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INTRODUCTION

Let X be a topological linear space, The condition
for a cone in X to be normal and the condition for the sum
of two complete linear subspaces of X to be complete are
both special cases of a relation between pairs of subsets
of X which is the object of study of this thesis, All that
is required for the definition is the structure of a topo-
logical group, Let A,B be subsets of a topological group
X, We say that A is ALLIED to B, and write A al B , if,
given a neighbourhood M of the identity e, there exists a
neighbourhood N of e such that

ach, beB, abeN => a,b € M,

The thesis is intended primarily as an attempt to
examine the implications of this definition for their own
sake, However, some of the most interesting results are
applications, in the sense that allied sets appear in the
proof but not in the statement, The deepest result of
this sort is a kind of open mapping theorem (5.6).

The basic theory is dealt with in section 1, Some
equivalent forms of the definition are given; the one
using nets (1.5) is particularly useful. 1.13 is basic
to all applications involving compactness, An example is
given to show that, in a non-commutative group, the relation
need not be symmetric,

In section 2, we study the extra theory peculiar to
linear spaces, For stars, alliedness is determined within

any neighbourhood of 0 (2,1), 2.2 and 2.3 show the relation



between allied sets and boundedness, Numerical character-
isations are available in normed linear spaces, and further
ones in inner product spaces.

If A,B are allied subgroups of a commutative topological

group, and (an+bn) is a Cauchy net (anéaA, bne'B), then the

nets (an) and (b_) are Cauchy, Hence if A is complete, then

n
A+B 1is complete (or closed) if B is, In section 3, we show
that this and further statements can be formulated also in
non-commutative groups, Restricted converses are obtained
in section L4, where it is shown that alliedness of subgroups
is equivalent to the continuity of certain homomorphisms,

Section 5 is concerned with locally compact subsets
of topological linear spaces, The results here are mainly
applications, in the sense defined above,

Section 6 is concerned with the question of whether
sets which are allied with respect to one topology are all-
ied with respect to another one. It is shown that two
different topologies for the same group will certainly give
rise to some pairs which are allied with respect to one but
not the other, Some positive results are then obtained for
certain kinds of subsets of topological linear spaces,

Sections 7,8 and 9 form the part of the thesis that is
most obviously related to the theory of partially ordered
groups and linear spaces, A cone or semigroup is self-
allied if and only if it is normal, This is a concept of
fundamental importance in the theory of partially ordered

linear spaces, and our definition enables us to generalise



results about normal cones to statements about alliecd pairs
of sets. Many of the results of section 7 are of this sort,
although some of them are "generalisations” of theorems
which do not appear to have been explicitly stated before.
7.7 and 7,11 are the most important.

Sections 8 ("Open decomposition") and 9 ("Applications
to lattices™) are not primarily devoted to allied sets,
but show their relcvance to the topics considered,

In section 10, we show how, in a commutative group,
allied families of sets can be defined, and how some of the
properties of allied pairs can be extended to allied families,

Appendices 1 and 2 deal with related topics which could
not be introduced elsewhere without disturbing the contin-
uity. Appendix 1 is relevant to section 5, and appendix
2 to section 6,

Considerable prominence is given to counter-examples
throughout the work, The author feels that, in places,
these are more elegant than the positive results !

Most of the material is being published in (7) and (8).
Appendix 3 specifies which parts are not,

I am greatly indebted to my research supervisor, Prof,
F,P, Bonsall, who has been a constant source of inspiration
and guidance during the period in which this work was done,
I am also grateful to Dr, G, Brown for drawing my attention

to (21).



1, BASIC THEORY

Let X be a topological group (X may or may not be a
topological linear space), The following notation will be
used consistently, The identity in X will be denoted by e,
or, when X is known to be commutative, by 0, The family of
all neighbourhoods of the identity will be denoted by N (X).
By a LOCAL BASE we mean a base of neighbourhoods of e, It
is well-knovn that the closed, symmetric neighbourhoods of
e form a local base (a subset A of X is SYMMETRIC if A™
= A). Our basic definition, already given in the intro-
duction, is the following: 1if A,B are subsets of X, then
A is said to be ATLIED to B if, given M € Y1(X), there exists
Ne VT(X) such that

a€hA, beB, abeN => a,b €M,
This statement will be denoted by A al B , and the cont-
rary statement by A nal B ,

It is clearly sufficient for A al B 1if the condition
above holds for all K in some local base, IFurther, if it
holds, then we may take N to be closed, symmetric, or con-
tained in M, or with any combination of these properties,

Our first result shows that an apparently weaker con-

dition is equivalent:

1,1, A al B if and only if, given M € V1(X), there

exists N € (1(X) such that

ac¢h, beB, abeN => aorbd €M,

Proof. Suppose the condition holds and Me Y\(X) is



given, Take symmetric Ne€ V|{(X) such that Ne ¢ M. There
exists P€ VI(X) such that P ¢ N and

aech, heB, abeP => aorb €N,
Suppose that a€A, be€B, and ab€P, Then a¢N or
beN, If acel, then b =a '(ab) € NP ¢ M, If beN,
then a = (ab)b_1 € PN ¢ M, In either case, both a and b

are in M, giving the result, Ii

In particular, it is sufficient for A al B if,
given M € N1(X), there exists N € N(X) such that
aeh, beB, abeN => ael,
This fact will be used repeatedly, As an immediate coroll-

ary, we have:

1,2, A nal B if and only if there exists M € N(X)

such that, for each N e (X)), there exist a, € A~M,

N
by€B with agby €N, F

We note some trivial consequences of the definition,
If Aal B and A'¢ A, B'" ¢ B, then A' al B', If
A al B, then (Au{e})al (Bu{e}) If e ¢ AB (i.e. the
closure of AB), then A al B, by vacuous implication, By

1.1, Aal {e} and fe}] al A for all A, A nal A" un-

—_—

less A ¢ {el,

Two simple examples follow, Examples of a less trivial
nature will be given when the requisite theory has been de-
veloped.,

(i) In the additive group R of real numbers with the
usual topology, let A denote the closed interval [O,{},

and B the open interval (-2,-1). Given £ > O, put a = 1,



b =-1-¢ . Then |a+b| = ¢, so A nal B

(ii) Let X be the additive group R2 with the usual top-

ology, and let

A

]

{thad + &> B},
{5, + &5 &3¢

All elements of A+B are at a distance at

B

I

for some § > O,

least & from O, so A al B, However, A nal A since,

for any €> 0, (£,1) and (&,-1) are in A, and have sum
(2¢,0),

Further equivalent forms of the definition are given

by the next theorem,

1.3. Each of the following statements is equivalent

to Aal B :

(i) given M € YI(X), there exists N ¢ Y1(X) such that
(A)n(w™') ¢ u ,

(ii) given M € Y](X), there exists N € Y1(X) such that
Anmely ¢cu,

(iii) given M € N(X), there exists N ¢ [1(X) such that

for a € A~1M, (I\Ta)ﬂIE!»;I =0 ,

Proof. Suppose that A al B and M€ Y](X) is given,

Take M, € Y1(X) such that Mf < M. There exists N, € Y1(X)

such that N, € M

’ and

1

aeh, beB, abﬁN,} = ae‘IuLI .

Take symmetric N € (1(X) such that N ¢ M, and N° ¢ N, .

Suppose that x = n,a = nzb-1, where a<€A, b€B and

: -1
n; €N (i =1,2), Then ab =n; n, €N, , so aeh,, and



x € NM, ¢ M, Hence (i) holds.

(i) implies (ii) a priori, If (ii) holds, with N
chosen symmetric, and nae B (where neN, a €A), then
a € An(NB_1), so a¢ M, Hence (iii) holds,

Supnose that (iii) holds, with N chosen symmetric, and
that ae€d, b€B and ab =n €N, Then n 'a € B!, so

aclM, Hence A al B.‘i

An even stronger form of the definition follows with

case:;

1.4, A al B if and only if, given If € V}(X), there
exists N € (](X) such that NA n NB~' € M,

Proof, The condition is clearly sufficient, Sunpose

that A al B, By 1.3(i), there exists P e [1(X) such that
(Pﬂ)n(PB_1) C M, Take Né€ N(X) such that N° ¢ P, Then

TAcPr, NB ¢ PB, s0 MANNB ! C M, I

Loosely speaking, A al B means that, away from e, A
is remote from B'ﬂ, If we put ab"'e N instead of abe N
in the defining condition, we would ensure that A was remote
from B away from e, This definition might seem more natural

- in fact, the author used it at first - but it turns out

to be less convenient to work with,

Characterisation by nets

Considerable use is made of directed nets in the seg-
uel, There will normally be no need to mention the under-

lying directed set, and we shall often use the notation



(xn) for a net, instead of writing {Xn : né'Dg.

Let (xn) be a net in AB., Then each Xn can be expressed
(not necessarily uniquely) in the form a b , where a_ € A,
b, € B, Having chosen such an expression for each n, (an‘
and (bn) are nets in A and B respectively., We can specify
both the net (xn) and the choice of a_,b by speaking of
the net (anbn), and this policy will be adopted henceforth,

Alliedness is characterised in terms of nets as follows:

1.5, (i) If A al B and (anbn) is a net convergent
to e (where a €4, bneB), then the nets (an) and (bn)
converge to e,

(ii) If for each net (anbn) convergent to ¢ (with

a, € A, bne'B), e is a cluster point of (an), then A al B,

In a metrisable group, it is sufficient if this condition

holds for segquences,

Proof, (i) Given Me¢ (X)), there exists N ¢ N(X) such
that
a€¢h, b€EB, abeN => a,b ¢ M

There exists n  such that forn > n aﬁbne'N. For such

09
n, a, and bn are in M, and the result follows,
(ii) If A nal B, then there exists M ¢ N(X) such that,

for each N ¢ (X)), there exist € A~M, by €B with

AN
agby €N, Let B be a local base, Then {ayby : N¢ B} is
a net convergent to e, while e is not a cluster point of
(aN). In a metrisable group, we can take B countable,

thus obtaining a sequence, ?1



Semigroups, orderings and filters

Let A be a subsct of a commutative topological group
X, By 1.3(i), A al A if and only if, given M € N(X),

there exists N € V(X) such that (W+A)n(N-A) € M., If A

is a semigroup containing O, then an associated partial
ordering < 1is defined by
Xy <=> y-X<€A,

In terms of this notation, A al A if and only if, given
Me 1(X), there exists N ¢ N(X) such that if y,z € N and
V< X< 2, then x€M, This is the well-known definition
of a NORMAL semigroup or associated ordering (though the
concent has been applied mostly to cones in linear spaces),
However, we shall speak of SELF-ALLIED sets rather than
normal ones, to avoid confusion with normal subgroups in the
algebraic sense,

Returning to the case of a general topological group,
if a pair of subsets A,B is given, write

[£] = (8a)n(zB™")

for any subset E, 1.3 says that A al B if and only if,
given 1 € Y(X), there exists N € {(X) such that [N] < M,
We notice that if ¥ is a filter base, then so is [%1],
since ]:F10ng ¢ [F1]n[F2~].

If A induces the ordering < as above, and B = A,
then [[E]] = [E], and [E] is the order-convex cover of E,
A is self-allied if and only if there is a local base con-
sisting of neighbourhoods N such that [N] = N, in other
words if and only if X is locally order-convex,

The next theorem shows how alliedness can be
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characterised in terms of filters, Nets, however, turn out

to be of more intercst than filters in the sequel.

1.6, Each of the following statements is equivalent
to A al B :
(i) if a filter base "{ converges to x, then [‘?—]-—) X .4

(ii) if a filter base "+ converges to e, then [¥] — e

Proof. Suppose that A al B and "+ - x ., Given
M e N(X), there exists N € N(X) such that [N] ¢ M, There
is a member P of '+ contained in xN, Then (X_1 Fil)ﬂ(x_jFB_1)
is contained in M, so [F] ¢ xM. Hence [+]->x .

(i) implies (ii) 2 priori, Suppose that (ii) holds,
1(X) is a filter convergent to e, so, by (ii), given M
€ (1(X), therec exists N € }(X) such that [N] ¢ M, Hence

Aal B, by 1.3, -t

Some elementary properties

1.7. If AalB and Aal C, then Aal (BuC) .

Proof. Given M € M(X), therc exist N,P ¢ [(X) such
that
a €A DéEB, ab€eN => a<€l ,
acA, c€C, acé€P => €M,

If a €A, x ¢BUC, and ax € NnP , then a€M, 1

aB ¢ {e].

1.8. If A al B, then ANB™' ¢ {e}, A~
In particular, if X is Hausdorff, then AB! s je} or 9,

Proof, Suppose x ¢ MB~ . Take M ¢ YI(X), We show
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that x€ M, from which the result follows, There exists
Ne ¥(X) such that

a €A, beB, abelN => acl
Now X € A, $ e 8 mpd 1 s ¢ € N, Hence xeM, as

required, I

1.9, If A al B, then A al B.

Proof, By 1,3, given M ¢ Y(X), there exists Ne [{(X)

such that (NA)N(NB™') ¢ M, Take P€ N(X) such that P2 ¢ N,

1 1

Then PA ¢ NA, PB™' ¢ NB™', so, again by 1.3, A al B, +

Combining the last two results, we have:

1.10, If A al B, then AnB ' < {e}. L

1,11, If A al (BC) and B al C, then (AB) al C,.

Proof., Given M € N1(X), there cxists N € (X) such that

b€B, c€C, bc€N => ceM ,
Therc exists P¢ [(X) such that if a¢A, b€B, ce€C and

a(bc)€P, then be €N, Thus (ab)c €P => CGM,I

1.12. Let X be commutative, If A,B are sclf-allied

semigroups, and A al B , then A+B 1is self-allied,.

Proof, BSuppose that

! t
(= [
('Ln+bn)+("1n+bn) — 0,

- . - . 1 o ] o
this being a net with A5y € L and 'bn,bn € B, ©Since
(& (= i : £ [ e L - = . ! _é O
a ta, € Vi bn+bn € B, and A al B, we have a,+a, "

by 1.5(i). Since A al A,

£

n—%O, Similarly, bn—> 0y

Hence a +b — 0, and A+B is self-allied, by 1.5(11)._:!:
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Symmetry of the relation

B al A means: given M € N(X), there exists N & N(X)

such that
a€lh, D€B, ba€¢N => a,b € M ,

Taking symmetric neighbourhoods, it is clear that B al A
is equivalent to ﬁf1 al B"ﬁ. Thus one condition which is
sufficient for B al A to be equivalent to A al B is that
i and B should be symmetric,

Mnother condition which is obviously sufficient is

a€lA, beB => ab =ba ,

a statement which will be denoted by A comm B ,

We now give an example of non-symmetry, The set
{(%ﬁ,§2) : %1 > 0 and %2 real}
is a group under the operation
(%“%2)(\71,?2) = (%1 N o %2"‘%1‘/)2) .
This is, in fact, the multiplication obtained by regarding

the elements as matrices of the form

0 1 "

(i1 £

The identity is (1,0), and the inverse of (%1,%2] is
(¢7", -£"¢,) . From the continuity of addition, multipli-

cation and inversion of real numbers, it is clear that the
usual topology for R2 makes this a topological group.
Let

A = {(a1,a2) : a, and a, > O} ;

B= {(B,1) : B>0F.

_ (=1 =2 _ B
a, = (n” ' ,n"%) € A, b, = (n,1) € B, a b = (1, n”'4+n" )
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S0 anbn—>(1,o), vhile an—{—->(1,0), Thus, by 1.5, A nal B,

On the other hand,
3,1)(0’,1,&2) = (BCH ] 1+BCL2) 5

and the distance of all such elements from (1,0) is greater

than 1, Hence B al A, by vacuous implication,

Onc set compact

The next result is basic to much of our later work
(especially section 5), We give two different proofs, one

using 1.3 and the other using directed nets,

,1 e —

1.13, If A is compact, and AnB ' < {e}, then A al B

L8

and B al A .,

Proof 1. Take open M € N(X), If ae¢ A~I, then

a ¢ ﬁ_1, so there exists N(a)e¢ N(X) such that

PT(F‘..)FJ. n B_1 = @ i
Take symmetric P(a) e NM(X) such that P(a)2 € N(n). Since
A~M is compact, there exists a finite set of points

n
845 .. 58, such that A~MN ¢ ftﬁ (Piai) , where P; =

S

P(ai). Let P = i[)1 P. . If ae¢ A~M, then ae€P;a; for

some i, and Pa ¢ N(ai)ai , so does not meet B"1, There-

fore L al B, by 1.3(iii). F
Proof 2, Let (anbn) be a net convergent to e (ane A,

bné'B). Since A is compact, (an) has a cluster point a_ in

A, Then aj is also a cluster point of the net (b;1), and

—_—

so a, € Aﬂ§"1, giving a_ € {e}. It follows that e is a
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cluster point of (nn)_ Hence A 21 B, by 1.5.

Since A is compact and B ¢ {—?

A al B_1, i.,e, B al A . jf

We saw on p., 5 that, in the additive group R with the

usual topology, [0,1] is not allied to (-2,-1) . This is
1 ——

sufficient to show that the condition AnB~' ¢ {e} cannot

be replaced by the weaker condition ANB™' € {o} in 1.13.

Homomorphic images

We shnll say that a pair of subsets A,B of a topolog-
ical group is PSEUDO-DISJOINT if Bt ¢ {e}. Allicdncss
is clearly o topological embellishment of this rel~tion,
If T is a homomorphism with kernel K, and the pairs A,K

and TA,TB are pseudo-disjoint, then so is the pair A,B.

An annlogous result holds for allied sets:

1.14, Let X,Y be topological groups, and let T be a

continuous homomorphism X—=Y wth kerncl K, Suppose that
(TA) a1 (TB) , A al K, ond that, given Q € YI(X), there
exists R € M(Y) such that (TQ)n(TA) = R n(TA)., Then

A al B,

Proof, Suppose that A nal B, Then there exists
M € N(X) such that, given N ¢ N(X), there exist a € A~M,
b €B with ab ¢N,
Since A al X , there exists @ € [1(X) such that
a€l, keK, ak€Q => aeM

There cxists R € N(Y) such that (TQ)n(TA) = R n(TA),
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Take P € N(Y). There exists N ¢ A(X) such that TN ¢ P,
Toke a € A~ and b €B such that abe¢N, 8Since a é;’ M,
we have ok QrQ for k¢K, Hence Ta ¢ TQ, so Ta ¢ R,
But (T2)(Tb) € P, Thus (Ti) nal (TB). T

The last condition in the thecorem is satisfied, in
particular, if e €A and the restriction of T to A is open

at e,

If T is a homomorphism with kerncl X, and the pairs
A,B and AB,KX are pscudo-disjoint, then so is the pair
TA,TB ., Agnin we have a corresponding result for allied

sets:

1.15. Let X,Y be topological groups, and let T be a

continuous homomorphism X—2Y with kernel K, Suppose that
Aal B, (AB) a1 K, and that, given @ € f1(X), therc ex-
ists R € [I(Y) such that (TQ)n(TAB) = R n(TAB) . Then

TA) al (TB) .

Proof, Suppose that (TA) nal (TB) . Then there ex-
ists M € Y1(Y) such thnt, given R € [(Y), there exist a €A,
beB with Ta § ¥ and T(ab) € R,

Take N ¢ [1(X). Since (AB) o1 K , there exists Q €

f(X) such that

a€lA b€B, k €K, abkeqQ => ab€N ,
There cxists R € N(Y) such that (TQ)n(TAR) = R n(TAB)
Take a €A, b¢B such that Ta g i and T(ab) € R, Then
T(ab) € TQ , S0 there cxists k€ K such that abke€Q,

Thus we have a q’T“1M, while ab¢N., Hence A nal B . T
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Since the projection onto a quotient group is an open,

continuous homomorphism, e have:

1,16, Let K be a normal subgroup of X, and P the pro-

jection of X onto X/K, If A al B and (AB) al K, then
(Pa) a1 (®B) . ¥

An cexample given at the end of section 2 shows that
this result can fail if AB is not allied to K, cven if it

is still pscudo-disjoint to it,.
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2, ALLIED SETS IN LINEAR SPACES

Basic property of stars

A subsct A of a real or complex lincar space will be
said to be A STAR, POSITIVE HOMOGENEQUS or HOMOGENEOUS if
ML € A holds, respectively, for O g A ¢ 1, for all X > O,
or for all scalars A, If A is convex and 2 €A, then A-a
is a star,

By a WEDGE we mean a positive homogeneous set A such
that a,b € A => a+b ¢ A , If, in addition, An(-A) = {0},
we call A a CONE,

Throughout this section, X will be a topologicnl lin-
ear space, We notice that a positive homogeneous subset
L of X is closed if and only if ANM is closed for some
M¢ M(X). The basic thecorem relating alliedness to scalar

multiplication is:

2,1, Let A,B bc stars in a topological linear space,

If there is a2 neighbourhood M of O such that (AnM) al (BnM),

then A al B |,

Proof, Suppose that A nal B, ILet i € [(X) be given,
Take circled N € {1(X) such that N+N ¢ li, There exists1
Pe [(X) such that P ¢ % N and such that, for em$£1§i§tq<x>,
there exist a € A~P, beB with a+b € QnN,

There exists A € (0,1] such that An ¢ N~P, Then
AMa+b) € N, so Ab € N+N € ¥, Thus we have Aa ¢ (AnM)~P

and Ab € BnM, while Aa+db € Q. Hence (ANM) nal (BnM),jZ
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Cbviously, the behaviour near O gives no information

if A or B is not a star,

Boundedness

2.2, (i) If A,B are allied stars, and (a +bn} is a

)

n
bounded nct (a_<A, b_€B), then the nets (a_) and (b
n n n n
are boundod,
(ii) If X is a metrisable topological linear space,
and A,B are non-allied, positive homogeneous subsets, then

there is a sequence (an+bn) cenvergent to O (ans‘A, bne B)

with (an) and (bn) unbounded,

Proof. (i) Given Y € [U(X), there exists N ¢ (1(X) such

that

a€N, DEB, a+b € N => a,b € M ,
There exists A ¢(0,1] such that h(an+bn) ¢ N for nll n.
Then MAa_,A\b_ € M for all n, Hence (nn) and (bn) are

boundecd,

(i1) Teke a countrble locel base (M : n = 1,2 } .

Since A nal B , there exists M ¢ n(X) such that, for cach

v .

n, therc exist a -

1 A M 1 e P | ! Zac
n €4 M, bn'eB with “n+bn € n

= na = . The . M so0
Let a, na, bn nbn « Then 1n+bn € M, o,

il (a] 3 il s n } f :
a,+b, —>0 , while (un) is unbounded, since =a ¢ nl, ;t

We note that a convergent sequence is bounded, while
a convergent nct need not be.
As in scection 1, for fixed A and B, we write

[E] = (B+4)n(E-B).
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2,3, If A,B are allied stars, and E is bounded, then

so is [E].

Proof., Let M € [{(X) be given. By 1.3, there exists
N¢ (U(X) such that [N] ¢ M , There exists A € (0,1]

such that AE ¢ N, Then A[E] ¢ M . ¥

In the language of partially ordered linear spaces,
the special case of 2,3 where A is a wedge and B = A
states that, if the positive cone is self-allied, then the
order-convex cover of a bounded set is bounded, a -result
which seems to have been first stated by Schaecfer in (19)
(p. 216). 1In particular, order-intervals are bounded.

Corresponding results for total boundedncss and com-
pactness are not to be expected, except in very special
circumstances (cf, 7.5). Consider the space m of all boun-
ded real sequences, with the usual norm and ordering, It
is shown at the end of the section that the positive cone
is self-allied (ex, (ii), p. 27). Denote by e, the seq-
uence having 1 in place n and O elsewhere, and by e the
sequence having every term equal to 1 (this notation will
be used consistently in examples below; no confusion will
arise with the use of e to denote the identity of a group).
The order-interval {x : 0 g X g e} contains each e, , so
is not totally bounded,

If A,B are allied stars, then 2,3 shows that (A-x)n(y-B)
is bounded for any x,y . If x,y are interior points of A,B
respectively, then this set is a neighbourhood of O, Hence

we have:
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2.L, If X is a topological linear space, and there

exist convex nllied subsets A,B that contain 0 and have

interior points, then the topology of X is pseudo-normable,

Proof, A4,B arc stars, and (4-x)n(y-B) is o bounded,
convex neighbourhood of O (where X,y are interior points

of A,B respectively). :I

Applied to 2 partially ordered linear space, 2.L states
that if the positive cone is self-allied and has an interior
point, then the space must be pseudo-normable, This result,
in its simplicity, does not seem to heve been stated pre-
viously, though it is clear that a psecudo-norm inducing the
topology is the "order-unit pscudo-norm” associated with the

interior point,

Proper values and vectors

For sprces of proper vectors, we have the following

simnle and clegant result:

2.5, Let X be o topological linear space, and T a

continuous lincnr mapping X—=X, If N £ u , then
{x : TX = \X } a2l {y : Ty = uy },

Proof, If (xn+yn) is n net convergent to O, where

Txn = lxn , Tyn = Uy, » then
T(xn+yn) = Az + My, —0 .

Hence x_ —>0 , and the result follows, by 1.5. I

For nroper values, we have the following generalisation
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of a result of Krein and Rutman ((12), lemma 4.2), If A
is a subset of a topological linecar space X, then a is said
to be an INTERNAL point of A if, given x € X, there cxists

S > 0O such that, for (l’ < s Q+AX € A,

2,6, Let A be a self-allied, positive homogeneous

subset of A Hausdorff topological linear space X, and let
T be n linear nmapping X=X such thnt TA € A, Suppose that,
for some internal point a of A, we have Tan = pa , If A

is any proper valuec of T, then A| < (el.

Proof, Bupnosc that Tx = Ax for some x,\A ., There

exists 5 > 0 such that atdx € A, Applying the mapping

™, we have ¢"a*tdA\"x ¢ A, Let

b, = {?\["n(gnn+ $1%x)
c, = lh}_n(@na~ §\"'x) .
The o] - RS ~
Then b ,c, € A, and Db +c = LKW) a . Ir A > le],

then 'bn-;-cn -0 , so bp% 0, since A is self-allied,

This implies that x = 0, and so that N is not a proper

value of T, :t.

A simple automatic continuity theorem

Continuity of T was not required in 2,6, However,
slightly stronger conditions ensure that T is continuous,
as the next thecorem shows, If TH is bounded for some M e [{(X),

then T is, of course, continuous,
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2.7. Let X,Y be topological linear spaces, nand A a

positive homogeneous subset of X with non-empty interior,
If T is n linear mapping X—Y such that TA is self-nllied,

then T is continuous,

Proof. Therc exist e € A and symmetric ¥ € [U(X) such

W

thnt e+ € 4, Write E = (A-e)n(c-A) ., Then M € E , and,

by 2.3, TE is bounded. 1

We mention that the same conclusion will hold if Y is
locally convex and TA is self-allied with respect to the
weak topology for Y, since weak boundedness in Y implies
boundedness, However, the question of elliedness with
respect to different topologies for the same space is left

over to section 6.

A generalisation of monotcnic sequences

It was shown by Bonsall in (2) that if a partial ord-
cring in a locally convex space is given by a normal cone,
then a monotonic, weskly convergent sequence is convergent.,
A simpler proof was given by Weston in (21). Our next re-
sult shows how the normal cone can be replaced by a pair

of allied scts,

2,8, Supnosc that A,B are allied subscts of a locally
convex space, B being convex, Let (nn) be a net in A with
the property that

m<<n => a-a_ € B ,
- m n

If 0 is in the weak closurec of {an}, then a, —0 ,
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Proof, Given M € rKXJg there exists N € n(X) such that

2 €A, DB, a+b ¢ N => aeM
O is in the weak closure of the convex cover of {an},
which is the same as the closure of this set in the given

topology., Hence there exist a finite set of indices n, and

corresponding A, € (0,1 such that z—hi =1 and
i

DNa. €N, If nsyn, forall i, then
i lni 1

a_ + 2> A (a -a) = XLa € N,
n T "iYnyTn 7 i ny

;4

But Z mi(an

- i-an) € B, so a €M, Hence a, —0

o

Normed linear spaces

Most of the examples given later concern subsets of
normed linear spaces, and use one of the formulations given
by the next two results, The set {x s lxll=1% will ve
denoted by S,

2.9, If A;B are non-zero, positive homogeneous subsets

of a normed linear space, then each of the following state-
ments is equivalent to A al B
(1)  &$(4,B) > 0, where
¢(4,B) = inf {!Ia+b Il: acAnS, b eB};

(ii) there exists & > O such that

achA, beB => lawlly Sllall,

Proof., If A al B, then there exists § > 0 such that

aed, beB, |atbll< & = lall < 1.

If a¢ANS and beB, then |a+bll > 4§ . Hence ¢P(a,B) 3 S,
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If ¢(A,B) 3 § and a:a~{0}, beB, then licl > 4,
where ¢ = (a+b)l/HaU . Hence l|la+b| > $ Hall , anda (ii)
holds,

If (ii) holds, then A al B, since, given € > 0, we
have

ach, peB, latbl < €6 = llall < & . T

Q(B,A) need not be equal to ¢(A,B). To show this,
consider again the space m of bounded real sequences, With
€€ defined as on p. 19, let A,B be the linear subspaces

generated by €,s€ respectively, For any A,u, we have

|| he,+uell > (n] , so ¢(B,A) =1 . But lle, - gell =5,

so  P(A,B) < % (in fact, <P (A,B) = % , by the next theo-

rem), A symmetrical function is introduced by the definition
J(4,B) = inf {na+b l: aeans, bebns}.

In terms of this, we have:

2,10, If A,B are non-zero, positive homogeneous subsets

of a normed linear space, then
$(4,B) < J(4,B) < 2 §(4,B) ,
so A al B if and only if (4,B) > O .
Proof. Clearly, ¢(4,B) < J(4,B).
Take a ¢ ANS and b € B~{0}, Write b' = b/Ibl. We
show that ila+b'll < 2 Jla+b ||, from which the result follows,

Now a+b' = (a+b) + (b'-b) , and Db'-b = b(Hbu—1—1) , SO

lb'-bll

|1- Wbt}
[ltah = ol |
lasd 1. F

]

A
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Other properties of CIJ and k{J are easily established.
For instance, ¢ (&,B) = {(4,B) , and if A = ¢$(4,B) ,
o= <{5(B,A) , then I\]\.—ILL( < M . It is not our intention
here to give a full treatment of such results, since they
do not belong to the theory of allied sets, “% is related
to a very natural metric on the set of closed subspaces

which is studied in (5).

The converse of 2,3 holds in normed spaces, As always,

[E] denotes (E+A)n(E-B),

2.11. Let A,B be non-zero, positive homogenecous subsets

of a normed linear space, and let T be the unit ball. Then

A al B if and only if [T} is bounded,

Proof, If A al B, then [T] is bounded, by 2.3. Con-
versely, suppose that lxN< K for x €[T]. Take a €A,
b €B with la+bll< 1 . Then a €[T/, since a = O+a =

(2a+b)-b . Hence llallg X, and A al B, by 2.9, i-

Inner product spaces

Further numerical results apply in inner product spaces:

2.12, Let A,B be non-zero, homogeneous subsets of an

inner product space, Let
y = swp {(a,b) : a€Ans, beBNS .,
Then:
(1) $(4,B) = P(B,A) = $, where <p2+ y2 = 1
(11) 42 = 2(1-%), so $< b V2 P.
(iii) A al B <=> Y <1 ;
ALB ¢=> =1 & Y= 2
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Proof, Take ac¢ANS , b eBnS , Write (a,b) =p .

Then

(a+Ab , a+Ab) = 1 + A+ Xu+ A% (1)

1}

14 (u) (R+0) - pi

This is least when N\ = -u , giving then

Nasnb ll 2 = 1= (ul? .

It follows that ¢(4,B)% = 1-57 . Similarly, &(3,4)% = 1-v°,

If (n] =1, then, by (1),
\la+aDd | = > 2= 2{ul.

Putting A =-ﬂi/hﬂ (if u # 0), we obtain equality. BEg-
wality also holds if p = O . Hence 2 = 2(41-V) . Since

O0< y< 1, we have 1-y < 1—y2 = @2 , and 4»5 v2 ¢,

A

(iii) follows, since A al B if and only if ¢> 0,

while A41B if and only if = 0 , ¥

The "angle® between A and B can be defined by:

cos 8=y, sin &= ¢. See (5).

Lxamples

In giving counter-examples, we shall frequently make
use of spaces of sequences. The notations m, e, were
introduced on p, 19, In accordance with usuval practice,
e, will denote the subspace of m consisting of sequences
convergent to O, and 1p (for any p > 1) will denote the

space of real seqguences X = (%n) such that g:l%n]p is
convergent, with the norm defined by Jx|® = E:[%n]p_
n

e shall call (%) a “finite sequence® if it has only

n
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a finite number of non-zero tcrms, and use the notation

(%1, S ,{n) to indicate that §, =0 for r > n,
We now give some examples for the sake of illustration,

(i) Inm or 1p (any p > 1), let A be the set of seq-
vences (an) having a, =0 for all n, and B the set of

seguences (Bn) having BQn—1 = 0 for all n, A and B are

closed subspaces, and A al B, since, for a €A, beB, we

have |a+bll > Najl .

(ii) In m or 1P (any » > 1), let A be the set of
non-negative sequences, i.,e, sequences having every term
non-negative, A is seclf-allied, sincc if a,,85 € A, then

Ua1+a2U > Na1“ . This, of course, is the positive cone for
the usuval ordering of these spaces,

(iii) 1In ’_Lp (any p > 1), let A be the set of sequences

(an) having a, = 0 for all n, and let B be the sct of
gk o =11 - ”
SEQUENCES (Bn) having B,, = 27 Bo, 4 for all n, A and B

are closed subspaces with intersection {O}.

-1
Now €on_q € A, and 1’211__,1 = 65, ¢+ 2 €on € B
ey, 4 It = 1, while lf, ,-e, 4l =27 ., Honce A nal B,
by 2'9!

Wle show that A+B is not closed, though this follows

from a later theorem (4,7). Now

(0,27%, ... ,0,27™) ¢ A+B

S0

(0,271, .., ;0,280,221 .. ) € &B .
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If this is equal to

(G‘1309 L) ,agn_1’09 ® ® 0 )
-1 =
+ (Bys 27" Bys wwn sBopqs 2 Bppoqv wee ) s
then B, 4 =1 <for each n, giving a sequence (ﬁn) which

is not in 1_,
i8]

(iv) 1In 1,, let K be the subspace consisting of seq-

uences (Bn) such that

Bonsr = Pop (n» 1).

Let A be the set of sequences (an) such that

%on-q = %n 2 O

for all n. Then it is clear that A al A and AnK = {0},
We show that (PA) nal (PA) , where P is the projection

onto the gquotient space 11//K (cf. 1.16), Let X, (resp-
ectively yn) have components 4i-1 and L4i (respectively,
4i-3 and 4i-2) equal to 1 for i =1,2, .. ,n, and all

other components O, Then X,y € A, and Hxn({: uynn = 2n,

If b= (@,) €K, then

W
M
o]

2n \
gl > 5 (18] + 1=y )

Hence "Pxn|{= on ,
Let bn have components 2,3, ., ,Un+1 equal to 1, and

all others O, Then b €K, and ”xn+ynwbn[l= 2 . Hence
UP(xn+yn)H < 2 (in fact, equality holds), and (PA) nal (PA),

as stated.
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3. CAUCHY NETS AND COMPLETEINESS

The results of the next two sections are presentcd in
their maximum generality. Af times this results in rather
complicated statements, It will be noticed, however, that
if the results are specialised to commutative topological
groups, they become a lot simpler,.

We start by summarising certain definitions and facts
connected with the right, left and two-sided uniformities
of a topological group, The distinction, of course, dis-
appears in the commutative case,

A net (Xn) in a topological group is R-CAUCHY (resp-

ectively, L-CAUCHY) if, given M ¢ YI(X), there exists ng

such that for m,n > n =1

>N, , X X €N (respectively,

1

o . . ; ; -1 ;
T A Pk T
X, X, € 1), (xn) is R-Cauchy if and only if (xn ) 48 I=

Cauchy. A subset A is R-complete if and only if A71 is
L-complete,

A net is U-CAUCHY (U denoting the two-sided uniformity)
if and only if it is both R-Cauchy and I-Cauchy, A set
which is complete with reswnect to either R or L is also
U-complete,

In most of this section, we shall require A comm B,

i,e, achA, D€B => ab = ba . This implies A comm f’;

.1

AT comnm B_1, and also A”' comm B, since

b = a"1(ab)a_1 = a”1(ba)a"1 =alp ,
It also implies that A al B 1is equivalent to B al A,

and that if (an) and (bn) are R-Cauchy nets (ane A, b€ B),
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then (anbn) is R-Cauchy (and similarly for L-Cauchy nets),

We now prove the hasic theorem of this section.

3.1. Let A,B be subsets of a topological group such

that A comm B and (4A') al (BB™'). Then:

(i) Ir (anbn) is an R-Cauchy net (a ¢ A, D€ B), then

(an) and (bn) are R-Cauchy.

(ii) If A and B are R-complete, then so is AB,
(iii) If A is R-complete and B is closed, then AB is
closed,

Similar results hold for L if (A_1A) al (B‘1B) .

Proof. (i) Given M € N(X), there exists N € (1(X) such

that if x €AA™, y ¢ BB™' and xy ¢ N, then x,y € M.

There exists ng such that, for m,n > n, o

-1
(a b )(a b )" € N,
Now

-1 =1 =1
(aﬁbm)(aﬁbn) - ambmbn an

= (a,a2") (b b27).

a 3"1 and D b_1

H - m n
enee, fTor ;02 N nen -

are in M,

(ii) Suppose that A,B are R-complete, and that (xn)
is an R-Cauchy net in AB, Tor each n, there exist ané.ﬁ,

bne;B (not necessarily unique) such that X, = anbn . By

(1), (an) and (bn) are R-Cauchy, so have limits a €A and

b B, Then xn——>a‘o,

(iii) Take x ¢ AB ., There exist a,€ A, b €B such
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that (anbn) is a net convergent to x. By (i), (an} is

R-Cauchy, so has a limit a ¢ A, Then

_ =1 <)
b = a_ (anbn) = e

and this is in B, since B is closed, Hence x ¢€¢AB ., i:

(ii) remains true if we substitute “sequentially com-

plete" for "complete",

Note that AB = BA , because of the condition A comm B,

If A and B are subgroups, this shows that AB is also a sub-
group, and the condition (AA”1) al (B®™') reduces to

A al B, Even if A and B are not subgroups, (i) will hold
under the assumption A al B if (an) and (bn) are "mono-

tonic” sequences in the sensec that ama;1 € A and bmb;1€ B

for m < n;

We now give some corollaries of 3.1,

3,2, If X is Hausdorff and R-complete, and A,B are

subsets such that A comm B and (AA71) al (BB"1), then

Proof. AA~' al BB | , by 1.9, so (A A ') a1 (BB ).
Also, A comm B, Thus, by 3.1(ii), A B is R-complete,

and thercfore closed, if

3,3. If A is compact, B is R-complcte, A comm B and

(AA71) n BB~ ¢ égi , then AB is R-complete.

Proof. AA™! is compact, S0 (ﬂﬂf1) al (BB_ﬂ) , by

143:. T
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We notice that there is no mention of alliedness in
the statement of 3,3. It is, in fact, the Tirst application
of our theory. Further such results apnear later, cspec-
ially in section 5,

Combining the results for the right and left uniform-

ities, we obtain:

3.4. Buppose that A comm B, (11_&"1) al (BB‘1) and
(A7) a1 (87 '), Then:

(i) If (anbn) is a Cauchy net with respecct to R,L or
U (ane;ﬁ, b € B) , then so are (an) and (bn).

(ii) If A and B are complete with resvect to R,L or
U, then so is AB. -

(iii) If A is U-complote and B is cleosed, then AB is

closed,

Proof, (i) says nothing new, (ii) (for U) and (iii)

follow cxactly as in the proof of 3.1. +

Some results in the converse direction

Motivated by 1.5(ii), we now look Tor results in the
converse direction to 3.1(i), deducing alliedness from the

hypothesis that if (anbn) is a Cauchy net (with a, €4,

bne;B), then so are (an) and (bn). It is clear that (as
in 3.1) some additional conditions are requi—-ed: take

a d{?}, and let A = {al, B = {3"1}, Then A nal B, but
cvery nct in A or B is Cauchy, We find that, in the pres-

ence of additional conditions, the hypothesis above can be



33

weakened to the assumption that if (anbn) converges to e,

then (an) and (bn) are Cauchy.

The simplest additional condition which works is
c € ANB , giving the following theorem (the method of proof

is perhaps of nore interest than the result itsclf):

3.5. If A,B are subsets of a topological group that

contain the identity, and for cvery net (anbn) with a €A,

b €B which converges to e, (an) is R-Cauchy or I~Cauchy,

then A al B,

Proof, If X has the indiscrete topology, then A al B
rivially. We suppose the contrary, so that there arc
neighbourhoods of ¢ which are properlv contained in X,

Suppose that A nal B . Then there cxists M€ FU(x)

such that, for each N ¢ 1(X), there cxist a, € A~MN, b €B

N N

with aHbNGN, Let

D

lx,M) : xex, men(x)}.

If we define (x,N) (y,P) if and only if N 2 P, then

M

< directs D, Ve define nets in A and B over the directed

set D by putting:
8y W) = 85+ P(x,w) =Py I x€N,

a(v 1\3) = b(K,N) = C 11 X Q’ N .

J\.?

Then a(x,l\?)b(x,N) € N in all cases, so thc net
Ian‘op § peD_E converges to e, However, given (x.,M)¢ D,
there exist elements m,q of D following (x,N) such that

ap 7 aq = e¢ ., Hence {ap - p&'Dg is neither R-Cauchy

nor I-Cauchy, :‘t
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Of course, 1,5(i) shows that, under the conditions of

the theorem, (an) and (bn) converge to e. It is casily

seen that the condition e ¢ ANB can be vearencd to
e €¢ AN B, A different sct of additional conditions is

given by:

4 =

3.6. Supposc that A n B ' < {e} , A is V-complete

for somc uniformity V inducing the topology, and that for

every net (anbn) convergent to e (with a, €A, bnsaB),

(an) is V-Cauchy. Then A al B .

If the group is metrisable, it is sufficicnt if this

is true for sequences,

Proof, Suppose that A nal B, Let B he a local
base, countable in the metrisable case, There c¢xists open
M ¢ (X)) such that, for cach N € 3, therc exist ay € A~M

b

by €B with aygbye N, iaNbN - ch]B} is a net convergent
to ¢, so (aN) is V-Cauchy, and converges to a point a of A,
Since M is open, a ¢ M. Now

-1 1. -1
by = (b ay lay —> ea=a,

so a€¢B ', This imnlies that a €{c} , Which is a contra-

diction, 4+

It is sufficicnt in 3,6 if A is V-complete for some
uniformity V inducing a topology not smaller than the given
one, Applying 3.6 to the "natural® uniformities R,L, we

obtain:

3.7. Supposc that A N B {el , A is R-complcte,
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and that Tor every nct (anbn) convergent to e (with a_ €A,
bnéiB), (bn) is I~Cauchy., Then A al B . Sequences arc

sufficient in the nmetrisablc casc,

Proof. The result follows by 3.6 if we show that

a b —>e implies that (a ) is R-Cauchy, Given M ¢ U(X),

take symmetric N € (](X) such that N° ¢ M . There exists

no such that:

n>n = s N
7~ 2 anbn 2
m.n > n => b b eN
T2 To m n
Then, for m,n > n,

1 -1 1 -1 3
aal = (ab )0 ) aZ!) ¢ Weuw, T

Restricted converses to 3.1(ii), deducing alliedness
from completencss of AB, are obtained in the next section,

We finish this section with two counter-cxamples,

Closed allicd subspaces with a non-closcd sum

Let ¥ be the snace of all finite rcal sequences, with
norm defined by U(%n)” = sup E%n[ . Let A be the subspace
3 5 £ = = i ] 1
consisting of sequenccs (an) having Uon = 3 Sop g for all
n, and B the subspace consisting of sequences (Bn) having
B, =0 and B, ., =5 By, for alln. A and B are closed,
even with respect to the topology of pointwise convergence,
Suppose that a = (a,n) € A, b= (Bn) € B, [lall =1

and “a—bl(< % . We show that Dbl > 1 ; it then follows
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by 2.10 that A al B, Now Iar{ =1 for some r, and
et e 8inee B, =0 Then \a - 18 ‘ < L so
? 1 : r- 2%p-1 z1?

[Booa| > 2laji-|2a,-B 4] > 21 =1,
and (lbll> 1, as stated.
Now

1 2

(192_ !2_ 9 "0 oa 92_2n+1) € J.r‘&. 9

(032_1’2“2, - ,2—'21'1-}-1,2'"21'1) E B ,

(1,0, ... ,0,-27°0) ¢ 4B,

and (1) € A+B , By considering the position of the last
non-zero term, we see that (1) g A+B ,
This shows that complcteness is an essential ingredient

et 5.1,

Complete allied welges with a non-closed sum

3.1 shows that the sum of complete allied subgroups of
a commutative topological group is complete, We give an
example where this fails for wedges in a Banach spacc, We
can even do so while allowing one of the wedges to be a
subspace,

In 113 let A be the set of sequencces (mn) for which

a > O (n > 1)

on = %onyq 2

and

A is a closed wedge, and for acd, lall= 20, .
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Let B o the closed subspace consisting of scquences
{ -~ =1 3
or which = 1
\Bn) L an_1 an for all n,

Talke a ¢ A, b¢B. If (a1—B1| &, & ay , then

51 > E Gy e But Go < % a, , SO 61—a2 > & ay . Hence

la-v ll > & a, = %Ha” )
so Aal B .
Let
a, = (lagzmy ee pz) , o ll= 2,
b= (gms eee smz) M= 1,

(By closing the brackets, we imply that all further terms
are zero; the given norms determinc the numbcr of non-zero

terms,) Then a, €A, b €B, and

Hence (1) € A+B . But if (1) = a-b , wherc

a = (a1,a2,a2, oo 9a2n9&2n5 —_ ) 9

b = (513619639639 .o ngn_1;BQDF1, . e ) )

Bﬁ = Q2 = BB = u = ecoce 3

so, since a and b are in 11, Bn = 0 for all n, and o, = 0

for n » 2, while a, =1, Thus a g A,

-
It is instructive to consider A-A, the subspace gen-

)

erated by A, A-A is, in fact, the set of sequences 2z = (,n
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for which

and

For, given such z, lct

0“1:1—122%11’ G = 2 Sno

n=2

+ 4+ - +
= (ag, 55, 50 - s Sons Sone o0 ) s

]
.
1

a =

T _
2 = (0,55, %0 oo »SpSons o0 )

Then 2458, € A and =28, = 2z .

Hence A-A is closed, and (A-A)nB = {0}, It is clear
from 3.1 that (A-A) nal B, and it is easy to verify this
directly. The argument above shows that (1) & (A-A)+B ,
We notice that the sequences (an) and (bn) are boundcd
(ef. ox. (iii), p. 27).

In section 5 we shall see that positive results about
the sum of two wedges can be obtained when one of them is

locally compact,
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Ly, SUBGROUPS AND SUBSPACES

In this section, we show that alliedncss of subgroups
is esquivalent to the continuity of certain homomorphisms,
and use the closed graph theorems to deduce partial con-
verses to 3.1, As in the last scction, the st~tements ap-

propriate to the commutative case are a good deal simpler,

Projection ontoc A

Let A,B be subsets of a topological group X, The ex-
pression ab (a2 €A, beB) for elcments of AB is unique if
ang only if (47 'a)n (BB_i) = {e}., Thc natural projcction
T of AB onto A is then defined by ww(ab) = a . If, also,
e ¢ANB, then A al B 1is equivalent to the continuity of
T at ¢ with respect to the relative topologies, since this
occurs if and only if, given M € [U(X), there exists N € 11(X)
such that

a€hA, DéEB, abelN => a€M ,

If A,B arec subgroups, then the cxpression ab for elem-
ents of AB is unique if and only if AnB = {e} , i,e, if
and only if A ~nd B are nseudo-disjoint (sec p. 14). If
A comm B or B<X (i,e. B is a normal subgroup), then AB
is a subgroup and T is a homomorphism, for in cither case,
given a; €A, b, €B (i = 1,2), there cxists c € B such that

b,a and then

{8y = &

2 9C

(a¢b1)(a2102) = (9-132)(01'32) o

Hence we have the following theorem:
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4.1, Suppose that X is a topolegical group, and that
A,B are pscudo-disjoint subgroups such that A comm B or
BaX. Then A 2l B if and only if w is continuous,

If Aal B and © is a continuous homomorphism defined

on 4, then a continuous homomorphism 91 is defined on AB

by €, (ab) = O(a) . i o

Isomorphism with the direct product

Let A xB denote the topological product of A and B,
AxB is mapped onto AB by ¢, where q(a,b) = ab . ¢ is
continuous, by the definition of a topological group. (#
is one-to-one if and only if (ﬂ71A)n (BB'1) = {ei.

If A and B arc subgroups, then ¢ is a homomorphism
if and only if A comm B , the implication "“only if" foll-
owing from the identity

(e,b)(a,e) = (a,b) .
A sufficient condition for this is thet A;B are pseudo-
disjoint and both normsl in X,

With this notation, we have:

b2, I (A'a)n (BB™1) = {e} and e €ANB , then

A al B if and only if ¢”' is continuous at e.
If A,B are pscudo-disjoint subgroups, and A comm B,
then A al B if and only if CP is a topological isomorphism,
Proof, 1#“1 is continuous at e if and only if, given
i € N(X), there cxists N € [U(X) such that

ach, D €B, abéN => a,b €} , i
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Quotient spaces

If A,B are subgroups of X, and A comm B , then AB is

a subgroup, and A<AB, since, for a¢ A, Db €B:
A(ab) = Ab = bA = (ba)a .

A continuous homomorphism X of B onto the ouotient group

AB/A is then defined by Xb = Ab , If AnB = je}, then

X 1is one-to-one., With this notation, we have:

4.3. Let X be a topological group, and let A,B be

pseudo-disjoint subgroups such that A comm B , Then
A al B if and only if X' is continuous (so that AB/A

is topmologically isomorphic to B).

Proof, (i) Suppose that A al B ., By 1.3, given
Me MU(X), there exists N ¢ 1(X) such that (AN)AB <M ,

{An : neN?} is a neighbourhood of the identity in AB/A.
If Xb = Ab = An for some n€N, then be€AN, so beM,
Hence X~' is continuous at the identity (and therefore
continuous cverywhere).,

(ii) Suppose that A nal B, Let Q be a neighbour-
hood of the identity in AB/A . Then UQ is a neighbour-
hood of e in AB, There exist M€ N(X), ac¢A and bé B~N
such that abe UQ . Then Xb = Ab € @ . Hence -1

is not continuous, j:

Application of closed graph theorems

Following Day (4 ), we will say that 2 mapping is cg
if its graph is a closed set., We show that, under certain

conditions, thc projection T of AB onto A is cg, and use
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the well-knovm results about cg mappings to deduce suff-

icient conditions for alliedness,

L.4. Let X be a topological group, and let A.B be

closed; pseudo-disjoint subgroups such that AR is closed.

Then the projection of AB onto A is cg.

Proof., Suppose that (anbn) is a net convergent to

ab, where a2 € A and bn,b € B, BSuppose, further, that

a_—a_ <« A ., Ve nmnust show that a, =a. Now

=1 -1 _ =
b, = a; (anbn) — a_ ab = b (say).

b € B, since B is closed, Thus a;1a = bob_1 = e , since

this is an element of ANB, Hence a, =a, as required, i:

We mention in passing that if AB is closed, and
AnB= {e?, then A and B must be closed,

The simplest Yclosed graph theorem" states that if
S,T sare topological spaces, T being locally compact and
regular, then a nearly continuous, cg mapping S—=T is
continuous (the proof is easy).

If S is 2 non-meagre topological group, and T is a
Lindeldf one, then every homomorphism 5 3T is nearly con-
tinuous (see, e.g., (9), p. 213).

A locally compact topological group is non-meagre,
and if it is also connected, then it is ¢ -compact (and

so Lindeldf), since if M is a compact neighbourhood of e,
= o

then (JN" =X,
n=1

Various sets of sufficient conditions for A al B
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can be put together from these facts, A relatively simple

one 1is:

4.5, Suppose that X is a locally compact topological

group, and that A,B are closed, psevdo-disjoint subgroups

such that:
(i) AB is closed,
(ii) A comm B or BaX ,
(iii) A is connected,

Then A al B , i

The usual form of the closed graph theorem for topo-
logical groups states that if X,Y are topological grouns,
Y being complete and metrisable, then a nearly continuous,
cg homomorphism X-=Y is continuous (see (9), p. 213). This

yields:

1,6, Let X be a topological groun, and suppose that

A,B are closed, pseudo-disjoint subgroups such that-
(i) AB is closed and non-meagre in itself,
(ii) A comm B or BaX ,
(iii) A is complete, metrisable and Lindeldf.

Then A al B . T

If X is complete and metrisable, then conditions (i)

and (iii) reduce to AB being closed and A being Lindeldf,

The situation is simpler in topological linear spaces:
if X is non-meagre, and Y is complete and metrisable, then
a cg linear mapping X->Y is continuous (see (10), p. 97).

Combining this with 3,1, we obtain:
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L.7. If X is a complete, metrisable topological linear

space, and A,B are closed, pseudo-disjoint subspaces, then

A+B is closed if and only if A al B ., ii
As a single application of this result, we mention:

4.8, If X is a complete, metrisable topological linear

space, and A,B,C are closed subspaces such that ANC = {03,

B CC, and A+C is closed, then so is A+B,

Proof, AalC, so A al B, it

We can elaborate on our example of closed allied sub-
spaces with a non-closed sum (np. 35-36) to show that ve
cannot dispense with the completeness condition here,

With A,B as before, let C be the set of sequences (Bn)

1

having B?n+1 = . B2n for all n, and B, arbitrary, Con-

1
sideration of the position of the last non-zero term shows
that ANC = {O], and it is easily seen that e, € A+C  for
all n, so that A+C = F , It is also easily seen that
Anal C (cf. 4.7).

Closed allied subspaces A,B such that A+B = X are
called TOPOIOGICAL COMPLEMENTS, Some results on the exist-

ence of these are given in (11), section 31,

We finish the section by giving an example of a wedge
A and a subspace B in a Banach space such that ANB = {O},

A+B is closed, and A nal B, In 11, let A be the set of

Sequences (an) having a_. > a > 0 for all n, Let B

n n+1

be the set of sequenccs (Bp) with B, = 0 . A,B are closed,
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i
B

ap = (1, oo 1), lay
b= (0,1, ... 51), (bl = n-1.
uan-an =1, so Anal B,
A+B is the (closed) set consisting of all sequences
(%n) having %1 > 0 ., For, given such a sequence, we have
(g4) € 4,
(0,€ps%5s +.. ) € B,

while it is clear that all elements of A+B satisfy this
condition,

In the light of 3,1, it would be interesting to have
such an example subject to the stronger condition

(a-A)n (B-B) = {o}.
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5. LOCALLY COIPACT SUBSETS OF TOPOLOGICAL LINTAR SPACES

Let X be a topological linear space., A positive homo-
geneous subset A is locally compact if and only if there
exists M € [(X) such that ANM is compact. For if this holds,
and a € A, then a scalar \ exists such that a is an interior
point of AMM. Then An (M) = A(ANM) , and this set is a
compact A-neighbourhood of a,

If A is positive homogeneous and locally compact, and
X is Hausdorff, then A is closed, If X is metrisable, then
A is complete,

We shall denote by pos A the wedge generated by A,
i.e. the set of all linear combinations of elements of A
with positive coefficients,

A Hausdorf{ topological linear space is locally compact
if and only if it is finite-dimensional, and it then has the
Euclidean topology. In fact, it is sufficient if there is
a totally bounded neighbourhood of O (sece, e.g. (10), 7.8).
Thus, in a Hausdorff space, the wedge generated by a finite
set is locally compact, However, a locally compact wedge
may contain an infinite linearly independent set: an ex-

ample is the set of all seguences (%n) in 1, having

1 ¢ .
0<& <3 %, 4 forallmn,
As an immediate deduction from two of our basic re-

sults, we have:

5.1, If A,B are stars such that An (-B) ¢ {0}, and

A is locally compact, then A al B ,
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Proof, There exists M ¢ [1(X) such that Ank is compact,

By 1.13, (AnH) al (BnM), Therefore, by 2.1, A al B . &

Clearly, the existence of a compact A-neighbourhood
of 0 is sufficient here (since A is only & star, this does
not necessarily imply that A is locally compact).

The remaining results of this section are applications
of our theory, in the sense that allied sets anpear in the

proof but not in the statement,

5.2, Let X be a Hausdorff topological linear space,

A a finite-dimensional subspace, and B any subspace, Then:
(i) if B is complete, so is A+B ;

(ii) if B is closed, so is A+B,
Proof, A+4B = A1+B , Where A1 is a subspace of A such

that A, NB = {0}. A, is locally compact, so, by 5.1,

A, al B . The results follow, by 3.1. T

(ii) is well-known, but the literature does not seem
to contain an explicit statement of (i).

It is difficult to obtain corresponding results for
more general sets using 3.1, since this requires the con-
dition (A-A) al (B-B) , However, we can make use of the
fact that if A is compact, then A+B is compact (or closed)

iff B is,

5.3. Suppose that A,B are positive homogeneous sets

such that An (-B) ¢ {0}, and that A is locally compact,
Then:
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(i) if B is locally compact, so is A+B ;

(ii) if B is closed, so is A+B,

Proof. There exists M € (X) such that AnM is compact
and BNl is compact (case (i)) or closed (case (ii)). Then
AN+ BAM  is compact (case (i)), or closed (case (ii)).

“le show that this is a neighbourhood of O in A+B, from
which the results follow, Now A al B, by 5.1, so there
exists N ¢ N(X) such that

(A+B)N N ¢ (AnM+ BnM) ,

giving the required result. j:

A simple example shows that we cannot dispense with
the disjointness condition in 5.3. Consider the space s
of all real sequences, with the topology of pointwise con-
vergence, Let B be the set of non-negative sequences in
s, and e the sequence having every term egual to 1. We

show that pos e B is not closed, Let

x =ne - (n-1,0-2, ... ,1)

1L
(1929 o 0 @ 9ngn, a0 ® ).

1]

Then
x. =% (1;85 sis oty wew )
which is not in pos e — B, since it is not bounded above,
Putting A = pos x 1in 5,%3(ii), we obtain theorem 1(c)
of (20). Our proof, unlike that in (20), does not use nets

at any stage. What we can Say about nets is the following:

5.4. Suppose that A,B are stars such that An (-B)¢ {0},
and that A is locally compact. Let (an+bn) be a net which
is either bounded or Cauchy (ané.h,'bneiB). Then (an) has

a convergent subnet,
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Proof. Take M € [HX) such that Anl is compact. Now
A al B, by 5.1, so N ¢ N(X) exists such that
achA, DEB, atbheN => ac€l,

(i) 1f (an+bn) is bounded, then there exists A € (0,1]
such that A(a +b ) € N for all n, Then Aa, € AnM for
all n, so (han) has a convergent subnet,

(31) If (an+bn) is Cauchy, take circled P € [I(X) such

that P+P ¢ N , There exists p such that for n > p,

(an¥bn)— (ap+bp) € P, Por some A< (0,1], K(ap+bp) € P,

Then for n > p, h(an+bn)e§ P+P CN, so Aa, € AnM , The

-

result follows, 1

We can deduce the following variant of 5,3, in which
B is allowed to be a star instead of being positive homo-

geneous:

5.5, BSuppose that A is locally compact and positive
homogeneous, B is a star, and AN (—ﬁ) < {6@, Then:
(i) if B is complete, so is A+B ;

(ii) if B is closed, so is A+B,
Proof, (i) Let (an+bn) be a Cauchy net (an €A, bnezB).

By 5.4, (a.) has a subnet (a_ ) convergent to a¢A, (b )
n ng ny

is Cauchy, so has a 1limit b € B, Then a, + b, — a+b,
i i

S0 +b_. — a+b .,
antbq

(ii) Suppose that a_+b, — X (ane?A, bn_GB). (an)
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has a subnet (an ) convergent to a ¢ A, Then b, —> x-a,
i i

and this is in B, since B is closed, Hence Xx € A+B , i—

The conditions of 5.4 do not ensure that the express-

ions (an+bn) are unigque, One might suppose that by altering

these expressions, one could cause the whole net (an) to
converge, but the following example shows that this is not
the case,

Consider again the space s of all real sequences with

the topology of pointwise convergence, Let A be the set

of all non-negative sequences, and let B = pos b , where

By = 0™, b= () . Iet

a2n-—-1 = (1909 s e e 9150) (n 1'8)9
a2n= (0915 LRI ) ’091} (n1!S),
Let Xopq4 = Bop_q » Xop = a2n+-b . Then X, X, where
X = (1905 o0 e 9‘?905! o5 e )a
If G = a+ \b , then the components of a alternate event-

uvally between N and -\, so this is only possible with a € A
if A = 0 ., It follows thet, in this case, the expressions
for X, as elements of A+B are unique, so that we cannot

alter the sequence (an) to make it converge.

Slightly more can, in fact, be said about nets of the

form (an+-hnb), without using allied sets, For this, see

appendix 1,
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An open mapping theorem

Let A be a locally compact, positive homogeneous subset
of a normed linear space, and let T be a continuous linear

mapping such that if a ¢ A~{0}, then Ta +#+ 0 . Then
{'HTaU : a€ A and [all = 1} is compact and does not contain

0, s0 has a positive infimum, say 5. Hence

aeh, laly1 = |Talls &,

or, to put it another way, {Ta :a€hA and |all < 1} is
a neighbourhood of O in TA,

The generalisation of this result to all topological
linear spaces 1s perhaps the most significant application
of our theory of allied sets, The mapping T need not be
linear, but only positive homogeneous, i,e. such that
T(Ax) = AM(Tx) for A > 0 and x €¢X, The set of elements
which are mapped onto O will still be called the kernel

of T, The theorem is:

5.6, Let X,Y be topological linear spaces, and let T

be a continuous, positive homogencous mapping X—Y with
kernel K, Let A be a star in X such that O has a compact
A-neighbourhood and ANK ¢ {6}. Then, for every A-neigh-
bourhood N' of 0, TN' is a (TA)-neighbourhood of O,

Proof, It is sufficient to prove the result for com-
pact A-neighbourhoods of O, since these form a base of
A-neighbourhoods., Take N € [1(X) such that N' = ANN is
compact, X is closed, since T is continuous, so A al (-K),

by 5.1, and Q ¢ 1(X) exists such that e
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ach k€K, a~k€Q => a€elN , (1)
Suppose that TN' is not a (TA)-neighbourhood of 0, so

that, given circled P e M(Y), there exists Yp € (Pn TA)~TN',

Take Xp € A~N' such that Txp = yp . Then xg ¢ N, and

there exists pp ¢ (0,1] such that

o .
hpXp = Xp € (2N)~1W ,

Since A is a star, xp € 2(AnN) = 2N', and since P is cir-

-
cled; TXP = Mp¥p

Let 13 be a base of circled neighbourhoods of O in Y.
Then {x} : Pe B}l is a net, and Tx,—>0 . Since 2N' is
compact, (xé) has a convergent subnet, We denote this sub-
net by (zn), and its limit by z. Then Tz = 1lim (Tzn) =0,

so zeK ,

If x!. € K+Q , then, by (1), x! €N

P , contrary to

1
P
hypothesis, Hence, for all P ¢ B, xﬁ q z+Q . This contra-
dicts the fact that (zn) converges to z, and the result
follows. j?

Various corollaries follow with ease. We start with:

5.7. Let X,Y be topological linear spaces, and let T

be a continuous, positive homogeneous mapping X—>Y with
kernel K, Let A be a locally compact, positive homogeneous

subset of X such that ANK ¢ {0}. Then TA is locally compact.

Proof, TA is positive homogeneous, and there is a

compact (TA)-neighbourhood of 0, by 5.6, i
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Next we have a generalisation of a result which is

used repeatedly in (3) ((3), lemma 2):

5.8. Let X be a topological algebra, and let A be a

positive homogeneous, locally compact subset of X, If x
is an element such that a ¢ A~{0} => xa # O, then xA

is locally compact, 'i
Applying 5.7 to the identity map, we obtain:

5.9. A locally compact, positive homogeneous subset

of a topological linear space is locally compact with re-

spect to a smaller linear topology. i:

5.6 says that T is an open mapping on A at 0, We fin-
ish by giving sufficient conditions for it to be open at a
general point of a convex set, Naturally, linearity is

needed for this,

5.10, Let X,Y be topological linear spaces, and T a

continuous linear mapping XY, Let A be a convex subset
of X, and suppose that a € A is such that a has a compact

A-neighbourhood, and that if x€ A and Tx = Ta , then

X = a , Then, for every A-necighbourhood N' of a, TN' is

a (TA)-neighbourhood of Ta,

Proof, N'-a is a neighbourhood of O in the star A-a,

If x €A and T(x-a) =0, then Tx =Ta , so x-a = 0 ,
Therefore, by 5.6, T(N'-a) 1is a neighbourhood of O in
T(A-a), i.e. there exists Q € 1(Y) such that T(N'-a) =

Q n T(A-a) . Then TN' = (Q+Ta)n TA , giving the result, j;
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This scction is concerned with the guestion of whether
sets which are allied with respect to one topology are all-
ied with respect to another one. Firstly, we show that two
different topologies for the same group will certainly give
rise to some pairs which are allied with respect to one but
not the other, In fact, it is only necessary to consider
pairs of sets of which one is a singleton, Then we return
to linear spaces and obtain some positive results for sub-
spaces and positive homogeneous subsets,

We shall write A al B (T) to denote the statement

that A al B with respect to the topology T.

Determination of topologies by allied pairs

We start with a very simple lemma:

6.1. Let X be a topological group with identity e,

—

(i) 1F x_1¢g A, then {x}al A, A al {x}.
(ii) If x ¢ le} and {x} al A, then x '¢ A& .
Proof, (i) There exists M € U(X) such that

(x_1M)n‘ﬁ =0 , or (xA)nM =@ , Hence, by vacuous im-

plication, {x} al A , Similarly, A al {x} .

(ii) If {x} al 4, then, by 1.10, (xaZ ¢ e} &

This enables us to prove the result stated in the

introduction to the section:
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6.2, Two group topologies for X giving the same allied

pairs are the same,

Proof, Let ‘1’1 and T be the two topologies, and let

denote closure with respect to T:"L (i = 1,2).

If x ¢ {E’ﬂm?e_}z , then {x] al fx~1 (¢,), but

- —1 -
ix} nal {x 1_? (Tz), by 1.10. Hence f{e} = {eiz“, and both

sets can be denoted by {a-a—} The result certainly holds if

fe} = X, so we suppose that {e} ¢ X

Take any A € X. Ve show that A = A2,

If x g {el , then, by 6.1,
x‘1q’ A <= {x}ala (Ty)

«<=> {x} al A (T,)

¢=> x| g 22

Now suppose that x ¢ {e}. Take ¥ é,f {E} Then

xy 4 {_-—}, so Xy € F <=> Xy € Ky"2 , by the result

just proved. But xe€A* «¢=> xy ¢ Ay* (i =1,2), since

Ti is a group topology. 4:

It is natural to ask whether a group topology can be
defined by specifying the allied pairs and defining:
x €{e}  <«=> {x} al {x'1} ;

if x q@, then x€¢A <¢=> {x_11 nal A ;

if x ¢ {e}, then x €A => xy € Ay for some y({{e’f.



The correspondence between some of the axioms is immediate.
For instance, the condition

(AUB) a1 C «=> A al C and B al C
(cf, 1.7) implies AUB = A U B, But it does not secm to

be easy to give a set of axioms to be satisfied by the rel-

ation A al B which ensures that Efz A and that multi-

plication is continuous,

Subspaces of complete topological linear spaces

The results of sections 3 and L give at once:

6.3. Suppose that o and T are complete, Hausdorff
topologies for a linear space X such that ¢ is metrisable
and every T-closed linear subspace is o-closed (which will
occur, in particular, if Tc o), If A,B are subspaces, and

A 21 B (T), then A al B (¢),

Proof, By 1.9, A al B (t) , the closures being taken
with respect to T, Hence, by 3.1, A+B is T-complete,
so T-closed, Hence A,B and A+ B are all 9-closed, so

A2l B (o), by L4.7. j:

It is well-known that if T 1s complete, T<o, and o
has a local base consisting of T-closcd sets, then & is
complete., However, 6.3 is of limited application, and we
proceed to dcduce results of greater interest by different

methods,
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Dual topologies

Let (X,Y) be a dual pair of linear spaces, not necess—
arily separated, We shall often regard the clecments of Y
as linear functionals on X, and denote the scalar <{x,y) by
y(x). The weak and strong topologics induced by Y on X and
its subsets will be denoted by w(Y) and s(Y) respectively.

If X is a topological linear space, then X" will denote
the space of all continuous linear functionals on X (with
respect to the given topology), and w(X*) will be called
the corresponding weak topology.

Wle start by examining the meaning of alliedness with

respect to a weak topology:

6.4, Let (X,Y) be a dual pair, and let A,B be subsets
of X. Then A al B with respect to w(Y) if and only if,
given y € Y, there exists a w(Y)-neighbourhood ¥ of 0 such
that

=

a€A, beB, a+beN => ly(a)( & 4

Proof. Thc condition is clearly necessary. Supposc

that it holds, and that gs oeo 3¥y € Y are given, Then

there exist w(Y)-neighbourhoods N, of O (i =1, ... ,n)
such that

a €A, b€B, atb €N, => lyi(a)( £ .

(a){ <1 for

If ach, be¢B, and a+b ¢ [|N; , then [yi

each i, It follows that A al B with respect to w(Y). i?

Now we have:
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6.5. Let (X,T) be a Hausdorfi, locally convex space.
If subspaces A;B are allied with respect to T, then they

are allied with respect to w(X¥),

Proof. Since T is Hausdorff, AnB = {0}, Hence elem-
ents of A+B can be expressed uniquely in the form a+b
(a €A, b€B), and, given y«¢ X*, we can define a linear
functional y' on A+B by: y'(a+b) = y(a). By L.1, y' is
T-continuous on A+B, so has an extension zeX* I ac€aA,
beB and lz(a+b)| < 1, then ly(a)l €1 . Thus A al B
with respect to w(X*), by 6.4, I

Later, we shall see how to extend this result to wedges
(sece 7.13). Results in the converse direction can be ob-
tained for more¢ general sets still., Recall that if T is
a locally convex topology and w the corresponding weak
topology, then a set is w-bounded if and only if it is
T-bounded, so that we may speak simply of “bounded” sets

(see, e.g., (10), 17.5).

6,6, Let (X,T) be a locally convex, metrisable space,
and let w denote the associated weak topology, If A,B are
positive homogencous subsets such that A al B (w) , then
A al B (t).

Proof, If A nal B (T), then, by 2.2(ii), there is a

bounded sequence (a, +b ) with =a € 4, b €3, and (a,) un-

vourided, Henos, by 2.2(i), A nsl B (w). I

Next we consider the topologics w(X) and s(X) for p A

If X is a normed space, then s(X) is the norm topology for
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x¥,

By the uniform boundedness thcorem ((10), 18.5), if X
is locally convex and sequentially complete, then subsets
of X* are w(X)-bounded if and only if they are s(X)-bounded,

Thus, by the same argument as in 6.6, we have:

6.7. Suppose that X is locally convex and sequentially
complete, and that the topology s(X) for x* is metrisable.
If A,B are positive homogeneous subsets of % ¥ such that
AalB (w(X)), then A a1 B (s(X)) .

In particular, if X is a Banach space, and A,B are
positive homogeneous subsets of Xx* such that A al B (w(X)),

then A al B with respect to the norm topology. #:

Lastly, we make use of the fact that if X,Y are Haus-
dorff, locally convex spaces, and a linear mapping X—Y is
continuous with respect to the weak topologies Wiy, Wy assoc-
iated with the given topologics, then it is continuous with
respect to the Mackey topologies my, my (see (11), 21,4(6)).
Also, the Maclkey topology for a subspace of X is not smaller
thon the relative topology induced by My (no direct proof
of this entirely clementary result scems to exist in the
literature, so one is given in appendix 2), Recall that
X is a MACKEY SPACE if it is Hausdorff, locally convex, and
its topology coincides with the associated Mackey topology
(in particular, all metrisable, locally convex spaces and

all barrelled spaccs arc Mackey spaces), Using these facts,

we have:

6.8. Suppose that (X,7T) is a Mackey space, and that
A,B are weakly allied subspaces such that A+B = X , Then

A al B (7).
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Proof. AnB = {07, so the projection A+B->A is de-
f'ined and continuous with respect to Wiy and Wy Therefore

it is continuous with respect to My ='TX , and My, which
is not smaller than T,. Hence it is continuous with re-

spect to Ty and Ty SO by 4.1, Aal B (T) ., j:

It will be noticed that, in the case when X is borno-
logical, 6.8 follows easily from the equivalence of weak
boundedness and boundedness, However, it does not seem to
be easy to replace A and B by more general sets in 6,8,

even when X is bornological,

Examples

(i) Let I Il be the usual norm of 1,. Another norm

on 1, is the usual norm p of m, defined by p(x) = sup L%n{’

shere x = (& ).
whe (fn'
Let A be the set of decreasing, non-negative sequences

in 11, and let B be the set of scquences having 81 = 0

Let

a,. = (1515 ass 310 Uan“ = n,

b = (0919 s 6o 91)7 “an = n-1,

Then a €A, b €B and flaj-b. (=1 . Hence A nalB

with respect to u I,
For any a = (an) ¢ A, p(a) = ay . If b€B, then

the first component of a+b is a,, so p(a+b) > p(a) .

Hence A al B with respect to p,
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(ii) Let A be the subspacc of m cunsisting of seq-

uences (an) having a, = 0 for all n, and B the subspace

consisting of ssquenccs (Bn) having B, = g8 Bopq TOT

all n (cf, section 2, ex, (iii), p. 27). Clearly, A nal B
with respect to the norm topology.

Let T be the topology (for m) of pointwise convergence,
We note in passing that this is a metrisable topology, and
that it is w(¥), where F is the space of all finite real
sequences, A basic T-neighbourhood of O is the set M of

all (tn) having [};( < € for i< 2k (for some ¢,k).
Suppose that (an) € A, (Bn) € B, and lBiami( < g¥¢
for i ¢ 2k . The even components show that lBi[ < €

for i=1,3 ... ;2k=-1 , Hence (Bn) € M, It follows
that A al B (T) ,

Note that A and B are T-closed (though not T-complete)
subsets of m, while A+B is not even closed in the norm
topology. Thus we have another examplc of closed allied
subspaces with a non-closed sum (cf. p. 35-36).

We have found subspaces which are allied with respect
to T but not with respect to I ., Conversely, let K be a
subspace which is | |l-closed but not T-closed (e.g. 00).
Take an elcment x which is in the T-closure of K, but not
in K, Let L be the one-dimensional subspace spanned by X.
Then K,L are allied with respect to ([ ll, by 5.1, but not

with respect to T,
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7. DECOMPOSITION THEORENMS

Let (X,Y) be 2 real dual pair of lincar spaces. For
A C X, write
A" = lyeY : y(a) 3 0 for all acAf,
A? = iyeY ¢ |y(A)] <1 for all a€Al .
These arc w(X)-closed subsets of Y. AY is a wedge, and A°
a star, If A is symmetric, then A° is the sct of elecments
of Y which are not greater than 1 on A, and AT is the set
of clements of Y which vanish on A, For a subset B of Y,
B* and B° are defined similarly as subsects of X,
Wie continuc to denote by pos A the wedge generated
by A, A is the closure with respect to w(Y) of pos A,
The motivation for this section derives from the fact
that if A-B = X, then A'n(-B*) = {0}, since an clement of
this would be non-negative on X, This is the neccssary dis-

jointness condition for AY al B* ; and indeed we have:

7.1, If (X,Y) is a real dual pair, and A-B = X,

then A' al BY with recspect to w(X).

Proof, Take x¢X, There exist a,a' € A and b,b'€ B
such that x = a=b , -x = a'-b'. Suppose that f ¢A*, geB®
and f+g < 1 at cach of a,a',b,b'. Then

g(a) < f(a)+gla) <1,
S0
g(x) = g(a)- g(v) < g(a) <1 .
Similarly, g(-x) <1, so |g(x)] <1 . The result follows,

by 6.4, T
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From 7.1 and 6,7 we have immediately:

7.2. If X is a real Banach space, and A-B = X , then

T a1 BY with respect to the norm topology of X*; :t

The special case of this appropriate to partially
ordered linear spaces, viz., when A is a wedge and B = A,
was obtained by Bonsall ((1), lemma 2), and also by Namioka
((14), 8,11), under certain extra hypotheses.

If A and B are symmetric, then we may rcad At for At
(and similarly for B) in 7.1 and 7.2, obtaining results

which strengthen certain statements by Kéthe in (11) (20,5).

7.3, If (X,Y) is a real dual pair, and A,B are subsets
of X such that At-BY -y , then A al B with respect to

w(Y).

Proof. AT a1 B*Y vy 7.4, I

Tdie AT (X,T) is a locally convex, metrisable space,
and A,B are positive homogeneous subsets of X such that

A*-BY = X*, then A al B with respect to T.

Proof, By 7.3, A al B with respect to w(X*), The

result follows, by 6.6, ¢7

As in sections 1 and 2, for fixed A,B, we write
[E] = (BE+A)n (E-B) .
We recall 2,3 and the cxample following it: if A,;B are
allied stars, and & is bounded, then so is CE], but there
is no corresponding result for compactness, Our next theorem

gives onc situation in which compactness of E implies that



of [E]. If X is barrelled, and a subset X of X¥X is w(X)-
bounded, then K is w(X)-compact (the closure being taken
with respect to w(X)), since K° is a neighbourhood of O,

so that K°° is w(X)-compact,

7.5. Suppose that X is barrelled and that A-B = X ,
For B ¢ X¥, write (E]= (E+A")n (8-BY) . Then, for X¥
with the topology w(X):

(i) if E is bounded, then [E] is compact;

(ii) if E is compact, then so is [E],

Proof. By 7.1, AY a1 BY with respect to w(X).
Therefore, by 2.3, if E is w(X)-bounded. then so is [E],
so that Eﬁj is w(X)-compact,

L

L]

E is w(X)-compact, then [E] is w(X)-closed, so (ii)
follows. if

If B = A and < is the ordering induced on XX by the
wedge Af, then 7.5 shows that order-intervals in X* are
w(X)-compact, In the case when < 1is 2 lattice ordering,
this implies that X* is order-completc, i,e. that a subset

of X¥ which is boundcd above has a least upper bound,

“f-dccomposition

Given a family "+ of subsets of a commutative topo-
logical group X, we say that the pair of subsets (A,B) gives
an “{-DECOMPOSITION of X if, given F ¢ "#, there exists
G¢% such that F ¢ AnG - BnG , If (A,A) gives an "1-de-
composition of X, we will simply say that A does so, (Cf,

the concept "strict Y -cone™ introduced in (19), p. 217).
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F will usually be chosen with its members symmetric,

so that we will have, equivalently,

vided that U7 = X, it is clear that

F < BNG - ANG ,

Pro-

A-B = X,

Let X,Y be topological linear spaccs, and let Z be the

space of all continuous linear mappings from X to Y (or a

subspace),

Let 1 be a family of bounded, symmetric subsets

of X such that the union of any two members is contnined

in a third,

Then a local base for the topology T(P

(for Z)

of uniform convergence on ‘% is the family of sets of the

form

{T : TF ¢ M}, where F< ™} and M € [(Y).

If X and

Y are normed spaces, and “+ is the set of spheres in X with

centre O, then T(4) is the norm topology for Z,

Under these circumstances,

thecorem:

7:6.,

are allied subscts of ¥, then

{T 2

with respect to T(F).

TA ¢ K} a1 {U :

we have the following

If A gives an "}-decomposition of X, and K,L

UA < LY

Proof, Take Fe ™t and M € N(Y). There exists M, € (Y)
such that M,-M, ¢ M , Since K al L, there exists N ¢ F(y)
such that

keK, 1€L, k+le N => k€M1 .

Also, therc exists G €} such that F

Suppose that TA ¢ K, UA €L and

X ¢ ANG, then Tx¢K, Ux€L and Tx+Ux €N, so

TF ¢ M,-M, ¢ M,

Hence 1My

We notice that it is sufficient if,

< ANG - ANG ,

(T+U)G¢ ¢ N , If

Tx eh%,

and the theorem is proved, it

instead of an
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“}-decomposition of X, we have the condition that, given
F€™4, there exists G€d such that F Q?I-, where
H=AG - ANG , To see this, take M closed in the proof,
Cf, Schaefer's Gefinition of "~-cone® ((19), ». 217).
7.6, in the case when K = L, is given in (19) (p. 226),
under certain c¢xtra hypotheses, A second generalisation
of Schaefer's recsult is obtained by kcening K = L but re-

placing A by two scts in X:

7.7. If (A,B) gives an "f-decomposition of X, and K
is a self-allied semigroup in Y, then
{T:TAcK}) al {U: UBCK}

with respect to T(9).

Proof. Take F¢ 1 and M€ Y1(Y). Therc exists G ¢ ¢
such that F ¢ ANG - BnG , Take symmetric M, € N(Y) such

that M, +M,+M, ¢ M , There exists N, € R(Y) such that

N, ¢ M, and such that, if k;€K (i =1,2,3,4) and

I, +K o+ ‘{3+ku € N, , then ki€M1 for each i (this is the

stage at which we nced the fact that K is 2 semigroup).
Take N € (1(Y) such that N+N ¢ . PO
Suppose that TA € K, UB < K and (T+U)G <N, We

show that TR € M , Take f€F. Since F is symmetric,

there exist a,a' € ANG and b,b' € BnG such that f = a-b,

-f = a'-b'., Then a+a' = b+b', s0

Ta+ Ta'+ Ub+ Ub'

il

(T+U)(a+a') € N+N € N, ,

and Ta,Ta',Ub,Ub' € M, . Now Tb+Ub € N< M, , so

Tf = Ta-Tb = Ta+ Ub- (Tb+ Ub) € M,+M

4 1+NI < M

1
as required. :t
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In the special case when Y = R, Z becomes a subspace
of X*, and T(77) becomes the polar topology induced on 2
by 1, having local base ~1° = {FO : F¢™1?. The strong
topology s(X) and the Mackey topology m(X) are obtained by
letting "1 be the set of symmetric subsets of X which are
(i) bounded or (ii) compact with respect to w(Z). Putting

K = R" in 7.7, we obtain:

7.8, If (X,Y) is a real dual pair, 4 is a family of
symmetric, w(Y)-bounded subsets of X, and (A,B) gives an

“}-decomposition of X, then A" al B® with respect to T(%7).3

7.1 is a special case of this result - a fact which

illustrates the considerable generality of 7.7.

no—decompositions of the real duval space X¥ are of
particular interest, where (1= [1(X), We repeat the def-
inition: (C,D) gives an [(\°-decomposition of X* if and
only if, given M ¢ {](X), there exists N ¢ [1(X) such that
M° ¢ cnN®- DnN®, An no-decomposition of X¥ is the same
as a 'Bo—decomposition, where ]2 is any local base in X,
If (X,7) is a locally convex space, then T = T(°), so

7.8 gives:

7.9. Let X be a real, locally convex space, and write

N = Nx). If (c,D) gives an (1°-decomposition of X,

then CY a1 D" in X, ¥

In particular, if A,B ¢ X and (A",B") gives an
‘P-decomposition of XX, then A al B,

We notice that if X is a normed space, then (C,D)
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gives an no—decomposition of X*Lif and only if there exists
K > 0 such that every f e X* is expressible as g-h, where

geC, heD and (g, ln} < K|ty .

We now turn our attention to results in the converse
direction, i,e. deducing th~t some pair of sets gives a
decomposition, Thc main result of Bonsall (2) is that if
A is a self-allied cone in a locally convex snace X, then
A% gives an N°-decomposition of X*. Schaefer obtained
this result independently ((16), 1.3). With a proof sub-
stantially similar to Bonsall's, we show that this can be
generalised to two wedges A,B; (the resulting theorem is
the converse of the remark after 7.9, in the case when A
and B are wedges). We use the following lemma, proved

by Bonsall ((2), theorem 1):

7.10., Tet X be a real linear space, p a sublincar
functional on X, and B a wedge in X, ©Suppose that q is a
functional defined on B and superlinear there (i.e, -q is
sublinear), and that q(b) < p(b) for be¢ B. Then there
is a linear functional f on X such that

fix) € plx) (x&X),
£(b) » a(®) (veB). F

Our theorem is:

7.11., Let X be a rcnl, locally convex snace, and

write N = YI(X) ., If A,B are allied wedges in X, then

(o*,B%) gives an Y]°-decomposition of X,

Proof. Let M € (I(X) be given, There exists convex,
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symmctric N ¢ MN(X) such that
a€A, beB, a+b €N => a,bel, (1)
Let Py be the linkowski functional of N, For all

x € X, define
p(x) = inf {pe(y) : v € x+al,

p(x) $ 0, and for A » 0, p(Ax) = Ap(x) . If xe€-A, then

O¢ x+A, so p(x) =0, If yi € x;+A and pN(yi) < p(xi)+s
(i =1,2), then Y +Yp € X +X,+A , and

Py +¥5) < p(x)+ p(x,) + 26 .
Hence p(x1+x2) < p(x1)+p(}{2) , and p is sublinear,

Take f¢€ MO, Suppose thot y € (x-=A)n B , and take
& > p(x). xey+h, so x+A € y+A, and p(y) < p(x). Hence
p(y/é) < p(x/6) < 1, so there exists z € y/é§ +A such that

py(z) < 1, i.e, z€N, y/§¢B, soby (1), y/§ €M, and

£(y)[ < 8 . Hence £(y) < n(x) .
Thus, for b ¢ B, we may define
q(p) = sup {f(y) ¥y € (b—ﬂ)nB} I
and q(b) < p(b) . Putting y = b, we sce that q(b) » f(b).

If y; € (bi—A)nB and f(yi) > q(bi)—g (i =1,2), then
T +¥o € (‘t:)JI +b2—A)n B, and

£(y,+v5) > alb,)+ald,) - 2¢ .

Hence g is superlinear on B,
By 7.10, there is a linear functional f, on X such that
£,(x) < p(x) (xeX),
£,(0) » a(®) (veB).

If xé€-A, then £, (x) < p(x) =0, Thus f,€¢ A", Also,

1



70

f, <P <Py, so T,eN°, Putting f, = f,-f, we have
£,(b) > qa(b)-£(p) > 0 (be B).
Finally, let P = 5(MnN), [f| and lf,] <3 onP, so
[f2[ <1 on P, Hence
M° ¢ (A*np%)- (B*np°) . %

Combining 7.1 and 7,11, we have:

7.12. Let (X,Y) be a real dual pair, and let A,B be

w(Y)-closed wedges in X, Then the following statements
are equivalent:

(i) A-B = X ;

3

(ii) A" a1 B" with respect to w(X).

Proof. (i) implies (ii), by 7.1. If (ii) holds, then

++_gtt

A =X, by 7.11. (i) follows, since A"t = a, BY" = B,i

Under the same conditions, it is clementary that A-B
is w(Y)-dense in X if and only if A'n(-B*) = {0}.

7.11 enables us to improve upon 6.,5. Note that if X
is a complex topological linear space, and X;, Xéédenote
respectively the spaces of rcal and complex continuous
lincar functionals on X, then the topologies W(XE) and

W(XS) are the same, Thus, in all cases, W(Xg) is the

same topology as w(XX),

7.13, If (X,7) is a locally convex space, and A,B

are T-allied wedges in X, then A al B with respect to W(X*).

¥
Proof’, By 7.11, AR = X The result follows,

R 3
by 7.3. T
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Another casy consequence of 7.11 is:

7.14., Let (X,T) be a real, locally convex metrisable
space, and write 1l = YW(X) . If C,D are w(X)-closed wedges

‘ 5 &
in X” such that C-D = K*, then (C,D) gives an ho—docomp-
X

osition of X

Proof, By 7.1 and 6.6, C" a1 D* (), Since c¢** = ¢

and D*" = D, the result follows, by 7.11. +
Denoting by A(E) the convex, circled cover of a set E,
we have:

/.15, Let X be a locally convex space, and A? the

family of finite subsets of X, If A,B arec closed wedges

such that A-B = X, then (A,B) gives a _A("})-dccomposition
of X,

_K.
Proof. Consider the dual pair (X,X;). By 7.1, A" al B*
with respect to w(X). {F° : F €2} is a loecal basc for

w(X), and F°° = A(F). The result follows, by 7.11. &

Let X be a barrelled space. VWrite [ = YUX) , and let
B be the set of w(X)-bounded subsets of XX (which, incid-
entally, coincides with the set of s(X)-boundecd subsets).
If E€ B, then E°¢ N, so E ¢ E°° ¢ N°. Conversely, if
N €Y, then N° is w(X)-compact, so certainly N°¢ 3 , It
follows that the 'no-decompositions of X*'nre precisely the

R -decompositions, Hence we have:

7.16. If X is a barrelled space, and I3 denotes the
% .
sct of w(X)-bounded subsets of X, then wedges A,B in X are

allied if and only if (AT,B") gives a B-deccomposition of X*,j
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8. OPEN DECOMPOSITION

Let X be a commutative topological group. We say that
the pair of subsets (A,B) gives an OPEN DECOMPOSITION of X
if A-B = X and, for each neighbourhood M of O, the set
ANM -~ BnM 1is also a neighbourhood of 0, If (A,A) gives an
open decomposition of X, we shall simply say that A does so,

This section is devoted to the subjesct of open decomp-
osition in its own right, but we shall see that it is close-
ly connccted with allied sets, We start with some very
elementary results (8,1 - 8,6). X, throughout, denotes

a commutative topological group.

8.1, If A-B =X and A al (-B), then (A,B) gives

an open decomposition of X,

Proof. Take M€ YI(X). There exists Né€ (}(X) such that
a€h, DéB, a-beN => a,b éM ,

Since A-B = X , it follows that AnM-BnM 2 N , I

8.2, If (A-A)n (B-B) = {0}, and (A,B) gives an open

decomposition of X, then A al (-B) .

Proof. Given M é [{(X), let N = AnlM- BnM ., Then
N ¢ N(X), and if a-b € N (vhere a €A, b ¢B), then a,b € M,

since expressions of the form a-b (a€¢ A, b€ B) are unique, —.t
Combining these two results, we have, for subgroups:

8.3, If A,B are subgroups such that ANB = {0} ana

A+B = X , then (A,B) gives an open decomposition of X if

and only if A al B ., :i
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8.4, If there exist locally compact subsets A,B which

contein O and give on open decomposition of X, then X is

locally compact,

Proof. There exists M € YI(X) such that AnM and BnM

are compact, Then AnM- BnlM is a compact neighbourhood

of O.,:F

Note that if (A,B) gives an open decomposition of X,

then A and B contain O,

8.5. Let X,Y be commutative topological groups, and
suppose that A,B contain 0 and give an open decomposition
of X, If T is a homomorphism X—Y which is continuous on

A and B at O, then T is continuous on X,
Proof. Given P ¢ [U(Y), take Q@ € MUAY) such that

Q-Q ¢ P, There exists M € [Y(X) such that T(AnM) € Q
ond T(BNM) ¢ @ . (AnM-BnM) € [1(X), and T(AM- BAM) < P,i

The following characterisation by nets and sequencces
should be compared with 1,5, Equivnlence is only obtained

in the metrisahle case here,

8.6. Supvose that A-B = X , and consider the state-
ments:

(i) If (xn) is a net convergent to O, then there exist,
for cach n; ané.ﬁ and bneeB such that X, = ﬂn"bn and
the ncts (an),(bn) converge to O,

(i)(s) Statement (i), with "net" replaced by "scquence',

(ii) (A,B) gives an open deccomposition of X,
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Then (i) implies (ii), and if X is metrisable, then

(i)(s) is equivalent to (ii),

Proof, Suppose that (A,B) does not give an open de-
composition of X, so that, for some M & F}X), ANM- BnM
g YI(X). Write ANM-BaM = L , ILet B be a local base,
countablec in the netrisable case. For each Ne¢ 2, therc

exists Xy € N~IL , {XN : NeE]B} is a net convergent to

O (a sequence in the netrisable case). ITf XN = aN—bN

(where ay € 4, bNe:B), then one of ay,by is not in M, Thus
neither of the nets (aN),(bN) converges to 0, for if one

did, then both would, and both would eventually stay inside
M.

Now supposec that X is metrisable, and that (A,B) gives
an open deconmposition of X, Thecre is o countable, contract-

ing local base {Mn :n=1,2, ..} . Let (Xn) be a sequence

convergent to O, For each positive integer i, there cxists
5 11 such that
noyn, => X, e(ﬂnMin Bnhi) .

For n; <N <Ny choose 2, ¢ AnMi 5 bn 3 BnMi such

that x, = a -b . Then the scquences (an),(bn) converge
to 0O, 4:

The case wherc X is metrisable and A = B 1is essentially

given by Nachbin ((13), proposition 15, p. 87).
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Linear spaces

First we notice that if X is a topological linear
space, and A,B are positive homogeneous subsets such that,
for some M € [(X), (anM- BaM)e¢ W(X), then A-B = X ,

Open decompositions of linear spaces are of interest
in two quite different contexts:

(i) Open decomposition by pseudo-disjoint subspaces
A,B, Of course, we can equally well write A+B = X in this
case, By 8.3, open decomposition occurs if and only if
A al B .

(ii) Ovpen decomposition by a wedge A which induces a
partial ordering of X, Nachbin actually incorporates this
condition in his definition of a '"locally convex directed
space ((13), p. 8). One elementary consequence is the
continuity of any linear functional g satisfying O ¢ g < f,

where f is continuous,

A simple result which applies in context (ii) is:

8.7. If X is a topological linear space, and A is a

positive homogeneous subset with non-empty interior, then

A gives an open decomposition of X,

Proof, Take open M ¢ n(X), and let G = (int A)n M
Then G is open and non-empty, since A is positive homogen-

eous., Hence G-G ¢ [U(X) , and the result follows, I

A question which arises naturally is that of open de-
composition with respect to different topologies, 8.3 en-

ables us to answer this in context (i), using 6.6 and 7.13:
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8.8, Let (X,T) be a locally convex space, and let w
be the associated weak topology. Then:

(i) If (A,B) gives an open decomposition of X with
respect to T, then it does with respect to w,

(ii) If T is metrisable, and (A,B) gives an open de-
composition of X with respect to w, then it does with res-

pect to v. ¥

Positive homogeneous subsets A,B of a normed linear
space X give an open decomposition if and only if XK > O
exists such that every x¢X is expressible in the form
a-b, where ac¢A, be¢B and lal,\bl < XK lx|. Thus an
open decomposition of a normed space by positive homogeneous
subsets is the same as a bounded decomposition (i.e. a
3 —~decomposition, where X is the family of bounded sets).
We now attempt to discover how much of this remains true

in more general spaces:

8.9. Let X be a topological linear space, If A,B

are stars such that A-B = X and A al (-B) , then (A,B)

gives a bounded decomposition of X,
Proof. For each x ¢X, there exist a ¢A, b_€¢B such
that x = ax-bx . Take a bounded set E, and write
— i . — s = { < —
Ay ={a, : xe¢E}, By={b, :xcB}, Then E ¢ Ay - By,
We show that AE and Bﬂ are bounded, Take M € ['?(X). There

exists circled N ¢ 1(X) such that
a €A beB, a-béN => a,b € M,

There exists A ¢ (0,1] such that AB ¢ N, If x¢E, then
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AX = Kax—hbx € N, so hax, Kbx € M , Hence RAE c M,

RBE € M , and the theorem is proved, j:
From this and 8,2, we have:

8.10, Let A,B be pseudo-disjoint subspaces of a topo-

logical linear space X, If (A,B) gives an open decompos-—

ition of X, then it gives a bounded decomposition of X, 17

Now we show that coanverse results apply in bornological
spaces, but it is necessary to make a distinction between
the real and complex cases. Every complex topological lin-
ear space is, of course, a real one, However, two differ-
ent concepts of ‘circled set" are available: complex-cir-
cled and (a weaker condition) real-circled. Let Ol denote
the family of convex subsets M of X such that, given a
bounded set E, there exists N > O such that AE € M, As
a complex svpace, X is bornological if every complex-circled
set in O is a neighbourhood of 0, As a real space, X is
bornological if (a stronger condition) every real-circled
set in Ol is a neighbourhood of O, In fact, in this case,
every set in Ol is a neighbourhood of 0, since if M € O,
then Mn (-M) is a real-circled set in O, Curiously,
this rather basic point scems to have been ignored in all

the literature., Our converse result is:

8,11, (i) If X is a real bornological space, and A,B
are wedges which give a bounded decomposition of X, then
(A,B) gives an open decomposition of X,

(ii) If X is a complex bornological space, and A,B are
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linear subspaces which give a bounded decomposition of X,

then (A,B) gives an open decomposition of X,

Proof, Take convex M € [1(X), Let N = AnM- BnM ,
Then N is convex, In case (ii), it is also circled, Take
a bounded set E, There exists a bounded set F such that
E ¢ANF-BNF , For some A > 0, AF CcM , Then AE ¢ N,

Since X is bornological, it follows that N ¢ N(X). £

The class of bornological spaces is fairly wide; in
particular, it includes all locally convex, metrisable
snaces,

Bounded decompositions are , of course, the same with
respect to a locally convex topology and its associated weak

topology. The concept has no meaning in topological groups.

Metrisable spaccs and groups

The next theorem is our deepest result on open decomp-
osition., It generalises results of Nachbin ((13), theorem

11, p. 92) and Namioka ((1L), 5.3, p. 23).

8.12, Let X be a complete, metrisable topological
linear space, Suppose that A;B are closed wedges such that,

given x € X, there exist bounded sequences (a ) in A4, (bn)
in B such that a -b —> x . Then (A,B) gives an open de-
composition of X,

Proof., The topology is given by an invariant metric
d, We show first that, given M ¢ n(X)s there exists 6 > O

such that if a(x,0) < &, then there exist sequences (yn)
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in ANM, (zn) in BnM such that Vi Zn % o

Take circled N ¢ Y}(X) such that N+N ¢ ¥ ., Define K
to be the set of elements x for which there exist sequences

7 : 1 .
(an),(an) in ANN and (bn),(bn) in BNN such that
t T
an-bn~¢ z ., an—bn—% -X

') dn A

Given x € X, there exist bounded sequences (an),(aIl

i O T T
and (bn),(bn) in B such that a -b —>x , a’-b’—>-x.

There exists A > O such that Aa_, Aa,, A\b,, Ay, € N for

n?

oo
all n, Then Axe¢X, Hence X = {J (nkK) .
n=1

Suppose that x €¢X . There exists xne'K such that

-1 s 1 " 7
d(x,xn) < 2 . There exist a ,a’ € AON and b_,b € BN

X -1 1 1 -1l
such that d(xn, an—bn) <2 and d(-xn, anfbn) < 2

= = T_ 1 o I s
Then a, bnf¢ X, aj bn-% X , s0o x€K, Hence X is closed.

Therefore, by Baire's theorem, there exists XOQIK and
§ > 0 such that d(x,xo) < £ -5 xeK ., Take x such that

d(x,0) < 0 . There exist a aﬁ € AN and bn,bﬁ € BNN

n9
such that
- -~ X _4X
&n bn T 3
1 1
a'-b' = -x_ .,
o Bt « S o
Then

f ?
(an+an)- (bn+bn) & x .
1 \ 1 i = 3 e is
(an+an) € AnM (bn+bn) ¢ BnNM , so the assertion above i

proved,

Wpite Mn = {x : d(x,0) < 2—n} . There exists 3n > 0
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such that if da(x,0) < § , then therc cxist scaquences (yr)

n

in ANl (zr) in BNM, such that y -z, - x . Clearly,
—~1n+1
6ng2 ;

The proof is completed by showing that, for each k,
¢
{x . a(x,0) < ak+1} < (anM, - BN ) |

Take x with d(x,0) < 6£+1 . There exist a, , € AnM, . ,

by, € BOM, . such that d(x 0) ¢ & where

k+1? k+2 °

g = X- (ak+1--bk+1) . Having obtained X,_4q Vith

0) < ¢ choose a, ¢ ANM_, , b, € Bnll, such that

r-1? r ?

d(xr,O) < 6¥+1 , where x =x, - (ar"br) .

Since A and B are complete,
o 0
Za, =a €Al 2 b, =D Bl .
k+1 k+1
Now
1
\'_(a

L.

i) I'_br') = X- X

1 ]
and xl-é 0 as 1=»0c0, Thus x = a-b , and the proof is

complete, ?i

This gives us another automatic continuity thecorem

(ef, 2,7):

8,13, Let X,Y be topological linear spaces, X being

complete and metrisable, Suppose that A,B are closed wedges
in X such that A-B = X (or such that the condition of 8,12
is satisfied), and that T is a linear mapping X- Y such

that TA and TB are self-allied, Then T is continuous.
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Proof, Let d be an invariant metric giving the top-
ology of X, and let M_ = {x : d(x,0) < z“n} . By 8.12,
n_1(AnMn— BnMn) is a neighbourhood of O,

If T is not continuous, then there exist N ¢ {}(Y) and

. -1
a, € AnM_, b € Bl such that n” T(a-b ) ¢ N .
2
Since X 1is complete, ZE a, is convergent, say to a,
n=1,

ach, since A is closed, Further, a = a_+a

! -
where
n n'’

a_ ¢ A, Now

!
n

-1 -1
n (Tan+Ta£) =n Ta — 0,

1

so n Ta — O, since TA is self-allied. Similarly,

n"'Tb_ — 0 . This is a contradiction, and the result

follows, :$

This applies, in particular, to "positive" linear
mappings into a space with an order given by a self-allied
cone (cf, (13), theorem 12, p, 95), Also, putting Y = R,

we have:

8.14, If X is a complete, metrisablc topological

linear space, and A,B are closed wedges such that A-B = X ,

then every linear functional in Atn BT is continuous, Zt

A simple example shows that we cannot dispense with
completeness here, Consider the space F of finite real
sequences, with the usual ordering and the topology given

by the supremum norm, Let f£(x) = Efén , where x = (?n),

Then f is a discontinuous positive linear functional,
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The following partial converse to 8.12 should be com~-

pared with 8.4:

8.15. Suppose that X is a metrisable, commutative

topological group, and that compleste sub-semigroups A, B
exist which give an open decomposition of X, Then X is

complete,
Proof. Let d be an invariant metric giving the top-

~17
ology, and let M = {x : d(x,0) ¢ 277p . P = AnM_- BnM_

is a neighbourhood of 0, Suppose that (xn) is a sequence

such that xn— Xn—1

P, form @ (any Cauchy sequence
has a subseguence with this property). For n > 2, there

exist a, € AnMn y bn € BnMn such that By =i g = anébn

€ B such that x, = a,-b

Also, there exist a1é.A, b1 4 1=Pq

Then Xn =

B s

il
1(ar_br) . For IH3ESH E% a, €M, so,
k e

o)
since A is a complete semigroup, E; 8, = @ € A, Similarly,
1

oo
E.bn =D € B, Thus X, = a-b , and X is complete. lﬁ
1
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9. APPLICATIONS TO LATTICES

In this section we show how allicdness and open deccomp-
osition play an essential part in the theory of commutative
topological groups and topological linear spaces with a
lattice ordering. No attempt is made to replace the pos-
itive cone by two sets,

Let X be a commutative lattice group, i.e. a commut-

ative group with a lattice ordering such that x ¢y implies

=

x+z ¢ y+z for all z, Write x" = xvO0, x~ = (-x)vO,

x| = x v(-x)., Then |x|=x"+x" =x"yx~ , and vl < x

if and only if -X < ¥ < X . The following inequalitics

hold:
| 2vyl < (xWy| » 1xA¥]s< Xy s
l lx+y | < [xi+ly] .
If X is a real linear space, we also have |Ax| = (A] |x]| .

(For these and other elementary properties, see (10),(19)).

In accordance with the notation used in earlier sect-
ions, we decnote by [E] the order-convex cover of E, We
recall that the positive cone is self-allied if and only
if X is locally order-convex (see p. 9). A subset A of X
is said to be SOLID if a¢A and (x| < |a| implies that
X €A,

If X has a topology, it is natural to consider contin-
uity of the lattice operations, It is clear that continuity
of the mapping x-x7 at O implies that the positive cone P
gives an open decomposition of X, and that, if X is Haus-

dorff, continuity of x—x' for all x implies that P is
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closed, (We notice that if P is closed, then X must be
Hausdorff, since if x 4+ O, then x ¢ P or x ¢-P ).

The basic result connecting the lattice operations with the
topology is the following, It is essentially a combination
of results published in (13)(p. 89), (14) (p. LO) and (19)
(p. 234), but no straightforward proof of the equivalence
of all five statements seems to have appeared yet, so we

give one:

9.1. Let X be a commutative lattice group, and let P
denote the set of non-negative elements, Then the following
conditions are equivalent:

(i) the mapping (x,y) - xvy is uniformly continuous

on XXX 3
(ii) the mapping x- x* is uniformly continuous on X;
(iii) P is self-allied and gives an open decomposition
of X;
(iv) P is self-allied and x-x" is continuous at O;

(v) X is locally solid,

Proof, (i) => (ii), A priori.

(ii) => (iii). Open dccomposition follows from con-
tinuity of x—+x+, as mentioned above, To show that P is
self-allied, take ¥ € N (X)., Then there exists N ¢ N(X)
such that x-y € N implies x y+ ¢ M, If a,b € P and
a+b € N, then 2 =a"= (-b)T e M ,

(iii) => (iv). Since P is self-allied, the order-con-

vex neighbourhoods of O form a local basc, Take order-con-

vex M € N(X)., Let N = PnM-PnM , Then Ne¢ [1(X), Take
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xeN, so that x = w-u, , where u,,u

179 QEPHM s Then

Os_x+gu1 , so xTem,

(iv) => (v). Take order-convex M ¢ [1(X). The mapping
x =>(x| 1is continuous at 0, so there exists N ¢ [1(X) such
that x¢N implies X (x|eM , If x¢N and |yl < \x|,
then ye¢ M, Hence the set
%iy : 4 x eN such that [yl < (x| }
is a so0lid neighbourhood of O contained in M,
(v) => (1). Take solid M € [1(X). There exists solid

N ¢ [1(X) such that N+N ¢ M , Take vV,,Vv

49V5 € N and x,y € X,

Let
z = (x+v1)\«(y+v2) e
Then

V, AVA € Z2 <V v
1 2 1% e »

=

so lz| < vyl + [vo| , and z €M, 6 5

If X is a locally convex topological linear space that
satisfies the conditions of 9,1, it is a straightforward
matter to show that the solid, convex neighbourhoods of 0
form a local base, Taking the Minkowskil functionals of
such necighbourhoods, it follows that the topology can be
given by seminorms p satisfying |[x| < |yl => p(x) < p(y).

We shall sece presently that x-+x" can be continuous
everywhere without being uniformly continuous (contradicting
a statemcnt by Schacfer in (19), ». 234).

Let X be a commutative lattice group with a topology.
We say that X satisfies CONDITION (M) if there is a local

base consisting of sublattices, If M is a sublattice, then
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Mn (-¥) is a symmctric sublattice, so the condition implies
that there is a local basc consisting of symmetric sublat-
tices. It is clecar that condition (M) implies that x-x*
is continuous at O, However, it does not imply that this
mapping is continuous at other points, or even (in a Haus-
dorff space) that the positive cone is closed, as 1is shown
hy the lexicographic ordering of R2 (since the ordering
here is total, every subset is a sublattice).

A treatment of spaces satisfying condition (M) is
given in (6) and (8), and no attempt is made to reproduce
it here, since it does not belong to the theory of allied
sets, However, we notice that if condition (M) is satisfied
and the positive cone is self-allied, then 9.1 shows that
the space is locally solid, For topological lincar spaces,
we have the rather remarkable fact that these conditions

imply local convexity, as the following shows:

9.2, Let X be a linear lattice with a topology. If

condition (M) is satisfied and the positive cone is self-
allied, then there is a local base consisting of solid,

convex sublattices,

Proof, Takc order-convex M € f1(X). M contains a
symmetric sublattice N ¢ U(X)., If veN, then
\v| =vv(-v) € N, We show that x ¢[N] if and only if
therc exists v €N such that (x( < (v . The condition
is clearly sufficient, by the above, Conversely, if x ¢ [N,

then there exist Vi Vo € N such that -Vy < X <V, .

Then XX < VvV, SO lxl < v, vV, € N , as required,
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It follows thet [N] is solid, Clearly, [N] ¢u .

Take X,y £[N] . Then there exist wuw,v ¢ N such that
lxl<u, |yl <v. Let w=uvv . Then weN, and
lxvyl € xlvlyl <sw, so xvy ¢ [NT . Similarly,

XAy € [N] . Hence [N] is a sublattice, It remains to
show that it is convex, Take A€ (0,1). Then
Inx+ (1=N)y | < AMxl + (4=2) |y
< MW+ (1-M)w = w,

so Ax+ (1-A)y ¢ [N], as required, X

It follows that the topology can be given by seminorms
p satisfying:
(x] < vyl => »p(x) <ply),
p(xvy) = p(x)vp(y) for x,y » 0.
Conversely, it is clear that if the topology can be given
by such seminorms, then the conditions of 9,2 are satisfied,
9.2 applics to commutative lattice groups if the word

"eonvex™ is omitted,

Alliedness also arises in another context., Elements
X,y of a commutative lattice group arec said to be DISJOINT
if 1xlalyl = 0 . Let A*denote the set of elements which
are disjoint to each member of A, At is a subgroup, closcd
if X is locally solid, and if X is order-complete, then

At s At - X ((19), pp. 210, 235)., The following holds:

9.3, If X is a locally solid commutvative lattice

group, and A is any subset of X, then A al Ai.

Proof. Take solid M € N(X), and suppose that xe€ A,
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v eAf, and x+y €M, Then (x+yle€M , But [x+y{ = |x[+\¥y]
((19), cor, 1, p, 208)., Hence xeM, I

The partial-sum cone

In either m or co, let P denote the set of sequences
having all partial sums non-negative, This is a closcd
cone, and (as a subset of m) it is the dual of the cone of

decreasing positive sequences in 1 It provides examples

1.
of several situations of interest in the theory of part-
ially ordered linear spaces,

Firstly, P nal P with respect to the norm topology.

Given n, two clements of P are:

xn = (12 s o s1y-n)s
yn = (Os oo 70’3)9
the terms -n and n occurring in place n+1. |x (= |y [l = n,

while (x +y || = 1.

nl
However, P al P with respect to the topology of
pointwise convergence (cf, the cxamples in secction 6),

To show this, supposc that (%i),(ﬁi) ¢ P and l§i+7i| g £

k
for i < n, Then, for k < n, » (%i+7i) < kg, so
i=1
k k
0 < sz %i < k&€, O« Er My < ke, It follows that
i=1 i=1

k%k"lnkl < k¢ for k ¢ n,

We notice that the sequence (en) is monotonic with
respect to P, and converges to O with respect to the weak

topology for m, but not with respect to the norm topology
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(cf., 2.8).
We show that P gives a lattice ordering of m and Cq
which is such that lxvyl < Uxllviyll (so that condition

(M) is satisficd)., Given x = (%n), v = (ﬂn), lct
X, = §1+ e +§n » Yo = Yt oee. +9,, and
k-n = (Xann)— (Xn—‘IVYn—‘l) (n 3> 2),

2_-1 = X,le1 s

Yrite z = (%n)_ It is easily seen that |& | < (50 ~ [0 |
for 21l n, so that |zl < WUxlviyl . Also, %ﬁ+ Py +§n
= Xn\JYn s S0 that, with respect to the ordering given by

Py, 2 =XvY s

In particular, thc mappning x-x" is continuous at O
(wc consider only the norm topologies from now o). In m,
it is ensy to wverify that it is discontinuous at the point
(1,-1,15=15 <+« )s By contrast, in Cq it is continuous
for 211 x (though 9.1 shows that it is not uniformly con-
tinuous). To show this, take x = (én) € c, and €¢>0,
There cxists an integer N such that (ér[ < § Tfor r > N,
Take y = (‘qn) € c, such that ly-xl< /N . DNow xt = (a.n),
y" = (B,), where

n
g = %F ~.xt (p 5 2), a, = XT ,

- 4
(r 2 2)5' B-‘j - Y1 ]

and Xr’Yr are as above, We usc the fact that

lh+~u+l < |A-p!1 for real A,p. For r < N,

==
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r

\Yr"x 521(%‘%)‘ < vef¥ o<¢,

|

S0 {Y;— X;I < £, and kBr—arl < 2¢, PFor r > N, we have

lapl < l§pl < €5 (Bl

AN

(qrf < €+ |\y-x I < 2¢, so

|Bp=0n| < 3¢ . Hemce (y*-x"( < 3¢.

Roughly speaking, the continuity of x—-x" in Cq is due

to the fact that each element is close to a finite-dimen-
sional subspace, but the continuity is not uniform because
the dimension of the subspace required depends on X,

P is too large to be self-allied, and large enough to
give an open decomposition of Cqe By contrast, the cone
of decreasing positive sequences is small enough to be
self-allied, and too small to give an open decomposition
(in fact, it only generates a dense subspace),

IFinally, we show that there is a continuous linear
functional which is unbounded on an order interval (this
shows (16), 3.4 to be false; cf, 2.3). Let z, denote the
sequence (ﬁj), where

%I;n=1 (I‘:1929 e 0 )9

§3

By considering the first non-zero term in a linear combin-

1

0 for other jJ,.

ation, we see that the sequence (zn) is linearly independent,
Define a linear functional f on the subspace spanned by the
z by putting £(z,) =1 for each n. Then f is bounded,

since its value at (h1z1+ . +lnzn) is equal to term n!

of this sequence, Hence f has a bounded extension to m,

Now O g z,-nz <z, and f(zﬁ— nzn) = 1-n .,
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10, ALLIED FAMILIES

Let X be a commutative topological group, and write

E' = BU {0} for any subset E, A finite family {4, ... ,A_}

of subsets of X is said to be ALLIED if, given Meflq(x),

there exists N ¢ [)(X) such that if a; € Aj (% = 1y 5o i)

and 84t o.. Fa € N , then ai~eM for each i,

By taking Ai instead of Ai, we ensure that every sub-

family of an allied family is allied, The family {A,B} is
allied if and only if A al B (which is equivalent to
A' al B'),

We say that an infinite family is allied if every
finite subfamily is,

The next theorem gives some equivalent formulations.
In particular, we notice that alliedness of a finite family
is equivalent to a finite number of statements of the form

A al B,

10.,1. Each of the following statements is equivalent

to {A1, o ,An} being allied:
(i) A; al ( E:Al) for each i ;
j#1 Y
(ii) Ay al (ZAS) for 422, coe 5 }
J<i
(iii) if (xF) is a net convergent to O, and for each r,

= r r ! 2
X" = ayj+ ...ty (where a; ¢ Aj), then a;— 0

for each 1i.
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KAl

Proof, If {Ai} is allied, it is clear that (i) holds.

Conversely, if (i) holds and M ¢ N(X) is given, there exists,

for each i, Ni:;ti(x) such that if a eAé (3 =1, ... ,n)

J

and Ayt ... Hay € Ni , then a. + ... +a_ € r}N-

If a,

JC M,
then a; ¢M for all i, Hence {4,} is allied.

The proof is completed by showing (i) => (ii) => (iii)
=> (i). (i) implies (ii) a priori. (ii) implies (iii),
by repeated applications of 1.5(i), and (iii) implies (i),

vy 1.5(i1). ¥
Some easy deductions follow,

10,2, If {A,} is allied, then so is {Z,|.

Proof, It is sufficient to consider finite families,

. Then Ai al Bi for each i, so A, al B; ,

Let By = ) A . .

5¥i

by 1.9. But gi E:Eg , and the result follows, :F
J¥i

'-
J

10.3. If {A;} is a finite allied family, and

Aal (YLAl), then {A,Jufa}l is allied.
Proof. Immediate, by 10.1(ii), ¥

10,4, If {Ai} is a finite allied family, A is compact,

and (-A)n (YAl) ¢ {0}, then {A,Juf{A} is allied.
Proof, By 1.13, A al ($a!) . F

The proof of the following requires slightly more

effort:
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10,5, If {Ai} is a family of stars in a topological

linear space, and for some M € [}(X), the family {AinMJ is

allied, then so is {4},

Proof, By 2.1, each pair of members of the family is
allied, Suppose that all subfamilies with n-1 members are

allied, and take a subfamily {A Y e ,An} with n members,

Note that stars contain 0, so that Ai = A; . For each i,

we have

(A nNM) al fZ (A nM)\
J¥i )’

Since {Aj : j#i, 1<j<n?t is allied, there exists N ¢ [](X)

such that N ¢ M and

(71&) c T(Anm)

J#i J#i
Hence
(A,n ) al U ZA n N],
j¥i 9
50 (Z A.\, by 2.1, Thus {A.} is allied, by 10.1. 1.
j4i 9

Other generalisations of earlier results are apparent

on inspection, We mention a few of them,

10,6, If {A1, — ’An} is an allied family of stars

in a topological linear space, and (x') is a bounded net,
where x° = af+ —— ai (ai € Ai), then, for each i, the

net (ag) is bounded. The converse holds for positive homo-

geneous subsets of a metrisable space, :$
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10,7. A family {A1, i ,Anz of positive homogeneous

subsets of a normcd linear space is allied if and only if

there exists $ > 0 such that if a.izgﬁ.i for each i, then

lag+ vow +apll 2 6 llayl

for each i, i

10,8, Suppose that {A;-A; : i =1, ... ,n} is allied,

(i) If (x") is a Cauchy net, where x' = af+ — ai
(ag & Ai), then, for each i, the net (ai) is Cauchy.

(i1) If each A; is complete, then so is ) A, .

(i11) If Ay is complete for i # j, and Aj is closed,

then S:ﬂi is closed, :ﬁ

To see that we cannot expect corresponding results for
an infinite allied family, it is sufficient to consider the

one~dimensional subspaces of m spanned by € (n = 192 oue ).

A natural example of an infinite allied family is given

by the next theorem, It is an extension of 2,5,

10,9, If X is a topological linear space, and T is a
continuous linear mapping X— X, then the sets gx ¢ I = hx}

(for all scalars A) form an allied family.

Proof, By 2.5, each pair of members of the family is
allied, Suppose that all subfamilies with n-1 members are

allied, Take distinct A,, ... ;M , and let (x¥) be a net

r /o r r r
convergent to O, where x = Xyt ees +X o, and Txi = hixi .

Then
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Txr

1
i
»_\.ij

g

+

r
Knxn — 0
S0

- )xE - 0,

r
(M=A)xy + oow + (N 4= A ))xD

Thus, by the induction hypothesis, X?-—%O for 1 ¢ i g n-1,

Hence also x, -0, and the result follows. T

Thus, if X is complete, the sum of a finite number of

such subspaces is closed,

Families may, of course, be pairwise allied but not
allied: any three distinct one-dimensional subspaces of
R? form such a family., Pairwise allied families seem to
be of no particular intercst.

It follows from thc form of the definition that every
allied family is contained in a maximal one, The same is

true for allied families of subspaces of a topological lin-

car space X, and it 1is clear that if Ai is a maximal

allied family of subspaces of X, then EJH_z X , for other-
wise the family could be extended by adding a one-dimensional

subspace,
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APPENDIX 1, NETS IN A + pos Db.

We shall need the following result, which is an immed-
iate application of the fact that every topological linear

space has a completion (a direct proof is easy to give):

Al.1, If {xn : ne{D% is a Cauchy net in a topolog-

ical linear space, and {ln 3 ne&D} is a net convergent to

O in the underlying field, then A x_ -0 . ¥

Using this, we have:

A.2, Suppose that A is a star and -b ¢ A . Then:

(1) If (an+lnb) is a Cauchy net (ancfA, Ay 0), then
there is a subnet (am+lmb} such that the nets (am),(hm) are

Cauchy., If the original net was a sequence, then there is
a subsequence with this property.

(ii) If A is complete, or sequentially complete, then
so is A + pos b

(iii) If A is closed, then so is A + pos D .

Proof, (i) Suppose that there is a cofinal subset F

such that the net sl 1‘53‘} tends to ¢, Ve may suppose

r

that each A, > 1 . Then A, 20, so, by Al.1,

= _ -1 =
hr (ar+lfb) = b + hr a, o .

This implies that -b = lim (h;1ar) € A, contrary to

hypothesis,

Hence there exists X > O such that {n t A, < K} is
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residual, giving a net in the compact set [O,K] . This
has a convergent subnet (a subsequence if the original net
was a sequence), and the result follows,

(ii) Take a Cauchy net (an+?\.nb), By (i), there is a
subnet (am+?xmb) such that the nets (am) and (mm) converge,

say to a€A and A > 0 ., Then the original net converges
to a+\b , since it is Cauchy. The usual variant of this

argument proves (iii). i:

This method is essentially due to Simons (see (20),
theorem 1). A1,2 should be compared with 5.4 and 5.5; it
is not a special case of these results, because =-b § A
does not imply that (pos b)n (-A) <€ {0:. Note that the

examples following 5.3 and 5.5 both involve nets of the

form (an+lnb).

Lastly, we consider the case where A is positive homo-
gencous and b q A-A , so that expressions of the form
a+\b are unique. By 3.1 and 5.1, we know that if b g A-A

and (an+hnb) is a Cauchy net, then (a ) and (A ) are Cauchy.
Without requiring b § A-A , we have:

A1,3, Suppose that A is a closed, positive homogeneous

subsct of a Hausdorff topological lincar space, and that

s

b € A-A, If (a +M_Db) is a convergunt net (a ¢4, A, > 0),
then the nets (an) and (kn) are convergent,

Proof. By A1.2, there is a subnet {am+hmb : meE}

such that a, —a € A and Km-ﬁ AN>0 ., Then a+Ab is
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the 1limit of the original net (unique, since the space is

Hausdorff).

Ir hn—ﬁ>h , then there exist ¢ > O and a cofinal set
F such that llr—hl > £ for reP. Applying A1.2 to the
net {ar+lrb : x*éE‘?, we see that {hr - 6F’} has a sub-
net (ls) convergent to p (say), where pu #+ A , while
&, -3 a' ¢ A, Hence we have a+\b = a'4+ub , so that
b ¢ A-A , contrary to hypothesis, ﬁi

If A is not closed, the result fails. For instance,

let X =m , and let A be the set of finite, non-negative

sequences, Let b = (Bn) , where B = n 1, Putting

- 1 1) -
font = (12 - ommi) 0 Penet =0

we obtain an example of this situation,
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APPENDIX 2, THE MACKEY TOPOLOGY OF A SUBSPACE,

Let X be a locally convex space, and A a subspace of
X, Let XX,A*'denote the spaces of continuous linear func-
tionals on X,A respectively. For each f¢X”, let f' de-
note the restriction of f to A, Then f—-f' is a linear
mapping on X into A* (in fact, onto AX, snnce X is locally
convex), Furthermore, it is continuous with respect to the
topologies w(X),w(A) . To show this, take Byy eew py €A
and let

N = {¢ e A¥ . /é(ai)} < 1 for each iz.

Then N is a basic w(A)-neighbourhood of O in A¥, If fex¥
and \f(ai)l < 1 for each i, then f'eN ,

X

]

It follows that if K is a w(X)-compact subset of X
then K' = {f' : £e¢K? is a w(A)-compact subset of A¥,

Thus we obtain the result used in 6.8:

A2,1. Let X be a locally convex space, and A a sub-

space of X. Then the Mackey topology m(A¥) for A is not
smaller than the topology induced on A by the Mackey topo-

logy m(X*) for X,

Proof, A basic neighbourhood of O in the induced top-
ology is ANK® , where K is a convex, circled, w(X)-compact
subset of X*; and the polar is taken in X, With the not-
ation used above, K' is a convex, circled, w(A)-compact
subset of AX, anda AnK° is the polar in A of X', Thus
ANK® is a neighbourhood of O with respect to the topology

m(A%) for A, T
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APPENDIX 3, PUBLICATION OF RESULTS,

Almost all of section 9 is included in (8). Most of
the remaining material is included in (7). The following

are the main exceptions:

16TF Tat¥s 15088 11858 1 .96,

2.6; 2,8; 2,11; example (iv), p. 28.
2.l 3.58 3.6 3.7

BExamples following 4.8,

Example following 5.5.

6.U; 6.5.

T 12,

8.l: 8.6 8.8; 8.9: B. 103 8.1 8.5,
Appendix 1,

Appendix 2,

The thesis includes the whole of (7), but only a small
provortion of (8)., The style of (7) is consistently briefer
than that of the thesis, and a number of proofs omitted in
(7) are given in full here, Note that, while a similar
system of numbering theorems is used in (7), the same result

often appears with different numbers there and in the thesis,
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