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L ay S u m m a r y

As robots and autonomous agents are to assist people with more tasks in vari-

ous domains they need the ability to quickly gain contextual awareness in unseen

environments and learn new tasks. Currently, autonomous agents tend to utilise data

driven learning methods, such as neural networks, which do not allow them to make

generalisations and transfer their knowledge to new tasks and environments.

In this thesis we study how to learn task related abstractions and improve the gen-

eralisation capabilities of autonomous agents. In particular, we propose to decompose

the process of executing a task into two stages: i) perceiving important information

from the world and ii) making decisions in order to take an action. We posit that

neural networks are suitable for the first stage and computer programs are the most

appropriate choice for the second stage.

In the first part of the dissertation, we address the problem of learning to extract

meaningful patterns, or symbols, from sensory data assuming that the agent has

access to a program for decision making. We first describe a framework applicable to

collaborative human-robot interaction setups and then introduce a general algorithm

for learning symbols from sensory data which we prove to work with any program

for decision making. Our experiments show that programs are not only a suitable tool

for representing decision making processes, but also provide autonomous agent with

the capabilities to learn useful task related symbols.

In the second part of the thesis, we address the complement problem of learning

useful programs assuming that the agent can recognise meaningful patterns from

sensory signals. We introduce a novel approach for efficiently learning programs

and demonstrate how they can be used to interpret black-box models such as neural

networks as well as to discover important task abstractions.
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A b s t r a c t

As robots and autonomous agents are to assist people with more tasks in various

domains they need the ability to quickly gain contextual awareness in unseen envir-

onments and learn new tasks. Current state of the art methods rely predominantly

on statistical learning techniques which tend to overfit to sensory signals and often

fail to extract structured task related abstractions. The obtained environment and task

models are typically represented as black box objects that cannot be easily updated or

inspected and provide limited generalisation capabilities.

We address the aforementioned shortcomings of current methods by explicitly

studying the problem of learning structured task related abstractions. In particular, we

are interested in extracting symbolic representations of the environment from sensory

signals and encoding the task to be executed as a computer program. We consider the

standard problem of learning to solve a task by mapping sensory signals to actions

and propose the decomposition of such a mapping into two stages: i) perceiving

symbols from sensory data and ii) using a program to manipulate those symbols in

order to make decisions. This thesis studies the bidirectional interactions between the

agent’s capabilities to perceive symbols and the programs it can execute in order to

solve a task.

In the first part of the thesis we demonstrate that access to a programmatic

description of the task provides a strong inductive bias which facilitates the learning

of structured task related representations of the environment. In order to do so, we first

consider a collaborative human-robot interaction setup and propose a framework for

Grounding and Learning Instances through Demonstration and Eye tracking (GLIDE)

which enables robots to learn symbolic representations of the environment from few

demonstrations. In order to relax the constraints on the task encoding program which
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GLIDE assumes, we introduce the perceptor gradients algorithm and prove that it can

be applied with any task encoding program.

In the second part of the thesis we investigate the complement problem of in-

ducing task encoding programs assuming that a symbolic representations of the

environment is available. Therefore, we propose the π-machine – a novel program

induction framework which combines standard enumerative search techniques with a

stochastic gradient descent optimiser in order to obtain an efficient program synthes-

iser. We show that the induction of task encoding programs is applicable to various

problems such as learning physics laws, inspecting neural networks and learning in

human-robot interaction setups.
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“I am going to state the law of gravitation in three different ways, all of which are

exactly equivalent, but also completely different once we try to reason with them.”

— Richard Feynman
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1

I n t r o d u c t i o n

1.1 P r e f a c e

Autonomous agents have gained unprecedented capabilities with the adoption of

data driven learning methods. On one hand, virtual autonomous agents have achieved

impressive accomplishments such as defeating the world masters in games with vast

search spaces amongst which are chess [34] and Go [194]. On the other hand, while

embodied agents have certainly gained from data driven learning methods [5, 132,

133], they still struggle with even simple tasks such as going through a door or turning

a valve shut [15]. Long awaited aspirations such as building robotic assistants and

co-workers or colonising other planets with cohorts of autonomous robots are even

further away from becoming a reality.

So where does this disparity in capabilities arise from? It is somewhat counter-

intuitive that autonomous agents outperform people in mentally challenging tasks,

while everyday mundane tasks turn out to be beyond their current capabilities. In

order to investigate the matter, let us consider two extremely different tasks. The

first one is playing Go on a computer against a human and the other one is assisting

a human to put together a mechanical assembly in a collaborative Human-Robot

Interaction (HRI) setup. The two tasks, which are depicted in Fig. 1, differ significantly

from each other in multiple aspects, some of which more subtle than others.

First of all, playing computer Go requires just a computer program, while assisting

a human requires building and controlling a physical robot. We are not interested in

comparing virtual versus physical systems, so let us assume that we have access to a

high quality hardware setup which enables us to process sensory signals and provide

1
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(a) Computer Go. Adapted from [41]. (b) Collaborative assembly. Adapted from [199].

Figure 1: Example tasks.

motion commands through a computer program as well. Now the two problems are

equivalent to writing a computer program for each of the tasks.

Secondly, each agent should be able to sense the environment in order to make

any decisions. Sensing in computer Go is simply reading the state of the board from

memory. The information which the agent obtains from doing so encodes which

positions on the board have stones on them or not. In just describing what the agent

can sense we have already used concepts such as board positions and stones that are

important for the game. On the other hand, in the HRI task we can access only raw

data from the sensors, e. g. cameras, in the hardware setup. Concepts important for the

completion of the task, such as tool position and assembly orientation, cannot be sensed

directly in less structured environments, especially when people operate in the same

environment. Therefore, the HRI task requires great levels of contextual awareness in

order to perceive important concepts related to the task.

Once all the necessary information from the environment has been extracted

through sensing and perception, each agent should be able to make decisions about

what actions to execute. Decision making is usually a computationally heavy process,

especially in domains such as Go, where the size of the state space is so large. In

contrast, once the symbols relevant to the task are perceived in the HRI setup, it is

simply a matter of planning in a relatively small search space in order to complete

the task. Therefore, decision making requires much greater reasoning capabilities

for playing Go than for executng a physical task in a collaborative human-robot

interaction setup.
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Even though both tasks are non-trivial, the complexity emerges at different levels

- Go poses a hard searching problem, while collaborative human robot interaction

requires the ability to acquire contextual awareness. Given that autonomous agents

can play Go better than the best human experts, we can assert that one of the main

challenges for developing more capable autonomous agents is to enable them to learn

task related concepts more efficiently from raw sensory signals. In general, those

concepts can represent objects, relations or any other entity of interest and we refer to

them as symbols. Consequently, if an agent can recognise task related symbols in the

environment, then a task can be viewed as a symbol manipulation process resulting

in a desired configuration. Furthermore, given that the set of necessary task related

symbols can be perceived, a program can represent any task as it is the most powerful

apparatus for manipulating symbols. In this dissertation we study how symbolic

representations and programs can be utilised by autonomous agents to provide them

with the capabilities of learning structured task related abstractions.

Symbols and programs provide powerful abstractions that can potentially express

any task and enabling the agent to extract knowledge transferable to both new

environments and new tasks. In order to demonstrate the sort of abstractions resulting

from the use of symbols and programs to describe a task let us consider the simple

physical task “screw in the bolt”.

1.1.1 Programs as Task Abstractions

Usually, when we consider the execution of such a task, we tend to think about

planning and determining a sequence of primitive actions which solve the task when

executed. A plan is simply a sequence of primitive actions that can be executed one

after another, which would ideally solve the task. However, the plans for solving even

such a simple task can be quite different from one another if different initial states

of the environment are considered. So it must be the case that plain sequences of

actions are not sufficient to truly capture a task and a more general, state invariant

representation is needed.
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In this thesis, we take the view that computer programs offer sufficiently powerful

mechanisms of abstraction for representing tasks in general. Ultimately, once executed,

a program defines a sequence of instructions. However, through composition, branch-

ing and looping, programs can capture any underlying task structure at different

abstraction levels of various complexity, depending on the available symbols.

If we describe the task of interest, namely “screw in the bolt”, as a program that

takes as an input the current pose of a bolt and generates a sequence of actions

that screw in the bolt then we can execute the same program in any environment,

provided that the required input symbols are available. Each execution might produce

a different sequence of actions, but achieving the same desired final state. Therefore,

if an autonomous agent can learn the programmatic structure of a task, rather than

repeating a fixed sequence of actions, obtained, for example, from demonstrations,

it should be able to transfer the knowledge captured in a particular setting to other

settings.

1.1.2 Symbols as Environment Abstractions

The aforementioned program that solves the task “screw in the bolt” can only be

executed if the robot is able to perceive the symbol “bolt” and in particular its current

pose in the environment. Importantly, task encoding programs rely not only on the

existence of the symbols they operate on, but also on the ability to recognise instances

of those symbols in the environment. In other words, if the robot cannot ground the

symbol “bolt” to the corresponding physical entity in the environment then it will not

be able to execute any program which contains that symbol.

Furthermore, there is an infinite number of symbols that can be extracted and

learnt from the environment, however only some of them are related to the task and

even fewer are useful for the completion of the task. Given that a task encoding pro-

gram is dependent on the availability of certain symbols, it forms a natural inductive

bias that can be exploited for learning to recognise the right set of symbols.

Representing the environment only with symbols of direct relevance to the task

not only abstracts away large amounts of the irrelevant raw sensory data, but also
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Figure 2: The decomposition of a typical task learning problem considered in this thesis.

enables generalisation to other tasks. For example, recognising the pose of a bolt in

the environment is required for screwing it in as well as for unscrewing it, loosening

it or tightening it.

Interestingly, there is a strong interdependency between learning to recognise

symbols within the environment and learning programs to perform decision making –

symbols determine what programs can be executed, while programs determine what

symbols are useful to be learnt. Similar ideas in philosophy and linguistics can be

traced back to Wittgenstein [224] who suggests that “the meaning of a word is its use

in the language”. From an Artificial Intelligence (AI) perspective, learning to recognise

symbols is considered to be a pattern recognition problem, while learning programs

is known as program induction and the two fields have very little overlap. Recent

interests in bridging this gap have resulted in interesting research approaching the

problem from different perspectives [63, 64, 70, 103, 216]. In this thesis, we focus

on studying the interplay between learning task related symbols and programs for

improving the capabilities of autonomous agents.

1.2 P r o b l e m S tat e m e n t

We consider the standard problem of learning to solve a task by mapping sensory

data to actions. We are interested in the decomposition of such a mapping, as shown

in Fig. 2, into two stages: i) perceiving symbols from sensory data and ii) using a

program to manipulate those symbols in order to make decisions. The overall goal of

this thesis is to study the bidirectional interactions between the perception capabilities

of an agent and the programs it can execute in order to solve a task.

In particular, this thesis tackles the following questions:



1.3 Th e s i s O v e r v i e w 6

• Assuming an agent has access to a program working with abstract symbols

for decision making, how can it learn to recognise the required symbols from

sensory signals?

• Assuming an agent is able to recognise symbols from sensory signals, how can

it learn a program representing a certain task?

• How can structured task related abstractions, i. e. symbols and programs, be

leveraged for applications to human-robot interaction and, in particular, learning

from demonstration?

1.3 Th e s i s O v e r v i e w

The thesis is divided into two logical parts. The first one studies the question of

grounding symbols to their instances in the environment from sensory signals when a

program for decision making is available, while the second one studies the complement

problem of learning new programs when symbol instances can be recognised within

the environment.

1.3.1 Physical Symbol Grounding

Fundamentally, the problem of symbol grounding is related to the philosophical

issue of what is the meaning of a symbol and where does it emerge from. We, however,

take a more pragmatic perspective and, following the reasoning proposed by Vogt

[219], assume that symbols gain their meaning from the physical entities they refer

to in the environment. That leads to the well defined problem of physical symbol

grounding – matching symbols to their instances in the environment. In general,

symbols do not have to refer only to physical objects, they can, in fact, refer to any

pattern in the sensory signals. For example, in chapters 3 and 4 we demonstrate that

it is possible to ground symbols corresponding to the position of objects.

The simplest possible way to perform physical symbol grounding is to formulate

the problem within a supervised learning framework and label a sufficient amount of
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sensory data. Supervised learning, though, requires the tedious and expensive process

of data annotation and it cannot be applied to online situations, where the agent is to

learn from new sensory data and experiences.

Therefore, we propose another approach to physical symbol grounding which

exploits programs that can be executed using those symbols. The main hypothesis

which we consider in the first part of this thesis is:

Task encoding programs provide autonomous agents with physical symbol grounding

capabilities.

By task encoding programs we simply mean programs that implement a decision

making procedure for choosing an action. The source of complexity in many important

and interesting problems, such as collaborative HRI, is in perceiving task related

symbols, rather than manipulating them. In such cases a decision making program

can be easily designed. For example, the program for screwing in a bolt could follow

the steps: i) move close to the head of the bolt, ii) align with its axis, iii) insert tool, iv)

apply torque until a certain threshold is reached.

In order to investigate our hypothesis, we first consider a collaborative HRI

setup, where a robot is supposed to learn to perform a task by observing a human

demonstration. Since, it is natural for people to work with abstract plans that are an

intuitive and concise way to represent a task we assume that a task encoding program

is readily available. The main challenge thus becomes how to relate the program to

the sensory signals acquired during the demonstration. In chapter 3, we study exactly

this problem and demonstrate that it is possible to learn to recognise multiple symbols

in the environment even from a single human demonstration.

For this purpose, we propose a framework for Grounding and Learning Instances

through Demonstration and Eye tracking (GLIDE). Importantly, we utilise multiple

sensory signals including several video cameras together with eye tracking information.

Extensive amounts of research on oculomotor control during task execution, have

revealed that most of the gaze fixations are positioned on locations and items of

relevance to the task [84, 125, 185]. Inspired by the regularities of oculomotor control

during task execution, we capture data from eye tracking glasses which the human

demonstrator wears.
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We combine fixation traces with the task encoding program into a fixation program

and exploit certain properties in order to align the demonstration with the acquired

sensory signals. We pose the problem as a Bayesian inference problem over the

structure of a graphical model and provide an efficient inference algorithm. A key

aspect of our work is that we introduce a novel method for estimating physical 3D

locations of visual fixations within the environment which enables the appearance

of symbol instances to be learnt. Instance learning is a crucial ability when the robot

does not have any knowledge about the model or the appearance of the symbols

referred to in the program. We report the results obtained from human experiments

and demonstrate that GLIDE successfully performs physical symbol grounding and

learns the appearance of symbol instances, thus enabling robots to autonomously

execute tasks in initially unknown environments.

One of the key assumptions enabling efficient physical symbol grounding in

GLIDE is that the task encoding program in practice represents a plan which is a

sequence of actions and does not have any conditional branches or loops. Additionally,

eye tracking information serves as a strong supervisory signal which is potentially

available only if a person is part of the learning process. These assumptions limit the

class of tasks to which GLIDE can be applied to.

Therefore, in chapter 4, we relax those assumptions and consider the general

problem of grounding symbols that could serve as an input to any program without

the need for a person to participate in the learning stage. In order to do this, we pose

the question of physical symbol grounding into a reinforcement learning framework

and demonstrate that programs of arbitrary complexity can be considered.

In particular, we decompose the policy into a neural network based perception

module and a decision making program. We call the neural network which learns to

recognise symbols from raw sensory signals a perceptor and introduce the perceptor

gradients algorithm. We provide a proof that regardless of the decision making

program the perceptor can be trained through a REINFORCE estimator [223] in a

standard policy gradients setup.

We apply the perceptor gradient algorithm to a set of problems ranging from

control of dynamic systems to solving tasks in a custom 2.5D Minecraft environment

and demonstrate that it enables neural networks to learn semantically meaningful
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latent spaces which encode the task related symbols of interest. In contrast to other

unsupervised learning methods, our method avoids the problems of non-identifiability

and each latent dimension has definite meaning imposed by the task encoding pro-

gram. Furthermore, by recognising the similarities between the policy gradients setup

and the Variational Autoencoder (VAE) [109] we show that it is also possible to generate

observations from semantically meaningful latent codes.

1.3.2 Program Induction

In the second logical part of this thesis we consider the complement problem of

inducing programmatic structure over a set of symbols which can be recognised within

the surrounding environment. In particular, we are interested in inducing programs

from observation traces, generated by processes occurring in the environment such as

an object moving due to the law of physics or a human demonstrating a task.

Explaining and reasoning about processes which underlie observed black-box

phenomena enables the discovery of causal mechanisms, derivation of suitable abstract

structures and the formulation of more robust predictions. Therefore, instead of simply

learning a mapping from the observed state to the observed transition, we propose

to learn high level functional programs in order to represent abstract models which

capture the invariant structure in the observed data. Thus, the working hypothesis in

the second part of the thesis is:

Physically grounded symbols enable autonomous agents to learn task encoding programs

efficiently.

We explore this hypothesis in chapter 5 and introduce the π-machine (program-

induction machine) – an architecture able to induce interpretable LISP-like programs

from observed data traces. We propose an optimisation procedure for program learning

based on backpropagation, gradient descent and A* search. We describe an efficient

method for extending any gradient descent optimiser to support symbolic variables

by assuming the existence of an ordering and exploiting properties of KD-trees.

We apply the proposed method to three problems. Firstly, we consider the problem

of system identifcation of dynamical systems and demonstrate that the π-machine
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is able to induce programs in this domain faster than state of the art methods [188].

Secondly, we demonstrate how learning task related programs can be applied to the

problem of explaining the behaviour of a Deep Q-value Network (DQN) agent. Thirdly,

we show that when the π-machine is utilised in a learning from demonstration setting,

it automatically yields programs that capture abstract knowledge such as spatial

relations that are crucial for the domain of collaborative HRI. Lastly, our experimental

results show that the π-machine can efficiently induce interpretable programs from

individual data traces in any of the considered domains.

1.4 M a j o r C o n t r i b u t i o n s

The key contributions of this thesis are:

• Robotics (HRI): A novel method for 3D eye tracking using eye tracking glasses

and monocular Simultaneous Localisation and Mapping (SLAM).

• Robotics (learning from demonstration): A physical symbol grounding frame-

work based on fixation programs and efficient Bayesian inference over the

structure of a graphical model.

• Machine Learning (representation learning): A general algorithm for learning

symbolic representations from raw data required as an input to a given program.

• Artificial Intelligence (program induction): An algorithm for inducing programs

from observed traces that combines classical search techniques with stochastic

gradient descent optimisation.

We present the first two contributions in chapter 3 and demonstrate that the GLIDE

framework provides robots with the capability of physically grounding symbols to raw

sensory signals by observing very few task demonstrations, which to our knowledge

has not been demonstrated before. We describe our third contribution in chapter 4

and show that the perceptor gradients algorithm not only enables autonomous agents

to learn symbolic representations, but it also outperforms agents trained within the

standard Reinforcement Learning (RL) loop with policy gradients on the tasks that

we consider. Furthermore, the perceptor gradients algorithm does not impose any
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independence assumptions on the latent space and so we show that it can cope with a

larger class of representation learning problems which widely accepted models such

as the βVAE struggle with. Finally, we present our fourth contribution in chapter 5

and demonstrate that the π-machine is much more computationally efficient than

state of the art methods for inducing programs from observation traces. We also

describe a novel application of the proposed program induction method to explaining

the behaviour of a DQN agent. Each one of the contributions presented in this thesis

is a step towards bridging the gap between symbolic and subsymbolic methods

in an attempt to design better learners capable of extracting symbolic knowledge

representations and causal mechanisms from raw sensory signals.



2

Ba c k g r o u n d

This thesis focuses on the problems of learning and utilising two types of task

related structured abstractions:

1. Symbolic representations of the environment

2. Programmatic representations of the task

Therefore, we present in this chapter a broad overview of the concepts and work

related to the topics of learning symbolic representations and inducing programmatic

structure. Those questions rest at the core of artificial intelligence and so have been

actively explored from various perspectives ever since the field was founded.

Additionally, we include a section on learning structured abstractions in the

particular context of task learning. We consider the problem of learning task re-

lated abstractions from the perspectives of reinforcement learning and learning from

demonstration with an emphasis on some of the recent neuro-symbolic methods.

The chapter concludes with a discussion of the equivalences which can be found

between some of the introduced concepts and that form the conceptual core of this

dissertation. A detailed discussion of the work directly related to each of the major

contributions of this thesis is presented within the context of each corresponding

chapter.

12



2.1 S y m b o l i c A r t i f i c i a l I n t e l l i g e n c e 13

2.1 S y m b o l i c A r t i f i c i a l I n t e l l i g e n c e

2.1.1 Symbols

Symbolic artificial intelligence methods are based on the assumption that pro-

cesses associated with intelligence can be simulated by manipulating a set of symbols

[82, 150]. Symbols can be thought of as tokens which represent, or refer to, any entity,

pattern or concept. By performing various operations with those symbols such as

modifying, replacing or concatenating one can describe a large class of problems. In

fact the physical symbol hypothesis made by Newell and Simon [150] suggests that

such symbolic systems have the “sufficient and necessary means for general intelligent

action”. Symbolic AI is based on the theoretic apparatus of formal systems.

2.1.2 Formal Systems

The emergence of symbolic AI can be traced back to the development of the field of

metamathematics and the study of formal systems [110]. A formal system can be used

to derive theorems by the repeated application of inference rules to a set of axioms.

Each axiom and any derived theorem must be well formed formulae within the system

and so they must be in compliance to a given grammar and alphabet of primitive

symbols. In general, a formal system can be represented as the tuple (Σ, Γ, P, A) where

Σ is the alphabet of primitive symbols, Γ is a grammar which describes how primitive

symbols can be combined in order to obtain well formed formulae. P is a set of rules,

any of which can transform a well formed formula into another one. If a rule is applied

to a well formed formula that is an axiom, i. e. it is in the set A, then the resulting

formula is also well formed and called a theorem. First order logic, polynomial algebra

and planar geometry are all examples of formal systems that we are used to. A general

purpose computer can emulate any formal system by running a suitable program.
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2.1.3 Programs

In 1937 Alan Turing proposed a universal abstract apparatus, known as the

Turing machine, [211] which enabled an infinite number of computations. In fact,

any problem which cannot be solved by a Turing machine is not solvable by any

other algorithm and so the Turing machine defines the theoretical bounds of what

is possible to compute and what not. An interesting question arises from this fact –

how can a simple machine following a particular set of rules be able to execute any

computation possible? Turing designed his machine such that it would take as an

input not only numbers to process, but also a sequence of instructions to be executed

on those numbers. Thus the Turing machine is able to follow any valid sequence of

instructions fed in as an input. Nowadays we refer to such sequences as programs.

Programs have been at the core of AI since its beginning. In personal correspond-

ence, John McCarthy describes the Dartmouth conference, regarded by many as the

seminal event for AI, as [111]:

“At present it looks as though we shall concentrate on a problem of devising a

way of programming a calculator to form concepts and to form generalizations.”

That description could be interpreted in two different ways one of which seems to

be more valid than the other. At one level, “programming a calculator” suggests that

the problem of pattern recognition can be solved from a purely computer science

perspective resulting in a pattern recognising program. However, state of the art

performance in such domains, e. g. computer vision, is currently achieved by neural

networks. So it seems that thinking in terms of classic computer science, rule based

reasoning and programming does not offer the right set of abstractions. At another

level, though, we do program neural networks. Once the notions of layers, activation

functions and computational graphs are introduced, programs become an intuitive

way to represent them. In fact, any AI model or framework that has been run on a

computer has been boiled down at some point to a mere programming task.

Why are programs so powerful? A program encodes a sequence of instructions

either by directly listing them or by utilising one of the following structures:

1. Conditional branching is necessary for any sort of reasoning.
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2. Loops enable repetition until a certain condition holds.

3. Compositionality enables programs to express arbitrary hierarchies.

Those 3 structures are at the crux of any non-trivial reasoning processes and enable

programs to express virtually any problem, but only provided that symbols at the

right level of abstraction are available.

As discussed in the previous chapter, a task cannot be expressed just as a sequence

of actions (except for simple cases), because different initial conditions and events in

the environment would require different sequences. Programs, with their capability

to express conditional branching, loops and composition, are particularly well suited

for abstracting away details about individual sequences of actions and can serve

as general task descriptors. More interestingly, programs can abstract away details

about other programs which fits naturally with the idea of options (i.e. temporal

abstractions) and composite tasks [18]. Moreover, if a new task is to be considered,

compositionality becomes especially advantageous, as the new task encoding program

can reuse previous programs or fragments from them. Valkov et al. [214] explore such

a setup and demonstrate that programs are extremely well fitted to the problem of

lifelong learning. It should also be noted that sub-programs capture atomic procedural

knowledge which is correct irrespective of the particular instance of a given problem.

Therefore, sub-programs can easily be transferred to new domains, or even new

problems [50, 65].

2.1.4 Transition Systems

When dealing with programs and their execution one usually resorts to the

formalism of transition systems.

A labelled transition system Ω is the tuple (S ,A, δ) where S is a non-empty set

of possible states, A is a non-empty set of labelled transitions and δ : S ×A → S is

the state transition function. By starting from an initial state s0 ∈ S and applying the

state transition function N times with some chosen transitions a0, a1, . . . , aN−1, ai ∈ A,

one will obtain a sequence of states s0, s1, . . . , sN , si ∈ S , called a trace and denoted

as T . Typically, the sequence of transitions is encoded in a program ρ and can be
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obtained by executing the program. The formalism of transition systems is used to

describe the theoretical foundations of the π-machine in chapter 5.

2.1.5 Limitations

Theoretically, programs processing symbols should be able to solve any problem,

however the ideas behind symbolic AI sound naive from a contemporary perspective

as there are fundamental limitations which have not been overcome yet, especially

when considering learning from raw data.

Firstly, symbol manipulation makes the important assumption that a dictionary of

symbols already exists, however it is far from clear how to generate such a dictionary

as symbols are meant to carry semantic content. How can one recognise the existence

of symbols from raw data or amongst other less abstract symbols? Typically, one

studies the problem of interest and carefully designs a set of symbols which can

express both the problem and its corresponding solution. Assuming that the necessary

symbols are defined during the design stage introduces another equally hard problem

known as the symbol grounding problem [80, 190, 219]. Given a set of abstract symbols,

how can they be related to the corresponding entities, concepts and patterns in the

raw data they stand for? Usually, the symbol grounding problem is associated with

natural language understanding and determining what a particular utterance refers

to, however it is a general problem occurring throughout the whole field of artificial

intelligence whenever an abstract language is utilised, not just natural language.

Secondly, the ability to manipulate symbols assumes that the rules for manipula-

tion are also already available. Thus, similar issues arise. What is the origin of these

rules? They must describe meaningful operations and process only symbols from

the set of available ones in order to ensure that the solution of the problem can be

obtained within the symbolic system. Therefore, the process of designing rules for

manipulating symbols also requires manual intervention by the designer. Due to their

hand crafted nature, symbolic systems scale poorly in terms of complexity. Expert

systems are a clear example for that, as after a while it becomes impossible to add new

rules in order to ensure an up-to-date and exhaustive knowledge representation [161].
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Figure 3: Extrapolation behaviour of a simple neural network trained on the identity function.
Each curve corresponds to a different activation function being used. The figure is
adapted from [208].

2.1.6 Symbolic Inductive Bias

Despite the well known limitations of pure symbolic approaches, recent research

efforts have clearly demonstrated that symbols and programs provide strong inductive

bias that improves the performance of universal data driven learners such as neural

networks.

One of the key limitations of data driven learners is their tendency to memorise

the training dataset, rather than finding rules to compute the output from a given

input. This problem is particularly exacerbated by the large capacity of deep neural

networks. Trask et al. [208] illustrate this issue on a small neural network trained on the

simple problem of learning the identity function (see Fig. 3). While the error withing

the training range is close to zero for many of the activation functions, extrapolation

leads to unbounded errors.

Emulating various symbol manipulating automata such as a push down auto-

maton [72], a Turing machine [71, 72] or a random access machine [121] with neural

networks leads to much better extrapolation capabilities. For example, Grefenstette

et al. [72], demonstrate that and an Recurrent Neural Network (RNN) augmented with

a neural queue or deque can obtain perfect performance in tasks such as copying a
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sequence, reversing a sequence or bigram flipping with inputs orders of magnitude

longer than the ones in the training data. Similar results have been reported by Trask

et al. [208] who extend RNNs with arithmetic logic units and Cai, Shin and Song [32]

who propose a recursion-based strategy for evaluating the output of an RNN. Hybrid

neuro-symbolic learners have been demonstrated to be robust to noisy or mislabelled

data, while still learning general rules in a data efficient manner [55].

Another common problem with neural networks is catastrophic forgetting that

occurs when a neural network is to learn a set of tasks. Recent research indicates that

it is beneficial to combine neural network based perception modules with symbolic

representations in order to obtain state of the art lifelong learning systems capable of

generalising to unseen problem instances [14, 50, 65, 214].

Symbolic inductive bias is applicable and beneficial even to perception heavy tasks

such as character recognition [123], 3D shape recognition [205] and visual question

answering [10, 11, 93]. Kolouri et al. [114] show that jointly training over pixels and

symbolic representations enables zero shot learning for image classification tasks.

Capturing the programmatic structure of visual stimuli enables the generation of

unseen before, but nevertheless valid, images [51, 233]. Inverse graphics models that

contain data driven learners and a set of rendering programs also achieve state of the

art performance in various computer vision tasks [51, 118, 120, 142, 226].

The position which we take in this thesis is that learning symbols or rules

(programs) individually is bound to yield unsatisfactory results. There is an intricate

interaction between what symbols are useful and what rules can be applied. Therefore,

in chapters 3 and 4 we study how programs can guide the learning of symbolic

representations, while chapter 5 focuses on the complement question of inducing

programs by taking into account properties of the available symbols.

2.2 R e p r e s e n tat i o n L e a r n i n g

Representation learning is a branch of machine learning which studies the topics

of learning structured representations from raw data. In particular, representation
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learning methods attempt to extract useful features from the raw data which improve

the performance of a consequent classifier or a predictor [20].

Typically, the problem of representation learning is framed as an unsupervised

learning problem where a mapping f is to be found such that input data x is mapped

to a feature vector z, or f (x) = z. The most general formulation of the problem does

not put any restrictions on the domains of x and z or the feature extracting function f .

In practice, depending on the problem under consideration, various assumptions

about the data domain, feature space or mapping function are made. Bengio, Courville

and Vincent [20] provide a detailed list of a wide range of assumptions explored by

the community, however in this section we focus on the ones most relevant to the

work in this thesis.

Multiple data generating factors

The unknown underlying distribution from which the observed data is generated

has multiple factors which affect the data. For example, the pixel values of an image are

influenced by factors such as the number of objects in the image, the position, shape

and size of each object, global lighting conditions, texture and surface reflectivity of

each object. In general, recovering the exact configuration of the factors that generated

the data could be an ill-posed problem as the process of generation could result in a

surjective mapping. Therefore, various regularisation techniques, which we discuss in

the next sections, are used in practice.

Hierarchical composition

Representations could be built either directly from data or by composing other

less abstract representations. Deep learning methods exploit this assumption heavily

by stacking large number of layers, each of which produces representations at a certain

abstraction level [127]. Simply composing features, however, does not guarantee that

one would arrive at an abstraction that is useful for the task at hand. As noted in

[20], what good criteria are for learning a useful feature space is currently an open

problem.
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Shared representations

Good representations should be useful for multiple tasks. If the extracted features

from the raw data carry some semantic content, i. e. they have a symbolic structure,

then it is quite likely that these symbols are transferable to another tasks. For example,

as discussed in chapter 1, learning to recognise the pose of a bolt is applicable to

multiple tasks that involve bolts.

Underlying manifolds

The density of the underlying data generating distribution is concentrated around

a manifold, rather than uniformly spread across the entire state space. It is usually the

case that attempts to generate data points from structured domains such as human

skeleton poses, images or gene sequences, by uniform sampling results in invalid

configuration.

Simple dependencies

Useful representations should have simple dependencies. In other words, simple

compositions of good high level representations should be able to express a large

range of tasks. For example, if one uses the potential and kinetic energies to express

the motion of a pendulum, then the law of preservation of energy provides a simple

relationship.

Having listed some of the major assumptions typically made we now discuss the

types of models used for representation learning.

2.2.1 Probabilistic Models

Probabilistic models [113] exploit some knowledge or assumptions directly relev-

ant to the underlying data generating distribution p(x, z) which is a joint distribution

over the data and feature spaces. The features z are treated as latent random variables

in the model, while the data x is represented as observed random variables.



2.2 R e p r e s e n tat i o n L e a r n i n g 21

Figure 4: Demonstration of the idea of vision as inverse graphics proposed by [183]. The camera
pose and parameters, object and scene properties are treated as latent variables in
a directed probabilistic model in order to infer the poses of all objects in the scene.
The forward model (likelihood) essentially describes the process of 3D rendering.
The figure is adapted from [183].

Depending on the factorisation they assume, probabilistic models fall into two

broad classes - directed and undirected models.

2.2.1.1 Directed models

Directed models assume that the joint distribution can be factorised into a likeli-

hood distribution p(x|z) and a prior distribution p(z) resulting in

p(x, z) = p(x|z)p(z) (1)

By applying Bayes rule one obtains an expression for the posterior distribution p(z|x)

which can be used to map a new data point to its corresponding point in the feature

space

p(z|x) = p(x|z)p(z)
p(x)

(2)

where the term p(x) is known as the evidence. Typically for any non-trivial problem

the calculation of the evidence involves a multidimensional integral rendering the
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posterior distribution intractable. Therefore, when designing a directed graphical

model, one considers the relationship

p(z|x) ∝ p(x|z)p(z) (3)

and approximates the posterior through sampling or approximate inference methods.

The prior encodes any knowledge available a priori and usually is set to enforce

some desired properties in the latent space. The likelihood can be viewed as a de-

scription of a generative process which maps latent variables to a distribution over

the observed data. Therefore, the likelihood model can be sometimes referred to as

a generative or forward model. Some probabilistic programming languages such as

Anglican [225] (see also Appendix A) take this view and enable the user to specify the

likelihood model as a program.

As an example we consider that computer vision can be viewed as a problem of

inverse graphics [179, 183]. The key idea is that the likelihood model encodes a 3D

rendering process which takes as an input the 3D poses of the objects in the scene,

camera and scene properties and generates an image of the virtual scene. In this case,

as shown in Fig. 4, the latent variables are the inputs to the rendering procedure and

the likelihood is estimated by comparing the rendered with the observed image. The

same idea has been applied to even more complex tasks such as estimating the full

human skeleton pose from a single image [117] or generating composite 3D shapes

matching 2D projections [182].

2.2.1.2 Undirected models

Undirected graphical models, also known as Markov Random Field (MRF), assume

a factorisation of the joint distribution which does not contain any conditional factors

and is of the form

p(x, z) =
1
Z ∏

i
νi(x)∏

j
φj(z)∏

k
ωk(x, z) (4)

where νi(x), φj(z) and ωk(x, z) are positive potential factors which describe the inter-

actions between the observed variables, between the latent variables and between the
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(a) A Markov Random Field modelling the interactions between laser depth
measurements, stereo depth estimation, image spatial gradients, pixel
colours and depth discontinuity.

(b) Input noisy point cloud. (c) Filtered point cloud.

Figure 5: The undirected probabilistic model (a) proposed by [45] for reconstructing 3D point
clouds from images and laser measurements. The application of an MRF results in
smoother and less noisy output (c) compared to the noisy data (b). The figure is
adapted from [45].
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observed and latent variables, respectively. These potentials must be always positive,

but do not necessarily encode distributions as they do not have to integrate to 1. The

partitioning function Z ensures that the final product of all factors sums to one.

Undirected models can capture fewer properties of the underlying distribution

compared to the directed ones. Instead of describing a generative process, MRFs can

be viewed as modelling symmetric interactions.

One of the widest applications of undirected probabilistic models is in image

segmentation [156], where pixels interact in a local neighbourhood. Each pixel label

is assumed to be a latent variable interacting with neighbouring pixel labels and so

resulting in a grid. Figure 5 demonstrates the idea extended to a colour image coupled

with depth information as proposed by [45].

In chapter 3, we propose a directed probabilistic model in order to perform

physical symbol grounding and exploit some of the properties of fixation programs in

order to derive an efficient importance sampling based algorithm.

2.2.2 Autoencoders

Another widely accepted approach to representation learning are autoencoders.

An autoencoder has two main components: i) an encoder fθ mapping observed data x

to a feature vector z such that f (x) = z and ii) a decoder gθ performing the inverse

mapping from a feature vector z to a reconstruction x̂ of the input data point such

that g(z) = x̂. θ denotes all parameters of the autoencoder.

For a given dataset D = x(1), . . . , x(N) the loss function optimised by a basic

autoencoder is

LAE =
N

∑
i=1

L(x(i), gθ( fθ(x(i)))) (5)

where the function L(x, x̂) measures the reconstruction error and can be interpreted

as a distance metric.
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2.2.2.1 Bottleneck

If one sets both fθ and gθ to be the identity mapping, the the loss in (5) will be

at its global minimum of 0. However, the resulting features will be identical to the

raw data input which is not useful at all. Therefore, the first step is to bottleneck

the autoencoder, meaning that if dx is the dimensionality of the observed data space

and dz of the feature space then dz << dx. From an information theory perspective,

setting the latent code to be much shorter than the input results in compression of the

observed data [137] and so representing it in a more abstract space.

Simply training a basic autoencoder on the data is equivalent to performing

dimensionality reduction [20] where the latent space does not necessary have any

specific properties which may be desirable. Therefore, various sorts of regularisation

techniques are used in order to put more structure into the latent space.

2.2.2.2 Sparse autoencoder

As suggested by the name, sparse autoencoders [173] encourage sparse latent

codes by adding a an `1-norm penalisation term

LSAE =
N

∑
i=1

L(x(i), gθ( fθ(x(i)))) + λ||z(i)||1 (6)

where z(i) = fθ(x(i)). Enforcing sparsity ensures that even if the latent space is of large

dimensionality, the autoencoder would still learn interesting features in the data.

2.2.2.3 Denoising autoencoder

If an autoencoder is able to filter out noise from its input, then it must have learnt

the manifold of the observed data. This is the main assumption behind the denoising

autoencoder [218], the loss function of which, is formally defined as

LDAE =
N

∑
i=1

Eq(x̃|x(i))[L(x(i), gθ( fθ(x̃)))] (7)
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where x̃ denotes a noise corrupted version of the input x(i) by the stochastic process

q(x̃|x(i)). The noise model usually considered is salt and pepper noise, where the

value of a pixel can be flipped with a small probability. The resulting representations

are robust to input noise and are applicable to real world domains such as robotics, in

particular localisation and mapping [192].

2.2.2.4 Contractive autoencoder

The contractive autoencoder, proposed by Rifai et al. [181], expands on the idea

behind the denoising autoencoder and reduces the sensitivity of the autoencoder to

small changes in the input. If J(x(i)) = d fθ

dx

∣∣∣
x=x(i)

denotes the Jacobian of the encoder

at x(i), then the loss function of the contractive autoencoder is formally expressed as

LCAE =
N

∑
i=1

L(x(i), gθ( fθ(x(i)))) + λ||J(x(i))||F (8)

where ||.||F denotes the Frobenius norm. Given that the encoder fθ is usually a

nonlinear function the Jacobian is valid only for small perturbations of the input.

2.2.2.5 Variational autoencoder

The variational autoencoder [109] is a probabilistic autoencoder which learns a

distribution over the latent space instead of providing single point estimates. The

encoder fθ outputs the parameters of a distribution q fθ
(z|x) which is to approximate

the true underlying posterior distribution p(z|x), while the decoder outputs the

parameters of the likelihood distribution pgθ
(x|z). The loss function of the variational

autoencoder is

LVAE =
N

∑
i=1

{
−Eq fθ

(z|x(i))

[
log pgθ

(x(i)|z)
]
+ DKL(q fθ

(z|x(i))||p(z))
}

(9)

where DKL denotes the Kullback–Leibler divergence. Minimising the loss results in

i) maximising the log likelihood of the observed data, or in other words reducing

the reconstruction error, and ii) ensuring that the approximation distribtion q fθ
(z|x)

is as close to the prior p(z) as possible. A typical choice for the prior is a standard

multivariate normal distribution which makes the KL-divergence term in (9) solvable
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analytically. This, however, imposes significant constraints on the latent space and the

types of information it can encode.

2.2.2.6 Adversarial loss

Providing the right prior structure on the latent space is crucial for extracting

symbolic representations from the data. By symbolic we mean representations which

carry some semantic content, not just statistical information about the data. One of the

promising research directions on this topic is the use of adversarial losses introduced

by the Generative Adversarial Network (GAN) framework. [69].

The key concept behind GANs is that, on one hand, the decoder (or generator)

should trick a discriminator that the generated samples come from the real data distri-

bution. On the other hand, the discriminator is simultaneously trained to recognise

whether a sample comes from the generator or from the observed data. As a result,

the joint adversarial training of a generator and a discriminator imposes an implicit

prior on the latent space [139] which is entirely driven by the observed data.

Extensions to the standard autoencoder framework with adversarial losses [37,

107, 139, 140, 207] can learn abstract representations in an unsupervised fashion. For

example, the representations learnt from videos by the framework proposed in [43]

encode independently the pose a person walking and the scene content.

All of the aforementioned regularisation techniques are purely statistical in nature

and the fact that the resulting representations have some semantic meaning is a side

effect of the loss function rather than its main objective. Therefore, in chapter 4 we

introduce the notion of programmatic regularisation which enforces the latent space

to produce symbols that lead to the successful execution of a task encoding program.

2.3 P r o g r a m I n d u c t i o n

Inductive program synthesis, often referred to as program induction, is the

problem of discovering a program from a partial specification such as examples, traces,
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Figure 6: The major fields interested in inductive program synthesis. The figure is reproduced
from [187].

natural language or even partial programs [78]. It is a multidisciplinary field spanning

AI, programming, software engineering and machine learning as illustrated in Fig. 6.

2.3.1 User Intent

Program induction is a challenging problem since the provided specification by

the user is incomplete. There is usually millions of programs which will satisfy the

provided partial specification, however, only few of them will capture the intent of the

user. The underlying program induction procedure could be biased towards finding

short programs, or readable programs, but eventually the information provided by the

user is of crucial importance. Therefore, the application of inductive program synthesis

to real life domains requires some sort of interactive programming [75–77] where the

user is able to seamlessly provide more information when required. Gulwani, Polozov

and Singh [78] are of the opinion that this poses more challenging problems to the

human-computer interaction community than to the program synthesis one.
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2.3.2 Program Space

The general formulation of the program synthesis problem is undecidable and so

methods typically perform various sorts of heuristic search in the space of possible

programs [78]. Searching is in itself a hard combinatorial problem due to the size and

intricacy of the program space. Not only does the size of the space grow exponentially

with the length of the program, but even simple programs could have complex

structure and be built by arbitrary composition of sub-programs. While the first

phenomenon is widely referred to as the curse of dimensionality, we refer to the

second one as the curse of compositionality.

Programs need to be represented in a space which balances a trade off between

expressiveness and efficiency. On one hand if a program space can express a large set

of problems, then it must contain a large number of simple instructions leading to

long programs. On the other hand, if a Domain Specific Language (DSL) is used, then

the resulting programs will be shorter, but will be able to express only a small subset

of problems. For example, Anglican [225] is a DSL for describing probabilistic models

and running inference on them (see Appendix A).

2.3.3 Search Techniques

There is a vast amount of research on the topic of search techniques for program

synthesis (see [78] for an extensive up-to-date review), which can be separated in 4

broad classes.

2.3.3.1 Enumerative search

Enumerative search is equivalent to a bottom-up search where a program is

constructed by gradually expanding and modifying it while ensuring its correctness.

As a result the space of all programs is traversed in a certain order. These methods

are often improved significantly by pruning the search space or by traversing it in a

particular order.



2.3 P r o g r a m I n d u c t i o n 30

Figure 7: A diagram of the counter example guided inductive synthesis method introduced by
[195]. At every step of the induction process the candidate program is passed through
a verifier which either accepts it or generates counter example where the program
fails. Each counterexample serves as an additional constraint to the synthesiser. The
figure is reproduced from [195].

2.3.3.2 Deductive search

Deductive search [141] can be viewed as a top-down search where one generates

a subprogram and then considers the problem of generating another subprograms

to replace the input arguments of the first one. This process requires the inverse

semantics of the initial program to be determined [172].

2.3.3.3 Constraint satisfaction

One can formulate program synthesis into a constraint satisfaction problem by,

for example, expressing it in boolean algebra or first order logic and utilising a SAT

or SMT solver, respectively. Of particular importance is the idea of counterexample

guided inductive synthesis introduced by Solar-Lezama et al. [196] and depicted in

Fig. 7. At each step of the inductive process the program is run through a verifier that

either returns a counterexample at which the program fails or simply accepts it. Each

generated counter example serves as a new constraint to the the solver.

2.3.3.4 Statistical techniques

In the domain of inductive program synthesis, statistical methods are typically

applied as an augmentation to the core search procedure in order to exploit data driven
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Figure 8: A policy is a direct mapping from sensory data to an action.

heruistiscs. Genetic programming [115] is one of the earliest statistical approaches

utilised for program induction. Another approach is to formulate program synthesis

as a probabilistic inference problem and perform sampling to obtain the solution

[35, 49, 123, 152, 182]. Recently, deep learning techniques have been integrated in

various ways into program synthesis systems. Neural guided search has become one

of the most explored approaches where neural networks are trained on large amounts

of data to bias the search such that the program space is traversed in an efficient

order [17, 128, 171, 217, 238]. Furthermore, the success of deep learning, has lead to

the emergence of neural program induction and neural program synthesis [104]. In

neural program induction a neural architecture, at the core of which is typically an

RNN augmented with some sort of memory, is trained to generate the right output

for a given input. The field was pioneered by the introduction of the neural Turing

machines by Graves, Wayne and Danihelka [70]. In neural program synthesis a neural

architecture is trained to output entire programs which can later be run on new inputs,

examples include [8, 29, 44].

In chapter 5 we propose the π-machine which is a novel framework for inducing

concise functional LISP-like programs from traces. It combines an enumerative A*

search strategy with a stochastic gradient descent optimiser in order to prune the

search space.

2.4 Ta s k L e a r n i n g

2.4.1 Reinforcement Learning

RL is concerned with the problem of how an autonomous agent can learn to

execute a certain task in the environment. Learning is guided by a reward signal that

is obtained from the environment and reflects how well the agent is performing. At
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each time step the agent senses the environment and chooses an action which results

in a certain reward signal. The main objective of RL is to choose actions such that the

total expected reward is maximised [198]. A mapping from an observed state to an

action is known as a policy and the mapping which achieves the objective is called

the optimal policy. State of the art RL methods represent the policy as a deep neural

network capable of capturing nonlinear relationships. Learning a direct mapping (see

Fig. 8) straight from sensory data to actions, especially as a neural network, brings

several challenges.

Firstly, the generalisation capabilities of the agent to variations in the environment

or the task are limited [13] due to the data driven training procedure. Once the agent

has successfully learnt how to solve a specific task in a given environments, even slight

perturbations in the input sensory data could result in wrong decisions. Secondly, it is

not obvious at all how the agent could deal with changes in the specification of the

task. Even though the same task related concepts are likely to be needed, the decision

making process might be slightly different. Lastly, it is a research topic of its own

how to inspect and interpret decisions made by neural networks [147], or providing

guarantees about their performance [48, 145].

In order to address these issues recent RL work puts an emphasis on learning rep-

resentations from sensory data. Explicitly learning representations results in policies

robust to shifts in the operational domain [89] and are transferable to a certain extent

to new tasks [153, 158, 174].

2.4.2 Robotics & Learning from Demonstration

Even though RL methods have been applied to physical robots [5, 57, 132, 133],

they tend to require a vast number of training episodes which not only take a long time,

but also wear out the mechanical components of the robot. A more suitable approach

is to utilise a small number of expert demonstrations in order to quickly learn new

tasks. Learning from demonstration is particularly well suited for collaborative HRI

setups, where people constantly interact with the robot.
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At its core, learning from demonstration is analogous to the problem of program

induction, where a user expresses their intent by executing some actions and the robot

has to extract a policy which solves the task. Current methods in robotics for deriving

a policy from demonstrations can be classified into 2 main groups, which we discuss

in the following sections.

2.4.2.1 Model-Free

The most simple approach for deriving a policy from demonstrations is to frame

the problem into a supervised learning framework where a predictor is to output an

action for each observed state (see Fig. 8). A common assumption is that the observed

demonstrations contain independent samples of state-action pairs. Ross, Gordon and

Bagnell [184] recognise that this assumption is not correct and provide an algorithm

for interactive learning from demonstration. Even though direct mapping methods

excel at producing optimal behaviours they generalise poorly and so current research

efforts focus on augmenting them with qualitative models [175, 204].

2.4.2.2 Model-Based

In comparison to training virtual agents, working with physical robots imposes

multiple constraints such as limited amount of data and inability to train faster than

real time. Therefore, model based methods for task learning from demonstration are

becoming more popular. The key idea is to learn a model of the environment and then

utilise it to plan with it at runtime and generate actions. Structured environment mod-

els have already been shown to greatly improve the learning efficiency of autonomous

agents [175, 204].

A common approach in robotics is to perform inverse reinforcement learning

[2], where the model is an induced reward function of the demonstrator. Once the

reward function is available, standard RL methods can be utilised in order to solve

the task. Inverse RL has been applied with impressive results to performing aerobatic

manoeuvres with a helicopter [3] and interactively navigating around people [215].

Models that combine physical and visual understanding of the world are also

becoming more common. For example, Sermanet et al. [191] train an autoencoder on
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videos of the same demonstration from various points of view. Once the autoencoder

is trained, the robot is able to execute new tasks from a single video demonstration

using the learnt representations.

Another novel idea is to learn models of how to learn new tasks. Finn et al. [58]

introduce meta learning and demonstrate that by training a model to adapt to new

tasks, rather than simply to solve a single one, they obtain extremely efficient learning

performances from single observations. This approach has been extended in [234] by

training another model from a corpora of videos in order to encode rich physical and

visual prior knowledge about the world and improve the generalisation capabilities of

the agent even further.

The aforementioned models are built on deep neural architectures and so they

inherit all the problems related to black-box models. Therefore, more structured

methods, typically based on learning graph representations [7, 227], have also been

proposed. For example, Xiong et al. [227] demonstrate that learning a spatial tem-

poral and causal And-Or graph [210] enables a robot to fold a cloth from only few

demonstrations. Furthermore, it is also possible to learn from demonstrations the

pre-conditions and post-conditions of actions in order to perform classical planning at

runtime [4].

Despite the considerable achievements in the field of learning by demonstration,

one of the key challenges remaining is to determine what is the right representation of

the environment as well as how to encode the task within the chosen representation

[12, 97, 240].

2.4.3 Cognitive Science

Interestingly, there is evidence from cognitive science and neuroscience, that the

human brain does use structured task related abstractions.

Reverberi, Görgen and Haynes [178] perform an experiment where participants

are asked to remember and apply a set of simple and compound rules while being in

an fMRI scanner. After training classifiers to detect simple rules from the activity in
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the lateral prefrontal cortex, the researchers were also able to decode the compound

rules, suggesting that the code used to store the rules is compositional.

Furthermore, Cole et al. [40] have performed a series of experiments studying

human performance in rapid instructed task learning [39] and demonstrate that

classifiers trained to identify abstract rules based on practiced task activity patterns

successfully generalised to novel tasks.

2.5 C o n c e p t ua l I s o m o r p h i s m s

Programs can be viewed both as an automatic formal systems interpreted by

a digital computer [82] or a transition system [16]. Markov processes and Makrov

decision processes are particular instances of transition systems which are widely

used in the domain of autonomous agents [198]. Aligning these frameworks, as shown

in Table 1 reveals some of the ideas which lie at the core of the contributions of this

thesis.

One of the key observations is that task execution is equivalent to computation

and so the process of decision making can be encoded as a program. This idea, in its

purest, most naive version, is the main conjecture of symbolic artificial intelligence.

We, however, recognise the fact that agents receive only sensory signals from the

environment, which are equivalent to the alphabet of a formal system, not to the

well-fromed formulae that are at a higher abstraction level. In other words, some sort

of representation learning is needed in order to describe environment states with

symbols which a program can operate with. This is the key idea behind GLIDE in

chapter 3 and the perceptor in chapter 4. The π-machine, introduced in chapter 5, is

based on the observation that task execution can be described as a transition system

in order to learn programs from observed traces.
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Formal Systems
Digital

Computers
Transition
Systems

Autonomous
Agents

alphabet 0 and 1 (bits) state components sensory signals

well-formed
formulae

any machine
word

any state
any environment

state

axioms input initial state initial state

generation rules program transition relation
decision making
& environment

dynamics

theorems output resulting states resulting states

proof computation system evolution task execution

Table 1: The observed conceptual isomorphisms between formal systems, transition systems,
digital computers and autonomous agents which lie at the conceptual core of this
thesis.



3

P h y s i c a l S y m b o l G r o u n d i n g

f r o m D e m o n s t r at i o n

3.1 I n t r o d u c t i o n

Despite the recent significant advances in the capabilities of autonomous hu-

manoid robots [15], much remains to be done before robots are able to function

effectively in complex human environments. This is especially the case when un-

derstanding of contextualized information is required within cluttered and dynamic

environments such as the collaborative HRI assembly setup shown in Fig. 9.

Naturally, humans work with abstract plans as they are often an intuitive and

concise way to represent a task. The ability to understand and autonomously execute

high level instructions is crucial for the development of intuitive and efficient human-

robot interfaces. However, high level instructions contain symbols and concepts which

need to be interpreted and grounded within the environment in order to enable the

execution of the plan. HRI research related to interpreting abstract instructions (usually

in the form of natural language) approaches the problem as grounding the unknown

references within an instruction to a set of predefined actions and observed objects

or locations in the environment [112, 203]. The problem of learning the mapping

between abstract symbols and their physical instances in the environment, also known

as the problem of physical symbol grounding [219], connects the idea of situated robotics

[30] to the more general problem of symbol grounding [80] which is one of the core

challenges in artificial intelligence [200].

37
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Figure 9: Collaborative assembly settings demand understanding of contextualized inform-
ation within cluttered and dynamic environments in order to understand human
instructions and intents. Recognising task relevant objects and locations is also neces-
sary in order to instantiate high level plans. As we demonstrate in this chapter, eye
tracking information enables both symbol grounding and learning the appearance of
symbol instances.

Importantly, it is often the case that a robot may not have any knowledge about

the model or the appearance of a symbol instance and so assuming a fully observable

environment imposes considerable constraints on the robustness, scalability and

applicability of the existing methods. In this chapter, we introduce a framework

for Grounding and Learning Instances through Demonstration and Eye tracking

(GLIDE) which allows for simultaneously grounding symbols to their instances in

the environment and learning their appearance, thus relaxing the full observability

constraint. GLIDE enables robots to instantiate a high level plan within an initially

unknown environment and then complete the task autonomously.

The proposed framework is based on learning from a small number of demon-

strations by a person wearing eye tracking glasses. Considering the exponential

development of technologies such as ubiquitous computing and the Internet of Things,

being able to naturally communicate with a robot while wearing an eye tracking

device seems an extremely plausible future. We exploit the fact that fixations are

highly dependent on the task and provide information about the location of task
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related items. We describe a methodology for recording 3D fixation coordinates in

the environment and call the sequence of fixations during task execution a fixation

program. We formulate the problem of mapping fixation programs to high level task

plans as probabilistic inference and demonstrate how this mapping can be used to

ground plan symbols and learn appearance distributions of symbol instances in the

environment. We recognise probabilistic programming as a tool well suited for the

problem and so use Anglican [225] (see also Appendix A) for the implementation. We

tested GLIDE on experimental data from human demonstrations and confirm that it

successfully performs physical symbol grounding.

The main contributions presented in this chapter are:

• Methodology for recording 3D fixations within the environment based on mon-

ocular visual SLAM.

• An inference algorithm exploiting the properties of fixation programs in order

to ground symbols and localise their instances in the environment.

• An algorithm for learning the appearance of symbol instances when no previous

knowledge is present.

3.2 R e l at e d Wo r k

3.2.1 Symbol Grounding

The problem of connecting symbols to their meaning was introduced as the

“Chinese Room” experiment [190] and later formally defined as the symbol grounding

problem by Harnard [80]. A symbol is any object that is part of a symbol system

and symbols are arbitrary in their shape. A symbol system is a set of symbols and

syntactic rules for manipulating them on the basis of their shapes (not their meanings).

Since robots are embedded and situated agents, our interpretation of symbol meaning

follows the physical symbol grounding paradigm proposed by [219] and is a “functional

relation between a form and a referent”. In other words, the meaning of a symbol is

its relation to the physical entity in the environment which the symbol is referring to.
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Previous work related to symbol grounding and robotics focuses on human-robot

interaction scenarios where natural language is used to provide commands to the robot

[112, 203]. The syntactic constituents of the utterance are grounded to entities of interest

in the environment - objects, locations, trajectories, actions, events. Interestingly, the

utterance can also be semantically parsed to a program expressed in a robot control

language [143] which the robot can execute. Multimodal models fusing gestures and

language have also been proposed [144, 222]. However, a common assumption is that

all entities of interest in the environment are observable. GLIDE aims to relax this

constraint by enabling simultaneous grounding of the plan symbols and learning of

the appearance of their instances. Importantly, the proposed framework utilises a high

level planning language, instead of natural language, for the representation of plans.

3.2.2 Eye Tracking During Task Execution

It was Yarbus who first demonstrated in 1967 that fixation patterns are higly

influenced by the task to be executed [230]. He asked subjects to examine a picture

(The Unexpected Visitor, Fig. 10 top left) and gave them various tasks related to the

image such as “Estimate the material circumstances of the family in the picture” or

“Give the ages of the people”. All seven tasks resulted in significantly different eye

movements as show in Fig. 10.

Eye tracking has been used by cognitive scientists for long time in order to de-

termine the mechanisms for oculomotor control and the associated cognitive processes.

Most of the work so far has been conducted in laboratory conditions and has focused

on processes such as reading and looking at images [86, 176]. Technological advances

have recently enabled eye tracking during natural behaviour [84, 125]. Studying ac-

tual environment perception is important as it provides more realistic data which

sometimes contradicts the predictions from laboratory experiments [59].

Oculomotor control has been studied during the performance of various tasks

such as sandwich making, tea making, driving, playing table tennis, playing cricket

and others (see [125] for an extensive review). The results from those studies show
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Figure 10: Examining a picture. (a) Free examination. (b) Estimate the material circumstances
of the family in the picture. (c) Give the ages of the people. (d) Sumarise what the
family had been doing before the arrival of the ‘unexpected visitor’. (e) Remember
the clothes worn by the people. (f) Remember the position of the people and objects
in the room. (g) Estimate how long the unexpected visitor had been away from the
family. The figure is adapted from [201].
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Figure 11: Fixations during the execution of a complex natural task. The figure is reproduced
from [126].

that eye movements during task execution are task specific and are barely affected by

low level features in the environment [83, 84].

This supports the active vision paradigm according to which the vision system

actively seeks information that is relevant to the current cognitive activity [185]. For

example, Land et al. conducted a study [126] in which participants were asked to

prepare a cup of tea in a regular kitchen environment while their eye movements

were recorded. The majority of fixations were on objects related to the task despite the

complexity of the environment and the free motion of the participants as shown in

Fig. 11.

Furthermore, When observing an environment with natural physics, e. g. balls

rolling on a flat surface and bouncing off each other, evidence suggests that eye

movements take into account the underlying causal model [66].

Eye Tracking Glasses (ETG) provide fixation locations as 2D points within the

image from a first person point of view camera mounted on the device and facing the

scene. Paletta et al. demonstrated that fixations can be projected onto a precomputed

3D map, by utilising Scale-invariant Feature Transform (SIFT) features in the scene

images [157], while Pfeiffer et al. rely on artificial fiducial markers in order to estimate

3D fixation locations [169]. Our approach utilises monocular visual SLAM in order to

reduce the constraints on the scene.



3.2 R e l at e d Wo r k 43

The predominant use of eye tracking in the field of robotics is in HRI, where gaze

information enables the recognition of human behaviour [231] and the execution of

anticipatory actions [96]. However, we focus on the question of how eye tracking can

guide instruction grounding and perception. In this line of thought, Papadopoulos

et al. treat fixations within an image as a noisy supervisory signal for the training of

visual object class detectors [159], however they do not reason about fixations during

the execution of multi-action tasks.

3.2.3 Activity Recognition by Sequential Probabilistic Models

Hidden Markov Models (HMMs) are widely used for activity recognition by casting

the problem of partitioning observed trajectories into a probabilistic inference one [19,

52, 74, 229]. Importantly, HMM’s are well suited for applications to the programming

by demonstration domain, in particular modelling and analysing human motions, as

they are robust to spatio-temporal variability in the observed multimodal data [98,

213].

There is a large range of HMM extensions that allow for various trajectory struc-

tures to be captured. For example, hierarchical HMMs can infer composite actions that

are themselves built up from primitive actions [56, 151] and sticky hierarchical HMMs

can infer partitionings that favour fewer changes in the latent state by imposing a

sticky Dirichlet prior [95]. Of particular relevance to the probabilistic model that we

consider is the factorial HMM which assumes that there are multiple hidden state

variables influencing the observations [26, 67]. In our case, we assume that both the

action being executed and the environment state influence the observed fixations. The

probabilistic graphical model that we propose borrows, to some extent, ideas from

the aforementioned HMM variants, however we consider the problem of learning the

structure of the model together with learning its parameters from data.
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(a) Symbolic plan representation.

(b) Plan symbols and their physical instances. (c) Task goal.

Figure 12: The representation of a plan (a) which solves an example task with the goal of
building a tower with five colour cubes in a particular order (c). All plan symbols
need to be grounded to their physical instances (b) in order to enable autonomous
execution of the task.
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3.3 P r o b l e m D e f i n i t i o n

Initially, a task such as building the tower of cubes shown in Fig. 12c is demon-

strated by a person wearing eye tracking glasses. We make no assumptions about the

availability of prior knowledge related to the environment, however the task to be

demonstrated T is predetermined. Additionally, the robot has access to a dictionary

with primitive actions A which the person can execute in an arbitrary sequence in

order to solve the task. As illustrated in Fig. 12a, we represent plans for solving

the task as a sequence of (action object location) tuples where action is symbol

corresponding to an action from A, object is a symbol referring to a physical object

in the environment and location is a symbol referring to a physical location in the

environment, sometimes dependent on the previous action. Even though action is a

primitive action and known in advance, it can be executed by the robot only after the

object and location symbols are grounded to their instances within the environment

as shown in Fig. 12b. Given that a person wears an ETG device and demonstrates

how to execute the plan, the problem we address is how eye tracking information can

be used to ground plan symbols to their instances in the environment and learn to

recognise those in order to perform the demonstrated task autonomously.

3.4 M e t h o d

We split the problem of simultaneous symbol grounding and instance learning

in three parts. First, we describe how to estimate 3D fixation locations within the

environment in order to map fixations to physical locations in the environment.

Secondly, we show how to localise the instance of a plan symbol by exploiting the

properties of a fixation program. Lastly, once the location of an instance is known, we

describe how to learn its appearance in order to enable automatic recognition.
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3.4.1 3D Eye Tracking

Mobile eye trackers provide fixation information in pixel coordinates correspond-

ing to locations in the image of a first person view camera. Relying only on that

information requires all items of interest in the environment to be detected from the

image in order to determine which one is fixated. However, in a collaborative assembly

scenario, such as the one shown in Fig. 9, there are several sensors which can be

used - the robot has an RGBD sensors, multiple cameras and laser scanners. Addi-

tionally, the environment can also be highly sensorised. In order to take advantage

of multiple sensors, instead of a single first person view camera, we estimate the 3D

fixation locations, enabling the projection of fixations in the frame of any sensor in the

environment.

In order to achieve that, we calibrate the first person view camera and utilise the

ORBSLAM algorithm [148], which is a monocular visual SLAM algorithm, in order to

estimate the 6D pose of the eye tracking glasses in real time. Since a single camera

is used, the obtained measurements are correct only up to a scale factor. Therefore,

we have developed a calibration procedure which relies on detecting several APRIL

tags [155] initially present in the scene. First, the physical distance dcalib between two

different view points is estimated using the calibration parameters of the camera and

the tags. Then, the distance dvslam is calculated from the estimated poses by ORBSLAM

and the scale is calculated as dcalib/dvslam. Additionally, the transformation between

the world frame and the origin of the ORBSLAM frame is also also computed during

the calibration procedure. Once the 6D pose of the glasses is calculated within the

world frame, the fixation locations are projected from the first person view camera

image to the 3D environment by ray casting and finding the intersection with a 3D

model of the environment. As a result, fixations can be represented as 3D locations in

the environment instead of just pixel coordinates. We are interested in scenarios where

table top manipulation is required, so we project fixations to the plane of the table

top resulting in 2D points with physical coordinates. It is also possible to intersect the

ray with a point cloud of the environment [157]. A diagram visualising the process is

shown in Fig. 13, where the 3D model of the environment is assumed to be the table

top surface.
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Figure 13: The pose of the ETG device is estimated with respect to a global frame of reference
using ORBSLAM [148]. Then the fixation location within the image of the ETG cam-
era is used to project a 3D ray and intersect it with a 3D model of the environment,
the table top surface in this case, in order to obtain a 3D location of the fixation
within the environment.

Utilising a visual monocular SLAM algorithm for pose estimation of the eye

tracking glasses imposes fewer constraints on the scene, however it puts demands on

the hardware. Throughout our work we use the SMI ETG 1 device which provides

fixations information at a rate of 60Hz and the first person view camera has a frame

rate of 30FPS. Initial experiments revealed that this frame rate is insufficient for the

ORBSLAM algorithm since people rotate their heads relatively fast, adding significant

blur to the images. Therefore, we have attached an extra camera to the eye tracking

glasses which provides 120FPS and enables robust head tracking. The transformation

between the frame of the eye tracking glasses camera and the high frame rate one is

also estimated during the calibration procedure.

3.4.2 Model Definition

In order to solve the problem of physical symbol grounding we define a generative

probabilistic model shown in Fig. 14. The task T and the fixation program F1 . . . FT are
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F1 . . . Fl1 Fs2
. . . Fl2 . . . FsL

. . . FT

A1 A2 AL

E1 E2 EL

. . .

. . .

P

T

Figure 14: The proposed probabilistic model for physical symbol grounding which is based
on the idea that “task and context determine where you look” [185].

observed, where Fi ∈ R2 and T is the total number of observed fixations. P encodes

any valid plan which successfully completes the task. Following the idea that “task

and context determine where you look” [185], the action Ai ∈ A induces a set of

fixations Fsi . . . Fli on a certain item of interest related to the action, where s1 = 1 and

lL = T. In the context of planning, an item of interest could be any of the symbols in

the plan. For example, given the plan in Fig. 12a, an item of interest might be either a

particular cube or a location such as the building-area. The fixations Fli+1 . . . Fsi+1−1

are observed during the transition from one item of interest to another and are not

represented in the graphical model in order to avoid clutter.

Importantly, the sequence of fixations Fsi . . . Fli depends on the actual physical

location of the item of interest. The main assumption behind the proposed framework

is that symbol instances cannot be recognised prior to learning, therefore we model the

belief about the position of item m as a normal distribution Nm(µm, Σm) over possible

locations in the environment. Since fixations are projected to the table top plane

µm ∈ R2 and Σm is a 2× 2 covariance matrix. µm and Σm are latent variables which

we are interested in inferring in order to consequently learn the instance of symbol m.

The set of tuples {(µi, Σi) : i = 1 . . . M} which encodes the state of the environment is

denoted as E, where M is the number of items of interest, or equivalently the number

of symbol instances. We assume that the changes in the environment from state Ei to

state Ei+1 can be caused only by the action Ai.
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3.4.3 Inference

Assuming a uniform prior over the possible locations of each item and that a task

can be uniformly chosen from a set of predefined ones, we are interested in solving

the following inference problem

p(E1:L|F1:T, T ) ∝ ∑
P, A1:L, s1:L, l1:L

p(F1:T|A1:L, E1:L)p(A1:L|P)p(P|T ) (10)

where we use the notation Xa:b to represent the sequence Xa, Xa+1, . . . , Xb−1, Xb. The

inference problem which we need to solve can be viewed as a structure learning

problem as the variables s1:L, l1:L encode the connectivity of the probabilistic graphical

model.

The key insight, which we make in order to obtain an efficient inference procedure,

is that fixation programs encode information about why a certain point is fixated

(what action is performed) and where the fixation is located (where the action item of

interest is). Reasoning about those two aspects can be performed independently, as

encoded by the probabilistic graphical model in Fig. 14:

p(F1:T|A1:L, E1:L) ∝ p(F1:T|A1:L)p(F1:T|E1:L) (11)

By exploiting the properties of fixation programs, we split the inference problem

in 4 parts in order to obtain a computationally feasible solution using importance

sampling.

3.4.3.1 Generating Actions

The term p(P|T ) encodes the probability of a plan given the demonstrated task

and is computed by a high level planner P . The planner is assumed, by utilising

the dictionary of primitive actions A, to find the set of all plans PT that successfully

achieve the task. p(P|T ) is defined as a uniform categorical distribution over PT .

By biasing the categorical distribution, it is possible to represent any preferences

with respect to a plan, for example shorter plans are selected with higher probability.



3.4 M e t h o d 50

p(A1:L|P) is similar to an indicator function and assigns a probability of 1 to the

sequence of actions A1:L which is defined by plan P and 0 to any other sequence.

3.4.3.2 Generating Fixation Program Segments

The main difficulty in expressing the likelihood of the observed fixations given

the actions as shown in (11) is the fact that there are T fixations and L actions. The

fixations induced by action Ai are Fsi :li , while the fixations made during a transition

from action Ai to Aj are given by Fli+1:sj−1. If there are L actions then there are L− 1

additional transitions resulting in 2L− 1 segments of the sequence of fixations in total.

Thus, the term p(F1:T|A1:L) in (11) can be rewritten as

p(F1:T|A1:L) = p(F1:l1 , Fl1+1:s2−1, Fs2 :l2 . . . FsL :lL |A1:L) (12)

Similar to the stick breaking analogy for sampling from a Dirichlet distribu-

tion [202], the sequence s1, l1, s2, l2, . . . sL, lL can be viewed as points where the fix-

ation program is split in 2L − 1 segments with total length equal to T. Therefore,

s1, l1, s2, l2, . . . sL, lL, are sampled from a (2L− 1)-dimensional symmetric Dirichlet dis-

tribution with concentration parameter α and normalised such that s1 = 1 and lL = T.

Since there are no zero length segments in the fixation program α should be greater

than 1. Empirical tests showed that setting α = 2L yields a stable heuristic. It should

be noted that sampling the fixation program segments is equivalent to sampling the

structure of the graphical model in Fig. 14.

3.4.3.3 Evaluating Fixation Program Likelihood

Fixations on items of interest are clustered on the item, while fixations made

during transition are sparse and have relatively large distance between each other.

Therefore, the likelihood p(F1:T|A1:L) is modelled as

p(F1:T|A1:L) =
T−1

∏
i

Litem(Fi, Fi+1)Ltrans(Fi, Fi+1) (13)
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The likelihood of two consecutive fixations Fi and Fj during an action Ak is defined

as an exponential distribution over the distance between them dm = ||Fi − Fj||, thus

Litem(Fi, Fj) =


λme−λmdm if [i, j] = [sk, lk]

1 otherwise

(14)

which means that fixations closer together are more likely. λm is the mean distance

between consecutive fixation during an action and is learnt from labelled data.

The likelihood of two consecutive fixations Fi and Fj during a transition from

Ak to Ak+1 is defined as an exponential distribution over the ds = Dmax − ||Fi − Fj||,

where Dmax is the maximum possible distance between Fi and Fj, and so

Ltrans(Fi, Fj) =


λse−λsds if [i, j] = [lk + 1, sk+1 − 1]

1 otherwise

(15)

In this case more distant fixations are more likely and λs is the mean distance between

consecutive fixation during a transition and is also learnt from labelled data. Dmax

can be learnt from data as well, however we have set it simply to the diameter of

the circular table on which the experiments were conducted. We perform importance

sampling by using the described likelihood function in order to obtain the estimates

ŝ1, l̂1, ŝ2, l̂2, . . . ŝL, l̂L.

3.4.3.4 Estimating Item of Interest Locations

Once the partitioning of the fixation program is estimated, inferring the location

of each item of interest is performed through maximum likelihood estimation. For

each item of interest i we fit Ni(µi, Σi) to the fixations segment Fŝi :l̂i :
corresponding to

the action Ai. Due to the noisy nature of the eye tracking signal we constrain Σi to be

a diagonal matrix and so avoiding potential problems with overfitting to the fixation

clusters.

The pseudo code in Alg. 1, which is optimised for clarity rather than efficiency,

summarises the proposed algorithm. We have implemented it with the probabilistic
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Algorithm 1: Inferring the locations of items of interest in the environment.
Input: T , A, P , λm, λs, Dmax

Data: F1:T

Output: E = {(µ1, Σ1), (µ2, Σ2), . . . , (µM, ΣM)}
1 // Find all possible plans for the task
2 PT = P(T )
3 samples← []
4 for n from 1 to Nsamples do

5 // Step 1: Generate actions

6 Pn ← Sample Uni f ormCategorical(PT )
7 Ln ← GetLength(Pn)
8 An

1:Ln ← GetActions(Pn)

9 // Step 2: Generate fixation program segments

10 αn ← 2Ln

11 [sn
1 , ln

1 , . . . sn
L, ln

L] = T × Sample Dir(αn)

12 // Step 3: Evaluate fixation program likelihood

13 wn ← 1.0
14 for i from 1 to T − 1 do
15 if BothDuringAction(Fi, Fi+1) then
16 dm ← ||Fi − Fi+1||
17 wn ← wn × λm exp(−λmdm)

18 if BothDuringTransition(Fi, Fi+1) then
19 ds ← Dmax − ||Fi − Fi+1||
20 wn ← wn × λs exp(−λsds)

21 // Store sample

22 sample← {wn : [sn
1 , ln

1 , . . . sn
L, ln

L]}
23 Append sample to samples
24 [ŝ1, l̂1, . . . ŝL, l̂L] = WeightedAverage(samples)

25 // Step 4: Estimate item of interest locations

26 E← []
27 for m from 1 to M do
28 (µm, Σm) = FitNormal(Fŝm :l̂m)

29 Append (µm, Σm) to E
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programming language Anglican [225] as it provides an elegant way of building

generative probabilistic models and sampling from them. See Appendix A for a brief

tutorial on probabilistic programming with Anglican.

3.4.4 Instance Learning

Once the symbol locations are estimated, the symbol appearances are learnt

during the instance learning stage in order to enable automatic recognition. As

suggested by [159], grounded fixations can be used as a noisy supervisory signal

for any type of classifier. Additionally, since the estimated locations can be projected

in the frame of any sensor it is possible to train multimodal classifiers as well. We

propose a simple vision based algorithm for instance learning as an initial step towards

the development of more sophisticated systems. Given a set of fixations Fsi :li which

correspond to an item of interest, it is projected onto the image of a camera viewing the

scene resulting in fsi :li . For each projected fixation, an image crop is made centred at

the fixation with size proportional to the variance of Ni. The difference between every

two crops is computed in order to estimate the colour of the background. After that

each crop is resized to enclose the largest foreground object it contains. The resized

crops are used to compute the distribution over the colour and size of the symbol

instance. This information is sufficient to detect the object in simple environments

such as the table top setup. It should be noted that different sensors will lead to

different appearance distributions and so a more general representation can be learnt

by taking multiple sensors into account.

3.4.5 Experimental Setup

We have conducted human experiments where the PR2 robot is shown how to

build a tower of five colour cubes such as the one in Fig. 12a. Each of the 5 participants

demonstrated the task 10 times, working on a table top, while wearing eye tracking

glasses which we have modified as can be seen in Fig. 15.
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Figure 15: The experimental setup used for recording demonstrations of building a tower with
five colour cubes. During the demonstration the person wears eye tracking glasses
which we have modified to enable monocular SLAM based localisation.

We recorded eye tracking information as well as video feeds from multiple

cameras together with the poses estimated by ORBSLAM. One of the cameras, which

is fixed on the ceiling, is used for estimating ground truth locations of the cubes.

3.5 E x p e r i m e n ta l R e s u lt s

3.5.1 3D Eye Tracking

The first step in the evaluation of GLIDE is to analyse the results obtained by the

proposed 3D eye tracking methodology. Correct pose estimation of the eye tracking

glasses is crucial for the projection of fixations on the environment, therefore we have

tested multiple visual SLAM algorithms on the table top setup which we are interested

in. ORBSLAM relies on image feature points and does not assume that they belong

to a single plane. Thus, it is able to use feature points detected both on the table

and in the environment which we found to be crucial. The only problems which we
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Figure 16: A typical fixation program recorded during a demonstration of how to build a
tower of 5 colour cubes in the sequence of blue, red, green, yellow, blue (from
bottom to top).

experienced were with people leaning over the table, looking at it from closer and so

limiting the number of visible feature points. However, the issue was easily resolved

by tilting the camera up slightly and recalibrating its transformation.

A typical fixation program recorded during a demonstration of how to build a

tower of 5 colour cubes in the sequence of blue, red, green, yellow, blue (from bottom

to top) is shown in Fig. 16. Firstly, it can be noticed that fixations are indeed clustered

on items of interest for each action and are sparse in the transition stages, which is

a key assumption in the proposed inference algorithm. We used one demonstration

from each participant to estimate the overall mean distances between fixations for

the two cases λm = 0.81cm and λs = 6.29cm respectively. As expected, λs is an

order of magnitude greater than λm. This difference is crucial as it provides valuable

information in order to align the plan with the observed fixations.

Furthermore, cluster locations are not directly on the cubes, but often at the edge

or even slightly aside. On one hand, this can be explained by the approximation

of projecting fixations on the table top, instead of the top side of each cube. This

distortion effect can be easily noticed in the building area where each consequent

cube violates the planar assumption stronger than the previous one and the fixations

form a diagonal cluster. The person is usually positioned at approximately (0.0,−0.6)

which matches the angle of the diagonal cluster. On the other hand, people are known

to fixate on task critical locations such as grasp points [101].
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Figure 17: A short sequence of recorded 3D fixations from an experimental trial is projected
into the ceiling camera frame of reference and overlayed on the captured image.

Another interesting feature is that trajectories from the first block to the building

area follow almost straight line paths, while the last one is noticeably curved. This

pattern is present in most of the fixation programs which we recorded and we attribute

it to the fact that people change their focal plane during the transition, however we

are not able to detect that and simply project the fixation onto the table top. This can

be avoided by monitoring the 3D optical axis of each eye and find the intersection

between them in order to truly estimate a 3D fixation. The SMI ETG 1 device provides

such information however we found it to be extremely noisy. Therefore, we rely on

the point of regard within the first person view camera image which is less noisy, but

abrupt changes with large magnitude are often observed. One of the preprocessing

steps that we employed is to remove any fixations which are out of the table surface.

Lastly, we demonstrate that once the fixation locations are estimated within the

3D environment they can be easily projected to the frame of any available sensor. In

Fig. 17, we have overlayed on the image from the camera mounted on the ceiling a

short fraction of the recorded fixations during one of the experimental trials.
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Figure 18: The results from running the proposed inference algorithm on the fixation program
in Fig. 16 in order to determine the location of each symbol instance in the envir-
onment. The ellipses represent the inferred Nm(µm, Σm) for each item of interest.
The black ellipses correspond to a single standard deviation. The purple ellipse
represents the location of the building area obtained by averaging the 5 building
steps. The transition fixations are not explicitly visualised.

3.5.2 Localisation of Symbol Instances

Next we proceed with the evaluation of the proposed inference algorithm. The

inferred locations from the fixation program in Fig. 16 are shown in Fig. 18. Each

Nm(µm, Σm) for each item m is visualised as an ellipse with the corresponding colour.

The purple ellipse represents the estimated location for the building area which was

calculated by averaging the locations of the five building steps.

It can be seen that the fixation program was segmented correctly and each symbol

instance was successfully localised. The building area has the greatest variance which

is expected as there are 5 actions depending on it. In order to evaluate the performance

of the inference algorithm we have plotted in Fig. 19 the distribution of localisation

error as a histogram by analysing all recorded demonstrations. The error is calculated

independently for each cube and it is defined as the distance between the ground truth

location estimated by a top view camera and the inferred location from the fixation

program. 73% of the cubes are successfully localised with an error of less than 10cm

which is comparable to the cube size of 6.5cm.
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Figure 19: A probability mass distribution over the error in localising each of the cubes in each
of the recorded demonstrations. The error is calculated as the distance between the
ground truth locations and the inferred locations from the fixation programs.

Manual inspection of erroneous cases revealed that wrong localisation is predom-

inantly caused by noisy eye tracking data that we have not filtered out. However, since

we segment the fixation program and the beginning and the end are fixed, usually

only a small number of item of interest locations are affected by the noise.

3.5.3 Instance Learning

The last step in the evaluation of the proposed framework is to examine the

performance of the vision based instance learning algorithm. Given that the location

of a symbol instance is inferred, we can take image crops around the corresponding

fixations as shown in Fig. 20a. Each crop contains the item of interest being fixated

with occasional additional items also partially visible due to the cluttered table top.

Nevertheless, the proposed instance learning algorithm manages to filter the extra

items out and calculates an appearance distribution over the size, colour and pixel

values of each symbol instance. The mean value of each symbol instance is visualised

in Fig. 20b. Manual visual inspection of the learnt appearance models for each cube

throughout all demonstrations revealed that 71% of the instances were correctly learnt.

Furthermore, the same approach can be used to learn the appearance of the task goal

as demonstrated in Fig. 20c.
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(a) Symbolic plan representation.

(b) Plan symbols and their physical instances. (c) Task goal.

Figure 20: Images of symbol instances extracted by utilising the results from performing
inference over the recorded fixation program (a). Each of the crops is centred at a
fixation belonging to the corresponding action segment. Those images are used to
ground the plan symbols to their physical instances and learn their appearance (b).
The visualised instances are the mean of the learnt appearance distributions. The
approach can also be used to learn the appearance of the task goal (c).
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There is an interesting trade off between the number of demonstrations, number

of sensors and generalisation capabilities of the learnt appearance models. The ones

shown in Fig. 20b are learnt from a single static camera from a single demonstration.

While they look surprisingly similar to the real cubes, they have overfit the appearance

of the symbol instance and slight changes in the point of view or lighting conditions

will render them invalid. Therefore, it is an interesting problem on its own how to

combine multiple sensors, possibly moving, with a number of demonstrations in order

to arrive at a more general appearance model of the given symbol instance.

3.6 C o n c l u d i n g R e m a r k s

In this work we have presented how the interpretation of high level instructions

together with 3D eye tracking data can actively guide perception and enable robots

to instantiate symbolic plans without prior knowledge about the symbol instances

present in the environment. This type of situations are inevitable if we are to deploy

autonomous robots in actual human environments so that they can improve our daily

lives.

We have demonstrated that fixation programs in the context of plan execution

provide not only information about where people look at, but also why they look

there. This property has enabled us to develop a generative probabilistic model

for fixation programs together with an efficient inference algorithm. The proposed

instance learning algorithm attempts to answer the last question about what people

see when they look at a particular location. Thus, GLIDE is able to interpret unknown

symbol references present in single instructions or entire plans by mapping them to

1) a location within the environment and 2) a corresponding physical appearance.

We demonstrated the capabilities of GLIDE on experimental data where 73% of the

symbols were correctly localised and the physical appearance of 71% of the symbols

was successfully learnt.

One of the main limitations of the proposed inference algorithm is that it will fail

to segment the fixation program properly if informative actions such as searching are

executed by the demonstrator. One way to resolve this issue is to add a prior over
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the number of fixation clusters in the fixation program. However, the planner should

also be able to predict such actions. In fact, the planner adds another constraint which

should be discussed. We assume that the planner is able to generate all possible plans

for accomplishing the task. This is possible for tasks with low branching factor where

the order is important. However, if we consider a task which has a high branching

factor and the order does not matter then the number of plans grows exponentially

rendering an exhaustive search approach infeasible. A potential solution of this issue

is to keep a recursive estimate of the most probable plan currently being executed.

This, however, will not work if no knowledge about the environment is available.

Therefore, it is left for future work to integrate natural language instructions in GLIDE

in order to learn the symbolic plan and then instantiate it in the environment.

In conclusion, we introduced GLIDE - a framework for simultaneous Grounding

and Learning Instances through Demonstration and Eye tracking. We demonstrated

that it successfully manages to ground symbols and learn their appearance by applying

it to experimental data. The key insight was the definition of fixation programs

as associated traces of demonstrations and fixation sequences. This enabled us to

explore how eye tracking can guide the instantiation of high level plans as well as

perception and environment understanding. Those are key capabilities necessary for

the successful deployment of robots in human environments.



4

P e r c e p t o r G r a d i e n t s

In the previous chapter we demonstrated how a simple sequential program can be

used to guide perception and learn to recognise symbols important for the execution

of the task. In this chapter we present a general approach which enables complex

programs with data dependent information flows to guide the learning of symbolic

representations. We pose the problem in a reinforcement learning framework and

demonstrate the capabilities of learning to ground symbols both in continuous control

as well as stochastic high level planning problems.

4.1 I n t r o d u c t i o n

One of the reasons for the widespread success of deep neural architectures is

their ability to learn hierarchical representations of data with increasing levels of

abstraction as the hierarchy is ascended [127]. On one hand, neural networks are

particularly instrumental in training autonomous agents to execute various task

ranging from manipulation [132, 133], locomotion [85, 163] and continuous control

[46, 135] to playing games [79, 88, 146] and planning [162, 221]. On the other hand,

Deep Reinforcement Learning (DRL) methods require large amounts of data, typically

millions of observations [13, 46] and tend to overfit to the observed data distribution

[197].

Learning structured representations of the environment has been shown to result

in sample efficient methods able to learn transferable skills [53, 64, 79, 103]. However,

it is still an open question how to bias the learning procedure such that it finds abstract

representations that are relevant and useful for the task to be performed. Therefore,

62
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we formulate the problem of structured representation learning into a reinforcement

learning framework ensuring that task execution guides the representation learning

procedure.

We posit that task encoding programs provide strong inductive bias for learning

symbolic representations of the environment as they capture the symbolic structure of

the task. By symbolic representations we refer to representations that carry semantic

content and so can be grounded to objects, relations or, in general, any pattern in the

environment. Hybrid DRL methods based on imitation learning already use human

demonstrations and supervision [38, 97], however it is far easier for many tasks to

provide a high level program rather than recording demonstrations and extracting the

demonstrator’s intent from them.

In this chapter we introduce the perceptor gradients algorithm which decomposes

a typical policy, assumed to be represented as a neural network, mapping from

observations to actions into i) a perceptor network that maps observations to symbolic

representations and ii) a provided task encoding program which is executed on the

perceived symbols in order to generate an action. We consider both a feedforward

as well as an autoencoding perceptor where the program acts as a regulariser on

the latent space. Imposing such a regulariser, not only provides a strong inductive

bias encouraging disentaglement of the latent features, but also resolves the non-

identifiability issues inherent in most of the existing autoencoders.

We prove that the perceptor can be trained with any task encoding program using

the REINFROCE estimator [223]. The task encoding program is not required to be

differentiable and can be of arbitrary structure containing branches and loops; the

only requirement is that it always halts producing an action for a set of input symbols

in a finite time.

We apply the perceptor gradients algorithm to the problem of balancing a cart-

pole system with an Linear Quadratic Controller (LQR) from pixel observations and

demonstrate that the learnt representations directly correspond to task related symbols

required by the LQR such as linear position and angle. Furthermore, we demonstrate

similar results in a Minecraft-like environment, where we consider the problems of

navigating and finding an item from a 2.5D rendering of the world using a general

purpose A* planner as the task encoding program. Since the learnt latent dimensions
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are disentangled and identifiable we show that we can generate new structured

observations according to a symbolic specification.

The main contributions presented in this chapter are:

• A representation learning method with programmatic regularisation capable of

learning symbolic task related representations.

• A training procedure that we prove to support any task encoding program.

4.2 R e l at e d Wo r k

4.2.1 Statistical Disentanglement

The most general methods for learning disentangled representations are based

on the VAE [109] and modify the loss function in order to impose some statistical

properties on the learnt approximation distribution such as maximising component

independence [90] or minimising total correlation [36, 107]. Assuming different priors

over subsets of the latent variables allows for additional shaping of the latent space

[36, 37]. Additionally, carefully crafted curriculum learning procedures can also result

in disentangled representations [119].

It is not clear, however, why independence driven statistical properties would

result in structured representations which are useful for the execution of a particular

task. For example, a large body of literature in cognitive science provides evidence that

context has a significant impact on perception and task performance [154] suggesting

that the brain relies on correlations in the observed patterns.

4.2.2 Model-Based Disentanglement

Model-based methods for disentangling latent factors are better suited for learning

task related representations as they leverage particular domain knowledge. Even

though model-based disentanglement is not an explicit research sub-field there is a lot

of work falling in this class.
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A large fraction of the work is focused on learning latent representations which

are suitable for predicting and controlling physical systems [99, 220]. Watter et al.

[220] embed images into a latent state space where they impose locally linear structure

of the trajectory and learn to control various physical systems. Fraccaro et al. [60]

consider the problem of predicting the evolution of a physical system and propose

the combination of a linear Gaussian state space model with a VAE, called Kalman

Variational Autoencoder, in order to learn a latent space where appearance and

dynamics are disentangled. The idea has been extended to Bayesian filters in general,

where the key requirement is that the transition function is differentiable [106]. Another

approach is to shape the latent space according to a physical model as proposed by

Bezenac, Pajot and Gallinari [22]. They consider the problem of forecasting sea surface

temperature and leverage a theoretical physical model in order to learn a disentangled

latent space corresponding to the velocity field advecting the temperature. Moreover,

if the observation space has a known partitioning then this information can also be

used for learning disentangled representations [6, 25].

Model-based disentanglement methods have been applied to scene understanding

as well. By explicitly reasoning about the object in the scene as well as the point of

view, one can learn disentangled representations of the scene both for 2D [54] and

3D [53] scenes. Furthermore, Denton et al. [43] learn to disentangle pose and content

from video by proposing an adversarial loss framework which implicitly encodes the

fact that space-time is smooth and continuous.

Of particular relevance to our work is the idea of learning compositional visual

concepts by enforcing the support of set theoretic operations such as union and

intersection in the latent space [91]. Furthermore, Kurutach et al. [122] demonstrate

how to perform planning in a latent space learnt from demonstrations.

We propose to use programs as a general model description which, in theory,

should allow for many of the aforementioned models to be reproduced in a single

framework.
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4.2.3 Guided Learning

Hybrid DRL methods based on imitation learning already rely on human supervi-

sion or demonstrations. However, in many cases it might be much easier to simply

provide a high level program describing the task.

For example, natural language instructions provide coarse programmatic struc-

ture and have been shown to achieve state of the art performance results on the

Montezuma’s Revenge game [105]. Simple high-level programmatic fragments such

as if hasKey: unlockDoor() else: fetchKey() can significantly relax the problems

related to delayed credit assignment. Furthermore, this fragment clearly indicates to

the learner that the predicate hasKey is a useful one to learn.

In many cases the difficulty in an RL problem arises from perceiving the right

symbols, rather than complex decision making. Li et al. [134] show that the underlying

complexity of many problems that we try to learn end-to-end is much smaller than

the parameter space of the model which is trained. For example, they demonstrate

that the problem of training a neural network to balance a cart-pole system has an

intrinsic dimensionality of size 4, regardless of the number of weights. This result is

not surprising at all since the underlying dynamic system has a state space of size

4. The task of controlling a cart-pole system is well studied and can be optimally

performed by a linear quadratic controller, however extracting the relevant information

from pixels is a problem well suited for neural networks.

Learning semantically disentangled representations is equivalent to learning a

vocabulary of symbols which can be used to construct expressions in a language

compatible with the underlying mechanisms that generated the observed data. The

vocabulary of learnt symbols has a direct impact on the type of programs which can be

expressed and so the type of problems that can be solved. Importantly, hard problems

can often be easily solved by constructing simple programs which utilise symbols

that exploit the structure of the given problem. For example, describing the constraint

motion of a rigid body (e.g. a pendulum) with Newton’s laws of motion is much

more cumbersome, than simply defining the Lagrangian function using potential and

kinetic energy.
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4.2.4 Neuro-symbolic Architectures

While there are numerous neural network architectures that are able to recognise

symbolic structures such as, for example, spatial relations [186, 209, 236] there are

only a few hybrid neuro-symbolic architectures proposed that combine the learning

capabilities of neural networks and the generalisation power of symbolic methods.

Gaunt et al. [65] introduce a framework for differentiable programming with

neural libraries. They embed neural network blocks within differentiable programs

and perform program induction and training of the neural blocks jointly. Their results

indicate that learning with programmatic structure induces inductive bias that favours

strong generalisation capabilities.

Neuro-symbolic methods have also been proposed for RL [63, 64], however these

methods are still in their infancy imposing a large number of assumptions and

relying on ad-hoc feature engineering. Moreover, they are yet to be applied even to

some simple and common tasks such as balancing a pendulum or playing ATARI

pong. Another neuro-symbolic method can be found in [62], however the policy

decomposition, which we propose, to a perceptor network and task encoding programs

allows the perceptor gradients algorithm to be applied to various tasks, not just image

rendering.

At its core, the proposed perceptor gradients algorithm is a neuro-symbolic

approach as we utilise both neural networks as universal learners [42] and programs

to guide the learning process.

4.2.5 Structured Reinfrocement Learning

As already discussed, we cast the problem of learning task related representations

into an RL framework and insert a task encoding program into the training loop. Even

though our work is focused on learning symbolic representations it is also related to

some research on structured reinforcement learning.
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Firstly, Ha and Schmidhuber [79] learn predictive world models that operate in

a latent space obtained from an autoencoder. They, however, train the autoencoder

and the predictive model one after the other, instead of jointly, thus not leveraging the

possibility to learn task related representations.

Secondly, Garnelo, Arulkumaran and Shanahan [64] propose a neuro-symbolic

architecture for RL which can learn both useful representations and simple symbolic

rules at the cost of large number of assumptions. While we do not learn symbolic

rules, we support any program and limit our assumptions to the standard ones made

by the policy gradients algorithm.

Lastly, the idea of programmatically interpretable RL is introduced by Verma et al.

[216]. They induce a program from a pre-trained black-box policy where the program

assumes that symbolic representations of the world are already available. We study

this problem in chapter 5 as it is complement to the method proposed in this chapter.

4.3 P r o b l e m D e f i n i t i o n

Let us consider the Markov Decision Process (MDP) represented as the tuple

(S ,A, P, r, γ, P0) where S is the set of possible states, A is the set of possible actions,

P is the state transition probability distribution, r : S ×A → R is the reward function,

γ is the reward discounting factor and P0 is the probability distribution over the initial

states. At each time step t, the agent observes a state st and chooses an action at which

results in a certain reward rt. The problem, which standard RL is concerned with, is

to find a policy π : S → A, mapping states to actions, such that it maximises the

discounted total reward R = ∑T
t=0 γtrt known as the return, where we have assumed

a finite time horizon of length T.

In particular, we consider the stochastic policy πθ(at|st) belonging to a family of

functions parameterised by θ such that πθ : S → PA (A) where PA is a probability

measure over the set A. The standard RL setup is depicted in Fig. 21a.

We are interested in decomposing the policy πθ into i) a perceptor ψθ : S →

PΣ(Σ), where Σ is a set of task related symbols and PΣ is a probability measure over

it, and ii) a task encoding program ρ : Σ→ A such that ρ ◦ ψθ : S → A. Intuitively, ρ
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(a) The standard RL setup where a policy outputs an action per observed state.

(b) The proposed policy decomposition into a perceptor and a program. The perceptor outputs
a set of symbols per observed state which are processed by the program in order to generate
an action.

Figure 21: Comparison between the standard RL setup and the proposed policy decomposition
into a perceptor and a program.
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can be viewed as any functional program which is not required to be pure as nothing

in our approach prevents it from internally using a block of memory for storing

information or even communicating with external devices. This policy decomposition

is shown on Fig. 21b.

4.4 M e t h o d

Firstly, we provide a quick derivation of the policy gradients algorithm which

serves as the basis of the perceptor gradients algorithm that we propose. Secondly, we

prove that the perceptor ψθ can be trained using the REINFORCE estimator [223] for

any program ρ.

4.4.1 Policy Gradients

Starting from an initial state of the environment s0 ∼ P0(s) and following the

policy πθ for T time steps results in a trace τ = (s0, a0, s1, a1, . . . , sT, aT) of T + 1

state-action pairs and T reward values (r1, r2, . . . , rT) where rt = r(st, at). The return

value Rt of state st in a trace τ is then defined as:

Rt(τ) =
T

∑
i=t

γi−tr(st, at) (16)

The probability of a certain trace depends both on the rolled out policy to generate

the trace as well as the dynamics of the environment:

p(τ; θ) = p(s0)
T−1

∏
i=0

p(st+1|st, at)πθ(at|st) (17)

The objective of the policy gradients algorithm is to find an optimal policy π∗θ by

searching over the parameter space, such that the total expected return is maximised.

Formally, the total expected return is

J(θ) = Eτ∼p(τ;θ) [R0(τ)] =
∫

p(τ; θ)R0(τ) dτ (18)
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and so we would like to solve

θ∗ = arg max
θ

J(θ) = arg max
θ

∫
p(τ; θ)R0(τ) dτ (19)

Following the derivation from [223], the gradient of J(θ) can be expressed as

∇θ J(θ) = ∇θ

∫
p(τ; θ)R0(τ) dτ (20)

=
∫
∇θ p(τ; θ)R0(τ) dτ (21)

=
∫

p(τ; θ)∇θ log p(τ; θ)R0(τ) dτ (22)

= Eτ∼p(τ;θ) [∇θ log p(τ; θ)R0(τ)] (23)

The expected value in (23) can be approximated by Monte Carlo sampling. In order to

do that, the policy πθ is rolled out for n episodes

∇θ J(θ) ≈ 1
n

n

∑
i=1
∇θ log p(τ(i); θ)R0(τ

(i)) (24)

resulting in algorithm known as n-step policy gradients [189]. Using (17), the gradient

of the log-likelihood of a trace sample τ(i) can be expressed as

∇θ logp(τ(i); θ) =

= ∇θ log

[
p(s(i)0 )

T−1

∏
t=0

p(s(i)t+1|s
(i)
t , a(i)t )πθ(a

(i)
t |s

(i)
t )

]
(25)

= ∇θ

[
log p(s(i)0 ) +

T−1

∑
t=0

log p(s(i)t+1|s
(i)
t , a(i)t ) +

T−1

∑
t=0

log πθ(a
(i)
t |s

(i)
t )

]
(26)

= ∇θ

T−1

∑
t=0

log πθ(a
(i)
t |s

(i)
t ) (27)

=
T−1

∑
t=0
∇θ log πθ(a

(i)
t |s

(i)
t ) (28)

Importantly, the calculation of the gradient does not depend on the dynamics model

of the environment. It depends only on the gradient of the policy with respect to its

parameters. Given that we can select the parametric family of the policy, the gradient

should be possible to compute. For example, if the policy is represented by a neural
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network, then the gradient can be estimated by backpropagation. By combining (24)

and (28), one obtains the gradient of the expected return:

∇θ J(θ) ≈ 1
n

n

∑
i=1

T−1

∑
t=0
∇θ log πθ(a

(i)
t |s

(i)
t )R0(τ

(i)) (29)

In order to reduce the variance of the estimator Williams [223] introduced the

notion of return baseline which in its most general form is a function bφ(st) that

produces a baseline value per state and the parameters φ can be learnt as well.

Additionally, causal constraints can also be applied to (29) since the return at time t

depends only on consecutive actions, not on previous ones. These modifications lead

to the improved estimator

∇θ J(θ) ≈ 1
n

n

∑
i=1

T−1

∑
t=0
∇θ log πθ(a

(i)
t |s

(i)
t )
(

Rt(τ
(i))− bφ(s

(i)
t )
)

(30)

The quantity At =
(

Rt(τ(i))− bφ(s
(i)
t )
)

is also known as the advantage of action at.

4.4.2 Policy Decomposition

Let us now consider the following factorisation of the policy

πθ(at|st) = p(at|σt)ψθ(σt|st) (31)

where σt ∈ Σ are the symbols extracted from the state st by the perceptor ψθ . In

general p(at|σt) could be any distribution, however, we are interested in exploiting the

programmatic structure supported by the symbols σt and so we set the distribution as

follows

p(at|σt) = δρ(σt)(at) (32)

which is a Dirac delta distribution centered on the output of the task encoding program

ρ(σt) for the input symbols σt. Even though the program should produce a single

action, it could internally work with distributions and simply sample its output.
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Decomposing the policy into a program and a perceptor

πθ(at|st) = δρ(σt)(at) ψθ(σt|st) (33)

enables the description of programmatically structured policies, while being able to

learn the required symbolic representation from data.

4.4.3 Perceptor Gradients

Theorem 4.1 (Perceptor Gradients) For any decomposition of a policy πθ into a program

ρ and a perceptor ψθ such that

πθ(at|st) = δρ(σt)(at) ψθ(σt|st) (34)

the gradient of the log-likelihood of a trace sample τ(i) obtained by following πθ is

∇θ log p(τ(i); θ) =
T−1

∑
t=0
∇θ log ψθ(σ

(i)
t |s

(i)
t ) (35)

Proof. Combining (28) and (34) gives

∇θ log p(τ(i); θ) =
T−1

∑
t=0
∇θ log πθ(a

(i)
t |s

(i)
t )

=
T−1

∑
t=0
∇θ log

[
δ

ρ(σ
(i)
t )

(a(i)t ) ψθ(σ
(i)
t |s

(i)
t )
]

(36)

=
T−1

∑
t=0

[
∇θ log δ

ρ(σ
(i)
t )

(a(i)t ) +∇θ log ψθ(σ
(i)
t |s

(i)
t )
]

(37)

=
T−1

∑
t=0
∇θ log ψθ(σ

(i)
t |s

(i)
t ) (38)

�

Theorem 4.1 has an important consequence – no matter what program ρ we

choose, as long as it outputs an action in a finite amount of time, the parameters θ of

the perceptor ψθ can be learnt with the standard policy gradients algorithm. Intuitively,
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Figure 22: Theorem 4.1 can be intuitively understood by imagining that the program is ab-
sorbed into the environment, which is treated as a black box, and the actions are
actually recognised symbols.

the program applies a fixed transformation on the output of the perceptor and so it

can be thought of as being absorbed by the environment as illustrated in Fig. 22.

4.4.4 Feedforward Perceptor

From theorem 4.1 and (30), we derive the following loss function

L(θ, φ) =
1
n

n

∑
i=1

{
Lψ(τ

(i), θ) + Lb(τ
(i), φ)

}
(39)

where

Lψ(τ
(i), θ) =

T−1

∑
t=0

log ψθ(σ
(i)
t |s

(i)
t )
(

Rt(τ
(i))− bφ(s

(i)
t )
)

(40)

Lb(τ
(i), φ) =

T−1

∑
t=0

(
Rt(τ

(i))− bφ(s
(i)
t )
)2

(41)

(42)
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and the rolled out trajectory

τ(i) = (s0,σ0, s1,σ1, . . . , sT,σT) (43)

contains T + 1 sampled state-symbol pairs. Optimising (39) with respect to θ and φ is

performed by backpropagation and stochastic gradient descent.

Algorithm 2 demonstrates how to rollout a policy decomposed into a perceptor

and program in order to obtain trajectory samples τ(i).

Algorithm 2: Perceptor rollout for a single episode
Input: ψθ , ρ
Output: τ, r1:T

1 for t = 0 to T do
2 st ← observe environment
3 σt ← sample from ψθ(σ|st)
4 at ← ρ(σt)
5 rt ← execute at
6 append (st,σt) to τ

The overall perceptor gradients learning procedure is summarised in Alg. 3.

Algorithm 3: Perceptor gradients

1 (θ, φ)← Initialise parameters
2 repeat
3 for i = 1 to n do
4 τ(i), r(i)1:T ← rollout(ψθ , ρ)
5 for t = 0 to T do
6 R(i)

t ← ∑T
i=t γi−tr(i)t

7 A(i)
t ←

(
R(i)

t − bφ(s
(i)
t )
)

8 Lψ ← 1
n ∑n

i=1 ∑T−1
t=0 log ψθ(σ

(i)
t |s

(i)
t )A(i)

t

9 Lb ← 1
n ∑n

i=1 ∑T−1
t=0

(
R(i)

t − bφ(s
(i)
t )
)2

10 L ← Lψ + Lb
11 g← ∇θ, φL(θ, φ)

12 (θ, φ)← Update parameters using g

13 until convergence of parameters (θ, φ);



4.5 E x p e r i m e n ta l R e s u lt s 76

4.4.5 Autoencoding Perceptor

The perceptor is a mapping such that ψθ : S → PΣ(Σ) and so if we augment

it with a generator ωυ : Σ → PS (S), parameterised by υ, we should be able to

generate states (observations) from a structured symbolic description. Thus ψθ and

ωυ form an autoencoder, where the latent space is Σ. Furthermore, the resulting

autoencoder can be viewed as a variational autoencoder and efficiently trained using

the reparameterisation trick [109] as the sampled values for σt during the perceptor

rollout can be reused in the training of the generator ωυ.

We augment the loss in (39) with a reconstruction term such that

Lauto(θ, φ, υ) =
1
n

n

∑
i=1

{
Lψ(τ

(i), θ) + Lb(τ
(i), φ) + Lω(τ

(i), υ)
}

(44)

where

Lω(τ
(i), θ) =

T−1

∑
t=0

log ωυ(s
(i)
t |σ

(i)
t ) (45)

and Lψ, Lb and τ(i) are defined as before.

4.5 E x p e r i m e n ta l R e s u lt s

4.5.1 Cart-Pole Balancing

We first consider the problem of balancing a cart-pole system by learning sym-

bolic representations from the raw image observations. The cart-pole system is well

studied in optimal control theory and it is typically balanced with a Linear Quadratic

Controller (LQR) [239]. We exploit this knowledge and set the program ρ to implement

an LQR. The perceptor ψθ is a convolutional nerual network that learns the state

space representation of the observed images and feeds it into the program in order to

generate a control action. A diagram of the overall experiment is shown in Fig. 23.



4.5 E x p e r i m e n ta l R e s u lt s 77

Figure 23: A diagram of the cart-pole experimental setup. The perceptor extracts the state of
the system from images and feeds it into an LQR controller in order to balance the
system.

4.5.1.1 State Space Model

We define the state vector as

σ =

[
x ẋ α α̇

]T

(46)

where x ∈ R is the linear position of the cart and α ∈ R is the angle of the pendulum

with respect to its vertical position as shown in Fig. 23. By following the derivation in

[124] of the linearised state space model of the system around the unstable equilibrium

[0 0 0 0]T (we ignore the modelling of the gearbox and the motor) we set the system

matrix as

A =



0 1 0 0

0 0 − gml
LM−ml 0

0 0 0 1

0 0 g
L−ml/M 0


(47)



4.5 E x p e r i m e n ta l R e s u lt s 78

and the input matrix as

B =



0

1
M−ml/L

0

− 1
ML−ml


(48)

where m is the mass of the pole, M is the mass of the pole and the cart, l is half of the

pendulum length, g is the gravitational acceleration, L is set to I+ml2

ml and I = ml2

12 is

the moment of inertia of the pendulum. We use the cart-pole system from OpenAI

gym where all the parameters are pre-specified in the source code, namely m = 0.1,

M = 1.0 and l = 0.5.

4.5.1.2 LQR Program

Given the state space representation of the system we can design a feedback

control law u = −Kσ, where u corresponds to the force applied to the cart and K is a

gain matrix. In an LQR design, the gain matrix K is found by minimising the quadratic

cost function

J =
∫ ∞

0
σ(t)TQσ(t) + u(t)TRu(t) dt (49)

where Q and R are parameters penalising certain states of control inputs. We set them

to Q = 103 I4, where I4 is a 4× 4 identity matrix, and R = 1 as proposed in [124]. We

estimated K = [−1 − 2.25 − 30.74 − 7.07] by using the python-control package 1.

We finally set the program ρ to be

ρ(σ) = a =


1 if − Kσ > 0

0 otherwise

(50)

resulting in 2 discrete actions according to the specification of the OpenAI gym

cart-pole environment.
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Figure 24: Architecture of the perceptor ψθ and the baseline network bφ. Convolutions are
represented as #filters × filter size and all of them have a stride of 2. Linear layers
are denoted by the number of output units.

4.5.1.3 Feedforward Perceptor

The input of the perceptor is a stack of 4 consecutive grayscale 32× 128 images

that we render the cart-pole system onto as shown in Fig. 23. This is a setup similar

to the one proposed in [146] which preserves temporary information in the input

such that it can be processed by a convolutional neural network. The architecture of

the perceptor ψθ is shown in Fig. 24. Note that the perceptor shares its convolutional

layers with the baseline network bφ. The output of the perceptor are the mean and the

diagonal covariance matrix of a 4-dimensional normal distribution.

4.5.1.4 Learning Performance

In this experimental setup the perceptor is able to learn from raw image observa-

tions the symbolic representations required by the LQR controller. The average reward

obtained during training is shown in Fig. 25. We compare the performance of the

perceptor gradients algorithm to a standard policy gradients algorithm, where we

have replaced the program with a single linear layer with sigmoid activation. The

perceptor obtains an average reward close to the maximum of 199 approximately

after 3000 iterations compared to 7000 iterations for the standard policy, however the

obtained reward has greater variance. Intuitively this can be explained with the fact

1 http://python-control.org

http://python-control.org
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Figure 25: Learning performance at the cart-pole balancing task of the perceptor gradients
algorithm (left) compared to standard policy gradients (right).

that the program encodes a significant amount of knowledge about the task which

speeds up the learning, but also defines a much more constrained manifold for the

latent space that is harder to be followed during stochastic gradient descent.

4.5.1.5 Perceptor Latent Space

Given that the perceptor has learnt representations that lead to the successful

balancing of the cart-pole system one should expect that the latent space matches the

symbolic state space representation of the system. Careful analysis of (49) reveals that

this is the case, however, the relationship between the latent space and the symbolic

state representation is governed by an additional transformation. Given that Q is a

matrix of the form λI4 where λ is a scalar, then any rotation matrix M applied to σ

will have no impact on the cost because

(Mσ)TλI4Mσ = σT MTλI4Mσ = σTλI4MT Mσ = σTλI4σ (51)

since rotation matrices are orthogonal. Furthermore, scaling the cost function will not

shift the locations of the optima. Therefore, the latent representations learnt by the

perceptor are the same as the symbolic state representation up to scale and rotation. We

use one episode of labelled data to find this linear transformation through constrained

optimisation.

The transformed output of the perceptor for an entire episode is shown in Fig.

26. The position and angle representations learnt by the perceptor match very closely

the ground truth. However, both the linear and angular velocities do not match the
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Figure 26: The latent space learnt by a perceptor (left) and βVAE (right). The thick coloured
lines represent the predicted mean, while the shaded regions represent ±1σ of the
predicted variance.
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true values and the associated variance is also quite large. Investigating the results, we

found out that the LQR controller is able to balance the system even if the velocities

are not taken into account. Given that the performance of the task is not sensitive to

the velocity estimates, the perceptor was not able to ground the velocities from the

symbolic state representation to the corresponding patterns in the observed images.

We compared the representations learnt by the perceptor to the ones learnt by

a βVAE [90]. In order to do so, we generated a dataset of observations obtained

by controlling the cart-pole with the perceptor for 100 episodes. We used the same

architecture for the βVAE encoder as the one shown in Fig. 24 and replaced the

convolutions with transposed convolutions for the decoder. Since the latent dimensions

learnt by an autoencoder are non-identifiable, we performed linear regression between

the learnt latent space and the ground truth values. As it can be seen from the results

in Fig. 26 the representations learnt by the βVAE do capture some of the symbolic

state structure, however they are considerably less precise than the ones learnt by the

perceptor. On the one hand, the βVAE does not manage to extract the velocities either,

but on the other, it collapses the distribution resulting in high certainty of the wrong

estimates.

The loss function of the βVAE is defined as

LVAE =
N

∑
i=1

{
−Eq fθ

(z|x(i))

[
log pgθ

(x(i)|z)
]
+ βDKL(q fθ

(z|x(i))||p(z))
}

(52)

where DKL denotes the Kullback–Leibler divergence. Assuming a standard normal

distribution as the prior p(z), Higgins et al. [90] propose to increase the weight β of

the KL term in order to learn disentangled representations. The results shown in Fig.

26 were obtained with β = 0.1, otherwise the regularisation on the latent space forcing

the latent dimensions to be independent was too strong. It has been recognised by the

community that there are better ways to enforce disentanglement such as minimising

total correlation [36, 107]. However, these methods also rely on the independence

assumption which in our case does not hold. The position and angle of the cart-pole

system are clearly entangled and so we need the program to regularise the latent

space as it captures the underlying interactions.
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Figure 27: A diagram of the ’go to pose’ experimental setup. The perceptor extracts the pose
of the agent from images and feeds it into an A* planner in order to chose an action.

The overall results of this experiment clearly indicate that programs are not only

sufficient for learning grounded symbolic representations, but are in fact necessary

when task related abstractions are to be learnt.

4.5.2 Minecraft: Go to Pose

4.5.2.1 Task Description

We now consider the problem of navigating to a certain location by learning

symbolic representations from images. In particular, we consider a 5× 5 grid world

where an agent is to navigate from its location to a randomly chosen goal pose. The

agent receives +1 reward if it gets closer to the selected goal pose, +5 if it reaches

the position and +5 if it turns to the right direction. To encourage optimal paths, the

agent also receives -0.5 reward at every timestep. A symbolic representation of the

task together with the 2.5D rendering of the environment is shown in Fig. 27. We

express the state of the environment as

σ =

[
x y α

]T

(53)
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Figure 28: Architecture of the perceptor ψθ , the decoder ωυ and the baseline network bφ.
Convolutions are represented as #filters × filter size and all of them have a stride of
2. Transposed convolutions (convT) are represented in the same way. Linear layers
are denoted by the number of output units.

where x, y ∈ {1, 2, 3, 4, 5} are categorical variables representing the position of the

agent in the world and α ∈ {1, 2, 3, 4} represents its orientation.

4.5.2.2 A* Program

Given that the pose of the agent σ and the goal pose G are known this problem

can be easily solved using a general purpose planner. Therefore, in this experiment the

program ρ implements a standard A∗ planner. In comparison to the simple control

law program we used in the cart-pole experiments, ρ in this case is a much more

complex program as it contains several loops, multiple conditional statements as well

as a priority queue. For the experiments in this section we directly plugged in the

implementation provided by the python-astar package 2. At every timestep, a path is

found between the current σt produced by the perceptor and the goal G randomly

chosen at the beginning of the episode such that the agent either moves to one of

the 4 neighbouring squares or rotates in-place at 90◦, 180◦ or 270◦. The output action

at = ρ(σt) is set to the first movement in the found path.

2 https://pypi.org/project/astar/

https://pypi.org/project/astar/
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Figure 29: Learning performance at the ’go to pose’ task of the perceptor gradients (left)
compared to the policy gradients (right).

4.5.2.3 Autoencoding Perceptor

For this experiment we utilise an autoencoding perceptor, the architecture of

which is shown in Fig. 28. The encoder outputs the parameters of 3 categorical

distributions corresponding to x, y and α variables. These distributions are sampled

to generate a latent code that is put through the decoder. We use the Gumbel-Softmax

reparameterisation of the categorical distributions [100] such that gradients can flow

from the decoder through the latent code to the encoder.

4.5.2.4 Learning Performance

In this experimental setup the perceptor is able to learn from raw image observa-

tions the symbolic representations required by the A* planner. The average reward

obtained during training is shown in Fig. 29. Again, we compare the performance

of the perceptor gradients to a standard policy gradients algorithm, where we have

replaced the program with a single linear layer with softmax output. Additionally,

we rendered an arrow in the observed images to represent the chosen goal such that

the policy network has access to this information as well. In only 2000 iterations

the perceptor obtains an average reward close to the optimal one of approximately

11.35, while it takes more than 30000 iterations for the policy gradients algorithm to

approach an average reward of 10. Furthermore, given the highly structured nature

of the environment and the task, the perceptor gradients agent eventually learns to

solve the task with much greater reliability than the pure policy gradients one. This

result clearly demonstrates the potential of neuro-symbolic approaches where neural



4.5 E x p e r i m e n ta l R e s u lt s 86

Figure 30: Confusion matrices between the values predicted by the perceptor (horizontally)
and the true (vertically) values for each of the symbolic state components.

architectures are used to ground symbols to input data patterns while a task encoding

program manipulating the grounded symbols chooses actions.

4.5.2.5 Perceptor Latent Space

In contrast to the cart-pole perceptor, in this case the latent space directly maps

to the symbolic state description of the environment. We collected a dataset of 1000

episodes and compared the output of the perceptor to the ground truth values. The

results are summarised in the confusion matrices in Fig. 30. The results indicate

that the perceptor has learnt to correctly ground the symbolic state description to the

observed data. Despite the fact that there are some errors, especially for the orientation,

the agent still learnt to perform the task reliably. This is the case because individual

errors at a certain timestep have a small impact on the eventual successful solution

of the task due to the robust nature of the abstractions supported by the symbolic

A* planner. For example, whether the agent is one or two steps to the left away from

the goal pose the resulting action will be the same one of moving one step to the left.

These two states, while very different in the input image, are essentially equivalent as

they belong to the same partition of the problem state space.

4.5.2.6 Generating Observations

Since for this experiment we have trained an autoencoding perceptor we are

also able to generate new observations (images of the environment) from a symbolic

specification. In Fig. 31, we have chosen a sequence of symbolic state descriptions,

forming a trajectory, that we have passed through the decoder in order to generate the
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Figure 31: Sampled images of states following a symbolically defined trajectory.

corresponding images. Given the lack of noise in the rendering process we are able

to reconstruct images from their symbolic descriptions almost perfectly. Orientation

seems to be the hardest symbol to ground given the confusion matrices in Fig. 30

as well as the fact that the agent is not correctly oriented in the generated image

corresponding to t = 5 in Fig. 31.

4.5.3 Minecraft: Collect Wood

4.5.3.1 Task Description

The last task we consider is navigating to and picking up an item, in particular a

block of wood, from the environment. In addition to the motion actions, the agent can

now also pick up an item if it is directly in front of it. The pick action succeeds with

50% chance thus introducing stochasticity in the task. As discussed by Levesque [131],

this problem cannot be solved with a fixed length plan and requires a loop in order to

guarantee successful completion of the task. The agent receives +5 reward whenever

it picks up a block of wood. We expand the state to include the location of the wood

block resulting in

σ =

[
x y α xw yw

]T

(54)
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Figure 32: A diagram of the ’collect wood’ experimental setup. One perceptor recognises the
pose of the agent, while the other recognises the position of the wood block. The
pose perceptor is pre-trained on the ’go to pose’ task and is trained further in
tandem with the wood perceptor. Both the A* planner and the decoder utilise the
joint latent space of the pose and wood perceptors. The baseline networks are not
illustrated in the figure for clarity purposes.
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Figure 33: Learning performance at the ’collect wood’ task of the perceptor gradients (left)
compared to the policy gradients (right).

where xw, yw ∈ {1, 2, 3, 4, 5} are categorical variables representing the location of the

block of wood and x, y, and α are defined as before. The symbolic state representation

as well as the rendered observations are shown in Fig. 32.

4.5.3.2 Stacked Perceptors

In the cart-pole experiment the controller balances the system around a fixed state,

whereas in the navigation experiment the A* planner takes the agent to a randomly

chosen, but known state. Learning to recognise both the pose of the agent and the

position of the item is an ill posed problem since there is not a fixed reference frame

- the same sequence of actions can be applied to the same relative configuration

of the initial state and the goal, which can appear anywhere in the environment.

Therefore, we reuse the pose perceptor from the previous experiment and combine

it with another perceptor that is to learn to recognise the position of the wood block.

Importantly, we train both of them jointly, but keep the learning rate for the pre-trained

perceptor considerably lower than the one for the wood perceptor. This ensures that

no catastrophic forgetting occurs during the initial stages of training. The entire

experimental setup is shown in Fig. 32.

4.5.3.3 Learning Performance

As shown in Fig. 33 the agent is quickly able to solve the task with the stacked

configuration of perceptors. It significantly outperforms the neural network policy as

it achieves optimal performance in less than 3000 iterations. These results indicate that
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Figure 34: Sampled images from a symbolic specification over the joint latent space of the pose
and wood perceptors.

lifelong learning can be achieved by maintaining a pool of perceptors responsible for

various symbols, similarly to the neural libraries proposed by Gaunt et al. [65].

4.5.3.4 Generating Observations

Stacking perceptors preserves the symbolic nature of the latent space. In Fig. 34

we have shown a set of generated state samples from a symbolic specification over

the joint latent space. The samples not only look realistic, but also take occlusions

into account correctly (see top left sample). Overall the joint latent space samples

have more artefacts and blurry regions compared to the ones in Fig. 31 which can

potentially be tackled with more advanced autoencoding architectures.

4.5.4 Ablation Experiments

In order to study the contribution of the decoder to the performance of the agent

in the Minecraft tasks we conducted a set of ablation experiments where we replaced

the autoencoding perceptor with a feedforward one. Figure 35 and Figure 36 show the

learning performance at the ’go-to pose’ and ’collect-wood’ tasks, respectively, with a

feedforward perceptor. Overall, the results indicate that the main effect of the decoder

is to decrease the variance of the obtained reward during training. The feedforward
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Figure 35: Learning performance with a feedforward perceptor at the ’go to pose’ task of the
perceptor gradients (left) compared to the policy gradients (right).

Figure 36: Learning performance with a feedforward perceptor at the ’collect wood’ task of
the perceptor gradients (left) compared to the policy gradients (right).

perceptor manages to ground the position of the agent slightly more accurately than

the autoencoding perceptor, however the accuracy of the orientation has decreased.

The reason for this is that orientation has little effect on the performance of the agent

as it can move to any square around it, regardless of its heading. This is similar to

the cart-pole task where the linear and angular velocities had little effect on the LQR

performance.

Figure 37: Confusion matrices between the values predicted by the feedforward perceptor
(horizontally) and the true values (vertically) for each of the symbolic state compon-
ents.
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4.6 D i s c u s s i o n

The proposed perceptor gradients algorithm is a step towards bridging the gap

between symbolic AI and neural networks in an attempt to combine the best of both

approaches. We have successfully applied the algorithm to a small set of synthetic

tasks, but there are limitations that need to be addressed, before it can be applied to

realistic, much more challenging, problems.

Firstly, running the perceptor gradients algorithm on a real system, such as a

real cart pole system observed by a camera means that the method should deal

with noise and model inaccuracies. While the perceptor network can undoubtedly

work with real images, writing an LQR program corresponding to the actual system,

as opposed to its idealised model, will certainly be challenging. Perhaps a fruitful

approach would be to introduce free parameters in the task encoding program and fit

them to the observed data in an online fashion, essentially performing online system

identification. Of course, leaving too many degrees of freedom in the task encoding

program, combined with the initially random perceptor network could result into poor

learning performance. Furthermore, RL is a particularly data inefficient method and

naively deploying it on real systems is impractical. Imitation learning and sim-to-real

transfer are certainly key for any successful application of the perceptor gradients

algorithm to a real system.

Furthermore, the latent symbolic state is assumed to have a fixed size and to

encode a flat collection of symbols. In practice, however, the latent space can vary in

size as well as contain symbols built on top of other symbols. Representing a symbolic

state of a variable length, while capturing hierarchical structure, can be achieved by

utilising an RNN as a perceptor network. Importantly, this can result in extra symbols

being produced and so any task encoding program working with an RNN perceptor

should be robust to such errors. For example, if we consider a Minecraft task where

multiple wooden blocks can exist, then any symbolic state of the world, and transitions,

should be checked for consistency and possibly corrected if an error occurs.

Finally, the learning performance depends not only on the correctness of the

program, but on its abstraction power as well. For example, the Minecraft agent is not

able to recognise its position with perfect accuracy (see Fig. 30) because being 1 and
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2 squares to the left from the goal are seen as equivalent states by the A* program,

which will output go to right action in both cases. Therefore, there is an implicit trade

off between the learning capabilities of the agent and the abstraction power of the

task encoding program. One possible way to overcome this problem is by learning

multiple tasks using a single perceptor and a task encoding program per task. In

fact, the autoencoding perceptor can be viewed as a feedforward perceptor with one

additional task of reconstructing the input image, where the task encoding program is

simply passing the latent symbolic state through a deconvolutional network that is

being learnt. However, choosing a suitable set of tasks that do not lead to conflicting

learning updates is largely an open question.

4.7 C o n c l u d i n g R e m a r k s

In this chapter we introduced the idea of decomposing a policy into a perceptor

and a program resulting in a novel representation learning algorithm able to learn task

related representations. We proposed the perceptor gradients algorithm and proved

that it can be applied with any task encoding program that produces an action in a

finite amount of time.

Our experimental results demonstrate that various task related abstractions can

be learnt both in continuous and discrete domains. We showed that programs can

be viewed as a powerful regulariser of the latent space that is able to encourage

task related interactions between the latent dimensions. An interesting direction for

research based on the proposed framework is to study closer the relationship between

programs and manifolds in the symbolic latent space.

Importantly, we demonstrated that once the task related symbols are grounded

to their visual appearance we can generate new images according to a symbolic

specification. It is to our knowledge that no other representation learning method

supports the generation of observation samples according to a semantically meaningful

specification.



5

Th e π - M a c h i n e

In the previous two chapters of the thesis we studied the problem of learning

symbolic representations when a task encoding program is available. In this chapter

we study the complement problem of inducing task encoding programs when sym-

bolic representations of the data are available. We combine stochastic gradient descent

with A* search in order to efficiently induce programs from small number of observa-

tion traces. We demonstrate that the proposed method successfully learns programs

describing physical systems, agent policies and human demonstrations.

5.1 I n t r o d u c t i o n

Learning to solve a task simply by observing a demonstration is one of the

core problems in robotics [12]. While the observed state action transitions form a

sequence that solves the particular instance of the task, it is rarely the case that the

same sequence will be successful for other initial conditions of the world. The key

challenge is to determine the underlying mechanisms that have generated the observed

trace. Thus, learning from demonstration is a particular instance of the more general

problem of learning transition system models. Other instances of the same problem

range from system identification of dynamical systems [188] and inference of human

choice behaviour [28, 68] to reverse engineering the behaviour of a device or computer

program from observations and traces [212].

Programs are not only expressive enough to model a vast range of transition sys-

tems, but they also provide a structured and formal description of the underlying data

generating mechanisms. With the increasing use of these learnt models in the inner

94
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loops of decision making systems, e. g., in robotics and human-machine interfaces, it

has become necessary to ensure not only that these models are accurate predictors of

behaviour, but also that their causal mechanisms are exposed to the system designer

in a more interpretable manner. There is also the need to explain the model in terms of

counterfactual reasoning [24], e. g., what would we expect the system to do if a certain

variable were changed, or model checking [16] of longer term properties including

safety and large deviations in performance.

In order to address the needs of learning structured transition system models

that are amenable to inspection, we propose to learn high level functional programs

representing abstract models that capture the invariant structure in the observed data.

In addition to our findings so far that programs provide valuable inductive bias when

learning structured representations from raw data, recent works have demonstrated

the usefulness of programs in capturing human-like concepts [123]. Moreover, pro-

grammatic model descriptions boost generalisation and enable knowledge transfer

[216]. Finally, programs are also significantly more amenable to model checking and

human interpretability compared to statistical models fit to the data.

In this chapter, we introduce the π-machine (program-induction machine) – an

architecture which is able to induce LISP-like programs from observed transition

system data traces in order to explain various phenomena. Inspired by differentiable

neural computers [70, 71], the π-machine, as shown in Fig. 38, is composed of a

memory unit and a controller capable of learning programs from data by exploiting

the scalability of stochastic gradient descent. The final program obtained after training,

however, is not an opaque object encoded in the weights of a controller neural network,

but a LISP-like program which provides a rigorous and interpretable description of

the observed phenomenon. A key feature of our approach is that we allow the user

to specify the properties they are interested in understanding, as well as the context

in which the data is to be explained, by providing a set of symbols and predicates of

interest. By exploiting the equivalence between computational graphs and functional

programs we describe a hybrid optimisation procedure based on backpropagation,

gradient descent, and A* search which is used to induce programs from data traces.

We evaluate the performance of the π-machine on three different problems.

Firstly, we apply it to data from physics experiments and show that it is able to induce
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programs which represent fundamental laws of physics. The learning procedure has

access to relevant variables, but it does not have any other prior knowledge regarding

physical laws which it has discovered in the same sense as in [188] although far

more computationally tractably. We then study the use of the proposed procedure in

explaining control policies learnt by a DQN agent. Starting from behaviour traces of a

reinforcement learning agent that has learnt to play the game of Pong, we demonstrate

how the π-machine learns a functional program to describe that policy. Finally, we

consider the domain of learning by demonstration in human-robot interaction, where

the π-machine successfully induces task encoding programs that capture the structure

of the human demonstration. In this domain, the learnt program plays a key role in

enabling the grounding of abstract knowledge (e.g., in natural language commands)

in the embodied sensory signals that robots actually work with.

5.2 R e l at e d w o r k

5.2.1 Learning Structured Task Representations

Assuming that a set of task related symbols can be grounded and observed in

the environment, structured task representations have been shown to improve the

robustness and generalisation capabilities of the agent. Kansky et al. [103] propose

to learn networks of first order logic templates (schemas) applicable to the observed

entities and perform planning in order to perform the task. They show that Schema

networks outperform various neural architectures especially when tested on novel

tasks within the same domain. The proposed schemas are limited, however, to first

order logic relations between the observed symbols. A more general approach would

be to induce task encoding programs. Verma et al. [216] propose to learn programs

replicating the behaviour of a pre-trained DRL agent. They express the programs

into a domain specific language which can represent multiple Proportional-Integral-

Derivative controllers guarded by different conditions. We follow a similar idea in

order to explain the behaviour of a DQN agent, however, we induce programs from

single observation traces, rather than by querying the underlying policy that generated

the traces.
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5.2.2 Program Learning and Synthesis

Program learning and synthesis has a long history, with the long-standing chal-

lenge being the high complexity deriving from the immense search space. Following

classic and pioneering work such as by Shapiro [193] who used inductive inference in

a logic programming setting, others have developed techniques based on a variety of

methods ranging from SAT solvers [196] to genetic algorithms [188], which tend to

scale poorly hence often become restricted to a narrow class of programs. Recently,

deep neural networks have been augmented with a memory unit resulting in models

similar to the original von Neumann architecture. These models can induce programs

through stochastic gradient descent by optimising performance on input/output ex-

amples [70, 71, 73] or synthetic execution traces [33, 136, 177]. Programs induced with

such neural architectures are encoded in the parameters of the controller network and

are, in general, not easily interpretable (particularly from the point of view of being

able to ask counterfactual questions or performing model checking). Interestingly,

paradigms from functional programming such as pure functions and immutable data

structures have been shown to improve performance of neural interpreters [116].

Another approach is to perform neural program synthesis and directly generate the

source code of the output program which yields consistent high level programs. Usu-

ally, these types of approaches require large amounts of labelled data - either program

input/output examples [17, 44] or input paired with the desired output program code

[232].

Determining how many input/output examples or execution traces are required

in order to generalise well is still an open research problem. In this chapter, however,

we focus our attention more on the explanatory power afforded by programs rather

than on the broader problems of generalisation in the space of programs. While these

characteristics are of course related, we take a view similar to that of Ribeiro, Singh and

Guestrin [180], arguing that it is possible to build from locally valid program fragments

which provide useful insight into the black-box processes generating the data. Program

synthesis methods that combine symbolic structures with neural architectures have

been shown to be extremely efficient in learning from input/output pairs [31, 160].
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In this line of work, Andreas et al. [11] introduced Neural Module Networkss

(NMNs) for solving visual question answering tasks. An NMN is built up from a set of

interconnected modules (simple differentiable programs) which form a computational

graph that can be optimised with gradient descent techniques and whose structure is

determined by syntactic parsing of natural language queries. NMNs not only achieve

state of the art results on various visual question answering tasks, but also provide a

programmatic description of the reasoning process executed by the network in order

to answer the query. There are multiple extensions to NMN attempting to replace the

syntactic parser with a flexible end-to-end architecture search, but they usually start

with behavioural cloning of the parser based NMN [10, 93, 94, 102]. In comparison,

we do not assume the presence of natural language description of the underlying

data generating process, but rather work only with observed task related symbols and

search the space over possible program structures with classic planning methods. We

introduce a hybrid optimisation procedure that combines gradient descent and A*

search which is at the core of the π-machine. Additionally, NMNs provide only partial

explanation as individual modules are black box neural networks themselves, whereas

we induce high level programs with clearly defined functions. We demonstrate that the

π-machine is able to learn informative and interpretable high-level LISP-like programs,

even just from a single observation trace.

5.2.3 Explainability and Interpretability

The immense success of deep neural network based learning systems and their

rapid adoption in numerous real world application domains has renewed interest in

the interpretability and explainability of learnt models 1. There is recognition that

Bayesian rule lists [130, 228], decision trees and probabilistic graphical models are

interpretable to the extent that they impose strong structural constraints on models of

the observed data and allow for various types of queries, including introspective and

counterfactual ones. In contrast, deep learning models usually are trained ‘per query’

and have numerous parameters that could be hard to interpret. Zeiler and Fergus [237]

introduced deconvolutional networks in order to visualise the layers of convolutional

1 See, for instance, the end user concerns that motivate the DARPA Explainable AI Programme: http:
//www.darpa.mil/program/explainable-artificial-intelligence

http://www.darpa.mil/program/explainable-artificial-intelligence
http://www.darpa.mil/program/explainable-artificial-intelligence
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networks and provide a more intuitive understanding of why they perform well.

Similar approaches can be seen in [23, 108], in the context of autonomous driving.

Zahavy, Ben-Zrihem and Mannor [235] describe Semi-Aggregated Markov Decision

Process in order to analyse and understand the behaviour of a DQN based agent.

Methods for textual rationalisation of the predictions made by deep models have also

been proposed [81, 87, 129]. While all of these works provide useful direction, we need

many more methods, especially generic ones, that need not be hand-crafted to explain

specific aspects of individual models. In this sense, we follow the model-agnostic

explanation approach of Ribeiro, Singh and Guestrin [180], who provide “textual or

visual artefacts” explaining the prediction of any classifier by treating it as a black-box.

Similarly to the way in which [180] utilise local classifiers composed together to

explain a more complex model, we present an approach to incrementally constructing

functional programs that explain a complex transition system from more localised

predicates of interest to the user.

The π-machine treats the process which has generated the observed data as a

black-box and attempts to induce a LISP-like program which can be interpreted and

used to explain the data. We show that the proposed method can be applied both to

introspection of machine learning models and to the broader context of autonomous

agents where the induced programs encode the task of interest.

5.3 P r o b l e m D e f i n i t i o n

Consider the labelled transition system Ω(S ,A, δ) where S is a non-empty set of

states, A is a non-empty set of actions, each parametrised by θ ∈ RD, and δ : S ×A →

S is the state transition function. We define an observation trace T as a sequence of

observed state-action pairs (st, at(θt)) ∈ S ×A generated by the recursive relationship

st+1 = δ (st, at( θt)) for 1 ≤ t ≤ T. We are interested in inducing a LISP-like functional

program ρ which when executed by an abstract machine is mapped to an execution

trace Tρ such that Tρ and T are equivalent according to an input specification.

We represent the abstract machine as another labelled transition system Π(M, I , ε)

whereM is the set of possible memory state configurations, I is the set of supported
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Figure 38: Overall architecture of the π-machine. The current best candidate solution (1) is
used to propose new, structurally more complex candidates (2). Each one of the
new candidate programs ρ is optimised (3) through gradient descent by comparing
its execution trace to the observation trace (4). The observation trace in this case is a
demonstration of a tower building task. During execution, the program has access
to memory (5) which stores both state variables and induced parameters. All new
candidate programs are scored based on their performance and complexity and are
inserted in the candidate solutions priority queue (6). Once the execution trace of a
candidate matches the observation trace the final solution is returned (7).

instructions and ε :M×I →M specifies the effect of each instruction. We consider

two types of instructions – primitive actions which emulate the execution of a ∈ A

or arithmetic functions f ∈ F such that I = A∪F . Furthermore, a set of observed

state variablesMv ⊆ S , which vary over time, are stored in memory together with a

set of induced free parametersMp. The variables inMv correspond to the available

symbols extracted from the observed data and form a context which the program is

built on. A custom detector Dv, operating on the raw data stream, could be provided

for each variable, thus enabling the user to make queries with respect to different

contexts and property specifications.

The execution of any arbitrarily structured program containing primitive actions

results in a sequence of actions. Therefore, we represent a program ρ as a function

which maps a set of input variables xv ⊂Mv and a set of free parameters xp ⊂Mp to

a finite sequence of actions â1(θ̂1), . . . âT′( ˆθT′). We are interested in inducing a program

which minimises the total error between the executed and the observed actions:

L(ρ) =
min(T,T′)

∑
t=1

σact(ât, θ̂t, at, θt) + σlen(T, T′) (55)
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The function σact measures the similarities between two actions, while σlen compares

the lengths of the generated and observed action traces. By providing the error

functions σact and σlen one can target different aspects of the observation trace to be

explained as they specify when two action traces are considered similar.

5.4 M e t h o d

The proposed program induction procedure is based on two major steps. Firstly,

we explain how a given functional program can be optimised such that the loss

L(ρ) is minimised. Secondly, we explain how the space of possible programs can be

searched efficiently by utilising gradient information. An architectural overview of the

π-machine is provided in Fig. 38.

5.4.1 Program Optimisation

5.4.1.1 Functional Programs as Computational Graphs

Neural networks are naturally expressed as computational graphs which are the

most fundamental abstraction in computational deep learning frameworks [1, 21, 206].

Optimisation within a computational graph is usually performed by pushing the input

through the entire graph in order to calculate the output (forward pass) and then

backpropagating the error signal to update each parameter (backward pass). A key

observation for the development of the π-machine is that computational graphs and

functional programs are equivalent as both describe arbitrary compositions of pure

functions applied to input data. For example, Fig. 39 shows how a logistic regression

classifier can be represented both as a computational graph and as a functional

program. Therefore, similarly to a computational graph, a functional program can also

be optimised by executing the program (forward pass), measuring the error signal

and then performing backpropagation to update the program (backward pass).
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Figure 39: A logistic regression classifier expressed as a computational graph (left) and a
functional program (right).

5.4.1.2 Forward Pass

When a program is executed it is interpreted to a sequence of instructions

i1, . . . , in ∈ I which are executed by recursively calling ε(. . . ε(ε(M1, i1), i2) . . . , in).

M1 is the initial memory state containing the observed variables from s1 and any

induced parameters. The π-machine keeps a time counter t which is initialised to 1

and is automatically incremented whenever a primitive action instruction is executed.

If the instruction ik is a primitive action, ik ∈ A, then the π-machine automatically

sets ât = ik and invokes the error function σact(ât, θ̂t, at, θt), where θ̂t has been calculated

by previous instructions. If the error is above a certain threshold emax the program

execution is terminated and the backward pass is initiated. Otherwise, the time counter

is incremented and the values of the variables inMv are automatically updated to the

new observed state. The π-machine, essentially, simulates the execution of each action

reflecting any changes it has caused in the observed state.

Alternatively, if the currently executed instruction ik is a function, ik ∈ F , then the

resulting value is calculated and ik, together with its arguments, is added to a detailed

call trace χ maintained by the π-machine. Importantly, each function argument is

either (i) the output of another function g ∈ F , (ii) a parameter p ∈ xp or (iii) a

variable v ∈ xv read from memory at time t. All this information is kept in χ which

eventually contains the computational tree for the entire program.

5.4.1.3 Backward Pass

The gradients of the loss function L(ρ) with respect to the program inputs xv and

xp are required to perform a gradient descent step. Crucially, programs executed by

the π-machine are automatically differentiated. The π-machine performs reverse-mode

automatic differentiation, similarly to Autograd [138], by traversing the call trace χ,

and post-multiplying Jacobian matrices. We assume that the Jacobian matrix with
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Figure 40: An example traversal of the parameter space containing both both continuous
parameters (y-axis) and symbolic variables (x-axis). The dashed lines represent the
partitioning induced by the corresponding KD-tree. Whenever the current solution
enters a new partition it is immediately moved to the corresponding variable value.
These switching points are denoted with outlined circles and red arrows.

respect to every input argument of any function f ∈ F or any specified error function

σact is known a priori. Let f ∈ F be a function whose output needs to be differentiated

with respect to the input arguments. There are three types of derivatives, which need

to be considered in order to traverse backwards the entire tree of computations:

1. Let g ∈ F , then ∂ f
∂g is the Jacobian matrix of f with respect to the output of g

and can be directly calculated.

2. Let p ∈ xp, then the gradient ∂ f
∂p is calculated by multiplying the corresponding

Jacobian matrix of f with the value of p.

3. Let v ∈ xv, then the gradient ∂ f
∂v

∣∣∣
t=tr

is calculated by multiplying the correspond-

ing Jacobian of f with the value of the variable at the time it was read from

memory tr.

5.4.2 Gradient Descent Step

Once the gradient ∇pL(ρ) of the loss function with respect to each input para-

meter p ∈ xp is calculated we utilise AdaGrad [47] to update the values of all

parameters after each program execution. The gradient ∇vL(ρ) with respect to each
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input variable v ∈ xv is also available. However, a variable cannot be simply updated

in the direction of the gradient as it represents a symbol, not just a value. Variables

can only take values from memory which are automatically updated according to the

observation trace during execution. Nevertheless, the gradient provides important

information about the direction of change which we utilise to find variables that

minimise the loss. Whenever the memory state is automatically updated, a KD-tree

is built for each type of variable stored in memory. We assume that the variables in

memory are real vectors with different length. So, we represent the KD-tree which

stores all D-dimensional variables in memory at time t as KD
t . If a d-dimensional

variable v is to be optimised it is replaced with a temporary parameter ptemp initialised

with vt which is the value of v read from memory at the respective time step t. The

temporary parameter ptemp is updated together with the other parameters in xp using

AdaGrad [47]. After each descent step, the nearest neighbour of the updated value

p′temp is determined by querying the KD-tree with Kd
t (p′temp). If the result of the query

is a different d-dimensional variable u then the temporary parameter is immediately

set to ptemp = ut. As this often shifts the solution to a new region of the error space

the gradient history for all parameters p ∈ xp is reset. Eventually, when a solution is

to be returned, the temporary parameters are substituted with their closest variables

according to the respective KD
t . A diagram illustrating the resulting parameter space

traversal is shown in Fig. 40. Importantly, even though we are using AdaGrad, the

augmentation which we described is optimiser agnostic and so can be applied to any

gradient descent optimiser.

The forward and backward passes are repeated until the error is below the

maximum error threshold emax or a maximum number of iterations is reached. After

that the optimised program ρ∗ is scored according to its error and complexity, and

pushed to a priority queue holding potential solutions.

5.4.3 Structure Search

We represent the space of possible program structures as a graph G = (TAST, E)

where each node Ti ∈ TAST is a valid program abstract syntax tree (AST). There is an

edge from Ti to Tj if and only if Tj can be obtained by replacing exactly one of the
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leaves in Ti with a subtree Ts of depth 1. The program induction procedure always

starts with an empty program. We frame the search over program structure as a path

finding problem and solve it through the use of an A* planner.

5.4.3.1 Score Function

The total cost function we use is

ftotal(ρ) = C(ρ) + L(ρ) (56)

where L(ρ) is the loss function defined in equation (55) and C(ρ) is a function which

measures the complexity of the program ρ. C(ρ) can be viewed as the cost to reach

ρ and L(ρ) as the distance to the desired goal. The complexity function C(ρ) is the

weighted sum of (i) maximum depth of the program AST; (ii) the number of free

parameters; (iii) the number of variables used by the program; the weights of which

we set to wC = [10, 5, 1]. These choices have the effect that concise programs which

maximally exploit the underlying dependencies between the symbols extracted from

the observed data trace are preferred.

5.4.3.2 Neighbours Expansion

When the current best candidate solution is popped from the priority queue, we

check if it matches the observation trace according to the input specification. If so,

the candidate can be returned as the final solution, otherwise it is used as a seed to

propose new candidate solutions. Typically in A* search, all neighbouring nodes are

expanded and pushed to the priority queue, which is not feasible in our case due

to the size of the search space. Therefore, we utilise the available gradients in order

to perform a guided proposal selection. Each leaf in the abstract syntax tree Tρ of a

seed candidate solution ρ corresponds to a parameter or a variable. According to the

definition of G we need to select exactly 1 leaf to be replaced with a subtree Ts of

depth 1. We select leaf l ∈ Tρ according to:

l = arg max
x∈xp∪xv

‖∇xL(ρ)‖2 (57)
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After that, all possible replacement subtrees are constructed. An AST subtree Ts of

depth 1 represents a function call. We prune the number of possible functions in F

by ensuring type consistency. Each leaf of Ts can be a parameter or a variable. So, all

possible combinations are considered. New variable leaves are initialised to a random

variable with suitable type from memory, while new parameter leaves are sampled

from the multivariate normal distribution N (0, 0.1). As a result, if n f functions are

type compatible with l and each function takes na arguments at most, then there are

2na · n f replacement subtrees, resulting in that many new candidates. It is common to

assume fixed upper limit of na such that the number of new candidates is contained

in a reasonable range. All newly proposed candidates are optimised in parallel, scored

by ftotal and pushed to the priority queue.

5.5 E x p e r i m e n ta l R e s u lt s

In order to evaluate the effectiveness of the π-machine, we apply it to three

different scenarios.

Firstly, we consider the problem of system identification of a physical system and

show that the π-machine successfully induces basic physical laws from observational

data more efficiently than state of the art methods.

Secondly, we demonstrate how a program can be induced in order to explain the

behaviour of a DQN agent. This experiment is based on our view that the core deep

neural network based policy learner and the explaining program play complementary

roles. As is well known by now, there are numerous advantages to performing end-

to-end policy learning, such as DQN-learning from raw video. However, there is also

the need to explain the behaviour of the learnt policy with respect to user-defined

symbols of interest, hence a program defined in terms of user-defined detectors Dv.

Lastly, we apply the π-machine to a learning-by-demonstration task, where

a demonstrated behaviour of physical object manipulation is explained through a

functional task encoding program that captures the abstract structure of that planning

task.
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Figure 41: The π-machine applied to explaining the behaviour of a pendulum (red) and a
linear oscillator(blue). The 3 best programs obtained for each system are shown and
annotated on the log-error plot (bottom).

All experiments are run on an Intel Core i7-4790 processor with 32GB RAM. The

π-machine is implemented in Clojure, which is a LISP dialect supporting powerful

data structures and homoiconic syntax (see Appendix A).

Given the nature of the experimental tasks, we use the following list of supported

functions, F , for all of our experiments: vector addition, subtraction and scaling.

5.5.1 Physical Systems

The transition dynamics of a second order dynamical system is written as ẍ(t) =

k1x(t) + k2ẋ(t), where x(t) is the state of the system at time t and k1, k2 are system

coefficients. We have recreated an experiment described in Schmidt and Lipson
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[188], where the authors show the learning of physical laws associated with classical

mechanical systems including the simple pendulum and linear oscillator. A diagram

of these two systems is shown in Fig. 41 (top left). We set A = {accel(θ)} where θ ∈ R

for both experiments. The observation trace for each system is generated by simulating

the dynamics for 1s at 100Hz. We specify the action error function as σact = ‖θ̂ − θ‖2

and set σlen = 0. In the pendulum experiment, x ∈ R is the angular position of the

pendulum, while v = ẋ ∈ R is the angular velocity. In the linear oscillator experiment,

x and v are the linear position and velocity, respectively.

The three best solutions found by the π-machine for each system are shown in Fig.

41 (top right). The best solution for each system correctly represents the underlying

laws of motion. The program describing the behaviour of the pendulum was induced

in 18 iterations, while the linear oscillator program needed 146 iterations. The total

number of possible programs with AST depth of 2, given the described experimental

setup, is approximately 1.7× 104. The average duration of an entire iteration (propose

new programs, optimise and evaluate) was 0.6s. Schmidt and Lipson [188] achieve

similar execution times, but distributed over 8 quad core computers (32 cores in

total). The experimental results demonstrate that the π-machine can efficiently induce

programs representing fundamental laws of physics.

5.5.2 Deep Q-value Network

We consider explaining the behaviour of a DQN agent trained to play the ATARI

Pong game. We are interested in the question: how does the network control the

position of the paddle in order to hit the ball when it is approaching. A diagram

of the experimental setup is shown in Fig. 42 (top left). The behaviour of the DQN

is observed during a single game. Since the environment is deterministic, the only

component of the state transition function generating the observation trace is the

policy π(a|s) that the DQN agent has learnt. We would like to explain the behaviour

of the DQN in terms of the position of the opponent, the ball and the DQN agent (not

just in terms of RAM or pixel values for instance). Therefore, the observation trace

contains those positions which are extracted from each frame by a predefined detector.

We set A = {move(θ)} where θ ∈ R and represent the discrete actions of the network
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Figure 42: The π-machine applied to explaining the behaviour of a DQN agent playing ATARI
Pong. The 3 best programs obtained for each system are shown and annotated on
the log-error plot (bottom).

left, right, nop as move(1), move(−1), move(0) respectively. We specify the action

error function as σact = ‖θ̂ − θ‖2 and set σlen = 0.

The best 3 programs found by the π-machine are shown in Fig. 42 (top right),

where it took 38 iterations for the best solution (average iteration duration 3.2s). By

inspecting the second solution it becomes clear that the neural network behaviour can

be explained as a proportional controller minimising the vertical distance between

the agent and the ball. However, the best solution reveals even more structure in the

behaviour of the DQN agent. The coefficient in front of the agent position is slightly

larger than the one in front of the ball position which results in a small amount of

damping in the motion of the paddle. Thus, it is evident that the DQN not only learns
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Figure 43: Program induced by the π-machine explaining a human demonstration of tower
building (induced for 27 iterations and 7.2s).

the value of each game state, but also the underlying dynamics of controlling the

paddle. Furthermore, we have tested the performance of an agent following a greedy

policy defined by the induced program. In our experiments over 100 games this agent

achieved a score of 11.1(±0.17). This is not quite the score of 18.9(±1.3) obtained by

an optimised DQN, but it is better than human performance 9.3 [146]. This difference

of course emanates from the predefined set of detectors not capturing all aspects

of what the perceptual layers in the DQN have learnt, so improved detector choices

should yield interpretable programs that also attain performance closer to the higher

score of the black-box policy.

5.5.3 Learning by Demonstration

We consider a learning by demonstration scenario where a person demonstrates

how to build a tower in a virtual simulated 2D environment. A typical demonstration



5.6 D i s c u s s i o n 111

is depicted in Fig. 43 (top). Our goal is to learn a program describing the demonstration

such that it could later be utilised by an autonomous agent.

We are interested in how a person moves the cubes through the entire demon-

stration. So, we set A = {pick(θ), place(θ)}, where θ ∈ R2 is a 2D location. We specify

the action and length error functions as

σact(â, θ̂, a, θ) =


‖θ̂ − θ‖2 if â = a

dmax otherwise

σlen(T′, T) = (T′ − T)2 (58)

where dmax is the maximum distance within the simulated 2D environment. The states

in the observation trace contain the 2D position of every cube in the environment.

We tested the π-machine on 300 demonstrations and it successfully induced a

program for each one of them. On average, 67 iterations (average iteration duration

0.4s) were needed per demonstration. The solution for one of the demonstrations is

shown in Fig. 43. Closer inspection reveals that the program not only describes which

cube was picked up and put where, but also what spatial relations are considered

in the placement. The π-machine induced and optimised a free parameter which in

combination with the function addition is used to encode the relation “above” as

(+ loc [-0.05 1.17]). This type of abstract knowledge is crucial for efficient task

learning from demonstration.

5.6 D i s c u s s i o n

Even though the π-machine can be applied to a relatively wide range of tasks,

as we have shown so far, the symbols it can work with and the programs it can

induce are not sufficiently general in order to tackle truly interesting problems, such

as finding new algorithms, forming scientific theories or reverse engineering software

components. These challenging tasks are likely to remain unsolved for decades,

however the π-machine is a small, but exciting, step in this direction and so we outline

several suggestions for further research.
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Firstly, the π-machine assumes that the observed symbols in the execution trace

can be represented in some real vector space, such that the gradient is well defined

and continuous optimisation techniques can be directly applied. However, there

certainly are symbols of interest that belong to discrete sets. For example, encoding

whether a certain entity exists in the environment requires a boolean variable, whereas

representing the count of something is naturally expressed with integers. A promising

research direction is to integrate within the π-machine an integer optimisation method

together with an SMT solver in order to efficiently search over discrete symbols.

Secondly, programs currently induced by the π-machine do not support branching

because, even though gradients can flow through each individual branch, they cannot

flow through the branching condition. Conditional branching requires methods for

efficiently searching over possible conditions from an assumed class of expressions.

Modern solvers for syntax-guided program synthesis [9] seem to be particularly well

fitted for the purpose of finding a suitable branching condition.

Furthermore, the programs induced by the π-machine are equivalent to combina-

tional logic as they can express arbitrary boolean expressions (e.g. by using modulo 2

arithmetic), but cannot carry any state information from one time step to the next one.

Hence, an important step is to expand the class of supported programs by allowing

them to use memory. Currently, programs can include parameters allocated on the

stack (see Fig. 43), but they are treated as constants. An intuitive way of enabling

state persistence across time is to induce a tail recursive call invoking the program

for the next time step, instead of the π-machine explicitly calling the program at each

time step. Such a differentiable program would effectively encode an RNN and so

techniques such as backpropagation through time can still be applied to the program.

Additionally, given the finite size of the input arguments, various methods for approx-

imately solving Partially Observable Markov Decision Processs (POMDPs) can also be

applied [27]. Another possibility is to induce programs which manipulate memory

allocated on the heap, however this dramatically increases the size of the search space

and so most likely techniques such as sketching would be needed [196].

Importantly, all of the aforementioned extensions are needed to reach the ex-

pressive power of a Turing machine. Assuming that branching is available, then the

introduction of tail recursion would enable the π-machine to induce programs equi-
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valent to a Finite State Machine (FSM), whereas general recursion, supported by a call

stack, would result in programs equivalent to a Pushdown Automaton (PDA). Finally,

providing the induced programs with the ability to randomly access memory (or work

with a queue or a deque), together with branching, would result in programs equi-

valent to a Turing machine. In theory, Turing completeness is an important property,

but in practice performing program induction within a Turing complete language is a

challenging problem. Perlis [168] warns us exactly about this phenomena “Beware of

the Turing tar-pit in which everything is possible but nothing of interest is easy.”. Therefore,

targeting richer DSL’s, rather than aiming for Turing completeness, seems to be a more

fruitful direction for the immediate future.

Finally, the Neural Turing Machine (NTM) [70, 71] can be viewed, in a way, as

the end-to-end analogue of the π-machine as it induces a program that best fits the

data. However, the program induced by the NTM is encoded in the weights of the

RNN controller and cannot be inspected as the LISP-like programs induced by the

π-machine. Nevertheless, the NTM successfully solves complex problems by purely

learning from data, so it would certainly be interesting to extract symbolic programs

from the NTM itself, in a fashion similar to explaining a DQN.

5.7 C o n c l u d i n g R e m a r k s

The π-machine can also be viewed as a framework for automatic network archi-

tecture design [10, 93, 102, 149, 241], as different models can be expressed as concise

LISP-like programs (see Fig. 39). Deep learning methods for limiting the search space

of possible programs, which poses the greatest challenge, have been proposed [17, 128,

217], but how they can be applied to more generic settings where labelled training

data is not available is an open question. The specification of variable detectors not

only addresses this issue, but enables the user to make targeted and well grounded

queries about the observed data trace.

In our view, the ability to induce simple interpretable models, which can explain

observed data is crucial not only for the further advancement of machine learning and

its applications, but also for the development of robust autonomous agents. Enabling
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robots to infer physical laws or the structure behind a human demonstration can

speed up the process of learning immensely and potentially make zero shot learning

tractable in realistic scenarios.

In conclusion, we proposed a novel architecture, the π-machine, for inducing

LISP-like functional programs from observed data traces by utilising backpropagation,

stochastic gradient descent and A* search. The experimental results demonstrate that

the π-machine can efficiently and successfully induce interpretable programs from

short data traces.



6

F u t u r e w o r k a n d C o n c l u s i o n s

6.1 K e y I d e a s

This dissertation represents an attempt to bridge the gap between data driven

machine learning methods and classic symbolic AI approaches in order to improve the

capabilities of autonomous agents. There are 2 key ideas at the conceptual core of our

work that allow us to think about highly structured symbolic systems and universal

learners such as neural networks in the same framework.

Task decomposition

Any task that is to be executed by an embodied autonomous agent can be natur-

ally decomposed into two stages - i) perceiving the world and ii) making decisions.

This decomposition enables us to apply statistical machine learning methods to the

perception problem in order to extract symbolic representations, i. e. semantically

meaningful patterns, from data such that they can be processed by a formal symbolic

system emulating the decision making process. Such a hybrid neuro-symbolic architec-

ture combines the merits of both schools of thought, potentially providing capabilities

that neither of them can achieve independently. Similar ideas have been proposed

and studied before, however only in the past few years, with the advancement of

deep learning, we have obtained general learners that can truly cope with challenging

pattern recognition problems.

115
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Task encoding programs

As we have demonstrated, programs are sufficiently expressive to represent a

decision making procedure for various tasks given the right set of symbols is available.

On one hand, task encoding programs can provide a strong inductive bias for the

statistical machine learning based perception modules, and thus ensuring that the

required set of symbols will be learnt. On the other hand, the available set of symbols

shapes the space of possible programs and tasks that can be expressed. There is a

bidirectional interaction, in the context of embodied autonomous agents, between

learning task encoding programs and symbolic representations of the world, which

we find intriguing and discuss further in the following section.

6.2 F u t u r e Wo r k & O p e n Q u e s t i o n s

6.2.1 Scaling to Natural Tasks and Environments

Scaling the proposed methods to natural tasks and environments poses a set of

challenging scientific and engineering problems caused by the inevitable variations

in the world and corresponding sensory signals. State of the art pattern recognition

methods such as deep learning seem to perform well provided that vast amounts of

labelled data is available. However, if autonomous agents are to truly work closely

with people, then safety becomes a critical concern, hence the need for interpretable

machine learning. Embedding programs into the decision making processes carried

out by autonomous agents will allow for formal validation and verification techniques

to be applied as demonstrated by some recent and seminal works [61, 170].

6.2.2 Joint Learning of Tasks Encoding Programs and Symbolic World Representations

As already mentioned, there are intricate bidirectional interactions between the

available symbolic world representations and the possible task encoding programs
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that can be expressed. We have demonstrated that conditioning on any one of them

enables the learning of the other. Is it possible, however, to learn both of them jointly?

Our intuition is that simply applying techniques such as expectation maximisation

would not yield satisfactory results due to the highly structured nature of the problem.

A particular direction that we believe to be more fruitful is to find a way of sequencing

tasks in a suitable curriculum leading to the gradual learning of more and more

complex programs and symbols constantly alternating between one or the other.

6.2.3 Lifelong Learning

Lifelong learning is the only way to cope with constantly varying worlds and

robustly adapt to changes. We find the idea of maintaining a pool of perceptors (as

introduced in chapter 4), which are able to extract various symbolic representations

from sensory data, particularly appealing for life long learning. Whenever a new

symbol is to be recognised a corresponding perceptor can be added to the pool and

kept up-to-date. The size of the pool can be bounded by removing obsolete perceptors

or merging similar ones. It is not obvious, however, how to maintain a similar pool of

learnt programs. Certainly, entire programs will be too specific to be useful and so

key sub-programs will have to be extracted. Such an architecture could potentially

store perceptual and procedural knowledge in a form easily transferable to new tasks

and extendable from new experiences.

6.3 C o n c l u d i n g R e m a r k s

In this dissertation we addressed the problem of learning structured task related

abstractions. Firstly, we considered learning symbolic representations of the world

assuming that a task encoding program is available and proposed a framework

applicable to collaborative HRI scenarios together with a more general algorithm that

supports any task encoding program. Our results clearly indicate that task encoding

programs provide a strong inductive bias sufficient for learning relevant symbolic

representations of the world. Secondly, we considered the complement problem
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of learning a task encoding program assuming that symbolic description of the

environment is available. We proposed an efficient program induction procedure

for learning task encoding programs from observation traces and demonstrated that

they not only capture important structural features of the task, but also result in

interpretable representations of black-box models such as deep neural networks. A

pervasive theme throughout the entire thesis was the synergetic combination of the

statistical machine learning and symbolic AI paradigms.



A
P r o b a b i l i s t i c P r o g r a m m i n g

w i t h A n g l i c a n

a.1 P r o b a b i l i s t i c P r o g r a m m i n g

The main goal of probabilistic programming is to bridge the gap between the

theoretical desing and the actual implementation of probabilistic models by bringing

together the fields of machine learning, statistics and programming languages as

shown in Fig. 44. Probabilistic languages replace the common notion of a program

variable with a random variable and so operations performed with the variables would

typically require some sort of inference that is automatically performed by a built-in

inference engine. There are numerous probabilistic programming languages 1 which

can be classified by the type of supported probabilistic models and available inference

engine.

In this tutorial we introduce Anglican [225] which is a functional high-order

probabilistic language implemented as a DSL in Clojure. It supports more than 10

inference algorithms based on sampling, including ones that support massive paral-

lelism, and a large number of probabilistic primitives. Additionally, it can cope with

models that change their structure over time and have a varying number of latent

variables. We have used Anglican to implement the main inference procedure in GLIDE

(chapter 3) and Clojure to implement the π-machine (chapter 5). Besides the technical

aspects, both Clojure and Anglican have influenced the conceptual core of this thesis

by shaping the author’s views about programs and their representational power. In

1 http://probabilistic-programming.org/wiki/Home
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Figure 44: Probabilistic programming as a multidisciplinary field.

this short tutorial we first provide a brief introduction to Clojure and then demonstrate

how several simple probabilistic models can be implemented in Anglican.

a.2 I n t r o d u c t i o n t o C l o j u r e

Clojure 2 is a functional language which runs on the Java virtual machine that

can be best described as a modern LISP dialect with efficient data structures designed

for parallelism. Why should one consider learning Clojure? After all, isn’t it just

another programming language? Clojure offers a unique and well balanced mixture

between powerful abstract concepts (e. g. metaprogramming and transducers) and

practical aspects (e. g. full compatibility with the Java ecosystem). In general, we find

it disappointing, that functional programming languages are extremely underused

for machine learning while some of their key features such as functions as first class

citizens, immutable data structures and pure functions are particularly well suited for

processing large amounts of data.

2 http://clojure.org/

http://clojure.org/
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a.2.1 Basic Syntax

Functions in Clojure are called by enclosing the function name, followed by the

corresponding arguments if any, in brackets

(println "Hello world!")

Every single possible operation that one might want to perform in Clojure is a function.

The arithmetic expression 10(2.1+4.3)
2 is therefore calculated by

(/ (* 10 (+ 2.1 4.3)) 2)
>> 32.0

and logic operators are also functions that return a Boolean value

(and (= 3.14 3.14) (not= true false))
>> true

Conditional statements are not an exception either as they are functions that take 3

arguments: i) condition, ii) value to be returned if the condition is true and iii) value

to be returned otherwise. Therefore, the following expressions

(if (<= 3 3) (+ 10 10) 0)
>> 20
(+ (if (< 4 5) 1 2) 3)
>> 4

are perfectly valid Clojure.

a.2.2 Scoped Variables

Variables can be defined within the scope of a let expression, which is a function

that takes a list of variable definitions and a series of expressions and returns the

value of the last one. For example, the following snippet evaluates to 12

(let [x 10
y 2]

(+ x y))
>> 12

and so does that

(let [x 10
y 2]

(* x 3)
(+ x y))

>> 12

One typically uses expressions with side effects before the last one
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(let [x 10
y 2]

(println "x times 3 =" (* x 3))
(+ x y))

>> 12

a.2.3 Functions

Functions are first class citizens in Clojure and so can be defined as scoped

variables. The following snippet defines the function f (x, y) = 2x + y + 3 and returns

the value at f (5, 10):
(let [f (fn [x y]

(+ (* 2 x) y 3))]
(f 5 10))

>> 23

Functions are the building blocks of Clojure programs, therefore there is an even

shorter way to define the same f (x, y) function
(let [f #(+ (* 2 %1) %2 3)]
(f 5 10))

>> 23

If the function depends on a single argument one can even write
(let [square #(* % %)]
(square 16))

>> 256

The following defines a function globally, not just in the scope of a let expression,
(defn f [x y]
(+ (* 2 x) y 3))

(f 5 10)
>> 23

A function calculating n! in Clojure can be written as
(defn factorial [n]
(if (> n 1)
(* n (factorial (- n 1)))
1))

(factorial 5)
>> 120

These examples already start to demonstrate the succinctness of Clojure which is

often found confusing by beginners, but enables the experienced programmer to focus

entirely on thinking about the problem and spend minimal effort on dealing with

syntax and language constructs.
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a.2.4 Data Structures

Clojure implements the following immutable data structures:

• lists: (1 2 3)

• vectors: [1 2 3]

• hash maps: {:a 1 :b 2 :c 3}

• sets: {1 2 3}

Despite the fact that they are immutable, techniques such as path copying are internally

used in order to reduce the computational burden to an absolute minimum. Technically

speaking, the structures are classified as either sequences or collections, but any further

details are out of the scope of this tutorial. The following code snippets show how

some standard operations are performed on lists, vectors and hash maps.

a.2.4.1 Lists

(list 1 2 3) ;; create a list
>> (1 2 3)
(first (list 1 2 3)) ;; extract the first element
>> 1
(rest (list 1 2 3)) ;; return all items after the first one
>> (2 3)
(count (list 1 2 3)) ;; return the length of a list
>> 3
(range 5) ;; create a range of numbers starting from 0
>> (0 1 2 3 4)
(range 2 8) ;; create a range of numbers
>> (2 3 4 5 6 7)

a.2.4.2 Vectors

[1 2 3] ;; create a vector
>> [1 2 3]
(first [1 2 3]) ;; extract the first element
>> 1
(rest [1 2 3]) ;; return all items after the first one
>> [2 3]
(nth [1 2 3] 2) ;; return the nth element
>> 3
(count [1 2 3]) ;; return the length of a list
>> 3
(vec (range 5)) ;; create a range of numbers starting from 0
>> [0 1 2 3 4]
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(vec (range 2 8)) ;; create a range of numbers
>> [2 3 4 5 6 7]

a.2.4.3 Hash Maps

{:a 1 :b 2 :c 3} ;; create a hash map
>> {:a 1 :b 2 :c 3}
(keyword "a") ;; typically keywords are used as keys
>> :a
{:a 1 "b" 2 [3 4] 5} ;; but any structure can be used as a key
>> {:a 1 "b" 2 [3 4] 5}
(get {:a 1 :b 2 :c 3} :a) ;; query for a key
>> 1
(:a {:a 1 :b 2 :c 3}) ;; keywords are query functions
>> 1

Closer look into the data literals reveals that Clojure is a homoiconic language

meaning that the Clojure source code itself is a data structure literal. This facilitates

metaprogramming and the creation of various macroses.

a.2.5 Higher-Order Functions

Being a functional language, Clojure natively supports a large number of higher-

order functions. Filtering a sequence with a given predicate is performed by

(filter #(> % 0) ;; predicate function
[-1 1 -2 2 -3 3]) ;; sequence

>> (1 2 3)

We can square all the numbers in a sequence, for example, using the map function

(map #(* % %) ;; mapping function
(list 1 2 3 4)) ;; sequence

>> (1 4 9 16)

The function used by map can take multiple arguments as well

(map #(* %1 %2) ;; mapping function
(list 1 2 3 4) ;; sequence 1
(list 1 2 3 4)) ;; sequence 2

>> (1 4 9 16)

The last important higher-order function is reduce with which we can, for example,

sum all the elements of a list such as

(reduce + ;; reduction function
0.0 ;; initial value
[1 2 3]) ;; sequence

>> 6.0

Finally, we demonstrate the standard filter-map-reduce composition by summing the

squares of all even numbers in the range 1 to 100:
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(reduce + ;; sum
(map #(* % %) ;; square

(filter #(mod % 2) ;; even number?
(range 1 101)))) ;; sequence (1 ... 100)

>> 338350

If no initial value is provided to reduce then the reduction function is directly applied

to the first two elements of the sequence. Programmers with procedural programming

background would be often tempted to use loops while a filter-map-reduce operation

will suffice. The benefit of using filter-map-reduce operations is that standard paral-

lelisation techniques can be easily applied with Clojure. General loops in Clojure are

usually implemented by tail recursion, however this is out of the scope of this tutorial.

a.3 I n t r o d u c t i o n t o A n g l i c a n

We have covered sufficient amount of Clojure functionality such that in principle

we can express numerous probabilistic models with Anglican. The Anglican website3

is a great resource for learning the language in depth, with many examples and

probabilistic models. In this tutorial we only present several simple ones in order to

demonstrate what probabilistic programming is and how elegant Anglican makes it.

a.3.1 Probabilistic Primitives

Since the sole purpose of Anglican is to represent probabilistic models it offers

and extensive range of probabilistic primitives. For example, we can sample various

distributions with a single line:

(sample (uniform-continuous 3 10)) ;; U(x; a = 3, b = 10)
>> 4.659805616613525

(sample (normal 1 2)) ;; N (x; µ = 1, σ = 2)
>> -0.16795121075210417

(sample (flip 0.7)) ;; Bern(x; µ = 0.7)
>> true

(sample (beta 2 3)) ;; Beta(x; a = 2, b = 3)
>> 0.29186700108925917

3 http://www.robots.ox.ac.uk/~fwood/anglican/language/

http://www.robots.ox.ac.uk/~fwood/anglican/language/
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(sample (binomial 10 0.4)) ;; Bin(x; n = 10, p = 0.4)
>> 6

(sample (discrete [0.3 0.2 0.5])) ;; Cat(x; p1 = 0.3, p2 = 0.2, p3 = 0.5)
>> 2

A very useful high-order function for generating a sequence of samples is

(repeatedly 10 #(sample (normal 1 2)))
>> (-0.381 3.224 2.309 0.467 2.132 2.010 -0.046 2.970 2.468 -1.308)

which in this case generates a sequence of 10 samples from N (x; µ = 1, σ = 2).

Similarly, we can easily estimate the log-pdf of any distribution using observe as

(observe (normal 0 1) 3)
>> -5.418938533204672

returns the value of logN (3; 0, 1).

a.3.2 Single Coin Flip

Consider the outcome of a coin flip experiment

y ∼ Bern(θ) (59)

where our belief about the bias of the coin is

θ ∼ Beta(5, 3) (60)

and we are interested in the following query

p(θ > 0.7|y = true) =? (61)

We can easily compute the ground truth as

p(θ > 0.7|y = true) = 0.448 = 1− BetaCDF(0.7|6, 3) (62)

We can now “simulate” as many coin flip trials as we need by sampling the model

and evaluating the likelihood of the sample with respect to the observed data and the

specified query. Here is the Anglican description of the probabilistic model:
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(defquery single-flip [y]
(let [theta (sample (beta 5 3))]
(observe (flip theta) y)
(> theta 0.7)))

Probabilistic models written in Anglican are called queries and are defined using

defquery. defquery looks a lot like a standard Clojure function definition, with the

important difference that its contents is actually Anglican code that is a DSL written in

Clojure designed to look like Clojure. The query is named single-flip and it takes a

single argument y, which is the observed outcome of the coin flip experiment. theta

is defined in the let expression as a random variable sampled according to our prior

belief distribution (beta 5 3). The observe statement asserts that we observe a value

for the random variable y distributed according to (flip theta). The final expression

encodes the query of interest (> theta 0.7) and its value is returned once the query

is executed. An Anglican query can be executed, or sampled, with doquery. In our

case we would like to use importance sampling and generate 1000 samples of the

answer to the problem query:

(let [samples (take 1000 ;; number of samples
(doquery :importance ;; sampling method

single-flip ;; name of the query
[true]))] ;; observed data

(first samples))
>> {:log-weight -0.09819641371168224, :result true, :predicts []}

As you can see each sample is a hash map containing the log-weight of the sample as

well as the return value from the query. The log-weight is automatically calculated by

the inference engine by simply accumulating likelihood obtained from every call to

the observe function. We can get the final answer by extracting the result from every

sample and counting

(frequencies (map :result samples))
>> {true 376, false 624}

or by using the provided Anglican functions for analysing the obtained samples

(empirical-distribution (collect-results samples))
>> {true 0.47493018486959776, false 0.5250698151304022}

The resulting answer is p(θ > 0.7|y = true) ≈ 0.474 which is a relatively good estimate

given that we used only 1000 samples.
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a.3.3 Multiple Coin Flips

We now consider a modification of the coin flip experiment, whereby we observe

a sequence of flips. The updated model is

θ ∼ Beta(5, 3) (63)

yi ∼ Bern(θ) (64)

and the query of interest is

p(θ > 0.7|yi) =? (65)

for some sequence of observations {yi}N
i=1. We modify the single-flip query by

letting the input argument to be a sequence and use the high-order function map to

observe all outcomes

(defquery many-flips [ys]
(let [theta (sample (beta 5 3))

outcome-dist (flip theta)]
(map #(observe outcome-dist %) ys)
(> theta 0.7)))

Only minor changes were needed in order to arrive at the many-flips query. The most

important one is the fact that we now need to store the coin flip outcome distribution

such that all data values can be observed with respect to it. We query the model by

(let [outcomes [true false false true]
samples (take 1000 (doquery :importance many-flips [outcomes]))]

(empirical-distribution (collect-results samples)))
>> {true 0.20849362899815674, false 0.7915063710018433}

resulting in p(θ > 0.7|yi) ≈ 0.21.

a.3.4 Curve Fitting with Model Selection

The last problem which we sketch a solution for with Anglican demonstrates its

capabilities to work with models with a varying number of latent variables. Curve

fitting is usually posed as an optimization problem and most of us have fitted at

least a line using methods such as least squares. However, we will take a probabilistic

approach and show that we can not only fit a polynomial to the data, but also
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simultaneously infer the best polynomial degree for the purpose. Let’s assume that

we have a set of observed data points D = {(x1, y1), . . . (xN , yN)} generated by

c(w, m) = wmxm + . . . + w1x + w0 (66)

where

m ∼ Poisson(2) (67)

w|m ∼ N (w; 0, Im+1) (68)

y|m, w ∼ N (y; c(w, m), 1) (69)

y ∈ R is always a scalar, but the polynomial parameters w ∈ Rm+1 change their di-

mensionality based on m. We have put a Poisson prior on the power of the polynomial

m expecting a quadratic to be good fit.

We set the underlying function to be f (x) = −4x3 + 3x2 − 2x + 5 and generate

the dataset D as follows

(defn f [x]
(+ (* -4 x x x)

(* 3 x x)
(- 2 x)
5))

(defn noisy-f [x]
(+ (* 0.01 (f x))

(sample (normal 0 4))))

(def xs (range -10 10 0.5))
(def ys (map noisy-f xs))

where xs and ys are global variables which we will use later.

a.3.4.1 Linear Algebra Functions

Since we are dealing with multivariate distributions, we provide a short list of

relevant linear algebra functions in Clojure that we utilise:

(zero-vector 3)
>> [0.0 0.0 0.0]

(identity-matrix 3)
>> [[1.0 0.0 0.0]

[0.0 1.0 0.0]
[0.0 0.0 1.0]]
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(shape (identity-matrix 3))
>> [3 3]

(dot [1 1 1] [1 1 1])
>> 3

Equipped with these functions we can now implement the curve equation by

(defn curve [w x]
(let [m (first (shape w))

phi (map #(pow %1 %2)
(vec (repeat m x))
(range 0 m 1))]

(dot w phi)))

and the corresponding Anglican query is

(defquery fit-curve [xs ys]
(let [m (sample (poisson 2))

w (sample (mvn (zero-vector (+ m 1))
(identity-matrix (+ m 1))))]

(map #(observe (normal (curve w x) 1.0) y)) xs ys)
{:m m :w w})))

which returns a hash map with the sampled values for m and w.

We sample the model with

(let [samples (take 10000 (doquery :importance fit-curve [xs ys]))
(first samples))
{:log-weight -26084.717520229737,
:result {:m 2, :w [-1.459,-0.262,-0.634]},
:predicts []}

The technicalities around extracting the inferred value of m and w from the obtained

samples are a bit involved, so we will omit them here, however they can be found in

the author’s repository 4. The underlying function, the noisy data points, the sampled

curves and the inferred curve are all shown in Fig. 45.

4 https://github.com/svepe/ppaml-tutorial

https://github.com/svepe/ppaml-tutorial


A.3 I n t r o d u c t i o n t o A n g l i c a n 131

Figure 45: The underlying curve is in green and the observed noisy data points are shown
as black dots. The fitted curve is in red and the generated samples are in semi-
transparent blue.
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