symmetry 

operation R within the representation 00  and F, respectively. The summation runs 

over all symmetry operations of the factor group. 

In Eqn. (6.2), X (l)(R)* and h can be easily determined from a standard character 

table which provides the character value for each irreducible representation of a factor 

group under different symmetry operations. Further, the character (R) for reducible 

representation can be evaluated by 

	

(R) = i1(R)[2 cosG ± 1] 	 (6.3) 

where 0 = 3600 /n is the angle of an n-fold symmetrical axis and i1(R) is the number of 

invariant atoms under the operation R. The plus and minus sign corresponds to a pure 

and an improper rotation, respectively. Once al been found, from Eqn. (6.1), the lattice 
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vibrations can be clearly presented as a full description of irreducible representations. 

In the case of layered Ge chalcogenides, GeS and GeSe adopt a orthorhombic crystal 

structure with a nonsymmorphic space group D21  (Pcmn) which has been discussed 

in Sec.5.1. The factor group of D21  is D2h  and the character table for this factor 

group are shown in Table 6.1. To form the reducible representation of this factor 

Table 6.1. Character table for the point group D2h  [147]. The x, y, and z corresponds 

to the c, b, and a crystallographic axis, respectively. T denotes a pure translation 
whereas R represents a pure rotation. The subscript g and u of the representations 

represents the gerade (symmetric) and ungerade (anti-symmetric) property respec-

tively. 

D2 	Vh I E C2 (z) C2(y) C2 (x) i (xy) a(zx) a(yz) Linear Bilinear 

A 9  1 1 1 1 1 1 1 1 

B 19  1 1 -i -1 1 1 -1 -1 R 

B 29  1 R zx 

B39  1 -1 -1 Rx yz 

A1. 
B 11. 1 1 -1 -1 -1 -1 1 1 T 

B21. 1 -1 1 -1  T9 

- B31. 1 -1 -1 1 -1  T. ___ 

group, eight symmetry operations listed in the first row of Table 6.1 are applied to 

all atoms within the unit cell. Then, the i(R) and 9 referred to relative operation R 

can be identified from Eqn. (6.3) and the characters for this reducible representation 

of D2h can be determined. As an example of this procedure, the operation a(zx) of 

this nonsymmorphic group which is composed of a pure reflection with respect to the 

ac plane and a nonprimitive translation r(O, 1/2, 0) (which corresponds to shifting the 

whole unit cell with the distance of an half of lattice constant along the direction of the b 

axis)is applied to each atom. A schematic diagram of the atomic transformation under 

the operation a(zx) is depicted in Fig. 6.1. It can be seen that all atomic positions 

are identical to the original ones under a(zx) and, therefore, the number of atoms left 



t(O,1/2,O) 

I '  

I .,. 

I 	 S 

-r 
;5 

I. 

DYIN 1/2 

CHAPTER 6. VIBRATIONAL PROPERTIES OF LAYERED MATERIALS 138 

Figure 6.1. Illustration of the symmetry operation a(zx) in which a pure reflection 

aac  and a translation r(0, 1/2, 0) (defined in text) are involved. Ge and chalcogen atoms 
are represented as small white and large grey circles, respectively. 

invariant by this operation, i(a(zx)), is 8. Meanwhile, the angle 0 corresponding to 

a(zx) is 00.  Thus, from Eqn. (6.3), the character x(o(zx)) is equal to 8. 

The values for the character (R) associated with the eight symmetry operations 

can be obtained by the careful examination of each symmetry factor-group operation 

and are listed in Table 6.2. Consequently, the reduction coefficient a(l) derived from 

Eqn. (6.2) for the irreducible representations can be obtained directly 

a(A 9 ) = 	[1(24)+1(0)+1(0)+1(0)+1(0)+1(0)+ 1(8)+1(0)]=4, 

a(Big ) = 	[1(24) + 1(0) - 1(0) - 1(0) + 1(0) + 1(0) - 1(8) - 1(0)] =2, 

a(B29 ) = 	[1(24) - 1(0) + 1(0) - 1(0) + 1(0) - 1(0) + 1(8) - 1(0)] = 4, 

a(B39 ) = 	[1(24) - 1(0) - 1(0) + 1(0)  + 1(0) - 1(0) - 1(8) + 1(0)] =2, 

a(Au) 	[1(24) + 1(0)  + 1(0)  + 1(0) - 1(0) - 1(0) - 1(8) —1(0)1=2, 

a(Bi) = 	[1(24) + 1(0) 1(0) - 1(0) - 1(0) - 1(0) + 1(8) + 1(0)1 = 4, 
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Table 6.2. The parameter values of the characters for eight symmetry elements of 
point group D2h. 

Factor-group operation R r(R) 	9 x(R) 

E 8 0 24 

C2 (Z) 0 180 0 

C2 (Y) 0 180 0 

C2 (X) 0 180 0 
i 0 180 0 

o(xy) 0 0 0 
a(xz) 8 0 8 
a(yz) 0 0 0 

= 
	
[1 (24) - 1(0) + 1(0) - 1(0) - 1(0) + 1(0) - 1(8) + 1(0)1 = 2, 

and 

= 
	
[1 (24) - 1(0) - 1(0) + 1(0) - 1(0) + 1(0) + 1(8) - 1(0)] = 4, 

So, the irreducible representations of D2h  are 

4A 9  + 2B19  + 4B2g  + 2B39  + 2A + 4B1  + 2B2  + 4B3 	 (6.4) 

In order to identify the optical selection rule for each irreducible representation, a 

more detailed consideration of the character table is needed. In Table 6.1, the trans-

formation properties of the irreducible representations are listed in the third and forth 

column. Considering the fundamental criterion of the infrared absorption, the infrared-

active vibrations for an electric dipole transition correspond to the transformation prop-

erty of a pure linear translation (T) which is the same as that of a Cartesian axes. In 

addition, the bilinear combination (R) of the specific vibration has the same symmetry 
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as some elements of the polarisability tensor which implies this mode is symmetry-

allowed for Raman scattering. Moreover, the zero-frequency acoustic vibrations are 

described as the rigid translations of the unit cell along three axis directions. Thus, 

the 24 lattice vibrations in Eqn. (6.4) can be separated as three acoustic modes (B in , 

B2, and  B3) and 21 optical modes. The expressions and the selection rules for the 

21 optical vibrations are deduced as 

4A (R) + 2B + 4B + 2B + 2A(0) + 3B' + BR)  + 3B R) 	(6.5)
2g 	3g 	U 	 lu 	2u 	3u 

where the subscripts (R) and (IR) denote the Raman-active and infrared-active modes, 

respectively. In addition, based on Table 6.1, the A u  mode without the linear or bilinear 

transformation property is recognised as an optically silent lattice vibration which is 

denoted as a subscript (0). 

6.2.2 Correlation Method 

To implement the correlation method, the symmetry for each site occupied by atoms 

within the unit cell must be ascertained accurately. The detail of site symmetry for the 

230 space groups can be found in the International Tables for X-ray Crystallography 

[148]. The irreducible representations for different site groups within the unit cell are 

then determined by the relevant character tables [147]. However, only the representa-

tions with the linear translational transformation properties (Trn , T, and T) could be 

involved because the normal lattice vibrations are only contributed by the combination 

of linear translational displacements of individual atoms. A correlation table which 

indicates the relationship between the site-group operations and the factor-group ones 

is used for subsequent identification of the lattice vibrations. Furthermore, the infrared 

or Raman activity and the possible eigenvector (atomic displacements) for each normal 

mode can be also predicted by the correlation method. 

16 As the space group is designated D, there are three possible site groups 2C(4), 
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C3 (4), and C1 (8) [148] for the crystal structure of GeS and GeSe. However, four Ge 

and four chalcogens (S or Se) in the unit cell are in the same symmetry (Sec. 5.1). So, 

the site groups for Ge and chalcogen are identical and should be one of two candidates 

C(4) and C8 (4). The decision can be made using the crystallography tables with 

Wyckoff site notation [31] which indicates four equivalent Ge atoms and the other four 

16 equivalent chalcogens are both on C3  sites in D. Since the mirror plane (oh)  for C3  

within D2h
16 lies on the b direction of the unit cell, the character table for site group C3  

can be described as Table 6.3. 

Table 6.3. Character table for the point group C3  

C3  E 	h Linear Bilinear 

A' 
A" 

1 	1 
1 	-1 

T,T3 ;R 
Ty ; R,R 

x 2 ,y 2 ,z 2 ,x-z 
x - y,z - y 

From this character table, it is found that A' representation corresponds to the 

translational transformation along the x and z directions while the A" representation 

transforms as y. Therefore, both A' and A" must be involved in the correlation. 

Now, the correlation between C3  and D2h needs to be considered. The connection 

between the representations of the factor group D2h and its site group C3  is described 

in a correlation table [147]. Table 6.4 is the correlation table for the factor group D2h 

which possesses three possible correlations related to the site group C3 . The proper 

site correlation is through a(zx) since the Ge (and chalcogen) is on the Wyckoffsite(c) 

which corresponds to site symmetry a(zx) [149]. Therefore, A' in C3  correlates with 

A g , B 29 , B 1 , and B3u in D2h and A" in C3  correlates with B 19 , B39 , A,, and B2 in 

D2h. This is shown in a correlation diagram of Fig. 6.2. 

The next step is to find out the accurate degrees of freedom for each site-group 

irreducible representation. In Table 6.3, A' in C5 transforms as x and z, and A" trans- 

forms as y only. The degrees of freedom for A 9 , B 29 , B1, and B3 modes originating 
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Table 6.4. Correlation table for the point group D2h and its subgroups. 

D2h D2 
C2 (Z) 

C2, 
C2 (Y) 
C2 0  

C2 (x) 
C2 0  

C2 (Z) 

C2h 
C2 (y) 
C2h 

C2 (x) 
C2h 

C2 (Z) 

C2 
C2 (y) 
C2 

C2(x) 
C2 

o(xy) 
C, 

o(zr) 
C, 

a(yz) 
C, C 

A 9  A Al Al Al A9  A9  A 9  A A A A' A' A' Ag  

B1 9  B1 A2 B1 B1 A 9  B9  B9  A B B A' All  All Ag  

B2 9  B2 B1 A2 B2 B9  A9  B9  B A B All A' All A 9  
B3 9  B3 B2 B1 A2 B9  B9  A9  B B A All  All  A' A 9  
A0  A A2 A2 A2 A0  A0  A0  A A A A ll  All  Al l  A0  

B1 0  B1 Al B1 B2 A0  B,, B,, A B B All  A' A' A,, 

B2,, B2 B2 Al B1 B,, A,, B,, B A B A' A ll  A' A,, 

B30  B3 B1 B2 Al B,, B,, A,, B B A A' A' All A,, 

correlation 
Site Group 	 Factor Group 

Y(zx) 

Ge (C,) 	 Unit Cell (D2h ) 

A'(T 1 , T 
B ig  

A"(T) 	 B 
',- 	 2g 

B 3g  

S/Se (C,) 
B 1 ,, 

A'(T, T 

A"(T) - 	 B3. 3u 

Figure 6.2. Correlation diagram for Ce chalcogenides. The correlation for C 3 (Ge)-

D2h is indicated by the connecting solid lines and for C,(S/Se)-D2h is denoted as the 
connecting dashed lines. 
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from A' should therefore be two while B 9 , B3g , A, and B2 remain single degrees 

of freedom. Further, the irreducible representations associated with the optical lat-

tice vibrations of the crystal (171)  are the sum of the representations contributed by 

Ge (FGe)  and chalcogen (pS/Se)  with subtraction of the representations of acoustical 

vibrations (Fc0u8t). In addition to the conditions of selection rules for the acoustic, 

infrared-active, and Raman-active modes discussed previously, the lattice vibrations 

can be formed as, 

Fvib = pC +r
SISe -  

[2A 9  + Big  + 2B29  + B39  + A + 2B1  + B2 + 2B31 

+[2A9  + Big  + 2B29  + B39  + A + 2B + B2 + 2B31 

—[B 1  + B2 ,. + B3,.] 

= 4A (R) + 2B (R) + 4B + 2B + 2A + 3B R) + BR)  + 3B' (6.6) 

The information concerning the displacement polarisations for particular atoms 

involved in the normal lattice vibrations can be also obtained from the correlation di-

agram. For instance, the B39  mode, in Fig. 6.2, is derived from the A" representation 

of both Ge and chalcogen site group which involves the atomic motions along the y 

direction. However, the notation of x, y, and z is referred to the c, b, and a direc-

tion of the crystallographic axis, respectively. It implies that B39  mode involves the 

combined motion of the Ge and chaicogen along the b-axis direction. Therefore, two 

possible normal coordinates for this B39  mode can be easily found due to its particular 

characteristic and is shown in Fig. 6.3. Finally, the detail for each lattice vibration 

of the orthorhombic Ge chalcogenides can be characterised using the same scheme and 

the results are listed in Table 6.5. 



CHAPTER 6. VIBRATIONAL PROPERTIES OF LAYERED MATERIALS 144 

(a) 	 (b) 

Figure 6.3. Two normal coordinates of B3g  modes for Ge chalcogenides are repre-
sented as arrows. Ge and chalcogen atoms are denoted as small white and large grey 
circles, respectively. The inversion centre is indicated by a asterisk symbol. 

Table 6.5. Properties of the zone-centre optical lattice vibrations for layered Ge 

chalcogen ides. 

Irreducible Polarisation Atoms Transformation 

representation Activity direction involved property 

A 9  R a-c plane Ge + S (or Se) (aa), (bb), (cc) 

B 19  R b-axis Ge + S (or Se) (bc) 

B 29  R a-c plane Ge + S (or Se) (ac) 

B39  R b-axis Ge + S (or Se) (ab) 

A Silent b-axis Ge + S (or Se) - 
B1 JR a-c plane Ge + S (or Se) a 

B2 IR b-axis Ge + S (or Se) b 

B3 IR a-c plane Ge + S (or Se) c 
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6.3 Lattice Vibrations in GeS and GeSe. 

The zone-centre normal modes in the layered Ge chalcogenides at ambient pressure have 

been extensively studied using the first-order Raman scattering. From the single crystal 

Raman scattering measurements, it will show that not only the phonon frequencies but 

also assignments for every Raman-active modes can be well-determined using different 

scattering configurations. This experimental procedure will be outlined in this section. 

On the other hand, a first-principle calculation has also been employed to probe the 

lattice vibrations of GeS and GeSe under ambient condition. The calculated eigenvec-

tors can be assigned by symmetry considerations and provide details of relevant zone-

centre optical modes. Also, calculated eigenfrequencies given in this section are in good 

agreement with the low temperature measurements according to the zero-temperature 

effects in ab-initio calculations. 

6.3.1 Observed Raman Spectra 

Since GeS and GeSe are opaque to usual visible laser excitation sources, the backscat-

tering setup is the proper Raman scattering geometry for either single crystal or powder 

samples. However, the symmetry of vibrational properties depends on the spatial sym-

metry properties of the crystal structure as discussed in Sec. 2.4.1. Hence the selection 

rules for Raman scattering can be experimentally derived from the spectra of single 

crystal samples associated with different scattering configurations. 

Because of the anisotropy of GeS and GeSe, the sample with perfect ab planes can be 

obtained by the easy cleavage of the single crystals without polish. The backscattering 

geometry can be set such that the incident and scattered light is along the c direction 

and opposite to the c direction (e), respectively. The a and b axes for the sample can be 

also identified using a single crystal Laue X-ray diffraction and then the polarisations of 

incident and scattered photons can be well-defined. Raman spectra were recorded using 

the experimental aspects which detail is given in Sec. 2.4.3. For both GeS and GeSe 
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Lc(bJ 

GeS 

JU\ 

20 60 100 140 180 220 260 300 

Wavenumber (cm') 

GeSe 

c(bb)è 

J c(ab) ,J. 
20 60 	100 	140 	180 

Wavenumber (cm') 

Figure 6.4. Raman-scattering spectra for crystalline GeS and GeSe at room tem-

perature. The notation x(y, z)x indicates the direction of incident exciting radiation, 
the polarisation of the incident and scattered photons, and the scattered direction of 
radiation, respectively. 

single crystal samples, the 6764 A line of a Kr+  laser was employed as the excitation 

source. The laser power was estimated to be 90 mW at the samples. The sizes for four 

slits S 1 , S2, S3, and S4 of the Coderg-800 spectrometer were set at 400, 610, 400, and 

400 Am, respectively, which gave a resolution of approximately 1.5 cm'. The observed 

spectra with respect to different experimental configurations for GeS and GeSe at room 

temperature are shown in Fig. 6.4. 

The Raman spectra corresponding to diagonal polarisations (aa), (bb), and (cc) [150] 

give three nonzero components ace, a&j,, and a,, for the 2nd-rank polarisability a (Eqn. 

(2.21)). This polarisability possesses the same symmetry properties as the irreducible 

representation A 9  of the point group D2h. Also, the observed allowed Raman peaks 

attributed to the (ab) and (ba) polarisations arise from two off-diagonal components of 

the polarisability which is specified as the B39  symmetry. Both polarisabilities can be 
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represented as 

1 	o ac, 0  

a(A9 ) 	0 

( 

abb 0 	I  a(B39) 	ba 0 0 

o o acc ) ° 
and, thus, the associated raman tensor which is defined as the first derivative of ct with 

respect to normal coordinates holds the same symmetry properties. 

However, the remaining Raman-active zone-centre modes derived from other dif-

ferent polarisation geometries have been also reported for GeS [151, 144] and GeSe 

[150, 152]. In addition, to proceed with the pressure studies, the Raman spectra for 

the sample loaded in a DAC under ambient condition has also been measured. Without 

further symmetry condition from specific polarisation configurations, a spectrum with 

the combination of A. and B39  modes was observed for the sample and will be shown in 

Sec. 6.5.1. The other two Raman-active modes, B 19  and B29 , corresponding to the c 

geometry cannot be obtained in our measurements. Further, the low temperature (10 

K) Raman scattering for GeS and GeSe have been measured as well. The frequencies 

of all Raman-active modes for both layered Ge chalcogenides at different temperatures 

are listed in Table 6.6 

6.3.2 Ab-initio Simulations for Zone-Center Phonons 

In view of the significant success of quantum mechanical simulations for compression 

mechanism of layered semiconductors (shown in Chapter 5), the zone-centre lattice 

vibrations for GeS and GeSe were also studied using the first principles simulations, 

dynamical matrix diagonalisation method. This computational methodology is based 

on ab-initio molecular dynamics for calculating the Hellmann-Feynman forces and the 

detail of this calculation scheme can be found in Sec. 3.2.5. 

As shown in Sec. 3.3.2, the construction of the dynamical matrix for a crystal 

with a particular space group only needs a few atomic distortions and the remaining 
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Table 6.6. Observed. phonon frequencies for all Raman-active modes of GeS and GeSe 
at different temperature. The frequency is in the unit of wavenumber, cm. 

GeS GeSe 

Symmetry v2  (300 K) v (low T) v (300 K) ii (low T) 

A 9  48°, 49 6 ,  48C 52°, 51.5"  40°, 40d,  39e 436 ,  43d 

112°, 112b,  111 c  116°, 115.5' 82°, 82d,  83°  84°, 84d 

238°, 239b ,  238C 244a, 2456  175°, 175d, 174° 181°, 181d 

269°, 269, 269C 276°,  2786  188°, 189d,  188° 196°, 197d 

B19 94b, 96' 78d ,  776 803 

245',215c 2516 166d, 164° 171d 

B2g 
756 ,  76C 7656 70d, 	9e 72d 

130',132c 133.5' 102d, 102° 105d 

281',242c 290 199d, 178° 203d 

3296 335 • 56 226d, 225° 23 ld 

B39 56a, 56, 55C 57a ,  585b 40°, 39d ,  39e 42a,42 d 

212a, 213b ,  212C 219a, 219 .5' 15 1a ,  151d ,  1516 159a, 159d 

a Present work at 10 K. 	b [151] at 20 K. 	C  [144]. 	d [152] at 20 K. 

[150]. 

elements can be generated by symmetry transformation. In the case of the layered Ge 

chalcogenides, a full 24 x 24 dynamical matrix corresponding to eight atoms within a 

unit cell can be built, in principle, with only three independent displacements of each 

species of atom through the symmetry of the D2h point group. However, this calculation 

relies on the simple harmonic (SH) approximation, a test for this approximation is 

therefore necessary. The test scheme has been presented in Sec. 3.3.2. After the 

examination for SH approximation, a proper atomic displacement of 0.05 in fractional 

coordinates along three different axis has been found for Ge and chalcogen atoms. 

In practice, the distorted configuration is of lower symmetry than the equilibrium 

one and the special k points associated with the same Monkhorst-Pack grid (discussed 

in Sec 3.2.2) have to be regenerated in order to preserve the Brillouin zone sampling 

density. For instance, to construct the dynamical matrix of GeS, the 16 and 32 special 

k-point set for the displacement along the a (c) and b direction, respectively, were used 

to keep the density of k point sampling corresponding to the 4 x 4 x 4 Monkhorst-Pack 



0.108 0.25 0.117 

0.608 0.75 0.383 
Ge 

0.392 0.25 0.617 

0.892 0.75 0.883 

0.498 	0.25 0.854 

0.998 0.75 0.646 
Se 

0.002 0.25 0.354 

0.502 0.75 0.146 

0.00 -0.36 0.00 

0.00 -0.36 0.00 

0.00 0.36 0.00 

0.00 0.36 0.00 

5 = 

0.00 0.35 0.00 

0.00 0.35 0.00 

0.00 -0.35 0.00 

0.00 -0.35 0.00 
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grid employed in equilibrium structure determination. 

Thus, the diagonalisation of the resulting dynamical matrix gives 24 eigenvalues 

with relevant eigenvectors which correspond to long wavelength , IF-point, lattice vi-

brations of the orthorhombic Ge chalcogenides. Except for three approximately zero-

frequency eigenvalues (attributed to acoustic modes), the residual 21 normal modes 

need to be assigned in order to decide the symmetry and selection rules for each cal-

culated lattice vibration. The mode-assignment procedure can be implemented by 

applying all point group symmetry operations of the structure to the set of calculated 

displacement eigenvectors for a given vibrational mode. To underline the usefulness 

of this quantitative mode-determination, an example for the assignment of the lowest 

non-zero-frequency mode of GeSe is demonstrated as follows. 

The calculated eigenvector 5 with respect to the lowest non-acoustic mode (v = 

38.7 cm -1 ) of GeSe is expressed in a mass-modified displacement unit like C in Eqn. 

(3.66)) referred to the equilibrium atomic positional matrix A in fractional coordinates. 

Taking into account the symmetry operation, C2 (z) corresponds to a combination of a 

pure 2-fold rotation operation R with respect to the a axis and a nonprimitive trans- 

lation operation T along the direction of (1/2, 0, 1/2) which is in fraction coordinates 
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of a unit cell. Then, applying C2 (z) on the A + 5 yields 

C2 (z)(A+5) = (A+5)(R+T) 

1 0.608 0.25 + 0.36 0.383 

0.108 0.75 + 0.36 0.117 

0.892 0.25 - 0.36 0.883 

0.392 0.25 - 0.36 0.617 

0.998 0.75 - 0.35 0.646 

0.498 0.25 - 0.35 0.854 

0.502 0.75+0.35 0.146 

0.002 0.25 + 0.35 0.354 

0.108 0.25+0.36 0.117 

0.608 0.75+0.36 0.383 

0.392 0.25 - 0.36 0.617 

0.892 0.75 - 0.36 0.883 

0.498 0.25 - 0.35 0.854 

0.998 0.75 - 0-35 0.646 

0.002 0.25+0.35 0.354 

0.502 0.75+0.35 0.146 

Hence, the calculated eigenvector for the lowest frequency of GeSe is anti-symmetric 

under the operation C2 (z) resulting in a character of -1 for this symmetry operation. 

The character for each symmetry operation can be decided using the same procedure 

and this eigenvector can be therefore assigned to the B3g  symmetry according to the 

character table for D2h (Table 6.1). Therefore, all the calculated normal modes for GeS 

and GeSe can be assigned properly and the results are listed in Table 6.7. It should 

be remembered that this calculation corresponds to zero-temperature conditions. The 

calculations show excellent agreement with low-temperature experimental Raman data 

in Table 6.6. The previous room-temperature infrared frequencies for GeS and CeSe 

are also shown in Table 6.7. However, as mentioned in Sec. 3.4, without including 

long-range dipolar effect in the phonon calculations presented above, the calculated 

frequencies of infrared-active phonons may not be as reliable as the ones of Raman- 

active modes. 
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Table 6.7. Calculated frequencies for all optical modes of two Ge chalcogenides. The 
assignment procedure for each calculated eigenvector is given in detail in the text. The 
room-temperature infrared data are also included for comparison. All frequencies are 
in the unit of cm. 

GeS GeSe 

Symmetry v (Caic.) zi (Expt.) vi (Calc.) v (Expt.) 

A 9  52.3 43.5 
110.2 74.9 
241.4 173.1 
280.7 193.8 

B 19  94.5 72.5 
249.8 166.8 

B2 9  77.5 70.7 
133.1 101.9 
287.7 197.8 
318.6 217.8 

B39  64.0 38.7 
222.6 158.2 

A 88.0 - 70.7 - 

238.8 - 162.6 - 

B1 112.1 118° 77.3 88 b 

227.4 - 172.6 175 b 

267.7 258° 189.5 186 b 

B2 212.5 201° 1 	156.8 150 

B3 105.0 105 a 79.1 83 b 

209.5 238° 161.0 172 b 

287.6 280° 200.0 198 

a [144]. 	b [150]. 
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6.4 Interlayer Interactions in Layered Ge Chalcogenides 

Since the crystal structure of layered semiconductors GeS and GeSe is mainly dom-

inated by quasi-two-dimensional symmetry properties, a particular group theoretical 

analysis, diperiodic group theory, which provides the proper symmetry operations of 

a two dimensional crystal in three dimensional space is used in this section in order 

to study the lattice dynamics of GeS and GeSe. Comparing different group-theory 

considerations, a Davydov doublet splitting will be induced due to the weak interac-

tion between isolated layers. This observation implies that the strength of interlayer 

coupling can be systematically studied by the splitting frequencies of the Davydov dou-

blets. A simple model for measuring the interlayer interaction will be presented in Sec. 

6.4.2. 

The existence of very-low-frequency zone-centre optical phonons introduces another 

vital issue in the vibrational properties of layered compounds. The low-frequency modes 

correspond to layers moving as rigid units and are termed as rigid-layer vibrations. 

The frequency of the rigid-layer mode depends on the interlayer force. Thus, it will 

be shown that the comparison between the frequencies of rigid-layer vibrations and 

intralayer vibrations provide the ratio of interlayer/intralayer force constants which 

is regarded as a measurement of anisotropy. Therefore, the anisotropy of a layered 

structure can be categorised by the ratio of different hierarchical force constants. The 

layerlike characters of GeS and GeSe will be gauged at the end of this section. 

6.4.1 Diperiodic Group Analysis 

In the conventional group-theory studies, the three-dimensional space group has been 

employed to probe the vibrational properties of layered compounds. In fact, the layered 

crystals are characterised by a three dimensional structure with only two-dimensional 

periodic boundary conditions according to the weak interactions between isolated lay-

ers. However, the pure two-dimensional group is not an appropriate description of the 
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layer structure because it does not allow the existence of the third dimension. In order 

to underline the structural anisotropy, a diperiodic space group which could properly 

represent the three-dimensional structure confined to two-dimensional infinite period-

icity is therefore needed to proceed the theoretical studies for layer structures. 

Rather than 230 three-dimensional (triperiodic) space groups and 17 pure two-

dimensional groups, 80 DG have been extensively studied by E. A. Wood [153]. The 

symmetry elements of DG include n-fold axes, screw axes, mirror planes, glide planes, 

etc., with respect to the atoms in an isolated layer. According to the limitation from 

the absence of periodicity normal to the plane of diperiodicity, the operations referred 

to third periodicity, such as glide planes with glide direction out of the plane, screw axes 

perpendicular to the plane, and n-fold (n > 2) axes lying in the plane, are forbidden 

in DG. In other words, all of the 80 DG do not contain symmetry elements connecting 

atoms in different layers. The compatibility relation between DG and triperiodic space 

groups has been specified and reported in elsewhere [153]. 

In the limiting regime of zero coupling between layers, the vibrations for a single 

layer can be described by the DG from the correlation method [144, 154]. By turning 

off the weak interlayer interaction, the isolated single layered Ge chalcogenides adopt 

a crystal structure with the diperiodic group DG32 [144], in Wood's notation, which is 

analogous with the space group CL  but without the inversion symmetry. In principle, 

a single layered Ge chalcogenides containing 4 atoms in a unit cell should give 12 zone-

centre lattice vibrations. Within an isolated layer, Ge and chalcogcn atoms are at the 

locations with site group C 5 . Based on the correlation table for DG32 (C2) shown 

in Table 6.8, the connection between the irreducible representations of C5  and of the 

layer factor group DG32 (D2 ) is illustrated in Fig. 6.5. It shows that the A 1  and B 1  

modes in DG32 are originated from A' modes of both species of atoms at C3  in which 

A" modes contribute the layered A 2  and B 2  irreducible representations. 
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Table 6.8. Correlation table for the diperiodic group DG32 (C2) and its subgroups. 

a(zx) a(yz) 

C2v C2 C3  C3  

A 1 A A' A' 
A 2  A A ll  A" 
B 1  B A' A" 
B 2  B A" A' 

[Site Group 

Ge (C5 ) 

A'(T 1 , T ) 

correlation 

a(zx) 
Diperiodic Group 

DG32 (C2  ) 

A 2  

B 1  

B 2  

Figure 6.5. Correlation diagram for the isolated layered Ge chalcogenides. 

After inspecting the degree of freedom for site groups, the decomposition into irre-

ducible representations is 

4A 1  + 2A2  + 4B1  + 2B2 
	 (6.7) 

These 12 normal modes are characterised in Table 6.9. Without any interaction between 

adjacent layers, 12 lattice vibrations are dominated by the strong coupling between 

atoms inside a layer. From Table 6.9, the 12 layer fundamentals are separated as 3 
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acoustic vibrations (1A 1  + 1B1  + 1B2 ) and 9 optical modes. Again, considering the 

transformation properties , the layer-symmetry selection rules for 9 optical modes can 

be assigned as that three A 1 , three B 1 , and one B 2  modes are all Raman- and infrared-

active while two A 2  modes are Raman allowed only. 

Table 6.9. Properties of the zone-centre normal modes for orthorhombic Ge chalco-
genides in layer symmetry. The transformation properties in the fifth column can be 
derived from the character table of C2,., 

Irreducible Polarisation Atoms Transformation 

representation Activity direction involved property 

A 1  IR+R a-c plane Ge + S (or Se) a, (aa), (bb), (cc) 
A2  R b-axis Ge + S (or Se) (bc) 
B 1  JR + R a-c plane Ge + S (or Se) c, (ac) 

B 2  JR + R b-axis Ge + S (or Se) b, (ab) 

Now, the weak interlayer interaction has to be considered in order to obtain the 

irreducible representation for the real crystal structure. The correspondence between 

DG and crystal factor group for orthorhombic Ge chalcogenides can be derived from 

the correlation method. Following the relationship described in the character table for 

D2h (Table 6.4), the correlation between C2 ,., and D2h symmetry is depicted in Fig. 6.6. 

The degrees of freedom for each irreducible representation of D2h  can be propagated 

directly from the relevant representation of C2,.,. Thus, the description of the 24 lattice 

vibrations is 

4A 9  + 2B19  + 4B29  + 2B39  + 2A  + 4B1  + 2B2  + 4B3 	 (6.8) 

The selection rules for three acoustic and 21 optical modes are identical to the result 

given in Eqn. (6.5). 

From the DG analyses, two issues need to be addressed carefully here. Firstly, 

the Raman-infrared degeneracies of an isolated layer structure without the inversion 

centre lead to a different conclusion from the space group considerations in which the 
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Figure 6.6. Correlations diagram among zone-centre vibrations for individual layers 
and crystalline structures of layered Ge chalcogenides. To the left of the figure is shown 
the symmetry elements for DC which are appropriate for the case without interlayer 

coupling. 

Raman-active and infrared-active are mutually exclusive. This optical selection rules of 

DG is due to the absence of interlayer inversion symmetry in the layer symmetry. Nev-

ertheless, the crystal vibrations involve the combination of vibrations on the adjacent 

layers will be either even-symmetric or odd-symmetric with respect to the inversion 

centre located on the middle of two layers. Hence, the symmetry-induced admixture 

of Raman- and infrared-active vibrations is not permitted in crystals having inversion 

symmetry. 

Another feature shown in Fig. 6.6 is that each normal mode in a layer symmetry 

is split into a pair of gerade (Raman-active) and ungerade (infrared-active) lattice 

vibrations in the corresponding crystal symmetry. This nondegenerate pair of Raman-

and infrared-actived crystal modes can be understood as the mode-splitting of the layer 

vibrations by the weak coupling between layers. Using the DC analysis, the splitting 

of the Raman-infrared doublets derived from the interlayer interaction has been also 

observed in other layered compounds, As 2 S3  [154], MoS 2  [155], and Sn chalcogenides 
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Figure 6.7. One-dimensional spring models and vibrational spectra for layer materials. 
In (a), the isolated layer is represented by a coupled oscillators connected with an 
intralayer spring of force constant k0 . Different layers are jointed by a soft interlayer 

spring of smaller force constant k' to form a linear lattice with (b) one layer and (c) 
two layers per unit cell. The phonon dispersion curves are shown below corresponding 
to the models. 

[156]. Therefore, a careful comparison of the Raman modes and their infrared coun-

terparts of layered materials provides a means to measure the strength of interlayer 

interactions. 

6.4.2 Interlayer-coupling Induced Davydov Splitting and Rigid-Layer(RL) 

Vibrations 

As the weak-interaction induced Raman-infrared splitting in layer solids, an analogous 

effect has been found in the molecular crystals and called Davydov splitting which 

gives rise to both mode shift and mode splitting of the molecular spectrum [157]. 

The character of interlayer-coupling induced Davydov splitting can be captured by a 

classical spring-ball model. Fig. 6.7 illustrate this simple vibration model only in one-

dimensional consideration. In Fig. 6.7(a), the isolated layer is simplified as two identical 

oscillators of mass M tighten by an intralayer bond of a spring of force constant k0  and 
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the equilibrium distance between oscillators is d. For this free "layer", there are only two 

eigenfrequencies corresponding to two degrees of vibrational freedom. The vanishing 

frequency is recognised as a pure translation of the layer (acoustic modes), and the 

higher one (v0  = /2ko7M) is assigned to the spring stretching mode. Both eigenvectors 

are also displayed in Fig. 6.7(a). Taking into account the interaction between "layers", 

the "layer" is coupled with its neighbours by a set of soft springs of force constant k' 

(k' < k0 ) which is responsible for the interlayer cohesion. This linear chain of identical 

atoms connected by springs of alternating strengths has only one "layer" per unit cell. 

According to the harmonic approximation, the discrete elgenfrequencies of a single 

"layer" will spread to two branches: 

2 	k0  + k' 	Jk 02 + k12  + 2k0k' cos qd 
(6.9) 

M + 
	

M 

As the wave vector increases from zone centre (q = 0) to the zone boundary (q = 7r/d), 

the acoustic branch rises up to /2k'/M whereas the stretch branch gives rise to a 

flat dispersion from /2(k o  + k')/M to v'2k0/M in Fig. 6.7(b). The displacements 

associated with zone-centre and zone-edge modes are also demonstrated to give a detail 

vibrational pictures. Further, a dimerised lattice with double unit cell is introduced 

to include two layers within a unit cell as the case of GeS and GeSe. The lattice 

dimerisation causes halving of the Brillouin zone and the modes at the zone edge will 

be folded back to the zone centre as shown in Fig. 6.7(c). Thus, from the first-order 

Raman and infrared measurements which detect only zone-centre vibrations, it can be 

regarded as the mode-splitting from the original layer lattice vibration. In addition, 

the ratio of zone-centre normal-mode frequencies can be expressed as 

VI 	
(6.10) 

VO Vk0 

- 

r_
k' 

k0 	- 1 = (-) 	(k' <<ko) 	 (6.11) 
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where the A and v' are the mode splittings from the acoustic and the stretching band, 

respectively. 

The theoretically predicted Raman-infrared splitting of the dimer model can be 

observed in the experimental and calculated frequencies for lattice vibrations of GeS 

and GeSe. In practice, the characteristic frequencies with no layer-coupling, v 0 , can be 

estimated from the obtained Raman-infrared pairs by a simple form, 

= 	+ 
	

(6.12) 

where v±  denotes the frequencies for a Raman-infrared pair. Table 6.10 lists the in- 

tralayer Raman-infrared Davydov doublets for GeS and GeSe. The frequency-splittings 

Table 6.10. Three pairs of Raman-infrared Davydov splitting for GeS and GeSe. Cal-
culated data are shown in parentheses and all frequencies are in the unit of cm* The 

A,-B iu , B2 g B3u, and B3g B2u pair is originated from A1, B 1 , and B 2  layer vibration, 

respectively. 

Raman-Infrared 
doublets 

GeS 
o V+ 

GeSe 
0 

A 9-B 269 258 264 11 188 186 187 2 

(280.7) (267.7) (274) (13) (193.8) (189.5) (191.6) (4.3) 

B2 9-B3 329 280 305.5 49 226 198 212.5 28 

(318.6) (287.6) (303.5) (31) (217.8) (200) (209.1) (17.8) 

B39-B2 212 201 206.6 11 151 150 150.5 1 

(222.6) (212.5) (217.6) (10.1) (158.2) (156.8) (157.5) (1.4) 

in Table 6.10 are about 10 cm' for GeS and few wavenumber for GeSe except large 

discrepancy for the pair of B2 g B3u. From the calculated eigenvectors of ab-initio sim-

ulations, it is attributed to the admixture of bond stretching and bond bending of B29  

which is induced by the complexity of the crystal geometry. 

On the other hand, the low-lying frequency crystal modes (below 100 cm) orig-

inate from the layer acoustic mode and are recognised as a rigid-layer (RL) motions. 

The idea of the RL mode was identified initially by Zallen and Slade [158] to explain 
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the origin of very low-frequency zone centre optical modes in layered solids. According 

to the RL approximation, crystals containing more than one layer in a unit cell exhibit 

unique lattice vibrations in which the layers move relative to each other as rigid units. 

The restoring force responsible for the RL mode is due to the weak interlayer cohesion 

so, the frequency of the RL vibration will be much lower than one of the intralayer 

vibration. 

Since three independent acoustic modes exist along three crystallographic axis of 

the orthorhombic layer structure, three RL modes are expected to be found in GeS 

and GeSe. In addition, the opposite directional motions for two layers of orthorhombic 

Ge chalcogenides ensure that these three RL modes are inversion-invariant and are 

associated with Raman-active vibrations. As the results of DG analysis and optical 

measurements shown in Table 6.6, three room-temperature RL vibrations are observed 

to be v(A 9 ) = 48, v(B 39 ) = 56, and v(B2 9 ) = 75 cm- ' for GeS while v(A g ) = 40, 

v(B 39 ) = 40, and v(B 29 ) = 70 cm- ' for GeSe. 

Considering the transformation properties, the low-frequency A 9 , B39 , and B 29  can 

be specified as the shear RL motion along the a-axis direction, b-axis direction, and 

the compressive RL motion, respectively. From this theoretical prediction of three RL 

modes, the frozen phonon (FP) calculation (Sec. 3.3.3) which assumes a pure rigid-

layer eigenvector displacement pattern was also performed to obtain the RL vibrational 

frequencies. The calculated frequencies obtained from a 0.005 fractional unit displace-

ment of a rigid layer are v(A 9 ) = 58.6, v(B39 ) = 66.0, and v(B 29 ) = 80.5 cm- ' for 

GeS. In addition, the calculated frequency of RL A 9  mode of GeSe at ambient pressure 

is found to be 47 cm- '. On the other hand, the calculated frequencies for three RL 

modes using the dynamical matrix diagonalisation technique without a priori bias con-

cerning the eigenvectors have been listed in Table 6.7 as v(A 9 ) = 52.3, v(B39 ) = 64.06, 

v(B 29 ) = 77.53 cm for GeS and v(A 9 ) = 43.5, v(B 39 ) = 38.7, v(B 29 ) = 70.65 cm -1  

for GeSe. The calculated eigenvectors for relevant RL vibrations of GeS are given 

as an example and are displayed in Fig. 6.8. It is evident that the rigid-layer mode 
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Figure 6.8. Schematic illustrations of the calculated eigenvectors corresponding to 
three RL vibrations of GeS determined by dynamical matrix diagonalisation at ambient 
pressure. The shear RL mode along a and b direction are displayed in (a) and (b) 
respectively. The compressive RL mode is shown in (c). The Ge and S atoms are 
denoted as small and large spheres respectively. The arrows represent the directions 
and values of the eigenvectors. 

approximation is satisfied under ambient pressure condition. 

The RL frequencies have been employed to derive quantitative information on the 

strength of the interlayer cohesion in chalcogenide crystals [158]. According to Eqn. 

(6.10), the ratio of interlayer to intralayer force constants can be estimated by the ratio 

of the RL frequency (z/) to the relevant intralayer covalent-bond-strengthing vibrational 

frequencies (vo). From the inspection of Table 6.7 and 6.10, it obtains three RL-intralyer 

vibration pairs corresponding to three crystallographic axis for GeS and GeSe. The 

calculated and experimental interlayer-intralayer force constant ratios proportional to 

(i//v0) 2  for two shear modes and one compressive mode of GeS and GeSe are shown 

in Table 6.11 which includes other prototypical layered solids for comparison. It can 

be seen that average force-constant ratios of GeS and GeSe are about 0.07 and 0.08, 

respectively, which are much larger than the ratio of graphite ('-.-' 0.005). These results 

reveal that the anisotropy of GeS and GeSe is more less than that of graphite. 
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Table 6.11. The observed and calculated interlayer-intralayer force constant ratios for 
layered materials. The calculated data for GeS and GeSe are shown in parentheses. All 
the experimental data corresponds to room-temperature measurements except the ones 
of As2 S3  and As2Se3  which are obtained at 15 K [158]. The compressive RL modes for 
the hexagonal GaS and GaSe are forced to be optically silent by strict selection rules 
and the compressive force constant ratio for these crystals are therefore inaccessible. 

Crystal (4)shear ()compr. 

GeSe 0.058 (0.056) 0.109 (0.114) 
GeS 0.052 (0.062) 0.084 (0.065) 

As2 Se3 0.021 - 0.07 
As2 S3  0.017 - 0.06 
MoS2  0.014 0.038 
GaSe 0.019 - 

GaS 0.016 - 

Graphite 0.001 0.010 

6.5 Pressure Effects on Anisotropic Layered Compounds 

The conceptual foundations of pressure effects on first-order Raman spectrum of general 

materials without structural phase transition have been highlighted in Sec. 2.4.2. It 

is shown that not only the Raman frequencies but also line-shape of Raman spectrum 

will be affected by compression. However, the main focus of the present work is to 

trace the pressure-induced Raman-line shift of layered materials. 

The zone-centre Raman-active modes of GeS are measured using the DAC facilities 

up to about 70 kbar. In order to obtain a spectrum with good quality in the low-

frequency region for RL modes, the special experimental considerations are needed and 

will be given in Sec. 6.5.1. The first-principle simulations result will be also included 

for comparison. The Raman-frequency blue-shift under pressure can be obtained in 

both experimental and theoretical studies. Moreover, the pressure-enhanced Davydov 

splitting will be found here. 

Within the quasi-harmonic approximation regime, the change of phonon frequencies 
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are attributed to the modification of perturbed anharmonicity of the crystal Hamilto-

nian by the external pressure. The aspects of anharmonic behaviours of phonons in 

3-dimensional covalent bonded structures has been well developed and the Grüneisen 

parameter [60] has been widely used to study the vibrational properties of crystals 

under nonequilibrium conditions. In addition, a scaling relationship of frequency-shifts 

between different phonons can be derived from the Grüneisen constant which will be 

concerned here. However, the Grüneisen model has been found to be inappropriate 

for a system combining different hierarchical couplings such as layered, chained, and 

molecular materials [159, 160]. In these anisotropic structures, a modification of the 

Griineisen approximation is needed and a new vibrational scaling has been found and 

will be shown later. 

As with the weak interlayer-interaction induced lattice vibrations, the RL modes are 

expected to be preferentially affected by appling hydrostatic pressures to layered crystal 

structures. Besides the different scaling parameters for RL and intralayer vibrations 

found in the low pressure region, a pronounced sublinear pressure response of RL 

vibrations of GeS has also been observed at modest pressure. This dramatic effect on 

the RL vibrations has also been reported in some layered semiconductors such as MoS 2  

[161] and As2 S3  [162]. Moreover, inspection of the calculated phonon eigenvectors for 

GeS reveals that substantial mode admixture occurs under compression. Therefore, 

a pressure-induced breakdown of RL vibrations is found and account for the unique 

vibrational behaviour of layered materials. The examination of the validity of the 

RL approximation under different pressure conditions will be given at the end of this 

section. 

6.5.1 Pressure-Raman Effects in the Layered Compound: GeS 

The Raman-active modes of layered GeS have been monitored using a combination of 

high-pressure Raman scattering and first principle simulations. The basic experimental 

aspects have been described in Sec. 2.4.3. The pressure-Raman measurements were 
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performed by loading a tiny single crystal sample (with the diameter size of 0.1 mm) 

into the Tungsten gaskets which were preindented to a diameter of 0.2 mm. A 0.6 

mm culet Diacell B-05 DAC (Sec 2.1.1) with a 4:1 mixture of methanol-ethanol as the 

transmitting media has been employed. The pressure was calibrated using the ruby 

fluorescence scale. As with the setup of single-crystal Raman scattering in Sec 6.3.1, 

the 6764 A line of a Kr+  laser was also used and the spectra were recorded using a 

Coderg T-800 triple grating spectrometer in backscattering geometry. The slit size 

in the spectrometer was set at 400 jLm which gave a resolution of approximately 1.5 

cm. However, the laser excitation source may be affected by the diamond window of 

DAC and yield to a relatively defocused beam on the sample. Therefore, a lens having a 

small focal length was placed between the mirror and sample in order to minimise stray 

light and optimise the important low-frequency regime of the spectra. In addition, air 

spectra contamination was reduced by flushing the entire sample chamber with argon 

and emission lines were eliminated by prism filters and an iris. Each spectrum was 

collected using a count time of 20 seconds per data point. 

The unpolarised room-temperature Raman spectra of GeS up to a hydrostatic pres-

sure of 64.8 khar is shown in Fig. 6.9. According to the structural anisotropy of CeS, 

the modes referred to the polarisation normal to the layered plane, B 19  and B29 , can't 

be detected obviously. In Fig. 6.9, the low-frequency portion is complicated by the 

presence of small amount of residual air contamination and the pressure evolution of 

the B3g  shear RL mode having weaker intensity can't be determined reliably. 

Ab-initio calculations has also been employed to probe the pressure dependence of 

Raman-active phonon frequencies of GeS. The calculated frequencies using a dynamical 

matrix diagonalisation method at different pressure are shown in Fig. 6.10. Comparison 

between experimental and relevant calculated Raman-active phonons is made and it 

shows that a good agreement can be obtained in the low-frequency regime. However, 

the thermal effect of observed high-pressure phonon frequencies (room temperature) 

accounts for the the overestimate of calculated results (zero temperature) found in 
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Figure 6.9. Room-temperature Raman spectrum of GeS as a function of hydrostatic 

pressure up to 64.8 kbar. According to the sample in the c(ab)E scattering geometry, 

a combination of A 9  and B39  modes is accessible in these spectra. The assignments 
are denoted under each spectrum. However, the residual air contamination located at 

about 60 cm-1  obscures the weaker low-frequency B39  shear mode and prohibits the 

reliable measurements of this RL mode under pressure. 

the high-frequency portion. The low-temperature Raman data at ambient pressure are 

also included in Fig. 6.10 and it implies that the low-temperature high-pressure Raman 

scattering will reduce the discrepancy between observed and calculated frequencies in 

Fig. 6.10. 

Besides the pressure-induced Raman-frequency shift observed in GeS, a enhance-

ment of the Davydov splittings due to compressions was found using ab-initio simula-

tion. The pressure response of all low- and mid-frequency zone-centre optical modes is 

shown along with their assignments in Fig. 6.11. It is evident that all Raman-infrared 

splittings increase with pressure and the frequency-gap between interlayer vibrational 

modes (RL) and intralayer modes is decreased under hydrostatic compressions. These 

behaviours also recognised in other anisotropic solids [160, 162] are attributed to the 

enhancement of the interlayer coupling by compression. Moreover, pressure apprecia- 
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bly enforces the interlayer interaction and yields to the calculated crossover between 
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Figure 6.10. Observed and calculated frequencies of Raman modes of GeS as a 
function of hydrostatic pressure. The experimental data are shown as open circles. 
The solid lines through data points are guides to the eye. The solid circles represent 
the calculated frequencies from the dynamical matrix diagonalisation method. The low-
temperature (10 K) measurements at ambient pressure are also included for comparison 
and denoted as open triangles. 
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Figure 6.11. Calculated frequency and symmetry labels at ambient and elevated 
pressure. The DG symmetry assignments are shown to identify the original modes of 
isolated layers. However, the frequency axis is not appropriate for the DG symmetry 
assignments. The gap between interlayer and intralayer modes at ambient pressure and 
10 kbar are denoted as shaded area. It is evident that the splitting of Raman-infrared 
doublets increases with increasing pressure. Also, it can be seen that frequency-gap 
between interlayer and intralayer vibrations decreases gradually with compression and 

a crossover between RL B29  compressive mode and interlayer A, B 19 , B3 modes was 

observed at 50 kbar. 

RL B2 9  mode and intralayer modes (A 1 , B19 , B3) at 50 kbar. 

6.5.2 Generalised Vibrational Scaling Law 

It is well-known that lattice vibrations in crystals will be affected by the change in the 

equilibrium volume due to external applied forces, such as pressure, temperature, etc. 

However, if a rigorous harmonic oscillation was used to model the crystal vibrations, the 

volume-change only induces a modification of potential energy without altering the lat-

tice dynamics at all. It suggests that the oversimplified harmonic model is not suitable 
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for the description of lattice dynamics in real crystals. In order to avoid this problem 

[60], a cubic anharmonic term should be taken into account in the Hamiltonian and a 

volume-change-induced frequency-shift is thus expected. The normal-mode frequency 

corresponding to the pressure-induced volume changes leads to the definition of a di-

mensionless mode-Grüneisen parameter which reflects this anharmonic frequency-shift 

of phonons. 

	

7(q,i) - - 
V 0v2  (q) - Olnzi(q) - 	 (6.13) 

- 

	

vi  (q) 9V - Oln V - 	OP 

where 'y (q, i) is the niode-Grflneisen parameter for phonon i with wave vector q. V, 

F, and B denotes the crystal volume, the external pressure, and bulk mudulus, respec-

tively. 

In Griineisen's assumption, an overall mode-Grineisen parameter 'y  which is the 

weighted average of -y (q, i) over i and q enters the coefficient of thermal expansion. 

Due to the Grüneisen approximation, the pressure coefficient 0v2 1OP is proportional 

to the relevant frequency v 2  of zone-centre phonons (q = 0) and y is therefore a uni-

versal parameter of unity order. Then, the Grüneisen scaling law can be formulated 

as connecting the force constant k with crystal volume V (k is proportional to v 2 ) and 

Eqn. (6.13) can be rewritten as 

kV 2 
	

(6.14) 

The validity of the Griineisen model has been examined for 3-dimensional tetrahedral 

semiconductors controlled by single type of bond [160] and a larger value of has been 

observed for the more ionic compounds [163]. However, the Griineisen model will be 

shown to be inappropriate for layered GeS as was found in molecular solids [160]. 

Fig. 6.12 shows the observed pressure sensitivity of phonon frequency, (11v s ) (0v1/OP), 

as a function of frequency in GeS at low pressure. It is evident that the value of pressure 
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Figure 6.12. Pressure sensitivity, (11z.')(Ov 2 18P), as a function phonon frequency for 
GeS. Experimental and previous observed (from ambient pressure to 7 kbar) data [165] 
are represented as open circles and triangles, respectively. The results of calculations 
are denoted as solid squares. The fitting curve corresponding to -y x 1 and -yj x zi 2  is 

shown as dashed and solid lines respectively. 

sensitivity for low-frequency phonons decreases from order of 0.1 down to order of 0.01 

for high-frequency phonons. This trend departs dramatically away from the Grüneisen 

scaling which predicts a universal pressure sensitivity for all phonons. In order to scale 

the phonon behaviour of highly anisotropic materials, a modified Grüneisen scaling law 

derived from the valence force field model [164] is introduced. 

l din k 
kcz1 

6d1n1  
(6.15) 

where k and 1 are the force constant and the relevant bond length, respectively. 7 IS 

a bond-scaling parameter of order unity for all type of bonds. This phenomenological 

scaling law providing a relationship between bond-stiffness and bond-strain can be 

tested by comparing the ratio of interlayer-intralayer bond length and the ratio of 

different force constants for layered materials. The result listed in Table 6.12 shows 

that the value of the exponent is about 6 for a variety of layered crystals. Thus, the 
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Table 6.12. The length-strength relationship for several layered crystals. 1 and 1' 
denotes the intralayer and interlayer bond length respectively. The interlayer-intralayer 
force constant ratio k'/k is from (k'/k) compr . in Table 6.11 

Crystal ()compr. m (where k = c1m) 

GeS 1.45 0.084 6.7 
As 2 Se3  1.51 0.07 6.5 
As 2 S 3  1.55 0.06 6.4 
MoS2  1.5 0.038 8.1 

Graphite 2.36 0.010 5.4 

validity of Eqn. (6.15) is corroborated for general layered compounds. 

However, the stiffness of the pseudo interlayer bond with length of 1' is much lower 

than that of the intralayer bond (lo). In this case, the scaling exponents corresponding 

to heirarchical interactions can be connected with relevant mode-Grüneisen parameters 

by differentiating Eqn. (6.15) and connecting the global strain of the unit cell LL/L 

where L = P+ lo 

zk 0 	z1 	A  
--- = 

-6'y--- = -6'yo--- 	
(6.16) 

i  
zk' 	All 	,zL 

= —6-y--- = —67 	 (6.17) 

where 70 and -y' correspond to the intralayer and interjayer mode-Grüneisen parameter, 

respectively. 

For the elemental one-dimensional spring-ball model in Fig. 6.7, the above argu-

ments are applied to three zone-centre optical phonons under the conditions of k0>> k' 

and lo 1'. The mode-Griineisen parameters as a function of frequency are henceforth 

evaluated as 7(i/') 27, 7j(vO) (k'/k o)27, and 'y1 (v°  + ) (k'/k o)47. The result 

is that the mode-Grüneisen parameter associated with specific interactions is propor-

tional to the inverse of its force constant ('yo/y' = k'/ko). In addition, the relation of 

y(v + iXv) > 7 j (v) predicts the pressure-enhanced Davydov splitting which has been 

discussed in Sec. 6.5.1. Moreover, since v2  x /i and yj oc 1/k1, the mode-Grüneisen 
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parameter can be expressed as a function of mode-frequency "j as, 

cx 1 
	

(6.18) 
Lit  

This rough relation included in Fig. 6.12 gives a useful approximation for -y i  and ii, in 

anisotropic crystals. 

6.5.3 Pressure-Induced Breakdown of Rigid-Layer Approximation 

As displayed in Fig. 6.10, the frequencies of Raman-active modes of GeS rise linearly 

upon compression in the low-pressure region (below 20 kbar). However, the linear 

dependence between the Raman frequency and pressure is not sustained for the low-

frequency RL vibrations of GeS up to about 50 kbar. Instead, a pronounce sublinear 

pressure response is observed for the RL A 9  shear mode. This flattening of frequency 

versus pressure of RL vibrations is attributed to the pressure-induced decrease of the 

intralayer/interlayer bond stiffness disparity [162]. In order to investigate this sublinear 

pressure response in more detail, a first-principle matrix diagonalisation method and 

the FP calculation have been implemented to simulate the lattice dynamics of the RL 

A 9  vibration of GeS. 

Like the phonon calculations of GeS at ambient pressure, the frozen-phonon calcu-

lations have been also performed to examine the validity of RL approximation under 

hydrostatic compression. For instance, a rigid-layer displacement pattern along the 

crystallographic a-direction was assumed in the FP method to determine the frequen-

cies of the RL A. shear mode at different pressures. The results for the RL A. mode 

in Fig. 6.13 show that the overestimate of the calculated FP frequency of the RL A 9  

shear mode is 17% higher than the experimental room temperature value and reaches 

24% by 50 kbar. This apparent failure of the FP method implies that the rigid-layer 

approximation must not be valid even under modest pressure. 
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Figure 6.13. The pressure dependence of the lowest-frequency A 9  shear mode. The 
experimental data are determined by Raman scattering up to 64.8 kbar and denoted 
as open circles. Calculated phonon frequencies using dynamical matrix diagonalisation 
and frozen-phonon method are shown as solid circles and triangles, respectively, up to 
100 kbar. 

By contrast, the calculated frequencies obtained from the dynamical matrix diag-

onalisation method agree well with experimental data for RL modes over the entire 

experimentally accessible pressure range. The slight overestimate of calculated fre-

quencies for the whole frequency-pressure curve in Fig. 6.13 is due to the temperature 

effects which are not included in the calculations. Further, the calculated normalised 

eigenvectors for the RL shear and compressive modes at ambient and elevated pressure 

are listed in Table 6.13. It can be seen that the minor symmetry-allowed coupling of 

components on the ac plane of eigenvectors at ambient pressure is gradually enhanced 

by compression for both A 9  and B29  modes. This calculated eigenvectors indicate the 

mode mixing of approximately RL mode and intralayer vibrations occurs continuously 

in response to hydrostatic pressure. 

The displacement patterns of two RL modes of GeS are illustrated in Fig. 6.14 and 

it is clear that the simple rigid-layer character is no longer valid at modest pressure. In 

addition, this pressure-induced admixture of interlayer and intralayer vibrations gives 
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Table 6.13. Calculated normalised eigenvectors of the A 9  shear mode and B 29  com-
pressive mode normal to the crystallographic b-axis at several pressures. Ge l  and Si 

are located on one double-layer whereas Ge 2  and S2 are located on another double-layer 
in the unit cell. Note the relatively large increase in the c- and the a-component of the 

displacements of A9  and B29  mode, respectively, with increasing pressure indicating 

the breakdown of the RL approximation. 

Gel  Ge2 S S2 

Symmetry 	Pressure a 	c a 	c a c a c 

A9 	Ambient -0.42 	0.11 0.42 	-0.11 -0.24 0.00 0.24 0.00 

10kbar -0.42 	0.13 0.42 	-0.13 -0.23 0.01 0.23 0.01 

50kbar -0.42 	0.19 0.42 	-0.19 -0.20 0.02 0.20 0.02 

100kbar -0.42 	0.20 0.42 	-0.20 -0.17 0.04 0.17 0.04 

B29 	Ambient -0.03 0.43 0.03 0.43 -0.01 0.25 0.01 0.25 

10kbar -0.04 0.43 0.04 0.43 -0.01 0.24 0.01 0.24 

50kbar -0.11 0.44 0.11 0.44 -0.03 0.22 0.03 0.22 

100kbar -0.34 0.32 0.34 0.32 -0.11 0.14 0.11 0.14 

a microscopic description of the band crossover under pressure which was pointed out 

in Fig. 6.11, and indicates the complete loss of two-dimensional character of the vibra-

tions. Also, this calculated results provide an explanation for the failure of FP method. 

Therefore, it is believed that the sublinear behaviour of the pressure response of RL 

mode frequencies derived from the pressure-induced breakdown of the RL approxima-

tion can be found in any other layered compounds. 

6.6 Conclusion 

In the chapter, the lattice dynamics of layered solids GeS and GeSe have been ex-

tensively investigated using both theoretical and experimental methods. Before the 

systematic studies by experimental observations and computational simulations, the 

activities of lattice vibrations at ambient pressure can be predicted using the group-

theoretical approaches, the BV and the correlation methods. The results of symmetry 

considerations are consistent with the experimental ambient pressure Raman scattering 

and first-principle calculations. 
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IJJJ• 1.1.  

Figure 6.14. Calculated eigenvector corresponding to the (a) shear RL A 9 , ( b) com-

pressive RL B29  mode vibrations as determined by dynamical matrix diagonalisation 
at a pressure of 50 kbar. The arrows represent the directions and the values of eigen-
vectors. Ge and S atom is denoted as the small and the large sphere, respectively. 

On the other hand, in order to obtain an appropriate theoretical description of the 

lattice vibrational properties of layer structures, a diperiodic group has been employed. 

The DG analysis has given more information for the normal modes and their opti-

cal selection rules of layered GeS and GeSe. Moreover, a Davydov doublets splitting 

attributed to the weak interlayer interaction has been observed by the comparison be-

tween the layer symmetry and the crystal symmetry. It was shown that studies of Davy-

dov doublets splitting provide a means to probe the strength of the interlayer coupling. 

Another characteristic feature of vibrational properties of layered solids, rigid-layer 

vibrations, has been also deduced from DG investigations and been identified using ab-

initio calculations. This RL modes correspond directly to the force between adjacent 

layers and locate at very low-frequency regime isolated with a frequency-gap from in-

tralayer vibrational frequencies. In the case of GeS and GeSe, the ratios of heirarchical 

force constants estimated from Davydov doublets splittings and the frequency-gap of 

only 10 cm - ' indicate that the vibrational properties of layered Ge chalcogenides at 
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ambient pressure are not as anisotropic as the structure might suggest. Therefore, the 

ambient pressure situation of GeS and GeSe is associated to a weak-coupling regime. 

Pressure effects on layered GeS and GeSe have been studied as well. Under com-

pression, a pressure-enhanced Raman-infrared Davydov doublets splitting has been 

predicted by dynamical matrix diagonalisation method. This effects can be addressed 

as the enforcement of interlayer cohesions by compression. Also, during the low pres-

sure regime, it was revealed that the pressure dependence of phonon frequencies for RL 

vibrations and intralayer modes can not be interpreted by a conventional Griineisen 

approximation. In fact, a general bond-stiffness-bond-strain scaling law has been found 

to scale the pressure sensitivities of phonons referred to different type of interactions. 

However, by 50 kbar, the linear relationship between frequency blue-shift and hy-

drostatic pressure is no longer appropriate for RL modes. From the first-principle simu-

lations, the failure of the RL model has been shown and a pressure-induced breakdown 

of the RL approximation which can be observed in other layered materials has been 

obtained. The admixture of RL modes and intralayer modes is continuous and removes 

the frequency-gap between interlayer and intralayer vibrations. These conclusions re-

veal that substantial anisotropy of vibrational properties of anisotropic materials may 

lose completely although the structure still maintain highly anisotropic under pressure 

(shown in Chapter 5). It also implies that the pressure will induce more fruitful effects 

on the less structural materials which will be discussed in the next few chapters. 



Chapter 7 

Anisotropic Condensed 

Molecular Systems 

7.1 Introduction 

Previous chapters mainly concentrated on anisotropic semiconductors involving the 

strong intralayer covalent bonding and the weaker interlayer interaction in quasi two-

dimensional solids. However, in addition to these solid-state materials, there exists 

a wide variety of condensed matter systems which can be found everywhere. These 

"soft" condensed molecular systems (molecular crystals, liquid crystals, polymers, and 

biological materials) are formed by cohesion of widely disparate strengths and have a 

variety of applications especially in industry. Also, corresponding to this complex co-

hesive mechanism within these materials, the effect of external fields (not only pressure 

but also temperature, electric field, etc.) will provide means to control the physical and 

chemical properties of condensed molecules in order to extend applications. Thereby, 

the study of such highly anisotropic materials is pivotal to the understanding of complex 

chemical bonding. 

The range of condensed molecular systems covered in this chapter includes quasi-

molecular solids and liquid crystals in which strong covalent forces preserve molecular 

176 



CHAPTER 7. ANISOTROPIC CONDENSED MOLECULAR SYSTEMS 	177 

identity while much weaker (see Chapter 1, van der Waals, short-ranged exponential 

and thermal-Casimir) interactions define intermolecular correlations. High pressure 

and variable temperature effects on structural, vibrational, and electronic properties 

of typical quasi-molecular crystals of Group-V metal triiodides are comprehensively 

studied using advanced theoretical and experimental approaches given in Chapter 2 

and 3. The compressional response of quasi-molecular materials will be demonstrated 

in Sec. 7.2. Furthermore, the scope is widened to include large flexible liquid crystals. 

Preliminary studies of the lattice dynamics of thermotropic liquid crystals unique fea-

tures are discussed in Sec. 7.3. Finally, a summary and a perspective of future work 

are provided in Sec 7.4. 

7.2 Molecular-Nonmolecular Crossover in Quasi-Molecular 

Solids 

Molecular crystalline materials are an interesting area of condensed matter science as 

a result of the large discrepancy between the strength of intra- and of inter-molecular 

cohesive forces. However, various types of structures can be obtained using organic 

chemical synthesis methods to manipulate cohesion. One extreme case is a crystal 

structure in which molecular shapes are retained from solution or gas phase. This re-

tention of molecular geometry provides the possibility of structural determination for 

organic molecules using X-ray diffraction. However, another extreme type of structure 

corresponds to a close proximity of molecules in the solid state. This stronger inter-

molecular coupling is due to intermolecular charge transfer and therefore new bond 

formation across molecules. 

A good example of these two extreme cases is Group-V metal triiodides in which 

As13  and Sb13 approximately keep the molecular identity while it is lost in Bib at ambi-

ent pressure. Like the layered semiconductors discussed previously, external pressure is 

expected to induce a substantial modification of structural and vibrational properties 
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Table 7.1. Observed structural parameters for As1 3 , Sb13 , and Bi13  under ambient 

conditions. The units for lattice constants a and c are in A and those for internal 
parameters are in fractional coordinates. Previous data determined from single crystal 
X-ray diffraction with Patterson projection analyses [166] are shown in parentheses for 

comparison. 

a c zx xr yi Zr 

As13 	7.208 21.415 0.2001 0.3447 0.3187 0.0772 

(7.208) (21.436) (0.1985) (0.3485) (0.3333) (0.0822) 

Sb13 	7.505 20.967 0.1812 0.3397 0.3233 0.0816 

(7.480) (20.900) (0.1820) (0.3415) (0.3395) (0.0805) 

Bib 	7.527 20.732 0.1693 0.3322 0.3146 0.0797 

(7.516) (20.718) 
( 	

0.1667) (i-.-' 0.3415) 
( 	

0.3395)  (' 	0.0805) 

of this quasi-molecular family. In this section, the crystal structure and vibrational 

spectra of Group-V metal triiodides at various compressions are extensively studied by 

means of modern experimental techniques. The possible charge transfer under pres-

sure is also probed using ab-iriitio calculations. The results which complement earlier 

high-pressure studies on quasi-two-dimensional solids are displayed here in detail. 

7.2.1 Molecular Geometry of Group-V metal Triiodides 

The ambient structure of three Group-V metal triiodides, X1 3  (X=As, Sb, Bi), is rhorn-

bohedral with space group C 2 (R3) [1661. As shown in Fig. 7.1, the atomic positional 

parameters for metal (X) and iodine (I) atoms are defined as (0,0,zx) and (XI, yi, 

zI), respectively, in an equivalent hexagonal cell containing six X1 3  formula units. Al-

though the three structures are all crystallographically equivalent, the geometry of each 

compound is predominately determined by the free atomic positional parameters. The 

structural parameters for three Group-V metal triiodides obtained from a synchrotron 

X-ray angle-dispersive powder diffraction [167] are compiled in Table 7.1. 

The crystal structure of three compounds is based on approximate hexagonal close- 

packing of the iodine atoms with the metal atoms lying in the interstices of alternate 

layers. In the case of Bib,  the value of ZB2  is close to 1/6 which suggests the bismuth 



CHAPTER 7. ANISOTROPIC CONDENSED MOLECULAR SYSTEMS 	179 

atom is at the centre of a nearly-perfect octahedron of iodines. Thus, six Bib  units in 

a hexagonal cell form three individual layers in which cations (Bi) occupy the middle of 

the "sandwich" structure and are surrounded octahedrally by six anions (I). Compar -

ing with a more close-packed layered structure of Pb1 2 , the partial occupation (2/3) of 

cations in Bib gives rise to a twofold-coordinated anions as outer atomic layers. There-

fore, the identical Bi—I bondlength of 3.1 A within an isolated layer is determined from 

the internal parameters in Tab. 7.1 and one nearest I—I separation of 4.11 A is also 

identified between adjacent layers. Further, the layer separation d,,p.defined as 2zjc 

is obtained as 3.34 A at ambient condition. 

However, the octahedral environment of the metal atom becomes progressively dis-

torted from Bib to As13  since zx deviates gradually from the perfect value with going 

up this group. This effect causes a threefold bonding configuration of metal atoms and 

the relevant intramolecular bondlength of As1 3  and Sb13  at ambient pressure is 2.56 A 

and 2.88 A , respectively. A certain amount of molecular character is thus expected 

to be retained in As1 3  and Sb13 . Like with layered structures, d36 . corresponds to the 

molecular separation in this quasi-molecular picture and can also be defined as 2zjc 

which gives the value of 3.52 A and 3.37 A for As13  and Sb13 , respectively. In addition, 

two nearest intermolecular I—I distances are observed in As1 3  (4.21 and 4.26 A ) and 

Sb13 (4.12 and 4.22 A). 

The evidence of this topological trend in X1 3  can be also stated in terms of the 

difference between the intramolecular bondlength b 1  and the nearest-intermolecular 

X—I separation b2  (defined in Fig. 7.1). In As13  and Sb13 , b 1  is obviously shorter than b2  

while the distinction between b 1  and b2  is negligible in Bib.  Indeed, the identical As—I 

bond length and intramolecular I—As—I bond angle found in both gaseous and crystal 

phases [166] implies the existence of discernible As1 3  molecules in the corresponding 

crystal. However, these gas-phase molecular dimensions are distored in Sb1 3  and totally 

disappear in BiT3. 
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(a) 	 (b) 	 (c) 

Figure 7.1. Schematic representation of the ambient structures of As1 3  (a), Sb13  (b), 

and Bib  (c). As is discussed in the text, the distances b 1  and b2  are indicated in 
(a). The molecular (or interlayer) separation dsep. is also defined. It can be seen that 
the distinction between b 1  and b2  is applicable only for As1 3  and Sb13 , for which the 
intramolecular I—X—I bond angle deviates from 90°. 

7.2.2 Molecular Vibrational Properties 

As presented in Sec. 6.2, the vibrational properties of crystals can be systemati-

cally analysed using the group theoretical correlation method. For the quasi-molecular 

Group-V metal triiodides, the correlation method can be performed through two differ-

ent approaches. The first approach is the ionic representation which treats the crystal 

Of X13  as a composition of individual ions. Thus, in the rhombohedral unit cell, two 

metal atoms (X) and six iodines located on the C3 and C1 site, respectively, build the 

X13  crystal with factor group of C32 . By making reference to the character tables of C3 

and C1  and the correlation table of C32 , the correlation diagram of this ionic picture is 

shown in Fig. 7.2. The result for the irreducible representations of the unit cell, ionic 

is then given by subtracting the acoustic vibrations rxI,  , from the contribution of acou 

cations (Fx)  and anions (F') 

pXI3  = FX+FIFXI3 
zonw 	 acoust. 
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Factor Groupi 
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Figure 7.2. Correlation diagram for X1 3  by an ionic approach 

= (Ag +Eg +Au +Eu)+3(Ag +Eg +i4u +Eu )_(i4u +Eu) 

= 4A (R) + 4E9(R) + 34IR)  + 3E" 	 (7.1) 

where A and E denotes respectively the single and double degenerate modes. R stands 

for the Raman-active mode and JR for the infrared-active one. 

However, a better representation for As1 3  and Sb13  is the molecular description 

which concedes the molecular identity of the X1 3  unit. From this consideration, two 

pyramidal X13  molecules is situated at a unit cell having C3 symmetry and the site sym-

metry of each molecule is C3. In the molecular approach, the normal modes are mainly 

due to three parts: intramolecular vibrations, molecular rotations, and molecular trans-

lations. However, the pure molecular rotation and translation are Raman-inactive in a 

purely isolated molecule. The activities of rotational and translational vibrations are 

induced by the weak intermolecular perturbations inside the crystal. Hence, within a 

pyramidal X13  molecule, X and I occupy the C3 and C, site, respectively, and the 

correlation diagram of the isolated molecule is displayed in Fig. 7.3(a). The irreducible 

representation of the intramolecular vibrationis then expressed as intr 

A 

E 

2A (R) + 2E (R) + 2A" + 2E' 	 (7.2) 
intra. 

- 
- 	9 
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Similarly, the correlation diagram of rotational and translational vibrations of the X1 3  

molecule locating at C3 site is demonstrated respectively in Fig. 7.3(b) and (c). The 

relevant irreducible representations rXI3  andcorresponding to librations and lib. 	tran 

lattice vibrations are given by 

FX13 = A' ) (lib.) + E ) (lib.) + AR)(lib.)  + EF)(lib.) 	 (7.3) 
jib. 

j:X13 	= A ) (trans.) + E R) (trans.) + AfR)(trans.) + E/R)(t rans.) (7.4) 
trans. 	 !  

Thus, the zone-centre vibrational modes of X1 3  are derived from the summation of 

fXI3 F" and 	 acou8t. and subtraction of the acoustic component fX13 
jritra. 	lib .  

IF 	- rXI3 	fXI3 rXI3 	pXI3 
' molecular - ' intra. + jib.  + L trans. - ' acoust. 

= 4A (R) + 4E (R)+  3Af + 3E," 	 (7.5) 

In addition to the theoretical considerations, the vibrational properties of three 

Group-V metal triiodides at ambient pressure have also been experimentally studied 

using low-temperature Raman scattering. The 6764 A line of Kr+  laser was employed 

as the excitation source. The laser power was estimated to be 30 mW at the powdered 

sample. A Coderg T-800 triple-grating spectrometer was used to collect spectra with 

a slit width of 400 im which gives a resolution of approximately 1.5 cm'. The 90 0  

scattering geometry was performed with a count time of 10 seconds per data point. 

The details of the experimental techniques can be found in Sec. 2.4.3. Ambient pres-

sure first-order Raman spectra collected at different temperatures are exhibited in Fig. 

7.4 for three compounds. The lowest-frequency E9 (trans.) in Sb13  and Bib cannot 

be observed clearly at this experimental resolution, whereas the other Raman modes 

can be clearly monitored. Based on previous depolarisation ratio measurements [168], 

the assignments of eight Raman peaks are given and are consistent with the above 

group-theoretical prediction. The frequencies of observed zone-centre Raman-active 
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Figure 7.3. Correlation diagram for an individual molecule X1 3  (a), molecular rota-

tions (b), and molecular translations (c). 

 

 



CHAPTER 7. ANISO TROPIC CONDENSED MOLECULAR SYSTEMS 	184 

(a) 

2K \\ \ 
Ag  e EgAg A/ g EgAg 	 I Eg  

X jjjjj 
e 	k9EgAgEg 	 Ag  Eg  

300 K 

4 AAEgAg _12 K 

I 	 - 
10 	60 	110 	lbU 	ZIU 

Wavenumber (cm) 

Figure 7.4. Raman spectra at room (300 K) and low (12K) temperature for As1 3  

(a), Sb13  (b), and Bib  (c). The assignment derived from depolarisation ratios [168] is 
shown for the corresponding peak. The signal of emission line is denoted as e. 
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Table 7.2. Observed first-order Raman frequencies of three Group-V metal triiodides 
at room and low temperature. The frequency is in a unit of cm 1 . 

Symmetry 	As13 	 Sb13 	 Bib 	Symmetry 

Species 	300 K 12 K 300K 12 K 300 K 12 K Species (BiT3 ) 

E9 (stret.) 207.5 206.9 160.6 159.1 115.5 114.7 A 9  
208.2a 2065b 161:5a 158.0' - 113.3c 

A g (stret.) 185.5 180.4 138.3 134.7 87.4 94.4 E9  
187. la 180.0' 139 .0a 132.5' - 95.0c 

A 9  (bend) 84.5 83.8 66.9 67.5 56.3 58.0 A 9  

84.6° 83.5' 73 .0a 67.0' - 58.5' 

E9  (bend) 74.1 76.6 74.2 79.8 52.8 53.7 A 9  

739° 76.51 - 81.0 b - 535C 

E9  (lib.) 62.0 64.1 60.8 62.2 34.6 34.8 E9  
- 64.0' - 62.0' - 36.7c 

A 9 (tran.) 57.3 61.2 46.0 47.6 - - E9  

56.0° 61.0' 45.5 a 47.5' - 335C 

A 9 (lib.) 39.5 43.1 38.5 40.1 22.4 22.6 A 9 (RL) 
39 .0a 43.0' 38 .0a 40.0' - 22.8c 

E9 (tran.) 34.3 37.3 - - - 
- E9 (RL) 

33.3 a 375b 33 a 35 . 5' - 12.9c 

a [170] b [168] C  [169]. 

vibrational modes for three compounds are listed in Table 7.2 in comparison with the 

previous reports by Anderson et al. [168] and Komatsu et al. [169]. 

Like the zone-centre phonons of layered semiconductors shown in Chapter 6, the 

Raman frequencies of Group-V metal triiodides can be grouped into two classes as-

sociated with internal and external vibrational modes. In the quasi-molecular sys-

tem of As13  and Sb13 , four low-frequency external vibrations are due to two molecu-

lar librations (A 9 (lib.) and E9 (lib.)) and two molecular translations (A g (trans.) and 

E9  (trans.)) which correspond, respectively, to the rigid-molecular rotations and trans-

lations. However, the internal group consists of two intramolecular bond-stretching 

(A 9 (stret.) and E9 (stret.)) and two bond-bending (A 9 (bend) and E9 (bend)) modes. 

As pointed out in group theoretical discussion, six of the eight Raman-active modes 

(the other two molecular translational modes are acoustic) have their infrared-active 

counterparts which have been observed in the far-infrared spectra [171]. Moreover, 
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the gap between the highest external (intermolecular libration) and the lowest internal 

(intramolecular bond-bending) vibrational frequencies can be used to gauge the in-

termolecular intercation. The larger inter-intramolecular frequency separation of As1 3  

(12.5 cm -1 ) 
is attributed to the weaker intermolecular cohesion and corroborates the 

conclusion of structural studies which suggest a more pronounced molecular identity 

in As!3 . 

Nevertheless, this molecular picture is not appropriate for the ionic layered Bib-  

In fact, the molecular libration is not allowed since the pyramidal molecular Bib  units 

link to each other by chemical bonds. The external modes only include one rigid-layer 

shear mode (Eg (RL)) and one compressive mode (A g (RL)), and the remaining Raman 

modes corresponds to the internal part which contains intralayer breathing, bond-

bending, and bond-stretching vibrations. The inter-intralayer frequency difference of 

11 cm indicates that the anisotropy of Bib  is close to that of GeS and GeSe. 

7.2.3 Structural Response to Hydrostatic Pressure 

Phase behaviour of Group-V metal triiodides under the influence of pressure was exten-

sively studied using high-pressure powder diffraction with an image plate area detector. 

The details of the experimental apparatus and techniques have been given in Sec. 2.3.2. 

The Merrill-Bassett DAC (see in Sec. 2.2.1) was used to provide the high pressure con-

dition which is calibrated using ruby fluorescence. In view of the molecular and layered 

character and therefore preferential cleavage of these compounds, care was taken to 

load a uniform sample powder so as to reduce complications from potentially severe 

preferred orientation effects. However, no pressure-transmitting fluid was used because 

of the moisture sensitivity of samples. The incident beam with a wavelength of 0.4447 

A collimated to a diameter of 75 jim was employed for all measurements. The distance 

between the sample and the image plate was approximately 300 mm. Exposure times 

were about 4 hours in length. As the same integration scheme used in structural mea-

surements of GeS, the PLATYPUS software (Sec. 2.3.2) was utilised to integrate the 
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Figure 7.5. The evolution of angle-dispersive X-ray diffraction profiles for As1 3  (a), 

Sb13  (b), and Bi13 (c) at different compressional conditions. The strength of pressure 
of each pattern is indicated in a unit of kbar. 

two-dimensional images here. Subsequently, Rietveld refinement was done using the 

DBWS-9006 programme (Sec. 2.3.3). 

The structural properties of As1 3 , Sb13 , and Bib  were investigated up to pressures 

of 220, 114, and 73 kbar, respectively. The evolution of the patterns under different 

pressure conditions for three compounds is shown in Fig. 7.5. It is clear from this 

figure that a pressure-induced structural phase transition was observed in Sb13 and Bib 

beyond 70 and 40 kbar, respectively, whereas the hexagonal structure of As1 3  retains at 

least up to 220 kbar. Before discussing the high-pressure modification of Sb1 3  and Bib, 

it is of interest to study the pressure effects on the molecular geometry of As1 3  and 

Sb13  . Within the pressure region below the structural transformation pressure, lattice 

constants and the nearest metal-iodine (intramolecular) bondlength b 1  as a function 

of pressure for three materials is displayed in Fig. 7.6(a) and (b), respectively. It is 

shown that both lattice constants a and c decrease monotonically with pressure for 

each material. However, an unexpected pressure response of b 1  was found in both As1 3  

and Sb13  in which b 1  first increases and then decreases with increasing pressure. The 

maximum value of b 1  for As13  and Sb13 is at about 45 and 15 kbar, respectively. 
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(a) 
	 (b) 

Figure 7.6. Pressure dependence of normalised lattice constants (a) and X—I 
bondlength (b). In (a), the structural parameters (a and c) for As13 , Sb13 , and Bib 
is represented as the symbol set of (open squares and triangles), (solid squares and 
triangles), and ('+' and respectively. The solid and dashed lines are guides to the 
eye. In (b), the bondlength b 1  for As13 , Sb13 , and Bib is denoted as an open circle, 
diamond, and hexagon, respectively. A nonlinear pressure behaviour of b 1  was found 

in both As13  and Sb13. 

The characteristic distance ratio b2 /b 1  and I—X—I bond angle as a function of 

pressure are also depicted in Fig. 7.7. It can be seen that pressure has the effect of 

preferentially compressing the intermolecular bond (b2 ) of both As13  and Sb13  until the 

distinction between inter- and intra-molecular (b 1 ) bonding is lost. Based on the struc-

tural refinement of SbI 3 , the "knee" in the curve of b2 /b 1  vs pressure corresponding to 

b with the I—X—I bond angle 89° occurs at the molecular-layered transition 

pressure of Pmole_layer 20 kbar at which Sh1 3  adopts the layered structure of BiI 3 . In 

As13 , 
this pressure-induced continuous isostructural molecular-layered transition can be 

only roughly determined as  Pmole_  lay er (A51 3) < 50 kbar because of the wide pressure 

intervals of data collection. Therefore, above Pmoie_iayer,  both AsI3  and Sb13 become 

quasi-two-dimensional layered solids characterised by more-or-less ideal octahedral co-

ordination of the metal atoms. The associated vibrational properties, influenced by 

pressure, will be discussed in Sec 7.2.4. 
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Figure 7.7. Pressure dependence of the ratio of metal-iodine distances b2 /b 1  and 
the I—X--I bond angles (inset) in Group-V metal triiodides as determined by angle-
dispersive X-ray powder diffraction and subsequent Rietveld refinement. The data for 
As13 , Sb13 , and Bib  are denoted, respectively, as squares, triangles, and diamonds 
with an error bar which is propagated from the estimated standard deviations of the 
structural refinement results. Solid lines through the experimental data are guides to 
the eye. 

High Pressure Mixed Coordination and Hysteresis 

Under further pressurisation, a high-pressure phase of Sb1 3  mixed with the hexagonal 

phase was observed at about 70 kbar. In order to elucidate the structural detail of the 

new modification of Sb1 3 , a pattern with only a single phase corresponding to 100.9 

kbar is used to refine. Based on Rietveld refinement, the calculated profile with a 

merit factor R,, p  = 6.48% (shown in Fig. 7.8(a)) corresponds to a monoclinic structure 

having space group Ch  (P2 1 /c). The unit cell of monoclinic Sb13  containing four Sb13  
formula units is characterised by the lattice parameters of a = 6.636 A , b = 9.375 A 

c = 8.165 A and 0 = 108.41° at 100.9 kbar. The detail of this monoclinic structure is 

specified by the internal positional parameters listed in Table 7.3. Fig. 7.8(b) indicates 

that the nearly-perfect octahedral sixfold bonding configuration of metal atoms within 

previous hexagonal phase is distorted by the application of compression. Indeed, three 

sets of Sb—I bondlengths inside the layer were observed as (2.90, 2.90 A ), (2.98, 2.99 
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— 1.20 
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Figure 7.8. Rietveld refinement of powder patterns of Sb13 observed at 100.9 kbar 

(a). The fit shown in (a) has been obtained using a (100) preferred orientation correc-

tion. The observed data, calculated reflection, calculated profile, and the discrepancy 
between the observation and calculation is denoted as the '+' symbol, '' tics mark, 
solid line, and dashed line, respectively. Illustration of the relevant puckered layered 
structure along different view point is shown respectively in (b) and (c) in which the 
small sphere stands for the Sb atom and the large one for the 1 atom. 

Table 7.3. Refined internal structural parameters in fractional coordinate for 5b1 3  at 

100.9 kbar 

Atom x y z 

Sb 0.0209 -0.2078 0.1113 
1 1  0.2335 0.0734 0.2065 

12 0.3689 -0.2642 0.4695 
13  -0.2017 -0.0510 0.3205 
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A ), and (3.14, 3.27 A) and two nearest I—I separations of 3.56 and 3.70 A were also 

found across adjacent layers. Hence, the combination of mixed coordinated 2 + 2 + 2 

cations and twofold coordinated anions forms two puckered layers inside a unit cell. 

For Bib,  a very similar pattern was also found when the external pressure up to 40 

kbar. Therefore, the high-pressure modification of Bib  is predicted to adopt a similar 

monoclinic crystal structure composed of puckered layers. However, additional work on 

refinement for the monoclinic Sb13 and Bib  at various pressures is needed to obtain the 

relevant equations of state and then to decide the order of this transition. In addition, 

the decompressed result in Fig. 7.5 reveals that this structural phase transition is 

reversible in Bib,  whereas the hexagonal phase of Sb1 3  cannot be restored by simply 

releasing pressure. 

7.2.4 Pressure Effects on Raman Spectra 

The vibrational properties of quasi-molecular Group-V metal triiodides under compres-

sion were investigated by DAC and Raman scattering with a backscattering geometry 

(see in Sec 2.4.3). In view of the anisotropic structural properties of all three materials 

mentioned previously, various vibrational responses to external pressure are expected. 

Again, to explore the molecular identity of X1 3 , attention is focussed on the pressure 

dependence of internal and external Raman modes in the pressure region corresponding 

to the isostructural hexagonal phase for three triiodides. As an example, the evolution 

of the room temperature Raman spectrum under compression for As1 3  up to 72 kbar 

is shown in Fig. 7.9 in which the general intensity decrease of high-pressure spectra is 

due to a pressure-induced red shift of the band gap. 

In the high-frequency internal vibrational area, the X—I symmetry stretch mode 

frequencies, A 9 (stret.), with the highest Raman intensity are displayed in Fig. 7.10 

for three quasi-molecular solids. The pressure dependence of the A g (stret.) mode for 

more ionic Bib  is unexceptional, increasing linearly with pressure in a pressure sen-

sitivity (defined in Sec. 6.5.2) of 0.003 kbar'. However, an extraordinary behaviour 
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Figure 7.9. Observed Raman spectrum of As1 3  as a function of pressure. The strength 
of pressure in a unit of kbar is indicated for the corresponding spectrum. 

of the A 9 (stret.) mode are found in both As1 3  and Sb13 . The A 9 (stret.) mode fre-

quency initially decreases with pressure suggesting that the metal-iodine bond initially 

weakens under compression. This mode softening can also be accounted for by the 

non-monotonic behaviour of the bondlength b 1  under pressure in Fig. 7.6 which shows 

that the intramolecular bond of As1 3  and Sb13  is extended slightly during the initial 

application of pressure. Nevertheless, this trend of A g (stret.) is arrested at 45 and 

15 kbar for As13  and Sb13, respectively, after which pressure derivatives of the normal 

sign are observed. The pressure of the "turnover" of the intramolecular A 9 (stret.) 

mode corresponds to the "knee" of b2 /b 1  curves found in Fig. 7.7 which indicates that 

the structural environment of the metal (As and Sb) becomes progressively more sym-

metric. Hence, the non-linear pressure dependence of the A 9 (stret.) mode in two more 

molecule-like compounds suggests that pressure leads to a gradual suppression of cova-

lent bonding between the metal and its nearest three iodines in favour of ionic bonding 

between a central cation surrounded by an increasingly symmetric cage of six anions 

- a progressive loss of molecular character. A conclusive evidence of this pressure-

induced charge redistribution can be ascertained from ab-initio electronic calculations 
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Figure 7.10. Frequencies of the intramolecular X—I symmetry stretching A 9 (stret.) 
mode versus pressure in Group-V metal triiodides. It is clear that the frequency re-
sponse is non-monotonic for both As1 3  (squares) and Sb1 3  (triangles). Only for Bib 
(diamonds) does this mode shift to higher frequencies immediately upon pressure in-
crease. The solid lines through experimental data are guides to the eye. 

which will be given in Sec. 7.2.5. 

We now consider the low-frequency external vibrational region where a more com-

plicated pressure effect is observed in the intermolecular mode regime. As shown in 

Fig. 7.9, the reversal of relative intensities for intermolecular vibrations under pressure, 

also found in Sb13, can be recognised as a character of Fermi resonance [172]. Although 

this subtle phenomenon cannot be studied by first-order Raman data presented here, 

it is still possible to trace specific modes at different compressional conditions to elu-

cidate the pressure influence on lattice vibrations. The external lattice translational 

A 9 (trans.) mode as a function of pressure is shown in Fig. 7.11. Like the internal 

A g (stret.) mode, the A g (trans.) of Bib corresponding to a rigid-layer compressive vi-

bration shows a normal linear pressure dependence with a higher pressure sensitivity 

of 0.006 kbar'. 

However, an anomalous pressure dependence of the A 9  (trans.) mode was found in 

As13  in which the frequency increases initially from ambient pressure, then decreases 
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Figure 7.11. Pressure dependence of intermolecular translational A 9 (trans.) mode 

for three X1 3 . The observed data of As1 3 , Sb13, and Bib  are shown as open squares, 
triangles, and diamonds, respectively. The interpretation of anomalous behaviour of 
A 9 (trans.) mode for As13  and Sb13  can be found in text. 

at about 20 kbar at which the mixing of two intermolecular A 9  occurs, and, eventually, 

shifts increasely again while the pressure beyonds 45 kbar. This unusual behaviour can 

be interpreted by a close look at the structure. As given in Sec. 7.2.1, the molecular 

identity is retained in the ambient structure of As1 3 . In fact, the molecular separation 

of 3.08 A is smaller than the As—I nonbonded distance b2  (3.56 A). It is implied 

that the intermolecular interaction is fairly weak and can be ignored in lattice vibra- 

tions. Thus, a simple spring-pendulum approximation is appropriate for this nearly 

ideal rigid-molecule vibration A 9 (trans) under low compressional condition. However, 

at a modest pressure such as 28 kbar, b2  in As13  becomes smaller (2.95 A ) and then 

the interaction between two pyramidal molecules plays a damping role in this spring- 

pendulum model. The vibrational frequency is therefore reduced by this constraint 

although itsd,,p.is shorter (2.99 A ). The stronger intermolecular interaction at higher 

pressure introduces a more severe damping effect which induces a mode softening. 

While the pressure up to 45 kbar, the molecular identity of As1 3  is lost and a maxi- 

mum damping factor is reached. At this point, the molecular pendulum of this simple 
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spring-pendulum model is replaced by a rigid layer and this rigid-molecule mode is 

transformed into a rigid-layer mode. Finally, the A g (tran.) mode is found to increase 

linearly with pressure at 0.15 cm -1  per kbar. 

In the intermediate molecular-like system of Sb1 3 , the b2  (3.25 A) and dsep. (3.44 A) 

are comparable at ambient pressure and the existence of A g (trans.)-Ag (lib.) admixture 

implies that the molecular damping effect described above is already involved in the 

molecular vibration. Therefore, the application of external pressure induces initially 

softening of the A 9 (trans.) mode. Similar to As13 , a rigid-layer mode is gradually 

obtained from the breakdown of the rigid-molecule approximation while the pressure is 

higher than about 15 kbar relating to the molecule-layer transformation of Sb1 3 . Under 

higher pressure, a usual pressure dependence of the lattice vibrational A 9  (trans.) mode 

is thus expected and observed just like that found in the quasi-two-dimensional layered 

compound Bi13. - 

7.2.5 Pressure-Induced Electron Transfer 

In addition to the previous geometrical descriptions, the structural trend and lattice 

dynamics of quasi-molecular crystals can be discussed in terms of bonding type as well. 

The valence electronic structure of Group-V metals is ns2 np3 . Two extreme forms 

of bonding to construct the crystal structure of triiodides can therefore be envisaged: 

ionic and covalent. In the ionic extreme, the loss of three p-electrons leave X3+  cations 

with non-bonding s-orbitals, each surrounded octahedrally by six 1 anions. This 

gives rise to a layered solid in which the value of b2 /b 1  is approximately 1 and the 

I-X-I bond angle is about 900,  implying that no isolated molecules exist. On the 

other hand, the bonding feature in the covalent extreme is complete sp3  hybridisation, 

with three covalent metal-iodine bonds and one lone pair on each metal atom. This 

bonding type corresponds to a solid containing distinct X1 3  molecules in which b2 /b 1  > 

1 with bond angle > 900 . From this view point, the ionic picture appears to be 

suitable for Bi1 3  although a minor rehybridisation process has been found in this layered 
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Table 7.4. 	Calculated structural parameters of As1 3  in a hexagonal cell at differ- 
ent pressures. 	Lattice constants (a and c) are in the unit of A whereas internal free 
parameters for As and I are in fraction coordinate. 

Pressure 	a 	c 	zA 3 	xr Yi 	Z 

Ambient 	7.032 	20.223 	0.1700 	0.3357 0.3158 	0.086 
50 kbar 	6.615 	18.200 	0.1674 	0.3311 0.3387 	0.079 
100 kbar 	6.418 	17.668 	0.1676 	0.3338 0.3451 	0.077 

semiconductor [173, 174], the covalent picture is more appropriate for As1 3 , with Sb13  

being an intermediate case. Further, the perspective of chemical bonding type also 

provides a means to interpret the pressure-induced mode softening observed in both 

As13  and Sb13 . The mechanism of this unique phenomenon can be regarded as a process 

of charge redistribution which depletes electron density from the intramolecular bond 

b 1 , thereby reducing its strength. 

In order to explore the aforementioned intermolecular charge transfer under pres-

sure, the studies of electronic properties of the most molecule-like As1 3  were performed 

by means of ab-initio pseudopotential calculations. Priori to calculating the total va-

lence charge density, the structural detail has to be obtained from first-principle total 

energy calculations. As mentioned in Sec. 3.2, the calculation parameter of energy 

cutoff E0jj = 320 eV and Pulay coefficient i9E1a1nE0jj = —0.618 were used to 

implement the structural simulations. The calculated structural parameters of As1 3  

with respect to three different pressures are listed in Table 7.4 and show quite good 

descriptions of structural behaviour despite the volume underestimate of LDA. 

The relevant calculated total valence charge density of As1 3  at different pressures 

is illustrated in Fig. 7.12. At ambient pressure, Fig. 7.12 (a) shows the majority of 

electron population distributes around the bonding As and I atoms and gives a .sp3  

hybridised feature. However, the underestimate of calculated lattice constants causes 

a shorter molecular separation and gives rise to a minor charge distribution within the 

nonbonding area between metal and iodines. By applying the hydrostatic pressure up 
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to 50 kbar, the valence electrons as shown in Fig. 7.12 (b), gradually migrate into the 

nonbonding region. This bonding feature transformation is substantially enhanced by 

more compressional perturbation and then a electronic configuration of As atoms with 

nearly sixfold symmetry is formed in the calculated charge density corresponding to 

100 kbar (Fig. 7.12(c)). Consequently, from the structural, vibrational, and electronic 

data, the mechanism of the pressure-induced molecular-non molecular transition of the 

quasi-molecular solids can be therefore recognised as a continuous isostructural trans-

formation corresponding to a purely electronic deformation without associated crys-

tallographic symmetry breaking. Moreover, this conclusion indicates that anisotropic 

materials exhibit a variety of novel presure-induced behaviour. 

7.3 Vibrational Properties of Liquid Crystals 

Form the point view of structure, liquid crystals exhibit an intermediate case between 

two extremes of homogeneous isotropic liquids and crystalline solids. Like normal 

isotropic fluids, the liquid crystals show short-range order in most directions and a 

few degree of long-range orientational or translational order. Thus, liquid crystals 

characterised by long-range orientational order are highly anisotropic systems. 

Conventionally, the anisotropic molecular units are simplified as rigid rods or el-

lipsoids, ie. molecular detail is ignored. Three basic types of liquid crystals can be 

classified as nematic, cholesteric, and smectic types by different symmetry elements. 

In Fig. 7.13(a), uniaxial nematics are specified by a molecular arrangement predom-

inately aligned along one special direction, but the molecular centres of gravity have 

no long-range order. This special orientation of molecular configuration undergoes a 

helical distorsion in cholesterics (shown in Fig. 7.13(b)). Further, both translational 

and orientational order in the smectic phase give rise to a layered structure. However, 

various alignments of molecules within layers correspond to different types of smectics. 

A simple example of smectic phase, smectic-A, is depicted in Fig. 7.13 (c). 
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Figure 7.13. The arrangement of molecules for three mesophases of liquid crystals: 
nematic (a), cholesteric (b), and smectic (c). 

Related to the various structures of liquid crystals, vibrational properties of the 

nematogen and smectogen are comprehensively studied in this section by a combina-

tion of high-resolution Raman spectroscopy and ab-initio calculations. In such flexible 

molecular systems, it is possible that the vibrational frequency of some internal modes 

may be so low as to extend into the external regime. Therefore, in order to determine 

the possibility of the coupling between internal and external modes and to elucidate the 

behaviour of vibrational modes near the mesophase transition, the frequency regime 

of intra- and inter-molecular vibrations of this sufficiently flexible molecular systems is 

monitored individually with the help of first principles computer simulations. Further, 

the exploration of a essential vary-low-frequency dynamics of different liquid crystals 

phases is another main objective of this section. 

7.3.1 Structural Flexibility of The Liquid-Crystal Homologous Series 

of The Cyanobiphenyls (nCB) 

The structural requirement for generating the mesophases of liquid crystals is that the 

object should have a highly anisotropic molecular geometry. Normally, the candidate 

molecules are small elongated molecules, discoid organic molecules, long helical rods 
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Figure 7.14. Schematic presentation and a simplified expression of a nematic 5CB 
molecule. The nitrogen, carbon, and hydrogen is denoted as the large, middle, and 
small sphere, respectively 

in a liquid substrate, rigid polymers, or even complex amphiphilic compounds [175]. 

However, in view of the major commercial requirements of the chemical and photo-

chemical stability, the typical mesogens - cyanobiphenyls (nCB), which is composed 

of two pheyni (C61 16) rings (without any bridge group) and two simple end groups of 

CN and alkyl chains, are widely used to synthesise liquid crystal (LC) devices [176]. 

In the whole cyanobiphenyl family, the 4'-pentyl-4-cyanobiphenyl (5CB) containing a 

short alkyl chain of C 5 H 11  is the lowest weight member to exhibit a nematic phase. 

Recent deuterium NMR studies [177] and first-principle simulations [178] indicated that 

a stable nematic 5GB molecule is characterised by a torsion angle between two phenyl 

rings ('-' 31°) and a nearly perpendicular connection between the phenyl ring and the 

alkyl end. An illustration of the isolated 5CB is shown in Fig. 7.14. Meanwhile, as the 

lightest member of cyanobiphenyl series which was found in a smectic phase, 4'-octyl-4-

cyanobiphenyl (8CB) differs from which of 5CB only in that it contains an 8-membered 

alkyl tail. 
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Figure 7.15. Pressure-temperature phase diagram for (a) 5GB [179] and (b) 8CB 
[181]. The isotropic, nematic, smectic-A, and crystal phase is denoted as I, N, SA, and 
C, respectively. 

According to the long and narrow molecular character, the flexibility of 5CB and 

8CB causes an exotic phase behaviour under external fields. The phase diagram of 

5GB and 8CB as determined from measurements of refractive indices [179], dielectric 

constants [180], and transmitted light intensity [181] is summarised in Fig. 7.15 (a) 

and (b), respectively. Many studies of critical phenomena and order parameter of 5CB 

and 8GB have also been reported [182, 183, 184, 185, 186]. However, as the typical 

thermotropic liquid crystals, all liquid crystal phases of 5GB and 8GB can be obtained 

by varying the external temperature. Under ambient pressure condition, the isotropic-

nematic and nematic-crystal transition temperature of 5CB was found respectively at 

308 K and 295 K (as shown in Fig. 7.15(a)), and two solid polymorphs with a plate-

like and a fine-needle-like crystal structure were observed at 253 K [187]. On the other 

hand, previous observations [186] suggest the isotropic- nem atic, nematic-smectic, and 

smectic-crystal phase transition of 8GB occurs at 313 K, 307 K, and 294K, respectively. 
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7.3.2 Intramolecular Vibrations in Liquid Crystals 

At ambient pressure, the lattice dynamics of thermotropic 5CB and 8CB in various 

phases referred to different temperatures was experimentally investigated using a high-

resolution Raman spectroscopy. Concerning about a wide spectral range including the 

extent very close to the laser line, the extremely good stray light rejection is demanded 

and an extra high-resolution Raman spectrometer is needed to discriminate the pos-

sible mode mixture. According to the fluidity behaviour at ambient temperature, the 

samples of 5CB (or 8CB) were contained in a sealed capillary which affixed to a copper 

backing plate for thermal contact. To perform Raman scattering, the 6471 A line of a 

Kr+ laser was used as the exciting light. The laser power at the sample was estimated 

to be 80 mW. A Coderg T-800 triple-grating spectrometer which provides the high 

resolution from 1/3 to 1.5 cm -1  was employed to collect spectra. The crucial param-

eter of temperature was controlled by a CTI Cryogenics closed-cycle cryostat and a 

Lakeshore Cryogenics temperature controller for which temperature control was better 

than 0.1 K. Spectra were collected in 90° scattering geometry (see Fig. 2.4.3) using a 

count-time of 1 second per data point. 

In order to elucidate the detail of molecular vibrations, the theoretical calculations 

of the prototypical nematogen 5CB were implemented using first principles computer 

simulations [188, 189]. Based on the technique in Sec. 3.2, ab-initio density functional 

theory using non-local pseudopotentials and the generalised-gradient approximation 

to exchange and correlation was employed to study the vibrational properties of the 

isolated 5CB after confident tests on several small molecules (C 2 114  and C6 116) [190]. 

This parameter-free plane wave method for 5CB was carried out on a parallel computer 

to minimise the electronic energy. To build the dynamical matrix for the 38-atom 

molecule having no symmetry, 114 displacements are needed to implement. Thus, 108 

normal mods plus 3 molecular translations and 3 molecular rotations are generated 

from the matrix diagonalisation. 
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Figure 7.16. Raman spectrum of isotropic 5CB and 8CB within the frequency regime 

from 200 to 2500 cm — '. The vertical tick marks show the calculated positions of the 
intramolecular frequency modes for the isolated 5CB molecule. 

In view of the structural resemblance of molecular 5CB and 8CB, the overall spec-

trum of the isotropic phase for these two homologous liquid crystals are expected to 

be analogous. Excluding the featureless region (0 to 200 cm'), the spectrum re-

lated to isotropic 5CB and 8CB, respectively, is presented in Fig. 7.16 which is mainly 

contributed from the intramolecular vibrations. Like the Raman spectra of complex or-

ganic materials [191], the spectral profile of liquid crystals in high-frequency intramolec-

ular vibrational region is predominated by characteristic frequencies which are strongly 

related to specific structural components. Without any symmetry inside the isolated 

molecule of 5CB (or 8CB), all 108 (135 in 8CB) normal modes are both infrared and 

Raman active. Although the existence of considerable mixing of large number of possi-

ble vibrations in this large molecular system will obscure the assignment of each Raman 

mode, the vibrational detail for the prominent signals still can be identified from the 

calculated frequencies and eigenvectors indicated in Fig. 7.16. For example, the calcu-

lated eigenvector for the mode isolated near 2200 cm -1  shows a bond-stretching vibra-

tions of the CN end and a distortion of two pheynl groups (benzene rings) is assigned 

to the mode situated at 1177 cm — '. A comparison between theoretical predictions 
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Table 7.5. Calculated and observed Raman mode frequencies of specific intramolecular 
vibrations in 5CB and 8CB. Experimental temperature for the isotropic 5CB and 8CB 
is at 315 K and 320 K, respectively. The frequency is in the unit of cm - '. Mode 

descriptions are determined by calculated eigenvectors. 

5CB 	8CB 
Mode description 	CaIc. Expt. Expt. 

C 	N stretch 2255 2223 2223 
C 	C stretch 1608 1604 1607 

C - H deformation 1302 1284 1284 
(in the alkyl tail) 

C6H6 bending 1200 1184 1184 
(mixing with alkyl tail accordions) 

C6H6  bending 1189 1177 1177 

and observations for some particular intramolecular modes determined by calculated 

eigenvectors is made and listed in Table 7.5. 

Further, the intramolecular vibrations as a function of temperature through dif-

ferent phases of 5CB and 8CB are examined and displayed in Fig. 7.17. For 5CB, 

most Raman signals remain the same frequencies with a slight band sharpening at 

the isotropic-nematic transition during a cooling procedure. Similar behaviour is also 

found in 8CB at isotropic-nematic and nematic-smectic transition. This can be at-

tributed to the effects of molecular conformation which suffers more restrain in the 

more orderly nematic and smectic phase. While the temperature is decreased into the 

crystal regime, the conformation-constrained effect is more severe and gives rise to a 

splitting of several broad peaks going with a small frequency shift in both homologs. 

In addition, new Raman signals were detected in the range of 200 to 500 cm -1  and is 

likely due to the intermolecular dipole-dipole interaction in the crystal structure. 



CHAPTER 7. ANISOTROPIC CONDENSED MOLECULAR SYSTEMS 
	

205 

(a) 
	

(b) 

[(315K) 	
1(320 K 

2.. 

M (315 1 

N(300 
SA 

(310 K) 

E 
	

E 
C(12 
	

C (12 K 

200 700 1200 1700 2200 	200 700 1200 1700 2200 
Wavenumber (cm') 	 Wavenumber (cm') 

Figure 7.17. Tracing of observed Raman spectra of 5CB (a) and 8CB (b) within 
the frequency region of 200 to 2500 cm - '. Temperature and corresponding phase is 
indicated for each spectrum. 

7.3.3 Low-Frequency Dynamics of Nematic and Smectic Liquid Crys-

tals 

The nature of low-frequency (0 to 200 cm') dynamics of the nematogen 5CB is ex-

plored using Raman scattering (with a higher resolution of 1 cm - ') across mesomorphic 

phases at different temperatures. By cooling nematic 5CB from 300 K, three distinct 

solid phases having discriminative low-frequency features can be observed from differ-

ent cooling rates. Fig. 7.18(a) shows that extremely rapid cooling procedures produce 

a glassy solid (G) which is characterised by a flat low-frequency region. Slower cooling 

results in the formation of two distinct crystalline polymorphs indicated as Cm and 

C in Fig. 7.18 (b) and (c), respectively, at 270 K. These two distinct spectra may be 

related to previously observed solid polymorphs of 5CB [187]. On the other hand, the 

slow heating processes for two solid modifications of 5CB were also performed over the 

temperature range of 12 K to 315 K. The result of observed low-frequency spectrum 

shows a gradually broadening of spectral bands while approaching the crystal-nematic 

transition and exhibits a featureless low-frequency signal in the nematic domain. This 
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Figure 7.18. Low frequency Raman spectrum of (a) glassy solid (G), (b) metastable 

solid (Cm), and (c) stable solid (C) which were obtained by cooling nematic 5CB from 

300 K in different cooling rates. Calculated eigenvalues for low frequency intramolecular 
modes are also shown as tick marks in (c) for comparison. 

spectral behaviour has also been found in other type of liquid crystals [192]. In addi-

tion, it suggests hysteresis in phase behaviour which corresponds to the occurrence of 

the crystal-nematic transition at 296 K. Moreover, during the warming up procedure, 

the rearrangement of the crystalline Cm structure in longer time scale gives rise to a 

structural transformation and favours to another solid phase C. Fig. 7.19 indicates that 

this complicated thermal perturbed solid structure transition of 5CB takes place at 270 

K. Hence, the crystal structure of Cm is recognised as a metastable phase relative to 

the stable C solid. However, more convincing evidence of this solid polymorphism in 

5CB can be obtained from X-ray diffraction measurements. 

In order to verify the pretransition effect near crystal-nematic transition which was 

found initially in the liquid crystal of p-Azoxyanisole (FAA) by Bulkin et al. [193] 

who asserted this effect corresponds to a soft-mode-like behaviour, the temperature 

dependence of the lowest mode of 5CB in the solid C phase is concerned. Considering 

the mean-field theory of phase transition [194], the square of the frequency as a function 
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Figure 7.19. Evolution of low-frequency Raman spectrum of 5CB for the transition 
between two solid polymorphs Cm -+ C. The temperature and relaxation time for each 
spectrum is indicated respectively. 

of temperature is shown in Fig. 7.20 and it reveals a mode softening with increasing 

temperature. However, the crystal-nematic transition of 5CB occurs at a temperature 

much lower than that at which this low-frequency mode is expected to drop zero. There 

is no evidence from the observed data of 5CB that the mode softening is linked to the 

crystal-nematic melting transition as in FAA. 

In view of the calculated low frequency modes for the isolated 5CB as determined by 

diagonalisation of dynamical matrix, Fig. 7.18 (c) manifests the calculated intramolec-

ular mode frequencies overlap the observed low-frequency spectrum over the region 

50 to 200 cm- '. Indeed, the calculated eigenvectors of the modes below 100 cm -1  

show two types of displacement patterns: a long-wavelength transverse vibration along 

the length of molecule (Fig. 7.21(a))and a molecular conformation with the wagging 

motion of the alkyl tail (Fig. 7.21(b)). It is concluded that the low frequency Raman 

spectrum of solid 5CB is composed of mixed inter- and intramolecular vibrations in this 

material. However, the observed modes with a frequency below 50 cm -1  are expected 
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Figure 7.20. Temperature dependence of the square of the lowest frequency mode for 
the C phase of 5CB. The observed data are denoted as squares and the solid line is a 
guide of the eye. The dashed line is a linear extrapolation of experimental results. It 
is clear that the mode frequency is nonzero at melting transition. 

to have progressively well-defined lattice vibrational character since no calculated in-

tramolecular modes extend into this frequency regime. Again, the detail assignment of 

each intermolecular mode can only be obtained from the structural information of the 

5CB crystal at low temperature. 

Comparing to 5CB, the more significant spectral feature of Octylcyanobiphenyl 

(8CB) related to the specific smectic-A phase mentioned previously was found. Ac-

cording to the more weaker coupling between smectic layers, the corresponding modes 

with much lower frequencies than of nematogens is expected and an extreme high-

resolution data collection (1/3 cm') is therefore necessary. The observed Raman 

spectra of 8CB during a slow cooling process within even lower frequency regime (3 to 

20 cm -1 ) 
is shown in Fig. 7.22 (a) at several temperatures. Similar to measurements of 

5CB, the spectra recorded in the isotropic and nematic phases of 8CB are also feature-

less. Continued cooling to the smectic-A phase however, induces a qualitative change 

in the low-frequency spectrum. Actually, a pronounced broad feature near 9 cm -1  is 

developed in the smectic-A territory. In order to enhance the signal, the overlap of the 
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Figure 7.21. Schematic of calculated eigenvectors for two types of low frequency 
intramolecular modes in an isolated 5CB molecule. 

Rayleigh wing was subtracted from the broad band and the result is depicted in Fig. 

7.22 (b). This band has a wide width (about 4 cm) and vanishes discontinuously at 

the smectic-A to crystal transition in which the crystal profile of one solid polymorph of 

8CB is characterised by a appearance of modes above 20 cm - '. Therefore, this feature 

can be attributed to a characteristic of the smectic phase and is probably related to 

the intermolecular cohesion across adjacent layers. Likewise, a similar situation has 

been observed in another smectic-A compound diethylazoxybenzoate (DEAB) [195] in 

which a quasi-discontinuous thermal behaviour of a low-frequency (about 14 cm') was 

interpreted as arising from the intermolecular dipole-dipole coupling between adjacent 

layers. 
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Figure 7.22. Evolution of spectra for different phases at various temperatures is 
displayed in (a) with an inset of a larger view of the spectrum for the crystalline phase 
at 12 K. In (b), the broad band of the smectic-A phase (dashed-dotted line) is obtained 
by subtracting the Rayleight wing (dashed line) from the observed original Raman 
spectrum (solid line). 

7.4 Conclusions and Future Directions 

In this chapter, a pressure-induced loss of molecular character in quasi-molecular 

Group-V metal triiodides has been identified by both structural and vibrational mea-

surements. With the isostructural transition from a molecular solid to a quasi-two-

dimensional layered crystal, the loss of molecular identity is attributed to the mech-

anism of a gradual electron transfer from intramolecular to intermolecular bonds and 

suppression of sp3  hybridisation. A distorted puckered layered modification has also 

been found at modest pressure and which is expected to an intermediate phase before 

transforming into a three-dimensional network solid under further compression. To 

probe the subtle electronic behaviour associated with this pressure-induced topological 

structural transition, both additional high-pressure photoluminescence and first prin-

ciple simulations give the ability to prove fruitful in further exploring bonding changes 

in these materials. 

Another exciting result came from the studies for low-frequency dynamics of liquid 
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crystals. It is found that the well-defined internal and external vibrational frequency 

regimes is blurred in the substantially flexible nematogen 5CB. This strong mixing of 

inter- and intramolecular vibrational modes is unusual for most molecular solids in 

which the restoring forces related to lattice modes are well separated from internal 

vibrations. It is expected that this unique behaviour is particularly common among 

highly anisotropic large molecular systems. This similarity between inter- and in-

tramolecular force constants implies that molecule shape is strongly coupled to local 

fields. In addition, a distinct intermolecular mode of smectic 8CB is observed at very 

low frequency over a temperature range in which no lattice modes are seen. It would be 

interesting to determine whether atomistic molecular dynamics or monte-carlo simula-

tions of liquid crystals predict that a mode of this type is a generic feature of smectic 

phases. Also, more insight into the filed of liquid crystals can be provided from Ra-

man spectroscopy under high pressure, or electric, or magnetic field. Furthermore, the 

detail study of dynamical behaviour in mesophases (such as reorientational dynamics) 

can be obtained using a new technique of the differential Raman spectroscopy [196] 

which provide the orientational autocorrelation functions of uniaxial liquid crystals. 

Based on the rich pressure effects in anisotropic materials concerned in this thesis, 

it is fascinating to extend the high-pressure studies into more complicated condensed 

matter and biomaterials. Indeed, understanding the evolution of physical and chemical 

properties of condensed phases under compression remains one of the most challeng-

ing in modern condensed matter physics and material science. Particularly, after the 

successful microscopic description of anisotropic materials within this article, it illus-

trates the vigorous skills combined with recently developed high-pressure techniques, 

first-principle calculations, and statistical molecular dynamics provides a more powerful 

tool to probe the most potentially fruitful issues like the static and dynamic properties 

of complex condensed matters of biological materials. 
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