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INTRODUCTION 

Let X be a topological linear space. The condition 

for a cone in X to be normal and the condition for the sum 

of two complete linear subspaces of X to be complete are 

both special cases of a relation between pairs of subsets 

of X which is the object of study of this thesis. All that 

is required for the definition is the structure of a topo- 

logical group, Let A,B be subsets of a topological group 

X. We say that A is ALLIED to B, and write A al B , if, 

given a neighbourhood N of the identity e, there exists a 

neighbourhood N of e such that 

a EA, b E B, ab EN => a,b E M. 

The thesis is intended primarily as an attempt to 

examine the implications of this definition for their own 

sake. However, some of the most interesting results are 

applications, in the sense that allied sets appear in the 

proof but not in the statement. The deepest result of 

this sort is a kind of open mapping theorem (5.6). 

The basic theory is dealt with in section 1. Some 

equivalent forms of the definition are given; the one 

using nets (1.5) is particularly useful. 1.13 is basic 

to all applications involving compactness. An example is 

given to show that, in a non -commutative group, the relation 

need not be symmetric. 

In section 2, we study the extra theory peculiar to 

linear spaces. For stars, alliedness is determined within 

any neighbourhood of 0 (2.1), 2.2 and 2.3 show the relation 
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between allied sets and boundedness. Numerical character- 

isations are available in normed linear spaces, and further 

ones in inner product spaces, 

If A,B are allied sub groups of a commutative topological 

group, and (an +bn) is a Cauchy net (an A, bn E B) , then the 

nets (an) and (bn) are Cauchy. Hence if A is complete, then 

A +B is complete (or closed) if B is. In section 3, we show 

that this and further statements can be formulated also in 

non -commutative groups, Restricted converses are obtained 

in section 4, where it is shown that alliedness of sub groups 

is equivalent to the continuity of certain homomorphisms. 

Section 5 is concerned with locally compact subsets 

of topological linear spaces. The results here are mainly 

applications, in the sense defined above. 

Section 6 is concerned with the question of whether 

sets which are allied with respect to one topology are all- 

ied with respect to another one. It is shown that two 

different topologies for the same group will certainly give 

rise to some pairs which are allied with respect to one but 

not the other, Some positive results are then obtained for 

certain kinds of subsets of topological linear spaces. 

Sections 7,8 and 9 form the part of the thesis that is 

most obviously related to the theory of partially ordered 

groups and linear spaces, A cone or semigroup is self - 

allied if and only if it is normal. This is a concept of 

fundamental importance in the theory of partially ordered 

linear spaces, and our definition enables us to generalise 
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results about normal cones to statements about allied pairs 

of sets. Many of the results of section 7 are of this sort, 

although some of them are "generalisations` of theorems 

which do not appear to have been explicitly stated before. 

7.7 and 7.11 are the most important. 

Sections 8 ( "Open decomposition ") and 9 ( "Applications 

to lattices`) are not primarily devoted to allied sets, 

but show their relevance to the topics considered. 

In section 10, we show how, in a commutative group, 

allied families of sets can be defined, and how some of the 

properties of allied pairs can be extended to allied families. 

Appendices 1 and 2 deal with related topics which could 

not be introduced elsewhere without disturbing the contin- 

uity. Appendix 1 is relevant to section 5, and appendix 

2 to section 6. 

Considerable prominence is given to counter- examples 

throughout the work. The author feels that, in places, 

these are more elegant than the positive results ! 

Most of the material is being published in (7) and (8) . 

Appendix 3 specifies which parts are not. 

I am greatly indebted to my research supervisor, Prof. 

F.F. Bonsall, who has been a constant source of inspiration 

and guidance during the period in which this work was done. 

I am also grateful to Dr. G. Brown for drawing my attention 

to (21). 



1. BASIC THEORY 

Let X be a topological group (X may or may not be a 

topological linear space). The following notation will be 

used consistently. The identity in X will be denoted by e, 

or, when X is known to be commutative, by O. The family of 

all neighbourhoods of the identity will be denoted by 11(x). 

By a LOCAL BASE we mean a base of neighbourhoods of e. It 

is well -known that the closed, symmetric neighbourhoods of 

e form a local base (a subset A of X is SYMMETRIC if A71 

= A), Our basic definition, already given in the intro- 

duction, is the following: if A,B are subsets of X, then 

A is said to be ALLIED to B if, given M E 1`1(X), there exists 

NE fl (X) such that 

aFA, b GB, abEN => a,b EM, 

This statement will be denoted by A al B , and the cont- 

rary statement by A nal B 

It is clearly sufficient for A al B if the condition 

above holds for all M in some local base. Further, if it 

holds, then we may take N to be closed, symmetric, or con- 

tained in M, or with any combination of these properties. 

Our first result shows that an apparently weaker con- 

dition is equivalent: 

1 ,1 , A al B if and only if, given M F Y1(X), there 

exists N E ((X) such that 

a c A, b FB, abeN => a or b E M. 

Proof, Suppose the condition holds and ME WX) is 
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given, Take symmetric NC 6(X) such that N2 M. There 

exists P E MX) such that P c N and 

a A, bEB, al) EP => a or b E N. 

Suppose that a EA, b E B, and ab t P. Then a EN or 

b EN. If a EN, then b = a-/(ab) E NP M. If b N, 

then a = (ab)b -1 E PN c M. In either case, both a and b 

are in M, giving the result. -1- 

In particular, it is sufficient for A al B if, 

given M e '1(x), there exists N e Y1(X) such that 

aEA, bEB, abeN => aEM, 

This fact will be used repeatedly. As an immediate coroll- 

ary, we have: 

1.2. A nal B if and only if there exists M c n(x) 

such that, for each N E n(X), there exist aN E A--M, 

bN E B with aNbN E No 

We note some trivial consequences of the definition. 

If A al B and A' c A, B' c B, then A' al B'. If 

A al B, then (Au {e ],) al (Bu(e,). If e V 'LB (i.e. the 

closure of AB), then A al B , by vacuous implication. By 

1.1, A al {e and ,e al A for all A. A nal A71 un- 

less A c {e. 

Two simple examples follow. Examples of a less trivial 

nature will be given when the requisite theory has been de- 

veloped, 

(i) In the additive group R of real numbers with the 

usual topology, let A denote the closed interval 0,11, 

and B the open interval (- 2, -1), Given > 0, put a = 1, 
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b= -1 - . Then 
l 
a +b l= E, so A nal B 

(ii) Let X be the additive group R2 with the usual top- 

ology, and let 

A = 1(9) > 0} 

B = I( 9 Y) (i > s 

for some S > O. All elements of A +B are at a distance at 

least 6 from 0, so A al B , However, A nal A since, 

for any > 0, (i',1) and (E,-1) are in A, and have sum 

(2E, 0) , 

Further equivalent forms of the definition are given 

by the next theorem. 

1,3. Each of the following statements is equivalent 

to A al B 

(i) given M ; 1(X), there exists NE Y1(X) such that 

(NA)n(NB 1) c M 

(ii) given M e Yl(X), there exists N c 1(x) such that 

A n (NB 1) S I,I 

(iii) given M E (1(x), there exists N E n(X) such that 

for a E. A^-M9 (Na)nB 1 = O 

Proof. Suppose that A al B and ME Mx) is given. 

Take M1 E i'1(X) such that M2 c M. There exists N1 E i1(x) 

such that N1 c M1 and 

aEA, bEB, abEN1 => aEM1 

Take symmetric N F n( X) such that N Ç M1 and N2 N1, 

Suppose that x = n1 a = n2b -1 
, where a E A, b E B and 

ni E N (i = 1 ,2), Then ab = n11 n2 E N1 , so a EM1, and 
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x £ N& ç M. Hence (i) holds, 

(i) implies (ii) a priori. If (ii) holds, with N 

chosen symmetric, and na E B -1 (where n E N, a EA), then 

a E An (NB-1 ), so aE l'I. Hence (iii) holds, 

Suppose that (iii) holds, with N chosen symmetric, and 

that a F A, b E B and ab = n -6 N. Then n-1 a E B -1 so 

a E M. Hence A al B. t 

An even stronger form of the definition follows with 

ease: 

1.4. A al B if and only if, given M E n(X), there 

exists N F Y'I(X) such that NA n NB -1 c M. 

Proof. The condition is clearly sufficient. Suppose 

that A al B. By 1 . 3 ( 1 ) , there exists P E n(X) such that 

(PA)n(PB 1) C M. Take NE 11(X) such that N2 E P. Then 

NA Ç PA , 

-1 -- 
1_.i B c PB -1 

so NA n NB ç T.2 

t 
M. 41 

Loosely speaking, A al B means that, away from e, A 

is remote from B -1 . If we put ab 
-1 

E N instead of ab E N 

in the defining condition, we would ensure that A was remote 

from B away from ee This definition might seem more natural 

- in fact, the author used it at first - but it turns out 

to be less convenient to work with. 

Characterisation by nets 

Considerable use is made of directed nets in the seq- 

uel. There will normally be no need to mention the under- 

lying directed set, and we shall often use the notation 
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(xn) for a net, instead of writing 
{xn nE D75. 

Let (xn) be a net in AB. Then each xn can be expressed 

(not necessarily uniquely) in the form anbn , where anE A, 

bn B. Having chosen such an expression for each n, (an) 

and (bn) are nets in A and B respectively. We can specify 

both the net (xn) and the choice of an,bn by speaking of 

the net (anbn), and this policy will be adopted henceforth. 

Alliedness is characterised in terms of nets as follows: 

1,5. (i) If A al B and (anon) is a net convergent 

to e (where anE A, bn E B), then the nets (an) and (bn) 

converge to e, 

(ii) If for each net (anbn) convergent to e (with 

anE' A, bnE B), e is a cluster point of (an), then A al B. 

In a metrisable group, it is sufficient if this condition 

holds for sequences. 

Proof. (i) Given M E f (X), there exists N E ((X) such 

that 

a FA, b EB, ab EN -> a,b E PII 

There exists no such that for n > no, anbn N. For such 

n, 
an 

and bn are in M, and the result follows. 

(ii) If A nal B, then there exists M E fl (X) such that, 

for each N (- 0(X), there exist aN E A^-I, bN E B with 

aNbN E N. Let .)3 be a local base. Then {aNbN : N E is 

a net convergent to e, while e is not a cluster point of 

(aN). In a metrisable group, we can take )3 countable, 

thus obtaining a sequence. 
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Semigroups, orderings and filters 

Let A be a subset of a commutative topological group 

X. By 1.3(i), A al A if and only if, given ME f(X), 

there exists N E %(X) such that (N +A)n(N -A) ` M. If A 

is a semigroup containing 0, then an associated partial 

ordering < is defined by 

x< y <_> y -x f A . 

In terms of this notation, A al A if and only if, given 

Me Y2 (X), there exists N E fl(X) such that if y,z F N and 

y < x z , then x E M. This is the well -known definition 

of a NORMAL semigroup or associated ordering (though the 

concept has been applied mostly to cones in linear spaces). 

However, we shall speak of SELF- ALLIED sets rather than 

normal ones, to avoid confusion with normal sub groups in the 

algebraic sense. 

Returning to the case of a general topological group, 

if a pair of subsets A,B is given, write 

[E] = (EA)n(EB 1 ) 

for any subset E. 1.3 says that A al B if and only if, 

given P. E f(X), there exists NE Í1(X) such that [N] c M. 

We notice that if "4 is a filter base, then so is [g]., 

since 
LF1 nF21 ç CF1J n -F2J' 

If A induces the ordering < as above, and B = A, 

then {[E]] = LE], and [Ea is the order -convex cover of E. 

A is self -allied if and only if there is a local base con- 

sisting of neighbourhoods N such that [N] = N , in other 

words if and only if X is locally order- convex. 

The next theorem shows how alliedness can be 
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characterised in terms of filters. Nets, however, turn out 

to be of more interest than filters in the sequel. 

1.6. Each of the following statements is equivalent 

to A al B 

(i) if a filter base ^4 converges to x, then [ ] x 

(ii) if a filter base 1- converges to e, then [-47-- e 

Proof. Suppose that A al B and x , Given 

M F 11(X), there exists NE n(X) such that [N] c M. There 

is a member P of '- contained in xN. Then (x 1 FA)n(x 1PB -1 ) 

is contained in M, so [FJ c xM. Hence ['}1 -x 

(i) implies (ii) a priori. Suppose that (ii) holds. 

j(X) is a filter convergent to e, so, by (ii), given M 

E n(X), there exists N E n(X) such that [N] C M. Hence 

A al B , by 1.3, 

Some elementary properties 

1.7. If A al B and A al C , then A al (BuC) 

Proof. Given M E f(X), there exist N,P E Ì1(X) such 

that 

aEA, bF_B, abEN => aEPlf 

a EA, c 6 C, ac E P => a EM 

If a EA, x BuC, and ax E NnP , then a E M. I 
1.8. If A al B, then AnB 1 c ¡el, A 

7 
1 nB ç ej . 

In particular, if X is Hausdorff, then AnB 1 is ie] or 0. 

Proof. Suppose x E AnB-1 . Take M F n (X) . We show 
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that x E M, from which the result follows. There exists 

N F k(I(X) such that 

a EA, bEB, abEN => a 

Now x E A, x -1 E B and xx = e E N. Hence x E M, as 

required. I 

1.9. If A al B, then T. al B, 

Proof. By 1 .3, given M E ri(X), there exists N E Ìl (X) 

such that (NA)n(NB -1) c M. Take P E f(X) such that P2 E N. 

Then PA c NA, PB 1 c NB-1, so, again by 1 .3, A al B, 4 

Combining the last two results, we have: 

1.10. If A al B, then 11n13-1 {e3. 

1.11. If A ai (BC) and B al C, then (AB) al C. 

Proof. Given M E V (X), there exists N E n(X) such that 

bEB, c EC, bcEN => c FM . 

There exists P n(X) such that if a F A, bEB, c EC and 

a (b c) F P, then bc E N. Thus (ab) c EP => e E M. 47 

1.12. Let X be commutative. If A,B are self -allied 

semigroups, and A al B , then A +B is self -allied, 

Proof. Suppose that 

(an +bn) +(añ +bñ) 0 
9 

this being a net with an, añ E A and bn,b ì E' B. Since 

an+añ E A, bn+bñ E B, and A al B , we have all+añ 0, 

by 1 .5 (i) . Since A al A , -- 0, Similarly, b- -> 0. 

Hence 
``n 

+bn 0, and A +B is self-allied, by 1 , 5 (11) . 
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Symmetry of the relation 

B al A means: given M E 11(X), there exists N ( h(X) 

such that 

a EA, b 3, ba E N => a,b E M 

Taking symmetric neighbourhoods, it is clear that B al A 

is equivalent to A1 al B-1. Thus one condition which is 

sufficient for B al A to be equivalent to A al B is that 

A and B should be symmetric. 

Another condition which is obviously sufficient is 

a EA, b E B => ab = b a, 

a statement which will be denoted by A comm B 

We now give an example of non- symmetry. The set 

> 0 and 2 real} 

is a group under the operation 

(-1' 2)(11'V22) _ (1 '21 
' i1 92) 

This is, in fact, the multiplication obtained by regarding 

the elements as matrices of the form 

f 1 $2 

0 1 

The identity is (1 , 0), and the inverse of ( , 2) is 

From the continuity of addition, multipli- 

cation and inversion of real numbers, it is clear that the 

usual topology for R2 makes this a topological group. 

Let 

a2 ) a1 and a2 > 0 ' 

B = ((391) > 0 
an = (n 

1 
,n-2) E A , bn = (n,1) E. B . anbn = (12 ñ 1+n-2)' 
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so anbn-- 3(1,O), while an-& (1,0), Thus, by 1.5, A nal B. 

On the other hand, 

( 91)(a19a2) _ (Pal 
, 1 +ßa2) 

9 

and the distance of all such elements from (1,0) is greater 

than 1. Hence B al A , by vacuous implication. 

One set compact 

The next result is basic to much of our later work 

(especially section 5). We give two different proofs, one 

using 1.3 and the other using directed nets. 

1 .1 3. If A is compact, and AnB c { e } , then A al B 

and B al A 

Proof 1. Take open lei E h (X) If a E A^-M, then 

a B so there exists N(a)6 h(X) such that 

N(a)a n B 1 = 0 . 

Take symmetric P(a) F ii(X) such that P(a)2 C N(a), Since 

Ar--114 is compact, there exists a finite set of points 
n 

al, , , , ,an such that A-wM ç U (Piai) , where Pi = 

i =1 

P(a). Let P = () Pi' If a E A--M, then a E Piai for 
i =1 

some i, and Pa ç N(ai)ai , so does not meet B 
-1 

. There- 

fore A al B , by 1,3(iii), It 

Proof 2. Let (anbn) be a net convergent to e (and A, 

bn E B) . Since A is compact, (an) has a cluster point ao in 

A. Then ao is also a cluster point of the net (bn1), and 

so ao E AnB 1 , giving ao 6 {el, It follows that e is a 
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cluster point of (a11). Hence A al B , by 1.5. 

Since A 1 is compact and A 1nB e7, we have also 

A-1 a1B1, ioe, BalA. -t-- 

We saw on p. 5 that, in the additive group R with the 

usual topology, [0,1] is not allied to ( -2, -1) . This is 

sufficient to show that the condition AnB -1 C {el cannot 

be replaced by the weaker condition AnB -1 c { c? in 1 e 1 3, 

Homomorphic images 

We shall say that a pair of subsets A,11 of a topolog- 

ical group is PSEUDO- DISJOINT if AnB 1 {el . Alliodness 

is clearly a topological embellishment of this relation.. 

If T is a homomorphism with kernel K, and the pairs A,K 

and TA,TB are pseudo -disjoint, then so is the pair A,B. 

An analogous result holds for allied sets: 

1.14. Let X,Y be topological groups, and let T be a 

continuous homomorphism X-4Y wth kernel K. Suppose that 

(TA) al (TB) , A al K , and that, given Q E l'1(X), there 

exists R E n(Y) such that (TQ)n(TA) = R n(TA). Then 

A al B 

Proof. Suppose that A nal B . Then there exists 

ICI E 1i(x) such that, given N E n(X), there exist a E A--M, 

b EB with ab EN. 

Since A al K , there exists Q E n(X) such that 

a Eli, kEK, akFQ => a.EM . 

There exists R E n(Y) such that ( TQ)n(TA) = R n(TA). 
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Take P E t1(Y). There exists N E r\(X) such that TN 4 P. 

Take a E A- M and b E B such that ab E N. Since a 4 M, 

we have ak Q for k E K. Hence Ta E/ TQ, so Ta (7/ R. 

But (Ta)(Tb) E P. Thus (TA) nal (TB). T. 

The last condition in the theorem is satisfied, in 

particular, if e E A and the restriction of T to A is open 

at e. 

If T is a homomorphism with kernel K, and the pairs 

A,B and AB,K are pseudo -disjoint, then so is the pair 

TA, TB . Again we have a corresponding result for allied 

sets: 

1.15. Let X,Y be topological groups, and let T be a 

continuous homomorphism X--4Y with kernel K. Suppose that 

A al B , (AB) al K , and that, given Q E ri (X), there ex- 

ists R E r(Y) such that (TQ)n(TAB) = R n(TAB) . Then 

(TA) al (TB) 

Proof. Suppose that (TA) nal (TB) . Then there ex- 

ists M E n(Y) such that, given R E NY), there exist a EA, 

b E B with Ta M and T(ab) E R. 

Take N E t7(X). Since (AB) ^.l K , there exists Q E 

n(X) such that 

a E A, b E B, k F K, abk E Q => ab E N 

There exists R C n(Y) such that (TQ)n(TAB) = R n(TAB) 

Take a E As b F B such that Ta Et M and T(ab) E R. Then 

T(ab) E TQ , so there exists k E. K such that abk E Q. 

Thus we have a F' T 
-1 

M, while ab E N. Hence A nal B . 
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Since the projection onto a quotient group is an open, 

continuous homomorphism, we have: 

1.16. Let K be a normal sub group of X, and P the pro- 

jection of X onto X /K. If A al B and (AB) al K , then 

(PA) al (PB) t 

An example given at the end of section 2 shows that 

this result can fail if AB is not allied to K, even if it 

is still pseudo- disjoint to it. 
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2. ALLIED SETS IN LINEAR SPACES 

Basic property of stars 

A subset A of a real or complex linear space will be 

said to he A STAR, POSITIVE HOMOGENEOUS or HOMOGENEOUS if 

XA C A holds, respectively, for 0 , X < 1, for all A. > O. 

or for all scalars X. If A is convex and a EA, then A a 
is a star. 

By a WEDGE we mean a positive homogeneous set A such 

that a,b e A => a +b EA , If, in addition, An ( -A) = 10, , 

we call A a CONE. 

Throughout this section, X will be a topological lin- 

ear space. We notice that a positive homogeneous subset 

A of X is closed if and only if AnM is closed for some 

ME 11(X). The basic theorem relating alliedness to scalar 

multiplication is: 

2.1, Let A,B be stars in a topological linear space. 

If there is a neighbourhood M of 0 such that (AnM) al (BnM), 

then A al B 

Proof. Suppose that A nal B , Let M E 7(X) be given. 

Take circled NE f(X) such that N +N Ç M. There exists 
( rclect 

P E f(X) such that P r_ 

; 
N and such that, for each jQ E fl(X), 

there exist a E A-'P, b E B with a +b E QnN. 

There exists X E (0,1] such that Xa E N--P. Then 

X(a +b) E N, so Xb E N +N S M. Thus we have Xa E (AnM) --'P 

and Xb E BnM, while Xa +lb E Q, Hence (AnM) nal (BnM), 
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Obviously, the behaviour near 0 gives no information 

if A or B is not a star. 

Boundedness 

2.2. (i) If A,B are allied stars, and (an +bn) is 

bounded not (a 
n 

A, b 
n E B) , then the nets (a 

n 
) and (b 

n 
) 

are bounded. 

(ii) If X is a metrisable topological linear space, 

and A,B are non- allied, positive homogeneous subsets, then 

there is a sequence (an +bn) convergent to 0 (an E A, bnE B) 

with (an) and (bn) unbounded. 

Proof, ( i ) Given l ' . ' 1 E 
t 
i(X), there exists N E Mx) such 

that 

a EA, b B, a +b E N => a,b E P.2 . 

There exists X E (0,1] such that X(an +bn) C N for all n. 

Then lean, Xbn E M for all n, Hence (an) and (ion) are 

bounded. 

(ii) Take a countable local base 
ì.Mn 

: n = 1 , 2 ...1 

Since A nal B , there exists M E ¡(X) such that, for each 

n there exist a' E A,-M b' E B with s.' +b' E n 1ICI 
' ' n n n 

Let an = na' bn = nbrl . Then an +b11 E Mn so 

an +bn-3 0 , while (^) is unbounded, since an 
-T 

nM. 42 

Wo note that a convergent sequence is bounded, while 

a convergent net need not be. 

As in section 1, for fixed A and. B, we write 

[E] = (E +A)n(E -B). 
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2.3. If A,B are allied stars, and E is bounded, then 

so is [E]. 

Proof, Let M C n(x) be given. By 1.3, there exists 

N t n(x) such that [N] c M There exists A E (0,11 

such that '.E c; N . Then A [E1 M t 

In the language of partially ordered linear spaces, 

the special case of 2.3 where A is a wedge and B = A 

states that, if the positive cone is self- allied, then the 

order -convex cover of a bounded set is bounded, a result 

which seems to have been first stated by Schaefer in (19) 

(p. 216). In particular, order- intervals are bounded. 

Corresponding results for total boundedness and com- 

pactness are not to be expected, except in very special 

circumstances (cf. 7.5). Consider the space m of all boun- 

ded real sequences, with the usual norm and ordering. It 

is shown at the end of the section that the positive cone 

is self- allied (ex. (ii), p. 27). Denote by en the seq- 

uence having 1 in place n and 0 elsewhere, and by e the 

sequence having every term equal to 1 (this notation will 

be used consistently in examples below; no confusion will 

arise with the use of e to denote the identity of a group). 

The order- interval ix : 0 x < e' contains each en , so 

is not totally bounded. 

If A,B are allied stars, then 2.3 shows that (A- x)n(y -B) 

is bounded for any x,y . 
If x,y are interior points of A,B 

respectively, then this set is a neighbourhood of O. Hence 

we have 
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2.4. If X is a topological linear space, and there 

exist convex allied subsets A,B that contain 0 and have 

interior points, then the topology of X is pseudo-normable. 

Proof. A,B are stars, and (A -x)n (y -B) is a bounded, 

convex neighbourhood of 0 (where x,y are interior points 

of A,B respectively). 

Applied to a partially ordered linear space, 2.4 states 

that if the positive cone is self- allied and has an interior 

point, then the space must be pseudo-normable. This result, 

in its simplicity, does not seem to have been stated pre- 

viously, though it is clear that a pseudo -norm inducing the 

topology is the "order -unit pseudo- norm" associated with the 

interior point. 

Proper values and vectors 

For spaces of proper vectors, we have the following 

simple and elegant result: 

2.5, Let X be a topological linear space, and T a 

continuous lin,:ar mapping X -%X. If X * µ , then 

1 
x ; Tx = Xx al 

1. 
y Ty = µy 

Proof. If (xn +yn) is a net convergent to 0, where 

Txn = Xxn 
, 

Tyn = 
n , 

then 

T(xn +yn) = Xxn+ Fyn 0 

Hence xn - , and the result follows, by 1.5. 

For proper values, we havc the following generalisation 
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of a result of Krein and Rutman ((12), lemma 4.2). If A 

is a subset of a topological linear space X, then a is said 

to be an INTERN ?AL point of A if, given x EX, there exists 

> 0 such that, for (A) < , a +Ax E A, 

2,6. Let A be a self -allied, positive homogeneous 

subset of a Hausdorff topological linear space X, and let 

T be a linear mapping X-IX such that TA c A. Suppose that, 

for some internal point a of A9 we have Ta = Q a , If 7 

is any proper value of T, then IXI < (e :! 

Proof. Suppose that Tx = Ax for some x,X . There 

exists S > 0 such that a ± (Sx E A. Applying the mapping 

Tn, we have ea fir- Anx E Ao Let 

(x- n(( na+ Anx) 
9 

cn = w- n(ena_ ¿Anx) 
n 

Then bn, en E A , and bn +cn = 
2\17 1) 

a . If 
1X( > (el, 

then bn +cn -0 , so br -4 0 , since A is self- allied. 

This implies that x = 0 , and so that X is not a proper 

value of T. 

A simple automatic continuity theorem 

Continuity of T was not required in 2.6. However, 

slightly stronger conditions ensure that T is continuous, 

as the next theorem shows, If TM is bounded for some 116 mx), 
then T is, of course, continuous, 
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2.7. Let X,Y be topological linear spaces, and A a 

positivo homogeneous subset of X with non -empty interior, 

If T is a linear mapping X-4Y such that TA is self -allied, 

then T is continuous. 

Proof. There exist e E A and symmetric M f f(X) such 

that e +M A. Write E = (A- e)n(e -A) . Then M ç E , and, 

by 2,3, TE is bounded. 

We mention that the same conclusion will hold if Y is 

locally convex and TA is self- allied with respect to the 

weak topology for Y, since weak boundedness in Y implies 

boundedness. However, the question of alliedness with 

respect to c.ifferent topologies for the same space is left 

over to section 6. 

A generalisation of monotonic sequences 

It was shown by Bonsall in (2) that if a partial ord- 

ering in a locally convex space is given by a normal cone, 

then a monotonic, weakly convergent sequence is convergent. 

A simpler proof was given by Weston in (211). Our next re- 

sult shows how the normal cone can be replaced by a pair 

of allied sets, 

2,8. Suppose that A,B are allied subsets of a locally 

convex space, B being convex. Let (an) be a net in A with 

the property that 

rn < n > am an E B 

If 0 is in the weak closurtJ of an , then ^n % 0 
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Proof. Given ii1 E r;(X), there exists N E n(X) such that 
a E A, b E B, a +b EI N => a F M 

0 is in the weak closure of the convex cover of {a11 , 

which is the same as the cloture of this set in the given 

topology. Hence there exist a finite set of indices ni and 

corresponding 7 E (0 11 such that Ai = 1 and 

X. an E N , If n > n. for all i, then 
i 1 

an + i Xi(an.-an) - -.- `ian. E N ° i 1 

But X. (an -an) F B , so an 6' Tv Hence a 0 0 + 

Normed linear spaces 

Most of the examples given later concern subsets of 

normed linear spaces, and use one of the formulations given 

by the next two results. The set x will be 

denoted by S. 

2,9, If A,B are non -zero, positive homogeneous subsets 

of a normed linear space, then each of the following state- 
ments is equivalent to A al B 

(i) 4(A,B) > 0 , where 

c)(A, B) = inf Il a +b ll : a E AnS, b F B 

(ii) there exists S > 0 such that 
aCA, b £B => Ua +bII >, 

Proof. If A al B , then there exists S > 0 such that 
a E A, b F B, Na +b ,I < 

If a 6 AnS and b e B, then ¡ a +b I¡ > S Hence +(A, B) >, 
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If 4 (A, B) ; g and a A ^- {01, b É B , then II c (I > 6 , 

where e = (a +b) / ((a (I , Hence ((a +b (( S If a Ii , and (ii) 
holds. 

If (ii) holds, then A al B , since, given > 0, we 

have 

a E A, bfB, Ila+b => (lall . 

(B,A) need not be equal to 4(A,B). To show this 
consider again the space m of bounded real sequences. With 

en, e defined as on p. 19, let A,B be the linear subspaces 

generated by e1 ,e respectively. For any A,µ, we have 

1( Xe1 +ue (µ ? , so (B, A) = 1 . But (( e1 - e (' = , 

so 4(A, B) (in fact, (-p (A,B) _ , by the next theo- 

rem). A symmetrical function is introduced by the definition 
+(A,B) = inf {a+b II a EAnS, b E BnS } 

In terms of this, we have: 

2.10. If A,B are non -zero, positive homogeneous subsets 

of a normed linear space, then 

4:(A,B) < +(A,B) < 2 4.(A,B) 

so A al B if and only if .(A, B) > 0 

Proof. Clearly, (A, B) (A B) 

Take a E Ans and b E B ^-10 7. -grite b = b /(Ib II. We 

show that i(a +b' (( < 2 ((a +b ti , from which the result follows. 

Now a +b' = (a +b) + (b' -b) , and b ' -b = b (II b ( -1) , so 

11b' -b (f = `1- (lblIt 

= ( II a () - I1b 11 

(( a +b (f . t 
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Other properties of q= and are easily established. 

For instance, (A, B) = 14(A, B) , and if X = 46 (A,B) 

= (B,A) , then < Aft . It is not our intention 

here to give a full treatment of such results, since they 

do not belong to the theory of allied sets, is related 

to a very natural metric on the set of closed subspaces 

which is studied in (5). 

The converse of 2.3 holds in nonmed spaces. As always, 

[E] denotes (E ±A)n(E -B) 

2.11. Let A,B be non -zero, positive homogeneous subsets 

of a nonmed linear space, and let T be the unit ball. Then 

A al B if and only if [T] is bounded, 

Proof. If A al B , then [T7 is bounded, by 2.3. Con- 

versely, suppose that 6c Il < K for x E[T]. Take a E A, 

b E B with k\a +b 11 < 1 . Then a E' LT7, since a = O +a = 

(a +b) -b . Hence Ila II < K , and A al B , by 2a9. lt 

Inner product spaces 

Further numerical results apply in inner rrrodu_ct spaces 

2.12. Let A,B be non -zero, homogeneous subsets of an 

inner product space. Let 

= sup t(a,b) a EAnS, b 6 BnS 

Then 

( i ) ,11? ( A, B ) = ( B, A ) = , where 2+ 
y2 

= . 

(ii) '2 = 2(1- 7), so > < 4) < 2 1) . 

(iii) A al B <=> y <1 ; 

A 1 B = 1 = 2 , 
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Proof, Take a c AnS b EBnS Write (a,b) = 

Then 

(a +Xb , a +Xb) = 1 

= 1 + (x +µ) (X +F) - 1.14 . 

This is least when X = -µ , giving then 

Ila +Abll 2 = 1- jµ12 

It follows that 4(A,B)2 = 1 -7 Similarly, (B,A)2 

If X 
/ 

= 1, then, by (1) , 

Ila +Ablj 2 > 2- 2Wµß. 

Putting A = -µ /Iµ) (if µ 4 0), we obtain equality. Eq- 

uality also holds if µ = 0 . Hence 42 
= 2(1- y) . Since 

0 Y < 1 , we have 1- % < 1-y2 = ,A2 and 1 ; 2 41. 
(iii) follows, since A al B if and only if > 0 , 

while A 1 B if and only if -,1= 0 . 

The `angle" between A and B can be defined by: 

cos 9 = y, sin G = 4). See (5) . 

Examples 

In giving counter -examples, we shall frequently make 

use of spaces of sequences. The notations m, en were 

introduced on p. 19. In accordance with usual practice, 

co will denote the subspace of m consisting of sequences 

convergent to 0, and l (for any p 1) will denote the 

space of real sequences x = (fin) such that 7 HP is 
n 

convergent, with the norm defined by 1(x )) 

p 
= Nn I p 

. 

We shall call (gin) a "finite sequence" if it has only 
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a finite number of non -zero terms, and use the notation 

( .,. ,n) to indicate that r = 0 for r > n. 

We now give some examples for the sake of illustration. 

(i) In m or 1p (any p . 1), let A be the set of seq- 

uences (an) having a2n = 0 for all n, and B the set of 

sequences ((3n) having 
p2n -1 = 0 for all n. A and B are 

closed subspaces, and A al B, since, for a 6'A, b E B, we 

have Ra +b II > il a I . 

(ii) In m or 1p (any p > 1), let A be the set of 

non -negative sequences, i.e. sequences having every term 

non -negative. A is self -allied, since if a1 , a2 E A, then 

8.1-1-a211 > Ì1a10 This of course, is the positive cone for 

the usual ordering of these spaces. 

(iii) In 1 (any p > 1), let A be the set of sequences 

(an) having a2n = 0 for all n, and let B be the set of 

sequences (fin) having ß2n = 2 -n ß2n_1 for all n. A and B 

are closed subspaces with intersection {0. 

Now e2n 
-1 

EA, and f2n 
-1 = e2n -1 + 2 -ne2n 6 B 

l(e2n -1 << = 
1, while (f 2n -1 -e2n -1 = 2 

-n Hence A nal B, 

by 2.9. 

We show that A +B is not closed, though this follows 

from a later theorem (4.7). Now 

so 

(0,2-1, ,.. ,0,2-n) E A+B 

(092-19 .c. 90,2-n9092-n-1. ... ) A+B 
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Ii this is equal to 

(190, 0. 92n -1,09 ..o ) 

-1 -n 
+ (P19 2-1 . . ' ß2n -1 ' 2 ß2n -1 ' ... ) 

then ß2n -1 = 1 for each n, giving a sequence (ßn) which 

is not in 1 
p 

(iv) In 119 let K be the subspace consisting of seq- 

uences (ßn) such that 

ß1 = o 

ß 2n+1 = ß 2n (n % 1). 

Let .A be the set of sequences (an) such that 

2n -1 2n 2n > 0 

for all ne Then it is clear that A al A and AnK = { 

We show that (PA) nal (PA) , where P is the projection 
onto the quotient space 11 /K (cf , 1 01 6) . Let xn (resp- 

ectively yn) have components Lei -1 and Zvi (respectively, 
ui -3 and ÿ.i -2) equal to 1 for i = 1 , 2, , , ,n, and all 
other components O. Then xn, yn E A, and. Ijxn = Iy 1 = 2n, 

If b = (ßn) E ii, then 
2n 

Uxn+b > i 1 ß2 i1+ 2n 

Hence lI Pxn 1(- 2ï: 

Let bn have components 2, 3. , . ,14 +1 equal to 1, and 

all others 0. Then ,en E' X, and 
11 

xn +yn-bn 11 = 2 . Hence 

IIP(1_n +yn)11 < 2 (in fact, equality holds), and (PA) nal (PA), 

as stated. 
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3. CAUCHY NETS AND COMPLETENESS 

The results of the next two sections are presented in 

their maximum generality. At times this results in rather 

complicated statements. It will be noticed, however, that 

if the results are specialised to commutative topological 

groups, they become a lot simpler. 

We start by summarising certain definitions and facts 

connected with the right, left and two -sided uniformities 

of a topological group. The distinction, of course, dis- 

appears in the commutative case. 

A net (xn) in a topological group is R- CAUCHY (resp- 

ectively, L- CAUCHY) if, given M6 '1(X), there exists no 

such that for m,n > no , xmx171 
1 
E M (respectively, 

xm1 xn E I1) , (xn) is R- Cauchy if and only if (xn1) is L- 

Cauchy. A subset A is R- complete if and only if A -1 is 

L- complete. 

A net is U- CAUCHY (U denoting the two -sided uniformity) 

if and only if it is both R- Cauchy and L- Cauchy. A set 

which is complete with respect to either R or L is also 

U- complete. 

In most of this section, we shall require A comm B, 

i o e o a A, h F B => ab = ha . This implies A comm B, 

A -1 comm B 
-1 

, and. also A -1 comm B, since 

ba-1 = a.-1 (ab)a-1 = a-1 (ba)á 1 = a-lb , 

It also implies that A al B is equivalent to B al A, 

and that if (an) and (bn) are R- Cauchy nets (an < A, bn e B), 
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then (arbre) is R- Cauchy (and similarly for L- Cauchy nets). 

We now prove the basic theorem of this section. 

3.1. Let A,B be subsets of a topological group such 

that A comm B and (AA ) al (BB 
-1 

). Then: 

(i) If (anbn) is an R- Cauchy net (an E A, bn E B), then 

(an) and (bn) are R- Cauchy, 

(ii) If A and B are R- complete, then so is AB. 

(iii) If A is R- complete and B is closed, then AB is 

closed. 

Similar results hold for L if (17 1 A) al (B -1 B) 

Proof. (i) Given M E hi(X), there exists N E r1(x) such 

that if x E A 1 , y E BB -1 Á and xy E N, then x, y c M . 

There exists no such that, for m,n > no , 

(ambm)(an n) 
-1 

Now 

(a mb ) 
( anb n ) -1 

= ambm 
n1 

an -1 

= (a mañ1) (bmbñ1) 

Hence, for m,n > no , amañl and bmbñ1 are in. M. 

(ii) Suppose that A,B are R- complete, and that (xn) 

is an R- Cauchy net in AB. For each n, there exist an A, 

bn B (not necessarily unique) such that xn = a bn . By 

(i), (an) and (bn) are R- Cauchy; so have limits a FA and 

b EB. Then xn> ab, 

(iii) Take x E AB , There exist an E A 
9 
bn E B such 
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that (anbn) is a net convergent to x, By (i), (an) is 

R- Cauchy, so has a limit a E A, Then 

bn = ant (an n) -3 ax 
and this is in B, since B is closed. Hence x EAB . t 

(ii) remains true if we substitute "sequentially com- 

plete" for "complete". 

Note that AB = BA 9 because of the condition A comm B, 

If A and B are subgroups, this shows that AB is also a sub- 

group, and the condition (AA-1) al (BB-1) reduces to 

A al B. Even if A and B are not subgroups, (i) will hold 

under the assumption A al B if (an) and (bn) are "mono- 

tonic" sequences in the sense that aman1 C A and bmbnl CB 

for m < n, 

We now give some corollaries of 3,1, 

3,2, If X is Hausdorff and R- complete, and A,B are 

subsets such that A comm B and (AA 1) al (BB-1), then 

AB =AB 

Proof. AA al BBB , by 1,9, so (A 1 1) al (B B 
1 ) 

Also, A comm B, Thus, by 3,1(ii), A B is R- complote, 

and therefore closed. 41 

3.3. If A is compact, B is R- complotes A comm B and 

) n BB -I <', el , then AB is R-complete. 

Proof, . is compact, so (Ali 
1) 

al (BB -1) , by 

1.13, $: 
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We notice that there is no mention of alliedness in 

the statement of 3.3. It is, in fact, the first application 

of our theory. Further such results appear later, espec- 

ially in section 5. 

Combining the results for the right and left uniform- 

ities, we obtain: 

3.4. Suppose that A comm B, (AA 1) al (BB-1 and 

(A71A) al (B 1B). Then: 

(i) If (anbn) is a Cauchy net with respect to R,L or 

U (an L A, bne B) , then so are (an) and (bn). 

(ii) If A and B are complete with respect to R,L or 

U, then so is AB. 

(iii) If A is U-complote and B is then AB is 

closed. 

Proof. (i) says nothing new. (ii) (for U) and (iii) 

follow exactly as in the proof of 3.1. 

Some results in the converse direction 

Motivated by 1.5(u), we now look for results in the 

converse direction to 3.1(i), deducing alliedness from the 

hypothesis that if (anbn) is a Cauchy net (with an EA, 

bn E B), then so are (an) and (bn) . It is clear that (as 

in 3.1) some additional conditions are requi--ed: take 

a 4LN, and let A = 4 a}, B = { a 
j 

. Then A nal B , but 

every net in A or B is Cauchy. We find that, in the pres- 

ence of additional conditions, the hypothesis above can be 
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weakened to the assumption that if (anbn) converges to e, 

then (an) and (bn) are Cauchy. 

The simplest additional condition which works is 

e E AnB , giving the following theorem (the method of proof 

is perhaps of more interest than the result itself): 

3.5. If A,B are subsets of a topological group that 

contain the identity, and for every net (anbn) with a11EE A, 

bn E B which converges to e, (an) is R- Cauchy or L- Cauchy, 

then A al B. 

Proof. If X has the indiscrete topology, then A al B 

trivially. We suppose the contrary, so that there are 

neighbourhoods of e which are properly contained in X. 

Suppose that A nal B . Then there exists ME roc-) 

such that, for each N E ?(X), there exist aN F A' -Pi, bN E B 

with aNbN EN. Let 

D = {_(x,N) : x E .X, N e n(X) . 

If wo define (x,N) (y, P) if and only if N ? P, then 

directs D. We define nets in A and B over the directed 

set D by putting: 

a aN , b 
(x 9 

N) = -ON if x N, 

a(1,,y) = b(x,N) - C if x N 

Then a 
(x, 

N)b 
(x, 

NT) E N in all cases, so the net 

fapbp : p F. DI converges to e. However, given (x, N) E D, 

there exist elements p,q of D following (x,N) such that 

ap / M, aQ = e . Hence {ap : p F D 3 is neither R- Cauchy 

nor I- Cauchy. 



34 

Of course, 1 , 5 (i) shows that, under the conditions of 

the theorem, (an) and (bn) converge to e. It is easily 

seen that the condition e E AnB can be weakened to 

e E A n B. A different set of additional conditions is 

given by: 

3.6. Suppose that A n B' Ç kes , A is V- complete 

for some uniformity V inducing the topology, and that for 

every net (anbn) convergent to e (with an A, bn ̀  B), 

(an) is V- Cauchy, Then A al B 

If the group is metrisable, it is sufficient if this 

is true for sequences. 

Proof. Suppose that Anal B . Let 3 he a local 

base, countable in the metrisable case. There exists open 

M 1(X) such that, for each NEB, there exist aN E A--rß, 

bN E B with aNbN E N. {aNbN is a net convergent 

to e, so (aN) is V- Cauchy, and converges to a point a of A. 

Since M is open, a q M. Now 

°N, = (b;l aT1 ) aN - ea = a , 

so a F B` . This implies that a el , which is a contra- 

diction. -V 

It is sufficient in 3.6 if A is V- complete for some 

uniformity V inducing a topology not smaller than the given 

one. Applying 3,6 to the "natural" uniformities R, L, we 

obtain: 

3.7. Suppose that A n B`1 {el , A is R- complete, 
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and that for every net (anbn) convergent to e - 
(with an e A, 

bn B), (be) is L-- Cauchy, Then A al B . Sequences are 

sufficient in the metrisable case. 

Proof. The result follows by 3,6 if we show that 

a bn -> e implies that (an) is R- Cauchy. Given M E n(X), 

take symmetric N c Q(X) such that N3 ç M , There exists 

no such that 

n no => a bn N 

m n > no => bm1 bn N . 

Then, for m,n no 0 

amanl = (a 
mb m ) (bm1 bn ) (bn l an 1 ) N3 ç M 

Restricted converses to 301(ii), deducing alliedness 

from completeness of AB, are obtained in the next section. 

We finish this section with two counter -examples. 

Closed allied subspaces with a non -closed sum 

Let F be the space of all finite real sequences, with 

norm defined by N(n) (( = sup 111( 
. Let A be the subspace 

consisting of sequences (an) having a2n = 2 a2n -1 for all 

n, and B the subspace consisting of sequences (ßn) having 

Pi = 0 and r2n +1 = 2 ß2n for all n. A and B are closed, 

even with respect to the topology of pointwise convergence. 

Suppose that a = (an) E A , b = ((3n) É B = 1 

and Ha-b1( < e We show that (lb > 1 
; 

it then follows 
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by 210 that A al B Now 
(ar / 

= 1 for some r, and 

r > 1 since ß1 = 0 . Then ar- ßr-1 I < , so 

or-1 > 2 tar I- i2ar- Rr-1 1> 2-1 = 1 g 

and (fib 1 > 1 
, 

as stated. 

Now 

SO 

(192-1,2-2, ,2-2n+1) 
E A 9 

(09 
-1 

9 

-29 
9 

2-2n+1,2-2n) 

(1,0, .. ,0,-2-2n) E A+B , 

B 
9 

and (1) E A +B . By considering the position of the last 

non -zero term, we see that (1) / A +B 

This shows that completeness is an essential ingredient 

of 3.1. 

Complete allied wedges with a non- closed sum 

3.1 shows that the sum of complete allied sub groups of 

a commutative topological group is complete. We give an 

example where this fails for wedges in a Banach space. We 

can even do so while allowing one of the wedges to be a 

subspace. 

In l 
12 

let A be the set of sequences (an) for which 

and 

a2n = a2n+1 ! (n 1 ) 

!IcL a1 = 
n=2 

A is a closed wedge, and for a L A, 1(a U = 2a1 
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Lot B bo tha closers subspace consisting of-sequences 

(ßn) for which ß2n -1 = 
32n for all n. 

Take a E. A, b E B. If (ai-f31 {< a , then 

ß1 > a1 But a, , 2 H 9 so 131-a2 > 4 a1 Hence 

so Aal B 

Let 

a-b I > a1 = '713 Ra I( , 

an = 2r9 0.. 9 2n) 9 
Ila1 = 2 9 

1 1 

bn - (2n' °°° '2n) IIb 11 = 1 . 

(By closing the brackets, we imply that all further terms 

are zero; the given norms determine the number of non -zero 

terms.) Then an A9 bn e B9 and 

( 
1 1 

añ = bn 1 2n'0' 0 9092_ 

- (1) as n-á , 
Hence (1) E A +B o But if (1) = a -b , where 

a = (a1 9 a29 a29 9 (12n9 2n9 . . ) 

thon 

b = (ß19ß19ß39ß3' .. 'r2n-1'ß2n-1' 

P1 =a2=ß3=a/4-=... 

) 9 

so, since a and b are in 11' ßn = 0 for all n, and an = 

for n ? 2,, while a1 = 1 . Thus a A. 

It is instructive to consider A -A, the subspace gen- 

crated by A. A-A is, in fact, the set of sequences z = (- ) 
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for which 

`2n 
= 2n+1 (n % 1 ) 

and 

CO 

= Tk-n 
n=2 

For, given such z, let 

OD pp 

a1 = n 9 2 = 
n=2 n=2 

a + ( + + + 
29 2' °' 9 2n" 2n9 . . 9 

a2 = 29 29 r2, .. 9L;2n9 -2n9 
.. ) 

Then a1 9 a2 E. A and a1 -a2 = z 

Hence A -A. is closed, and (A -A)nB = {o L It is clear 

from 3.1 that (A -A) nal B , and it is easy to verify this 

directly. The argument above shows that (1) (A -A) +B 

We notice that the sequences (an) and (bn) are bounded 

('cf. ex. (iii), p. 27). 

In section 5 we shall see that positive results about 

the sum of two wedges can be obtained when one of them is 

locally compact, 
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4. SUBGROUPS AND SUBSPACES 

In this section, we show that alliedncss of sub groups 

is equivalent to the continuity of certain homomorphisms, 

and use the closed graph theorems to deduce partial con- 

verses to 301. As in the last section, the st ̂ .tements ap- 

propriate to the commutative case are a good deal simpler. 

Projection onto A 

Let A,B be subsets of a topological group X. The ex- 

pression ab (a E A, b E B) for elements of AB is unique if 

and only if (A 1A)n (BB-1) = i_eL The natural projection 

ir of AB onto A is then defined by rr(ab) = a . If, also, 

e EAnB, then A al B is equivalent to the continuity of 

-tr at e with respect to the relative topologies, since this 

occurs if and only if, given M c tl(X), there exists N E l(X) 

such that 

aEA, bEB, abEN => aEI14 

If A,B are subgroups, then the expression ab for elem- 

ents of AB is unique if and only if AnB = {el , i.e. if 

and only if A 'l lad B are Dseudo- disjoint (see p. 14). If 

A comm B or B4X (i.e. B is a normal subgroup), then AB 

is a sub group and r is a homomorphism, for in either case, 

given ai E A, b E B (i = 1 , 2) , there exists c E B such that 

b1a2 = a2c , and then 

(a1b1) (a2ó2) = (a1 a2) (cb2) 

Hence we have the following theorem 
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4.1. Suppose that X is a topological group, and that 

A,B are pseudo -disjoint subgroups such that A comm B or 

B a X. Then A al B if and only if m is continuous. 

If A al B and e is a continuous homomorphism defined 

on A, then a continuous homomorphism Al is defined on AB 

by o1 (ab) = 0(a) . 

Isomorphism with the direct product 

Let A.)(13 denote the topological product of A and B. 

A x B is mapped onto AB by 4, where cl)(a,b) = ab . is 

continuous, by the definition of a topological group. 

is one -to -one if and only if (A 1 A) n (BB-/) = {e}. 

If A and B are subgroups, then 4 is a homomorphism 

if and only if A comm B , the implication "only if" foll- 

owing from the identity 

(e,b)(a,e) = (a,b) . 

A sufficient condition for this is that A,B are pseudo - 

disjoint and both normal in X. 

With this notation, we have: 

4.2. If (ri 1 A) n (BB-1) = e 1 and e E AnB , then 

A al B if and only if 
-1 

is continuous at e. 

If A,B are pseudo -disjoint subgroups, and A comm B, 

then A al B if and only if I is a topological isomorphism. 

Proof. q)-1 is continuous at e if and only if, given 

Iï E Mx), there exists N E 11(X) such that 
} 

a E A, b E B, ab E. N => a,b f M . t 
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Quotient spaces 

If A,B are subgroups of X, and A comm B , then AB is 

a subgroup, and A a AB, since, for a£ A, b E 

A(a'o) = Ab = bA = (ba)A . 

A continuous homomorphism Y._ of B onto the áuotient group 

AB/A is then defined by Xb = Ab . If AnB = {e, then 

-X is one -to -one. With this notation, we have: 

4.3. Let X be a topological group, and let A,B be 

pseudo- disjoint subgroups such that A comm B . Then 

A al B if and only if x -1 is continuous (so that AB/A 

is topologically isomorphic to B). 

Proof. (i) Suppose that A al B . By 1.3, given 

M E n(X), there exists N E f(X) such that (AN)nB M 

{.Ln < n E ITT is a neighbourhood of the identity in AB /A. 

If X b = = An for some n E N, then b E AN. so b E M. 

Hence 1-1 is continuous at the identity (and therefore 

continuous everywhere). 

(ii) Suppose that A nal B Let Q be a neighbour- 

hood of the identity in AB/A . Then l? Q is a neighbour- 

hood of e in AB. There exist M E h(X), a EA and b E B -M 

such that ab E V Q . Then b = Ab E Q . Hence -Y.-1 

is not continuous. t 

Application of closed graph theorems 

Following Day (4 ), we will say that a mapping is cg 

if its graph is a closed set. We show that, under certain 

conditions, the projection 117 of AB onto A is cg, and use 



42 

the well -known results about cg mappings to deduce suff- 

icient conditions for alliedness. 

4.4. Let X be a topological group, and let A.B be 

closed, pseudo -disjoint subgroups such that AB is closed. 

Then the projection of AB onto A is cg. 

Proof. Suppose that (anbn) is a net convergent to 

ab, where ap,a E A and bn,b E B. Suppose, further, that 

a n-4 ao A :e must show that ao = a . Now 

bn = ant (ari n) -4 ap1 ab = Uo (say) . 

bo E B, since B is closed. Thus ao 
1 

a = bob 
-1 

= e , since 

this is an element of AnB. Hence ao = a , as required. t 

We mention in passing that if AB is closed, and 

A n B = {e7, then A and B must be closed. 

The simplest "closed graph theorem" states that if 

S,T are topological spaces, T being locally compact and 

regular, then a nearly continuous, cg mapping S-4T is 

continuous (the proof is easy). 

If S is a non- meagre topological group, and T is a 

Lindelöf one, then every'homomorphism S-)T is nearly con- 

tinuous (see, e.g., (9), p. 213). 

A locally compact topological group is non -meagre, 

and if it is also connected, then it is 0--compact (and 

so Lindelöf), since if M is a compact neighbourhood of e, 

00 

then UM = X 
n =1 

Various sets of sufficient conditions for A al B 
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can be put together from these facts. A relatively simple 

one is 

4.5. Suppose that X is a locally compact topological 

group, and that A,B are closed, pseudo- disjoint subgroups 

such that: 

(i) AB is closed, 

(ii) A comm B or BQX, 
(iii) A is connected. 

Then A al B . 

The usual form of the closed graph theorem for topo- 

logical groups states that if X,Y are topological groins, 

Y being complete and metrisable, then a nearly continuous, 

cg homomorphism X--4Y is continuous (see (9), p. 213). This 

yields: 

4.6. Let X be a topological group, and suppose that 

A,B are closed, pseudo- disjoint subgroups such that 

(i) AB is closed and non -meagre in itself, 

(ii) A comm B or Be3X, 

(iii) A is complete, metrisable and Lindelöf. 

Then A al B + 

If X is complete and metrisable, then conditions (i) 

and (iii) reduce to AB being closed and A being Lindelöf. 

The situation is simpler in topological linear spaces: 

if X is non -meagre, and Y is complete and metrisable, then 

a cg linear mapping X-) Y is continuous (see (10), p. 97). 

Combining this with 3.1, we obtain: 
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4.7. If X is a complete, metrisable topological linear 

space, and A,B are closed, pseudo- disjoint subspaces, then 

A +B is closed if and only if A al B . 

As a single application of this result, we mention: 

4.8, If X is a complete, metrisable topological linear 

space, and A,B,C are closed subspaces such that AnC =01, 

B C C, and A +C is closed, then so is l +B, 

Proof. A al C , so A al B 

We can elaborate on our example of closed allied sub- 

spaces with a non -closed sum (pp. 35 -36) to show that we 

cannot dispense with the completeness condition here. 

With A,B as before, let C be the set of sequences (ßn) 

having ß2n +1 = 2 ß2n 
for all n, and ß1 arbitrary. Con- 

sideration of the position of the last non -zero term shows 

that AnC = {07, and it is easily seen that en E A +C for 

all n, so that A +C = F . It is also easily seen that 

A nal C (cf. 4.7). 

Closed allied subspaces A,B such that A +B = X are 

called TOPOLOGICAL CONPI=ENTS. Some results on the exist- 

ence of these are given in (11), section 31 

We finish the section by giving an example of a wedge 

A and a subspace B in a Banach space such that AnB = 

is closed; and A nal B , In 11, let A be the set of 

sequences (an) having an an ,> 0 for all n. Let B 

be the set of sequences On) with ß1 = 0 . A,B are closed, 
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and AnB = 0 _}, Let 

an = (1, eeo 91), kan = n, 

bn = (0, 1 , , , . 9 1 ), (Ibn l = n-1. 

= 1 , so A nal B 

A +B is the (closed) set consisting of all sequences 

( n) having 0 . For, given such a sequence, we have 

(fi 
) A, 

((029 39 0 . o ) 6 B, 

while it is clear that all elements of A +B satisfy this 

condition, 

In the light of 3,1, it would be interesting to have 

such an example subject to the stronger condition 

(A -A) n (B -B) = {0; . 
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5. LOCALLY COMPACT SUBSETS OF TOPOLOGICAL LINEAR SPACES 

Let X be a topological linear space. A positive homo- 

geneous subset A is locally compact if and only if there 

exists M E rt(X) such that AnM is compact. For if this holds, 

and a EA, then a scalar X exists such that a is an interior 

point of XM. Then An (XM) = A(AnM) , and this set is a 

compact A- neighbourhood of a. 

If A is positive homogeneous and locally compact, and 

X is Hausdorff, then A is closed. If X is metrisable, then 

A is complete. 

We shall denote by pos A the wedge generated by A, 

i.e. the set of all linear combinations of elements of A 

with positive coefficients. 

A Hausdorff topological linear space is locally compact 

if and only if it is finite -dimensional, and it then has the 

Euclidean topology. In fact, it is sufficient if there is 

a totally bounded neighbourhood of 0 (see, e.g. (10), 7.8). 

Thus, in a Hausdorff space, the wedge generated by a finite 

set is locally compact. However, a locally compact wedge 

may contain an infinite'linearly independent set an ex- 

ample is the set of all sequences (11.) in 11 having 

0 < 
n 
<n 

-1 
for all n. 

As an immediate deduction from two of our basic ro- 

sults, we have: 

5.1. If A, B are stars such that An ( -B) {0i, and 

A is locally compact, then A al B 
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Proof. There exists M F ri(X) such that An!..i is compact, 

By 1 01 3, (AnM) al (BnM) . Therefore, by 2.1, A al B . + 

Clearly, the existence of a compact A- neighbourhood 

of 0 is sufficient here (since A is only a star, this does 

not necessarily imply that A is locally compact), 

The remaining results of this section are applications 

of our theory, in the sense that allied sets appear in the 

proof but not in the statement. 

5,2, Let X be a Hausdorff topological linear space, 

A a finite -dimensional subspace, and B any subspace. Then: 

(i) if B is complete, so is A +B 

(ii) if B is closed, so is A +B, 

Proof. A +B = AI +B , where Al is a subspace of A such 

that Al n B = i 0 } . Al is locally compact, so, by 5.1 , 

Al al B , The results follow, by 3.1 . T 

(ii) is well- known, but the literature does not seem 

to contain. an explicit statement of (i). 

It is difficult to obtain corresponding results for 

more general sets using 3.1, since this requires the con- 

dition (A -A) al (B -B) , However, we can make use of the 

fact that if A is compact, then A +B is compact (or closed) 

if B is. 

5,3. Suppose that A,B are positive homogeneous sets 

such that An ( -B) 0L and that A is locally compact. 

Then: 
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(i) if B is locally compact, so is A +B 

(ii) if B is closed, so is A +B, 

Proof, There exists E Ì;(x) such that AnM is compact 

and Bn14 is compact (case (i)) or closed (case (ii)), Then 

I + BnM is compact (case (i)), or closed (case (ii)). 

'e show that this is a neighbourhood of 0 in .(? +B, from 

which the results follow, Now A al B , by 5.1 , so there 

exists N 11(L) such that 

(A +B) n N ç (AnJ.J + BnM) 

giving the required result. 

A simple example shows that we cannot dispense with 

the disjointness condition in 5.3. Consider the space s 

of all real sequences, with the topology of pointwise con- 

vergence. Let B be the set of non- negative sequences in 

s, and e the sequence having every term equal to 1. 

show that pos e - B is not closed. Let 

xn = ne - (n- 1,n -2, ,,. ,1) 

Then 

= (1,29 0 0 9 n, 11, 0 0. ). 

xn --4 (1,2, ... 9n,n+1, ... ) 9 

which is not in pos e - B , since it is not bounded above, 

Putting A = pos x in 5,3(ií), we obtain theorem 1(c) 

of (20). Our proof, unlike that in (20), does not use nets 

at any stage. What we can say about nets is the following: 

5.4. Suppose that A,B are stars such that 
An ( -B) c 0, 

and that A is locally compact. Let (an +bn) be a net which 

is either bounded or Cauchy (an Ë A, bn E B) . Then (an) has 

a convergent subnet. 
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Proof. Take M E fl(X) such that AnM is compact. Now 

A s.l B , by 5.1 , so N F f(x) exists such that 

a CA, 'o EB, a +b EN => a6M. 

(i) If (an +bn) is bounded, then there exists X E (0,11 

such that A(an +bn) E N for all n, Then Xan AnM for 

all n, so (Xan) has a convergent subnet, 

(ii) If (an +bn) is Cauchy, take circled P F n(X) such 

that P +P Ç N . There exists p such that for n > p, 

(an +bn) - (ap +bp E ) E P . For some X (0, 1j, X(ap +bp) E P 

Then for n > p, X (an +bn) E P +P N , so Xan t An The 

result follows. 

We can deduce the following variant of 5. 3, in which 

B is allowed to be a star instead of being positive homo- 

geneous 

5.5, Suppose that A is locally compact and positive 

homogeneous, B is a star, and An ( -B) (313. Then: 

(i) if B is complete, so is A +B 

(ii) if B is closed, so is 2A-B. 

Proof. (i) Let (an +bn) be a Cauchy net (an EA, bn E B). 

By 5.4, (an) has a subnet (a 
n. 

) convergent to a EA. (bn ) 

1 1 

is Cauchy, so has a limit b E B. Then a11+ bn 
1 

--4 a +b , 

so an+bn 5 a+b . 

(ii) Suppose that an +bn - x (an E A, bn E B). (an) 
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has a subnet (a 
n. 

) convergent to a EA. Then bn - x -a 
1 1 

and this is in B, since B is closed. Hence x E A +B . t 

The conditions of 5. 4 do not ensure that the express- 

ions (an +bn) are unique, One might suppose that by altering 

these expressions, one could cause the whole net (an) to 

converge, but the following example shows that this is not 

the case. 

Consider again the space s of all real sequences with 

the topology of pointwise convergence, Let A be the set 

of all non -negative sequences, and let B = pos b , where 

)n +1 
9 

b = (ßn) Let 

a2n-1 = 
(1,0, ... ,1,0) (n 1's), 

a 2n = 
(0,1, ... 90,1) (n 1's). 

Let x2n 
-1 - a2n -1 ' x2n - a2n+ b Then xn - x , where 

x = (1 , 0 , . . . 9 1 , 0 , . o . ) . 

If an = a+ Zb , then the components of a alternate event- 

ually between X and. -X, so this is only possible with a EA 

if X = 0 It follows that, in this case, the expressions 

for xn as elements of A +B are unique, so that we cannot 

alter the sequence (an) to make it converge. 

Slightly more can, in fact, be said about nets of the 

form (an+ Xnh ), without using allied sets. For this, see 

appendix 1. 
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An open mapping theorem 

Let A be a locally compact, positive homogeneous subset 

of a normed linear space, and let T be a continuous linear 

mapping such that if a E A,40], then Ta 0 . Then 

: a E A and (Ian = 1 is compact and does not contain 

0, so has a positive infimum, say &. Hence 

a E A, It a 11 
> 1 => 

t( 
Ta ((; S , 

or, to put it another way, { Ta : a c A and H a )I < 11 is 

a neighbourhood of 0 in TA. 

The generalisation of this result to all topological 

linear spaces is perhaps the most significant application 

of our theory of allied sets. The mapping T need not be 

linear, but only positive homogeneous, i,e. such that 

T(Xx) = X(Tx) for X > 0 and x The set of elements 

which are mapped onto 0 will still be called the kernel 

of T. The theorem is: 

5,6. Let X,Y be topological linear spaces, and let T 

be a continuous, positive homogeneous mapping X---Y with 

kernel K. Let A be a star in X such that 0 has a compact 

A- neighbourhood and AnK 01. Then, for every A- neigh- 

bourhood N' of 0, TN' is a (TA)- neighbourhood of O. 

Proof. It is sufficient to prove the result for com- 

pact A- neighbourhoods of 0, since these form a base of 

A- neighbourhoods. Take N E Ì1(X) such that N' = AnN is 

compact. K is closed, since T is continuous, so A al ( -K), 

by 5 . 1 , and Q E no() exists such that 
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a EA, k EK, a -k EQ => a E N , (1 ) 

Suppose that TN` is not a (TA)- neighbourhood of 0, so 

that, given circled P E n(Y), there exists yp E (Pn TA)--TN'. 

Take xP E A--N' such that TxP = yP . Then xp E¡ N , and 

there exists µP E (091] such that 

µpip = xP E (2N) --aN . 

Since A is a star, xp E 2(AnN) = 2N', and since P is cir- 

cled, 
TVP = µTyp E P 

Let ]be a base of circled neighbourhoods of 0 in Ye 

Then `xP PE 15 3 is a net, and Tx' 0 . Since 2N' is 

compact, (x') has a convergent subnet. We denote this sub - 

net by (zn), and its limit by z. Then Tz = lim (Tzn) = 0 , 

so z E 

If xp E K+Q , then, by (1 ) , xp E_ N , contrary to 

hypothesis. Hence, for all P ET, xp E7 z +Q . This contra- 

dicts the fact that (zn) converges to z, and the result 

follows. -t 

Various corollaries follow with ease. We start with 

5.7. Let X,Y be topological linear spaces, and let T 

be a continuous, positive homogeneous mapping X-->Y with 

kernel K. Let A be a locally compact, positive homogeneous 

subset of X such that AnK c [01. Then TA is locally compact. 

Proof, TA is positive homogeneous, and there is a 

compact (TA)- neighbourhood of 0, by 5.60 t 
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Next we have a generalisation of a result which is 

used repeatedly in (3) ((3), lemma 2): 

5.8. Let X be a topological algebra, and let A 'oe a 

positive homogeneous, locally compact subset of X. If x 

is an element such that a E A {0} => xa 4 0 , then xA 

is locally compact. 

Applying 5,7 to the identity map, we obtain: 

5.9. A locally compact, positive homogeneous subset 

of a topological linear space is locally compact with re- 

spect to a smaller linear topology. 41 

5.6 says that T is an open mapping on A at 0. We fin- 

ish by giving sufficient conditions for it to be open at a 

general point of a convex set. Naturally, linearity is 

needed for this, 

5,10. Let X,Y be topological linear spaces, and T a 

continuous linear mapping X->Y. Let A be a convex subset 

of X, and suppose that a E A is such that a has a compact 

A- neighbourhood, and that if x E A and Tx = Ta , then 

x = a . Then, for every A- neighbourhood N' of a, TN' is 

a (TA)- neighbourhood of Ta, 

Proof, N' -a is a neighbourhood of 0 in the star A -a. 

If x 6A and T(x-a) = 0 , then Tx = Ta , so x -a = 0 . 

Therefore, by 5,6, T(N' -a) is a neighbourhood of 0 in 

T(A -a), i.e. there exists Q E n(Y) such that T(N' -a) = 

Q n T(A -a) . Then TN' = (Q +Ta)n TA , giving the result. 
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6. ALLIED SETS WITH RESPECT TO DIFFERENT TOPOLOGIES 

This section is concerned with the question of whether 

sets which are allied with respect to one topology are all- 

ied with respect to another one. Firstly, we show that two 

different topologies for the same group will certainly give 

rise to some pairs which are allied with respect to one but 

not the other, In fact, it is only necessary to consider 

pairs of sets of which one is a singleton. Then we return 

to linear spaces and obtain some positive results for sub- 

spaces and positive homogeneous subsets. 

We shall write A al B (r) to denote the statement 

that A al B with respect to the topology T. 

Determination of topologies by allied pairs 

We start with a very simple lemma: 

6.1. Let X be a topological group with identity e. 

(i) If x-1 g T, then (x } al A A al {x } 

(ii) If x Jte Î and tx} al A , then x-10 T. 

Proof, (i) There exists M E 11(X) such that 

(x 1 M) n A = 0 , or (xA) n M = 0 . Hence, by vacuous im- 

plication, x} al A , Similarly, A al {x} 

(ii) If Ix} al A , then, by 1.10, ix 1I n A { e 3 . ir 

This enables us to prove the result stated in the 

introduction to the section: 
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6,2. Two group topologies for X giving the same allied 

pairs are the same. 

i Proof. Let r and T2 be the two topologies, and let 

denote closure with respect to Ti (i = 1,2). 

If x E {e - e }2 , then {xi al x 1; (TO, but 

lx} nal i 1 (T2), by 1 .1 0. Hence le }1 x = , and both 

sets can be denoted by {e }. The result certainly holds if 

f e} = X , so we suppose that {el c X . 

Take any A X. We show that Al = A2 

If x tel , then, by 6.1, 

x1 Á <=> {x'5 al A ( T (Ti) 

(_> 06 al A (72) 

t => x 1 / 

Now suppose that x E {e. Take y e . Then 

xy 4 {el, so xy E <_> xy E Ay 
-2 

, by the result 

just proved. But x E Âi < => xy E Ay, (i = 1,2), since 

Ti is a group topology, i4 

It is natural to ask whether a group topology can be 

defined by specifying the allied pairs and defining: 

x F tels <=> al tx-1 ; 

if x { eL then x E A <=> {x-13 nal A ; 

i if x c te), then x 6A xy F Ay for some y / e . 
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The correspondence between some of the axioms is immediate. 

For instance, the condition 

(AuB) al C< => A al C and B al C 

(cf. 1.7) implies Au B = A u B . But it does not seem to 

be easy to give a set of axioms to be satisfied by the rel- 

ation A al B which ensures that A = A and that multi- 

plication is continuous, 

Subspaces of complete topological linear spaces 

The results of sections 3 and 4 give at once: 

6.3. Suppose that cr and -rare complete, Hausdorff 

topologies for a linear space X such that Cr is metrisable 

and every T- closed linear subspace is 0--closed (which will 

occur, in particular, if i c 0-). If A,B are subspaces, and 

A al B (T), then A al B (a-). 

Proof, By 1.9, A al B (T) , the closures being taken 

with respect to T . Hence, by 3,1, A+ B is T- complete, 

so T.--closed , Hence A3 B and A+ B are all a- closed, so 

A al B (o-) by 4,7, t 

It is well -known that if T is complete, ? c_ a, and cr 

has a local base consisting of T- closed sets, then T is 

complete. However, 6.3 is of limited application, and we 

proceed to deduce results of greater interest by different 

methods. 
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Dual topologies 

Let (X,Y) be a dual pair of linear spaces, not necess- 

arily separated. We shall often regard the elements of Y 

as linear functionals on X, and denote the scalar (x,y> by 

y(x). The weak and strong topologies induced by Y on X and 

its subsets will be denoted by w(Y) and s(Y) respectively. 

If X is a topological linear space, then X will denote 

the space of all continuous linear functionals on X (with 

respect to the given topology), and w(X) will be called 

the corresponding weak topology. 

We start by examining the meaning of alliedness with 

respect to a weak topology 

6,4, Let (X,Y) be a dual pair, and let A,B be subsets 

of X. Then A al B with respect to w(Y) if and only if, 

given y Ë Y, there exists a w(Y)- neighbourhood N of 0 such 

that 

a E A, b B, a+b e N => ky(a) 1 

Proof, The condition is clearly necessary. Suppose 

that it holds, and that y1, e ,yn E Y are given. Then 

there exist w(Y)- neighbourhoods Ni of 0 (i = 1, , . , ,n) 

such that 

a A, b EB, a+b F Ni => yi(a)( < 1. 
If a E A, b 6B, aZ i ) 1 for 

each i, It follows that A al B with respect to w(Y). 

Now we have 7, 
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6.5. Let (X,T) be a Hausdorff, locally convex space. 

If subspaces A9 B are allied with respect to T , then they 

are allied with respect to w(X). 

Proof. Since T is Hausdorff, AnB = k07. Hence elem- 

ents of A +B can be expressed uniquely in the form a +b 

(a EA, b E B), and, given y X *, we can define a linear 

functional y' on A +B by: y'(a +b) = y(a). By 401, y' is 

T- continuous on A +B, so has an extension z E X *. If a E A, 

b E B and z (a +b) 1< 1, then l y (a) 
I 1. Thus A al B 

with respect to ';(X), by 6.4. 

Later, we shall see how to extend this result to wedges 

(see 7.13). Results in the converse direction can be ob- 

tained for more general sets still. Recall that if T is 

a locally convex topology and w the corresponding weak 

topology, then a set is w- bounded if and only if it is 

so that we may speak simply of 'bounded'' sets 

(see, e.g., (1 0) , 
17.5). 

6.6. Let (X,T) be a locally convex, metrisable space, 

and let w denote the associated weak topology. If A; B are 

positive homogeneous subsets such that A al B (w) , then 

A al B (T). 

Proof. If A nal B (T), then, by 2.20í), there is a 

bounded sequence (an +bn) with anE A bn E B, and (an) un- 

bounded, Hence, by 2.2(i), A nal B (w) . 

Next we consider the topologies w(X) and s(X) for X *-. 

If .X is a normed space, then s(X) is the norm topology for 
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X. By the uniform boundedness theorem ((10), 18.5), if X 

is locally convex and sequentially complete, then subsets 

of X* are w(X)- bounded if and only if they are s(X)- bounded. 

Thus, by the same argument as in 6.6, we have: 

6.7, Suppose that X is locally convex and sequentially 

complete, and that the topology s(X) for X* is metrisable. 

If A,B are positive homogeneous subsets of X such that 

A al B (w(X)) , then A al B (s(X) ) 

In particular, if X is a Banach space, and A,B are 

positive homogeneous subsets of X* such that A al B (w(X)), 

then A al B with respect to the norm topology, 
I 

Lastly, we make use of the fact that if X,Y are Haus- 

dorff, , locally convex spaces, and a linear mapping X-4Y is 

continuous with respect to the weak topologies wX, wy assoc- 

iated with the given topologies, then it is continuous with 

respect to the Mackey topologies mX, my (see 01), 21 , 4(6)) . 

Also, the Mackey topology for a subspace of X is not smaller 

thn.n the relative topology induced by mX (no direct proof 

of this entirely elementary result seems to exist in the 

literature, so one is given in appendix 2). Recall that 

X is a MACKEY SPACE if it is Hausdorff, locally convex, and 

its topology coincides with the associated Mackey topology 

(in particular, all metrisable, locally convex spaces and 

all barrelled spaces are Mackey spaces). Using these facts, 

we have: 

6.8. Suppose that (X,T) is a Mackey space, and that 

A,B are weakly allied subspaces such that A +B = X Then 

A al B (T) . 
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Proof. AnB = {01, so the projection A-1-B-A is de- 

fined and continuous with respect to wx and wl. Therefore 

it is continuous with respect to mX = 
`X 

, and mA, which 

is not smaller than T Hence it is continuous with re- 

spect to TX and Tv so by . 1 , A al B (T) i 

It will be noticed that, in the case when X is borno- 

logical, 6.8 follows easily from the equivalence of weak 

boundedness and boundedness. However, it does not seem to 

be easy to replace A and B by more general sets in 6.8, 

even when X is bornological, 

Examples 

(i) Let 11 a be the usual norm of 1 
l' 

Another norm 

on 11 is the usual norm p of m, defined by p(x) = sup 

where x = (n). 

Lat A be the set of decreasing, non- negative sequences 

in 11, and let B be the set of sequences having ß1 = 0 

Let 

an = (1,1, ... 1), llanli = n, 

bn = (0,1, ... 9 1) , 1ÌbnlI = n-1. 

Then all E A, bn B and 
D 
añ hn ( = 1 . Hence A nal B 

with respect to e h. 

For any a = (an) E A , p(a) = a1 If b (B, then 

the first component of a +b is a1, so p(a +b) > p(a) 

Hence A al B with respect to p. 
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(ii) Let A be the subspace of m consisting of seq- 

uences (an) having a2n = 0 for all n, and B the subspace 

consisting of secluencos (ßn) having ß2n 
- 2 

n 
ß2n -1 

for 

all n (cf. section 2, ex. (iii), p. 27). Clearly, A nal B 

with respect to the norm topology. 

Let T be the topology (for m) of pointwise convergence. 

We note in passing that this is a metrisable topology, and 

that it is w( F), where F is the space of all finite real 

sequences. A basic T- neighbourhood of 0 is the set M of 

all (`çn) having j( 5 _ for i 2k (for some 2, k) . 

Suppose that (an) E A, (ßn) E B, and lßi -ai( < 21 'C 

for i < 2k . The even components show that (ßit 

for i = 1,3, ... ,2k-1 . Hence (ßn) E M. It follows 

that A al B (T) . 

Note that A and B are T- closed (though not -7-complete) 

subsets of m, while A +B is not even closed in the norm 

topology. Thus we have another example of closed allied 

subspaces with a non -closed sum (cf. p. 35 -36). 

We have found subspaces which are allied with respect 

to T but not with respect to ÌI N. Conversely, let K be a 

subspace which is lj 11-closed but not T- closed (e.g. co). 

Take an element x which is in the T- closure of K, but not 

in K. Let L be the one -dimensional subspace spanned by x. 

Then K,L are allied with respect to (I U, by 5.1, but not 

with respect to T. 
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7, DECOMPOSITION THEOREMS 

Let (X,Y) be a real dual pair of linear spaces. For 

A Ç X, write 

A+ = 1y FY y(a) > 0 for all aEAÇ , 

A° Iyf:Y ly(A)1 < 1 for all a-6Al 

These are w(X)- closed subsets of Y. A+ is a wedge, and A° 

a star. If A is symmetric, then A° is the set of elements 

of Y which are not greater than 1 on A, and A+ is the set 

of elements of Y which vanish on A. For a subset B of Y, 

B+ and B° are defined similarly as subsets of X. 

We continue to denote by pos A the wedge generated 

by A. Ati-+ 
is the closure with respect to w(Y) of pos A. 

The motivation for this section derives from the fact 

that if A -B = X , then A n( -B +) = f0 }, since an clement of 

this would be non -negative on X. This is the necessary dis - 

jointness condition for At al B+ , and indeed we have: 

7.1. If (X,Y) is a real dual pair, and A -B = X , 

then A+ al B+ with respect to w(X). 

Proof. Take x E X. There exist a, a' A and b,b' E B 

such that x = a -b , -x = a' -b' . Suppose that f c A +, g c B+ 

and f +g < 1 at each of a, a' ,b,b' . Then 

g(a) f(a)+g(a) 1 
, 

so 

g(x) = g(a)- g(b) < g(a) < 1 

Similarly, g( -x) < 1 , so i g(x) I < 1 . The result follows, 

by 6.14. 
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From 7.1 and 6,7 we have immediately: 

7.2. If X is a real Banach space, and A -B = X , then 

A+ al B+ with respect to the norm topology of X 

The special case of this appropriate to partially 

ordered linear spaces, viz, when A is a wedge and B = A, 

was obtained by Bonsall (0), lemma 2), and also by Namioka 

((14), 8.11), under certain extra hypotheses. 

If A and B are symmetric, then we may read A for A+ 

(and similarly for B) in 7.1 and 7.2, obtaining results 

which strengthen certain statements by Xöthe in (11) (20,5). 

7.3. If (X,Y) is real dual pair, and A,B are subsets 

of X such that A + -B+ = Y , then A al B with respect to 

w(Y), 

Proof. A ++ al B++, by 7. 1 . 

7.4. If (X,T) is a locally convex, metrisable space, 

and A,B are positive homogeneous subsets of X such that 

A + -B+ = XA', then A al B with respect to T. 

Proof. By 7.3, A al B with respect to w(X `) . The 

result follows, by 6,6. 

As in sections 1 and 2, for fixed A,B, we write 

[E] _ (E +A) n (E -B) 

We recall 2.3 and the example following it: if A,B are 

allied stars, and E is bounded, then so is [Em, but there 

is no corresponding result for compactness. Our next theorem 

gives one situation in which compactness of E implies that 
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of 1:E]. If X is barrelled, and a subset K of e is w(X)- 
bounded, then X is w(X)- compact (the closure being taken 

with respect to w(X) ), since K° is a neighbourhood of 0, 

so that K °O is w(X)- compact. 

7.5. Suppose that X is barrelled and that A -B = X 

For E ç X4(, write j EJ = (E -FA+) n (E -B +) . Thon, for X) 

with the topology w(X): 

(i) if E is bounded, then [E1 is compact; 

(ii) if E is compact, then so is [E]. 

Proof. By 7 ,1 A+ al B+ with respect to w(X) . J 

Therefore, by 2.3, if E is w(X)- bounded, then so is [El, 

so that [EJ is w(X)- compact. 

If E is w(X)- compact, then [E] is w(X)- closed, so (ii) 

follows. 

If B = A and < is the ordering induced on X) by the 

wedge A +, thon 7,5 shows that order - intervals in X are 

w(X)- compact. In the case when < is a lattice ordering, 

this implies that X'` is order -complete, i,e. that a subset 

of X4 which is bounded above has a least upper bound. 

"--- decomposition 

Given family "I- of subsets of a commutative topo- 

logical group X, we say that the pair of subsets (A, B) gives 

an -4-DECOMPOSITION of X if, given F4 -4, there exists 

G F such that F AnG - BnG . If U A) gives an -4-de- 

composition of X, we will simply say that A does so. (Cf. 

the concept "strict '4 -cono" introduced in (19), p. 217). 
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- will usually be chosen with its members symmetric, 

so that wo will have, equivalently, F Ç BnG - AnG , Pro- 

vided that U r- = X , it is clear that A -B = X 

Lot X,Y be topological linear spaces, and let Z be the 

space of all continuous linear mappings from X to Y (or a 

subspace). Let be a family of bounded, symmetric subsets 

of X such that the union of any two members is contained 

in a third, Then a local base for the topology 7-(4) (for Z) 

of uniform convergence on ' is the family of sets of the 

form {T : TF ç M 1, where F t 1- and M E my). If X and 

Y are normed spaces, and is the set of spheres in X with 

centre 0, then T(''1) is the norm topology for Z, 

Under these circumstances, we have the following 

theorem: 

7.6. If A gives an '4-decomposition of X, and K, L 

are allied subsets of Y, then 

(T : TA e K} al fu : UA Ç. L 

with respect to T(). 

Proof. Take F E 4- and M E l(Y) , There exists M1 E 7(Y) 

such that M,1 -M1 C M . Since K al L , there exists N E n(Y) 

such that 

kE K, 1 L, k +lam N => kEM1 

Also, there exists G such that F - Ar)G 

Suppose that TA c K, UA L and (T +U) G ç N . If 

x E AnG, then Tx E K, Ux E L and Tx+ Ux E N , so Tx E M1 

Hence TF M -M1 ç M , and the theorem is proved. - 

We notice that it is sufficient if, instead of an 



66 

'4- decomposition of X, we have the condition that, given 

F61-, there exists G E'l- such that F S H, where 

H = AnG - AnG . To see this, take M closed in the proof. 

Cf. , Schaefer's definition of 44".- cone" ((19), p. 217). 

7.6, in the case when K = L, is given in (19) (p. 226) 

under certain extra hypotheses. A second generalisation 

of Schaefer's result is obtained by keeping K = L but re- 

placing A by two sets in X: 

7.7. If (A,B) gives an '4- decomposition of X, and K 

is a self -allied semigroup in Y, then 

{T : TA K} al !U : UB ç K 
with respect to r(""10. 

Proof. Take Fc'T FE' and MC Ì'7(Y). There exists GE r\4- 

such that F Ç AnG - BnG . Take symmetric M1 E ri (Y) such 

that M1 +M1 +M1 ç M , There exists N1 E Ìß(Y) such that 

N1 . M1 and such that, if ki E K (i = 1 , 2, 3, 4) and 

k1 +k2 +k3 +k4 E N1 , then ki E M1 for each i (this is the 

stage at which we need the fact that K is a semigroup). 

Take N E ((Y) such that N +N S Ni. 

Suppose that TA K, UB S K and (T +U) G N . '?:re 

show that TP S M . Take f E F, Since F is symmetric, 

there exist a,a' E AnG and b,b' E BnG such that f = a -b, 

-f = a'-b'. Thon a +a' = b+13', so 

Ta+ Ta' + Ub + Ub' = (T +U) (a +a') E N +N c N1 , 

and Ta, Ta' , Ub, Ub' E M. , Now 7b+ Ub E N e M1 , so 

Tf = Ta- Tb = Ta+ Ub- (Tb+ Ub) E M1 +M1 +M1 <' M 

as required. t 
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In the special case when Y = R , Z becomes a subspace 

of X *, and M becomes the polar topology induced on Z 

by -1, having local base ° = { F° F The strong 

topology s(X) and the Mackey topology m(X) are obtained by 

letting -1 be the set of symmetric subsets of X which are 

(i) bounded or (ii) compact with respect to w(Z). Putting 

K = R+ in 7.7, we obtain 

7.8. If (X,Y) is a real dual pair, is a family of 

symmetric, w(Y)- bounded subsets of X, and (A,B) gives an 

'1-- decomposition of X, then A+ al B+ with respect to T(-1).4 

7.1 is a special case of this result - a fact which 

illustrates the considerable generality of 7.7. 

Í't °- decompositions of the real dual space X are of 

particular interest, where t1 = f;_(X). We repeat the def- 

inition: (C,D) gives an n °- decomposition of X if and 

only if, given E f (x), there exists N E l(X) such that 

M0 C CnN °- DnN °. An n°-decomposition of X' is the same 

as a 2 °- decomposition, where r is any local base in X. 

If (X, T) is a locally convex space, then T - c`(( ? °), so 

7.8 gives: 

7.9. Let X be a real, locally convex space, and write 

fl = no). If (C,D) gives an r. °- decomposition of X, 

then C+ al D} in X. 

In particular, if A,B X and (A +, B +) gives an 

n°- decomposition of X% then A al B 

We notice that if X is a normed space, then (C,D) 
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gives an n °- decomposition of X* if and only if there exists 

K > 0 such that every f E X° is expressible as g -h, where 

g E C, h E D and ((g jl, (t h a < K f E¡ 

We now turn our attention to results in the converse 

direction, i.e. deducing that some pair of sets gives a 

decomposition. The main result of Bonsall (2) is that if 

A is a self -allied cone in a locally convex space X, then 

Al- gives an h °- decomposition of X *. Schaefer obtained 

this result independently ((16) , 1 .3) . With a proof sub- 

stantially similar to Bonsall's, we show that this can be 

generalised to two wedges A,B; (the resulting theorem is 

the converse of the remark after 7.9, in the case when A 

and B are wedges). We use the following lemma, -proved 

by Bonsall ((2), theorem 1): 

7.10. Let X be a real linear space, p a sublinear 

functional on X, and B a wedge in X. Suppose that q is a 

functional defined on B and superlinear there (i..e, -q is 

sublinear), and that q(b) p(b) for b E B. Then there 

is a linear functional f on X such that 

f(x) < p(x) (x E X), 

f(b) > q(b) (b CB). t 

Our theorem is 

7.11. Let X be a real, locally convex space, and 

write r2 = 7(x) , If A,B are allied wedges in X, then 

(A +,B +) gives an n°- decomposition of X *. 

Proof. Let M E n(x) be given. There exists convex, 
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symmetric N c ((x) such that 
aEA, b EB, a +bEN => a,bEM. (1) 

Let pN be the Minkowoki functional of N. For all 

xEX, define 

p(x) = inf {pN(y) : y E x +Al. 

p(x) 0, and for A. > 0, p(Ax) = Ap (x) If x E -A, then 

OF x +A, so p(x) = 0 . If yiE xi +A and pN(yi) < p(xi) + 

(i = 1 , 2) , then y1 +y2 E X1 +X 2+A , and 

pr1(y1 +y2) < p (x1 ) + p (x2) + 2 E . 

Hence p (x1 +x2) < p (x1 ) + p (x2) and p is sublinear. 

Take f E 111°. Suppose that y E (x -A) n B , and take 

¿ > p(x). x y +A, so x +A c y +A, and p(y) < p(x). Hence 

p(y/é) p(x /4) < 1 , so there exists z C y/b +A such that 
pN(z) < 1, i.e. z N. y(( B, so by (1), yfc(E M, and 

(f(y)( < . Hence f(y) < p(x) 

Thus, for b E B, we may define 

q_(b) = sup If(y) : y E (b -A) n B , 

and q(b) < p(b) Putting y = b, we see that q(b) > f(b). 
If yi E (bi -A)n B and f(yi) > q(bi)- (i = 1,2), then 

y1 +y2 (b1 +b2 -A) n B and 

f (y1 +y2) > q(b1) + q(b2) - 2 
Hence q is superlinear on B. 

By 7110, there is a linear functional f1 on X such that 
(x) < p(x) (x EX), 

f1 (b) > q(b) (b 6 B). 

If x E -A, then f1 (x) < p(x) = 0 . Thus f1 E A +. Also, 
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f p pN 1 
s c fi E N°. Putting f2 fi-f, v,re have 

f2(b) q(b) - f(b) > 0 (b B). 

Finally, let P _ (ZnN) , 11'1 and f1 < on P, so 

If2 < 1 on P. Hence 

Iqo (A+nPo ) - (B+np° ) 

Combining 7.1 and 71i, we have: 

7l2. Let (X,Y) be a real dual pair, and let A,B be 

w(Y)- closed wedges in X. Then the following statements 

are equivalent: 

(i) A -B = X ; 

(ii) A+ al B+ with respect to w(X) 

Proof. (i) implies (ii), by 7 ,1 . If (ii) holds, then 

X by 7 .1 1 . (i) follows, since A ++ = A, B ++ = B.4 

Under the same conditions, it is elementary that A -B 

is w(Y) -dense in X if and only if Aln( -B+) = 10, 
7,11 enables us to improve upon 6.5. Note that if X 

is a complex topological linear space, and XR, X denote 

respectively the spaces of real and complex continuous 

linear fvnctionals on X, then the topologies w(XR) and 

vr(XC) are the same. Thus, in all cases, w(XR) is the 

same topology as w(X *) 

7,13, If (X,i) is a locally convex space, and A,B 

are T- allied wedges in X, then A al B with respect to w(X3(). 

Proof. By 7.11, A + -B = XR , The result follows, 

by 7.3. t 
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Another easy consequence of 7.11 is: 

7,14. Let (X,T) be a real, locally convex metrisable 

space, and write rí = n(X) . If C,D are w(X)- closed wedges 

in X* such that C -D = X, then (C,D) gives an 
t 
-Z°- decomp- 

osition of X. 

Proof. By 7.1 and 6.6, C+ al D+ (T) 

}}Since 

C ++ = C 

and D ++ _ D , the result follows, by 7. 1 1 . 4= 

Denoting by A(E) the convex, circled cover of a set E, 

we have: 

7.15. Let X be a locally convex space, and } the 

family of finite subsets of X. If A,B are closed wedges 

such that A -B = X, then (A,B) gives a 11(')) -decomposition 

of X. 

Proof. Consider the dual pair (X,XR). By 7.1, A+ al B+ 

with respect to w(X). {F<° , F E-1-/ is a local base for 
{- 

w(X), and F °U = /A (F). . The result follows, by 7,1 1 , -1- 

Let X be a barrelled space. Write iÌ = r,(X) , and let 

33 be the set of w(X)- bounded subsets of X )( (which, incid- 

entally, coincides with the set of s(X)- bounded subsets). 

If E E )3, then E° r' so E ç E°° v-,°. Conversely, if 

N E 17 , then N° is w(X)- compact, so certainly N °E 'T3 It 

follows that the Ìq °- decompositions of X* are precisely the 

-decompositions. Hence we have: 

7.16, If X is a barrelled space, and 73 denotes the 

set of w(X)- bounded subsets of Xx, then wedges A,B in X are 
çç 

allied if and only if (A +,B 
+) 

gives a 73- decomposition of V.-I 
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8, OPEN DECOMPOSITION 

Let X be a commutative topological group. We say that 

the pair of subsets (A,B) gives an OPEN DECOMPOSITION of X 

if A -B = X and, for each neighbourhood M of 0, the set 

AnM- BnM is also a neighbourhood of O. If (A,A) gives an 

open decomposition of X, we shall simply say that A does so. 

This section is devoted to the subject of open decomp- 

osition in its own right, but we shall see that it is close- 

ly connected with allied sets. We start with some very 

elementary results (8.1 - 8.6). X, throughout, denotes 

a commutative topological group. 

8.1. If A -B = X and A al ( -B) , then (A,B) gives 

an open decomposition of X. 

Proof, Take M E '1(X), There exists N E n(X) such that 

a6A, b6B, a-b 6 N => a,b E M 

Since A -B = X it follows that AnM- BnM 2 N 

8.2, If (A -A)n (B -B) _ {0 }, and (A,B) gives an opon 

decomposition of X, then A al ( -B) 

Proof, Given M & t(X), let N = AnM- BnM . Then 

N E (7(X), and if a -b E N (where a E A, b EB), then a,b E M, 

since expressions of the form a -b (a E A, b E B) are unique. 

Combining these two results, we have, for subgroups 

8.3. If A,B are sub groups such that AnB = {0} and 

A +B = X , then (A,B) gives an open decomposition of X if 

and only if A al B . 17 
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8.L4.. If there exist locally compact subsets A,B which 

contain 0 and give an open decomposition of X, then X is 

locally compact. 

Proof. There exists M E f(X) such that AnM and BnM 

are compact, Then AnM- BnM is a compact neighbourhood 

of 0. 

Note that if (A,B) gives an open decomposition of X, 

then A and B contain O. 

8,5. Let X,Y be commutative topological groups, and 

suppose that A,B contain 0 and give an open decomposition 

of X. If T is a homomorphism X -4Y which is continuous on 

A and B at 09 then T is continuous on X. 

Proof , Given P E rl(Y) , take Q, F 1-7(Y) such that 
Q -Q ç P , There exists M C fl(X) such that T(Anli) ç Q 

and T (BnMM) c Q (rnI - BnM) E n(x) , and T (AnM - BnM) P ,$ 

The following characterisation by nets and sequences 

should be compared with 1.5. Equivalence is only obtained 

in the metrisable case hero, 

8.6. Suppose that A -B = X , and consider the state- 

ments: 

(i) If (xn) is a net convergent to 0, then there exist, 

for each n, an E A and br B such that xn = a -bn and 

the nets (an),(bn) converge to O. 

(i)(s) Statement (i), with "net" replaced by "sequence ". 

(ii) (A,B) gives an open decomposition of X. 
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Then (i) implies (ii), and if X is metrisable, then 

(i)(s) is equivalent to (ii). 

Proof. Suppose that (A,B) does not give an open de- 

composition of X, so that, for some M6' r1(x), AnM- BnM 

rl(X) . Write AnM- BnM = L . Let 13 be a local base, 

countable in the metrisable case. For each N rg , there 

exists xr E NFL , x N E 73 
1 

is a net convergent to 

0 (a sequence in the metrisable case). If xN 
= aÑ bN 

(where aN EA, bN É B), then one of aN,bN is not in M. Thus 

neither of the nets (aN), (bN) converges to 0, for if one 

did, then both would, and both would eventually stay inside 

M. 

Now suppose that X is metrisable, and that (A, B) gives 

an open decomposition of X. There is a countable, contract- 

ing local base 

contract- 

( 

: n = 1,2, ., i , Let (xn) be a sequence 

convergent to 0. For each positive integer i, there exists 

ni > ni such that 

n > ni => xn c (AnM.-. -. Bnî i) 

For < n choose E AMi , bn E BnIL such , 

that xn = ari bn . Then the sequences (an),(bn) converge 

to 0. At 

The case where X is metriso:ble and A = B is essentially 

given by Nachhin ((13), proposition 15, p. 87) . 
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Linear spaces 

First we notice that if X is a topological linear 

space, and A,B are positive homogeneous subsets such that, 

for some M c fl(X), (AnM- BnM) 6 q(X ¡, then A -B = X , 

Open decompositions of linear spaces are of interest 

in two quite different contexts: 

(i) Open decomposition by pseudo- disjoint subspaces 

A,B. Of course, we can equally well write A +B = X in this 

case. By 8,3, open decomposition occurs if and only if 

A al B 

(ii) Open decomposition by a wedge A which induces a 

partial ordering of X. Nachbin actually incorporates this 

condition in his definition of a "locally convex directed 

spaces° ((13), p. 86). One elementary consequence is the 

continuity of any linear functional g satisfying 0 , g , f, 

where f is continuous. 

A simple result which applies in context (ii) is: 

8.7. If X is a topological linear space, and A is a 

positive homogeneous subset with non -empty interior, then 

A gives an open decomposition of X. 

Proof. Take open M E fl (X), and let G = (int A) n M 

Then G is open and non- empty, since A is positive homogen- 

eous. Hence G-G E r1(X) , and the result follows. 

A question which arises naturally is that of open de- 

composition with respect to different topologies. 8.3 en- 

ables us to answer this in context (i), using 6,6 and 7.13: 



8.8. Let (X, T) be a locally convex space, and let w 

be the associated weak topology. Then: 

(i) If (A,B) gives an open decomposition of X with 

respect to 7, then it does with respect to w. 

(ii) If T is metrisable, and (A,B) gives an open de- 

composition of X with respect to w, then it does with res- 

pect to T. 

Positive homogeneous subsets A,B of a normed linear 

space X give an open decomposition if and only if K > 0 

exists such that every x F. X is expressible in the form 

a -b, where a e A, b E B and a I(, `fib I< < K U x . Thus an 

open decomposition of a normed space by positive homogeneous 

subsets is the same as a bounded decomposition (i.e. a 

) -decomposition, where r is the family of bounded sets). 

We now attempt to discover how much of this remains true 

in more general spaces: 

8.9. Let X be a topological linear space. If A,B 

are stars such that A-B = X and A al ( -B) , then (A,B) 

gives a bounded decomposition of X. 

Proof. For each x f X, there exist ax A, bx E B such 

that x = ax -bx e Take a bounded set E, and write 

AE = a x E E J , BE = {bx : x E. E } . Then E 5_ AE- BE 

We show that AE and Bp are bounded, Take M E 17(X) . There 

exists circled N E fl (X) such that 

a E A, b Ë B, a -b E N => a,b E M. 

There exists X E (0,1] such that XE c N . If x F E, then 
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Xx = Xa1 -Xbx E N so Xax , Zbx E M , Hence XAE c M 

XBE M and the theorem is proved. IL 

From this and 8.2, we have 

8,10. Let A,B be pseudo- disjoint subspaces of a topo- 

logical linear space X, If (A,B) gives an open decompos- 

ition of X, then it gives a bounded decomposition of X. t 

Now we show that converse results apply in bornological 

spaces, but it is necessary to make a distinction between 

the real and complex cases. Every complex topological lin- 

ear space is, of course, a real one, However, two differ- 

ent concepts of "circled set' are available: complex -cir- 

cled and (a weaker condition) real- circled, Let Ot denote 

the family of convex subsets M of X such that, given a 

bounded set E, there exists X > 0 such that XE c M. As 

a complex space, X is bornological if every complex -circled 

set in O( is a neighbourhood of 0. As a real space, X is 

bornological if (a stronger condition) every real- circled 

set in Qj is a neighbourhood of 0. In fact, in this case, 

every set in Ol is a neighbourhood of 0, since if M E Ô(, 

then Mn ( -M) is a real- circled set in T. Curiously, 

this rather basic point seems to have been ignored in all 

the literature. Our converse result is: 

8.11. (i) If X is a real bornological space, and A,B 

are wedges which give a bounded decomposition of X, then 

(A,B) gives an open decomposition of X. 

(ii) If X is a complex bornological space, and A,B are 



78 

linear subspaces which give a bounded decomposition of X, 

then (A,B) gives an open decomposition of X. 

Proof. Take convex M E n (X) . Let N = AnM- BnM 

Then N is convex. In case (ii), it is also circled. Take 

a bounded set E. There exists a bounded set F such that 

E c AnF - BnF . For some X > 0, XF c M . Then AE c N. 

Since X is bornological, it follows that N E Ìß(X). 

The class of bornological spaces is fairly wide; in 

particular, it includes all locally convex, metrisable 

spaces. 

Bounded decompositions are , of course, the same with 

respect to a locally convex topology and its associated weak 

topology, The concept has no meaning in topological groups. 

Metrisable spaces and groups 

The next theorem is our deepest result on open decomp- 

osition. It generalises results of Nachbin ((13), theorem 

11, p, 92) and Namioka ((14), 5.3, p. 23). 

8,12, Let X be a complete, metrisable topological 

linear space, Suppose that A,B are closed wedges such that, 

given x E X, there exist bounded sequences (an) in A, (bn) 

in B such that añ bn -4 x . Then (A,B) gives an open de- 

composition of X, 

Proof, The topology is given by an invariant metric 

d. We show first that, given M E r (X), there exists 6 > 0 

such that if d(x,0) .4 A, then there exist sequences (yn) 
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in AnM, (zn) in BnM such that yr -zn 

Take circled N E fl(X) such that N +N c N Define K 

to be the set of elements x for which there exist sequences 

(an) , (añ) in AnN and (bn) , (b') in BnN such that 

a b -- x 
9 ari bn -mai -x 

Given x EX, there exist bounded sequences (an), (an') in A 

and (bn) , (b') in B such that an-bn -a x , a?-13' n -3 -x 

There exists X > 0 such that ?a., , Aa , Xb,, , Xb;; E N for 
ao 

all n° Then Xx E K. Hence X = (nK) 
n =1 

Suppose that x F K , There exists xn E K such that 

d(x,xn) < 2 
-n There exist an,an E AnN and bn,b' E BnN n 

such that d (xn, an-bn) < 2 
-n 

and d ( -xn, añ bñ 2 
-n 

) < ° 

Then a ri bn,-3 x , an bñ - -x , so x E K° Hence K is closed, 

Therefore, by Baire's theorem, there exists xoEX and 

S > 0 such that d(x,x0) < t => x K , Take x such that 

d(x, 0) ° There exist an, a1 F AnN and bn,b' E BnN 

such that 

Then 

añ bn xo+x , 

a'-b7 -x ° n n o 

(an+añ) - (bn+bñ) -3 x 

(an +a1') E AnM , (h n -1-1)') E BnN so the assertion above is 

proved. 

'rite Mn = 1x d(x, 0) < 2 n} ° There exists on > 0 
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such that if d(x,0) < bn , then there exist sequences (yr) 

in Anion (Zr) in BnP.in such that yr zr x . Clearly, 

On 
-n +1 

The proof is completed by showing that, for each k, 

{x ó d(x, 0) < &+1 (AnMk- BnMk) 

Take x with d(x, 0) < 4k4.1 , There exist ak 
+1 ` AnMk +1 

bk +1 
E Bn1.'i such that d (xk 

+1 , 0) < k +2 , where 

xk +1 - 
x- 

(ak +1 - bk +1 ) 
Having obtained xr with 

d(xr 0) < , choose ar e AnMr br 6 BnMr such that 

d(xr'0) < Sr +1 9 
where xr 

= xr -1 (a -b br) ° 

Since A and B are complete, 

Now 

rn 

a =a EAnP.2 k ' Yb =b E.BnP4 
k+1 

r 
k+1 

r k 

l 
(ar-br) = x- x1 

k+1 

and x1 - 0 as 1 -co , Thus x = a -b , and the proof is 

complete, 

This gives us another automatic continuity theorem 

(cf. 2 °7) 

8,13, Let X,Y be topological linear spaces, X being 

complete and metrisable. Suppose that A,B are closed wedges 

in X such that A -B = X (or such that the condition of 8.12 

is satisfied), and that T is a linear mapping X >Y such 

that TA and TB are self -allied. Then T is continuous, 
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Proof, Let d be an invariant metric giving the top- 

ology of X, and let Mn = {x. d (x, 0) < 2-111 , By 8.12, 

ñ 1 (AnM Bnli n) is a neighbourhood of 0, 

If T is not continuous, then there exist N E ti(Y) and 

an 6 Anhin, bn Bn1iln such that n 
1 
T (añ bn) N 

op 

Since X is complete, L an is convergent, say to a, 
n =1 

a E A, since A is closed, Further, a = an +a' , where 
n 

a 
n E 

A, Now 

zi 1( Tan+Tañ )= n-1 Ta -4 0 

so n -1 Tan -4 0 , since TA is self- allied, Similarly, 

n 1 Tbn -ter 0 This is a contradiction, and the result 

follows. 

This applies, in particular, to "positive" linear 

mappings into a space with an order given by a self- allied 

cone (cf, (13), theorem 12, p, 95), Also, putting Y = R, 

we have: 

8.14. If X is a complete, metrisable topological 

linear space, and A,B are closed wedges such that A -B = X , 

then every linear functional in A +n B+ is continuous. -t 

A simple example shows that we cannot dispense with 

completeness here. Consider the space F of finite real 

sequences, with the usual ordering and the topology given 

by the supremum norm. Let f(x) = 
Yn 

, where x = ( n). 

Then f is a discontinuous positive linear. functional. 
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The following partial converse to 8.12 should be com- 

pared with 8.4: 

8,15. Suppose that X is a metrisable, commutative 

topological group, and that complete sub- semigroups A,B 

exist which give an open decomposition of X. Then X is 

complete. 

Proof. Let d be an invariant metric giving the top- 

ology, and let Mn = l x d(x 0) , = 
1 

, < 2 
n[} Pn = AnIn- BnMn 

is a neighbourhood of O. Suppose that (x 
n. 

) is a sequence 

such that xn - xn F Pn for n > 2 (any Cauchy sequence 

has a subsequence with this property). For n > 2, there 

exist a AnIVI , bn c Ba such that xn- xn 
-1 - 

a ñ bn n 

Also, there exist a1 6 A, b1 E B such that x1 = a1 -b1 

\1 
Then xn = ¡_ (a1 -br) ° For 1 > k > n / er F M 

n 
, SO, 

='1 r =k 

00 

since A is a complete somigroup, an = a F A . Similarly, 
1 

no 

bn = b B . Thus xn -4 a -b and X is complete, ---t- 

1 
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9. APPLICATIOI?S TO LATTICES 

In this section we show how alliedness and open decomp- 

osition play an essential part in the theory of commutative 

topological groups and topological linear spaces with a 

lattice ordering. No attempt is made to replace the pos- 

itive cone by two sets. 

Let X be a commutative lattice group, i.e. a commut- 

ative group with a lattice ordering such that x y implies 

x +z y +z for all z. Write x+ = x v0, x- = (-x)\(0, 

{ x ( = x ./(-x). Then l x ( = x 
+ 
+ x = x+ u x , and l y 1 < x 

if and only if -x < y < x . The following inequalities 

hold: 

c 

vYj < (x.Y{ IxnY x(\,(Yl 

x+ y 
{ C= + (Y { 

If X is a real linear space, we also have ;)\.x = ( ( ( x ( . 

(For these and other elementary properties, see (10),(19)). 

In accordance with the notation used in earlier sect- 

ions, we denote by [EJ the order- convex cover of E. We 

recall that the positive cone is self- allied if and only 

if X is locally order- convex (see p. 9). A subset A of X 

is said to be SOLID if a 6A and (x ( < (al implies that 

XEA 

If X has a topology, it is natural to consider contin- 

uity of the lattice operations. It is clear that continuity 

of the mapping x--x+ at a implies that the positive cone P 

gives an open decomposition of X, and that, if X is Haus- 

dorff, continuity of X-4/C+ for all x implies that P is 
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closed. (We notice that if P is closed, then X must be 

Hausdorff, since if x t 0 , then x " P or x -P ). 

The basic result connecting the lattice operations with the 

topology is the following. It is essentially a combination 

of results published in (13)(p. 89), (14) (p. 40) and (1 9) 

(D. 234), but no straightforward proof of the equivalence 

of all five statements seems to have appeared yet, so we 

give one: 

9.1. Let X be a commutative lattice group, and let P 

denote the set of non -negative elements. Then the following 

conditions are equivalent: 

(i) the mapping (x, y) -3 x vy is uniformly continuous 

on X x X 

(ii) the mapping X-4 X+ is uniformly continuous on X; 

(iii) P is self -allied and gives an open decomposition 

of X; 

(iv) P is self- allied and x a x+ is continuous at 0; 

(v) X is locally solid, 

Proof. (i) => (ii). A priori. 

(ii) => (iii), Open decomposition follows from con- 

tinuity of x-4 x +, as mentioned above. To show that P is 

self -allied, take ME- 'L(x). Then there exists N E fl (X) 

such that x -y 6 N implies x+- y+ M . If a,b E P and 

a +b E N, then = a +- ( -b )+ E M 

(iii) => (iv). Since P is self- allied, the order -con- 

vex neighbourhoods of 0 form a local base. Take order -con- 

vex III 6 n (X) . Let N = PnM- PnM . Then N E n (X) . Take 
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x E N, so that x = u1 -u2 , where u1 u2 E PnM Then 

0<x+u1 , so x + 
M. 

(iv) => (v). Take order -convex M E ri(X). The mapping 

x-±(xt is continuous at 0, so there exists N 6 n(X) such 

that x c N implies ± tx (E M . If x E N and I y 1 < tx ( , 

then y M. Hence the set 

{ y : 3 x EN such that (y < < (x ( } 

is a solid neighbourhood of 0 contained in M. 

(v) => (i). Take solid M E t7(X). There exists solid 

N E r1(x) such that N +N M Take v1 , v2 E N and x, y E X. 

Let 

Then 

z = (x+v1 ) V (y+v2) - x y y 

V1 n v2 < z< v1 v v2 

so .z < (v1 + (v2 , and z E 

If X is a locally convex topological linear space that 

satisfies the conditions of 9.1, it is a straightforward 

matter to show that the solid, convex neighbourhoods of 0 

form a local base. Taking the Minkowski functionals of 

such neighbourhoods., it follows that the topology can be 

given by seminorms p satisfying ( x => p(x) p (y) . 

We shall see presently that x-4x+ can be continuous 

everywhere without being uniformly continuous (contradicting 

a statement by Schaefer in (19), p. 234) . 

Let X be a commutative lattice group with a topology. 

We say that X satisfies CONDITION (M) if there is a local 

base consisting of sublattices, If M is a sublattice, then 
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Mn ( -M) is a symmetric sublattice, so the condition implies 

that there is a local base consisting of symmetric sub lat- 

tices. It is clear that condition (M) implies that x--) x+ 

is continuous at O. However, it does not imply that this 

mapping is continuous at other points, or even (in a Haus- 

dorff space) that the positive cone is closed, as is shown 

by the lexicographic ordering of R2 (since the ordering 

here is total, every subset is a subla ttice) . 

A treatment of spaces satisfying condition (M) is 

given in (6) and (8), and no attempt is made to reproduce 

it here, since it does not belong to the theory of allied 

sets. However, we notice that if condition (M) is satisfied 

and the positive cone is self -allied, then 9.1 shows that 

the space is locally solid. For topological linear spaces, 

we have the rather remarkable fact that these conditions 

imply local convexity, as the following shows: 

9.2. Let X be a linear lattice with a topology. If 

condition (M) is satisfied and the positive cone is self - 

allied, then there is a local base consisting of solid, 

convex sublattices,. 

Proof. Take order- convex M E fl(X). M contains a 

symmetric sublattice N E f(X) . If v F N, then 

\v( = v v ( -v) E N . We show that x E rN ] if and only if 

there exists v F N such that x (< l,v ( . The condition 

is clearly sufficient, by the above. Conversely, if x F [N1, 

then there exist v1,v2 C N such that -1 < x < v2 

Then x < vi v v2 , so ( < vi v v2 C N , as required. 
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It follows that [N] is solid. Clearly, [N] c M 

Take x,y 6 [N] Then there exist u,v E N such that 

(x ( < u , ly¡ < v . Let w = uvv . Then WEN, and 

v yl < <x ivly ( w , so x v y 6 LNG Similarly, 

x Ay E EN] , Hence [N] is a sublattice. It remains to 

show that it is convex. Ta ke X F (0, 1) . Then 

LA.x+ (1 -X)y( < X xl + (1 -RMrI 

Xw+ (1 -X)w = w , 

so Xx+ (1 -A)y F [N] , as required. 

It follows that the topology can be given by seminorms 

p satisfying: 

Ix 
i IY I => P(x) 5 P(Y) 

p(x v Y) = p(x) \ip(Y) for x,y > 0 

Conversely, it is clear that if the topology can be given 

by such seminorms, then the conditions of 9.2 are satisfied, 

9.2 applies to commutative lattice groups if the word 

"convex" is omitted. 

Alliedness also arises in another context. Elements 

x,y of a commutative lattice group are said to be DISJOINT 

if ix lAty i = 0 . Let AI denote the set of elements which 

are disjoint to each member of A. AL is a subgroup, closed 

if X is locally solid, and if X is order- complete, then 

Al + A11 = X (09), pp. 210, 235) . The following holds: 

9.3, If X is a locally solid commutative lattice 

group, and A is any subset of X, then A al A1. 

Proof. Take solid M E il(X), and suppose that x E A, 
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y c Al and x +y E M. Then (x +yl E ì1ï But (x +y + 

((19), cor. 1, p. 208). Hence x E M. 

The partial -stem cone 

In either m or cog let P denote the set of sequences 

having all partial sums non- negative. This is a closed 

cone, and (as a subset of m) it is the dual of the cone of 

decreasing positive sequences in 1. It provides examples 

of several situations of interest in the theory of part- 

ially ordered linear spaces. 

Firstly, P nel P with respect to the norm topology. 

Given n, two elements of P are: 

xn = (1, ... ,1, -n), 

yn = (0, .,. ,O,n), 

the terms -n and n occurring in place n +1 . }( xn(= j(yn ( = n, 

while ftn+yn1i = 1. 

However, P al P with respect to the topology of 

pointwise convergence (cf. the examples in section 6). 

To show this, suppose that (h), (v)i) E P and 
l i+ L ?i i 

E 

k 

for i <n. Then, for k n, L i +i) k, so 
i =1 

0 < ; kE 
i=1 

kk, H)k1 < Lz 

k 
0 < L i < k It follows that 

i=1 

for k < n. 

We notice that the sequence (er) is monotonic with 

respect to P, and converges to O with respect to the weak 

topology for m, but not with respect to the norm topology 
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(cf. 2.8). 

'le show that P gives a lattice ordering of m and co 

which is such that vy (( (so that condition 

(M) is satisfied). Given x = (i ), y = (vjn), let 

Xn = k1+ + , Yn = 0/1+ ... + (2n , and 

= (Xn Yn) (Xn -1 Yn -1) (n 
2), 

= X1 ./1 

Ïritc z = (n). It is easily seen that 
l 

.n 
1 (n ( `/11n( 

for all n, so that 11z (I < Ux I(vqyk( . Also, + ... +411 

= XnvYn , 
so that, with respect to the ordering given by 

P9 Z = xvy 

In particular, the mapping x-4x+ is continuous at 0 

(ti-:we consider only the norm topologies from now on) , In m, 

it is easy to verify that it is discontinuous at the point 

(1,- 1,1, -1, .0, ) By contrast, in co it is continuous 

for all x (though 9.1 shows that it is not uniformly con- 

tinuous). To show this, take x = (fin) E co and > 0 

There exists an integer N such that 
rI 

< E for r > N, 

Take y = (fin) E co 

y+ = (ßn )' where 

such that l y -x Now x+ = (an) , 

ar = Xr Xr-1 ( r > 2), a1 = X1 

pr = Yr - 
Yr-1 ( r> 2), pi = Y-11- 

and Xr,Yr are as above, We use the fact that 

0\. - 
1I -µ 1 for real X01. For r < N, 
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I i 

= 
s-1 
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so 
+ + Yr- Xr < , and 1 ßr -ar < 2 E . For r > N, we have 

Iar i «r t £ , (pr ( (1r l 

+ Ry -x (I < 2 , so 

\ 
ßr ar l < 3 E Hence y +- x+ 3 

Roughly speaking, the continuity of x--x+ in co is due 

to the fact that each element is close to a finite- dimen- 

sional subspace, but the continuity is not uniform because 

the dimension of the subspace required depends on x. 

P is too large to be self -allied, and large enough to 

give an open decomposition of co. By contrast, the cone 

of decreasing positive sequences is small enough to be 

self -allied, and too small to give an open decomposition 

(in fact, it only generates a dense subspace). 

Finally, we show that there is a continuous linear 

functional which is unbounded on an order interval (this 

shows (16), 3.4 to be false; cf. 2.3). Let zn denote the 

sequence (j), where 

rn = 1 (r = 1,2, ... ), 

= 0 for other j. 

By considering the first non -zero term in a linear combin- 

ation, we see that the sequence (zn) is linearly independent. 

Define a linear functional f on the subspace spanned by the 

zn by putting f (zn) = 1 for each n. Then f is bounded, 

since its value at (X1z1+ ,,. +Xnzn) is equal to term n! 

of this sequence. Hence f has a bounded extension to m. 

Now 0 < z1 - nzn z1 , and f (z1 - nzn) = 1 -n 
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10. ALLIED FAMILIES 

Let X be a commutative topological group, and write 

E' = Eu {01. for any subset E. A finite family A1, ... ,Anj 

of subsets of X is said to be ALLIED if, given 1:4 É 11(X), 

there exists N E n(X) such that if aiE- Ai (i = 1, ... ,n) 

and a1+ ... +an E N , then ai .E M for each i. 

By taking Ai instead of Ai, we ensure that every sub- 

family of an allied family is allied. The family tA, B } is 

allied if and only if A al B (which is equivalent to 

A' al B'). 

We say that an infinite family is allied if every 

finite subfamily is. 

The next theorem gives some equivalent formulations. 

In particular, we notice that alliedness of a finite family 

is equivalent to a finite number of statements of the form 

A al B. 

to 

10.1. Each of the following statements is equivalent 

... ,Anl being allied: 

(i) Ai al for each i j *i 
Al 

. 

(ii) Ai al I 1 Al' for i = 2, ... ,n ; 
<i ) 

(iii) if (xr) is a net convergent to 0, and for each r, 

xr = al + . .. + an (where ai E Al), then ai -4 0 

for each i. 
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Proof. If A Ì is allied, it is clear that (i) holds. 
1= 

Conversely, if (i) holds and M F Ì"1(X) is given, there exists, 

for each i, Ni n(x) such that if al E A ( j = 1, ... ,n) 

and a1 + , , . +an E Ni , then ai ̀  11. If a1 + . , , +an c'" I 
I Ni 

, 

then ai 01 for all i. Hence {Ai} is allied. 

The proof is completed by showing (i) => (ii) => (iii) 

=> (i). (i) implies (ii) a priori. (ii) implies (iii), 

by repeated applications of 1.5(i), and (iii) implies (i), 

by 1.5(ií). t 

Some easy deductions follow. 

10.2. If is allied, then so is 

It is sufficient to consider finite families. 

Let Bi = L A . Then Ai al Bi for each i, so Ai al Bi , 

jfi 

by 1.9. But Bi 7 A , and the result follows. 11 
jai 

10.3. If is is a finite allied family, and 

A al (YAk) , then 1_Aí }u{Al is allied. 

Proof. Immediate, by 10.1(ii). t 

10.4. If {A. is a finite allied family, A is compact, 
1? 

and ( -A) n ( 'IAi) C 01 , then LAij u {A; is allied. 

Proof. By 1.13, A al (5:-A1) . lt 

The proof of the following requires slightly more 

effort: 
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10,5. If is a family of stars in a topological 

linear space, and for some M E 7(X), the family {AinM2 is 

allied, then so isA. }. 

Proof. By 2.1 , each pair of members of the family is 

allied. Suppose that all subfamilies with n -1 members are 

allied, and take a subfamily {Al, ,,. ,Anj with n members. 

Note that stars contain 0, so that A! 

we have 

For each i 
, 

(A.() M) al (A n M)\ 

Since {A.i j4i, 1n'15 is allied, there exists N Ë (X) 

such that N C M and 

( 7- A. ) n N Ç 7- (A. n M) J 
Hence 

so Ai al 

(A.n N) al r/ Aj n N , 

l L 1j#i 

A. ' , by 2.1. Thus tAi } is allied; by 1 0.1 . (- 

j*i / 

Other generalisations of earlier results are apparent 

on inspection. We mention a few of them. 

10.6. If 9 9 A /0 
is an allied family of stars 

in a topological linear space, and (xr) is a bounded net, 

where xr = a.r + .. , + an (ai ( A.) then, for each i, the 

net (agi) is bounded. The converse holds for positive homo- 

geneous subsets of a metrisable space. 4-7 
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A family ¡Al, ... ,Anj of positive homogeneous 

subsets of a nomad linear space is allied if and only if 

there exists > 0 such that if ai ̀  Í'ßi for each i, then 

a1 + .. +an > ó ij a i 

for each i. 

10. 8. Suppose that { Ai -Ai : i = 1 , , , . ,n } is allied. 

(i) If (xr) is a Cauchy net, where xr = ar + . , , + an 

(a e Ai), then, for each i, the net (ai) is Cauchy, 

(ii) If each Ai is complete, then so is Y Ai 

(iii) If Ai is complete for i $ j, and Ai is closed, 

then ' Ai is closed, $- 

To see that we cannot expect corresponding results for 

an infinite allied family, it is sufficient to consider the 

ono- dimensional subspaces of m spanned by en (n = 1,2, e.. ). 

A natural example of an infinite allied family is given 

by the next theorem. It is an extension of 2.5. 

10.9. If X is a topological linear space, and T is a 

continuous linear mapping X-4X, then the sets j x : Tx = Xxi 

(for all scalars h) form an allied family, 

Proof. By 2.5, each pair of members of the family is 

allied. Suppose that all subfamilies with n -1 members are 

allied. Take distinct X 
1' 

. , , , Xn, and let (xr) be a net 

convergent to 0, where xr = xi + . , . + xñ , and Txi 
= 

Xixi 

Then 
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Txr _ A1 x + , , , + 1nxñ 9 

(X1-An)xl + o > e + (Xn- - ` n)xn- -4 0 
° 

Thus, by the induction hypothesis, xi 0 for 1 i n -1. 

Hence also xn -3 0, and the result follows, t 
Thus, if X is complete, the sum of a finite number of 

such subspaces is closed. 

Families may, of course, be pairwise allied but not 

allied: any three distinct one -dimensional subspaces of 

R2 form such a family. Pairwise allied families seem to 

be of no particular interest. 

It follows from the form of the definition that every 

allied family is contained in a maximal one. The same is 

true for allied families of subspaces of a topological lin- 

car space X, and it is clear that if Ai is a maximal 

allied family oÌ subspaces of X, then yAi = X , for other- 

wise the family could be extended by adding a one -dimensional 

sub space. 
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APPE?IDIX 1 . NETS IN A + pos b. 

We shall need the following result, which is an immed- 

iate application of the fact that every topological linear 

space has a completion (a direct proof is easy to give): 

Al .1 . If txn n E D r is a Cauchy net in a topolog- 

ical linear space, and 51An n É Dj is a net convergent to 

0 in the underlying field, then Anxn -a 0 . t 

Using this, we have: 

A1.2. Suppose that A is a star and -b A . Then: 

(i) If (an +Anb) is a Cauchy net (an E A, An 0) , then 

there is a subnet (am +Amb) such that the nets (am),(Xm) are 

Cauchy. If the original net was a sequence, then there is 

a subsequence with this property. 

(ii) If A is complete, or sequentially complete, then 

so is A + pos b . 

(iii) If A is closed, then so is A + pos b 

Proof. (i) Suppose that there is a cofinal subset F 

such that the net Ar r EF tends to o . We may suppose 

that each Ar > 1 . Then Art -40 9 so, by Al .1 , 

rt (ar +A b) = b + 
Art 

ar -4 0 

This implies that -b = lim ( Artar) E A , contrary to 

hypothesis. 

Hence there exists K > 0 such that { n An < K } is 



97 

residual, giving a net in the compact set [0,K1 , This 

has a convergent subnet (a subsequence if the original net 

was a sequence), and the result follows. 

(ii) Take a Cauchy net (an +Anb). By (i), there is a 

subnet (am +hmb) such that the nets (am) and (X m 
) converge, 

say to a E A and X >, 0 . Then the original net converges 

to a +Ab , since it is Cauchy. The usual variant of this 

argument proves (iii). 

This method is essentially due to Simons (see (20), 

theorem 1). A1.2 should be compared with 5,4 and 5.5; it 

is not a special case of these results, because -b 
' 
A 

does not imply that (pos b) n ( -A) {0i. Note that the 

examples following 5,3 and 5,5 both involve nets of the 

form (an +Ario). 

Lastly, we consider the case where A is positive homo- 

geneous and b ' A -A , so that expressions of the form 

a +Ab are unique. By 3.1 and 5.1, we know that if 'o q' A -A 

and (an +Xnb) is a Cauchy net, then (an) and (An) are Cauchy. 

Without requiring b A-A , we have: 

A1.3. Suppose that A is a closed, positive homogeneous 

subset of a Hausdorff topological linear space, and that 

b A -A. If (an +%nb) is a converrcnt net (an A, An > 0), 

then the nets (an) and (An) are convergent. 

Proof. By A1.2, there is a subnet jam +Amb : m E E 

such that am - a E A and Xm -> X > 0 . Then a +Ab is 
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the limit of the original net (unique, since the space is 

Hausdorff) . 

If XII ¡> A , then there exist E > 0 and a cofinal set 

F such that LAr % > F for r E F, Applying A1.2 to the 

net {ar +X b r E F , we see that 1Xr : r E F has a sub - 

net (Xs) convergent to p, (say), where p, 4 X , while 

as - a' E A ° Hence we have a +Xb = at +µb , so that 

b E A -A , contrary to hypothesis° t 
If A is not closed, the result fails. For instance, 

let X = m , and let A be the set of finite, non -negative 

sequences. Let b = (ßn) , where (3n = n-1. Putting 

a2n-1 = (il 
' 2' ° ' 2n-1 J ' 

?\. 

2n-1 - 0 ' 

a2n = 0, A2n = 1 9 

we obtain an example of this situation. 
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APPENDIX 2. THE MACKEY TOPOLOGY OF A SUBSPACE. 

Let X be a locally convex space, and A a subspace of 

X. Let X,A* denote the spaces of continuous linear func- 

tionals on X,A respectively. Por each f E X*, let f' de- 

note the restriction of f to A. Then f -*f' is a linear 

mapping on X into A0 (in fact, onto Ate, snnce X is locally 

convex). Furthermore, it is continuous with respect to the 

topologies w(X),w(A) , To show this, take a 
l' 

. , . 

' 

a n E A, 

and let 

N = { E A* (a) I < 1 for each 

Then N is a basic w(A)- neighbourhood of 0 in A. If f E X« 

and f (ai) < 1 for each i, then f' E N 

It follows that if K is a w(X)- compact subset of X, 

then K' _ f' : f E K is a w(A)- compact subset of A. 

Thus we obtain the result used in 6.8 

A2.1. Let X be a locally convex space, and A a sub- 

space of X. Then the Mackey topology m(e) for A is not 

smaller than the topology induced on A by the Mackey topo- 

logy m(X *) for X. 

Proof. A basic neighbourhood of 0 in the induced top- 

ology is AnK° , where K is a convex, circled, w(X)- compact 

subset of X*, and the polar is taken in X. With the not- 

ation used above, K' is a convex, circled, w(A)- compact 

subset of A *, and AnK° is the polar in A of K'. Thus 

AnK° is a neighbourhood of 0 with respect to the topology 

m(A *) for A. : 
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APPENDIX 3, PUBLICATION OF RESULTS. 

Almost all of section 9 is included in (8). Most of 

the remaining material is included in (7) . The following 

are the main exceptions: 

1.7; 1 .11 
9 
1.14; 1.15; 1.16. 

2,69 2,89 2,119 example (iv), p. 28. 

3.4; 3.5; 3,6; 3.7. 

Examples following 4.8. 

Example following 505. 

6.4; 6,5. 

7.12, 

8.49 8,69 8.89 8,99 8,109 8,119 8,15, 

Appendix 1. 

Appendix 2. 

The thesis includes the whole of (7), but only a small 

proportion of (8) . The style of (7) is consistently briefer 

than that of the thesis, and a number of proofs omitted in 

(7) are given in full here. Note that, while a similar 

system of numbering theorems is used in (7), the same result 

often appears with different numbers there and in the thesis, 
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