
Index heuristics for routing and service control
problems within queueing systems

Richard R Lumley

Submitted for the degree of Ph.D.,

The University of Edinburgh,

2005.

Acknowledgements

I would like to thank my supervisor Professor Kevin Glazebrook for all of the help

apd encouragement he has given me during my studies. I would also like to thank
«

the staff at Newcastle &; Edinburgh Universities and my family for their support.

Thanks too to the EPSRC for the funding that made this work possible.

i

Declaration

I hereby declare that I, Richard R. Lumley, have composed this thesis. The thesis

contains my own work, prepared and completed with Professor K.D. Glazebrook as

first supervisor.

This work has not been submitted for any other degree or professional qualification

except as specified.

Richard R. Lumley

ii

Abstract

This thesis is naturally broken down into two main problems, one concerning

optimal routing control and the other optimal service control. In the routing control

problem the arriving customers must be allocated to one of the 'K' possible service

stations. We assume that the customers arrive in a single Poisson stream. We take

the service at each of the stations to be exponentially distributed, but perhaps with

different parameters. The system cost rate is additive across the queues formed at

each station. We also have that at each station the holding cost function is

increasing convex. Following Whittle's approach to a class of restless bandit

problems, we develop a Lagrangian relaxation of the routing control problem which

serves to motivate the development of index heuristics. The index by a particular

station is characterised as a fair charge for rejecting the arriving customer at that

station. We also consider a policy improvement index for comparison to the

heuristic. We develop these indices and report an extensive numerical investigation

which exhibits strong performance of the index heuristic for both discounted and

average costs.

The second problem concerns the optimal service control of a multi-class M/G/l

queueing system in which customers are served non preemptively. The system cost

rate is additive across classes and increasing convex in the numbers present within

each class. We again follow the method prescribed by Whittle when considering a

class of restless bandits. Hence we develop a Lagrangian relaxation of the service

control problem which motivates the development of a class of index heuristics. For

a particular customer class the index is characterised as a fair charge for service of

that class. These indices are developed and we again report representative results

from an extensive numerical study which again implies a strong performance of the

index heuristic for both discounted and average costs.

iii

Contents

1 Introduction 1

1.1 Service and Routing Control for Queueing Systems 2

1.2 Traditional Approaches 8

1.3 Recent Developments 11

1.3.1 Achievable Region Approach 11

1.3.2 DP Policy Improvement 12

1.3.3 Relaxations 13

1.4 Thesis Structure 15

2 Routing Control Problems 21

2.1 Introduction 21

2.2 The multi-class admission control system with convex costs 23

2.3 The Discounted Problem 32

v

2.3.1 The single class system with a charge for rejection 32

2.4 The Undiscounted Problem 73

2.4.1 The Undiscounted Whittle index 73

2.4.2 The Undiscounted policy improvement index 76

2.5 Numerical investigation of routing index policies for multi-class systems 83

2.5.1 Discounted cost problems with two service stations 83

2.5.2 Average cost problems with two customer classes 93

2.5.3 Simulation study of average costs problems with five customer

classes 102

2.5.4 Comments 104

3 Service Control Problems 107

3.1 Introduction 107

3.2 The multi-class service control system 109

3.3 The Discounted Problem 118

3.3.1 The single class system with a charge for service 119

3.4 The Undiscounted Problem 149

3.5 Numerical investigation of service index policies for multi-classM/G/l

systems 151

vi

3.5.1 Discounted costs problems with two customer classes 152

3.5.2 Average cost problems with two customer classes 164

3.5.3 Simulation study of average costs problems with five customer

classes 166

3.5.4 Comments 171

4 Concluding Remarks 173

4.1 Summary 173

4.2 Possible Further Work 174

5 References 177

6 APPENDICES 183

A Discounted 2 class routing control fortran code

B Undiscounted 2 class routing control fortran code

C Simulated 5 class routing control fortran code

D Discounted 2 class service control fortran code

E Undiscounted 2 class service control fortran code

vii

F Simulated 5 class service control fortran code

G Associated Published Work

viii

List of Tables

2.1 Comparative performance of the index heuristics and an optimal policy

with various starting states for the discounted problem with quadratic

costs and two customer classes. Case 1: b\ = 1.0, b2 = 2.0, A = 3.0,

Hi = 2.65, fi2 = 2.35 85

2.2 Comparative performance of the index heuristics and an optimal policy

with various starting states for the discounted problem with quadratic

costs and two customer classes. Case 2: A = 4.25, hi — 2-65, H2 = 2.35. 85

2.3 Comparative performance of the index heuristics and an optimal policy

with various starting states for the discounted problem with quadratic

costs and two customer classes. Case 3: A = 3.0, Hi = 2.9, H2 = 2.1. . 86

2.4 Comparative performance of the index heuristics and an optimal policy

with various starting states for the discounted problem with quadratic

costs and two customer classes. Case 4: A = 4.25, Hi = 2.9, H2 = 2.1. 86

2.5 Comparative performance of the index heuristics and an optimal policy

with various starting states for the discounted problem with cubic costs

and two customer classes. Case 1: A = 3.0, \i\ — 2.65, p2 = 2.35. ... 87

ix

2.6 Comparative performance of the index heuristics and an optimal policy
with various starting states for the discounted problem with cubic costs

and two customer classes. Case 2: A = 4.25, p,\ = 2.65, p2 = 2.35. . . 87

2.7 Comparative performance of the index heuristics and an optimal policy

with various starting states for the discounted problem with cubic costs

and two customer classes. Case 3: A = 3.0, pi = 2.9, p2 = 2.1 88

2.8 Comparative performance of the index heuristics and an optimal policy

with various starting states for the discounted problem with cubic costs

and two customer classes. Case 4: A = 4.25, pi — 2.9, p2 = 2.1. ... 88

2.9 Comparative performance of the index heuristics and an optimal policy

with various starting states for the discounted problem with quartic

costs and two customer classes. Case 1: A = 3.0, — 2.65, p2 = 2.35. 89

2.10 Comparative performance of the index heuristics and an optimal policy

with various starting states for the discounted problem with quartic

costs and two customer classes. Case 2: A = 4.25, p\ — 2.65, p2 = 2.35. 89

2.11 Comparative performance of the index heuristics and an optimal policy
with various starting states for the discounted problem with quartic

costs and two customer classes. Case 3: A = 3.0, p\ = 2.9, p2 = 2.1. . 90

2.12 Comparative performance of the index heuristics and an optimal policy
with various starting states for the discounted problem with quartic

costs and two customer classes. Case 4: A = 4.25, pi = 2.9, p2 = 2.1. 90

x

2.13 Comparative performance of the index heuristics and an optimal policy

with various starting states for the discounted problem with shifted

quadratic costs and two customer classes. Case 1: A = 3.0, p\ — 2.65,

p2 = 2.35 91

2.14 Comparative performance of the index heuristics and an optimal policy

with various starting states for the discounted problem with shifted

quadratic costs and two customer classes. Case 2: A = 4.25, pi — 2.65,

p2 = 2.35 91

2.15 Comparative performance of the index heuristics and an optimal policy

with various starting states for the discounted problem with shifted

quadratic costs and two customer classes. Case 3: A = 3.0, /jj = 2.9,

p2 = 2.1 92

2.16 Comparative performance of the index heuristics and an optimal policy

with various starting states for the discounted problem with shifted

quadratic costs and two customer classes. Case 4: A = 4.25, g\ = 2.9,

H2 = 2.1 92

2.17 Comparative performance of the index heuristic, policy improvement

and optimal policies for a range of average costs problems with two

customer classes, where T = 0.6 94

2.18 Comparative performance of the index heuristic, policy improvement

and optimal policies for a range of average costs problems with two

customer classes, where T = 0.6 95

2.19 Comparative performance of the index heuristic, policy improvement

and optimal policies for a range of average costs problems with two

customer classes, where F = 0.6 96

xi

2.20 Comparative performance of the index heuristic, policy improvement

and optimal policies for a range of average costs problems with two

customer classes, where T = 0.6 97

2.21 Comparative performance of the index heuristic, policy improvement

and optimal policies for a range of average costs problems with two

customer classes, where T = 0.85 98

2.22 Comparative performance of the index heuristic, policy improvement

and optimal policies for a range of average costs problems with two

customer classes, where T = 0.85 99

2.23 Comparative performance of the index heuristic, policy improvement

and optimal policies for a range of average costs problems with two

customer classes, where T = 0.85 100

2.24 Comparative performance of the index heuristic, policy improvement

and optimal policies for a range of average costs problems with two

customer classes, where T = 0.85 101

2.25 Comparative performance of the index heuristic and other control rules

for a range of average costs problems with five service stations 105

3.1 Comparative performance of the index heuristic and the optimal policy

with various starting states for the quadratic discounted costs problems

with two customer classes, with parameters denoted by (2,1,1). ... 153

3.2 Comparative performance of the index heuristic and the optimal policy

with various starting states for the quadratic discounted costs problems

with two customer classes with parameters denoted by (1,2,1) 153

xii

3.3 Comparative performance of the index heuristic and the optimal policy

with various starting states for the quadratic discounted costs problems

with two customer classes with parameters denoted by (2,1,1') 154

3.4 Comparative performance of the index heuristic and the optimal policy

with various starting states for the quadratic discounted costs problems

with two customer classes with parameters denoted by (1,2,1') 154

3.5 Comparative performance of the index heuristic and the optimal policy

with various starting states for the quadratic discounted costs problems

with two customer classes with parameters denoted by (2,1,2) 154

3.6 Comparative performance of the index heuristic and the optimal policy

with various starting states for the quadratic discounted costs problems

with two customer classes with parameters denoted by (1,2,2) 155

3.7 Comparative performance of the index heuristic and the optimal policy

with various starting states for the quadratic discounted costs problems

with two customer classes with parameters denoted by (2,1,2') 155

3.8 Comparative performance of the index heuristic and the optimal policy

with various starting states for the quadratic discounted costs problems

with two customer classes with parameters denoted by (1,2,2') 155

3.9 Comparative performance of the index heuristic and the optimal policy

with various starting states for the cubic discounted costs problems

with two customer classes and parameters denoted by (2,1,1) 156

3.10 Comparative performance of the index heuristic and the optimal policy

with various starting states for the cubic discounted costs problems

with two customer classes and parameters denoted by (1,2,1) 156

xiii

3.11 Comparative performance of the index heuristic and the optimal policy

with various starting states for the cubic discounted costs problems

with two customer classes and parameters denoted by (2,1,1') 156

3.12 Comparative performance of the index heuristic and the optimal policy

with various starting states for the cubic discounted costs problems

with two customer classes and parameters denoted by (1,2,1') 157

3.13 Comparative performance of the index heuristic and the optimal policy

with various starting states for the cubic discounted costs problems

with two customer classes and parameters denoted by (2,1,2) 157

3.14 Comparative performance of the index heuristic and the optimal policy

with various starting states for the cubic discounted costs problems

with two customer classes and parameters denoted by (1,2,2) 157

3.15 Comparative performance of the index heuristic and the optimal policy

with various starting states for the cubic discounted costs problems

with two customer classes and parameters denoted by (2,1,2') 158

3.16 Comparative performance of the index heuristic and the optimal policy
with various starting states for the cubic discounted costs problems

with two customer classes and parameters denoted by (1,2,2') 158

3.17 Comparative performance of the index heuristic and the optimal policy
with various starting states for the quartic discounted costs problems
with two customer classes and parameters denoted by (2,1,1) 158

3.18 Comparative performance of the index heuristic and the optimal policy
with various starting states for the quartic discounted costs problems
with two customer classes and parameters denoted by (1,2,1) 159

xiv

3.19 Comparative performance of the index heuristic and the optimal policy

with various starting states for the quartic discounted costs problems

with two customer classes and parameters denoted by (2,1,1') 159

3.20 Comparative performance of the index heuristic and the optimal policy

with various starting states for the quartic discounted costs problems

with two customer classes and parameters denoted by (1,2,1') 159

3.21 Comparative performance of the index heuristic and the optimal policy

with various starting states for the quartic discounted costs problems

with two customer classes and parameters denoted by (2,1,2) 160

3.22 Comparative performance of the index heuristic and the optimal policy

with various starting states for the quartic discounted costs problems

with two customer classes and parameters denoted by (1,2,2) 160

3.23 Comparative performance of the index heuristic and the optimal policy

with various starting states for the quartic discounted costs problems

with two customer classes and parameters denoted by (2,1,2') 160

3.24 Comparative performance of the index heuristic and the optimal policy

with various starting states for the quartic discounted costs problems

with two customer classes and parameters denoted by (1,2,2') 161

3.25 Comparative performance of the index heuristic and the optimal policy

with various starting states for the quadratic discounted costs problems

where costs are not incurred below state 2 with two customer classes

and parameters denoted by (2,1,1) 161

xv

3.26 Comparative performance of the index heuristic and the optimal policy

with various starting states for the quadratic discounted costs problems

where costs are not incurred below state 2 with two customer classes

and parameters denoted by (1,2,1) 161

3.27 Comparative performance of the index heuristic and the optimal policy

with various starting states for the quadratic discounted costs problems

where costs are not incurred below state 2 with two customer classes

and parameters denoted by (2,1,1') 162

3.28 Comparative performance of the index heuristic and the optimal policy

with various starting states for the quadratic discounted costs problems

where costs are not incurred below state 2 with two customer classes

and parameters denoted by (1,2,1') 162

3.29 Comparative performance of the index heuristic and the optimal policy

with various starting states for the quadratic discounted costs problems

where costs are not incurred below state 2 with two customer classes

and parameters denoted by (2,1,2) 162

3.30 Comparative performance of the index heuristic and the optimal policy

with various starting states for the quadratic discounted costs problems

where costs are not incurred below state 2 with two customer classes

and parameters denoted by (1,2,2) 163

3.31 Comparative performance of the index heuristic and the optimal policy
with various starting states for the quadratic discounted costs problems
where costs are not incurred below state 2 with two customer classes

and parameters denoted by (2,1,2') 163

xvi

3.32 Comparative performance of the index heuristic and the optimal policy

with various starting states for the quadratic discounted costs problems

where costs are not incurred below state 2 with two customer classes

and parameters denoted by (1,2,2') 163

3.33 Comparative performance of the index heuristic and an optimal policy

for a range of average costs problems with two customer classes. . . . 165

3.34 Comparative performance of the index heuristic and an optimal policy

for a range of average costs problems with two customer classes. . . . 166

3.35 Comparative performance of the index heuristic and four other control

rules for a range of average costs problems with five customer classes

and deterministic service times 169

3.36 Comparative performance of the index heuristic and four other control

rules for a range of average costs problems with five customer classes

and gamma distributed service times 170

xvii

List of Figures

1.1 Our routing control problem queueing system 4

1.2 Our service control problem queueing system 6

2.1 The options when considering a single class 33

2.2 Possible state transition diagram from state m 49

2.3 Possible state transition diagram from state m — 1 52

2.4 Two-server, static policy, example 77

2.5 Possible state transition diagram from state rii down to state 0. . . . 79

2.6 Possible state transition diagram from state rii + 1 down to state 0. . 80

3.1 The options when considering a single service station 120

3.2 Possible state transition diagram until a customer is served 131

xix

Chapter 1

Introduction

Throughout their lives people have many decisions to make. For example, we may

have to decide how to best allocate time amongst a number of competing demands.

The outcome of such a decision is often uncertain and can affect the options which

are available to us in the future. The more rational amongst us will make these

decisions with the aim of achieving certain goals or maximizing some measure of

'utility'.

Similar resource allocation problems are found in many areas in industrial, financial,

computing and telecommunication settings. Within these problems an optimal

strategy for allocating a resource is often deemed to be the one that optimises some

measure of performance. Consider the two following queueing examples:

(i) Which of N possible routes should a telecommunications company use to send
a message when the total delivery time, via each route, and the arrival times

of future messages are unknown?

(ii) In what order should a computer allocate processing, amongst a number of

competing classes of job awaiting service, when exact processing requirements

1

and the times of future arrivals are unknown?

Problem (i) may be characterised as a routing control problem whereas problem (ii)
could be looked upon as a service control problem. In the next Section 1.1 we will

explain both routing and service control problems further.

1.1 Service and Routing Control for Queueing

Systems

A queue forms in a system when the demands of the arriving customers cannot be

met instantaneously. The term queueing system will be referred to many times

throughout this thesis. There are many types of queueing system with many subtle

differences. In this thesis we look only at certain routing and service control

problems. However, we are fully aware that there is a large amount of literature

concerning the control of queueing systems, not only in the areas we consider but

also in many other areas. Roughly speaking the queueing systems we shall discuss

are characterised by an input process, a service policy and a cost structure.

The input process describes the manner in which the customers enter the system.

For example all the customers requiring service could be present initially, or they

could arrive in batches of 8 every 20 minutes, or they may enter the system

according to some continuous time random process. It is the latter example that we
use throughout this thesis. It can be that all arriving customers are identical or

they can have distinct attributes which yield a grouping into classes. Classes of
customers can differ in their arrival rates, service requirements and costs. Systems

with different classes of arriving customer are called multi- class queueing systems.

The service policy relates to the way in which the customers waiting in the queue

2

are processed. For example there could be a first come first served (FCFS) policy, in
which customers are processed in order of their arrival, or there could be a priority

policy in which all customers of type 1 are processed before any customers of type

2. We could use only one server processing all of the customers or we could use

multiple servers. The latter case often poses greater challenges when searching for

an optimal service policy. See for example Glazebrook and Wilkinson (2000) who
discover that Gittins index policies, for multi-armed bandits with discounted

rewards earned over an infinite horizon, are no longer optimal when the single

server is replaced by a collection of single servers working in parallel.

The cost structure relates to the manner in which costs are incurred. The cost of the

system is measured by some form of customer utility, often a function of the time

spent awaiting service or a measure of the system running costs. System running

costs are often assumed to be linearly related to the number of customers present in

the queue or to the time spent by customers in the system. In fact much previous

work has assumed that costs are linearly related to the number of customers present

in the queue but within this work we take the relationship to be increasingly convex.

We now give a brief explanation of a general queueing system, for both routing and

service control problems, before going into further detail. We first consider the

routing control problem.

Routing Control

Our routing control problem concerns the allocation of arriving customers to

alternative service stations. As an aid to understanding the setup of this system let

us consider Figure 1.1. We have customers arriving into the system at A. These

customers need to be allocated to one of the possible N service stations (B). The
decision here is about which service station to send each customer to. Hence this

3

B

Figure 1.1: Our routing control problem queueing system.

problem is essentially about how to organize the arriving customers into queues.

The routing control problem considered in this thesis assumes that all arriving

customers consist of a single class and arrive as a Poisson stream. However, the

nature of the service offered at distinct stations may differ. We aim to find a

routing control policy which minimizes some measure of total costs incurred over an

infinite horizon.

In the main, previous routing control research has focussed on special cases of the

issues and models considered in Chapter 2. For example, much work has been

preoccupied with the routing of a single class of arriving jobs to a collection of

homogenous stations. For such problems, simple round robin policies and Bernoulli

routing with equal probabilities have been shown to provide optimal load balancing

regimes when little information is available to the system controller. For example

consider Chang (1992). Also in a paper by Ephremides et al. (1980) it was shown
that for the two-server models considered, round robin policies are optimal if the

4

queue lengths are not known but the destination station of the previous arrival is

known. Further Koole (1996) showed that for the case of i.i.d. exponential service

times, splitting the arriving customers equally among the queues, provides an

optimal return. A paper by Lui and Townsley (1994) also proves the optimality of

the round robin policy when servers are identical and there is no state information.

When full information on the queue lengths at each station is available the 'join the

shortest queue' strategy has been shown to be optimal for a range of models. See,

for example, Hordijk and Koole (1990), Johri (1989). Weber (1978) also showed

that for systems with several identical servers the join the shortest queue (JSQ)

discipline maximised the expected number of customers served by a given time.

Winston (1997) also shows this to be the optimal strategy for the discounted

version of this problem. See Gelenbe and Pekergin (1993) for an overview of some of

the practical issues involved in developing load balancing regimes. The index

policies developed in Chapter 2 do indeed become "join the shortest queue" in the

special case of homogeneous stations. Work has also been done in this area on

problems with linear holding costs, but with the added complication that classes of

jobs entering the system may be more effectively served by particular servers. See

for example Ansell et al (2001) where a policy is found for routing customers based

on a measure of congestion at each station.

One area of application for such systems is known as the grid. See for example the

work of Foster and Kesselman (1998). In a grid environment a provider offers a

number of different services to the public, using a collection of networked machines,

which may or may not have other tasks to perform. The routing problem is how to

distribute requests for service, among the service stations, so as to make the best

possible use of available resources and provide the best possible quality of service.

Braun et al (2001) gave a detailed discussion of high performance computing

environments which are well suited to meet the computational demands of large

diverse groups of applications. Another similar example is discussed in the work of

5

Becker et al (2000) who considered a routing problem motivated by call centers of

companies producing a range of products. Customers telephone such centres with

requests for service or technical support. These calls are then routed to agents.

Calls concerning a particular product should be preferably assigned to an agent

with the requisite expertise but that may not always be possible in a timely fashion.

Service Control

Our service control problem concerns decisions about how to allocate service

among several classes of customer awaiting service. Again to get a better

understanding of this type of system let us consider Figure 1.2. Here we have

Figure 1.2: Our service control problem queueing system.

different classes of customer arriving into the system at A. These customers require

service from a single server (B). The choice here concerns which of the waiting

customers should be served next. The multi-class service control problem

considered in this thesis assumes that we have N classes of customers each arriving

6

as independent Poisson streams. We aim to find a service policy which minimizes

the total costs incurred.

The service control section, Chapter 3, considers a cost only approach to the

problem. Therefore we do not receive any reward for service but we do incur costs

when customers are waiting in the system. In much of the existing literature it has

been assumed that such holding costs are linear in the number of customers from

each class present in the system. This assumption has at least in part been

motivated by the relative tractability of the resulting models. In particular, simple

priority policies in which the server(s) chooses from among the the customers

waiting for service, according to a fixed ordering of the classes, have been shown to

be optimal for linear costs in a variety of contexts. See, for example,

Cox and Smith (1961), Klimov (1974). Also Harrison (1975) considers a

non-preemptive, multi-class single server model and shows the optimality of a

priority ranking where certain classes are never served. Meilijson and Weiss (1977)
show the optimality of a fixed priority policy, in a set up in which the service

rendered a customer is a branching process of operations, where each operation

cannot be interrupted. Gittins (1979) considers bandit processes and dynamic

allocation indices to show how previously intractable problems can be reduced to

the problem of calculating such indices.However van Meighem (1995) has argued
that assumptions of linear costs are often inappropriate. His study uses cost-delay

functions to move away from this linear assumption. In a related contribution,

Ansell et al. (1999) point to unsatisfactory features of the priority policies resulting

from linear models including a propensity to produce excessive queue lengths and

waiting times of large variance for low priority customer classes. As a result of such

concerns in this thesis we have taken holding cost rates to be additive across classes

and increasing convex in the numbers present within each class.

Both the routing and service control problem we consider in the body of this thesis

7

are strongly related to an intractable class of problems called restless bandits, which

is explained further in Section 1.3.3. It was Whittle (1988) who introduced this:

class of decision problems and used a Langrangian relaxation from which an index

heuristic emerged naturally. Whittle (1996) considered the application of his ideas

to undiscounted service control models of the kind mentioned above but suggested

these ideas were not helpful in this context. This was because following his method

directly for the undiscounted case does not lead to sensible indices. However,

Whittle's approach can indeed be used, as can be seen in Section 3.4. The idea

behind our successful analysis is outlined in the following paragraph. The key is to

begin with the apparently more difficult discounted costs problem and recover the

average costs version as a limiting form. By this indirect route we can indeed

develop a Whittle index policy for this undiscounted costs problem.

Stochastic dynamic optimisation problems, such as the routing and service control

problems considered above, have been traditionally tackled within a Dynamic

Programming (DP) framework. The central idea of DP is based on a principle of

optimality discussed by Bellman (1957). The principle states that,

"an optimal policy has the property that whatever the initial state and ini¬
tial conditions, the remaining decisions must constitute an optimal policy with

regard to the state resulting from the first decision."

In stochastic dynamic optimisation this principle is often expressed mathematically

by an equation of the form:

1.2 Traditional Approaches

(l.i)

8

In the above optimality equation i denotes the current state of the system, and is a

member of state space /. Further, Vn(i) denotes the minimum expected cost for an
n stage problem that starts in state i, a is an action chosen from the set A(i) of

possible actions in state i, Cj(a) is the cost incurred when the state is i and action a

is selected and Pij(a) is the probability that, given the current state is i and action
a is taken, the next state will be j. The application of Bellman's principle to

dynamic optimization problems yield recursive equations (Dynamic Programming

equations - DPEs) for the optimal cost (or reward) function. Very occasionally it is

possible to find an analytical solution to these DPEs, and thereby derive the

optimal policy. When an exact analytical solution cannot be found, properties of

the optimal objective function can be deduced which translate into results regarding

the structure of an optimal policy. When such approaches fail the problem can be

solved numerically. However for larger problems this becomes computationally

infeasible. In multi-class systems computational infeasibility may arise because of

the high dimensionality of the state space. Index results, like those of Gittins, may

be understood as effecting a reduction in the dimensionality of the problem.

Interchange arguments are standard in stochastic scheduling, optimality of a policy

is proven by demonstrating that any other policy can be improved by interchanging

action times. See for example Cox and Smith (1961) who use this method to show

the optimality of the non-preemptive c/r-rule. They consider a service problem

where jobs of different classes arrive as independent Poisson processes and must be

served non-preemptively by the single server. The non-preemptive cp-rule is one

that at any service completion time, starts serving the customer class with the

largest value of Cj/q among the present customers, where ct is the cost rate and ^ is

the service rate for class i. Forward induction has also been used to prove results in

this area. An explanation for this method is: let the event times be labelled as

follows t\ < t2 < h < • • • then certain properties (which imply that the policy of
interest has an associated cost which is not larger than any other policy) are proven

9

to be true for the initial case (usually at t = 0) then the assumption that they hold
at time t is used to prove these properties hold at time tn, where tn — 1 < t < tn.

Examples include Ephremides, et al (1980) where the optimality of round robin

policies are shown. This paper considers a routing problem, where one must decide

which of the identical M/M/l queues the arriving customer should join and the

queue lengths and customer arrival times are not observable. Round robin policies

allocate arriving customers to the queues in order then repeat allocation in the

same order. A major research success of particular relevance to us is the classical

index result of Gittins and Jones (1974). They solved the multi-armed bandit

problem which had previously proved frustratingly difficult. The problem they

considered was one in which a gambler makes a sequence of plays on N gambling

machines ('bandits'), and wishes to choose at each stage of the game the machine to

play so as to maximize the total expected payoff. The success probability of the ith

machine is a parameter whose value is unknown. However the gambler builds up an

estimate of this parameter which becomes more precise as he gains more experience

of the machine. The decision conflict is between playing a machine which is known

to have a good pay-off parameter value and experimenting with a machine about

which little is known, but which could prove even better. To resolve this conflict one

formulates an optimisation problem. The resulting index policy found by Gittins

and Jones uses an index vt(xi) attached to the zth machine which is a function of

the machine label i and its current state X{. The optimal policy is then simply to

choose a machine of current greatest index at each stage. Furthermore, the Gittins

index n, is determined by the statistical properties of machine i alone. See Gittins

(1979) for a wide ranging discussion of this result and Whittle (1980) for a proof of
Gittins' Index Theorem using dynamic programming arguments. Whittle (1981)
has also produced a DP proof of the optimality of Gittins index policies for "open"

systems in which new machines arrive over time. Simpler proofs of the optimality of
Gittins index policies have been given by Tsitsiklis (1986), Weber (1992) and Garbe

10

and Glazebrook (1996). \yhittle's 1981 paper lead onto the work of Weiss (1988) on

branching bandits. This is of interest since branching bandit models are reasonably

general models for service control control problems with a single server.

By the mid-1980's it was generally felt that successes from DP in the field of

optimal dynamic control of complex stochastic systems were sparse and gained at

great expense in terms of time and effort. This was because such techniques seemed

too general to exploit any special structure and the techniques used to complement

them (for example, interchange arguments) seemed rather limited in scope.

However, because of the automisation of manufacturing processes and the increased

importance of computer and communication systems the need for research into

stochastic scheduling in complex systems was growing.

1.3 Recent Developments

1.3.1 Achievable Region Approach

This approach seeks solutions to stochastic optimisation problems by firstly

characterizing the space of all possible performances (the achievable region) of the
stochastic system and then by optimizing the overall system-wide performance

objective over this space. This method does have its merits, such as the vast

reduction in state space. The performance space mentioned is often a polyhedron of

special structure which means that the optimization can be solved via a

mathematical program (usually a linear program (LP)) for which efficient

algorithms exist. Rather than use standard LP formulations in the variable space of

state-action frequencies (which is typically huge or infinite) work has been done to

develop analyses in some projected space (of reduced dimensionality) of natural

performance variables. The earliest work on this approach was due to Gelenbe and

11

Mitrani (1980) followed by Federgruen and Groenvelt (1988). Contributions by
Shanthikumar and Tao (1992) and Bertsimas and Nino-Mora (1996) took the

approach decisively further forward, the latter giving an account of Gittins indices

from this perspective. Dacre et al (1999) also considered this alternative approach

to the optimal control of stochastic systems. In their paper they consider both

service and routing control problems.

1.3.2 DP Policy Improvement

Fairly recently Ansell et al (2001) have studied a routing control problem for a class

of multi-class service systems. The work in the aforementioned paper develops an

idea proposed in the context of a simple single class system by Krishnan (1987) and
discussed by Tijms (1994) and applies it to a complex multi-class system. The

method applies a single policy improvement approach to an optimal static (state

independent) policy for the problem. The system considered in Chapter 2 is in some

respects simpler. We consider only a single class of customer and do not allow

feedback into the system (customers returning to the system after they have been

served). However, we do suppose that holding costs for the system are increasing

convex. Ansell et al (2001) first of all determine an optimal static policy and then

improve on it by considering the difference in total expected costs over an infinite

horizon for each station individually between starting in state n + V and starting in

state n, when the optimal static policy is followed. In this case the state refers to

the number of customers of each class present in each queue, and hence is a vector

whose dimension is the same as the product of the number of job classes and

number of service stations in the system. Note that V is a vector with a one in

position j and zeros elsewhere which represents a single customer of class j. This
difference forms the basis of an index for each station, dependent both upon its

current state, nk and the class of job to be allocated, j. The system controller will

12

send the arriving type j customer to the station with the smallest index. It was

shown numerically that the result of this analysis is the development of simply

structured dynamic routing policies which are close to optimal. In Section 2.4.2 we

apply similar ideas to our queueing system of interest to develop a policy

improvement index policy.

1.3.3 Relaxations

One paper which is of further relevance to us is that of Whittle (1988). In this

paper he considers the multi-armed bandit problem, as previously mentioned, where

the unused bandit states also change over time. Such problems, as we have already

mentioned, are referred to as restless bandits. In formulating this problem Whittle

was concerned with the maximisation of rewards where the level of reward for any

action depended upon the current state and whether the bandit was active or not.

The problem is also generalized to the case where m bandits are active at all times.

Whittle's solution method involves relaxing this constraint so that on average m

bandits are active. Whittle incorporates the relaxed constraint into the

maximization problem by using a Lagrangian multiplier. This Lagrangian multiplier

can be viewed as a 'subsidy for passivity' which needs to be set at just the level to

ensure that m bandits are active on average. This subsidy will be independent of

the project as the constraint is one on total activity, not individual project activity.

Whittle then goes on to define an index Uj(£j) for bandit i when in state x» as the

value of the subsidy which makes the choice of playing the bandit or not equally

attractive. However for the index to be meaningful the bandit must satisfy a

condition of indexability. A bandit is indexable when, if it is optimal not to operate

it under subsidy v then it will also not be operated under a subsidy v' > v. He then

shows that if all bandits are indexable, then the projects which are in operation

under a u-subsidy policy are those for which Vi(xi) > v. Since such a policy must

13

solve the relaxed problem above, Whittle proposes that the policy which always

operates the m bandits of largest index will give a reasonable solution to the

original restless bandit problem.

Building from Whittle's work, Ansell et al (2003a) consider the service control of a

multi-class, single server queueing system with convex costs. The authors of this

paper follow Whittle's prescription for the development of an index appropriate for

their multi-class queueing system. Namely, they relax the original problem and

incorporate the relaxed constraint via a Lagrangian multiplier. They establish

indexability and then use the multiplier to form the basis for the definition of a

selection index. It is this approach developed by Whittle which is used throughout

this thesis to lead us to policies of interest.

Nino-Mora (2001a) maps out an alternative route to the demonstration of

indexability for restless bandits and to index calculation which utilises the stronger

notion of PCL (partial conservation laws) - indexability. This in turn is a

development of the achievable region analysis of multi-armed bandits given by

Bertsimas and Nino-Mora (1996). In brief let us suppose that we wish to allocate

service in a system with a countably infinite collection of job classes indexed by the

natural numbers N. Denote by U the collection of admissible scheduling policies.

The stochastic optimisation problem of interest is assumed to consist of the

minimisation of some linear objective. Nino-Mora (2001b) uses the above

formulation to develop sufficient conditions for the indexability of countable state

restless bandits in terms of model parameters. We write

minY] cixVi (L2)
U L '

t€N

where c, > 0 is a cost rate for job class i and x" is a performance measure for class i

under some scheduling policy u. When the system satisfies a collection of so-called

partial work conservation laws (PCL) then the stochastic optimisation problem in

(1.2) is solved by an index policy for some choices of the cost rate vector c.

14

Whether a particular choice is in this admissible class or not may be determined by

running an adaptive greedy algorithm. A system which satisfies PCL and whose

cost rate vector c is in the admissible class is called PCL-indexable.

1.4 Thesis Structure

As the thesis title suggests this work concerns two different problems of stochastic

dynamic control. The Chapter 2 discusses a routing control problem in the context

of a multi-service station queueing system. Chapter 3 addresses the problem of

service control of a multi-class queueing system.

In this introductory chapter we have already alluded to the problems and general

system setups which we shall address throughout our work. We have also mentioned

work by various authors on routing control problems of related systems. We begin

Chapter 2 by describing in detail the routing control problem of interest and the

criteria by which we intend to assess policies. In Section 2.2 we explain the

specifications of the system used and introduce notation. We then consider the

performance criteria required to assess the policies considered. Once we have

formulated our optimisation problem explicitly we then consider the resource

constraint which defines this problem. Following Whittle's approach we then relax

the constraint and incorporate it into the optimisation problem by using a

Lagrangian multiplier W. We observe that W plays the economic role of a constant

charge for not accepting a customer into the system. The next step is very

important in the solution of the problem, since it is here we notice that our relaxed

optimisation problem can be naturally decoupled into single-station subproblems.

Hence by this means we can solve the relaxed problem and verify indexability by

determining the optimal policy for appropriately defined single station problems.

15

It is in Section 2.3 that we study the discounted version of this problem. The

Lagrangian relaxation approach yields a reduction of the discounted problem to a

set of single station problems. In Section 2.3.1 we introduce this discounted single

station problem in more detail. The choice that we must make at each decision

epoch in this problem is simply whether to admit an arriving customer into the

queue at this service station and incur additional holding costs, or not to admit the

customer and pay a charge W. Standard DP techniques are used to develop

optimality equations. We then define the index for state m, W(m), as the rejection

charge required so that both options of accepting the customer or not are optimal

for state m. Next we calculate the total expected costs of stationary policies which

respectively accept and reject an arriving customer in state m, equate them and

re-arrange to give a formula for the index. We then proceed to prove from our

assumptions that this proposed index is increasing in the queue length and hence

that the station is indexable with the proposed index equal to the true one.

In Section 2.4 we proceed to look at an undiscounted version of the problem. In

Section 2.4.1 we use the formula for the discounted Whittle index to yield the

undiscounted index by taking a limit. Section 2.4.2 then considers an alternative

policy improvement index for comparison with the Whittle index. This policy

improvement index is derived by implementing a single policy improvement step on

an optimal static (state independent) policy for the problem. We firstly discuss and
then calculate this policy improvement index.

We end this chapter by looking at a numerical investigation of our proposed

heuristics for the routing control problem in Section 2.5. Section 2.5.1 considers the

discounted routing control problem for a two station example, under a range of
different convex cost structures and parameters, for stochastic evolution. We

compare the discounted costs for the Whittle index policy we have derived with the

optimal policy derived from DP and also with an alternative index policy. This

16

alternative index policy has been calculated by making a simplifying assumption

that it would be possible to have a negative number of customers present in the

queue (incurring a zero cost). Then in Section 2.5.2 we proceed to study an average

(undiscounted) cost routing control problem for a system with two service stations.

For this example we look at a range of different convex cost structures and

stochastic evolution parameters. Here we compare the performance of our Whittle

index policy with that of the policy improvement index policy and the optimal

policy derived from DP. Finally in Section 2.5.3 we consider the average cost

routing control problem for a system with five service stations. The size of the state

space of such a problem means that it is not computationally feasible to obtain a

direct numerical comparison between costs incurred by our index policy and an

optimal policy. The application of DP is computationally infeasible. So in this

section we use simulation to compare our index policy to some other standard,

widely accepted heuristics. Yet again we consider a range of different convex cost

structures and stochastic evolution parameters. In all cases the results of the

numerical investigations testify to strong performance of the index policies derived

by our analyses.

Chapter 3 considers the service control problem which we have previously

mentioned in this introduction. Section 3.1 recaps the system in question, remarks

on the performance criteria and on the work of others in this area. We follow a

similar structure to that in Chapter 2. In this section we firstly introduce notation

and define the system parameters we shall employ for both the discounted and

undiscounted problems. We then formulate the optimality equation used to assess

our policies and make a note of the constraints to which the problem adheres. We

use the approach espoused by Whittle (1988), of relaxing the problem and using

Lagrangian multipliers to incorporate the relaxed constraint into the objective. In

doing this we introduce a new quantity, W, which plays the economic role of a

constant charge for service. We next discover that this relaxed problem can again

17

be naturally decoupled into single-class subproblems. We then proceed to consider

the optimal policy for these single-class problems.

In Section 3.3 we study a discounted service control problem exclusively. Whittle

(1996) argued that you could not use his approach to solve average cost versions of

the service control problem. However we show in this section that you can, but you

have to work from discounted problems and then take limits. In Section 3.3.1 we

consider the single class system with a charge for service under this discounted

criterion, introducing the problem in more detail. The choice that we must make at

each decision epoch in this single-class problem is whether to serve or not. If we

serve then we incur the charge for service but we do stand to reduce holding costs.

We then use standard DP techniques to develop optimality equations. Next we

define the index for state m, W(m) to be equal to the service charge required so

that both options of serving a customer or not are optimal. Then we calculate the

total expected costs for two stationary policies which differ only in the action they

take when the queue length is m. We equate these and re-arrange to give a formula

for a proposed index. Following this we go on to prove that the proposed index is

increasing, that the station is indexable and that the proposed index is indeed the

true one. Following a similar development to Chapter 2 we go on to consider the

undiscounted problem in Section 3.4. In this section we show how the formula we

found for the discounted index can be used to find the undiscounted index by taking

a suitable limit.

This chapter is concluded by a report in Section 3.5 of a numerical investigation into

the policies developed. Section 3.5.1 reports on a discounted problem for a system

with two customer classes. The Whittle index policy is compared with the optimal

policy for a range of different convex cost structures and stochastic evolution

parameters. We then proceed to look at undiscounted problems in Section 3.5.2. For
the undiscounted problems we again consider a system with two customer classes

18

for a range of different convex cost structures and stochastic evolution parameters.

In Section 3.5.3 a service control problem for a range of systems with five customer

classes is considered. Again due to the size of this problem it is not computationally

feasible to obtain a direct numerical comparison between costs incurred by our

index policy and an optimal policy. So in this section we use techniques of

simulation to compare the cost performance of the index policy to some other

standard, widely accepted heuristics. Yet again we consider a range of different

convex cost structures and stochastic evolution parameters. In all cases the results

of the numerical investigation testify to strong performance of the index policies

derived by our analysis.

Note that some of the work presented in Chapter 3 of this thesis was published in

the Queueing Systems journal, see Ansell et al (2003b).

19

Chapter 2

Routing Control Problems

2.1 Introduction

We consider queueing systems where customers entering the system must be

allocated to one of K possible stations for service. In a bid to help us make such

decisions we ask the question "by routing the arriving customer to which service

station do we gain the most?". In other words sending this customer to which

service station will reduce our costs or increase our rewards by the largest amount.

The aim of this chapter is to construct a dynamic policy which will select the

service station for each arriving customer, to achieve results near some defined

optimal performance.

In Section 2.2 of Chapter 2 onwards we develop and apply the method employed by

Whittle (1988) which is based on Lagrangian relaxations of the original problem to

construct index heuristics for our routing problems. We make the assumption that

arrivals occur due to a Poisson process and that service times at each service station

are independent and exponentially distributed. We seek to minimise a holding cost

21

criterion which is additive across the queues formed at each station. In our model

we take the holding cost function for each class to be increasing convex, in much

previous work it has been assumed to be linear which we mentioned on page 7.

The routing control problems considered here concern multiple service stations and

a single customer class. It could possibly be called a "multi-class" system since once

a customer is sent to a server there stochastic evolution will be particular to the

server. However I believe such terminology could be confusing to the reader, so

although we may refer to the customer class it should be noted that this is just the

group customers waiting at a particular server. Recall that what we actually have

in this chapter, is single class with multiple service stations. We may however use

the terms queue, station, server and service station to describe the possible

locations to which we can send an arriving customer.

We initially consider a problem where the costs incurred in the future have less

weight than costs incurred now. This is the discounted cost service control problem.

We do this by allowing future costs to be discounted at some rate, a. A cost of A

incurred at time t is accounted for at time 0 as a cost of Ae~at. We progress to the

undiscounted problem, deriving our routing policies as limits, by allowing the

discount rate a to tend to zero. In the undiscounted version of the model we seek to

optimize the average cost of the system per unit time.

Section 2.2 considers the general set up of the problem of interest and considers

both discounted and undiscounted formulations. The work encompasses a range of

modelling possibilities. This section then moves on to define and study a relaxation
of the problem. It uses a Lagrangian approach to determine the structure of the

optimal solution to the relaxed problem. We argue that the optimal solution to the
relaxed problem gives insights into the form of a " good" policy for our original

problem. Section 2.3 considers the discounted version of our problem in more detail,
looking at the required solution for the derived single service station problems,

22

where a charge for admission is incurred. In Section 2.4 we derive an appropriate

index for the undiscounted problem. This index is found by allowing the discount

rate a to tend to zero in the equivalent discounted index. Within this section, is

SubSection 2.4.2 which contains the calculation of an alternative index for the

average cost admission control problem obtained from a dynamic programming

policy improvement approach. We then conclude this chapter by reporting some

results of a numerical investigation into the performance of the Whittle index

policy. These can be found in Section 2.5. Within this investigation we consider the

two service station discounted case but the main focus is on the average costs

scenario. In the average costs case we consider two service station examples

deriving the optimal policy using methods of dynamic programming. We also use

simulation techniques to study systems with a larger number of service stations.

Simulation is required since direct numerical comparison is not a reasonable

computational goal for problems of this size.

2.2 The multi-class admission control system

with convex costs

Recall that we are considering queueing systems where customers enter the system

and then must be allocated to one of the possible K service stations to await

service. Arrivals into the system follow a single Poisson stream with rate A. Service

times are independent and follow an exponential distribution, with fik the rate for

server k. We will suppose that

(2-1)
Luk=1 k>k

for stability. The goal is to allocate the arriving customers to the service stations to

minimise some measure of expected holding cost over an infinite horizon. As

23

previously mentioned we shall consider both discounted and average cost

(undiscounted) criteria. In order to set this problem up formally we need to

introduce and explain some of the notation we shall use.

We may call the customers waiting at server k, class k customers and when we refer

to the state of a particular class we actually mean the number of customers waiting

at that server, including any customer currently in service. We write the state of

class k, at time t, as Nk(t) and the state of the system at time t is given by

N(t) = {Ni(t),N2(t),..., Ni((t)}, the vector of queue lengths, t 6 R+. The decision

epochs are all the customer arrival times. Let action ak denote the allocation of an

arriving customer to server k, 1 < k < K. At each decision epoch t, the controller

must choose an action ak, 1 < k < K. We seek the choice of which action to take at

each decision epoch, in order to minimise some measure of expected costs.

Now to help us get more of a feel for the system consider the following. Suppose the

system is in state m at time t, where mi > 0, 1 < I < K. The next change of state

will occur at time t + Q where Q ~ exp(A + J2f= i Mi)- If at time t + Q an arrival
into the system occurs and we assume action a/, is taken (i.e. the arrival is routed to

station k). The system state at time t + Q will be given by

Note that in the above lk denotes a K-vector whose kth component is 1, with zeros

elsewhere.

In the discounted costs version of the queueing control problems of interest,

discounted costs are incurred, with rate

at time t. The cost functions Ck : N —>■ R+ are assumed increasing, convex and

K

(2.2)

24

bounded above by some polynomial of finite order and with Ck{0) = 0, 1 < k < K.

A policy u is a rule for choosing actions in light of the history of the process to date

and U is the collection of all such policies. Our goal is to seek a policy which

minimises total costs incurred over an infinite horizon. We write

/•oo ^

V(m, a) — inf Eu / V Ck(Nk{t))e~at\N{0) = m (2.3)neu L J0 ^ J
for the associated value function. The function V(.,a) satisfies a collection of

optimality equations. For example, if mi > 0, 1 < I < K, then it holds that
K K K

(q + X + J2^j)V(m,a) = YlCj(rnj) + ^2^jV{m-l\a)
3=1 j=1 J=1

+A min {V(m + lk, a)}. (2.4)
1<k<K^ v

If the minimum in (2.4) is achieved at k* then action is optimal in state m.

The general theory of stochastic dynamic programming (DP) indicates the existence

of an optimal policy which is stationary (i.e. makes decisions in light of the current

state only) and whose value function satisfies the DP optimality equations, see

Puterman (1994). However for our multi-class admission control problem a pure DP

approach is unlikely to be insightful. Also this approach is computationally

intractable for problems of a reasonable size. Hence we look for heuristic policies

which are simple in form and close to optimal.

The routing policy we develop will be of index form. This means that there exist K

index functions Wk,a '■ N ~^ 1 < k < K, such that at all decision epochs the
index policy uw, chooses to route a customer to the minimal index class, i.e.

uw{N(t)} = ak => WktQ{N(t)}= mmWjta{H(t)}. (2.5)1<J<K

The average cost version of the multi-class admission control model of interest may

be expressed via the equation
K

XOPT - inf JSu{Y,Ck(Nk)} (2.6)
k=1

25

where in (2.6) Eu is the expectation taken with respect to the steady-state

distribution of the system under policy u. From standard results in DP we have that

lim V(m,ai) = VOPT (2.7)

In light of (2.7) we can develop index heuristics for the average cost problems as

limits (a —> 0) of the index policies for discounted costs. However for this admission

control problem we can also develop index policies directly. This is in contrast to

the service control problem discussed in the next chapter.

To facilitate our discussion, we write a/j(t) for the action (either a = admit (active)
or b = do not admit (passive)) applied to queue k at time t. We develop the

following performance measure for policy u, where n € N, 1 < k < K:

o y^n(m) - which is the expected discounted time spent by queue k in state n,

where the initial state is m.

So we can see that we have

r r°°

Vln(m) = EU I{Nk(t) — n}e~at|N(0) = m (2.8)
Jo

where /{.} is the indicator function. We now re-express our discounted costs

problem in (2.3) using these performance variables, to give
K

V(m, a) = inf^^ Cfc(n)y£n(m) (2.9)
K

u&A '
k=1

As previously mentioned, Whittle's (1988) approach to the development of index
heuristics is via Langrangian relaxations. To use Whittle's method we must also

develop the following performance measure for policy u, where n E N, 1 < k < K:

o xf.n(m) - which is the expected discounted time queue k spends in state n and
does not accept an arriving customer to this queue, where the initial state is
m.

26

To write this mathematically we use {U,i E N} for the sequence of arrival times

into the system (event times of a Poisson process of rate A) and use the indicator

functions

Ik,i,n — *

1 if, at the time of the Th arrival station k is in state n and does not accept

the new arrival;

0 otherwise.

Using this notation we then have, for any u &U, n G N, 1 < k < K:

xi ,„(m) =
i—1

(2.10)

We now wish to develop a relaxation of (2.9), but to do this we must first consider

the quantity J2k=i 12neNxkn(m)- The first thing to note about this quantity is that
it is policy invariant within U, since we know that we must send each arriving

customer to exactly one queue, no matter which routing policy we follow. This

means that we will not accept each arriving customer into K — 1 of the queues.

Hence

K

k=1 raGN

-at.
= E«

i=1

= EU\(K- l)(e"ail +e~at2 +e~at3 + (2.11)

where recall that U is the arrival time of the ith customer. Since the arrivals follow a

Poisson process with rate A we can see that,

ti+1 —ti = R~ exp(A), V i > 0,

and these interarrival times are independent. Using this information within (2.11)

27

we can see that

K

Y,Hxln(m) = Eu [(K — l)(e~aR + e~a2R + e~a3R + •••)] (2-12)

(K - l)e-
k=1 neN

p—aR
= E,

1 - e~aR

(.K - 1)E(e~aR)
1 - E(e~aR)

(^~1)A
a

Note that to get to (2.13) in the above we used the formula for the sum of a

geometric progression to infinity and the fact that,

(2.13)

POO

E(e~aR) = / (Jo
e~at\e-xtdt

A
(2.14)

ol + A

We now relax the stochastic optimization problem in (2.9) by expanding the policy

class to U, namely the set of policies in which the arriving customer (or at least
identical copies of that customer) can be sent to any number of service stations, and

then by imposing the relation in (2.13) as a constraint. This constraint will mean

that on average we will still admit the arriving customers to just one station. We

call this relaxed stochastic optimization problem Whittle's relaxation and write it as

follows
K

Y(m, a) = inf ^2^Tck(n)yl (m)n.r:1 J ^ L
k=l nGN

subject to

K

i=1

X(K-1)
a

Ath

(2.15)

Note that J(tj) denotes the number of queues the ith arriving customer is not

accepted into and constraint (2.15) delimits the set of allowable policies within U.
For any policy within U we will have J(U) — K — 1 for all i. We now use a

28

Lagrangian approach to help us find the structure of the optimal solution to

Whittle's relaxation. We accommodate constraint (2.15) by incorporating a

Langrange multiplier W, to obtain the minimisation problem

We can see from (2.16) that W plays the economic role of a constant charge for

rejecting an incoming customer. The optimization problem we ha.ve here involves

the control u that tells us to which stations each customer should be routed.

Problem (2.16) is naturally decoupled into K single-class subproblems

In (2.17), Vk{mk,a, W) is the minimised total of holding costs and rejection charge

costs incurred by service station k, the minimisation being taken over all policies for

choosing between action a (admit) and b (reject) for that station only. So for the

single class problem we are merely concerned with the total cost incurred at service

station k only. This will consist of both holding costs and rejection charges. The

policy that we implement at service station k tells us if we should accept the

arriving customer (and pay the increase in holding costs) or reject the customer

(and pay the rejection charge) at this service station only. 14 (m*,, a, W) is the

minimised value of this total cost over all of these possible policies.

It will be shown later in this chapter (see page 71) that there exists a multiplier

W(m, a) such that

This will lead us to infer that there exists an optimal policy for the Langrangian

relaxation in (2.16) with W = W(m,a) which satisfies the constraint in (2.15) and
hence solves Whittle's relaxation.

Therefore to analyze Whittle's relaxation we will progress as follows:

(2.16)

k=1

(2.17)

V{m, a, W(m, a)} = V(m, a).

29

- Find the optimal policies for the K single station subproblems in (2.17),
which will be dependent on the value of W.

- Combine these single-station optimal policies into the required optimal policy

for the corresponding multi-station problem in (2.16).

- Find the value of W which ensures the constraint in (2.15) is met and hence
obtain the optimal policy for Whittle's relaxation.

So as we can see for this agenda, the first thing we must do is find the optimal

policies for the single station problems, which we shall denote (k,a,W), 1 < k < K,
W e R. By standard DP theory we can assume that optimal policies for (k, a, W)
are stationary. The solutions to these single class problems become simple under a

condition of indexability.

To describe this condition, we use rh%a(TF) to denote the set of queue lengths m for
which the active action a is optimal in the single class problem (k, a, W). We would

expect this set to grow with the rejection charge W.

Definition 1

Service station k is a-indexable if Ylka{Wr) : M —> 2N is increasing, namely

W1 > w2 =* iMWi) d nkja(w2)

Should we have a-indexability for station k, the idea of an a-index for state (i.e.

queue length) m as the minimum rejection charge which makes the active action

optimal there is a natural one.

Definition 2

When service station k is a-indexable, the Whittle a-index for class k in state m is

given by

kFfc,Q(m) — inf{W : m € IIfcia(W)},m 6 N.

30

It will now follow that if each customer class k is ct-indexable, Whittle's relaxation

is solved by a policy in which a decision is taken to route an incoming customer to

station k at each decision epoch t whenever Wk^a{Nk(t)} < W(m, a) and not to

route to station k whenever Wk,a{Nk(t)} > W(m, a), for all choices of k, t. Should

Wk,a{Nk(t)} — W(m, a) then some randomisation between the two actions will be

appropriate. Note that the constraint (2.15) will ensure that on average we only

route each incoming customer to a single station.

We now follow Whittle (1988) in arguing that the index-like nature of solutions to

the relaxation in (2.15) makes it reasonable to propose an index heuristic for our

original discounted costs problem in (2.3) and (2.9) when all customer classes are

a-indexable. This heuristic will be structured as in (2.5) with index functions

recovered from Definition 2. Note that under this definition it is natural to interpret

kkfcia(m) as a fair charge for rejecting the arriving customer from queue k when it is

in state m. The derived heuristic then always sends each incoming customer to the

station for which the fair charge for rejection is smallest. Following the discussion

about the average costs version, earlier in this section, we develop can an index

heuristic for average cost problems as the limit policy (a —» 0) of the index

heuristics for discounted costs. Alternatively we shall see that we can develop index

heuristics for average cost problems directly.

Definition 3

If customer class k is a-indexable for all a > 0 then the average cost Whittle index

for state m is given by

Wk(m) — \imWk a(m), mET,+ (2-18)
a—>0 '

when the above limit exists.

In light of the above discussion, we now proceed to study the single class problems

(k,ai, W) in the next section. We shall establish a-indexability, derive a-indices and

31

the average cost indices which are appropriate for our admission control problems.

2.3 The Discounted Problem

We first look at the discounted routing control problem. So in this section all of our

expected future costs are discounted with time according to the discount rate a.

From the above discussion we can see that to obtain Whittle's indices for the

original discounted cost problem in (2.3) and (2.9) we first consider the single class

problem (k, a, W).

2.3.1 The single class system with a charge for rejection

Throughout this section we concentrate on the single class routing control problems

(k, a, W), and so it will be notationally convenient to drop the class identifier k.

The problem we look at is one of arriving customers who can be sent to the given

server or rejected. However if we do reject a customer then a rejection charge must

be paid. There are also holding cost charges incurred by the customers for the time

they are in the system, assumed increasing convex in the number of customers in

the system. If we accept a customer we must pay the resulting increased holding

costs and if we do not accept we must pay a rejection charge. It is the balance

between these two costs which is central to our study. For this single station we

have M/M/l dynamics. Hence arrivals form a Poisson(A) stream, note that A is the

system arrival rate previously considered, i.e. the single server faces the entire
arrival stream for the whole system - but we now consider the option of rejecting

the arrivals. The service times follow exponential, exp(/x) distributions and all

interarrival times and service times are independent. We can view this system

pictorially in Figure 2.1. The goal here is to choose when we should accept

32

Figure 2.1: The options when considering a single class.

customers at the station in order to minimise the sum of the costs incurred through

the rejection charge and through holding costs. We formulate this as a Semi

Markov Decision Process (SMDP) as follows:

(a) We use N(t) to denote the state of the station at time t € R, i.e. the number of
customers at the station. Decision epochs will occur at all customer arrival times,

which will be the event times of a Poisson process with rate A. So in the problem

(k, a, W) the single station will be facing the entire incoming arrival stream which
has rate A. Hence if t is a decision epoch then, regardless of the action we take, the

next epoch will occur at time t + A, where A ~ exp(A), since the inter-arrival times

will be exponentially distributed. At each decision epoch the following two actions

are available:

1. a (active), which is the choice to admit the arriving customer at this station,

or

2. b (passive), which is the choice to not admit the arriving customer at this
station.

Suppose at time t, that the station is in state rn > 0. The next random event epoch

33

will occur at time t + Q where Q ~ exp(A + fi). If action a is taken in state m then

we have that

(b) Let C : N —► M+ be the increasing convex holding cost function for the station

concerned and let a, W be positive constants. Hence when we have n customers

present at the station the discounted holding costs will be incurred at rate C(n),
where recall that C(0) = 0. We also incur a fixed cost of W whenever we reject an

arriving customer. So the total discounted expected costs incurred will be

equivalent to a system where we have discounted holding costs only, incurred at rate

C(n) while we are in a state where we will accept an arriving customer, and

C(n) + AW while we are in a state where we will not accept an arriving customer.

See also (2.20) below. Note that W is the amount charged whenever we reject from

the queue in question and A is that rate at which the charge is incurred, if we are in

a state where the policy dictates that we reject.

(c) A policy is a rule for choosing between the actions a and b in the light of the

system history to date. Recall now standard theory from the area of stochastic DP

(see section (1.2)). This indicates the existence of and optimal policy which is

stationary (makes decisions in light of the current state only) and whose value

function satisfies the DP optimality equations. See Puterman (1994). If we use Ii

for the indicator function

ra+1, with probability A(A + n) and,
,v(t + g)+=<^

m - 1, with probability A + n)~l.
N(t + Q)+ = <

If action b is taken in state m, then

m, with probability A(A + fi)"1, and,
N (t + Q) = <

TTi-l, with probability fi(A + n)~l.

1, if the ith arriving customer (at time tt)
is rejected;

0, otherwise, t eR+

34

then we can write the total expected cost incurred under policy u from initial state

m as

r f°° 00 1

Vu(m,a,W) = EU C(N(t))e~atdt+ J2WIi^ati\N(0) = m . (2.19)L Jo i=1

Now (2.19) is equivalent to

/»°°
Vu(m, a,W) = EU {C(N(t)) + XWl{t)}e~atdt\N(0) = m (2.20)'-Jo

where we use I{t) for the indicator function

m =

1, if we are in a state at time t, where policy u

rejects an arriving customer

0, otherwise, t E K.+

The goal here is to find a policy which will minimise the cost in (2.20), which is the

problem we have labelled (k, a,W). We denote this minimised total cost to be

V(m, a, W) = inf{V^(ra, TW)}. (2.21)

We now develop the form of the optimality equations for this single class problem.

The first thing to note is that decision epochs are the arrival times but we also have

service completions occurring and both these random events change the costs

incurred by the system. Hence we must consider all such events. We now consider

the total expected cost under a policy from state m > 0 if this policy tells us to take

the active action from this state and act optimally beyond the first event epoch.

This cost will comprise the discounted cost until the next event + the discounted

cost from state m + 1 if that event is an arrival + the discounted cost from m— 1 if

that event is a service completion. Both these last two terms also need to be

35

discounted. Hence we have that the total cost incurred is

C(m)E
Q

-atdt +
A

/r + A
V[m + l,a,W)E[e~aQ]

= C(m)E[
1 - e~aQ

a
+

A

/r + A

- I, a, W)E[e~aQ]
roc

V(m + l,a,W) / e~aq{\ + n)e~{x+t*)qdqJo

C{m)
a

+ -^—V(m-l,a,W) [e~aq(X + n)e~{x+^qdq
V + A J0

{1 - J e~aq(X + /r)e-(A+^cig} + + 1 ,a,W)
A + fx

A + n

a -4- A -(- /i

—Z—V{m-l,a,W)- .

/r + A a + X + p
AC{m) r X + n i

a I a + X+ /j, J
+
a + X + p

V(m + l,a,W)

ex -\- X p

C(m) A

V(m — 1, a, W)

+ -V{m + 1, a,W) + -H(m-l,a,W) (2.22)
o; -)- A T /i CK 4- A + /r CK —f— A —j— /Li

Note that Q ~ exp(A + p) is the time until the next event (either an arrival or
service completion). We also consider total expected cost under a policy from state

m > 0 if this policy tells us to take the passive action from this state and act

optimally beyond the first event epoch. This cost can be constructed in a similar

way i.e., the discounted cost until the next event + the discounted cost from state

m if that event is an arrival + the discounted cost from m — 1 if that event is a

service completion. So the resulting discounted cost is

rQ

(C(m) + -atdt

X
f a, W)E[e-aQ} + -~V{m - 1, a, W)E[e~aQ}

= (C(m) + XW)E[

p + A
1 — e A

+
a /i + A

+-
/i + A

C{m) + XW

V(m-l,a,W)

X

/i + A

V(m,a,W) f
Jo

~aq(X + p)e~{-x+tl)qdq

~aq{X + p)e'^)qdq

+ V(m,a,W) + -V(m-l,a,W) (2.23)
a + X + p a X -\~ p v ' ex + A + p

Since the choice in any state m is between taking action a or 5, until the next event,

36

the value function V(.,a,W) satisfies

V(m, a,W) mm { a + A + fi
C(m) A

1 C{m) + XW Al.Q.WO; +—rOf H~ A /J> cv ~l~ A + fi
V(m, a, W)

V(m — 1, a, IT) j, m G Z+. (2.24)

In state 0, no service completions are possible, the resulting optimality equation is

Following the discussion around Definitions 1 and 2 of Section 2.2, we write Ha(W)
for the set of states for which active action a is optimal in the above problem. We

write this as

na(W) = {me N such that the active action is optimal in m when the charge for

If we have a-indexability, namely that IIa(W) is increasing in W, we then write

Wa(m) for the Whittle a-index for the customer class concerned in state m, as in

Definition 2. We proceed to give a heuristic argument which yields a formula for

Wa{m) in terms of model parameters when Wa(.) is assumed to be an increasing

function as would seem plausible.

Consider the service control problem (a)-(c) with N{0) = m > 0, discount rate a

and with rejection charge W = Wa(rn) equal to the assumed value of the a index in

state m. We make the following two assumptions:

1. The a-index, Wa(m), is increasing in the state, m, and

V(0,a,W) = min V(0,a,W) .

rejection is W}, W G R (2.25)

2. When the rejection charge, W, is equal to the a-index, Wa(m), in some state

m, both the actions a and b are optimal in that state.

37

Both these assumptions will be established properly later in the analysis. We can

now infer that the optimal policy for the single class problem (k, a,W) with
W = Wa(m) will have the form:

i) take the active action a in states {0,1,2,..., m — 1},

ii) take the passive action b in states {m + 1, m + 2, m + 3,...},

Hi) take either the active or passive action in state m.

Note that (i) and (ii) follow from Assumption 1 and Definition 2 while (in) follows
from Assumption 2. So we can see that under these assumptions there are two

stationary policies which are optimal when W = Wa(m). We use the label u\ for
the optimal policy which chooses action a in state m, and the label u2 for the

optimal policy which chooses action b in state m. Note that both optimal policies

make choices according to (i) and (ii) above. Before proceeding any further we also

introduce the following random time variable:

Tn — the time it takes for the system to translate from state n to state n + 1

for the first time, under continuous application of the active action. (2.26)

Note that since the state space is bounded below by n = 0, we can see that Tn will

have an obvious dependence on n. Since both policies U\ and u2 are optimal for the

problem with W = Wa(m), their discounted expected costs to infinity should be the
same. Our approach will be to find this cost for both policies and equate them in

order to obtain an expression for the index value Wa(m).

Calculating the discounted cost to infinity of following policy ux

Recall we have N(0) =m so policy u\ will take the active action a until time Tm
where

Tm = inf{t; N(t) — m + 1}

38

We denote the cost incurred during this initial active phase as C(m,a) where
pTm

C(m, a) = E / C{N(t)}e-atdt\N(0) = m, a (2.27)
Wo

Let us fist consider the situation where we have m = 0. Policy u\ dictates that we

should take the active action and hence accept arriving customers in state m = 0.

Since we are in state 0, we have no customers and so an arrival is the only option

possible. Hence the cost until the first event will be C(0,a), then when an arrival
occurs we will incur costs at the rate 6Y(1) + AWa(0). When this arrival occurs we

stop admitting customers and so remain in this state until the customer is served,

which will happen at time T0 + X where X ~ exp(fj). Then the cost incurred

(discounted back to the time when the customer arrived) is:

C(0,a)+E(e~aTo)(c{l)+\W(0)S)Ex[J^ e~atdt] = C(0, a)+E(e~aTo)C^^.
Where we require the E(e~aT°) coefficient since all costs must be discounted back to

time 0. After the service completion we return to state 0 and the cycle continues ad

infinitum. Hence we can find the total discounted expected cost to infinity from

following this policy from state m = 0, by finding the sum of the discounted

expected cost of these cycles to infinity. We must adjust each cycle cost to take

account of the relevant discounting. Hence the total expected discounted cost to

infinity can be found using the formula for the sum of a geometric progression to

infinity. So we can see that this cost can be calculated as

rrniirrm' C(o.") + £'(<=-°To){C(i) + AW'„(o)}(a + ^)-'Uao.c.Wyo)}- _______ (2.28)

We now move on to consider the cost of following policy U\ from state m > 0.

When the system arrives in state m+ 1, policy u\ indicates that the passive action

b be taken. Hence in state m + 1 the only events which can occur are service

completions. We will continue to take passive action b until we have a service

completion and move back to state m. This service completion will occur at time

Tm + A" where X ~ exp(fi). Hence we can see that the discounted expected cost

39

(from time Tm) until we return to state m (i.e. we have a service completion) will be

(C(m+ 1) + AWa(m))Ex [e atdt , where X ~ exp(/r)L Jo
C(m + 1) + AWa{m)

a + n
(2.29)

However this cost must also be discounted back to time 0, and so must be multiplied

by E(e~aTm). Hence, when following policy Ui, we can see that the expected

discounted cost to move through a cycle from state mtom+1 then back to m is

C(m,a) + E(e^)C{m+V+fr°<m). (2.30)

Policy u\ now repeats this above cycle ad infinitum from time Tm + X. Hence we

can find the total discounted expected cost to infinity of following this policy by

finding the sum of the discounted expected cost of these cycles to infinity. We must

remember to adjust each cycle cost by the relevant discounting term. When we take

this discounting into account it can be seen that the total expected discounted cost

to infinity can be found using the formula for the sum of a geometric progression to

infinity. So the total expected discounted cost associated with this policy may be

calculated as

u frn n T|; C(m, a) + E(e~aTm){C(m + 1) + XWa(m)}(a + /i)_1Vi1{m.a,W„(m)} = 1 — p.E{e~aT'"){a + fi)~l ' (2'31)

We now find an expression for the cost of following policy re¬

calculating the discounted cost to infinity of following policy u2

Again lets us first of all consider the situation where we have m — 0. Following

policy re we take the passive action in this state m — 0, and so do not admit any
customers. However since we are in the empty state we also cannot serve. Hence we

will merely incur costs at the rate C(0) + A = AW. at all times. So the total

40

discounted cost to infinity of following policy U2 from state m = 0 is

VU2{0,a,Wa(0)} = AWQ(0) [Jo
XWa(0)

00

„—atdt

(2.32)
a

We now move on to look at the cost of following policy U2 from a situation where

we have N(0) = m > 0. Under policy U2 the passive action b is taken in state m.

Prom the arguments above one can see that the first event to occur after time zero

in this instance must be a service completion which will occur at time X where

X ~ exp(/i). So we can see the discounted expected cost incurred until this event is
rX

{C(m) + XWa(m))Ex [e atdt1 Jo
C(m) + AWa(m) (2.33)

a + n

When this event occurs the system state will move to state m — 1 and policy U2

dictates that in this state we should take the active action a until the state returns

to m. So now we will have events which could either be service completions or

customer arrivals. Using the notation above one can see that the discounted

expected cost until we return to state m from m — 1 is C(m — 1, a). However this

cost must be discounted back from the time when the service completion occurred,

say Y to time 0, i.e. we need to multiply it by the term

roo

E{e~aY) = / ^a+^ydyJo

a + fi

So we can see that under policy U2 the system will also follow a cycle, from state m

to m — 1 then back to state m. The expected discounted cost of this first cycle will

be

C(m) + AWa(m) yC{m- I, a)
a + n a + n

The subsequent cycles must also be discounted back to time 0 accordingly, which

allows us to find the discounted expected cost to infinity from following policy U2 as

41

follows:

Vm{m,a,Wa(m)}= (C('") ±±t±!l ±&L °»(°21 ' V 1 - iiE{e-«Tm-i)(a + n)~l
(2.35)

We now have the discounted expected cost to infinity from following both policies

u\ and u2. Since these policies are both optimal then these costs will be identical.

We now use this fact to find an expression for the index Wa{m). Firstly we consider

that m = 0 case, equating (2.28) and (2.32) leads us to

(q + ii)C(0, a) + E(e~aT°) (C(l) + AWa(0)) AWQ(0)
a + /x — fiE(e~aT°) a

Also equating (2.31) with (2.35) leads us to

(q + n)C(m, a) + E{e~aTm){C{m + 1) + AWa(m)}
a + /r — nE(e~aTm)

_ C(m) + XWa(m) + nC(m — 1, q)
a + fi-nEie-Trn-i) ■ ^-6f)

We would like to solve this equation to obtain Wa(rn). However before one could

practically find Wa (m). it would assist matters greatly if expressions could be found

for C(m,a) and E(e~aTm). We firstly consider C(0, q). Plainly in state 0 the only

possible events are customer arrivals, so we have

C(0, a) = C(0)E^ f e~atdt , where A ~ exp(A)L Jo
= 0 (2.38)

since we know that C(0) = 0. We now study C(m,a) for nn > 0. We build an

expression for this cost using standard conditioning arguments. We can see that
this cost will be made up of the following elements: the cost until the first random

event; if the first event is a service completion then we also need the discounted cost

from state to — 1 to state m followed by the discounted cost from state to to state

to + 1; if the first event is a customer arrival then the system is in state to + 1 and
no further costs are incurred. For the sake of brevity the following notation has

42

been used:

Xm = E(e~aT™),

Q = time until the next (first) event, when in the active state,

where Q ~ exp(A + /i). The expected discounted cost until, Q, can then be written
as

Eq(JQ C(m)e~atdt)
= ^(%)(

^OOC(m)
a

C(m)
(l -J {fi + A)e-(a+"+A)«dg)

a 4" A //

Using this notation the above conditioning arguments yield the following:

(2.39)

■Q

C(m,a) = E(I C(m)e audvJ\ +/o / A + /x

+C(m,a)E(e-aC3)Xm_1

C(m- l,a)U(e-aQ)
A

+
A + fi

C(m,a) =

C{m) ^ />0°(A)e-(a+A+^A + /r + a A + /r L Jo
POO

+C(m, a)Xm_! / (A + //)e-(a+A+^
_

C(m) + nC(m — 1, a) + a)Xm_i
a + A + //

nC(m — 1, a) + C(m)
o: + A T /r — fJ'Xm—1

(2.40)

Using similar conditioning arguments we can also find an expression for the term

E(e~aTrn). Again we will initially consider E(e~aT°), since in this state the only

events that can occur are arrivals, hence

POO

X0 = E{e~aTo) = / Ae~{a+x)tdt
Jo

A

ex A (2.41)

43

Now looking at E(e aTm) (= Xm) for m > 0 using these standard conditioning

arguments leads us to

= £(e-a<?)
A + /JL

A4 V V ^Xm-iXm + x 1
A + fi A + fi

Ct \ fl A + /i

Xm = E(e~aTm) =
A

(2.42)
a + \ + n — nXm—\

Again considering the situation where m = 0 first, we can see that using relations

(2.38) and (2.41) and simplifying we can see that (2.36) leads us to

C(l) + AlUa(0) Wa(0)
(or + n){a + A) — ^A a

aC(l) + aAWQ(0) = W"a(0) [(a + //)(a + A) — fi\]
C(1)^wa(o) =
a + /j,

(2.43)

Also for the case m > 0, using forms of the relations (2.40), (2.42) and simplifying
we can see that (2.37) implies that

AWa(m){— 2 + Xm\ = C{m + 1)[1 - Xm] - aC(m,a)

AWj1"2^^^1} = Xm+1{c(m+
AWa(m){1rX™+1 ~Xm+1] = Xm+1{c(m+ l) -l-Xn

Hence the expression we have inferred from the above argument for the a-index is

Xm.~n f — \ (xC(nr, cr) 1 / f 1 Xm-t-iT?, , , Am+1 c ^ aO(m,a)-| /fi-
=— |C(m + 1) -T-_)/|T x„

Xm+1 (2.44)

Using the the relations (2.38), (2.41) and (2.42) for C(0,a), X0 and Xx we can see

that expression (2.43) is equivalent to expression (2.44) when m — 0.

The following Lemma asserts that our conjectured index Wa(m) is increasing in m,

as was assumed to be the case for the true index in the argument used to infer this

index expression.

44

Lemma 1

Wa(m) is increasing in m.

Proof

Firstly note from (2.44), that the formula for the index, Wa(m), is quite complex so

proving Wa(m) is increasing with m could be difficult. For this reason we split the

proof into two parts:

A. Prove that

aC(m,a) /n

C(m+1)~ / ' (2.45)J- — -A-m.

is positive and increasing with m.

B. Prove that

v / f ^ -^m+1 v A 2fm+l(l -^m)
m+1/ V ~i Y m+1) ~ 1 r y 7i ^ZAb'v -1 -Am / i — Am+i — — AmJ

is positive and increasing with m.

Obviously if we can prove A and B, Lemma 1 will follow as an immediate

consequence.

However before this we shall show that Xm is decreasing with to. This relation will

be useful throughout the proof. We use a proof by induction to show this relation

holds. The first thing we must do is prove the initial case, i.e. show that

X0 > W- (2.47)

Now by use of (2.41) and (2.42), we can see that (2.47) is equivalent to

ot + A + n — fiXo > —-
Ao

*£4- a + A + n — fiXo ^ at + A

■&> n —

A
^ 1 >

<y. -f- A

45

Since we know that the discount rate a must be positive we have shown (2.47) is

true. Now that we have proved the initial case we use the induction hypothesis

Xj_i > Xj to infer that Xj > Xj+1, j > 0. By use of relation (2.42) we can see that

what we must infer is

Xj h Xj+1
A A

: - >
cx + A + /i — fiXj_i oc + A + /i — (jlXj

<=> —/xXj > —fiXj-1

Xj Xj—l-

Note that in the second line of the above working we multiply through by

(a + A + n — /j,Xj-i)(a + A + n — fiXj) to get to the third line. We know this

quantity is positive because,

/r — fiXi > 0 since 0 < Xi = E(e~aTi) <1 V i.

One can see that the last line is just our induction hypothesis and hence we have

shown that Xm is decreasing with m as required.

We firstly look at showing that the quantity in (2.46) is positive. We now have that

Xm > Xm+i and know that Xm, Xm+\ e (0,1) hence we can see that

1 Xm-\-\ Xm+1(l Xm) > 0 and,

Xm+i(l-Xm) > 0. (2.48)

It therefore follows that the quantity is (2.46) is also positive. We now prove that
the quantity in (2.46) is increasing with m. Notice now that the expression in (2.46)
is equal to

1 -Wn+l ^ \
.(1 — Xm)Xm+i

Hence it is enough to show that (1 — Xm+i) j— Xm)Xm+i is greater than 1 and
46

decreasing with m. Now we have that Xm > Xm+i which implies that

1 — Xm+i > 1 — Xm

> i

^ 1 ~ Xm+1 > i
xm+1(i-xm) - '

as required. We also wish to show that

1 Xm+\ , 1 Xn<
(1 - Xm)Xm+i (1 — Xm_i)XTO

(1 — Xm+\) [A — (a + X)Xm\n 1 < (1 — Xm) [A — (a + A)Xm+i]/z-l

(a + X)Xm+i — XXm+i < (a + X)Xm — XXm

<=r> Xm+\ < Xm, since a > 0.

By the previous proof on page 46 we have shown this to be true, and hence we have

shown that (2.46) is indeed increasing, as required. Note that we get to the second

line in the above working by using the relation (2.42) to infer that

A = Xn(a + A + fx — fiXn_i)

<=> A = fiXn(l — Xn_i) + (a + X)Xn

A — (a + X)Xn — /j,Xn(l — Xn-i), V n > 0.

We have now proved part B, that the quantity in (2.46) is positive and increasing

with m and so now must move on to prove part A, that the expression in (2.45) is

positive and increasing with m. We can see from the increasing nature of the cost

function C that the expression in (2.45) will be positive. This is due to the fact that

aC(m,a) C(m,a)
1 - X E[f0T"

m

= Y2C(n)9n where = 1.
71=0 71=0

In other words we can see that aC(m, a)(l — Xm)_1 is a weighted average of the

cost rates incurred until the system gets to state m + 1. Hence we must have that

47

C(m + 1) > aC(m, a)(1 — A"m)-1. Proving the increasing nature of part A does

turn out to be somewhat more difficult. To do this we introduce the following

performance variable

Hi — the discounted expected time spent in state i, from time 0 to infinity,

when starting in state m, under the policy which admits customers in

states {0,1,2,..., m} only.

Because of the definition of y; we can see that yt = 0 for alH > m + 2. We can write

this definition mathematically as follows,

Hi — Eu
roc

/ I{N(t) = i}e~atdt\N(0) =Jo
m

(2.49)

where u is the policy which admits customers in states {0,1, 2,...,m} only. We

firstly try to formulate an expression for ym+\. To do this consider the following

state transition diagram for a single cycle shown in Figure 2.2. In Figure 2.2 X is

the a single service time and hence X ~ exp(/r), and so we can use the memoryless

property of the exponential distribution. From this diagram we can see that the

discounted expected time spent in state m + 1 in the first time loop is

rX

E(e~aTm)E{ [e~atdt}Jo
E(e-aTm) (2.50)
a + n

The time in subsequent loops will take the same form initially but will obviously
also require further discounting. So for example the contribution to ym+i in the
second loop will also need to be discounted by

E{e-aTm)E(e~aX)
= I^ExXl, (2.51)

ol + fi

So we can see that ym+i is the sum of a geometric progression to infinity and hence

48

Number of
Customers
in queue

m / mTm+X
Time

Figure 2.2: Possible state transition diagram from state m.

we have that

Vm+l
E(e aTm)(a + /i) 1

1 — /iE(e'aTm)(a + /r)-1
E(e-aT™)

a + n — //E(e~aTm)

(2.52)
a + fi-

We now consider the relationship between the y's. To help simplify matters we use

a tool from standard theory called uniformisation, in which events are deemed to

occur at a uniform rate in all states. This means that we will allow virtual arrivals

to occur, in state m + 1 but these will have no effect on the state. We will also allow

virtual service completions in state 0. We use Q to denote a generic between event

time. We know that Q ~ exp(A + n). Now let us first find an alternative expression
for ym+\. The system can enter state m + 1 in one of two ways, either

1. The system is in state m and a customer arrival occurs, or

49

2. The system is in state m + 1 and a virtual customer arrival occurs.

We can deduce that

Vm+1 = ymE{e aQ)T^— + ym+lE{e aQ)- AA -t- y A + y
X y X X + y A

Vm I \ i \ i ^ Vm+l'a+X+yX+y o/.-\-X-\-yX-\-y
&(a + y)yw+x = Aym. (2.53)

We now follow a similar argument to obtain an expression for ym. However we must

remember that m is assumed to be the initial state of the system. The discounted

expected time in state m until the first event is therefore given by

rQ

ifL Jo e dt

1

o. + A + /r

The system can subsequently enter state m (> 0) in one of two ways, either

1. the system is in state m — 1 and a customer arrival occurs, or

2. the system in state m + 1 and a service completion occurs.

Hence we deduce that

Vm = E\ [Qe'atdt] +yrn_1E(e-^)-^-+ym+1E(e-^)-^1 Jo J a + y a + fi
1 A + A X + y n

+ Vm-1 . , , T ! 1- Vm+1 ■
a + X + y oi-\-X-\-yX-\-y o.-\-XJryX-\-y

<=> (a + A + y)ym = 1 + yym+i + Aym_i. (2-54)

We can again follow a similar argument for yj, 1 < j < m — 1, for m > 2, since the

system can enter state j by two possible routes, either

1. the system is in state j — I and a customer arrival occurs, or

50

2. the system is in state j + 1 and a service completion occurs.

Hence for 1 < j < m — 1, for m > 2 we have that

o(a + A + /i)t/j = /iyj+i + A%_i. (2.55)

Finally we consider y0, for m > 0. The system can enter state 0 via two possible

routes, either

1. the system is in state 0 and a virtual service completion occurs, or

2. the system is in state 1 and a service completion occurs.

Hence we deduce that

We now introduce another similar, but different performance variable,

2, — the discounted expected time spent in state i, from time 0 to infinity,

when starting in state m — 1, under the policy which admits customers in

states {0,1, 2,..., m — 1} only.

Note that here we must have m > 0. Hence in this case, the transition diagram for

a single cycle will take the form as shown in Figure 2.3. In Figure 2.3 X is again a

single service time, and hence X ~ exp(fi). Similar arguments to those previously

seen yield,

(a + A)y0 = m- (2.56)

E(e aTm-1)
a + y — fiE(e~aTm~1)

Xm-i
(2.57)

ol + p. fiXm—. i

51

Number of
Customers
in queue

t;.! Tm:1+x

Figure 2.3: Possible state transition diagram from state m — 1.

Time

Also by applying a similar analysis to the above we deduce that

(a + fJL)Zm

(a + A + /x)2m_!

(a + A + n)zj

(a + A)z0

^Zm—1) (2.58)

1 ~l~ i-iZfyi + A2m_2> (2.59)

fiZj+1 + \zj-i, for 1 < j < m — 2, where m > 3 (2.60)

UZ\ wherem>l. (2.61)

Now recall that we have previously shown that Xn_j > Xn, n > 1. Using this fact

and the formulae (2.52) and (2.57) we can see that

Um+1 Zm.

Now using (2.62) we can see that

a + a
Um - Vm+1 <-

a + jx
— zm-1-

(2.62)

(2.63)A A

Suppose that we can write the solution to (2.53) - (2.56) in the algebraic form

yr = Krym+i + Ar, for 0 < r < m, (2.64)

52

for some Kr e R, Ar G R. We now verify that (2.64) is indeed true. From (2.53) we
have that

(a + ii)ym+1
-

A

= Kmym+i + Am, where Km = (a + /x)A_1, = 0. (2.65)

Then from (2.54) and (2.65) we have that

_ ct + A + /xr ts , A l * VUm+l
Vm—1 —

A 1 "h ^4mJ ^ ,

— Km—Am_1)

where A"m_i = (a + A + n)\~lKm — //A-1,

and Am_i = —A-1. (2.66)

Similarly from (2.55) we have that

yr = (a + A + /r)A_1yr+i — /xA_1yr+2, for 0 < r < m — 2. (2.67)

Finally to verify that the relation in (2.64) is true, we use a proof by induction. We

have show that the relation does hold for ym and ym-i so we can now take the

induction hypothesis

Vr+2 — -Kr+22/771+1 T Ar+2i mid

Vr+1 = K-r+iym+l ~b ^r+1-

Then infer that the relation holds for yr. Now from (2.67) and the induction

hypothesis we can see that for 0 < r < m — 2 we have

Vr = (a + A + y)\ 1 [Kr+iym+\ + A-+1] — /xA 1 [JW+22/m+i + ^+2]
= Krym+i + Ar,

where Kr = (a + X + /x)A_1.Ar+i — n\~lKr+2,

and Ar = (a + A + yL)X~lAr+\ — fi\~lAr+2, for 0 < r < m — 2.(2.68)

So we have shown that relation (2.64) does hold. We can rewrite (2.68) as,

ldAr+\ — (a + A + y)Ar + XAr-\ =0, for 1 < r < m — 1. (2.69)

53

Standard theory tell us that the solution to (2.69) is of the form

Ar — Aw\ + Bw2, for 1 < r < m — 1. (2.70)

where w\, w2 are the distinct roots of the quadratic

)j>x — (q + A + ^L)X -I- A — 0. (2.71)

On studying the quadratic in (2.71) it is easy to see that both roots are positive,

one of them less than one and the other greater than one. Now without loss of

generality we take W\ to be the smaller root, i.e. we have

We now utilize boundary conditions to obtain the constants A and B. We can

easily show that

Am_ a = -A"1 = Aw™'1 + Bw™'1.

Am-2 = -(a + A + n)X~2 = Aw?~2 + Bw™~2.

Solving for B yields

_ (ot + A + [i)wi — A
A2(u>2 — wi)w™~2

From (2.72) we can see that B > 0 if and only if

(ol + A + /i)w\ — A > 0

Recall that w\ is the smaller root of the quadratic in (2.71). If we evaluate

quadratic (2.71) at x = A(a + A + /r)"1 < 1 we find that the result is positive which

implies that x must lie between 0 and w\ and hence the inequality in (2.73) is
indeed true. Therefore we can now conclude that B > 0. Now recall that

0 < W\ < 1 < W-2-

wi > A(a + A + /r) 1. (2.73)

Aw?'1 + Bw?'1 = -A"1

54

Using this expression for A in (2.70) we can see that for 1 < r < m — 1 we have

< 0.

From the definition of y\ we have that y* > 0 for 0 < r < m + 1 hence from (2.64)
we can see that we must have

Kr > 0, for 1 < r < m. (2-74)

One can now repeat the above process for the to discover that we have

zr_i = Krzm + Ar, for 1 < r < m,

where the Kr and Ar are as in (2.64). Using this and the inequalities in (2.62),

(2.63) and (2.74) it can be seen that

yr < zr_i, for all 1 < r < m + 1. (2-75)

However if you recall, the quantity that we are actually interested in is (2.45), i.e.

1 ^771

We consider, as before, the station with N(0) = m under a policy which takes the

active action (admits customers) on states {0,1,... ,m} only. The expected holding
cost for such a system can now be written as

771+1

C{n)yn.
n=0

Let us now define

yn = discounted time spent in state n, when starting from state m, until

the time when we enter state m + 1 for the first time, under policy U\.

55

Using this definition we can see that
m

C(m, a) = <?(«)?/„. (2.76)
n=0

Note that the above summation is only up to state m. We can see that this system

will have the recursive nature where it starts in state m, has a period of activity

until it reaches state m + 1 then remains in this state until it returns to state m

where this process is repeated ad infinitum. From this recursive nature we can see

that

Vn — Vn j /A\ + /A| +
\a + p/ Va + p,

a + p)yn
Ot ~f~ p flXm

We can now use (2.77) and (2.76) to see that

aC(m,a)
_ ^ v^/„\ a + p — pX,

(2.77)

C(m + 1) j-— = C(m+l)-a^2C{n)yni-Am ^ (ct + p)(l — Xm)
m

= C(m + 1) — ayt C(n)yn-tn
n=0

i - Of + /i nXm /0
y- = -xmy {2M)

Following a similar method (but using the Zi) we can show that,

C(m) - aC}m^ 1,Q) = C{m) C(n)zn1 ~ Xm~l n=o

_ a + p - pWm_i
= where zn = zn-—-—r- r. (2.79)

(a + p)(1 — Am_i)

Now we have previously shown that Xm_i > Xm hence we have that

Xm-i{l -yia + y)"1) > Xm(l - y(a + y)~l)
<=>• -Xm — Xm_i(p(a + p)_1) > —Xm-i — Xmy(a + p) 1

1 — Xm — Wm_ip(a + p) 1 + Xm-\Xmy(a + p.) 1 > 1 — Wm_i — Xmy(a + p)

X.mfl(^OL + p)

(1 — Xm-\y(oL + p) ^ (1 — Xm) > f 1 — Xmn(oL + p) (1 — Xm-\j

m—1

ol + p — pXm_! o; + p yXm
^ 777 77 7 ^

(a + p)(l — Wm_x) (a + p)(l— Xm)

56

Therefore using this above inequality we can see from (2.75) that

Vm ^ Zm—1) Urn—1 li • • • ! Vl ^0- (2.80)

Now with this information we again consider the quantity of interest

1 -X-m
m

= C(m+ 1) - a^C(n)yn
n=0
m

> C(m + 1) —
71=1

m

= ^2a{C{rn + 1) — C(n)}zn-i
n=l

m

> ^a{C{m) - C(n - l)}zn_i
71=1

771

= C(m) — o: C(n — l)zn_i
77=1

= c(m)_aC(m-l .«)_1 ^-777—1

In the above working we get to line 2 by using (2.78); we get to line 3 by using

(2.80) and the fact that C(0) = 0; we get to line 4 since i azn-i = 1; we get to

line 5 by using the convexity property of the cost function C(.) and line 7 follows

from (2.79). Therefore we have finally shown that (2.46) is increasing with m. So
this together with the fact that (2.45) is also increasing with m, which we have

previously shown proves that Lemma 1 is true and Wa{m) is indeed increasing with

We now go on to prove Theorem 1, which we assumed to hold when making the

argument used to find our conjectured index. Initially when trying to prove this we

encountered a few difficulties, so in order to gain more of an insight into the

problem we looked at what the solution would be if we were allowed to have a

negative number of customers in the queue (for which we would pay zero costs).
This helped us to find the required solution, and I have reported some numerics

57

from this solution in Section 2.5.1, but I will not confuse the matter by including
the solution to this virtual problem.

Theorem 1 is the key result needed to establish that the state m a-index is given by

(2.44). This proof is long and utilises the methods of stochastic dynamic

programming.

Theorem 1

(a) If Wa{m) < W < Wa(m+ 1) then the policy which chooses the active action a

in states {0,1,2,..., m} and the passive action b otherwise is optimal for our

routing control problem with rejection charge W, m 6 Z+.

(b) If 0 < IT < ITa(0) then the policy which chooses the passive action in all

states is optimal.

Proof - Theorem 1 part (a)
Given a value for the rejection charge W in the range [Wa(m), Wa(m + 1)), we
must show that it is optimal to accept the arriving customers in states

{0,1, 2,...,m} and optimal to reject in all other states. By standard DP theory it
is enough to show that V(.,a,W) satisfies the optimality equations (2.24), where V

is the value function for the policy described in the statement of the theorem. In

other words we must show that when V is replaced by V the first expression on the

r.h.s. of (2.24) is the smaller of the two if we are in one of the states j, where
0 < j < m, and that the second expression on the r.h.s. of (2.24) is the smaller if we
are in one of the states j, where j > m + 1. For 1 < j < m we must show that

V(j + 1, a, W) +

Q; + A + yLt a + A + /i
{V(j + l,a,W) -V(j,a,W)} <W.

C(j) + XW
| A ?V(j,a,W)

(2.81)

58

For the case where j = 0 we use the technique of uniformisation, as discussed on

page 49 in the proof of Lemma 1. Hence for j = 0 < m we have

C(0)
+

, * , f (1, a,W) + , ^ , U(0, a, W)
(X \)l (X X /X (X X fJ,

C(0) + AXV A - , . /i ■- ,< —^-r + U(0 ,a,W) + V(0,a,W)
CK + A + yU CK + A + yU Of + A + yU

{U(l,a,W) -U(0,a,W)} < W. (2.82)

So we can see that (2.82) in fact holds for 0 < j < m. We must also show that for

j > m + 1 we have

+
, t , V(j + 1, a, W) +—r—V(j - 1, a,W)oi + A + /i c^ + A + /i Qf + A + /i

> - + * t/(j, a,W) + -y(j - 1, a,W)
o; -|- A + + A + // Ck + A + //

=» {V(j + l,a,W)-V(j,a,W)}>W. (2.83)

In order to demonstrate that (2.81), (2.82) and (2.83) hold we consider the

following four cases in turn.

1. j = m

2. j < m

3. j = m + 1

4. j > m + 1

(1) j = m

For this case we must show that (2.81) holds. Using the same method that we

employed to find (2.35) we can see that

V(m+ 1, q. W) =g(m'+ 1} +XW+/g(m'. (2.84)

We also have using (2.31) that

C(m, a) + Xm{C(m + 1) + AW}(a + /i)"1V(m,a,W) = 1 ^Xm{cx -f- /i)

59

Using (2.31), (2.84) and simplifying we can see that

{V(m + 1, a,W) - V(m, a,W)} < W

<=>• \C(rn + 1) + AVF}(1 — Xm) < W{a + n — /iXm} + aC(m, a).

Now using the identity (2.42) and rearranging leads us to

C(m + 1) — Q!^l(rn'a) <- 1 ~ Xm+i ~ Xm+i(l — Xm) i1 Xm I (1 Xm^Xm^.-[J

** Wa(m) < W,

where, we use the expression we found for the index in (2.44) to get to the last line.
However we can see from the statement of Theorem 1 itself that we have

Wa{m) < W < Wa(m +1). So we have shown that the required condition holds

when the system is in state m. We now move onto case 2.

(2) j < m

Firstly note that in this case we have j < m and so under the policy described in

the statement of the theorem we will initially start off in the active mode. Therefore

using the definitions of C(.,a) and V(j,a,W) we have that

V(j, a,W) = C(j, a) + XjV(j + 1, a, W), j < m - 1. (2.85)

We prove this case by induction. To use a proof by induction we firstly need to

prove the initial case, i.e. prove that (2.81) holds when j = m — 1, we will then
assume that this inequality holds for j = r and prove it for j = r - 1. So I shall first

prove that (2.81) holds for the initial case of j - m - 1. Using the expression (2.85)
within (2.81) then formula (2.31) for V(m,a,W) and rearranging, we can see that

60

we need to show that

(1 — Xr,

{l-Xrn_1)V(m,a,W)-C(m-l,a) < W
(C(m,a)(a + n) + XmC(m+l) + \XmW} --i)i ; v 1 — G(ra — 1, a) < WL Ot ~\~ LA LIsCwi J

^ Xm(l X 1)fc(m+1) _ 0*
<y + n — /rXm t 1

' T [J> /-iXfi
aC(m, a)

Xr,
1 Xm—1 f OiXmC(^Tn, q)

a + n - nXri ^ aXn Xr
-|- C(m, q)(q +

< W

— C(m — 1, a)

Xm(1 - Xm)A
. (2.86)

OL + /I + flX^

However rearranging, simplifying and using the expression (2.40) that we found for

C(n,a) and then using a form of (2.42) we can see that

1 ~ Xm_ii faXmC(m,a) - -i -
— <^ — + C(m,a)(a + n) }■ - C(m- 1,a + n — fiX,

C(m, a) — C(m — 1, a)

a)

<

1 ~ Xm_i ^
1 Xm+i
1 ~ Xm—i
i — xm
f ~ Xm-i

OL \1 flXm—\
1 ~ Xm—i

OL + [A /iXm_i
1 ~ X~m—i

a + n — jiX,

C(m, a) — C(m — 1, a)

C(m) + nC{m — l,a) —C(m — l,a)

C(m — 1, a)

m—1

C(m)

C(m)

1 — -Xm—1
aC(m — 1, a)

{ — /r(l — Xm_i) + a + /r — /rXm_i}

(2.87)1 — -Xm—1

We can use the above expression, then use formula (2.44) (which we found for our

index) to see that the left hand side of (2.86) is less than or equal to

Xm(l -X"m—i) f \ aC(m, oi) "i
——<C{m+l)

a + U — UXrr, I 1

+

Xm J
1 — XTm_i

O: "\" 11 vXm-l
AWa(m) Xm(l — Xm_i) [1 — Xm+i

C(m) aC(m — 1, a)
1 -Xm—1

X.m+1 a + /j, — /jXn 1 - X.
-Xm+1

m

AWa(m - 1) 1 - Xm_i 1 ~ xm
1 ~ Xm_!

X. . (2.88)Xm OL + fi /iXm_j

Then from (2.42) we have that (a + /r + /zXm)Xm+1 = A(1 — Xm+i). Using this then

61

recalling that Wa(m — 1) < Wa(m) < W we can see that (2.88) is equal to

Wa(m) AXm(1 — Xm_i)
A(1 ~ Xn+l)

1 - Xm+1

1-X„
■Xm+1

i txr / i\^(l Xm— l)+Wa{m - 1)——

< w

= w

A(l-Xm)
Xm(l — XTO_i) AXmXm+i(l — Xm_i)

1 - X,

1 - AXm(l — Xm_i)
ot + /i + /rXm

A(1 — Xn+i)
+ 1

r l - xm
_

_ Alm(l - XTO_i)
1 — X™

where we get this last line by using relation (2.42) to see that

Xm+i/(A(l — Xm+i)) = 1 /(a + fi — fiXm). So we can therefore see that the

inequality in (2.86) does indeed hold so we have therefore established our initial

case. In other words we have shown that (2.81) holds when j = m — 1. So we now

assume that (2.81) holds for j = r < m — 1 and try to prove it for j = r — 1, in

which case we would have proven that (2.81) holds for all j < m as required. So we

assume that

V(r + 1, a, W) — V(r, a, W) < W, where r < m — 1

V(r + 1, a, W) <
W Cjr, a)
Xr 1 — Xr

+ (2.89)

which follows from relation (2.85). Using (2.85) we can see that we must show

V(r,a,W)-V{r-l,a,W) < Vh

(1 — Xr-i)C(r, a) + (1 — Xr-i)XrV(r + 1, a,W) — C(r — 1, a) < W{2.90)

Now using the inductive hypothesis (2.89) we can see that (2.90) will be proved if
we can show that

(1 — Xr-i)C(r, a) + (1 — XP_i)Xr

C(r,a)(1 — Xr_i) 1 + izhc

W

C(r — 1, a) < W

C(r,a) C(r — 1, a) < W

1 - Xr(i — xr_0
—r^x (2.91)

Using (2.40) and (2.42) we can see that AC(r,a) = Xr(C(r) + /.iC(r — l,a)) and

62

hence the left-hand side of inequality (2.91) becomes

{C(r)+iiC(r-l,a)}^j- 1 ~ -Xr—1
1 -Xr C(r — 1, a)

XPC(r)(l -X,r—1)

A(1 — Xr)
XPC(r)(l-Xr-i)

A(1 — Xr)
Xr(l-Xr-i)

+ C(r - 1, a)

+ C(r - 1,q)

/iXr(l — Xr) — A(1 — Xr
A(1 - Xr)

A - (a + X)Xr - A + \Xr
A(1 — Xr)

C(r) - °f(r;1'a)1 — Xr_!
(2.92)A(1 - Xr

where we move from line 2 to line 3 above by using relation (2.42) to infer that

fiXr(1 — Xr-i) = A — (a + A)Xr. So using (2.92) we can now see that the inequality
in (2.91) becomes

aC(r — 1, a)"
T C(r) 1 — Xr—\

Xr
A C(r) - —aC(r — 1, a) 1 -X.

-Xr

< w

< w

l-Xr
1-Xr_!

1 — Xr-\

^Wa(r- 1) < W.

We know that this last line is true since we have that r < m — 1 and that

Wa(m) < W (by hypothesis) and required condition (2.81) holds by Lemma 1, (i.e.
that Wa{.) is increasing). Therefore combining this with case 1 one can see that we

have proved that (2.81) does hold for 0 < j < m as required. We can now move

onto case 3.

(3) j = m + 1

Here we use j = m + 1 and so from (2.83) we can see that we must show that

V(m + 2, a, W) - V{m + 1, a, W) > W. (2.93)

If the system is in state m + 2 then one can see that following the policy described

in the statement of Theorem 1 will dictate that the passive action is taken initially.

Hence V(m + 2, a, W) will be made up of the total discounted cost until we enter

state m + 1 (via a single service completion) plus the total discounted cost from

63

state m + 1 onwards, discounted accordingly. So we have

V(m + 2,a,W) = (C{m + 2) + XW)Ex\ fL Jo

C(m + 2) + XW

e dt + V(m + l,a,W)E(e~aX),
where X ~ exp(p)

V(m + l,a,W)(^~— (2.94)a + fx, ' \a + n

Using relation (2.94) in the required inequality (2.93) and rearranging, we can see

that we must show that

C(m + 2) — aV(m + 1, a, W) > IU(a + p — A)
ru rC(m +1)+ AIU +pC(m, a) "i ^ .C(m + 2) - — -f- y ' \ > IU(a + u-At a: + u — uXm J

C(m+2)—a

+ p — pX,

C(m + 1) + AVU + C(m + 1, cJ)(oc + A + p — pXm) — C{rn + 1)
(y. p — pXr, }

> W{a + p — A)

In the above calculations we used relation (2.84) to get to the second line, relation

(2.40) to get to the third line, cancellation and the relation (2.42) to infer that
a + A + p — pXTO = \/Xm+i and that a + p — pXm = A(1 — XTO+1)/Xm+i to get to

the fourth line. Rearranging (2.95) leads us to

C{m +2)-^XX^>W1 -X.m+1

[a. + p — A)(l — Xm+i) + aXm+i
1 Xm+i

Now if we just concentrate on the right-hand side of (2.96) for a moment, we can

see that we can simplify and use the relation (2.42), to infer that

a + p - pXm+1 = A(1 - Xm+2)/Xm+2, as follows:

(2.96)

W (o: + p /^)(^ Xm+l') "b OtXjn+i
(1 — Xm+\)

= W

w

OL !-L ^(1- -^m+l)
1 Xm+1 1 Xm+1

A(1 - Xm+2) 1
X,m+2 1 -X,

A
m+1

XW

Xm+2

■1-X,
.1 -X,

m+2

m+1
-Xm+2 (2.97)

64

Using relation (2.97) within (2.96) we can see that in order to prove that the

inequality (2.83) holds for j = m + 1 we need to show

aC(m + 1, a) XXVC(m + 2) —— >
1 -X771+2

11 — X,
X.

771+1
771+2

1 Xm+1 Xm_|_2
Xm_|_2 r , . <yC{i7i +1, a) "I / r 1 Xm+2 v 1 ^ TTr(c(m+2)- i-aw, £ w

•v4> Wa(m + 1) > W

We have from the hypothesis in the theorem that we do have Wa(m + 1) > W,

hence can see that the above does indeed prove that inequality (2.83) holds for

j = m + 1. So we now move on to the final case.

(4) j > m + 2

Here we have j > m + 2 and we must show that inequality (2.83) holds. Note that
since in this case we have j >m + 2 then according to the policy in Theorem 1 we

will initially take the passive action. Therefore using the definition of V(j, a, W)
and the fact that in the passive mode we have service only (which follows the

exp(/i) distribution), we have that

VU,«, W) - C{3) + XW + (2.98)
ol + /i of + [i

We prove this case by induction also. Here we use j = m + 1 as our initial situation.

However we have already established (2.83) for this in case 3. So we now assume

that (2.83) holds for j = k and infer it for j — k + 1, i.e. we have our inductive

hypothesis

V(k + l,a,W)-V(k,a,W)>W, (2.99)

and we wish to infer that

V(k + 2,a,W)-V(k + l,a,W)>W. (2.100)

Using the relation (2.98) for V(k + 2, a,W) and V(k + l,a, W) then simplifying, we
can see that (2.100) is equivalent to

C(k + 2)-C(k + l) + n(y(k + l,a,W)-V(k,a,W)) > W(a + /x).

65

From (2.99) it will be enough to show that

C(k + 2)-C(k+l)> aW. (2.101)

So, in order to prove that (2.83) holds for j >m + 1 it is enough to show that the

inequality in (2.101) holds. To do this we consider the relation that we have already

proved in case 3. From (2.93) we have that

C(m + 2) - C(m + 1) + n(V(m+l,a,W)-V(m,a,W)) > W(a + /J$. 102)

We have also shown that V(m + 1, a, W) - V(m, a, W) < W (in case 1), so using
this we can see that (2.102) implies that

Now since k > m the convex nature of the cost curve C(.), (2.103) implies that

C{k + 2) - C(k + 1) > aW.

Hence we have shown the inequality in (2.101) does indeed hold and so we have
shown that (2.83) does hold for j > m + 1 as required.

Proof - Theorem 1 part (b)
Given a value for the rejection charge W < Wa(0), we must show that it is optimal

to not accept the arriving customers in any state. Again by standard DP theory it

is enough to show that V(.,a, W) satisfies the optimality equations (2.24), where V
is the value function for the policy described in the statement of the theorem. In

other words we must show that when V is replaced by V the second expression in

the r.h.s. of (2.24) is the smaller of the two if we are in any of the possible states

j > 0. Following a similar progression to that in the proof of part (a) we find that
for j > 0 we must show

V(m + 2, a, W) — V(m + l,a,W) > W

C(m + 2) - C(m + 1) > aW. (2.103)

{V(j + l,a,W)-V{j,a,W)}>W. (2.104)

66

To prove this we consider the following two cases in turn,

1. j = 0

2. j > 1

(i)j = o

Following a similar derivation as for (2.94) we find that

V(l, a, W) = C^ + XW + v(0, a,W)(-%-). (2.105)CX -f- fl VQ; + [A J

Following the policy in part (b) of Theorem 1 we always reject the arriving

customers. So when we are in state 0, we will always remain in this state and

therefore incur costs at a rate C(0) + AW. Hence

poo
V(0 ,a,W) = / (C(0) + XW)e~atdtJo

C(0) + XW
a

(2.106)

So using (2.105) and then (2.106) in the required inequality (2.104), we can see that
we must show that

C(l) -aV(0,a,W) > W{a + ^-X)

=*► C(l) - C(0) — XW > W(a + n-X)

=> C(1) > W(a + fi), (2.107)

since we have that C(0) = 0. Using expressions (2.38), (2.41) and (2.44) we can see

that

XM1) /^a + X)(l-X1)
aX\C(l) /A

(<* +A)(l -Xx) -aXi

67

(2.108)

Now using (2.41) and (2.42) we can easily show that

A(Q A)
Xi = 7 i ^7 7- (2.109)(cn + A + fi)(a + A) — fi\

Using this expression for Xx in (2.108) we see that,

a(a + A)C(l)Wa(0) = (a + A)2(a + fj,) — nA — q;A(q: + A)
C(l)

(2.110)(a + fi)

So using (2.110) we can see that the required inequality (2.107) is equivalent to

Wa(0) > W, (2.111)

which is given in Theorem 1 part (b), hence we can see that we have now proved

part (b) of Theorem 1 when j = 0.

(2) j > 1

Here we have j > 1 and we must show that inequality (2.104) holds. In this

situation the policy in part (b) of the Theorem 1 dictates that we take the passive

action. So using the definition of V(j, a, W) and the fact what we will have only

service completions (and no arrivals), we can see that

ma,W) = C^ +XW+^-1'a'W\ (2.112)
OL + fl OL ~h fl

We prove this case by induction. Here we use j = 0 as our initial situation.

However we have already established (2.104) for this in the previous case. So we

now assume that (2.104) holds for j = k and infer it for j — k + 1, i.e. we have our

inductive hypothesis

V{k + l,a,W)-V(k,a,W)>W, (2.113)

and we wish to infer that

V{k + 2,a,W)-V(k + l,a,W) > W.

68

(2.114)

Using the relation (2.112) for V(k + 2, a, W) and V(k + l,a, W) then simplifying,

we can see that (2.114) is equivalent to

C(k + 2)-C(k + l)+fi(y(k + l,a,W)-V(k,a,W)) > W(a + n).

From (2.113) it will be enough to show that

C(k + 2) - C(k + 1) > aW, (2.115)

in order to prove that (2.104) holds for j > 1. To do this we notice that from part

(b) of Theorem 1 we have

!Ua(0) > W

=*■ C(1)-C(0) > W(a + fj). (2.116)

Since /r > 0, k > 0 and we know that the cost curve C(.) is convex, inequality

(2.116) implies that

C(k + 2) - C(k + 1) > aW.

Hence we have shown the inequality in (2.115) does indeed hold and so we have

shown that (2.104) does hold for j > 1 as required.

Now since we have proved all possible cases we have completed the proof of

Theorem 1.

By studying the calculations in the proof of Theorem 1 carefully we can see that

when Wa(m) < W < Wa(m + 1) the policy described in the theorem is strictly

optimal. Suppose now that W = Wa(m). We can see from Theorem 1 that for this

lU-value, the policy which chooses the active action in states {0,1,... ,m} and the

passive action otherwise is optimal, we call this policy u\. Recall that «2 chooses

the active action in states {0,1,..., m — 1} and the passive action otherwise. From

(2.37) and following we have that

VUl{m,a,Wa(m)} = VU2{m, a, Wa(m)}. (2.117)

69

From this and the fact that u\ and take the same actions in all states other than

m it follows easily from (2.117) that

VUl {n, a,Wa(m)} = VU2{n, a, Wa(m)}, n e N,

and hence, policy tt2 must also be optimal when W — Wa(m). It follows that when
W = Wa(m) both actions are optimal in state m. The following result is now

immediate.

Theorem 2

The customer class is a-indexable with the Whittle a-index Wa(m) = Wa(m),
m 6 N.

Proof

By Theorem 1 and the definitions of the quantities involved we have that

UQ(W) - {0,1,...,m}, Wa(m) <W <Wa{m+ 1), me N, (2.118)

and the requirements of Definition 1 are met, with a-indexability an immediate

consequence. That Wa(m) is the Whittle cn-index for state m follows from (2.118)
and Definition 2.

Comments

1. We can now see that the Whittle a-index is indeed given by expression (2.44).

Also note that (2.42) and (2.40) are strongly suggestive of the following

computational schemes for the computation of Xm and C(m,a).

• Use XR to denote the Rth iterate of the target function X,, take X^ = 0,

meZ+, then
v-rt+l _ ^

a + A + fjL-fjtX*_1'

• Use CR(.,a) to denote the Rth iterate of the target function Take

70

Cl(m,a) = 0, m e Z+, then

CR+1(m,a) fiCR(m — 1, a) + C(m)
ot. + A + jd — fiXm-1

2. We will now substantiate the claims made for the Langrangian relaxation in

Section 2.2 in the discussion preceding Definition 1. We consider class k (server k)
and its associated routing control problem (k, a, W). Use {W£a; r = 0,1,, Rk}
for the set of distinct index values for class k, numbered in ascending order. So note

that we have Rk + 1 distinct index values, which may be infinite. So we have

<« < Ka < K«

and,

W,a; r = 0,1,2,..., Rk} = {Wk,a(n); n e N}.

If W ^ {W£a\r = 0,1,2,..., Rk}, we use Uk(W) to denote the unique optimal

policy for the problem (k, a, W) as given by Theorem 1. If W = W£a for some r
then we use Uk{W) to denote the optimal policy which chooses the passive action in

all states for which both actions are optimal. Using the notation of Section 2.2 we

write
OO

xkkiW)(mk) = EUk(w)\^e~atiIk,tun\Nk{Q) = mk
i= 1

for the first of the associated performance measures. Recall that we have

1 if, when the ith customer arrives, we have n class k customers present

lk,ti,n = and we choose not to admit her to station k,

0 otherwise.

So we have that

°o

^xT^\mk) = EUk(w) [= mk
neN i=l

where we now have that

Ik,ti ~~ *
1 if, we do not admit the ith arriving customer to station k,

0 otherwise.

71

From the characterization of uk{W) in Theorem 1, it easily follows that for any

choice of rrik and r, 0 < r < Rk — 1,

J2xk"nW)(mk) (2.119)
n£N

is constant for W G (W£a,W^1) since in this range uk(W) does not change.
Finally, it is straightforward to show that

^xKnW\mk) 0, W —> oo.

and hence

H 5Z xkiW)mk -0, W -» 00.
k—1 neN

To summarise, the quantity in (2.119) when regarded as a function of W is

piecewise constant, decreasing with jump discontinuities at distinct index values

and tends to 0 as W approaches infinity. These characteristics are inherited in the

obvious way by the aggregated quantity

EECw-EECw.
k=1 n£N k=1 n€N

which is the appropriate performance measure for an optimal policy u(lF) for the
if-class stochastic optimisation problem in (2.16) obtained by independent

operation of Uk{W) for each class k. Further we can see that if W = 0 < Wk,a(0),
1 < k < K, (i.e. the charge for rejection is 0), uk[W) takes the passive action at all
decision epochs, hence

k=1 n6N

So we can see that for each decision epoch t we should take

W(m,a) = (2.120)
k=1 neN

Hence the policy u{VF(m,a)} is optimal for the Lagrangian relaxation in (2.16)
with W = W(m,a), satisfies the constraint in (2.15)and hence solves Whittle's
relaxation.

72

3. Following Theorem 2 and the discussion on page 29, an index policy for the

K-class problem with discounted costs of Section 2.2 is constructed by computing

the index function Wkta(-) for each server k from an appropriate form of (2.44). At
each epoch t, the policy will send the arriving customer to the server with the

minimal index Wk^a{Nk(t)}.

2.4 The Undiscounted Problem

We now look at the undiscounted problem. We could find an undiscounted Whittle

index by one of two possible methods. We could reformulate the problem from

scratch in an undiscounted manner and follow a similar method as for the

discounted problem above. Or we could use the method documented here, where we

start with the discounted index and allow a to tend to 0 to give us the

undiscounted form of the index. We have actually used both these methods to find

the index and the result (as we would expect) is the same. For this undiscounted

problem we also compute another index, called the policy improvement index, for

comparison to the Whittle index.

2.4.1 The Undiscounted Whittle index

So we now look at the undiscounted problem given by equation (2.6). By use of the

information we have gained about the discounted problem we find an index policy

for the undiscounted problem. We again drop the class identifier k and observe that

we can now develop a suitable Whittle index W : N —* M+ for the average cost

problem from the limit of the corresponding cr-index

W(m) = lim Wa(m) = lim Wa(m), m e N, (2.121)
a—>0 a—>0

as in Definition 3. Utilising (2.121) within (2.44) we obtain the following result.

73

Theorem 3 (The Whittle index for average costs)
The Whittle index for the average cost admission control problem is given by

W(m) = i{C(m + l)-C(0)} + 4{C(™+l)-C(l)} + ...
fl /T
\TO—1 \m

+ _^riC'(rn +1)~ C(m ~ X)l + 7^Ti{C(m + !) - C'(m)}(2.122)/i>

Proof

Firstly note that here we use the fact that all moments of Tn are finite - which is

easy to show. Notice that

Xn = E{e'aTn) = E(1 - Tna) + 0(a2). (2.123)

So using (2.123) in (2.44) we have that

Wa(m) =%l{c(m+ 1) - - Xm+l}+0(a). (2.124)
Note that Tm is the time when the system firsts enters state m + 1, we can see from

(2.27) that the discounted cost from state m to state m + 1 is

r'm

C(m,a) = E / C(N(t))e~atdt\N(0) = rL Jo
pTm

= E I C(N(t))dt\N(0) = m +0{a).
-Jo

So when we allow a to tends towards 0, we can see that

C(m, a) —> C(m) as a —► 0.

where,
fT-m

C(m) = / C(N(t))dt\N(0) = m.Jo

Therefore we can see that when a —» 0 (2.124) becomes

W(m)^{C(m+l)-g^}/{^-l}. (2.125)
74

We will now consider the quantity E(Tm). We can find a relation between these

quantities if we condition on the first event after 0 given that m is the initial state.

Hence we have, for m > 1, that

<■-> =

XE(Tm) = 1 H- fiE(Tm^i),

since the first event must either be a service completion or an arrival hence the time

until the first event ~ exp(A + /i). Also note that in state 0 we can only have

customer arrivals, hence

£(T.) - i

Now using these equations recursively we can see that

E(Tm) = j + ^ + --- + ^+T> (2.126)
and also therefore that,

m

E(Tm) - E(Tm^) = (2.127)

We also consider the variable C(m), which is the expected cost incurred up to Tm.
We again condition on the first event to find that for m > 1, we have

C(m) = -)- __— x0 + -2——{C(m - 1) + C(m)\K ' A + n A + /i \ + n '
=>\C(m) = C(m) + nC(m — 1). (2.128)

Again note the slightly different form in state 0,

<?<»> =

since we know that C(0) = 0. Now using these equations recursively we find that,

cim)=9M+tE^+..,+vqm. (2.i29)
75

From (2.127) we can see that E(Tm+1)/E(Tm) = (pm+1 /E (Tm)Am+2) + 1, using this
we can see from expression (2.125) that,

\m+l

W{-m)= 7ST {C(m + l)E(Tm)-C(m)}
r 1 A Am 1

— C(m + 1)1 —I—^ + ...-) — }•v /i2 /lm+1 J
Am \m-l \

-<?M— - c(m - - • • • - c(1)^- (2'13°)
Note that we get the second line of the above by use of equations (2.126) and

(2.129). Now since C(0) = 0 is is easy to see that (2.130) is equivalent to the

expression for W(m) in Theorem 3, as required. We now move on to calculating

another index policy for this system, for comparison.

2.4.2 The Undiscounted policy improvement index

Note that in this section we maintain the system setup and notation previously

established, but may add some extra structure and notation where required. The

approach to index development described here builds from the best static policy for

the system. A static policy is one whose application does not change over time (or
with the system state). To find an optimal static policy we initially consider the

whole system. For illustrative purposes, we shall consider a system with 2 service

stations present. The static policy specifies a proportion of the arriving customers

to be sent to each station. More specifically, each arriving customer is sent to server

1 with some specified probability p\ and to server 2 with probability p2 = 1 — Pi-

The Optimal Static Policy

A two-server system can be represented by the the diagram shown in Figure 2.4. In

Figure 2.4 A is the system arrival rate, and pi is the service rate of queue i, i = 1,2.

76

Figure 2.4: Two-server, static policy, example.

Also on this diagram pi is the proportion of customers to be sent to queue 1. Note

that we will now require that pi > Xpi and p2 > A(1 — pi) for stability. The optimal
static policy is the one whose parameter p\ minimises the average holding cost rate

of the system. It can be seen that the average cost rate for for the system will take

the form

J^Ci(n)pi,n + ^2c2(n)p2,n, (2.131)
n>0 n>0

where Ci(n) is the cost rate for queue i in state n, and is the probability that

queue i is in state n under the static policy. Assuming that our stability

requirements are met, we know from standard M/M/l theory that

hn=(~)n(2 = 1,2. (2.132)

Therefore using (2.132) within (2.131) we can see that the expected cost rate for the

system is

$>(n)(^l)"(l - *») +£c2(«)(^)"(l -% (2.133)t>0 v^ ' v ^ Vp2y v p2j
77

So the optimal static policy is found by selecting p\ to minimise (2.133) and to meet

our stability requirements. We will label the optimal p\ by p\.

Finding the policy improvement index

We now develop a dynamic routing policy by imposing a single DP policy

improvement step on the optimal static policy. To help us make this decisions under

this policy, assume that we have an arriving customer. Now consider for each i the

difference between

- the total cost to infinity of sending this customer to queue i and then

following the optimal static policy, and

- the total cost to infinity of rejecting this customer from queue i and then

following the optimal static policy, i = 1,2.

Note that while each of the above quantities is infinite, their difference (suitably

defined) is finite. This fact relates to the theory of relative costs for undiscounted

Markov Decision Processes. See Tijms (1994). We calculate this difference for each

of our queues. It follows from a simple DP-type argument that, among policies

which make all subsequent decisions according to the optimal static policy, the best

current decision is to send the arriving customer to the queue where this difference

is the smallest. Hence, for each station we require, for each n the cost difference

between following the optimal static policy from initial states n + 1 and from n. We

define our policy improvement index for state n to be this difference. We now

recover this difference in closed form. To help us in this task we introduce the

following notation:

Ki(n) = the expected holding cost incurred under implementation of the

optimal static policy until we empty queue i for the first time,

when starting with n customers at time zero;

and

Ti(n) — the expected time under implementation of the optimal static

policy until we empty queue i for the first time,

when starting with n customers at time zero.

Also to help us gain further understanding we consider the state transition

diagrams shown in figures 2.5 and 2.6. So if we now consider some large time T we

/\

Number of

Customers

in queue i !

TW T Time

Figure 2.5: Possible state transition diagram from state n, down to state 0.

can see that our policy improvement index (the difference defined on page 78) will

79

Number of

Customers
in queue i

n,+l4

Tt(ni+1) Time

Figure 2.6: Possible state transition diagram from state n* + 1 down to state 0.

take the approximate form

PIi(n) S Kiin + V + p-Tiin + iyc;- (K^n) + [T - Ti{n)\C*)
= Ki(n + 1) - Ki(n) - [Tt{n + 1) - Ti{n)\C*. (2.134)

Note that in (2.134) we have used C* to denote the average queue i cost rate when

following the optimal static policy. In fact, the theory of Markov Decision Processes

indicates that the expression in (2.134) is exactly the index we require. See Tijms

(1994). To use (2.134) we need to be able to calculate the terms Ki(.) and !)(.). To
find an expression for Tj(.), we condition upon the first event after zero for queue i
to obtain for n > 0 that

Ti(n + 1) = 1 + ^ Ti(n + 2)+ * T{{n)^Pi + Pi Pi + Pi ^Pi "b Pi
[ii{Ti(n + 1) — Ti(n)} = 1 + \p*{T,{n + 2) - Ttn + 1}. (2.135)

We now introduce

8i{n) = Ti(n + 1) - Tj(ra).

80

Hence we can see from (2.135) that

Si(n) = l +M^+i)
1 Apt r 1 Apt

1 -< 1 oAn + 2

1 +M/l + (M.)l + (M)21 + (M)31
1 Apt r pr1:/_^i \

11 - Av*u~l iPi Pi 11 - Aptpi 1
1

(2.136)
Pi - Ap*

This calculation may be confirmed by standard queueing theory. The expression in

(2.136) is the expected busy period for an M/M/l queue with arrival rate Ap* and

service rate p,. To find an expression for Ki(.), we similarly condition upon the first

event after 0. Hence for n > 0, we have

K'{n + 1)= l^T^ + \^A-{n + 2) + W^K'{n)
^ Pi{i^i(n + 1) — A,(n)} = Ci{n + 1) + Ap*{Aj(77 + 2) — K^n + 1}. (2.137)

We now define

5i(n) = Ki{n + 1) - K^n).

Hence we can see from (2.137) that

s , , Cj(n + 1) Apt jSi{n) — 1 <5,(77.+ 1)
Hi

= Qfo-j-l) + MC.(n + 2) + + 2)
Pi Pi Pi A pj /

Cj(n + 1)
| Ap* Cj(77 + 2) | fXp*\2Cj(n + 3) , (Xp^C^n + 4)/Ap-yc^n + 3) | /Ap,yV Mi / Mi V Mi /Hi Hi Hi \ Hi J Hi \ fli ' f^i

| /Aptx4Cj(n + 5) +
1 00 \

= -Y.c^n + l + x){Jr)X- (2-138)p* x=0 Ai
Also note that using equation (2.132) we can see that the average cost rate for

queue i is

(2.139)
1=0 Pi ^

81

So now using expressions (2.136), (2.138) and (2.139) we can see that the expression

in (2.134) becomes

PIi(n) = 5t(n) - 5i(n)C*
= ^l(n+1+4^y-l±x=0

oo

V / / j ~ 1 \— / \\ Hi / Hi \ Hi

M. ~ ^ U>i ' ^^ Z=0 ^

(2.140)

(2.141)

So we have now found our policy improvement index for this two server example.

Comments

1. Following Theorem 3 and the discussion in Section 2.2, the Whittle index policy

for the Ff-class service control problem with average costs described in (2.6), is
constructed by computing the index function Wk(.) for each customer class k from

an appropriate form of (2.122). At each epoch t, the index policy will admit the

arriving customer to the queue with minimal index Wk{Nk(t)}.

2. Following the above formulation of the policy improvement index we can see

that, the policy improvement index policy for the 2-class service control problem

with average costs described in (2.6), is constructed by computing the index
function Ph{-) for each customer class k from an appropriate form of (2.141). At
each epoch t, the index policy will admit the arriving customer to the queue with
minimal index PIk{Nk(t)}.

3. Note that the form of the index in (2.140) will hold for the K class service

control problem. However, a general formulation will be required for the optimal
static policy and the queue k average cost rate, C£.

82

2.5 Numerical investigation of routing index

policies for multi-class systems

We have used a Lagrangian relaxation for our routing problem and studied the

consequential service station problem with a charge for admission in Section 2.3.1.

This has led us to a set of index heuristics for the problem with multiple service

stations as in Section 2.2. An index for the discounted costs problem in (2.3) is

obtained as a fair charge for rejection with an appropriate index for the average

costs problem (2.6) obtained as a limit.

We will now investigate the performance of the index heuristics numerically. In the

discounted case the investigation compares the expected cost of following the

Whittle index policy with the optimal expected cost for problems with two service

stations. However, our prime focus will be on average cost problems. For the

average cost scenario we compare the average cost rate for the Whittle index policy

to the optimal cost rate and the average cost rate for the policy improvement index

policy. Further, for the average costs problem we use simulation techniques to

compare cost rates for the Whittle index policy with those of competitor policies for

problems with five service stations. For the five station problems, direct calculation

of the cost rates would prove computationally intractable so we adopt a simulation

approach. We begin with the study of some two service station problems with

discounted costs.

2.5.1 Discounted cost problems with two service stations

In this section we study routing problems of the type described in Section 2.2 with

two service stations. We consider the following four cost rate structures:

83

(a) C\(n) = n + 2ra2; C2(n) = 2n + 2n2; (quadratic)

(b) C\(n) = n2 + 2n3; C2(n) = 2n2 + 2n3; (cubic)

(c) C\{ri) = n3 + 2n4; C2(n) = 2n3 + 2n4; (quartic)

(d) Ci(n) = (n - 2)+ + 2{(n - 2)+}2; C2(n) = 2(n - 2)+ + 2{(n - 2)+}2;
(shifted quadratic)

Tables 2.1 - 2.16 contain the results of part of a study comparing the discounted

costs incurred by the index heuristic described in Comment 3, on page 73, with

those incurred by a similar heuristic found following a similar approach but which

has followed a simpler analysis which allowed the number of customers present in

the queue to take negative values, where zero holding costs are incurred. These

index heuristics are also compared to the optimal policy for a range of service

control problems with two customer classes. Tables 2.1 - 2.4 correspond to the cost

structure (a), tables 2.5 - 2.8 correspond to the cost structure (b), tables 2.9 - 2.12

correspond to the cost structure (c) and tables 2.13 - 2.16 correspond to the cost

structure (d) above. In these tables, the first row gives the starting state for the

first customer class, and the first column gives the starting state for the second

customer class. The choice of the arrival rate and the service rates for both queues

are detailed in the caption on the bottom of each table. For case 1, A is chosen such

that the value of the F = —7— is 0.60, while for case 2, F is set to be 0.85. In cases/U+M2 '

3 and 4 we can see that the mean service times are further apart than in 1 and 2.

Again in case 3, A is chosen to yield T = 0.60 while for 4 we have T = 0.85. Each
block of data in each table consists of 3 data entries. The top entry is the

discounted cost for the index policy as in comment 3, on page 73, the middle entry

is the discounted cost for the index policy which allows negative customers and the

bottom entry is the optimal cost.

84

In each case the the fully optimal policy is found using dynamic programming

techniques and all costs are found by use of DP value iteration; see Chapter 3 of

Tijms (1994). It is possible to use such methods for problems of this size, but

computationally expensive.

state 0 1 2 3 4

0
210.6236
211.0498
210.5974

214.6101
215.0440
214.5836

224.2219
224.6764
224.1947

241.0394
241.5365
241.0106

266.5968
267.1736
266.5652

1
214.1985
214.6584
214.1985

220.0420
220.5163
220.0420

231.5569
232.0634
231.5569

250.3041
250.8733
250.3041

277.8074
278.4908
277.8074

2
222.8250
223.2779
222.7978

230.8983
231.3760
230.8702

246.0696
246.6017
246.0395

268.5123
269.1446
268.4786

299.7393
300.5497
299.6991

3
237.8850
238.3777
237.8564

248.2554
248.7917
248.2252

267.6224
268.2537
267.5887

295.4074
296.2115
295.3674

332.0016
333.1077
331.9506

4
260.8293
261.3965
260.7980

273.5564
274.1992
273.5223

297.2191
298.0262
297.1790

330.9804
332.0853
330.9294

374.5085
376.1315
374.4387

Table 2.1: Comparative performance of the index heuristics and an optimal policy
with various starting states for the discounted problem with quadratic costs and two
customer classes. Case 1: b\ = 1.0, 62 = 2.0, A = 3.0, = 2.65, g2 = 2.35.

state 0 1 2 3 4

0
1050.8856
1050.8856
1050.8840

1064.2904
1064.2904
1064.2887

1092.9608
1092.9608
1092.9591

1138.6483
1138.6483
1138.6466

1203.0212
1203.0212
1203.0195

1
1063.5680
1063.5680
1063.5663

1083.6053
1083.6053
1083.6037

1119.1804
1119.1804
1119.1788

1172.0052
1172.0052
1172.0035

1243.7222
1243.7222
1243.7205

2
1090.5355
1090.5355
1090.5338

1118.1584
1118.1584
1118.1567

1165.1772
1165.1772
1165.1755

1229.8043
1229.8043
1229.8027

1313.6476
1313.6476
1313.6460

3
1133.5411
1133.5411
1133.5394

1169.0950
1169.0950
1169.0934

1228.7413
1228.7413
1228.7397

1308.4203
1308.4203
1308.4187

1407.6973
1407.6973
1407.6957

4
1194.2525
1194.2525
1194.2509

1238.0498
1238.0498
1238.0482

1310.7918
1310.7918
1310.7902

1406.6997
1406.6997
1406.6980

1523.8699
1523.8699
1523.8682

Table 2.2: Comparative performance of the index heuristics and an optimal policy
with various starting states for the discounted problem with quadratic costs and two
customer classes. Case 2: A = 4.25, = 2.65, p.2 = 2.35.

85

state 0 1 2 3 4

0

208.6207

249.0692
207.9200

212.9358

252.7041

212.2215

223.3266

262.2288

222.5758

241.4969

279.5219
240.6712

269.0792

306.2667
268.1491

1

212.1878

253.3278

211.4753

218.2640

258.2361

217.5281

230.4185

269.3797
229.6296

250.3453

288.4064

249.4531

279.6542

316.8913

278.6353

2

220.5476

260.7760

219.8044

229.0665

269.1014

228.2810

244.7221

283.6986

243.8458

268.1279
306.2448

267.0842

300.8412

338.1859

299.6304

3

235.0967

274.4531

234.2906

246.1805

285.3669

245.3001

266.3587

305.2758

265.3196

294.9530

333.1736

293.6280

332.6982

370.2452

331.1646

4

257.2081

295.7851

256.2847

270.9803

309.4634

269.9279

295.8938

334.2895

294.5669

330.9430

369.4299

329.1233

375.2701

413.1829

373.2524

Table 2.3: Comparative performance of the index heuristics and an optimal policy
with various starting states for the discounted problem with quadratic costs and two
customer classes. Case 3: A = 3.0, = 2.9, P2 — 2.1.

state 0 1 2 3 4

0

1050.6659

1050.6659

1046.7996

1065.0865

1065.0865

1061.1677

1095.7043

1095.7043

1091.6720

1144.2248

1144.2248

1140.0068

1212.2337

1212.2337

1207.8153

1

1063.3456

1063.3456

1059.4327

1084.1245

1084.1245

1080.1325

1121.2328

1121.2328

1117.0958

1176.3613

1176.3613

1172.0008

1251.0558

1251.0558

1246.4852

2

1089.8994

1089.8994

1085.8868

1118.8187

1118.8187

1114.6896

1166.9900

1166.9900

1162.6600

1233.3734

1233.3735

1228.7525

1319.4345

1319.4345

1314.6009

3

1132.0602

1132.0602

1127.8839

1169.5495

1169.5495

1165.2113

1230.9220

1230.9220

1226.3087

1311.9617

1311.9617

1306.9635

1412.7757

1412.7757

1407.5994

4

1191.4890

1191.4890

1187.0719

1237.9490

1237.9490

1233.3142

1313.1064

1313.1064

1308.1058

1410.8746

1410.8746

1405.3686

1528.9781

1528.9781

1523.4175

Table 2.4: Comparative performance of the index heuristics and an optimal policy
with various starting states for the discounted problem with quadratic costs and two
customer classes. Case 4: A = 4.25, = 2.9, P2 = 2.1.

86

state 0 1 2 3 4

0

579.5455

579.5456

579.4717

590.1897

590.1898

590.1148

620.2025

620.2027

620.1246

682.9277

682.9278

682.8435

796.2813

796.2815

796.1854

1

589.4542

589.4544

589.3793

607.2851

607.2852

607.2082

646.3164

646.3166

646.2350

719.7386

719.7388

719.6483

845.3558

845.3560

845.2493

2

616.5730

616.5732

616.4953

644.4031

644.4033

644.3218

702.0086

702.0088

701.9193

797.0745

797.0747

796.9704

947.2250

947.2252

947.0948

3

672.5226

672.5227

672.4390

712.4430

712.4432

712.3531

793.6634

793.6636

793.5595

922.8173

922.8174

922.6879

1111.0222

1111.0224

1110.8485

4

773.0782

773.0784

772.9837

827.1199

827.1200

827.0142

935.5585

935.5587

935.4287

1105.8381

1105.8383
1105.6645

1347.7988

1347.7990

1347.5491

Table 2.5: Comparative performance of the index heuristics and an optimal policy
with various starting states for the discounted problem with cubic costs and two
customer classes. Case 1: A = 3.0, pi = 2.65, /U2 = 2.35.

state 0 1 2 3 4

0

7106.0088

7106.0088

7106.0082

7195.7841

7195.7841

7195.7836

7393.0781

7393.0781

7393.0776

7720.6491

7720.6491

7720.6486

8206.1591

8206.1591

8206.1585

1

7191.7658

7191.7658

7191.7652

7331.3238

7331.3238

7331.3233

7585.7445

7585.7445

7585.7439

7978.0101

7978.0101
7978.0095

8536.0043

8536.0043
8536.0038

2

7378.8421

7378.8421

7378.8415

7579.8333

7579.8333

7579.8328

7931.7508

7931.7508

7931.7502

8434.0154

8434.0154

8434.0149

9114.8721

9114.8721

9114.8715

3

7688.8258

7688.8258

7688.8252

7960.0768

7960.0768

7960.0762

8427.4549

8427.4549

8427.4544

9076.2076

9076.2076

9076.2070

9919.9344

9919.9344

9919.9338

4

8147.8351

8147.8351

8147.8345

8498.4886

8498.4886

8498.4880

9095.8332

9095.8332

9095.8327

9913.1245

9913.1245

9913.1239

10955.6911

10955.6911

10955.6906

Table 2.6: Comparative performance of the index heuristics and an optimal policy
with various starting states for the discounted problem with cubic costs and two
customer classes. Case 2: X = 4.25, p\ = 2.65, p2 = 2.35.

87

state 0 1 2 3 4

0

574.9301

598.2604

570.1384

586.4806

610.2718

581.5945

619.0386

644.0628

613.8998

687.1567

713.5463

681.4983

810.4836

837.9525

803.8525

1

584.7599

608.4892

579.8865

603.2600

627.7805

598.2244

644.4131

670.7283

639.0098

722.5880

750.3845

716.4692

857.3360

886.0301

849.9110

2

611.1339

635.9035

606.0473

640.4110

666.6096

635.0315

699.7668

729.0360

693.7581

798.9148
829.5837

791.7458

957.2751

988.2723

948.0414

3

665.0901

691.9848

659.5680

707.6189

737.0278

701.5816

792.1219

826.8965

784.9851

925.0937

960.0432

915.9748

1121.1018

1155.0850

1108.5168

4

761.6057

790.5301

755.2704

819.9256

851.3064

812.6960

933.9976

969.5408

924.8661

1110.9633

1150.7708

1098.4163

1361.5073

1398.2818

1343.0415

Table 2.7: Comparative performance of the index heuristics and an optimal policy
with various starting states for the discounted problem with cubic costs and two
customer classes. Case 3: A = 3.0, pi = 2.9, P2 = 2.1.

state 0 1 2 3 4

0

7149.3137

7080.7352

7075.3750

7246.5323

7177.0227

7171.5898

7458.5645

7387.0405

7381.4502

7808.6500

7733.8313

7727.9835

8325.5481

8245.9022

8239.6771

1

7235.5933

7166.1871

7160.7623

7381.0814

7310.2729

7304.7385

7647.6980

7574.3155

7568.5799

8058.9289
7981.5793

7975.5336

8643.7842

8560.7918

8554.3052

2

7420.9079

7349.7321

7344.1689

7632.2092

7558.9669

7553.2423

7994.4350

7917.6270

7911.6237

8512.5139

8430.5436

8424.1368

9215.8830

9126.8176

9119.8563

3

7726.4481

7652.3696

7646.5796

8013.3554

7936.4023

7930.3876

8496.1399

8414.3057

8407.9095

9159.0948

9070.4315

9063.5016

10022.6700

9924.8798

9917.2366

4

8177.8308

8099.4777
8093.3536

8550.6427

8468.4273

8462.0013

9169.8429
9081.1360

9074.2027

10006.6384

9908.9637
9901.3295

11068.3765

10958.9430

10950.3899

Table 2.8: Comparative performance of the index heuristics and an optimal policy
with various starting states for the discounted problem with cubic costs and two
customer classes. Case 4: A = 4.25, = 2.9, P2 — 2.1.

88

state 0 1 2 3 4

0

2109.2934

2109.2817

2109.2619

2147.5442

2147.5323

2147.5125

2256.6994

2256.6869

2256.6669

2505.7378

2505.7241

2505.7039

3018.8653

3018.8494

3018.8288

1

2145.3561

2145.3442

2145.3243

2212.8907

2212.8784

2212.8585

2364.7870

2364.7738

2364.7538

2671.6584

2671.6435
2671.6231

3259.0952

3259.0772

3259.0563

2

2245.4987

2245.4862

2245.4663

2359.0160

2359.0029

2358.9828

2602.6807

2602.6660

2602.6456

3031.2814

3031.2639

3031.2431

3772.8443

3772.8217

3772.8000

3

2469.1778
2469.1642

2469.1441

2645.9765

2645.9617

2645.9413

3018.8554

3018.8379

3018.8170

3651.1780

3651.1556

3651.1339

4645.3840
4645.3531

4645.3299

4

2923.7507

2923.7351

2923.7145

3183.2774

3183.2596

3183.2387

3722.2799

3722.2575

3722.2358

4621.4964

4621.4656

4621.4423

5998.0101

5997.9647

5997.9389

Table 2.9: Comparative performance of the index heuristics and an optimal policy
with various starting states for the discounted problem with quartic costs and two
customer classes. Case 1: X — 3.0, = 2.65, p,2 = 2.35.

state 0 1 2 3 4

0

64887.4241

64887.4241
64887.4238

65705.9711

65705.9711

65705.9708

67496.6050

67496.6050

67496.6047

70468.7657

70468.7657

70468.7653

74906.8094

74906.8094

74906.8090

1

65670.5008

65670.5008

65670.5005

66950.5934

66950.5934

66950.5931

69289.9911

69289.9911

69289.9907

72911.8057

72911.8057

72911.8054

78114.1912

78114.1912

78114.1908

2

67374.5753

67374.5753

67374.5750

69240.7964

69240.7964

69240.7961

72525.9772

72525.9772

72525.9768

77266.1509

77266.1509

77266.1506

83782.1075

83782.1075

83782.1072

3

70200.8249

70200.8249

70200.8246

72765.8042

72765.8042

72765.8039

77214.7761

77214.7761

77214.7758

83474.4813

83474.4813

83474.4810

91770.2630

91770.2630

91770.2626

4

74418.0943

74418.0943

74418.0939

77810.2515

77810.2515

77810.2512

83633.8381

83633.8381

83633.8378

91718.9023

91718.9023

91718.9019

102250.6385

102250.6385

102250.6381

Table 2.10: Comparative performance of the index heuristics and an optimal policy
with various starting states for the discounted problem with quartic costs and two
customer classes. Case 2: A = 4.25, = 2.65, /i2 = 2.35.

89

state 0 1 2 3 4

0

2127.0951

2180.9986

2071.1835

2169.3041

2224.2724

2112.2884

2289.5092

2347.3262

2229.5395

2563.7419

2627.4181

2497.6964

3129.6435

3199.1128

3052.2272

1

2163.4622

2218.2873

2106.5949

2234.6058

2291.2591

2175.8428

2396.7966

2457.5962

2333.7340

2727.5370

2796.4033

2656.1096

3365.9486

3440.6608

3279.2494

2

2262.4082

2319.6368

2203.0485

2383.4031

2443.9336

2320.6196

2638.0194

2705.6441

2567.8794

3091.0231

3171.7306

3007.3170

3884.4790

3969.6287

3776.6340

3

2480.9823

2543.1208

2416.5312

2671.6879

2739.6351

2601.2135

3065.2015

3145.5459
2981.8719

3727.0094

3829.7011

3620.5065

4780.8898

4880.6945

4633.8632

4

2921.5586

2992.8661

2847.5998

3205.3988

3286.7887

3120.9850

3781.4766

3884.3102

3674.8266

4733.7817

4875.1238

4587.2002

6190.5413

6304.1979

5974.7592

Table 2.11: Comparative performance of the index heuristics and an optimal policy
with various starting states for the discounted problem with quartic costs and two
customer classes. Case 3: A = 3.0, = 2.9, P2 = 2.1.

state 0 1 2 3 4

0

65041.7051

64595.5474

64595.1725

65924.8975

65472.6825

65472.3026

67841.9398

67376.6201

67376.2291

71005.2463

70518.4916

70518.0827

75709.5283

75191.3686

75190.9333

1

65826.6437

65375.1017

65374.7222

67155.9544

66695.2890

66694.9020

69596.6226

69119.2119

69118.8108

73374.3762

72871.1559

72870.7331

78797.0890

782-57.1584

78256.7047

2

67508.6157

67045.5608

67045.1718

69461.6124

68985.1134

68984.7130

72827.8211

72328.1245

72327.7047

77691.5835

77158.3018

77157.8537

84383.0007
83803.5594

83803.0726

3

70284.7936

69802.8548

69802.4498

72982.8695

72482.2291

72481.8084

77554.1393

77021.7431

77021.2958

83918.0782

83341.2533

83340.7687

92359.2651

91723.0623

91722.5279

4

74417.8206

73908.0719

73907.6436

78000.5661

77465.6895

77465.2401

83999.5624
83422.4535
83421.9687

92228.7285

91593.2774
91592.7436

102892.3862

102180.4346

102179.8366

Table 2.12: Comparative performance of the index heuristics and an optimal policy
with various starting states for the discounted problem with quartic costs and two
customer classes. Case 4: A = 4.25, = 2.9, p2 — 2.1.

90

state 0 1 2 3 4

0

31.2491

31.2844

26.9477

31.6183

31.6540

27.4341

32.7888

32.8258

28.7390

36.6648

36.7047

32.7448

45.0288

45.0743

41.2298

1

31.7834

31.8193

27.4085

32.4481

32.4847

28.2842

34.2664

34.3051

30.2525

38.9945

39.0374

35.1092

48.3504

48.4011

44.5814

2

32.7988

32.8359

28.6332

34.2566

34.2953

30.2047

37.5818

37.6242

33.6487

44.0896

44.1391

40.2692

55.4401

55.5022

51.7241

3

36.0104

36.0501

32.0053

38.4631

38.5058

34.5311

43.7577

43.8071

39.9218

53.1087

53.1704

49.3684

67.5417

67.6248

63.8910

4

43.0500

43.0949

39.1796

46.6710

46.7212

42.8536

54.2223

54.2842

50.4824

66.9752

67.0582

63.3166

85.6920

85.8120

82.1069

Table 2.13: Comparative performance of the index heuristics and an optimal policy
with various starting states for the discounted problem with shifted quadratic costs
and two customer classes. Case 1: X = 3.0, p\ = 2.65, P2 — 2.35.

state 0 1 2 3 4

0

475.8122

475.8122

451.1069

480.0174

480.0174

456.7966

490.8712

490.8712

469.2034

511.0357

511.0358

490.7747

542.7625

542.7625

523.7593

1

481.5544

481.5544

456.5510

488.1356

488.1356

465.4553

502.7966

502.7966

481.7261

527.4117

527.4117

507.6839

564.0322

564.0322

545.4952

2

490.9464

490.9464

468.3720

502.7274

502.7274

481.3952

524.4071

524.4071

504.3447

556.6570
556.6570

537.7662

601.5267
601.5267

583.7152

3

509.4345

509.4345

488.5927

526.4045

526.4045

506.3915

556.1981

556.1981

537.2245

598.5014

598.5014

580.5523

654.1519

654.1519

637.1744

4

538.8534

538.8534

519.4092

561.3471

561.3471

542.5396

599.9941

599.9941

582.0633

653.5595

653.5595

636.5476

722.1017

722.1017

705.9767

Table 2.14: Comparative performance of the index heuristics and an optimal policy
with various starting states for the discounted problem with shifted quadratic costs
and two customer classes. Case 2: A = 4.25, p\ = 2.65, P2 = 2.35.

91

state 0 1 2 3 4

0

30.2241

32.5826

26.4916

30.6454

33.0367

27.0149

31.9404

34.4328

28.4152

36.1923

38.7933

32.7522

45.3463

48.0329

41.9585

1

30.7409

33.1397

26.9446

31.4643

33.9195

27.8432

33.3931

35.9988

29.8813

38.4541

41.1757
35.0147

48.5294

51.3219
45.1204

2

31.7661

34.2449

28.1260

33.3003

35.8988

29.7491

36.7184

39.5836

33.2362

43.5075

46.4732

40.0606

55.4888

58.4810

52.0224

3

34.8702

37.5290

31.3362

37.4670

40.3454

33.9751

42.9533

46.3050

39.4885

52.5552

55.8782

49.0670

67.5519

70.8068

63.9572

4

41.5983

44.4224

38.1297

45.4800

48.5122

42.0154

53.3873

56.7659

49.8926

66.5881

70.2929

62.9838

85.8655

89.3824

82.0107

Table 2.15: Comparative performance of the index heuristics and an optimal policy
with various starting states for the discounted problem with shifted quadratic costs
and two customer classes. Case 3: A = 3.0, p\ = 2.9, = 2.1.

state 0 1 2 3 4

0

472.5335

471.4551

449.3343

477.3083

476.2191

455.4347

489.2157

488.0993

468.6328

510.9831

509.8199

491.4826

544.9370

543.7036

526.3142

1

478.2361

477.1448

454.7570

485.4279

484.3202

463.9453

501.0034

499.8601

480.8099

526.9642

525.7638

507.7632

565.4672

564.1842

547.0533

2

487.8988

486.7854

466.3519

500.3802

499.2384

479.8917

522.7890

521.5960

503.2545

556.1150

554.8466
537.3771

602.5016

601.1286

584.3971

3

506.2955

505.1417

486.0705

524.2528

523.0575

504.6858

555.0362

553.7696

536.1870

598.2433

596.8759

579.9889

655.1402

653.6375

637.3412

4

535.2722

534.0567

516.0351

559.1513

557.8791

540.3562

599.1586

597.7905

580.8817

653.9117

652.4105

636.0608

723.5491

721.8727

705.9687

Table 2.16: Comparative performance of the index heuristics and an optimal policy
with various starting states for the discounted problem with shifted quadratic costs
and two customer classes. Case 4: A = 4.25, p.i = 2.9, P2 = 2.1.

92

2.5.2 Average cost problems with two customer classes

Tables 2.17 - 2.24 below contain the results of part of a study comparing the average

costs incurred by the index heuristic described in the comment following Theorem 3

with rates incurred by an optimal policy. Again the optimal policies were found

using dynamic programming techniques, and the cost rates by DP value iteration.

All the admission control problems studied here have two service stations. Each cell

in the body of the table gives results for four different cost structures in the form

a [a] (a) b [b] (b)
c [c] (c) d [d] (d)

The corresponding cost rates are as follows:

(a) Ci(n) = bin + 2n2; C2(n) = b2n + 2n2; (quadratic)

(b) Ci(n) = bin2 + 2n3; C2(n) = b2n2 + 2n3; (cubic)

(c) Ci(n) = bin3 + 2n4; C2(n) = b2n3 + 2n4; (quartic)

(d) Ci(n) = &i(n - 1)+ + 2{(n - 1)+}2; C2(n) = b2(n - 1)+ + 2{(n - 1)+}2;

(shifted quadratic)

In all cases the unbracketed figure (a, b, c or d) is the average cost rate for the
index policy deduced in Section 2.4.1, the figure in square brackets is the

corresponding average cost rate for the policy improvement index policy of Section

2.4.2, with the relevant optimal cost in round brackets, (•). The first two columns of
tables 2.17 - 2.24, give the service rates for the queues which apply to the values in

the corresponding row. The vales of the cost coefficients, b\, b2 are also clearly

labelled in the tables. The arrival rate A is chosen to give a T-value of 0.60 in tables

2.17 - 2.20. The arrival rate A is modified in tables 2.21 - 2.24 to give a

Gamma-value of 0.85, as indicated. Recall that T = —7—.' m+fl2

93

r = 0.6

Ail A<2 b\ — 0.4, 62 = 0.4
3.0 3.0 4.6834 [4.6834] (4.6833) 12.0902 [12.0902] (12.0902)

42.3444 [42.3444] (42.3444) 1.8371 [1.8371] (1.8370)
2.9 3.1 4.6548 [4.6551] (4.6544) 11.9880 [11.9872] (11.9872)

41.9291 [41.9151] (41.9148) 1.8334 [1.8210] (1.8199)
2.8 3.2 4.6314 [4.6340] (4.6311) 11.9229 [11.9092] (11.9092)

41.7396 [41.5874] (41.5874) 1.8320 [1.8090] (1.8056)
2.7 3.3 4.6129 [4.6200] (4.6116) 11.8948 [11.8560] (11.8556)

42.1028 [41.3606] (41.3604) 1.8329 [1.8007] (1.7933)

^1 Ai2 61 = 0.6, 62 = 0.4
3.0 3.0 5.0408 [5.0408] (5.0161) 13.1741 [13.1648] (13.1260)

46.6334 [46.6104] (46.5482) 1.9678 [1.9645] (1.9509)
2.9 3.1 4.9863 [5.0012] (4.9795) 13.0368 [13.0703] (13.0145)

46.1237 [46.2167] (46.1193) 1.9553 [1.9489] (1.9306)
2.8 3.2 4.9454 [4.9816] (4.9432) 12.9196 [12.9640] (12.9194)

45.8709 [45.8658] (45.7717) 1.9420 [1.9171] (1.9106)
2.7 3.3 4.9151 [4.9474] (4.9148) 12.8515 [12.9178] (12.8398)

45.7536 [45.6833] (45.5361) 1.9309 [1.9058] (1.8907)

Ail Ai2 bx = 1.0, 62 = 0.4
3.0 3.0 5.6167 [5.6594] (5.5732) 15.0649 [14.9225] (14.8707)

54.1689 [54.1310] (53.6550) 2.1697 [2.1623] (2.1267)
2.9 3.1 5.5571 [5.5571] (5.5266) 14.7828 [14.8010] (14.7241)

53.2493 [53.7398] (53.0168) 2.1323 [2.1174] (2.0947)
2.8 3.2 5.5124 [5.5240] (5.4879) 14.5915 [14.6923] (14.5626)

52.5176 [52.9124] (52.5149) 2.1139 [2.0863] (2.0680)
2.7 3.3 5.4467 [5.5015] (5.4286) 14.4342 [14.6336] (14.4328)

52.1898 [52.7031] (52.1431) 2.0951 [2.0668] (2.0460)

Ail Ai2 h = 1.4, 62 = 0.4
3.0 3.0 6.1719 [6.1615] (6.0729) 16.6469 [16.5798] (19.3000)

60.6306 [59.6079] (59.3869) 2.3272 [2.3079] (2.2672)
2.9 3.1 6.0632 [6.0867] (5.9874) 16.2531 [16.4682] (16.0830)

59.0027 [59.2081] (58.7548) 2.2966 [2.2754] (2.2331)
2.8 3.2 5.9792 [5.9958] (5.9053) 15.9983 [16.1123] (15.8998)

58.2726 [58.5643] (58.2243) 2.2598 [2.2288] (2.2031)
2.7 3.3 5.8552 [5.9275] (5.8344) 15.7721 [16.0090] (15.7526)

57.6491 [58.2733] (57.6315) 2.2444 [2.2098] (2.1734)

Table 2.17: Comparative performance of the index heuristic, policy improvement and

optimal policies for a range of average costs problems with two customer classes,
where T = 0.6.

r = 0.6

hi h2 &i = 0.4, b2 = 0.6
CO o CO o 5.2306 [5.2305] (5.2301) 13.7915 [13.8052] (13.7913)

49.0665 [49.1625] (49.0660) 2.0526 [2.0520] (2.0521)
2.9 3.1 5.2020 [5.2005] (5.1952) 13.6974 [13.7203] (13.6691)

48.7855 [50.7610] (48.5914) 2.0488 [2.0319] (2.0318)
2.8 3.2 5.1708 [5.1668] (5.1658) 13.5886 [13.5694] (13.5631)

48.4274 [48.1787] (48.1787) 2.0470 [2.0158] (2.0157)
2.7 3.3 5.1531 [5.1429] (5.1428) 13.5871 [13.4816] (13.4798)

48.5035 [47.9160] (47.8483) 2.0606 [2.0036] (2.0035)

hi h2 &i = 0.6, b-2 = 0.6
3.0 3.0 5.6039 [5.6039] (5.6039) 14.9319 [14.9319] (14.9319)

53.6952 [53.8206] (53.6950) 2.1900 [2.1900] (2.1900)
2.9 3.1 5.5660 [5.5659] (5.5659) 14.7964 [14.7938] (14.7938)

53.1266 [53.1146] (53.1141) 2.1846 [2.1693] (2.1693)
2.8 3.2 5.5382 [5.5369] (5.5368) 14.7219 [14.6873] (14.6873)

52.9498 [52.6639] (52.6643) 2.1851 [2.1536] (2.1535)
2.7 3.3 5.5190 [5.5168] (5.5152) 14.6888 [14.6120] (14.6119)

52.9600 [52.3428] (52.3430) 2.1905 [2.1428] (2.1415)

hi h2 bi = 1.0, b2 = 0.6
CO o CO o 6.3120 [6.3119] (6.2737) 17.0824 [17.0616] (16.9974)

62.2495 [62.2249] (62.0352) 2.4466 [2.4371] (2.4245)
2.9 3.1 6.2385 [6.2633] (6.2229) 16.8554 [16.9385] (16.8525)

61.5005 [61.5964] (61.4332) 2.4189 [2.4160] (2.3984)
2.8 3.2 6.1802 [6.2082] (6.1750) 16.7127 [16.7492] (16.7126)

61.0723 [61.1007] (60.9819) 2.4127 [2.4009] (2.3757)
2.7 3.3 6.1386 [6.1864] (6.1363) 16.6181 [16.6770] (16.6076)

61.1909 [60.8508] (60.6114) 2.4001 [2.3675] (2.3500)

hi h2 b\ = 1.4, b2 = 0.6
3.0 3.0 6.9305 [6.9188] (6.8333) 18.9399 [18.9295] (18.7490)

70.0573 [69.6030] (69.1490) 2.6461 [2.6414] (2.6121)
2.9 3.1 6.8150 [6.8160] (6.7724) 18.6083 [18.8028] (18.5751)

68.5342 [68.5706] (68.4657) 2.6308 [2.6124] (2.5708)
2.8 3.2 6.7557 [6.7738] (6.7230) 18.4493 [18.5058] (18.4032)

67.7822 [68.6854] (67.7812) 2.5856 [2.5949] (2.5362)
2.7 3.3 6.6938 [6.7253] (6.6832) 18.2300 [18.4022] (18.2290)

67.4087 [67.7663] (67.2660) 2.5654 [2.5280] (2.5079)

Table 2.18: Comparative performance of the index heuristic, policy improvement and

optimal policies for a range of average costs problems with two customer classes,

where T = 0.6.

r = 0.6

Ml M2 bx = 0.4, b2 = 1.0
3.0 3.0 6.0729 [6.1094] (6.0402) 16.2659 [16.2925] (16.1942)

58.3800 [58.3485] (58.2064) 2.3891 [2.4192] (2.3735)
2.9 3.1 6.1026 [6.0766] (6.0654) 16.3191 [16.4827] (16.2430)

58.4861 [59.0959] (58.2364) 2.4100 [2.4366] (2.3683)
2.8 3.2 6.0976 [6.1131] (6.0612) 16.4339 [16.7084] (16.2221)

60.2213 [60.0497] (58.2440) 2.4338 [2.4601] (2.3616)
2.7 3.3 6.1963 [6.1488] (6.0618) 16.7823 [16.5975] (16.2371)

61.1739 [61.0907] (58.1657) 2.4647 [2.3811] (2.3536)

Ml M2 bx = 0.6, b2 = 1.0
3.0 3.0 6.6158 [6.6195] (6.6100) 17.9803 [18.0207] (17.9731)

65.4245 [65.4218] (65.4105) 2.5904 [2.5946] (2.5876)
2.9 3.1 6.6047 [6.5917] (6.5878) 18.0426 [18.3330] (17.9235)

66.8533 [66.5525] (65.1962) 2.6035 [2.5897] (2.5678)
2.8 3.2 6.6082 [6.5792] (6.5643) 18.0356 [17.8293] (17.8261)

66.1251 [64.9661] (64.9063) 2.6069 [2.5905] (2.5521)
2.7 3.3 6.5747 [6.5415] (6.5396) 17.9279 [17.9635] (17.7492)

66.0280 [68.9507] (64.6110) 2.6113 [2.5378] (2.5368)

Mi M2 bx = 1.0, b2 = 1.0
3.0 3.0 7.4448 [7.4448] (7.4447) 20.6151 [20.6151] (20.6151)

76.3966 [76.3966] (76.3966) 2.8959 [2.8959] (2.8959)
2.9 3.1 7.3878 [7.3878] (7.3877) 20.4096 [20.4072] (20.4072)

75.5371 [75.5133] (75.5129) 2.8863 [2.8660] (2.8660)
2.8 3.2 7.3458 [7.3429] (7.3429) 20.2782 [20.2437] (20.2435)

75.0952 [74.8172] (74.8176) 2.8860 [2.8428] (2.8428)
2.7 3.3 7.3175 [7.3104] (7.3104) 20.3021 [20.1240] (20.1239)

75.4889 [74.3073] (74.3073) 2.8940 [2.8262] (2.8262)

Mi M2 &i = 1.4, b2 — 1.0
3.0 3.0 8.1664 [8.1643] (8.1490) 22.7889 [22.7852] (22.7680)

84.9780 [84.9767] (84.9516) 3.1630 [3.1613] (3.1522)
2.9 3.1 8.0941 [8.1100] (8.0863) 22.5724 [22.5960] (22.5630)

84.1288 [84.1562] (84.1286) 3.1490 [3.1338] (3.1209)
2.8 3.2 8.0359 [8.0649] (8.0353) 22.4123 [22.4261] (22.4064)

83.7622 [83.5558] (83.4947) 3.1358 [3.1056] (3.0920)
2.7 3.3 7.9985 [8.0397] (7.9981) 22.3542 [22.3289] (22.2796)

83.8105 [83.1097] (83.0475) 3.1348 [3.0811] (3.0692)

Table 2.19: Comparative performance of the index heuristic, policy improvement and

optimal policies for a range of average costs problems with two customer classes,
where T = 0.6.

r = o.6

Pi p2 h = 0.4, b2 = 1.4
c° o oo o 6.7472 [6.7214] (6.6788) 18.1817 [18.1435] (18.0414)

66.2591 [65.4984] (65.4007) 2.6540 [2.6266] (2.6122)
2.9 3.1 6.8067 [6.7982] (6.7180) 18.5032 [18.3637] (18.1553)

67.3365 [66.5663] (65.8428) 2.6803 [2.6657] (2.6086)
2.8 3.2 6.8797 [6.8703] (6.7523) 18.6453 [18.6008] (18.3039)

67.7784 [67.5016] (66.0204) 2.7121 [2.6877] (2.6105)
2.7 3.3 6.9114 [6.9619] (6.7954) 18.8816 [18.9638] (18.3505)

70.2469 [68.8888] (66.1573) 2.7626 [2.7718] (2.6190)

Pi P2 b\ = 0.6, b2 = 1-4
3.0 3.0 7.3734 [7.3785] (7.3225) 20.1766 [20.1999] (20.0887)

73.9962 [73.9030] (73.6908) 2.8845 [2.8918] (2.8683)
2.9 3.1 7.4088 [7.4478] (7.3511) 20.3271 [20.4256] (20.2040)

74.5335 [74.3698] (73.9675) 2.9077 [2.9328] (2.8606)
2.8 3.2 7.4389 [7.5303] (7.3924) 20.4119 [20.4168] (20.2310)

75.0856 [75.9914] (73.9404) 2.9382 [2.9465] (2.8597)
2.7 3.3 7.5068 [7.4657] (7.3943) 21.1617 [21.0369] (20.2398)

78.7698 [75.7845] (74.1005) 3.0222 [2.9841] (2.8607)

Pi p2 bx = 1.0, b2 = 1.4
3.0 3.0 8.4569 [8.4635] (8.4550) 23.6638 [23.7822] (23.6628)

88.1260 [88.3171] (88.1259) 3.2964 [3.3561] (3.2955)
2.9 3.1 8.4816 [8.4249] (8.4268) 23.8277 [23.5746] (23.5738)

89.2531 [87.9864] (87.7884) 3.3161 [3.2704] (3.2698)
2.8 3.2 8.4151 [8.4133] (8.3842) 23.6061 [24.0673] (23.4464)

88.3830 [91.1501] (87.3327) 3.3067 [3.2520] (3.2458)
2.7 3.3 8.3805 [8.3526] (8.3446) 23.5081 [23.3762] (23.3101)

88.2253 [87.2574] (86.8990) 3.3197 [3.2264] (3.2262)

Pi P2 bx = 1.4, b2 = 1.4
3.0 3.0 9.2857 [9.2857] (9.2856) 26.2985 [26.2985] (26.2985)

99.0985 [99.0987] (99.0984) 3.6017 [3.6017] (3.6017)
2.9 3.1 9.2097 [9.2094] (9.2093) 26.0244 [26.0207] (26.0207)

97.9471 [97.9118] (97.9117) 3.5881 [3.5627] (3.5627)
2.8 3.2 9.1545 [9.1488] (9.1488) 25.8545 [25.7998] (25.7998)

97.3841 [96.9712] (96.9714) 3.5878 [3.5321] (3.5321)
2.7 3.3 9.1186 [9.1040] (9.1040) 25.7745 [25.6358] (25.6358)

98.0236 [96.2721] (96.2711) 3.5997 [3.5097] (3.5097)

Table 2.20: Comparative performance of the index heuristic, policy improvement and

optimal policies for a range of average costs problems with two customer classes,

where T = 0.6.

r = 0.85

Ml M2 h\ — 0.4, b2 — 0.4
CO o CO o 25.8164 [25.8236] (25.8164) 211.4338 [211.4373] (211.4341)

2421.9676 [2421.9690] (2421.9674) 18.8234 [18.8234] (18.8155)
2.9 3.1 25.7395 [25.7468] (25.7312) 210.8907 [210.6859] (210.6858)

2422.9175 [2412.8310] (2412.8310) 18.7867 [18.7626] (18.7662)
2.8 3.2 25.6884 [25.6870] (25.6671) 211.7843 [210.1986] (210.1974)

2460.2556 [2408.1363] (2406.7730) 18.7774 [18.7136] (18.6932)
2.7 3.3 25.7176 [25.6507] (25.6203) 214.2302 [209.9905] (209.9715)

2541.8947 [2404.4482] (2403.8347) 18.8414 [18.6830] (18.6532)

Ml M2 b\ = 0.6, b2 = 0.4
3.0 3.0 29.5924 [29.2174] (28.9026) 246.3017 [243.3362] (241.5407)

2851.2381 [2810.8441] (2804.7759) 21.5524 [21.2689] (20.9804)
2.9 3.1 29.1506 [29.1179] (28.7739) 241.6720 [242.6235] (240.5096)

2797.9065 [2807.1102] (2793.1346) 21.2030 [21.1385] (20.8756)
2.8 3.2 28.8517 [28.9872] (28.6615) 239.8262 [240.5711] (239.7197)

2792.7519 [2786.5804] (2784.8574) 20.9950 [20.9770] (20.7903)
2.7 3.3 28.7011 [28.7900] (28.5668) 239.9712 [240.5790] (239.0994)

2835.2423 [2787.9343] (2779.1684) 20.8573 [20.9078] (20.7122)

Ml M2 bx = 1.0, 62 = 0.4
3.0 3.0 36.0308 [34.7843] (33.3411) 305.2166 [293.3307] (286.0954)

3585.8893 [3450.4940] (3382.4618) 26.0803 [25.0129] (23.9295)
2.9 3.1 35.3547 [34.5127] (33.1038) 296.3065 [292.3175] (284.5124)

3454.2268 [3401.4067] (3366.6708) 25.5474 [24.8077] (23.7462)
2.8 3.2 34.5763 [34.2876] (32.9158) 289.0565 [288.3444] (283.2866)

3369.5437 [3399.6713] (3353.6506) 24.9680 [24.5358] (23.5916)
2.7 3.3 33.8529 [33.8236] (32.7039) 285.1398 [287.3589] (282.1356)

3349.5504 [3368.7248] (3343.6295) 24.4291 [24.3506] (23.4608)

Mi M2
= 1.4, b2 = 0.4

3.0 3.0 42.5630 [39.3851] (36.7545) 364.2297 [336.0389] (319.7543)
4294.4414 [3912.3691] (3825.8441) 30.6657 [28.1282] (26.0534)

2.9 3.1 40.8805 [38.8540] (36.4226) 346.3158 [331.5464] (317.4964)
4049.2986 [3909.7359] (3804.1129) 29.6173 [27.5931] (25.8105)

2.8 3.2 40.2702 [38.6694] (36.0798) 334.6207 [327.3566] (315.5333)
3886.2964 [3873.2084] (3786.3108) 28.4826 [27.2911] (25.5778)

2.7 3.3 38.8779 [38.2531] (35.7677) 324.1891 [326.3348] (314.0311)
3791.1130 [3849.4338] (3773.4217) 27.5069 [27.1213] (25.3640)

Table 2.21: Comparative performance of the index heuristic, policy improvement and

optimal policies for a range of average costs problems with two customer classes,
where F = 0.85.

98

r = 0.85

P>\ P>2 bi = 0.4, 62 = 0.6
3.0 3.0 29.9513 [29.9427] (29.7541) 249.2428 [248.8191] (248.1423)

2880.9098 [2876.0652] (2869.9107) 21.8268 [21.8376] (21.6779)
2.9 3.1 30.1397 [29.9416] (29.7009) 252.2198 [250.1110] (247.4768)

2937.7561 [2890.0079] (2861.3257) 21.9992 [21.7841] (21.6220)
2.8 3.2 30.2853 [30.0059] (29.6528) 256.4838 [248.1398] (246.9557)

3034.2240 [2863.8060] (2855.0773) 22.1844 [21.7227] (21.5827)
2.7 3.3 30.6165 [29.8128] (29.6310) 262.7594 [254.0821] (246.6993)

3190.1729 [2934.5583] (2851.6886) 22.5270 [21.6823] (21.5623)

A*1 P-2 bi = 0.6, b2 = 0.6
OCOoCO 34.0029 [34.0043] (34.0029) 287.2810 [287.2809] (287.2807)

3356.1648 [3356.1670] (3356.1640) 24.7589 [24.7599] (24.7589)
2.9 3.1 33.8964 [33.8920] (33.8919) 286.6787 [286.1990] (286.1989)

3359.8954 [3342.9694] (3342.8704) 24.7179 [24.6722] (24.6721)
2.8 3.2 33.8695 [33.8182] (33.8177) 288.3598 [285.4726] (285.4719)

3417.8618 [3334.8099] (3333.8414) 24.7484 [24.6152] (24.6148)
2.7 3.3 33.9229 [33.7806] (33.7673) 292.5324 [285.2302] (285.1057)

3542.1691 [3329.7658] (3329.1431) 24.8544 [24.5867] (24.5749)

A^i H2 bx = 1.0, b2 = 0.6
3.0 3.0 41.5404 [40.7636] (40.0954) 357.0158 [348.6593] (346.5593)

4214.7000 [4140.7580] (4106.6073) 30.2169 [29.5749] (29.0470)
2.9 3.1 40.6644 [40.6644] (39.9110) 348.1653 [347.6797] (345.0356)

4102.9244 [4098.8879] (4089.3129) 29.5719 [29.2867] (28.8917)
2.8 3.2 40.2112 [40.2232] (39.7419) 344.2166 [346.9783] (343.8081)

4081.4767 [4098.4158] (4076.5796) 29.2034 [29.1903] (28.7676)
2.7 3.3 39.9079 [40.1017] (39.5828) 343.4990 [344.2199] (342.8837)

4129.1877 [4071.1735] (4068.0153) 28.9314 [29.0386] (28.6556)

AO 1^2 bx = 1.4, b2 = 0.6
3.0 3.0 47.6867 [46.3303] (44.5806) 414.3644 [401.9812] (391.3966)

4929.7099 [4731.6909] (4684.8575) 34.6166 [33.2897] (32.0610)
2.9 3.1 46.8509 [45.9270] (44.2853) 403.0834 [396.7625] (389.2539)

4764.6524 [4720.4049] (4663.2269) 33.8629 [32.9451] (31.8185)
2.8 3.2 45.9587 [45.5870] (44.0287) 394.2141 [395.0320] (387.5789)

4660.0618 [4683.4774] (4647.0653) 33.2001 [32.7705] (31.6168)
2.7 3.3 45.0704 [45.2369] (43.8133) 387.7473 [390.7746] (386.1563)

4646.8262 [4674.1971] (4633.0925) 32.6215 [32.7317] (31.4558)

Table 2.22: Comparative performance of the index heuristic, policy improvement and

optimal policies for a range of average costs problems with two customer classes,

where T = 0.85.

99

r = 0.85

Hi H2 bx = 0.4, b2 = 1.0
oCOoCO 37.0207 [36.0418] (35.0446) 314.8620 [304.6801] (300.3290)

3691.7799 [3554.9916] (3527.9525) 26.9651 [26.1866] (25.3901)
2.9 3.1 37.7565 [36.2418] (35.1745) 323.3715 [307.9613] (300.6360)

3853.9793 [3596.9406] (3525.3484) 27.5212 [26.3768] (25.4462)
2.8 3.2 38.6687 [36.5728] (35.2783) 338.5075 [309.6795] (300.7945)

4093.3148 [3609.4973] (3522.5615) 28.5005 [26.5758] (25.4919)
2.7 3.3 39.4980 [37.0987] (35.3785) 352.2128 [311.8569] (300.9824)

4351.1821 [3672.4643] (3521.8065) 29.0928 [26.8251] (25.5426)

Hi H2 bx = 0.6, b2 = 1.0
00 o 0° o 41.9629 [41.6114] (41.1929) 360.1748 [356.9988] (355.0841)

4245.1603 [4195.7362] (4191.2210) 30.5499 [30.3127] (29.9601)
2.9 3.1 42.4739 [41.8532] (41.2145) 368.2657 [358.4932] (354.7344)

4375.7007 [4233.0625] (4183.0645) 31.0981 [30.5035] (29.9343)
2.8 3.2 42.8950 [42.1364] (41.2050) 375.9271 [362.5121] (354.3359)

4541.1381 [4254.7849] (4175.8784) 31.4061 [30.7275] (29.9120)
2.7 3.3 43.4683 [42.0219] (41.2126) 386.3732 [365.0079] (354.1029)

4805.1652 [4307.3862] (4172.1725) 32.0008 [30.9779] (29.9109)

Hi H2 bx = 1.0, b2 = 1.0
OCOoCO 50.3614 [50.3614] (50.3614) 438.9745 [438.9749] (438.9745)

5224.5594 [5224.5629] (5224.5594) 36.6299 [36.6299] (36.6299)
2.9 3.1 50.2058 [50.1822] (50.1822) 438.2655 [437.2252] (437.2251)

5234.1695 [5267.5390] (5202.9502) 36.5759 [36.4913] (36.4913)
2.8 3.2 50.2006 [50.0599] (50.0593) 441.3994 [436.1664] (436.0206)

5342.1216 [5188.4425] (5187.9847) 36.6611 [36.3976] (36.3971)
2.7 3.3 50.3834 [49.9967] (49.9938) 448.4333 [435.5324] (435.3695)

5531.2484 [5180.2694] (5179.7542) 36.9234 '[36.3503] (36.3481)

Hi H2 fcj = 1.4, b2 = 1.0
oCOoco 57.8989 [57.4880] (57.0727) 508.7098 [504.4738] (503.1854)

6083.1006 [6055.3174] (6030.0021) 42.0879 [41.7272] (41.4195)
2.9 3.1 57.2406 [57.2238] (56.8267) 502.3566 [503.1621] (501.1417)

6007.7254 [6009.9127] (6006.1066) 41.5996 [41.5851] (41.2419)
2.8 3.2 56.7790 [57.0922] (56.6345) 499.7969 [502.1507] (499.5896)

6030.7278 [6003.3302] (5988.9137) 41.3069 [41.4078] (41.0813)
2.7 3.3 56.5057 [56.7048] (56.4847) 501.9215 [499.3982] (498.5791)

6164.8989 [5979.0731] (5978.6279) 41.1986 [41.1422] (40.9728)

Table 2.23: Comparative performance of the index heuristic, policy improvement and

optimal policies for a range of average costs problems with two customer classes,
where T = 0.85.

100

r = 0.85

AO 1^2 6i = 0.4, &2 = 1-4
3.0 3.0 43.5501 [41.2968] (38.9238) 373.3550 [348.6520] (338.6877)

4397.2655 [4103.1832] (4024.2545) 31.6619 [29.5239] (27.9571)
2.9 3.1 45.1902 [41.6309] (39.2199) 391.1769 [352.8731] (340.0192)

4675.6449 [4139.6842] (4027.2878) 32.8870 [30.0002] (28.0929)
2.8 3.2 46.1024 [41.6558] (39.4577) 411.7731 [355.3721] (340.7961)

5080.8386 [4185.2733] (4027.7345) 33.8360 [30.2411] (28.2344)
2.7 3.3 47.7973 [42.5114] (39.7166) 438.7666 [363.1619] (341.6391)

5572.8923 [4218.0627] (4031.3198) 35.2065 [30.5822] (28.3761)

AO AO by = 0.6, 62 = 1-4
3.0 3.0 48.7847 [47.5052] (46.2272) 424.9810 [410.4314] (404.9537)

5038.5555 [4863.4187] (4824.0068) 35.5013 [34.5218] (33.4506)
2.9 3.1 49.8317 [47.8888] (46.4201) 437.8875 [412.4625] (405.5212)

5271.6520 [4931.8329] (4821.0854) 36.2918 [34.7435] (33.5468)
2.8 3.2 51.2335 [48.2209] (46.5799) 457.9353 [418.5392] (405.8545)

5621.5704 [4940.3996] (4818.1585) 37.5273 [35.0530] (33.6108)
2.7 3.3 52.2945 [48.6743] (46.7124) 475.8578 [421.0071] (406.1084)

5964.4071 [5035.1542] (4817.1444) 38.5085 [35.3904] (33.6932)

AO AO = 1.0, b2 = 1.4
3.0 3.0 58.3215 [58.2156] (57.8846) 511.8683 [510.4789] (509.3213)

6113.5609 [6105.7769] (6089.0284) 42.4209 [42.2752] (42.0904)
2.9 3.1 58.9747 [58.5241] (57.8745) 520.1239 [513.1484] (508.5532)

6259.2696 [6133.2153] (6074.7558) 42.9695 [42.6057] (42.0279)
2.8 3.2 59.3179 [58.8879] (57.8156) 529.2031 [512.9002] (507.6829)

6482.1124 [6093.0257] (6062.5008) 43.3961 [42.8915] (41.9723)
2.7 3.3 59.8743 [59.3028] (57.7724) 545.3752 [520.9987] (507.2200)

6808.9917 [6222.8459] (6056.5213) 44.0100 [43.2170] (41.9450)

AO AO 61 = 1.4, 62 = 1.4
3.0 3.0 66.7200 [66.7200] (66.7200) 590.6686 [590.6684] (590.6684)

7092.9521 [7092.9577] (7092.9521) 48.5009 [48.5009] (48.5009)
2.9 3.1 66.5151 [66.4725] (66.4725) 589.8816 [588.2520] (588.2519)

7109.5959 [7155.7674] (7063.0228) 48.4339 [48.3105] (48.3105)
2.8 3.2 66.5412 [66.3008] (66.3003) 594.6141 [586.7057] (586.5694)

7266.3912 [7042.5441] (7042.1188) 48.5822 [48.1794] (48.1791)
2.7 3.3 66.8441 [66.2084] (66.2050) 604.8786 [585.7901] (585.6327)

7523.7200 [7121.4531] (7030.3647) 48.9815 [48.1328] (48.1077)

Table 2.24: Comparative performance of the index heuristic, policy improvement and

optimal policies for a range of average costs problems with two customer classes,

where T = 0.85.

101

2.5.3 Simulation study of average costs problems with five
customer classes

We now look at some examples of the undiscounted admission control problems

encountered in this chapter, where we have five service stations. In the two service

station problems of Sections 2.5.1 and 2.5.2 it was possible to obtain a direct

numerical comparison between costs incurred by our index heuristics and those

incurred by an optimal policy. However this is not a reasonable computational goal

for larger problems. The simulation study reported in Table 2.25 concern a

collection of admission control problems involving five customer classes under the

average cost criterion.

Table 2.25 contains the results of studies of ten problems with quadratic costs

(1 — 5, l' — 5) and five problems with quartic costs (1-5). All problems in this table
have the exponential arrival and service time distributions associated with the two

service station problem. Each of the problems with quadratic costs is characterised

by three five-vectors and the system arrival rate namely, b, c, fx and A. Both b and

c are vectors of cost coefficients such that the cost rate for service station k is given

by

Ck(n) = b^n + Ckn2, 1 < k < 5, (2.142)

while /i. is a vector of service rates with A the arrival rate for the system. For

example, for quadratic problem 1 we take b = (1.5,1.2,0.9,0.6,0.3),
c = (0.2,0.4,0.6,0.8,1.0), /i = (0.60,1.50,2.70,3.90,5.00) and A = 8.22 with a

resulting Gamma-value of 0.60. To obtain quadratic problems 2-5 we keep b, c and
A fixed, but reassign /u by means of a series of permutations. For example for

problem 2 we take /i = (1.50,2.70,3.90,5.00,0.60) and so on. We obtain quadratic

problems 1-5' respectively from 1-5 by rescaling A to give a T-value of 0.85, while

keeping other aspects fixed. We obtain quartic problems 1-5 from the corresponding

102

quadratic problems upon replacing (2.142) by

Ck(n) = bkn3 + c^n4, 1 < k < 5.

In the body of Table 2.25 we have included estimates of the average costs incurred

by the above problems under five service control heuristics, as follows: INDEX

denotes our index heuristic for average costs while SQ routes the arriving customer

at each decision epoch to whichever customer class has the shortest queue (and
chooses among the candidate classes at random in the event of a tie). MYOPIC

always routes the arriving customer to whichever station is currently incurring the

smallest instantaneous cost rate. At each decision epoch, RANDOM chooses one of

the service stations at random and routes a single customer to that station. When

doing this we could not always allow the probability of a customer being sent to

each queue to be equal as this could yield unstable queues. So to overcome this

problem we calculated the upper bounds of each probability such that we had stable

queues and then re-scaled to convert them into true probabilities (i.e. so that the
sum of the five probabilities equalled one). In other words we took

Pk
Pk = T,

and then re-scaled by 6 such that

5

= 1. (2.143)
k=1

The estimate of average cost is obtained in each case by Monte Carlo simulation.

Typically, we allowed a "burn-in" period of around 10,000 time units in each case,

followed by a period of around 15,000 time units during which costs were tracked.

This was repeated around 50 times and the average costs (per unit time) were
estimated. The corresponding standard errors are given in brackets in the table.

The details of the mechanics of the simulations varied a little across the different

cases in order to obtain standard errors which would enable meaningful comparisons

103

between service policies to be made. For example, when we increased the T-value to

0.85 we had to increase the number of runs. Note that we did not have access to

sufficient computer resources for satisfactory standard errors to be achieved for

problems with quartic costs and a T-value of 0.85. This is why no such cases are

reported in the table.

2.5.4 Comments

One can see that all the numerical evidence suggests that our index heuristic policy

performs very well. We can see this because the index policy cost rate is usually

close to the optimal cost rate or indeed, in the the five service stations examples,

significantly better than the cost rates for alternative policies.

When looking at the discounted data in tables 2.1 - 2.16 one can see that the costs

increase when the initial state indicates that more customers are present initially,

when the cost functions are of a higher power and when we increase the arrival rate

as we would expect. The actual performance of the index policy considered in the

chapter seems to be very promising, coming close to optimality in many examples.

The alternative index policy (which allows a negative number of customers) also

performs well. The ideas on which this is based could possibly be an option for

other models where the main index put forward in this chapter could not be

obtained for some reason. These data seems to suggest that when moving to the

higher arrival rates the index policy can still return values close to optimal. From
these data there does seem to be some evidence to suggest that when we make the

servers increasingly distinct (by altering their service rates) then the index policy

performs sightly less well. However as one can see the percentage sub-optimality of
such cases remains at a low level.

The numerical data for the two server average cost problem seen in tables 2.17 -

104

Quadratic Costs INDEX LQ MYOPIC RANDOM

1 5.6563 9.7632 8.0407 24.8424

(0.0091) (0.0123) (0.0097) (0.0968)
2 5.6109 7.9092 8.8725 24.8504

(0.0085) (0.0091) (0.0108) (0.1446)
3 5.4177 6.9344 8.5727 24.7059

(0.0078) (0.0102) (0.0100) (0.1288)
4 5.3544 7.0292 8.0357 24.8651

(0.0078) (0.0099) (0.0104) (0.1045)
5 5.5034 7.9973 7.8512 24.7684

(0.0071) (0.0092) (0.0118) (0.0995)
1' 26.3657 31.9143 29.5310 233.2947

(0.1466) (0.1241) (0.1299) (1.9239)
2' 24.2011 29.9548 28.9355 231.7829

(0.1492) (0.1312) (0.1344) (2.9537)
3' 22.0233 27.8126 28.9351 233.0175

(0.1265) (0.1390) (0.1295) (3.0151)
4' 21.4462 27.5006 28.7909 236.3840

(0.1224) (0.1527) (0.1292) (2.4817)
5' 22.3605 28.8711 28.7192 236.4076

(0.1418) (0.1147) (0.1355) (2.3820)
Quartic Costs

1 16.2846 39.6315 25.8457 1006.2201

(0.0986) (0.1333) (0.1065) (16.1015)
2 15.4626 25.6113 29.6577 6242.1436

(0.0931) (0.0986) (0.1028) (15.5941)
3 15.1293 20.0892 28.7645 987.4523

(0.0753) (0.0980) (0.1054) (21.5152)
4 15.0922 20.7926 26.2705 1012.2977

(0.0931) (0.0938) (0.1012) (25.8314)
5 15.5607 26.5092 25.0162 994.6270

(0.0850) (0.0964) (0.1126) (16.7460)

Table 2.25: Comparative performance of the index heuristic and other control rules
for a range of average costs problems with five service stations.

2.24 shows that the cost rates will increase if the cost coefficients increase or if the

order of the cost function is increased. However, the index heuristic put forward in

105

this chapter seems to do consistently well. In many cases this index heuristic seems

to perform better than the policy improvement index, even though the policy

improvement index is allowed to consider initially the system as a whole. This is

not required by the index heuristic. This means that the policy improvement

approach will be much more problematic for larger numbers of stations and also if

the number of stations altered (due to the addition of a new station etc). There is

possibly some evidence from the data to suggest that as the servers become more

distinct that the proposed index policy does not perform quite as well (especially
when we have higher arrival rates) but do note that the percentage sub-optimality

remains small in the vast majority of cases.

Table 2.25 show the simulation data for our proposed index heuristic and some other

control rules for a range of problems with five service stations. These data show

that as the arrival rate is increased or the order of the cost functions is increased

the cost rates also increase. The data in this table suggest that our index heuristic

performs very well, significantly better than all the other control rules considered.

Hence all the numerical data suggests that the index policy presented in this chapter

perform very well under a variety of models. Hence my conclusion is that this would

be a good policy to use to minimise cost rates with a small amount of computational

effort as the indexable nature means that it is not difficult to implement.

106

Chapter 3

Service Control Problems

3.1 Introduction

We consider a multi-class queueing system in which customers from classes

{1,2,... ,K} receive service. An important decision within a multi-class queueing

system is which customer class should be served at any given time. If there are

customers from different classes present we must ask the question, "by serving

which class do we gain the most?" - i.e. serving which class, at this time, reduces

our costs or increases our rewards by the highest amount. The aim within this

chapter is to find a dynamic policy which chooses between the customer classes

awaiting service to achieve results near some defined optimal performance.

In this chapter we build from the work of Ansell et al. (2003a), in which the

assumption that customer service times were independent and exponentially

distributed was made. However here we consider the much more challenging case of

general service time distributions. Such general service distributions considerably

complicate the analysis, however the results that we achieve will be more widely

107

applicable. The first thing to note is that without the exponential service

distribution assumption we no longer have the benefit of its memoryless property.

As a result we shall consider non-preemptive service policies only - i.e. once a

customer has started service they must complete that service before another can be

served. Note that most practical problems have this non-preemptive character.

Without this restriction to non-preemptive policies we could possibly have a

number of partially served customers still waiting for service at any given time. To

take account of this via a suitably extended state space would cause this problem to

be yet more challenging.

Section 3.2 considers the general set up of the service control problem of interest and

describes both discounted and undiscounted formulations. The work encompasses a

range of modelling possibilities. This section then moves on to define a relaxation of

the problem and takes Lagrangian approach to find the structure of its optimal

solution. We propose that a heuristic derived from the optimal solution to the

relaxed problem will provide a "good" policy for our original problem. Section 3.3

investigates the discounted version of our problem in more detail, looking at the

required solution for a single class problem derived from the Lagrangian relaxation

in which a charge for service is incurred. In Section 3.4 we then derive an

appropriate index for the discounted problem, with a corresponding index for the

undiscounted problem derived as a limit. We then conclude this chapter by

reporting some results of a numerical investigation into the performance of the

Whittle index policy. This can be found in Section 3.5. Within this investigation we

consider the two server undiscounted case but the main focus is on the average costs

scenario. In the average costs case we consider not only the two server example

using methods of dynamic programming but also use simulation techniques to

consider systems with a larger number of servers. Simulation is required since direct
numerical comparisons is not a reasonable computational goal for larger problems.

108

3.2 The multi-class service control system

Recall that we are considering a multi-class queueing system in which customers

from classes {1,2,,K} receive service. Our goal within this chapter is to allocate
service to the waiting customers to minimize some measure of expected holding cost

over an infinite horizon. We make the assumption that the arrivals into the system

follow K independent Poisson processes where each class can have a different arrival

rate, denoted for class k. As we have already said in the introduction, we assume

general service distributions, so in practice we can select distributions which best

fits our application. Each class k customer has a service time which we denote as S

and a corresponding distribution function, Gk■ The service times are independent

for different customers and identically distributed for customers within a single

class. We suppose that the system is stable in that work coming into the system

can be handled by the single non-idling server, so that we never observe infinite

queue lengths, i.e. we require that

As alluded to earlier we consider both discounted and average cost (undiscounted)
criteria. In order to set this problem up formally we need to introduce and explain

the notation we shall use.

When we refer to the state of customer class k at time t we are talking about the

length of the class k queue at time t, which includes any customers in service. We

write this state as Nk(t), 1 < k < K, t E R+. The state of the system at time t is

given by N(t) = {Ni(t),W(t), A/3(f),..., Nx{t)} the vector of queue lengths,

K

(3.1)
fc=i

t e R+.

The decision epochs occur at all service completion times which do not result in an

empty system together with all the times of arrivals at an empty system. These are

109

the only times when a decision can be made concerning who to serve next in our

class of non-preemptive policies.

We use ak to denote the action of allocating service to a class k customer,

1 < k < K. At each decision epoch t, the controller chooses an action a*, from the

set of k for which Nk(t) >1. It is the choice of which action to take at each decision

epoch we are seeking, in this chapter, in order to minimise some measure of

expected costs.

Suppose that t is a decision epoch, that system state N(f) = n with > 0, and
that action is taken at t. The next decision epoch will occur at the end of this

class k customer service, t + Sk, where Sk ~ Gk, provided the system is nonempty

at this time. The system state then has a probability distribution given by,

P[N(t + Sk)+ = n — lk + m] = Esk^P(m\ class 1 arrivals in time Sk)
xP(rri2 class 2 arrivals in time Sk)

x ... x P(rriK class K arrivals in time Sfc) j
= jf {n <3-2>

since arrivals occur in independent Poisson streams with rates Xj, 1 < j < K. Note
that in (3.2), lk denotes a K vector whose kth component is 1, with zeros elsewhere
and also that the processing of the class k customer which begins at time t is

non-preemptive.

In the discounted costs version of this queueing control problem we say discounted

costs are incurred by class k with rate

aCk(Nk(t)),

at time t. The cost functions Ck ■ N —► M+ are assumed to be increasing, convex

and bounded above by some polynomial of finite order (in order to ensure that all

110

expectations taken in this chapter will be finite) and with Cfc(O) = 0, 1 < k < K.
We have already stated that the costs are additive across the classes and so the

system incurs costs at rate
K

(3-3)
3=1

at time t.

A policy u is a rule for choosing actions in light of the history of the process to

date. We use U to denote the set of all such policies which are non-idling for the

single server. Our goal is to find a policy in order to achieve the best performance

(i.e. minimum cost) of the system. In this case we take our performance measure to

be the total discounted costs incurred over an infinite horizon, and we wish to find a

policy to minimize this measure. We write

V(m, a) = inf Eu
u£U

roo K

/ 5>C,(W(f))e-at|N(0) = m , (3.4)
fc=i

for the value function associated with this policy. Note that the a multiplier has

been introduced into the holding cost rate in (3.3) and (3.4) to guarantee that

V(m,o;) remains finite and approaches the minimum average cost per unit time for

the system in the limit as a approaches 0 see (3.6) below. As has been previously

mentioned, this limit is central to the consideration of the average cost

(undiscounted) problem of interest to us. Further justification for the inclusion of
this a multiplier can be seen in Section 3.4. Plainly, inclusion of the multiplier will

have no impact on the optimal policy in (3.4).

The average cost version of the multi-class queueing problem of interest is expressed

via the equation
K

(3-5)VOPT = inf En '
k=1

In (3.5) Eu is the expectation taken with respect to the steady-state distribution of
the system under policy u. From standard results in dynamic programming, we

have that

111

lim V(m, a) = VOPT. (3.6)

Using the relation in (3.6) we can develop heuristics for the average cost problems

as limits (a —> 0) of the corresponding heuristics for discounted costs.

Over the next few pages we investigate the discounted costs version of the

multi-class problem. We know from stochastic dynamic programming (DP) theory
that for the discounted costs problem, a stationary optimal policy exists (i.e. a

policy that makes decisions based on the current state only). The value function of

this policy will satisfy the DP optimality equations, see Puterman (1994). In this

multi-class queueing control problem a pure DP approach will be computationally

intractable for problems of any reasonable size and is unlikely to be insightful. So

we adopt the method used by Whittle (1988)

To develop the ideas needed for the application of Whittle's approach we introduce

the following performance measures for policy u:

= the expected amount of discounted time spent in state n, taking action

a*;, "serve class k", from initial state m, when under control policy u

Eu I{o>k{t) = a,Nk(t) = n}e dtt|N(0) = m . (3.7)

In (3.7), m € n € N, 1 < k < K and we have written ak{t) for the action

(either a = serve (active) or b = do not serve (passive)) applied to queue k at time
t. Also /{.} is the indicator function, so

I{ak(t) = a, Nk(t) = n} =

1 if, at time t, we have n class k customers present

and we choose to serve class k,

0 otherwise.

Note that the passive action b is applied to class k whenever the active action a is
not applied. We now define a similar performance measure for the passive action, b,

112

i.e.

r r°°h.lL / \ 7-1 / 7-r /.\ / T*r/.\ ■» —rvt 1,IHT/rt\
m

r f°°
/ /{afc(t) ^ a,Nk(t) = n}e~atdt\N(0)

L Jo

Using these performance measures we can re-write our discounted cost function

(3.4), as
K

V(m,a) = inf +4',^(m)}. (3.8)
k=1 neN

We have said that for all policies in U whenever there are customers present in the

system the server must be active, i.e. service must be offered whenever the system

in non-empty. Hence we have that
K

EE xl'™(m) = the expected amount of discounted time spent in the system
fc=l neN

taking the active action

= E„
poo

/ 7{N(t) ^ 0}e~atdt\N(0) =-Jo
m

where 0 is the zero K vector. We now develop a relaxation of the problem in (3.8)

by first noticing that for all policies in U,
K

EE« (m) is policy invariant. (3.9)
k=1 neN

This is because the quantity in (3.9) involves only the discounted time and does not
involve the holding costs. Also within every policy in U only the order that the

customers are served is affected and the server will serve all of the customers in the

system. Obviously, regardless of the order the customers are served, the expected

discounted time to serve them all will remain constant. So we can see that the

duration of the first busy period and of all subsequent busy periods have probability

distributions which do not depend upon the control policy u. Hence (3.9) is indeed

policy invariant. It is also true however that the total discounted cost to the system

(i.e. the value function) will vary as we change the control policy.

From queueing theory we know that in the long run the proportion of time a system

is non-empty is

113

K

P = Y, hE(Sk).
k=1

In fact it holds that

Kv
/*

= \
k=1 neN •/o

oo

—atpe~atdt + 0(1)

— + 0(m, a) where 0(m, a) = 0(1). (3.10)

We now consider a relaxed version of the stochastic optimization problem in (3.8)
obtained by expanding the admissible class of policies to the set in which any

number of non-empty customer classes may be served at any time. Note that we

still must maintain the non-preemptive nature of service, so any service once started

must be completed. We will call this new policy class U. We also extend U to

include randomisations over such policies. However we shall only allow those

policies in U which satisfy (3.10). This constraint will ensure that on average (in
the discounted sense of (3.10)) one class is served at each decision epoch. We call

this Whittle's relaxation and write

V(m,a) - inf ^aCfc(ra){x££(m) + xj£(m)u£U '
k=1 neN

K

subject to
r roo

EE x£n(m) = £?„[/ J(t)e"Qtdf|N(0) =
k=1 neN

rn

= a V + ©(m>a)- (3-11)

In the above expression, J(t) denotes the number of customer classes served at time

t and the constraint (3.11) delimits the set of allowable policies within U. Obviously
U is contained within this new admissible class of policies, so as a consequence we

have that V(m,a) < V(m, a). Also for any policy within U we have

J(t) — I{N(t) ^0},f 6 (0, oo). But now we proceed to the above minimization

problem with constraint (3.11). This will not be easy to work with directly so we

use a Langrangian approach to find the structure of the optimal solution to

114

Whittle's relaxation. Hence we accommodate constraint (3.11) by incorporating a

Langrange multiplier W to obtain the minimization problem
K

V(m, a, W) = inf ^^ aCk(n)lxak%(m) + 4',n(mu&U L f—* t.

r[a~lp + 0(m,a) 4%}
k=1 n£N

K

-wr
k=1 tiEN

K K

inf ' '
u£U ^{aCk(n) + W}4%(m) + aCk(n)4Un(m)

fc=1 n£N k=1 n£N

-w{a"V + B(m,a)}. (3.12)
Note we can see here that the last term in (3.12) will play no part in the choice of

the optimal control policy u. We can also see from (3.12) that the W plays the
economic role of a constant charge for service. Recall that the optimization problem

that we have in (3.12) involves a control which can activate any number of

non-empty customer classes. This problem is naturally decoupled into K

single-class subproblems, expressed by
K

V(m, a,W) = J2 Vk(mk, a, W) -Wfa^p + 0(m, a)}. (3.13)
k=1

In (3.13), Vjt(mfc,a,W) is the minimized total holding and service charge costs

incurred by customer class k only, the minimization being taken over all

(non-preemptive) policies for choosing between actions a and b for that class only.

In other words we have

Vk(mk,a, W) = inf [S^{aCk{n) + W}xak^(mk) + ^aCk(n)xbllun{mk)

where U\\ is the set of all non-preemptive policies for choosing between actions a and
b for this class only. We will denote this single class problem

(k,a,W),W e R,1 < k < K.

We later show (see Comment 2 on page 147) that we can choose the value of the

multiplier W — W(m,a) in order to ensure that the optimal policy for the

115

Lagrangian relaxation in (3.12) meets constraint (3.11). So we have that

V(m, a,W(m,a)) = V(m,a). (3.14)

Hence the optimal policy for the Lagrangian relaxation in (3.12) with
W = W(m,Qf) satisfies the constraint in (3.11) and solves Whittle's relaxation.

So our progression through this problem will be as follows:

- Find the optimal policies for the K single-class subproblems in (3.13), which
will be dependent on the value of W.

- Combine these single-class optimal policies into the required optimal policy

for the corresponding multi-class problem in (3.12).

- Find the value W — fF(m,a) which ensures the constraint (3.11) is met and
hence obtain the optimal policy for Whittle's relaxation in (3.11).

Hence the first issue that needs to be addressed concerns the optimal policies for

the single class problems (k, a,W),l < k < K,W € M. As in the previous chapter,

the solutions are simple because the single class problems have the condition of

indexability. To describe this condition, we again use nfc)a(W) to denote the set of

queue lengths m for which the passive action b is optimal in the single class problem

(k,a,W). We recall Definitions 1-3 from Section (2.2).

Definition 1

Customer class k a-indexable if > 2N is increasing, namely

wx > w2 => nM(W!) d nk>a(w2), (3.15)

Should we have a-indexability for class k, the idea of an a-index for state (i.e.

queue length) m as the minimum service charge which makes the passive action

optimal there is a natural one.

116

Definition 2

When customer class k is a-indexable, the Whittle a-index for class k in state m is

given by

It will now follow that if each customer class k is a-indexable, Whittle's relaxation

in (3.11) is solved by a policy in which a decision is taken to serve customer class k

at each decision epoch t for each (k,a,W) whenever Wk,a{Nk(t)} > W(m, a) and
not to serve k whenever Wk,a{Nk(t)} < W(m,a), for all choices of k, t. Should

Wkt0l{Nk(t)} — W(m, a) then some randomisation between the two actions will be

appropriate. Note that the constraint (3.11) will ensure that on average we only

serve one customer at any given time.

We now follow Whittle (1988) in arguing that the index-like nature of solutions to

the relaxation in (3.11) makes it reasonable to propose an index heuristic for our

original discounted costs problem in (3.4) and (3.8) when all customer classes are

a-indexable. This heuristic will be structured as in (3.19) with index functions

recovered from Definition 2. Note that under this definition it is natural to interpret

Wk,a{rn) as a fair charge for serving customer class k in state m. The derived
heuristic then always serves that class for which the fair charge for service is

highest. Following the discussion about the average costs version in Section 3.2, we

develop an index heuristic for average cost problems as the limit policy (a —> 0) of
the index heuristics for discounted costs.

Definition 3

If customer class k is a-indexable for all a > 0 then the average cost Whittle index

for state m is given by

W*,«(m) — inf{IF : m € Tlk^Q(W)},m 6 Z+. (3.16)

Wk(m) — lim WfciQ,(m), m € Z+,a—>0
(3.17)

when the above limit exists.

117

Note that the inclusion of the a multiplier in the holding cost rates in the

discounted problem guarantees that the limits in (3.17) exist and yield sensible

indices. To see why, revisit the Langrangian in (3.12). As policy u varies within the

stable policies in U it is known from standard MDP theory that the holding cost

component of (3.12) will vary by amounts which are 0(1). However, it must also be

true for such policies that

and hence, for any finite W, varying u can only change the service charge

component of (3.12) by 0(1). It is this balancing of the contributions to the total

cost in (3.12) which guarantees the good behavior of the limits in (3.17).

Taking our cue from the above discussion, in the next section we study the single

class problems (k,a,W). We shall establish a-indexability and derive cn-indices and

the average cost indices which are appropriate for out service control problems.

3,3 The Discounted Problem

As previously mentioned we firstly consider the discounted service control system in

which future costs are discounted with time according to the rate a. We know of

two special cases of this queueing control problem which have previously been

studied and which can be solved to optimality by simple index policies.

i) The batch case with discounted costs can be solved using a multi-armed
bandit model as in Gittins (1989). In this system all arrival rates are zero and
the goal is to serve to completion all the customers present at time 0 (i.e. to

empty the system) to minimize total expected discounted costs. In the Gittins

(1989) paper the batch case was indeed formulated as a multi-armed, bandit

K

(3.18)
k=1 nGN

118

problem and a Gittins index policy was shown to be optimal.

ii) The case in which holding costs are linear in the queue lengths and

discounted over time was first solved by Harrison (1975). This linear cost

assumption allows an analysis at the level of the individual customer (each

carrying their own holding cost rate) rather than at the level of the customer

class. The linear cost problem was later formulated as a branching bandit

problem for which Gittins index policies are also know to be optimal; see

Bertsimas and Nino Mora (1996).

In both of these special cases the optimal policy is known to be of index form. This

means that there exists K index functions,

Wk<a : N —> R+, 1 < Jfe < K,

such that at all decision epochs an optimal policy chooses to serve a customer from

the maximal index class, i.e.

u*{N(t)} = afc =»• Wk,a{Nk(t)} = m^WjiCt{Nj(t)}, where u* is optimal.
(3.19)

We see that our discounted Whittle index policy leads us to the same optimal index

policy as in the special discounted problem considered in (i) and (ii).

As I have noted above to obtain Whittle's indices for the original discounted cost

problem in (3.4) and (3.8) we must initially look at the single class problem

(k, a, W).

3.3.1 The single class system with a charge for service

In this section we study the single class problems (k, a, W), so it will be

notationally convenient to drop the class identifier k. The problem we look at is one

119

of a single server who is able to serve a single customer from the given class at any

time. However there is a charge for the server's work and we have the option to not

serve any customers if we believe it more cost effective to do so. We maintain the

non-preemptive structure, so once a service has started on a customer it will

continue until that service is complete. There are also holding cost charges incurred

at a rate which is assumed increasing convex in the number of customers in the

system. For this single class of customers we have M/G/l dynamics. Hence arrivals

form a Poisson(A) stream. We use S to denote a generic service time with

associated distribution function G. We do as always require that AE(S) < 1 for

stability. We can view this system pictorially in Figure 3.1. The goal is to choose

do not serve

Figure 3.1: The options when considering a single service station.

how and when to deploy the server to minimize the the sum of the costs incurred in

holding customers in the system and those incurred in paying for service. We

formulate this problem as a Semi Markov Decision Process (SMDP) as follows:

(a) We use N(t) to denote the state of the system at time t G R+, i.e. the number
of customers in the system. Decision epochs will occur at all service completion

times which do not result in an empty system and at all times when we are in the

passive mode (i.e. not serving) and we observe a customer arrival. At each decision

epoch we must decide whether to take action a (active) or b (passive), where the
active action a is the choice to serve a waiting customer through to completion and

Ik

Pi >

120

the passive action b is the choice not to serve. If t is a decision epoch we can see

that the next epoch will occur at time t + S if we choose action a, and time t + X if

we choose action b, where X is the time until the next customer arrival. By

standard theory X ~ exp(A) since the arrivals follow a Poisson(A) process.

According to standard M/G/l dynamics we have that

P[N((t + S)+) = m + n — l\N(t) = m,a] = Es (asrc_xs
n\

, m E Z+, n E N

-I
00 (At)n

e xtdG, m E Z+,n E N
n:

since the above is just the probability that we have n arrivals between t and t + S.

We also know that

P[N((t + X)+) = m + l\N(t) = m,b] = l,m£N. (3.20)

This is evident since if we take this passive action b at the time t decision epoch,

that means we are not serving. So the time of the next customer arrival, t + X, will

be when our next decision epoch occurs, at which point we will obviously have

m + 1 customers. Note that the passive action is the only admissible action when

N(t) = 0.

(b) We denote by C : N —> M+ our increasing convex holding cost rate function for

the class concerned. Then we can see that when we have n customers present in the

system, our discounted costs will be incurred at rates

aC(n) + W while the server is serving, and

aC{n) while the server is not serving.

In the above, a and W are positive constants. These rates are as in (3.12) above.
Hence W is the rate charged for service, while aC(n) is the holding cost rate when

there are n customers in the system, where recall that C(0) = 0.

121

(c) A policy is a rule for choosing between the two actions a or b in light of the

history of the system to date. We can write the total expected cost incurred under

policy u from initial state m as

r r°°
Vu(m,a,W) = Eu / {aC{N{t)) + WI{t)}e~atdt\N{<d) = m . (3.21)L Jo

In (3.21) I(t) is the indicator function

m =
1, if the server is active at time t

0, otherwise, t € R+

It is clear that the immediate goal of analysis is to find the policy which will

minimize the cost in (3.21). We denote the value of this minimized total cost to be

V(m, a,W) = mi{Vu(m, a,W)}. (3.22)
U

This is the problem we denoted by (k, a, W) in Section 3.2, where k is the class

identifier (now dropped).

Recall the central idea of stochastic DP on page (8) of Section 1.2. This indicates

the existence of an optimal policy which is stationary (i.e. makes decisions in light

of the current state only). Also from general theory we know that the value

function of this optimal policy will satisfy the DP optimality equations; see (3.24).
In this simple single class, single server system we know that the decision in any

state m is between taking action a (until the next service completion - as we have

non-preemptive controls) or action b (until the next arrival). Now we can see that,
if we are in state m and the policy u takes the passive action now and acts

optimally from the next decision epoch onwards, then the total expected cost under

policy u can be disaggregated into the discounted cost until the next arrival plus
the discounted cost from state m+1. This total cost will be

= aC(m)E^J e~atdtSJ + V(m + 1, a, W)E(e~aX),
= C(m)E(1 - e~aX) + V(m + 1, a,W)E{e~aX)

aC(m) W(m + l,a,W) ^ x = r e-„Xe-^ix = *
a + A a + A Jo a + A

122

However if we are in state m and the policy u says take the active action, then acts

optimally from the next decision epoch, the total expected cost under policy u can

be disaggregated into the discounted cost until the next service completion plus the

discounted cost from the state at that conclusion of service. This cost will be

= C(m, a) +WE^ e-atd?j+f2jo ^pe-Ate~atU(m + n - 1, a, W)dG
= C(m, a) + WEIyl ~6 Jq ^fe-(a+x)tV(m + n-l,a,W)dG

Note that C(m, a) is the holding costs incurred during a single service completion

beginning at time 0 in state m, which we write as

C(m,a)=E\f aC(N(t))e~atdt\N(0) — m,a\, me Z+. (3.23)
- Jo

Hence we can see that the value function V(.,a,W) will choose the option in order
to minimize these expected costs. Hence we obtain the optimality equation

T »• / Tm . <aC{m) \V(m + l,a,W) , WE(1 - e~aS)V(m,a,W) = mm < H ^—--,C(m,a)-\ v 'L cl -f- A OL H- A a

+ m — 1, a, W)dG} , m G Z+. (3.24)
on—n 0

oo

+
n=0

The analysis becomes a little cleaner if we substitute
roo

V(m, a, W) = V(m, a, W) - W / e-atdt, me NJo
XV

= V(m,a,W) , raef} (3.25)
a

in (3.24). We can see that V(m, a, W) is the value function for an equivalent
decision process but where the cost rate for the active action a is aC(n), and for the

passive action b is aC(ri) — W. So now the W has an interpretation as a subsidy for

passivity. Using the identity (3.25) in (3.24), we obtain

. raC(m)-W AV(m + l,o;,W) ~V(m,a,W) = mm < i—— h—i2—J-;C(m,a)I a + A a + A

+ m — 1, a,W)dG)}, m e h<3.26)

123

Also note that if we are in state 0 then passive is the only admissible action so we

also have that

(a + A)V(0, a,W) = -W + AV(1, a, W),

since C(0) = 0.

It is this problem in (3.26) which we consider. So we have W with the economic

interpretation as a subsidy for passivity, i.e. a payment made to the system

whenever we take the action "do not serve". We use IIa(W) to denote the set of

states for which the passive action b is optimal in this problem. So we have

na(W) = {0} U {m € Z+ such that the passive action is optimal in m when

If we have a-indexability, namely that IIQ(W) is increasing with W, we then use

Wa(m) for the Whittle a-index for the customer class concerned in state m. We

now give a heuristic argument to lead us to a formula for this index Wa(m), in
terms of model parameters, when Wa(.) is assumed to be an increasing function, as

would seem plausible. When we have found this formula for the index we will then

verify its increasing nature.

We consider the service control problem (a) - (c), except now we have changed from

the charge for service to the subsidy for passivity as noted above. We start with the
number of customers initially in the queue at m, i.e. iV(0) = m. We also have a

discount rate of a and passive subsidy W = Wa(m) set equal to the assumed value

of the a-index in state m. We make the following two assumptions:

1. The a-index, Wa(n), is increasing in the state, n.

the subsidy for passivity is W}, W e R (3.27)

124

2. When the passivity subsidy, W, is equal to the a-index Wa(m) in state m,

both of the actions a and b are optimal in that state.

Both of these assumptions will be verified later in the analysis. We can now infer

the following for our problem with passive subsidy W set equal to the assumed

index value:

(i) the active action a must be optimal in states {m + 1, m + 2,...};

(ii) the passive action b must be optimal in states {0,1,... m— 1};

(Hi) actions a and b are both optimal in state m.

Note that (i) and (ii) follow from Assumption 1 and the definition in (3.27), while

(Hi) follows from Assumption 2.

Hence under these assumptions we can see that there are two stationary policies

which are optimal when W = Wa(m). Both optimal policies make choices according
to (i) and (ii) above. Let the stationary optimal policy which chooses the active

action a in state m be denoted by U\, and the optimal policy which chooses the

passive action b in state m be denoted by U2- Our approach which leads us to a

formula for Wa(m), involves calculating the total expected discounted cost of

following u\ and also of following U2, then equating these and solving for the passive

subsidy.

Since we have the initial state N(0) = m, policy u\ will take the active action a

from time 0, until the time when the state first enters m — 1. If we denote this time

by T, then we write

T = inf{f; N(t) = m — 1}. (3.28)

Note that since the state space is not bounded above, we can see that T will be

independent of the current state m. The cost incurred during this initial active

125

phase i.e. the discounted holding cost until T is,

I
■T

E / aC(N(t))e atdt\N(0) = m, a — C(m,a).E (3.29)

Note that this random variable T is stochastically identical to the busy period of an

M/G/l queueing system, starting with a single customer and having arrival rate A

and generic customer service time S. Having arrived in state m— 1 at time T,

according to (it) above, policy u\ will now take the passive action b, until a

customer arrives - taking the state back up to m. The inter-arrival time of a

Poisson process follows an exponential distribution and hence we know that the

arrival will occur at time T + X where X ~ exp(A). The expected cost incurred

during this passive phase will be the passive cost rate when we have m — 1

customers multiplied by the discounted time until arrival all discounted back from

time T to 0, which can be written as

Since N((T -I- X)+) = m, the policy u\ now repeats the above cycle ad infinitum

from time T + X. The total expected cost associated with this policy may be found

as the sum of an infinite geometric progression. The expected cost of a single cycle

will remain fixed but the expected discounting applied will decrease for each

successive term by the factor

E(e aT) x (aC(m — 1) — Wa(m)) x Ex

E(c-oT^aC(m ~ 1) ~ Wq(m)
oc + A (3.30)

£(e-«(T+*))
= E(e-aT)E{e-aX)

AE(e~aT) (3.31)
a + A

So using (3.29), (3.30) and (3.31) we find that

VUl{m,a:Wa(m)}
C(m,a) + E(e aT){aC(m — 1) — Wa(m)}(a + A) 1

1 - AE{e-aT){a + A)-1
(3.32)

126

We do still need to find expressions for the terms, E(e~aT) and C(m,a). However I
will for now continue by finding the corresponding total expected discounted cost of

following policy u2.

We again start from the initial state N(0) = m, so now under policy u2 the passive

action b will be taken at time 0 and remain in force for a period of time we denote

by X, i.e. until the first arrival after 0 occurs. As above we have that X ~ exp(A).
At the conclusion of this time period a transition to state m+ 1 will occur. The

expected cost incurred during this initial passive phase will therefore be the passive

cost rate multiplied by discounted expected time until the arrival, i.e.

rx

(3.33)

(aC(m) — Wa(m)) x E^j e atdt^j
aC(m) — Wa(m)

ft ■(■ A

After this initial passive phase the active action will be taken until the queue length

returns to m for the first time. This will take a further amount of time which is

stochastically identical to T above. So the expected cost incurred during this active

phase is the discounted holding cost from time X to time X + T,

C(m + l,a)E(e aX)
AC(m + 1, a)

a + A (3.34)

As with policy u\, policy u2 now repeats this cycle ad infinitum. So the total

expected cost can again be found as the sum of an infinite geometric progression,

with common ratio given by the quantity in (3.31). So using (3.31), (3.33) and

(3.34) we have

r„ „ {aC(m) — Wa(m) + XC(m + 1,a)}(a + A)-1Vu,{m,a,Wa(m)} = 1 - + A)- ' (3"35)

But as we have already said, both policies U\ and u2 are optimal when the service

127

charge is W = Wa(m) and hence it must follow from (3.32) and (3.35) that

VUl{m,a,Wa(m)} = VU2{m,a,Wa(m)}
=> {ol + X)C(m, a) + E(e~aT){aC(m - 1) - Wa(m)} = aC(m) - Wa(m)

+AC(771 + 1, Oi)

==» Wa(m){l — E(e~aT)} = aC(m) — E(e"aT)aC(m — 1) + AC(m + l,a)

—(a + X)C(m, a) m 6 Z+ (3.36)

So using the above argument we infer that the a-index takes the form,

TIT _ XC(m + 1, a) - (<* + A)C{m, a) + aC(m) - aE(e~aT)C(m - 1)W«(m)
1 _ E^• m e Z '

(3.37)

We now use standard conditioning arguments to find formulae for the quantities

E(e~aT) and C(m,a:) so we are able to calculate the index in (3.37). Firstly
consider E(e~aT), where T is the time it takes the system to get from its current

state (in the active mode), to a state where it has one less customer. The difficulty

with this is that new customers constantly arrive into the system. When we are in

the current state m, by the time we have served the customer currently in service we

may have had, say, r customer arrivals and so will be in state m — l + r. We consider

the probability distribution of the number of arrivals in the general service time, S.

P(r) = the probability of r arrivals in service time S
POO

= / P(r\S = t)dG(t)
/ o
roo

^f-e~xtdG, (3.38)r\

where we have said the general service distribution has distribution function G, and
we know that the arrivals occur according to a Poisson process at rate A. We can

see that if we have r arrivals during the first service, we then need r subsequent

128

busy periods to return to the original state, so we therefore have
^ roo (\-L\r

E(e~aT) = J2 —~e-(a+x)t{E{e-0lT)}rdG
r=0 Jo
pooroc

= / exp{AE(e~aT)t — (a + A)t}dG
Jo

= G(a + X[l -E{e~aT)}) (3.39)

where

roo

G(C) = / e'&dG.Jo

We now have an equation for E(e aT) and so we continue by using standard

conditioning arguments to find a formula for C(m, a).

In this chapter we consider a general service distribution and so must find

expressions for all the required quantities on this basis. However one could perhaps

find these formulae more easily if the actual service distribution was known. In fact

we initially considered service to be Gamma distributed, as this choice has some

simplifying features. However now we are able to now give an account appropriate

for a general distributional form.

Recall from (3.29), that C(m, a) = the expected discounted holding cost associated
with the initial active phase (of duration T from state m down to m — 1) i.e.

C(m,a) = E\ f aC(N(t))e'atdt\N(0) =m,a .-Jo
Also recall the notation,

C(m, a) = total discounted cost during the initial service offered in state m.

= E\ f aC(N(t))e~atdt\N(0) = m,a] (3.40)
- Jo

We now aim to simplify the algebra by using,

A = E(e~aT). (3.41)

129

Should n customers arrive during the initial service, then m + n-1 customers will

be present after the first service and successive busy periods will reduce the queue

length such that

+

+

m + n — 1—> m + n — 2 —> ...—> m — 1.

Hence we can see that C(m, a) can be disaggregated into the discounted cost until

the first service completion and the cost to get from state m + n — 1 down torn —1

multiplied by the probability of n arrivals during this initial service, for all n E Z+,
all discounted accordingly. This can be written as

r°° \f
C(m,a) = C(m,a) + / —e~XtC(m,a)e~atdG

Jo 1'
roo (\+\2

■ J e~Xt [C(m + 1, a)e~at + C(m, a)Ae~at] dG
■ f - -p e~At [C(m + 2, o)e~at + C(m + 1, a)Ae~atJo 3!

+C(m, a)A2e~at] dG
+ ... (3.42)

too
— C(m,a)+ / —e~^a+x^C(m, a)dG

Jo 1'

+ [^pe"(Q+A)t + r' u)Al~rdGdo ■ r=0

+ / ^fe~{a+x)t^2^(m+r^a)A2~rdGdo ■ r=0

+ ... (3.43)
°° poo (\j.\n r ,

= C{m,a) + J2 —pe-(Q+A)t + r' a){E(e~aT)Y
n=x Jo n■ L«—n

dG.

(3.44)

Where we use (3.38) to get (3.42) and then (3.41) to get to (3.44). So we can now

see how expression (3.44) disaggregates the total expected cost incurred during

[0,T) in (3.29) into that incurred during the processing of the first customer and
the residual cost (if any) incurred by customers arriving during this initial service.
The second term on the r.h.s. of (3.44) gives the expected cost associated with this

130

residual processing.

We now look at a couple of expressions which will prove useful when we try to prove

Lemma 2 below. The first of these expressions records the special form of the

distribution function for a gamma T(n, A), where n E 7L+. Let Z be the time of the

nth arrival in a Poisson process. Then Z ~ T(n. A). Hence the distribution function

is given by,

where Q(t) represents the number of events in a Poisson process up to t, i.e.

expected discounted holding costs incurred during the service of a single customer

when the queue is in state m at time 0. Figure 3.2 may be useful when formulating

this expression.

P(Z < t) = P{Q{t) > n)
00 (\ 4-\rn

(3.45)

Q(t) ~ P(Xt). The second useful expression is a formula for C(m,a), namely the

Queue
Length

Queue
Length

cuC (m 4-3)

Time Time

Figure 3.2: Possible state transition diagram until a customer is served.

131

In Figure 3.2, S is the service time of the mth customer and we can see that

C(m,a) will be the discounted area under this graph. Hence C(m,a) can be

disaggregated into the state m active cost rate multiplied by the discounted time

between 0 and S plus the difference in the cost rates for states m + i and m + i — 1

multiplied by the discounted time between A and S and by the probability that

the ith arrival occurs at D, < S, for all i G Z+. This can be written as

C(m,a) = £l5|aC(m.) J e~avdu
+ (aC{m + 1) - aC(m))EDl [[e"QU/(A < S)du

■- JDi J

+ (aC{m + 2) - aC{m + l))EDJ [e~auI(D2<S)d<-Jd2
= £sjc(m)(l-eaS)

+ (C(m + 1) - C(m))EDl \{e~aDl - e'aS)I(Dl < S)

+ ...

e~ab)I{D2 < S) + ...+ (C(m + 2) - C(m + 1))ED2

= -E\s|c(m)(l — e~aS)
rs

+ (C(m + 1) - C(m)) / (e~adl - e~aS)Xe~XdiddlJo

+ (C(m + 2) - C(m + 1)) J (e~ad2 - e~aS)\2d2e-M2dd2 + ... j +
= C(m)E(l-e-aS)

roo T rs

+ {C(m + 1) — C(m)) / / {e~adl - e~as)\e'^dd,Jo L Jo

-ad2 0-as\

dG(s)
roc rs

+ {C(m + 2) — C(m + 1)) / / (e~ad2 - e~as)X2d2e'Xd2dt2Jo l Jo
dG(s) +

= C(m)E(1 — e a5) + ^2 {C(n + m) ~ C(n + m— 1)}
Xndn-le-\d

n=1

r fJo . Jo10 (n ~ 1)! {e~ad - e~as}dd dG, (3.

where we use the fact that the time between the start of service and the arrival of

the nth customer will follow a gamma T(n, A) distribution.

132

Using (3.45), the form of the T(n, A) distribution function, in the last term of (3.46)
we can see that

\ntn~le~Xt
t _at n-asXr,+ _ fs (A + a)ntn~le~^aJrX)t \nrs \n4-n— lp—At rs

(n — 1)! (A + a)r
s \n+n—l/D—\t* * "

e~aadt'I (n- 1)!
A" ^ (A + a)rsre-(A+a>4(A + a)n r\r=n

oo
x—x Ar~re-(\+a)s-E^i—■ <3-47>

Therefore we can see that (3.46) becomes,

n= 1

C(m,a) = C(m)E(1 —e aS) +^ {U(n + m) — C(n + m — 1)}
An

E r y> ((A + a)S)V(A+Q)s ^ XrSre^x+^s }
(A + a)n I 2-; r\ UE

r—n
r\)

(3.48)

Lemma 2 asserts that our conjectured index Wa(m) in (3.37) is increasing in m, as

was assumed for the true index in the preceding argument on page 3.3.1. In Lemma

2, we take fUa(0) to be zero. Also recall that for the economy of notation we have

introduced A for the quantity E(e~aT).

Lemma 2

Wa{m) is increasing in m.

Proof

133

Using identity (3.44) in (3.37)we can infer that, for me Z+

(1 - A)Wa{m) - XC(m + l,a) — (a + X)C(m,a) + aC(m) — aAC(m — 1)
= AC(m + 1, a) — (a + A)C(m, a) + aC(m) — aAC(m — 1)

+AE / ^nTe~(a+X)t{ + 1 + r'Oi)An~l-r^^-dG
OO /•oo

-(a +A)£ /
n=l 0 "" " r=0

= AC(m + 1, a) — (a + A)C(m, a) + aC(m) — a4C(m — 1)

n

72—1

| ^C(m + r, a)v4n_1~r jdG
r=0

°° r °° t \ o\k

+EE
J=1 L k=j

{XC(m + j,a) - (a +A)C(m + j - l,ai)}.Afe
i=i L k=j ""

= AC(m + 1, a) — (a + A)C(m, a) + aC(m) — aAC(m — 1)
°°^ r.°°, ArSre~(a+X^s "iX ^ "*l {C(m + n — 1) — AC(m + n — 2)}

{XC(m + n, a) — (A + a)C(m + n — 1, a]

+aC(m + n — 1) — aAC(m + n — 2)}. (3.z

CO OO

-°Eg[E"";,
n=l r=n

oo oo
r ^ \r Or#—(a+A)5

+EE[E .
n=l r=n

We can now use (3.37) in (3.49) to show that,

(1 -A)Wa(m)
a

— —C(m + 1, q)
a

a + A

OO OO

72=1 r=72

OO OO

+EE[E
n=1 r=n

r\

C(m, a) + C(m) — AC(m — 1)
A)S

{C(m + n — 1) — AC(m + n —

f (1 ~ A)Wa(m + n - 1) j
Xrsre~(a+x)sAr~n'

— —C(m + 1, a) — (a X) C(m, a) + C(m) — AC(m — 1)
a \ a

n\

~ AnSne~^+x)s ~ XnSne-G+x)s
+ 2_^ j —AC(m — 1) — 2_^ ——-C{m + n
n=l n* n=1
OO oo

+Ee[E
n=1 r=n

Ar5re-(a+A)SAr-n, , (j _ A)Wa(m + 71-1)-]{ a }■
(3

Now using expression (3.48) together with some algebraic manipulation the above

134

expression becomes

(1 -A)Wa(m)
a

= ^{C(m + n)-C(m + n- l)} x£ ^
n=2

Ar5re-(a+A)5
r!

+ {C(m + 1) — C(m)}E(e -aS -(a+X)S\

—C(m)E(1 — e) + C(m) — AC(m — 1)
°°

\n cn„—(cx+\)S °° \ncn„—(a+\)S

y ^ - 1) -V , C(m + n - 1)^ n! ^ n! y
n=l n=1
oo oo

+E£[E
n—1 r=n

^rgre-(a+A)S^7--n
r! { (1 — yl)Wa(ra + n — 1)

a

= C(m)E [ASe"(a+A)5] - C{m + 1)y E
n=2

yigne~(oi+\)S
n!

+Eb
n=2

yigne-(a+X)S
nl {C(m + n) — C(m + n — 1)}

+ {C(m + 1) — C(m)}E(. ,-otS _ -(a+A)Sj

—C(m)E(l — e aS) + C(m) — AC(m — 1)
°° \ n cnp—(a+X)S

+E n< (m^'»
71=1

Arsre~(a+x^sAr~n-\OO OO

Now notice that

Ee
n=2

+EUE
n=1 r=n

\nSne~(a+x^s ~\

ri

(1 — A)Wa(m + n — 1)
a

(3.51)

nl E[e~aS - e-{a+x)s - A5e~(Q+A)5].

Further, using (3.39) we have that

Eb
n= 1

XnSne~(a+^)s
nl

An = A - E[e~{a+X)s]. (3.52)

Using these relations and further algebra we see that (3.51) becomes

(1 - A)Wa(m)
a

- E
n=0

\ngne-{a+\)S
nl {C(m + n) — C(m + n — 1)}

OO OO

+EUE
Arsre~(a+x)sAr~n

r\

(1 — A)Wa(m + n — 1)
a }. (3.53)

7i= 1 r=n

However, identity (3.53) is strongly suggestive of the following computational
scheme for a_1(l — A)Wa(m), m € Z+: Use (.) to denote the Rth iterate of the

135

target function Wa(.). Take W^(m) = 0, m € Z+, and

(1 - A)W£+1(m) ^ _ r An5"e-<a+A)s
a

71=0

=

~\ }{C(m + n)-C(m + n- 1)}
f pff Ar)5re-(a+A)S^r-n (j _A^(m + n- 1) 1+L£{.L h A a 1'
n=l r=n

(3.54)

The aim is now to use this computational scheme as a vehicle to prove Lemma 2.

To do this we follow the steps laid out below.

1. Prove that W^(m) is increasing in R V m, by induction on R.

2. Prove that Wa(m) > W^(m) V m, by induction on R, (so this relation will
hold for all m and all R).

3. This leads us to the fact that

lim W?(m) = T(m) < Wa(m) V m.
R—>oo

4. Prove Wa(m) = T(m) V m, by an argument based on supm{Wa(m) — T(m)}.

5. This leads us to the fact that

lim Wa(m) = Wa(m) V m.
R—*oo

6. Prove W^{m) is increasing in m for all R, by induction.

7. We can then deduce that Wa(m) is increasing in m, as required.

Let us now consider step 1: Prove that W^{m) is increasing in R V m, by induction
on R. Consider the iterative function in (3.54). We can obviously see that,

;(m) < W^(m) V m G Z+.

136

since we have that W^(m) = 0 and the holding cost function, C(.) is increasing. We

now suppose that

W^(m) > W%-\m) > . . > Wl(m) = 0 V m E Z+

Now notice that,

Ansne~(a+^s
a~l{\ — A)W^+x{m) — j } {C(m + n) — C(m + n — 1)}

ra=0

XrSre-{a+\)SAr-n . , (j _ A)W^(m + n- 1) 1
+ !>{£ h H a }
n=l r=n

°°
r \ n qnp-(a+\)S .

>
j j{C(m + n) — C(m +n — 1)}

n=0 ^'
^ ^ r^ Ar5re-(a+A)5Ar-nw(l- A)W*-\m + n - 1)'2>{£——H A a
n=1 r=n

-1/1 imJ/R/

+

= a_1(l — A)W^{m)

==>■ W^+1(m) > W^{m), since a > 0, (1 — ^4) > 0.

We have therefore proved step 1 as required. So we now look at step 2: Prove that

Aa(m) > Wa(m) V m, by induction on R. To do this first recall the formula (3.51),
and since we have W^(m) = 0 then obviously Wa(m) > W^(m) V m. Hence the
initial case holds, so we now suppose that,

Wa(m) > W^(m) V m, and 1 < i < R, (3.55)

and must infer that Wa(m) > W^+1(m) V m. We have, using (3.53) and (3.54) that
' An5ne~(a+A)5

— j {C(m + n) — C(m + n — 1)}
n=0

1 jl E (Y1 \rSre-^+x^sAr-n j f (! - A)W?(m + n - 1) j
n=l r=n ^

r l"5V"(a+i)s -i
< — 1{C{m + n) — C(m + n — 1)}

71=0

oo oo

^ ArS're (a+A)s74r »||(l-^)Wa(m +n-l)j
n=l r=n ^ ^

= a_1(l — ^4)H/Q(m)

W^+1(m) < Wa(m) V m, since a > 0, (1 — A) > 0,

137

where the second line follows from the induction hypothesis. Hence we have proved

step 2. So we now move on to step 3, since W^{m) is increasing in R and is

bounded above by Wa(m), we can see that Wrf(rn) must tend to some limit as R

tends to oo. Let us call this limit T(m), i.e.

lim W^(m) --- T(m) V m E Z+.
R—>oo

We also know that

T(m) < Wa(m) V m € Z+,

since we have demonstrated that Wa{m) > W^(rri) for all m and R. Now we will
consider an expression which will prove useful in step 4. By straightforward

algebraic manipulation we have that

^ ^ \rSre-(\+a)SAr-n A X f ~ Ar5rg-(A+a)S^r '
1^E\2^ h r = r^4 —~\
n= 1 ^ r=n ^ r=l r=l

r\

—£<jV(A+Q)5(eAS - 1) - e~(A+a)5(eAA5 - 1)1 — A I

E{e~aS - A) (3.56)
1 -A V '

It can also be seen that this expression will be less than 1 since 0 < A < 1 and

0 < E(e~aS) < 1. It is also true that E(e~aS) > A and hence

„ E{e~aSj - A ,0< \-A <h

We now move onto step 4 and show that Wa(m) = T(m) V m. To do this we

138

consider

sup \a *(1 — A){Wa(m) — T(m)}]
m

Xrsr Ar~n
sup
m

oo oo

sup
m

E7E 7 }R'd - *>«w» + m -1)}
- E7 _ A)r(n+m-t)}

E7E VSre-'7'S-4r-"}{a-(l -A)}{w„(n +m- 1)
n=l r=n

—T(n + m — 1)|
< J] E S A ~ g 7 — } {a-1 (1 - A)} sup {(m) - T(m)},

OO OO
\rsre-(x+a)sAr~r

n= 1 r=n

where the second line follows from equations (3.53) and (3.54). Then using relation

(3.56) and rearranging we can see that

E(e~aS — 41
=» sup{Wa(m) - T(m)} <

_ sup {Wa(m) - T(m)}.
m 1 J± m

Since we know inequality (3.56) is true, this could only occur when

sup{Wa(m) — T(m)} = 0
m

=> Wa{m) = T(m) V m. (3.57)

So this proves step 4 and leads us to conclude that we do have the relation in step

5, i.e.

T(m) = lim W^(m) = Wa(m) V m.
R—>oo

So we now proceed to step 6 and prove that W^{m) is increasing in m for all R, by
induction. To do this we recall W^(m) = 0 V m e Z+. So from (3.54) we can see

that,

77 r A Qnp-(\+a)S .

a :(1 — A)Wl(m) =^ if | — j (C(n + m) ~ C(n + m— 1)).
rc=0 ^'

139

Therefore we can see that a-1(1 — A)W%(m) is increasing in m since we know that

C(.) is a convex function and satisfies

C(n + m) — C(n + m — 1) < C(n + m + 1) — C(n + m) V m and n. So we conclude

that W£ (m) is increasing in m and we have our initial case for the proof by

induction. We now hypothesize that W^(m) is increasing in m and infer it for

W^+1(rn). Recall the computational scheme (3.54)

(1 -A)W*+1(m)
_ ^ ,\nSne-(<x+Vs-

&
n=0

— }{C{m + n) -C(m + n- 1)}
f Ar5re-(a+A)SAr-n (i _A^(m + n - 1) <1+

h j|)•
n— 1 r—n

We have that W^{m) is increasing in m (by the induction hypothesis) and that

C(.) is a convex function, hence we can see that

a-1(l — A)W^+l{m) is increasing in m

=/- W^+l(m) is increasing in m,

since ck_1(1 — A) is a positive constant. Hence we have shown that W^+1(m) is

increasing in m V R. So we now must just complete the final step and infer that

Wa (m) is increasing in m. To do this we suppose that there exists an m and m + 1

for which

Wa(m + 1) < Wa(m). (3.58)

Then by step 5 we can see that this implies that

W^{m + 1) < Wa(m) for some large enough R.

However we know by step 6 that this is false and therefore we must conclude that

(3.58) must also be false. So we have

Wa(m+ 1) > Wa(m) V m, (3.59)

which is our final step. So we have completed the proof that Wa(.) is indeed

increasing, as required.

140

We now proceed to Theorem 1, which is the key result needed to establish both that

the class is a-indexable and that the state m cu-index is given by (3.37). The proof,

which is due to Glazebrook, is long and utilises the methods of stochastic dynamic

programming, here we just give an outline, for the full proof see Ansell et al (2003b).

Theorem 1

If Wa(m — 1) < W < Wa[m) then the policy which chooses the passive action b in
states {0,1,..., m — 1} and the active action a otherwise is optimal for our service
control problem with service charge W, m E Z+.

Outline of Proof

Use V(, a,W) to denote the value function for the policy u described in the

statement of the Theorem. Recall that we have introduced IT as a passivity subsidy.

By standard DP theory to prove Theorem 1 we must show that V(., ct, W) satisfies
the optimality equations (3.26). From (3.26) and straightforward algebra, it suffices

to show that when Wa(m — 1) < W < Wa(m) we have that.

W < aC(n) + AV(n + 1, a, W) — (a + X)C(n, a)
00

r°° (xtY

-(*+a)E/ V-■e-(a+A)tV(n + r - lya,W)dG, n > m, (3.60)
r=0 r'

and

W > aC(n) + \V{n+l,a,W)-(a + \)C{n,a)
°° roo / \f\r

— (a + \)^2 | e"^+A^V(u + r — 1, a, W)dG, 1 < n < m -(3.61)
r=o r'

One can then demonstrate (3.60) and (3.61) by considering the the following four

cases separately.

1. n = m

2. n > m + 1

141

3. n — m — 1 > 1

4. m — 2 > n > 1.

For n = m, (3.60) can be shown by firstly finding an expression for V(ra, a, W) by
consideration of the costs incurred within the first service and those beyond it.

Then this new form of V(m,a, W) can be used to find that (3.60) is equivalent to

W < aC(m) + AV(m + 1, a, W) — (ct + A)V(m, a, W). (3.62)

Similarly an expression for V(m + 1, a, W) can be found involving V(m, a, W). Also

V(m, a,W) can also be expressed using methods similar to those used to find

(3.32). Using these new relations we can then see that

aC(m) + AV(m + 1, a, W) - (a + A)V(m, cr, W) = (1 — A)Wa(m) + AW, (3.63)

where recall that A = E(e~aT). It is then clear that the hypothesis of Theorem 1

and the above expression exceeds W and (3.62) is established. To prove (3.60) holds
for n > m + 1 first introduce the following new notation, use u(n) to denote the

policy which chooses the active action at states n and above with the passive action

chosen otherwise and for the corresponding costs. Note that u(m) = u and

V(m) = V. Then by calculations similar to (3.32) and (3.35) respectively we can find

formulae for V^n\n,a, W) and V^n+1\n,a, W). We use these formulae to deduce
that

V{n\n,a,W)-V{n+l\n,a,W) = {W-Wa{n)}{l-A)(a + \-\A)-\n e N. (3.64)

Now we take r 6 Z+, and allow the policies to operate from initial state n + r.

Because each begins with a busy period during which the active action is taken, we

have that

V(n)(n + r, a,W) = C(n + r,a) + AV{n\n + r - 1, a,W),

and

V(n+1)(n + r, a,W) = C{n + r, a) + AV(n+1)(n + r - 1, a,W).

142

Then from (3.64) we can see that

V(n)(n + r, a, W) - V(n+1) (n + r,a,W)

= A{V{n\n + r - 1, a,W) - V(n+1)(n + r - 1, a,W)}
= Ar{W-Wa(n)}(l-A)(a +X-XA)~\ n,r E N.

We now fix state M >m + 1. Using a lot of algebraic manipulation and the

relations (3.65), (3.63) and (3.39) we can find that

aC(M) + AV(M + 1 ,a,W)-(a + \)C(M, a)

-(a + A) jh j i^e"(a+A)tV(M + r-l,a,W)dG
r=0 r'

(3.65)

M-1 M—X

= (1 - A) Wa(M) + AM~nWa{n) + AW - (1 - A)^ Au~nW
n—m n—m

> W, (3.66)

as required. Note that inequality (3.66) is a consequence of the fact that

Wa(n) > W, n > m.

So that establishes (3.60). So we now move on to the outline of showing (3.61) for
n — m — 1 > 1. It can be shown that (3.61) is equivalent to

IV > aC(m — 1) + AV(m, a, W) — (a + X)C(m — 1, a)
00 roo /\f\r

"(" + *)£/ ■e-(a+A)tV(m + r- 2, a, W)dG
r=0 '0 r\

= aC(m — 1) + AV^1™ l\m, a, W) — (a + X)C(m — 1, a)
OO

p

(a + A) ^2 /
r=0

(At)re-(a+A)tv(m-l)(m + r _ 2>
r!

A{V(m)(m, a, W) - V(m-1}(m, a,W)} - (a + A)

E
—n «>0r=0

(Aty
r\ e-(a+A)t{y(m)(m + r _ 2,Q;, W)

-V(m-1)(rn + r-2,a,W)} dG. (3.67)

Now note that both policies u{n) and u(n + 1) will take the passive action in state

143

n + r when r < 0. From this it easily follows that

V(n) (n + r,a, W) - V(n+1) (n + r,a,W)

= (^a) {V(n)(n'a'W) ~ V(n+1)K ". ^)}
= (-A_)~V - Wa(n)}(l - A)(a + A + XA)~\n 6 N,r e Z", (3.68)

by (3.65). Now if we use an appropriate version of the calculation to (3.63) along
with (3.65) and (3.68) within (3.67), then use identity (3.39) we obtain that

aC(m — 1) + XV(m, a, W) — (a + X)C(m — 1, a)
00 roo t \f\r

-(«+*)£ I ~rr
,e-(«+A)tV(m + r_2,a, W)dG

noo

= W + (1 - A)A~1{Wa(m - 1) - W} / e~(a+X)tdGJo
< w,

since Wa(m — 1) < W. So that establishes inequality (3.61) for the case n = m — 1.

So just the final case of the outline of the proof that inequality (3.61) holds for
1 < n < m — 2. For this case fix state 1 < M < m — 2, we can then see that (3.61)
is equivalent to

W > aC(M) + XV(M + l,a,W)-{a + X)C(M,a)
00 n00 (\f\r

~(a + X)Y / y-Y-e~^+x)tV{M+ r - l,a,W)dG
/n Tl

r=0 J0
= aC(M) + AV(m) (M + 1, a,W) - (a + X)C(M, a)

00 r00 / \ j.\r

(a + A) / ^e-(a+A)tV(M)(M + r - 1, a, W)dG
„_n do T'r=0

m—1

ME V(n+1)(M + 1, a,W) - V(n)(M + 1, a,W)}

[
n=M

n—1 0071 i 00 / \ j.\r

(«+*)EEf^L e-(a+A)t|V(n+l)(M + r _
n=M r=0

-V(n)(M + r — 1, a,W)}1 dG. (3.69)

We now define the sequences

A \r / A \ 1
■ uri>)'(^r ■—

144

and

S_r = jV,Ar+\... jr eZ+.
We use Sntr to denote the nth term in the sequence Sr, n G Z+, r G Z. We also
observe that, for all choices of s > 0,

. / \\(At)'
r,—=-e <°+x)>dG
/ r!

^ /*oo . ^
(a + A)^ J ^ ^2 Sn,s+2-r

< AE (EM
r=0 n=l

< (3.70)
n= 1

Recall also that the first four terms on the r.h.s. of (3.69) when aggregated, are

equal to

(1 - A)Wa(M) + AW. (3.71)

Using these sequences and (3.71) we can express the r.h.s. of (3.69) as

m— 1

(3-72)
n=M

where

<2M = 1 — A + AS'to_M,to-M-2(1 — A) (a + A + AA) 1

-(a + A){ J2 [°° 5'r.+i,1^e-(a+A)tdG}(l - A){a + A + AAl)"1
r=0 r'

= (a + A)|l-^^005r+1;i^^e-(a+A^G}(l-A)(tt + A + AAl)-(^.73)
and

_ fx « -frv+A iV Tf (At)r ~(a+A)tdG]^/^'~'m—n,m—M—2 / / y J "r+l,r»—M+l y\ J
x (1 — -A) (a + A + A^4)_1,M+l<n<m — 1. (3.74)

But from (3.70), (3.73) and (3.74) we can deduce that for all choices of s,
m — 1 > s > M,

S

Y «n > 0. (3.75)
n—M

145

Combining (3.72) and (3.75) we see that the r.h.s. of (3.69) is given by
m-1 n

W+ {Wa(m-l)-W}[an)+^m - ln=M{Wa(n) -Wa(n+1)}(^ < IT,
n—M r=M

(3.76)
as required. The inequality in (3.76) follows from (3.75) and the assumptions

concerning W and the values of Wa. This concludes the outline of the proof for

Theorem 1.

Careful study of the proof of Theorem 1 yields the conclusion that when

Wa(m — 1) < W < Wa(m) the policy described in the statement of the theorem is

strictly optimal. Suppose now that W = Wa(m). It follows from Theorem 1 that
for this W-value, the policy which chooses the passive action in states {0.1,... ,m}
and the active action otherwise is certainly optimal. In the heuristic argument in

section 3.3.1 and following where we develop the form of the index, this is policy U2-

Recall that u\ chooses the passive action in states {0,1,m— 1} and the active

action otherwise. From (3.36) we have that

VUl{m, a, Wa{m)} = VU2{m, a,Wa(m)}.

From this and the fact that U\ and 112 take the same actions in all states other than

m it follows easily that

VUl{n,a,Wa(m)} = VU2{n,a,Wa(m)},n € N,

and hence that policy U\ must also be optimal. It follows that when W = Wa(m)
both actions are optimal in state m. The following result is now immediate.

Theorem 2 (Indexability for the customer class)
The customer class is ck-indexable with Whittle a-index Wa{m) = Wa(m), me N.

Proof

By Theorem 1 and the preceding discussion we have that

nQ(W) = {0,l,...,m}, Wa(m) < IT < Wa(m + 1),m € N, (3.77)

146

and the requirements of Definition 1 are met, with a-indexability an immediate

consequence. That Wa(m) is the Whittle n-index for state m follows from (3.77)
and Definition 2.

Comments

1. Hence the a-index is indeed given by expression (3.37). Also the proof of Lemma
2 contains within it a method of computation for the index, expressed by (3.54).

2. We now substantiate the claims made for the Lagrangian relaxation on page 116.

Consider class k and its associated allocation problem (k,a,W). We use

{Wka, r — 0,1,..., Rk} for the set of distinct index values for class k, numbered in

ascending order. Note that there will be Rk + 1 distinct index values, which may be

infinite. Hence we have that Wka = Wkt0l(0) = 0,

0 < wla < wla < ...

and

(Wfc.cd r = 0,1, • • •, Rk} = {WkA{n)\ n € N}.

For W £ {y^ka'i J* = 0,1,..., Rk} use uk(W) for the unique optimal policy for the

problem (k, a,W) as given by Theorem 1. If W — Wka for some r then we use

Uk(W) to denote the optimal policy which chooses the active action in all states for
which both actions are optimal. Developing the notation used in (3.7), we write

r C°° i

xak n(mk, W) = EUk{w) / I{ak(t) = a, Nk(t) = n}e~atdt\Nk(0) = mk
1Jo J

for the associated active performance measures, with

r r°° i

y^Xfc)n(mfc,W) = EUkiw) / I{ak(t) = a}e~atdt\Nk(0) = mk .
neN

From the characterization of uk(W) in Theorem 1, it follows easily that for any

choice of mk and r, 0 < r < Rk-i,

<3-78)

147

is constant for W e (W^a, W^1) since in this range Uk(W) does not change.
Further, it is left continuous such that for any r, 0 < r < Rk,

•"'ww Si Si
Finally it is straightforward to show that

XXn(m*,W0- 0, IT —> oo.
nEN

To summarise, the quantity in (3.78) when regarded as a function of W is piecewise

constant, decreasing with jump discontinuities at distinct index values and tends to

0 as W approaches infinity. These characteristics are inherited in the obvious way

by the aggregated quantity

K K

EE4-K>f)=EEj:Um'H/)' (3-79)
fc=l fc=1 n=N

which is the appropriate active performance measure for an optimal policy u(W)
for the K-c\ass stochastic optimisation problem in (3.12) obtained by a

super-position of the Uk{W), 1 < k < K (i.e. independent operation of Uk(W) for
each class k). Further, it is a straight forward consequence of the fact that when

W = 0, Uk(W) takes the active action whenever class k is non-empty, that

K

> a~V + 0(m>a), (3.80)
k=1 nEN

where the constant 0(m,a) is as given in (3.10). Now introduce VF(m,a) as

K

W(m,a) = supjlF; J^^^n(m,lF) > a~l p + 0(m,a)}.
fc=l neN

By the analysis above, W(m,a) must be an index value. Suppose that

W(m, a) = W£a. There are two possibilities. Either

K

^^ xln{m,W(m, a)} = a'1p + 0(m, a), (3.81)
fc=l n€N

148

in which case policy u{W{m,a)} is optimal for the Langrangian relaxation in

(3.12) with W — W{m,a), satisfies the constraint in (3.11) and hence solves

Whittle's relaxation. Alternatively

K

Y! W(m' a)} > a~Xp + 0(m' a) (3-82)
k=l raeN

and so the same claims can be made for some randomisation between u{W(m, a)}
and an alternative policy which is identical except it replaces the active action by

passive in class k states whose index is W£a.

3. Following Theorem 2 and the discussion in Section 3.2, an index policy for the

K-class problem with discounted costs of Section 3.2 is constructed by computing

the index function WfciQ.(.) for each customer class k from an appropriate form of

(3.37). At each epoch t, the policy serves a customer from a non-empty class with

maximal index Wk,a{Nk(t)}.

3.4 The Undiscounted Problem

We now look at the undiscounted problem. We use the information we have gained

from the discounted problem to suggest an index policy for the undiscounted

problem. We again drop the class identifier k and observe that we can now develop

a suitable Whittle index W : N —> R+ for the average cost problem from the limit of

the corresponding a-index

W(m) = lim Wa(m) = lim Wa(m),m G N, (3.83)
a—>0 a—>0

as in Definition 3. Utilising (3.83) within (3.37) we obtain the following result.

Theorem 3 (The Whittle index for average costs)

149

The Whittle index for the average cost problem is given by W(0) = 0 and

W(m)= A<C<m +11 - +£M -gfo - 1), m 6 Z+ (3,84)E\T)

E{C(N + m)} -E{C(N1)}

MS) ' '

where in (3.84) we have

C(m) = lim aT1C(m, a) = E [C(N(t))dt\N(0) = m, a , m e Z+,

(3.85)

a—»0
'0

and in (3.85), the random variable N has the steady state distribution of the

number of customers present in the single class M/G/l system with non-idling
service.

Proof

First notice that

E{e-aT) - E(1 - Toe) + 0(q2). (3.86)

Hence when a —> 0

E(e~aT) 1

1 -E(e~aT) E(T).

Using the above relations the form of the index in (3.84) follows readily from the

discounted index (3.37). It also follows from the definitions of the quantities
concerned and standard results that

£{C(Af + ^)}W'm^)++A;(.C(m). (3-87)
We now write {Uk, k e N} for the steady state distribution of N, the number of
customers present in the single class M/G/l system with non-idling service. We
know from queueing theory that the probability we are in state 0 is given by

n0 = 1 - p = 1 - AE(S),

150

where E(S) is the expected service time. By standard theory, another way to

express n0 is as the proportion of time spent in the empty state, i.e.

n A_10
E(T) + A-1'

Then equating the two expressions for n0 allows us to conclude that

E(T) = E(S) (1 + AE(T)). (3.88)

Expression (3.85) now follows easily from (3.84), (3.87) and (3.88).

Comment

Following Theorem 3 and the discussion in Section 3.2, an index policy for the

K-class service control problem with average costs described in (3.5) of Section 3.2

is constructed by computing the index function Wk(.) for each customer class k from
an appropriate form of (3.85). The required (steady state) distribution of a single
class M/G/l system is available by standard methods. At each epoch t, the index

policy serves a customer from a non-empty class with maximal index Wk{Nk(t)}.

3.5 Numerical investigation of service index

policies for multi-class M/G/l systems

By use of the Langrangian relaxation we have found a class of index heuristics for

the multi-class service control problems of Section 3.2 by studying the single class

problems with a service charge of Section 3.3.1. An index for the discounted costs

problem of (3.4) is obtained as a fair charge for service with an appropriate index
for the average costs problem (3.5) obtained as a limit. We now investigate the

performance of the index heuristics numerically. We will do this by comparing the

expected index costs with the expected optimal cost for problems with two

customer classes. We shall also use simulation to compare costs for our index policy

151

with those of competitor policies for problems with five customer classes. For such

five class problems, the direct calculation of the expected costs would prove

computationally intractable. While our prime focus will be on average cost

problems we begin with a study of some two class problems with discounted costs.

3.5.1 Discounted costs problems with two customer classes

In this section we look at a problem of the type described in Section 3.2, where we

have two customer classes. We consider the following four cost rate structures:

(a) Ci(ra) = bin + 2n2; C2(n) = b2n + 2n2; (quadratic)

(b) Ci{n) = bin2 + 2n3; C2(n) = b2n2 + 2n3; (cubic)

(c) C\(n) = bin3 + 2n4; C2(n) = b2n3 + 2n4; (quartic)

(d) Ciin) = bi(n- 2)+ + 2{(n - 2)+}2; C2(n) = b2[n - 2)+ + 2{(n - 2)+}2;
(shifted quadratic).

Contained in tables 3.1 - 3.32 are the results of part of a study comparing the

discounted costs incurred by the index heuristic described in Comment 3 following

Theorem 2 with those incurred by an optimal policy for a range of service control

problems with two customer classes. Each table 3.1 - 3.32 corresponds to the above

four cost structures (a) - (d) as indicated on the table labels. In these tables, the
first row gives the starting state for the first customer class, and the first column

gives the starting state for the second customer class. The caption in each table
contains in it a bracketed triple denoting the parameters of that problem. The first

two entries of this triple indicate respectively the choice of cost coefficients bi, b2
with the final labels 1, l', 2 and 2' specifying features of the stochastic structure.

Labels 1, l' denote problems for which Si ~ T(2,1.25), S2 ~ T(3,2.25) and

152

Ai = 0.20. For case 1, A2 is chosen such that the value of the traffic intensity p is

0.60, while for case l', p is set to be 0.85. The labels 2, 2' denote problems with

S\ ~ T(2,1), S2 ~ F(3,3) and Ai = 0.20, hence the mean service times are further

apart than in 1, 1 . Again in case 2, A2 is chosen to yield p — 0.60 while for 2' we
have p = 0.85. The top value in each cell of the table is the discounted cost for the

index policy, with the corresponding optimal cost shown below it.

In each case the the fully optimal policy is found using dynamic programming

techniques and the costs are found by use of DP value iteration; see Chapter 3 of

Tijms (1994). It is possible to use such methods for problems of this size, but

computationally expensive.

state 0 1 2 3 4

0 97.9099
97.8780

107.4536
107.4190

134.6200
134.5756

184.7400
184.6722

262.7000
262.5843

1 112.9996
112.9623

137.4599
137.4102

178.6827
178.6027

243.3309
243.1842

336.0253
335.7478

2 152.0503
151.9936

190.7346
190.6392

252.4624
252.2868

336.3064
335.9471

448.0414
447.3186

3 221.0508
220.9429

274.4949
274.2843

356.6669
356.2428

465.1315
464.2181

600.2272
598.2495

4 325.3263
325.1052

394.0378
393.5658

496.1470
495.1201

633.5953
628.0944

794.1842
789.0664

Table 3.1: Comparative performance of the index heuristic and the optimal policy
with various starting states for the quadratic discounted costs problems with two
customer classes, with parameters denoted by (2,1,1).

state 0 1 2 3 4

0 96.3177
96.2575

107.0332
106.9677

136.6032
136.5186

190.3174
190.1900

272.9647
272.7702

1 109.7686
109.6985

133.5806
133.4863

176.3111
176.1546

243.6770
243.3934

340.1883
339.7544

2 145.1065
145.0004

185.6069
185.4280

247.0235
246.6708

332.7542
332.0213

447.1806
446.2219

3 209.3751
209.1794

266.0313
265.6390

351.6516
349.5852

459.1784
457.3180

594.9018
593.1413

4 307.9122
307.5471

381.2022
380.3873

487.0522
485.2095

622.1404
620.2585

782.8971
780.9608

Table 3.2: Comparative performance of the index heuristic and the optimal policy
with various starting states for the quadratic discounted costs problems with two
customer classes with parameters denoted by (1,2,1).

153

state 0 1 2 3 4

0 268.1926
263.7965

287.8366
283.1198

340.0128
334.5410

429.4488
422.9741

560.2975
552.7386

1 297.9327
293.0465

345.1218
338.9149

423.3403
415.2020

537.0395
527.1207

690.3825
678.9212

2 366.3270
359.7742

447.0645
436.0634

555.3085
541.4663

696.2495
680.4583

874.6288
857.3682

3 480.1059
469.9933

596.9210
573.6368

735.6682
713.0714

905.6771
882.2169

1111.4933
1087.1390

4 642.1767
626.7104

779.9106
757.3364

957.7787
926.3101

1161.2508
1130.6713

1398.7699
1366.7081

Table 3.3: Comparative performance of the index heuristic and the optimal policy
with various starting states for the quadratic discounted costs problems with two
customer classes with parameters denoted by (2,1,1').

state 0 1 2 3 4

0 270.5770
267.7749

291.3575
288.3548

345.9148
342.4138

439.1252
434.8776

575.1806
570.0112

1 298.6695
295.5476

343.8673
339.9539

422.2284
417.0959

538.1533
531.5887

695.6364
687.5602

2 361.9004
357.7339

438.7417
432.7368

546.0461
537.4957

688.6325
677.8644

870.7782
857.9374

3 468.4298
462.0042

580.8376
566.7095

719.0607
703.9019

891.0665
873.5501

1100.6201
1080.7324

4 622.7501
612.2763

760.4596
744.8813

937.5622
914.8480

1143.8976
1117.6770

1384.2716
1354.9300

Table 3.4: Comparative performance of the index heuristic and the optimal policy
with various starting states for the quadratic discounted costs problems with two
customer classes with parameters denoted by (1,2,1').

state 0 1 2 3 4

0 102.1608
101.9858

108.4329
108.2507

126.8771
126.6692

161.7071
161.4407

216.8526
216.4882

1 120.9491
120.7377

138.9311
138.6749

169.2265
168.8639

216.0841
215.5061

283.3169
282.4620

2 168.0558
167.7143

201.8883
201.3676

247.7642
246.9154

310.4601
308.8274

393.0207
390.8570

3 251.1120
250.4517

299.8022
298.6307

368.9451
363.7200

449.1828
444.3485

549.1324
544.5226

4 375.5996
374.3650

439.8294
437.4312

528.5174
523.8478

630.4170
625.8179

751.6317
746.6019

Table 3.5: Comparative performance of the index heuristic and the optimal policy
with various starting states for the quadratic discounted costs problems with two
customer classes with parameters denoted by (2,1,2).

154

state 0 1 2 3 4

0 98.4711
97.6724

105.2637
104.4267

124.4684
123.4851

160.1065
158.9081

215.9192
214.4833

1 116.9331
115.9678

133.9756
132.7717

164.1790
162.2630

210.7638
208.3579

277.5065
274.7413

2 163.8483
162.3281

199.4060
194.0062

242.9869
237.9625

303.1766
298.3383

383.6063
378.7785

3 248.1218
245.5057

299.1940
294.3288

360.6891
355.8425

438.8753
433.3997

536.7236
530.5768

4 375.3203
371.9915

441.6154
436.5399

528.1996
519.0374

625.7281
616.5602

743.4560
732.9569

Table 3.6: Comparative performance of the index heuristic and the optimal policy
with various starting states for the quadratic discounted costs problems with two
customer classes with parameters denoted by (1,2,2).

state 0 1 2 3 4

0 261.9274
261.7704

273.2460
273.0833

304.6781
304.5005

360.8762
360.6729

446.0644
445.8237

1 303.6363
303.4515

334.8294
334.6161

385.6722
385.4151

460.6340
460.3150

563.8232
563.4240

2 391.5918
391.3240

447.3044
446.9694

521.3062
520.8752

618.0908
617.5295

741.8122
741.0947

3 533.7979
533.3527

616.9206
616.3383

716.1511
715.3673

836.6658
835.6061

982.6127
981.2731

4 735.2171
734.4319

844.5321
843.5013

971.1808
969.6900

1117.4324
1115.2893

1287.1052
1284.6054

Table 3.7: Comparative performance of the index heuristic and the optimal policy
with various starting states for the quadratic discounted costs problems with two
customer classes with parameters denoted by (2,1,2').

state 0 1 2 3 4

0 261.8411 274.0385 307.2367 366.1411 454.9985
261.6491 273.8393 307.0185 365.8923 454.7094

1 301.5502 331.0230 381.5181 457.4739 562.9375
301.3253 330.7602 381.1978 457.0808 562.4648

2 383.0290 435.3447 507.7364 604.5094 729.6550
382.7027 434.9221 507.1793 603.8131 728.8363

3 515.9370 594.9014 692.2450 812.1852 958.9126
515.3917 594.1302 691.1523 810.9071 957.5305

4 706.7309 815.6819 938.5455 1082.6345 1252.0726
705.7699 813.1550 936.2643 1080.5026 1250.0379

Table 3.8: Comparative performance of the index heuristic and the optimal policy
with various starting states for the quadratic discounted costs problems with two
customer classes with parameters denoted by (1,2,2').

155

state 0 1 2 3 4

0 211.9724
211.9462

231.9491
231.9207

305.4685
305.4323

479.5791
479.5243

817.9163
817.8213

1 245.3607
245.3301

305.4330
305.3921

420.6748
420.6101

645.3533
645.2376

1042.2161
1041.9941

2 357.3472
357.3001

461.5940
461.5160

662.2616
662.1209

971.9395
971.6656

1463.8086
1463.2590

3 610.3339
610.2422

768.9518
768.7780

1060.5649
1060.2219

1517.1287
1516.4533

2152.1354
2150.7460

4 1084.9786
1084.7774

1308.4270
1308.0187

1701.5124
1700.6713

2313.9543
2312.2229

3169.1281
3165.6114

Table 3.9: Comparative performance of the index heuristic and the optimal policy
with various starting states for the cubic discounted costs problems with two customer
classes and parameters denoted by (2,1.1).

state 0 1 2 3 4

0 208.0710
207.7231

229.5188
229.1413

309.4655
308.9819

497.9836
497.2445

861.4387
860.1765

1 238.9141
238.5081

296.5405
295.9991

416.1317
415.2591

652.8269
651.2304

1072.5299
1069.5056

2 340.6820
340.0625

447.5798
446.5401

645.3872
643.4749

964.1093
960.2079

1476.4896
1468.6339

3 574.3526
573.1738

738.4834
736.1858

1038.2687
1033.6464

1495.4702
1485.5708

2152.0010
2130.5979

4 1017.8894
1015.4641

1251.4416
1246.2787

1661.0171
1649.8163

2328.6244
2271.5294

3175.6882
3120.3114

Table 3.10: Comparative performance of the index heuristic and the optimal policy
with various starting states for the cubic discounted costs problems with two customer
classes and parameters denoted by (1,2,1).

state 0 1 2 3 4

0 932.9235
914.5342

1000.2929
980.6092

1206.0746
1182.9740

1617.8101
1589.0409

2322.7824
2286.1943

1 1038.2904
1017.7576

1209.2900
1183.9754

1528.8974
1495.5502

2063.7101
2019.0300

2899.7034
2841.0296

2 1299.2972
1272.1775

1629.5610
1591.1161

2108.6471
2055.1363

2815.9532
2741.2275

3831.7929
3734.0206

3 1799.8973
1759.1490

2288.3698
2230.6426

3013.2301
2921.9657

3961.9206
3830.2233

5217.5595
5053.2583

4 2626.9641
2562.0487

3306.1039
3210.4043

4350.4741
4122.3189

5586.3710
5349.7532

7139.9202
6874.0626

Table 3.11: Comparative performance of the index heuristic and the optimal policy
with various starting states for the cubic discounted costs problems with two customer
classes and parameters denoted by (2,1,1').

156

state 0 1 2 3 4

0 949.8748
924.7464

1019.9609
993.0326

1235.9398
1204.5408

1669.0089
1630.9075

2409.4596
2363.0505

1 1054.1897
1026.1941

1221.9745
1186.8817

1547.2835
1501.2551

2098.1876
2039.3474

2963.3254
2890.9427

2 1304.1536
1266.8067

1626.9180
1573.0899

2111.1602
2034.4534

2825.7780
2729.3889

3860.2126
3745.5557

3 1785.0196
1727.5132

2324.3807
2196.3500

3010.4232
2874.5315

3939.1884
3782.9542

5196.6432
5020.6610

4 2587.3720
2494.2130

3281.5215
3142.4260

4279.7655
4056.1373

5494.9237
5266.3561

7049.6210
6795.5851

Table 3.1'2: Comparative performance of the index heuristic and the optimal policy
with various starting states for the cubic discounted costs problems with two customer
classes and parameters denoted by (1,2,1').

state 0 1 2 3 4

0 229.8926
229.8295

242.2890
242.2234

290.4940
290.4201

408.5210
408.4288

643.1619
643.0338

1 274.2022
274.1258

318.9822
318.8901

402.4289
402.3037

561.1136
560.9257

841.5162
841.2109

2 416.2863
416.1611

510.4366
510.2481

660.8111
660.5298

890.7007
890.2212

1248.0301
1247.1633

3 733.1247
732.8717

883.8315
883.3962

1137.4807
1136.7266

1479.7660
1478.4330

1955.4637
1952.7427

4 1319.1944
1318.6684

1540.5222
1539.5376

1898.9274
1897.0643

2419.7744
2410.5191

3058.1167
3049.7922

Table 3.13: Comparative performance of the index heuristic and the optimal policy
with various starting states for the cubic discounted costs problems with two customer
classes and parameters denoted by (2,1,2).

state 0 1 2 3 4

0 227.1538
226.5507

239.5258
238.9021

288.4229
287.7263

408.1899
407.3265

645.3813
644.2101

1 273.0391
272.3019

315.6666
314.7928

398.2874
397.0983

556.6299
554.8148

837.0589
834.2576

2 419.6999
418.4912

515.3319
513.4906

659.4176
656.6687

885.6963
880.6972

1239.0029
1231.2603

3 749.0497
746.6884

902.2493
898.0763

1159.8487
1146.9151

1488.5031
1473.7356

1954.0881
1932.8069

4 1361.3104
1356.7794

1585.9638
1577.2125

1951.8892
1934.7206

2476.3916
2420.6893

3087.2919
3036.8903

Table 3.14: Comparative performance of the index heuristic and the optimal policy
with various starting states for the cubic discounted costs problems with two customer
classes and parameters denoted by (1,2,2).

157

state 0 1 2 3 4

0 917.1907
916.9421

952.5356
952.2785

1066.9187
1066.6387

1308.2232
1307.9030

1739.6531
1739.2717

1 1072.8934
1072.6003

1186.3585
1186.0220

1386.6322
1386.2297

1720.3025
1719.8053

2249.5761
2248.9475

2 1432.7432
1432.3186

1671.8097
1671.2844

2001.5714
2000.9059

2469.5683
2468.7109

3137.2543
3136.1373

3 2110.0005
2109.2961

2520.0584
2519.1518

3028.0820
3026.9010

3678.5397
3676.9868

4531.7370
4529.6819

4 3229.0516
3227.8030

3812.0941
3810.4544

4568.5437
4566.3846

5457.9736
5455.1015

6553.1389
6549.2897

Table 3.15: Comparative performance of the index heuristic and the optimal policy
with various starting states for the cubic discounted costs problems with two customer
classes and parameters denoted by (2,1,2').

state 0 1 2 3 4

0 917.7822
915.7203

954.3979
952.2504

1074.4090
1072.0450

1328.7461
1326.0710

1783.3376
1780.3187

1 1070.7771
1068.3791

1178.4315
1175.5729

1377.9658
1374.4130

1718.6996
1714.4558

2265.3577
2260.5740

2 1410.8360
1407.3815

1636.5259
1631.8098

1960.1292
1953.5724

2428.7216
2421.3372

3107.0207
3099.4143

3 2050.2732
2044.6374

2457.0631
2441.2427

2945.3810
2931.8652

3585.3750
3573.7206

4439.8562
4429.6664

4 3115.1898
3106.3111

3693.7571
3681.8486

4420.2222
4409.7951

5293.2644
5283.9417

6382.9373
6374.3554

Table 3.16: Comparative performance of the index heuristic and the optimal policy
with various starting states for the cubic discounted costs problems with two customer
classes and parameters denoted by (1,2,2').

state 0 1 2 3 4

0 598.9984
598.9022

653.6202
653.5159

876.4294
876.2968

1514.6884
1514.4882

3031.7818
3031.4356

1 695.2685
695.1561

881.8920
881.7419

1252.6973
1252.4603

2089.1081
2088.6864

3857.8318
3857.0274

2 1056.1241
1055.9511

1403.5274
1403.2417

2124.3925
2123.8768

3333.2768
3332.2811

5564.1253
5562.1462

3 2035.6164
2035.2770

2604.4373
2603.7992

3730.3524
3729.1024

5720.4911
5718.0374

8751.3045
8746.3367

4 4260.7526
4259.9972

5123.4998
5121.9860

6757.9191
6754.8426

9623.4757
9617.2095

14135.7959
14123.2900

Table 3.17: Comparative performance of the index heuristic and the optimal pol¬
icy with various starting states for the quartic discounted costs problems with two
customer classes and parameters denoted by (2,1,1).

158

state 0 1 2 3 4

0 585.8202
585.5572

642.3468
642.0616

881.5399
881.1770

1571.8829
1571.3331

3206.1336
3205.1798

1 676.7107
676.4034

854.2440
853.8341

1234.5347
1233.8854

2113.4351
2112.2742

3987.7515
3985.5245

2 1007.3345
1006.8624

1357.5213
1356.7386

2059.6062
2058.1933

3294.9491
3292.2015

5611.5085
5605.9968

3 1909.9866
1909.0653

2485.8847
2484.1405

3627.3283
3623.8869

5587.9664
5581.1912

8675.4881
8661.5591

4 3976.5066
3974.4850

4855.1859
4851.0853

6521.5054
6513.0642

9431.0998
9413.7328

13909.7046
13874.4594

Table 3.18: Comparative performance of the index heuristic and the optimal pol¬
icy with various starting states for the quartic discounted costs problems with two
customer classes and parameters denoted by (1,2,1).

state 0 1 2 3 4

0 4254.7857
4167.4051

4555.8533
4462.4044

5516.2100
5406.1117

7609.8739
7470.1363

11629.6276
11444.7356

1 4747.6239
4649.8939

5537.7253
5418.5748

7085.4948
6928.8388

9872.8491
9657.8100

14700.2353
14401.8234

2 5949.3590
5821.2323

7546.1818
7372.9450

9988.9720
9744.1560

13831.3237
13478.5270

19874.7190
19371.8435

3 8393.0375
8203.0809

10974.8319
10705.6782

14893.8793
14491.5049

20324.2086
19723.3966

28190.1371
27315.6554

4 12855.4714
12552.6169

16678.6065
16233.5593

22270.5616
21614.0987

30310.9502
29261.9036

40894.0045
39318.4880

Table 3.19: Comparative performance of the index heuristic and the optimal pol¬
icy with various starting states for the quartic discounted costs problems with two
customer classes and parameters denoted by (2,1,1').

state 0 1 2 3 4

0 4376.4714
4205.4300

4689.0530
4505.8335

5696.5612
5482.4753

7903.3522
7641.2232

12140.6006
11816.0592

1 4877.6338
4686.9302

5671.8573
5434.1086

7264.1830
6952.0785

10155.4299
9750.3653

15178.1218
14667.6115

2 6067.5064
5813.9393

7669.4031
7308.5058

10176.3415
9662.3812

14100.6594
13434.4095

20286.1876
19464.4590

3 8476.2339
8088.5914

11357.9315
10570.6126

15166.7209
14267.3824

20592.8523
19490.0833

28466.4399
27164.4230

4 12880.5618
12254.0940

16847.4148
15914.4737

22894.9213
21280.4403

30515.5056
28799.0255

40841.6258
38862.8653

Table 3.20: Comparative performance of the index heuristic and the optimal pol¬
icy with various starting states for the quartic discounted costs problems with two
customer classes and parameters denoted by (1,2,1').

159

state 0 1 2 3 4

0 681.1326
681.1326

713.8403
713.8403

854.4677
854.4677

1274.4443
1274.4443

2303.2207
2303.2207

1 817.1657
817.1657

960.3496
960.3496

1227.5133
1227.5133

1805.1928
1805.1928

3024.9891
3024.9890

2 1302.6125
1302.6125

1627.6920
1627.6919

2176.5351
2176.5350

3068.0702
3068.0701

4656.8152
4656.8150

3 2585.9084
2585.9084

3149.2140
3149.2139

4157.9534
4157.9532

5663.5269
5663.5266

7921.5990
7921.5985

4 5429.3678
5429.3676

6328.1033
6328.1031

7874.7147
7874.7142

10379.6802
10379.6795

13779.7543
13779.7532

Table 3.21: Comparative performance of the index heuristic and the optimal pol¬
icy with various starting states for the quartic discounted costs problems with two
customer classes and parameters denoted by (2,1,2).

state 0 1 2 3 4

0 693.9780
693.6048

724.9232
724.5375

862.4337
862.0078

1279.5328
1279.0225

2305.6620
2304.9940

1 841.0151
840.5586

980.6620
980.1202

1241.6407
1240.9299

1810.7443
1809.7441

3019.4434
3017.9378

2 1363.7157
1362.9533

1686.9184
1685.7964

2216.9937
2215.4058

3089.5186
3087.0523

4651.9089
4647.8966

3 2738.9551
2737.3828

3297.2904
3294.6709

4307.5916
4303.1959

5758.5810
5751.9480

7965.9287
7954.4479

4 5783.2449
5779.8487

6671.2175
6665.0994

8221.5445
8210.4524

10734.0473
10714.3068

14006.5223
13973.0809

Table 3.22: Comparative performance of the index heuristic and the optimal pol¬
icy with various starting states for the quartic discounted costs problems with two
customer classes and parameters denoted by (1,2,2).

state 0 1 2 3 4

0 4236.5454
4233.1641

4385.0623
4381.5642

4879.5851
4875.7727

6017.2164
6012.8532

8316.0471
8310.8485

1 4988.9145
4984.9289

5522.7622
5518.1844

6468.9490
6463.4646

8124.3258
8117.5331

11007.4696
10998.8715

2 6748.5389
6742.7699

7954.9984
7947.8582

9649.1707
9640.0912

12136.4145
12124.6409

15936.7162
15921.3168

3 10299.7277
10290.1829

12574.5381
12562.2271

15432.8043
15416.6599

19194.3843
19172.8356

24382.5933
24353.7351

4 16802.1511
16785.3894

20293.7965
20271.6531

24983.1200
24953.9586

30663.2276
30622.6164

37911.3547
37854.8882

Table 3.23: Comparative performance of the index heuristic and the optimal pol¬
icy with various starting states for the quartic discounted costs problems with two
customer classes and parameters denoted by (2,1,2').

160

state 0 1 2 3 4

0 4239.4764
4221.4696

4389.8497
4371.1425

4901.5114
4880.9771

6094.7140
6071.3099

8518.2074
8491.1796

1 4988.4203
4967.3711

5499.0647
5474.3508

6438.1980
6407.8402

8124.5724
8087.4531

11106.1739
11062.1616

2 6679.6067
6649.2369

7830.1129
7790.3540

9492.0527
9438.3040

11978.7591
11912.8853

15840.0992
15764.9312

3 10069.6481
10019.9415

12323.7438
12223.4191

15082.2602
14976.8390

18790.2574
18671.4974

23974.7770
23852.8086

4 16289.9515
16208.6761

19747.4036
19638.2502

24404.2044
24185.2168

29898.5637
29710.8942

37027.6531
36865.0698

Table 3.24: Comparative performance of the index heuristic and the optimal pol¬
icy with various starting states for the quartic discounted costs problems with two
customer classes and parameters denoted by (1,2,2').

state 0 1 2 3 4

0 7.2059 7.8343 10.4585 20.6069 44.7342
7.2047 7.8330 10.4568 20.6043 44.7299

1 8.3941 10.8467 15.5756 28.6818 56.6597
8.3927 10.8448 15.5726 28.6765 56.6495

2 13.1472 17.8287 28.0376 46.9557 82.2388
13.1450 17.8251 28.0311 46.9431 82.2135

3 29.8404 37.7832 54.0322 86.4038 134.4766
29.8362 37.7752 54.0164 86.3727 134.4126

4 66.0017 78.3146 102.2859 147.6468 215.1555
65.9925 78.2959 102.2473 147.5671 214.9934

Table 3.25: Comparative performance of the index heuristic and the optimal policy
with various starting states for the quadratic discounted costs problems where costs
are not incurred below state 2 with two customer classes and parameters denoted by
(2,1,1).

state 0 1 2 3 4

0 6.8896 7.5211 10.4232 22.4467 49.8845
6.8874 7.5187 10.4201 22.4420 49.8764

1 7.9935 10.2098 15.0538 29.7884 60.7622
7.9909 10.2063 15.0482 29.7784 60.7430

2 12.1162 16.7950 26.3586 46.4602 84.1570
12.1123 16.7884 26.3466 46.4364 84.1084

3 26.2135 34.2117 50.7279 82.4612 132.0501
26.2058 34.1969 50.6985 82.4021 131.9241

4 58.0657 70.6304 95.2803 142.4656 209.6702
58.0492 70.5963 95.2085 142.3164 209.3433

Table 3.26: Comparative performance of the index heuristic and the optimal policy
with various starting states for the quadratic discounted costs problems where costs
are not incurred below state 2 with two customer classes and parameters denoted by
(1,2,1).

161

state 0 1 2 3 4

0 53.2241
52.1260

57.0021
55.8266

69.2034
67.8226

97.4051
95.6832

149.6032
147.4204

1 59.3655
58.1395

69.4123
67.9020

89.0901
87.0948

125.9033
123.2124

187.6939
184.1865

2 74.5350
72.9183

95.3767
93.1521

126.4648
123.2633

176.2732
171.7075

252.0502
246.2152

3 109.0767
106.6656

141.5486
138.1118

193.0676
185.8264

261.9866
253.9127

357.4321
347.8137

4 171.2264
167.4682

218.1757
212.5535

286.3200
277.9705

383.6363
371.2108

505.0237
490.0522

Table 3.27: Comparative performance of the index heuristic and the optimal policy
with various starting states for the quadratic discounted costs problems where costs
are not incurred below state 2 with two customer classes and parameters denoted by
(2,1,1').

state 0 1 2 3 4

0 54.4016
53.3628

58.3026
57.1909

71.3262
70.0213

102.3833
100.7569

159.2024
157.1363

1 60.6004
59.4404

70.2253
68.7956

90.2197
88.3361

129.3911
126.8578

195.2625
191.9390

2 74.9362
73.4031

94.5352
92.4156

125.4704
122.4448

177.0741
172.8048

256.1701
250.6045

3 106.4513
104.1404

138.6779
135.4085

188.4639
183.2936

258.6192
250.9608

355.9323
346.5437

4 164.3196
160.5847

211.4271
205.8960

286.5230
272.0895

378.9838
364.8394

498.6711
483.6678

Table 3.28: Comparative performance of the index heuristic and the optimal policy
with various starting states for the quadratic discounted costs problems where costs
are not incurred below state 2 with two customer classes and parameters denoted by
(1,2,1').

state 0 1 2 3 4

0 8.6761 9.0541 10.6779 17.4108 34.0219
8.4078 8.7653 10.3079 16.9946 33.5829

1 10.4546 12.8539 16.0903 25.0052 44.3879
10.1415 12.0260 15.3422 24.3250 43.7623

2 17.1448 21.7838 29.3899 43.1388 68.2917
16.7136 21.0855 28.7493 42.5389 67.7089

3 38.5356 46.4882 60.8474 85.0045 120.8406
38.0675 45.8744 60.2515 84.4034 120.1685

4 83.3838 96.1263 118.4176 157.3502 207.8021
82.8981 95.5293 117.7586 156.5446 206.6977

Table 3.29: Comparative performance of the index heuristic and the optimal policy
with various starting states for the quadratic discounted costs problems where costs
are not incurred below state 2 with two customer classes and parameters denoted by
(2,1,2).

162

state 0 1 2 3 4

0 8.6704 9.0065 10.5565 17.9662 35.7497
8.3285 8.6405 10.0814 17.4223 35.1604

1 10.5580 12.9670 15.9724 25.3469 45.6218
10.1524 11.8878 14.9798 24.4157 44.7147

2 17.4510 22.0615 28.9622 42.8104 68.3545
16.8829 21.1152 28.0524 41.8736 67.2815

3 38.3465 46.1388 60.4130 83.1926 118.5509
37.6825 45.2012 59.3574 81.9076 116.5619

4 83.1134 95.5966 117.8899 158.1127 205.8851
82.3220 94.4631 116.2963 152.6469 200.8014

Table 3.30: Comparative performance of the index heuristic and the optimal policy
with various starting states for the quadratic discounted costs problems where costs
are not incurred below state 2 with two customer classes and parameters denoted by
(1,2,2).

state 0 1 2 3 4

0 52.8168
52.7911

54.6619
54.6353

60.9671
60.9382

77.0778
77.0447

108.9355
108.8960

1 62.2110
62.1807

68.9239
68.8891

80.9280
80.8864

103.4952
103.4438

142.4702
142.4051

2 84.3403
84.2964

99.8519
99.7976

121.2924
121.2236

154.1405
154.0518

203.9562
203.8406

3 132.7915
132.7187

160.7817
160.6879

197.7619
197.6398

245.8991
245.7384

310.9742
310.7614

4 218.5776
218.4486

260.0223
259.8528

315.4989
315.2761

383.3894
383.0923

467.6202
467.2209

Table 3.31: Comparative performance of the index heuristic and the optimal policy
with various starting states for the quadratic discounted costs problems where costs
are not incurred below state 2 with two customer classes and parameters denoted by
(2,1,2').

state 0 1 2 3 4

0 52.9643
52.8245

54.8338
54.6890

61.5402
61.3818

79.4725
79.2909

114.4473
114.2326

1 62.3415
62.1772

68.5181
68.3282

80.3712
80.1412

104.2003
103.9132

145.7126
145.3551

2 82.9807
82.7432

97.1362
96.8385

117.8182
117.4298

151.1991
150.6845

202.7624
202.1172

3 126.8854
126.4946

154.4310
153.9273

188.8808
188.1660

236.3851
235.3701

302.0260
300.8376

4 206.0873
205.4204

246.9705
246.0781

302.0525
299.7017

367.3275
365.2045

450.6047
448.6193

Table 3.32: Comparative performance of the index heuristic and the optimal policy
with various starting states for the quadratic discounted costs problems where costs
are not incurred below state 2 with two customer classes and parameters denoted by
(1,2,2').

163

3.5.2 Average cost problems with two customer classes

Contained in table 3.33 below are the results of part of a study comparing the

average cost rates incurred by the index heuristic described in the comment

following Theorem 3 with those incurred by an optimal policy. Again the optimal

policies were found using dynamic programming techniques, and the cost rates by

DP value iteration. All the service control problems studied here have two customer

classes. Each cell in the body of the table gives results for four different cost

structures in the form

a (a) b (b)
c (c) d (d)

The corresponding cost rates are as follows:

a) Ci(n) = bin + 2n2; C2(n) = b2n + 2n2; (quadratic)

b) C\(n) — b\n2 + 2n3; C2(n) = b2n2 + 2n3; (cubic)

c) Ci(n) = bin3 + 2n4; C2(n) = b2n3 + 2n4; (quartic)

d) Ci(n) — bi{n- 2)+ + 2{(n - 2)+}2; C2(n) = b2(n - 2)+ + 2{(n - 2)+}2;

(shifted quadratic).

In all cases the time average cost for the index policy is given by the unbracketed

figure (a, b, c or d) is, with the corresponding optimal cost in brackets. The first
column of Table 3.33, lists the cost coefficients b\, b2 which apply to the values in

the corresponding row. In the main body of the table the left hand side concerns a

server control problem with Si ~ T(2,1.25), S2 ~ T(3,2.25), Ai = 0.20 and A2 is
chosen to give traffic intensity of 0.60. The value of X2 is modified for the figures on

the right hand side to give traffic intensity of 0.85.

164

bi P = 0.60 P = 0.85

0.10 0.10 2.0727 (2.0727) 4.2932 (4.2930) 7.7935 (7.7928) 39.9968 (39.9819)
11.7500 (11.7500) 0.2160 (0.2160) 289.3491 (289.5327) 3.2089 (3.2086)

0.10 0.20 2.2337 (2.2334) 4.6542 (4.6531) 8.9225 (8.9122) 46.5323 (46.5011)
12.9877 (12.9834) 0.2318 (0.2318) 343.8621 (343.2882) 3.6701 (3.6661)

0.10 0.50 2.5564 (2.5530) 5.4729 (5.4729) 10.4631 (10.4407) 58.7729 (58.5350)
15.9330 (15.5675) 0.2688 (0.2661) 448.4251 (446.8978) 4.3366 (4.3228)

0.10 1.00 2.9461 (2.9458) 6.5898 (6.5808) 12.2439 (12.2382) 71.3354 (70.9773)
19.2520 (19.1304) 0.3122 (0.3019) 555.7236 (554.9071) 5.0380 (4.9689)

0.10 2.00 3.7181 (3.7181) 8.4563 (8.4269) 15.7226 (15.7224) 89.1588 (88.6533)
25.6285 (24.9345) 0.3729 (0.3715) 702.9505 (698.2963) 6.0162 (5.9198)

0.20 0.10 2.1649 (2.1649) 4.5764 (4.5764) 8.2195 (8.2195) 44.2131 (44.2127)
12.7201 (12.7201) 0.2253 (0.2253) 328.6532 (328.3382) 3.3805 (3.3804)

0.20 0.20 2.3407 (2.3407) 4.9506 (4.9506) 9.8432 (9.8335) 52.6082 (52.6079)
13.9763 (13.9763) 0.2420 (0.2420) 396.5049 (396.5009) 4.0348 (4.0311)

0.20 0.50 2.7172 (2.7107) 5.9251 (5.8729) 12.1076 (12.0930) 68.5622 (68.2829)
17.1763 (16.9382) 0.2824 (0.2819) 530.7424 (529.6970) 4.9834 (4.9777)

0.20 1.00 3.1339 (3.1325) 7.0314 (7.0313) 14.2092 (14.1831) 84.6577 (84.0422)
20.7434 (20.7342) 0.3288 (0.3200) 670.5373 (667.4028) 5.8720 (5.8022)

0.20 2.00 3.9077 (3.9075) 8.9965 (8.9851) 17.7387 (17.7320) 105.5860 (105.1594)
27.3193 (26.9502) 0.3911 (0.3911) 850.6627 (846.7620) 6.9959 (6.9090)

0.50 0.10 2.4343 (2.4343) 5.3592 (5.3592) 8.8808 (8.8792) 52.7127 (52.7122)
15.4227 (15.4227) 0.2525 (0.2525) 413.0458 (413.0351) 3.6408 (3.6402)

0.50 0.20 2.6317 (2.6317) 5.8035 (5.8035) 11.3447 (11.3446) 65.5261 (65.4681)
16.8787 (16.8725) 0.2707 (0.2707) 515.2392 (515.1302) 4.6367 (4.6367)

0.50 0.50 3.0962 (3.0961) 6.9233 (6.9231) 15.6224 (15.5923) 90.0431 (90.0192)
20.6543 (20.6528) 0.3169 (0.3169) 720.0842 (719.3984) 6.3695 (6.3582)

0.50 1.00 3.6383 (3.6377) 8.2931 (8.2880) 19.1765 (19.1429) 115.1593 (114.8845)
25.0046 (25.0046) 0.3789 (0.3704) 932.7753 (931.1808) 7.8445 (7.8266)

0.50 2.00 4.4710 (4.4683) 10.5650 (10.5287) 23.5551 (23.5206) 146.3636 (146.3157)
32.4936 (32.2729) 0.4453 (0.4451) 1209.4349 (1204.6509) 9.5578 (9.4703)

Table 3.33: Comparative performance of the index heuristic and an optimal policy
for a range of average costs problems with two customer classes.

165

b\ b2 P = 0.60 P = 0.85

1.00 0.10 2.8802 (2.8802) 6.5241 (6.5241) 9.5440 (9.5418) 61.4237 (61.3950)
19.3929 (19.3929) 0.2977 (0.2963) 505.1724 (505.1617) 3.9002 (3.8991)

1.00 0.20 3.0861 (3.0859) 7.0706 (7.0706) 12.5758 (12.5756) 78.8265 (78.8256)
21.2598 (21.2598) 0.3165 (0.3165) 647.5939 (647.3051) 5.1201 (5.1200)

1.00 0.50 3.6352 (3.6352) 8.3852 (8.3852) 18.9538 (18.9537) 114.5855 (114.5529)
25.5310 (25.5310) 0.3682 (0.3682) 937.6228 (937.5127) 7.6957 (7.6956)

1.00 1.00 4.3379 (4.3365) 10.2027 (10.1928) 25.0574 (25.0438) 152.2819 (152.1247)
31.7557 (31.6629) 0.4405 (0.4404) 1257.7162 (1251.5248) 10.1860 (10.1807)

1.00 2.00 5.3396 (5.3291) 12.7169 (12.7169) 31.8017 (31.7742) 199.3951 (198.8927)
39.7882 (39.7414) 0.5461 (0.5304) 1660.0632 (1655.7462) 12.9627 (12.8847)

2.00 0.10 3.7713 (3.7712) 8.7142 (8.7120) 10.6295 (10.6279) 71.9051 (71.7997)
26.6031 (26.6027) 0.3734 (0.3721) 622.5756 (622.5390) 4.2643 (4.2283)

2.00 0.20 3.9790 (3.9790) 9.3873 (9.3649) 14.0270 (14.0257) 95.1909 (95.1781)
28.8583 (28.8583) 0.4010 (0.4001) 819.2224 (819.2021) 5.6788 (5.6604)

2.00 0.50 4.5853 (4.5834) 11.0135 (11.0135) 22.4480 (22.4478) 145.9129 (145.9097)
34.5466 (34.5465) 0.4625 (0.4623) 1234.8649 (1234.8568) 9.0829 (9.0827)

2.00 1.00 5.4561 (5.4561) 13.1438 (13.1438) 32.1849 (32.1848) 202.4307 (202.3046)
41.5439 (41.5438) 0.5457 (0.5457) 1699.1895 (1698.4475) 13.0174 (13.0173)

2.00 2.00 6.8041 (6.7923) 16.7250 (16.5944) 43.9525 (43.9089) 276.4430 (275.6991)
53.8595 (53.1546) 0.6866 (0.6844) 2326.4592 (2312.4604) 17.8278 (17.7953)

Table 3.34: Comparative performance of the index heuristic and an optimal policy
for a range of average costs problems with two customer classes.

3.5.3 Simulation study of average costs problems with five

customer classes

We now look at some examples of the undiscounted service control problems

encountered in this chapter where we have five customer classes. In the two class

problems of Sections 3.5.1 and 3.5.2 it was possible to obtain a direct numerical
comparison between costs incurred by our index heuristics and those incurred by an

optimal policy. However this is not a reasonable computational goal for larger
problems. The simulation study reported in Tables 3.35 and 3.36 concern a

collection of service control problems involving five customer classes under the

166

average cost criterion.

Table 3.35 contains the results of studies of ten problems with quadratic costs

(1 — 5, 1 — 5') and five problems with quartic costs (1-5). All problems in this table

feature deterministic service times. Each of the problems with quadratic costs is

characterised by four five-vectors b, c, A and S. Both b and c are vectors of cost

coefficients such that the class k cost rate is given by

Cfc(n) = bkn + cfcn2, 1 < k < 5, (3.89)

while A is a vector of arrival rates with Afc the rate for class k. Finally, S is a vector

of deterministic service times. For example, for quadratic problem 1 we take

b = (5,4,3, 2,1), c = (1,2,3,4,5), A = (0.40,0.30,0.25.0.10,0.05) and
S = (0.6,0.5,0.4,0.7,0.8) with a resulting traffic intensity of 0.60. To obtain

quadratic problems 2-5 we keep A and S fixed, but reassign the cost coefficients by

means of a series of permutations. For example for problem 2 we take

b = (1,5,4, 3, 2), c = (5,1,2,3,4) and so on. We obtain quadratic problems 1-5'
respectively from 1-5 by rescaling A to give a traffic intensity of 0.85, while keeping

other aspects fixed. We obtain quartic problems 1-5 from the corresponding

quadratic problems upon replacing (3.89) by

Ck{n) = 6fcn3 + c^n4, 1 < k < 5.

In the body of Table 3.35 we have included estimates of the average cost rates

incurred for the above problems under five service control heuristics, as follows:

INDEX denotes our index heuristic for average costs while LQ allocates service at

each decision epoch to whichever customer class has the longest queue (and chooses

among the candidate classes at random in the event of a tie). MYOPIC always

chooses for processing whichever customer class is incurring the largest

instantaneous cost rate and MYOPIC* modifies this criterion by dividing the

instantaneous cost rate by the corresponding mean service time. At each decision

167

epoch, RANDOM chooses one of the non-empty customer classes at random (with

equal probabilities) and serves a single customer from the class chosen. The estimate

of average cost is obtained in each case by Monte Carlo simulation. Typically, we

allowed a "burn-in" period of around 10,000 time units in each case, followed by a

period of around 15,000 time units during which costs were tracked. This was

repeated around 50 times and the average costs (per unit time) were estimated.

The corresponding standard errors are given in brackets in the table. The details of

the mechanics of the simulations varied a little across the different cases in order to

obtain standard errors which would enable meaningful comparisons between service

policies to be made. For example, when we increased the traffic intensity to 0.85 we

had to increase the number of runs. Note that we did not have access to sufficient

computer resources for satisfactory standard errors to be achieved for problems with

quartic costs and a traffic intensity of 0.85. This is why no such cases are reported

in the table. The study in Table 3.36 mirrors that in Table 3.35 and differs only

in that the service times are now Gamma distributed. Hence, for quadratic problem

1 the single five-vector S of deterministic times is replaced by two five-vectors

m = (1,2,3,4, 5) and /x = (5/3,6,5,40/7,25/4). We now suppose that

Sk ~ r(rafc,/Zjfe), 1 < k < 5. All other details are as in the study in Table 3.35.

168

Quadratic Costs INDEX LQ MYOPIC MYOPIC* RANDOM

1 6.7103 6.9759 6.8919 7.2142 7.0933

(0.0358) (0.0394) (0.0449) (0.0496) (0.0507)
2 6.9778 7.4549 7.3400 7.6648 7.7823

(0.0430) (0.0568) (0.0550) (0.0645) (0.0840)
3 7.1444 7.8734 7.8815 7.9003 8.8498

(0.0489) (0.0601) (0.0475) (0.0531) (0.0778)
4 7.3377 7.9216 7.7673 7.9249 8.7709

(0.0423) (0.0585) (0.0541) (0.0632) (0.1152)
5 7.2164 7.6448 7.6566 7.7806 8.2742

(0.0493) (0.0489) (0.0451) (0.0497) (0.1077)
1' 23.2539 25.5787 24.0424 28.3180 28.9242

(0.4346) (0.4844) (0.5170) (0.5113) (0.5900)
2' 25.2815 30.7615 27.9366 30.3640 57.1030

(0.5172) (0.8053) (0.4614) (0.4835) (1.0815)
3' 24.7591 33.8409 29.4795 32.1201 83.3331

(0.4060) (0.6157) (0.4755) (0.4777) (3.4087)
4' 25.6866 31.1344 30.1719 30.2028 72.1357

(0.3649) (0.6197) (0.4898) (0.4667) (2.6194)
5' 26.3250 29.7588 29.3930 29.5962 55.3345

(0.5261) (0.4981) (0.5977) (0.4620) (2.0550)
Quartic Costs

1 15.5772 15.7914 16.0158 17.8664 22.3649

(0.1703) (0.1851) (0.2050) (0.2282) (0.5133)
2 17.2057 18.6310 18.2118 20.2739 25.5776

(0.1961) (0.2237) (0.2003) (0.2743) (0.6412)
3 18.2476 22.2612 21.6834 22.1398 42.3787

(0.2390) (0.2658) (0.2661) (0.3997) (1.9690)
4 19.4305 22.8196 23.1101 22.2155 49.2510

(0.2524) (0.3014) (0.3425) (0.3057) (6.2762)
5 18.5401 21.9044 22.1773 21.4857 40.9507

(0.2185) (0.3103) (0.2912) (0.3282) (2.2664)

Table 3.35: Comparative performance of the index heuristic and four other control
rules for a range ofaverage costs problems with five customer classes and deterministic
service times.

169

Quadratic Costs INDEX LQ MYOPIC MYOPIC* RANDOM
1 8.9812 9.3200 9.3366 9.3885 9.5438

(0.0941) (0.0733) (0.0894) (0.0917) (0.0878)
2 9.5892 10.2201 10.2700 10.0731 11.1100

(0.1010) (0.0860) (0.1506) (0.0935) (0.1380)
3 9.9218 11.2622 10.9091 11.1442 13.9702

(0.0904) (0.0970) (0.1127) (0.1143) (0.2522)
4 10.2312 10.9974 10.7825 11.0971 13.3023

(0.1098) (0.1136) (0.0866) (0.0997) (0.4585)
5 10.0943 10.7580 10.6351 11.2773 12.4465

(0.1153) (0.0962) (0.1296) (0.1306) (0.1832)
1' 39.4936 45.6291 42.0556 41.1953 58.1367

(1.3472) (1.2900) (1.0080) (0.9626) (3.0910)
2' 44.1563 52.1205 49.7436 52.9404 86.0343

(1.1356) (1.1165) (1.0747) (1.4466) (2.9641)
3' 42.5420 60.9430 53.6382 54.9029 187.7974

(0.9720) (1.6908) (1.4915) (1.2248) (10.9604)
4' 47.2808 56.1806 52.0994 58.2293 157.9946

(1.1669) (1.1536) (1.4938) (1.3649) (6.5433)
5' 45.9588 52.8616 49.0092 57.8623 113.7342

(1.4101) (1.5572) (1.1121) (1.4052) (3.9717)
Quartic Costs

1 34.4928 33.7941 33.3589 38.0270 60.5706

(0.8522) (0.7745) (0.7173) (0.8749) (2.8492)
2 39.1317 41.1258 40.5730 44.3442 72.3138

(0.7614) (0.8847) (0.7935) (1.0462) (3.2612)
3 42.9542 49.1543 48.4376 50.3789 150.1279

(0.9132) (0.9074) (1.2642) (1.4623) (11.2225)
4 45.4567 53.0129 51.2151 52.2439 144.0640

(1.2018) (1.0876) (1.0783) (1.0614) (7.8021)
5 43.9029 54.1418 48.5072 54.1950 113.3488

(0.8862) (1.4611) (0.9447) (1.1625) (4.9810)

Table 3.36: Comparative performance of the index heuristic and four other control
rules for a range of average costs problems with five customer classes and gamma
distributed service times.

170

3.5.4 Comments

As one can see all the numerical evidence seems to suggest that our index heuristic

policy performs very well. We can see this because the index policy is usually close

to the optimal policy costs or indeed, in the simulation of the five customer classes

example, better than the alternative policies.

From the discounted numerical data of Tables 3.1 - 3.32 we can see that obviously

the total costs increase if we start with an increasingly congested initial state and

also when the cost functions are of a higher order. The index policy seems to

perform slightly less well when we look at the more congested initial states.

However the sub-optimality of this policy always remains small in percentage terms.

Also notice that as we alter the service distributions of the class types so that they

are less similar, relatively speaking our index does not perform quite as well.

However the sub-optimality is still reassuringly small. Another thing to notice is

how well the index heuristic performs even when we increase the traffic intensity.

Looking at the numerics for the average cost performance in Tables 3.33 and 3.34

one can see that the costs increase if we use higher cost coefficients or consider cost

functions of a larger order or when we have a larger traffic intensity. However in all

cases the index policy continues to perform extremely well with small percentage

cost sub-optimality throughout.

We proceed to consider the simulation results of tables 3.35 and 3.36 for the five

customer class example. The cost rate for the index policy is smaller than for all

other policies considered in every example bar one. In the example where the index

does not return the lowest cost rate it comes a very close second and is certainly

within sampling variation of this lowest cost. In all the other examples where the

index policy does return the lowest cost rate it is significantly below its closest

competitor in the majority of cases.

171

The numerical data strongly suggest that the index policy presented in this chapter

performs very well for a variety of models. Hence the evidence is that it is an

effective policy in cost terms and is easy to compute and implement.

172

Chapter 4

Concluding Remarks

4.1 Summary

We have considered the problems of routing and service control as outlined in the

previous chapters. As we have seen, we have applied a similar approach to these

different problems and found index heuristics for them both which perform well.

The formulae for these indices was calculated in each case. The key was to

decompose the original multi-dimensional problem into a collection of

one-dimensional problems, which are much easier to deal with. This was achieved

by considering a relaxation of the original problem with a constraint, then using a

Lagrangian multiplier to incorporate the constraint. The index formula for the

routing control problem is given in equation (2.44) and the index formula for the

service control problem is given in (3.37). Once the indices have been calculated for

all the current class states the policy merely requires that in the routing problem

the system controller sends the arriving customer to the server with the smallest

index and in the service problem that the class with the highest index is served

first. Using these formulae we were able to consider possible queueing systems and

173

produce some numerical evidence to assess the effectiveness of our proposed index

policies. This evidence seems to indicate that the policies proposed do perform well

in a range of different scenarios. Not only that but the index nature of our policies

mean that implementation of the policies is fairly straightforward. These are the

reasons that I am confident the policies proposed would return positive results in a

suitable real world scenario such as the ones mentioned in the introductory Chapter

1, namely;

(i) Which of N possible routes should a telecommunications firm use to send a

message when the total delivery time via each route and the arrival times of

future messages are unknown?

(ii) In what order should a computer allocate processing amongst a number of

competing classes of job awaiting service, when exact processing requirements

and the times of future arrivals are unknown?

4.2 Possible Further Work

From the past chapters one can notice that the routing control problem assumes

that the service times of the customers follow an exponential distribution. However,

in the service control problem we allow the service times to follow a general

distribution. So the first suggestion for possible future work would be to allow the

routing control problem also to have a general service distribution. However,

without the memoryless property of the exponential distribution this problem would

prove considerably more difficult to analyse.

A further suggestion for possible future study would be to consider both of these
two problems in a single queueing system. So that we have a truly multi-class

system, with each class having its own arrival rate. We would first need to make the

174

decision about which station to send each arrival to. Then at each server there

could be a queue consisting of a number of different customer classes, each class

with its own attributes. The second decision to make then would be which of the

classes to serve at each station. The second part of the above problem would be

very similar to the service control problem considered in Chapter 3 but note now

that now the arrival streams will more complex. It would perhaps be possible to try

and model the second part of this problem roughly just using the system setup from

Chapter 3, leaving the prime issue in the analysis being the routing control part of

the problem. Again similarities could be taken from the routing problem of Chapter

2. However now we would have K customer classes each possibly arriving at

different rates and each class possibly possessing different cost rates even if they are

served at the same station. A development of the DP policy improvement approach

of Ansell et al (2001) may be the best hope for progress here for undiscounted
versions of the problem.

175

Chapter 5

References

Ansell P.S., Dacre M.J., Glazebrook K.D. and Kirkbride C. (2001) Optimal load

balancing and scheduling in distributed multi-class service systems. Technical

Report, Newcastle Upon Tyne.

Ansell, P.S., Glazebrook, K.D., Nino Mora, J. and O'Keeffe, M. (2003a), Whittle's

index policy for a multi-class queueing system with convex holding costs.

Mathematical Methods of Operations Research, 57, 21-39.

Ansell, P.S., Glazebrook, K.D., Mitrani, I. and Nino Mora, J. (1999). A semi

definite programming approach to the optimal control of a single server queueing

system with imposed second moment constriaints. J. Oper. Res. Soc., 50, 765-773.

Ansell P.S., Glazebrook, K.D., and Lumley, R.R. (2003b). Index heuristics for

multi-class M/G/l systems with non-preemptive service and convex holding costs,

Queueing Systems, Theory and Applications, Queueing Systems, 45, 84-111.

Ansell, P.S., Glazebrook K.D., and Kirkbride, C. (2003c). Generalised 'join the

shortest queue' policies for the dynamic routing of jobs to multi-class queues. J.

177

Over. Res. Soc., 54, 379-389.

Becker, K.J., Gaver, D.P., Glazebrook, K.D., Jacobs, P.A. and Lawphongpanich, S.

(2000) Allocation of tasks to specialised processors: a planning approach. Eur. J.

Oper. Res., 126, 80-88.

Bellman, (1957). Dynamic programming. Journal of the Franklin Institute, v265,

157-158.

Bertsimas, D. and Nino-Mora, J. (1996) Conservation laws, extended polymatroids

and multi-armed bandit problems: a polyhedral approach to indexable systems,

Math. Over. Res., 21, 257-306.

Braun, T.D., Siegel, H.J. and Maciejewski, A.A. (2001) Hetrogeneous computing:

goals, methods and open problems. "PDPTA 2001: Proceedings of the

International Conference on Parallel and Distributed Processing Techniques and

Applications, (ed. Arabnia HR), pp 1-12. CSREA: Athens".

Chang, C.S. (1992) A new ordering for stochastic majorization: theory and

applications. Adv. Awl■ Prob., 24, 604-634.

Cox, Smith (1961) Queues. Meuthuen, London.

Dacre, M.J., Glazebrook, K.D. and Nino-Mora, J. The achieveable region approach

to the optimal control of stochastic system (with discussion). J. R Statis. Soc. B,

61, 747-791.

Ephremides, A., Varaiya, P. and Walrand, J. (1980) A simple dynamic routing

problem. IEEE Trans. Aut. Control., AC-25, 690-693.

Federgruen, A. and Groenvelt, H. (1988) Characterisation and optiinasation of
achieveable performance in queueing systems. Oper. Res., 36, 336-346.

178

Foster I and Kesselman C (1998) The Grid: Blueprint for a new computing

infrastructure. Morgan Kaufman: San Francisco.

Garbe and Glazebrook (1996) Reflections on a new approach to Gittins indexation,
J. Oper. Res. Soc. 47, 1301-1309.

Gelenbe, E. and Pekergin, F. (1993) Load balancing pragmatics. Technical report,
EHEI Universite Rene Descartes.

Gittins, J. C. (1989), Multi-armed Bandit Allocation Indices, Wiley, New York.

Gittins, J.C. and Jones, D.M. (1974) A dynamic allocation index for the sequential

design of experiments. In Progress in statistics (European Meeting of Statistics,

Budapest, 1972), Colloq. Math. soc. Janos Bolyai, Vol 9, 241-266, North-Holland,

Amsterdam.

Gittins, J.C. (1979) Bandit processes and dynamic allocation indices (with

discussion). J. Roy. Statist. So., 41, 148-177.

Glazebrook, K.D. and Wilkinson D.J. (2000) Index based policies for discounted
multi-armed bandits on parallel machines. The Annals of Applied Probability, 10,

877-896.

Glenebe, E. and Mitrani, I. (1980) Analysis and Synthesis of Computer Systems.
London: Academic Press.

Harrison, J.M. (1975) Dynamic scheduling of a multiclass queue: discount

optimality. Oper. Res., 23, 270-282.

Hordijk, A. and Koole G. (1990) On the optimality of the generalized shortest

queue policy. Prob. Eng. Inf. Sci., 4, 477-487.

179

Johri (1989) Optimality of the shortest line discpline with state dependent service
times. Eur. J. Op. Res., 41, 157-161.

Klimov, G.P. (1974) Time sharing service systems I. Theory Prob. Appl, 19,

532-551.

Koole, G. (1996) On the pathwise optimal Bernoulli routing policy for homogeneous

parallel servers. Math. Oper. Res., 21, 469-476.

Krishnan, K.R. (1987) Joining the right queue: a Markov decision rule. In

Proceedings of the 28th IEEE Conference on Decision Control, pages 1863-1868.

Lui, Z. and Townsley, D. (1994) Optimality of the round robin policy. J. Appl.

Prob., 31, 466-478.

Meilijson, I. and Weiss, G. (1977) Multiple feedback at a single service station.

Stoch. Proc. Appl., 5, 195-205.

van Meighem, J. A. (1995). Dynamic scheduling with convex delay costs: the

generalized cp-rule. Ann. Appl. Prob., 5, 809-833.

Nino-Mora, J. (2001a) Restless bandits, partial conservation laws, and indexability.
Adv. Appl. Prob., 33, 76-98.

Nino-Mora, J. (2001b) Countable partial conservation laws, Whittle's restless
bandit index and a dynamic cp rule for scheduling a multiclass M/M/l queue with
convex holding costs. Adv. Appl. Prob., to appear.

Putterman, M. L. (1994), Markov Decision Processes: Discrete Stochastic Dynamic

Programming, Wiley, New York.

Shanthikumar, J.G. and Tao, D.D. (1992) Multi-class queueing systems:

180

polymatroidal structure and optimal scheduling control. Oper. Res., 40, 293-299.

Tijms, H.C (1994) Stochastic Models: An Algorithmic Approach. John Wiley &
Sons.

Tsitsiklis, J. and Papadimitriou, C.H. (1986) The performance of a preceedence
based queueing discipline. J. Assoc. Comput. Mach, v33, 593-602.

Weber, R.R. (1978) On the optimal assignment of customers to parallel queues. J.

Appl. Prob., 15, 406-413.

Weber, R.R. (1992) On the Gittins index for multi-armed bandits. Ann. Appl.

Prob., 2, 1024-1033.

Weber, R.R. and Weiss, G. (1990) On an index policy for restless bandits. J. Appl.

Probab., 27, 637-648.

Weiss, G. (1988) Branching bandit processes. Prob. Eng. Inf. Set, 2, 269-278.

Whittle, P. (1980) Multi-armed bandits and the Gittins index. J. Roy. Statist.

Soc., B42, 143-149.

Whittle, P. (1996), Optimal control: Basics and Beyond, Wiley, Chichester.

Whittle, P. (1988) Restless bandits: activity allocation in a changing world. In: ed.

J. Gandi ed., A Celebration of Applied Probability, J. Appl. Prob., special vol. 25A,

287-298.

Whittle (1981) Arm-acquiring bandits. Annals of Probability, 9, 284-292.

Winston, W. (1997) Optimality of the shortest line discipline. J. Appl. Prob., 14,

181-189.

181

Chapter 6

APPENDICES

183

Appendix A

This appendix contains the Fortran 95 code for the programme we used to calculate

the discounted routing control costs as in Section 2.5.1. Here we consider the

optimal and index policies for a 2 class system.

Appendix A
program ser_ad_both
implicit none

integer :: h,buffer
double precision :: powl,pow2

integer :: FAIL, n, nmax, s, i, nl, n2, p
integer, allocatable, dimension (:,:) :: mvfail
integer, allocatable, dimension (:) :: vfail,chfail,chfailn,mvfail1
double precision :: 1,alf,a,b,d,e,TOL,inds,opts
double precision, allocatable, dimension(:) :: m
double precision, allocatable, dimension(:,:) :: c, CNeg, Copt, Cind, CindNeg,
what, chat, X
double precision, allocatable, dimension(:,:) :: Compare, CompareNeg,
Comparelnds

linput the restricted state space size & allocate Expectation maxtrix size &
the number of servers
nmax = 159
s = 2
print*,"a"
allocateC C(s,0:nmax))
allocated CNeg(s,-nmax:nmax))
allocated m(s))
allocated Copt CO:nmax,0:nmax))
allocated cind(0:nmax,0:nmax))
allocate(CindNeg(0:nmax,0:nmax))
allocated compare(0:nmax,0:nmax))
allocated compareNeg(0:nmax,-0:nmax))
allocated Comparelnds(0:nmax,0:nmax))
allocated chfail(s))
allocate(CHFAILN(s))

allocate(mvfall(s,2:nmax-1))
allocateC mvfailI(s))
allocate(vfall(s))
allocated what(s,0:nmax))
allocateC Chat(s,0:nmax))
allocated x(s,0:nmax))

mvfail = 0

!get the inital starting values of the arrays before updating them with our
value iteration.

do h = 1,8

call starting_vals(inds,opts,h)

!get the inital values of the queue, i.e. arrival & service rates & cost
function values.
cal1 queue_values(l,m,s,alf,a,b,d,e,tol,buffer,powl,pow2,h)

Scheck that all the constraints hold
call check(h,1,m,s,fail)

c = 0.0

do n = buffer,nmax
C(l,n) = a*(real(n-buffer)**powl) + b*(real(n-buffer)**pow2)
C(2,n) = d*(real(n-buffer)**powl) + e*(real(n-buffer)**pow2)

end do

do n = -nmax,nmax
if (n-buffer >= 0) then

CNeg(l,n) = a*(real(n-buffer)**powl) + b*(real(n-buffer)**pow2)
CNeg(2,n) = d*(real(n-buffer)**powl) + e*(real(n-buffer)**pow2)

else
CNeg(l,n) = 0.0
CNeg(2,n) = 0.0

end if
end do

cal1 costs_index(h,c,nmax,s,cind,what,X,Chat,CHFAIL)

Page 1

Appendix A
call costs_opt(h,c,nmax,s.Copt)
cal1 costs_index_neg(h,CNeg,nmax,s,Ci ndNeg,CHFAILN)
do nl = O.nmax

do n2 = O.nmax
Compare(nl,n2) = (Cind(nl,n2) - Copt(nl,n2))*(100.0)/Copt(nl,n2)

end do
end do

do nl = O.nmax
do n2 = O.nmax
compareNeg(nl,n2) = (cindNeg(nl,n2) - Copt(nl,n2))*(100.0)/copt(nl,n2)

end do
end do

do nl = O.nmax
do n2 = O.nmax
Comparelnds(nl,n2) = (CindNegCnl,n2) - Cind(nl,n2))*(100.0)/cind(nl,n2)

end do
end do

print*,"the discounted cost to infinity for the optimal policy when starting
from states (0,0) to (5,5) &

& on this restless bandit admission control system is: "
do i = 0,5
write(unit=6,fmt="(6fl2.4)") copt(i,0:5)

end do

print*,"and the discounted cost to infinity when starting in state (0,0) to
(5,5) for our index policy is: "
do i = 0,5
write(unit=6,fmt="(6fl2.4)") cind(i,0:5)

end do

print*,"so comparing these two policies we find, the degree of suboptimal1ity
of the index compared to the optimal is : "
do i = 0,9
write(unit=6,fmt="(10fl2.8)") Compare(i,0:9)

end do
print*," "

print*,"and the discounted cost to infinity when starting in state (0,0) to
(5,5) for our index policy (with -ve customers) is: "
do i = 0,5
write(unit=6,fmt="(6fl2.4)") cindNeg(i,0:5)

end do

print*," "

print*,"so comparing the index policy which assumes -ve customers possible,
with the optimal policy"
print*," (which does NOT assume customers can take a -ve number), gives the
degree of suboptimallity"
print*," of the index (with -ve) compared to the optimal (without -ve) (states
(0,0) to (5,5)) : "

do i = 0,5
write(unit=6,fmt="(6fl2.4)") compareNeg(i,0:5)

end do
print*," "

print*,"so comparing the two index policies we find, the degree of
suboptimallity of the regular index"
print*,"compared to the index where -ve customers are allowed is (states (0,0)
to (5,5)) : "

do i = 0,5
write(unit=6,fmt="(6fl2.4)") Comparelnds(i,0:5)

end do
print*," "

open(unit=7, fi1e="spol dat2b.dat")

if(h == 1) write(unit=7,fmt="(a)") "Quadratic costs"
Page 2

Appendix A
if(h == 3) write(unit=7,fmt="(a)") "Cubic costs"
if(h == 5) write(unit=7,fmt="(a)") "Quartic costs"
if(h == 7) write(unit=7,fmt="(a)") "Quadratic costs with buffer = 2"

write(unit=7,fmt="(a)") " a : b : d : e :
1 : m(l) : m(2) : alpha "
write(unit=7,fmt="(8fl2.6)") a,b,d,e,l ,m(l) ,m(2) ,alf
print*,"nmax = ",nmax
write(unit=7,fmt="(,nmax : ' ,i6)") nmax

write(unit=7,fmt="(a)") "if FAIL /= 0 some of the constraints do not hold:"
write(unit=7,fmt="(a,i3)") "FAIL = ",FAIL

write(unit=7,fmt="('lndex policy starting : ',fl2.6)") inds
write(unit=7,fmt="('0ptimal policy starting : ',fl2.6)") opts

write(unit=7,fmt="(a)") " "

write(unit=7,fmt="(a)") "discounted cost to infinity when starting in state
(0,0) - (5,5) for the optimal policy is "
do i = 0,4
write(unit=7,fmt="(f12.4,a,f12.4,a,f12.4,a,f12.4,a,f12.4,a)") &
& Copt(i,0)," & ",Copt(i,1)," & ",copt(i,2)," & ",Copt(i,3)," &

",Copt(i,4)," \\ "
end do

write(unit=7,fmt="(a)") " "

write(unit=7,fmt="(a)") "discounted cost to infinity when starting in state
(0,0) - (4,4) for our index policy is "
do i = 0,4
wri te(uni t=7,fmt="(f12.4,a,f12.4,a,f12.4,a,f12.4,a,f12.4,a)") &
& Cind(i,0)," & ",Cind(i ,1)," & ",Cind(i, 2) , " & ",cind(i,3)," &

",cind(i,4)," \\ ",
end do

write(unit=7,fmt="(a)") " "

write(unit=7,fmt="(a)") "the degree of suboptimallity of the index compared to
the optimal policies (states (0,0) - (5,5)) are : "
do i =0,4
write(unit=7,fmt="(f12.4,a,f12.4,a,f12.4,a,f12.4,a,f12.4,a)") &
& Compare(i ,0)," & ",compare(i ,l)," & ",compare(i ,2)," & ",Compare(i ,3)," &

",compared ,4)," \\ "
end do

write(unit=7,fmt="(a)") " "

write(unit=7,fmt="(a)") "discounted cost to infinity when starting in state
(0,0) - (5,5)"
write(unit=7,fmt="(a)") "for our index policy (with -ve customers) is "
do i = 0,4
write(unit=7,fmt="(f12.4,a,f12.4,a,f12.4,a,f12.4,a,f12.4,a)") &
& CindNeg(i,0)," & ",Ci ndNeg(i , l) , " & ",CindNeg(i,2)," & ",cindNeg(i,3)," &

",cindNeg(i,4)," \\ "
write(unit=7,fmt="(a)") " "

end do

wri te(unit=7,fmt="(a)") " "

write(unit=7,fmt="(a)") "the degree of suboptimallity of the index (which
takes -ve # of customers)"
write(unit=7,fmt="(a)") "compared to the optimal (which takes only +ve # of
customers) policy"
write(unit=7,fmt="(a)") "(state (0,0) to (5,5) are : "
do i = 0,4
wri te (uni t=7, fmt=" (f12 .4, a, f12 .4, a, f12 .4, a, f12 .4, a, f12.4, a) ") &
& CompareNeg(i,0)," & ",CompareNeg(i,1)," & ",compareNeg(i,2)," &"

.compareNegO , 3) ," & " ,CompareNeg(i ,4)," \\ "
end do

write(unit=7,fmt="(a)") " "

write(unit=7,fmt="(a)") "the degree of suboptimallity of the index (which
takes -ve # of customers)"

Page 3

Appendix A
write(unit=7,fmt="(a)") "compared to the index (which takes only +ve # of
customers) policy"
write(unit=7,fmt="(a)") "(state (0,0) to (5,5) are : "
do i = 0,5
wri te (uni t=7, fmt=" (f12.4, a, f12 .4, a, f12 .4, a, f12.4, a, f12 .4, a) ") &
& Comparelnds(i,0)," & ",Comparelnds(i,1)," & ",Comparelnds(i,2)," &

",CompareInds(i,3)," & ",Comparelnds(i,4)," \\
end do

write(unit=7,fmt="(a)") " "

!write(unit=7,fmt="(a)") "if chfail = 0 Chat is increasing convexly"
!write(unit=7,fmt="(a)") "if CHFAIL = 1 chat is not increasing"
!write(unit=7,fmt="(a)") "if CHFAIL = 2 Chat is increasing but not convexly"
!write(unit=7,fmt="(a)") " "
!write(unit=7,fmt="(a,2i4)") "CHFAIL = ",CHFAIL(:)

write(unit=7,fmt="(a)") " "

!write(unit=7,fmt="(a)") "if chfailn = 0 Chat_neg is increasing convexly"
!write(unit=7,fmt="(a)") "if chfailn = 1 chat_neg is not increasing"
!write(unit=7,fmt="(a)") "if chfailn = 2 Chat_neg is increasing but not
convexly"
!write(unit=7,fmt="(a)") " "
!write(unit=7,fmt="(a,2i4)") "chfailn = ",chfailn(:)

do p = nmax-1,2,-1
call checkv(h,c,what,chat,x,nmax,s,p,vfail)
MVFAIL(:,p) = VFAIL(:)

end do

!print*," "
!print*,"mvfail is
!do i = 2,nmax-l
! write(unit=6,fmt="(a,i4,a,2i4)") "mvfail(:,",i,") = ",mvfail(:,i)
lend do
!print*," "

mvfail = 0
do p = 2,nmax-1

do i = l,s
if (MVFAIL(i,p) /= 0) MVFAILl(i) = 1

end do
end do

!write(unit=7,fmt="(a)") " "
!write(unit=7,fmt="(a,2i4)") "MVFAlLl = ",MVFAILl(:)
!write(unit=7,fmt="(a)") " "
!write(unit=7,fmt="(a)") "if mvfailI /= 0 we have problems with v, to
investigate further look at mvfail(0:s,2:nmax-l)"
!write(unit=7,fmt="(a)") "if mvfail = 1 l*(v(i,n+l) - v(i,n)) > what(i.n)"
!write(unit=7,fmt="(a)") "if mvfail = 2 l*(v(i,n) - v(i,n-l)) > what(i,n)"
!write(unit=7,fmt="(a)") "if mvfail = 3 v(i,n+l) - v(i,n) < v(i,n) - v(i,n-l)"
!write(unit=7,fmt="(a)") "if mvfail = 4 v(i,k+l) - v(i,k) < v(i,k) - v(i,k-l)
where 0<k<n"

!write(unit=7,fmt="(a)") "MVFAIL is:"
!do i = 2,nmax-1
! write(unit=7,fmt="(a,i4,a,2i4)") "mvfail(:,",i,") = ",mvfail(:,i)
! write(unit=7,fmt="(a)") " "
lend do

!write(unit=7,fmt="(a)") " "

end do
close(unit=7)

end program

subroutine check(h,l,m,s,FAiL)

page 4

Appendix A
implicit none

integer :: FAIL,s,h
double precision :: l.maxm
double precision, dimension(s) :: m

FAIL = 0

print*," ml = ",m(l)
print*," m2 = ",m(2)
print*," 1 = ",1

if (1 >= m(l)+m(2)) FAIL = 1

if (m(l) > m(2)) then
maxm = m(l)

el se
maxm = m(2)

end if

if (maxm >=1) fail = 1

return
end subroutine

!this subroutine calculates the index value for our policy, so we know which
queue to send
!the arriving customer to then calculates the costs to infinity using this
policy.

subroutine costs_index(h,c,nmax,s,cind,w,te,Chat,CHFAIL)
implicit none

integer :: h,buffer
double precision :: powl,pow2

integer :: s,nmax,n,i,ENDFXl,ENDFX2,fail,nl,n2,count,ExpFAlL,printto,num
integer, dimension (s) :: chfail
double precision :: 1,alf,a,b,d,e,smallest,largest,TOL,sroot,inds,opts
double precision, dimension(s) :: m.temp
double precision, dimension(s,0:nmax) :: C,w,chat,TE
double precision, dimension(0:nmax,0:nmax) :: cind.cindo,bound

cal1 queue_values(l,m,s,alf,a,b,d,e,TOL,buffer,powl,pow2,h)
call starting_vals(inds,opts,h)
FAIL = 0
ExpFAIL = 0
call check(h,l,m,s,FAiL)

ENDFXl = 1
ENDFX2 = 1

te(:,0) = 1/Calf+l)

do i = l,s
do n = l,nmax

! if(i==l) print*,TE(i,n-1)
TE(i,n) = l/(alf + 1 + m(i) - (m(i)*TE(i,n-1)))

end do
end do

!ci check thci"t "this is indeed worki
do i = l,s
call quad_roots(h,i,sroot)

! print*,sroot," ",i
if (TE(i,nmax) > sroot-TOL .and. TE(i,nmax) < sroot+TOL) then
print*,"Expectation OKAY"

! ExpFail = 0
el se
print*,"Expectation error"

! ExpFail = 1
end if

end do

Page 5

Appendix A

do i = l,s
do n = 0,nmax-l
if (TE(i,n) < TE(i,n+l)) ExpFAIL = 1

end do
end do

if (ExpFAlL == 1) print*,"Expectation error: non-decreasing with n"
Chat(:,0) = 0.0

do n = l.nmax
do i = l,s

Chat(i,n) = (alf*C(i,n) + m(i)*chat(i,n-l))/(alf + 1 + m(i) -
(m(i)*TECi,n-l)))

end do
end do

w = 0.0

do n = 0,nmax-l
do i = l,s

w(i,n) = alf*(TE(i,n+l)*(c(i,n+l) -

(ChatCi,n)/(1.0-TE(i,n)))))/(((1.0-TE(i,n+l))/(1.0-TE(i ,n))) - TE(i,n+1))
end do

end do

Cind = inds
Cindo = inds

count = 0

10 cindo = cind

count = count + 1

do nl = 0,nmax-l
do n2 = 0,nmax-l

if (nl > 0) then
temp(l) = cindo(nl-l,n2)

el se
temp(l) = cindo(nl,n2)

end if

if (n2 > 0) then
temp(2) = Cindo(nl,n2-l)

else
temp(2) = cindo(nl,n2)

end if

if (w(l,nl) <= w(2,n2)) then

Cind(nl,n2) = (c(l,nl) + C(2,n2))/(alf+l+m(l)+m(2)) +
(l*Cindo(nl+l,n2))/(alf+l+m(l)+m(2)) &

& + (m(l)*temp(l))/(alf+l+m(l)+m(2)) +
(m(2)*temp(2))/(alf+l+m(l)+m(2))

el se

Cind(nl,n2) = (C(l,nl) + c(2,n2))/(alf+l+m(l)+m(2)) +
(l*Cindo(nl,n2+l))/(alf+1+m(l)+m(2)) &

& + (m(l)*temp(l))/(alf+l+m(l)+m(2)) +
(m(2)*temp(2))/(alf+l+m(l)+m(2))

end if

end do
end do

Page 6

Appendix A

Cind(:,nmax) = cind(:,nmax-1)
cind(nmax,:) = cind(nmax-l,:)
Cind(nmax,nmax) = Cind(nmax-1,nmax-1)

do nl = O.nmax - ENDFXl
do n2 = O.nmax - ENDFX2

bound(nl,n2) = -cindo(nl,n2) + Cind(nl,n2)

end do
end do

smallest = 100000000.0
largest = -100000000.0

do nl = O.nmax - ENDFXl
do n2 = O.nmax - ENDFX2

if (smallest > bound(nl,n2)) then
smallest = bound(nl,n2)

! svec = (/nl,n2/)
end if

if (largest < bound(nl,n2)) then
largest = bound(nl,n2)

! Ivec = (/nl,n2/)
end if

end do
end do

!open(unit=7,fi1e="temp.dat")
!write(unit=7,fmt="(2fl6.7)") small est,largest

if ((largest - smallest) <= TOL) then !*sqrt((smallest)*(smal1 est))) then !
then !TOL*smallest
goto 100

el se
goto 10

end if

!close(unit=7)

100 if (FAIL == 1) print*,"Error: Some constraints do not hold"

!indc = (largest + smal1est)/2.0

!if CHFAIL = 0 Chat is increasing convexly
!if CHFAIL = 1 Chat is not increasing
!if CHFAIL = 2 chat is increasing but not convexly

CHFAIL = 0
do i = l.s

do num = 1,nmax-1
if (Chat(i,num+l)/(l.0-TE(i ,num+1)) - Chat(i,num)/(l.0-TE(i,num)) < &

& Chat(i,num)/(1.0-TE(i,num)) - Chat(i,num-l)/(l.0-TE(i,num-1))) CHFAlL(i) = 2
end do

end do

do i = l.s
do num = 1,nmax-1
if (Chat(i,num+1) - Chat(i.num) < chat(i.num) - chat(i,num-1)) CHFAlL(i) =

1
end do

end do

!!num = 0
!open(unit=7, fi1e="Chat_pos_data.dat")
!write(unit=7,fmt="(a)") "non-negative customers"
!write(unit=7,fmt="(a)") " n Chat(n)-1 chat(n)-2 Chl/l-xl
Ch2/l-x2"

!printto = nmax
!!if (nmax > 32) printto = 32
!do num=0,printto

page 7

Appendix A
! write(unit=7,fmt="(i6,4fl4.4)")
num,Chat(:, num),chat(1,num)/(1.0-TE(1,num)),Chat(2,num)/(1.0-TE(2,num))
! ! num = num + 1
lend do
!close(unit=7)

!!num = 0
!open(unit=7, fi1e="serve_exp_w_data.dat")
!write(unit=7,fmt="(a)") "non-negative customers"
!write(unit=7,fmt="(a)") " n e(t) - 1 e(t) - 2 w(n) - 1
w(n) - 2"
Iprintto = nmax
!if (nmax > 32) printto = 32
!do num=0,printto
! write(unit=7,fmt="(i6,4fl2.6)") num,TE(:,num),w(:,num)
!! num = num + 1
lend do
!close(unit=7)

I print*," "
Iprint*,"largest index : ".largest
I print*,"smallest index : ".smallest
print*,"index count = ".count

return
end subroutine
j

Ithis subroutine calculates the optimal (smallest possible) cost to infinity -

Ibut we have no actual policy to follow to get such optimal costs

subroutine costs_opt(h,c,nmax,s,Copt)
implicit none

integer :: h,buffer
double precision :: powl,pow2

integer :: s,nmax,ENDFXl,ENDFX2,FAIL,nl,n2,count
double precision :: 1,alf,a,b,d,e,smallest,largest,TOL.inds,opts
double precision, dimension(s) :: m,val
double precision, dimension(s,0:nmax) :: c
double precision, dimension(0:nmax,0:nmax) :: Copt,Copto,bound
double precision, dimension(4) :: temp

cal1 queue_values(1,m,s,alf,a,b,d,e,TOL,buffer,powl,pow2,h)
call starting_vals(inds,opts,h)
FAIL = 0
call check(h,l,m,s,FAlL)

ENDFXl = 1
ENDFX2 = 1

Copt = opts
Copto = opts

count = 0

20 Copto = Copt

count = count + 1

do nl = 0,nmax
do n2 = 0,nmax

if (nl > 0) then
temp(l) = Copto(nl-l,n2)

el se
temp(l) = Copto(nl,n2)

end if

if (n2 > 0) then
temp(2) = Copto(nl,n2-l)

else
temp(2) = Copto(nl,n2)

Page 8

Appendix A
end if

if (nl < Nmax) then
temp(3) = Copto(nl+l,n2)

else
temp(3) = copto(nl,n2)

end if

if (n2 < Nmax) then
temp(4) = Copto(nl,n2+l)

else
temp(4) = Copto(nl,n2)

end if

val(l) = (C(l,nl) + C(2,n2))/(alf+l+m(l)+m(2)) +
(1*tempC3))/Calf+l+m(l)+m(2)) &

& + (mCl)*tempCl))/(alf+l+m(l)+m(2)) +
(m(2)*temp(2))/(alf+l+m(l)+m(2))

val(2) = (cCl.nl) + cC2,n2))/Calf+l+mCl)+mC2)) +
CI*tempC4))/Calf+l+mCl)+mC2)) &

& + CmCl)*tempCl))/Calf+l+mCl)+mC2)) +
CmC2)AtempC2))/Calf+l+mCl)+mC2))

ifCvalCl) <= valC2)) then
CoptCnl,n2) = valCI)

el se
CoptCnl,n2) = valC2)

end if

! if CvalCl) /= valC2))
print* " * ******* "ft*hurrah ^ ^ ^ ^ ^ ^ ^ ^ ^ ^^ ^ ^ ^ ^ ^ ^ "

end do
end do

ICoptC:,nmax) = CoptC:,nmax-1)
icoptCnmax,:) = coptCnmax-1,:)
!CoptCnmax,nmax) = coptCnmax-1,nmax-1)

do nl = O.nmax - ENDFXl
do n2 = O.nmax - ENDFX2

boundCnl,n2) = -coptoCnl,n2) + CoptCnl,n2)

end do
end do

smallest = 100000000.0
largest = -100000000.0

do nl = O.nmax - ENDFXl
do n2 = O.nmax - endfx2

if Csmallest > boundCnl,n2)) then
smallest = boundCnl,n2)

! svec = C/nl,n2/)
end if

if Clargest < boundCnl,n2)) then
largest = boundCnl,n2)

! Ivec = C/nl,n2/)
end if

end do
end do

if CClargest - smallest) <= tol) then !*sqrtCCsmallest)*Csmallest))) then !
then !tol*smallest
goto 200

el se
goto 20

end if

Page 9

Appendix a
200 if (FAIL == 1) print*,"Error: Some constraints do not hold"

!optc = (largest + smal1est)/2.0

!print*," "
Iprint*,"largest opt : ".largest
!print*,"smal1 est opt : ".smallest
print*,"optimal count = ".count

return
end subroutine

!this subroutine calculates the index assuming that we can have negative
numbers of customers,
!but when working out the cost to infinity, we do NOT assume we can have
negative customers!

subroutine costs_index_neg(h,c,nmax,s,Cind3,CHFAIL)
implicit none

integer :: h,buffer
double precision :: powl,pow2

integer :: s,nmax,n,i,ENDFXl,ENDFX2,FAIL,nl,n2,count,printto,num
integer, dimension(s) :: CHFAIL
double precision :: 1,alf,a,b,d,e,smallest,largest,TOL,inds,opts
double precision, dimension(s) :: m,TE
double precision, dimension(s,-nmax:nmax) :: c,w,chat
double precision, dimension(0:nmax,0:nmax) :: Cind3,Cindo,bound
double precision, dimension(4) :: temp

cal1 queue_values(1,m,s,alf,a,b,d,e,tol,buffer,powl,pow2,h)
call starting_vals(inds,opts,h)

FAIL = 0

call check(h,l,m,s,FAlL)
if (fail==1) print*,"ERROR: fail = 1 - check constraints"

ENDFXl = 1
ENDFX2 = 1

do i = l,s
TE(i) = (1 + m(i) + alf - sqrt(((l + m(i) + alf)**2) -

(4*m(i)*1)))/(2*m(i))
end do

chat(:,-nmax) =0.0

do n = l-nmax,nmax
do i = 1,s

Chat(i,n) = (alf*C(i,n) + m(i)*Chat(i,n-l))/(alf + 1 + m(i) -
(m(i)*TE(i)))

end do
end do

w = 0.0

do n = 1-nmax,nmax-1
do i = l,s

w(i,n) = alf*(TE(i)*(C(i,n+l) - (Chat(i,n)/(1.0-TE(i)))))/(1.0-TE(i))
end do

end do

Cind3 = inds
Cindo = inds

count = 0

Page 10

Appendix A
50 Cindo = Cind3

count = count + 1

do nl = 0,nmax
do n2 = 0,nmax

if (nl > 0) then
temp(l) = cindo(nl-l,n2)

else
temp(l) = cindo(nl,n2)

end if

if (n2 > 0) then
temp(2) = cindo(nl,n2-l)

else
temp(2) = cindo(nl,n2)

end if

if (nl < Nmax) then
temp(3) = cindo(nl+l,n2)

el se
temp(3) = Cindo(nl,n2)

end if

if (n2 < Nmax) then
temp(4) = cindo(nl,n2+l)

el se
temp(4) = Cindo(nl,n2)

end if

if (w(l,nl) <= W(2,n2)) then

Cind3(nl,n2) = (c(l,nl) + C(2,n2))/(alf+l+m(l)+m(2)) +
(l*temp(3))/(alf+l+m(l)+m(2)) &

& + (m(l)*temp(l))/(alf+l+m(l)+m(2)) +
(m(2)*temp(2))/(alf+l+m(l)+m(2))

el se

Cind3(nl,n2) = (C(l,nl) + C(2,n2))/(alf+l+m(l)+m(2)) +
(l*Temp(4))/(alf+l+m(l)+m(2)) &

& + (m(l)*temp(l))/(alf+l+m(l)+m(2)) +
(m(2)*temp(2))/(alf+l+m(l)+m(2))

end if

end do
end do

!cind3(:,nmax) = Cind3(:,nmax-l)
!Cind3(nmax,:) = Cind3(nmax-1,:)
!Cind3(nmax,nmax) = Cind3(nmax-1,nmax-1)

do nl = 0,nmax - endfxI
do n2 = 0,nmax - endfx2

bound(nl,n2) = -Cindo(nl,n2) + Cind3(nl,n2)

end do
end do

smallest = 100000000.0
largest = -100000000.0

do nl = 0,nmax - ENDFXl
do n2 = 0,nmax - ENDFX2

if (smallest > bound(nl,n2)) then
smallest = bound(nl,n2)

! svec = (/nl,n2/)
end if

if (largest < bound(nl,n2)) then
Page 11

Appendix A
largest = bound(nl,n2)

! lvec = (/nl,n2/)
end if

end do
end do

if ((largest - smallest) <= TOL) then !*sqrt((smanest)*(smallest))) then !
then !TOL*smallest
goto 500

else
goto 50

end if

500 if (fail == 1) print*,"Error: Some constraints do not hold"

!indc = (largest + smallest)/2.0

!if CHFAIL = 0 chat is increasing convexly
!if CHFAIL = 1 chat is not increasing
!if chfail = 2 Chat is increasing but not convexly

CHFAIL = 0
do i = l,s

do num = l,nmax-l
if (Chat(i,num+l)/(1.0-TE(i)) - chat(i,num)/(1.0-TE(i)) < &

& Chat(i,num)/(l.0-TE(i)) - chat(i,num-l)/(l.0-TE(i))) CHFAlL(i) = 2
end do

end do

!!num = -8.0
!open(unit=7, fi1e="Chat_neg_data.dat")
!write(unit=7,fmt="(a)") "negative customers"
!write(unit=7,fmt="(a)") " n chat(n)-l chat(n)-2 chl/l-xl
Ch2/l-x2"
Iprintto = nmax
!!if (nmax > 32) printto = 32
!do num=-8,printto
! write(unit=7,fmt="(i 6,4f14.4)")
num,chat(:,num),Chat(1,num)/(1.0-te(1)),Chat(2,num)/(l.0-te(2))
! ! num = num + 1
lend do
!close(unit=7)

!!num = -2.0
!open(unit=7, fi1e="ser_neg_exp_w_data.dat")
!write(unit=7,fmt="(a)") "negative customers (index3)"
!write(unit=7,fmt="(a)") " n e(t) - 1 e(t) - 2 w(n) - 1
w(n) - 2"
Iprintto = nmax
!if (nmax > 32) printto = 32
!do num=-2,printto
! write(unit=7,fmt="(i6,4fl2.6)") num,TE(:),w(:,num)
!! num = num +1.0
lend do
!close(unit=7)

!write(unit=7,fmt="(a)") " "

1write(unit=7,fmt="(a)") "discounted cost to infinity when starting in state
(0,0) - (5,5)"
!write(unit=7,fmt="(a)") "(with -ve customers) for our index3 policy is "
!do i = 0,5
1 write(unit=7,fmt="(6fl2.4)") Cind3(i,0:5)
1 write(unit=7,fmt="(a)") " "
lend do

1write(unit=7,fmt="(a)") " "

1close(unit=7, fi1e="serve_exp_data.dat")

!print*," "
Iprint*,"largest index : ".largest
1 print*,"smallest index : ".smallest
pri nt*,"index count neg = ".count

page 12

Appendix A

return
end subroutine

subroutine quad_roots(h,i,sroot)
implicit none

integer :: h,buffer
double precision :: powl,pow2

integer :: s,i
double precision :: a,b,d,e,1,alf,al,a2,a3,TOL,rootl,root2,sroot
double precision, dimension (2) :: m

call queue_values(l,m,s,alf,a,b,d,e,TOL,buffer,powl,pow2,h)

al = m(i)
a2 = alf + 1 + m(i)
aB = 1

rootl = (a2 + sqrt((a2**2) - (4*al*a3)))/(2*al)
root2 = (a2 - sqrt((a2**2) - (4*al*a3)))/(2*al)

if (rootl > root2) then
sroot = root2

el se
sroot = rootl

end if

return
end subroutine

subroutine checkv(h,c,what,Chat,x,nmax,s,n,fail)
implicit none

integer :: h,buffer
double precision :: powl,pow2

integer :: nmax,s,i,n,k
integer, dimension (s) :: FAIL
double precision, dimension (s,0:n+l) :: C,Chat,x,v,what

double precision :: 1,alf,a,b,d,e,TOL
double precision, dimension(s) :: m

cal 1 queue_values(l,m,s,alf,a,b,d,e,TOL,buffer,powl,pow2,h)

FAIL = 0

do i = l,s

v(i,n) = ((alf+m(i))*chat(i,n) + x(i,n)*(alf*c(i,n+l) + what(i,n)))/(alf +
m(i) - m(i)*X(i ,n))

v(i,n+l) = (alf*C(i,n+1) + what(i,n) + m(i)*chat(i,n))/(alf + m(i) -

m(i)*x(i ,n))

end do

do i = l,s
do k = n-1,0,-1

v(i,k) = chat(i,k) + x(i,k)*v(i,k+1)

end do
end do

!if (n == 12) then
! print*,"v(i,k) when n = 12 is:"
! print*," "

page 13

Appendix A
! do k = 0,n+l
! print*,v(:,k)
! end do

!print*," "
!print*,"x(:,0) = ",x(:,0)
!print*," "
!print*,"Chat(:,0) = ",chat(:,0)
lend if

do i=l,s
if Cl*(v(i,n+1) - v(i,n)) > 1.002*what(i,n)) then
FAIL(i) = 1

else if (l*(v(i,n) - v(i,n-l)) > 1.002*what(i,n)) then
FAIL(i) = 2

else if ((v(i,n+l) - v(i,n)) < (v(i,n) - v(i,n-l))) then
FAIL(i) = 3

end if
do k = n-1,1,-1
if C(v(i,k+1) - v(i,k)) < (v(i,k) - v(i,k-l))) FAiL(i) = 4

end do
end do

return
end subroutine

subroutine starting_vals(i nds,opts,h)
implicit none

integer :: h
double precision :: inds,opts

inds = 0.0
opts =0.0

return
end subroutine

subroutine queue_values(l,m,s,alf,a,b,d,e,TOL,buffer,powl,pow2,h)
implicit none

integer :: s,h,buffer
integer, dimension(8) :: buffera
double precision :: 1 ,alf,a,b,d,e,TOL,powl,pow2
double precision, dimension(s) :: m

double precision, dimension(8) :: powerla,power2a,la

alf = 0.05129

m(l) = 2.9
m(2) = 2.1

s = 2

a = 1.0 1.0 0.0 1.0 1.5
b = 2.0 0.0 1.0 1.1
d = 2.0 1.5 0.0 1.0 0.7
e = 2.0 0.0 1.0 1.9

TOL = 0.0005

la = (/O.6,0.85,0.6,0.85,0.6,0.85,0.6,0.85/)
powerla = (/l.0,1.0,2.0,2.0,3.0,3.0,1.0,1.0/)
power2a = (/2.0,2.0,3.0,3.0,4.0,4.0,2.0,2.0/)
buffera = (/0,0,0,0,0,0,2,2/)

powl = powerla(h)
Page 14

pow2 = power2a(h)
buffer = buffera(h)

1 = (m(l)+m(2))*la(h)

return
end subroutine

Appendix A

Page 15

Appendix B

This appendix contains the Fortran 95 code for the programme we used to calculate

the undiscounted routing control costs as in Section 2.5.2. Here we consider the

optimal, policy improvement and Whittle index policies for a 2 class system.

Appendix B
program routing
implicit none

integer :: Nmax,BError,h,buffer
double precision :: a,b,d,e,1,TOL,wcost.Optcost,Picost
double precision, dimension(2) :: m
open(unit=7,fi1e="Routing.dat")

do h = 1,64

call qvals(buffer,a,b,d,e,l,m,Nmax,BError,TOL,h)

wcost =0.0
optcost =0.0
Plcost =0.0

call optimal(optcost,h)
call whittle(wcost.h)
call policyimp(Plcost,h)

write(unit=7,fmt="(a)") " 1 m(l) m(2) a b d e
Nmax

write(unit=7,fmt="(7f7.3,i5)") 1,m(l),m(2),a,b,d,e,Nmax
write(unit=7,fmt="(a)") " "
write(unit=7,fmt="(a,fl2.6)") "The optimal cost for any policy with this
queue setup & parameters is : ",Optcost
write(unit=7,fmt="(a)") " "
write(unit=7,fmt="(a,fl2.6)") "the cost when following the whittle index
policy is : ",wcost
write(unit=7,fmt="(a,fl2.6)") "the suboptimality is:
",(wcost-optcost)*100/optcost
write(unit=7,fmt="(a)") " "
write(unit=7,fmt="(a,fl2.6)") "the cost when following the policy
improvement index policy is : ".PlCost
write(unit=7,fmt="(a,fl2.6)") "the suboptimality is:
",(Plcost-OptCost)*100/Optcost
write(unit=7,fmt="(a,fl2.6)") "the whittle is sub Policy improvment by:
",(WCOSt-PICOSt)*100/PICOSt

end do

close(unit=7)

end program

subroutine whittle(wcost,h)
implicit none

integer :: n,nl,n2,BError,Nmax,count,r,h,buffer
double precision :: a,b,d,e,l.smallest,largest,diff.TOL,wcost,U
integer, dimension(2) :: ismal1,i1arge
double precision, dimension(2) :: m
double precision, dimension(4) :: temp
double precision, allocatable, dimension(:,:) :: C,w,vnew,vold,w2,temp2

Icall subroutine to get queue parameter values
call qvals(buffer,a,b,d,e,l,m,Nmax,BError,TOL,h)

allocate(C(2,0:Nmax+l))
allocated w(2,0:Nmax))
allocated W2(2,0:Nmax))
allocated TEMP2(2,Nmax+l))
allocated vnew(0:Nmax,0:Nmax))
allocated vold(0:Nmax,0:Nmax))

initialize costs C, and index w, vectors
C = 0.0
w = 0.0
count = 0

!set cost function using queue parameters subroutine - convex costs
do n = buffer,Nmax+1

Page 1

Appendix B

C(l,n) = a*real(n-buffer) + b*(real(n-buffer)**2.0)
C(2,n) = d*real(n-buffer) + e*(real (n-buffer) A*2 .0)

end do

!calculate whittle index : method 1
do n = 0,Nmax

w(l,n) = (c(l,n+1) - C(l,n))*(1.0/1)*((l/m(l)) - (
(l/m(l))**(real(n+2))))/(1.0 - (l/m(l)))

w(2,n) = (C(2,n+1) - C(2,n))*(1.0/1)*((l/m(2)) - (
(l/m(2))**(real(n+2))))/(1.0 - (l/m(2)))

end do

do n = l.Nmax

w(l,n) = w(l,n) + w(l,n-l)

W(2,n) = W(2,n) + W(2,n-1)

end do

!calculate whittle index a different way : method 2
TEMP2 =0.0
W2 = 0.0

do n = l,Nmax
do r = l,n
TEMP2(1,n) = TEMP2(1,n) + (l/m(l))**real(r)
TEMP2(2,n) = TEMP2(2,n) + (l/m(2))**real(r)

end do
end do

do n = 0,Nmax
W2(l,n) = C(1,n+1)*TEMP2(1,n+1)
W2(2,n) = C(2,n+l)*TEMP2(2,n+1)

end do

do n = 0,Nmax
do r = 0,n
W2(l,n) = w2(l,n) - c(l,r)*(l/m(l))**real(r+1)
w2(2,n) = W2(2,n) - c(2,r)*(l/m(2))**real(r+l)

end do
end do

w2 = W2/1

open(uni t=7,fi1e="storevw.dat")

do n = 0,Nmax
write(unit=7,fmt="(i6,4f25.5)") n,w(:,n),w2(:,n)

end do

luniformise queue parameters so that on average have one event per unit time
u = 1 + m(l) + m(2)

1 = 1/u
m(l) = m(l)/u
m(2) = m(2)/u

linitialize value function vectors
vnew =0.0
void =0.0

Icompute value function - using value iteration algorithm
30 void = vnew

count = count + 1

do nl = O.Nrnax
do n2 = 0,Nmax

Page 2

Appendix B
!use temp vector to deal with boundary cases

if (nl>0) then
temp(l) = vold(nl-l,n2)

el se
temp(l) = vold(nl,n2)

end if

if (n2>0) then
temp(2) = vold(nl,n2-l)

el se
temp(2) = vold(nl,n2)

end if

if (nl<Nmax) then
temp(3) = vold(nl+l,n2)

else
temp(3) = vold(nl,n2)

end if

if (n2<Nmax) then
temp(4) = vold(nl,n2+l)

else
temp(4) = vold(nl,n2)

end if

!if wl smaller send to queue one & similar for queue 2

if (W2(l,nl) <= w2(2,n2)) then

vnew(nl,n2) = c(l,nl) + C(2,n2) + m(l)*temp(l) + m(2)*temp(2) +
1*temp(3)

el se

vnew(nl,n2) = c(l,nl) + C(2,n2) + m(l)*temp(l) + m(2)*temp(2) +
l*temp(4)

end if

end do
end do

!compute the bounds
smallest = 1000000000000.0
largest = -1000000000000.0

do nl = O.Nmax-BError
do n2 = 0,Nmax-BError

if (smallest > Vnew(nl,n2) - vold(nl,n2)) then
smallest = vnew(nl,n2) - vold(nl,n2)
ismall = (/nl,n2/)

end if
if (largest < Vnew(nl,n2) - vold(nl,n2)) then
largest = Vnew(nl,n2) - Vold(nl,n2)
ilarge = (/nl,n2/)

end if

end do
end do

!if bounds within set tolerance stop, otherwise repeat,
diff = largest - smallest

!write(unit=7,fmt="(3f20.6,4i4)") smallest, largest, diff, ismall, ilarge

if (count > 2000000) goto 300
if (diff < 0.0 .or. diff > TOL*smal1 est) goto 30

!calculate average cost of following this policy
300 wcost = (largest + smallest)/2.0

!close(unit=7)

Page 3

Appendix B

print*,"count = ".count
print*,"the cost when following the whittle index policy is : ",wcost

return
end subroutine

subroutine optimal(optcost,h)
implicit none

integer :: Nmax,BError,n,nl,n2,count,h,buffer
double precision :: a,b,d,e,1,TOL,u,smal1 est,largest,diff.optcost
double precision, dimension(2)
double precision, dimension(4)

m.cost
temp

double precision, allocatable, dimension(:,:: C,vnew,vold

!get queue parameters
call qvals(buffer,a,b,d,e,l,m,Nmax,BError,TOL,h)

allocate(c(2,0:Nmax))
allocated vnew(0:Nmax,0:Nmax))
allocated vold(0:Nmax,0:Nmax))

luniformise queue parameters so that on average have one event per unit time
U = 1 + m(l) + m(2)

1 = 1/u
m(l) = m(l)/u
m(2) = m(2)/U

Mnitialize cost c vectors
C = 0.0

!set cost function using queue parameters subroutine - convex costs
do n = buffer,Nmax+l

C(l,n) = a*real(n-buffer) + b*(real(n-buffer)**2.0)
C(2,n) = d*real(n-buffer) + e*(real(n-buffer)**2.0)

end do

!do value iteration to find the average optimal cost per unit time

vnew =0.0
void =0.0
count = 0

!open(unit=7,fi1e="storevO.dat")

20 void = vnew

count = count + 1
!print*,"count = ".count

do nl = 0,Nmax
do n2 = 0,Nmax

if (nl>0) then
temp(l) = vold(nl-l,n2)

el se
temp(l) = vold(nl,n2)

end if

if (n2>0) then
temp(2) = vold(nl,n2-l)

el se
temp(2) = vold(nl,n2)

end if

if (nl<Nmax) then
temp(3) = vold(nl+l,n2)

el se

Page 4

Appendix B
temp(3) = vold(nl,n2)

end if

if (n2<Nmax) then
temp(4) = vold(nl,n2+l)

el se
temp(4) = vold(nl,n2)

end if

!calculate costs if send to queue 1 and if send to queue 2
cost(l) = C(l,nl) + C(2,n2) + m(l)*temp(l) + m(2)*temp(2) + l*temp(3)
cost(2) = C(l,nl) + C(2,n2) + m(l)*temp(l) + m(2)*temp(2) + l*temp(4)

!set value function to be the one with the smaller costs
if (cost(l) < cost(2)) then
Vnew(nl,n2) = cost(l)

else
Vnew(nl,n2) = cost(2)

end if

end do
end do

smallest = 1000000.0
largest = -1000000.0

do nl = 0,Nmax-BError
do n2 = 0,Nmax-BError

if (smallest > Vnew(nl,n2) - vold(nl,n2)) smallest = Vnew(nl,n2) -

Vold(nl,n2)
if (largest < vnew(nl,n2) - vold(nl,n2)) largest = Vnew(nl,n2) -

Vold(nl,n2)

end do
end do

diff = largest - smallest

!write(unit=7,fmt="(3fl2.6)") smallest, largest, diff

if (count > 1999999) goto 200
if (diff > smal1est*TOL .or. diff < 0.0) goto 20

200 OptCost = (smallest + largest)/2.0

!close(unit=7)

print*,"count = ".count
print*,"The optimal cost for any policy with this queue setup & parameters
is ".OptCost
print*," "

return
end subroutine

subroutine policyimp(Plcost,h)
implicit none

integer :: n,nl,n2,Nmax,BError,IFAiL,count,h,buffer
double precision ::
a,b,d,e,1,TOL,Th,tempi,temp2,smallest,largest,PlCost,u.diff,y,z,FCl,FC2,X,F,
BoundE
integer, dimension(2) :: ismall, ilarge
double precision, dimension(2) :: m,p,T,Pim
double precision, dimension(4) :: temp
double precision, allocatable, dimension(:,:) :: Kh
double precision, allocatable, dimension(:,:) :: c,K,vold,vnew

!get queue parameters
call qvals(buffer,a,b,d,e,l,m,Nmax,BError,TOL,h)

allocate(c(2,0:Nmax+80))

Page 5

Appendix B
allocate(Kh(2,0:Nmax))
allocated K(2,0:Nmax))
allocated vold(0:Nmax,0:Nmax))
allocated vnew(0:Nmax,0:Nmax))

luniformise queue parameters so that on average have one event per unit time
U = 1 + m(l) + m(2)

1 = 1/u
m(l) = m(l)/U
m(2) = m(2)/u

! check certain system constraints hold
IFAIL = 0
call check(lFAlL,h)
if (IFAIL == 0) then
print*,"system okay"

else if (IFAIL == 1) then
print*,"ERROR: unstable queues"

else if (IFAIL == 2) then
print*,"ERROR: uninteresting problem"

else if (IFAIL == 3) then
print*,"ERROR: Holding costs must be +ve convex function"

el se
print*,"ERROR: ?"

end if

linitialize cost & index vectors
c = 0.0
Pirn = 0.0
T = 0.0
Th = 0.0
K = 0.0
Kh = 0.0
count = 0

[calculate holding costs function - convex
do n = buffer,Nmax

c(l,n) = a*real(n-buffer) + b*(real(n-buffer)**2.0)
C(2,n) = d*real(n-buffer) + e*(real(n-buffer)**2.0)

end do

!call subroutine to find the best possible static policy after finding
allowed range
tempi = m(l)/l
temp2 = 1.0 - m(2)/l

if (temp2 > 0.0 .and. temp2 < 1.0) then
y = temp2

el se
y = 0.0

end if

if (tempi < 1.0 .and. tempi >0.0) then
z = tempi

el se
z = 1.0

end if

BoundE = (z-y)*0.05
z = z - BoundE
y = y + BoundE

call statp(y,z,p,h)

!p(l) = 0.532000
!p(2) = 1.0 - 0.532000

lean only use this if have access to NagRoutines
!call NAGMIN(X,F)
!p(l) = X

Page 6

Appendix B
icalculate holding costs function - convex
do n = buffer.Nmax

C(l,n) = a*real(n-buffer) + b*(real(n-buffer)**2.0)
C(2,n) = d*real(n-buffer) + e*(real(n-buffer)**2.0)

end do

!call subroutines to calculate values required to find the required index
call Kdiff(1,p,Nmax,Kh,h)
k(1 i:) = KhCl.O
print*,"Kh(l,0) = ",Kh(l,0)
print*,"K(1,0) = ",K(1,0)

icalculate holding costs function - convex
do n = buffer,Nmax

C(l,n) = a*real(n-buffer) + b*(real(n-buffer)**2.0)
C(2,n) = d*real(n-buffer) + e*(real(n-buffer)**2.0)

end do

call Tdiff(l,p,Th,h)
T(1) = Th
print*,"T(l) = ",T(1)

call Kdiff(2,p,Nmax,Kh,h)
K(2,:) = Kh(2,:)
print*,"Kh(2,0) = ",Kh(2,0)
print*,"K(2,0) = ",K(2,0)

icalculate holding costs function - convex
do n = buffer.Nmax

C(l,n) = a*real(n-buffer) + b*(real(n-buffer)**2.0)
C(2,n) = d*real(n-buffer) + e*(real(n-buffer)**2.0)

end do

call Tdiff(2,p,Th,h)
T(2) = Th
print*,"T(2) = ",T(2)

call FUNCT2(p(1),FCl,FC2,h)
iuse value iteration algirithm to find expected average cost per unit time

print*,"p = ",p
print*,"FCl = ",FCl
print*,"FC2 = ",FC2

!open(unit=7,fi1e="storevPl.dat")
ido n = 0,Nmax
! write(unit=7,fmt="(i5,2fl8.6)") n,K(1,n),K(2,n)
iend do

! write(unit=7,fmt="(i5,4fl8.6)") n,FCl,T(l),FC2,T(2)

ido n = 0,Nmax
! write(unit=7,fmt="(i5,2fl8.6)") n,K(l,n) - FCl*T(l),K(2,n) - FC2*T(2)
iend do

void =0.0
vnew =0.0

icalculate holding costs function - convex
do n = buffer.Nmax

C(l,n) = a*real(n-buffer) + b*(real(n-buffer)**2.0)
C(2,n) = d*real(n-buffer) + e*(real(n-buffer)**2.0)

end do

10 void = vnew

Page 7

Appendix B

count = count + 1

do nl = O.Nmax
do n2 = O.Nmax

if (nl > 0) then
temp(l) = vold(nl-l,n2)

el se
temp(l) = vold(nl,n2)

end if

if (n2 > 0) then
temp(2) = vold(nl,n2-l)

el se
temp(2) = vold(nl,n2)

end if

if (nl < Nmax) then
temp(3) = vold(nl+l,n2)

el se
temp(3) = vold(nl,n2)

end if

if (n2 < Nmax) then
temp(4) = vold(nl,n2+l)

el se
temp(4) = vold(nl,n2)

end if

Pim(l) = K(l,nl) - FCl*T(l)
Pim(2) = K(2,n2) - FC2*T(2)

! print*,"Pim(l) = ",Pim(l)
! print*,"Pim(2) = ",Pim(2)

if (Pim(l) < Pim(2)) then

Vnew(nl,n2) = C(l,nl) + C(2,n2) + m(l)*temp(l) + m(2)*temp(2) +
1*temp(3)

el se

Vnew(nl,n2) = C(l,nl) + C(2,n2) + m(l)*temp(l) + m(2)*temp(2) +
l*temp(4)

end if

end do
end do

smallest = 1000000000000.0
largest = -1000000000000.0
do nl = 0,Nmax-BError

do n2 = 0,Nmax-BError

if (smallest > Vnew(nl,n2) - vold(nl,n2)) then
smallest = Vnew(nl,n2) - vold(nl,n2)
ismall = (/nl,n2/)

end if
if (largest < Vnew(nl,n2) - vold(nl,n2)) then
largest = vnew(nl,n2) - vold(nl,n2)
ilarge = (/nl,n2/)

end if

end do
end do

diff = largest - smallest

!write(unit=7,fmt="(3f18.6,4i4)") smallest, largest, diff, ismall, ilarge
if (count > 2000000) goto 100
if (diff > TOL*smallest .or. diff < 0.0) goto 10

Page 8

Appendix B

100 print*," "

! close(unit=7)

PlCost = (largest + smallest)/2.0

print*,"count = ".count
print*,"the policy improvement index gives us a policy with costs of
".PICOSt

return
end subroutine

subroutine check(lFAlL,h)
implicit none

integer :: Nmax.lFAlL,BError,h,buffer
double precision :: a,b,d,e,1,TOL,service,maxm
double precision, dimension(2) :: m

call qvals(buffer,a,b,d,e,l,m,Nmax,BError,TOL,h)

service = m(l) + m(2)

if (m(l) > m(2)) then
maxm = m(l)

el se
maxm = m(2)

end if

if (1 > service) ifail = 1
if (maxm > 1) ifail = 2
if (a<0.0 .or. b<0.0 .or. d<0.0 .or. e<0.0) ifail = 3

return
end subroutine

subroutine nagmin(x,f,h)
implicit none

integer :: nout, ifail, maxcal, Nmax, BError, h, bufferdouble precision :: y,z,EPS,F,T,X,1,a,b,d,e,TOL,BoundE
double precision, dimension(2) :: m
EXTERNAL E04ABF, FUNCT

call qvals(buffer,a,b,d,e,l,m,Nmax,BError,TOL,h)

EPS = O.OeO
t = O.OeO

if ((1 - m(2))/l > 0.0) then
y = (1 - m(2))/l

el se
y = O.OeO

end if

if (m(l)/l < 1.0) then
z = m(l)/l

el se
z = l.OeO

end if

BoundE = (z-y)*0.05
z = z - BoundE
y = y + BoundE

Page 9

MAXCAL = 30
IFAIL = 1

Appendix B

CALL E04AB F(FUNCT,EPS,T,Y,Z,MAXCAL,X,F,IFAIL)

IF (IFAIL == 1) THEN
PRINT*,"Parameter outside expected range"

else
IF (IFAIL == 2) then
print*,"Results after maxcal function evaluations are"
print*," "

END IF

PRINT*,"The minimum lies in the interval ",Y," to ",z
PRINT*,"its estimated position is ",x
PRINT*,"where the value function is ",F
PRINT*, maxcal," Function evaluations were required"

END IF

return
END SUBROUTINE

subroutine Statp(y,z,p,h)
implicit none

integer : : i , h
double precision :: y,z,minimum,xc,FC
double precision, dimension(2) :: p

minimum = 1000000000.0
!open(unit=7,fi1e="funct.dat")
do i = 1,99

xc = y + ((z-y)/100.0)*real(i)
call funct(xc,fc,h)

!write(unit=7,fmt="(2f16. 6) ") xc,FC
if (minimum > FC) then
p(l) = xc
minimum = FC

end if

end do
! close(unit=7)

p(2) = 1.0 - p(l)

print*,"I calculate the minimum using my vulgar method as ".minimum
print*,"which can be found at p = ",p
print*," "

return
end subroutine

subroutine FUNCT(xc,FC,h)
implicit none

integer :: n,Nmax,BError,h,buffer
double precision :: a,b,d,e,1,tol,xc,fcl,fc2,fc,tempi,temp2,temp3,temp4
double precision, dimension(2) :: m,p
double precision, allocatable, dimension(:,:) :: C

!get queue/cost parameters
call qvals(buffer,a,b,d,e,l,m,Nmax,BError,TOL,h)

allocate(C(2,0:Nmax+(l*Nmax)))

FCl = 0.0
FC2 = 0.0
FC =0.0

page 10

Appendix B
C = 0.0

do n = buffer,Nmax+(1.0*Nmax)

C(l,n) = a*real(n-buffer) + b*(real(n-buffer)**2.0)
C(2,n) = d*real(n-buffer) + e*(real(n-buffer)**2.0)

end do

p(l) = xc
p(2) = 1.0 - xc

tempi = l*p(l)/m(l)
temp2 = 1.0 - tempi
tempB = 1*p(2)/m(2)
temp4 = 1.0 - temp3

do n = 0,Nmax+(1.0*Nmax)

FCl = FCl + c(l,n)*(templ**(real(n)))*temp2
FC2 = FC2 + c(2,n)*(temp3**(real(n)))*temp4

end do

FC = FCl + FC2

return
end subroutine

subroutine funct2(xc,FCl,fc2,h)
implicit none

integer :: n,Nmax,BError,h,buffer
double precision :: a,b,d,e,1,TOL,xc,FCl,FC2,tempi,temp2,temp3,temp4
double precision, dimension(2) :: m,p
double precision, allocatable, dimension(:,:: c

!get queue/cost parameters
call qvals(buffer,a,b,d,e,l,m,Nmax,BError,TOL,h)

allocate(C(2,0:Nmax+(2*Nmax)))

FCl = 0.0
FC2 = 0.0
c = 0.0

do n = buffer,Nmax+(2.0*Nmax)

C(l,n) = a*real(n-buffer) + b*(real(n-buffer)**2.0)
C(2,n) = d*real(n-buffer) + e*(real(n-buffer)**2.0)

end do

p(l) = xc
p(2) = 1.0 - xc

tempi = l*p(l)/m(l)
temp2 = 1.0 - tempi
temp3 = l*p(2)/m(2)
temp4 = 1.0 - temp3

do n = 0,Nmax+(2.0*Nmax)

FCl = FCl + C(l,n)*(templ**real(n))*temp2
FC2 = FC2 + c(2 , n)ir(temp3**real (n))*temp4

end do

return
end subroutine

Page 11

Appendix B

subroutine Kdiff(i,p,Nmax,Kh,h)
implicit none

integer : :n,i,Nmax,BError, j,h,buffer
double precision :: a,b,d,e,1,TOL,tempi,counter
double precision, dimension(2) :: m,p
double precision, dimension(2,0:Nmax) :: Kh
double precision, allocatable, dimension(:,:) :: C,temp2

!get queue parameters
call qvals(buffer,a,b,d,e,l,m,Nmax,BError,TOL,h)
KhCi , :) = 0.0

allocate(C(2,0:Nmax+Nmax+(2*Nmax)+l))
allocated temp2(2,0:Nmax+Nmax))

do n = buffer,Nmax+Nmax+(2.0*Nmax)+l

C(l,n) = a*real(n-buffer) + b*(real(n-buffer)**2.0)
C(2,n) = d*real(n-buffer) + e*(real(n-buffer)**2.0)

end do

tempi = l*p(i)/m(i)

do n = 0,Nmax+Nmax

temp2(i,n) = C(i,n)/m(i)

end do

Icalc K(n) - K(n-l)
!do n = 0,Nmax

! counter = 0.0
! do j = n,n+Nmax !could try "n+80" instead of "Nmax+80" so that have the
same accuracy on all values?

! Kh(i,n) = Kh(i,n) + (templ**(counter))*temp2(i,j)

! counter = counter + 1.0
! end do

lend do

!!!!!!!!!!!! second go

do n = 0,Nrnax

do j = 0,n+(2.0*Nmax)

Kh(i,n) = Kh(i,n) + ((l*p(i)/m(i))**(real(j)))*C(i,n+j+l)/m(i)

end do

end do

print*,"Kh(",i,",0) = ",Kh(i,0)

return
end subroutine

subroutine Tdiff(i,p,T,h)
implicit none

integer :: Nmax,BError,i,h,buffer
double precision :: a,b,d,e,l,TOL,tempi,temp2,T
double precision, dimension(2) :: m,p

Iget queue parameters

Page 12

Appendix B
call qvals(buffer,a,b,d,e,l,m,Nmax,BError,TOL,h)
Itempl = 1.0/m(i)

!temp2 = templ/(1.0 - 1 *p(i)*templ)
!calc T(n) - T(n-l)
!t = tempi + l*p(i)*templ*temp2
!!!!!!!!1!second go
T = 1.0/(m(i) - l*p(i))

return
end subroutine

subroutine qvals(buffer,a,b,d,e,l,m,Nmax,BError,TOL.h)
implicit none

integer :: Nmax,BError,h,buffer
double precision :: a,b,d,e,1,TOL
double precision, dimension^) :: m
double precision, dimension(64) :: la,mla,m2a,aa,ba,da,ea

!allocate(la(h))
!allocate(mla(h))
!allocate(m2a(h))
!allocate(aa(h))
!allocate(ba(h))
!allocate(da(h))
!allocate(ea(h))

Nmax = 199
BError = 10
buffer = 0

la = 0.6
mla = C/3.0,2.9,2.8,2.7,3.0,2.9,2.8,2.7,3.0,2.9,2.8,2.7,3.0,2.9,2.8,2.7, &

& 3.0,2.9,2.8,2.7,3.0,2.9,2.8,2.7,3.0,2.9,2.8,2.7,3.0,2.9,2.8,2.7, &
& 3.0,2.9,2.8,2.7,3.0,2.9,2.8,2.7,3.0,2.9,2.8,2.7,3.0,2.9,2.8,2.7, &
& 3.0,2.9,2.8,2.7,3.0,2.9,2.8,2.7,3.0,2.9,2.8,2.7,3.0,2.9,2.8,2.7/)

m2a = C/3.0,3.1,3.2,3.3,3.0,3.1,3.2,3.3,3.0,3.1,3.2,3.3,3.0,3.1,3.2,3. 3, &
& 3.0,3.1,3.2,3.3,3.0,3.1,3.2,3.3,3.0,3.1,3.2,3.3,3.0,3.1,3.2,3.3, &
& 3.0,3.1,3.2,3.3,3.0,3.1,3.2,3.3,3.0,3.1,3.2,3.3,3.0,3.1,3.2,3.3, &
& 3.0,3.1,3.2,3.3,3.0,3.1,3.2,3.3,3.0,3.1,3.2,3.3,3.0,3.1,3.2,3.3/)

aa = 2.0
ba = C/0.1,0.1,0.1,0.1,0.6,0.6,0.6,0.6,1.0,1.0,1.0,1.0,2.0,2.0,2.0,2.0, &

& 0.1,0.1,0.1,0.1,0.6,0.6,0.6,0.6,1.0,1.0,1.0,1.0,2.0,2.0,2.0,2.0, &
& 0.1,0.1,0.1,0.1,0.6,0.6,0.6,0.6,1.0,1.0,1.0,1.0,2.0,2.0,2.0,2.0, &
& 0.1,0.1,0.1,0.1,0.6,0.6,0.6,0.6,1.0,1.0,1.0,1.0,2.0,2.0,2.0,2.0/)

da = 1.0
ea = C/0.1,0.1,0.1,0.1,0.1,0.1,0.1,0.1,0.1,0.1,0.1,0.1,0.1,0.1,0.1,0.1, &

& 0.6,0.6,0.6,0.6,0.6,0.6,0.6,0.6,0.6,0.6,0.6,0.6,0.6,0.6,0.6,0.6, &
& 1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0, &
& 2.0,2.0,2.0,2.0,2.0,2.0,2.0,2.0,2.0,2.0,2.0,2.0,2.0,2.0,2.0,2.0/)

m(l) = mla(h)
m(2) = m2a(h)
1 = (m(l)+m(2))*la(h)

a = aa(h)
b = ba(h)
d = da(h)
e = ea(h)

TOL = 0.001

return
end subroutine

Page 13

Appendix C

This appendix contains the Fortran 95 code for the programme we used to simulate

the undiscounted routing control costs as in Section 2.5.3. Here we consider Whittle

index policy for a 5 class system compared to some other standard policies as

explained in the numerical section.

Appendix C

program simulation
implicit none

integer :: size,k,count,Nmax,num,BError,actsize,numsim,simnumb,s,r
integer, dimension(5) :: buffer
integer, dimension(5) :: mdouble precisi on ::
Tsi ze,TOL,SUMINDEXC,indexc,SUMINDEXSQ,indexvar,WICOSt,LONGQC,LQCOSt,MYOPICC,
MYCOSt,staticc,STCOSt
double precision :: sumlongqc,sumlongqsq,longqvar, &

&
SUMSTATICC,SUMSTATICSQ,STATICVAR,SUMMYOPICC,SUMMYOPICSQ,MYOPICVAR,in2Stat,1
double precision, dimension(5) :: mu,stationary2
double precision, dimension(5) :: a,b
double precision, dimension(500000) :: ia,aa
double precision, allocatable, dimension(:,:) :: c,w,pi

call inputdata(r,a,b,l,mu,m,Nmax,buffer,BError,TOL,size,Tsize)

allocateC C(5,0:Nmax+l))
allocated w(5,0:Nmax))
allocate(pi (5,0:Nmax))

s = 5

in2stat = Tsize*0.667

numsim = 70
!open(unit=7,fi1e="simulationadcontdata.dat")
ia = 0.0
aa = 0.0
C = 0.0

open(unit=7,fi1e="aSim_quad_high_rho_check.dat")!,status="ol d")
do r=5,9
if (r == 0) then
write(unit=7,fmt="(a)1

el se

el se
write(unit=7,fmt="(a)'

el se

el se

el se

if (r

if (r

if (r

if (r

== 5) then

== 10) then
write(unit=7,fmt="(a)'

== 15) then
write(unit=7,fmt="(a)'

== 20) then
write(unit=7,fmt="(a)'
if (r == 24) then

"rho = 0.6 - linear costs buffer=0"

"rho = 0.85 - linear costs buffer=0"

"rho = 0.6 - linear costs buffer=2"

"rho = 0.85 - linear costs buffer=2"

"rho = 0.6 - linear costs buffer=4"

"rho = 0.85 - linear costs buffer=4"write(unit=7,fmt="(a)'

end if

call inputdata(r,a,b,l,mu,m,Nmax,buffer,BError,TOL,size,Tsize)

do k = 1,5
do num=buffer(k),Nmax+1
C(k,num) = a(k)ft(real(num-buffer(k))**1.0) +

b(k)*(real(num-buffer(k))**2.0)
end do

end do

write(unit=7,fmt='
write(unit=7,fmt='
write(unit=7,fmt='
write (unit=7,fmt='
write (unit=7,fmt='

1,in2stat
write(unit=7,fmt='

(a,5fl0.6)") "a cost vector = ",a
(a,5fl0.6)") "b cost vector = ",b
(a,fl0.6)") "arrival rate = ",1
(a,5fl0.6)") "service time vector = ",mu
(a,fl0.4,a,fl0.4) ") "Tsize = ".Tsize,"

(a,i8,a,i5)") "Nmax = ",Nmax,' numsim

in2stat =

",numsim

W = 0.0
call windex(r,s,Nmax,C,w)

SUMINDEXC =0.0
SUMINDEXSQ =0.0
INDEXVAR =0.0

Page 1

Appendix c
INDEXC =0.0

SUMLONGQC =0.0
SUMLONGQSQ =0.0
LONGQVAR =0.0
LONGQC =0.0

SUMSTATICC =0.0
SUMSTATICSQ =0.0
STATICVAR =0.0
STATXCC =0.0

SUMMYOPICC =0.0
SUMMYOPICSQ =0.0
MYOPICVAR =0.0
MYOPICC =0.0

print*,"index Policy"
!write(unit=7,fmt="(a)") "index policy"

do simnumb = l.numsim

cal1 getarrivals(Nmax,actsize,ia,aa)
!print*,"1"

call indexcost(r,Nmax,actsize,lA,AA,w,wicost)

SUMINDEXSQ = SUMINDEXSQ + WICOST**2.0
SUMINDEXC = SUMINDEXC + WICOSt

!print*, "2"
end do
INDEXVAR = (SUMINDEXSQ -

(real (numsim)*((SUMiNDEXC/real(numsim))**2.0)))/(real(numsim-1))
! (SUMlNDEXSQ/real(numsim)) - ((SUMlNDEXC/real(numsim))**2.0)
INDEXC = SUMiNDEXC/real(numsim)

print*,"simulation ".simnumb," index cost = ".Wlcost

print*,"Finished indexc = ".indexc
write(unit=7,fmt="(a)") "******** index ********"
write(unit=7,fmt="(a,fl8.5)") "index Cost = ".indexc
write(unit=7,fmt="(a,fl8.5)") "Sub index = ",(Indexc-INDEXC)*100.0/INDEXC
write(unit=7,fmt="(a,fl8.5)") "Sample Mean S.D. = ",sqrt(lNDEXVAR/numsim)
write(unit=7,fmt="(a)") " "

print*,"Longest Queue"
do sirnnumb = 1,numsim
! print*,"number = ",simnumb
cal1 getarrivals(Nmax,actsize,ia,aa)
call 1ongestq(r,Nmax,actsize,ia,aa,LQcost)
SUMLONGQSQ = SUMLONGQSQ + (LQCOST**2.0)
SUMLONGQC = SUMLONGQC + LQCOSt

end do
LONGQVAR = (SUMLONGQSQ -

(real(numsim)*((SUMLONGQC/real(numsim))**2.0)))/(real(numsim-1))
!(SUMLONGQSQ/real(numsim)) - ((SUMLONGQC/real(numsim))**2.0)
LONGQC = SUMLONGQC/real(numsim)
print*,"Finished LONGQ = ".LONGQC
write(unit=7,fmt="(a)") "******** longest queue ********"
write(unit=7,fmt="(a,fl8.5)") "cost = ".longqc
write(unit=7,fmt="(a,fl8.5)") "SUB INDEX = ",100.0*(LONGQC-INDEXC)/INDEXC
write(unit=7,fmt="(a,fl8.5)") "Sample Mean S.D. = ",sqrt(LONGQVAR/numsim)
wri te(unit=7,fmt="(a)") " "

print*,"Myopic Policy"
do simnumb = l.numsim
! print*,"number = ".simnumb
cal1 getarrivals(Nmax,actsize,IA,AA)
cal1 myopic(r,Nmax,actsize,IA,AA,MYcost)
SUMMYOPICSQ = SUMMYOPICSQ + (MYCOST**2.0)
SUMMYOPICC = SUMMYOPICC + MYCOSt

end do
!print*,"next"

Page 2

Appendix C
MYOPICVAR = (SUMMYOPICSQ -

(real (numsim)*((SUMMYOPICC/real (numsim))**2 .0)))/(real (numsim-1))
!(SUMMYOPICSQ/real(numsim)) - ((SUMMYOPlCC/real(numsim))**2.0)
MYOPICC = SUMMYOPiCC/real(numsim)
print*."Finished MYOPICC = MYOPICC
write(unit=7,fmt="(a)") "******** MYOPIC ********"

'COST = ".MYOPICC
"SUB INDEX =

"sample Mean S.D.

wri te(unit=7,fmt="(a,f18.15)")
write(unit=7,fmt="(a,f18.15)")
",100.0*(myopicc-indexc)/indexc
write(unit=7,fmt="(a,f18.15)")
", sqrt(MYOPlCVAR/numsim)
write(unit=7,fmt="(a)") " "

print*,"static Policy"
do simnumb = 1,numsim
! print*,"number = ".simnumb
cal1 getarrivals(Nmax,actsize,ia,aa)
cal1 static(r,Nmax,actsize,IA,AA,STcost,stati onary2)

! print*,"static cost : ".STcost
SUMSTATICSQ = SUMSTATICSQ + (STCOST**2.0)
SUMSTATICC = SUMSTATICC + STCOSt

end do
STATICVAR = (SUMSTATICSQ -

(real(numsim)*((SUMSTATlcc/real(numsim))**2.0)))/(real(numsim-1))
!(sumstaticsq/real(numsim)) - ((sumstaticc/real(numsim))**2.0)
staticc = sumstaticc/real(numsim)
print*,"Finished staticc = ".staticc
write(unit=7,fmt="(a)")
write(unit=7,fmt="(a,5f9.6)
write(uni t=7,fmt="(a,f18.5)
write(unit=7,fmt="(a,f18.5)
write(unit=7,fmt="(a,fl8.5)
write(unit=7,fmt="(a,f18.5)
",sqrt(STATlCVAR/real(numsim))
!write(unit=7,fmt="(a)") " "

end do

close(unit=7)

!print*,"3"

end program

i

#☆**# STATIC 'ft****
static policy ",stationary2

"COST = ",STATICC
"SUB INDEX = ",100.0*(STATICC-INDEXC)/INDEXC
"Samp varience = ".STATICVAR
"sample Mean s.D. =

subroutine check(l,mu,s,FAIL)
implicit none

integer :: FAlL,s,i
double precision :: 1.maxmu,summu
double precision, dimension(s) :: mu

fail = 0
summu =0.0

do i = l,s
summu = summu + mu(i)

end do

if (1 >= summu) FAIL = 1

!if (mu(l) > mu(2)) then
! maxmu = mu(l)
! el se
! maxmu = mu(2)
lend if

maxmu = max(mu(l),mu(2),mu(3),mu(4),mu(5))

if (maxmu >= 1) FAIL = 2

return

page 3

Appendix C
end subroutine

subroutine windex(r,s,Nmax,C,W)
implicit none

integer :: s,Nmax,r,n,i,BError,size,num,k
double precision :: TOL,Tsize,l
integer, dimension(5) :: buffer
integer, dimension(5) :: m
double precision, dimension(5) :: mu
double precision, dimension(5) :: a,b
double precision, dimension(s,0:Nmax+l) :: c,w

call inputdata(r,a,b,1,mu,m,Nmax,buffer,BError,TOL,size,Tsize)
w = 1000000.009
C = 0.0

!print*,"C(2,l) = ",C(2,1)
iprint*,"C(2,0) = ",C(2,0)
!print*,"l = ",1
iprint*,"mu(2) = ",mu(2)

!print*,"C(2,0+1) - C(2,0) = ",C(2,0+1) - C(2,0)
iprint*,"l/mu(2) - (l/mu(2))**(0+2) = ",l/mu(2) - ((l/mu(2))**2)
iprint*,"(1.0 - (l/mu(2))) = ",1.0 - (l/mu(2))

iprint*,"l/mu(2) = ",l/mu(2)
iprint*,"(l/mu(2))**0+2 = " , (l/mu(2))**(0+2)
do k = 1,5

do num=buffer(k),Nmax+1
C(k,num) = a(k)*(real(num-buffer(k))**1.0) +

b(k)*(real(num-buffer(k))**2.0)
end do

end do

ido i = l,s
! do n = 0,Nmax
!
i if (mu(i) < 999999.9) w(i,n) = (C(i,n+1) - C(i,n))*((l/m(i)) - (
(l/m(i))**(n+2)))/(l*(1.0 - Cl/m(i))))
!
! end do
i

! do n = l.Nmax
j
i w(i,n) = w(i,n) + w(i,n-l)
!
! end do
lend do

do i = l,s

do n = 0,Nmax
if (mu(i) < 999999.9) w(i,n) = (C(i,n+1) - C(i,n))*((l/mu(i)) -

((l/mu(i))**(real(n+2))))/(l*(1.0 - (l/mu(i))))
end do

do n = l.Nmax
w(i,n) = w(i,n) + w(i,n-l)

end do

end do

!open(unit=7,fi1e="wi ndex.dat")
ido n = 0,Nmax
!write(unit=7,fmt="(5f25.5)") w(:,n)
iend do
!write(unit=7,fmt="(a)") " 2
ido n = 0,Nmax

Page 4

Appendix c
!write(unit=7,fmt="(5f25.5)") C(:,n)
lend do
!close(unit=7)

return
end subroutine

!must be changed to undiscounted index
subroutine windex2(s,Nmax,w)
implicit none

integer :: s,Nmax,r,n,i,FAIL,count,ExpFAlL,num,BError,size,k
double precision :: alf,TOL,sroot,Tsize,1
integer, dimension(5) :: buffer
integer, dimensioned:5) :: m
double precision, dimension(5)
double precision, dimension(5)
double precision, dimension(s,0

: mu

: a,b
Nmax+1) :: c,w,chat,TE

cal1 inputdata(r,a,b,1,mu,m,Nmax,buffer,BError,TOL,size,Tsize)
alf = 0.7
FAIL = 0
ExpFAIL = 0
call check(l,mu,s,FAiL)
c = 0.0

if (FAIL == 1) print*,"Error: some constraints do not hold"

do k = 1,5
do num=buffer(k),Nmax+1
c(k,num) = a(k)*(real(num-buffer(k))**1.0) +

b(k)*(real(num-buffer(k))**2.0)
end do

end do

TE(:,0) = 1/(alf+1)

do i = l,s
do n = l.Nmax
TE(i,n) = l/(alf + 1 + mu(i) - (mu(i)*TE(i,n-l)))

end do
end do

!do a check here that this thing is indeed
worki r\g* **************************************
do i = l,s
call quad_roots(r,i,sroot)
print*,"sroot = ",sroot
print*,"TE(,",iNmax,") = ",TE(i,Nmax)
if (TE(i,Nmax) > sroot-TOL .and. TE(i,Nmax) < sroot+TOL) then
print*,"Expectation OKAY"

el se
print*,"Expectation error"

end if
end do

do i = l,s
do n = 0,Nmax-l
if (TE(i,n) < TE(i,n+1)) ExpFAIL = 1

end do
end do

if (ExpFAIL == 1) print*,"Expectation error: non-decreasing with n"

Chat(:,0) = 0.0

do n = l,Nmax
do i = l,s

Chat(i,n) = (alf*C(i,n) + mu(i)*Chat(i,n-l))/(alf + 1 + mu(i) -
(mu(i)*TE(i,n-1)))

end do

Page 5

Appendix C
end do

do n = 0,Nmax-l
do i = l,s

w(i,n) = (TE(i,n+l)*(c(i ,n+l) -

(chat(i,n)/(1.0-TE(i,n)))))/(((1.0-TE(i,n+l))/(1.0-TE(i ,n))) - TE(i,n+1))

end do
end do

return
end subroutine

subroutine getarrivals(Nmax,actsize, IA,AA)
implicit none

integer :: size,k,count,Nmax,r,BError,actsi ze
integer, dimension(5) :: buffer,m
double precision :: x,Tsize,TOL,l
double precision, dimension(5) :: mu
double precision, dimension(5) :: a,b
double precision, dimension(500000) :: IA,AA

call inputdata(r,a,b,l,mu,m,Nmax,buffer,BError,TOL,size,Tsize)

IA = 0.0
AA = 0.0

count = 0

do k = 1,10
call random_number(x)

end do

10 count = count + 1
call random_number(x)
iA(count) = -1.0*log(x)/l
if (count == 1) then
AA(count) = iA(count)

el se
AA(count) = AA(count-l) + iA(count)

end if

if (AA(count) < Tsize .and. count < size) goto 10

if (count >= size) print*,"ERROR: Need bigger matrices & to simulate more
values"

actsize = count

!open(unit=7,fi1e="simdata2.dat")
!write(unit=7,fmt="(a)") "IA = "
!do k=l,5
! write(unit=7,fmt="(50fl2.6)") lA(k,1:500)
lend do
!print*," "

!write(unit=7,fmt="(a)") "AA = "
!do k=l,5
! write(unit=7,fmt="(50f12.6)") AA(k,1:500)
lend do
I print*," "

!write(unit=7,fmt="(a)") "tll = "
Iwrite(unit=7,fmt="(100i4)") TLl(:)
!
iwrite(unit=7,fmt="(a)") "tl2 = "
Iwrite(unit=7,fmt="(100fl2.6)") TL2(1:100)
!
iprint*," "
I Iprint*,"csize = ",csize

Page 6

Appendix C
!print*,"actsize = ".actsize
!print*,"TLactsize = ".TLactsize
!close(unit=7)
i

return
end subroutine

subroutine indexcost(r,Nmax,actsize,ia,aa,w.wicost)
implicit none

integer :: size,k,count,queueserve,small event,state,Nmax,r,num,BError, &
& actsize,i.event,j

integer, dimension(5) :: buffer,m,n
double precision :: Tsize.Tservice,stable,in2stat,summu, 1 ,number
double precision :: smal1ind,Tcost,Wlcost,tol
double precision, dimension(5) :: mu
double precision, dimension(5) :: a,b,lastevent,endserve,NEtime
double precision, dimension(500000) :: ia,aa
double precision, dimension(5,0:Nmax+l) :: C,w

call inputdata(r,a,b,l,mu,m,Nmax,buffer,BError,TOL,size,Tsize)

!Tservice = 0.0
in2stat = Tsize*0.667

wicost = 0.0
summu =0.0
endserve = 99999999.99

!test to ensure that we have stable queues
stable = 0.0
do k = 1,5
if (mu(k) < 99999.99) summu = summu + mu(k)

end do

stable = 1/summu
if (stable >= 1.0) print*,"error: unstable system!!!"

C = 0.0

do k = 1,5
do num=buffer(k),Nmax+1
C(k,num) = a(k)*(real(num-buffer(k))**1.0) +

b(k)*(real(num-buffer(k))**2.0)
end do

end do

Tcost = 0.0
lastevent =0.0
NEtime = 0.0
n = 0

event = 1

smallind = 9999999999999.99

do k = 1,5
if (smallind > w(k,n(k)) .and. w(k,n(k)) < 99999999999.99) then
smallind = w(k,n(k))
queueserve = k

end if
end do

n(queueserve) = n(queueserve) + 1
NEtime(queueserve) = aa(1)
lastevent(queueserve) = aa(1)

cal1 expservice(r,queueserve,Tservice)
endserve(queueserve) = aa(1) + Tservice

Page 7

event = 2
Appendix c

20 state = 0
do k = 1,5
state = state + n(k)

end do

open(unit=7,fi1e="tempstore.dat")
write(unit=7,fmt="(i3)") MlNLOC(endserve)
c1ose(unit=7)

Ismallevent = minloc(endserve)

open(unit=7,fi1e="tempstore.dat")
read(unit=7,fmt="(i3)") smal1 event
close(unit=7)

Ismallevent = MlNLOC(endserve)
small event = 1
number = endserve(l)
do j = 1,5
if(number>endserve(j)) then
small event = j
number = endserve(j)

end if
end do

if (AA(event) < endserve(smal1 event)) smallevent = 0

smal1ind = 999999999999999999.99

if (smallevent == 0) then
do k = 1,5
if (smallind > w(k,n(k)) .and. w(k,n(k)) < 99999999999.99) then
smallind = w(k,n(k))
queueserve = k

end if
end do

if (n(queueserve) == 0) then
cal1 expservice(r,queueserve.Tservice)
endserve(queueserve) = AA(event) + Tservice

end if

if (n(queueserve) < Nmax) n(queueserve) = n(queueserve) + 1
!if (lastevent > 0.0) then
NEtime(queueserve) = AA(event) - lastevent(queueserve)

lelse
! NEtime = 0.0
lend if

if (AA(event) > in2stat .and. lastevent(queueserve) < in2stat) NEti
AA(event) - in2stat
if (AA(event) > in2stat) Tcost = Tcost +

NEtime(queueserve)*C(queueserve,n(queueserve)-1)

lastevent(queueserve) = AA(event)

event = event + 1
end if

do i=l,5
if (smallevent == i) then
if (n(i) > 0) n(i) = n(i) - 1
NEtime(i) = endserve(i) - lastevent(i)

if (endserve(i) > in2stat .and. lastevent(i) < in2stat) NEtime =
endserve(i) - in2stat

if (endserve(i) > in2stat) Tcost = Tcost + NEtime(i)*C(i,n(i)+l)

lastevent(i) = endserve(i)

if (n(i) > 0) then

Page 8

Appendix c
call expservice(r,i.Tservice)
endserve(i) = endserve(i) + Tservice

else if (n(i) == 0) then
endserve(i) = 9999999999.999

end if
end if

end do

! write(unit=7,fmt="(a,i5)") "event # = ".event
! write(unit=7,fmt="(a,i5)") "queueserve class = ",queueserve
! write(unit=7,fmt="(a,fl2.6)") "endserve = ".endserve
! write(unit=7,fmt="(a,fl2.6)") "Tservice = ".Tservice
! write(unit=7,fmt="(a,fl2.6)") "NEtime = ".NEtime
! write(unit=7,fmt="(a,6i5)") "state = ",n
! write(unit=7,fmt="(a,fl2.6)") "tl2 = ",TL2(event)
! write(unit=7,fmt="(a,f20.3)") "Tcost = ".Tcost
! write(unit=7,fmt="(a,fl2.6)") "Tcost/size = ",Tcost/(Lastevent-in2stat)
! write(unit=7,fmt="(a)") " "

if (event < actsize) goto 20
!write(unit=7,fmt="(a,fl2.6)") "TTservice = ".TTservice
!write(unit=7,fmt="(a,6i6)") "numserved = ".numserved
iprint*,"Tcost = ".Tcost
Iprint*,"Tsize = ".Tsize
!print*,"in2stat = ",in2stat
Wlcost = Tcost/(Tsize-in2stat)
!print*,"index: average costs = ".Acost
Iprint*,"stable = ".stable
!close(unit=7)

return
end subroutine

subroutine longestq(r,Ntriax,actsize,ia,aa,LQcost)
implicit none

integer :: size,k,count.queueserve,small event,state,Nmax,r,num,BError, &
& actsize,i,event,j

integer, dimension(5) :: buffer,m,n
double precision :: Tsize.Tservice,stable,in2stat,summu,1,number
double precision :: smal1ind,Tcost,LQcost,TOL
double precision, dimension(5) :: mu
double precision, dimension(5) :: a,b,lastevent,endserve,NEtime
double precision, dimension(500000) :: ia,aa
double precision, dimension(5,0:Nmax+l) :: C

call inputdata(r,a,b,l,mu,m,Nmax,buffer.BError,tol,size,Tsize)

Tservice = 0.0
in2stat = Tsize*0.667

LQcost =0.0
summu = 0.0
endserve = 99999999.99

Itest to ensure that we have stable queues
stable = 0.0
do k = 1,5
if (mu(k) < 99999.99) summu = summu + mu(k)

end do

stable = 1/summu
if (stable >= 1.0) print*,"error: unstable system!!!"

C = 0.0

do k = 1,5
do num=buffer(k),Nmax+l
C(k,num) = a(k)*(real(num-buffer(k))**1.0) +

b(k)*(real(num~buffer(k))**2.0)

Page 9

Appendix c
end do

end do

Tcost = 0.0
lastevent = 0.0
NEtime = 0.0
n = 0

event = 1

smallind = 9999999999999.99

do k = 1,5
if (smallind > n(k) .and. mu(k) < 99999.99) then
smallind = n(k)
queueserve = k

end if
end do

n(queueserve) = n(queueserve) + 1
NEtime(queueserve) = aa(1)
lastevent(queueserve) = aa(1)

cal1 expservice(r,queueserve.Tservice)
endserve(queueserve) = AA(1) + Tservice
event = 2

30 state = 0
do k = 1,5
state = state + n(k)

end do

open(unit=7,fi1e="tempstore.dat")
write(unit=7,fmt="(i3)") MiNLOC(endserve)
close(unit=7)
Ismallevent = minloc(endserve)

open(unit=7,fi1e="tempstore.dat")
read(unit=7,fmt="(i3)") smal1 event
close(unit=7)

Ismallevent = MlNLOC(endserve)

small event = 1
number = endserve(l)
do i = 1,5
if(number>endserve(j)) then
small event = j
number = endserve(j)

end if
end do

if (AA(event) < endserve(smal1 event)) small event = 0
smallind = 999999999999999999.99

if (smallevent == 0) then
do k = 1,5
if (smallind > n(k) .and. mu(k) < 99999.99) then
smallind = n(k)
queueserve = k

end if
end do

if (n(queueserve) == 0) then
cal1 expservice(r.queueserve.Tservi ce)
endserve(queueserve) = AA(event) + Tservice

end if

if (n(queueserve) < Nmax) n(queueserve) = n(queueserve) + 1
Page 10

Appendix C
!if (lastevent > 0.0) then
NEtime(queueserve) = AA(event) - 1astevent(queueserve)

lelse
! NEtime = 0.0
lend if

if (AA(event) > in2stat .and. lastevent(queueserve) < in2stat) NEtime =
AA(event) - in2stat
if (AA(event) > in2stat) Tcost = Tcost +

NEtime(queueserve)*c(queueserve,n(queueserve)-l)

1astevent(queueserve) = AA(event)

event = event + 1
end if

do i=1,5
if (smallevent == i) then
if (n(i) > 0) n(i) = n(i) - 1
NEtime(i) = endserve(i) - iastevent(i)

if (endserve(i) > in2stat .and. lastevent(i) < in2stat) NEtime =

endserve(i) - in2stat
if (endserve(i) > in2stat) Tcost = Tcost + NEtime(i)*C(i,n(i)+l)

lastevent(i) = endserve(i)

if (n(i) > 0) then
call expservice(r,i,Tservice)
endserve(i) = endserve(i) + Tservice

else if (n(i) == 0) then
endserve(i) = 9999999999.999

end if
end if

end do

! write(unit=7,fmt="(a,i5)") "event # = ".event
! write(unit=7,fmt="(a,i5)") "queueserve class = ".queueserve
! write(unit=7,fmt="(a,fl2.6)") "endserve = ".endserve
! write(unit=7,fmt="(a,fl2.6)") "Tservice = ".Tservice
! write(unit=7,fmt="(a,fl2.6)") "NEtime = ".NEtime
! write(unit=7,fmt="(a,6i5)") "state = ",n
! write(unit=7,fmt="(a,fl2.6)") "tl2 = ",TL2(event)
! write(unit=7,fmt="(a,f20.3)") "Tcost = ".Tcost
! write(unit=7,fmt="(a,fl2.6)") "Tcost/size = ",Tcost/(Lastevent-in2stat)
! write(unit=7,fmt="(a)") " "

if (event < actsize) goto 30
!write(unit=7,fmt="(a,fl2.6)") "TTservice = ".TTservice
!write(unit=7,fmt="(a,6i6)") "numserved = ".numserved
!print*,"Tcost = ".Tcost
!print*,"Tsize = ".Tsize
!print*,"in2stat = ",in2stat
LQcost = Tcost/(Tsize-in2stat)
!print*,"INDEX: average costs = ".Acost
!print*,"stable = ".stable
!close(unit=7)

return
end subroutine

subroutine myopic(r,Nmax,actsize,ia,aa,MYcost)
implicit none

integer :: size,k,count,queueserve,smallevent,state,Nmax,r,num,BError, &
& actsize,i.event,j

integer, dimension(5) :: buffer,m,n
double precision :: Tsize.Tservice,stable,in2stat,summu,1,number
double precision :: smallind,Tcost,MYcost,tol
double precision, dimension(5) :: mu
double precision, dimension(5) :: a,b,lastevent,endserve,NEtime

Page 11

Appendix c
double precision, dimension(500000) :: ia,aa
double precision, dimension(5,0:Nmax+l) :: C

call inputdata(r,a,b,l,mu,m,Nmax,buffer,BError,TOL,size,Tsize)
Tservice = 0.0
in2stat = Tsize*0.667

MYcost =0.0
summu = 0.0
endserve = 99999999.99

!test to ensure that we have stable queues
stable = 0.0
do k = 1,5
if (mu(k) < 99999.99) summu = summu + mu(k)

end do

stable = 1/summu
if (stable >= 1.0) print*,"ERROR: UNSTABLE SYSTEM!!!"

C = 0.0

do k = 1,5
do num=buffer(k),Nmax+l
C(k,num) = a(k)*(real(num-buffer(k))**1.0) +

b(k)*(real (num-buffer(k))**2.0)
end do

end do

Tcost = 0.0
lastevent =0.0
NEtime = 0.0
n = 0

event = 1

smallind = 9999999999999.99

do k = 1,5
if (smallind > C(k,n(k)) .and. mu(k) < 99999.99) then
smallind = c(k,n(k))
queueserve = k

end if
end do

n(queueserve) = n(queueserve) + 1
NEtime(queueserve) = AA(1)
lastevent(queueserve) = AA(1)

cal1 expservice(r.queueserve.Tservice)
endserve(queueserve) = AA(1) + Tservice

event = 2

40 state = 0
do k = 1,5
state = state + n(k)

end do

open(unit=7,fi1e="tempstore.dat")
write(unit=7,fmt="(i3)") MiNLOC(endserve)
close(unit=7)

ismallevent = minloc(endserve)

open(unit=7,fi1e="tempstore.dat")
read(unit=7,fmt="(i3)") smal1 event
close(unit=7)

Ismallevent = MlNLOC(endserve)

small event = 1
number = endserve(l)

Page 12

Appendix c
do j = 1,5
if(number>endserve(j)) then
small event = j
number = endserve(j)

end if
end do

if (AA(event) < endserve(smallevent)) smallevent = 0

smallind = 999999999999999999.99

if (smallevent == 0) then
do k = 1,5
if (smallind > C(k,n(k)) .and. mu(k) < 99999.99) then
smallind = c(k,n(k))
queueserve = k

end if
end do

if (n(queueserve) == 0) then
cal1 expservice(r,queueserve,Tservi ce)
endserve(queueserve) = AA(event) + Tservice

end if

if (n(queueserve) < Nmax) n(queueserve) = n(queueserve) + 1
!if (lastevent > 0.0) then
NEtime(queueserve) = AA(event) - 1astevent(queueserve)

! el se
! NEtime = 0.0
lend if

if (AA(event) > in2stat .and. lastevent(queueserve) < in2stat) NEtime =
AA(event) - in2stat
if (AA(event) > in2stat) Tcost = Tcost +

NEtime(queueserve)*c(queueserve,n(queueserve)-1)

lastevent(queueserve) = AA(event)

event = event + 1
end if

do i=1, 5
if (smallevent == i) then
if (n(i) > 0) n(i) = n(i) - 1
NEtime(i) = endserve(i) - lastevent(i)

if (endserve(i) > in2stat .and. lastevent(i) < in2stat) NEtime =

endserve(i) - in2stat
if (endserve(i) > in2stat) Tcost = Tcost + NEtime(i)*C(i,n(i)+l)

lastevent(i) = endserve(i)

if (n(i) > 0) then
call expservice(r,i.Tservice)
endserve(i) = endserve(i) + Tservice

else if (n(i) == 0) then
endserve(i) = 9999999999.999

end if
end if

end do

write(unit=7,fmt="(a,i5)") "event # = ".event
write(unit=7,fmt="(a,i5)") "queueserve class = ".queueserve
write(unit=7,fmt="(a,fl2.6)") "endserve = ".endserve
write(unit=7,fmt="(a,fl2.6)") "Tservice = ".Tservice
write(unit=7,fmt="(a,fl2.6)") "NEtime = ".NEtime
write(unit=7,fmt="(a,6i5)") "state = ",n
write(unit=7,fmt="(a,fl2.6)") "TL2 = ",TL2(event)
write(unit=7,fmt="(a,f20.3)") "Tcost = ".Tcost
write(unit=7,fmt="(a,fl2.6)") "Tcost/size = ",Tcost/(Lastevent-in2stat)
write(unit=7,fmt="(a)") " "

Page 13

Appendix c
if (event < actsize) goto 40
!write(unit=7,fmt="(a,fl2.6)") "TTservice = ".TTservice
!write(unit=7,fmt="(a,6i6)") "numserved = ".numserved
!print*,"Tcost = ",Tcost
!print*,"Tsize = ",Tsize
!print*,"in2stat = ",in2stat
MYcost = Tcost/(Tsize-in2stat)
!print*,"INDEX: average costs = ",Acost
Iprint*,"stable = stable
!close(unit=7)

return
end subroutine

subroutine static(r,Nmax,actsize,ia,aa,STcost,stationary2)
implicit none

integer :: size,k,count.queueserve,smallevent,state,Nmax,r,num,BError, &
& actsize,i,event,j

integer, dimension(5) :: buffer,m,n
double precision :: Tsize,Tservice,stable,in2stat,summu,1.number
double precision :: Tcost,STcost,TOL,x,statsum2
double precision, dimension(5) :: mu,stationary2
double precision, dimension(0:5) :: stationary
double precision, dimension(5) :: a,b,lastevent,endserve,NEtime
double precision, dimension(500000) :: ia.aa
double precision, dimension(5,0:Nmax+l) :: C

call inputdata(r,a,b,l,mu,m,Nmax,buffer,BError,TOL,size,Tsize)

Tservice = 0.0
in2stat = Tsize*0.667

stcost = 0.0
summu = 0.0
endserve = 99999999.99

stationary =0.0

!find a stationary distribution that will not be unstable
do i = 1,5
stationary2(i) = mu(i)/l

end do

statsum2 = 0.0
do i = 1,5
statsum2 = statsum2 + stationary2(i)

end do

do i = 1,5
stationary2(i) = stationary2(i)/statsum2

end do

do i = 1,5
stationary(i) = stationary(i-l) + stationary2(i)

end do

Itest to ensure that we have stable queues
stable =0.0
do k = 1,5
if (mu(k) < 99999.99) summu = summu + mu(k)

end do

stable = 1/summu
if (stable >= 1.0) print*,"error: unstable system!!!"
do k = 1,5
if (l*stationary2(k) > mu(k)) print*,"error: unstable static system!!!

end do

C = 0.0

Page 14

Appendix c
do k = 1,5

do num=buffer(k),Nmax+1
C(k,num) = a(k)*(real(num-buffer(k))**l.0) +

b(k)*(real(num-buffer(k))**2.0)
end do

end do

Tcost = 0.0
lastevent =0.0
NEtime = 0.0
n = 0

event = 1

call random_number(x)

if (x < stationary(l)) then
queueserve = 1

else if (x < stationary(2)) then
queueserve = 2

else if (x < stationary(3)) then
queueserve = 3

else if (x < stationary(4)) then
queueserve = 4

else if (x < stationary(5)) then
queueserve = 5

end if

n(queueserve) = n(queueserve) + 1
NEtime(queueserve) = aa(1)
lastevent(queueserve) = aa(1)

cal1 expservice(r,queueserve.Tservice)
endserve(queueserve) = aa(1) + Tservice

event = 2

50 state = 0
do k = 1,5
state = state + n(k)

end do

! open(unit=7,fi1e="tempstore.dat")
! write(unit=7,fmt="(i3)") MlNLOC(endserve)
! close(unit=7)

Ismallevent = minloc(endserve)

! open(unit=7,fi1e="tempstore.dat")
! read(unit=7,fmt="(i3)") small event
! close(unit=7)

Ismallevent = MlNLOC(endserve)

small event = 1
number = endserve(l)
do j = 1,5
if(number>endserve(j)) then
small event = j
number = endserve(j)

end if
end do

if (AA(event) < endserve(smallevent)) smallevent = 0

if (smallevent == 0) then
call random_number(x)

if (x < stationary(l)) then
queueserve = 1

else if (x < stationary(2)) then
queueserve = 2

else if (x < stationary(3)) then

Page 15

Appendix c
queueserve = 3

else if (x < stationary(4)) then
queueserve = 4

else if (x < stationary(5)) then
queueserve = 5

end if

if (n(queueserve) == 0) then
call expservice(r,queueserve,Tservice)
endserve(queueserve) = AA(event) + Tservice

end if

if (n(queueserve) < Nmax) n(queueserve) = n(queueserve) + 1
!if (lastevent > 0.0) then
NEtime(queueserve) = AA(event) - 1astevent(queueserve)

!else
! NEtime = 0.0
lend if

if (AA(event) > in2stat .and. lastevent(queueserve) < in2stat) NEtime
AA(event) - in2stat
if (AA(event) > in2stat) Tcost = Tcost +

NEtime(queueserve)*C(queueserve,n(queueserve)-1)

1astevent(queueserve) = AA(event)

event = event + 1
end if

do i=l,5
if (smallevent == i) then
if (n(i) > 0) n(i) = n(i) - 1
NEtime(i) = endserve(i) - lastevent(i)

if (endserve(i) > in2stat .and. lastevent(i) < in2stat) NEtime =

endserve(i) - in2stat
if (endserve(i) > in2stat) Tcost = Tcost + NEtime(i)*C(i,n(i)+l)

lastevent(i) = endserve(i)

if (n(i) > 0) then
call expservice(r,i.Tservice)
endserve(i) = endserve(i) + Tservice

else if (n(i) == 0) then
endserve(i) = 9999999999.999

end if
end if

end do

! write(unit=7,fmt="(a,i5)") "event # = ".event
! write(unit=7,fmt="(a,i5)") "queueserve class = ".queueserve
! write(unit=7,fmt="(a,fl2.6)") "endserve = ".endserve
! write(unit=7,fmt="(a,fl2.6)") "Tservice = ".Tservice
! write(unit=7,fmt="(a,fl2.6)") "NEtime = ".NEtime
! write(unit=7,fmt="(a,6i5)") "state = ",n
! write(unit=7,fmt="(a,fl2.6)") "tl2 = ",TL2(event)
! write(unit=7,fmt="(a,f20.3)") "Tcost = ".Tcost
! write(unit=7,fmt="(a,fl2.6)") "Tcost/size = ",Tcost/(Lastevent-in2stat)
! write(unit=7,fmt="(a)") " "

if (event < actsize) goto 50
!write(unit=7,fmt="(a,fl2.6)") "TTservice = ".TTservice
!write(unit=7,fmt="(a,6i6)") "numserved = ".numserved
!print*,"Tcost = ".Tcost
!print*,"Tsize = ".Tsize
!print*,"in2stat = ",in2stat
STcost = Tcost/(Tsize-in2stat)
!print*,"index: average costs = ".Acost
Iprint*,"stable = ".stable
!close(unit=7)

return
end subroutine

Page 16

Appendix c

subroutine expservice(r.queueserve,Tservice)
implicit none

integer :: Nmax,r,BError,size,queueserve
integer, dimension(5) :: buffer
integer, dimension(5) :: m
double precision, dimension(5) :: a,b
double precision, dimension(5) :: mu
double precision :: TOL.Tsize,Tservice,x,l

a = 0.0
b = 0.0
1 = 0.0
mu = 0.0
m = 1
Nmax = 0
buffer = 0
BError = 0
TOL =0.0
size = 0
Tsize = 0.0

call inputdata(r,a,b,l,mu,m,Nmax,buffer,BError.TOL,size,Tsize)

iTservice = 0.0
call random_number(x)
Tservice = (-1.0*log(x)/mu(queueserve))

return
end subroutine

subroutine quad_roots(r,i ,sroot)
implicit none

integer :: Nmax,r,BError,size, i
integer, dimension(5) :: buffer
integer, dimension(5) :: m
double precision, dimension(5) :: a,b
double precision, dimension(5) :: mu
double precision :: TOL,Tsize,alf,1,rootl,root2,sroot,al,a2,a3

call inputdata(r,a,b,l,mu,m,Nmax,buffer,BError.TOL,size,Tsize)

alf = 0.7

al = mu(i)
a2 = alf + 1 + mu(i)
a3 = 1

rootl = (a2 + sqrt((a2**2) - (4*al*a3)))/(2*al)
root2 = (a2 - sqrt((a2**2) - (4*al*a3)))/(2*al)

if (rootl > root2) then
sroot = root2

el se
sroot = rootl

end if

return
end subroutine

subroutine inputdata(r,a,b,1,mu,m,Nmax,buffer,BError,TOL,size,Tsize)
implicit none

integer :: Nmax,r,BError,size,i,j
integer, dimension(5) :: buffer

Page 17

Appendix c
integer, dimension(5) :: m.mold
double precision, dimension(5) :: a,b
double precision, dimension(5) :: mu,muold
double precision :: TOL,Tsize,1,summu,rho,lold

rho = 0.0
summu = 0.0

Nmax = 1B9
BError = 5

size = 500000
Tsize = 40000.0

1 = 8.525 Ifirst
muold = C/0.6,1.5,2.7,3.9,5.0/)!(/0.2,0.9,1.7,2.5,3.2/) ! first
m = (/l,1,1,1,1/) ! first

do i = 1,5
if(muold(i) < 999999.9) summu = summu + muold(i)

end do

rho = 1/summu
1 = (l/rho)*0.85

if (r == 0) then
buffer = 0
mu = muold

else if (r == 1) then
buffer = 0
mu(l) = muold(2)
mu(2) = muold(3)
mu(3) = muold(4)
mu(4) = muold(5)
mu(5) = muold(l)

else if (r == 2) then
buffer = 0
mu(l) = muold(3)
mu(2) = muold(4)
mu(3) = muold(5)
mu(4) = muold(l)
mu(5) = muold(2)

else if (r == 3) then
buffer = 0
mu(l) = muold(4)
mu(2) = muold(5)
mu(3) = muold(l)
mu(4) = muold(2)
mu(5) = muold(3)

else if (r == 4) then
buffer = 0
mu(l) = muold(5)
mu(2) = muold(l)
mu(3) = muold(2)
mu(4) = muold(3)
mu(5) = muold(4)

else if (r == 5) then
buffer = 0
rho = 1/summu
1 = (l/rho)*0.85
mu = muold

else if (r == 6) then
buffer = 0
rho = 1/summu
1 = (l/rho)*0.85
mu(l) = muold(2)
mu(2) = muold(3)
mu(3) = muold(4)
mu(4) = muold(5)
mu(5) = muold(l)

else if (r == 7) then
buffer = 0
rho = 1/summu

Page 18

Appendix C
1 = (l/rho)*0.85
mu(l) = muoid(B)
mu(2) = muold(4)
mu(3) = muold(5)
mu(4) = muold(l)
mu(5) = muold(2)

else if (r == 8) then
buffer = 0
rho = 1/summu
1 = (l/rho)*0.85
mu(l) = muold(4)
mu(2) = muold(5)
mu(3) = muold(l)
mu(4) = muold(2)
mu(5) = muold(3)

else if (r == 9) then
buffer = 0
rho = 1/summu
1 = (1/rho)*0.85
mu(l) = muold(5)
mu(?) = muold(l)
mu(3) = muold(2)
mu(4) = muold(3)
mu(5) = muold(4)

else if (r == 10) then
buffer = 2
mu = muold

else if (r == 11) then
buffer = 2
mu(l) = muold(2)
mu(2) = muold(3)
mu(3) = muold(4)
mu(4) = muold(5)
mu(5) = muold(l)

else if (r == 12) then
buffer = 2
mu(l) = muold(3)
mu(2) = muold(4)
mu(3) = muold(5)
mu(4) = muold(l)
mu(5) = muold(2)

else if (r == 13) then
buffer = 2
mu(l) = muold(4)
mu(2) = muold(5)
mu(3) = muold(l)
mu(4) = muold(2)
mu(5) = muold(3)

else if (r == 14) then
buffer = 2
mu(l) = muold(5)
mu(2) = muold(l)
mu(3) = muold(2)
mu(4) = muold(3)
mu(5) = muold(4)

else if (r == 15) then
buffer = 2
rho = 1/summu
1 = (l/rho)*0.85
mu = muold

else if (r == 16) then
buffer = 2
rho = 1/summu
1 = (l/rho)*0.85
mu(l) = muold(2)
mu(2) = muold(3)
mu(3) = muold(4)
mu(4) = muold(5)
mu(5) = muold(l)

else if (r == 17) then
buffer = 2
rho = 1/summu
1 = (l/rho)*0.85
mu(l) = muold(3)
mu(2) = muold(4)

Page 19

Appendix c
mu(3) = muold(5)
mu(4) = muold(l)
mu(5) = muold(2)

else if (r == 18) then
buffer = 2
rho = 1/summu
1 = (l/rho)*0.85
mu(l) = muold(4)
mu(2) = muold(5)
mu(3) = muold(l)
mu(4) = muold(2)
mu(5) = muold(3)

else if (r == 19) then
buffer = 2
rho = 1/summu
1 = (l/rho)*0.85
mu(l) = muold(5)
mu(2) = muold(l)
mu(3) = muold(2)
mu(4) = muold(3)
mu(5) = muold(4)

else if (r == 20) then
buffer = 4
mu = muold

else if (r == 21) then
buffer = 4
mu(l) = muold(2)
mu(2) = muold(3)
mu(3) = muold(4)
mu(4) = muold(5)
mu(5) = muold(l)

else if (r == 22) then
buffer = 4
mu(l) = muold(3)
mu(2) = muold(4)
mu(3) = muold(5)
mu(4) = muold(l)
mu(5) = muold(2)

else if (r == 23) then
buffer = 4
mu(l) = muold(4)
mu(2) = muold(5)
mu(3) = muold(l)
mu(4) = muold(2)
mu(5) = muold(3)

else if (r == 24) then
buffer = 4
mu(l) = muold(5)
mu(2) = muold(l)
mu(3) = muold(2)
mu(4) = muold(3)
mu(5) = muold(4)

else if (r == 25) then
buffer = 4
rho = 1/summu
1 = (l/rho)*0.85
mu = muold

else if (r == 26) then
buffer = 4
rho = 1/summu
1 = (l/rho)*0.85
mu(l) = muold(2)
mu(2) = muold(3)
mu(3) = muold(4)
mu(4) = muold(5)
mu(5) = muold(l)

else if (r == 27) then
buffer = 4
rho = 1/summu
1 = (l/rho)*0.85
mu(l) = muold(3)
mu(2) = muold(4)
mu(3) = muold(5)
mu(4) = muold(l)
mu(5) = muold(2)

Page 20

Appendix c
else if (r == 28) then
buffer = 4
rho = 1/summu
1 = (l/rho)*0.85
mu(l) = muold(4)
mu(2) = muold(5)
mu(3) = muold(l)
mu(4) = muold(2)
mu(5) = muold(3)

else if (r == 29) then
buffer = 4
rho = 1/summu
1 = (l/rho)*0.85
mu(l) = muold(5)
mu(2) = muold(l)
mu(3) = muold(2)
mu(4) = muold(3)
mu(5) = muold(4)

end if

do i =1,5
i = mod(i + r,5)
if (j == 0) j = 5
muold(j) = mu(i)
mold(j) = m(i)

end do
lold = 1
1 = lold
mu = muold
m = mold

!a = C/l.1,0.6,0.0,0.0,0.0/)
!b = C/0.5,1.0,0.0,0.0,0.0/)

a = C/l.5,1.2,0.9,0.6,0.3/)
b = C/0.20,0.40,0.60,0.80,1.0/)

TOL = 0.0001

return
end subroutine

subroutine whichqueue(w,n,queueserve)
implicit none

linteger, dimensionO :: n
double precision :: queueserve
double precision, dimension :: w

smallind = 999999.99
do k = 1,5
if (smallind > w(k,n(k))) then
smallind = w(k,n(k))
queueserve = k

end if
end do

n(queueserve) = n(queueserve) + 1
lastevent = TL2(1)

return
end subroutine

Page 21

Appendix D

This appendix contains the Fortran 95 code for the programme we used to calculate

the discounted service control costs as in Section 3.5.1. Here we consider the

optimal and index policies for a 2 class system.

Appendix D
program generalS_wittle
implicit none

integer :: nmax.i,j,k,g,BError,r
integer, dimension(2) :: m,buffer
double precision :: alf
double precision, dimension(2) :: l,mu,a,b
double precision, dimension (200,8) :: indata
double precision, allocatable, dimension(:,:,:,:) ::
WICOSt.OPTCOSt,STATCOSt,LONGQCOSt,subopt

indata =0.0
open(unit=7,fi1e="GSinputdata.dat")
do i =1,8
read(unit=7,fmt="(8fl0.4)") indata(i,:)

end do
close(unit=7)
r=l

!get the system parameters
call inputdata(indata,r,1,mu,m,alf,nmax,huffer,a,b,BError)

allocate(wlcost(0:Nmax,0:m(l),0:Nmax,0:m(2)))
allocated OPTcost(0:Nmax,0:m(l),0:Nmax,0:m(2)))
allocated STATcost(0:Nmax,0:m(l),0:Nmax,0:m(2)))
allocated LONGQcost(0:Nmax,0:m(l),0:Nmax,0:m(2)))
allocateC subopt(0:Nmax,0:m(l),0:Nmax,0:m(2)))

do r = 1,50

!get the system parameters
call inputdata(indata,r,1,mu,m,alf,nmax,buffer,a,b,BError)

Wlcost = 0.0
OPTCOSt =0.0
STATCOSt =0.0
LONGQCOSt =0.0
subopt = 0.0

call whittle_CostsB(indata,r,m,Nmax,Wlcost)
call optimal_Costs3(indata,r,m,Nmax,OPTcost)
!cal1 Static_Costs3(indata,r,m,Nmax,STATcost)
!cal 1 LongestQ_Costs3(indata,r,m,Nmax,LONGQcost)
do i = 0,Nmax

do j = 0,Nmax
do k=0,m(l)

do g = 0,m(2)
if (OPTcost(i,j,k,g) > 0.00001) subopt(i,j,k,g) =

100*(Wlcost(i,j,k,g)-OPTcost(i,j,k,g))/oPTcost(i, j , k,g)
end do

end do
end do

end do

print*,"this is number ",r
open(unit=7,fi1e="GSsubquartl39buff0.dat")
write(unit=7,fmt="(a)") " bl : cl : b2 : c2 : Nmax"
write(unit=7,fmt="(4f10.4,i5)") a(l),b(1),a(2),b(2),Nmax
write(unit=7,fmt="(a)") " 11 : 12 : ml : mul : m2 : mu2 :
alpha"

write(unit=7,fmt="(2 f10.4,i5,f10.4,i5,2f10.4)")
1(1),1(2),m(l),mu(l),m(2),mu(2),alf
write(unit=7,fmt="(a)") " "

write(unit=7,fmt="(a)") " whittle "

!do k=0,m(l)
! do g = 0,m(2)
if(wicost(4,0,4,0) > 0.000001) then
write(unit=7,fmt="(a)") " "
write(unit=7,fmt="(a,i4,a,i4,a)") "Wlcost(0:4,",0,",0:4,",0,") = "
do i = 0,4
write(unit=7,fmt="(a,i4,a,fl2.4,a,fl2.4,a,fl2.4,a,fl2.4,a,fl2.4,a)")

&
& i," &",wlcost(i,0,0,0)," &",wlcost(i,0,1,0),"

Page 1

Appendix D
&" ,wlcost(i,0,2,0)," &",wlcost(i,0,3,0)," &",wicost(i ,0,4,0)," \\"

end do
end if

! end do
lend do

write(unit=7,fmt="(a)") " Optimal "

do k=0,0 !m(l)
do g = 0,0 !m(2)
if(OPTcost(4,k,4,g) > 0.000001) then
write(unit=7,fmt="(a)") " "
write(unit=7,fmt="(a,i4,a,i4,a)") "OPTcost(0:4,",k,",0:4,",g,") = "
do i = 0,4
wri te(uni t=7,fmt="(a, i 4,a,f12.4,a,f12.4,a,f12.4,a,f12.4,a,f12.4, a) ")

&
& i," &",OPTcost(i,0,0,0)," &",OPTcost(i,0,1,0),"

&",OPTcost(i,0,2,0)," &",OPTcost(i,0,3,0)," &",OPTcost(i,0,4,0)," \\"
Iwrite(unit=7,fmt="(5fl2.6)") OPTcost(i,k,0:4,g)

end do
end if

end do
end do

wri te(uni t=7, fmt=" (a) ") " Subopti mal 1 i ty "

do k=0,0!m(l)
do g = 0,0!m(2)
if(Wlcost(4,k,4,g) > 0.000001) then
write(unit=7,fmt="(a)") " "
write(unit=7,fmt="(a,i4,a,i4,a)") "subopt(0:4,",k,",0:4,",g,") = "
do i =0,4
write(unit=7,fmt="(a,i4,a,f12.4,a,f12.4,a,f12.4,a,f12.4,a,f12.4,a)")

&
& "&",i," subopt(i,0,0,0)," ,subopt(i,0,1,0),"

,subopt(i,0,2,0)," ,subopt(i,0,3,0)," subopt(i,0,4,0)," \\"
!write(unit=7,fmt="(5f12.6)") subopt(i,k,0:4,g)

end do
end if

end do
end do

!do i = 0,4
! do j = 0,4
! do k=0,m(l)
! do g = 0,m(2)
! if(wicost(i,k,i,g)>0.00001) write(unit=7,fmt="(a,4i4,a,fl2.6)")
"wicost(",i,k,j,g,") = ' ,wicost(i,k,j,g)
! end do
! end do
! end do
lend do

!print*,"this is number 2!"

!write(unit=7,fmt="(a)") " Optimal "

I do i = 0,4
I do j = 0,4
I do k=0,m(l)
I do g = 0,m(2)
I if(OPTcost(i,k,i,g)>0.00001) write(unit=7,fmt="(a,4i4,a,fl2.6)")
"OPTcost(",i,k,j,g,") = ' ,OPTcost(i,k,j,g)
I end do
I end do
I end do
lend do

I wri te (uni t=7, fmt=" (a) ") " Subopti mal 1 i ty "
I do i = 0,4
I do j = 0,4
I do k=0,m(l)
I do g = 0,m(2)
I if(wicost(i,k,j,g)>0.00001 .or. OPTcost(i,k,j,g)>0.00001) &

Page 2

Appendix D
! & write(unit=7,fmt="(a,4i4,a,fl2.6)")
"subopt(",i,k,j,g,= ",subopt(i,k,j,g)
! end do
! end do
! end do
lend do

!print*,"this is number 3!"

!write(unit=7,fmt="(a)") " static "

!do i = 0,4
! do j = 0,4
! do k=0,m(l)
! do q = 0,m(2)
!! if(STATcostCi,k,j,g)>0.00001) write(unit=7,fmt="(a,4i4,a,fl2.6)")
"STATcostC",i,k,j,g,") = ",STATcostCi,k,j,g)
! end do
! end do
! end do
lend do
!
iwrite(unit=7,fmt="(a)") " Longest Q "
!
ido i = 0,4
I do j = 0,4
I do k=0,m(l)
I do g = 0,m(2)
I I if(LONGQcost(i,k,j,g)>0.00001) write(unit=7,fmt="(a,4i4,a,fl2.6)")
"LONGQcost(",i,k,j,g,") = ",LONGQcost(i ,k,j,g)
I end do
I end do
I end do
lend do
j
iprint*,"wicost(0,0,0,0) = ",wicost(0,0,0,0)

end do

close(unit=7)

end program

INB here we have a state space of (nl,ml,n2,m2) where ml is the
Inumber of phase completions we have done for class 1, i.e, ml
I starts off at 0 and goes upto m(l)-l, as when the m(l)th phase
Icompletion is over nl goes to nl-1 and ml goes back to 0 as this
lis the start of the service of the next queuing customer, (similarly for
m2)

Ithis subroutine only looks at real possible events occuring, i.e. there
I are no virtual events (except when n=boundery case).

I Now we have an extra state, m=l is where we have started a service
I but have not finished the first phase of that service

subroutine whittle_Costs3(indata,r,m,Nmax,vnew)
implicit none

integer ::
num,nmax,count,nl,n2,ml,m2,BError,k.mumbl,mumb2,numl,num2,numbl, numb2 , r
integer, dimension (2) :: m,buffer
integer, dimension (4) :: sele.Lele
double precision :: alf,U,1argest,smallest,diff,TOL
double precision, dimension(2) :: l,mu,a,b
double precision, dimension(2,0:nmax) :: w,c
double precision, dimension (200,8) :: indata
double precision, dimension(0:Nmax,0:m(l),0:Nmax,0:m(2)) :: vold,vnew

cal1 inputdata(indata,r,1,mu,m,alf,nmax,buffer,a,b,BError)

TOL = 0.00001 I 0.00001 10.005

Page 3

Appendix D
C = 0.0

do k = 1,2
do num = buffer(k),Nmax
C(k,num) = a(k)*(real(num-buffer(k))**3.0) +

b(k)*(real(num-buffer(k))**4.0)
end do

end do

call wlndex(indata,r,m,Nmax,w)

iBError = 1

Void =0.0
vnew =0.0
count = 0

30 Void = vnew

count = count + 1

do nl = 0,Nmax
do n2 = 0,Nmax

do ml = 0,m(l)
do m2 = 0,m(2)

cal1 arrnext(1,Nmax,nl,n2,numl,num2)
cal1 arrnext(2,Nmax,nl,n2,numl,num2)
cal1 sernext(l,m,nl,n2,numbl,numb2,ml,m2,mumbl,mumb2)
cal1 sernext(2,m,nl,n2,numbl,numb2,ml,m2.mumbl,mumb2)

if(nl>0 .and. n2>0) then

if(ml==0 .and. m2==0) then

!this calculates which queue we are serving if we have the
Ichoice & there are customers present
if (w(l,nl) >= W(2,n2)) then

u = 1(1) + 1(2) + mu(l) + alf
vnew(nl,ml,n2,m2) = ((C(l,nl) + C(2,n2))/U) +

(1(1)/U)*vold(numl,l,n2,0) &
& + (1(2)/U)*vold(nl,l,num2,0) +

(mu(l)/U)*vold(numbl,mumbl,n2,0)
el se

u = 1(1) + 1(2) + mu(2) + alf
Vnew(nl,ml,n2,m2) = ((C(l,nl) + C(2,n2))/U) +

(1(1)/U)*Void(numl,0,n2,1) &
&+ (1(2)/u)*vold(nl,0,num2,1) +

(mu(2)/U)*Vold(nl,0,numb2,mumb2)
end if

else if(ml>0 .and. m2==0) then
U = 1(1) + 1(2) + mu(l) + alf
Vnew(nl,ml,n2,m2) = ((c(l,nl) + C(2,n2))/u) +

(1(l)/U)*vold(numl,ml,n2,m2) &
&+ (1(2)/U)*vold(nl,ml,num2,m2) +

(mu(l)/ll)*vold(numbl,mumbl, n2 ,0)

else if(ml==0 .and. m2>0) then
U = 1(1) +1(2) + mu(2) + alf
Vnew(nl,ml,n2,m2) = ((C(l,nl) + C(2,n2))/u) +

(1(l)/u)*vold(numl,ml,n2,m2) &
&+ (1(2)/U)*vold(nl,ml,num2,m2) +

(mu(2)/u)*Vold(nl,0,numb2,mumb2)

end if

else if(nl>0 .and. n2==0) then
if(ml==0 .and. m2==0) then

u = 1(1) + 1(2) + mu(l) + alf
Vnew(nl,ml,n2,m2) = ((c(l,nl) + C(2,n2))/u) +

(1(1)/U)*vold(numl,l,n2,0) &
&+ (1(2)/U)*vold(nl,l,num2,0) +

(mu(1)/U)*vold(numbl,mumbl,n2,0)
else if(ml>0 .and. m2==0) then

Page 4

Appendix D
U = 1(1) + 1(2) + mu(l) + alf
vnew(nl,ml,n2,m2) = ((C(l,nl) + C(2,n2))/u) +

(1(l)/U)*vold(numl,ml,n2,m2) &
& + (1(2)/u)*vold(nl,ml,num2,m2) +

(mu(l)/u)*vold(numbl,mumbl,n2,m2)
end if

else if(nl==0 .and. n2>0) then
if(ml==0 .and. m2==0) then

U = 1(1) + 1(2) + mu(2) + alf
vnew(nl,ml,n2,m2) = ((c(l,nl) + C(2,n2))/u) +

(1(1)/U)*vold(numl,0,n2,l) &
&+ (1 (2)/U)*vold(nl,0,num2,1) +

(mu(2)/u)*Vold(nl,ml,numb2,mumb2)
else if(ml==0 .and. m2>0) then

u = 1(1) + 1(2) + mu(2) + alf
vnew(nl,ml,n2,m2) = ((c(l,nl) + C(2,n2))/u) +

(1(l)/u)*vold(numl,ml,n2,m2) &
& + (1 (2)/u)*vold(nl,ml,num2,m2) +

(mu(2)/u)*vold(nl,ml,numb2,mumb2)
end if

else if(nl==0 .and. n2==0) then
if(ml==0 .and. m2==0) then

u = 1(1) + 1(2) + alf
Vnew(nl,ml,n2,m2) = ((C(l,nl) + C(2,n2))/U) +

(1(l)/u)*vold(numl,ml,n2,m2) &
&+ (1(2)/U)*vold(nl,ml,num2,m2)

end if
end if

end do
end do

end do
end do

!open (unit=7,fi1e="Vva1uesDl.dat")
!write(unit=7,fmt="(3f16.4)") Vnew(39,0,39,0)

smallest = 1000000.0
largest = -1000000.0
Sele = 999
Lele = 999

!do nl = 0,Nmax-BError
! do n2 = 0,Nmax-BError
! do ml = 0,m(l)
! do m2 = 0,m(2)
I
! if(nl>0 .and. n2>0) then
! if(ml==0 .and. m2==0) then
!
! if (smallest > vnew(nl,ml,n2,m2) - vold(nl,ml,n2,m2)) then
! smallest = vnew(nl,ml,n2,m2) - vold(nl,ml,n2,m2)
! Sele = (/nl,ml,n2,m2/)
! end if
! if (largest < Vnew(nl,ml,n2,m2) - vold(nl,ml,n2,m2)) then
! largest = vnew(nl,ml,n2,m2) - vold(nl,ml,n2,m2)
! Lele = (/nl,ml,n2,m2/)
! end if
I
! else if(ml>0 .and. m2==0) then
! if (smallest > vnew(nl,ml,n2,m2) - vold(nl,ml,n2,m2)) then
! smallest = vnew(nl,ml,n2,m2) - Vold(nl,ml,n2,m2)
! Sele = (/nl.ml,n2,m2/)
! end if
! if (largest < vnew(nl,ml,n2,m2) - vold(nl,ml,n2,m2)) then
! largest = vnew(nl,ml,n2,m2) - vold(nl,ml,n2,m2)
! Lele = (/nl,ml,n2,m2/)
! end if
! else if(ml==0 .and. m2>0) then
! if (smallest > vnew(nl,ml,n2,m2) - vold(nl,ml,n2,m2)) then
! smallest = vnew(nl,ml,n2,m2) - vold(nl,ml,n2,m2)
! Sele = (/nl,ml,n2,m2/)
! end if
! if (largest < vnew(nl,ml,n2,m2) - vold(nl,ml,n2,m2)) then

Page 5

Appendix D
largest = vnew(nl,ml,n2,m2) - vold(nl,ml,n2,m2)
Lele = (/nl,ml,n2,m2/)

end if

end if

else if(nl>0 .and. n2==0) then
if(ml==0 .and. m2==0) then
if (smallest > vnew(nl,ml,n2,m2) - vold(nl,ml,n2,m2)) then
smallest = Vnew(nl,ml,n2,m2) - vold(nl,ml,n2,m2)
Sele = C/nl,ml,n2,m2/)

end if
if (largest < Vnew(nl,ml,n2,m2) - vold(nl,ml,n2,m2)) then
largest = vnew(nl,ml,n2,m2) - vold(nl,ml,n2,m2)
Lele = C/nl,rrl, n2 ,m2/)

end if

else if(ml>0 .and. m2==0) then
if (smallest > vnew(nl,ml,n2,m2) - vold(nl,ml,n2,m2)) then
smallest = Vnew(nl,ml,n2,m2) - vold(nl,ml,n2,m2)
Sele = (/nl,ml,n2,m2/)

end if
if (largest < vnew(nl,ml,n2,m2) - vold(nl,ml,n2,m2)) then
largest = Vnew(nl,ml,n2,m2) - vold(nl,ml,n2,m2)
Lele = (/nl,ml,n2,m2/)

end if
end if

else if(nl==0 .and. n2>0) then
if(ml==0 .and. m2==0) then
if (smallest > Vnew(nl,ml,n2,m2) - vold(nl,ml,n2,m2)) then
smallest = Vnew(nl,ml,n2,m2) - vold(nl,ml,n2,m2)
Sele = (/nl.ml,n2,m2/)

end if
if C largest < vnew(nl,ml,n2,m2) - vold(nl,ml,n2,m2)) then
largest = vnew(nl,ml,n2,m2) - voldfnl,ml,n2,m2)
Lele = C/nl,ml,n2,m2/)

end if
else if(ml==0 .and. m2>0) then
if (smallest > vnew(nl,ml,n2,m2) - vold(nl,ml,n2,m2)) then
smallest = Vnew(nl,ml,n2,m2) - vold(nl,ml,n2,m2)
Sele = (/nl.ml,n2,m2/)

end if
if (largest < vnew(nl,ml,n2,m2) - vold(nl,ml,n2,m2)) then
largest = Vnew(nl,ml,n2,m2) - vold(nl,ml,n2,m2)
Lele = C/nl,ml,n2,m2/)

end if
end if

else if(nl==0 .and. n2==0) then
if(ml==0 .and. m2==0) then
if (smallest > vnew(nl,ml,n2,m2) - vold(nl,ml,n2,m2)) then
smallest = vnew(nl,ml,n2,m2) - vold(nl,ml,n2,m2)
Sele = C/nl,ml,n2,m2/)

end if
if (largest < vnew(nl,ml,n2,m2) - vold(nl,ml,n2,m2)) then
largest = Vnew(nl,ml,n2,m2) - Vold(nl,ml,n2,m2)
Lele = (/nl,ml,n2,m2/)

end if
end if

end if

end do
end do

end do
end do

do nl = l.Nmax-BError
do n2 = O.Nmax-BError

do ml = l,m(l)

m2 = 0

Page 6

Appendix D

if (smallest > vnew(nl,ml,n2,m2) - vold(nl,ml,n2,m2)) then
smallest = vnew(nl,ml,n2,m2) - vold(nl,ml,n2,m2)
Sele = (/nl.ml,n2,m2/)

end if
if (largest < vnew(nl,ml,n2,m2) - vold(nl,ml,n2,m2)) then
largest = vnew(nl,ml,n2,m2) - vold(nl,ml,n2,m2)
Lele = (/nl,ml,n2,m2/)

end if

end do
end do

end do

do nl = 0,Nmax-BError
do n2 = 1,Nmax-BError

do m2 = l,m(2)

ml = 0

if (smallest > vnew(nl,ml,n2,m2) - vold(nl,ml,n2,m2)) then
smallest = vnew(nl,ml,n2,m2) - vold(nl,ml,n2,m2)
Sele = (/nl.ml,n2,m2/)

end if
if (largest < vnew(nl,ml,n2,m2) - Vold(nl,ml,n2,m2)) then
largest = Vnew(nl,ml,n2,m2) - vold(nl,ml,n2,m2)
Lele = C/nl,ml,n2,m2/)

end if

end do
end do

end do

nl = 0 !do nl = 0,0
n2 = 0 ! do n2 = 0,0

m2 = 0
ml = 0

if (smallest > Vnew(nl,ml,n2,m2) - vold(nl,ml,n2,m2)) then
smallest = vnew(nl,ml,n2,m2) - vold(nl,ml,n2,m2)
sele = (/nl,ml,n2,m2/)

end if
if (largest < vnew(nl,ml,n2,m2) - vold(nl,ml,n2,m2)) then
largest = vnew(nl,ml,n2,m2) - vold(nl,ml,n2,m2)
Lele = C/nl,ml,n2,m2/)

end if

! end do
lend do

diff = largest - smallest

!open (unit=7,fi1e="GSWdiff.dat")
Iwrite(unit=7,fmt="(3fl6.4,8i4)") small est,largest,diff,Sele,Lele
!close(unit=7)
if (count > 9000) goto 300
if (largest > TOL .or. largest < 0.0) goto 30 !not have smallest*TOL as have
discounted costs

!hence must converge (to 0?)

!print*,"4"

1100 Wlcost = (smallest + largest)/2.0

!close(unit=7)
!close(unit=7)

!print*,"u = ",U
300 print*,"count = ".count
print*,"The w index policy cost this queue setup & parameters is
' ,vnew(0,0,0,0)
!close(unit=7)

Page 7

Appendix D

return
end subroutine

!NB here we have a state space of (nl,ml,n2,m2) where ml is the
Inumber of phase completions we have done for class 1, i.e, ml
!starts off at 0 and goes upto m(l)-l, as when the m(l)th phase
Icompletion is over nl goes to nl-1 and ml goes back to 0 as this
lis the start of the service of the next queuing customer, (similarly for
m2)

Ithis subroutine only looks at real possible events occuring, i.e. there
lare no virtual events (except when n=boundery case).

!Now we have an extra state, m=l is where we have started a service
Ibut have not finished the first phase of that service

subroutine 0ptimal_Costs3(indata,r,m,Nmax,vnew)
implicit none

integer ::
num,nmax,count,nl,n2,ml,m2,BError,k.mumbl,mumb2,numl,num2,numbl,numb2,r
integer, dimension (2) :: m,buffer
integer, dimension (4) :: Sele,Lele
double precision :: alf,u,largest,smallest,diff,TOL,optl,opt2
double precision, dimension(2) :: l,mu,a,b
double precision, dimension(2,0:nmax) :: C
double precision, dimension (200,8) :: indata
double precision, dimension(0:Nmax,0:m(l),0:Nmax,0:m(2)) :: vold.Vnew

call inputdata(indata,r,l,mu,m,alf,nmax,buffer,a,b,BError)

TOL = 0.00001 ! 0.0005
C = 0.0

do k = 1,2
do num = buffer(k),Nmax
C(k,num) = a(k)*(real(num-buffer(k))**3.0) +

b(k)*(real(num-buffer(k))**4.0)
end do

end do

iBError = 1

void =0.0
Vnew =0.0
count = 0

40 void = vnew

count = count + 1

do nl = 0,Nmax
do n2 = 0,Nmax

do ml = 0,m(l)
do m2 = 0,m(2)

call arrnext(1,Nmax,nl,n2,numl,num2)
cal1 arrnext(2,Nmax,nl,n2,numl,num2)
cal1 sernext(l,m,nl,n2,numbl,numb2,ml,m2,mumbl,mumb2)
cal1 sernext(2,m,nl,n2,numbl,numb2,ml,m2,mumbl,mumb2)

if(nl>0 .and. n2>0) then

if(ml==0 .and. m2==0) then

Ithis calculates which queue we are serving if we have the
I choice & there are customers present

U = 1(1) + 1(2) + mu(l) + alf
optl = ((C(l,nl) + C(2,n2))/U) + (1(l)/U)*vold(numl,1,n2,0) &

& + (1(2)/U)*vold(nl,l,num2,0) +
(mu(l)/U)*vold(numbl,mumbl,n2,0)

Page 8

Appendix D

U = 1(1) + 1(2) + mu(2) + alf
opt2 = CCcCl.nl) + cC2,n2))/u) + CICl)/U)*voldCnuml,0,n2,1) &

& + ClC2)/u)*voldCnl,0,num2,l) +
CmuC2)/u)*voldCnl,ml,numb2,mumb2)

if Coptl <= opt2) then
VnewCnl.ml,n2,m2) = optl

else
vnewCnl,ml,n2,m2) = opt2

end if

else ifCml>0 .and. m2==0) then
u = 1 CI) + 1C2) + muCl) + alf
VnewCnl.ml,n2,m2) = CCcCl.nl) + CC2,n2))/u) +

ClCl)/u)*VoldCnuml,ml,n2,m2) &
&+ ClC2)/u)*voldCnl,ml,num2,m2) +

CmuCl)/u)*voldCnumbl,mumbl,n2,0)

else ifCml==0 .and. m2>0) then
u = 1 CI) + 1C2) + muC2) + alf
VnewCnl,ml,n2,m2) = CCcCl.nl) + cC2,n2))/u) +

CICl)/u)*voldCnuml.ml,n2,m2) &
& + CIC2)/u)*voldCnl,ml,num2,m2) +

CmuC2)/u)*voldCnl,ml,numb2,mumb2)

end if

else ifCnl>0 .and. n2==0) then
ifCml==0 .and. m2==0) then

u = 1 CI) + 1C2) + muCl) + alf
vnewCnl,ml,n2,m2) = CCcCl.nl) + cC2,n2))/u) +

ClCl)/U)*VoldCnuml,l,n2,0) &
&+ ClC2)/U)*VoldCnl,l,num2,0) +

CmuCl)/u)*voldCnumbl,mumbl,n2,0)
else ifCml>0 .and. m2==0) then

u = 1 CI) + 1C2) + muCl) + alf
VnewCnl.ml,n2,m2) = CCcCl.nl) + cC2,n2))/u) +

CI Cl)/u)*voldCnuml,ml,n2,m2) &
& + CIC2)/u)*voldCnl,ml,num2,m2) +

CmuCl)/U)*VoldCnumbl,mumbl,n2,m2)
end if

else ifCnl==0 .and. n2>0) then
ifCml==0 .and. m2==0) then

U = 1 CI) + 1C2) + muC2) + alf
vnewCnl,ml,n2,m2) = CCcCl.nl) + cC2,n2))/u) +

ClCl)/u)*voldCnuml,0,n2,l) &
&+ CIC2)/u)-voldCnl.O,num2,1) +

CmuC2)/u)*voldCnl,ml,numb2,mumb2)
else ifCml==0 .and. m2>0) then

u = 1 CI) + 1C2) + muC2) + alf
VnewCnl,ml,n2,m2) = CCcCl.nl) + cC2,n2))/U) +

CICl)/U)*voldCnuml,ml,n2,m2) &
& + CI C2)/u)*voldCnl,ml,num2,m2) +

CmuC2)/u)*voldCnl,ml,numb2,mumb2)
end if

else ifCnl==0 .and. n2==0) then
ifCml==0 .and. m2==0) then

u = 1C1) + 1C2) + alf
VnewCnl,ml,n2,m2) = CCcCl.nl) + cC2,n2))/u) +

CI Cl)/u)*voldCnuml,ml,n2,m2) &
&+ CIC2)/u)*voldCnl,ml,num2,m2)

end if
end if

end do
end do

end do
end do

! open Cunit=7,fi1e="VvaluesDl.dat")
!writeCunit=7,fmt="C3fl6.4)") VnewC39,0,39,0)

Page 9

Appendix D

smallest = 1000000.0
largest = -1000000.0
sele = 999
Lele = 999

do nl = l.Nmax-BError
do n2 = O.Nmax-BError

do ml = l,m(l)

m2 = 0

if (smallest > vnew(nl,ml,n2,m2) - vold(nl,ml,n2,m2)) then
smallest = vnew(nl,ml,n2,m2) - vold(nl,ml,n2,m2)
Sele = (/nl,ml,n2,m2/)

end if
if (largest < vnew(nl,ml,n2,m2) - vold(nl,ml,n2,m2)) then
largest = vnew(nl,ml,n2,m2) - Vold(nl,ml,n2,m2)
Lele = (/nl,ml,n2,m2/)

end if

end do
end do

end do

do nl = 0,Nmax-BError
do n2 = l.Nmax-BError

do m2 = l,m(2)

ml = 0

if (smallest > vnew(nl,ml,n2,m2) - vold(nl,ml,n2,m2)) then
smallest = Vnew(nl,ml,n2,m2) - vold(nl,ml,n2,m2)
Sele = (/nl.ml,n2,m2/)

end if
if (largest < vnew(nl,ml,n2,m2) - vold(nl,ml,n2,m2)) then
largest = vnew(nl,ml,n2,m2) - vold(nl,ml,n2,m2)
Lele = (/nl,ml,n2,m2/)

end if

end do
end do

end do

nl = 0 !do nl = 0,0
n2 = 0 ! do n2 = 0,0

m2 = 0
ml = 0

if (smallest > vnew(nl,ml,n2,m2) - vold(nl,ml,n2,m2)) then
smallest = vnew(nl,ml,n2,m2) - vold(nl,ml,n2,m2)
Sele = C/nl,ml,n2,m2/)

end if
if (largest < Vnew(nl,ml,n2,m2) - vold(nl,ml,n2,m2)) then
largest = Vnew(nl,ml,n2,m2) - vold(nl,ml,n2,m2)
Lele = C/nl,ml,n2,m2/)

end if

! end do
lend do

diff = largest - smallest

!open (unit=7,fi1e="GSOdiff.dat"D
!write(unit=7,fmt="(3f16.4,8i4)") smallest,largest,diff,sele,Lele
!close(unit=7)
if (count > 9000) goto 400
if (largest > TOL .or. largest < 0.0) goto 40

!print*,"4"

1100 wicost = (smallest + largest)/2.0
page 10

!close(unit=7)
!close(unit=7)

Appendix d

!print*,"U = ",U
400 print*,"Count = ".count
print*,"The optimal policy cost this queue setup & parameters is
",vnew(0,0,0,0)
!close(unit=7)

return
end subroutine

!this one does not work properly?!? I not sure why put not going to
!use it anyway.

!NB here we have a state space of (nl,ml,n2,m2) where ml is the
Inumbcr of phase completions we have done for class 1, i.e, ml
!starts off at 0 and goes upto m(l)-l, as when the m(l)th phase
!completion is over nl goes to nl-1 and ml goes back to 0 as this
lis the start of the service of the next queuing customer, (similarly for
m2)

!this subroutine only looks at real possible events occuring, i.e. there
!are no virtual events (except when n=boundery case).

!Now we have an extra state, m=l is where we have started a service
!but have not finished the first phase of that service

subroutine Static_costs3(indata,r,m,Nmax,vnew)
implicit none

integer ::
num,nmax,count,nl,n2,ml,m2,BError,k.mumbl,mumb2,numl,num2,numbl,numb2,r
integer, dimension (2) :: m,buffer
integer, dimension (4) :: sele.Lele
double precision :: alf,u,1argest,smal1 est,diff,tol,x
double precision, dimension(2) :: l,mu,a,b
double precision, dimension(2,0:nmax) :: C
double precision, dimension (200,8) :: indata
double precision, dimension(0:Nmax,0:m(l),0:Nmax,0:m(2)) :: void,vnew

cal 1 inputdata(indata,r,1,mu,m,alf,nmax,buffer,a,b,BError)

tol = 0.00001 ! 0.0005
C = 0.0
x = 0.0

do k = 1,2
do num = buffer(k),Nmax
C(k,num) = a(k)*(real(num-buffer(k))**3.0) +

b(k)*(real(num-buffer(k))**4.0)
end do

end do

iBError = 1

void =0.0
vnew =0.0
count = 0

50 Void = vnew

count = count + 1

do nl = 0,Nmax
do n2 = 0,Nmax

do ml = 0,m(l)
do m2 = 0,m(2)

cal 1 ar rnext(1,Nmax,nl,n2,numl,num2)
cal 1 arrnext(2,Nmax,nl,n2,numl,num2)

Page 11

Appendix D
call sernext(l,m,nl,n2,numbl,numb2,ml,m2,mumbl,mumb2)
call sernext(2,m,nl,n2,numbl,numb2,ml,m2,mumbl,mumb2)

if(nl>0 .and. n2>0) then

if(ml==0 .and. m2==0) then

!this calculates which queue we are serving if we have the
Ichoice & there are customers present
call Random_Number(x)
if (x <= 0.5) then

u = 1(1) + 1(2) + mu(l) + alf
vnew(nl,ml,n2,m2) = ((c(l,nl) + C(2,n2))/U) +

(1(l)/u)*vold(numl,1,n2,0) &
& + (1(2)/u)*vold(nl,l,num2,0) +

(mu(l)/u)*vold(numbl,mumbl,n2,0)
el se

U = 1(1) + 1(2) + mu(2) + alf
Vnew(nl,ml,n2,m2) = ((C(l,nl) + C(2,n2))/u) +

(1(1)/U)*vold(numl,0,n2,l) &
&+ (1(2)/u)*vold(nl,0,num2,l) +

(mu(2)/u)*vold(nl,ml,numb2,mumb2)
end if

else if(ml>0 .and. m2==0) then
u = 1(1) + 1(2) + mu(l) + alf
vnew(nl,ml,n2,m2) = ((c(l,nl) + C(2,n2))/u) +

(1(l)/u)*vold(numl,ml,n2,m2) &
&+ (1(2)/U)*Vold(nl,ml,num2,m2) +

(mu(l)/u)*vold(numbl,mumbl,n2,0)

else if(ml==0 .and. m2>0) then
U = 1(1) + 1(2) + mu(2) + alf
vnew(nl,ml,n2,m2) = ((C(l,nl) + C(2,n2))/u) +

(1(l)/U)*Vold(numl,ml,n2,m2) &
&+ (1(2)/u)*vold(nl,ml,num2,m2) +

(mu(2)/u)*vold(nl,ml,numb2,mumb2)

end if

else if(nl>0 .and. n2==0) then
if(ml==0 .and. m2==0) then

u = 1(1) + 1(2) + mu (1) + alf
Vnew(nl,ml,n2,m2) = ((C(l,nl) + C(2,n2))/U) +

(I(l)/U)*vold(numl,l,n2,0) &
&+ (1(2)/u)*VQld(nl,l,num2,0) +

(mu(l)/u)*vold(numbl,mumbl,n2,0)
else if(ml>0 .and. m2==0) then

U = 1(1) + 1(2) + mu(l) + alf
Vnew(nl,ml,n2,m2) = ((c(l,nl) + C(2,n2))/U) +

(1(l)/u)*vold(numl,ml,n2,m2) &
&+ (1(2)/U)*Vold(nl,ml,num2,m2) +

(mu(l)/U)ftvold(numbl,mumbl,n2,m2)
end if

else if(nl==0 .and. n2>0) then
if(ml==0 .and. m2==0) then

u = 1(1) + 1(2) + mu(2) + alf
Vnew(nl,ml,n2,m2) = ((C(l,nl) + C(2,n2))/u) +

(l(l)/u)*vold(numl,0,n2,l) &
&+ (1(2)/u)*vold(nl,0,num2,l) +

(mu(2)/u)*vold(nl,ml,numb2,mumb2)
else if(ml==0 .and. m2>0) then

U = 1(1) + 1(2) + mu(2) + alf
vnew(nl,ml,n2,m2) = ((C(l,nl) + C(2,n2))/u) +

(1(l)/u)*vold(numl,ml,n2,m2) &
& + (l(2)/u)*vold(nl,ml,num2,m2) +

(mu(2)/u)<rvold(nl,ml,numb2 ,mumb2)
end if

else if(nl==0 .and. n2==0) then
if(ml==0 .and. m2==0) then

u = 1(1) + 1(2) + alf
Vnew(nl,ml,n2,m2) = ((c(l,nl) + C(2,n2))/u) +

(1(l)/u)*vold(numl,ml,n2,m2) &
&+ (l(2)/U)*vold(nl,ml,num2,m2)

Page 12

Appendix D
end if

end if

end do
end do

end do
end do

!open (unit=7,fi1e="VvaluesDl.dat")
!write(unit=7,fmt="(3fl6.4)") vnew(39,0,39,0)

smallest = 1000000.0
largest = -1000000.0
Sele = 999
Lele = 999

do nl = 1,Nmax-BError
do n2 = 0,Nmax-BError

do ml = l,m(l)

m2 = 0

if (smallest > vnew(nl,ml,n2,m2) - vold(nl,ml,n2,m2)) then
smallest = vnew(nl,ml,n2,m2) - vold(nl,ml,n2,m2)
Sele = C/nl,ml,n2,m2/)

end if
if (largest < vnew(nl,ml,n2,m2) - vold(nl,ml,n2,m2)) then
largest = vnew(nl,ml,n2,m2) - vold(nl,ml,n2,m2)
Lele = (/nl,ml,n2,m2/)

end if

end do
end do

end do

do nl = 0,Nmax-BError
do n2 = 1,Nmax-BError

do m2 = l,m(2)

ml = 0

if (smallest > vnew(nl,ml,n2,m2) - vold(nl,ml,n2,m2)) then
smallest = vnew(nl,ml,n2,m2) - vold(nl,ml,n2,m2)
sele = (/nl,ml,n2,m2/)

end if
if (largest < vnew(nl,ml,n2,m2) - vold(nl,ml,n2,m2)) then
largest = vnew(nl,ml,n2,m2) - vold(nl,ml,n2,m2)
Lele = C/nl,ml,n2,m2/)

end if

end do
end do

end do

nl = 0 !do nl = 0,0
n2 = 0 ! do n2 = 0,0

m2 = 0
ml = 0

if (smallest > Vnew(nl,ml,n2,m2) - Vold(nl,ml,n2,m2)) then
smallest = vnew(nl,ml,n2,m2) - vold(nl,ml,n2,m2)
Sele = (/nl.ml,n2,m2/)

end if
if (largest < Vnew(nl,ml,n2,m2) - vold(nl,ml,n2,m2)) then
largest = Vnew(nl,ml,n2,m2) - vold(nl,ml,n2,m2)
Lele = (/nl,ml,n2,m2/)

end if

! end do
lend do

diff = largest - smallest

Page 13

Appendix D

!open (unit=7,fi1e="GSSdiff.dat")
Iwrite(unit=7,fmt="(3fl6.4,8i4)") small est,1argest,diff,Sele,Leie
!close(unit=7)
if (count > 9000) goto 500
if (largest > TOL .or. largest < 0.0) goto 50

!print*,"4"

!100 Wlcost = (smallest + largest)/2.0

!close(unit=7)
!close(unit=7)

!print*,"u = ",u
500 print*,"count = ".count
print*,"The static (equal splitting) policy cost this queue setup &
parameters is ",vnew(0,0,0,0)
!close(unit=7)

return
end subroutine

!NB here we have a state space of (nl,ml,n2,m2) where ml is the
!number of phase completions we have done for class 1, i.e, ml
!starts off at 0 and goes upto m(l)-l, as when the m(l)th phase
!completion is over nl goes to nl-1 and ml goes back to 0 as this
lis the start of the service of the next queuing customer, (similarly for
m2)

Ithis subroutine only looks at real possible events occuring, i.e. there
lare no virtual events (except when n=boundery case).

!Now we have an extra state, m=l is where we have started a service
Ibut have not finished the first phase of that service

subroutine LongestQ_costs3(indata,r,m,Nmax,vnew)
implicit none

integer : :
num,nmax,count,nl,n2,ml,m2,BError,k,mumbl,mumb2,numl,num2,numbl,numb2,r
integer, dimension (2)
integer, dimension (4)

m,buffer
, . Sele,Lele

double precision :: alf,u,largest,smallest,diff.TOL
double precision, dimension(2) :: l,mu,a,b
double precision, dimension(2,0:nmax) :: C
double precision, dimension (200,8) :: indata
double precision, dimension(0:Nmax,0:m(l),0:Nmax,0:m(2)) :: void,vnew

cal1 inputdata(indata,r,1,mu,m,alf,nmax,buffer,a,b,BError)

TOL = 0.00001 ! 0.0005
C = 0.0

do k = 1,2
do num = buffer(k),Nmax
C(k,num) = a(k)*(real(num-buffer(k))**3.0) +

b(k)*(real(num-buffer(k))**4.0)
end do

end do

iBError = 1

void = 0.0
vnew = 0.0
count = 0

60 void = vnew

count = count + 1

page 14

Appendix D
do nl = 0,Nmax

do n2 = O.Nmax
do ml = 0,m(l)

do m2 = 0,m(2)

cal1 arrnext(l,Nmax,nl,n2,numl,num2)
cal1 arrnext(2,Nmax,nl,n2,numl,num2)
cal 1 sernext(l,m,nl,n2,numbl,numb2,ml,m2,mumbl,mumb2)
cal 1 sernext(2,m,nl,n2,numbl,numb2,ml,m2,mumbl,mumb2)

if(nl>0 .and. n2>0) then

if(ml==0 .and. m2==0) then

!this calculates which queue we are serving if we have the
Ichoice & there are customers present
if (nl >= n2) then

u = 1(1) + 1(2) + mu(l) + alf
Vnew(nl,ml,n2,m2) = ((c(l,nl) + C(2,n2))/u) +

(1(l)/U)*Vold(numl,l,n2,0) &
&+ (1(2)/U)*vold(nl,1,num2,0) i

(mu(l)/U)*Vold(numbl,mumbl,n2,0)

u = 1(1) + 1(2) + mu(2) + alf
Vnew(nl,ml,n2,m2) = ((c(l,nl) + C(2,n2))/u) +

(1 (l)/u)*vold(numl,0,n2,1) &
& + (1 (2)/u)"Vold(nl,0,num2,1) +

(mu(2)/u)*vold(nl,ml,numb2,mumb2)
end if

else if(ml>0 .and. m2==0) then
u = 1(1) +1(2) + mu(l) + alf
Vnew(nl,ml,n2,m2) = ((c(l,nl) + C(2,n2))/u) +

(1 (l)/u)*vold(numl,ml,n2,m2) &
&+ (1 (2)/U)*Vold(nl,ml,num2,m2) +

(mu(l)/u)*vold(numbl,mumbl,n2,0)

else if(ml==0 .and. m2>0) then
U = 1(1) + 1(2) + mu(2) + alf
Vnew(nl,ml,n2,m2) = ((c(l,nl) + C(2,n2))/u) +

(1 (l)/u)*vold(numl,ml,n2,m2) &
& + (1(2)/u)*vold(nl,ml,num2,m2) +

(mu(2)/u)*vold(nl,ml,numb2,mumb2)

end if

else if(nl>0 .and. n2==0) then
if(ml==0 .and. m2==0) then

U = 1(1) + 1(2) + mu(l) + alf
vnew(nl,ml,n2,m2) = ((c(l,nl) + C(2,n2))/u) +

(1(l)/U)*vold(numl,1,n2,0) &
&+ (1(2)/u)*Vold(nl,l,num2,0) +

(mu(l)/u)*vold(numbl,mumbl,n2,0)
else if(ml>0 .and. m2==0) then

U = 1(1) + 1(2) + mu(l) + alf
Vnew(nl,ml,n2,m2) = ((c(l,nl) + C(2,n2))/u) +

(1(l)/u)*vold(numl,ml,n2,m2) &
&+ (1(2)/u)*Vold(nl,ml,num2,m2) +

(mu(l)/u)*vold(numbl,mumbl,n2,m2)
end if

else if(nl==0 .and. n2>0) then
if(ml==0 .and. m2==0) then

U = 1(1) + 1(2) + mu(2) + alf
vnew(nl,ml,n2,m2) = ((c(l,nl) + C(2,n2))/U) +

(1(l)/u)*vold(numl,0,n2,1) &
&+ (1 (2)/U)*vold(nl,0,num2,l) +

(mu(2)/u)*vold(nl,ml,numb2,mumb2)
else if(ml==0 .and. m2>0) then

U = 1(1) + 1(2) + mu(2) + alf
Vnew(nl,ml,n2,m2) = ((C(l,nl) + C(2,n2))/u) +

(1(l)/u)*vold(numl,ml,n2,m2) &
&+ (1 (2)/U)*vold(nl,ml,num2,m2) +

(mu(2)/u)*vold(nl,ml,numb2,mumb2)
end if

Page 15

Appendix D
else if(nl==0 .and. n2==0) then
if(ml==0 .and. m2==0) then

u = 1(1) + 1(2) + alf
vnew(nl,ml,n2,m2) = ((C(l,nl) + C(2,n2))/u) +

(1 (l)/u)*vold(numl,ml,n2,m2) &
&+ (1(2)/u)*Vold(nl,ml,num2,m2)

end if
end if

end do
end do

end do
end do

!open (unit=7,fi1e="VvaluesDl.dat")
!write(unit=7,fmt="(3fl6.4)") vnew(39,0,39,0)

smallest = 1000000.0
largest = -1000000.0
Sele = 999
Lele = 999

do nl = 1,Nmax-BError
do n2 = 0,Nmax-BError

do ml = l,m(l)

m2 = 0

if (smallest > vnew(nl,ml,n2,m2) - vold(nl,ml,n2,m2)) then
smallest = vnew(nl,ml,n2,m2) - vold(nl,ml,n2,m2)
Sele = (/nl,ml,n2,m2/)

end if
if (largest < Vnew(nl,ml,n2,m2) - vold(nl,ml,n2,m2)) then
largest = Vnew(nl,ml,n2,m2) - vold(nl,ml,n2,m2)
Lele = (/nl,ml,n2,m2/)

end if

end do
end do

end do

do nl = 0,Nmax-BError
do n2 = 1,Nmax-BError

do m2 = l,m(2)

ml = 0

if (smallest > vnew(nl,ml,n2,m2) - vold(nl,ml,n2,m2)) then
smallest = vnew(nl,ml,n2,m2) - vold(nl,ml,n2,m2)
Sele = (/nl,ml,n2,m2/)

end if
if (largest < vnew(nl,ml,n2,m2) - vold(nl,ml,n2,m2)) then
largest = vnew(nl,ml,n2,m2) - vold(nl,ml,n2,m2)
Lele = (/nl,ml,n2,m2/)

end if

end do
end do

end do

nl = 0 !do nl = 0,0
n2 = 0 ! do n2 = 0,0

m2 = 0
ml = 0

if (smallest > vnew(nl,ml,n2,m2) - vold(nl,ml,n2,m2)) then
smallest = vnew(nl,ml,n2,m2) - vold(nl,ml,n2,m2)
Sele = (/nl.ml,n2,m2/)

end if
if (largest < vnew(nl,ml,n2,m2) - vold(nl,ml,n2,m2)) then
largest = vnew(nl,ml,n2,m2) - vold(nl,ml,n2,m2)
Lele = (/nl,ml,n2,m2/)

end if

Page 16

Appendix D
! end do
lend do

diff = largest - smallest

!open (unit=7,fi1e="GSLQdiff.dat")
Iwrite(unit=7,fmt="(3fl6.4,8i4)") small est,largest,diff,sele,Lele
if (count > 9000) goto 600
if (largest > TOL .or. largest <0.0) goto 60

! print*,"4"

1100 Wlcost = (smallest + largest)/2.0

!close(unit=7)
!close(unit=7)

IprintV'u = ",u
600 print*,"Count = ".count
print*,"The longest queue policy cost this queue setup & parameters is

1 ,Vnew(0,0,0,0)
!close(unit=7)

return
end subroutine

subroutine Wlndex(indata,r,m,Nmax,w)
implicit none

integer :: n,num,nmax,i,k,BError,r
integer, dimension(2) :: buffer,m
double precision :: alf
double precision, dimension(2) :: 1,mu,a,b,EalfT
double precision, dimension(2,0:nmax) :: Chat2,w,c
double precision, dimension(0:nmax,m(l)) :: chata
double precision, dimension(0:nmax,m(2)) :: chatb
double precision, dimension (200,8) :: indata

cal1 inputdata(indata,r,1,mu,m,alf,nmax,buffer,a,b,BError)
c = o.o

do k = 1,2
do num = buffer(k),Nmax
C(k,num) = a(k)*(real(num-buffer(k))**3.0) +

b(k)*(real(num-buffer(k))**4.0)
end do

end do

cal1 iteration(indata,r,Nmax,m,EalfT,chata,Chatb)

!we now have to convert EalfT and Chat to be the correct values
Ifor a service completion as they are only currently for a phase
!completion.

Chat2 =0.0
w = 0.0

do k = 1,2
do n = 0,Nmax
if(k==l) Chat2(k,n) = chata(n,m(k))
if(k==2) Chat2(k,n) = Chatb(n,m(k))
do i = l,m(k)-l
if(k==l) Chat2(k,n) = Chat2(k,n) +

(EalfT(k)**(real(i)))*chata(n,m(k)-i)
if(k==2) Chat2(k,n) = Chat2(k,n) +

(EalfT(k)**(real(i)))*chatb(n,m(k)-i)
end do

end do
end do

do k = 1,2

Page 17

Appendix D
EalfT(k) = EalfT(k)**(real (m(k)))

end do

do k = 1,2
do n = l.Nmax
w(k,n) = (alf*(C(k,n)-(EalfT(k)*C(k,n-1))) + 1(k)*chat2(k,n) +

(alf+1(k))*chat2(k,n))/(1.0 - EalfT(k))
end do

end do

return
end subroutine

!NB here we have a state space of (n,s) where s is the
!number of phase completions we have left to do 1 before
!the service completion is over for that customer, i.e, s starts
!off at m and goes down to 1, as when the s=l phase completion
!is over (we don't let s=0 since) n goes to n-1 and s goes back
!to m as this is the start of the service of the next queuing
!customer. (NB m = number of phase completions in a service completion).

!this calculates Discounted cost of moving from state (n,s) to (n,s-l)
land calculates E(T) where T = a phase completion time,
subroutine iteration(indata,r,Nmax,m,EalfT,chata,Chatb)
implicit none

integer :: i,nmax,count,s,n,k,BError,r
integer, dimension(2) :: buffer,m
double precision :: old,new,TOL,initial,alf
double precision, dimension(2) :: 1,mu,a,b,EalfT
double precision, dimension(0:nmax,m(l)) :: new2a,old2a,chata
double precision, dimension(0:nmax,m(2)) :: new2b,old2b,Chatb
double precision, dimension (200,8) :: indata

call inputdata(indata,r,l,mu,m,alf,nmax,buffer,a,b,BError)

TOL = 0.00001 ! 0.0000005
initial = 0.0
new = initial
old = initial
old2a = initial
new2a = initial
old2b = initial
new2b = initial

do k=l,2
new = initial
old = initial
if (k==l) old2a = initial
if (k==l) new2a = initial
if (k==2) old2b = initial
if (k==2) new2b = initial

! print*,"k 1 m mu",k,1(k),m(k),mu(k)
do i = 1,1000000
call functionl(indata,r,k,old,new)
if (new-old < TOL .and. new-old > -TOL) goto 10
old = new

! print*,new
end do
10 print*,"i is :",i
EalfT(k) = new

! 10 print*,"the value we get for E(exp(-alf*T)) = ",new
! print*,"i = ",i

count = 0
20 count = count + 1

! print*,"internal count = ".count
if (k==l) old2a = new2a
if (k==2) old2b = new2b
cal1 function2(indata,r,k,old2a,old2b,new2a,new2b,nmax,m,new)
do n = 0,nmax

Page 18

Appendix D
do s = l,m(k)
if(k==l) then
if (new2a(n,s)-old2a(n,s) > TOL .or. new2a(n,s)-old2a(n,s) < -TOL

.and. count < 120000) goto 20
else if(k==2) then
if (new2b(n,s)-old2b(n,s) > TOL .or. new2b(n,s)-old2b(n,s) < -TOL

.and. count < 120000) goto 20
end if

end do
end do

if(k==l) chata = new2a
if(k==2) chatb = new2b

! if(k==2) then
! open(unit=7,fi1e="iterationchat.dat")

!! write(unit=6,fmt="(a)") " bl : cl : b2 : c2 :
Nmax"
!! write(unit=6,fmt="(4fl0.4,i5)") a(l),b(l),a(2),b(2),Nmax

write(unit=7,fmt="(a)") "the value we get for (k=l) chat(n,s,alf)) is: "
do n = 0,nmax

do s = l,m
write(unit=7,fmt="(2i5,fl0.4)") n,s,chata(n,s)

end do
end do
write(unit=7,fmt="(a)") "the value we get for (k=2) chat(n,s,alf)) is: "
do n = 0,nmax

do s = l,m
write(unit=7,fmt="(2i5,fl0.4)") n,s.Chatb(n,s)

end do
end do

! close(unit=7)
! end if

print*,"count inter = ".count
print*," Ealfr(",k,") = EalfT(k)

!if(k==l) chata = new2a
!if(k==2) chatb = new2b

end do

return
end subroutine

i

!this calculates E(T) where T = a phase completion time
subroutine functionl(indata,r,k,old,new)
implicit none

integer :: nmax,k,BError,r
integer, dimension(2) :: m,buffer
double precision :: old,new,alf
double precision, dimension(2) :: l,mu,a,b
double precision, dimension (200,8) :: indata

call inputdata(indata,r,l,mu,m,alf,nmax,buffer,a,b,BError)

new = (mu(k) + 1(k)*(old**(real(m(k)+l))))/(alf + mu(k) + l(k))

return
end subroutine

j
!NB here we have a state space of (n,s) where s is the
!number of phase completions we have left to do 1 before
!the service completion is over for that customer, i.e, s starts
loff at m and goes down to 1, as when the s=l phase completion
lis over (we don't let s=0 since) n goes to n-1 and s goes back
!to m as this is the start of the service of the next queuing
Icustomer. (NB m = number of phase completions in a service completion).

Ithis calculates Discounted cost of moving from state (n,s) to (n,s-l)
subroutine function2(indata,r,k,old2a,old2b,new2a,new2b,nmax,m,new)

Page 19

implicit none
Appendix D

integer :: nmax,num,n,s,k,BError, r
integer, dimension(2) :: m,buffer
double
double
double
double
double
double

precision
precision,
precisi on,
precision,
precisi on,
precision,

alf,tempi,temp2,new
dimension(2) :: l,mu,a,b
allocatable, dimension(
dimension(0:nmax,m(l))
dimension(0:nmax,m(2))
dimension (200,8) :: indata

:) :: C
new2a,old2a
new2b,old2b

call inputdata(indata,r,l,mu,m,alf,nmax,buffer,a,b,BError)

allocate(C(2,0:nmax))
!allocate(new2(nmax,m))
!allocate(old2(nmax,m))
C(k,:) = 0.0

do num = buffer(k),Nmax
c(k,num) = a(k)*(real(num-buffer(k))**3.0) +

b(k)*(real (num-buffer(k))**4.0)
end do

if (k==l) then
do n = 0,nmax

do s = l,m(k)

if (n < nmax) then
tempi = old2a(n+l,s)

el se
tempi = old2a(n,s)

end if

if (s > 1) then
temp2 = old2a(n,s-l)

el se
temp2 =0.0

end if

new2a(n,s) = (C(k,n)/(1(k)+mu(k)+alf)) +
((1 (k)/(1 (k)+mu(k)+alf))*(templ + (old2a(n,m)*(new**(real(s)))))) &

& + ((mu(k)/(l(k)+mu(k)+alf))*temp2)

end do
end do

else if(k==2) then
do n = 0,nmax

do s = l,m(k)

if (n < nmax) then
tempi = old2b(n+l,s)

el se
tempi = old2b(n,s)

end if

if (s > 1) then
temp2 = old2b(n,s-l)

el se
temp2 =0.0

end if

new2b(n,s) = (C(k,n)/(1(k)+mu(k)+alf)) +
((1(k)/(l(k)+mu(k)+alf))*(templ + (old2b(n,m(k))*(new**(real(s)))))) &

& + ((mu(k)/(l(k)+mu(k)+alf))*temp2)

end do
end do

end if

return
end subroutine

page 20

Appendix D

subroutine arrnext(k,Nmax,nl,n2,numl,num2)
implicit none

integer :: Nmax,nl,n2,k,numl,num2

if(k==l) then
numl = nl
if(nl<Nmax) then
numl = nl+1

end if
end if

if(k==2) then
num2 = n2
if(n2<Nmax) then

num2 = n2+l
end if

end if

return
end subroutine

subroutine sernext(k,m,nl,n2,numl,num2,ml,m2,muml,mum2)
implicit none

integer :: nl,n2,k,numl,num2,ml,m2,muml,mum2
integer, dimension(2) :: m

if(k==l) then
numl = nl
muml = ml
if(ml<m(l) .and. ml>0) then

muml = ml+1
else if(ml<m(l) .and. ml==0) then

muml = 2
else if(ml==m(l)) then

numl = nl-1
muml = 0

end if
end if

if(k==2) then
num2 = n2
mum2 = m2
if(m2<m(2) .and. m2>0) then

mum2 = m2+l
else if(m2<m(2) .and. m2==0) then

mum2 = 2
else if(m2==m(2)) then

num2 = n2-l
mum2 = 0

end if
end if

return
end subroutine

subroutine inputdata(indata,r,l,mu,m,alf,nmax,buffer,a,b,BError)
implicit none

integer :: nmax,BError,r
integer, dimension(2) :: m,buffer
double precision :: alf
double precision, dimension(2) :: l,mu,a,b
double precision, dimension (200,8) :: indata

nmax = 139

Page 21

Appendix D
buffer = (/0,0/)
alf = -log(0.95)
BError = 9

m = (/2,3/)
mu(l) = indata(r,l)
mu(2) = indata(r,2)
1(1) = indata(r,3)
1(2) = (indata(r,4) - (m(l)*l(l)/mu(l)))*mu(2)/m(2)
!print*,"12 = ",1(2)
!traffic intensity = 2.0*1(l)/mu(l) + 3.0*1(2)/mu(2)

a(l) = indata(r,5)
b(l) = indata(r,7)
a(2) = indata(r,6)
b(2) = indata(r,8)

11 = (/0.25,0.4/)
!mu = (/6.0,5.0/)
!a = (/l.0,2.0/)
!b = (/0.5,0.2/)

return
end subroutine

page 22

Appendix E

This appendix contains the Fortran 95 code for the programme we used to calculate

the undiscounted service control costs as in Section 3.5.2. Here we consider the

optimal and index policies for a 2 class system.

Appendix E
program generalservicemk2
implicit none

integer :: Nmax,BError,n,r,i
integer, dimension(2) :: m,buffer
double precision :: a,b,d,e,TOL,wc2,OC2,LC2
double precision, dimension(2) :: l,mu
double precision, dimension (200,8) :: indata
double precision, allocatable, dimension(:,:,:) :: p
double precision, allocatable, dimension(:,:) :: c,w,Delta,pi

indata =0.0
open(unit=7,file="GSinputdata.dat")
do i = 1,200
read(unit=7,fmt="(8fl0.4)") indata(i,:)

end do
close(unit=7)
r=l
call qvals(indata,r,a,b,d,e,l,m,mu,Nmax,buffer,BError,TOL)

allocate(C(2,0:Nmax))
allocated w(2,0:Nmax))
allocated P(2,0:Nmax,0:Nmax))
allocated Delta(2,0:Nmax))
allocated pi(2,0:Nmax))

WC2 =0.0
OC2 = 0.0

!open(unit=7, fi1e="GSsubstatquad69.dat")
do r = 23,200
cal1 qvals(indata,r,a,b,d,e,1,m,mu,Nmax,buffer,BError,TOL)

C = 0.0
do n=buffer(l),Nmax
C(l,n) = a*(real(n-buffer(l))**1.0) + b*(real(n-buffer(l))**2.0)

end do

do n=buffer(2),Nmax
c(2,n) = d*(real(n-buffer(2))**1.0) + e*(real(n-buffer(2))**2.0)

end do

print*," r = ",r

Icalculate the correct stationary distributions
call windexl(indata,r,Nmax,pi)

call windex2(indata,r,Nmax,pi,w)

call WHlTcosts3(indata,r,Nmax,w,wc2)

call OPTcosts3(indata,r,Nmax,0C2)

!cal1 LQcosts3(indata,r,Nmax,LC2)

open(unit=7, fi1e="GSsubstatquad69buff2_pt2.dat")!,status="old")

write(unit=7,fmt="(a)") " bl : cl : b2 : c2 : Nmax"
write(unit=7,fmt="(4f10.4,i5)") a,b,d,e,Nmax
write(unit=7,fmt="(a)") " 11 : 12 : ml : mul : m2 : mu2

wr i te(unit=7,fmt="(2f10.4,i5,f10.4,i5,f10.4)")
1(1),1(2),m(l),mu(l),m(2),mu(2)
write(unit=7,fmt="(a)") " "
write(unit=7,fmt="(a,fl5.8)") "Optimal Policy cost : ",OC2
write(unit=7,fmt="(a)") " "
write(unit=7,fmt="(a,fl5.8)") "Dynamic index Policy cost : ",wc2
write(unit=7,fmt="(a,fl5.8)") "Percentage (cost) Suboptimallity :
",100.0*(WC2-OC2)/OC2
write(unit=7,fmt="(a)") " "
!write(unit=7,fmt="(a,fl5.8)") "Longest Queue cost : " , lc2
!write(unit=7,fmt="(a,fl5.8)") "Percentage (cost) Suboptimallity :
",100.0*(lc2-oc2)/oc2
!write(unit=7,fmt="(a)") " "

Page 1

Appendix E
end do

close(unit=7)

end program

i

subroutine factorial(z,fact)
implicit none

integer :: z,idouble precision :: fact,tot
tot = 1

if (z > 0) then

do i = l,z

tot = tot*real(i)

end do

fact = tot

else if (z == 0) then

fact =1.0

el se

print*,"ERROR cannot find factorial of negative number"
fact =0.0

end if

return
end subroutine

subroutine matmult(Nmax,p,pi)
implicit none

integer :: n,iz,opt,ifail.count,Nmax.k !,j
double precision,dimension(l) :: z
double precision, dimension(0:Nmax,0:Nmax) :: A,B
double precision, dimension(2,0:Nmax) :: pi
double precision, dimension(2,0:Nmax,0:Nmax) :: P
external F01CKF

n = Nmax+1

do k = 1,2
B = P(k,:,:)
!print*,"B = "
!do j = 0,n-l
! if (i == 1) print*,B(0,j)
lend do

opt = 1
iz = 1
ifail = 0

count = 0

10 call F0lCKF(A,B,B,n,n,n,z,iz,opt,ifail)
count = count + 1
B = A

if (count < 30) goto 10

page 2

Appendix E

!open(unit=7, fi1e="statdist.dat")

!write(unit=7,fmt="(lfl2.6)") A(0,:)
!write(unit=7,fmt="(If12.6)") 10000.00000

pi (k,:) = A(0,:)

end do

return
end subroutine

subroutine windexl(indata,r,Nmax,pi)
implicit none

integer :: Nmax,BError,j,i,n,k,r
integer, dimension(2) :: m,buffer
double precis
double precis
double precis

double precis

on :: a,b,d,e,TOL,tempi,temp2,tempB
on, dimension(2) :: l,mu,row
on, dimension (200,8) :: indata

double precision, dimension(2,0:Nmax) :: Delta,pi
on, dimension(0:Nmax,0:Nmax) :: am,bm

double precision, dimension(2,0:Nmax,0:Nmax) :: p

call qvals(indata,r,a,b,d,e,l,m,mu,Nmax,buffer,BError.TOL)

Icalculate the markov chain transition matrix

do k = 1,2

call factorial(m(k)-l,tempB)

do j = 0,Nmax

call factorial(m(k)+j-l,tempi)
call factorial(j,temp2)

Delta(k,i) = (templ/(temp2*temp3))*((1(k)/(1(k)+mu(k)))**(real (j))
)*((mu(k)/(1(k)+mu(k)))**(real(m(k))))

end do

P(k,:,:) = 0.0

do i = 0,Nmax

P(k,0,i) = Delta(k,i)

end do

P(k,1,:) = P(k,0,:)

do j = l,Nmax-l
do i = j,Nmax

p(k,j+l,i) = Delta(k,i-j)

end do
end do

end do

Icalculate the state probabilities - pi(k,j)
pi =0.0
row =0.0

am = P(l,:,:)
BM = P(2 , : , :)

do i = 1,25
am = matmul(am,am)

Page 3

Appendix E
BM = matmul(BM,BM)

end do

pi (1,0 = am(0, O
pi (2,O = bm(0,O

!open (unit=7,fi1e="GSstatdi stmat.dat")
!write(unit=7,fmt="(a)") " bl : cl : b2 : c2 : Nmax"
!write(unit=7,fmt="(4fl0.4,i5)") a,b,d,e,Nmax
!write(unit=7,fmt="(a)") " 11 : 12 : ml : mul : m2 : mu2
ii

!wri te(unit=7,fmt="(2fl0.4, i 5,flO.4, i 5,flO. 4) ")
1(1),1(2), m(l),mu(l),m(2),mu(2)
!write(unit=7,fmt="(a)") "The stationary distn is:"
!do i = 1,2
! write(unit=7,fmt="(a,i4)") "class = ",i
! do n = O.Nmax
! write(unit=7,fmt="(a,i4,a,i5,a,fl6.12)") "pi(",i,",",n,")= ",pi(i,n)
! end do
lend do
!close(unit=7)

return
end subroutine

subroutine Windex2(indata,r,Nmax,pi ,w)
implicit none

integer :: Nmax,BError,j,n, k, r
integer, dimension(2) :: m,buffer
double precision :: a,b,d,e,TOL
double precision, dimension(2) :: l,mu
double precision, dimension (200,8) :: indata
double precision, dimension(2,0:Nmax) :: pi
double precision, dimension(2,0:Nmax) :: W,EC
double precision, dimension(2,0:Nmax+Nmax) :: c

cal 1 qvals(indata,r,a,b,d,e,l,m,mu,Nmax,buffer,BError,TOL)

Icalculate the markov chain transition matrix
w = 0.0
C = 0.0
EC = 0.0

do n=buffer(l),Nmax+Nmax
C(l,n) = a*(real(n-buffer(l))**1.0) + b*(real(n-buffer(l))**2.0)

end do

do n=buffer(2),Nmax+Nmax
C(2,n) = d*(real(n-buffer(2))**1.0) + e*(real(n-buffer(2))**2.0)

end do

do k = 1,2

do n = 0,Nmax
do j = 0,Nmax

EC(k,n) = EC(k,n) + C(k,n+j)*pi(k,j)

! if (n >= 32) then
! open (unit=7,file="forming.dat")
! write(unit=7,fmt="(3i4,3fl6.4)") k,n,j,EC(k,n),c(k,n+j),pi(k,j)
! end if

end do
end do

Icalculate the actual index

I open (unit=7,file="formingl.dat")
do n = l.Nmax

Page 4

Appendix E

! write(unit=7,fmt="(2i4,3fl6.4)") k,n,EC(k,n)
w(k,n) = (EC(k,n) - EC(k,n-l))/(m(k)/mu(k))

end do

w(k,0) = 0.0

end do
!close(unit=7)

!open (unit=7,file="lndices.dat")
!write(unit=7,fmt="(a)") "The indices are:"
!do i = 0,Nmax
!write(unit=7,fmt="(2fl6.4)") W(:,i)
lend do
!close(unit=7)

return
end subroutine

subroutine arrnext(k,Nmax,nl,n2,numl,num2)
implicit none

integer :: Nmax,nl,n2,k,numl,num2

if(k==l) then
numl = nl
if(nl<Nmax) then
numl = nl+1

end if
end if

if(k==2) then
num2 = n2
if(n2<Nmax) then

num2 = n2+l
end if

end if

return
end subroutine

subroutine sernext(k,m,nl,n2,numl,num2,ml,m2,muml,mum2)
implicit none

integer :: nl,n2,k,numl,num2,ml,m2,muml,mum2
integer, dimension(2) :: m

if(k==l) then
numl = nl
muml = ml
if(ml<m(l) .and. ml>0) then

muml = ml+1
else if(ml<m(l) .and. ml==0) then !unsure

muml = 2
else if(ml==m(l)) then
numl = nl-1
muml = 0

end if
end if

if(k==2) then
num2 = n2
mum2 = m2
if(m2<m(2) .and. m2>0) then

mum2 = m2+l
else if(m2<m(2) .and. m2==0) then lunsure

Page 5

Appendix E
mum2 = 2

else if(m2==m(2)) then
num2 = n2-l
mum2 = 0

end if
end if

return
end subroutine

!nb here we have a state space of (nl,ml,n2,m2) where ml is the
Inumber of phase completions we have done for class 1, i.e, ml
Istarts off at 0 and goes upto m(l)-l, as when the m(l)th phase
Icompletion is over nl goes to nl-1 and ml goes back to 0 as this
!is the start of the service of the next queuing customer, (similarly for
m2)

ithis subroutine only looks at virtual possible events occuring, i.e. there
!are events occuring which could not really happen but the effects of
!such events is nothing.

!Now we have an extra state, m=l is where we have started a service
!but have not finished the first phase of that service.

subroutine optcosts3(indata,r,Nmax,oc)
implicit none

integer ::
Nmax,BError,n,nl,n2,count,ml,m2,r,numl,num2,mumbl,mumb2,numbl,numb2
integer, dimension(2) :: m,buffer
integer, dimension(4) :: Sele,Lele
double precision :: a,b,d,e,TOL,u,smallest,largest,diff,OC,optl,opt2
double precision, dimension(2) :: l,mu
double precision, dimension (200,8) :: indata
double precision, dimension(2,0:Nmax) :: c
double precision, allocatable, dimension(:,:,:,:) :: void,vnew

call qvals(indata,r,a,b,d,e,l,m,mu,Nmax,buffer,berror.TOL)

allocate(vold(0:Nmax,0:m(l),0:Nmax,0:m(2)))
allocate(vnew(0:Nmax,0:m(l),0:Nmax,0:m(2)))

TOL = 0.0005
C = 0.0

do n=buffer(l),Nmax
C(l,n) = a*(real(n-buffer(1))**1.0) + b*(real(n-buffer(l))**2.0)

end do

do n=buffer(2),Nmax
C(2,n) = d*(real(n-buffer(2))**1.0) + e*(real(n-buffer(2))**2.0)

end do

U = 1(1) + 1(2) + mu(l) + mu(2)
1(1) = l(l)/u
1(2) = 1(2)/U
mu(l) = mu(l)/u
mu(2) = mu(2)/U
Void =0.0
vnew =0.0
count = 0

14 void = vnew

count = count + 1

do nl = 0,Nmax
do n2 = 0,Nmax

do ml = 0,m(l)
do m2 = 0,m(2)

Page 6

Appendix E
cal1 arrnext(l,Nmax,nl,n2,numl,num2)
cai1 arrnext(2,Nmax,nl,n2,numl,num2)
cal1 sernext(l,m,nl,n2,numbl,numb2,ml,m2,mumbl,mumb2)
cal1 sernext(2,m,nl,n2,numbl,numb2,ml,m2,mumbl,mumb2)

if(nl>0 .and. n2>0) then

if(ml==0 .and. m2==0) then

optl = C(l,nl) + C(2,n2) + 1 (l)*vold(numl,1,n2,0) +
1(2)*Vold(nl,l,num2,0) &

& + mu(l)*vold(numbl,mumbl,n2,0) + mu(2)*vold(nl,1,n2,0)

opt2 = C(l,nl) + C(2,n2) + 1(l)*Vold(numl,0,n2,1) +
1 (2)*vold(nl,0,num2,l) &

& + mu(l)*vold(nl,0,n2,l) + mu(2)*vold(nl,0,numb2,mumb2)

if(optl<=opt2) then
Vnew(nl,ml,n2,m2) = optl

el se
vnew(nl,ml,n2,m2) = opt2

end if

else if(ml>0 .and. m2==0) then

vnew(nl,ml,n2,m2) = c(l,nl) + C(2,n2) + 1(l)*vold(numl,ml,n2,m2)
+ 1(2)*Vold(nl,ml,num2,m2) &

& + mu(l)*vold(numbl,mumbl,n2,m2) +
mu(2)*Vold(nl,ml,n2,m2)

else if(ml==0 .and. m2>0) then

Vnew(nl,ml,n2,m2) = C(l,nl) + C(2,n2) + 1(l)*vold(numl,ml,n2,m2)
+ 1(2)*Vold(nl,ml,num2,m2) &

& + mu(l)*vold(nl,ml,n2,m2) +
mu(2)*vold(nl,ml,numb2,mumb2)

end if

else if(nl>0 .and. n2==0) then

if(ml==0 .and. m2==0) then
Vnew(nl,ml,n2,m2) = cCl.nl) + C(2,n2) + 1(l)*vold(numl,1,n2,0) +

1(2)*vold(nl,1,num2,0) &
& + mu(l)*vold(numbl,mumbl,n2,0) +

mu(2)*vold(nl,1,n2,0)
else if(ml>0 .and. m2==0) then
vnew(nl,ml,n2,m2) = c(l,nl) + C(2,n2) + 1 (l)ftvold(numl,ml,n2,m2)

+ 1(2)*vold(nl,ml,num2,m2) &
& + mu(l)*vold(numbl,mumbl,n2,m2) +

mu(2)*vold(nl,ml,n2,m2)
end if

else if(nl==0 .and. n2>0) then

if(ml==0 .and. m2==0) then
vnew(nl,ml, n2 ,m2)= c(l,nl) + C(2,n2) + 1 (l),,rvold(numl,0,n2,1) +

1(2)*Vold(nl,0,num2,1) &
& + mu(l)*vold(nl,0,n2,l) + mu(2)*vold(nl,0,numb2,mumb2)

else if(ml==0 .and. m2>0) then
vnew(nl,ml,n2,m2) = C(l,nl) + C(2,n2) + 1 (l)<tvold(numl,ml,n2 ,m2)

+ 1(2)*vold(nl,ml,num2,m2) &
& + mu(l)*vold(nl,ml,n2,m2) +

mu(2)il;vold(nl,ml, numb2 ,mumb2)
end if

else if(nl==0 .and. n2==0) then

if(ml==0 .and. m2==0) then
vnew(nl,ml,n2,m2) = C(l,nl) + C(2,n2) + 1(1)*vold(numl,ml,n2,m2)

+ l(2)*vold(nl,ml,num2,m2) &
& + mu(l)*vold(nl,ml,n2,m2) +

mu(2)*vold(nl,ml,n2,m2)
end if

Page 7

Appendix E
end if

end do
end do

end do
end do

smallest = 1000000.0
largest = -1000000.0
Sele = 999
Lele = 999

do nl = l.Nmax-BError
do n2 = 0,Nmax-BError

do ml = l,m(l)

m2 = 0

if (smallest > Vnew(nl,ml,n2,m2) - vold(nl,ml,n2,m2)) then
smallest = Vnew(nl,ml,n2,m2) - Vold(nl,ml,n2,m2)
Sele = (/nl,ml,n2,m2/)

end if
if (largest < vnew(nl,ml,n2,m2) - vold(nl,ml,n2,m2)) then
largest = vnew(nl,ml,n2,m2) - vold(nl,ml,n2,m2)
Lele = (/nl,ml,n2,m2/)

end if

end do
end do

end do

do nl = 0,Nmax-BError
do n2 = l,Nmax-BError

do m2 = l,m(2)

ml = 0

if (smallest > vnew(nl,ml,n2,m2) - vold(nl,ml,n2,m2)) then
smallest = vnew(nl,ml,n2,m2) - vold(nl,ml,n2,m2)
sele = (/nl,ml,n2,m2/)

end if
if (largest < vnew(nl,ml,n2,m2) - vold(nl,ml,n2,m2)) then
largest = vnew(nl,ml,n2,m2) - vold(nl,ml,n2,m2)
Lele = (/nl,ml,n2,m2/)

end if

end do
end do

end do

nl = 0
n2 = 0
ml = 0

m2 = 0

if (smallest > vnew(nl,ml,n2,m2) - vold(nl,ml,n2,m2)) then
smallest = vnew(nl,ml,n2,m2) - vold(nl,ml,n2,m2)
Sele = (/nl,ml,n2,m2/)

end if
if (largest < vnew(nl,ml,n2,m2) - vold(nl,ml,n2,m2)) then
largest = vnew(nl,ml,n2,m2) - vold(nl,ml,n2,m2)
Lele = (/nl,ml,n2,m2/)

end if

diff = largest - smallest

!open(unit=7,fi1e="GSOdiff.txt")
!write(unit=7,fmt="(3fl6.4,8i4)") small est,largest,diff,Sele,Lele
if (count > 92500) goto 140
if (diff > smallest*TOL .or. diff < 0.0) goto 14

140 OC = (smallest + largest)/2.0
print*,100.0/OC

Page 8

Appendix E

!close(unit=7)

print*,"Count = ".count
print*,"The optimal policy cost this queue setup & parameters is ",OC

return
end subroutine

!NB here we have a state space of (nl,ml,n2,m2) where ml is the
Inumber of phase completions we have done for class 1, i.e, ml
!starts off at 0 and goes upto m(l)-l, as when the m(l)th phase
!completion is over nl goes to nl-1 and ml goes back to 0 as this
lis the start of the service of the next queuing customer, (similarly for
m2)

Ithis subroutine only looks at virtual possible events occuring, i.e. there
lare events occuring which could not really happen but the effects of
Isuch events is nothing.

Inow we have an extra state, m=l is where we have started a service
Ibut have not finished the first phase of that service.

subroutine WHiTcosts3(indata,r,Nmax,w,wc)
implicit none

integer ::
Nmax,BError,n,nl,n2,count,ml,m2,r,numl,num2,mumbl,mumb2,numbl,numb2
integer, dimension(2) :: m,buffer
integer, dimension(4) :: Sele.Lele
double precision :: a,b,d,e,TOL,u,smallest,1argest,diff,wc
double precision, dimension(2) :: l,mu
double precision, dimension (200,8) :: indata
double precision, dimension(2,0:Nmax) :: C,w
double precision, allocatable, dimension(:,:,:,:: vold.vnew

cal 1 qvals(indata,r,a,b,d,e,1,m,mu,Nmax,buffer,BError,tol)

allocate(vold(0:Nmax,0:m(l),0:Nmax,0:m(2)))
allocated vnew(0:Nmax,0:m(l),0:Nmax,0:m(2)))

TOL = 0.0005
C = 0.0

do n=buffer(l),Nmax
C(l,n) = a*(real(n-buffer(l))**1.0) + b*(real(n-buffer(l))**2.0)

end do

do n=buffer(2),Nmax
C(2,n) = d*(real(n-buffer(2))**1.0) + e*(real(n-buffer(2))**2.0)

end do

U = 1(1) + 1(2) + mu(l) + mu(2)
1(1) = l(l)/u
1(2) = 1(2)/u
mu(l) = mu(l)/u
mu(2) = mu(2)/U

void =0.0
vnew =0.0
count = 0

12 Void = vnew

count = count + 1

do nl = 0,Nmax
do n2 = 0,Nmax

do ml = 0,m(l)
do m2 = 0,m(2)

Page 9

Appendix E
cal1 arrnext(l,Nmax,nl,n2,numl,num2)
cal1 arrnext(2,Nmax,nl,n2,numl,num2)
cal1 sernext(l,m,nl,n2,numbl,numb2,ml,m2,mumbl,mumb2)
cal1 sernext(2,m,nl,n2,numbl,numb2,ml,m2,mumbl,mumb2)

if(nl>0 .and. n2>0) then

if(ml==0 .and. m2==0) then

if(w(l,nl) >= W(2,n2)) then

Vnew(nl,ml,n2,m2) = c(l,nl) + C(2,n2) + 1(l)*vold(numl,l,n2,0)
+ 1(2)*vold(nl,l,num2,0) &

& + mu(l)*vold(numbl,mumbl,n2,0) +
mu(2)*vold(nl,1,n2,0)

el se

Vnew(nl,ml,n2,m2) = C(l,nl) + C(2,n2) + 1(l)*vold(numl,0,n2,1)
+ 1(2)*vold(nl,0,num2,l) &

& + mu(l)*vold(nl,0,n2,1) +
mu(2)*vold(nl,0,numb2,mumb2)

end if

else if(ml>0 .and. m2==0) then

vnew(nl,ml,n2,m2) = c(l,nl) + C(2,n2) + 1(l)*Vold(numl,ml,n2,m2)
+ 1(2)*vold(nl,ml,num2,m2) &

& + mu(l)*vold(numbl,mumbl,n2,m2) +
mu(2)*vold(nl,ml,n2,m2)

else if(ml==0 .and. m2>0) then

vnew(nl,ml,n2,m2) = c(l,nl) + C(2,n2) + 1(l)*vold(numl,ml,n2,m2)
+ 1(2)*vold(nl,ml,num2,m2) &

& + mu(l)*vold(nl,ml,n2,m2) +
mu(2)*vold(nl,ml,numb2,mumb2)

end if

else if(nl>0 .and. n2==0) then

if(ml==0 .and. m2==0) then
vnew(nl,ml,n2,m2) = c(l,nl) + C(2,n2) + 1(l)*vold(numl,1,n2,0) +

1(2)*vold(nl,l,num2,0) &
& + mu(l)*vold(numbl,mumbl,n2,0) +

mu(2)*vold(nl,1,n2,0)
else if(ml>0 .and. m2==0) then
Vnew(nl,ml,n2,m2) = c(l,nl) + C(2,n2) + 1(l)*vold(numl,ml,n2,m2)

+ 1 (2)*vold(nl,ml,num2,m2) &
& + mu(l)*vold(numbl,mumbl,n2,m2) +

mu(2)*vold(nl,ml,n2,m2)
end if

else if(nl==0 .and. n2>0) then

if(ml==0 .and. m2==0) then
vnew(nl,ml,n2,m2)= C(l,nl) + C(2,n2) + 1(l)*vold(numl,0,n2,1) +

l(2)*vold(nl,0,num2,l) &
& + mu(l)*vold(nl,0,n2,l) + mu(2)*vold(nl,0,numb2,mumb2)

else if(ml==0 .and. m2>0) then
vnewCnl.ml,n2,m2) = C(l,nl) + C(2,n2) + 1(l)*vold(numl,ml,n2,m2)

+ 1C2)*vold(nl,ml,num2,m2) &
& + mu(l)*vold(nl,ml,n2,m2) +

mu(2)*vold(nl,ml,numb2,mumb2)
end if

else if(nl==0 .and. n2==0) then

if(ml==0 .and. m2==0) then
Vnew(nl,ml,n2,m2) = C(l,nl) + C(2,n2) + 1(l)*vold(numl,ml,n2,m2)

+ 1(2)*vold(nl,ml,num2,m2) &
& + mu(l)*vold(nl,ml,n2,m2) +

mu(2)*vold(nl,ml,n2,m2)
end if

Page 10

Appendix E
end if

end do
end do

end do
end do

smallest = 1000000.0
largest = -1000000.0
Sele = 999
Lele = 999

do nl = 1,Nmax-BError
do n2 = 0,Nmax-BError

do ml = l,m(l)

m2 = 0

if (smallest > vnew(nl,ml,n2,m2) - vold(nl,ml,n2,m2)) then
smallest = vnew(nl,ml,n2,m2) - vold(nl,ml,n2,m2)
Sele = (/nl,ml,n2,m2/)

end if
if (largest < vnew(nl,ml,n2,m2) - vold(nl,ml,n2,m2)) then
largest = vnew(nl,ml,n2,m2) - vold(nl,ml,n2,m2)
Lele = (/nl,ml,n2,m2/)

end if

end do
end do

end do

do nl = 0,Nmax-BError
do n2 = 1,Nmax-BError

do m2 = l,m(2)

ml = 0

if (smallest > vnew(nl,ml,n2,m2) - vold(nl,ml,n2,m2)) then
smallest = Vnew(nl,ml,n2,m2) - vold(nl,ml,n2,m2)
Sele = (/nl,ml,n2,m2/)

end if
if (largest < vnew(nl,ml,n2,m2) - vold(nl,ml,n2,m2)) then
largest = vnew(nl,ml,n2,m2) - vold(nl,ml,n2,m2)
Lele = (/nl,ml,n2,m2/)

end if

end do
end do

end do

nl = 0
n2 = 0
ml = 0

m2 = 0

if (smallest > vnew(nl,ml,n2,m2) - vold(nl,ml,n2,m2)) then
smallest = vnew(nl,ml,n2,m2) - vold(nl,ml,n2,m2)
Sele = (/nl,ml,n2,m2/)

end if
if (largest < Vnew(nl,ml,n2,m2) - vold(nl,ml,n2,m2)) then
largest = vnew(nl,ml,n2,m2) - Vold(nl,ml,n2,m2)
Lele = (/nl,ml,n2,m2/)

end if

diff = largest - smallest

!open(unit=7,fi1e="GSWdiff.txt")
!write(unit=7,fmt="(3fl6.4,8i4)") smal1 est,1argest,diff,sele,Leie

if (count > 92500) goto 120
if (diff > smallest*TOL .or. diff < 0.0) goto 12

120 wc = (smallest + largest)/2.0
print*,100.0/WC

Page 11

Appendix E

!close(unit=7)

print*,"count = ".count
print*,"The index policy cost this queue setup & parameters is ",wc

return
end subroutine

!NB here we have a state space of (nl.ml,n2,m2) where ml is the
!number of phase completions we have done for class 1, i.e, ml
!starts off at 0 and goes upto m(l)-l, as when the m(l)th phase
Icompletion is over nl goes to nl-1 and ml goes back to 0 as this
lis the start of the service of the next queuing customer, (similarly for
m2)

Ithis subroutine only looks at virtual possible events occuring, i.e. there
lare events occuring which could not really happen but the effects of
Isuch events is nothing.

!Now we have an extra state, m=l is where we have started a service
Ibut have not finished the first phase of that service.

subroutine LQcosts3(indata,r,Nmax,LC)
implicit none

integer ::
Nmax,BError,n,nl,n2,count,ml,m2,r,numl,num2,mumbl,mumb2,numbl,numb2
integer, dimension(2) :: m,buffer
integer, dimension(4) :: Sele.Lele
double precision :: a,b,d,e,TOL,u,smallest,largest,diff.LC
double precision, dimension(2) :: l,mu
double precision, dimension (200,8) :: indata
double precision, dimension(2,0:Nmax) :: c
double precision, allocatable, dimension(:,:,:,:) :: vold.vnew

cal 1 qvals(indata,r,a,b,d,e,l,m,mu,Nmax,buffe r,BError,TOL)

allocate(vold(0:Nmax,0:m(l),0:Nmax,0:m(2)))
allocated vnew(0:Nmax,0:m(l),0:Nmax,0:m(2)))

TOL = 0.0005
C = 0.0

do n=buffer(l),Nmax
C(l,n) = a*(real(n-buffer(l))**1.0) + b*(real(n-buffer(l))**2.0)

end do

do n=buffer(2),Nmax
C(2,n) = d*(real(n-buffer(2))**1.0) + e*(real(n-buffer(2))**2.0)

end do

U = 1(1) + 1(2) + mu(l) + mu(2)
1(1) = l(l)/u
1(2) = 1 (2)/U
mu(l) = mu(l)/U
mu(2) = mu(2)/U
void =0.0
vnew = 0.0
count = 0

16 void = vnew

count = count + 1

do nl = 0,Nmax
do n2 = 0,Nmax

do ml = 0,m(l)
do m2 = 0,m(2)

cal 1 arrnext(1,Nmax,nl,n2,numl,num2)
page 12

Appendix E
cal 1 arrnext(2,Nmax,nl,n2,numl,num2)
call sernext(l,m,nl,n2,numbl,numb2,ml,m2,mumbl,mumb2)
call sernext(2,m,nl,n2,numbl,numb2,ml,m2,mumbl,mumb2)

if(nl>0 .and. n2>0) then

if(ml==0 .and. m2==0) then

if(nl >= n2) then

vnew(nl,ml,n2,m2) = c(l,nl) + C(2,n2) + 1(l)*vold(numl,1,n2,0)
+ 1(2)*Vold(nl,1,num2,0) &

& + mu(l)*vold(numbl,mumbl,n2,0) +
mu(2)*vold(nl,1,n2,0)

el se

Vnew(nl,ml,n2,m2) = C(l,nl) + C(2,n2) + 1(l)*vold(numl,0,n2,1)
+ 1(2)*vold(nl,0,num2,1) &

& + mu(l)*vold(nl,0,n2,1) +
mu(2)"Vold(nl,0,numb2,mumb2)

end if

else if(ml>0 .and. m2==0) then

Vnew(nl,ml,n2,m2) = c(l,nl) + C(2,n2) + 1(l)*vold(numl,ml,n2,m2)
+ 1 (2)*vold(nl,ml,num2,m23 &

& + mu(l)*vold(numbl,mumbl,n2,m2) +
mu(2)*vold(nl,ml,n2,m2)

else if(ml==0 .and. m2>0) then

vnew(nl,ml,n2,m2) = C(l,nl) + c(2,n2) + 1(l)*vold(numl,ml,n2,m2)
+ 1(2)*Vold(nl,ml,num2,m2) &

& + mu(l)*vold(nl,ml,n2,m2) +
mu(2)ftvold(nl,mlInumb2,mumb2)

end if

else if(nl>0 .and. n2==0) then

if(ml==0 .and. m2==0) then
vnew(nl,ml,n2,m2) = C(l,nl) + C(2,n2) + 1(l)*vold(numl,1,n2,0) +

1(2)*vold(nl,1,num2,0) &
& + mu(l)*vold(numbl,mumbl,n2,C0 +

mu(2)AVold(nl,l,n2,0)
else if(ml>0 .and. m2==0) then
VnewCnl,ml,n2,m2) = C(l,nl) + C(2,n2) + 1(l)*vold(numl,ml,n2,m2)

+ 1(2)*Vold(nl,ml,num2,m2) &
& + mu(l)Avold(numbl,mumbl,n2,m2) +

mu(2)ftvold(nl,ml,n2,m2)
end if

else if(nl==0 .and. n2>0) then

if(ml==0 .and. m2==0) then
vnew(nl,ml,n2,m2)= C(l,nl) + C(2,n2) + 1(l)*vold(numl,0,n2,1) +

1(2)*vold(nl,0,num2,1) &
& + mu(l)*vold(nl,0,n2,1) + mu(2)*vold(nl,0,numb2,mumb2)

else if(ml==0 .and. m2>0) then
vnewCnl,ml,n2,m2) = C(l,nl) + C(2,n2) + 1(l)*vold(numl,ml,n2,m2)

+ 1(2)*vold(nl,ml,num2,m2) &
& + mu(l)Avold(nl,ml,n2,m2) +

mu(2)*vold(nl,ml,numb2,mumb2)
end if

else if(nl==0 .and. n2==0) then

if(ml==0 .and. m2==0) then
Vnew(nl,ml,n2,m2) = C(l,nl) + C(2,n2) + 1 (l),!!:voldCnuml,ml,n2 ,m2)

+ 1(2)rtVold(nl,ml,num2,m2) &
& + mu(l)*vold(nl,ml,n2,m2) +

mu(2)*vold(nl,ml,n2,m2)
end if

end if

Page 13

Appendix E

end do
end do

end do
end do

smallest = 1000000.0
largest = -1000000.0
Sele = 999
Lele = 999

do nl = 1,Nmax-BError
do n2 = 0,Nmax-BError

do ml = l,m(l)

m2 = 0

if (smallest > vnew(nl,ml,n2,m2) - vold(nl,ml,n2,m2)) then
smallest = vnew(nl,ml,n2,m2) - Vold(nl,ml,n2,m2)
Sele = (/nl,ml,n2,m2/)

end if
if (largest < vnew(nl,ml,n2,m2) - vold(nl,ml,n2,m2)) then
largest = vnew(nl,ml,n2,m2) - vold(nl,ml,n2,m2)
Lele = (/nl.ml,n2,m2/)

end if

end do
end do

end do

do nl = 0,Nmax-BError
do n2 = 1,Nmax-BError

do m2 = l,m(2)

ml = 0

if (smallest > Vnew(nl,ml,n2,m2) - vold(nl,ml,n2,m2)) then
smallest = vnew(nl,ml,n2,m2) - Vold(nl,ml,n2,m2)
Sele = (/nl,ml,n2,m2/)

end if
if (largest < vnew(nl,ml,n2,m2) - Vold(nl,ml,n2,m2)) then
largest = Vnew(nl,ml,n2,m2) - Vold(nl,ml,n2,m2)
Lele = (/nl,ml,n2,m2/)

end if

end do
end do

end do

nl = 0
n2 = 0
ml = 0

m2 = 0

if (smallest > vnew(nl,ml,n2,m2) - vold(nl,ml,n2,m2)) then
smallest = vnew(nl,ml,n2,m2) - vold(nl,ml,n2,m2)
Sele = (/nl,ml,n2,m2/)

end if
if (largest < Vnew(nl,ml,n2,m2) - vold(nl,ml,n2,m2)) then
largest = vnew(nl,ml,n2,m2) - vold(nl,ml,n2,m2)
Lele = (/nl,ml,n2,m2/)

end if

diff = largest - smallest

!open(unit=7,file="GSLdiff.txt")
!write(unit=7,fmt="(Bf16.4,8i4)") smal1 est,1argest,diff,Sele,Leie
if (count > 92500) goto 160
if (diff > smallest*TOL .or. diff < 0.0) goto 16
160 LC = (smallest + largest)/2.0
print*,100.0/LC

Page 14

Appendix E
! close(unit=7)

print*,"Count = ".count
print*,"The longest queue policy cost this queue setup & parameters is ",LC
return
end subroutine

subroutine qvals(indata,r,a,b,d,e,l,m,mu,Nmax,buffer,BError.TOL)
implicit none

integer :: Nmax,BError,r
integer, dimension(2) :: m,buffer
double precision, dimension(2) :: mu,l
double precision :: a,b,d,e,TOL
double precision, dimension (200,8) :: indata

Nmax = 69
buffer(l) = 2
buffer(2) = 2
BError = 4

m(l) = 2
m(2) = 3

mu(l) = indata(r,l)
mu(2) = indata(r,2)
1(1) = indata(r,3)
1(2) = (indata(r,4) - (m(l)*l(l)/mu(l)))*mu(2)/m(2)
!print*,"12 = ",1(2)
Itraffic intensity = 2.0*1(l)/mu(l) + 3.0*1(2)/mu(2)

a = indata(r,5)
b = indata(r,7)
d = indata(r,6)
e = indata(r,8)

!b = 0.0
!e = 0.0

TOL = 0.0001

return
end subroutine

Page 15

Appendix F

This appendix contains the Fortran 95 code for the programme we used to simulate

the undiscounted service control costs as in Section 3.5.3. Here we consider the

index policy for a 5 class system compared to some other standard policies as

explained in the numerical section.

Appendix F
program simulation
implicit none

!a program to simulate a 5 customer class system in order to calc ave. cost

integer :: size,k,count,Nmax.num,r,BError,TLactsize,numsim,simnumb,i,temp
integer, dimension(3) :: seed
integer, dimension(500000) :: TLl
integer, dimension(5) :: buffer
integer, dimension(0:5) :: m
double precision : :
Tsi ze,TOL,SUMINDEXC,INDEXC,SUMINDEXSQ,INDEXVAR,AlCOSt,LONGQC,LQCOSt,MYOPICC,
MYCOSt,CMEWC,CMCOSt,STATICC,STCOSt,X
double precision ::
sumlongqc,sumlongqsq,longqvar,sumcmewc,sumcmewsq,cmewvar, &

&
SUMSTATICC,SUMSTATICSQ,STATICVAR,SUMMYOPICC,SUMMYOPICSQ,MYOPICVAR,in2Stat
double precision, dimension(0:5) :: l,mu
double precision, dimension(5) :: a,b
double precision, dimension(500000) :: tl2
double precision, dimension(5,100000) :: ia,aa
double precision, allocatable, dimension(:,:) :: c,w,pi

r = 1
call qvals(r,a,b,l,mu,m,Nmax,buffer,BError,TOL,size,Tsize)

allocate(C(5,0:Nmax))
allocated w(5,0:Nmax))
allocated pi(5,0:Nmax))

in2stat = Tsize*0.667

numsim = 70
open(unit=7,fi1e="simulationgam2data.dat")

!seed = (/29708,29005,30503/)
TLactsize = 0
IA = 0.0
AA = 0.0
TLl = 0
TL2 = 0.0

call random_number(x)
temp = 10 + int(10.0*x)
temp = 15
do simnumb = l.temp
call getarrivals(r,seed,Nmax,TLactsize,lA,AA,TLl,TL2)

! print*,"end part ",simnumb
end do

print*,"end first"

do r=4,4

call qvals(r,a,b,l,mu,m,Nmax,buffer,BError,TOL,size,Tsize)

do k = 1,5
do num=buffer(k),Nmax
C(k,num) = a(k)*(real(num-buffer(k))**3.0) +

b(k)*(real(num-buffer(k))**4.0)
end do

end do

cal 1 qvals(r,a,b,l,mu,m,Nmax,buffe r,BE rror,TOL,size,Tsize)
w = 0.0
!cal1 windex(r,Nmax,w)
call windexl(r,Nmax,pi)
call windex2(r,Nmax,pi,w)

SUMINDEXC =0.0
SUMINDEXSQ =0.0
INDEXVAR =0.0
INDEXC =0.0

SUMLONGQC =0.0

Page 1

Appendix F
SUMLONGQSQ =0.0
LONGQVAR =0.0
LONGQC =0.0

SUMMYOPICC =0.0
SUMMYOPICSQ =0.0
MYOPICVAR =0.0
MYOPICC =0.0

SUMSTATICC =0.0
SUMSTATICSQ =0.0
STATICVAR =0.0
STATICC =0.0

SUMCMEWC =0.0
SUMCMEWSQ =0.0
CMEWVAR =0.0
CMEWC =0.0

! open(unit=7,file="temp.dat")
print*,"index Policy"
write(unit=7,fmt="(a)") "index policy"
do simnumb = l.numsim

! print*,"number = ".simnumb
call getarrivals(r,seed,Nmax,TLactsize,iA,AA,TLl,TL2)

! write(unit=7,fmt="(a,1500i4)") "TLl = ",TLl(1500:3000)
! write(unit=7,fmt="(a)") " "
! writeCunit=7,fmt="(a,1500f20.4)") "TL2 = ",tl2(1500:3000)

cal 1 indexcost(r,seed,Nmax,TLactsize,TLl,TL2,W,Alcost)
SUMINDEXSQ = SUMINDEXSQ + AICOST**2.0
SUMINDEXC = SUMINDEXC + AlCOSt

! write(unit=7,fmt="(a,f12.6)") "indexc = ".aicost
end do
indexvar = (sumindexsq -

(real (numsim)*((sumlndexc/real (numsim))**2.0)))/(real (numsim-1))
!(sumindexsq/real(numsim)) - ((sumlndexc/real(numsim))**2.0)
indexc = sumlndexc/real(numsim)
print*,"Finished indexc = ".indexc

! write(unit=7,fmt="(a,fl2.6)") "Finished indexc = ".indexc
! write(unit=7,fmt="(a,fl2.6)") "Finished indexvar = ".indexvar
! close(unit = 7)

print*,"Longest Queue"
do simnumb = l.numsim

! print*,"number = ".simnumb
cal 1 getarrivals(r,seed,Nmax,TLactsize,ia,aa,tlI,tl2)
cal1 Tongestq(r,seed,Nmax,TLactsize,TLl,TL2,LQcost)
SUMLONGQSQ = SUMLONGOSQ + (LOCOST**2.0)
SUMLONGQC = SUMLONGQC + LQCOSt

end do
LONGQVAR = (SUMLONGQSQ -

(real(numsim)*((SUMLONGQC/real(numsim))**2.0)))/(real(numsim-1))
!(SUMLONGQSQ/real(numsim)) - ((SUMLONGQC/real(numsim))**2.0)
LONGQC = SUMLONGQC/real(numsim)
print*,"Finished LONGQ = ".LONGQC

print*,"C Mew Rule"
do simnumb = l.numsim

! print*,"number = ".simnumb
cal1 getarrivals(r,seed,Nmax,TLactsize.la.aa,TLl,TL2)
cal1 cmew(r,seed,Nmax,TLactsize,TLl,tl2,CMcost)
SUMCMEWSQ = SUMCMEWSQ + (CMCOST**2.0)
SUMCMEWC = SUMCMEWC + CMCOSt

end do
CMEWVAR = (SUMCMEWSQ -

(real(numsim)*((SUMCMEWC/real(numsim))**2.0)))/(real(numsim-1))
!(SUMCMEWSQ/real(numsim)) - ((SUMCMEWC/real(numsim))**2.0)
CMEWC = SUMCMEWC/real(numsim)
print*,"Finished CMEWC = ",CMEWC

print*,"Static Policy"
do simnumb = l.numsim

! print*,"number = ".simnumb
call getarrivals(r,seed,Nmax,TLactsize.ia.aa,TLl,TL2)

Page 2

Appendix F
cal1 static(r,seed,Nmax,TLactsize,TLl,TL2,STcost)
SUMSTATICSQ = SUMSTATICSQ + (STCOST**2.0)
SUMSTATICC = SUMSTATICC + STCOSt

end do
STATICVAR = (SUMSTATICSQ -

(real (numsim)*((SUMSTATlCC/real(numsim))**2.0)))/(real(numsim-1))
!(SUMSTATICSQ/real(numsim)) - ((SUMSTATlcc/real(numsim))**2.0)
STATICC = SUMSTATlcC/real(numsim)
print*,"Finished STATICC = ".STATICC

print*,"Myopic Policy"
do simnumb = 1,numsim

! print*,"number = ".simnumb
call getarrivals(r,seed,Nmax,TLactsize,lA,AA,TLl,TL2)
cal1 myopic(r,seed,Nmax.TLactsize,TLl,tl2.MYcost)
SUMMYOPICSQ = SUMMYOPICSQ + (MYCOST**2.0)
SUMMYOPICC = SUMMYOPICC + MYCOSt

end do
MYOPICVAR = (SUMMYOPICSQ -

(real(numsim)*((SUMMYOPICC/real(numsim))**2.0)))/(real(numsim-1))
!(SUMMYOPicSQ/real(numsim)) - ((SUMMYOPicc/real(numsim))**2.0)
MYOPICC = SUMMYOPICC/real(numsim)
print*,"Finished MYOPICC = ",MYOPICC

write(unit=7,fmt="(a,i6)")"# simulations = ".numsim
write(unit=7,fmt="(a,5fl0.6)")"a cost vector = ",a
write(unit=7,fmt="(a,5fl0.6)")"b cost vector = ",b
write(unit=7,fmt="(a,6fl0.6)")"arrivals vector = ",1
write(unit=7,fmt="(a,6fl0.6)")"service time vector = ",mu
write(unit=7,fmt="(a,fl0.4,a,fl0.4)") "Tsize = ",Tsize," in2stat =

",in2stat
write(unit=7,fmt="(a,i8,a,i5)") "Nmax = ",Nmax," numsim = ".numsim
write(unit=7,fmt="(a)") "******** index ********"
write(unit=7,fmt="(a,f19.12)") "COST = ".INDEXC
wri te(unit=7,fmt="(a,f19.12)") "SUB INDEX =

",100.0*(INDEXC-INDEXC)/INDEXC
write(unit=7,fmt="(a,fl9.12)") "Sample Mean S.D. =

",sqrt(lNDEXVAR/numsim)
write(unit=7,fmt="(a)") " "
write(unit=7,fmt="(a)") "******** longest queue ********"
write(unit=7,fmt="(a,fl9.12)") "cost = ",longqc
wri te(unit=7,fmt="(a,f19.12)") "sub index =

",100.0*(longqc-indexc)/indexc
write(unit=7,fmt="(a,fl9.12)") "sample Mean S.D. =

",sqrt(LONGQVAR/numsim)
write(unit=7,fmt="(a)") " "
write(unit=7,fmt="(a)") "******** cmew ********"
write(unit=7,fmt="(a,f19.12)") "cost = ",cmewc
wri te(unit=7,fmt="(a,f19.12)") "sub index =

",100.0*(cmewc-indexc)/indexc
write(unit=7,fmt="(a,fl9.12)") "Sample Mean S.D. =

",sqrt(CMEWVAR/numsim)
write(unit=7,fmt="(a)") " "
write(unit=7,fmt="(a)") "******** myopic ********"
write(unit=7,fmt="(a,fl9.12)") "cost = ",myopicc
write(unit=7,fmt="(a,f19.12)") "sub index =

",100.0*(myopicc-indexc)/indexc
write(unit=7,fmt="(a,fl9.12)") "sample Mean S.D. =

",sqrt(MYOPlcVAR/numsim)
write(unit=7,fmt="(a)") " "
write(unit=7,fmt="(a)") "******** static ********"
write(unit=7,fmt="(a,f19.12)") "cost = ".staticc
write(unit=7,fmt="(a,fl9.12)") "sub index =

",100.0*(staticc-indexc)/indexc
write(unit=7,fmt="(a,fl9.12)") "Sample Mean S.D. =

",sqrt(STATICVAR/numsim)
write(unit=7,fmt="(a)") " "

! write(unit=7,fmt="(a,fl6.12,a,fl6.12,a,fl6.12)") "longest q : cost =
".longqc," : sub index = ",100.0*(longqc-indexc)/lndexc,"Sample Error = ",
! write(unit=7,fmt="(a,f16.12,a,fl6.12,a,fl6.12)") "cmew : cost =
",cmewc," : sub index = ",100.0*(cmewc-indexc)/indexc,"Sample Error = ",
! write(unit=7,fmt="(a,fl6.12,a,fl6.12,a,fl6.12)") "myopic : cost =
".myopicc," : sub index = ",100.0*(myopicc-indexc)/indexc,"sample Error = ",
! write(unit=7,fmt="(a,f16.12,a,fl6.12,a,fl6.12)") "static : cost =

Page 3

Appendix F
".STATICC," : SUB INDEX = ",100.0*(STATICC-INDEXC)/INDEXC,"Sample Error =
! wri te(unit=7,fmt="(a)") " "
!
end do

close(unit=7)

end program

subroutine uniform(seed,Low,upp,x)
implicit none
integer, dimension(3) :: seed
double precision :: r,s,x,Low,upp

seed(l) = mod(171*seed(l),30269)
seed(2) = mod(172*seed(2),30307)
seed(3) = mod(170*seed(3),30323)

s = seed(l)*ld0/30269 + seed(2)*ld0/30307 + seed(3)*ld0/30323
r = s - int(s)

x = Low + (upp-Low)*r

return
end subroutine

subroutine factorial(z,fact)
implicit none

integer :: z,i
double precision :: fact,tot

tot = 1

if (z > 0) then

do i = l,z

tot = tot*real(i)

end do

fact = tot

else if (z == 0) then

fact = 1.0

el se

print*,"ERROR cannot find factorial of negative number"
fact =0.0

end if

return
end subroutine

i

subroutine windexl(r,Nmax,pi)
implicit none

integer :: Nmax.BError,j,i,n,k,r,size,STATFAlL,h,nummatmul
integer, dimension(5) :: buffer
integer, dimension(0:5) :: m
double precision :: TOL,tempi,temp2,temp3.Tsize,upp,low,Psum

Page 4

Appendix F
double precision, dimension(5) :: a,b
double precision, dimension(0:5) :: l,mu

double precision, dimension(5,0:Nmax) :: Delta,pi
double precision, dimension(0:Nmax,0:Nmax,5) :: P

cal1 qvals(r,a,b,l,mu,m,Nmax,buffe r,BEr ror,TOL,size,Tsize)

(calculate the markov chain transition matrix

Delta = 0.0
statfail = 0
nummatmul = 0

do k = 1,5

call factorial(m(k)-l,temp3)

do j = 0,Nmax

call factorial(m(k)+j-l,tempi)
call factorial(j,temp2)

Delta(k,i) = (templ/(temp2*temp3))*((1(k)/(l(k)+mu(k)))**(real(i))
)*((mu(k)/(l(k)+mu(k)))**(real(m(k))))
! Delta(k,j) = ((1(k)*mu(k))**real(j))*(exp(-1.0*l(k)*mu(k)))/temp2

end do
print*,"delta(",k,",0) = ",delta(k,0)
p(:,:,k) = 0.0

do i = 0,Nmax

p(0,i,k) = Delta(k,i)

end do
print*,"PC",k,",0,0) = ",P(0,0,k)
P(l,:,k) = P(0,:,k)

do j = l,Nmax-l
do i = j,Nmax

p(j+l,i,k) = Delta(k,i-j)

end do
end do

end do

Irenormalize to ensure that sum of probabilities = 1
do k = 1,5

do i = O.Nrnax
Psum = 0.0
do j = 0,Nmax

Psum = psum + P(i,j,k)
end do
do j = 0,Nmax
P(i.j,k) = P(i,j,k)/Psum

end do
end do

end do

(calculate the state probabilities - pi(k,j)
pi = 0.0

(am = p(l,:,:)
!BM = P(2,:,

do k = 1,5
nummatmul = 0
75 statfail = 0
nummatmul = nummatmul + 1
p(:,:,k) = matmul(P(:,:,k),P(:,:,k))
!renormalize to ensure that sum of probabilities = 1
do i = 0,Nmax

Page 5

Appendix F
Psum = 0.0
do j = 0,Nmax

Psum = Psum + P(i,j,k)
end do
do j = 0,Nmax
P(i,j,k) = P(i,j,k)/Psum

end do
end do

!check that all rows of P are the same - i.e. stat distn
do h=0,Nmax

upp = P(0,h,k) + 0.00005
low = P(0, h, k) - 0.00005
do i = 0,Nmax
if (P(j,h,k) > upp .or. P(j,h,k) < low) then

! print*,"error: problem with stat distn",k,j,h
STATFAIL = 1

end if
end do

end do
if (nummatmul >= 40) goto 80
if (STATFAIL == 1) goto 75
80 print*,"nummatmul ",k," = ".nummatmul
print*,"P(5,0,",k,") = ",p(5,0,k)
print*,"PC,0,5",k,") = ",P(0,5,k)

end do

STATFAIL = 0

do k = 1,5
!check that all rows of P are the same - i.e. stat distn
do i=0,Nmax-3

upp = P(0,i,k) + 0.00005
low = P(0,i,k) - 0.00005
do j = 0,Nmax-3
if (P(j,i,k) > upp .or. P(j,i,k) < low) then

! print*,"ERROR: problem with stat distn",j,i,k
STATFAIL = 1

end if
end do

end do

end do

do k = 1,5
pi(k,:) = P(0,:,k)

!pi(2, :) = BM(0, :)
end do

!open (unit=7,fi1e="GSstatdistmat.dat")
!write(unit=7,fmt="(a)") " bl : cl : b2 : c2 : Nmax"
Iwrite(unit=7,fmt="(4fl0.4,i5)") a(l),b(l),a(2),b(2),Nmax
!write(unit=7,fmt="(a)") " 11 : 12 : ml : mul : m2 : mu2
ti

!write(unit=7,fmt="(2f10.4,i5,f10.4,i5,f10.4)")
1(1),1(2),m(l),mu(l),m(2),mu(2)
!write(unit=7,fmt="(a)") "The stationary distn is:"
!do k = 1,2
! write(unit=7,fmt="(a)") " "
! write(unit=7,fmt="(a,i4)") "class = ",k
! do i = 0,Nmax
! write(unit=7,fmt="(70fl2.6)") P(:,i,k)
! end do
lend do
I
!do i = 1,5
! write(unit=7,fmt="(a,i4)") "class = ",i
! do n = 0,Nmax
! write(unit=7,fmt="(a,i4,a,i5,a,fl6.12)") "pi(",i,",",n,")= ",pi(i,n)
! end do
lend do
Iclose(unit=7)
j
return
end subroutine

Page 6

Appendix F

subroutine windexlold(r,Nmax, pi)
implicit none

integer :: Nmax,BError,j,i,n,k,r, size
integer, dimension(5) :: buffer
integer, dimension(0:5) :: m
double precision :: TOL,tempi,temp2,temp3,Tsize
double precision, dimension(5) :: a,b
double precision, dimension(0:5) :: l,mu

double precision, dimension(5,0:Nmax) :: Delta,pi
double precision, dimension(5,0:Nmax,0:Nmax) :: p

call qvals(r,a,b,l,mu,m,Nmax,buffer,BError,TOL,size,Tsize)

icalculate the markov chain transition matrix

Delta =0.0

do k = 1,5

call factorial(m(k)-l,temp3)

do j = 0,Nmax

call factorial(m(k)+j-l,tempi)
call factorial(j,temp2)

Delta(k,j) = (templ/(temp2*temp3))*((1(k)/(l(k)+mu(k)))**(real(j)))*(
(mu(k)/(l(k)+mu(IO))**(real(m(k))))
! Delta(k,j) = ((mu(k)*l(k))**j)*(exp(-1.0*mu(k)*l(k)))/temp2

end do

P(k,:,:) = 0.0

do i = 0,Nmax

P(k,0,i) = Delta(k,i)

end do

P(k,1,:) = P(k,0,:)

do j = l,Nmax-l
do i = j,Nmax

P(k,j+l,i) = Delta(k,i-j)

end do
end do

end do

icalculate the state probabilities - pi(k,j)
pi = 0.0

!AM = P(l,:, :)
IBM = P(2,: , :)

do k = 1,5
do i = 1,20
P(k,:,:) = matmul(P(k,:,,P(k,:,

! BM = matmul(BM,BM)
end do

end do

do k = 1,5
pi(k,:) = P(k,0,:)

!pi(2, :) = BM(0, :)
end do

Page 7

Appendix F

!open (unit=7,fi1e="GSstatdistmat.dat")
!write(unit=7,fmt="(a)") " bl : cl : b2 : c2 : Nmax"
!write(unit=7,fmt="(4fl0.4,i5)") a(l),b(l),a(2),b(2),Nmax
!write(unit=7,fmt="(a)") " 11 : 12 : ml : mul : m2 : mu2
ii

!write(unit=7,fmt="(2fl0.4,i5,flO.4,i5,flO.4)")
1(1),1(2),m(l),mu(l),m(2),mu(2)
write(unit=7,fmt="(a)") "The stationary distn is:"
do k = 1,2
write(unit=7,fmt="(a)") " "
write(unit=7,fmt="(a,i4)") "class = ",k
do i = O.Nmax
write(unit=7,fmt="(101fl2.6)") P(k,i,

end do
end do

do i = 1,5
write(unit=7,fmt="(a,i4)") "class = ",i
do n = O.Nmax
write(unit=7,fmt="(a,i4,a,i5,a,fl6.12)") "pi(",i,",",n,")= ",pi(i,n)

end do
end do
close(unit=7)

return
end subroutine
i

subroutine windex2(r,Nmax,pi,w)
implicit none

integer :: Nmax,BError,j,n,k,r,size,num
integer, dimension(5) :: buffer
integer, dimension(0:5) :: m
double precision :: TOL.Tsize
double precision, dimension(5) :: a,b
double precision, dimension(0:5) :: l,mu

double precision, dimension(5,0:Nmax) :: pi
double precision, dimension(5,0:Nmax) :: W,EC
double precision, dimension(5,0:Nmax+Nmax) :: C

cal1 qvals(r,a,b,l,mu,m,Nmax,buffer,BError,TOL,size,Tsi ze)

Icalculate the markov chain transition matrix
w = 0.0
C = 0.0
EC = 0.0

do k = 1,5

do num=buffer(l),Nmax+Nmax
C(k,num) = a(k)*(real(num-buffer(k))**3.0) +

b(k)*(real (num-buffer(k))**4.0)
end do

do n = 0,Nmax
do j = 0,Nmax

EC(k,n) = EC(k,n) + c(k,n+j)*pi(k,j)

if (n >= 32) then
open (unit=7,file="forming.dat")
write(unit=7,fmt="(3i4,3fl6.4)") k,n,j,EC(k,n),C(k,n+j),pi(k,j)

end if

end do
end do

Icalculate the actual index

open (unit=7,fi1e="formingl.dat")

Page 8

Appendix F
do n = l,Nmax

! write(unit=7,fmt="(2i4,3fl6.4)") k,n,EC(k,n)
if (mu(k) < 999999.999999) w(k,n) = (EC(k,n) - EC(k,n-l))/(m(k)/mu(k))

end do

w(k,0) = 0.0

end do
!close(unit=7)

!open (unit=7,fi1e="lndices2.dat")
!write(unit=7,fmt="(a)") "The indices are:"
!do k = 0,Nmax
!write(unit=7,fmt="(5f16.4)") w(:,k)
lend do
!close(unit=7)

return
end subroutine

subroutine getarrivals(r,seed,Nmax,TLactsize,lA,AA,TLl,TL2)
implicit none

integer :: size,sclass,k,col,count,Nmax,r,BError.TLactsi ze
integer, dimension(3) :: seed
integer, dimension(500000) :: TLl
integer, dimension(5) :: buffer
integer, dimension(0:5) :: numarr.m
double precision :: x,smallest,smallestold,ssum,Tsize,actsize,TOL
double precision, dimension(0:5) :: l,mu
double precision, dimension(5) :: a,b
double precision, dimension(500000) :: TL2
double precision, dimension(5,100000) :: ia,aa

cal1 qvals(r,a,b,l,mu,m,Nmax,buffe r,BEr ror,TOL,size,Tsize)

IA = 0.0
AA = 0.0
TLl = 0
TL2 = 0.0
numarr = 0

count = 0

do k = 1,10
call random_number(x)

end do

10 count = count + 1
Iprint*,""
ssum = 99999.99

do k = 1,5
call random_number(x)
if (l(k) > 0.00001) lA(k,count) = -1.0*log(x)/l(k)
if (count == 1) then
AA(k,count) = lA(k,count)

el se
AA(k,count) = AA(k,count-1) + lA(k,count)

end if
if (ssum > AA(k,count) .and. 1(k) > 0.0000001) ssum = AA(k,count)

end do
!print*,"ssum = ",ssum
if (ssum < Tsize .and. count < size) goto 10

if (count >= size) print*,"ERROR: Need bigger matrices & to simulate more
values"

actsize = count

Page 9

Appendix F
do k = 1,5

do col = l,actsize
if (AA(k.col) < Tsize .and. 1(k) > 0.0000001) numarr(k) = col

end do
end do

!print*,"numarr = ".numarr

TLactsize = 0
do k = 1,5
TLactsize = TLactsize + numarr(k)

end do

smallestold = -99999999.99
do count = l,TLactsize+5
if (count > 1) smallestold = smallest
smallest = 999999999.99
do col = l,actsize

do k = 1,5
if (smallest > AA(k,col) .and. AA(k,col) > smallestold .and. 1(k) >

0.000001) then
smallest = AA(k,col)
sclass = k

end if
end do

end do
TLl(count) = sclass
tl2 (count) = smallest

end do

!open(unit=7,fi1e="simdata2.dat")
!write(unit=7,fmt="(a)") "IA = "
!do k=l,5
! write(unit=7,fmt="(50fl2.6)") IA(k,1:500)
lend do
!print*," "

!write(unit=7,fmt="(a)") "aa = "
!do k=l,5
! write(unit=7,fmt="(50fl2.6)") AA(k,1:500)
lend do
I print*," "

!write(unit=7,fmt="(a)") "TLl = "
Iwrite(unit=7,fmt="(100i4)") TLl(:)
!
!write(unit=7,fmt="(a)") "tl2 = "
Iwrite(unit=7,fmt="(100fl2.6)") TL2(1:100)
!
I print*," "
I Iprint*,"csize = ",csize
!print*,"actsize = ".actsize
I print*,"TLactsize = ".TLactsize
Iclose(unit=7)
1
return
end subroutine

subroutine indexcost(r,seed,Nmax.TLactsize,TLl,TL2,w,Aicost)
implicit none

integer

integer,
integer,
integer,
integer,
double
double
double
double
double

:: size,k,count,custserve,event,state,Nmax,num,r,BError, &
& i.TLactsize,marker,custserveold.arrivalold

dimension(3) :: seed
dimension(500000) :: TLl
dimension(5) :: buffer
dimension(0:5) :: n,numserved,m

precision :: Tsize,Tservice,stable,in2stat.TTservice
precision :: lastevent,endserve,NEtime,bigind,Tcost,Alcost,TOL
precision, dimension(0:5) :: l,mu
precision, dimension(5) :: a,b
precision, dimension(500000) :: TL2

Page 10

Appendix F
Idouble precision, dimension(5,100000) :: IA,AA
double precision, dimension(5,0:Nmax) :: c,w

call qvals(r,a,b,l,mu,m,Nmax,buffer,BError.TOL,size,Tsize)
TTservice = 0.0
Tservice = 0.0
marker = 0
numserved = 0
in2stat = Tsize*0.667

Alcost =0.0

!test to ensure that we have stable queues
stable =0.0
do k = 1,5
if (mu(k) < 999999.999999) stable = stable + 1(k)*m(k)/mu(k)

end do
if (stable >= 1.0) print*,"ERROR: UNSTABLE SYSTEM!!!"

do k = 1,5
do num=buffer(k),Nmax
c(k,num) = a(k)*(real(num-buffer(k))**3.0) +

b(k)*(real(num-buffer(k))**4.0)
end do

end do

Tcost = 0.0
n = 0
TTservice = 0.0

event = 1
nCTLl(l)) = n(TLlCl)) + 1
lastevent = TL2(1)

custserve = TLl(l)
cal1 gammaservice(r,custserve.Tservice)
endserve = lastevent + Tservice

if (lastevent > in2stat) then
marker = 1

end if

!open(unit=7,fi1e="SimlndexCostR.dat")
!write(unit=7,fmt="(a)") " W(l,:) : w(2,:) : w(B,:) : w(4,:)
w(5, :) "
!do i = 0,Nmax
! write(unit=7,fmt="(i4,5fl2.6)") i,w(:,i)
!end do
!close(unit=7)

!open(unit=7,fi1e="simresultslN.txt")!"serviceln.txt")

! write(unit=7,fmt="(a,i5)") "event # = ".event
! write(unit=7,fmt="(a,i5)") "custserve class = ".custserve
! write(unit=7,fmt="(a,fl2.6)") "endserve = ".endserve
! write(unit=7,fmt="(a,fl2.6)") "Tservice = ".Tservice
! write(unit=7,fmt="(a,fl2.6)") "NEtime = ".NEtime
! write(unit=7,fmt="(a,6i5)") "state = ",n
! write(unit=7,fmt="(a,f12.6)") "tl2 = ",tl2(event)
! write(unit=7,fmt="(a,f20.3)") "Tcost = ".Tcost
! write(unit=7,fmt="(a,fl2.6)") "Tcost/size = ",Tcost/(Lastevent-in2stat)
! wri te(unit=7,fmt="(a)") " "

event = 2
20 custserveold = -1

arrivalold = -1

state = 0
do k = 1,5
state = state + n(k)

end do

if(TL2(event) < endserve .or. state == 0) then
if(TL2(event) < Tsize) then

Page 11

Appendix F
NEtime = TL2(event) - lastevent
lastevent = TL2(event)

el se
NEtime = Tsize - lastevent
lastevent = Tsize

end if

if (state == 0) then
custserve = TLl(event)
cal1 gammaservice(r,custserve,Tservice)
endserve = lastevent + Tservice

write(unit=7,fmt="(a,fl2.6)") "Tservice = ".Tservice !!
numserved(custserve) = numserved(custserve) + 1

end if

arrivalold = TLl(event)
event = event + 1

el se
if(endserve < Tsize) then
NEtime = endserve - lastevent
lastevent = endserve

el se
NEtime = Tsize - lastevent
lastevent = Tsize

end if
custserveold = custserve
n(custserve) = n(custserve) - 1
state = 0
do k = 1,5
state = state + n(k)

end do
bigind = -9999.99
do k = 1,5
if (n(k) > 0) then
if (bigind < w(k,n(k))) then
bigind = w(k,n(k))
custserve = k

end if
end if

end do
if (state == 0) custserve = 0

cal 1 gammaservice(r,custserve,Tservice)
if (state > 0) endserve = lastevent + Tservice

write(unit=7,fmt="(a,fl2.6)") "Tservice = ".Tservice !!
n(custserveold) = n(custserveold) + 1
numserved(custserve) = numserved(custserve) + 1

end if

if (lastevent > in2stat) then
if (marker == 0) then
NEtime = lastevent - in2stat

end if
marker = 1

end if

do k = 1,5
Tcost = Tcost + C(k,n(k))*NEtime*real(marker)

end do

!!!!!!!!!
if (arrivalold > 0 .and. n(arrivalold) < Nmax) n(arrivalold) =
(arrivalold) + 1
if (custserveold >= 0 .and. n(custserveold) >= 1) n(custserveold)
(custserveold) - 1
state = 0
do k = 1,5
state = state + n(k)

end do

TTservice = TTservice + Tservice

Page 12

Appendix F
write(unit=7,fmt="(a,i5)") "event # = ".event
write(unit=7,fmt="(a,i5)") "custsenve class = ".custsenve
write(unit=7,fmt="(a,fl2.6)") "endsenve = ".endserve
write(unit=7,fmt="(a,fl2.6)") "Tsenvice = ".Tservice
write(unit=7,fmt="(a,fl2.6)M) "NEtime = ".NEtime
write(unit=7,fmt="(a,6i5)") "state = ",n
write(unit=7,fmt="(a,fl2.6)") "tl2 = ",TL2(event)
write(unit=7,fmt="(a,f20.3)") "Tcost = ".Tcost
write(unit=7,fmt="(a,fl2.6)") "Tcost/size = ",Tcost/(Lastevent-in2stat)
write(unit=7,fmt="(a)") " "

if (event < TLactsize) goto 20
!write(unit=7,fmt="(a,fl2.6)") "TTservice = ".TTservice
!write(unit=7,fmt="(a,6i6)") "numserved = ".numserved
!print*,"Tcost = ".Tcost
!print*,"Tsize = ".Tsize
!print*,"in2stat = ",in2stat
Alcost = Tcost/(Tsize-in2stat)
!print*,"index: average costs = ",Acost
iprint*,"stable = ".stable
!close(unit=7)

return
end subroutine

subroutine 1ongestq(r,seed,Nmax,TLactsize,TLl,tl2,LQcost)
implicit none

integer :: size,k,count,custserve,event,state,Nmax,num,r,BError, &
& i,TLactsize,bigind,marker,custserveold.arrivalold

integer, dimension(3) :: seed
integer, dimension(500000) :: TLl
integer, dimension(5) :: buffer
integer, dimension(0:5) :: n,numserved,m
double precis
double precis
double precis
double precis
double precis

on :: x,Tsize,Tservice,stable,in2stat,TTservice
on :: lastevent,endserve,NEtime,Tcost,LQcost,tol
on, dimension(0:5) :: l,mu
on, dimension(5) :: a,b
on, dimension(500000) :: TL2

double precision, dimension(5,0:Nmax) :: C

cal1 qvals(r,a,b,1,mu,m,Nmax,buffer,BError,TOL,size,Tsize)
TTservice = 0.0
marker = 0
numserved = 0
in2stat = Tsize*0.667

Itest to ensure that we have stable queues
stable =0.0
do k = 1,5
if (mu(k) < 999999.999999) stable = stable + 1(k)*m(k)/mu(k)

end do
if (stable >= 1.0) print*,"error: unstable system!!!"

do k = 1,5
do num=buffer(k),Nmax
C(k,num) = a(k)*(real(num-buffer(k))**3.0) +

b(k)*(real(num-buffer(k))**4.0)
end do

end do

do i = 1,10
call random_number(x)

end do

Tcost = 0.0
n = 0

n(TLl(l)) = n(TLl(l)) + 1
lastevent = tl2(1)

custserve = TLl(l)

Page 13

Appendix F
cal1 gammaservice(r,custserve,Tservi ce)
endserve = lastevent + Tservice

if (lastevent > in2stat) then
marker = 1

end if

!do k = 1,5
! Tcost = Tcost + C(k,n(k))*NEtime
lend do

!open(unit=7,file="SimlndexCostR.dat")
!write(unit=7,fmt="(a)") " w(l,:) : w(2,:) : w(3,:) : w(4,:)
w(5, :) "
!do i = O.Nmax
! write(unit=7,fmt="(i4,5fl2.6)") i,w(:,i)
lend do
Iclose(unit=7)

!open(unit=7,file="simresultsLQ.txt")

event = 2
20 custserveold = -1

arrivalold = -1

state = 0
do k = 1,5
state = state + n(k)

end do
if(TL2(event) < endserve .or. state == 0) then
if(tl2(event) < Tsize) then
NEtime = TL2(event) - lastevent
lastevent = TL2(event)

el se
NEtime = Tsize - lastevent
lastevent = Tsize

end if

if(state == 0) then
custserve = TLl(event)
call gammaservice(r,custserve,Tservi ce)
endserve = lastevent + Tservice
numserved(custserve) = numserved(custserve) + 1

end if

arrivalold = TLl(event)
event = event + 1

else
if(endserve < Tsize) then
NEtime = endserve - lastevent
lastevent = endserve

el se
NEtime = Tsize - lastevent
lastevent = Tsize

end if
custserveold = custserve
n(custserve) = n(custserve) - 1
state = 0
do k = 1,5
state = state + n(k)

end do
bigind = -999
do k = 1,5
if (n(k) > 0) then
if (bigind < n(k)) then
bigind = n(k)
custserve = k

end if
end if

end do
if (state == 0) custserve = 0
cal1 gammaservice(r,custserve,Tservice)
endserve = lastevent + Tservice

Page 14

Appendix F
n(custserveold) = n(custserveold) + 1
numserved(custserve) = numserved(custserve) + 1

end if

if (lastevent > in2stat) then
if (marker == 0) then
NEtime = lastevent - in2stat

end if
marker = 1

end if

do k = 1,5
Tcost = Tcost + C(k,n(k))*NEtime*real(marker)

end do

if (arrivalold > 0 .and. n(arrivalold) < Nmax) n(arrivalold) =

n(arrivalold) + 1
if (custserveold >= 0 .and. n(custserveold) >= 1) n(custserveold)

n(custserveold) - 1
state = 0
do k = 1,5
state = state + n(k)

end do

TTservice = TTservice + Tservice

write(unit=7,fmt="(a,i5)") "event # = ".event
write(unit=7,fmt="(a,fl2.6)") "Tservice = ".Tservice
write(unit=7,fmt="(a,fl2.6)") "endserve = ".endserve
write(unit=7,fmt="(a,fl2.6)") "NEtime = ".NEtime
write(unit=7,fmt="(a,6i5)") "state = ",n
write(unit=7,fmt="(a,fl2.6)") "TL2 = ",TL2(event)
write(unit=7,fmt="(a,f20.3)") "Tcost = ".Tcost
write(unit=7,fmt="(a,fl2.6)") "Tcost/size =

",Tcost/(Lastevent+NEtime-i n2stat)
! write(unit=7,fmt="(a)") " "

if (event < TLactsize) goto 20
!write(unit=7,fmt="(a,fl2.6)") "TTservice = ".TTservice
!write(unit=7,fmt="(a,6i6)") "numserved = ".numserved
LQcost = Tcost/(Tsize-in2stat)
Sprint*,"LONGEST Q: average costs = ".LQcost
Sprint*,"stable = ".stable
!close(unit=7)

return
end subroutine

subroutine myopic(r,seed,Nmax.TLactsize,TLl,TL2.MYcost)
implicit none

integer :: size,k,count,custserve,event,state,Nmax,num,r.BError, &
& i,TLactsize,marker,custserveold,arrivalold

integer, dimension(3) :: seed
integer, dimension(500000) :: TLl
integer, dimension(5) :: buffer
integer, dimension(0:5) :: n,numserved,m
double precision :: Tsize,Tservice,stable,in2stat,TTservice
double precision :: lastevent,endserve,NEtime,bigind,Tcost,MYcost,TOL
double precision, dimension(0:5) :: l,mu
double precision, dimension(5) :: a,b
double precision, dimension(500000) :: tl2
double precision, dimension(5,0:Nmax) :: c

call qvals(r,a,b,l,mu,m,Nmax,buffer,berror.TOL,size,Tsize)
TTservice = 0.0
marker = 0
numserved = 0
in2stat = Tsize*0.667

!test to ensure that we have stable queues

Page 15

Appendix F
stable =0.0
do k = 1,5
if (mu(k) < 999999.999999) stable = stable + 1(k)*m(k)/mu(k)

end do
if (stable >= 1.0) print*,"error: unstable system!!!"

do k = 1,5
do num=buffer(k),Nmax
C(k,num) = a(k)*(real(num-buffer(k))**3.0) +

b(k)*(real(num-buffer(k))**4.0)
end do

end do

Tcost = 0.0
n = 0

n(TLl(l)) = n(TLlCl)) + 1
lastevent = TL2(1)
custserve = TLl(l)
cal1 gammaservice(r,custserve.Tservice)
endserve = lastevent + Tservice

if (lastevent > in2stat) then
marker = 1

end if

! do k = 1,5
! Tcost = Tcost + C(k,n(k))*NEtime
lend do

!open(unit=7,fi1e="SimlndexCostR.dat")
!write(unit=7,fmt="(a)") " W(l,:) : w(2,:) : w(3,:) : w(4,:)
w(5,:) "
!do i = 0,Nmax
! write(unit=7,fmt="(i4,5fl2.6)") i,W(:,i)
lend do
!close(unit=7)

!open(unit=7,fi1e="simresultsMY.txt")
event = 2
20 custserveold = -1

arrivalold = -1

state = 0
do k = 1,5
state = state + n(k)

end do
if(TL2(event) < endserve .or. state == 0) then
if(TL2(event) < Tsize) then
NEtime = TL2(event) - lastevent
lastevent = TL2(event)

el se
NEtime = Tsize - lastevent
lastevent = Tsize

end if

if (state == 0) then
custserve = TLl(event)
cal1 gammaservice(r,custserve,Tservice)
endserve = lastevent + Tservice
numserved(custserve) = numserved(custserve) + 1

end if

arrivalold = TLl(event)
event = event + 1

el se
if(endserve < Tsize) then
NEtime = endserve - lastevent
lastevent = endserve

el se
NEtime = Tsize - lastevent
lastevent = Tsize

end if
custserveold = custserve

page 16

Appendix F
n(custserve) = n(custserve) - 1
state = 0
do k = 1,5
state = state + n(k)

end do
bigind = -9999.99
do k = 1,5
if (n(k) > 0) then
if (bigind < C(k,n(k))) then
bigind = c(k,n(k))
custserve = k

end if
end if

end do
if (state == 0) custserve = 0
cal1 gammaservice(r,custserve.Tservice)
endserve = lastevent + Tservice

n(custserveold) = n(custserveold) + 1
numserved(custserve) = numserved(custserve) + 1

end if

if (lastevent > in2stat) then
if (marker == 0) then
NEtime = lastevent - in2stat

end if
marker = 1

end if

do k = 1,5
Tcost = Tcost + c(k,n(k))*NEtime*real(marker)

end do

if (arrivalold > 0 .and. n(arrivalold) < Nmax) n(arrivalold) =

n(arrivalold) + 1 !!!!!!!!!!!!!!!!!!!!!!!!!!!!
if (custserveold >= 0 .and. n(custserveold) >= 1) n(custserveold) =

n(custserveold) - 1
state = 0
do k = 1,5
state = state + n(k)

end do

TTservice = TTservice + Tservice
! write(unit=7,fmt="(a,i5)") "event # = ".event
! write(unit=7,fmt="(a,fl2.6)") "Tservice = ".Tservice
! write(unit=7,fmt="(a,fl2.6)") "endserve = ".endserve
! write(unit=7,fmt="(a,fl2.6)") "NEtime = ".NEtime
! write(unit=7,fmt="(a,6i5)") "state = ",n
! write(unit=7,fmt="(a,f12.6)") "TL2 = ",TL2(event)
! write(unit=7,fmt="(a,f20.3)") "Tcost = ".Tcost
! write(unit=7,fmt="(a,fl2.6)") "Tcost/size =

".Tcost/(Lastevent+NEtime-in2stat)
! write(unit=7,fmt="(a)") " "

if (event < TLactsize) goto 20
!write(unit=7,fmt="(a,fl2.6)") "TTservice = ".TTservice
!write(unit=7,fmt="(a,6i6)") "numserved = ".numserved
MYcost = Tcost/(Tsize-in2stat)
!print*."MYOPIC: average costs = ".MYcost
!print*,"stable = ".stable
!close(unit=7)

return
end subroutine

subroutine cmew(r,seed,Nmax,TLactsize,TLl,TL2,CMcost)
implicit none

integer :: size,k,count,custserve,event,state,Nmax,num,r,BError, &
& i.TLactsize,marker,custserveold,arrivalold

integer, dimension(3) :: seed

Page 17

Appendix F
integer, dimension(500000) :: TLl
integer, dimension(5) :: buffer
integer, dimension(0:5) :: n,numserved,m
double precision :: Tsize,Tservice,stable,in2stat,TTservice
double precision :: lastevent,endserve,NEtime,bigind,Tcost,CMcost.TOL
double precision, dimension(0:5) :: l,mu
double precision, dimension(5) :: a,b
double precision, dimension(500000) :: tl2
double precision, dimension(5,0:Nmax) :: C

cal1 qvals(r,a,b,l,mu,m,Nmax,buffe r,BEr ror,TOL,si ze,Tsize)
TTservice = 0.0
marker = 0
numserved = 0
in2stat = Tsize*0.667

Itest to ensure that we have stable queues
stable = 0.0
do k = 1,5
if (mu(k) < 999999.999999) stable = stable + 1(k)*m(k)/mu(k)

end do
if (stable >= 1.0) print*,"ERROR: UNSTABLE SYSTEM!!!"

do k = 1,5
do num=buffer(k),Nmax
C(k,num) = a(k)*(real(num-buffer(k))**3.0) +

b(k)*(real(num-buffer(k))**4.0)
end do

end do

Tcost = 0.0
n = 0

n(TLlCl)) = n(TLl(l)) + 1
lastevent = TL2(1)
custserve = TLl(l)
call gammaservice(r,custserve,Tservice)
endserve = lastevent + Tservice

if (lastevent > in2stat) then
marker = 1

end if

!do k = 1,5
! Tcost = Tcost + c(k,n(k))*NEtime
lend do

!open(unit=7,fi1e="Si mindexCostR. dat")
!write(unit=7,fmt="(a)") " w(l,:) : w(2,:) : w(3,:) : w(4,:)
w(5,:) "
!do i = 0,Nmax
! write(unit=7,fmt="(i4,5fl2.6)") i,w(:,i)
lend do
!close(unit=7)

!open(unit=7,fi1e="simresultsCM.txt")

event = 2
20 custserveold = -1

arrivalold = -1

state = 0
do k = 1,5
state = state + n(k)

end do
if(TL2(event) < endserve .or. state == 0) then
if(TL2(event) < Tsize) then
NEtime = TL2(event) - lastevent
lastevent = TL2(event)

el se
NEtime = Tsize - lastevent
lastevent = Tsize

end if

if (state == 0) then
Page 18

Appendix F
custserve = TLl(event)
cal1 gammaservice(r,custserve.Tservi ce)
endserve = lastevent + Tservice
numserved(custserve) = numserved(custserve) + 1

end if

arrivalold = TLl(event)
event = event + 1

el se
if(endserve < Tsize) then
NEtime = endserve - lastevent
lastevent = endserve

el se
NEtime = Tsize - lastevent
lastevent = Tsize

end if

custserveold = custserve

n(custserve) = n(custserve) - 1
state = 0
do k = 1,5
state = state + n(k)

end do
bigind = -9999.99
do k = 1,5
if (n(k) > 0) then
if (bigind < C(k,n(k))*mu(k)) then
bigind = c(k,n(k))*mu(k)
custserve = k

end if
end if

end do
if (state == 0) custserve = 0
cal1 gammaservice(r,custserve,Tservice)
endserve = lastevent + Tservice

n(custserveold) = n(custserveold) + 1
numserved(custserve) = numserved(custserve) + 1

end if

if (lastevent > in2stat) then
if (marker == 0) then
NEtime = lastevent - in2stat

end if
marker = 1

end if

do k = 1,5
Tcost = Tcost + c(k,n(k))*NEtime*real (marker)

end do

if (arrivalold > 0 .and. n(arrivalold) < Nmax) n(arrivalold) =

n(arrivalold) + 1 !!!!!!!!!!!!!!!!!!!!!!!!!!!!
if (custserveold >= 0 .and. n(custserveold) >= 1) n(custserveold) =

n(custserveold) - 1
state = 0
do k = 1,5
state = state + n(k)

end do

TTservice = TTservice + Tservice
! write(unit=7,fmt="(a,i5)") "event # = event
! write(unit=7,fmt="(a,fl2.6)") "Tservice = ".Tservice
! write(unit=7,fmt="(a,fl2.6)") "endserve = ".endserve
! write(unit=7,fmt="(a,fl2.6)") "NEtime = ".NEtime
! write(unit=7,fmt="(a,6i5)") "state = ",n
! write(unit=7,fmt="(a,fl2.6)") "tl2 = ",TL2(event)
! write(unit=7,fmt="(a,f20.3)") "Tcost = ".Tcost
! write(unit=7,fmt="(a,fl2.6)") "Tcost/size =
",Tcost/(Lastevent+NEti me-i n2stat)
! write(unit=7,fmt="(a)") " "

if (event < TLactsize) goto 20

Page 19

Appendix F
!write(unit=7,fmt="(a,fl2.6)") "TTservice = ".TTservice
!write(unit=7,fmt="(a,6i6)") "numserved = ".numserved
CMcost = Tcost/(Tsize-in2stat)
!print*,"C*MEW: average costs = ".CMcost
!print*,"stable = ".stable
!close(unit=7)

return
end subroutine

subroutine static(r,seed,Nmax.TLactsize,TLl,TL2,STcost)
implicit none

integer :: size,k,count,custserve,event,state,Nmax.num,r.BError, &
& i.TLactsize,marker,custserveold.arrivalold

integer, dimension(3) :: seed
integer, dimension(500000) :: TLl
integer, dimension(5) :: buffer
integer, dimension(0:5) :: n,numserved,m
double precision :: x,Tsize.Tservice,stable,in2stat,TTservice,renormstat
double precision :: lastevent,endserve,NEtime,Tcost,STcost,TOL
double precision, dimension(0:5) :: 1,mu,stationary
double precision, dimension(5) :: a,b,stationary2
double precision, dimension(500000) :: TL2
double precision, dimension(5,0:Nmax) :: C

call qvals(r,a,b,l,mu,m,Nmax,buffer,BError.TOL,size.Tsize)
TTservice = 0.0
marker = 0
numserved = 0
stationary =0.0
stationary2 = C/0.2,0.2,0.2,0.2,0.2/)
do i = 1,5
stationary(i) = stationary(i-1) + stationary2(i)

end do

in2stat = Tsize*0.667

!test to ensure that we have stable queues
stable =0.0
do k = 1,5
if (mu(k) < 999999.999999) stable = stable + 1(k)*m(k)/mu(k)

end do
if (stable >= 1.0) print*,"error: unstable system!!!"

do k = 1,5
do num=buffer(k),Nmax
C(k,num) = a(k)*(real(num-buffer(k))**3.0) +

b(k)*(real (num-buffer(k))**4.0)
end do

end do

do i = 1,10
call random_number(x)

end do

Tcost = 0.0
n = 0

n(TLl(l)) = n(TLlCl)) + 1
lastevent = tl2(1)
custserve = TLl(l)
cal1 gammaservice(r,custserve.Tservice)
endserve = lastevent + Tservice

if (lastevent > in2stat) then
marker = 1

end if

!do k = 1,5
! Tcost = Tcost + c(k,n(k))*NEtime
!end do

Page 20

Appendix F

!open(unit=7,file="SimlndexCostR.dat")
!write(unit=7,fmt="(a)") " w(l,:) : w(2,:) : w(3,:) : w(4,0
W(5,:) "
!do i = O.Nmax
! write(unit=7,fmt="(i4,5fl2.6)")
lend do
!close(unit=7)

!open(unit=7,file="simresultsST.txt")

event = 2
20 do i = 1,5

stationary(i) = stationaryCi-1) + stationary2(i)
end do

custserveold = -1
arrivalold = -1

state = 0
do k - 1,5
state = state + n(k)

end do
if(TL2(event) < endserve .or. state == 0) then
if(TL2(event) < Tsize) then
NEtime = tl2(event) - lastevent
lastevent = tl2(event)

el se
NEtime = Tsize - lastevent
lastevent = Tsize

end if

if (state == 0) then
custserve = TLl(event)
cal1 gammaservice(r,custserve,Tservi ce)
endserve = lastevent + Tservice
numserved(custserve) = numserved(custserve) + 1

end if

arrivalold = TLl(event)
event = event + 1

el se
if(endserve < Tsize) then
NEtime = endserve - lastevent
lastevent = endserve

el se
NEtime = Tsize - lastevent
lastevent = Tsize

end if

custserveold = custserve

n(custserve) = n(custserve) - 1

state = 0
do k = 1,5
state = state + n(k)

end do
call random_number(x)
renormstat = 0.0
do i = 1,5
if (n(i) > 0) renormstat = renormstat + stationary2(i)

end do
do i = 1,5
if (n(i) > 0) then
stationary(i) = stationary(i)/renormstat

el se
stationary(i) = stationary(i-1)

end if
end do

if (x < stationary(l)) then
custserve = 1

else if (x < stationary(2)) then

Page 21

Appendix F
custserve = 2

else if (x < stationary(B)) then
custserve = 3

else if (x < stationary(4)) then
custserve = 4

else if (x < stationary(5)) then
custserve = 5

end if

if (state == 0) custserve = 0
cal 1 gammaservice(r,custserve.Tservice)
endserve = lastevent + Tservice

n(custserveold) = n(custserveold) + 1
numserved(custserve) = numserved(custserve) + 1

end if

if (lastevent > in2stat) then
if (marker == 0) then
NEtime = lastevent - in2stat

end if
marker = 1

end if

do k = 1,5
Tcost = Tcost + C(k,n(k))*NEtime*real(marker)

end do

if (arrivalold > 0 .and. n(arrivalold) < Nmax) n(arrivalold) =

n(arrivalold) + 1 !!!!!!!!!!!!!!!!!!!!!!!!!!!!
if (custserveold >= 0 .and. n(custserveold) >= 1) n(custserveold) =

n(custserveold) - 1
state = 0
do k = 1,5
state = state + n(k)

end do

TTservice = TTservice + Tservice
! write(unit=7,fmt="(a,i5)") "event # = ".event
! write(unit=7,fmt="(a,fl2.6)") "Tservice = ".Tservice
! write(unit=7,fmt="(a,fl2.6)") "endserve = ".endserve
! write(unit=7,fmt="(a,fl2.6)") "NEtime = ".NEtime
! write(unit=7,fmt="(a,6i5)") "state = ",n
! write(unit=7,fmt="(a,fl2.6)") "tl2 = " ,ti_2 (event)
! write(unit=7,fmt="(a,f20.3)") "Tcost = ".Tcost
! write(unit=7,fmt="(a,fl2.6)") "Tcost/size =

",Tcost/(Lastevent+NEtime-in2stat)
! write(unit=7,fmt="(a)") " "

if (event < TLactsize) goto 20
!write(unit=7,fmt="(a,fl2.6)") "TTservice = ".TTservice
!write(unit=7,fmt="(a,6i6)") "numserved = ".numserved
stcost = Tcost/(Tsize-in2stat)
!print*,"static average costs = ".STcost
!print*,"stable = ".stable
!close(unit=7)

return
end subroutine

subroutine gammaservice(r,custserve.Tservice)
implicit none

integer :: Nmax,BError,r,size,custserve,top,i
integer, dimension(5) :: buffer
integer, dimension(0:5) :: m
double precision, dimension(5) :: a,b
double precision, dimension(0:5) :: mu,l
double precision :: TOL.Tsize,Tservice,Tphase.x
a = 0.0

Page 22

Appendix F
b = 0.0
1 = 0.0
mu = 0.0
m = 0
Nmax = 0
buffer = 0
BError = 0
TOL =0.0
size = 0
Tsize = 0.0
call qvals(r,a,b,l,mu,m,Nmax,buffer,BError,TOL,size,Tsize)

top = m(custserve)
Tphase = 0.0
do i = l.top
call random_number(x)
Tphase = Tphase + (-1.0*log(x)/mu(custserve))

end do
Tservice = Tphase

return
end subroutine

subroutine qvals(r,a,b,1,mu,m,Nmax,buffer,BError,TOL,size,Tsize)
implicit none

integer :: Nmax,BError,r,size,i,j
integer, dimension(5) :: buffer
integer, dimension(0:5) :: m,mold
double precision, dimension(5) :: a,b
double precision, dimension(0:5) :: mu,l,lold,muold,row
double precision :: tol,Tsize

row =0.0

Nmax = 69
buffer = 0
BError = 5

size = 100000
Tsize = 15000.0

1 = C/0.0,0.4,0.3,0.25,0.1,0.05/)
mu = C/100.0,1.6667,6.0,5.0,5.7143,6.25/)
m = (/1,1,3,2,4,5/)

1 = C/0.0,0.4,0.3,0.25,0.1,0.05/) ! first
mu = (/100.0,1.6667,6.0,5.0,5.7143,6.25/) ! first
m = C/l,1,3,2,4,5/) ! first

do i = 1,5
row(i) = 1(i)*(m(i)/mu(i))
row(0) = row(0) + row(i)

end do

do i = 1,5
1(i) = (1(i)/row(0))*0.85

end do

Hold = C/0.0,1(4), 1(5), 1(1), 1(2), 1(3)/)
Imuold = C/100.0,mu(4),mu(5),mu(l),mu(2),mu(3)/)
!mold = C/l,m(4),m(5),m(l),m(2),m(3)/)

do i =1,5
j = mod(i + r,5)
if (j == 0) j = 5
loldCj) = l(i)
muold(j) = mu(i)
mold(j) = m(i)

end do

1 = lold

Page 23

mu = muold
m = mold

Appendix F

a = C/5.0,4.0,3.0,2.0,1-0/)
b = C/l.0,2.0,3.0,4.0,5.0/)

TOL = 0.0001

return
end subroutine
i

Page 24

Appendix G

Associated Published Work

Queueing Systems 45, 81-111, 2003
© 2003 Kluwer Academic Publishers. Manufactured in The Netherlands.

Index Heuristics for Multiclass M/G/l Systems with
Nonpreemptive Service and Convex Holding Costs
K.D. GLAZEBROOK and R.R. LUMLEY

School ofManagement, Edinburgh University, EH8 9JY, UK

P.S. ANSELL

Department ofStatistics, University ofNewcastle upon Tyne, NE1 7RU, UK

Received 20 September 2001; Revised 10 April 2003

Abstract. We consider the optimal service control of a multiclass M/G/l queueing system in which
customers are served nonpreemptively and the system cost rate is additive across classes and increasing
convex in the numbers present in each class. Following Whittle's approach to a class of restless bandit
problems, we develop a Langrangian relaxation of the service control problem which serves to motivate the
development of a class of index heuristics. The index for a particular customer class is characterised as a
fair charge for service of that class. The paper develops these indices and reports an extensive numerical
investigation which exhibits strong performance of the index heuristics for both discounted and average
costs.

Keywords: indexability, index policy, service control, stochastic dynamic programming, restless bandit

1. Introduction

A prime focus of much of the literature concerning the optimal dynamic control of ser¬
vice in a multiclass queueing environment has been the development of policies to min¬
imise some measure of total holding cost in the system. An assumption that holding
cost rates be linear in the number of customers (or, equivalently, that each class have a
fixed holding cost rate per unit time and per customer in the system) has been central to
the elucidation of simple priority policies as optimal in a variety of contexts. See, for
example, [5,6,9,10], Theoretical connections of this work with ideas concerning Gittins
indices for multi-armed bandit problems are developed in [4,8,16]. However, criticisms
of the appropriateness of the assumption of linear holding costs and of some aspects
of the performance of the resulting priority policies have been voiced, inter alia, by van
Meighem [14] and Ansell et al. [2], Contributions to the literature of multiclass queueing
systems which allow for nonlinear costs are few. They include those of [2,13-15],

In response to the need for further work in this area, this paper will be concerned
with the optimal service control of a multiclass M/G/l queueing system in which cus¬
tomers are served nonpreemptively and the system cost rate is assumed to be additive
across classes and increasing convex in the numbers present in each class. In attempting

82 K.D. GLAZEBROOK ET AL.

this, we develop work of Ansell et al. [3] who consider the relatively simple special case
of an M/M/1 system with preemptive service.

In section 2 both discounted and average cost versions of our multiclass service
control problem are presented. These semi-Markov decision problems are strongly re¬
lated to an intractable class of resource allocation models called restless bandits, intro¬
duced by Whittle [17]. On this basis we argue for the development of effective index
policies which make decisions concerning the direction of service effort on the basis of
calibrating functions (or indices) associated with the customer classes. Despite the belief
of Whittle [18] that his approach to index development based on Langrangian methods
could not be applied to (average cost versions of) such service control problems, we

present such an approach in section 3. Indices emerge as values of Lagrange multipli¬
ers associated with a work conservation constraint. Alternatively, the index function for
a particular class may be understood as a fair charge for serving that class. Our in¬
dex heuristics always direct service effort to whichever customer class has the largest
associated fair charge for service.

These index characterisations necessitate a digression in section 4 toward the study
of a service control problem (one for each customer class) for a single class M/G/l
system with a charge for service. This study establishes that the desired class indices are
well defined and yields formulae for them and methods for their computation. All of this
is in terms of discounted costs. Appropriate indices for average costs are derived as limits
(as the discount rate a —> 0). The derived single class problems of section 4 have some
affinities with the growing literature on queueing models in which the server periodically
takes one or more vacations, usually when the system empties. The associated control
problem is how to decide dynamically when the server should be reintroduced. See,
for example, [1,7]. The results we describe in section 4 for our single class problems
are established using the techniques of stochastic dynamic programming. Nino Mora
[11] has espoused an alternative approach to indexability/index development based on
polyhedral methods. This approach is summarised in [3, section 4], See also other
important work on restless bandit models due to Weber and Weiss [15,16],

The paper concludes in section 5 with an extensive numerical investigation into
the quality of performance of the derived index heuristics. Study of a range of two
class problems for both discounted and average costs shows that the index policy is
sometimes indistinguishable from an optimal policy in cost terms. This very strong
cost performance is further evidenced in a simulation study based on larger five class
problems.

2. Service control ofmulticlass M/G/l systems

We shall consider multiclass M/G/l queueing systems in which customers from classes
{1,2, K) receive service provided by a single server. Arrivals into the system are in
K independent Poisson streams with Xk the rate for class k. Each customer has a service
time and these are independent for different customers and identically distributed for
customers within a single class. We write Sk for a generic class k service time and Gk

INDEX HEURISTICS FOR MULTICLASS M/C/1 SYSTEMS 83

for the corresponding distribution function. We shall suppose that all moments of Sk
exists and that

K

P = ^2hE(Sk) < 1
k=1

for stability. The goal is to allocate service among the waiting customers to minimise
some measure of expected holding cost over an infinite horizon. We shall consider both
discounted and average cost criteria. We formalise the queueing control problems of
interest as semi-Markov Decision Problems (SMDPs) as follows:

(a) The state of the system at time t is N(t) = {N\(t), Ni{t), ..., NK(t)}, the vector
of queue lengths, t e R+. The decision epochs are all service completion times
which do not result in an empty system together with all times of arrivals at an
empty system. Let action ak denote the allocation of service to a class k customer,
1 ^ k ^ K. At each decision epoch t, the controller chooses an action ak from the
set of k for which Nk (t) ^ 1;

(b) Suppose that N(f) = n with nk > 0, that t is a decision epoch and that action ak is
taken then. The next decision epoch will occur at time t + Sk, where Sk ~ Gk and
the system state then has probability distribution given by

P[N((f + SA.)+) = n - lk + m] = jf J Y\ e~Xj' ldG*' m G NK- (1)
Note that in (1), \k denotes a K-vector whose £th component is 1, with zeroes
elsewhere. Note also that the processing of the class k customer which begins at
time t is nonpreemptive.

(c) In the discounted costs version of the queueing control problems of interest, dis¬
counted costs are incurred, with rate

K

aJ2Cj(Nj(t)) (2)
j=t

at time t. The cost functions CA: N —» M+ are assumed increasing, convex and
bounded above by some polynomial of finite order and with CA(0) = 0, 1 ^ k ^ K.
A policy u is a rule for choosing actions in light of the history of the process to date
and U is the collection of all such policies which are non-idling for the single server.
Our goal is to seek a policy which minimises total costs incurred over an infinite
horizon. We write

V(m. a) = inf Eu
ueU

poo K
/ Y^aCk(Nk(t))t-a< |N(0) = mJo k=i

(3)

for the associated value function. Please note that the multiplier a has been intro¬
duced into the holding cost rate in (2) to guarantee that V(m. a) remains finite in the

84 K.D. GLAZEBROOK ET AL.

limit as a approaches zero. This limit is central to the consideration of average cost
problems which are of great importance to us. See (6) below. Further reasons for the
inclusion of the a multiplier are given in section 3 following definition 3. Plainly,
the multiplier has no impact upon the optimal policy in (3).
The general theory of stochastic dynamic programming (DP) indicates the exis¬

tence of an optimal policy which is stationary (i.e., makes decisions in light of the cur¬
rent state only) and whose value function satisfies the DP optimality equations. See [12],
However, for our multiclass queueing control problem a pure DP approach is unlikely to
be insightful and will be computationally intractable for problems of reasonable size.

In two special cases the optimal policy is known to be of index form. This means
that there exist K index functions Wk.a '■ N —> K+, 1 f kf K. such that the index
policy uw which at all decision epochs chooses to process a customer from the maximal
index class, i.e.

«wlN(f))=it^%{A,i(<)J= max Wj,a[Nj{t)) (4)I

is optimal. These special instances are (i) the batch case and (ii) when all holding cost
rates Q are linear in the queue lengths. The batch case occurs when all arrival rates are
0 and the goal is to empty the system (by serving to completion all customers present at
time 0) at minimum cost. This may be formulated as a multi-armed bandit problem for
which a Gittins index policy may be shown to be optimal. See [8], The linear costs case
was first solved by Harrison [9]. The theoretical force of an assumption of cost linearity
is that an analysis at the level of the individual customer (each of whom carries her own
holding cost rate) rather than at the level of the customer class is possible. Latterly, the
linear cost problem has been formulated as a branching bandit problem for which Gittins
index policies are known to be optimal. See [4], These special cases apart, the service
control problem in (a)-(c) is strongly related to an intractable class of problems called
restless bandits. Whittle [17J introduced this class of decision problems and proposed an
index heuristic which emerged naturally from a Langrangian relaxation of the problem.
Whittle [18] himself thought that these ideas could not be applied to queueing control
models of the kind discussed here. In fact they can be, as is explained in outline in
the next section. Hence, in section 4 we shall develop a Whittle index policy for the
discounted costs problem. This policy will coincide with the optimal index policies in
the special cases (i) and (ii) above.

The average cost version of the multiclass queueing control model of interest is
expressed via the equation

VOPT=inf£Hfx>(A«{' (5)ueU I ^ •
k=\

where in (5) Eu is the expectation taken with respect to the steady-state distribution of
the system under policy u. From standard results in DP we have that

lim V(m, cr) = V0PT. (6)
of—^0

INDEX HEURISTICS FOR MULTICLASS M/G/1 SYSTEMS 85

In light of (6), we shall develop natural heuristics for average cost problems as limits
(a -» 0) of the index policies for discounted costs.

3. Indexability and Whittle indices for service control

As is mentioned above, Whittle's [17,18] approach to the development of index heuris¬
tics for restless bandit problems was via Langrangian relaxations. An attempt in [18] to
analyse average cost versions of our service control problems directly by these means
failed and it was suggested that these ideas were not helpful in this context. As we shall
see, the key to progress is to begin with the apparently more difficult discounted costs
problem and to recover the average costs version as a limiting form, as in (6).

To facilitate our discussion, we write ak(t) for the action (either a = serve (active)
or b — do not serve (passive)) applied to queue k at time t. We then develop the following
performance measures for policy u:

CI, U /___ \ / '

xk n (m) = Eu

"

p OO

/ l{ak(t) = a, Nk(t) = n)
. Jo

e~°" dt | N(0) = m (7)

and similarly for xk'"(m), m G N*, n G N, 1 ^ k ^ K. In (7), /{■] is the indicator
function. We may now re-express our discounted cost problem in (3) as

V(m, a) = inf V] VaQ.(n){.^'"(m)+x^n"(m)}. (8)uelA —
k= 1 tigN

We develop a relaxation of (8) by first observing that for all policies in U, the quantity

K r p oo
/{N(0 rf 0}e"ardr | N(0) = m

h— i L «/0k= 1 ne

= a p —{- © (m. a) (9)

is policy invariant. This arises from the fact that the duration of the first busy period
(i.e., the time required to empty the system from initial state m) and all subsequent
busy periods have probability distributions which do not depend upon u. In (9), 0 is
the zero K-vector and 0(m, a) is an O(l) quantity (as a -> 0) which does not depend
upon u. Note that the form of the constant in (9) follows from standard queueing theory
considerations. We now relax the stochastic optimisation problem (8) by both expanding
the policy class to U, namely, the set of policies in which any number of non-empty
customer classes may be served at any time (but where any service, once started, must
be completed) and then by imposing the relation in (9) as a constraint. Roughly speaking,
we are relaxing the sample path requirement that a single class be served at each time
(at which the system is non-empty) to one in which one class is served on average, in

86 K.D. GLAZEBROOK ET AL.

the sense of (9). We also extend U to include randomisations over such policies. We call
this Whittle's relaxation and write

K

V(m. a) = inf^ ^uCk(n){xak'"(m) + xbk "n (m)}
"&U

k= 1 «eN

K

subject to EEC (ni) = Eu
k=1 ;ieN

= a~lp + 0(m. a). (10)

f.Jo K(t)e-°" dt | N(0) = m

Note that K{t) denotes the number of customer classes served at t and constraint (10)
delimits the set of allowable policies within U. For any policy within U we have
K{t) = 7{N(r) 0}, t € (0, oo). We now adopt a Langrangian approach to elucidating
the structure of the optimal solution to Whittle's relaxation. Hence we accommodate
constraint (10) by incorporating a Langrange multiplier W to obtain the minimisation
problem

V(m, a, W) = inf
ueU

K

EE {aCk(n) + W}xf"(m) +EEaCk(n)xb'"(m)
_ k=l neN k=1 ni

(ID

We see from (11) that W plays the economic role of a constant charge for serx'ice.
Problem (11) is naturally decoupled into K single-class subproblems

K

V(m, a, W) = J2 Vk(mk, a. W). (12)
k=l

In (12), Vk(mk, a, W) is the minimised total of holding costs and service charge costs
incurred by customer class k, the minimisation being taken over all (nonpreemptive)
policies for choosing between actions a and b for that class only. Call this single class
problem (k, a, W), VFgM, 1 ^ k ^ K.

It will be shown in section 4 that there exists a multiplier VF(m, a) such that

V{m, a, VF(m, a)} — W(m, a){a_1p + 0(m, cc)} = V(m, a),

and that there exists an optimal policy for the Langrangian relaxation in (11) with W =

VF(m, a) which satisfies the constraint in (10) and hence solves Whittle's relaxation.
However, by (12), this optimal policy is a superposition of optimal policies for the single
class problems {k, a, VF(m,a')}, 1 ^ k ^ K. But the solutions to these problems
become especially simple under a condition of indexability. To describe this condition,
we write n^,„(W) for the set of queue lengths m for which the passive action b is optimal
for single class problem (k, a. W).

INDEX HEURISTICS FOR MULTICLASS M/G/1 SYSTEMS 87

Definition 1. Customer class k is a-indexable if : M -» 2N is increasing, namely,

w, > w2 => n,.„(w,) 2 nkAWi).

Should we have a-indexability for class k, the idea of an a-index for state (i.e.
queue length) m as the minimum service charge which makes the passive action optimal
there is a natural one.

Definition 2. When customer class k is a-indexable, the Whittle a-index for class k in
state m is given by

WKa{m) = inf{Vk: m e nA.„(VC)}, m e Z+.

It will now follow that if each customer class k is a-indexable, Whittle's relax¬
ation is solved by a policy in which a decision is taken to serve customer class k
at each decision epoch t for each (k,a, W) whenever WktC/{Nk(t)} > kk(m, a) and
not to serve k whenever Vk^cJAW/)} < Vk(m. a), for all choices of k, t. Should
Wk,a[Nk(t)} = kk(m. a) then some randomisation between the two actions will be ap¬

propriate.
We now follow [17] in arguing that the index-like nature of solutions to the relax¬

ation in (10) makes it reasonable to propose an index heuristic for our original discounted
costs problem in (3) and (8) when all customer classes are a-indexable. This heuristic
will be structured as in (4) with index functions recovered from definition 2. Note that
under this definition, it is natural to interpret Wk-a(m) as a fair charge for serving cus¬
tomer class k in state m. The derived heuristic then always serves that class for which
the fair charge for service is highest. Following the discussion at the end of section 2,
we develop an index heuristic for average cost problems as the limit policy (as a —> 0)
of the index heuristics for discounted costs.

Definition 3. If customer class k is a-indexable for all a > 0 then the average cost
Whittle index for state m is given by

Wk(m) = lim Wka{m), me1+, (13)
a—>0

when the above limits exist.

Note that the inclusion of the a multiplier in the holding cost rates for the dis¬
counted problem guarantees that the limits in (13) exist and yield sensible indices. To
see why, revisit the Langrangian in (11). As policy it varies within the stable policies in
U it is known from standard MDP theory that the holding cost component of (11) will
vary by amounts which are 0(1). However, it must also be true for such policies that

k=\ /isN

88 K.D. GLAZEBROOK ET AL.

and hence, for any finite W, varying u can only change the service charge component
of (11) by 0(1). It is this balancing of the contributions to the total cost in (11) which
guarantees the good behaviour of the limits in (13).

Taking our cue from the above discussion, we now proceed to study the single class
problems (,k, a, W) in the next section. We shall establish a-indexability and derive
a-indices and the average cost indices which are appropriate for our service control
problems.

4. The M/G/l queue with a charge for service

Following section 3, we study the single class problems (k, a, W), 1 ^ k ^ K. In doing
so, it will be notationally convenient to drop the class identifier k. Hence the problems
of interest concern a single server who is available to process a single class of customers
in a queueing system. However, there is a charge for the server's work and the server can
be stood down when it is cost effective to do so. The goal is to choose how and when to
deploy the server to minimise the sum of the costs incurred in holding customers in the
system and those incurred in paying for service. This problem is formulated as a SMDP
as follows:

(a) The state of the system at time t £ R+ is N(t), the number of customers in the
system. If t is a decision epoch and N(t) > 0 then two actions are available at t, la¬
belled a (serve-active) and b (do not serve-passive). Choice of action a corresponds
to the deployment of the server to process a waiting customer through to completion.
In this case the next epoch is at time t + S where we use S to denote a generic service
time with associated distribution function G. We shall suppose that all moments of
S exist. New customers arrive at the system according to a Poisson process with rate
A > 0, where XE(S) < 1 for stability. According to standard M/G/l dynamics we
have that

The choice of action b at t means that no service will be allocated to waiting cus¬
tomers for the period until the next customer arrives. In this case the next epoch is
at time t + X where X ~ exp(A) and

Note that the passive action is the only admissible one when N(t) = 0.

(b) Let G : DJ —^ 1R+ be the increasing convex holding cost function for the class con¬
cerned and let a, W be positive constants. While the server is on, discounted costs
are incurred at rate aC(n) + W when n customers are present in the system. This
drops to aC(n) when the server is off. This is as in (11) above. Hence W is the rate

P[N((t + S)+) =n+m- 1
in £ Z+, n £ N.

| N(t) = m, a\ =
(14)

P[N((t + X)+) = in + \ \ N(t) = m,b\= I, iti £ N. (15)

index heuristics for multiclass M/G/l systems 89

charged for service, while aC(n) is the holding cost rate when there are n customers
in the system.

(c) A policy is a rule for choosing between the actions a and b in light of the history of
the system to date. If we use lit) to be the indicator function

if the server is active at t,

otherwise, t e M+,,(Hi:
then we write the total expected cost incurred under policy u from initial state m as

Vu(m,a, W) = E„(J [aC(N(t)) + WIit)]e~a,dt \ N(0) = m^j. (16)
The immediate goal of analysis is to determine a policy which will minimise the
cost in (16). We write

Vim, a, W) = inf{V„(m, a, W)}. (17)

The general theory of stochastic DP indicates the existence of an optimal policy
which is stationary (i.e. makes decisions in light of the current state only) and whose
value function satisfies the DP optimality equations. See [12]. Since the choice in any
state m is between taking action a (until the next service completion) and taking action
b (until the next arrival), the value function V(-, a, W) satisfies

. \aCim) , \Vim + \,a,W) ~ ^ , WE{\ - e"*5)V(hi, a, W) = mint 1 ; C (m, a) H
\ a + X a + k a

oo rC

u
-oo

+ >'/ e~(a+l)'Vin +m - l,a, W)dG [, m e Z4
n\

(18)

Note that in (18), C(m,a) is the holding cost incurred during a single active period
beginning at time 0 in state m, which we write as

C(/n, a) = E f aC(Nit))tJo
dt | N iO) — m, a m e Z+. (19)

In fact, the analysis becomes a little cleaner if we substitute

W
V(m, a, W) = V(m, a, W) , me N, (20)

a

in (18). Note that V(-,a, W) is the value function for an equivalent decision process,
but where the cost rates for actions a and b in state n are aCin) and aC(n) — W,

90 K.D. GLAZEBROOK ET AL.

respectively. Note that W now has an interpretation as a subsidyforpassivity. Rewriting
(18) using (20), we obtain

Following the discussion around definitions 1 and 2 of section 3, we write na(W)
for the set of states for which action b is optimal in the above problem. If we have
cr-indexability, namely that n„(VF) is increasing in W, we then write Wa(m) for the
Whittle cr-index for the customer class concerned in state m, as in definition 2. We
proceed to give a heuristic argument which yields a formula for Wa(m) in terms of
model parameters when Wu(-) is assumed to be an increasing function as would seem
plausible.

Consider the service control problem (a)-(c) with N(0) = in, discount rate a and
with service charge W = Wa(m) equal to the assumed value of the a-index in state m.
We make the assumptions (1) that the a-index is increasing in the state and (2) that when
the service charge is equal to the a-index in some state, both a and b are optimal in that
state. Both of these facts will be established properly later in the analysis. We now infer
the following for this problem:

(i) the active action a must be optimal in states {m + 1, m + 2,...};
(ii) the passive action b must be optimal in states {0, 1,,m — 1};

(iii) actions a and b are both optimal in state m.

Hence, under these assumptions there are two stationary policies which are optimal
when W = Wa(m). Label these policies u\ and uj- Policies u\ and iq choose the actions
a and b, respectively, in state m in addition to making choices according to (i) and (ii)
above. Since N(0) = m, policy u\ will take action a until time T where

V(m, a, W) = min

(21)

Since passive is the only admissible action in state 0, we also have that

(a + A)V(0, a,W) = -W + AV(1, or, W). (22)

T = inf{r; N(t) =m- l}.
The cost incurred during this initial active phase may be written as

a

where

(23)

index heuristics for multiclass m/g/l systems 91

Note that random variable T is stochastically identical to the busy period of an M/G/\
queueing system, starting with a single customer and having arrival rate A. and generic
customer service time S. Having arrived in state m — 1 at time T, according to (ii) above
policy u] now takes action b until a customer arrives, taking the system state back to m.
This arrival will occur at time T + X where X ~ exp(A). The expected cost incurred
during this passive phase is E(e~al)aC(m — 1)(cy + A)-1. Since N((T + X)+) = m,

policy u i now repeats the above cycle ad infinitum from time T + X. The total expected
cost associated with this policy may now be calculated as

\^/ (ttC)
V„, {m, a, Wa{m) \ - V„ {m, a, Wa(m)}

a

C(m,a) + E(e~aT){aC{m - 1) - Wa(m)}(a + X)"'
I — XE(e~aT)(a + A)-1

In addition, standard conditioning arguments yield

E(e-«r) = f^ r^fe-(a+»<{E(e-aT)}"dG = G[a + X{l-E(e-aT)}], (25)n=0^° 'll
where

OO

at-IG(a) = / e dG

and also

C(m,«) = C(»,«) +f r^e"^
n-

YC(m + r,a){E(e Q,r)}" '
l r=0

dG.

(26)
Expression (26) disaggregates the total expected cost incurred during [0, T) in (23) into
that incurred during the processing of the first customer and the residual cost (if any)
incurred by customers arriving during this initial service. Should n customers arrive,
then n + m — 1 customers will be present after the first service and successive busy
periods will reduce the queue length such that

n + m — 1 —> n + in — 2 —> ■ ■ ■ -> m m — 1. (27)

The second term on the right-hand side of (26) gives the expected cost associated with
this residual processing.

Consider now policy «2 which chooses passive action b in state m in addition to
making choices according to (i) and (ii) above. Under U2, the action b will be taken at
time 0 and will remain in force for a period of time with an exp(X) distribution, at the
conclusion of which a transition to state m + 1 will occur. The expected cost incurred
during this initial passive phase is easily shown to be aC(m)(a + A)-1. Thereafter, the
active action will be taken until the queue length returns to m for the first time. This will

92 K.D. GLAZEBROOK ET AL.

take a further amount of time which is stochastically identical to T above. The expected
cost incurred during this active phase is

-aT \I- — E(\-e-aT)1k\C(m + I, a) + Wa(m) - (a + A)

As with ui, policy «2 now repeats this cycle ad infinitum. We write the total expected
cost associated with this policy as

"jy (m)
VU2{m, a, Wa(m)} = VU2{m, a. Wa(m)\ ^—

{aC(m) — Wa(m) + XC(m + 1, cr)}(a + A)-1
~

1 -XE{e~aT){a + X)-['
But both policies u\ and «2 are optimal when the service charge is W = Wa(m)

and hence it must follow from (24) and (28) that

Vui{m,a, Wa(m)} — VU2{m,a, Wa(m)}
=4> Wa(m) — {AC(/n + 1, a) — (a + X)C{m, a) + aC(m)

-aE(&~°'T)C(m - \)}{\ - E(Q~aT)}~\ meZ+. (29)
Hence it is the expression on the right-hand side of (29) which is the form of the a-index
inferred from the above argument.

Lemma 2 asserts that our conjectured index Wa{m) is increasing in m, as was

supposed to be the case for the true index in the preceding argument. In lemma 2, we
take WcTO) to be zero. Also, for economy of notation we shall write A for the quantity
E(e~aT) in what follows.

Lemma 2. Wa(m) is increasing in m.

Proof. First, consider the quantity C(m, a), defined in (19). By conditioning upon the
times of successive arrivals after time 0, we obtain that

C(m, a) = C(m)E{\ — e aS) + [C{n + m) — C(n + m — 1)}
n=1

poo r « intn-\P-A;
x / / (e-°'-e-"ldlJo [Jo (n-l)\ 1 '

OO

= C(m)E[\ — e-"5) + \C(n + m) — C(n + m — 1)}

n=l

dG (30)

n=1

oo
X

E 1^ (a + X)rSre-la+»s I A''5'e-(a+A-)5a + X J L—' r\

(31)

INDEX HEURISTICS FOR MULTICLASS M/G/l SYSTEMS 93

where (31) follows from (30) by utilisation of the form of the distribution function of a
r(w, A.) random variable for n € Z+.

We now use identity (26) in (29) to infer that, for m e Z+,

(1 — A)Wa(m) = XC(m + 1, a) — (a + X)C(m, a) + aC(m) — aAC(m — 1)
= XC(m + 1, a) — (a + X)C(m, a) + aC(m) — aAC (in — 1)

°° 1 00 yr £r ^-(a+X)S 1
— a

n=1 I r—n

x {C(n + in — 1) — AC(n + m — 2)}
°° T 00 gr g—(a+\)S ^

n=1

x {XC(n + m, a) — (a + X)C(n + m — 1, a)
+ aC(n + m — 1) — aAC(n + m — 2)}. (32)

Using (29) and (31) within (32) it follows, after extensive but straightforward algebra
that

00 (yi Q-(a+\)S |
a_1(l — A)Wa(m) = E| j 1 [C(n + m) — C(n + in — 1)}

n=0

°° 1 00 yr £r ^—(ot+},)S yy—n
+ J2E E \{a-\\-A)Wa(n+m-\)).

n=1

(33)

However, identity (33) is strongly suggestive of the following computational scheme for
a-1 (I — A) Wa(m), in e Z+: Use Wa (•) to denote the /?th iterate of the target function
Wa(-). Take W^m) = 0, in e Z+, and

a~\\ - A)WRa+\m)
00 (yn onp-(a+X)S J

— E | j I {C(n + m) — C(n + m - 1)}
n=o ' n' '

A fA XrSre-^)SAr-n] . , —r .
+E£1E H A)Wa(n+m- 1)}. (34)

n—\

From (34) it is a trival consequence of the increasing convex nature of C(-) that each
iterate Wa (•) is an increasing function. Further, in this numerical scheme it is easy to
demonstrate inductively that, for each fixed in, the sequence {Wa(m), R e Z+} is
increasing in R and bounded above by Wa(m). We use (33) and (34) and the choice

j
of Wa in the argument. It must then follow that Wa(m) —> (pa(m), R —>• 00, where

94 K.D. GLAZEBROOK ET AL.

<paOn) ^ Wu(m), m e Z+. That </>„ and Wa must be identical is a consequence of the
fact that

A {A X' S' e~{a+X)SAr-" | E(e~aS - A)
> El} \ = — < 1rl 1 — A
n=l I r=n)

together with the contraction mapping fixed point theorem. We now conclude that

lim WR(in) — Wa(in), in e Z+. (35)

Since each iterate VF^(-) is increasing, it follows that the limit function Wa(-) must also
be. This concludes the proof of the lemma. □

We now proceed to theorem 1, which is the key result needed to establish both that
the class is cr-indexable and that the state in a-index is given by (29). The proof is long
and utilises the methods of stochastic dynamic programming. It may be found in the
appendix.

Theorem 1 (Optimal policy for the service control problem). If Wa(m — 1) ^ W <
Wa(m) then the policy which chooses the passive action b in states {(). 1 in — 1)
and the active action a otherwise is optimal for our service control problem with service
charge VF, m e Z+.

Careful study of the calculations in the proof of theorem 1 yield the conclusion that
when Wa(m — 1) < W < Wa(m) the policy described in the statement of the theorem
is strictly optimal. Suppose now that W — Wa(m). It follows from theorem 1 that for
this W-value, the policy which chooses the passive action in states {(), 1 m) and
the active action otherwise is certainly optimal. In the heuristic argument preceding the
statement of theorem 2, this is policy «2- Recall that u\ chooses the passive action in
states {0, 1 m — 1} and the active action otherwise. From (29) we have that

V,(i [m. a, W„(m)} = Vll2{m, a, Wa(m)}.
From this and the fact that u\ and in take the same actions in all states other than m it
follows easily that

V„, {/ha. lV„(m)} = Wu(m)}, n e N,
and hence that policy u\ must also be optimal. It follows that when W = Wa(in) both
actions are optimal in state in. The following result is now immediate.

Theorem 2 (Indexability for the customer class). The customer class is a-indexable
with Whittle a-index Wa(m) = Wa(m), in e N.

Proof. By theorem 1 and the preceding discussion we have that

na(W) = {0, 1 m}, Wa(m) ^ W < Wa(m + 1). in e N, (36)

INDEX HEURISTICS FOR MULTICLASS M/G/l SYSTEMS 95

and the requirements of definition 1 are met, with a-indexability an immediate conse¬
quence. That Wa(m) is the Whittle cr-index for state m follows from (36) and defini¬
tion 2. □

Comments

1. Hence the a-index is indeed given by expression (29). Observe that the proof
of lemma 2 contains within it a method of computation for the index, expressed by (34).
The subsequent discussion implies that the rate of convergence to the index will be geo¬
metric.

2. We now substantiate the claims made for the Langrangian relaxation in section 3
in the discussion preceding definition 1. Consider class k and its associated service
allocation problem (k, a, W). Use {W[a; r = 0, 1,..., Rk) for the set of distinct index
values for class k, numbered in ascending order. Note that Rk + 1 is the number of
distinct index values, which may be infinite. Hence we have that Wkct = Wiitt(0) = 0,

0<wla<wla<...
and

{K.a< r = 0, 1 Rk} = {WV«('i); n e N}.
For W {W[a; r — 0, 1, ..., Rk] use uk(W) for the unique optimal policy for the prob¬
lem (k, a, W) as given by theorem 1. Tf W — W'k a for some r then we use uk(W) to
denote that optimal policy which chooses the active action in all states for which both
actions are optimal. Developing the notation of section 3, we write

W) = E"k(W)
r do

/ I {<rq.(0 = Nk(t) = n)Q~°" dt | Nk(0) = mk
.Jo

for the associated active performance measures, with
"

rOC

Y~]xkn(mk, W) = / I {fl*(0 = a}e~a'dt | Nk(0) = mk
„.-n L2O

From the characterisation of uk(W) in theorem 1, it follows easily that for any choice of
mk and r. 0 ^ r ^ Rk — 1,

£**.„(»»*. wo (37)
7I€lI

is constant for W e (Wku, W'k*[) since in this range uk(W) does not change. Further, it
is left continuous such that for any r, 0 ^ r ^ Rk<

I'm £•<„('»*■ W) > £<„(>«*, W). W > Wrka.V> I (VV ,)lm msN neN

96 K.D. GLAZEBROOK ET AL.

Finally, it is straightforward to show that

£ <„(*«*, W) -> 0, VT —► oo.
neN

To summarise, the quantity in (37) when regarded as a function of W is piecewise con¬
stant, decreasing with jump discontinuities at distinct index values and tends to 0 as
W approaches infinity. These characteristics are inherited in the obvious way by the
aggregated quantity

K K

W) = m2xkJm- W)
*=1 neN k= 1 n=N

which is the appropriate active performance measure for an optimal policy u(W) for
the A'-class stochastic optimisation problem in (11) obtained by superposition of the
w*(W), 1 ^ k ^ K (i.e., independent operation of Uk(W) for each class k). Further, it
is a straightforward consequence of the fact that when W = 0, M*(W) takes the active
action whenever class k is non-empty, that

K

EE xl„(m, 0) > a 'p + Q(m, a), (38)
<k=l net)

where the constant 0(m, a) is as given in (9). Now introduce W(m, a) as

VT(m, a) = sup I W\ ^^ ^„(m, W) ^ a"'p + 0(ni.a')|.
I k= I neN J

By the above analysis, VF(m. a) must be an index value. Suppose that W(m. cr) = Wrka.
There are two possibilities. Either

K

YYA,,\^ VT(m. cc)} = a_lp + 0(m, a)
k=1 nstt

in which case policy u{VF(m, cr)} is optimal for the Lagrangian relaxation in (11) with
W = VT(m,a), satisfies the constraint in (10) and hence solves Whittle's relaxation.
Alternatively

K

EEc (m, VT(m, cr)} > a 1p + 0(ni-»)
A-=l neN

in which case the same claims can be made for some randomisation between
u{ VF(m. a)} and a modification of it which replaces the active action by passive in class k
states whose index is W[a.

3. Following theorem 2 and the discussion in section 3, an index policy for the
K-class problem with discounted costs of section 2 is constructed by computing the

INDEX HEURISTICS FOR MULTICLASS M/G/\ SYSTEMS 97

index function Wk a(-) for each customer class k from an appropriate form of (29). At
each epoch t, the policy serves a customer from a non-empty class with maximal index
Wk.a{Nk(t)}.

We again drop the class identifier k and observe that we can now develop a suit¬
able Whittle index W : N —> R+ for the average cost problem from the limit of the
corresponding cr-index

W(m) — lim Wa(m) = lim Wa{m), m e N, (39)
a—>0 <*—►()

as in definition 3. Utilising (39) within (29), we obtain the following result.

Theorem 3 (The Whittle index for average costs). The Whittle index for the average
cost problem is given by W(0) = 0 and

\ MC(m + 1) - C(m)} + C(m) - C(m - 1) +W(m) = , me Z+, (40)

E{C(N + ///)} — E{C(N + m — 1)}
_ +

E(S)

where in (40) we have

meZ+, (41)

C(w)=lima lC(m,a) = E
cf—>0 [C(N(t))

Jo
dt | N(Q) = m, a m e Z+,

and in (41), the random variable N has the steady-state distribution of the number of
customers present in the single class M/G/1 system with non-idling service.

Proof The form of the index in (40) follows readily from earlier results. To obtain
(41), observe that it follows readily from the definitions of the quantities concerned and
standard results concerning regenerative processes that

£{C((V + m)} = {C(m 4- 1) + C(m)X~l }{£(£) + A"1}"', (42)
where

E(T) = £(5){1 -X£(S)}~\ (43)
Expression (41) follows now from (40), (42) and (43). □

Comment

Following theorem 3 and the discussion in section 3, an index policy for the £-class
service control problem with average costs described in (5) of section 2 is constructed
by computing the index function Wk(-) for each customer class k from an appropriate
form of (41). The required (steady-state) distribution of a single class M/G/1 system
is available by standard methods. At each epoch t, the index policy serves a customer
from a non-empty class with maximal index Wk{Nk(t)}.

98 K.D. GLAZEBROOK ET AL.

5. Numerical investigation of index policies for multiclass M/G/l systems

Utilisation of the Lagrangian relaxation of section 3 has yielded a class of index heuris¬
tics for the multiclass service control problems of section 2 via the study of single class
problems with service charge. An index for the discounted costs problem of (3) is ob¬
tained as a fair charge for service with an appropriate index for the average costs problem
of (5) obtained as a limit. We now investigate the performance of the index heuristics
numerically. While our prime focus will be on average costs problems we begin with a

study of some two class problems with discounted costs.

5.1. Discounted costs problems with two customer classes

Table 1 below contains the results of part of a study comparing the discounted costs
incurred by the index heuristic described in comment 3 following theorem 2 with those
incurred by an optimal policy for a range of service control problems with two customer
classes. Each cell of the table gives results for four different cost structures in the form

a (a) b (b)
c (c) d (d).

The corresponding class cost rates are as follows:

(a) C\(n) = b\n + 2n2\ C2(n) = b2n + 2n2 (quadratic);

(b) C\(n) — b\n2 + 2n3; C2O1) = b2n2 + 2n? (cubic);

(c) C\(n) = b\n3 + 2«4; C2(n) = bin3 + 2n4 (quartic);

(d) C\{n) = b\{n — 2)+ + 2{(» — 2)+}2; C2(n) = b2(n — 2)+ + 2{(n — 2)+}2 (shifted
quadratic).

In all cells of the table the unbracketed figure (a,b,c or d) is the discounted cost for
the index policy beginning at time zero from an empty system, with the corresponding
optimal cost in brackets. Note that the optimal costs given in table 1 are a_1V(m, a)
with a = 0.05129 (e~a = 0.95), namely the value of the total discounted costs without
incorporation of the multiplier a in (3). Corresponding values for the discounted costs
associated with the index heuristic are also given. All figures were obtained by use of DP
value iteration. This is possible to implement for problems of this size, but computation¬
ally expensive. In the left-hand column of table 1, the first two entries in the bracketed
triple indicate respectively the choice of cost coefficients b\, b2 with the final labels 1,
T, 2 and 2' specifying features of the stochastic structure. The labels 1, 1' correspond to
problems for which Si ~ T(2, 1.25), S2 ~ T(3, 2.25) and X\ = 0.20. For case 1, X2 is
chosen such that the value of the traffic intensity p is 0.60, while for case T, p is set to
be 0.85. The labels 2, 2' correspond to problems with Si ~ T(2, 1) and S2 ~ T(3, 3)
and A-i = 0.20. Hence the mean service times are further apart than in 1, T. Again for
case 2, X2 is chosen to yield p = 0.60 while for 2' we have p = 0.85.

INDEX HEURISTICS FOR MULTICLASS M/G/1 SYSTEMS 99

Table 1

Comparative performance of the index heuristic and an optimal policy for
a range of discounted costs problems with two customer classes.

(2,1,1) 97.9099 (97.8780)
598.9984 (598.9022)

(1.2.1) 96.3177 (96.2575)
585.8202 (585.5572)

(2,1,1') 268.1926 (263.7965)
4254.7857 (4167.4051)

(1,2,1') 270.5770 (267.7749)
4376.4714 (4205.4300)

(2.1.2) 102.1608 (101.9858)
681.1326 (681.1326)

(1,2,2) 98.4711 (97.6724)
693.9780 (693.6048)

(2,1,2') 261.9274 (261.7704)
4236.5454 (4233.1641)

(1,2,2') 261.8411 (261.6491)
4239.4764 (4221.4696)

211.9724 (211.9462)
7.2059 (7.2047)

208.0710 (207.7231)
6.8896 (6.8874)

932.9235 (914.5342)
53.2241 (52.1260)
949.8748 (924.7464)
54.4016 (53.3628)
229.8926 (229.8295)

8.6761 (8.4078)
227.1538 (226.5507)
8.6704 (8.3285)

917.1907 (916.9421)
52.8168 (52.7911)
917.7822 (915.7203)
52.9643 (52.8245)

5.2. Average costs problems with two customer classes

Table 2 below contains the results of part of a study comparing the average costs incurred
by the index heuristic described in the comment following theorem 3 with those incurred
by an optimal policy. All service control problems studied have two customer classes.
Each cell in the body of the table gives results for four different cost structures in the
form

The corresponding class cost rates are as follows:

(a) C\(n) = 2n + c\n2\ C2(a) — n + c2n2 (quadratic);

(b) C\{n) = 2n2 + cqn3; C2O1) = n2 + c2n3 (cubic);

(c) C\(n) = 2n3 + c\n4', C2(n) = «3 + c\ti4 (quartic);

(d) C,(n) = 2{n - 2)+ + Cl{(n - 2)+}2; C2(n) = (n - 2)+ + c2{(n - 2)+}2 (shifted

In all cases the unbracketed figure (a, b, c or d) is the time average cost (in (5)) with
the corresponding optimal cost in brackets. All costs were obtained by use of DP value
iteration. In the left-hand column of table 2, the entries are the cost coefficients c\, c2
which apply to the values in the corresponding row. In the main body of the table each
left-hand cell concerns a server control problem with Si ~ T(2, 1.25), S2 ~ T(3, 2.25),
A1 = 0.20 and X2 chosen to give a traffic intensity of 0.60. The value of X2 is modified
for each right-hand cell to give a traffic intensity of 0.85.

a (a) b (b)
c (c) cl (d).

quadratic).

100 K.D. GLAZEBROOK ET AL.

Table 2

Comparative performance of the index heuristic and an optimal policy for a range of average costs problems
with two customer classes.

0.100.10 2.0727 2.0727) 4.2932
11.7501 11.7501) 0.2160

0.10 0.20 2.2337 2.2334) 4.6542
12.9877 12.9834) 0.2318

0.10 0.50 2.5564 2.5530) 5.4729
15.9330 15.5675) 0.2688

0.10 1.00 2.9461 2.9458) 6.5898
19.2520 19.1304) 0.3122

0.10 2.00 3.7181 3.7181) 8.4563
25.6285 24.9345) 0.3729

0.20 0.10 2.1649 2.1648) 4.5764
12.7201 12.7201) 0.2253

0.20 0.20 2.3407 2.3407) 4.9506
13.9763 13.9763) 0.2420

0.20 0.50 2.7172 2.7107) 5.9251
17.1763 16.9382) 0.2825

0.20 1.00 3.1339 3.1325) 7.0314
20.7434 20.7342) 0.3288

0.20 2.00 3.9077 3.9075) 8.9965
27.3193 26.9502) 0.3911

0.50 0.10 2.4343 2.4343) 5.3592
15.4227 15.4227) 0.2525

0.50 0.20 2.6317 2.6317) 5.8035
16.8787 16.8725) 0.2707

0.50 0.50 3.0962 3.0961) 6.9233
20.6543 20.6528) 0.3169

0.50 1.00 3.6383 3.6377) 8.2931
25.0046 25.0046) 0.3789

0.50 2.00 4.4710 4.4683) 10.5650
32.4936 32.2729) 0.4453

1.00 0.10 2.8802 2.8802) 6.5241
19.3929 19.3929) 0.2977

1.00 0.20 3.0861 3.0859) 7.0706
21.2598 21.2598) 0.3165

1.00 0.50 3.6352 3.6352) 8.3852
25.5310 25.5310) 0.3682

1.00 1.00 4.3379 4.3365) 10.2027
31.7557 31.6629) 0.4405

1.00 2.00 5.3396 5.3291) 12.7169
39.7882 39.7414) 0.5461

2.00 0.10 3.7713 3.7712) 8.7142
26.6031 26.6027) 0.3734

2.00 0.20 3.9790 3.9790) 9.3873
28.8583 28.8583) 0.4010

2.00 0.50 4.5853 4.5834) 11.0135
34.5466 34.5465) 0.4625

2.00 1.00 5.4561 5.4561) 13.1438
41.5439 41.5438) 0.5457

2.00 2.00 6.8041 6.7923) 16.7250
53.8595 53.1546) 0.6866

(4.2930)
(0.2160)
(4.6531)
(0.2318)
(5.4729)
(0.2661)
(6.5808)
(0.3019)
(8.4269)
(0.3715)
(4.5764)
(0.2253)
(4.9506)
(0.2420)
(5.8729)
(0.2819)
(7.0313)
(0.3200)
(8.9851)
(0.3911)
(5.3592)
(0.2525)
(5.8035)
(0.2707)
(6.9231)
(0.3169)
(8.2880)
(0.3704)
(10.5287)
(0.4451)
(6.5241)
(0.2963)
(7.0706)
(0.3165)
(8.3852)
(0.3682)
(10.1928)
(0.4404)
(12.7169)
(0.5304)
(8.7120)
(0.3721)
(9.3649)
(0.4001)
(11.0135)
(0.4623)
(13.1438)
(0.5457)
(16.5944)
(0.6844)

7.7935
289.3492
8.9225

343.8621
10.4631

448.4251
12.2439

555.7236
15.7226

702.9505
8.2195

328.6532
9.8432

396.5049
12.1076

530.7424
14.2092

670.5373
17.7387

850.6627

413.0458
11.3447

515.2392
15.6224

720.0842
19.1765

932.7753
23.5551

1209.4349
9.5440

505.1724
12.5758

647.5939
18.9538

937.6228
25.0574

1257.7162
31.8017

1660.0632
10.6295

622.5756
14.0270

819.2224
22.4480

1234.8649
32.1849

1699.1895
43.9525

2326.4592

/./yz8)
288.5327)
8.9122)
343.2882)
10.4407)
446.8978)
12.2382)
554.9071)
15.7224)
698.2963)
8.2195)
328.3382)
9.8335)
396.5009)
12.0930)
529.6970)
14.1831)
667.4028)
17.7320)
846.7620)
8.8792)
413.0351)
11.3446)
515.1302)
15.5923)
719.3984)
19.1429)
931.1808)
23.5206)
1204.6509)
9.5418)
505.1617)
12.5756)
647.3051)
18.9537)
937.5127)
25.0438)
1251.5248)
31.7742)
1655.7462)
10.6279)
622.5390)
14.0257)
819.2021)
22.4478)
1234.8568)
32.1848)
1698.4475)
43.9089)
2312.4604)

39.9968
3.2089

46.5325
3.6701
58.7729
4.3366
71.3354
5.0380
89.1588
6.0162

44.2131
3.3805

52.6082
4.0348
68.5622
4.9834
84.6577
5.8720

105.5860
6.9959
52.7127
3.6408

65.5261
4.6367
90.0431
6.3695

115.1593
7.8445

146.3636
9.5578
61.4237
3.9002
78.8265
5.1201

114.5855
7.6957

152.2819
10.1860

199.3951
12.9627
71.9051
4.2643
95.1909
5.6788

145.9129
9.0829

202.4307
13.0174

276.4430
17.8278

INDEX HEURISTICS FOR MULTICLASS A//G/I SYSTEMS 101

5.3. Simulation study ofaverage costs problems with five customer classes

While it was possible to obtain a direct numerical comparison between costs incurred by
our index heuristics and those incurred by an optimal policy for the two class problems
in (i) and (ii), this is not a reasonable computational goal for larger problems. The simu¬
lation study reported in tables 3 and 4 concerns a collection of service control problems
involving five customer classes under the average cost criterion.

Table 3 contains the results of studies of ten problems with quadratic costs (1-5,
T-5') and five problems with quartic costs (1-5). All problems feature deterministic
service times. Each of the problems with quadratic costs is characterised by four five-

Table 3

Comparative performance of the index heuristic and four other service control
rules for a range of average costs problems with five customer classes and deter¬

ministic service times.

Quadratic costs INDEX LQ MYOPIC MYOPIC* RANDOM

1 6.7103 6.9759 6.8919 7.2142 7.0933

(0.0358) (0.0394) (0.0449) (0.0496) (0.0507)
2 6.9778 7.4549 7.3399 7.6648 7.7825

(0.0430) (0.0568) (0.0550) (0.0645) (0.0840)
3 7.1444 7.8734 7.8815 7.9003 8.6498

(0.0489) (0.0601) (0.0475) (0.0531) (0.0778)
4 7.3377 7.9216 7.7673 7.9249 8.7709

(0.0423) (0.0585) (0.0541) (0.0632) (0.1152)
5 7.2164 7.6448 7.6566 7.7806 8.2742

(0.0493) (0.0489) (0.0451) (0.0497) (0.1077)
1' 23.2539 25.5787 24.0424 28.3180 28.9243

(0.4346) (0.4844) (0.5170) (0.5113) (0.5900)
2' 25.2815 30.7615 27.9366 30.3640 39.7180

(0.5172) (0.8053) (0.4614) (0.4835) (1.0815)
3' 24.7591 33.8409 29.4795 32.1201 83.3331

(0.4060) (0.6157) (0.4755) (0.4777) (3.4087)
4' 25.6866 31.1344 30.1719 30.2082 72.1357

(0.3649) (0.6197) (0.4898) (0.4667) (2.6194)
5' 26.3250 29.7588 29.3930 29.5962 55.3344

(0.5261) (0.4981) (0.5977) (0.4620) (2.0550)
Quartic costs

1 15.5772 15.7914 16.0158 17.8664 22.3649

(0.1703) (0.1851) (0.2282) (0.2050) (0.5133)
2 17.2057 18.6310 18.2118 20.2739 25.5776

(0.1691) (0.2237) (0.2003) (0.2744) (0.6412)
3 18.2476 22.2612 21.6834 22.1398 42.3787

(0.2390) (0.2658) (0.3997) (0.2661) (1.9690)
4 19.4305 22.8196 23.1101 22.2155 49.2510

(0.2524) (0.3014) (0.3425) (0.3057) (6.2762)
5 18.5410 21.9044 22.1773 21.4857 40.9507

(0.2185) (0.3103) (0.2912) (0.3282) (2.2664)

102 K.D. GLAZEBROOK ET AL.

vectors b, c, X and S. Both b and c are vectors of cost coefficients such that the class k
cost rate is given by

Ck(n) = bkn + Ckn1, 1 ^ k ^ 5, (44)

while X is a vector of arrival rates with Xk the rate for class k. Finally, S is a vec¬
tor of deterministic service times. For example, for quadratic problem 1 we take
b = (5,4,3,2,1), c = (1,2,3,4,5), X = (0.40,0.30,0.25.0.10,0.05) and S =

(0.6, 0.5, 0.4, 0.7, 0.8) with a resulting traffic intensity of 0.60. To obtain quadratic-
problems 2-5 we keep X and S fixed, but reassign the cost coefficients by means of
a series of permutations. For example, for problem 2 we take b = (1, 5, 4, 3, 2) and
c = (5, 1, 2, 3, 4) and so on. We obtain quadratic problems l'-5' respectively from 1-5
by rescaling X to give a traffic intensity of 0.85, while keeping other aspects fixed. We
obtain quartic problems 1-5 from the corresponding quadratic problems upon replacing
(44)by

Ck(n) = bkn3 + c^4, 1 ^ k ^ 5.

In the body of table 3 find estimates of the average costs incurred by the above problems
under five service control heuristics, as follows: INDEX denotes our index heuristic for
average costs while LQ allocates service at each decision epoch to whichever customer
class has the longest queue (and chooses among the candidate classes at random in the
event of a tie). MYOPIC always chooses for processing whichever customer class is
incurring the largest instantaneous cost rate and MYOPIC* modifies this criterion by
dividing the instantaneous cost rate by the corresponding mean service time. At each
decision epoch RANDOM chooses one of the non-empty customer classes at random
(with equal probabilities) and serves a single customer from the class chosen. The es¬
timate of average cost is obtained in each case by Monte Carlo simulation. Typically,
we allowed a "bum-in" period of around 10,000 time units in each case, followed by a
period of around 15,000 time units during which costs were tracked. This was repeated
around 50 times and average costs (per unit time) estimated as given. The corresponding
standard errors are given in brackets in the table. The details of the mechanics of the
simulations varied a little across the different cases in order to obtain standard errors

which would enable meaningful comparisons between service policies to be made. Note
that we did not have access to sufficient computer resources for this to be achieved for
problems with quartic costs and a traffic intensity of 0.85. This is why no such cases are

reported in the table.
The study reported in table 4 mirrors that in table 3 and differs only in that service

times are now gamma distributed. Hence, for quadratic problem 1 the single five-vector
S of deterministic times is replaced by two five-vectors m = (1, 3, 2, 4, 5) and fi =
(5/3, 6, 5, 40/7, 25/4). We now suppose that Sk ~ T(mk, /z*), ' ^ k ^ 5. All other
details are as in the study in table 3.

INDEX HEURISTICS FOR MULTICLASS M/G/1 SYSTEMS 103

Table 4

Comparative performance of the index heuristic and four other service con¬
trol rules for a range of average costs problems with four customer classes and

gamma distributed service times.

Quadratic costs INDEX LQ MYOPIC MYOPIC* RANDOM

1 8.9812 9.3200 9.3366 9.3885 9.5438

(0.0941) (0.0733) (0.0894) (0.0917) (0.0878)
2 9.5892 10.2201 10.2700 10.0731 11.1100

(0.1010) (0.0860) (0.1506) (0.0935) (0.1380)
3 9.9218 11.2622 10.9091 11.1442 13.9702

(0.0904) (0.0970) (0.1127) (0.1143) (0.2522)
4 10.2312 10.9974 10.7825 11.0971 13.3023

(0.1098) (0.1136) (0.0866) (0.0997) (0.4585)
5 10.0943 10.7580 10.6351 11.2773 12.4465

(0.1153) (0.0962) (0.1296) (0.1306) (0.1832)
1' 39.4936 45.6291 42.0555 41.1953 58.1367

(1.3472) (1.2900) (1.0080) (0.9626) (3.0910)
2' 44.1563 52.1205 49.7436 52.9404 86.0343

(1.1356) (1.1165) (1.0747) (1.4466) (2.9641)
3' 42.5420 60.9430 53.6382 54.9029 187.7974

(0.9720) (1.6908) (1.4915) (1.2248) (10.9604)
4' 47.2808 56.1806 52.0994 58.2293 157.9946

(1.1669) (1.1536) (1.4938) (1.3649) (6.5433)
5' 45.9588 52.8616 49.0092 57.8623 113.7342

(1.4101) (1.5572) (1.1121) (1.4052) (3.9718)
Quartic costs

1 34.4928 33.7941 33.3589 38.0270 60.5706

(0.8522) (0.7745) (0.7173) (0.8749) (2.8492)
2 39.1317 41.1258 40.5730 44.3442 72.3138

(0.7614) 41.1258 (0.7935) (1.0462) (3.2612)
3 42.9542 49.1543 48.4376 50.3789 150.1279

(0.9132) (0.9074) (1.2642) (1.4622) (11.2225)
4 45.4567 53.0129 51.2151 52.2439 144.0640

(1.2018) (1.0876) (1.0783) (1.0613) (7.8021)
5 43.9029 54.1418 48.5072 54.1950 113.3488

(0.8862) (1.4610) (0.9447) (1.1625) (4.9810)

5.4. Comments

Please note the very strong performance of our index heuristics throughout the above
study. In the average cost problems reported in table 2 the index heuristic is indistin¬
guishable from optimal for many cases. The highest degree of suboptimality observed
throughout tables 1 and 2 is 4%. Tables 3 and 4 contain compelling evidence that this
strong performance carries over to larger problems. In 29 of the 30 cases reported, the
index heuristic outperforms the other service control rules studied, in many instances
clearly so. In the exceptional case, the degree of inferiority of the heuristic is not statis-

104 K.D. GLAZEBROOK ET AL.

tically significant. The most consistent of the competitor policies is MYOPIC, but even
this incurs costs which exceed that of INDEX by over 25% on occasion. In general,
the degree of cost superiority of INDEX over the competitor heuristics appears to grow
with p.

Acknowledgements

The authors express appreciation to the Engineering and Physical Research Council for
its support and to Professor Nino-Mora for his insightful comments. They are also grate¬
ful to referees for a range of comments which stimulated crucial additional work.

Appendix

Theorem 1 (Optimal policy for the service control problem). If Wa(m — 1) ^ VP <
Wa(m) then the policy which chooses the passive action b in states {0, 1, m — 1}
and the active action a otherwise is optimal for our service control problem with service
charge VP, m e If.

Proof. We use V(•, a, VP) to denote the value function for the policy u described in the
statement of the theorem. We write

— — VP
V(n, a, VP) = V{n, a, VP) , n e N.

a

By standard DP theory, it remains to show that V(-.a. VP) satisfies the optimality
equations (18). From (21) and straightforward algebra, it suffices to show that when
Wa(m - 1) ^ VP < Wa{m) we have that

VP ^ aC(n) + XV (n + 1, a, VP) — (cr + X)C(n, a)
00

C°° (XtV —

-(a + A.)V / —-e-(0l+X)'V(n + r - l,a, VP)dG, n > m, (A.l)
r!

and

VP ^ aC(n) + XV(n + 1, a, VP) — (a + X)C(n, a)
00

r°° (xtY
-(a + X)^y —-^e"("+A,'V(«+ /-- l,a, VP)dG. 1 ^ n < m - 1.rl

(A.2)

We shall demonstrate that (A.l) and (A.2) hold by considering four cases in turn.

INDEX HEURISTICS FOR MULTICLASS M/G/1 SYSTEMS 105

(1) n = m. Policy u chooses the active action at states m and above. Hence, by con¬
sidering costs incurred within the first service and beyond it, the total cost V(m, a, VP)
may be written

00 r°o

Vim, a, W) = C (m, a) + V* / —— t'(a+X),V{m +r- l,a,W) dG. (A.3)

But, upon utilising (A.3), the form of (A.l) required for the case n = m becomes

VP sj aC(m) + XV(m + 1, a, VP) — {a + X)V(m, a, VP). (A.4)

We also have that

V(m + 1, a, VP) = C(m + 1, a) + AV(m, a, VP), (A.5)

where recall that A = E(e~aT). Moreover, a calculation akin to that which yielded (24)
gives

w ma C(m,a) + A{aC(m - 1) - W}(a + A.)"1V(m, a, W) = ———— . (A.6)
1 — AA(o' k)

From (A.5) and (A.6) we have that

aCim) +Wim + 1, a, W) — (a + k)Vim, a, W)
= aCim) + XCim + 1, a) + {kA — (a + A)}V(m, a, VP)
= aCim) + kCim + 1, a) — (a + k)C(m, a) — A{aCim — 1) — VP}
= (1 - A)VPa(m) + A VP, (A.7)

using (29). But it is plain from the hypotheses of the theorem that the expression in (A.7)
exceeds VP and (A.4) is established.

(2) n ^ m + 1. Fix state M ^ m + 1. From (A.l) we require that

W ^aC(M) +WiM + I, a, VP) - {a+k)C{M,a)
°°

f°° (XtY
- ia + A)V / —— e~(a+X),ViM + r - 1, a, VP) dG. (A.8)r!

In what follows, we shall use uin) to denote the policy which chooses the active action
at states n and above with the passive action chosen otherwise and V<n> for the corre¬
sponding costs. Note that w(/n) = u and V(m) = V. By calculations similar to those
which yielded (28) we conclude that

V(n+l)in,a, W) = [aCin) - VP + AC(/? + !,«)}(« + k -kA)"1, n e N. (A.9)
Combining a version of (A.6) with n replacing m and (A.9) we deduce that

V(n)in, a, W) - V(n+l)in,a, VP) = [-A.C(n + I, a) + (a + k)C(n, a)
— aCin) + aACin - 1) + VP(1 - A)](a + A - XA)"1

= {W-Wain)}i\ - A)ia + k-XArl, n e N. (A.10)

106 K.D. GLAZEBROOK ET AL.

Now let r e Z+ and consider policies u(n) and u(n + 1) operating from initial state
n + r. Since each begins with a busy period during which the active action is taken, we
have that

V(n) (n + r, a, W) = C{n + r, a) + AV('° {n+r -\,a,W) (A. 11)

and

V("+1)(n + r,a, W) = C(n + r,a) + AV(n+1)(n + r - I, a, W). (A. 12)

It is a straightforward consequence of (A.IO)-(A. 12) that

V(n)(n + r, a, W) - V(n+l\n + r, a, W)
= A{V(n\n + r - I, a, W) - V(n+1)(rc + r - I, a, W)}
= A' {W-Wa(n)}(l - A)(a+X-XA)-\ n, r e N. (A.13)

We now write the right-hand side of (A.8) as

aC(M) + XV(M + 1, a, W) - (a + X)C(M, a)
00

r°° cxtY
-(a + X)V / —— e-(a+X)'V(M + r - 1, a, W) dG

rl

= aC(M) + XV(M\M + 1, a, W) - (a + X)C(M, a)

V f ^-2- e~(Q,+X)'v(M)(M + r — 1, a, W) dGJo r\

oo

(a + X)
r=0

{M-1J2 V(,!)(M + 1, a, W) - V("+1)(M+ l,a, W)
I 77=,

'M-l oo -oo

— (fit + a) e^' {V(n)(M + r - 1, a, W)
n ,« A ^0 V '

, n=m r=0

— V("+1)(A/ + r - l,a, W)}dG
M—1

(A. 14)

= (1 - A)Wa(M) + AW + XJ2 AM+x~n{W - W„(«)}(1 - A){a + X-XA)~
n—m

-1(a + k)(l - A)(ot +X - XAY

{ AM~l~"{W -Wa(n)} {~222-e~(a+X)'Ar dG J (A. 15)rl
n=m r—0

M-l

= (1 - A)Wa(M) + AW + AA ^ [Am""{W- Wa(n)}(l - A) (a + A - XA)~x]

INDEX HEURISTICS FOR MULTICLASS A//G/I SYSTEMS

M-1

107

(a + A) [AM""{W - Wa(«)}(l - AXcr-fA-AA)"1] (A. 16)

= (1-A)

^ W,

M— 1

Wa(M)+ J2AM~"Wa(n)
M— \

+ AW - (1 - A) J2 Am~" W
(A. 17)

as required. Note that (A. 15) makes use of (A. 13) and a version of (A.7) with M replac¬
ing m while (A. 16) follows from (25). Inequality (A. 17) is a consequence of the fact
that

Wa(n) ^ W, n ^ m.

We have now established (A.I). We now proceed to show that (A.2) holds in cases 3
and 4.

(3) n — m — 1^1. From (A.2) we are required to show that

W ^ aC(m — 1) + AV(m, a, W) — (a + A)C(m — I, a)

(cc + A)

oo rC

u e~(a+l>tV(m + r - 2, a, W) dG
r\

(A. 18)

= aC{m - 1) + AV(m_1)(rn, a, W) - (a + X)C(m - 1, a)

— (a + A)u
00 (xty

r\
-(a+x),v(m-t)(m + r _ 2, cr, W) dG

+ A{V(m)(m, a, W) - V(m_1)(ra, a, W)} - (a + A)
oo „c

Si (Ar)r
rl -(«+W{y("«)(m +r _ 2, a, W)

- V(m-1)(m + r - 2, a, W)} dG.

For the last term in (A. 19) we need to consider expressions of the form

V<,!)(n + r, a, W) — V("+1)(n + r, a, W), n e N, re 7L~

(A. 19)

(A.20)

But both policies u{n) and u(n + 1) will take the passive action in state n + r when
r < 0. From this it easily follows that

V("\n + r, a, W) - V("+l)(» + r, a, W)
A

a -f- A, {Vw(n,a, W) - V(n+1)(n,a, W)}

= (^l) [W-wa(.n)}(\ - A)(a+ X-XA)"1, n e N, r e Z~, (A.21)

108 K.D. GLAZEBROOK ET AL.

by (A. 13). If we now use an appropriate version of the calculation to (A.7) along with
(A. 13) and (A.21) within (A. 19) we obtain that

aC(m — 1) + AV(/n, a, W) — (a + A)C(m — 1, a)

- (a + A)V [e-(a+x)tV(m + r - 2, a, IV) dG

= (1 - A)Wa(m -l) + AW
+ AA{Wa(m - 1) - IV}(1 - A) (a + A — AA)"1
— (a + A)

x(l — A) (a + A — AA)
-l

+ (a + A)fJo
dG

,-(a+A.)/ A -

A

A + or

x (1 - A)(a + A - AA)"1) dG
rc

= W + (1 - A)A~x{Wa(m - 1) - W] /Jo

{Wa{m - 1) - IV}

-(a+X)' dG

sj W,

(A.22)

(A.23)

(A.24)

since Wa{m — 1) ^ IV. Note that (A.23) follows from (A.22) by way of identity (25).
We have now established inequality (A.2) for the case n = m — 1.

(4) 1 ^ n ^ m — 2. Fix state 1 ^ M ^ m — 2. From (A.2) we require that

W ^ aC(M) + AV(M + 1, a, IV) - (a + A)C(M, a)

- (a + A) f°° (ktyhJo r!
~(a+X)tV(M + r - l.cr, W) dG

--aC(M) + AV(M)(M + Fa, IV) - (a + A)C(Af, a)
°° ^°° (At)r

- (a + A) Y. Jo r!r=0 1/0
-(«+«/V(W)(M + r _ i, a, vv) dG

'

W—1

+ a] Vin+l)(M + l,a, IV) - V(,,)(A/+ l,a, W) [[n=M J
"~l _°° r (itY

-«*+«£E ^ e-(«+W'jV("+1)(M + r - Fa, IV)
n=M r=0

V("\M +r - l,ar, W)} dG. (A.25)

INDEX HEURISTICS FOR MULTICLASS M/G/1 SYSTEMS 109

We now use (A. 13) and (A.21) to analyse terms on the right-hand side of (A.25). In
order to do so, we need to utilise sequences of the form

r-1

Sr =
X

oc ~\~ X J Va + A

X X

a T X
, I, A, A2,..., , r e N,

and

S_r = {Ar,Ar+l,..., }, r e Z+.
We shall use Sn<r to denote the nth term in the sequence Sr, n e Z+, re Z. The fifth
term on the right-hand side of (A.25) may be expressed as

A iC v<"+1)(Af + l,cx, W) - V(n)(M + I, a, W)1
I n—M

= X

'

m— 1

Y {Wa(n)~ —n,m—M—2

.n=M

(1 - A)(a + X - XA) -l (A.26)

and the sixth term on the right-hand side of (A.25) as
72—1 CO

(a
"' ^ poo x-\ t\r

+«EE(tt Q-(a+x)t{y(«+i)(M + r _ 1, CY, W)
n=M r=0 0 L r-

— V(n\M + r — I, a, W)}JdG
m — 1 oo

^

= (a + A) Y {Wa(n)~ W)Y \
n=M r=0 0

(At) (a+X)t
^r+l.n-M+l 7~ 6 G — At)

r!

x(a + A- XAyldG. (A.27)

In order to develop an analysis based on (A.26) and (A.27), we observe that, for all
choices of s ^ 0,

OO n OO / •y+2 N

(a + A) / I 5„,s+2-r dG
r=0 ,/0 \ n=l
oo / s+2

«,s+l
((a + A)t)r (a+X)t

K A

,=0 \n=1

'a + A

r\

X

i+i 1

+ YsS"I ■
n=1 J

(A.28)

(A.29)

Recall also that the first four terms on the right-hand side of (A.25) when aggregated,
are equal to

(1 - A)Wa(M) + AW. (A.30)

110 K.D. GLAZEBROOK ET AL.

Combining (A.25)-(A.27) with (A.30) we can express the right-hand side of (A.25) as

m — 1

W+J2 [Wa(n)- W}a„, (A.31)
n=M

where

\-i
aM — 1 — A + 2(1 — A) (or + A + XA)

(00 /»on

-(a+f)iy / Sr+1 1 e-(ff+A)' dG 1(1 — A)(a + A + XA)1 ^ '0 ' r!
-1

r=0

— (a + A)1

and

00
f00 (At)' I

V / 5,.+i -e-(a+^,rdG (1 - A)(a + A-AA)-1, (A.32)r! J

I f°° (XtY^Sm-n,m-M-2 ~ (a + A) J Sr+l.n-M+t e <Q,+A" dG >
x(l — A)(a + A — AA)-1, M + 1 < n < m - 1. (A.33)

But from (A.29), (A.32) and (A.33) we deduce that, for all choices of s, m — 1 ^ x ^ M,
S

J2 an ^ 0. (A.34)
n=M

Combining (A.31) and (A.34) we see that the right-hand side of (A.25) is given by

(m—1 \ m—2 / n \I]fl») +1] {vy«(n)-W„(7z + l)}(^Or) < W, (A.35)
n=M f n=M \r=M /

as required. The inequality in (A.35) follows from (A.34) and the assumptions concern¬
ing W and the values of Wa. This concludes the proof. □

References

[1] E. Altman and P. Nain, Optimal control of the M/C/l queue with repeated vacations of the server,
IEEE Trans. Automat. Control 38 (1993) 1766-1775.

[2] P.S. Ansell, K.D. Glazebrook, I. Mitrani and J. Nino Mora, A semidefinite programming approach
to the optimal control of a single server queueing system with imposed second moment constraints,
J. Oper. Res. Soc. 50 (1999) 765-773.

[3] P.S. Ansell, K.D. Glazebrook, J. Nino Mora and M. O'Keeffe, Whittle's index policy for a multiclass
queueing system with convex holding costs. Math. Methods Oper. Res. (to appear).

[4] D. Bertsimas and J. Nino Mora, Conservation laws, extended polymatroids and multi-armed bandit
problems: A polyhedral approach to indexable systems, Math. Oper. Res. 21 (1996) 257-306.

[5] A. Cobham, Priority assignment in waiting line problems, Oper. Res. 2 (1954) 70-76.
[6] D.R. Cox and W.L. Smith, Queues (Methuen, London, 1961).

INDEX HEURISTICS FOR MULTICLASS M/G/1 SYSTEMS 111

[7] A. Federgruen and K.C. So, Optimality of threshold policies in single-server queueing systems with
server vacations, Adv. in Appl. Probab. 23 (1991) 288-405.

[8] J.C. Gittins, Multi-Armed Bandit Allocation Indices (Wiley, New York, 1989).
[9] J.M. Harrison, Dynamic scheduling of a multiclass queue: discount optimality, Oper. Res. 23 (1975)

270-282.

[10] G.P. Klimov, Time sharing systems I, Theory Probab. Appl. 19 (1974) 532-551.
[11] J. Nino Mora, Countable partial conservation laws, Whittle's restless bandit index and a dynamic

ciu rule for scheduling a multiclass M/M/\ queue with convex holding costs, Technical Report,
Universitat Pompeu Fabra (2001).

[12] M.L. Puterman, Markov Decision Processes: Discrete Stochastic Dynamic Programming (Wiley,
New York, 1994).

[13] R. Righter and S.H. Xu, Scheduling jobs on nonindentical IFR processors to minimize general cost
functions, Adv. in Appl. Probab. 23 (1991) 909-924.

[14] J.A. van Meighem, Dynamic scheduling with convex delay costs: The generalized CjU-rule, Ann.
Appl. Probab. 5 (1995) 809-833.

[15] R.R. Weber, Stochastic scheduling on parallel processors and minimization of concave functions of
completion times, in: Stochastic Differential Systems, Stochastic Control Theory and Applications,
Vol. 10 (Springer, Berlin, 1988) pp. 601-609.

[16] G. Weiss, Branching bandit processes, Probab. Engrg. Inform. Sci. 2 (1988) 269-278.
[17] P. Whittle, Restless bandits: activity allocation in a changing world, J. Appl. Probab. A 25 (1988)

287-298.

[18] P. Whittle, Optimal Control: Basics and Beyond (Wiley, Chichester, 1996).

