
A Formal Process for
Systolic Array Design

Using Recurrences

Jonathan Puddicombe

Revised version of thesis submitted for degree of
Doctor of Philosophy

University of Edinburgh
October 1992

(Revised version submitted June 1993)

Declaration

This thesis was composed by me and the work described in it is my own, except where

indicated.

Acknowledgements

My thanks go to my supervisors, Peter Denyer, especially for his faith, optimism and

encouragement, and Peter Grant, especially for his detailed comments on my work and

his faithfulness, patience and perseverance with me.

My thanks also go to Sanjay Rajopadhye, whose work was the springboard for mine, to

S.E.R.C. for funding me for two years, and to everyone who gave me support of a

technical, financial or moral nature.

W

Abstract

A systolic array is essentially a parallel processor which consists of a grid of locally-

connected sub-processors which receive, process and pump out data synchronously in

such a way that the pattern of data-flow to and from each processor is identical to the

flow to and from the other processors. Such arrays are repetitive and modular and

require little length of communication interconnection, so that they are relatively

simple to design and are amenable to efficient VLSI implementation. The systolic

architecture has been found suitable for implementing many of the algorithms used in

the field of signal- and image-processing.

A formal design method is a well-defined process for constructing, given a well-defined

function from a certain class, a well-defined object (e.g. a design) which performs that

function. When proven correct, such methods are useful for designing equipment which

is safety-critical or where a design fault discovered after manufacture would be

expensive.

This thesis presents a formal design method for producing high-level implementations

for certain signal-processing and other algorithms. These high-level implementations

can themselves usually be easily implemented as systolic arrays.

As a necessary preliminary to the method, a calculus is defined. The basic concept, that

of a "computation", is powerful enough to express both abstract algorithms and those

whose suboperations have been assigned a place and a time to execute. Computations

may be composed or abstracted (by having their variables hidden) or may have their

variables renamed. The "simulation" of one computation by another is defined. Using

this calculus it is possible to formalise concepts like "dependency" (of data or control)

and "system of recurrence equations", which often appear in the literature on systolic

array design. The design method is then presented. It consists of five stages: pipelining

of data dependencies, scheduling, pipelining of the control variables, allocation of

subprocessors to the subcomputations, and the final stage (in which the design is

constructed). The main concepts are not new, but here they have been formalised,

iv

arranged and linked in a clearly defined way. The output of the method is a high-level

design description which defines the functionality of each subprocessor in the array (for

both data and control). It also defines scheduling and allocation of all the operations

which are to be executed and the data and control input requirements of the array.

The method is used to design a simple one-dimensional systolic convolver and then to

design a more complicated two-dimensional systolic array which performs Given's

algorithm for QR-factorisation, a task required in certain signal-processing applications

such as adaptive estimation and bearing measurement. Alternative designs are briefly

discussed. For the convolver and the two arrays for QR-factorisation, sketches of the

architectures are given but these are hand-produced and are not the product of the

method.

A detailed proof is given that, subject to assumptions about the well-deflnedness of the

computations handled and created, the design method will produce only designs which

meet their specifications; however the final high-level design may imply a low-level

implementation which may contain an interconnection structure which is arguably non-

local. A proof is given that the well-defmedness conditions hold which are required for

the validation of data-pipelining.

Contents

Terminology_ -_...-.......... ..----".- IX

Glossary of Terms

1 Introduction 	 1

1.1 Subject of Thesis 	 . 1

1 .2 	Systolic Arrays ..2

1.2.1 	What is a systolic array? ... 2

1.2.2 How do SM compare with other parallel processors? 5

1.3 	Formal Design Methods .. 9

1.3.1 What are formal design methods and their advantages over
informalmethods? ..9

1.4 A Formal Design Method for Systolic Arrays11

1.5 	Overview of the Thesis ...15

2 Systolic Arrays and Formal Design Methods 16

2.1 	Examples of Systolic Arrays ...16

2.2 	Formal Design Methods ..32

2.3 	Design of Systolic Arrays ...33

2 .3.1 	Beginnings..33

2.3.2 	A developing discipline..34

2 .4 	summary ...37

3 Computations and Recurrences ... 38

V

3.1 Computations 38

3.1.1 	Composition.. 39

3.1.2 	Hiding ... 44

3.1.3 	Renaming.. 45

3.1.4 	Simulation... 48

3.1.5 	Example: TripleAdd ... 49

3.2 Embedded Computations 	.. 51

3.3 Recurrences 	... 53

3.3.1 	Example: Convolution.. 58

3.3.2 	Shorthand expressions for computations64

3.4 Space-time networks 	... 65

3.5 Summary, discussion and further work .. 70

3.5.1 	Summary... 70

3.5.2 	Discussion... 70

3.5.3 	Further work ... 72

4 	The Formal Design Method ...73

4.1 Data-pipelining 	... 78

4.1.1 	Example.. 83

4.2 Scheduling 	.. 92

4.2.1 	Example.. 93

4.3 Control-pipelining ... 94

4.3.1 	Example ... 98

4.4 Allocation 	..105

4.4.1 	Example .. 105

Vi

vu

4.5 The Final Stage and Summary of the Design Process 	. 106

4 .6 	The Architecture ... ill

4.6.1 	Summary of section .. 114

4.7 Summary of chapter, discussion and further work114

4.7.1 	Summary... 114

4.7.2 	Discussion.. 114

4.7.3 	Further work ... 116

5 The Formal Design Method Applied to QR-Factorisation Example 119

5.1 Data-pipelining 	... 129

5.1.1 	OtherOptions.. 134

5.2 Scheduling 	.. 134

5.2.1 	Other Options.. 135

5.3 Control pipeiining 	... 135

5.3.1 	Pipelining of cont.. 135

5.3.2 	Pipe1iningof cox 	 ... 138

5.3.3 	Pipelining of coy ... 142

5.3.4 	Amalgamation of just-generated computations..................1 43

5.3.5 	Other Options.. 143

5.4 Allocation .. 144

5.4.1 	Other Options.. 144

5.5 The Final Stage 	... 145

5.6 The Architecture 	... 149

5.7 Summary of chapter and further work ..153

5.7.1 	Summary ... 153

vzu

5.7.2 Further work 	 .154

6 	Conclusions fin...._....................—. 155

6 .1 	Contribution .. 155

6.1.1 	Formalisation of concepts... 155

6.1.2 	The method ... 155

6 .2 	Further work ... 156

6.2.1 	Priority work .. .156

6.2.2 Analysis, extension and automation of the method............ 156

6.2.3 	Theoretical foundation.. 157

6.2.4 	Wider issues.. 157

6 .3 	In Conclusion ... 157

7 	References—........................... 159

AppendixA 	: Overview of Appendices n...nn. 167

Appendix B 	: Basic Propositions I ... 171

Appendix C 	: Basic Propositions LI 180

Appendix D : Propositions relating to data-pipelining .._................ 196

Appendix E : Propositions relating to control-pipelining 221

Appendix F : Propositions relating to scheduling and allocation ... 247

Appendix G : Propositions relating to the whole design process 249

Appendix H : Proof of some of the well-definedness

assumptions _..__e 272

Terminology

Lx

General

The hand symbol "to" signifies that what follows is a reference to

a proposition and its proof in the appendices.

The symbol ""is used to express the composition of two functions.

So (v'RENAME)var v(RENAME(var)).

The symbol "" signifies that the term or bracketed expression

immediately following it is to be read as being a subscript of the one

preceding it.

The symbol ")" is to be read as "I" followed by ...

dQLzI(F) denotes the domain of a function F, and n(F) denotes its

range. The domain of a function written "p - e", where e is an

expression in p, will often not be stated when it is implied by the

context.

Let be a function from S to and let S' be asubset of S. Then AS ,

is the function from S' to T such that vIa' (s') v(s') for all s' in S'.

IfFisa function then F[x -+ y] is defined to be the function with

the same range as F and domain dom(F)L){x} which satisfies the

following equations:

F[x —y](x)y

F[x —* y](x') = F(x') when x' * x

I

A functional is a function which takes a function as one of its

arguments.

• 	w.ri. stands for "with respect to".

• 	LL stands for "such that".

n.,p, stands for "not proven".

• 	"Integer" is the set of integers.

• 	"Real" is the set of real numbers.

• 	Nat(n) is the set of natural numbers from 1 to n inclusive. Nat(n)

may be written {l ... n}.

• 	Ids is function which has domain S and maps every element of S to

itself.

Vector spaces

A vector space over a field <F, +, > (e.g. the field of real numbers

with the usual addition and multiplication operations) is a triple <V.

, (&> where

<V > is an Abelian group

®:FxV-3V and, for all a,€F and u,v€V,

—

aøu and a*P are usually written au and ap respectively, and the

same sign may be used for ED and + since no ambiguity can arise.

xi

However there are conceptually four distinct operations, which is

why four symbols were used in this definition. The term "vector

spacenlay belooSelyuSedto refer Ytotht'v'wd the

field are taken as read. Ditto with the term "field".

A linear transformation from a vector space <S i, , ®> over <F,

+, > to a vector space <S2, 92 , 0
2> over <F, +, *>is a function T

from S1 to S2 which satisfies

T(v u) = T(v) 02 T(u) and

T((9j v) = X ®2 T(v)

for all V and u in S1 and all A. in F.

Let the set of linear transformations from S1 to S2 be called L. L

itself forms a vector space <L, OL ,
®> over <F, +, > where

(T 	U)v = T(v) 2 U(v)

((x ®L T)v = a (92 (T(v))

for all and inLand all ainF.

A linear transformation is singular iff it is not invertible.

A map, p - A(p) + b, from a vector space to a vector space, where

A is a linear transformation and b is a constant vector is called affine.

nifme map p _,A(p) + bis defined tobeatrafbA=I

The null space of a linear transformation T is {u T(u) = O}.

Let lbe an indexing set. The set {v1: iE I} V is said to be linearly

independent if El E 1 v1 =OXjO for all i€ I.

xii

Let Ibean indexing set. The set {v:iE I}VspansViff, for all

v€V,v=Z.j € i)jvj for some set {A.j:iEI}.

A basis for V is a linearly independent set which spans V. There is

atheorein which states that ifVhas afinite basis then all bases for

V have the same number of elements.

A vector space V is said to be n-dimensional iff it has an n-element

basis.

The dimension of the null-space of a linear transformation is called

its nullity.

A matrix is (informally) an array of elements of identical type. The

following is a 2x3 matrix with integer elements:

23-63 1
[490]

For a matrix A, "A(i, j)" stands for the element in the i th row and the

th column.

The transpose of an nxm matrix A is the mxn matrix, which may be

written AT satisfying the following property: For all pairs <i, j> in

Nat(n)xNat(m), A(i, j) = AT(j, i)

The set of nxm matrices with elements drawn from a certain field

form a vector space over that field. Given an ordered basis for an n-

dimensional vector space over a field, one can find a natural

association between vectors in that space and nxl matrices with

elements drawn from that field.; nxl matrices are called column (n-

)vectors. Similarly any n-dimensional space over a field may be

.uu

identified with the space of lxn matrices with elements drawn from

the field; these are called row (n-) vectors. Given ordered bases for

an n-dimensional vector space (S1) over a field, and an m-

dimensional vector space (S2) one can find a natural association

between the space formed by the set of linear transformations from

S1 to s2 and the space of mxn matrices.The 1x2 matrix [ij] may be

written [i, j] in order to separate the two elements visually; lxn

matrices may be punctuated in a similar way.

The product of an mxn matrix A and an nxp matrix B is the mxp

matrix C, where C(i, j) := Zk to A(i, k)B(k, j) The product of

matrices A and B is written A.B, or just AB.

A matrix A is said to be orthogonal if AAT =L

A matrix A is said to be upper-triangular if A(i, j) =0 whenever

i <j.

The determinant of an nxn matrix A, written "det(A)", is defined

recursively as follows: if A is the lxi matrix [a] then det(A) = a;

otherwise det(A) = j=i ten(lY44A(1,j)*det(A1l,j), where AIi is

the matrix obtained from A by deleting its 1g row and jth column.

Lattices

• 	Let V be a vector space and let A equal { aj: 1 	n } be a subset of

V; then L, defined as follows, is a lattice:

L := (u1a1 + u2a2 ++ ua: u1, u2 ... u are integers}

• 	A (defined above) is said to be an 1-basis for L. (There may be other

1-bases for L, for example, (a1': 1 -~i~w 	 v(ij)aj and

v is an integer matrix with det(v) equal to 1.)

xii'

Let T be a linear transformation from V to another vector space U;

let the null space of T be N. Then the null lattice of T (relative to the

lattice L) is defined to be N n L.

xv

Glossary of Terms

AR: 	 Afflne Recurrence (see page 57)

ARMA: 	 "Auto-Regressive Moving Average": descriptive of a filter

whose current output is a linear combination of recent inputs and

outputs

CAD:
	 Computer-Aided Design

CCS: 	 Calculus of Communicating Systems: a formalism for

describing the behaviour of parallel, interacting systems (see

page 32)

CIRCAL: 	a formalism with a similar style and purpose to CCS (see page

32)

CSP: 	 Communication Sequential Processes: a formalism with a

similar style and purpose to CCS (see page 32)

CURE: 	 Conditional Uniform Recurrence Equation (see page 71)

LRA: 	 Linear Recurrence Algorithm (see page 34)

M[MD: 	 Multiple-Instruction-Multiple-Data: descriptive of a certain type

of asynchronous parallel architecture in which each processor

has its own control unit and memory (see page 6)

RIA: 	 Regular Iterative Algorithm (see page 34)

SA: 	 Systolic Array

SARE: 	 System of Afflne Recurrence Equations (see page 34)

SIMD: 	 Single-instruction-Multiple-Data: descriptive of a certain type

of synchronous parallel architecture which operates by the

broadcasting of a sequence of instructions to a set of processors.

The processors generally process separate data streams (see page

6)

SURE: 	 System of Uniform Recurrence Equations (see page 33)

SRE: 	 System of Recurrence Equations (see page 71)

QR-factorisation: 	the task of finding an upper-triangular matrix which, when

premultiplied by some orthogonal matrix, will produce a given

(square) matrix (see page 119)

UR: 	 Uniform Recurrence (see page 57)

URE: 	 Uniform Recurrence Equation (see page 71)

VLSI: 	 Very Large Scale Integration

I 	Introduction 	 1

1 Introduction

1.1 Subject of Thesis

Many computing tasks, especially from the areas of one-dimensional signal- and two-

dimensional image-processing, have the following characteristics:

The task needs to be done quickly.

There are algorithms for performing it which can be parallelised.

Characteristic (2) can be used to satisfy requirement (1). Some tasks have an algorithm

which will run sufficiently fast on a general purpose parallel machine. However, for

real-time processing a speed of the order of 1 billion instructions per second may be

necessary; in such cases it is often desirable to design a custom parallel architecture

which can be implemented efficiently using VLSI. There is a certain type of parallel

architecture which is particularly suitable for implementing signal- and image-

processing algorithms and is also especially suited to VLSI: the systolic array.

The pioneering work on systolic arrays was done by H.T.Kung and C.E.Leiserson in

the late seventies [HTKun78], though the algorithms which were found to be suitable

for running on them had been studied previously [Karp67]. In [HTKun78], Kung and

Leiserson concisely describe a "systolic system" as "a set of processors which

rhythmically compute and pass data through the system". The synchronised "pumping"

of data through such a system resembles the action of the heart on blood within the

circulatory system, hence the term "systolic".

Regarding uses of the systolic architecture, Kung and Leiserson themselves showed

that systolic arrays could be built which would perform certain important tasks in the

field of linear algebra, such as band-matrix multiplication, triangularisation and back-

substitution [HTKun78]. In the last decade systolic arrays have been designed which

implement many of the algorithms used in radar-, sonar-, image-, signal- and speech-

processing [SYKun88, McW921.

I 	Introduction 	 2

Also over the last decade much work has been done to develop mathematically-based

languages which can be used to encapsulate hardware design specifications formally

and precisely, and to develop mathematical techniques for proving that hardware

designs meet those specifications. These languages and techniques are known as

"formal methods" or "formal verification". To have a proof of design-correctness is

particularly desirable for safety-critical hardware. It is possible to integrate the tasks of

design and verification so that each step of the design process is verified as it is taken.

This benefits the designer by alerting him to design errors at an early stage, avoiding

costly redesign, and it also benefits the verifier since he is not fed with an

uncommented, unstructured, design which he must verify without knowing the

rationale behind it.

Though a validated design process will warn the designer off incorrect designs, it may

still be hard for him to find a correct one, due to the plethora of red-herring options.

However, if he is willing to forego some freedom, e.g. by restricting himself to a certain

architecture, then he can use a specialized formal design method in which some of the

steps have been frozen, leaving fewer steps to choose and verify, thereby simplifying

his task. (Of course the architecture must be appropriate to the algorithm to be

implemented, otherwise the task of finding a correct design may be made more difficult

or impossible.) This thesis presents one such specialized method - to be used in the

design of systolic arrays.

1.2 Systolic Arrays

1.2.1 What is a systolic array?

Several researchers have given more or less precise definitions of the set of systolic

arrays (SAs) [HTKun78, U1184, Rao85, SYKun88]. In this thesis the following

definition is adopted:

A systolic array contains a set of processors.

(locality) The interconnections between these processors, and between the

I 	Introduction 	 3

processors and the outside world, are all local.

(homogeneity) The network formed by the processors and their

interconnections is regular and homogeneous, at least in the interior of the

network, and may be extended indefinitely. The type of each processor is

ignored when examining the network for homogeneity.

(synchronisation) The operation of the processors is synchronised by a global

clock.

(pacing of data) The maximum speed at which information can travel within the

array is one processor per clock tick (or cycle); i.e. a datum which is output by

a processor during a particular clock-cycle cannot affect the output of any other

processor during that cycle; i.e. cascading is outlawed.

These properties constitute an informal definition of the set of systolic arrays. For the

purposes of this thesis, the wires used for inputting and outputting signals to and from

the array are ignored when assessing its systolicity. A formal definition of a "strictly

systolic computation" will appear at the end of Chapter 3. A strictly systolic

computation can usually be neatly implemented on a systolic array in a straightforward

manner. However, it is possible that the natural implementation may not have a local

interconnection structure, if by "local" it is meant that the only connections are between

nearest-neighbours or second-nearest neighbours (arguably a good definition). A

property which the implementation will have is that the patterns of input wires toy

two subprocessors will have the same shape, i.e. they will be congruent, in the

geometrical sense. In the literature, the arrays termed "systolic" have had both of the

aforementioned properties, as in fact do the arrays described in this document, but my

method only guarantees that the latter property will hold. Figure 1.1 shows four

interconnection structures which would be allowed by my method; the bottom two

structures include directly-connected processor-pairs which are not nearest-neighbour

or even second-nearest-neighbour.

Introduction
	 4

S 	S 	 S 	S 	S 	•

N qhl

Figure 1.1 Interconnection structures allowed by my method

Figure 1.2 shows a sketch of a systolic array for a simulated annealing algorithm which

uses the first-order Markov random field assumption to restore distorted images (see

[SYKun88] pp. 592-599). Each processing element (subprocessor) stores an estimated

value for a particular pixel in the undistorted image. As an initial estimate, the value of

the corresponding pixel in the distorted image is used. The pixel-value-estimates are

repeatedly updated using the value-estimates of the four nearest-neighbour pixels. A

processing element / pixel XL is classified as odd or even depending on whether (i + j)

is odd or even. At the beginning of each time- step, each processing element receives

from its neighbours the current value-estimates of their corresponding pixels. If the

parity (even/odd) of the processing element is the opposite of the parity of the time-step

then the value-estimate of its pixel is updated; otherwise it is left unchanged. This

means that when a processing element is updating its nearest neighbours are resting and

vice-versa. The 50961 processing element utilization can be increased by "processing

element sharing". Similar arrays may be used to implement other algorithms such as the

Jacobi method, the Gauss-Siedel algorithm and the Successive Over-relaxation

algorithms for solving elliptical partial differential equations (see [SYKun88] p. 598).

I 	Introduction 	 5

0

0

Figure 12 A systolic array for image restoration

1.2.2 How do SAs compare with other parallel processors?

First cousins to the systolic arrays are the wavefront arravs[SYKun88]. A wavefront

array is like a systolic array, except that it is not clock-driven but data-driven, i.e. an

operation takes place on a processor as soon as all its required inputs have arrived and

the processor is available. Wavefront arrays are therefore asynchronous. The systolic

and wavefront architectures are computationally equivalent That is, if an algBithm can

be executed by a systolic array then it can also be executed by a wavefront array, and

vice versa.

Related to the systolic and wavefront arrays are processors of the following two types:

Single Instruction Multiple Data (SIMD) and Multiple Instruction Multiple Data

I 	Introduction 	
6

(MIMD)[Rob841. A SIMD array is similar to a systolic array except that control signals

(instructions) are broadcast to the array: at each clock period all the processing elements

receive an identical instruction to execute. Data may be broadcast. An MIMD array is

asynchronous the processing elements operating almost completely independently,

each one having its own control unit and memory. As in a systolic or a SUM array, the

processing elements may communicate with each other and in addition may share

memory. Figure 1.3 shows A Venn diagram of these parallel architectures. A detailed

discussion of parallel architectures may be found in [Hwang84].

No global 	/ 	\

I)isc 	

connections

Synchronous J 	I 	Asynchronous

(

Some global 	
1111)

Ì -, Y connections

Figure 13 Venn diagram ofparallel architectures

There are at least two advantages of systolic and wavefront arrays which SIMD and

MIMD arrays do not have:

I 	Introduction

On a VLSI chip, long wires are expensive in power consumption,

area and execution time. Therefore, since these arrays don't have

global communication, they are usually compact and cheap when

built using VLSI technology.

Input/Output bandwidth is small compared to computation

bandwidth in these arrays, which also makes them suitable for

implementation on VLSI chips.

Systolic and wavefront arrays have two more advantages, which SIMD and MIMD

arrays do not necessarily have:

Because systolic and wavefront arrays are repetitive and modular,

they are relatively simple to design.

The regularity of these arrays improves tessellation, which makes it

possible to produce a more compact final implementation.

The drawback of systolic and wavefront architectures is that they can only be used to

implement a restricted class of algorithms. Happily, as was mentioned earlier, many of

the algorithms used in signal- and image-processing fall within that class. Some

examples are:

• 	The Schur algorithm, which is used for certain cases of spectral

estimation (a task which occurs in many fields)

• 	QR-factorisation, which is used for "beamforming", a process which

occurs in many radar, sonar, seismic and communications systems

to suppress unwanted interference.

• 	Kalman filtering, which is used in communications and control

systems, and for tracking in radar and sonar processing

I 	IniToduction
	 8

• 	Vector quantisation and dynamic time warping, which are used in

speech-coding and speech-recognition respectively

Rank order filtering, which is used for noise reduction and image

enhancement

Relaxation algorithms, which are used for image restoration

Two-dimensional convolution, the Hough transform and two-

dimensional normalised cross-correlation, which are used for edge-

detection, curve-detection and template-matching respectively in

the field of image analysis

To compare systolic arrays and wavefront arrays:

A wavefront array can be about twice as fast as the equivalent systolic array, since some

operations may be allowed to execute faster than others rather than being restrained by

other, slower, operations. The wavefront array generally also has the following

advantages:

It is easier to program.

Large current surges are avoided. (These may occur in

implementations of systolic arrays due to the synchronized change

of components' states.)

The problem of clock-skew is avoided completely. Clock skew

means that the clock signal doesn't arrive at all the processors

synchronously, due to propagation delays across the processor. It

can be a problem with systolic arrays, especially large ones.

However, one-dimensional systolic arrays may be synchronized by

"pipelined clocks" [Fish85], and it is possible, in some two-

dimensional arrays, to make clock skew less than it would otherwise

I 	!nlTOdUCtiOfl 	
9

be, by routing as a recursive H-tree the wire which is to carry the

clock signal, so that each processor is the same path-distance from

the clock generator (SYKun88].

Also the wavefront architectural style is more amenable to design

for fault-tolerance.

However, if the systolic array is moderately-sized with simple processing elements then

it may be more efficient than the equivalent wavefront array, since the disadvantages of

the systolic style are not so pronounced, and the disadvantages of handshaking between

the processing elements of the wavefront array are absent from the systolic array. These

disadvantages are as follows:

The average power drawn by the detection circuitry in wavefront

arrays is greater than that drawn by a clock driver.

More area is required by wavefront arrays than the corresponding

systolic arrays which, as well as incurring the obvious costs, means

that wavefront arrays are more subject to errors caused by radiation

and processing defects.

If "single-rail" logic handshaking is used then a wavefront array is

often slower than the corresponding systolic array. "Double-rail"

logic handshaking speeds things up but at the cost of an even greater

area requirement: the area overhead of each wavefront array

described in [McA92] is two to six times greater than its systolic

equivalent.

1.3 Formal Design Methods

13.1 What are formal design methods and their advantages over
informal methods?

AfQrmal design method is a well-defined process for constructing a well-defined object

I 	Introduction
	 10

which performs a well-defined function.

The function is like a label on a "black box" which tells you what the object inside does

or should do. In technical jargon, the function on the label is called the specification and

the object is called the iplementation. If the object does indeed do what its label says

it does, then we say that the implementation satisfies the specification. (Of course the

object may in fact do more than its label requires, just as a Swiss army knife as well as

cutting like a knife may also be used to open bottles and file fingernails.)

A formal design method for which a proof has been constructed that each

implementation it produces satisfies its specification may be described as "verified" or

"validated". Note that it is possible for a formal design process, even a verified one, to

fail to come up with an implementation for a given specification.

Coming up with a suitable implementation will in general involve a series of design

choices, which may be made by a human or by a computer.

Advantage 1

As was mentioned earlier, the fact that the product of a verified formal design method

is proven correct with respect to its specification would make such methods useful for

designing safety-critical equipment [Cohn88] for use in areas such as "defence",

medicine and civil aviation. A formally verified design is also useful when many

identical processors are used, in the area of telecommunications for example; it would

be expensive to replace all of them if a design fault were discovered after manufacture.

Such a design would also be useful where the processors are used in inaccessible places,

for example, for sensing on pipelines or for surveillance in polar regions. [Birt88]

Advantage 2

If the designer is human, a formal design method may clarify his thoughts and lead him

to solutions which he would not otherwise have thought of.

As was noted earlier, it is a good idea for each choice to be checked for correctness as

soon as it is made.

I 	Introduction 	 11

If the design method is specialised (e.g. for designing ASICs with a particular

architecture) then many of the choices are frozen. This has at least three advantages:

The design process is comparatively fast since there are fewer design choices to

make.

The task of verification is eased.

The design process is more likely to succeed, assuming that the specification is

of a type which is appropriate to the method.

One disadvantage of a specialised method is that it may not allow the designer to

proceed to valid designs which are perhaps more efficient than any which are allowed

by the method.

1.4 A Formal Design Method for Systolic Arrays

The specifications to be input to the formal design method we'll be considering will

consist of two parts. They will contain firstly a behavioural part, which specifies what

calculation the final design must perform. Secondly they will contain the stipulation

that the final design of a particular form which is easily implementable as a systolic

array; to be more exact, the final design is to be an algorithm, each variable of which

has an associated place and time of existence, and this space-time algorithm is of a

particular form which is easily implementable on a systolic array. It should be noted

that the behavioural part must itself be of a certain form, so the method can't necessarily

be used to design a systolic array to do any arbitrary calculation. Sometimes it may be

easy to re-write an unsuitable behavioural specification as a suitable one, but

procedures for doing so are not examined in this thesis.

The formal design method is a transformational one. A sequence of designs

(ALGORITHM, I, 12, IMPLEMENTATION) is found such that each design satisfies

the behavioural specification and IMPLEMENTATION is moreover easily

iinplementable as a systolic array.

I 	Introduction 	 12

The designs are expressed in a formal design description language. The basic definition

of the language is that of a computation. A computation has variables, which may be

either inputs or outputs, and a function which relates the values of the outputs to the

values of the inputs. The variables may for example be abstract, in which case the

computation will express an abstract algorithm, or they may be space-time position

vectors, in which case the computation will express an algorithm being executed on a

processor. Computations of the latter type are called "space-time networks".

The designs in the design method are expressed as computations. Because

computations can express abstract as well as "concrete" algorithms, it is possible to use

the algorithm from the behavioural specification as the initial "design". (It may not be

directly realisable in hardware, but that does not matter.) The complete specification for

the final design is, informally: "the final design must 'simulate' the initial algorithm

and be of a particular form which is easily implementable as a systolic array". The term

"simulate" is defined formally in Chapter 3.

The function which produces a design in the sequence from its predecessor is called a

design transformation. The sequence of design transformations associated with the

method is called the transformation scheme. It consists essentially of three

transformations. The initial design (algorithm) will have a regular data-dependency

structure. However if it were to be directly realised in hardware, it might require non-

local communication to carry some of the data. The object of the first transformation,

called the "data-pipelining transformation", is to localise the data-dependencies. The

combination of the initial control requirement and the one generated by data-pipelining

may imply, in a direct implementation, control-broadcasting; the second

transformation, the "control-pipelining transformation", removes the need for this. The

design at this point has the pattern of a systolic implementation, except that its variables

are still abstract. The third transformation, called the "scheduling and allocation

transformation", maps the design into space-time by, for each variable, replacing its

abstract position by the vector which designates the time and place of the its existence.

The scheduling map maps the design into time and the allocation map maps the design

I 	Introduction
	 13

into space. The complete transformation scheme is shown in Figure 1.4.

Data-pipelining Transformation

I'

Control-pipelining Transformation

12

Scheduling and Allocation
Transformation

IMPLEMENTATION

Figure 1.4 The transformation scheme

It would be natural in the design method, to make th e choice(s) associated with the ith

transformation before those associated with the (i+l)th, for each i. However, there are

reasons for making the choices in an 'unnatural' order. This results in the method not

running quite parallel to the scheme, though the method is closely based on the

scheme. The method consists of five stages (Figure 1.5).

14
Introduction

Data-pipeliniflg

Scheduling

Control-pipehnmg

Allocation

Final stage

Figure 1.5 The design method

In the data-pipelining stage, the data-pipelining transformation and 11 are found; in the

scheduling stage, the schedule (the mapping of 12 into time) is chosen, but it is not used

until the final stage; in the control-pipeliiiiiig stage, the control-pipeliniiig

I 	Introduction 	
15

transformation and 12 are found; in the allocation stage, the allocation map (the

mapping of 12 into space) is chosen; in the final stage, IMI'LEMENTATION is found,

using the schedule and the allocation map chosen previously.

The reason that the schedule is chosen before control-pipelining is done is that the

choices associated with control pipelining may be done in the light of the schedule,

which may mean that an impasse which would otherwise have occurred can be avoided.

1.5 Overview of the Thesis

Chapter 2 discusses background material relevant to the formal design of systolic

arrays. Chapter 3 presents the theoretical grounding of the new design method. Chapter

4 presents the method in detail with the aid of a simple example: convolution. In

Chapter 5 the method is used to design a systolic implementation of the more

complicated QR-factorisation algorithm, which is widely used for beamforming in

antenna arrays. It is shown how different choices made during control-pipelining and

allocation affect the design. Chapter 6 provides concluding remarks. In the appendices

a proof is given that, subject to certain assumptions, a design produced by the method

will satisfy its specification. Since the assumptions need to be made, the method cannot

be described as "validated", but in Appendix H the assumptions required for two of the

main theorems in the proof are proven.

2 	Systolic Arrays and Formal Design Methods 	 16

2 Systolic Arrays and Formal Design Methods

This chapter starts with the presentation of two typical systolic arrays. The rest of the

chapter consists of a survey of existing work in the same subject area as this thesis. The

thesis presents a formal design method for systolic arrays; it belongs to two fields:

formal design methods for parallel systems (not necessarily systolic), and design

methods for systolic arrays (not necessarily formal). The overlap between the two fields

will of course be particularly relevant. Discussion will also touch on other closely

related areas such as design of regular arrays which are not quite systolic.

2.1 Examples of Systolic Arrays

Here are two examples of systolic arrays.

Example 1 (Figure 2.1) is a systolic array which implements bubble-sorting, a parallel

sorting algorithm used in median filtering for noise reduction in images (see

[SYKun88] pp. 122-3, 143-5, 587). It can be seen that the array consists of four

processors, each connected to its neighbour(s) by communication wires.

Figure 2.1 A systolic array for bubble-sorting

The input to the bubble-sorting algorithm is a sequence of four numbers, X1, X2, X3

and X4 say. The output is that sequence arranged in descending order of sample value,

2 	Systolic Arrays and Formal Design Methods 	 17

Yi, Y2, Y3 and Y4. There is more than one variant of the algorithm, but all the variants

operate by repeated transformation of the sequence and have as their middle phase the

following characteristic motion of data. In one time-step, each datum in an odd position

in the sequence is compared with the datum in the next higher (even) position. If the

former is larger than the latter, the two are swapped; otherwise not. During the next

time-step each datum in an odd position is compared with the one in the next lower even

position and they are swapped if and only if the former is smaller than the latter. By this

process each datum is buffeted towards its correct position. The algorithm is called

"bubble-sorting" since the inputs can be thought of as mutually immiscible bubbles of

liquid; each bubble moves to the level appropriate to its density. This method of sorting

is similar to the way a squash ladder functions.

The variant of bubble-sorting presented here has an initial phase in which data is input

to the array and a final phase in which data is output. The bubbling activity ramps up in

the initial phase and ramps down in the final one. In order to define the algorithm

formally it is helpful to introduce two sets of intermediate variables, { uj , : 0 < i <4 &

O<j:54} and {dj:O<i<4&0<j:54}. Ile former contains data which is"moving

up" the sequence and the latter contains data which is "moving down". The recurrence

relation defining the data-dependence is simply:

djj := min(d1,(j...l), U(11)J)

uij := max(d1,(j..l), U(il)j)

If 110 , 11 1,2, 112,3, 1134 are all -0o and d10, d20, d30and d40 are X1, X2, X3 and X4

respectively then u41, u, u43and u44 will be Y1, Y2, Y3 and Y4 respectively. The

data-dependence is illustrated in Figure 2.2. Each circle represents an operation

consisting of the aforementioned pair of assignments for some i and j.

2 	Systolic Arrays and Formal Design Methods
	 18

diol 	d2ol 	d3o1 	d's.oI
U01 7 Ujj V U2,1 V u31 V u4,1
100 --go. 0 pp.0 p.O pp.

di,4 	d2,1j 	d34 d44

V ui,2 V U2.2 V u3,2 7 u4,2
01.0 	00.0 	pp.0pp.

	

d2,2j d34 	'u
V U ,3 V U3,3 V U4 ,3

	

—ill. 0 	pp.0 	pp

	

d331 	d4,31
V U34 7 U44

Figure 2.2 Sorting algorithm

Figure 2.2 simply shows the data-dependence of the bubble-sorting algorithm; it

doesn't show when and where each operation occurs in the functioning of the systolic

array (Figure 2.2). It is necessary to assign a processor and a time-step to each operation

(these assignments are called allocation and scheduling respectively). Figure 2.3 shows

this graphically. Each diagonal line corresponds either to a processor or to a point in

time.

2 	Systolic Arrays and Formal Design Methods
	 19

t=l

proc4

proc3

proc2

t=7

Figure 23 Schedule and allocation

Figure 2.4 shows four separate snapshots of the activity of the array, one being taken

after each of the first four time steps (t is the time). Data which has just been generated

is shown in bold print. For simplicity the multiplexers and the control signals have not

been included. During the first time step, d1,0 (X1), which has been input to the first

processor, is compared with u01 (which is 0o). The larger value, d10, is passed to the

second processor (as "U11") while the smaller (-co) is discarded (as "d11"). Figure

2.4(a) shows the situation when t-- 1. During the second time step, the second processor

receives u11 from the first processor as well as the new input value, d20 (X2), from the

outside world. The two values are compared and, as before, the larger is passed to the

right and the smaller to the left (as "U21" and "d21" respectively). Figure 2.4(b) shows

the situation when t=2. d21 is not discarded but caught by the first processor, where it

is compared with u1,2 (Woo) in the next time step. Simultaneously, u21 is being compared

with the new input, d20 (X3), in the third processor. The larger values are passed to the

right and the smaller to the left. Figure 2.4(c) shows the situation when t=3. In the fourth

2 	Systolic Arrays and Formal Design Methods
	 20

time step, the final input, d40 (X) arrives at the fourth processor, where it is compared

with the value just received from the third processor. A comparison is being done

simultaneously on the second processor. At this time the first output, u11, which is Y1

(the largest of X1, X2, X3 and X4), appears at the fourth processor. Figure 2.4(d) shows

the situation when t=4. As the sorting activity continues, u4 ,2 (Y2), u (Y3) and U44

('(4) will be output in turn from the third, second and first processors respectively.

Figure 2.5 is Figure 2.4 with the variables replaced by their values, in the case where

X1, X2, X3 and X4 are 4,2,7 and 1 respectively.

2 	Systolic Arrays and Formal Design Methods
	 21

(a)t=1

U0.1 	U111
procl proc proc3 proc4

d1l 11 	d1.0

L2 j

d2,0
t=2

-

proc3 proc4

t=3

- -

Ul,2 	U2,2 U2,l 	3,l i2.iIIIiiIIIIiLI1i proc4

d3ad3,o

d4,0
t=4

- - -

U2,3 f 122 	U3,2 U3,j 	U4,1

procl prOd2 I 	I proc3 prOd4

d2,2 }H d3,2 	d3,1 d4,1 	ds,o I-

Figure 2.4 A bubble-sorter in operation

22 2 	Systolic Arrays and Formal Design Methods

(a) t=1

procl proc2 proc3 proc4

2
t=2

- - - -

-00 ' 'I

proc 1 proc2 proc3 proc4

-00 2

H-

t=3
- -

:

procl proc2 p roc3 proc4

H-
1

r=4
-

: :

prod p roc2 proc3 proc4

H-

Figure 25 A bubble-sorter in operation: a numerical example

2 	Systolic Arrays and Formal Design Methods 	 23

The second example of a systolic array is one which implements multiplication of band

matrices (see [SYKun88] pp. 177-8 & 200-1). A band matrix is one that has its non-zero

values clustered in a band around its (top-left to bottom-right) diagonal. Let us suppose

that A and B are band matrices. For all relevant pairs <i, j>, assume that ajj := A(i, j)

and bij := B(i, j). Let us assume that the "band" of A extends from two element-wide

strips below the diagonal to one element-wide strip above it, and that B extends from

one strip below the diagonal to two strips above it i.e.

aij 	= 0 if i > j+2 or i <j-1

and

bij 	= 0 ifj>i+2orj<i-1

Assume that C := AB and that, for all i and j, cj := C(ij). The formula for the product

of two matrices is given on page xiii. In the band matrix case, many of the products of

the matrix elements are known to be zero, so we will omit these from the sums. Assume

that high(i, j) := min(i+1, j+l) and that low(i, j) := max(i-2, j-2). Then we have

cij 	= Ljlow(i,j) tohigh(i.j) ajJc*bJj 	if Iij1 -5 3 	 (i)

cjj 	= 0 	 otherwise 	 (ii)

So C is also a band matrix which has non-zero elements only in the band extending from

three strips below to three strips above the diagonal. We may calculate the sums in (i)

by introducing intermediate variables sijk to hold the partial sums. Thus, if

Ii-jI<3

and

Sjj,((jj)..l) 	0

and

5ij.k 	 + ajj *bij when k..< high(i,j)

then

cia 	= Sij,high(ij)

2 	Systolic Arrays and Formal Design Methods 	 24

This algorithm may be executed by a two-dimensional "hexagonal" array. The

following six figures show snapshots of its state after each of the first six time-steps.

The strategy is to send the band of possibly non-zero elements of A, spearheaded by

a11, into the array from the bottom-left and to send the band of B, spearheaded by b11,

into the array from the top-left. The partial sums flow from right to left through the

array. When an element of A meets an element of B in a processor, their product is

formed and added to the partial sum which has just arrived from the right. The new

partial sum is passed out to the left. The element of A and the element of B flow out of

the processor with out being deflected from their respective courses. The band of

possibly non-zero elements of the product matrix C flows from right to left out of the

top-left and bottom-left edges of the array.

Figure 2.6 (a) (t)) shows a1,1 and blj arriving at the array. In the first time-step, those

elements pass into the array and b12 and a21 arrive. Figure 2.6 (b) shows the state of

affairs when t-- l. During the second time-step, the first interaction between the two

matrices occurs: a1,1 is multiplied by b11, and the result is added to silo and passed

out to the left as sl,l,1; and a1,1 and b1j are each ready to pass out of the processor from

the sides opposite their respective entrances. The state of affairs when t=2 is shown in

Figure 2.6 (c). In this figure, more elements from A and B can be seen arriving. The

value s110 and all the other initial values for the partial sums must be zero; this is

achieved by ensuring that all the values which are ever input to the array are zero, apart

from the elements of A and B. In the third time-step, products are formed in three of the

processors. The situation at the end of the third time-step is shown in Figure 2.6 (d). The

processor on the far left has added its product to the partial sum just received from its

rightward neighbour. The process continues, as can be seen in Figure 2.6 (e)(t=3) and

Figure 2.6 (f)(t=4). Notice that in Figure 2.6 (e) the first output, c1,1, emerges from the

leftmost processor; in Figure 2.6 (f), c2 .1 and c1,2 emerge from the neighbouring

processors. Notice also how the activity of the processors in the array displays a cyclic

rhythm, with each processor only doing a useful calculation one time-step in three.

The advantageous properties of systolic arrays can be clearly seen in these two

examples (particularly the second): local communication, low ratio of input/output

2 	Systolic Arrays and Formal Design Methods
	 25

bandwidth to computation bandwidth, and a beautiful regularity in structure and

activity which eases design and promotes, in the final implementation, high spatial

compactness and processor utilisation. The claim of high processor utilisation may

seem unfounded since utilisation seems to be 50016 and 33% respectively in the first and

second examples; but in each case if there is a sequence of tasks (bubble sorting or band

matrix multiplication respectively) to be performed then, because of the regularity of

the array's operation, it is possible to interleave the tasks to achieve virtually 100%

utilisation.

2 	Systolic Arrays and Formal Design Methods
	 26

b11

rM

a11

Figure 2.6 (a) Band matrix multiplier when t=O

2 	Systolic Arrays and Formal Design Methods
	 27

b 1

	

E1.

ri

. Y
-4-

Figure 2.6 (b) t=1

2 	Systolic Arrays and Formal Design Methods
	 28

b 1

b 1

4 J4 FL b2.1

14 ((b _
61,1,1 	st.1.0 t 	I I 	I I

L L 	b11)
ala

i'-

k-t

1l-

Figure 2.6 (c) t=2

29 2 	Systolic Arrays and Formal Design Methods

I-

__(b ia ai.i__I

I I Ii,' 81.2.01 I I
I-I I-I

L j it, j 	b 1

(biaia__I
.....__-I - •1_,1,3 	1.1.1

I
I 	I I I I 	I

b2.1

biiai__I 1
'U.' 	811.0

a2. 1 	b11

al.2

/

Figure 2.6 (d) t=3

2 	Systolic Arrays and Formal Design Methods
	 30

b 1 	a11 	1
-I I lal.3J 9 1.10 F
L

I—I a11 	b1

b2.2 	al.2

I1,2,2 S1.2.1I I I I
I -

Laia b,-a) L

i (1b11i 1 1
C1.1 I I-I I I

L) L) a2b,2j

2,1,2 	2.I.I

32a 	b2.1

jt4

bLi 	aj1

.In

b1

32

Figure 2.6 (e) t=4

2 	Systolic Arrays and Formal Design Methods
	 3'

b

b2.3 	al.2 I
-I 81.3,3 	51.31

I-I
b2.3 .4)

\N11
(I 1b11

C2j SW
a 	b 1

9L2.2 	b2.2

bl.2 	a3.1

cia 3,2,1 	SUA

a 	b1 ,2

I I I
b2.1 	a3.2

SW
au hzi

I I

Figure 2.6 (f) t=5

2 	Systolic Arrays and Formal Design Methods
	 32

2.2 Formal Design Methods

The work in this area may be classified according to the way parallel systems are

modelled. A model may view the operation of a parallel system as a sequence of

discrete events, without regard to time as an underlying metric, or it may view the

operation of the system as a function of time. Models of the first type will be referred

to as "sequential" and those of the second as "explicit-time". Sequential models are

generally well-suited to describing the high-level behaviour of asynchronous systems,

while the latter are better suited to describing synchronous systems and low-level

behaviour in general.

Three principal languages for modelling systems sequentially are the "calculus of

communicating systems" (CCS) [RMII80, RM1183, RMil89], CIRCAL [GM1183], and

"communicating sequential processes" (CSP) [Hoare85I. CCS is similar to CSP in that

two events cannot occur simultaneously. They have similar basic entities (an "agent" in

CCS corresponds to a "process" in CSP) and are overall roughly, if not exactly, equal

in expressive power; however, the set of ways in which the basic entities may be

combined and the concept of equality differ between the two languages. CIRCAL has

a style very similar to CCS; the key difference is that simultaneous events can be

expressed in CIRCAL. The programming language, "occam" [Jones87, Jones88,

Wex891, was designed for programming parallel systems, specifically the INMOS

transputer, and is very closely related to CSP. The major difference is the lack of

recursion: this was found not to be implementable in general.

Explicit-time models of parallel computer systems usually subdivide the behaviour of

a system by focusing on the value of individual "ports" as a function of time. The

models can be classified by how these port-functions are related to each other. In what

will be termed fj4nctional models, all ports are classified as either "input" or "output",

and each port-function of an output port is a function of the port-functions of the input

ports. In relational models the ports are not divided into "input" and "output"; the

behaviour of the system is simply a relation between all the port-functions. Work on

functional models has been done by S. Johnson [John83], M. Sheeran [She84], and by

A.R. Martin and J.V. Tucker [Mar87]. S. Johnson's thesis centres round the observation

2 	Systolic Arrays and Formal Design Methods 	 33

that a certain simple type of recursive algorithm can be directly implemented as a

sequential processor. His method is closely related to methods for designing systolic

arrays; in fact his sequential processors are zero-dimensional systolic arrays. M.

Sheeran's language, .iFP, was created for use in VLSI design. Martin and Tucker

introduce an assignment language based on a functional model; the language restricts

the output values at a point in time to be a function of the time and of the inputs at the

immediately previous time (time is modelled on the integers rather than the real

numbers); in other words there is no long-term memory. This notation is intended for

simulation and testing of synchronous arrays. Work on relational models has been done

by M. Gordon [Gor88], by M. Fourman [Mayg91], by M. Sheeran [She86, She88a] and

by Luk and Jones [Luk88a, Luk88b]. M. Gordon's HOL is a theorem-prover for

hardware verification. It is based on higher-order logic, as are all the explicit-time

models. The port-functions are first-order entities; the behaviour of a circuit, being a

relation between port-functions, is a second-order entity. M. Fourman's LAMBDA

system has a theorem prover at its heart, and is designed for integrated synthesis and

verification. Sheeran's language, Ruby, was developed from f.LFP; she has used it to

design regular arrays, and incidentally formalises two techniques used by systolic array

designers: "retiming" and "slowdown" [She88b]. Luk and Jones' work is a

development of Sheeran's.

2.3 Design of Systolic Arrays

2.3.1 Beginnings

A seminal work in the area of systolic array design is [Karp67]. A "system of uniform

recurrence equations" (SURE) is defined to be essentially an algorithm of a certain

type. The authors give necessary and sufficient conditions for there to be a schedule for

any SURE of a certain type. SUREs are significant since, by choosing a certain

schedule and allocation function, it is often possible to implement them using a systolic

array.

In the late seventies and early eighties, H.T. Kung and his group at Carnegie-Mellon

University showed how certain algorithms could be implemented on synchronous,

2 	Systolic Arrays and Formal Design Methods 	 34

virtually homogeneous VLSI arrays with regular, local interconnections, which they

called "systolic arrays". They showed that, because of the arrays' regularity and in

particular the local communication structure, the arrays were particularly efficient. The

work of H.T. Kung et al. was immediately followed by the creation of many systolic

array designs by them and others [FostSO, Quin861.

2.3.2 A developing discipline

As understanding of systolic arrays and their associated algorithms grew, attention

began to be paid to the development of systematic design methods. Rao [Rao85]

investigates a major class of algorithms called "Regular Iterative Algorithms" (RIAs)

which are essentially the same as the systems of uniform recurrence equations in

[Karp67]. He carefully and precisely defines a systolic array, and shows that each RIA

of a certain type may be directly implemented by a systolic array, (giving a procedure

which produces a variety of systolic implementations for such an RIA) and that

conversely every systolic array directly implements such an RIA. He also extensively

analyses RIAs and provides a procedure for implementing them, and for deriving them

from more general problem descriptions. Similar but less comprehensive work is

described in [Far87].

One of the key properties of a regular iterative algorithm is that its "dependencies" are

"uniform"; that is, if an indexed variable x(p) say depends on y(p-q) for some vectors

p and q, then, for all vectors p' in the index space, x(p') depends on y(p'-q). This implies

that, when the data-flow graph of the RIA is embedded in a natural way in Euclidean

space, the set of vectors representing the flow of data into each node is the same,

regardless of which node is chosen. "Linear Recurrence Algorithms" (LRAs), such as

Gaussian Elimination and Gauss-Jordan approximation, do not necessarily have this

property. A method for implementing LRAs as systolic arrays by first making the

dependencies uniform is presented in [Quin89]. The set of "Systems of Affme

Recurrence Equations" (SAREs) is similar, if not identical, to that of LRAs. The

implementation of SAREs is tackled by Yaacoby and Cappello in [Yaa88] and S.

Rajopadhye in [Raj89]. They also make the dependencies uniform as an intermediate

step. [Raj89] also deals with control signals. Sometimes it isn't immediately possible

2 	Systolic Arrays and Formal Design Methods 	 35

to make the dependencies uniform; in [Raj90] transformations are introduced which

transform awkward SAREs into SAREs of which the dependencies can be made

uniform. The problem of finding affine schedules for S AREs is tackled in [De186] and

[Yaa89], separately from the problem of making their dependencies uniform. [De1861,

[Yaa89], and [Rao85I implicitly or explicitly move into the area of non-systolic

implementation. Other papers which deal with non-systolic implementation are

[Roy89}, [Teich9l] and [VanSw9l]. [Roy89] deals with the implementation of RIAs,

such as pivoting algorithms in linear algebra and certain two-dimensional filters, which

are not directly implementable as systolic arrays. [Teich9l] deals with algorithms

which are piecewise regular; the resulting arrays have a "dynamic configuration

structure". [VanSw9l] deals with algorithms in which the data-flow is even less regular

than in LRAs and SAREs. In implementations of the style aimed for, the processing

elements will calculate and communicate synchronously; however, their

interconnections may be neither homogeneous nor local.

Several researchers express the algorithmic specification in other ways [Huang87,

Len9O, Xue90, Len9l, Lee9O, 1b90, Chen9l]. However, the differences between their

languages and the systems-of-recurrence-equations style is, I believe, superficial.

[Huang87] presents a design method for systolic arrays. From the algorithmic

specification a sequential "execution" or "trace" is derived; this is then parallelised;

finally the trace is scheduled and allocated using the functions "space" and "time". The

auxiliary functions, "flow" (encapsulating the velocity of data movement) and

"Pattern" (encapsulating the initial position of the data) are defined. [Len90], [Xue90}

and [Len9l] build on the work in [Huang87]. [Len90] discusses the design of a systolic

array for pyramidal algorithms, [Xue90] discusses the description and design of one-

dimensional systolic arrays, and [Len9l] presents a scheme for compiling imperative

or functional programs into "systolic programs". Design of one-dimensional systolic

arrays is also the subject of (100]. [Lee9l] investigates the mapping of p-nested loop

algorithms into q-dimensional systolic arrays (where 1 _-q q ~s p- 1).

K.Culik [Culik84, Culik851 takes a subtly but significantly different approach from the

above in that his specification language doesn't even implicitly embed the algorithm in

Euclidean space; in other words it is topological and not geometrical.

2 	Systolic Arrays and Formal Design Methods 	 36

Several papers specialize in the design of particular types of systolic array. [Xue90] and

[1b90] have already been mentioned as dealing with the design of one-dimensional

arrays; the second part of [McC87I gives examples of bit-level systolic arrays, though

not a general design method for them; [Kunde86] and [Tensi88] describe work on

"Instruction Systolic Arrays", where the processing elements are controlled by

instructions which flow through the array in addition to the data.

Other papers present methods which produce optimal designs, or at least facilitate the

choosing of an optimal design. In [Li85] the initial algorithm is constrained to be a

"linear recurrence". (The class of linear recurrences includes matrix multiplication and

related algorithms. These linear recurrences don't seem to bear any relation to the LRAs

in [Quin891.) The design task is formulated as an optimization problem and a toolkit for

solving the problem is described. [Shang89] addresses the problem of finding optimal

linear schedules for an algorithm modelled as a set of indexed computations. [Chen91]

presents a method for finding optimal schedules for one-dimensional "linear recurrence

algorithms" such as the algorithm for an ARMA filter, which is used in signal

prediction and spectrum analysis.

The papers [Raj86], [Ling90] and [LeV85] are more oriented towards formal

verification of systolic arrays than the above work. [Raj86] uses techniques which have

been used for verifying programs and applies them to the verification of systolic

architectures. The verification problem is divided into three parts: the verification of the

data representation, the processing elements and the composition of the processing

elements. [Ling9O] introduces a new formalism called "systolic temporal arithmetic"

for specifying and verifying systolic arrays. Two plus points are that it is tailor-made

for systolic arrays and is therefore efficient, and it can be unified with interval temporal

logic "multilevel reasoning of systolic arrays". [LeV91] introduces a language called

ALPHA which is based on recurrence equations. It is a direct descendant of a language

called LUSTRE [Caspi87], which is descended from LUCID [Ash77]. It seems to be

simple and straightforward.

2 	Systolic Arrays and Formal Design Methods
	 37

2.4 Summary

In this chapter two examples of systolic arrays were described, and a survey was given

of related work done on formal design methods and on the design of systolic arrays.

The following chapter lays the theoretical foundations for the formal design method to

be presented in Chapter 4.

3 	Computations and Recurrences 	 38

3 Computations and Recurrences

In this chapter the concepts are defined which are required in order to define and discuss

the formal design method to be presented in Chapter 4.. Firstly, the concept of a

computation is defined along with three operations on computations and one relation,

simulation (see page 12). Then four useful types of computation are introduced:

embedded computations, recurrences, space-time networks (see page 12) and strictly

systolic computations. An embedded computation is composed of subcomputations

which are "located in" Euclidean space. A recurrence is a type of embedded

computation; recurrences are exhibit a regularity which makes them useful for the

design of systolic arrays; two types are of particular usefulness, "affine recurrences"

and "uniform recurrences". The input to the design method has an affine recurrence as

its main part. A space-time network is an embedded computation which models an

algorithm executing on hardware, in that the Euclidean space is identified with space-

time and, in the light of this identification, no data is consumed before it is produced. If

a space-time network is also a uniform recurrence, then it is called a "strictly systolic

computation". The output of the design method has a strictly systolic computation as its

main part. Given a strictly systolic computation, one can easily design a systolic array

to implement it.

3.1 Computations

A computation is similRr to a function, where the inputs and outputs are given names

so that they can be reasoned about separately from the function, and separately from the

values they hold.

A cpntpris defined tobea triple, <LO,F>, where Iis finite set 0input

variables, 0 is a finite set of output variables, and F is a functional' such that, if vi n is

a function from input variables to their values, then F(v1 11) is a function from output

variables to their values. I and 0 must be disjoint.

1. see Terminology

3 	Computations and Recurrences
	 39

We can define selector functions as follows (v is a function with domain IuO):

0, F>) :=1

Qi,O,F>) :=O;

Vars(4, 0, F>) : 	 IuO;

E1411(<I, 0, F>) := F;

&d(<I, 0, F>)(v)

(there exist v 1 , Vt such that v = vin U vout and F(v1) = v)

Rel uniquely defines F since I and 0 are disjoint. (There is a simple proof of this.)

Also

Rel(<I, 0, F>)(v) 	F(v11) = v10

The function v is called a valuation. on IUO.

So a computation is defined uniquely by <Jn(C), Out(C), Fun(C)>, or, alternatively, by

<In(C), Out(C), Re!(C)>. It is often more convenient to use the latter characterization

(as in the four definitions given below).

We will now define three functions (composition, hiding and renaming) and one

relation (simulation) on computations.

3.1.1 Composition

Consider the computations PLUS and PLUS', defined as on page 49:

In(PLUS) := {A, B}

Out(PLUS) := (TEMP}

Rel(PLUS)v v(FEW) = v(A) + v(B)

In(PLUS') := (TEMP. C}

Out(PLUS') {D}

Rel(PLUS')v v(D) = v(TEMP) + v(C)

3 	Computations and Recurrences
	 40

Ee

Figure 3.1 PLUS and PLUS'

It is possible to combine (technically, "compose") these in the obvious way to form

TRIPLE-ADD defined as follows:

In(TRJPLE-ADD) := {A, B, C}

Out(TRIPLE-ADD) := (TEMP. D}

Rel(TRIPLE-ADD)v v(TEMP) = v(A) + v(B) 	and

v(D) 	= v(TEMP) + v(C)

3 	Computations and Recurrences 	 41

A 	B 	C

'1

Figure 32 TRIPLE-ADD

In the general case, the set of output variables of the computation resulting from the

composition of two or more computations is the union of the sets of output variables of

the component computations. The set of input variables of the resulting computation is

the union of the sets of input variables of the component computations minus the set of

output variables of the resulting computation. This implies that, if a variable is both an

input (of one component computation) and an output (of another component

computation) then it counts as an output of the resulting computation. The relation of

the resulting computation is the conjunction of the relations of the component

computations. The symbol used for composition is "II". Here is its definition:

:= C 	(Jis some finite indexing set),

where

Out(C) = UOut(Cj)
ic J

In(C) 	= U In(Cj) - Out(C)
jE I

Rel(C)(v) 	For all j. Rel(CJ)(vk))

3 	Computations and Recurrences 	 42

The elements of the set {Out(Cj) : j € J} are assumed to be mutually disjoint.

v is a function on Vars(C), which is the reason why it must be restricted to Vars(Cj) in

the definition of Rel(C). II may be written as an infix operator i.e. '!j , l} Cj may be

written CO II C1. Note that C0H C1=C1 11C0; no order need be specified for the

composition of functions.

In(C) and Out(C) are obviously finite.

Instead of defining Rel(C), we may define Fun(C):

Fun(C)(v) = Vt 	for all j in J

there exist Vjn(j). V(j) such that Fun(Cj)(vj) = vD

and vin U v = U (vj U v(j))
JE J

In other words:

Fun(C)(vj) = vout

Fun(Cj)(vlCj)) = vIocD where v = Vm U Vg

Composition may not always be well-defined since the function of the resulting

computation may not be well-defined. For example, if two or more of the component

computations share and output then there may be a clash when the computations are

united. Even if the sets of output variables are mutually disjoint, the composition may

not be well-defined. For example, let PLUS" be defined as follows:

In(PLUS') := (TEMP, C)

Out(PLUS') := {D}

Rel(PLUS')v v(D) = v(TEMP) + v(C)

Let CIRC-ADD be PLUS It PLUS" and let us assume that addition is being performed

on integers. If v(A) = v(C) = 1 then there is no possible vou for which F(CIRC-

3 	Computations and Recurrences
	 43

ADD)v = Vt (see Figure 3.3). Moreover if vm(A) = v1 (C) = 0 then there are

infinitely many v.W for which F(CIRC-ADD)v = v (see Figure 3.4).

In the body of the thesis we will generally assume that all computations are well.

definecL In the appendices the assumptions of well-deflnedness will be explicitly stated.

c=l

Figure 33 CIRC-ADD: no solution

C=O

Figure 3.4 CIRC-ADD: many solutions

Figure 3.5 shows a more complicated example of composition.

3 	Computations and Recurrences
	 44

Figure 35 Composition: a more complicated example

3.1.2 Hiding

Internal and/or irrelevant variables may be "hidden" by removing them from the input

or output variable sets. Hiding is especially useful as a sequel to composition, in order

to bide the internal variables. outputs can be hidden simply by ignoring them but, as a

consequence of the way we define hiding, an input can only be hidden if its value is

always the same (i.e. it is a constant) or if its value has no effect on the value of any

unhidden output. The symbol for hiding is ''. Here is the definition:

In(CVarset) 	:= In(C) - Varset

Out(CVarset) 	:= Out(C) - Varset

and for all valuations v on Vars(C) - Varset,

Rel(C \ Varset)(v) 	(for all valuations v' on Vars(C), Rel(C)v'

(v'I(Vt = "6(O-Varset

=

In(C\Varset) and Out(CVarset) are obviously finite.

3 	Computations and Recurrences
	 45

Figure 3.6 Hiding

3.1.3 Renaming

Some of the variables of a computation may be exchanged for new variables as follows:

Let RENAME be a function from Varset to Varset'; then

C ® RENAME is a computation such that:

Out(C ® RENAME) = ran(RENAME I >)

In(C ® RENAME) = ran(RENAME I i) - Out(C ® RENAME)

Rel(C ® RENAME)v 4*Rel(C)(vRENAME)

(or. Fun(C ® RENAME)vj = v 	Fun(C)(vjRENAME) = v'RENAME)

Out(C ® RENAME) and In(C ® RENAME) are obviously finite.

3 	Computations and Recurrences
	 46

0

Figure 3.7 Renaming

Note that RENAME may not be i-to-i. The freedom for it not to be is required in the

definition of recurrence (RENAME), defined on page 54, may not be 1-to-1), but with

the freedom comes the unwelcome side-effect that the result of the renaming may not

be a well-defined function. Let PLUS" be such that

In(PLUS") :={A,B}

Out(PLUS") := {C}

Rel(PLUS ...)v v(C) = v(A) + v(B)

and let TIMES be such that

In(TIMES) := {A', B'}

Out(TIMES) := {C'}

Rel(TIMES)v v(C') = v(A') v(B')

and let P-T be A II B (see Figure 3.8).

3 	Computations and Recurrences
	 47

\/B 	\/B' 	\è //B'

	

C 	 C9 	 C 	C9

PLUS"
	

TIMES 	 P-T

Figure 3.8 PLUS", TIMES and P-T

Let RENAME be s.t.

	

RENAME(A') 	A

RENAME(B') := B

and

RENAME(C') := C'

then P-T ® RENAME is well-defined (see Figure 3.9).

"AB

C 	C9

P-T® RENAME

Figure 3.9 P-T 0 RENAME

3 	Computations and Recurrences 	 48

But if RENAME' is s.t.

RENAME'(A') 	A'

RENAME'(B') 	B'

RENAME'(C') : C

then P-T ® RENAME' is obviously not well-defined if the inputs may range over the

integers (see Figure 3.10).

P-T ® RENAME'

Figure 3.10 P-T® RENAME'

3.1.4 Simulation

One computation, Be say, is said to simulate another, ALO say, if ALG is IMP with

some of its variables bidden, and other variables renamed. Formally:

IMP simulates ALG with respect to <Varset, RENAME>, where RENAME is a one-

to-one function, if (IMP \ Varset) is well-defined and

ALG = (IMP\Varset) ® RENAME

An example of the use of this definition is given at the end of subsection 3.15.

3 	Computations and Recurrences
	 49

3.13 Example: TripleAdd

I shall now show how a very simple algorithm is defined in my language and in a

sequential language.

Let us define the following procedure (in PASCAL-like language):

procedure TripleAdd(ifl A, B, C: integer;out TEMP, D: integer);

begin

TEMP :=+(A,B);

D 	:=+(TEMP,C)

end {TripleAdd}

In my scheme, the computation corresponding to TripleAdd would be the composition

of two subcomputations, both of which have addition as their function but which have

different input and output variables.. .in fact, one subcomputation is a re-naming of the

other.

In(PLUS) := (A, B}

Out(PLUS) := {TEMP}

Rel(PLUS)v v(IEMP) = v(A) + v(B)

PLUS' := PLUS ® RENAME

where

RENAME(A) := TEMP',

RENAME(B) := C

and

RENAME(TEMP) := D

TRIPLE-ADD := PLUS 11 PLUS'

Consider the similar procedure, TripleAdd', where TEMP is a local variable ... this is

equivalent to hitling TEMP:

3 	Computations and Recurrences

procedure TripleAdd' (in A, B, C: integer; out D: integer);

var 	TEMP: integer;

begin

TEMP : +(A, B);

D 	:= +(TEMP, C)

end {TripleAdd}

The corresponding computation in my scheme would be TRIPLE-ADD', where

TRIPLE-ADD' := TRIPLE-ADD \ (TEMP)

A 	B
TRIPLE-ADD

TEMP 	 D

A 	B

'LE-ADD'

Ic

Figure 3.11 TRIPLE-ADD and TRIPLE-ADD'

Let us define TA-SPEC as follows:

InFA-SPEC) 	= (X,Y,Z}

Out(TA-SPEC) = {W}

Rel(TA-SPEC)v 4 v(W) = v(X) + v(Y) + v(Z)

Then TRIPLE-ADD simulates TA-SPEC because

TA-SPEC = (TRIPLE-ADENTEMP}) ® RENAME'

where

3 	Computa4ons and Recurrences
	 51

RENAME' (A) = X

RENAME'(B) = Y

RENAME'(C) = Z

RENAME'(D) = W

31 Embedded Computations

A computation is said to be "embedded" if each of its variables is associated with a

point of a lattice which is embedded in Euclidean space and, moreover, the computation

is the composition of subcoinputations such that, for each subcomputation, the outputs

of that computation are situated at a single point. A subcomputation can be considered

to be where its outputs are. Each variable is uniquely defined by its "class" and position.

The formal definition is as follows:

A computation C is embedded 1if, for some integer m, some finite subset D of Integer"

and some set of "variable classes", Varclasses,

Vars(C) 	Varciasses X D,

and

C = lip ED C,),where, for all C(p). Out(C())) 9 Varclasses x {p}

So each variable of C is a pair whose first component is a label (from Varciasses) and

whose second is a point (in D). Note that all the output variables of C(P) are "located"

at p (i.e. their second component is p).

The domain of an embedded computation, EMB, written Dom(EMB), is the minimal

set which can be validly substituted for D in clause (1) above. ("Dom" is distinct from

"dom" as defined on page ix.)

1. terminology: the word "embedded" is used simply to state that each variable in the ccinputa-
twa is associated with a point in Euclidean spa. Usually when the word is used in mitKimatics

them is as an associated "embedding fuuction" mapping an object into some spa. There is no
such function in this case. ..the conputafm is already in the spa.

3 	Computations and Recurrences
	 52

The edge of an embedded computation, EMB, written Edge(EMB), is the set of those

points in D which have no associated output variable i.e.

p E Edge(ENO) 	for all var, <var, p> 4t Out(EMB)

An example will clarify this definition. Let q and q' be the points [(0)1. and [0]
(0)] 	[(0)

respectively. Let Cq and Cq' be defined as follows:

In(Cq) = 	(4::x,
[]>,

c:x, [(1)1 >}

Out(Cq) = 	{x, (0)1 1(0)
> 1

Rel(Cq)v v(cx,
1(00))]

(>) = v(x, 1(0)]'>) - v('x,
 LWi

In(Cq') = 	{x, [1> , [
[(2)] >

Out(Cq') 	= 	[1>i
Rel(Cq')v 	v(, [1>) = v(, I(2)1>) + v(, [(2)]>)

(0)J 	(')

+v('x, 1(2)j]>

Let EMBbeCq IICq' ; thenEMB isan embedded computation. EMB is shown in Figure

3.12.

3 	Computations and Recurrences
	 53

PA

1

0 	1 	2

Figure 3.12 EMB

It has just one variable class, x, so we may let Varclasses be {x}. Its domain is 1
[(

0)],

[(1)1 11 , 11 ,(2) [(2)1
[(0)]' (1) 	o 	[(1)]' [(2)]

C) if. when p IC (q, q'}, C,) is defined to be the null computation, i.e. the one without

inputs or outputs. Note that C)ut(C())c (x} X {p} when p € {q, q'}.

A computation C' is an edge-computation of an embedded computation EMB if

Vars(C) 9 Varclasses X Edge(EMB).

3.3 Recurrences

Recurrences are embedded computations which have a type of regularity which makes

them useful in systolic array design. The subcomputations of a recurrence are arranged

in a regular pattern, e.g. a rectangular grid. The subconiputations must all calculate the

3 	Computations and Recurrences 	 54

same function, but which variables a subcomputation has depends on its location.

Formally:

Assume that D integer", that D is finite and that Varclasses is a set These entities

play the same role as they did in the definition of "embedded computation". Assume

further that

vcj 	€ Varciasses for all i from 1 to m

Aj 	D-4D

and that

BASE C D

From the variable classes vcj are formed the input variables to the subcomputations. LSj

is the function that tells us from where to "fetch" vcj, given the location of the

subcomputation we are considering. BASE is the set of points which are occupied by a

non-trivial (i.e. non-null) computation. (Recall that in the definition of an embedded

computation, some of the subcomputations may be null.)

Let M be a computation such that

Iii(M) 	= {<vcj, iS,> : i = 1...m}

Out(M) = Varclasses X {Id}

then the recurrence C constructed from mould M over &m BASE is the (embedded)

computation

'pE BASEC(p)

where C 1,) = M ® RENAME 1,) where

RENAME()(<vc fun>) = <vc, fun(,p)>

for allp in BASE and all <vc, fun> in Vars(M)

3 	Computations and Recurrences 	 55

The mould M is the pattern or generator for the subcomputations. Each variable of M

is apair, the first of which is a variable class and the second is a "fetch" function. The

subcomputation at a particular point p is found by replacing each fetch function fun by

fun(p) in each variable of M. This is achieved by RENAME(& Note that the fetch

function within each output variable of M is simply the identity since the outputs of

each subcomputation appear simply at its location. The pairs <vnj, Ij> are called the

dependencies of C w.r.t. <lvi, BASE>. The pairs <vn1, L> are called the dependencies

of C with respect to <lvi, BASE>. The pair <p, ,&,(p)> is called a dependency arc (of C

with respect to <M, BASE>). Dependency arcs are depicted by arrows in my diagrams

of recurrences. Note that the arrows point in the direction opposite to that of the

corresponding data-flow. An example of an extremely simple recurrence is COPY

which is defined as follows:

In(COPY) = {<x, O>}

Out(COPY) = (cx, i>: i E 11, 2, 3 } }

Rel(COPY)v 	(i € 11, 2, 3}) => v(zx, i>) = v(cx, 0>)

A diagram of COPY is shown in Figure 3.13.

0

Figure 3.13 COPY

We can show this is a recurrence by finding a suitable mould and base. Let us note first

of all that we may take D to be the set 10, 1, 2, 3). (Each integer is identified with the

corresponding one-dimensional vector). Varclasses is simply (x}. We may choose as

the base (BASE) the set {1,2,3} and, letting mequal 1, set vc1tox and A1toq-40.

We see that

3 	Computations and Recurrences
	 56

COPY = Ip E BASE C(P) =

where

C(p) = M ® RENAME()

where RENAME() is defined in the obvious way so that

In(C,)) = (<x, (q —3 O)p>)

Out(C)) = { cx, (q —3 q)p>}

Re1(C())v 4 v(<x, (q - q)p>) = v('x, (q —3 O)p>)

Two types of dependency are of particular interest:

A dependency <vn1, 	is affine if A, is an affine map, that is, if

= Aj.p+dj, 	where Ajisa matrix and bjisavector

The dependency <x, (q —4 0)> in the previous example is an affine dependency. If a

recurrence containing an affine dependency were to be mapped directly onto hardware,

using an affine map from the space inhabited by the recurrence into space-time, a great

deal of interconnect would often be needed. For example, if for some reason each

subcomputation of COPY were mapped onto a separate subprocessor of a linear array,

then connections would need to be made from one end of the processor to the other end

and to all points in between.

A dependency <vn1, i> is wzform if Ai is a uniform map, that is, if

AI(p) = p+dj

In this case the translation vector d1 is called a dependency vector (of C with respect to

<M, BASE>).

3 	Computations and Recurrences
	 57

A recurrence is affine/uniform if there is a way of constructing it so that all its

dependencies are affine/uniform respectively. "uniform recurrence" and "affine

recurrence" may be abbreviated "UR" and "AR" respectively.

An example of a uniform recurrence is COPY' where

J.n(COPY') = {x, O>}

Out(COPY') = {.zx,i>:iE 11,2,311

Rel(COPY')v 	(i E { 1, 2, 3}) = v(<x, i>.) = v(x, i-i>)

Figure 3.13 shows COPY' with its dependency arcs.

0-4 O 	0

Figure 3.14 COPY

COPY' is a uniform recurrence since it has only one dependency, <x, i -4 i-i>, which

is uniform, its (dependency) vector being [-1]. Another example of a uniform

recurrence can be seen in Figure 4.7 on page 91.

COPY is an example of a (non-uniform) affine recurrence. Again there is only one

dependency, <x, i -4 0>. That this is affine can be seen from the fact that

0 = [O].i+ [0]

Another non-uniform affine recurrence can be seen in Figure 3.17 on page 63.

(An example of a non-affine recurrence would be COPY", where

In(COPY-) = {x,2>}

Out(COPY") = {x, 4>, x, 8>, x, 16>1

3 	Computations and Recurrences 	 53

Rel(COPY") 	(i € 11,2, 3, 4}) => v(x, 2'>) = v(, 2 1-1>)

)

In general, if a uniform recurrence is mapped to hardware, only a short amount of

interconnect is needed. For example, if COPY' were mapped to a linear array in a

similar way to COPY, then only connections between each processor and its neighbour

would be needed.

As mentioned earlier, the input to the design method has an affine recurrence as its main

part. In data-pipelining (see page 14), the affme recurrence is transformed into a

uniform recurrence composed with some control requirements.

There may be more than one mould-base combination which can be used to construct

a particular recurrence. The sets of dependencies, dependency arcs and dependency

vectors may vary according to which combination is chosen. In this document each

recurrence will have just one mould-base pair, implicitly- or explicitly-stated,

associated with it. The dependencies, dependency arcs and dependency vectors referred

to in connection with the recurrence will be with respect to that pair.

3.3.1 Example: Convolution

Described in this section is an example of an afflne recurrence (DATA(co), shown in

Figure 3.17 on page 63). When it is composed with its control requirements

(CONTR04cONV)), it implements a modified convolution task. Modified convolution

may be defined mathematically as follows. Given two four-dimensional input vectors,

W and X, we are to find the vector Y, a four-dimensional vector with components

defined by the following equation (where "Y(j)" denotes the th component of Y etc.):

Y(j) = 	W(i)*X(ji+1)

We may visualise this as follows. Let W be laid out in a horizontal line with W(1) at the

3 	Computations and Recurrences
	 59

left and W(4) at the right, and let X be laid alongside W but in the reverse direction. Y

is found by sliding X to the left and, whenever the components of X line up with the

components of W, taking the sum of the products of the components which have met

and assigning the result to the next highest component of Y (Figure 3.15). Figure 3.16

is essentially the same as Figure 3.15 but it shows the input and output values when W

isrzl,3,4,2> and Xis<1O,2O, 15,11>.

1 2 3 	4
W • • S 	S

* * * 	*

X
• • S 	S

4 3 2 	1

Y(1)

1 	2 	3 	4
W • • S

* 	* 	*

	

X • 	• 	S

	

4 	3 	2 	1

Y(2)

etc...

Figure 3.15 Modified convolution

1 	3 	4 	2

11 15 20 10

156

11

1 	3 	4
* 	* 	*

15 20 10

\4k f /

115

2

etc...

Figure 3.16 Modified convolution: a numerical example

3 	Computations and Recurrences 	 60

This description has the components of Y being calculated in a certain order, but note

that the order of calculation is not part of the task specification.

In the language of computations, the task may be specified by ALG 0(c0NV), defined as

follows:

Let ALG0(CONV) be such that

In(ALG0(coNv)) 	:= {<W,j>Ij= 1 to4}U {<X,i>Ii= 1 to4}

Out(ALG°(C0Nv)) 	:= {<Y, > Ij = ito 4}

and Rel(ALG°(CONV))v 	For all jin{l ... 4},

v(<Y, j>) = 	v(<W, i>)*v(<X, j-i+1>)

Let us now define the implementation of modified convolution, DATA(CONV) II

CONTRO4CONV) (this is called ALG(CONV) and is shown in Figure 3.17 on page 63).

DATA,) is a recurrence with four variable classes: x, w, y, and c y. Its base,

BASE(CONV) is a right-angled triangle. The variable class x corresponds to X, which is

input at the base of the triangle. The variable class w corresponds to W, which is

presented at the left-hand edge of the triangle. The products are added one by one to the

partial sums as they flow diagonally through the network from the bottom to the left of

the triangle by means of the variable class y. The final sums of the products are output

from the left-hand edge. c is a control variable class which is used to initialise the

partial sums to zero. The are four dependencies, <y, p -4 p + [l]>.<x. p -4 [] p.

p —p [00] p and <ci,, p -4 p>. The first two dependencies fetch to each point in

the base the appropriate components of the input vectors to be multiplied together and

the third dependency fetches the appropriate partial sum to which the product is to be

added. The final dependency simply fetches c from the current point. The value of c y

is required to be zero if we are currently at the bottom edge of the triangle and therefore

3 	Computations and Recurrences
	 61

require initialisation of the partial sum, and one if we are not. The formal definition of

DATA) follows. Note that the subcomputations DATA(CONV) are defined

directly without reference to the mould.

Let us define the following region as the base of DATA(CONV):

BASE(coNv):=([] : i~ O,j ~ Oandj ~ 3-i}

Define DATA(co)(p) and DATA(CONV) as follows:

+ 	
.>' <c[-1 	[~' 	<W1 ~10 !

Out(DATA(co)(p)) 	:= {<y, p>}

Rel(DATA(c0p4v)(p))v 	<=> v(<y, p>) = v(<c, p>) *v(<y, p + [_l] >.)

+ v(x, °1 .p>)*v(<w, [0 ?] .p>) 1 oi

DATA(CONV) 	 := (II € BASE(CONV) DATA(CONV))

DATA(corv) is an example of an affine recurrence, since

InDATA v) p)) = {y, p +[1]>, x, 0 .p>, <w, 001 .p>,

and the functions

p—'p+ 1-111

3 	Computations and Recurrences 	 62

11,00

p4 [°6j .P
p -4 p

are all affme. (Moreover, the dependencies <y, p - p + [1]> and <cs,, p -4 p> are

uniform.)

Let us now define the control requirements (CONTRO4 CONV). Firstly we need to

make the following definition:

D:=
{ []

:O::9i:!g3}

Disthebottomedgeofthet1iaflgle. As stated previously, c needs tObe zero inthis

region and one elsewhere in BASE(coNv). This requirement is expressed in

CONTROL(CONV), defined below:

n(CONThOL(cov)) := 0
Out(CONTROL(cov)) := {<c, p>: p € BASE,)}

Rel(CONTR04oNv))v 	For all p. ((p € D 	v(<c, p>) =0) and

(p € BASE) - D = v(<c, p>) = 1))

ALG(coNv) which is the composition of DATA(CONV) and CONTROL(CONV), 1185

domain BASE yy) U Dy' where

D' 	:= {[1]:l ~ i :94}

ALG(CONV) is illustrated in Figure 3.17. Only the data-dependency arcs between

3 	Computations and Recurrences
	 63

distinct points are drawn in. The shaded arrows indicate data-transfers which are not in

fact required at a point. CONTROL(coNv) is invisible.

D

D '

	

Co-ordinate frame: 	 Directions of data-dependencies:

j 	 <w,p-

•1

	

1 	 .x,p—* [
	

.p>

Figure 3.17 ALG(copjv)

Then ALG(coNv) simulates ALG0(coNv) (defined on page 60) with respect to <Varset0,

RENAME°>, where

Varset°:= {<y, []>: [(')11] € BASE cov) andi*0}
a

U{<y, [—ill>:

Li {<w, [I> [()1 € BASE op v) and j * 0}
[ai

3 	Computations and Recurrences
	 64

[(1)]> : [(')11] € BASEv) andj* 01
u

L) { <c3 , p> : p € BASE co v)

and RENAME° is such that

for alljin(l ... 4), 	R.ENAME0 (<Y,J>) = <y, [10]>

and for all j in 11 ... 41, RENAME° (<W, j>) = <w, [10]>

and foralliin{l ... 4}, RENAME° (<X,i>) = cx, [oj

In other words, ALG(coNv) equals ALG0(coNv) when the internal data-transfers and all

the control signals of the former are hidden and the remainder of its variables renamed

appropriately.

33.2 Shorthand expressions for computations

There is a way of informally expressing certain computations (including all

recurrences) in a briefer way:

The shorthand expression of a computation, C, is essentially a description of its relation,

Rel(C). The distinction between a variable and its value which was carefully made for

formal purposes is blurred for the sake of conciseness: for instance, y(p
+ 1-111)

is

written in place of v(<y, p
+

[] >). The input and output sets of the computation are

not explicitly stated in the shorthand form, but may be deduced from it: the symbol,

":=" is not symmetric, in contrast to "=" ... the variables which are represented by an

expression which occurs on the left of a ":=" are outputs; all other variables are inputs.

3 	Computations and Recurrences 	 65

To provide examples of shorthand form, DATA(comv) will generally be written as:

ft in BASE(cov) =1 y(p) := Cy(P)*Y(P +[']) + x([j .p)*w(~,O !1 .p). 	1

L
	

j

and ALG(coNv) can be written as:

Ii' in BASE(CONV) 	= y(p) := p)*y(p + 1
-111)

+x(11
0,0

0 .p)*w(~0' 0] •p); 1

IP11IDy 	 = Cy(P) :=O; 	 I
Lp in BASE(CONV) - D 	Cy(P) := 1. 	 j

Composition

The composition of several computations can be expressed in shorthand by the

concatenation of the expressions representing each recurrence.

Hiding

There is, as far as I know, no general manipulation which can be done on computation

expressions which corresponds to hiding.

Renaming

A renamed computation can be expressed by substituting the new variable names for

the old ones in the expression of the original computation.

3.4 Space-time networks

A "space-time network" is a certain type of embedded computation; it models an

algorithm executing on hardware. The Euclidean space in which a space-time network

is embedded is identified with space-time, and in such a network a subcomputation can

only be executed after all its inputs have been generated (i.e. the time co-ordinate of the

position vector associated with a subcomputation must be greater than the time co-

3 	Computations and Recurrences 	 66

ordinate of the position vector of each of its input variables).

A space-time network is an embedded computation, C, which satisfies the following

conditions:

The variables of C are drawn from Varciasses X (Real X Real"- ') (where

Varciasses is a set of variable classes).

C will have the structure ED C where D 9 Integer" and, for each p. C is a

computation which produces all its output signals at point p.

Let us define time(p) and space(p) to be such that

time(p) = pi I

and

space(p)Ii = P'(i+1)

(If a variable (i.e. a signal) is <vs, p> then time(p) is the time co-ordinate of the

signal and space(p) is the space co-ordinate.)

For each input <v, p'> to C (as defined in (2)),

tirne(p') <time(p)

If C is a recurrence then (3) is equivalent to:

(3') For all dependencies <v, S,> of C, and all points p in D,

time(ój(p)) < time(p)

Not all recurrences are space-time networks. Furthermore, since a space-time network

may not have a regular structure, not all space-time networks are recurrences.

3 	Computations and Recurrences 	 67

If a computation simulates ALG and is a space-time network, then it is said to be a

space-time simulation of ALG. Formally:

If C simulates ALG with respect to <Varset, RENAME> and is a space-time network,

then it is called a space-time simulation of ALG.

Often a space-time simulation is formed from ALG, where ALG itself is an embedded

computation: a one-to-one map from the domain of ALG to the domain of C is chosen

and the variables are renamed accordingly (Varset is the empty set). Formally:

ALG ® RENAME = C

where RENAME: <v. p -* <v, lm(p)>, Im being some one-to-one function. We may

make the following definitions:

Im(p) 	:= time(Im(p))

and

Ins(P) 	:= space(Im(p))

Now since ALG is an embedded computation, we know that it can be decomposed into

subcomputations:

ALO "q € D'aIg AWq

where every output variable of ALGq is situated at q.

Condition (3) is equivalent to saying that for all q, and for all inputs <v, q'> to ALG q,

time(Im(q')) < tinie(Im(q))

That is:

Im(q') < In(q)

3 	Computations and Recurrences
	 1.11

In this case, the dependency arc <q, q'> is said to be rime-consistent with Im.

Let us assume that ALO and C are uniform recurrences and Imt is .iie, so that

A.p+bt for some At and bt

Let us say that a vector b is time-consistent with Im if

A.b <0

In this case, (3') further specializes to:

(3") All dependency vectors of C are time-consistent with Im.

(For future reference, when Im and Ims are also affine, we will define A, b, As and b5

to be such that

1m5(P) = As-p + b5

and

Im(p)= A.p+b)

A uniform recurrence which is also a space-time network is called a strictly systolic

computation. The output of the design method has a strictly systolic computation as its

main part. Given a strictly systolic computation, one can easily design a systolic array

to implement it.

Computations and Recurrences 	 69

Strictly systolic computations

Figure 3.18 Venn diagram of the set of computations

3 	Computations and Recurrences 	 70

3.5 Summary, discussion and further work

3.5.1 Summary

In this chapter the basic concepts to be used in Chapter 4 were defined. The concept of

a computation was defined along with three operations on computations - composition,

biding and renaming - and one relation - simulation. The set of embedded

computations, which are the compositions of subcomputations located in Euclidean

space, was defined and a special type of embedded computation, the recurrence, was

introduced along with some associated concepts, such as "afflne recurrence" and

"uniform recurrence". The set of space-time networks, embedded computations which

model algorithms executing on hardware, was defined along with associated concepts.

Finally, the set of strictly systolic computations was defined. Given a strictly systolic

computation, one can easily design a systolic array to implement it.

3.5.2 Discussion

Computations

The basic entity in my theory is the computation. Although the behaviour of a

computation is captured by a relation rather than a function (see the discussion on

Formal Design Methods in Chapter 2), computations are functional in nature, with a

distinction being drawn between inputs and outputs. The generality of computations

means they can be used in algorithmic specifications, even those which would not be

considered systolic. A distinction is drawn between a variable (input or output) and its

value. In a simple function with multiple inputs and outputs, the inputs (and outputs)

are ordered, and are therefore implicitly labelled by positive integers. In the explicit

labelling of variables, the aim was to facilitate the combination of computations in

complex ways, and to enable the capture of abstract and physical algorithmic structure

by allowing as variables not only "atoms" (entities without internal structure) but also

atom-vector pairs. This capturing of structure seemed to be necessary in order to define

recurrences and systolic arrays.

3 	Computations and Recurrences
	 71

Simulation

In this chapter not only is equality of computations defined but also what it means for

one to simulate another. (As far as I know, "simulation" has not been formally defined

in any of the literature on systolic array design, and yet such a definition seems essential

when relating such disparate things as external behaviour, algorithms and hardware

implementations. Although two things from different categories may both be

expressible as computations, they are unlikely to be equal in any sense. Many of the

more general parallel formalisms have a similar concept to simulation, though.

Recurrence

The concept of a recurrence is derived from the concept of a system of recurrence

equations (SREs) [Raj89]. Unlike SREs, recurrences are formally defined, and

therefore useful for formal verification; however, their definitions are cumbersome and

hard to read, in contrast with those of the SREs and so the definition style of systems of

recurrence equations is re-introduced, as the "syntactic sugar" of the shorthand form.

Using this form, it should be easy to write the algorithmic specifications for input to the

formal design method described in the following chapter.

Rajopadhye defines a "conditional uniform recurrence equation" (CURE) as a separate

type of object from a uniform recurrence equation (URE) (a system of UREs

corresponds to a uniform recurrence (UR)); a CURE is like a URE except that its output

value at a point may depend directly on the position of that point, and not simply on the

variable values at that or other points. In my method there is no need for conditional

recurrences, uniform or affine (Rajopadhye uses an affine recurrence without

introducing the type) since I hypothesise a control requirement/part right from the

initial specification. Results in the "data part" never depend directly on the point at

which they are generated.

Dependencies

The concept of dependency (data- and control-) occurs frequently in the literature. I

give a formal definition of it.

3 	Compuwiions and Recurrences 	 72

Space-time networks

A strictly systolic computation exists in space-time and must satisfy the condition that

each subconiputation must wait until all its input values have been generated and

received before it can generate any of its output values. This attribute is however

independent of its systolicity; hence the separate definition of a "valid space-time

network" as a composite computation which has the attribute but may not be systolic.

3.5.3 Further work

It would be useful to do a detailed comparison between the formal language of this

thesis with other languages, especially "Ruby" [She88a] and "ALPHA" [LeV85] with

a view to designing a language which improves on them all.

If the shorthand form is to be used for writing algorithmic specifications, it will need to

be given a formal semantics.

It would be good to have a more satisfactory theory of input and output. What is the

essential difference between an input and an output and how can the dependency of the

output-values of a computation on those of its inputs be easily determined? If the value

of a certain output were found to be independent of that of a certain input, then it might

be possible to schedule the production of the latter before that of the former.

Computations' inputs and even computations themselves could, if redundant, be

removed, which might allow the design of a more efficient implementation.

Redundancy of inputs often occurs where a computation is "regulated by a control

signal" (The dotted arrows e.g. in Figure 4.7 on page 91 correspond to such inputs.)

4 	The Formal Design Method
	

73

4 The Formal Design Method

In this chapter the design method is presented with the help of the convolution example

introduced in Chapter 3.

The design task may be outlined as follows: given an initial computation expressing an

algorithm, we want to find a space-time simulation for the computation. We will only

consider initial computations of a certain form: those which are the composition of an

afflne recurrence and an initial control requirement. The control requirement is to be a

set of control requirements of a certain form, expressed as an embedded computation.

The space-tirnà simulation - the output of the design process - is to be the composition

of a uniform recurrence (which includes interior data and control signals) and a control

part (which asserts constant values only and is and edge-computation of the

recurrence). It is usually trivial to translate the uniform part of the space-time

simulation into a systolic array; however, the edge control part may still need a little

massaging before it can be encapsulated in hardware.

As described in Chapter 1, the design method is based on a transformation scheme

(Figure 1.4), which can be broken down into three main transformations. These

transformations are described briefly in the first part of the chapter. Most of the rest of

the chapter is devoted toa detailed description of the design method, divided up into its

five stages (Figure 1.5). Within this description, the transformations will be described

in more detail. In tandem with its exposition, the design method is applied to the

convolution example. From the space-time simulation an architecture is then

constructed for the convolution algorithm. This architecture is systolic if the wires used

to input and output signals to and from the array are ignored.

Transformation 1: Data-pipelining

By this transformation, the affine recurrence, which generally specifies the data-flow,

is transformed into a uniform recurrence, with the generation of some control

requirements which can be lumped together with the initial control part to form an

aggregated control requirement. Let the initial computation be ALG, the affine

4 	The Formal Design Method 	 74

recurrence be DATA, the initial control part be CONTROL the uniform recurrence,

describing the modified data-flow, be DATA', and the aggregated control part be

CONTROL'. Then this transformation may be encapsulated diagrnin1Rtically as

follows

ALG 	rn' CONTROL II DATA

CONTROL' II DATA'

= change + design decision
= change without design decision

-In'- 	= no change

CONTROL' II DATA' simulates CONTROUIDATA (n Theorem 1).

Transformation 2: Control-pipelining

By this transformation, a step is made towards the satisfaction of the control

requirements - the aggregated control requirement is transformed into a uniform

recurrence (CONTROL") (o Theorem 25) and an edge control part

(CONTROL")(iu Theorem 19). CONTROL" has the same base as the uniform

recurrence generated by the first transformation (DATA'). CONTROL" has all its

variables on the edge of the recurrence. CONTROL" is called EDGE and the

composition of CONTROL" and DATA' is called INTERIOR. The diagram of this

transformation is shown below:

4 	The Formal Design Method
	 75

CONTROL' II DATA'

CONTROL" II (CONTROL" II DATA')

p
EDGE II INTERIOR

= change + design decision

- 	= change without design decision
IIi'. 	= no change

EDGE II INTERIOR simulates CONTROL' U DATA'(D Theorem 5).

Transformation 3: Scheduling and Allocation

By this transformation, the abstract space in which the computations are embedded is

mapped to space-time by means of an affine function, urn. (Note that the affinity of the

space-time map is logically separate from the affinity of the dependencies within the

computations.) The first component of IM(p) forms the time co-ordinate of p and the

remaining components form the space co-ordinate of p. The function lint which maps

p to its time co-ordinate is the "scheduling" function and the function 1m 8 which maps

p to its space co-ordinate is the "allocation" function. Formally:

lm(p) := lm(p)'1'

4 	The Formal Design Method 	 76

(i.e. Im(p) is the first component of Im(p))

and Im(p)'t' 	Im(p)1j

(i.e. the i& component of 1m5(p) equals the (i-i-i) compoint of hn(p))

Let RENAME be defined such that RENAME(<var, p>) = <var, Im(p)>. Then the final

space-time simulation, IMP, equals EDGE' composed with INTERIOR', where

EDGE' and INTERIOR' are the renamed versions of EDGE and INTERIOR

respectively:

EDGE' 	:= EDGE ® RENAME

"ice) 	 1 ($) 4J 1 	I

IIIiA1(s1

EDGE' H INTERIOR' simulates EDGE II INTERIOR (00 Theorem 13).

This transformation can be expressed diagrammatically:

4 	The Formal Design Method
	 77

EDGE II INTERIOR

(EDGE II INTERIOR) ® RENAME

(EDGE ® RENAME)! (INTERIOR ® RENAME)

EDGE' II INTERIOR'

IMP

= change + design decision

- 	= change without design decision
= no change

The result of the three transformations

IMP is a space-time network (Ail) which simulates ALG (j& Theorem 15) and EDGE'

and INTERIOR' are of the required shape (go Theorem 20 and Theorem 27).

Recall from Figure 1.5 that the design process actually consists of the five-stage

sequence:

Data-pipelining -4 Scheduling -4 Control-pipelining -4 Allocation -9 Final stage

We will now look at each of the five stages in detail. Each stage will be described in the

general case and then in the particular case of the convolution example. Each

4 	The FonnoJ Design Method 	 78

computation or function in the example will be christened by adding the subscripted

suffix, "q" to the name of the corresponding computation or function in the general

case. For example, DATA(CONV)
in the convolution example corresponds to DATA in

the general case.

4.1 Data-pipeliniflg

As stated previously, in this stage of the design process we aim to find a computation,

CONTROL', and a uniform recurrence, DATA' such that CONTROL' II DATA'

simulates CONTROL II DATA. Essentially we transform the affine recurrence DATA

into the uniform recurrence DATA', with the generation of some control requirements

which we tack on to the control requirements from the angina! computation (specified

by CONTROL). This transformation from uniform to affine recurrence is done by

"pipelining the affine dependencies". The idea is that if the value of a variable (at a

particular point) is required at more than one other point, as generally happens when

there is an affine dependency, then the value doesn't have to be transmitted directly to

each destination from its source, but can be passed to one point and from there

circulated to all the others. The set of points depending on a single source is called a

"coset". A new variable class is created to provide a channel for the value. As each

affine dependency is pipelined, a control requirement is generated, since the

subcomputation at each point needs to be told, by a control signal, whether it is getting

the value directly from the original source or indirectly from a neighbour.

Let us consider in detail how a single affine dependency may be pipelined. Figure 4.1

on page 81 shows a typical affine dependency and Figure 4.2 on page 82 shows the

corresponding uniform dependency paired with the new control requirement. Recall

that we have given the affine recurrence the name DATA. Assume that it can be

constructed from mould DATA_M over base BASE and that its dependencies are affine

w.r.t. this choice of mould and base. Now

DATA = 'tp€ BASE DATA_M ® R....DATA(i : p)

where

4 	The Formal Design Method 	 79

R_DATA(i : p)(< fun>) = <vc, fun(p)>

for all pairs <vc, fun> in Vars(DATA_M).

Let the affine dependency we are considering be <ai, A2; we know that 4: p -4 B2.p

+ d2 for some matrix B2 and vector d2. We defined C(p), the coset of p, to be the set of

points which, regarding the dependency <a2, A2>, depend on the same point as p.

Formally:

C(p) := {p' € BASE: A2(p') =

Let us further assume that there exists a vector r2 s.t., for all p, there exists a po and

integer N s.t.

C(p) = {s: $ = po 	mE Integer, 0 :!~. m ::g N}

That is, C(p) is a finite row of equally spaced points parallel to r2.

Let us now define PIPE_M(2), the pattern for a section of the "pipe" which will

transport the data-signal:

In(PIPE....M(2)) = {<c2, IdB>, <z2, p —' P2>' <a2' IdBASE>}

Out(PIPE_M(2)) = {.z2, IdB>}

Rel(PIPE_M

v(<z2, IdBASE>) = v(<c2, 	*v(<, p —) p+r2>)

+ (<c2 IdS1>)v(<a2, MBASE>)

Note that we have introduced two new variable-classes: z2, which is the variable-class

that provides a channel for the signRl and the control variable-class c2 which acts as a

switch which determines whether the value for z2 at a point p is obtained from z2 at the

neighbouring point (which happens if p is not at the beginning of its coset row) or from

a2 at point p (which happens if p is at the beginning of its row). (We are making the

4 	The Formal Design Method 	
1 	

80

assumption here that p0 equals L2(po).) Note that the variables of PIPE-K2) are nOt

variable-class-vector pairs, but variable-class-function pairs, to make it suitable for

forming the mould of DATA) when composed with the modified version of

DATA_M Since z2 is the new name of a2, a renaming must be done on DATA_M. Let

us define the renaming function Rj)P(2) to be s.t.

R_DP(2)(<a2, 2>) : 'z2, p ' P2>

and for all <a', i'>in Vars(DATA_M) not equal to <a2, 2>,

RDP(2)(<a' 4à'>) 	:= <a', t>

These equations express the fact that we want to replace the dependency <a2, &2> in

DATA by <z2, IdB4&> but to leave every other dependency unaffected. We now

compose DATA_M ® R_DP with PIPE_M to form the mould for DATA, which

we will call DATA-K2):

DATA_M(2) := DATA_M ® R_DP2) II PIPE-K2)

DATA(2) 	:= II BASE DATA-K2) ® R.DATA(: p)

where

RDATA(2. p)(< VC, fun>) = <vc, fun(p)>

for all pairs <vc, fun> in Vars(DATA_M(2)).

We must not forget the new control requirements generated by this transformation. The

new control computation will be:

CONTRO42) := rp in BASE fl {p' Ip' * 2(P')} 	c(p) := 1;1

Lp n BASE C{p'Ip'=12(p')}c2(p):0.J

The first line specifies that if p (in BASE) is not equal to L2(p) then the value of <c2,

p> is 1and the second line specifies that if p is equal to 4ó2(p) then the value of <c2, p>

4 	The Formal Design Method
	 81

is 0. (The complicated appearance of the conditions preceding the implication arrows

is because they must be written in the format required for shorthand expressions of

recurrences.)

Recalling that the original recurrence was called DATA, we may now state the

following:

If CONTROL(2), DATA(2) and DATA are as defined previously and certain

assumptions are made then

CONTROL(2) II DATA(2) Simulates DATA 	 (n Theorem 2)

Figure 4.1 shows pictorially a possible affine dependency of DATA. Assume it is the

first one to be made uniform. Figure 4.2 shows how the uniform dependency would

appear in DATA(2) (left) and what CONTROL2) would be (right). These should be

superimposed, but are displayed separately for clarity.

o 0 0

o 0 0

Figure 4.1 An affine dependency

4 	The Formal Design Method
	 82

ci-i 1 1 641 	

01 01 01

I 	
01 01 01

(jl 	

01 	01 	01

64 	64 	
640 	 00 00 00

Figure 4.2 After pipelining: DATA(2) (left) and CONTROL(2) (right)

The loop arrows in Figure 4.2 correspond to the dependency <a2, IdB&> which

appears in the definition of PWE_M> and the straight arrows correspond to the

dependency <2 p - P-1-2>• Solid arcs indicate that the data is actually being used, due

to the value of c2 at the destination of the arc.

We have now seen how to pipeline a single affine dependency. If there is more than one

affine dependency in DATA then DATA(2) will have at least one such and the process

must be repeated with DATA(2), producing CONTROL(3) and DATA(3) etc... When all

the affine dependencies have been pipelined we will have the computation (1112 to n

CONTROL(1))ll DATA(S) which will simulate DATA. If we then tack on the initial

control part, CONTROL (which we will call "CONTRO41)" for neatness' sake), we

get (Ili--I to n CONTRO41)) II DATA,
which simulates CONTROL II DATA (OD

Theorem 1). DATA() is uniform (j& Theorem 26) so the required task, stated in the

first sentence of this section, has been achieved, if we set DATA' equal to DATA(S) and

CONTROL' equal to (II = i ton CONTROL(1)). The diagram on page 74 may now be

expanded to include more details:

4 	The Formal Design Method
	 83

= change + design decision

= change without design decision

= no change

ALO 	-- " 	CONTROL II DATA

.adft'

(CONTRO41) II CONTROL(2)) II DATA

etc.

(II=i ton CONTR041))II DATA(S)

CONTROL' II DATA'

Figure 43 Data-pipelining

We have just seen in detail the process of data-pipelining, in which the affine

dependencies in the data part of the original computation are progressively replaced by

uniform dependencies. We will now see how this process operates in the particular case

of the convolution example.

4.1.1 Example

Let us recall the definitions from page 61, presented this time using shorthand

expressions for computations.

BASB(CONV) :={ [wl : i~_>O,j ~*_O and j:!~ 3 - i}

BASE(coyiv) is the base of DATA(CONV) defined below:

4 	The Formal Design Method
	 84

DATA V) := 1 in BASE(coNV) = y(p) := 	+ 1-111)1

L +x([[o
 .p*w([.p). o 	J

DATA(CONV) is the data part of the computation used in the specification of the

convolution task. It states that if p is in the base then the running total at p (that is, the

value of <y, p>) is equal to the running total at (p + [1]) multiplied by the value of

the control variable <cy, p>, added to the relevant weighted input (the value of the input

<x, [1 0] .p> multiplied by the value of the weight <w, [00] .p>). The value of <cy, p>

is defined (by the control part CONTRO4 CONV)) to be 1 everywhere in the base except

the strip D at the base of the triangle, where it is 0:

D 	 := { [] :0:r.i:!g3}

CONTROL(cOp4v) := rp in Dy 	 cy(p) := 0;

LP in BASE CONV) - D 	Cy(P) := I. j

This causes the running total to be initialised at 0 along this strip. The complete initial

computation is of course the initial control part composed with the initial data part.

ALG(coNv) 	:= CONTROL NV) H DATA(coNV)

A diagram of ALG(CONV) can be seen in Figure 3.17 on page 63.

There are two dependencies which need to be pipelinecl one is <x, p —+ lio,0] .p> and

the other is <w, p -4 [0] .p>. We will tackle the former first.

4 	The Formal Design Method
	 85

ALG(cy) is of the same form as ALO on page 79 with CONTROkCONV) identified

with CONTROL and DATA(CONV) identified with DATA. DATA cov) satisfies the

conditions for Theorem 2 when we identify a2 with the variable-class x, A2 with the

functionp -) ['.p and r2 with the vector [0j.

Sox is the variable-class of the dependency to be pipelined, p - [10] .p is its function

and
1-011

 is the vector between a point in a coset and its neighbour in that

Let the new variable-class for the pipe be Zx and the new control-variable class, Cx. We

may now follow the pattern on page 79 in making some definitions:

In(PWE_M(coI4vX2)) 	= {<C, p p>, <Zx P P+ 	> <X, f

Out(PIPE_M(c0liv)(2)) = { <z, P P> }

Rel(PIPEM(C0NV)(2))

v(<z,p-*p>) = v(cc,1,p_+p>)*v(czx,p4P+ [0]>)

+ 	p - p>)*v(x, p - p>)

(This definition for PEM(covX2) COT1CSOfldS to the definition for PIPE_M(2) on

page 79.)

P -, 11, .p>):=x, p - +
[I>

and for all <a', A'>in Var DATA_M(coNv)(2)) not equal to <a, p - 111,0] .p>,

R_DP()(2)(<a', A'>) := <a', A'>

DATA_M(CONVX2) := DATA_M(CONV) 0 R_DP(,nrx2) 11 P1PE_MoNx2)

4 	The Formal Design Method
	

86

DATA(Cy) := pE BASE DATA_M oyv 2) ® R_DATA(cvx2 : p)

where

R_DATA coyv)(2. p)(4(VC fun>) = <VC, ftm(p)>

for all pairs <vc, fun> in VaATA_M(coy 2)

and DATA_M v) is s.t.

In(DATA_M(CONV)) 	 := {<c. p -* p>, <y, p -p
 p + [1]>. x,p 	1 0]

<w' p—> []>i

Out(DATA_M(co ,)) := {<y' p -* p>}

Rel(DATA_M(CoNV))(v) 	v(<y, p - p>) =

1-111 >)
+v('x,p-3 11 o] p>)*y(<, p)

[?]•>)

(DAT&M() is a mould for DATA(CONV). DATA(co)(2) corresponds to

DATA(2), defined on page 80.)

CONTR04cop vx2)

1pinBAEcoNv){p'Ip'= [] andj*0}= c1(p):=1; 1

nBASECO,)C{p'Ip'= [] andj=0}= c(p):=0. J

(This definition corresponds to the one defining CONTROL(2) on page 80. The set {p'

Ip' = [('),I and j * 0 1 corresponds to { p' Ip' * L2(p') } since in this case L2 is equated

4 	The Formal Design Method 	 87

withthefunctionp —) 1 01 p. Similarly the set {p' Ip' =[] and =O} corresponds

to {p' Ip' = 2(P')} Note that {p' Ip' = [(')"] and = O} is coincidentally equal to Dy .)

Using Theorem 2, we can now deduce that, assuming certain computations are well-

defined,

CONTROL(CONV)(2) II DATA(cONv)(2) simulates DATA(CONV) (n.p.)

Figure 4.6 shows CONTRO4 CONv)(2) and Figure 4.5 shows DATA(CONV)(2).

10

Co-ordinate frame:

10 	10

10 	10 	10 	 I
00 00 00 00

Figure 4.4 CONTROL(coNv)(2) (showing the values of c at each point)

4 	The Formal Design Method
	

88

Co-ordinate frame:

14,
0 	

'0

	 i s

1

O = O: O.

Directions of data-dependencies:

	

<w, p -4
[

.p> 	
_ p + 1-111 >

x,p-4p+ [0] >

Figure 4.5 DATA(CONV)(2)

We have pipelined the first dependency but we still need to pipeline the other, <w, p -4

[?] .p>; the process must be repeated with new identifications: a2 is identified with

the variable-class w, L2 is identified with the function p -9
100

0] .p and r2 with 	the

vector [4].lfz2is identified with zw,c2 with cw and we make the following

definitions (they are similar to the previous ones):

4 	The Formal Design Method 	 89

In(PIPE
	
> <W, p ip>} _M 	 P []

Out PWE_M(coNyx3)) = {<Z, P -3 P>}

Rel(PIPE_M(c0Nv)(3))

v(<z, p —* p>) = v(<c, p - p>)*v(<zw, , - i +
[-0

11>)

+ (<c, p - p>)*v(<w, p
-

p>)

(This definition for PIPE_M(cONv)(3) corresponds to the definition for

PIPE_M(coNv)(2) on page 79, but w, c,, z and [occur in place of x, c, zx and

[-1 respectively.)
 11

R_DP(co ,)(3)(<w, p — ~40 .p>):=<w, p — p+
[>

and for all <a', i'>in Vars(DATA_M(c0Nv)(3)) not equal to <w, p -4 14,
0] .p>,

R_DP(CO ,)(3)(<a', '>) := <a', i>

DATPLM(CONVX3) := DATA_M(co)(2) ® R_DP(,x3) II PPE_M,X3)

DATA(coy)(3) 	I pE BASF DATA_M oyiv 3) ® R_DATA(CONVX3 : p)

where

R_DATA(coNvx3 : p)(<VC, fun>) = <vc, fun(p)>

for all pairs <vc, fun> in Vars(DATA_M(CONVX3))

(These definitions correspond to those for R_DP((X2), DATA_M(v)(2)

DATA(CONV)(2), R_DATA(CONV)(2 p)- with [1] and [0 0] in place of [0] and [10]

respectively, DATA_M(CONV) in place of DATA_M(CONV)(2) and 2 replaced by 3 in the

4 	The Formal Design Method
	 90

subscripts.)

CONTR04coNvx3) :

rp in BASE(CONV) fl 	i' = [1 and i * O}= Cw(P) : 1; 1
[uj

[PinBASE(CONV)fl{P' Ip'= [wl and i=0} =c(p):=O. J

(This is the same as the definition of CONTR04coNv)(2) except that c(p) replaces

C(p) and the strip where the value of the control variables is 0 is vertical and situated

at the left-hand edge of the base, rather than being horizontal and below its base - see

Figure 4.6 and Figure 4.6.)

By Theorem 2, assuming that certain computations are well-defined, we can deduce

that

CONTROL(coNv)(3)I1DATA(CONvX3) simulates DATA wX2) (n.p.)

(cf. the analogous deduction on page 87)

MR

Co-ordinate frame:
00 10

4
00 10 10

1

00 10 10 10

Figure 4.6 CONTROL(coAv v)(3) (showing the values of c, at each point)

4 	The Formal Design Method
	

91

41U.Q

~ \\4111k

	

o 	o- 0

	

•.'*1I— 0 	0 	°

	

V 	
•.•• 	 $...3 	..,..

	

Co-ordinate frame: 	 Data-dependencies:

-,
+ 1-011

>
	

+ 1-111>

	

1 	 <ZX
Ipp+ [j>

Figure 4.7 DATA(CONV)(3)

Now DATA(CONVX3) is a uniform recurrence so by the discussion on page 82 we know

that if we change the name of the initial control computation CONTROL ONI,) to

CONTRO4CONVX1), for neatness:

CONTROkv)(1) := CONTR04 y)

and define CONTROL' (co)to be the composition of the three control computations

(the one initial one and the two just created):

CONTROL' (coNy) := 1 1,3CONTROL,)(1))

and set DATA'(coNV) equal to DATA(CONVX3):

4 	The Formal Design Method
	 92

DATA'(CONV) := DATA(CONVX3)

then DATA'(c0p4v) is a uniform reCUTnCC and CONTROL' (co" Ii DATA'(col

simulates CONTROL(coNv) II DATA coriv (n.p.)

(CONTROL' (cONY) II DATA'(CONV) has not been drawn for the following reasons.

DATA'(CONV) was seen in Figure 4.7; CONTROL' has no dependencies and to

show the values of each control signal at each point would have made the diagram

confusing.)

Thus the data-pipelining task has been completed for the convolution example. We will

now return to the general scheme and look at the scheduling stage.

42 Scheduling

We need to choose the function Imt so that the final implementation, IMP, satisfies the

conditions which would make it a space-time network(). The conditions are as on

page 66 with IMP substituted for C namely:

The variables of IMP are drawn from the set Varciasses X (Real X Real)

(where Varclasses is a set of variable classes)

ThP will have the structure IDPp where 	subset o for

each p. IMP1, is a computation which produces all its output signals at point p-

For each input <v p'> to IMPp (as defined in (2)),

time(p') < time(p)

This condition states that each piece of data must be produced before it can be

consumed.

4 	The Formal Design Method 	 93

That condition (1) is satisfied follows from the nature of the function RENAME.

Condition (2) needs to be proved when the design is complete. Its satisfaction doesn't

depend on the choice ofIm t. The condition we0 consider (3) Although the

design isn't complete, the data-dependencies are in place and lint can be tested against

them. Since DATA' is a uniform recurrence, it can be shown that the required test is

that A.b should be less than zero for all dependency vectors b of DATA' (where Im(p)

= A.p + bt.) (There will be further conditions on CONTROL" and CONTROL"

which will have to be checked when those computations are constructed.)

Now we will schedule the convolution example, choosing Im, and performing the

above test.

4.2.1 Example

Let DEP(co) be the set of dependency-vectors of DATA(CONVX2) , then

= 	F
	[-1

If we set the matrix Atv) to be equal to [1,2] then A).b <0 for all the

dependency vectors b in DEP(CONV) and condition (3") on page 68 will be satisfied. We

will let bco) equal zero for simplicity so we have

I'flt(CONV) 	p —3 [1, 21.p

Figure 4.8 shows the schedule for the convolution example.

4 	The Formal Design Method
	 94

Co-ordinate frame:

3 	
is

2
'S.

-S. •55 	 'S.

0 	" -S. 	 'S.. 	
'S.

S.' 	 'S.
'S.

'S.. -S

t = -1

-S .'S 'S
'S.

'S.
'S 'S

'S.

"S 'S.
'S. 'S 'S.

Nk
Ik

Data-dependencies:

<zw, —+p + [>
I_J\\\, , - , + ['i]

>

<z,p-4p+ 1-011

Figure 4.8 Schedule for convolution example

The dotted lines in the figure are equitemporal. No dependency arcs are drawn in, since

this might mislead: the schedule is not used until after control-pipelining has been

performed. However, the data-dependency-Vectors are drawn in and it can be seen that

condition (3") on page 68 will be satisfied, since they all lead to earlier times.

We have now scheduled the convolution example; we will go on to the third stage:

control-pipehni-ng.

4.3 Control-pipelirnng

As stated earlier in this chapter, the aim of control pipelining is to transform the control

computation, CONTROL', into two parts, an edge-computation, CONTROL" which

4 	The Formal Design Method 	 95

introduces control signals at the edge of the array and a uniform recurrence,

CONTROL", which transports the signals to their destinations. We will do this by

dealing with each control signal separately and combining the results. Let us assume

that CONTROL' may be split into several components of a certain form, each of which

deals with a single control signal. Formally:

CONTROL' : O= I to nCONTROL<i) where for each i

	

CONTROL(i) := fp in {p' I A1.p' - b 1 * O} = 	cj(p):= 1; 1

	

[pin {p'1A1.p'-b1=O} = 	cj(p):=O. j

(We are assuming here that CONTROL = CONTRO41) see page 73 "Transformation

1: Data-pipelining".)

(We are here assuming that the initial control requirement is of this form, for a smaller

value of n. CONTROL' may then be built up from that)

The above definition of CONTROL(1) says that for each point on a certain hyperplane

the control variable cj(p) has the value zero, and it has the value one elsewhere. (Note

that a hyperplane is a line if the space is two-dimensional.) For each i, we will look for

a computation, CONTROL,: 1), which has all its variables on the boundary of the base

of DATA' and a computation, CONTROLj: 2) which is a uniform recurrence and such

that CONTROL(, 1) 11 CONTROLç1: 2) simulates CONTROL(,). Control-pipelmmg is

similar to datapipelining, but it is simpler since initially there are no dependencies as

such; all that is required in control-pipelining is that the control-variables at several

points are assigned a common value (one or zero).

Our pipelining strategy can be explained by the following analogy: imagine a light

shining into a region of space and imagine that at the edge of the region there is an

obstruction which casts a shadow into the region (Figure 4.9).

4 	The Formal Design Methrxl
	 96

- - - -

Distant light source

obstruction pattern

Figure 4.9 Analogy for control-pipelining

The light and dark in the region represents the value of the control variable c1 (1 or 0),

the pattern of obstruction represents the edge-computation (CONTROI) and the

direction the light is shining represents the direction of signal. flow through the uniform

recurrence (which is transporting the control signal). We need to find a direction for the

light and an obstruction pattern which will create the desired shading. The analogy

breaks down slightly since we are actually dealing with a lattice of points rather than a

continuous space; so we are not merely looking for a direction for the light but a vector

(with a length) such that every point in the base is reachable by an integer multiple of

that vector from a point on the edge of the domain. More formally we are locking for a

vector r, such that for all piflD, there exists a point pon the boundary ofD and afl

integer n such that p = p 	- n*r. Furthermore, in order that the shadow is cast on the

correct region, r must be in the null-space of A1 (see glossary for a definition of "null-

space"); this implies that rwillbe aligned with the dark hylane.ff such azcan be

found then we can construct the desired computations CONTRO4 . 1) and

CONTRO4j 2) . If we have these for each i, then we can group all the edge-

4 	The Formal Design Method 	
97

computations together to form the edge-computation CONTROL", and all the uniform

recurrences together to form the uniform recurrence CONTROL":

CONTROL" := If j)nCOt1TROL(j: 1)

CONTROL" := 11j= I to nCONTROL(i:2)

As mentioned earlier, there are no control dependencies at the start of the control-

pipelining stage (cf. datapipelining). Therefore it is the variable classes rather than

dependencies which will be said to be pipelined. Note also that in control-pipeliniiig, in

contrast to data-pipelining, a new variable is not required to transport the signal: the

control variables themselves may be used to transport it.

Figure 4.10 shows a possible CONTROL', the numbers are the values of c1 at each

point.

01 	01 	01

01 	ol 	01

01 	01 	01

oO oO 00

Figure 4.10 A possible CONTROL'

Figure 4.11 shows the result of pipelining.

4 	The Formal Design Method
	 98

104- 0-i4 	 0

10- 	0-' 	 0

1 Q

0 14 0 	0

00-4 i 014 	 0

CONTROL(l.l) I.
	CONTROL(1.2)

Figure 4.11 CONTROL(l :l) II CONTROL (I :2)

To summarize, we have a strategy for finding an edge-computation CONTROL" (a

Theorem 19) and a uniform recurrence CONTROL" (Oo Theorem 25) for which the

composition CONTROL" II CONTROL" simulates CONTROL', which implies that

CONTROL" H (CONTROL" II DATA') simulates CONTROL' II DATA' (AS

Theorem 12); we did this by subdividing CONTROL', operating on each sub-

component separately, and combining the results.

4.3.1 Example

In the convolution example there are three variable classes which need to be pipelined:

cy. Cx and c. These control variable classes correspond to the data-outputs, the data-

inputs and the weights respectively. The computations which deal with these variable

classes are CONTRO4CONVX1) , CONTRO4CONV)(2) and CONTROL(cOp(vx3)

respectively (which comprise CONTROL'(coNv) - see page 91). We can deal with each

of the three subcomputations in turn.

4 	The Formal Design Metiw4
	

99

Pipelining of the first control-variable class

Let us first consider CONTROLCONVX1) (which equals CONTROL(coNv)). Looking at

the definition of CONTROkcONv) on page 84 and noting that Dy is the set I p in D :

[001 .p = 0}, we can see that it is of the form required for control-pipelining if we let B

be [?] and b1 be [j . We choose our pipelining vector to be [] ; it is in the null-

space of B1 and every point in BASE CONV) is reachable from the edge of BASE(,).

In fact, if D(COT)(l)is defined to be the set of points { [4] I = 0...3}, then each point

in BASE co) is reachable from D(c)(1) Formally, for all p in BASE(co) there

exists pedge in D(coJ)(1) and integer n such that

p =
	 1 011

In fact ifp = [] then 	[1] and nis(i+1).Using the pipeliningvector [we

create the uniform recurrence to channel the control signals using the variable class c;

it specifies that the value of <c i,, p> is the same as that of <c, p + 1-011
> when p is in

D():

CONTROLcONv)(l. 2) :=

rp in BASE(CONV) => Cy(P) :=cy(p + 1-011). 1

L
	

J

Then we define the edge-computation (the "obstruction pattern") as follows:

CONTRO4CONV)(1. 1) :=

4 	The Formal Design Metkd 	 100

[11 ' [2] ' [31 1

	

Lpin{ 1-01 } 	
=> cy(p):=O. J

CONTROkcopi,i: 1) specifies that the value of <c, p is 1 when p is in the set { 1-11
[ij] , [.4] } and is 0 when p is the point [] . CONTROL(cOj1: 1) specifies the

value <ci,, p> only when p is in this edge-strip.

We can prove that CONTRO4c0Nv)(l: 1) II CONTRO4coj)(l: 2) simulates

CONTROL(co)(l) , so we have pipelined c (OD Theorem 6).

Pipelining of the second control-variable class

The variable class cx can be pipelined in exactly the same way as c, since

CONTR04cox2) is simply a renaming of CONTROI(c,Xl) (c is replaced by c

- see the definition of CONTROL.)(2) on page 86). We get the uniform recurrence,

CONTR04)(2: 2) :=

1-011 1

L 	 J

and the edge-computation,

CONTROL(j)(2: 2)

rpin{ [11_ 	[- 11
 '[2j' [3]}
	cx(p) := 1;

LPin{[1]} 	=cx(p):=0.

4 	The Formal Design Method 	 111

We have now found a space-time simulation (n.p.) for the convolution task, but it still

needs to be interpreted as hardware.

4.6 The Architecture

In this section we turn the space-time simulation IMP(cONV) into an architecture. This

process is not part of the formal design method. The architecture is "hand-produced".

Now INTER1OR'(co), corresponding to the first six lines of the shorthand expression

for IMP(coNv), is relatively easy to turn into an architecture, but EDGE'(CONV)

corresponding to the last six lines of the shorthand expression, is slightly awkward. The

method of presentation of the control signals to the array will depend on whether a

feedback loop needs to be broken into; if so, a multiplexer will be needed (otherwise

not).

Figure 4.17 and Figure 4.18 show the final architecture. Figure 4.18 contains some

notation which needs to be explained. The component

7=
depicts a "black box" processor, the behaviour of which is specified by the codeword

S. S signifies the set of possible character streams which may be output on the single

port of the processor. There is no formal semantics for the code, but here are a few

example codewords and their meaning:

"1O..."signifies the set of streams such that each stream consists of

a "1" followed by an infinite stream of "O"s. (There is only one

element in this set.)

"1* "signifies the set of two-character lists for which the first

4 	The Formal Design Method
	 112

character in the list is "1".

" I *... "Signifies the set of streams which start with a "1" (which may

be followed by any infinite stream of characters).

Figure 4.17 The architecture of each processor

113 The Formal Design Method

Figure 4.18 The array architecture

4 	The Formal Design Method
	

114

4.6.1 Summary of section

To summarize this section: we have turned the space-time simulation into an

architecture.

4.7 Summary of chapter, discussion and further work

4.7.1 Summary

In this chapter we have seen a five-stage method of transforming a regular algorithm

into an implementation which is basically systolic. Both the algorithm and the

implementation are expressed in the language of computations. The method was

demonstrated on a simple algorithm: convolution. The output of the method may then

be transformed fairly easily into an architecture; this was seen in the case of the

convolution example in the penultimate section of this chapter.

4.7.2 Discussion

The basic ideas for the steps in my design method, data-pipelining, scheduling, control-

pipelining and allocation, final stage, are not new, being taken from [Raj89}.

Rajopadhye's method is more sophisticated and includes many interesting ideas on

pipelining; however, my method is more precisely stated than Rajopadhyc's, and is

verified. The sophistications of his method weren't found necessary for the convolution

or QR-factorisation examples.

In Rajopadhye's method, scheduling seems to be done before data-pipelining whereas

the order is reversed in my method. The rationale for the order: data-pipelining,

scheduling, control-pipelining, allocation is that the more restricted choices are made

before the less restricted, since each choice tends to constrain subsequent ones even

more. Data-pipelining can only be done in one way. Control pipelining is more flexible:

it can fit in with any schedule but not vice versa. (Of course data-pipelining must go

before control-pipelining.) At the more detailed level, in my method of pipelining a

data-dependency, P0 can be chosen (for each coset) before the dependency vector, and

4 	The Formal Design Method 	 115

can be chosen to be at the source of the data. In Rajopadhye's the dependency vector

must be chosen first since its identity is completely determined by the already-chosen

schedule, and the dependency vector, in turn, determines the identity of pt).

Unfortunately, P0 may be at the other end of the line from the data source, causing an

insurmountable problem. To be fair, Rajopadhye's method is also catering for

situations in which his more sophisticated pipelining techniques would be used. In such

situations, the choice within the data-pipelining step may be less restricted than those

within the scheduling step; so by my rationale it would be sensible to schedule before

data-pipelining.

If the computations used in the method are well-defined, and if a one-to-one schedule-

cum-allocation function can be found, along with suitable dependency vectors for the

data- and control-pipelining which are time-consistent with the function, then my

method will guarantee a correct implementation to a level above the architectural level

though it may not be the most efficient solution.

Automatability of the design method

If considering building a CAD system based on this method, an important question is:

how automatable is the choice of pipelining vectors and the scheduling and allocation

maps? If the question of optimality is ignored, this question becomes; can a pipelining

vector for each data-dependency and each control variable, a schedule map and an

allocation map be found which are consistent with each other? We will discuss the

problem as if the choices are made in the order in which they are currently made in the

method.

Data-pipelining of an affine dependency shouldn't be difficult assuming that the

following two conditions hold: the affme map (A2 on page 79) is idempotent i.e.

repeated application of the map to any point is the same as a single application;

secondly, the base of the recurrence (BASE on page 79) is a portion of a lattice, and it

doesn't have any gaps in its lattice structure i.e. it is the intersection of the lattice with

a convex set of points of the Euclidean space in which the lattice is embedded. The

pipelining vector can be found by performing a matrix inversion, a matrix

4 	The Formal Design Method 	 116

multiplication and Euclid's algorithm (generalised to find the greatest common divisor

of an arbitrary finite number of integers).

I don't know of an algorithm for finding a scheduling function which will make the

data-dependency vectors time-consistent with the final space-time map. Techniques for

solving integer and linear programming problems may be relevant.

Control pipelining may easily be automated.. Let r be the difference between two points

on ran(L). If Im.b >0, then let r1 equal b. If Im.b >0, then let r1 equal -b. There will

only be a problem if Im.b =0; in this case a different pair of points may be tried.

Having chosen the scheduling map, Iin, allocation is done simply by finding Lm such

that Im is invertible i.e. s.t. Det(Im) *0. Assume that lint, as a row vector, has a non-

zero element in the i th column, then we may take Iin to be the identity matrix with the

th row deleted.

4.73 Further work

Specification

The input to the method consists mainly of an affine recurrence (AR). (An AR is a

formalisation of a SARE (see page 34)). In [Raj9O], SARE to SARE transformations

are presented which will change certain SARES into ones of which the dependencies

can more easily be made uniform. It would be interesting to we if these transformations

could be formally stated and verified using the computations calculus, and to see if

there are other such transformations which are valid and useful. These other

transformations may rely on the associativity and commutativity of operations on the

data which is drawn from a ring, as Rajopadhye's are, or they may not. In [Raj90] the

transformations themselves are affine; non-affine transformations could be

investigated.

It may be impossible to express some algorithms as ARs, and one could look at design

methods which don't require the initial computation to be an AR. Sorter-type

117
4 	The Formal Design Method

algorithms may fall into this category of awkward algorithm. It may be that their

recursive structure makes them in general unsuitable for implementation on a lattice

structure. These questions could be addressed.

Pipelining

The pipelining techniques of the method could perhaps be made more sophisticated

using ideas from [Raj89], but this may not be necessary in practice. One could look at

whether pipelining is always necessary for transmittant data, i.e. whether, when a signal

(e.g. a control signal) travels through many subprocesSOrs without change, it really

needs to be delayed by one time step between each processor.

Scheduling and allocation

It is interesting to speculate whether scheduling and allocation could be automated. As

a step towards achieving this, a constructive (in the mathematical sense) way of

defining the space of valid schedules could be sought Also, i n the special case of a UR

which has dependency vectors all of which are either within or on a particular plane or

are a positive multiple of one of the two normals to the plane, the task of finding a

schedule may reduce to scheduling within the plane. Recurrences have a "data-flow"

and not a "control-flow" style: the sched ule and
 allocation functions in my method are

not conditional on the result of any computation. It would be good to incorporate such

conditionality into the method. It could also be interesting to investigate non-affine

schedule and allocation functions.

ImplementatiOn

The method could perhaps be adapted to allow the design of non-systolic arrays, e.g.

wavefront arrays or hypercubes. Th e method may be more general than it appears. Non-

uniformity of operations and data-flow may be simulated by introducing control signals

into uniform recurrences.

Miscellaneous

Other implementations of the convolution algorithm could be investigated including

those which are achieved using non-affine schedules. It would be desirable for the

4 	The Formal Design Method
	 118

current method to be fully validated, i.e. for it to be proven that its computations are in

fact well-defined. It would also be interesting to implement the method using

LAMBDA, and to see if DIALOG could also be used as well to give the designer a

graphical interface. In doing the latter project, one might see how the method could be

extended to achieve the final architecture (see section 4.6 (starting on page 111)).

5 	The Formal Design Method Applied to QR-Factorisation Example 	 119

5 The Formal Design Method Applied to QR-
Factorisation Example

We will now apply the design method to a trickier example: QR-factorisation. QR-

factorisation is discussed and the algorithm to be input to the design method, ALG(QR),

is defined. The five stages of the design are followed through. Two architectures are

then shown, each resulting from a different set of design choices. The chapter finishes

with a brief summary and a discussion of possible further work.

The QR-factorisation problem can be described as follows: given a square (M x M)

matrix A, we need to find an upper triangular matrix R which, for some orthogonal

matrix Q, satisfies the following equation:

Q.R = A (that is, R = QTA)

The problem can be solved by applying a sequence of "Givens rotations" to the matrix

A. Each Givens rotation affects just two rows of the matrix it is applied to, and is such

that it sets one of the elements in the lower of the two rows to zero. The composition

(in the usual functional sense) of the rotations annihilates the lower right-hand triangle

of A, and can be represented by an orthogonal matrix, since each rotation can be; we

can therefore set Y to be equal to this matrix.

We will now define the initial computation for the QR-factorization problem,

ALG°(QR). Firstly we need to define the domain of ALG°(QR); it will be an (M x M)

grid of points:

• D(pJ.0)(QR) 	 I l:!gi,j :g M)

Each point in the domain corresponds to an element position in an (M X M) matrix. The

variable classes A and R in ALG0(QR) correspond to the matrices A and R, respectively

in the above problem-description; the variables which have class A are the input

5 	The Formal Design Method Applied to QR-Factorisation Example
	 120

variables:

In(ALG°(QR)) 	:= {<A, p> I € D(JJO)(QR))

and those which have class R are the output variables:

Out(ALG°(QR)) := {<R, p>I p € D(1&j,GO)(QR) }

There is no variable class Q since we don't need to find Q explicitly. We then define

the relation Rel(ALG°(QR)) in such a way that the values of the input and output

variables are such that the corresponding matrices, A and R , are related as at the start

of this chapter.

Rel(ALG°(QR))v 4 there exist Q, R, such that

[1 (i,) = v(<R, (i)
La)]

>)if i ~ j

A(i, j) = v(<A, r
a
(i)1 >)

L']

QR =A

Q is orthogonal

and

R is upper-triangular.

Lines (i) and (ii) define the correspondence between the matrices and the variables of

the computation: the value of the element at (i, J) in R, equals the value of the variable

<R, [(1)]> and similarly for A. Lines (iii) to (v) specify the constraints on and between

5 	The Formal Design Method Applied to QR-Factorisation Example 	 121

the matrices.

Note that the value of <R, 1(')',] > is only specified when i is less than or equal to j; in

other words it is only specified for the non-trivial (i.e. possibly non-zero) values. This

is done so that later on the algorithm we use for solving the QR-factorization problem

will not be forced to output all the zeros from the lower triangle of R,.

Now we will define the computation ALG(QR) which encapsulates the algorithm for

solving QR-factorization by means of Givens rotations. Its base, BASE(QR), is a

truncated, cube-corner pyramid (shown in Figure 5.1 for M = 5):

BASE(QR) 	

{ [kJj
IkE {1 ... M-1},jE {k ... M} and iE {k+l ... M}}

Figure 5.1 BASE(QR)

ALG(QR) will be composed of a control part and a data part (as is required by my design

scheme); these will be called DATA(QR) and CONTROL(QR) respectively. We will

define these, but firstly we need to define a matrix, A', which will be used in the

definition of DATA(QR):

5 	The Formal Design Method Applied to QR-Factorisation Example 	 122

i1000,11o
A':= 	o

So let DATA(QR) be defined as follows:

DATA(QR)

-

(i) 	ft in BASE(QR)= ox(p) := ny(p + 01) -

 o
(i) 	 oy(p) 	cont(p)*nx(p + 1001)

+ ___nt(p)*ny(p +
-
oil)' I

(in) 	I 	 sin(p) := oy(A'.p)/(oy(A'.p)2 + ox(A'.p)2)112, 	I

I 	 cos(p) := ox(A'.p)/(oy(A'.p)2 + ox(A'.p)2)1, 	I

I 	 nx(p) := ox(p)*cos(p) + oy(p)*sin(p), 	 I

[ny(p) := oy(p)*cos(p) - ox(p)*sin(p). 	 J

Before this can be understood, more explanation of the Givens' rotation method is

needed. The first rotation affects just the bottom two rows of the matrix, that is rows M-

1 and M; for M =5, the rotation matrix is:

The rotation angle 0 is chosen to be such that the element position (M, 1) (that is, the

Mth row and the first column) of the resultant matrix (the first of a series of intermediate

matrices) is zero. For this to be true, tan (0) must be equal to A(M,l)/A(M-1,l). The

rotation sequence ripples upwards, so the next rotation affects rows M-2 and M-1 and

annihilates the element in position (M-1, 1) of the matrix it acts upon etc. When the

5 	The Formal Design Method Applied to QR-Factorisation Example 	 123

100 0 0
010 0 0
001 0 0
000 e sin8
0 0 0 -sinO cosel

ripple reaches the top, the first column of the intermediate result matrix existing at that

point consists of all zeros except for possibly the top element. The ripple then starts at

the bottom again, this time eliminating elements in positions (M, 2), (M- 1, 2), (M-3, 2)

and so on.. .until row 2 is reached, at which point the ripple returns again to the bottom.

This process continues until we are left with an upper-triangular matrix, as required. We

may name the rotation which annihilates the element in position (i, j), "rot(i, j)"

Let us return to the definition of DATA(QR). The k-coordinate corresponds to the pass

of the ripple through the rows: k = 1 corresponds to the first pass, k = 2 corresponds to

the second pass, etc. The i and j coordinates relate in the obvious way to the position of

the elements in the initial matrix, A. the intermediate matrices, and the final matrix, R.

So let us consider DATA(QR) at the point p where p = [. The value of <oy, p> is the

value of the element in position (i, j) of the intermediate matrix to which the rotation

rot(i, k) is being or is about to be applied; the value of <ox, p is the value in position

(i-i, j) of that matrix. The cosine and sine of the rotation angle are calculated in lines

(iii) and (iv) of the definition and are stored in the variables <cos, p> and <sin, p>

respectively. The tangent of the angle of rot(i, k) is the value of the element in position

(i, k) divided by the value of the element in position (i-i, k); the definitions in lines (iii)

and (iv) follow easily from this when we note that A'.p is k . Note that the value of
Lk

<cos, p5 is going to be the same as the value of <cos, p> for all p' in the same row as

p (and which are in DATA(QR)); similarly for <sin, p>. The rotation occurs in lines (v)

5 	The Formal Design Method Applied to QR-Factorisation Example 	 124

and (vi); in line (v) the value of the element in position (i-i, j) of the new intermediate

matrix is calculated and assigned to <nx, p> and in line (vi) the value of the element in

position (i, j) of the new intermediate matrix is calculated and assigned to <ny, p>. Note

that the value of <ny, p> is zero, as intended, when j = k. In lines (i) and (ii), which

logically precede the other lines, the values of <ox, p> and <oy, p> are brought in. The

-1
value of <ox, p> is retrieved from <ny, (p + o)>, which belongs to the previous

-1

ripple-pass. Where the value of <oy, p is fetched from depends on p: if k equals M

then we are dealing with the first rotation in a ripple-pass, so the value of <oy, p> is

0
fetched from <ny, (p + o)>; if k doesn't equal M then it is fetched from <nx, (p + 1- 11
r
o)> the value of which was produced by the immediately previous rotation (in the

[oJ
current ripple-pass). The switch between the two sources is operated by the control

variable class cont, the behaviour of which is defined below in the initial control part

(for an understanding of how such a switch works, see the definition of PIPE_M(2) on

page 79).

Why are there four variable-classes as opposed to just one? Part of the reason is that the

base has been made more compact than it would naturally have been - using a more

straightforward approach we would have required roughly as many layers as there are

intermediate matrices, whereas we use just M: one per ripple-pass plus one. We were

able to do this because each rotation only affects two rows and not the whole matrix.

The price we pay is that we need two variable classes, nx and ny; nx catches the

intermediate value of each element as the ripple is passing through, and ironically it also

ends up storing most of the output matrix. The variable classes ox and oy are not strictly

necessary but they make the definition of DATA(QR) neater.

The initial control part, CONTROL(QR), is defined below.

5 	The Formal Design Method Applied to QR-Factorisation Example 	 125

CON1RO4QR) :=
[pin BASE(QR)fl {p'I[l,O,O].p' -M*O} => cont(p):= 1; 1
[p in BASE(QR) fl { p' I [1, 01 01 'P' - M = O} => cont(p) := 0. j

The expression on the left-hand side of the arrow in the top line of the shorthand

expression says that k doesn't equal M and the expression below it says that k equals

M; so the whole definition says that if p is in BASE(QR), where p =

	

then if k equals

M then the value of <cont, p> is 0, otherwise it is 1.

Now we define the initial computation to be the composition of the control part and the

data part:

ALG(QR) := CONTROL(QR) II DATA.

We will now link up the Given's rotation algorithm, ALG(QR) , with the definition of

QR-factorization, ALG°(QR):

ALG(QR) simulates ALG°(QR) with respect to <Varset, RENAME>

where

	

RENAME(<ny, >) 	:= <A, 10)]
(1)>

ljoil

]

I>) := <R, [(1)]>

[

ri
RENAME(<ny, ji I>) := <R, r(1)1> if i = M

	

[_iJ 	kid

5 	The Formal Design Method Applied to QR-Factorisation Example 	 126

[i]> 	

<R, W > if

and Varset : Vars(ALG(QR))-({<ny, p> I [0, 0, l].p = O}

[i+ 11
Li {<nx, p> I p = 	for some i, j}

U {y, p>I p = [] for some i, j}

U {<nx, 	I p = [

JOI

for some i,j where i> j})

The function RENAME defines the connection between the inputs and outputs of

ALG°(QR) and the variables of ALG(QR) The first line of the definition states that the

elements of the input matrix, A, are found on the plane below BASE(QR) , stored in the

obvious way in the variable-class ny. The output matrix doesn't appear quite so neatly;

for a start only the "upper triangle" appears. (Though the rest of the matrix seems to be

accounted for in line four of the definition, this part of the definition of RENAME is

dummy, just put in to satisfy the criteria of simulation - that all the variables of the

computation being simulated must be in the range of RENAME. The value of the

variables <nx, [

JOI

> will not necessarily be zero when i > j, but this doesn't matter since,

in the definition of ALG0(QR) , the value of <R, [(1]> is unspecified if i > j.) The
W1

possibly non-zero elements of the first M- 1 rows appear on the one of the two sloping

faces of BASE(QR) in the variable-class nx, a bit like the flotsam left on the beach by

the receding tide (to pursue the ripple analogy); this is stated in the second line of the

definition. The possibly non-zero element of the last row is stored in the variable <ny,

5 	The Formal Design Method Applied to QR-Factorisation Example 	 127

Immm- 1j
lI > as stated in the third line. The set Varset details all the variables which are

not used either for inputting the matrix A or for outputting R . In other words it is all

the variables of ALG(QR) except the ones mentioned in the four lines which define

RENAME. (This can be seen in the structure of its definition.)

ALG(QR) (depicted in Figure 5.2 and Figure 5.3) is more complicated than ALG(co I)

it has more variable classes and the space in which it is embedded has three rather than

two dimensions. However, the techniques which will be used in each of the four design

stages are the same as those used for the convolution example and in fact no more data-

dependencies and no more control-variable classes need to be pipelined than in the

convolution example.

Assume that M = 5. Figure 5.1 on page 121 shows a 3-D view of the four k-planes (the

planes which appear horizontal in Figure 5.1). Figure 5.2 shows the data-dependencies

in the plane in which k= 1. Figure 5.3 shows the dependencies in the vertical plane in

which j = M. As in the case of the convolution example, the control part is invisible.

5 	The Formal Design Method Applied to QR-Factorisation Example 	 128

Co-ordinate frame: 	 Directions of data-dependencies:

	

[i1 	A >

	

ow
L0i 	

and <oy, p —* A' .p>

Figure 5.2 ALG(QR): (Horizontal Plane: k = 1)

5 	The Formal Design Method Applied to QR-Factorisation Example
	 129

-'u1I 0

0-

..IIII....0 - 	0 - 	0 4 	0

Co-ordinate frame:
	

Data-dependencies:

k

1

[1
<nx,p-3p+ 0 >

[0

<fly, P -4 P +

.4 	. \

I
P P + []>

1 01
1-011

Figure 5.3 ALG(QR): (vertical plane: j = 5)

In this section we have given a high-level definition of QR-factorization as a

computation and then defined the Givens method of performing it, also as a

computation. This latter computation is of a suitable form to be input into my method

and it is this and not the higher-level definition which we will treat as the initial

computation. We will now go through each of the design stages. For each stage, one

design choice will be presented.. .and then other options will be briefly investigated.

5.1 Data-pipelining

There are only two dependencies which need to be pipelined, one involving the variable

class ox and the other involving the variable class oy. It turns out that the two control

requirements generated will have identical values at each point. In the architecture, just

one signal is used to satisfy both requirements (though in the space-time simulation,

5 	The Formal Design Method Applied to QR-Factorisation Example 	 130

IMP(QR), there are two (identical) control signals, c 0, and c).

We can find ox and oy in lines (iii) and (iv) of DATA(QR). Let us pipeline the

dependency <ox, p -* A' .p> first. Recall from section 4.1 (starting on page 78) that we

need to find a pipelining vector such that all the points in a coset are a multiple of the

vector away from the first point in the coset-row; and recall furthermore that we need

to name a new variable-class (z2) to transport the data in the new pipe and a new control

variable-class (c2) to act as a switch which is off or on depending on whether or not we

0
are at the beginning of the coset-row. In this case let the pipelining vector be - , let 1011
z2 be identified with z0, and c2 be identified with c0,. The following definitions have

the same pattern as those for the convolution example (see page 85).

ol
In(PIPE_M(Q)(2))= {<c0 , p - p>, <z0,, p -3 p + _i>, <ox, p -* p>}

Out(PIPE_M(QR)(2))= {<z0 , p -* p>}

Rel(PIPE_M(Q)(2))=

o
v(<z0 , p -* p>) = v(<c0 , p --3 p).)*v(<zox, p -3 p + 1-011

+ (<c0 , p -3 p>)*v(.<ox, p -3 p>)

(This definition for PIPE_M(QR)(2) corresponds to the definition for PIPE_M(2) on page

79.)

0
R_DP(QR)(2)(<ox, p -3 A'.p>):=<ox, p -3 p + 1-011 >

and for all <a', A'> in VarS(DATA_M(QR)(2)) not equal to <ox, p -4 A'.p>,

R_DP(QR)(2)(<a', A'>):= <a', A'>

5 	The Formal Design Method Applied to QR-Factorisation Example
	 131

DATA(QR)(2) 	BASE DATA_M(QR)(2) ® R_DATA(QR)(2 : p)

where

DATA_M(QR)(2) := DATA_M(QR) ® R_DP 	II PIPE_M(Qg)(2)

and

R_DATA(QR)(2 : p)(<VC, fUn>) = <VC, fun(p)>

for all pairs <vc, fun> in VarS(DATA_M(QR)(2))

and DATA_M(QR) is S.t.

r-
In(DATA_M(QR)) 	:= {<ny, p - p + 01 >, <cont, p -3 p>,

L-

1001
	1-011

o
<nx,p-3p+ >, <ny,p-3p+ 	 >,

<oy, p -> A'.p>, <ox, p -3 A'.p>}

Out(DATA_M(QR)) 	: {<ox, p -3 >, <oy, p -* p>, <sin, p -3 >,

<cos, p -3 p>, <nx, p -3 p>, <ny, p -3 p>}

Rel(DATA_M(QR))(v)

[-1
v(<ox,p-p>) = v(<ny,p-*p+ lo >)

[-1

and v(<oy, p -3 p>) = v(<cont, p -3 p>)*v(<nx, p -3 p + o>)
0

1 011

0
+ v(<cont, p -3 p>)*(<ny, p -4 p+ 	>)

-

and v(<sin, p -* p>) =

v(<oy, p -3 A'.p>)/((v(<oy, p -3 A'.p>)) 2 + (v(<ox, p -3 A'.p>)) 2)la

and v(<cos, p -4 p>) =

5 	The Formal Design Method Applied to QR-Factorisation Example 	 132

v(<ox, p -+ A'.p>)/((v(<oy, p -* A'.p>)) 2 + (v(<ox, p -*

and v(<nx, p -3 p>) =

v(<ox, p -4 p>.)*v(<cos, p -3 p>) + v(<oy, p -9 p))*v(<sm, p -4 p>)

and v(<ny, p - 4 p>) =

v(<oy, p -3 p>)*v(<cos, p -* p>) - v(<ox, p -9 p>)*v(<sjfl p -3 p>)

(DATA_M(QR) is a mould for DATA(QR). DATA(QR)(2) corresponds to DATA(2),

defined on page 80.)

We need also to define the computation that defines the behaviour of the switch, c 0 :

	

CONTROL(QR)(2) := 1 in BASE(QR) fl {p' I A'.p' * p'} 	c0 (p) := 1; 1

	

[pin BASE(QR) n (I A'p' = p'} 	cox(p) =O . j

In other words the value of c0 (p) is 0 if p is on the sloping face of the pyramid which

is the set {p' I A' .p' = p' } and is 1 elsewhere in the pyramid. This definition corresponds

exactly to the definition of CONTROL(2) on page 80 (note that in this example A is the

function p —4 A'.p). Assuming that certain computations are well-defined, we may now

deduce from Theorem 2 that:

CONTROL(QR)(2) II DATA) simulates DATA(QR) (n.p)

We may operate on DATA(QR)(2) to pipeline the dependency <oy, p -4 A' .p> in exactly

the same way in which we operated on DATA(QR) to pipeline the dependency <ox, p

-4 A'.p>:

1-011
o

In(PIPEM(QR)(3))= {<c0 .p-3p>,<z0 ,,p -3p+>' <oy, p -3 p>}

Out(PIPE_M(QR)(3))= {<z0 , p -9 p>}

5 	The Formal Design Method Applied to QR-Factorisation Example 	 133

RelPIPE_M(QR)(3))

1011
0

v(<z0, p -4 p>) = v(<c, p 3 p>) * V(<Zoy, p —3 + ->)

+ (<c0, p -3 p>)*v(<oy, p - p>)

0
R_DP(Qg)(3)(<oy, p -3 A'.p>):=<oy, p - p +

1-011>

and for all <a', á'>in VarS(DATA_M(QR)(3)) not equal to <oy, p —* A'.p>,

R_DP(QR)(3)(<a', A'>):= <a',

DATA(QR)(3) 	ilpE BASE DATA_M(QR)(3) ® R_DATA(QR)(3 : p)

where

DATA_M{QR)(3) := DATA_M(QR)(2) ® R_DP 	II PIPE_M(QR)(3)

and

R_DATA(QR)(3 : p)(<vC, fun>) = <vc, fun(p)>

for all pairs <vc, fun> in VarS(DATA_M(QR)(3))

We need also to define the computation that defines the behaviour of the switch, c oy :

CONTROL(QR)(3) :=

ft in BASE(QR) ({p' I A'.p' * p'} ==> c(p) =1; 1
LPiI1BASEQRfl{P' IA'.p'=p'}=c0(P):=0j

We may now deduce from Theorem 2 that:

CONTROL(QR)(3)IIDATA(QR)(3) simulates DATA(QR)(2) (n.p.)

We have pipelined the two dependencies <ox, p -3 A'.p> and <oy, p —> A'.p> and in

doing so transformed the affine recurrence DATA(QR) into the uniform recurrence

5 	The Formal Design Method Applied to QR-Factorisation Example 	 134

DATA(QR)(3), with the generation of the two control computations: CONTROL(QRX2)

and CONTROL(QR)(3) . Let us give the new name CONTROL(QR)(l) to the initial

control computation CONTROL(QR) and let us define CONTROL'(Qg) to be the

composition of the three control computations:

CONTROL'(QR) 	(II, 1 tO3CONTRO4QR)(i))

and set DATA'(QR) equal to DATA(QR)(3):

DATA'(QR) 	:= DATA(QRX3)

Then DATA'(QR) is a uniform recurrence, all the variables of CONTROL' (QR) are on

the boundary of the base of DATA'(QR). and CONTROL' (QR) II DATA'(QR) simulates

CONTROL(QR) II DATA<QR . That is:

CONTROL'(QR) II DATA' QR simulates ALG(QR) (n.p.)

We have now completed the data-pipelining stage for the QR-factorization example.

The question is, "Can it be pipelined in any other way?"...

5.1.1 Other Options

0
Only two dependencies were pipelined, resulting in the same dependency vector, -1

0

There is no other way to pipeline these dependencies. The same reason applies to each.

Each coset has only two ends, and only one of these is the source of the data, so po must

be the point at this end; having chosen P0 there is only one choice of dependency vector

(see Theorem 3 on page 218).

5.2 Scheduling

Let DEP(QR) be the set of data-dependency vectors in DATA'(QR), then

5 	The Formal Design Method Applied to QR-Factorisation Example 	 135

[-ii [0

01, [ol[ol
DEP(QR)={ 0 	 0 - ' I

'J 	L-'J L0J

In choosing the scheduling function, Imt(QR), where ImQR)(P) = At(QR).P + bQR), we

must satisfy the condition that At(QR).b is less than zero for all dependency vectors b in

DEP(QR) (see section 4.2 (starting on page 92)). From this we can deduce that if A =

[a, t3,y] then a<0, >O,y>Oanda+y>O.

The matrix [-1, 1, 21 fits the bill for AIQR). Any value for bQR) is satisfactory, so let

bt(QR) be zero for simplicity.

5.2.1 Other Options

If a, b, and c are to be integral then the matrix which was chosen, namely [-1, 1, 2], is

the best, i.e. the modulus of each component is no bigger than the modulus of the

corresponding component of every other suitable matrix. (D Theorem 14)

5.3 Control Pipelining

As in the case of convolution, there are three control-variable classes, namely cont, c 0,

and c,; each of them needs to be pipelined. They correspond (respectively) to the three

computations, CONTROL(QR)(l), CONTROL(QR)(2) and CONTROL(QR)(3) which, we

recall, comprise the control part resulting from data-pipelining, CONTROL'(Qg) (see

page 134).

Let us first consider CONTROL(QR)(1).

5.3.1 Pipelining of cont

Let A1(QR) and bl(Qg) be the row-vector and the integer which characterize the value-

pattern of cont (CONTROL(QR) equals CONTRO4QR)(1) from the definition on page

5 	The Formal Design Method Applied to QR-Factorisation Example 	 136

125). From this definition, we know that A1(QR) = [110101 and bl(QR) = M.

We will define D(QR)(1) to be the part of the recurrence edge where the control signals

corresponding to the variable name "cont" are to be fed in. Before we do this, we need

1 011

o
to choose the pipelining vector. Let us choose the vector

-
(note that we have chosen

the vector to be in the null space of A1(QR)). Then let us define D(QR)(1) to be those

0
points which are in the image of the map p

-
p + .. which are not in the base

011

BASE(QR); formally:

1-011D(QR)(1) {(p + I p € BASE(QR)} - BASE(QR)

which equals the set of points:

(i)
{ 	

Ik=ji-landl:!9k:9M-landk+1:!gi:!! ~ M}
(k)

This set borders one of the sloping faces of the pyramid which is BASE(QR). Let us

divide this region into two disjoint subsets, D(QR)(1:0) and D(QR)(1:1):

(i)
D(QR)(1:0):D(QR)(1) fl { j) : i = M}

[(k)]

D(QR)(1:0) therefore consists of the points in D(QR)(l) for which i = M.

(01
D(QR)(1:1):D(QR)(1) C' { (i) I : j * M}

1(k)J

5 	The Formal Design Method Applied to QR-Factorisation Example 	 137

D(QR)(1:0) consists of all the other points in D(QR)(l).

We will pipe in the value 0 from D(QR)(1:0) and the value 1 from D(QR)(l:l) using the

[0
vector-i The validity of this piping depends on the fact that each point which needs

[o
a 0 (that is, each point p in BASE(QR) for which [1, 0, O].p - M =0) can be reached by

the vector from D(QR)(1:0) and each point which needs the value 1 (all the other points

in BASE(QR)) can be reached from D(QR)(1: ; formally:

For all p in BASE(QR).

[1, 0, O.p - M = 0 implies that there in exist Pedge in D(QRX1:O) and integer n such that

p = Pedge 	
o 1 011

and [1,0, O.p - M *0 implies that there exist Pedge in D(QR)(1:1) and integer n such that

[ol
p = Pedge +1_1

L 0]

This fact is true because of our careful choice of the pipelining vector and the regions

D(QR)(l), D(QR)(1:0) and D(QR)(1:1) (see Theorem 9).

1011
o

We note also that _is time-consistent (with Im(QR)); this fact is not needed right

now, but is necessary for the validity of the final space-time simulation.

The pipelining process results in the uniform recurrence CONTROL(QR)(1.2) and the

edge-computation CONTROL(QR)(l:l), defmed below:

5 	The Formal Design Method Applied to QR-Factorisation Example
	 138

CONTROL(QR)(1.1): 	fp in D(QR)(1:0) = cont(p) := 0; 	1

Lp in D(QR)(1:1) 	cont(p) := 1. 	J

o
CONTROL(QR)(1.2):= 	1 in BASE(QR) 	cont(p) := cont(p + 1-011). 1

L

ol
CONTROL(QR)(1.2) passes the values of cont from point to point in the direction

1-011 ,0]
,

and CONTROL(QR)(l 1) feeds in the values at the edge of the array as already described.

(It forms the obstruction pattern, to return to the light analogy.) We can prove that the

composition of these two computations simulates CONTROL(QR)(1):

CONTROL(QR)(1:1) 11 CONTROL(QR)(l :2) simulates CONTROL(QR)(l).

(u Theorem 9)

We can pipeline c0, using similar reasoning:

5.3.2 Pipelining of c0 ,

Recall the definition of its corresponding computation, CONTROL(QR)(2), from page

132:

CONTRO4QR)(2) :=

1PJ.nBASE(QR)fl{P' IA'.p' *p'} =c(p) := 1;1

Lp in BASE(QR) n {p' I A'.p' = p'}• => Co(P) := 0. j

The conditions on the left-hand sides of the double arrows are not in the same form as

the general definition of CONTROL(1) on page 95, so we need to re-jig them to work

out what A2(QR) and b2(QR) are. In fact we just have to look at the precondition on the

second line. The condition that the matrix product of A' and p be equal to p,

5 	The Formal Design Method Applied to QR-Factorisation Example 	 139

A'.p = p

is equivalent to

(A' - I).p = 0(1 is the identity matrix)

which is equivalent to

[000
[0,-i, 1].p= 0 (since A' - I = 0-1)

L000

From this we can see that

A2(QR) 	= [0, -1, i]

and b2(QR) 	= 0

As before, let us choose a pipelining vector, and let it be 100i(which is in the null space

of A2(QR)). Let us define D(QR)(2) to be the part of the array boundary where the control

signals corresponding to the variable name c0 are fed in. D(QR)(2) can be deduced in

1001

exactly the same way as D(QR)(l), by taking the image of the function p —> p +on

BASE(QR) and then discarding the points of BASE(QR) itself:

r
D(QR)(2) :={(p + I°) p E BASE(QR)} - BASE(QR)

which equals

5 	The Formal Design Method Applied to QR-Factorisation Example 	 140

(i)
{ 0)Ii=M+l and l:!~ k:!~ M-1 and k:!~ i:gM}

(k)

This set of points neighbours the vertical back plane of the pyramid as drawn in Figure

5.1.

As before, we define the subregions from which we feed the values 0 and 1 into the

array:

[(k)]

(i)
D(QR)(2:0):D(QR)(2) fl { (j : j = k}

i1
D(QR)(2: 1):D(QR)(2) fl { j) : j * k }

I(k)

D(QR)(2:0) consists of all the points in D(QR)(2) for which j = k and D(QR)(2: 1) consists

of all other points in D(QR)(2). We then find that each point in BASE(QR) which requires

a zero (that is, each point p in BASE(QR) for which [0, -1, 1] .p = 0) is reachable from

D(QR)(2:0) using the vector and each the point which requires a one is reachable from

D(QR)(2:1); formally (see Theorem 10):

For all p in BASE(QR), 10, -1, h.p =0 implies that there exist Pedge E D(QR)(2:0) and

integer n such that

p = Pede[j

and [0, -1, 1.p *0 implies that there exist pedgr € D(QR)(2:1) and integer n such that

5 	The Formal Design Method Applied to QR-Factorisation Example 	 141

p = Pede[j

[001,
This means that we can pipeline c 0 using the dependency vector 	feeding in the

	

value 0 from the region D(QR)(2.0) and the value 1 from the region D(QR)(2: 1) 	Note

that 	is time-consistent (with Im(QR)). The pipelining process results in the uniform

0

recurrence CONTROL(QR)(2:2) and the edge-computation CONTROL(QR)(2. 1)' defined

below:

CONTROL(QR)(2.1):= 	rp in D(QR)(2:0) = cox(p) := 0; 1

[p in D(QR)(2:1) 	C0 () := 1. J

CONTROL(QR)(2.2): 	in BASE(QR) 	cox(p) : c0 (p +
100
	1

L
	

J

CONTROL(QR)(2:2) passes the values of cont from point to point in the direction
-o 1 011 ,

and CONTROL(QR)(2.1) feeds in the values at the edge of the array as already

described. We can prove that the composition of these two computations simulates

CONTROL(QR)(2):

CONTROL(Qg)(2.l)IICONT1O4QR)(2.2) simulates CONTROL(QR)(2) (o Theorem

5 	The Formal Design Method Applied to QR-Factorisation Example 	 142

10)

5.3.3 Pipelining of c0 ,

We can now apply exactly the same method to the variable-class c 0 , (and its

corresponding computation, CONTROL(QR)(3)).

The definitions of the resulting computations are

CONTROL(QR)(3 : 1): 	[p in D(QR)(3 : O) 	Coy(P) : 0; 1

Lp in D(QR)(3:1) 	Coy(P) 	1. J

and

1001CONTROL(QR)(3 : 2) 	[p in BASE(QR) = c((p) : Coy(P +) 1

I
	

]

These definitions are the same as the definitions for the corresponding computations

produced by the pipelining of c0,, with cox replaced by cm,.

The composition of these two computations simulates CONTROL(QR)(3):

CONTROL(QR)(3. 1)IICONTROL(QR)(3.2)sjmulates CONTROL(QR)(3) (
Theorem 11)

(Note that c and c0 , will have everywhere the same values (as c,A and c had in the

previous example - see page 100).)

5 	The Formal Design Method Applied to QR-Factorisation Example 	 143

5.3.4 Amalgamation of just-generated computations

We can now splice the pipelines, composing the three edge-computations to form

CONTROL' (QR)' and composing the three uniform recurrences to form

CONTROL ... (QR):

CONTROL' (QR) 	to 3 CONTROL(QR)(i.l)

CONTROL"(QR) "i=l to 3 CONTROL(QR)(i.2)

CONTROL' "(QR) is a uniform recurrence and all the variables of CONTROL"(QR) are

on the boundary of the array [see Theorem 19 and Theorem 25] which is what we need

(see page 74). So we have

EDGE(QR) := CONTROL' '(QR)

and

INTERIOR(QR) := CONTROL"(QR) II DATA' QR

as required. (The composition of EDGE(QR) and INTERIOR(QR) simulates the initial

computation.)

So we have found one way to perform control-pipelining for the QR-factorization

example. Are there any others?...

5.3.5 OtherOptions

[-Oil

00
We can also pipeline cont using the dependency vector 	instead of 1-011. (We must

make obvious changes to D(QR)(l), D(QR)(1:0) and D(QR)(l: l)) Similarly, we can pipeline

5 	The Formal Design Method Applied to QR-Factorisation Example 	 144

I01

	1001,c0, (or c0) using -iiinstead of 	changing D(QR)(2). D(QR)(2:0) and D(QR)(2:1) (or

- 'J
D(QR)(3). D(QR)(3:0) and D(QR)(3: 1))

Now we have looked at alternative design choices for the control-pipelining stage, let

us proceed to the allocation stage.

5.4 Allocation

Recall that the allocation function maps the original domain of computation into space

(as opposed to the scheduling function, which maps it into time). Following from the

definitions in section 4.4 on page 105, ImS(QR) will be the allocation function, and

"s(QR)(P) Will be equal to (As(QR).p + bs(QR)). '(QR) will be the complete space-time

map and Im(QR)(p) will be equal to (A(QR).p + b(QR)).

Let us set AS(QR) to be the simple matrix 10̀]. Then the determinant of the matrix

A(QR) will be non-zero as required (see section 4.4 on page 105 again). We will let

-1121
bs(QR) be zero for simplicity. So Im(Qg) equals the function p -3 1 0 o .p, Im(QR) is

0 10]

invertible, and RENAME maps the variable <v, p> to <v, Im(QR)(p)>. ("v" stands for

an arbitrary variable class and p an arbitrary point in the domain for which <v, p> is a

variable of EDGE(QR) II INTERIOR(QR).)

Let us see if there are any other choices for the allocation function...

5.4.1 Other Options

Let the desired alternative allocation function be ImS(QR)', and let Ims(QR) (p) be equal

to((QR)'.P + bs(QR)'). (Im(QR)' will be the alternative space-time map and Ims(QR)'(p)

5 	The Formal Design Method Applied to QR-Factorisation Example 	 145

will be equal to (A(QR).p + b(QR)').) If we let As(QR)' be [i 0 01 then the determinant
[o 0 i

[-i 1 2
of A(QR)' will be non-zero and so the IM' (equal to p -4 1 0 0 .p) will give rise

[0 0 1

to a space-time simulation. The resulting architecture can be seen in Figure 5.9 on page

153.

5.5 The Final Stage

Let us return to the design choice corresponding to the first allocation function, Im(QR);

with this choice, the final array will consist of twenty processors arranged in a

rectangular grid (when M = 5). The required interconnections will be made in section

5.6 on page 149. We can now, without having to make any more design choices,

construct the final space-time simulation. We rename CONTROL"(QR) to create the

edge-computation EDGE'(Qg) and we rename CONTROL ... (QR) and DATA'(QR) and

compose them to form the uniform recurrence INTERIOR'(QR) ; finally we compose

EDGE'(QR) and IITI'ERIOR'(QR) to form the final space-time simulation, IMP(QR).

EDGE'(QR) := CONTROL"(QR) ® RENAME(QR)

INTERIOR'(QR) :=

(CONTROL"(QR) (9 RENAME(Qg)) II (DATA'(QR) ® RENAME(Qg))

IMP(QR) := EDGE'(QR) II llTERIOR'(QR)

IMP(QR) is equal to:

-

0
I p in BASE(QR) 	:= cox(p + 11),

5 	The Formal Design Method Applied to QR-Factorisation Example 	 146

.ji
COY(p) := cO)7(p + I 	I),

10 1
-

cont(p) := cont(p + 01 P ,
-

r-1
ox(p) := ny(p+

[0 -11

oy(p) := cont(p)*nx(p+ ll)+cont(p)*ny(p+ ____
-21
ol),

0] 	 o]

Zox(P) := c0 (p)*zox(p +
r-

0) + 	ox(p)*ox(p),
L-'

z0y(p)
Coy(,P)*Zoy(P+

-1
0)+coy(p)*Oy(p),
-1

sin(p) z0 (p)/(z0 (p)2 + Zox(P) 2) 112,

cos(p) z0(p)/(z0y(p) 2 + z0(p)2)n,

n.x(p) := ox(p)*cos(p) + oy(p)* sin(p),

ny(p) := 	ox(p)* sin(p) - oy(p)*cos(p),

in D(QR)(2:1) => Cox(P) 	:= 1;

p in D(QR)(2:0) Cox(P) 	: 	0;

P in D(QR)(3:1) => C0y(P) 	:= 1;

P in 1 QRK3:0 Coy(P) 	0;

P 111 D(QR)(1:1) => COflt(p) 	:= 1;

[p in D(QR)(1:0) cont(p) 	:= 0. 	 J

The first three lines show the channelling of the three control signals through the

variable-classes c0,, c0 and cont. Note that the dependency vectors have now been

5 	The Formal Design Method Applied to QR-Factorisation Example 	 147

	

[

10
ii 	ol 	-1 	-i _ -21

transformed by Im(QR) from- 	o 	o to 1 	0 	i and 0
0]

 1 01 [-1] -1] 	LO 	L-' [0_ 	0

respectively. The fourth and fifth lines show the required values being loaded into the

-ii
variables <ox, p> and <oy, p>; in line four, the value of <ny, p + -1 > is loaded into

0

[-i
<ox,p> and in line fivethe value of<nx,p+i > is loaded into <oy, p> if the value

Lo

-21
of <cont, p> is 1 and the value of <ny, p + 0 > is loaded in if the value of <cont, p>

0]

is 0. Lines six and seven assign values to the variables <z 0 , p> and <z0 ,, p>. Recall

that the variable-classes z and z0 ,, were created in the data-pipelining stage to ferry

the values of ox and oy respectively from the beginning of the row. If p is at the

beginning of a row then c 0, and coy will be 0 and <z0,, p> and p> will be assigned

the values of <ox, p> and <oy, p> respectively; otherwise c and c 0 will be 1 and

<z, p> and <z0 , p> will each be assigned the value of the corresponding variable at

the previous point. In the eighth and ninth lines the values <cos, p> and <sin, p> are

calculated using the values of <z, p> and <z,, p>. In the tenth and eleventh lines, the

Givens rotation is executed and values are assigned to <nx, p> and <ny, p>. The final

six lines, grouped in pairs, correspond to the three edge-computations which deal with

the three control-variable-classes c0 , c0 ,, and cont. (That is, these lines describe the

"obstruction pattern" at the edge of the region, in the light analogy.) In each pair of

lines, the first line defines the region where the control variable has the value 1, and the

second line defines the region where the control signal is 0 (cf. the convolution

example, page 108).

Figure 5.4 and show the complete implementation, IMP(QR), with schedule lines drawn

in. As in Chapter 4, the hollow arrows represent control dependencies. Only those

corresponding to a zero signal are drawn.

5 	The Formal Design Method Applied to QR-Factorisation Example 	 148

in i:!__

• 	
t=-2

0 1
o

Co-ordinate frame: 	
Data-dependencies:

r1 	A

J 	< 	+ 01 > I 	 r 01
Lo] 	<ox,p-3p-i- 	>

Li j 	

o1011 and <oy,p-4p+ - >

Control-dependencies:
rj

<Cox, P+ 0 >

[1
and <c0y, p+ 01 	

0 LoJ L
ont,pp+ [>

1-011

Figure 5.4 JMP(QR) (horizontal cross-section: k = 1)

5 	The Formal Design Method Applied to QR-Factorisation Example 	 149

5

S.IIII
t = 2

	

Co-ordinate frame: 	 Data-dependencies:

	

k 	

1001 1i<'-+ 	
>*.... TSSS S\< 	 >
 L-'J

Y,PP+ [1-011
Figure 5.5 IMP(QR) (vertical cross-section: j = 5)

5.6 The Architecture

Figure 5.6 and Figure 5.7 show the final architecture for the design.

D
A
T
A

C
0
N
T
R
0
L

5 	The Formal Design Method Applied to QR-Factorisation Example 	 150

DATA 	 CONTROL
& 	 £ 	 £

Figure 5.6 The architecture of each processor

The Formal Design Method Applied to QR-Factorisation Example 	 151

Figure 5.7 The architecture of the complete array

D
A
T
A

C
0
N
T
R
0
L

5 	The Formal Design Method Applied to QR-Factorisation Example 	 152

DATA 	 CONTROL $

Figure 5.8 Processor for alternative design

5 	The Formal Design Method Applied to QR-Factorisation Example 	 153

Figure 5.9 Alternative architecture

5.7 Summary of chapter and further work

5.7.1 Summary

In this chapter the method was used to achieve a systolic implementation of Given's

5 	The Formal Design Method Applied to QR-Factorisation Example 	 154

algorithm for QR-factorisation. An alternative implementation was achieved by

choosing a different allocation function. Alternative ways of data-pipelining,

scheduling and control pipelining were briefly investigated.

5.7.2 Further work

It might be instructive to compare the implementations of QR-factorisation in it with

those of others (e.g. Gentleman and Kung's) and to see if the other implementations can

be achieved by the method. There is inefficiency in my implementations of QR-

factorisation: the calculation of the coefficients for the Givens rotations ("Givens

Generation") is done by every computation in INTERIOR'(QR). This is unnecessary. It

would be good if the design process could be simply modified so that this redundancy

didn't occur.

6 	Conclusions
	 155

6 Conclusions

This chapter summarises the contribution made by this thesis and suggests some

avenues which could be explored in future.

6.1 Contribution

The contribution of this thesis is as follows

6.1.1 Formalisation of concepts

The concept of a computation is defined. It is possible to express

many, if not all, algorithms as computations.

Explicit labelling of variables in computations facilitates their

composition in complex ways and enables physical as well as

abstract algorithmic structure to be captured.

The concept of simulation is formally defined.

Two key concepts in the literature on systolic array design -

recurrence equations and dependency - are clarified by formal

definition. Other important concepts are also clarified: uniformity,

affinity and conditionality.

6.1.2 The method

A design method is formulated which is simple and yet sufficiently

powerful for the high-level design of a systolic array for QR-

factorisation.

The ordering of the design steps is chosen to minimise the chance of

an impasse in the design path.

6 	Conclusions
	 156

The method has been mathematically proven, subject to the

assumption that the computations in the method are well-defined. In

Appendix H, the well-definedness assumptions required to validate

data-pipelining have been proven to hold.

6.2 Further work

Here are some suggestions for further work; ideas from previous chapters are

summarised.

6.2.1 Priority work

It would be good to have a proof, with minimal assumptions, that the computations in

the method are well-defined. (In Appendix H this is done for the well-defmedness

assumptions of Appendix D.) It might be useful to implement the method on a proof

assistant for hardware design, like LAMBDA. It would also be interesting to see

whether more efficient implementations of QR-factorisation and convolution could be

achieved using the method.

6.2.2 Analysis, extension and automation of the method

One could investigate the feasibility of the method, e.g. when is it possible to make ARs

uniform or to schedule URs?

One could also extend the method. AR to AR transformations to make the input

computation more amenable could be sought, and the class of input computations could

perhaps be extended beyond the class of computations which are the composition of an

AR with an initial control requirement; the class of output implementations could

perhaps be extended to include e.g. wavefront arrays or hypercubes. It could be

investigated whether pipelining could be made more sophisticated, using the ideas in

[Raj89], and scheduling and allocation could be modified to allow the space-time

mapping to be conditional on the output of the computations. One could adapt the

method to take fault-tolerance and optimisation into account. It would be useful to

6 	Conclusions
	 '57

extend the method down to architectural level.

The possibility could be investigated of automating the currently unautomated parts of

the method, in particular the scheduling and allocation tasks.

6.23 Theoretical foundation

It would be useful to perform a critical survey of formal design languages, with a

careful look at the relative merits of relational and functional styles, to come up with a

more satisfactory theory of input and output and to consider how the concept of a

systolic array should be defined.

6.2.4 Wider issues

Is there a connection between the design of systolic arrays and boundary value

problems? Are there analogue methods for problems which now use systolic arrays? Is

there a connection between systolic arrays and neural networks? They are all regular,

parallel architectures which have simple processing elements and local connections.

In my method the candidate "algorithms" for direct implementation by systolic arrays

are the URs. URs already have a geometry since they are embedded in Euclidean space.

It might be possible to abstract away from the class of URs their topological structure

as networks. Culik does something similar to this [Culik84, Culik85]. (It might be

possible to embed these networks in Riemannian or Spherical rather than Euclidean

space.) If this abstraction could be done it would call into question the usefulness of

abstract ARs and URs, affine scheduling and allocation, and in fact the whole

geometrical design paradigm.

6.3 In Conclusion

This thesis provides an underlying theory for formal design methods for systolic arrays,

which use "recurrence equations". The use of the theory is illustrated by a describing

such a method. The method is simple and it is hoped that, now the theory is in place,

Conclusions
	 158

the method could be considerably extended to make it more useful for the design of

practical systolic arrays.

7 	References
	 159

7 References

{Ash77} 	E.A. Ashcroft & W.W. Wadge,
LUCID: a non-procedural language with iteration,

Communications of the ACM, 20(7), 1977, PP. 5 19-529

[Birt88] 	G. Birtwhistle & P.A. Subrahmanyam,
Preface to: VLSI Specification, Verification and Synthesis, G.
Birtwhistle & P.A. Subrahmanyam (eds.), Kluwer Academic
Publishers, 1988

	

[Caspi87I 	P. Caspi, D. Pilaud, N. Halbwachs & J.R. Plaice,
LUSTRE: A declarative language for programming
synchronous systems, 14th Annual ACM Symposium of
Principles of Programming Languages, 1987, ACM, Munich

(1W. Ger.) pp. 178-188

	

[Chen9l] 	C.Y.R. Chen & M.Z. Moricz,
A Delay Distribution Methodology for the Optimal Systolic
Synthesis of Linear Recurrence Algorithms, IEEE Transactions

on Computer-Aided Design, 10(6), June 1991

	

[Cohn88I 	A. Cohn,
A Proof of Correctness of the Viper Microprocessor: The first
Level, VLSI Specification, Verification and Synthesis, G.
Birtwhistle & P.A. Subrahmanyam (eds.), Kluwer Academic
Publishers, 1988, pp. 27-71

	

[Culik841 	K. Culik & Fris,
Topological Transformations as a Tool in the Design of Systolic

Networks, Department of Computer Science, University of
Waterloo, Waterloo, Ont., U.S.A., 1984

[Culik85] 	K. Culik & Yu,
Translation of Systolic Algorithms between Systems of Different
Topology, Department of Computer Science, University of
Waterloo, Waterloo, Ont., U.S.A., 1985

	

[Dav88] 	B.S. Davie,
A Formal, Hierarchical Design and Validation Methodology for
VLSI, Ph.D. Thesis, University of Edinburgh, 1988

7 	References
	 160

[De186] 	J.-M. Delosme & I.C.F. Ipsen,
Systolic Array Synthesis: Computability & Time Cones,
Parallel Algorithms & Architectures, M. Cosnard et al. (eds.),

Elsevier Science Publishers B.V. (North Holland), 1986, pp.
295-312

[Far87] 	N. Faroughi & M. A. Shanblatt,
An Improved Systematic Method for Constructing Systolic
Arrays from Algorithms, 24th ACM/IEEE Design Automation

Conference, 1987, Paper 3.1

[Fish85] 	A.L. Fisher & H.T. Kung,
Synchronizing Large VLSI Processor Arrays, IEEE

Transactions on Computers, 34(8), 1985, pp. 734-740

[Fost801 	M.J. Foster & H.T. Kung,
Design of Special-Purpose VLSI Chips, IEEE Computer, Jan.

1980, pp. 26-40

[Gen8l] 	W.M. Gentleman & H.T. Kung,
Matrix Triangularisation by Systolic Arrays, Proceedings of the

SPIE, Real Time Signal Processing IV, 298, 1981, pp. 19-26

[GMiI83] 	G.J. Mime,
CIRCAL: A Calculus for Circuit Description, Integration, the

VLSI Journal, 1(2&3), Oct. 1983, pp. 121-160

[Golub83] 	G.H. Golub & C.F. Van Loan,
Matrix Computations, North Oxford Academic Publishing
Company Ltd., Oxford, England, 1983

[Gor88] 	M. Gordon,
HOL: A Proof Generating System for Higher-Order Logic, VLSI
Specification, Verification and Synthesis, G. Birtwhistle & P.A.
Subrahmanyam (eds.), Kluwer Academic Publishers, 1988

[Hoare85] 	C.A.R. Hoare,
Communicating Sequential Processes, Prentice-Hall, 1985

[HTKun78] H.T. Kung & C.E. Leiserson,
Systolic Arrays (for VLSI), Sparse Matrix Proceedings, 1978,
SIAM, 1979, pp. 256-282,

[HTKun82] H.T. Kung,
Why Systolic Architectures?, IEEE, Computer, 15(1), Jan. 1982,

7 	References
	 161

pp. 37-46

[Huang871 	C.-H. Huang & C. Lengauer,
The Derivation of Systolic Implementations of Programs, Acta

Informatica, 24, 1987, pp.595-632

[Hwang84] K. Hwang and F.A. Briggs,
Computer Architecture and Parallel Processing, McGraw Hill,

1984

[1b90] 	O.H. Ibarra, T. Jiang, J.H. Chang & M.A. Palis,
Systolic Algorithms for some Scheduling and Graph Problems,
Journal of VLSI Signal Processing, 1(4), 1990, pp. 307-320

John831 	S. Johnson,
Synthesis of Digital Designs from Recursion Equations, MIT
Press, 1983

[Jones87] 	G. Jones,
Programming in occam, Prentice Hall 1987

[Jones88] 	G. Jones, E.M. Goldsmith,
Programming in occam2, Prentice Hall, 1988

[Karp671 	R.M. Karp, R.E. Miller & S. Winograd,
The Organization of Computations for Uniform Recurrence
Equations, JACM, 14(3), 1967, pp.563-590

[Kunde86] 	M. Kunde, H.W. Lang, M. Schimmier, J. Schmeck, H. Schoder,
The Instruction Systolic Array and its Relation to Other Models
of Parallel Computers, Parallel Computing'85, M. Feilmeier, G.
Joubert, U. Schendel (eds.), 1986, pp. 491-497

[Lee90] 	P.-Z. Lee & Z.M. Kedem,
Mapping Nested Loop Algorithms into Multidimensional
Systolic Arrays, IEEE Transactions on Parallel and Distributed
Systems, 1, Jan. 1990, pp. 64-76

[Len90] 	C. Lengauer & J. Xue,
A Systolic Array for Pyramidal Algorithms, Laboratory for
Foundations of Computer Science, University of Edinburgh,
ECS-LFCS-90- 114,1990

[Len91] 	C. Lengauer, M. Barnett & D. G. Hudson,
Towards Systolizing Compilation, Distributed Computing, 5(1),

7 	References 	 162

1991, pp. 7-24

[LeV85] 	H. Le Verge, C. Mauras & P. Quinton,
The ALPHA Language and its Use for the Design of Systolic
Arrays, Journal of VLSI Signal Processing, 3(3), 1991, pp. 173-
182,

[Li85] 	G.J. Li & B.W. Wah,
The Design of Optima! Systolic Arrays, IEEE Transactions on
Computers, C-34(1), Jan. 1985

[Lin90] 	N. Ling & M.A. Bayoumi,
Systolic Temporal Arithmetic: A New Formalism for
Specification & Verification of Systolic Arrays, lEE
Transactions on CAD, 9(8), Aug. 1990

[Luk88a] 	W. Luk & G. Jones,
From Specification to Parametrized Architectures, Proceedings
of the International Working Conference on "The Fusion of
Hardware Design and Verification" (IFIP WG 10.2), Glasgow,
July 1988, (participants edition published by the University of
Strathclyde), pp. 263-284

[Luk88b] 	W. Luk & G. Jones,
The derivation of regular synchronous circuits, Proceedings of
the International Conference on Systolic Arrays, K. Bromley,
S.Y. Kung, & E. Swartzlander eds., IEEE Computer Society
Press, 1988, pp. 305-3 14

[Mar87] 	A.R. Martin & J.V. Tucker,
The Concurrent Assignment Representation of Synchronous
Systems, Report 8.87, Centre for Theoretical Computer Science,
The University of Leeds, January, 1987

[Mayg9l] 	E.M. Mayger & M.P. Fourman,
Integration of Formal Methods with System Design, VLSI 91
(Proceedings of the IFIP TC 101WG 10.5 on VLSI), Edinburgh,
1991

[McA92] 	A.J. McAuley,
Four State Asynchronous Architectures, IEEE Transactions on
Computers, 41(2), Feb. 1992, pp. 129-142

[McC87] 	J.V. McCanny & J.G. McWhirter,
Some Systolic Array Developments in the United Kingdom,

7 	References 	 163

Computer, 20(7), July 1987, pp.5 1-63

[McW83] 	J.G. McWhirter,
Recursive least-squares minimization using a systolic array,
Proceedings of the SPIE, Real Time Signal Processing VI, 1983,
pp. 105-110

[McW92] 	J.G. McWhirter,
Algorithmic Engineering in Adaptive Signal Processing,
Proceedings of the lEE, Vol. 139, Part F, June 1992, pp. 226-232

[Mein86] 	C. Meinel,
The Parallelization Index of Synchronous Systems, Parallel
Processing by Cellular Automata and Arrays, Sept. 1986, pp.
226-233

[O'K86] 	M.T. O'Keefe & J.A.B. Fortes,
A Comparative Study of Two Systematic Design
Methodologies, Parallel Algorithms & Architectures, M.
Cosnard et al. (eds.), Elsevier Science Publishers B.V. (North
Holland), 1986

[Quin861 	P. Quinton, B. Joinnault & P. Gachet,
A New Matrix Multiplication Systolic Array, Parallel
Algorithms & Architectures, M. Cosnard et al. (eds.), Elsevier
Science Publishers B.V. (North Holland), 1986

[Quin89] 	P. Quinton & V. Van Dongen,
The Mapping of Linear Recurrence Equations on Regular
Arrays, Journal of VLSI Signal Processing, 1(2), Kluwer
Academic Publishers, 1989, pp. 95-113

[Rao85] 	S.K. Rao,
Regular Iterative Algorithms and their Implementations on
Processor Arrays, Ph.D. Thesis, Stanford University, October
1985

[Raj86] 	S.V. Rajopadhye & P. Panangaden,
Verification of Systolic Arrays: A stream functional approach,
IEEE International Conference on Parallel Processing, 1986,
pp.773-775

[Raj89] 	S.V. Rajopadhye,
Synthesizing Systolic Arrays with Control Signals from
Recurrence Equations, Distributed Computing, 3, Springer-

7 	References 	 164

Verlag 1989, pp. 88-105

[Raj90] 	S.V. Rajopadhye,
Algebraic Transformations in Systolic Array Synthesis: A Case
Study, Formal VLSI SPecification and Synthesis: VLSI Design
Methods-1, L.J.M. Claesen (ed.), North Holland, 1990

[RMII80] 	R. Milner,
A Calculus of Communicating Systems, Lecture Notes in
Computer Science, 92, Springer Verlag, 1980

[RMi183] 	R. Milner,
Calculi for Synchrony and Asynchrony, Theoretical Computer
Science, 25(3), 1983, pp.267-310

[RM1189] 	R. Milner,
Communication and Concurrency, Prentice Hall, 1989

[Rob84] 	J.B.G. Roberts, P. Simpson, B.C. Merrifield and J.F. Cross,
Signal Processing Applications of Distributed Array Processors,
fEE Proceedings, Vol. 131, Part F, No. 6, Oct. 1984, pp. 603-
609

[Roy89] 	V.P. Roychowdhury & T. Kailath,
Subspace Scheduling and Parallel Implementation of Non-
Systolic Regular Iterative Algorithms, Journal of VLSI Signal
Processing, 1(2), Kluwer Academic Publishers, 1989, pp. 127-
142

[Shang89] 	W. Shang & J.A.B. Fortes,
On the Optimality of Linear Schedules, Journal of VLSI Signal
Processing, 1(3), Kluwer Academic Publishers, 1989, pp. 209-
220

[She84] 	M. Sheeran,
pFP, a language for VLSI Design, Proceedings of the ACM
Symposium on LISP and Functional Programming, 1984,
pp. 104-112

[She86} 	M. Sheeran,
Describing and Reasoning about Circuits using Relations,
Proceedings of The Leeds Workshop on Theoretical Aspects of
VLSI Design 1986, (was to be published in the CUP)

[She88a] 	M. Sheeran,

7 	References 	 165

Describing Hardware Algorithms in Ruby, Proceedings of the
Workshop on Concepts and Characteristics of Declarative
Systems (IFIP WG1O.1), Budapest, 1988

[She88b] 	M. Sheeran,
Retiming and Slowdown in Ruby, Proceedings of the
International Working Conference on "The Fusion of Hardware
Design and Verification" (IFIP WG 10.2), Glasgow, July 1988,
(participants edition published by the University of Strathclyde),
pp. 285-304

[SYKun88] S.Y. Kung, 1988,
VLSI Array Processors, Prentice Hall, 1988

[Teich9l] 	J. Teich & L. Thiele,
Control Generation in the Design of Processor Arrays, Journal
of VLSI Signal Processing, 3(1/2), 1991, pp.77-92

[Tensi88] 	T.Tensi,
Worst Case Analysis for Reducing Algorithms on Instruction
Systolic Arrays with Simple Instruction Sets, Parallel
Processing by Cellular Automata and Arrays, 1988, pp. 347-352

[U1184] 	J.D. Ullman,
Computational Aspects of VLSI, Computer Science Press, 1984

[VanSw9l] M. Van Swaaij, J. Rosseel, F. Catthoor, H. De Man,
Synthesis of ASIC Regular Arrays for Real-Time Image
Processing Systems, Journal of VLSI Signal Processing, 3 (3),
1991, pp. 183-192

[Wadge85] W.W. Wadge & E.A. Ashcroft,
LUCID, the Data-flow Programming Language, London
Academic Press, 1985

[Wat82] 	D.S. Watkins
Understanding the QR Algorithm, SIAM Review, 24(4), Oct.
1982

[Wex89] 	J. Wexler,
Concurrent Programming in occam2, Ellis Horwood, 1989

[Xue90] 	J. Xue & C. Lengauer,
On the Description & Development of One-Dimensional
Systolic Arrays, Laboratory for Foundations of Computer

7 	References 	 166

Science, University of Edinburgh, ECS-LFCS-90-1 16, 1990

{Yaa881 	Y. Yaacoby & P.R. Cappello,
Converting Affine Recurrence Equations to Quasi-Uniform
Recurrence Equations, AWOC 1988: 3rd International
Workshop on Parallel Computation and VLSI Theory, Springer,

Berlin Heidelberg New York Tokyo

[Yaa89] 	Y. Yaacoby & P.R. Cappello,
Scheduling a System of Nonsingular Affine Recurrence
Equations onto a Processor Array, Journal of VLSI Signal
Processing, 1(2), 1991, pp. 183-192

8 	Appendices 	 167

Appendix A: Overview of Appendices

These appendices contain the proof that, subject to assumptions about the well-

defmedness of the computations handled and created, the design method will produce

only designs which meet their specifications. Appendix B and Appendix C contain

basic results which are used by the other appendices. Appendix D, Appendix E,

Appendix F contain propositions relating to the data-pipelining, control-pipelining and

schedule-and-allocation transformations respectively, the principle results being that, if

certain conditions hold, the output of each transformation simulates the input to the

transformation. Appendix G contains three theorems which state that the output to the

method satisfies the specification, if certain conditions hold; the theorems are proved

using the main results of Appendix D, Appendix E, and Appendix F. Appendix H

contains the proofs of the assumptions made in Appendix D that certain computations

are well-defined.

The following three pages show how the proofs of the theorems and lemmas in each

appendix use other theorems and lemmas. The key lemmas and theorems of each

appendix are written white-on-black. A small black blob on an intersection of lines

indicates the forking of an arrow.

8 	Appendices

Q Q (1~) S L5 Qx,o

L7

App.A
	

L9
	

Lii) 	(L12

L13

:L D14 J' 	\/@Y CLI

from
T38 	

L18
	

19

App.B
from
L42

L23)\ 	(L24

T44

App.0 T

L29
//,,, "

(tI
L34 	L31

from
L45

I from T22
from T5 	from Tl3 	from T12 from T15 from L21 I& L40

Figure 6.1 Appendices A to C

8 	Appendices
	 169

to L2
	 to L33 & L34 	

toT2,L22,
L2, L27 & L3

T6) (T7) (T8) (T9) MO) (Til

to L21

App.E 	 (iD

to L21 	 to L21 toT4&L27 	&L26

(i 	T17 T18 40 T21

I 	T19 	L36

L40

T23 	T24 	L37

App.F
T28 	L38 	T26 	L39 	T22 	T30 	T32

T29 	T25

T31 	 T33 	734

T37
T35

T36

Figure 6.2 Appendices D to F

8 	Appendices 	 170

	

to L4 I 	 to to L6
& L25 &L17

L42

23 (ED 	148 149 L50 L5 1

	

App.G L45
	L46 	LA7 	T39

T38 	T43
T41 	 T44

T46 	 T45

Figure 63 Appendix G

8 	Appendices 	 171

Appendix B: Basic Propositions I

In this section are proved some basic properties of sets, functions and computations

which will be used later.

Lemma 1 "Commutativitv of Composition"

If A H B is well-defined then so is B II A and A H B = B II A

Trivial from definition of "II"

Lemma 2 "Associativity of Composition"

If (A II B), (B II C), (A II B) II C and A II (B II C) are well-defined, then

(All B) 11 C=All (B 11

Trivial from definition of "II"

Lemma 3 "Generalised Associativity of Composition"

If ("i E I .k-1} A1), (lijE Uic} A1)and AkIl (ll 	A1) are well-defined,

then

8 	Appendices 	 172

Ak U (Ili € (1...k-l} A1) = Ili € 	A1

Proof

Trivial from definition of "II".

Lemma 4

If C is a computation and R is 1-to-1, then C ® R is well-defined.

Proof

Obviously Out(C ® R) and In(C ® R) are well-defined (see page 45). We

therefore simply need to prove that Rel(C ® R) corresponds to a functional on

valuations on In(C ® R). i.e. that

For all v, V' 'In(C®R) = V 'In(C®R) => V' 'Out(C®R) = VI() ij (C®R) 	(i)

and

For all valuations vin on In(C ® R),

there exists vout s.t. Rel(C ® R)(vth U v) 	(ii)

Proof of (i)

Assume Rel(C ® R)v and Rel(C ® R)v'. By the definition of Rel(C ® R), we

know that Rel(C)v'R and Rel(C)v'R.

Assume further that

8 	Appendices 	 173

V'I(COR) = VI(C®R)

so that

v'Rl(Q 	= vRI(Q

This implies, by the fact that Rel(C) corresponds to a valuation on In(C), that

v'RI(Q 	= vRI(

which implies that

V 'Out(C ® R) = V 'Out(C ® R)

Proof of (ii)

Let v"equal vjR. Then there exists Vt" s.t. Rel(C) (vin" U Vt") so

Rel(C (V R)((vth" U v")'R) = Rel(C ® R)vj U (v' "R't(c ®

So let vout equal vt"R4

Lemma 5

Let C be a computation. Every valuation v on In0, where In0 c In(C) can be

extended to v' on Vars(C) for which Rel(C)v' holds.

Extend v arbitrarily to v" on In(C). Let v' be v" U v" where Fun(C)v" = v"

Lemma 6

ran(RIs u T) = ran(RIs) U ran(RIT)

Lemma 7

8 	Appendices 	 174

If (A' II B), (A' II B) \Varset, (A' \Varset) and (A' \Varset) II B are well-defmed

and if Vars(B) n Varset =0 then

(A' II B)\Varset = (A'\Varset) II B

Proof

Out((A' II B)\Varset) = Out(A' H B) - Varset

= Out(A') u Out(B) - Varset

= (Out(A') - Varset) u Out(B)

by the fact that Vars(B) n Varset =0
= Out((A'\Varset) II B)

In((A' II B)\Varset) = (In(A') u In(B) - Out(A' II B)) - Varset

= (In(A') u In(B) - Out(A') u Out(B)) - Varset

= (Jn(A') - Out(A')) U (In(B) - Out(A'))

u (In(A') - Out(B)) u (In(B) - Out(B))

- Varset

= ((In(A') - Varset) - (Out(A') - Varset))

u ((In(B) - Varset) - (Out(A') - Varset))

u ((In(A') - Varset) - (Out(B) - Varset))

u ((In(B) - Varset) - (Out(B) - Varset))

= ((In(A') - Varset) - (Out(A') - Varset))

u (In(B) - (Out(A') - Varset))

U ((In(A') - Varset) - Out(B))

u (Jn(B) - Out(B))

by the fact that Vars(B) n Varset =0
= In((A'\Varset) II B)

Rel((A' II B) \Varset)v

8 	Appendices 	 175

for all v', Rel(A' II B)v'

(v' 'In(A' II B) - Varset = VIJn(A' II B) - Varset

V 'Out(A' II B) - Varset = VIO.jt(A' II B) - varset)

for all v', (Re1(A')v'I V (A') and Re1(B)v'I, ar))

(v' I J(A' II B) - Varset = VIfl(A' II B) - Varset

=

V 1Out(A' II B) - Varset = VI()(A' II B) - Varset)

by definition of Rel(A' II B)

and

Rel((A'\Varset) II B)v

Re1(B)vIVB) and Re1(A\Varset)vIV(A\V)

by definition

So it is sufficient to prove that the re-written versions of Rel((A' II B) \

Varset)v and Rel((A'\Varset) II B)v are equivalent, i.e. that

(for all v', (Rel(A')v'I V (A') and Re1(B)v'I V .))

(v' I In(A' II B) - Varset = VIfl(A' II B) - Varset

' 'Out(A' II B) - Varset = VIo(A' II B) - Varset))

Re1(B)vIVB) and Re 1(A'\Varset)vIV(A\V))

Let us prove the implication "=." and then the implication

We will assume the L.H.S. of the implication and attempt to prove the R.H.S.

Choose v' s.t.

8 	Appendices 	 176

VI(A' II B) = VIjfl(A' II B) and Rel(A' II B)v'

(This is possible, by Lemma 5.)

Then, by L.H.S., V 10ut(A' II B) - Varset = VI().jt(A' II B) - Vt which implies that

V 'Vars(A' II B) - Varset = VIV(A' II B) - Varset

so

V'Iv(B) = VIv(B)

since Vars(B) n Varset = 0. So Rel(B)vIV) holds. We now need to prove

that Re1(A\Varset)vIV(A\Vt) i.e. that

for all v", Rel(A')v"

V"I(A') - Varset 	= VI(A') - Varset

V"It(A') - Varset 	= VIojt(A') - Varset

Take an arbitrary v" s.t. Rel(A')v" and

V' "In(A') - Varset 	= VIJji(A') - Varset

We just need to prove that

V"Ijt(A') - Varset 	= V)ijt(A') - Varset

Extend v" to v" on Vars(A' 11 B) s.t. Rel(A' II B)v" and

V"I(A' II B) - Varset = VIJfl(A' II B)- Varset

Is this possible? Yes: let v" be s.t.

V IJn(A' II B) - Varset = VIfl(A' IIB) - Varset

and

,,,, I V 'k(A') ri Varset 	- - VI(A') r Varset

dom(v") = In(A' II B) so by Lemma 5 it can be extended to v" s.t. Rel(A' II

B)v" holds.

Then, by the L.H.S.,

V"I()(A' IIB) - Varset = VI1Jjt(A II B) - Varset

which implies that

8 	Appendices 	 177

V ... Iijt(A') - Varset 	= "Out(A') - Varset

But

V'Io.j(A) - Varset 	= V"IOijt(A') - Varset

so

VI.jt() - Varset 	= VIOajt(A') - Varset

Q.E.D.

We will assume the R.H.S. and attempt to prove the L.H.S.

So assume that

Rel(B)vIV)

holds and also that

Rel(AWarset)vIV(A\V)

holds, i.e. that

for all v' Rel(A')v' =>

	

(v'IJn(A') - Varset 	= VIk(A') - Varset

	

- Varset 	= vI()(A') - Varset)

Furthermore assume that

Rel(A')v' "Vars(A')

and

Rel(B)v' "Vars(B)

and

V"I(A' II B) - Varset 	= VI(A' II B) - Varset

hold, where v" is an arbitrary valuation on Vars(A' II B).

We want to prove that

VIt(A' II B) - Varset = VIO.(A' II B) - Varset

We know, S1flCC V'Ib(A') - Varset = vIJn(A') - Varset' that

8 	Appendices
	 178

V "Out(A') - Varset 	=4Out(A') - Varset

Also

	

V" IIfl(B) 	= VIIfl(B)

and

Rel(B)vIVB) and Rel(B)vIVB)

so

V"I t(B) = VIO(B)

So we have the desired result.

Lemma 8

ran(RIs.T) 	ç ran(R15)

Lemma 9

	

ran(RIs..T) 	2 ran(RI) - ran(RIT)

Lemma 10

ran(R) U Si) = U ran(RI-)

	

i E I 	jEl

Lemma 11

	

ran(RIS.T) 	= ran(RI5) - ran(RIT) 	 if R is 1-to-1

Lemma 12

8 	Appendices 	 179

L) (S 1 -T1) 	
i
u Si

i€I 	 €I

Lemma 13

•

U (Si(S - Ti)T1) 	u Si - 	T
1€! 	 €I 	i E I

Lemma 14

S-T-U = S-UifTU

Lemma 15

ScT => S-UcT-U

Lemma 16

AuB -(B -A)=A

Lemma 17

S 9 T => ran(Rls) c ran(RIT)

Proofs

Easy

8 	Appendices 	 180

Appendix C: Basic Propositions II

The key results in this appendix are Lemma 21, Lemma 22 and Lemma 27. Lemma 21

states that renaming distributes over composition.Lemma 22 states that (providing

certain conditions hold) if A' simulates A then A' II B simulates All B. Lemma 27 states

that if A simulates B and B simulates C then A simulates C, and gives the relationship

between the parameter pairs of the simulations. These two propositions play an

important role in the proofs of the later results which state that the transformations of

the method preserve behaviour. The other propositions in this section are required for

the proofs of the key results.

Lemma 18

For all i in I, let C1 be a computation. If "i E I Ci is well-defined and dom(R) =

Vars(ll1 E 1C1), then

ran(R)(LJ In(C1) - Out(" € I CO - Out((ll1 € I C) ® R)
i€I

= ran(R)(U In(Cj))) - OUt((IIi € I CO ® R)
1€'

Proof

C

by Lemma 8 and Lemma 15

by Lemma 9 and Lemma 14

Comment: this lemma, and the following two, are used in the proof of Lemma

21. The proof uses the fact that

8 	Appendices 	 181

Out((111 € i CI) ® R) = RIo1(€ I) C"i)

Lemma 19

For all i in I, let C1 be a computation. If "i € IC 1 is well-defined and dom(R) =

U Vars(Cj), then
jE I

U ran(RI(1)) - 	ran(RI())
i E I 	 1€!

= U (ran(RIJ()) - ran(RI())) - U ran(RI(C))
iEI 	 i E I

Proof

C

by Lemma 14 and Lemma 13

by Lemma 12

Lemma 20

Assume that dom(v) = ran(R); then

Re1(A)((vR)Iv(A)) 	Rel(A ® RIV(A))vIV(A ® R)Vars(A))

Now, using the definition of renaming on page 45 and the fact that

8 	Appendices 	 182

Vars(A ® RIV(A)) = ran(RIV(A))

Rel(A ® RIV(A))VIV I.S(A (9 R)Vars(A))

Rel(A)(vtr)v(A))RIV&s(A))

so we just need to show that

(vR)IV(A) = VI rfl()/(A))RIV3J5(A)

This is obviously true if both sides are well-defined and have the same domain.

The L.H.S. is well-defined, since ran(R) = dom(v). The R.H.S. is also well-

defined, since ran(RIv(A)) = dorn(vIpJV(A))). The domain of the L.H.S.

= (dom(R) n Vars(A)) = the domain of the R.H.S.

Lemma 21

If (Ili € 1C) ® R is well-defined and, for all i, Cj ® RIv(j) is well-defined,

then

(IIi € I C1) ® R = "i € I (C1 ® RIv(j))

Out((II € I C) ® R)

= ran(R)(Out(11 1 € i

by definition of renaming

= ran(R)(U Out(Cj)))
jE I

by definition of composition

8 	Appendices
	 183

= U ran(RI(1))
jE I

by Lemma 10

= U Out(C1 OR)
jE I

by definition of renaming

= Out(111 € I (CI ® R))

In((II1 € I C)® R) = ran(R) In(111 € I Cj)) - Out((D 1 € I C) (D R)

by definition of renaming

= ranR)(U In(j) - Out(111 € I C1))) - Out((II € I C) ® R)
iE I

by definition of composition

= ran(R)(•1_) In(Cj))) - Out((111 € 1C 1) ® R)
1€'

by Lemma 18

= U ran(RI()) - Out((111 € I C) ® R)

by Lemma 10

= U ran(RI()) - .0 ran(RI(I))

	

i€I 	 1€!

by definitions of renaming and composition

= i"I (ran(RIJfl(Cl)) - ran(RIct(c..)))

- U ran(RI(1))
jE I

by Lemma 19

= iI In(Cj ® RIy(1))
- I

I Out(C ® RIv(j))

	

= In(II 	(C1 ® R))

by definition of composition.

Now to prove the equivalence of Rel((111 € i C) ® R)v and Rel(111 € i C1 ®

RIv(1)):

8 	Appendices 	 184

Let v be a valuation on ran(R); then

Rel((111 € I C) ® R)v 	Rel(111 € I Cj) (vR)

by definition of renaming

(For all i in I, Rel(Cj)((vR)IV(C.)))

by definition of composition

c Rel(111 E j Cj ® RIv(j))

byLemma 20 and definition of composition

Lemma 22

If A' II B is well-defined

and A II B is well-defined

and (A' II B)\Varset is well-defined

and (A'\Varset) II B is well-defined

and Vars(B) n Varset = 0
and A' simulates A w.r.t. <Varset, R1>

and R1IV(B) fl Vars(A"\Varset) 9 Id(B

then if R2 is s.t.

dom(R2) = Vars(A) U Vars(B)

and R2IV(A\V&set) = R1

and R2Iy(B) = Id Vars(B)

then A' 11 B simulates A 11 B w.r.t. <Varset, R2>

8 	Appendices 	 185

Proof

(A'[[B)\Varset = (A\Varset) II B 	by Lemma 7, so

(A' II B)\Varset ® R2 = ((A'\Varset) II B) ® R2

= (A'\Varset ® R2Iv(A'\v t)) II (B ® R2IVa))

by Lemma 4

MEMM

Lemma 23

Assume that R is invertible (i.e. 1-to-1) with dom(R) equal to Vars(C) and that

(C ® R)\Varset and (C\Varset') are well-defined, where

Varset' 	= ran(R'Iv)

then

(C 0 R)\Varset = (C\Varset') ® (RI, 	- vt')

Out(C ® R \ Varset) = Out(C ® R) - Varset

= ran(RI(c)) - Varset

by definition of renaming

= ran(RlQ) - ran(RIvt')

= ran(RIç>c) - vt') 	by Lemma 11

= ran((RIv(Q - varset') 1out(c) - varset')

= Out((C\Varset') ® (Rh5t- - vt'))

In(C ® R\Varset) = In(C ® R) - Varset

= ran(RI(Q) - Varset

8 	Appendices 	 186

(Since R is 1-to-1 we do not need to subtract Out(C ® R))

= ran(RiJ(Q) - ran(Rlvt')

= ran(Rij(Q - varset') 	 by Lemma ii

= ran((Riv(Q - Vt')'Tn(C) - varset')

= 	((CVarset') ® (Ri 	- vt'))

Rel(C OR \ Varset)v

For all v', Rel(C ® R)v'

(v'i In((C ® R)\Varset) 	= vi In((C ® R)\Varset)

=
v'i Out((C ® R)\Varset) 	= vi ()t((C ® R)\Varset))

by definition of hiding

<' 	For all v', Rel(C)(v"R)

(v'I Jn((C ® R)\Varset) 	= vi !n((C ® R)\Varset)

v'i Out((C ® R)\Varset) 	= vi Out((C ® R)\Varset))

by definition of renaming

< 	For all v", Rel(C)(v") =

(v" OR- ')l ran(R)Jn(C) - Varset') 	= vi ran(R)In(C) - Varset')

(v"R 1)1 ran(RjJOut(C) - Varset') 	= vi ran(R)Out(C) - Varset')

(We are setting v" equal to V.R. We can then write v' as v".R 4 since R is 1-

to-i.)

For all v", Rel(C)(v")

V' 'I(Q - Varset' = v(RI1(Q - varset')

=
v"it(Q - Vt' = v(Rit(Q - vt')

8 	Appendices
	

187

Re1(CVarset') ® RIc - Varset' 	

by definition of hiding

Lemma 24

C\Varset is well-defined

for all v and v", (Rel(C)v and Rel(C)v") =

(vI(Q..V t 	= 	 Varset

- Varset 	= "Out(C) - varset)

C\Varset is well-defined '

Fun(C\Varset) is a well-defined function

Hence it is sufficient to prove that

for all vin on In(C) - Varset, there exists vout on Out(C) - Varset s.t.

(Rel(C'.Varset) v1 U vout

and

for all valuations vin ' on In(C) - Varset and v' on Out(C) - Varset,

(Rel(CVarset) vin' U Vt' =

(vin' = Vin 	'

v' = v))

is equivalent to

for all v and v", (Rel(C)v and Rel(C)v") =

(vI(Q - Varset 	= V"I(Q - Varset

8 	Appendices
	 188

	

- Varset 	= V' "Out(C) - Varset)

We will prove "=" and then

Assume the L.H.S. is true, that Rel(C)v and Rel(C)v" hold and that

	

VIk(Q..vt 	= 	 VarseA

It is sufficient to prove that

	

VIit(Q - Varset 	= 	 - varset)

Let vin equal VIJ(Q - vt: then Rel(CVarset)vIV(V t holds, so

vI(>(Q - Varset = V0

(letting vin' equal VlJ(Q - vst and v' equal VI().dt(Q - vt in the L.H.S.)

By a similar argument,

V' "Out(Q - Varset = 'out

so

VI(C) - Varset 	= V"I(>t(O - Varset

Assume the R.H.S. is true, and consider an arbitrary valuation vi n on In(C) -

Varset. By Lemma 5 there exists v s.t.

	

- Varset 	= Vjll

and

Rel(C)v holds

8 	Appendices 	 189

Let Vt equal vlC,>(- Vt• Firstly we will prove that Rel(C\Varset)v m U vout

holds. Let v" be s.t.

Rel(C)v"

and

V' "Jn(Q - Varset = VI(0 - Varset = V10

then by assumption of the R.H.S.,

V"I()ijt(Q - Varset = vI(>1(Q Varset

so we know that Rel(C\Varset)vIV(Q
- vart holds. But

VIV(Q - Vt = Vj U vt so we have the desired result.

We now just need to prove that, for arbitrary valuations vi n ' on In(C) - Varset

and vt' on Out(C) - Varset,

(Re1(C'Varset) vin' U vt' =' (vi n' = vin =' Vt' = v))

So let us assume that Rel(C\Varset)(vj' U v') holds, that vin ' equals vin . By

Lemma 5, we may extend vj' to v' s.t. Rel(C)v' holds. Then

v'I01r - 	= vt' 	 (from the definition of Rel(C\Varset),

since Rel(C\Varset)v m ' U v' holds)

vt' = v' It(- Vt

= vIr - Varset

by R.H.S. (setting v" equal to v')

= vI 	- Vamt

= Vt

and so the L.H.S. is true.

8 	Appendices
	

190

Lemma 25

If C\V1 and (CV1)\V2 are well-defined then C(V1 U V2) is well-defined and

(C\V 1)\V2 = C(V1 u V2)

Proof

Out((C\V1)\V2) = Out(C) - V1 - V2 = Out(C) - (V1 u V2)

= Out(C\(V1 U Va))

In((C\V1)\V2) 	= In(C)-V1-V2 = In(C)-(V1uV2)

= In(Cs(V1uV2))

We therefore simply need to prove that, for all valuations v on Vars(C) - (V1 U

V2),

Rel((C\V 1)\V2)v Rel(C(V U

This equivalence will imply that C'(V1 U V2) is well-defined, since (C\V1)\V2

is. We will prove "=>' and then

Let us assume the R.H.S., i.e. that, for all v',

Rel(C)v'

(v'I (V1) Vs*2
	

= vi !n(OV'*1) Vs*2

v"I Out(CV"1) -V'.2
	= Vit(V1).Vs)

But

8 	Appendices
	 191

In((C\V1)\V2) 	= In(C'(V1 U Va))

and

Out((C\V1)\V2) = Out(C'(V1 u V2))

so this is the same as saying that, for all v',

Rel(C)v' ='

(v'I In(C) - V'i1 U V'2
	

= vIj Q-V't1uV*2

v'I Out(C) - V** I U V'2
	

= V1Ot(V..*1UVsi2)

In order to prove this, let us assume that Rel(C\V1)v' i.e. that for all v",

Rel(C)v"

(v 'In(C)-V'l

'''I
V 'Out(C)-V'4

=

= V'It(Q..V..&1)

and also that

V'I(VlUV2 	= VIIn(Q..V,i1V2

It will be sufficient to prove

V'It(VlUV*2 	= VIt(QV1uVs2

By Lemma 5, we may extend v'I Jn(C) - vi u V2 to a valuation v" on

Vars(C) s.t. Rel(C)v" holds; and now

V I(QV1Vsj2 	= VI(Q..Vs1uVs*2

= VI(QVluV2

8 	Appendices
	

192

v l Out(C) - V1 u V'4 = vi Out(C) - V1 u V2

by assumed R.H.S.

but also

Vl)i(Q..\1sid 	= VI() jt(Q..V1

by assumption that Rel(C\V1)v' holds

V'It(C) - V-- 1 u V'*2 = v i Out(C) - V- I u V'2

= Vit(Q - V.1 Li V*2

which is what we were aiming to prove.

Assume the L.H.S., i.e. (in doubly expanded form) that

for all v',

(for all v", Rel(C)v" =

=

v"I out(c) - V.- I
	=

=

(v'l !n(C) - V4 u V'2
	= Vi(V1V2

v'l Out(C) - V'il u V'2
	=

We want to prove the R.H.S. To do this we will assume Rel(C)v" holds and

that

(v"I(Q - V"l u V'*2 = vlh(Q - V'*l uV'*2

and prove that

8 	Appendices 	 193

V ... it(Q - V''l V"2 = vi ot(c) - V"l V'4)

Since C\V1 is well-defined and Rel(C)v" holds, we may deduce from Lemma

24 (with v' specialized to v") that

for all v, Rel(C)v

((vi !n(C) - Vs*1 	= 	'In(C) - V1

,I A Out(C) - V'l 	= V 'Out(C) - V'. 0)

which is the L.H.S. of the first hypothesis with v" replaced by v and v"

replaced by v". (Note that v here is a dummy variable and does not necessarily

equal the other v.) Therefore we may deduce that

(v ... i !n(C) - V''1 u V2 	= vi In(C) - V1 u V'*2

V"ftt(Q - Vsl U V't2 = 	- V'*1 uV2)

The hypothesis of this statement is true, so the conclusion is.

Lemma 26

C ® R(i)® R(2) = C ® (R(2)'R(l))

(assuming that dom(R(2)) = ran(R(l)) and dom(R(1)) = Vars(C))

The proof uses repeated application of the definition of renaming.

Out(C ® R(1)0 R(2)) = ran(R(2)i4(C ® R'a(l)))

= ran(R(2)lran(Ri)i))

= ran(R(2)R(l)IC))

8 	Appendices 	 194

= Out(C ® (R(2)R(1)))

In(C ® R(1)0 R(2)) = ran(R(2)I(C ® Ri(1))) - ran(R(2)I0t(C ®

= ran(R(2)Ir 	'&(l))In(C)) - ran(R'*(1))Out(C)))

- ran(R(2)I(C ® R--(I)))

= ran(R(2)Ir(..i(l))T(C)) - ran(R'*(1))0ut(C)))

- ran(R(2)Ir(l))t(C)))

= ran(R(2)I ran((1),JT(Q)

- ran(R(2)Ir(p.&(l))Q.j(c)))

by Lemma 8, Lemma 9, Lemma 14 and Lemma 15

= ran(R(2)R(l)I(C)) - ran(R(2)'R(1)I0. Q)

= In(C®R(2)R(1))

Rel(C CO) R(1)(9 R(2))v 	Rel(C ® R(1))vR(2)

Rel(C)(vR(2))R(1)

Rel(C)v(R(2)-R(1))

' Rel(C ®(R(2)R(l)))v

Lemma 27

A simulates B wx.t. <V, R>

and B simulates C w.r.t. <VBC, RBC>

A simulates C,

w.rt. <Vars(A) - VAB U VBC', RBc(RIvM u (VBC)')>

Proof

Assume the L.H.S. Then we know that A\VAB and B\VBC are well-defined and

8 	Appendices 	 195

A\VAB (9) RAB = B

and B\VBC®RBC = C

so

C = (((A\V) ® R J B)\VBC)® RBC

= (A\V\VBC') ® 	 - VAB - (V---BC)') ® RBC

where VBC' = RAB'IVBC, by Lemma 23 with C in

Lemma 23 equal to A\VAB and Varset' equal to VBC'.

= (A\VAB U VBC') ® RBCRABIV3rS(A) - (V*ABu(V*BC)'))

by Lemma 25 andLemma 26

so A simulates C w.r.t. <Vars(A) - (V J UVBC'), RBCRJUIV(A) -

(V*ABu(V*BC)'),>

8 	Appendices 	 196

Appendix D: Propositions relating to data-pipelining

The important result of this section is Theorem 4, which states that under certain

conditions data-pipelining preserves behaviour. Theorem 1 and Theorem 2 are also key.

The former states that data-pipelining is valid if certain conditions are fulfilled; the

latter states that under certain conditions the pipelining of each data-dependency is

valid, which is one of the conditions of Theorem 1. The other propositions of the section

support the main ones, apart from Theorem 3, which states that there is only one way

to pipeline two of the dependencies in the QR-factorisation example (see subsection

5.1.1 on page 134).

The definitions and assumptions made at the start of the previous appendices are

assumed to hold for this one. The following ones also hold:

Definitions

DATA is an affine recurrence with mould DATA_M(1) over base BASE. Let its

set of dependency vectors relative to this mould and BASE be { <a 1 , As>: 1 < i

< n}.

CONTROL is an embedded computation defined as follows

In(CONTROL) 	= 0
Out(CONTROL) 	= {<c1, p> : p € BASE}

Rel(CONTROL)v

For allp in BASE,

(p € BASE(1 :0) 	v(<c 1 , p>) =0 and

p € BASE(1 : 1) => v(<c1, p>) = 1)

where {BASE(1 :0)' BASE(1: 1)1 is a partition of BASE

8 	Appendices
	 197

CONTROL(1) := CONTROL

Let RDP(1) be defined on Vars(DATA M(1..1)) as follows:

R_DP(1)(<aj, As>) 	:= <z, IdBASE>

and for all <a', A'> not equal to <a1, A1>,

R_DP(1)(.<a',A'>) 	:=

Let r1 be chosen to satisfy the aforementioned assumption in which it appears.

Let DATA() be defined for each i in { 1...n} recursively as follows:

DATA(j) 	:= DATA

If i € {2...n}, DATA(1) is the recurrence with mould

DATA_Ml) ® R_DP II PIPE—M(i)

over base BASE

where DATA—M(1-1) is such that

DATAl) = fipE BASE DATA_Ml) ® R_DATAi : p)

where

R...DATA(..l : p)(<'C, fUll>) = <vc, fun(p)>

for all <vc, fun> in Vars(DATA_M1))

and PIPE—M(1) is defined to be s.t.

In(PI1PE_M(1)) 	= { <ci, IdBASE>, <zig j) 3 p+r1>, <aj, IdBE> }

Out(PIPE_M(1)) = { <zj, IdBASE> }

Rel(PIPE_M())v

8 	Appendices 	 198

v(<z1, IdBASE>) = v(<cj, IdBE>)*v(<zi, p —* p+rj>)

+ (<Cj, IdBASE>)*v(<ai, IdBASE>)

Varset(1) := {<zj, p+r1> : p E BASE) U {<z1 , p>: p € BASE)

u{<cj,p>:p€ BASE)

U {<a1, p>: p € BASE and <aj, p> In(DATAl))}

when 1 <i < n

R(1) 	 Idv s((COflOL*(j) II DATA(i))\Varser(i))

when 1 <i < n

For i in {2...n}, CONTROL(1) is defined to be s.t.

In(CONTROL(1)) 	=

Out(CONTROL(1)) = {<c, p>: p € BASE)

Rel(CONTROL(1))v

For all p in BASE, (v(<c1, p>) = 1 <> p * Aj(p)) and (v(<zc1, p>) = 0 p =

Li(p))

CONTROL' 	Ili E (l}CONTROL()

DATA' 	:= DATA()

1
BASE(QR) := { j I k E {1...M-1),jE {k ... M} and i€ {k+1 ... MI)

k

100
A':= 001

10011

8 	Appendices 	 199

Assumptions

For all i, there exists r 1 s.t. for all p in BASE, there exist S and N s.t.

{s: s = 	- M*r1 where m € Integer and O< m <N} 	= Cosetj(p)

where

Cosetj(p) = Is : s € Base and (s) = A(p) } 	 (iii)

This assumption is used on page 214 in the proof of Theorem 2.

The following are well-defined

DATA_M() for iin {1...n}

DATA() for i in 11 .. .n }

CONTROL(1) for i in 11 .. .n)

CONTROL(1) II DATA for i in 11 .. .n }

llj E {l ... i 1 COT1OL(j) 	 when 1 <i < n

Varse¼l) fl Vars(11j € Ii ... i }CONTROL(j)) = 0 	when 1 <i < n

('!j € (ii..!)CONTROL(j)) II (CONTROL(1) II DATA<0),

((Ili € 11 ... i-I }CONTROL(J)) II (CONTROL(1) II DATA()))\Varset(I),

(CONTROL(1) II DATA(1))\Varset(),

(j € (ii..! JCONTROL(j)) II ((CONTROL(1) II DATA(l))\Varsek))

when 1 <i < n

(IIi € (! ... JCONTROL(J)) II DATA(o) 	 when 1 <i < n

Lemma 28

8 	Appendices 	 200

If Cl' simulates C1 w.r.t. <Varset, R>

and R = Idv(1vt)

and Vars(B) n Varset =0

and Cl' II C2 is well-defined

and Cl II C2 is well-defined

and (C1' II C2)\Varset is well-defined

and (C1'\Varset) II C2 is well-defined

then Cl' II C2 simulates C1 II C2

Proof

Since

R = Idv(çv\v t)

obviously

RIv(2) fl Vars(C'*1\Varset) c 'dVars(C2) and the hypotheses are satisfied

for Lemma 22 with R 1 = R, and R2 defined appropriately.

Theorem 1

Let n be a positive integer; if, for all i s.t. 1 <i < n, CONTROL(1) II DATA

simulates DATA !) w.r.t. <Varset(1), R()> then

CONTROL' II DATA' simulates CONTROL II DATA

Proof

8 	Appendices 	 201

..by induction on n

Base case

The theorem is trivially true when n= 1.

Inductive case

Assume the theorem is true when n = N- 1, and assume the hypotheses of the

theorem for n = N.

From the hypotheses of the theorem for n = N, we have that CONTROLM II

DATA is well-defined and simulates DATA l) w.r.t. <Varset, R>;

so, by Lemma 28,

("i € f 1 ... N-1)CONTROL()) II (CONTROL II DATA)

simulates

(11i E {l ... N.l}C0NTR01 (i)) II DATAi

by the fact that these two computations are well-defined,

R 	= IdV(COOL* 	II DATA---M)

VarsetM r Vars(IIj € {l ... Nl}CONTROL(j)) =0
and the other well-defmedness conditions for Lemma 28 hold.

Now (11k E {! ... Nl)CONTROL(I)) II DATA 	simulates CONTROL II DATA

by the induction hypothesis.

M.

CONTROL' U DATA' simulates CONTROL II DATA

by Lemma 27

Lemma 29

F(G[x -4 y]) 	= (FIRan(G)G)[x —* F(y)]

8 	Appendices 	 202

(For a definition of the arrow notation, see Terminology (General) on page ix)

Proof

F(G[x — y])x = F(G[x — y](x)) = F(y)

F(G[x —* y])x' = F(G(x')) 	= (FIp(G)G)x'

ifx'*x and x'E dom(G)

and the domains of the two functions are obviously equal.

F needs to be restricted to Ran(G) before being composed with G, since its

domain is Ran(G[x —* y]), which may be a strict superset of Ran(G) if y

Ran(G)

Lemma 30

Let the coset of p. Coset(p), be defined as follows:

Coset(p) = {p' : p' E BASE and (p') =

Assume that there exists an r s.t., for all p in BASE, there exists N p s.t.

Coset(p) = {s: s = (p) - m*r, where m € Integer and 015 m< N}

Then, if Rem[oteness] is a function defined as follows:

Rem(p) := 0 	 if p =

Rem(p) := Rem(p+r) + 1 if p * A(p)

then Rem is well-defined.

Proof

8 	Appendices 	 203

Let be in S and assume that

p =

We can prove that Rem(p) is well-defined by induction on m, using the

inductive hypothesis, "Rem(i(p) - (m_l)*r) is well-defined."

Base case

m =0 so Rem(p) =0

Inductive case

m *0 => p * (J)) (if r *0; otherwise Rem(p) =0 as for base case)

so

Rem(p)= Rem(p-r) + 1=Rem(p0 - (m 1)*r) + 1 which is well defined, by

the inductive hypothesis.

Lemma 31

If the hypotheses of Lemma 30 hold then

(For all p in BASE,

(p:* A(p) = v(<z, p>) = v(<z, p-r>))

and (p = (p) v(<z, p>) = v(<a, p>)))

2' for all p in BASE, v(<z, p>) = v(<a, (p)>)

Proof

The proof will proceed by induction on Rem(p) (which is well-defined, by

Lemma 30) using the inductive hypothesis, "For all p' s.t. Rem(p') <p. v(czz,

8 	Appendices 	 204

= v<a, i(p')>"

Base case

Rem(p) =0, so

p=i(p),

and so

v(<z, p>) = v(<a, p>) = v(<a, (p)>)

Inductive case

Rem(p) > 0, so

p*(p)

(assuming that r *0; If r=0 then the same argument holds as in the base case.)

so.

v(<z, p>) = v(<z, p+r>)

but Rem(p-r) = Rem(p) - 1, so, by the inductive hypothesis and the fact that p+r

E Coset(p),

v(<z, p+r>) = v(<a, A(p+r)>) = v(<a, (p)>)

Lemma 32

V'IJ(Q 	= VI!fl(C) and 	Rel(C)v' and Rel(C)v"

v'I- 	= V"I t(Q

Proof

• . .directly from the fact that Rel corresponds to a function from valuations on

In(C) to valuations on Out(C).

8 	Appendices 	 205

Lemma 33

If C1 and C2 are computations and Vars(C2) Vars(C) and Rel(C1)v'

Rel(C2)v'IV(2) and C1\Varset is well-defined

then Rel(C1\Varset)v Rel(C)v

where Varset = Vars(C1) - Vars(C2)

Proof

Assume Rel(C1\Varset)v. Now, from the definition of hiding, we know that

Rel(C1\Varset)v

For all v', Rel(C1)v' = (v'I(1\Vt) = VJ((s1\Vt)

=. 	 = Vt((1\Vt))

Let v' be constructed s.t. v'I(C1\Vt) = VIJ(C1\Vt) and Rel(C1)v'

holds (we know from Lemma 5 that this can be done) then Re1(C2)v'I V(2)

holds by hypothesis and V 1v(c2) = v by the above equivalence and so

Rel(C2)v holds.

Lemma 34

If C1 and C2 are computations where Vars(C2) 9 Vars(C) and In(Cl)IV(2)

= In(C2) and Out(Cl)IV(2) = Out(C2) and C1\Varset is well-defined and

Rel(C1)v' =* Rel(C2)v'Iv(2)

then

Rel(C2)v 	Rel(C1\Varset)v 	where Varset = Vars(C1) - Vars(C2)

8 	Appendices 	 206

Proof

Again, from the definition of hiding, we know that

Rel(C 1\Varset)v '

For all v' Rel(C1)v' => (v'(1\Vt) = VI((1\V t)

=> V'It(C1\%/) = VI1\V0)

so

(Rel(C2)v 	Rel(C1\Varset)v)

For all v'((Rel(C2)v and Rel(C 1)v' and V'IIfl((1\V t) = VIb((S.1\V t))

V 	fl(1\Varset) = VIO..tt(C 1\Varset))

To prove it is therefore sufficient to prove the R.H.S. Now since

Rel(C1)v' => Re1(C2)v'Iv(>2) by hypothesis

and

Vars(C2) = Vars(C 1\Varset)

we have by Lemma 32 with C2 substituted for C and v for v" that

V 'Out(C' 1\Varset) = vIt(1\Varset)

Here we have used the fact that

Jn(C1\Varset) 	= In(Cl)lV(2) = In(C2)

and

Out(C1\Varset) = Out(Cl)IV(2) = Out(C2)

Theorem 2

CONTROL(1) II DATA(j)simulates DATA(1- 1) w.r.t. <Varsekl), R()> for all i s.t.

1 <i<fl

8 	Appendices 	 207

Proof

An overview of the proof

Firstly DATA(1) is examined and much rewriting of Out(DATA()) and

In(DATA(1)) is done to obtain useful expressions for these sets. Then

Rel(DATA(1)) is rewritten and expanded. Using this work, expressions are

obtained for Out(CONTROL(1) II DATA), In(CONTROL(1) II DATA(1) and

Rel(CONTROL(1) II DATA). Using these expressions, the statements (iv), (v)

and (vi) (see page 213) are proven which are together equivalent to Theorem 2.

This is the core of the proof. The proofs of (iv) and (v) are relatively easy, but

proof of (vi) is more difficult. It is eased by the use of an intermediate result,

(vii), which can be used for proving both that the L.H.S. implies the R.H.S. and

vice versa.

Expressions for Out(DATA"(i)). In(DATA*(i)) and Re1(DATA(i))

Let us expand DATA(1):

DATA(1) =

11pE BASE (DATA—M(1..1) ® R_DP(i) II PIPE.-M()) ® R_DATA(i: p)

where R_DATA(:)(<, fun>) 	= <vc, fun(p)> for all <vc, fun> in

Vars(DATA_M(..1) ® R_DP II PIPE—M(1)) (by definition)

Out(DATA(1))

= 	U Out((DATA_41) ® R_DP II PIPE. -M()) ® R_DATA(I :
pE BASE

= 	U Out(DATA_M1) ® R_DP(1) ® R_DATA(p)' Var DATA..M'(i-
pEBASE

1) ® R_DP*(i))

11 PIPE_M(1) 0 R DATA(. p)1Vars(PIPE_M(i)))

8 	Appendices 	 208

by Lemma 21 on page 182

= 	U Out(DATA_M(14) ® (R_DATA(1 : p)IVars(DAT&Ma0-1) ®
p BASE

R_DP*(i))"-_(i))

II PIPE—M(i) ® R_DATA(: p)tVars(PIPEM(i)))

by Lemma 26 on page 193 applied to the

expression on the L.H.S. of the "II"

Let us define "f' to be R_DATA(: p) 1Vars(DATA_M'*(i-1) ® R_Dp())R_DPW;

then

dom(f) 	= dom(R_DP(1)) = Vars(DATA_M(1..1))

Now

f = R_DATA(: p)'V 	ATAMt(i.1) ® R_DP'*(i))

(IdIvDATAM(1..1))[<aj, E> — <z1, IdD>])

from definition of R_DP(1) on page 197

= R_DATA(: p)tV&s(DATA_M(i.1))[<ai, A> — <zj, p>]

by Lemma 29 on page 201

and definition of R_DATA(: p)

So

U Out(DATA_M(1.l) ® (R_DATA1 : p)'Vars(DAT&M'*(i-1) ®
p BASE

R_DP*(i))'_(i))

II PIPE_M() ® R_DATA(I p)'Vars(PIPEM(i)))

= 	U Out((DATA_M(1..1) ® (R_DATA(p)'Vars(DATA_M'(i.1))
p BASE

[<a1, Ai> —> <zj, p>])Iout(tATA_Msi (i.1)))

11 P]PE_M() 0 (R_DATA(1 : p)1Out(PIPE_M'*(i)))

8 	Appendices 	 209

= 	U ran((R_DATA(j: p)'VDAT&M(i-1))
p BASE

[<aj, A> —9 	p>])Io t(DATA_M(j1)))

u U ran(R_DATA(: p)tVaEM(i)) 10ut(P1PEM&(i)))
p BASE

by definition of renaming and

composition

= 	U ran((R_DATA(1 : p)'Vars(DATA_M(i-1))
p BASE

kaj, Aj> -4 <zj, p>])I0ut(ATA_M(i1)))

u{<z1,p>: p€BASE)

by definition of PIPE_M() on page 197

Let us now consider In(DATA())...

In(DATA())

= 	U Ifl(DATA_M(j1) ® (R_DATA1 : p)'V DATAM'*(i-1) ®
p BASE

R_DP(i))R_DP(i))

II P1PE_M ® R...DATA(: p)'Vars(PIPEM(i)))

- Out(DATA(1))

by definition of composition

= 	U (In(DATA_M(..1) ® (R_DATA1 : p)'Vars(DATAM*0-1))
p BASE

[<a1, i> 4 <Z1 , p>])) II P1PEM() ® R_DATA(

p)'Vars(PIPE_M(i)))

- Out(DATA(1))

by rewriting f as on page 208

= 	U ((In(DATA_Ml) ® (R_DATA(: p)'Vars(DATA_M'*(i-1))
p BASE

kaj, Ai> - <z1 , p1))

8 	Appendices 	 210

U 	In(PIPE_M(I) ® R_DATAi : p)'Vars(PIPEM(i))))

- (Out(DATA_M(..1) ® (R_DATA1 p)'Vars(DATA_Mi(i-1))

[<aj, i> - <z1 , p>]))

U 	Out(PIPE_M(1) ® R_DATA(1 : p)'Vars(PIPE_M(i)))))

- Out(DATA())

by definition of composition

= 	U ((In(DATA_M1) ® (R—DATA : p)'Vars(DATAM*(i-1))
p BASE

[<aj, i> - <z, p>]))

U 	In(PIPE_M() ® R_DATA(i p)tVars(PIPEM(i))))

- Out(DATA(1))

by repeated application of Lemma 12,

Lemma 13 and Lemma l4onpage 179

= 	U ran((R_DATA(j : p)'Vars(DATAM'*(i-1))
p BASE

[<aj, ij> + <Zi, P>I)1In(DATA_M'(i-1)))

U U ran(&..DATA(: p) 1VaM(i))'hi(PEM'i(i)))
p BASE

- Out(DATA())

by definition of renaming, Lemma 26,

and by rewriting f as on page 208

= 	U ran((R_DATA(1 : p)'Vars(DATA_M'*(i-1))
p BASE

[<aj, i> —3 <z1, p>I)IJn(DATA_M(.1)))

U U { <cj, p>, <z1 , p+rj>, <aj, p> }
p BASE

- (U ran((R_DATA(1 : p)'Vars(DATA_M*(i-1))
p BASE

[<a, i> - <z1, P>1)IOut(JDATAM(j1)))

u{<z1,p>: p€BASE})

8 	Appendices 	 211

Now for Rel(DATA(1))

Rel(DATA(1))v

Re1(IIP€BASE(DATA....M1) (V R_DP II PIPE—MO) ® R_DATA

p))V

Rel(IIP€ BASE(DATA_M(l.1) ® (R_DATA(1 : p)'Vars(DATA_M*6-1))

[<aj, z> —3 <zr, P>])

II (PI1PE_M(1) ® R_DATA(j :

For all pin BASE,

(Re1(DATA_M 1j) ® (R_DATA(1 : p)'VarDATAM(i-1))

[<a1 , LS> —3 <z, p])))

VlV(DATA_M *(j4) ® (R_DATA(i : p))Vars(DATA_M.(i-1))as*i. 	i>

-4 <z'*i, p>]))

and

(Rel(PIPE_M(1) ® (R_DATA1 : p)'VaIPEM'*(i)))))

VI\T(p1pE_M.s(j) ® (R_DATA'&(i: p))Vars(P1PE_M*(i))))

by definition of composition and the definition

of the variables of a renamed computation

For all pin BASE,

(Re1(DATA_Ml) ® (R_DATA(j : p)'Vars(DATA_M'*(i-1))

[<a1, i,> - <z1, p>])))

VIV(DATA_M.*(j4) ® (R_DATAS*(i p))Vars(DATA_M'*(i- 1))[<ai, *j>

-4 <z*'i, p>]))

and

v(<zj, p>) = v(<cj, p>.) *v(, p+rj>) + v(<cj, p>)*v(<aj, p>)

by definition of PIPE_M()

Expressions for In(CONTROL(i) 11 DATA'(i)).

8 	Appendices 	 212

Out(CONTROL(i) II DATA"(i)) and Re1(CONTROL(i) II DATA'*(Ifl

Let us now expand CONTROL(1).

In(CONTROL(1)) = 0
Out(CONTROL(1)) = {<c1, p>: p € BASE}

Rel(CONTROL(1))v 	For all p in BASE, (v(<cj, p>) = 1 < p * j(p)) and

(v(<c1, p>) =0 	p = j(p))

In(CONTROL(1) II DATA) = In(DATA(1)) - {<cj, p>: p € BASE}

by definition of composition and

CONTROL(1)

= 	U ran(R_DATA(P)II(DATh_M(1.1))[<a 1 i> —* <z, p.])
p BASE

U U {<zj, p+rj>, <a 1, p>}
p BASE

- (U ran(R_DATA(1 : p) 1Out(DATA.Ms(i-1)))
p BASE

u{<z1,p>: pEBASE))

rewriting In(DATA()) and simplifying, using the fact that

<at, i> € In(DATA_M(1.1)) and <a 1, Ai> Out(DATA_M(.l))

Out(CONTROL() II DATA) =

Out(DATA(1)) u Out(CONTR041))

= 	U ran(R_DATA(1 : p) 10ut(DATA_M'*(i-1)))
p BASE

u{<zj,p>:p€ BASE}

u{<cj,p>:p€ BASE}

rewriting Out(DATA(1)), OUt(CONTROL(j)) and simplifying

Rel(CONTROL(1) II DATA))

For all p in BASE,

8 	Appendices 	 213

(Rel(DATA_M(1..1) ® (R_DATA1 : p)IVars(DATA_Mst(i1))

[<a1 , iS> -+ <z1 , p>])))

VIv(DATAM(j4) ® (R_DATA'*(i : p))Va DATA_M(i-1))[<aii, A -- i>

-9 <z'*i, p>]))

and

v(<zj, p>) = v(<cj, p>) * v(<zj, p+rj>) + 	p>)*v(<a1 , p>)

)

and, for all p in BASE,

(v(<c1, p>) = 1 < p:* Aj(p)) and (v(<cj, p>) =0 t* p = p))

using rewriting of Rel(DATA(1)) and the

definition of Rel(CONTRO41))

The core of the proof

It is necessary and sufficient to show that

Out(((CONTRQL(1) II DATA())\Varset (1)) ® R) = Out(DATA(. 1)) (iv)

In(((CONTROL(1) II DATA(1))\Varset()) ® R) 	= In(DATA1)) 	(v)

Rel(((CONTROL(1) II DATA())\Varset(1)) ® R) 	Re1(DATA1)) (vi)

Proof of (iv)

Out(((CONTROL(1) II DATA(j))\Varse¼l)) ® R(1))

= Out((CONTROL(1) II DATA(1))\Varset(j))

= 	U ran(R_DATA(. p)'Out(DATA_M'*(i-l)))
p BASE

u{<zj,p>:pE BASE}

U{<cj,p>:pE BASE}

8 	Appendices 	 214

- Varset(1)

= Out(DATA(1 ..1))

Proof of (v)

In(((CONTROL(1) II DATA(j))\Varsekj)) ® R)

= In((CONTROL(1) II DATA(1))\Varset(1))

trivially from the definition of R(1) on page 198

= 	U ran(R_DATA(1 	 > —p <z1, p>])
pE BASE

U 	U { <z1, p+rj>, <aj, p> }
p BASE

- (U ran(R_DATA(1 : p)tOut(DATA_M'*(i-1)))
p BASE

u{<z1,p>: p€BASE})

- Varset(1)

from definition of Varset() on page 198

= 	U ran(R_DATA(1 : p)tIn(DATA_M(i-1))- {<ai. .j> 1)
p BASE

U 	U {<aj,p>)
p BASE

- 	U ran(R_DATA(j : p) 10ut(DATA_M(i-1)))
p BASE

- {<a1, p>: p € BASE and <at, p> In(DATA1))}

From (iii) on page 199, we may deduce that j(p) E BASE for all p in BASE,

so {<a 1, ij(p)> p € BASE) 	U {<a1, p>}; therefore we know that the
p BASE

above expression equals

U ran(R_DATA(1 : p)'Jn(DATA_M'*(i-l)))
p BASE

U 	U {<aj,p>}
p BASE

8 	Appendices 	 215

- 	U ran(R_DATA(i: p)'Out(DATA_M"(i-l)))
pE BASE

- {<aj, p>: p € BASE and <aj, p> In(DATAi))}

= 	U ran(R_DATA(j : p)'In(DATA_M(i-l)))
PE BASE

- 	U ran(R_DATA(j : p) 10ut(DATA_M'*(i-1)))
p€ BASE

by Lemma 15 on page 179 with A equal to

U ran(R_DATA(j : p) 1In(DATA_M'*(i-1)))
p BASE

and B equal to U {<a,p>}, since A-B
p BASE

will then' be

{<a1 , p>: p € BASE and <a 1, p In(DATA1))}

= In(DATAl))

Proof of (vi)

Rel(((CONTROL.(1) II DATA(1))\Varset(j)) ® R)

s Rel((CONTROL(1) II DATA())\Varset(1)) v

For ally',

Rel(CONTROL(1) II DATA<)v'

(v' 'Jn((CONTROL''(i) II DATA*(i))\Varser*(i))

= VIJ((CON'flOL(j) II DATA(i))\VarseN(i))

' V'I((CONThOL(j) II DATA'*(i))\VarseN(i))

= Vic (CONTROLi(i) II DATA*(i))\Vai-seN(i)))

by definition of hiding

We want to show that this is equivalent to Rel(DATA1))v. Now

Rel(DATA(1. l))V

For all p, Rel(DATA_M1) ® R_DATA(14 : p))VIV)ATA Ms*(jl) ®

R_DATA*(p))

8 	Appendices 	 216

< 	For 	all 	p, 	Re1(DATA_M1))(vIVATAM(j.1) ®

: p)

We will divide the proof of (vi) into "" and "<", but first we will prove

Rel(CONTROL(1) II DATA(j)v' = Rel(DATA(1. 1))v' 'Vars(DATA'i(i- 1)) 	(vii)

Proof of (vii)

Now

Rel(CONTROL(1) II DATA)v <>

For all p in BASE,

(Rel(DATA_M1) ® (R_DATA(i : p) 1Vars(DATA_M''(i-1))

[<aj, z> —p <z1, p>])))

VIV1ATAMs*(j..1) ® (R_DATA'*(i p))Vars(DATA_M(i1))[< as*i. *i>

-4 <zsii, p>]))

and

v(czz, p>) = v(<cj, p>) *v(<zj, p+rj>) + (<cj, p>)*v(<aj, p>)

)

and, for all in BASE,

(v(.<c1, p>) = 1 	p * ij(p)) and (v(<c1, p>) =0 < p = p))

from previous work

The last two subclauses of the R.H.S. imply that

for all p in BASE,

(p * A(p) = v(<z1 , p>) = v(<zj, p+r1>))

and 	(p = A(p) => v(<z1, p>) = v(<aj, p>))

which implies that, for all p in BASE, v(<zz1, p>) = v(<a 1, L(p)>)

by Lemma 31 and (iii) on page 199

8 	Appendices 	 217

So L.H.S. of (vi) =>

(For alip in BASE,

(Rel(DATA_M(1.1) ® (R_DATA(1 : P)IV55S(DATA_M(1 1))[<a1 , Ai> - <

P>])))

V'Iv(DATAMsi(i..1) ® (R_DATA'ii(i : p))Vars(DATA_M*(i-1))[<a'ii, *i>

-4 <zi, p>]))

and, for all p in BASE,

v'(.<z1, p>) = v'(<aj, Ai(p)>)

(For all p in BASE,

(Rel(DATA_M(1. 1))

(v'IVDATA_M(j.1) ® (R_DATA*(i : p))Var DATAM*(i1))[<as*i. '*i>

-4 <z'*i, p>])))'(R_1TA(i : p) 1 Va (DATA_M(j.1))[<ai, A> - <z1 , p>])

and, for all p in BASE,

v'(<z 1, p>) = v'(<aj, &i1(p)>)

by definition of renaming

(For allp in BASE,

(Re1(DATA_M(.. 1))

(V'IVarATA_M*(i.1) ® (R_DATA'*(i : p))Vars(DATA_M-*(i-1)))))

'(R_DATA(1 p)IVars(DATA_Ms*(i1)))

)

using the fact that for all p in BASE,

v'(<z 1, p>) = v'(<aj, A1(p)>)

8 	Appendices 	 218

Re1(DATA 1))' Vars(DATA'(i- 1))

by definition of DATA1) on page 197

and definition of re-naming

• . .follows from (vii), the fact that

Vars(DATA(l)) Vars(CONTRO4 1) II DATA()

and

Lemma 33 on page 205

• . .follows directly from (vii) and the fact that

Vars(DATA1)) Vars(CONTROL(1) II DATA)

and

In(CONTROL(1) II DATA(j))IvDATA 1)) = In(DATA(.. 1))

Out(CONTROL(1) II DATAa))Iv 	ATAS.i(i1)) = Out(DATA(i.l))

Lemma 34 on page 205

Theorem 3

There is no other way to pipeline the dependencies <ox, p —3 A'.p> and <oy,

p —3 A'.p> (see page 134) i.e.

If

r, a vector with integer components is such that

for all p in BASE(QR), there exists a positive integer m s.t.

p = A'.pm*r

and

and

8 	Appendices
	

219

then

0
r= —1

0

Proof

Let the components of r be d, e, and f.

1

Assume the hypothesis, that, for 	 in BASE(QR). there exists a positive

integer m s.t.

1

(A'-I). j 	
= m*r

k

i.e.

100 i
001. j 	= m*r

001 k

i.e.

0 	 d
k—j 	= m* e

0 	 f

1
Now let p equal 2 . This is in BASE (QR) so we know that

3

0= m*d, -1 = m*e and 0= m*f

This implies that

m= 1,d=0,e=-1 and f=0

8 	Appendices 	 220

Theorem 4

CONTROL' II DATA' simulates CONTROL II DATA

Proof

.using Theorem 1.

By Theorem 2 on page 206,

CONTROL(1) II DATA(i)simulates DATA(- i) w.r.t. <Varsek), R(1)>, for all i

s.t. 1<i<n

If we can prove that, for all k s.t. 1 <k < n

(U 	Vars(CONTROL(1))) n Varset 	= 0 	(viii)
i€ Nat (k-1)

then all the hypotheses, and therefore the conclusion of Theorem 1 will hold and

Theorem 4 will be proven; but (viii) is true because the only control variables

in VarSet)DATA are of class ck and 	U 	Vars(CONTRQL()) consists
i€ Nat(k — l)

solely of control variables in classes c1 ck.

8 	Appendices 	 221

Appendix E: Propositions relating to control-
pipelining

The main result of this section is Theorem 12, which states that under certain conditions

control-pipelining preserves behaviour. A key result is Lemma 35 which states

sufficient conditions for the pipelining of each control-variable-class to be valid. Most

of the other propositions (i.e. Theorem 7 to Theorem 11) in this section prove the

validity of pipelining the particular control-variable-classes in the convolution and QR-

factorisation examples, assuming the well-defmedness of certain computations.

The definitions and assumptions made at the start of the previous appendices are

assumed to hold for this one. The following ones also hold:

Definitions

BASE(j : 	:= 1p: p = j(P)}

BASE(j:l) 	:= {p:p*j(p)}

(Consequently the definition of CONTROL(1) on on page 198 may be rewritten:

In(CONTROL(1)) 	 = 0
Out(CONTROL(1)) = {<cj, p> : p € BASE)

Rel(CONTROL(1))v

For all pin BASE,

(p € BASE(1 : 0)=v(<cj, p>) =0 and

p € BASE(1 : O) v(<cj, p>) = 1))

Assumptions

Assume that we can find disjoint sets D(j: 0) and D(j: 1) outside BASE and a

8 	Appendices 	 222

vector 	with integer coefficients st., for all p in BASE,

p € BASE(j : 0)=> there exists p' in D(:0) and an integer m s.t.

p = p' -

and

p € BASE(j: 1)=' there exists p' in D(j: 1) and an integer rn s.t.

p = p' -

Assume further that for all p' in D(. 0) U D(j: 1)' there exists M s.t. 1 <rn <M

(p - 	€ BASE)

Note that the set is the domain of the edge computation CONTRO41: 1) and is

outside BASE, which is a base for DATA, DATA', CONTROL" and

INTERIOR (to be defined later).

Definitions (continued)

Let CONTROL(j: 1) be s.t.

Ifl(CONTROL(j: 1)) 	= 0

Out(CONTROL(1. 1)) 	= {<cj, p>: p € D(:0) U D(j: 1)}

Rel(CONTROL(1. l))V

(p € D(j: 0) V(<cj, p>) =0 and

p € D(j: 1) 	v(<cj, p>) = 1)

and CONTROL(1 2) be s.t.

8 	Appendices 	 223

In(CONTROL(1.2)) 	= {<cj, p> : p € D(1 :0) U D(j: l)}

OUt(CONTROL(j: 2)) 	= {<c, p>: p E: BASE}

Rel(CONTROL(j: 2))V

(p € BASE => v(<cj, p>) = v(<c1 , p+rc..ij>))

Let R—CP(1) be Id(c i)AsE and Varset CP() be {c1}X(D(: 0) U D(j: l))

CONTROL" := HiE {l ... n} CONTROL(: 1)

CONTROL" := Ii € 11 }CONTROL(j: 2)

R 	 := IdV(CON-OL')\

EDGE 	:= CONTROL"

INTERIOR := CONTROL" II DATA'

V 	 := 	U Varset_CP(1)
1€ Nat (n)

Comment

For a discussion of the roles of CONTROL(j: 1)' CONTROL(j: 2)' CONTROL"

and CONTROL", see section 4.3 (starting on page 94). These computations,

along with EDGE and INTERIOR, appear in Figure 4.11 on page 98. The

renaming function R—CP() and variable set Varset_CP() are used to prove that

CONTROL(j: 1)11 CONTROL(1 :2) implements CONTROL() (Lemma 35) and

the renaming function R and the variable set V are used to prove that EDGE II

INTERIOR implements CONTROL' H DATA' (Theorem 12). (CONTROL'

and DATA' are defined, on page 198.)

8 	Appendices 	 224

Assumptions (continued)

Comment

If the following statement holds then all the computations which appear in the

proofs in this Appendix are well-defined.

CONTROL", 	 CONTROL",

CONTROL" II CONTROL", 	CONTROL" II DATA',

INTERIOR, 	 EDGEV,

EDGE II INTERIOR, 	 CONTROL' II DATA',

((CONTROL" II CONTROL ...)\V) II DATA',

(EDGE U INTERIOR)\V, 	 CONTROL(j: 1)'

CONTROL(1. 2)' 	 (CONTROL(j: 1) II CONTROL(. 2))

(CONTROL(: 1) II CONTROL(: 2))\V&5et_CP(),

(IIi € { l ... n}(C0N101(i : l) II CONTROL(.2))) II DATA',

(('Ii € { jj}(CONTROL(j: 1) II CONTROL(:2))) II DATA')\V

and (Ili € 1 1 11 }(CONTROL(.l) II CONTROL(1.2)))\V II DATA'

are well-defined and,

for allkin{1...n},

(CONTROL(k:l) II CONTROL(k:2)),

(Iii € { 1...k-1 }(CONTROL(j: 1) II CONTROL(.2))),

(CONTROL ç 1) II CONTROL ç2)) 11

Oli € 11 ... k-1)(CONTROL(j1) 11 CONTROL(j:2))),

8 	Appendices 	 211

Now for Rel(DATA(1))

Rel(DATA(1))v

Rel(IIPEBE(DATA_M(j..l) ® R_DP II PIPE—M(1)) ® R_DATA

Rel(IIP€BASE(DATA_M(i.1) ® (R_DATA(1 p)'Vars(DATA_M''(i-1))

[<a1, Ai> - <zj, p>])

II (PIPE—M() ® R_DATA(i : p)'Vars(PIPE_M(i))))"

For all pin BASE,

(Rel(DATA_M(1.1) ® (R_DATA(1 : p)IVars(DATA_Ms&(i1))

[<a1 , Ai> —3 <zi, p>])))

VIVaj (DATAM' i(i4) ® (R_DATA'*(i : p))Vars(DATA_M'*(i-1))[<a'i. 	j>

-4 <zi, p>]))

and

(Rel(PIPE_M(1) ® (R....DATAj : p)'Vars(PIPE_M(i)))))

VIV(PIpE_M*.a(j) ® (R_DATA(i : p))Vars(PJPEM*(i))))

by definition of composition and the definition

of the variables of a renamed computation

For all pinBASE,

(Re1(DATA_M1) ® (R_DATA1 : p)IVAT&M'*(i-1))

[<aj, Ai> -4 <zi, p>])))

VIV(rJATA_M(j..1) ® (RDATA''(i p))VaDATA_M(i-1))[<a'*i, *1>

-9 <z"i, p>]))

and

v(<z1 , p>) = v(<cj, p>) *v(<zi, p+rj>) + v(<cj, p>)*v(.(aj, p>)

by definition of PIPE—M(j)

Expressions for In(CONTROL(i) 11 DATA(i)).

8 	Appendices 	 212

Out(CONTROL(i) II DATA(D) and Re1(CONTROL''(i) II DATA*(i))

Let us now expand CONTROL(1).

In(CONTROL(1)) = 0
Out(CONTROL(1)) = {<c1, p>: p € BASE}

Rel(CONTROL(1))v 	For all p in BASE, (v(<cj, p>) = 1 	p * i1(p)) and

(v(<c1, p>) =0 p =

In(CONTROL(1) II DATA) = In(DATA(1)) - {<cj, p>: p € BASE)

by definition of composition and

CONTROL(1)

= 	U ran(RDATA(1 : P)IIfl(DATA_M(1 D)[<a 1 A> —p <z1, c>])
pE BASE

U U { <z1, p+rj>, <a1, p> }
p BASE

- (U ran(R_DATA(i : p)1Out(DATA_M'*(i-1)))
p BASE

u{<z1,p>: p€ BASE))

rewriting In(DATA()) and simplifying, using the fact that

<a1, Ai> € In(DATA_M1)) and <a 1, A> Out(DAT&M(..l))

Out(CONTROL(1) II DATA) =

Out(DATA(j)) U Out(CONThOL(1))

= 	U ran(R_DATA(1 : p) 10ut(DATA_M(i-1)))
pE BASE

u{<z1,p>:p€ BASE)

u{<cj,p>:p€ BASE)

rewriting Out(DATA(1)), Out(CONTROL(1)) and simplifying

Rel(CONTRO41) II DATA()

For all p in BASE,

8 	Appendices
	 213

(Re1(DATA_M1) ® (R_DATA(j : p)'Vars(DATA_M''(i-1))

[<a1, Aj> —3 <z, p])))

VIvATA_M'ii(j.1) ® (R-DATA--&(i : p))Vars(DATA_M%*(i.1))kas*i, *i>

4 <z'*i, p.]))

and

v(<z1, p>) = v(<cj, p>) *v(<zj, p+rj>) + (<cj, p>)*v(<aj, p>)

)

and, for all p in BASE,

(v(<c1, p>) = 1 	p * i(p)) and (v(czc 1, p>) =0 	p = A1(p))

using rewriting of Re1(DATA()) and the

definition of Rel(CONTROL(1))

The core of the proof

It is necessary and sufficient to show that

Out(((CONTROL(1) II DATA(I))\Varsekj)) ® R) = Out(DATA1)) (iv)

In(((CONTROL(1) II DATA())\Varset(I)) ® R) 	= In(DATAl)) 	(v)

Rel(((CONTROL(1) I! DATA(1))\Varset(1)) ® R)) 	Re1(DATA1)) (vi)

Proof of (iv)

Out(((CONTROL(1) II DATA(1))\Varset(1)) ® R)

= Out((CONTROL(1) II DATA(1))\Varset(1))

= 	U ran(R_DATA(1 : p) 1 0ut(DATA_M*(i-1)))
p BASE

u{<zj,p>:pE BASE}

u{<cj,p>:p€ BASE}

8 	Appendices 	 214

- Varsek)

= Out(DATAl))

Proof of (v)

In(((CONTROL(1) II DATA(1))\Varset(1)) ® R)

= In((CONTROL(1) II DATA(1))\Varset(1))

trivially from the definition of R(1) on page 198

= 	U ran(R_DATA(1 : P)1 DATA_M(1.l))t1<ai, L> -4 <z1, p1)
p BASE

U 	U {<z1 , p+rj>, <aj, p>}
pE BASE

- (U ran(R_DATA(1 P)lOUt(DATA_M(1 1)))
p BASE

u{<z 1,p>: p BASE))

- Varset(1)

from definition of Varset(1) on page 198

= 	U ran(R_DATA(1 p) 	ATAM"(i-1))- {<ai,
p€ BASE

U 	U {<aj,p>}
p BASE

- 	U ran(R_DATA(1 p)IOut(DATA_M'*(i-1)))
p BASE

- {zaj, p>: p € BASE and <a 1 , p> In(DATAl))}

From (iii) on page 199, we may deduce that zj(p) € BASE for all p in BASE,

so (<a1, j(p)>: p € BASE} 9 	U {<a1 , p>}; therefore we know that the
p BASE

above expression equals

U ran(RJDATA(j: p)hln(DATA_M'*(i-1)))
p BASE

U 	U {<aj,p>}
pE BASE

8 	Appendices 	 215

- 	U ran(R_DATA(j : p) 10ut(DATA_M'*(i-1)))
pE BASE

- {<aj, p> p € BASE and <aj, p> In(DATAi))}

=

	

	U ran(R_DATA(j : p)hIn(DATA_Ms*(i1)))
p BASE

- 	U ran(R_DATA(1 p) 10ut(DATA_M*(i-1)))
p BASE

by Lemma 15 on page 179 with A equal to

U ran(R_DATA(1
: p) 1In(DATA_M*(i-1)))

p BASE

and B equal to 	U (<a1, p>}, since A - B
P BASE

will then be

(<a1, p> p € BASE and <a 1 , p> it In(DATA(..l))}

= In(DATAl))

Proof of (vi)

Rel(((CONTROL(1) II DATA(j))\Varset(-1
))

® R)

Rel((CONTROL(1) II DATA())\Varset(1)) v

For ally',

Rel(CONTROL(1) II DATA)v'

(v' 'In((CONTROL'a(i) II DATA''(i))\VarseN(i))

= VIjfl((COflOLs(j) II DATA*(i))\Varser*(i))

4' V'IØij ((CO llOL'*(j) II DATA'*(i))\Varset'*(i))

= VI().j((CONThOL.*(j) II DATA'*ci))\VarseN(i)))

by definition of hiding

We want to show that this is equivalent to Re1(DATA1))v. Now

Re1(DATA l))V

For all p. Re1(DATA_M1) ® R_DATA(1.1 : p))Vars(DATA_M*(i-1) ®

R_DATA't(p))

8 	Appendices
	 216

< 	For 	all 	p, 	Re1(DATA_M1))(vlvATA. M(j1) ®

RDATAp))R_DATA(i4 p)

We will divide the proof of (vi) into "" and "=", but first we will prove

Rel(CONTROL(1) II DATA)v' = Re1(DATA(i-1))v' IV(DATAS(i. 1)) (vii)

Proof of (vii)

Now

Rel(CONTROL(1) II DATA<1)v <>

For allp in BASE,

(Re1(DATA_M1) ® (R-DATA(: p)IVars(DATA_M'*(i-l))

[<aj, i> - <z1, p>])))

vIV(DATA_M%.(i4) ® (R_DATA(i : p))Vars(DATA_M'i(i- 1))[<ai. *i>

-* <zi, p>]))

and

v(.<z1, p>) = v(<cj, p>) * v(<zj, p+r1>) + (<cj, p>)*v(<aj, p>)

)

and, for all p in BASE,

(v(<c1, p>) = 1 	p * Aj(p)) and (v(<c 1, p>) =0 <' p = j(p))

from previous work

The last two subclauses of the R.H.S. imply that

for all p in BASE,

(p * i(p) 	v(<z1, p>) = v(<z1 , p+r1>))

and (p = A(p) = v(<z 1 , p>) = v(<aj, p>))

which implies that, for all p in BASE, v(<zj, p>) = v(<a 1, i(p)>)

by Lemma 31 and (iii) on page 199

8 	Appendices
	 217

So L.H.S. of (vi)

(For allp in BASE,

(Re1(DATA_M1) ® (R_DATA(i: P)I Vars(DATA Mu(l.1))kal, i> —* <zi,

p>])))

V'IVa (DATA_M'*(i..1) ® (R_DATA(i : p))Vars(DATA_Mi(i-1))kai. stj>

•- <zti,p>]))

and, for allp in BASE,

v'(<z1, p>) = v'(<aj, A 1(p)>)

(For all pin BASE,

(Re1(DATA_M 1))

(v'IVars(DATA_M'*(i..1) ® (R_DATA(i p))Vars(DATA_M's(i-1))[<a'*i, 	i>

- <zi, >])))(R_DATA(I : p)IVa(DATA_M.(1))[<ai, Sj> —+ <z, p>])

and, for allp in BASE,

v'(<z1, p>) = v'(<aj, Ai(p)>)

by definition of renaming

(For all p in BASE,

(Re1(DATA_Mj..1))

(v'IVATA_M..(i.1) ® (R_DATA*(i: p))VaDATAM'(i-l)))))

(R_DATA(1 : p)IVars(DATA_M*(i-1)))

)

using the fact that for all p in BASE,

v'(<z 1, p>) = v'(<aj, Ai(p)>)

8 	Appendices 	 218

< Re1(DATA 1))V' 'Vars(DATA'*(i- 1))

by definition of DATA,) on page 197

and definition of re-naming

• ..follows from (vii), the fact that

Vars(DATA(11)) c Vars(CONTRO41) II DATA)

and

Lemma 33 on page 205

• ..follows directly from (vii) and the fact that

Vars(DATA1)) c Vars(CONTROL(1) II DATA)

and

In(CONTROL(1) II DATA(j))Iv (DATA'*(i-1)) = In(DATA(11))

and

Out(CONTROL() II DATA (j))V(DATA i(j..1)) = Out(DATAl))

and

Lemma 34 on page 205

Theorem 3

There is no other way to pipeline the dependencies <ox, p — 5 A'.p> and <oy,

p - A'.p> (see page 134) i.e.

If

r, a vector with integer components is such that

for all p in BASE(QR), there exists a positive integer m s.t.

p = A'.pm*r

8 	Appendices 	 219

then

0
r= —1

0

Let the components of r be d, e, and f.

1

Assume the hypothesis, that, for allj in BASE(QR), there exists a positive
k

integer m s.t.

1

(A'-I). j 	= m*r

k

i.e.

100 i
001. 	= m*r

001 k

WIM

0 	 d
k—j 	= m* e

0 	 f

1
Now let p equal 2 . This is in BASE(QR) so we know that

3

0 = m*d, -1 = m*e and 0 = m*f

This implies that

m= 1,d=0,e=-1 andf=0

8 	Appendices
	 220

Theorem 4

CONTROL' II DATA' simulates CONTROL II DATA

Proof

..using Theorem 1.

By Theorem 2 on page 206,

CONTROL(1) II DATA(i)simulates DATA1) w.r.t. <Varset (1), R(1)>, for all i

s.t. 1 < i < n

If we can prove that, for all k s.t. 1 < k < n

(U 	Vars(CONTROL(1))) Varset 	= 0 	(viii)
i€ Nat (k-1)

then all the hypotheses, and therefore the conclusion of Theorem 1 will hold and

Theorem 4 will be proven; but (viii) is true because the only control variables

in VarSet()DATA are of class ck and 	U 	Vars(CONTROLa)) consists
i€ Nat(k-1)

solely of control variables in classes c1 ck.

8 	Appendices 	 221

Appendix E: Propositions relating to control-
pipelining

The main result of this section is Theorem 12, which states that under certain conditions

control-pipelining preserves behaviour. A key result is Lemma 35 which states

sufficient conditions for the pipelining of each control-variable-class to be valid. Most

of the other propositions (i.e. Theorem 7 to Theorem 11) in this section prove the

validity of pipelining the particular control-variable-classes in the convolution and QR-

factorisation examples, assuming the well-definedness of certain computations.

The definitions and assumptions made at the start of the previous appendices are

assumed to hold for this one. The following ones also hold:

Definitions

BASE(j: 0) 	:= {p: p = Lj()}

BASE(j : 1) 	:= {p:p*Lj(p)}

(Consequently the definition of CONTROL(1) on on page 198 may be rewritten:

ln(CONTRO41)) = 0

Out(CONTROL(1)) = {<cj, p>: p € BASE}

Re1(CONTROL())v '

For allp in BASE,

(p € BASE(j : 0)\1(<c, p>) = 0 and

P € BASE j : 	v(<c1, p>) = 1))

Assumptions

Assume that we can find disjoint sets D(j: 0) and D(j: 1) outside BASE and a

8 	Appendices
	 222

vector rc,,i with integer coefficients st., for all p in BASE,

E BASE(1 : O)=' there exists p' in D(j: 0) and an integer m s.t.

p = p' - mrj

and

p € BASE(j: 1) there exists p' in D(. 1) and an integer m s.t.

p = p' - mr

Assume further that for all p' in D(1: 0) U D(j: 1)' there exists M s.t. 1 <m <M

BASE)

Note that the set is the domain of the edge computation CONTROL(j: 1) and is

outside BASE, which is a base for DATA, DATA', CONTROL" and

INTERIOR (to be defined later).

Definitions (continued)

Let CONTROL(. 1) be s.t.

In(CONTROL(.l)) 	= 0

Out(CONTROL(1. 1)) 	= {<cj, p> : p € D(1 0) U D(. 1)1

Rel(CONTROL(j: 1))"

(p € D(1 O) v(<cj, p>) =0 and

PE D(j : 1) 	v(<cj,p>)=1)

and CONTROL(. 2) be s.t.

8 	Appendices 	 223

Ifl(CONTROL(1. 2)) 	= {<cj, p> : p € D(1 :0) U D(j: 1))

Out(CONTROL(: 2)) 	= {<cj, p>: p E BASE}

Rel(CONTROL(1: 2))" <

(p € BASE => v(<cj, p>) = v(<cj, p+rc..j>))

Let R-CP(1) be Id(c i} xJ3AsE and Varset....CP(1) be (Cj }X(D(j: 0) U D(j: 1))

CONTROL" := II i €
(1...nJ CONTROL(1. 1)

CONTROL" := Ili E {1...n} CONTROL(:2)

R 	 := IdV(CON-OL')\

EDGE 	CONTROL"

INTERIOR := CONTROL" II DATA'

V 	 := 	U VarseLCP(1)
i€ Nat (n)

Comment

For a discussion of the roles of CONTROL: 1)' CONTROL(1 : 2)' CONTROL"

and CONTROL", see section 4.3 (starting on page 94). These computations,

along with EDGE and INTERIOR, appear in Figure 4.11 on page 98. The

renaming function R-CP(1) and variable set Varset_CP(1) are used to prove that

CONTROL(j: 1)11 CONTROL(1 :2) implements CONTROL(1) (Lemma 35) and

the renaming function R and the variable set V are used to prove that EDGE II

INTERIOR implements CONTROL' II DATA' (Theorem 12). (CONTROL'

and DATA' are defined on page 198.)

8 	Appendices 	 224

Assumptions (continued)

Comment

If the following statement holds then all the computations which appear in the

proofs in this Appendix are well-defined.

CONTROL", 	 CONTROL",

CONTROL" U CONTROL", 	CONTROL" II DATA',

INTERIOR, 	 EDGEV,

EDGE II INTERIOR, 	 CONTROL' II DATA',

((CONTROL" II CONTROL")\V) II DATA',

(EDGE II INTERIOR)\V, 	 CONTROL(1.'),

CONTROL(1. 2)' 	 (CONTROL(. 1) II CONTROL(: 2))

(CONTROLç1 1)11 CONTROL(1. 2))\VarsetCP(I)

Oli €
I l ... n }(C0 	0L(:l) II CONTROL(j2))) II DATA',

((IIi € 11 1} (CONTR0L(il) II CONTROL(.2))) II DATA')\V

and (11k € I 1} (CONTROL(I.1) II CONTROL(j:2)))\V II DATA'

are well-defined and,

for all k in 11 ... n),

(CONTROL(k.1) II CONTROL(1 c2)),

(H1 € (1 ... k-1) (CONTROL(1.1) II CONTROLç1 2)))

(CONTROL.1) II CONTROL2)) II

(i E (1 ... k-1 } (CONTROL(1.1) 11 CONTROLç12))),

8 	Appendices
	 225

(Iii € ij }(CONTROL(1: 1) 11 CONTROLç1:2))) II CONTROL) ,

((0k € I , ... k- 1 	 1) II CONTROL(j:2))) II

(CONTROL(ç 1) II CONTROL:2)))\Vk

and ((0k € {l...k.l}(COlOI(i:l) II CONTROL(.2))) II

((CONTROL(iç 1) II CONTROL(k2))\Vk))

are well-defined.

Theorem 5

If CONTROL" II CONTROL" simulates CONTROL' w.r.t. <Varset, R> then

EDGE II II'TERIOR simulates CONTROL' II DATA'

(Refer to the diagrams on page 74 and page 110.)

from Lemma 2 on page 171.

Lemma 35

CONTROL(1) II CONTROL(: 2) simulates CONTROL(1) w.r.t.

<Varset_CP(1), R_CP(1)>

(definitions at the beginning of this appendix)

8 	Appendices 	 226

Proof

OUt(CONTROL(j: 1) I CONTROL(: 2)) = {<Cj, p> Ip E BASE}

U {<Cj,>IED(j :Ø)UD(j: 1)}

Ifl(CONTROL(j : 1)11 CONTROL(j: 2)) = 0
Since OUt(CONTROL(: 1)) = Ifl(CONTROL(j: 2))

and Ifl(CONTROL(j: 1)) = 0

Rel(CONTROL(1. 1) II CONTROL(1 :

p D(j : 0) 	v(czc1,p>)=O and

p€ D(j : 1) 	v(<cj,p>)=l)and

p € BASE => v(<cj, p>) = v(<c 1 , P+Fj>) 	 (ix)

We easily have the results

OUt((CONTROL(j: 1) 11 CONTROL(j: 2))\V&Set_CP()) = Out(CONTROL())

Ifl((CONTROL(j: 1)11 CONTROL(j: 2))\V8ISet_CP()) = ln(CONTROL(1))

Similarly to what was done on page 218, we can use Lemma 33 and Lemma 34

to prove that

Rel((CONTROL(1. 1) 11 CONTROL(j:

Rel(CONTROL(1))v

all we need to do is prove that

Rel(CONTROL(1. 1) II CONTROL(j :

= Rel(CONTROL(I))vI{ <C..1 I P>: p € BASE}

Now, assuming the L.H.S. of this statement, we need to prove the R. H. S., i.e.

that, for all p in BASE,

p€ BASE(j:0) 	v(<cj,p>)=O 	 (x)

8 	Appendices 	 227

and

p € BASE(j: 1) 	v(<cj, p>) = 1
	

(xi)

Let us consider (x). It is sufficient to prove that, for all p' in D (j : 	and all

integral m,

p' - m*r.,1 j € BASE => 	v(<cj, p' - m*r >) =0 (we may deduce

this from the assumptions starting on page 221)

Proof of (x)

...by induction on m, the inductive hypothesis being, "p' - m*r c j € BASE

v(<cj, p(ml)*rc j>) = 0"

Base case: m=1

If p' - mr € BASE, then we know, by (ix), that

v(<cj, p'-r. *j>)= v(<cj, p5)

but

v(czcj,p'>) 	= 0

Inductive case: m> 1

If p' m*r 1 € BASE then

v(<cj, p m*rc j>)= v(<cj, pm*rc.j+rc j>)=v(<cj, p '-(rn—i)* r i>)

but m must be less that M, so rn-i must be, sop - (m-1)r € BASE, by the last

of the assumptions starting on page 221 So, by the inductive hypothesis,

v(<cj, p(m_l)*rc .,ij>)= 0

(xi) can be proved in an exactly parallel manner.

Comment

8 	Appendices 	 228

Theorem 5, Theorem 6 and Theorem 8 are very similar and assert the validity

of the pipelining for the control dependencies in the convolution example.

Theorem 9, Theorem 10 and Theorem 11 do the same for the QR-factorisation

example. All six theorems are simple applications of Lemma 35.

Theorem 6

(As well as defining certain computations, the statement of this theorem

contains a list of well-definedness conditions.)

If BASE(coNv), CONTROL(cONV)(l: 1)' CONTROL(cONV)(l: 2) and

CONTROL(CONV)(l) are defined as follows:

BASE(COJ) 	i > 0, j 2! 0 andj < 3-i}

In(CONTROL(CONV)(l)) 	:= 0

Out(CONTROL(coNvxl)) := {<c, p>: p E BASE(CONV)}

Rel(CONTROL(CO ,)(l))v

(pE I
[O
il : o < i < 3) =::, v(<cy, p>) = 0

and

PE (BASE(coNv){ [Oil :0<i<3})v(<cyP>)l)

Ifl(CONTROL(cONy)(l : l)) := 0

OUt(CONTROL(CONV)(1: 1)) := {<c, 	: 0<j <3}
Li]

8 	Appendices 	 229

Re1(CONTROL(co)(1: 1))

(p € I[] , [1] [_1] }
	v(<c, p>) = 1

and

p € { 111 } 	v(<c,, p>) =0)

In(CONTROL(CONV)(l 2)) :=

{<c. p + [_1]> : p € BASE(co)} - {<c p> p € BASE(CONV)}

Out(CONTROL(coNv)(l 2)) := {<c. p> : p € BASE(CONV)}

Re1(CONTROL(CO T)(1 2))V

p € BASE(CONV) v(<c, p>) = v(<c, p + [_i] >)

and if

CONTROL(COj)(1: 1)'

CONTROL(COT)(l: 2)'

(CONTROL(coNV)(l: 1) 11 C0N"110L(coNv)(1: 2))

and

(CONTROL(coNV)(l: 1) 11 C0NTR0L(coNv)(1 : l))WSet_CP(CONV)(1)

are well-defined, where Varset_CP(CO)(l) is {Cy }X(t)(coNv)(1 :0) U D(coNv)(1

1)) and where

1 011D(CONV)(1: 0) •= 	
-

r_11 r11
D(CO)(1: 1) := 	[i] ' L2]' [_i]

8 	Appendices
	 230

then

CONTROL(coNv)(l. 1) 11 CONTROL(CONV)(l: 2)

simulates CONTROL(co)(l)

w M—

.by Lemma 35 with

 r(coNv)1) 1 011
We can see from the definitions of CONTROL(CONV)(l: 1) and

CONTROL(coNv)(l. 2) that

BASE(CONV)(l:O)= I 	 :O<i<3}

BASE(coNy)(l: 1) = BASE(CONV) - BASE(co,,)(l :0)

These two sets are disjoint, and cover BASE(CONV). We just need to prove the

assumptions starting on page 221 for BASE(j: 0) equal to BASE(coNv)(: 0)

etc.

p € BASE(co)(l :0)

==:> there exists p' € D(coNv)(1 :0) and integer m s.t. p = p' -

m*r(co ,) l 	(xii)

p € BASE(coNv)(l. 1)

= there exists p' € D(co)(l. 1) and integer m s.t. p = p' -

m*r(co) l

(xiii)

8 	Appendices 	 231

and

for all p' in BASE(coNv)(l :0) U BASE(cONy)(l:),there exists M' s.t.

1 < m' < M' p' - m *r(co)l E BASE(coNv) 	(xiv)

Proof of (xii)

if p= r1 then let p'= [Hi and m = i + 1. If p E BASE(CO)(1 .0) then j =

0 and SO p' € BASE(coNv)(l 0)

Proof of (xiii)

If p = 	then let P' = 	and m = i + 1. If p € BASE(coj)(l. 1) then 1 <
L(J)] 	 Li]

j <3 from the definition of BASE(CONV) on page 228 and so p' E BASE(coNv)

(1:1)

Proof of (xiv)

p' =
[j]

where0 <j 3
J

etM'=4.J. Then for all m,1 ~5m'<M'P'm'*[1]€BASE coNv) .

Theorem 7

Comment

Theorem 7 is essentially the same as Theorem 6. It states, that the pipelining of

cy in the convolution example is valid.

Let CONTROL(coX2: 1)' CONTR04c0Nv)(2 : 2) and CONTROL(co)(2) be

8 	Appendices 	 232

defined as CONTROL(co)(l. 1)' CONTROL(cOj)(l: 2) and

CONTROL(co ,)(l) respectively, but with c, replaced by C,A and r(CO1qV)1

replaced by r(coNv)2 in the definitions.

If

CONTROL(CO)(2: 1)'

CONTROL(COT)(2: 2)'

(CONTROL(CONVX2: 1) II CONTROL(COi)(2: 2))

and

(CONTROL(cONv)(2: 1) II CONTROL(CO T)(2: 1))\Varset_CP(coNv)(2)

are well-defined, where Varset_CP(CONV)(2)is{ x}x(D(coNv)(2. 0) U D(coNv)(2

1)) and where

0) 	1-011
D(cONV)(2:1) := { [_1] , [_i] ,]

then

CONTROL(COi)(2: 1) 11 CONTROL(cONy)(2: 2)

simulates CONTROL(co)(2)

Proof

Replace c by cx in proof of Theorem 6, and the first occurrence of i in each

subscript by 2.

Theorem S

Comment

8 	Appendices
	 233

Theorem 8 is similar as Theorem 6. It states that the pipelining of e w in the

convolution example is valid.

Let CONTROL(c0Nv)(3. 1)' C'TI'R°4CONV)(3: 2) and CONTROL(CONV)(3) be

defined as CONTROL(coNy)(l. 1)' CONTROL(coNv)(1. 2) and

CONTROL(C0Nv)(1) respectively, but with c3, replaced by c r(coNv)1

replaced by r(co)3 in the definitions and s1 replaced by I(s))]
t (i.e. all I(tj

column vectors inverted).

If

CONTROL(coNv)(3. 1)'

CONTROL(cONV)(3: 2)'

(CONTROL(coNV)(3. 1) 11 C 	°C0NV)(3: 2))

and

(CONTROL(coNv)(3. 1) II CONTROL(CoNv)(3. l))\Varset_CP(CONV)(3)

are well-defined, where Varset_CP(CONV)(3) is {cw}X(D(coNy)(3 : 0) U

D(Co,)(3. 1)) and where

1-011D(CONV)(3: 0)

r 1
D(CONV)(3: 1) := { [1 	2

[—ij [1
then

CONTROL(coNv)(3. 1) II CONTROL(CONV)(3. 2)

simulates CONTROL(cQ)(2)

CONTROL(coNv)(3. 1) 11 C0'R0!(coNv)(3: 2)

8 	Appendices 	 234

simulates CONTROL(cONV)(3)

Proof

Replace c, by ew and [] by [] (i.e. invert all column vectors) in proof of

Theorem 6, and the first occurrence of 1 in each subscript by 3.

Theorem 9

Comment

Theorem 9 states that the pipelining of cont in the QR-factorisation example is

valid. Its statement and proof follow the pattern for Theorem 6, with the minor

difference that D(QR)(1) is defined explicitly (on page 234) whereas D(CONV)(1)

is not. It can therefore be clearly seen how D(QR)(1 : 0) and D(QR)(1 	1) are

constructed (page 234), whereas D(co)(l : 0) and D(CO)(l: 1) are seemingly

plucked from nowhere (page 229).

Let D(QR)(1), D(QR)(1 0)' D(QR)(1 1)' BASE(QR)(l : 0)' BASE(QR)(l 	: 	1)'

CONTROL(QR)(l: 1)' C 4 	2) and CONTROL(QR)(l)

be defined as follows:

1-011

o
D(QR)(1) := {(p+): p € BASE(QR)} - BASE(QR)

1

D(QR)(1 0) := D(QR)(1) fl {: i = M}

k

8 	Appendices 	 235

[ii
D(QR)(1 1) := D(QR)(1) n { j : i = M}

LkJ

[ii
BASE(QR)(l:O) 	BASE(QR)fl{ 	:i=M}

Lk]

1

BASE(QR)(l: 1) 	BASE(QR) ('i { j : i M}

k

In(CONTROL(QR)(l)) 	0
Out(CONTROL(QR)(l)) 	{<cont, p>: p € BASE(QR)}

Rel(CONTROL(QR)(l))v

(p € BASE(QR)(l 0) => v(<cont, p>) =0

p € BASE(QR)(l: 1) v(<cont, p>) = 1)

Ifl(CONTROL(QR)(l: 1)) 	:=

OUt(CONTROL(Qg)(1: 1)) 	{<cont, p> p E D(QR)(1)}

Rel(CONTROL(QR)(l. l))V

(p € D(QR)(1 0) v(<cont, p>) = 1

and

p € D(QR)(1: 1) 	v(<cont, p>) =0)

In(CONTROL(QR)(l 2)) 	: {<cont, p> : p € D(QR)(1)}

Out(CONTROL(QR)(l 2)) : {<cont, p> p € BASE(QR)}

Rel(CONTROL(QR)(l 2))V

8 	Appendices 	 236

0
p € BASE(QR) => v(<cont, p>) = v(<cont, p + —1>)

0

and if

CONTROL(QR)(1. 1)'

CONTROL(QR)(l. 2)'

(CONTROL(QR)(l. 1) H C 	°QR)(1: 2))

and

(CONTROL(QR)(1: 1) II CONTROL(QR)(1: l))\V etCP(QR)(1)

are well-defined, where Varset_CP(QR)(1) is { cont } x(D(QR)(1))

then

CONTROL(QR)(l: 1) 11 CO "°'-'(QR)(1: 2)

simulates CONTROL(QR)

.using Lemma 35 with

r 	 := [_01 	(= r(QR)1)
0

We just need to prove that

p€ BASE(QR)(l:O)

= there exists p' E D(QR)(1 	and integer m s.t. p = p' - m*r(QR 1 (xv)

8 	Appendices 	 237

p € BASE(QR)(l. 1)

= there exists p' € D(QR)(1 : 1) and integer m s.t. p = p' - m*r(QR)l (xvi)

for all p' in BASE(QR)(1 ()) u BASE(QR)(l. 1)' there exists M s.t.

1 < m < M p' - m*r(QR)1 € BASE(QR) 	 (xvii)

Note that

1

D(QR)(1) 	{: AE {1...M-1},j € {k-1 ... M-1J and i€ {k+1 ... M}}

k

1

n { j :k 	{1...M-1},j 	{k ... M}ori 	{k+1 ... M}}

k

1

= { j :k€ {1 ... M-1},j=k-1 and i€ {k+1 ... M}}

k

Proof of (xv)

i 	 i
lip = j then let p' equal k - 1 and m equal j-k+1.

k 	 k

If

p € D(QR)(1 0) then i = M and so p' € D(QR)(1 :0)

Proof of (xvi)

lip =then let p' equal k - 1 and m equal j-k+1.

k 	 k

If

8 	Appendices 	 238

p D(QR)(1: l) then i*M and sop'€ D(QR)(1:1)

Proof of (xiv)

=

 [

1

k —i 1 , where k€ {1 ... M-1} and i€ {k+1 ... MI.

k

0
Let M' = M-k+ i. Then for all m', 1 <m <M', p' - m'* —1 € BASE(QR)

0

Theorem 10

Comment

Theorem 10 is similar as Theorem 9. It states that the pipelining of oy in the QR-

factorisation example is valid.

Let D(QR)(2), D(QR)(2 0)' D(QR)(2: 1)' BASE(QR)(2. 0)' BASE(QR)(2

CONTROL(QR)(2: 1)' CONTROL(QR)(2: 2) and CONTROkQR)(2)

be defined as follows:

i
D(QR)(2) := {(p+) : p E BASE(QR)} - BASE(QR) 1001

1

D(QR)(2) = { 	: k € { 1...M-1 }, j € {k ... M} and i € {k+2 ... M+1 }}
k

8 	Appendices 	 239

1

{ j :k 4t {1...M-1},j 	{k ... M}ori 	{k+1 ... M}}

k

1
= { j :kE{1 ... M-1},jE{k ... M}andiM+1}

k

1

D(QR)(2: 0) := D(QR)(2) (•i { 	: j =k)

k

1

D(QR)(2 : 1) := D(QR)(2) (•i { j : j * k}

k

1

BASE(QR)(2 0) 	:= BASE(QR) n { j j = k}

k

1

BASE(QR)(2: 1) 	:= BASE(QR) n { j j:* k}

k

In(CONTROL(QR)(2)) 	:= 0

Out(CONTROL(QR)(2)) 	:= {<ox, p> p € BASE(Qg)}

Re1(CONTROL(Q)(2))v

(p € BASE(QR)(2: 0) 	v(<ox, p>) =0

and

p € BASE(QR)(2: 1) 	v(<ox, p>) = 1)

Ifl(CONTROL(QR)(2. 1)) 	0

OUt(CONTROL(QR)(2. 1)) := (<ox, p : p € D(QR)(2)1

Rel(CONTRO4QR)(2.1)) V

8 	Appendices 	 240

(p E D(QR)(2 0) = v(<ox, p>) = 1

and

p € D(QR)(2: 1) 	=' v(<ox, p>) =0)

In(CONTROL(QR)(2: 2)) 	{<ox, p> : p € D(QR)(2)}

Out(CONTROL(QR)(2 : 2)) 	(<ox, p> : p E BASE(QR)I

Rel(CONTROL(QR)(2. 2))V

1
p € BASE(QR) v(<ox, p>) = v(<ox, p + 0>)

0

and if

CONTROL(QR)(2: 1)'

CONTROL(QR)(2: 2)'

(CONTROL(QR)(2: 1) II CONTROL(QR)(2: 2))

and

(CONTROL(QR)(2: 1) 11 C0NTROL(QR)(2: 1))\b'81Set_CP(QRX2)

are well-defined, where Varset_CP(QR)(2) is { OX) x(D(QR)(2))

then

CONTROL(QR)(2: j) - 11 CONTROL(QR)(2: 2)

simulates CONTROL(QR)

8 	Appendices 	 241

We parallel the proof of Theorem 9 and use Lemma 35 with

r 	=
1001

r(QR)2)

We just need to prove that

p E BASE(QR)(2 :0)

= there exists p' E D(QR)(2: and integer m s.t. p = p' - m*r(QR),2(xvjn)

p € BASE(QR)(2: 1)

there exists p' € D(QR)(2: 1) and integer m s.t. p = p' - m*r(QR)(2 (xix)

for allp' in BASE(QR)(2 .0)0 BASE,QR)(2. i there exists M s.t.

1 <rn < M p' - m*r(Qg)2 € BASE(QR) 	 (xx)

Proof of (xv)

i 	r
+ 1l

If p = 	then let p' equal j 	and m equal M+1-i.

k 	 k

ITI

p D(QR)(2:) then j =k and sop' € D(QR)(2:0)

Proof of (xvi)

lip = 	then let p' equal k - i and m equal j-k-i-1.

k 	 k

If

p € D(QR)(2 : 1) then j * k and SO p' € D(QR)(2: 1)

8 	Appendices
	 242

Proof of (xiv)

p' = k-1 ,wherekE {1 ... M-1}andj€ {k ... MI.

Lk

1
Let M' = M-k. Then for all m', 1< m <M',p'm'*0 € BASE(QR)

0

Theorem 11

Comment

Theorem 11 is similar as Theorem 10. It states that the pipelining of oy in the

QR-factorisation example is valid.

Let r(QR,3 D(QR)(3), D(QR)(3 : Ø) D(QR)(3: 1)' BASE(QR)(3 : 0)' BASE(QR)(3

1)' CONTROL(QR)(3. 1)' CONTROL(QR)(3 :2) and CONTROL(QR)(3) be defined

as their counterparts in Theorem 10, but with "oy" replacing "ox", and the first

2 in the subscripts replaced by a 3.

If

CONTROL(QR)(3. 1)'

CONTROL(QR)(3. 2)'

(CONTROL(QR)(3. 1)11 CONTROL(QR)(3; 2))

and

(CONTROL(QR)(3: 1)" CONThO'(QR)(3 : 1))\1t_G'(QR)(3)

are well-defined, where Varset_CP(QR)(3) is {oy}x(D(QR)(3))

then

8 	Appendices 	 243

CONTROkQR)(3: 1) 11 CONTROL(QR)(3. 2)

simulates CONTROL(QR)(3)

As for Theorem 10, with "oy" replacing "ox" and the first 2 in the subscripts

replaced by a 3.

Theorem 12

EDGE II INTERIOR simulates CONTROL' II DATA'

Proof

Consider the following three claims:

We know fromLemma 35 that, for all i in { 1...n), CONTROL (j: 1) 11

CONTROL(j: 2) simulates CONTROL(1) w.r.t. <VarsetCP (1), R—CP(1)>. By

Theorem 2, the required result follows from the following three:

11i€ 11 j11 (CONTROL(j: 1) II CONTROL(j: 2)) 	=

CONTROL" II CONTROL" 	(xxi)

11iE tl ... n}(COITh04i:l) II CONTROL(j :2)) simulates

11iE (i j }CONTROL(1) w.r.t.<V, R>

V n Vars(DATA') = 0 	 (xxiii)

These statements together imply Theorem 12. To see this, the following

reasoning may be used:

8 	Appendices 	 244

(xxi) and (xxii) imply that CONTROL" II CONTROL" simulates Ili €

{!J) CONTROL(I) w.r.t. <V, R>; now

111 € {1}CONTROL() = CONTROL'

so CONTROL" II CONTROL" implements (CONTROL" II CONTROL") II

DATA' by Lemma 22 on page 184, if (xxiii) holds. Now

CONTROL" 	= EDGE

CONTROL" II DATA' = INTERIOR

so, by Lemma 2 on page 171,

(CONTROL" II CONTROL") II DATA' = EDGE II INTERIOR

and so the result follows. It is therefore sufficient to prove (xxi), (xxii) and

(xxiii)

Proof of (xxi)

The R.H.S. is well-defined and CONTROL (j: 1) II CONTROL(.2) is well-

defined for all i in { 1...n}. It is trivial to prove that In(L.H.S.) = In(R.H.S.),

Out(L.H.S.) = Out(R.H.S.) and Rel(L.H.S.)v ' Rel(R.H.S.)v so the L.H.S. is

well-defined and L.H.S. = R.H.S.

Proof of (xxii)

We will prove, by induction on k, that, for all kin {1...n},

Ili E {l...k}(C"O'(i:l) II CONTROL(j:2)) simulates

'Ii € fl j}CONTROL(j)

w.r.t.<Vk, Idv(II1(j E (1...k})CONTROL(i)) - Vik> where

Vk = 	U Varset_CP(1)
iE Nat (k)

8 	Appendices 	 245

(The statement after "for all" reduces to (xxii) when k = n, since R and V are

defined as at the beginning of this appendix and CONTROL' is defined as on

page 198.) The inductive hypothesis is:

'Ii € 1j1} (CONTROL(j: 1) II CONTROL(j:2)) simulates

'lie { 1 ... - 1JCONTROL0)

w.r.t.<Vk..l, IdVj.(j € (1 ... k-1})CON1'ROLi(i)) - V.'k-1>"

Base case: k=l

Trivial.

Inductive case

Assume the unquantified statement of the theorem is true for k-l.

Let B' equal "i E {l ... kl}(CONTROLCi:l) II CONTROL(j :2))

and let B equal "i € {lk..l}CONTROL(j)

then, by the inductive hypothesis, B' simulates B

w.r.t. <Vk.1, IdV(j € { 1...k-1 })CONThOL(i)) - Vik1>

Now

VarsetCP) n Vars(B') 	= 0
since the control variable-classes are all distinct

and

Vk Vars(CONTROL)) 	= 0
since (D(.0)uD (1 . l))fl BASE =O

and, by Lemma 35 on page 225,

(CONTROL: 1) II CONTROL2)) II B' simulates CONTROL(k) II B'

w.r.t. <Varset CP), R_CP))>

so by Lemma 22 on page 184 with

8 	Appendices
	 246

R2 equal to IdVa ') u Vars(CONTROL(k))

B equal to B'

A equal to CONTROL(k)

A' equal to (CONTROL(l) II CONTROL.2))

R 1 equal to R—CP)

and

Varset equal to VarseLCP)

CONTROL(k) II B' simulates CONTROL(k) II B

w.r.t.

<Vk, Id Vars(B) u Vars(CONTROL(k))>

so, by Lemma 27 and Lemma 3,

Ili € {l...k}(CON'T'ROL(i : l) II CONTROL(j:2)) simulates

Ili € { 1j}CONTROL(1)

w.r.t.

<V, Ids() u Vars(CONTROL(k)) - V>

Proof of (xxiii)

This follows from the fact that all the variables of DATA' are within BASE and

all the variables in V are outside it.

8 	Appendices
	 247

Appendix F: Propositions relating to scheduling and
allocation

There are only two propositions in this section. Theorem 13 states that scheduling-and-

allocation is behaviour-preserving. Theorem 14 implies that the chosen scheduling

matrix [-1, 1, 2] for the QR-factorisation example is in some sense minimal (see

subsection 5.2.1 on page 135).

The definitions and assumptions made at the start of the previous appendices are

assumed to hold for this one. The following ones also hold:

Assumptions

There exists an invertible affine function Im which satisfies the following

conditions:

The uniform dependencies of DATA are time-consistent with Im

The vectors r, where 1 ~ i ~ n, are time-consistent with Im

The vectors 	where 1 <i < n, are time-consistent with Im

Definitions

Depvecs: C -4 (the set of dependency vectors of C)

RENAME: <Varclass, p> - <Varciass, Iin(p)>

EDGE' EDGE 0 RENAMV -J

8 	Appendices 	 248

INTERIOR' 	INTERIOR ® RENAME1 Vars(INTERJOR)

Theorem 13

EDGE' II INTERIOR' is well-defined and simulates EDGE II INTERIOR

Proof

_.direct from Lemma 21.

Theorem 14

(Recall from Chapter 4 that Imt(p):=Im(p)'Li and Imt(p) = A.p + br.)

IfAt = [a, 13, y], a, 13 and yare integral and

-1 1 0 	0
Depvecs(DATA') 	= { 0 , 101, 0 , -1 }

-1 0 -1 0

then IaI2t 1, 1131> 1 and 10>2.

Proof

All the vectors in Depvecs(DATA') must be time-consistent with Im 	(see

section 3.4 (starting on page 65)) so a <0, 13>0, y > O and a + y> 0. Therefore

a<1,13;>1,y>1. But y>-a,>-lsoy,>-2.

8 	Appendices 	 249

Appendix G: Propositions relating to the whole
design process

The main propositions in this section are Theorem 15, Theorem 20, andTheorem 27,

which are the three conditions the output design must satisfy. They are proved using the

subsidiary results of this section and the main results of the previous three sections. The

diagram on page 110 may serve as a reminder of the roles of the various computations

mentioned in this section.

The definitions and assumptions made at the start of the previous appendices are

assumed to hold for this one. The following ones also hold:

Definitions

Let 	be defined as follows:

In(M.) 	 = {<cj, p - p + r.>}

Out(M) 	 = { <Cj, p - P>)

Re1(M1)v

(p € BASE => v(<cj, p - p>) = v(<cj, p - p + r>))

ALO 	:= CONTROL II DATA

Varclasses(C) := {varc: there exists p s.t. <varc, p> € C}

DTOTAL 	:= BASE U 	U 	i:O)-(kl))
iE Nat (n)

CONTROL(jl),) is s.t.

In(CONTROL(.l)()) 	= 0
Out(CONTROL(. 1)()) = { < Cj, p>1

	

Re1(CONTROL(j:1),))v 	(pE D(j:0) =' v(<cj, p>) =0 and

8 	Appendices
	 250

	

pE D(j: 1) 	v(<cj, p>) = 1)

if p € D(j:0)UD(j:l)

and is the null computation if p € D.iy&j - Dç1:0)UD(j. 1)

CONTROL2)(p) is s.t.

Ifl(CONTROL(j:2)(p)) 	= v(<cj, p>)

OUt(CONTROL(i:2)(p)) = {<Cj, p>}

Re1(CONTROL(j:2),))v 	(pE D(j:0) 	v(<cj, p>) =0 and

p€ D(j: l) => v(<c1 , p>) = v(<c1 ,

p+rc j>))

ifp€ BASE

and is the null computation if p € DyA! - BASE

CONTROL ,,, (p) 	Uj € Ilji)CONTROL(j:2)(p)

EDGE(p) 	:= II € l...n}CONT1OL(i:l)(p)

DATA' is defined to be s.t.

DATA' = "p€ BASEDATA'(p) and

DATA' (,) is null when p € DTOTAL - BASE

INTERIOR(1,) = CONTROL",) II DATA'

Let the interior of an embedded computation Cj, be

Dom(Cj) - Edge(CI)

"the interior of Cl" may be written "Int(Cj)".

8 	Appendices 	 251

Assumptions

CONTROL(j.2)(p) II DATA'(p) is well-defined for 811 pmDTOTAL and

pE DTOTAL(C 	OL(i :2)(p) U DATA'(p)) is well-defined;

EDGE(p) is well-defined for all p. and

"pE DTOTALGE(P) is well-defined;

EDGE() II 1NTERIOR() is well-defined and

"pe DTOTAL(1p)ll INTERIOR()) is well-defined;

CONTROL" is well-defined and

"pE DiTOTAL CONTROL"() is well-defined;

'Ii € (l ... n}(Mc ii) is well-defined;

(NE 11 ... n)(Mc'-0 II DATA—M()) is well-defined.

Theorem 15

EDGE' II INTERIOR' simulates ALG

...follows directly from Theorem 13 on page 248, Theorem 12 on page 243,

Theorem 4 on page 220 and Lemma 27 on page 194.

Theorem 16

Recall the definition of "Edge" on page 52.

Let R(<var, p>) equal <var, 1(p)> where I is invertible and R is defined, say,

8 	Appendices 	 252

over Varclasses x D. Let computation C have domain D; then

Edge(C ® R)=Ran(II)

<var, p'> E 'Out(C ® R) <> 	<var, 1 1 (p')> € Out(C)

so

p' € Edge(C ® R) ,:* 	for all var in Varciasses <var, p5 it Out(C ® R)

< 	for all var in Varclasses <var, F 1 (p')> 	Out(C)

r(p')E Edge(C)

P 9 € Ran(IIiJge(Q)

Theorem 17

If (IIi € I 1)C 1)is well-defined, then

Edge(II € {l ... }C1) 	= Dom(II € 11}Cj)- 	U 	Int(Cj)
i€ Nat (n)

Proof

p € Edge(111 € { 1 ... n }CI)

p € Dom(II € (1 ... n}Ci) and, for all var, <var, p> 	OUtOli € { i•••1Ci)

< p € Dom(II 1 {l)C1) and, for all var, 1<i<n=<var,p> 4t Out(C)

by definition of composition

p € Dom(111 € I, ... lq-) and 1 <i < n =>p 4t Int(Cj)

by definition of "Int" on page 250

p € Dom(111 € 11 ... n jCj) and p 	U 	Int(C)
1€ Nat (n)

p € Dom(II1, {l ... n}Ci> 	U 	Int(C1)
iE Nat (n)

8 	Appendices 	 253

Theorem 18

DATA 1 is a recurrence over BASE.

Proof

DATA' = DATA(S); from the definition of DATA(k) on page 197, it is sufficient

to prove that DATA_M() is of the right form to be a mould for a recurrence

over BASE. It is sufficient to prove therefore that for all k in { 1.. .n }

DATA—M(k) is of the right form to be a mould for a recurrence over BASE. We

will prove this by induction on k with the inductive hypothesis, "DATA_M)

is of the right form to be a mould for a recurrence over BASE".

Base case

DATA_M(l) is of the required form because DATA is a recurrence over BASE.

Inductive case

Out(DATA_M)) =

Out(DATA_M 1) (V RENAME 1)) u Out(P1PE_M 1))

= (ran(RENAME))I 	ATAM'(k1))) U Out(P1PE_M1))

by definition of renaming

= Out(DATA_M1)) u {<zk, IdBE>}

by definition of RENAMEII and PIPE—M1)

(Varciasses U {Zk})X{IdBE}

by the inductive hypothesis

In(DATA_M)) 	=

8 	Appendices 	 254

In(DATAjvI1) ® RENAME(l4)) U In(PIPE M1)) - Out(DATA_M))

= (In(DATA_M(1)) - {< ak..1, k.1>})

U { <Zk, IdBASE>, <Ck, IdBASE>, <Zk, 	p+rk>, <Ck, IdBASE> I

- {<zk, IdBASE>}

by definition of RENAMEj), PIPE-M1) and DATA-M(k)

= (Jn(DATA_M1)) - {<ak..1, k-1>})

U {<c, IdBASE>, <Zk, 	p+rk>, <Ck, IdBASE>}

which is of the required form, since In(DATA_Ml)) is a set of the required

form (by the inductive hypothesis).

Theorem 19

(Recall the definition of "edge-computation" from page 53.)

EDGE is an edge-computation of INTERIOR.

Proof

Since Vars(EDGE) = 	U Vars(CONTROL(1.1)), it is sufficient to prove
iE Nat (n)

that

1 <i < n 	Dom(CONTROL(1.1)) Edge(INTERIOR)

by Theorem 17 on page 252

Edge(INFERIOR) =

Dom(INTERIOR) - (Int(DATA') U (U Int(CONTROL(j2))))
i€ Nat (n)

Now, for all i,

8 	Appendices 	 255

Iflt(CONTROL(1.2)) = BASE

Also, since DATA) is a recurrence over BASE, Int(DATA)) 9 BASE, since

Out(DATA_M)) c Varciasses u {zk}x{IdBASE}

(so Out(DATA(k)) Varciasses U {zk}X{BASE})

so

Int(DATA') U (U Iflt(CONTROL(1.2))) = BASE
iE Nat (n)

and

Edge(INTERIOR) = Dom(INTERIOR) - BASE

Dom(CONTROL(j: 1)) 	= D(j:0) U D(j: 1)

Dom(CONTROL(j:2))

Dom(INTERIOR)

so it is s.t.p. that for all i,

Dom(CONTROL(j: 1)) (BASE = 0
but D(j:0) fl BASE = D(,: 1) (BASE = 0
Dom(CONTROL(j:1)) fl BASE

= (D(j: 0) U D(j:l)) fl BASE

=0

Theorem 20

EDGE' is an edge-computation of INFERIOR'.

INTERIOR' = INTERIOR ® RENAME

EDGE' 	= EDGE 0 RENAME

so, 	for 	all 	i,

8 	Appendices 	 256

and Theorem 20 is equivalent to saying that,

for all v,

v € Vars(EDGE') => v = <var, p for some p in Edge(IINTERIOR')

Now

Vars(EDGE') = RENAMElV& lyJE)

and byTheorem l6on page 25l

Edge(INTERIOR') = Ran(ImIj e pjo))

so it is s.t.p. that EDGE is an edge-computation of INTERIOR for, if it is, then

v € Vars(EDGE') => v = <var, Im(p)> and p € Vars(EDGE)

v = <var, Im(p)> and p € Edge(INTERIOR)

v = <var, p5 and p' € Edge(INTERTOR')

so the result follows immediately from Theorem 19.

Theorem 21

If C is a UR and Vars(C) = dom(RENAME) then C 0 RENAME is a UR.

Proof

C 	= Hp€ BASE(M ® RENAME(p))

where M is s.t.

In(M) 	= {<vn1, >: 1 < i < n}

and

Out(M) 	Q Varclasses X {IdBASE}

and

RENAME(,)(<vc, fun>)=(<vc, fun(p)>) for all <vc, fun> in Vars(M)

where for all relevant i, is uniform (Ai : p —* p+rj), say. So

C ® RENAME=(IIP€BAsE(M ® RENAME()))) ® RENAME

8 	Appendices 	 257

= llp€ BASE((M ®

RENAME(p)) ® RENAMEIV a ®

by Lemma 21 on page 182

= Ilp€ BASE(M®

(RENAMEI8ryj ® RJv1E*(p))NAME(p)))

by Lemma 26 on page 193

We want to show that this is equal to

Up'€BASE'(M ® RENAME'(p))

(where RENAME' (,')(<vc, fun>) = (<vc, fun(p)>) for all <vc, fun> in

Vars(M')) for some suitable mould, M', and base, BASE'. Assume that

A: p - p+r

and let A' be s.t.

A': p' —> p' + Ax

(recalling from page 105 and page 68 that Im : p — A.p + b)

Then let M' equal M ® RENAME' where

RENAME' (<vn, A>)=<vn, A'>'for all <vn, A> in Vars(M)

Claim

M ® (RENAMEIVa(M ® p,JJs1(p))'RENAME(p))

= M' ® RENAME','), where p' = Iin(p)

Proof of claim

M' ®RENAME',')

= M ® RENAME' ® RENAME'(1,')

= M ® (RENAME'(p')Iv®')RENAME')

by Lemma 26 on page 193

so it is sufficient to prove that

RENAME1VaM ® PAME(p))NAME(p)

8 	Appendices 	 258

= RENAME' (p')I Vars(M ® RENAME') -RENAME'

RENAMEIV(M ® 	 4>)

= RENAME(<vn, A(p)>)

by definition of RENAME()

= <vn, Im(i(p))>

by definition of RENAME

= <vii, A.(i(p)) + b>

by definition of Im

= <vii, A.p + A.ri- b>

RENA E' p ')I Vars(M ® p).RENAME(<Vn, A>)

= RENAME'()')(<vn, p —3 p + Ar>)

by definition of RENAME'

= <vn,p'+A.r>

by definition of RENAME()

= <vn, A.p + b + A.r>

The R.H.S.s of (xxvii) and (xxviii) are equal and so the claim has been proved.

Let BASE' equal {p' p' = Im(p) for some p in BASE} and M' be as in the

claim, then the theorem follows directly.

Ii11i$rsl

If, for all j and k, Out(Bj,k) 9 C, then

U (U k(Bj- UOut(Bj)) - C 	U (U In(Bj)) - C
k kEK jEJ 	 EK j€J

Proof

Easy.

8 	Appendices
	 259

Lemma 37

If 11j E j Pjk is well-defined for all k in K and IIk E KPjJC is well-defined for allj in

J and IIj€J(1IkEK PJ is well-defined

then 1Ik€K(0J€Jj.k) is well-defined and equals Ilj E j(IIkE KPj).

Proof

That Out(IIk€ K(IIjE JPjJJ) = Out(II € J(IIke K P)) is easily proved.

	

1 0'k€ K(11j€ JP,k)) = 	U In(II 1P) - Out(IIk€ K(0j€ JP3,k))
k E K

= U (U '(.&- U Out(P,j)) - Out(IIk€K(IIjEJPj,k))
kEK jEJ 	j€i

by definition of composition

	

= 	U (U In(PJ,k)) - Out(IIkEK(IIjEJPj,k))
keK jEJ

by Lemma 36

= U (U In(PJ,k)) - Out(IIj€J(IIkEKPJ,k))
jEJ kEK

= In(II € J(IIk€ KJ,k))

That Rel(IIkE K("jE JPj,k)) = Rel(II € J(IIk€ K Pj,k)) is trivial (by the reverse of a

similar sequence). IIkK(IIjEJPJj) is well-defined since IIjEJ("kEK Pik) is.

Theorem 22

Assume that, for all j in J, Cj is a UR over base BASE that "jEJ Cj is well-

defined, that C = II pE BASE(Mj ® RENAMEJ :

where

8 	Appendices 	 260

In(M) 	= {<vnj, L,j>:i=l...n}

Out(M) = Varciasses X {IdA}

where

Ajj= p—>p+rj,j

for = 1 and

and RENAME(j:p):<vn, A>—<vn, i(p)> for all<vn, i>inVars(M)

(dom(RENAMEj : = Vars(M3))

and assume that IIjEJ M is well-defined

then

"jEJ Cj is a UR over BASE.

Proof

(€ { 1..n} Cj) = j€ { 1...n} hlp€ BASE(Mj ® RENAMEj :

11p€BASE(0j€ 11 ... n (Mj ® RENAIME(j :

by Lemma 37 on page 259

11p€BASE((0jE (1...n} M) ® RENAME p))

where dom(RENAME,)) = Vars(II i.. M)

and RENAME(p) IVar*j) = RENAME(j : p)

by Lemma 21 on page 182

Now

Out(II€ { 	M) 	Varciasses x {IdBASE}

and

In1 1...n) M) =

{<vn,1, L j j> : i = 1...n}) - Out(IIj {1...n) M)

8 	Appendices
	 plot

which is of the required form for a UR mould, since Ajj is uniform, for all

relevant <i, j>.

Theorem 23

If { <aj, > : i = 1.. .n- 11 are the only non-uniform dependencies of DATA —M,

then the set of non-uniform dependencies of DATA_Mfl) is { <aj, Ai>: k < i <

n-i }

• .by induction on k, the induction hypothesis being "the set of non-uniform

dependencies of DATA—M(. 1) is { <a1 , A> : k-i < i < n- i } ".

Proof

Base case: k = 1

Trivial

Inductive case

We just need to consider In(DATA_M))

In(DATA_M)) =

(In(DATA_M(l)) - (<ak.!, k-1>})

U { <ck, IdBASE>, <Zk, + P + rk), <ak, IdBE> }

The elements which are added are all uniform dependencies, so the set of non-

uniform dependencies of DATA _M) is

(<a1 , i1>:k<i<n-i}

8 	Appendices 	 262

Theorem 24

For all un { 1...n}, CONTROL(2) is a UR over BASE.

Proof

In(CONTROL(: 2)) 	= {<cj, p>: p € D(j: 0) U D(j: 1)}

OUt(CONTROL(I : 2)) 	= {<Cj, p>: p € BASE}

Rel(CONTRO41: 2))"

(p € BASE => v(<cj,p>) = v(<c1, p+rc j>))

CONTROL(1. 2) 	= 1 PE BASE(c*i ® RENAME(j:2 :

where RENAME(1. 2: p) : <Vfl, i> —* <vn, (p)>

and dom(RENAME(.2 : p) = Vars(M1)

and it is a UR.

Theorem 25

CONTROL" is a U.R. over BASE.

Proof

This follows directly from Theorem 22 and Theorem 24.

Theorem 26

8 	Appendices 	 263

DATA' is a uniform recurrence over BASE.

Proof

We know from Theorem 18 on page 253 that DATA' is a recurrence over

BASE. By Theorem 23,

DATA' (= DATA(S)) is uniform,

since the set of non-uniform dependencies in DATA_M()

= {<aj, At>: n < i < n-i }

=0

Theorem 27

INTERIOR' is a uniform recurrence.

This follows from Theorem 21, Theorem 22, Theorem 25 and Theorem 26.

Theorem 28

The dependency vectors of DATA' are time-consistent with Im.

Proof

Claim

8 	Appendices 	 264

The dependency vectors of DATA(k) (which correspond to the uniform

dependencies of DATA)) are time-consistent with Im.

Proof

• ..by induction on k, the induction hypothesis being, "The dependency vectors

of DATA(k) are time-consistent with Im."

Base case: k = 1

Recalling that DATA(1) = DATA, the result follows by assumption (xxiv) on

page 247.

Inductive case

k(DATA_M()) = {<aj, A>:k<i<n-1} 	by Theorem 23

so the set of dependency vectors of DATA (k) is the set of dependency vectors

of DATA(.l) (which by the inductive hypothesis are time-consistent with IM)

united with {Q, rk}, the vectors of which are time-consistent with Liii by (xxv)

on page 247.

So Theorem 28 is proved by the claim and noting that DATA' = DATA()

Lemma 38

Assuming the definitions and hypotheses of Theorem 22, Depvecs(lj j Cj)

U Depvecs(C).
JE J

Proof

8 	Appendices 	 265

In(II €j M) 	UIn(M)
j J

so

b € Depvecs(Ij j Cj)

<vn,p—p+b>€ In(Il € jM)

by the definition of Cj

<vn,p—>p+b>€In(M) for some jin{1 ... nJ

<z b E Depvecs(C3) for some in 11 ... n)

b E U Depvecs(Cj)
j J

Theorem 29

The dependency vectors of CONTROL" are time-consistent with Im.

Proof

Because Lemma 38 holds, it is s.t.p. that, for all i, the dependency vectors of

CONTROL(:2) are time-consistent with Im.

Now

CONTROL(i: 2) = Dp€BASE(Mc&i ® RENAME(i:2 : p))

where

In(M) 	 = {<cj,p —*p+r>}

Out(M) 	 = {<cj, p —p p>}

and

Re1(M1)v

(p € BASE 	v(<cj, p —+ p>) = v(<cj, p —* p + r>))

so the set of dependency vectors of CONTROL(j: 2) is { rc j } and we already

8 	Appendices 	 266

know by (xxvi) on page 247 that is time-consistent with Im.

Lemma 39

If, for all i in some set I, C1 is an embedded computation s.t.

Vars(C1) 	Varclasses1 x D

Cj = 11pEDiii CO: p)

and

OUt(C(:)) 	Varclassesi x {p}

and if II 	C(: p) and 11pE D(11i€ I*.*pC(i p)) are well-defined (where L = ti: p

€ D1 }), then 11iE C1 is an embedded computation satisfying with (2) and (1) on

page 51, with

Varciasses 	equal to U Varc1asses
jE•I

D 	equal to 	k_) Di
JE I

and

C() 	equal to 	IIjEIsipC(i: p)

It is easy to see that (1) holds for C equal to 11iE I Cr We know Out(II

U OUt(C(: p)) c Varclasses x {p}; so to prove (2) it is s.t.p. that II1C 1
jE 'p

= 11p€D C(p).

Now

iEI Ci = Hj€ i (IIp€DjC(1 : p))

= 0i€i (0p€Dki :

where C(j :) is the computation without variables, if i € D - Di

= 11p€D(11i€I C(j :

8 	Appendices 	 267

by Lemma 37 and well-defmedness assumptions of this theorem

= IIpED011iE1'*p C(j :

Lemma 40

If dom(R) = Vars(C) and R : <var, p> - <var, f(p)>, where R is 1-to-1 from D

to a Euclidean space D' and C is an embedded computation then C ® R is an

embedded computation.

Proof

Let (2) and (1) on page 51 hold for C.

Let

Varclasses' equal Varclasses

and

D' 	equal {f(p):p€D}

Then Vars(C (9 R) Varclasses' x D'

so (1) holds when C is replaced by C ® R and when Varciasses and C are

replaced by Varciasses' and D' respectively. (2) can be deduced as follows:

From Lemma 21,

(IIp€ DC(p)) ® R = 0pE D(C(p) ® RIVajs(C(p)))

and we know Out(C() ® RIv((p))) Varclasses x {f(p)} so let C'(f(p)) be

C(p)® RIV(C..j,)). (This is unambiguous since f is 1-to-1.) Then (II p€ DC(

® R 	= IIp ' E D'C'(p') and so (2) holds.

Theorem 30

8 	Appendices
	 PRMI

CONTROL(:l) is an embedded computation with Varclasses equal to {c1}, D

equal to DTOTAL and C() &iusJ to CONTROL(i : l)(p).

(1) and (2) hold on page 51.

Theorem 31

EDGE is an embedded computation with

Varclasses 	equal to 	U VarclasseS(CONTROL(j: 1))
1€ Nat (n)

D 	 equal to DTOTAL

and

C(,) 	equal to EDGE(,)

Proof

...directly from Theorem 30 and Lemma 39 with D 1 equal to DTOTAL and C(j :

equal to CONTROL(1. l)(p)

Theorem 32

For all j, CONTROL(. 2) is an embedded computation with

Varclasses 	equal to Varclasses(CONTROL(j: 2)) which equals {cj}

D 	 equal to Dy'&j

and

C(,) 	equal to CONTROL(j: 2)(p)

8 	Appendices 	 269

Proof

(1) and (2) hold on page 51

Theorem 33

CONTROL" is an embedded computation with

Varclasses 	equal to 	U Varclasses(CONTROL(1 2))
i€ Nat (n)

D 	 equal to DTOTAL

and

C(p) 	equal to 	"i € l ... n }C 	1 °1-'(i:

Proof

.from Theorem 32 and Lemma 39.

Theorem 34

INTERIOR is an embedded computation with

Varclasses 	equal to Varclasses(CONTROL ...) U Varclasses(DATA')

D 	 equal to DrOTAL

and

C) 	equal to INTEPJOR()

Proof

...immediately from assumptions at the beginning of the chapter and Lemma 39.

8 	Appendices 	 270

Theorem 35

EDGE II Th1TERIOR is an embedded computation with

Varciasses 	equal to

Varclasses(CONTROL") u Varclasses(INTERIOR)

D 	 equal to DTOTAL

and

C(p) 	equal to EDGE(p) II llTE1UOR(p)

• . immediately from assumptions at the beginning of the chapter, Theorem 34

and Lemma 39.

Theorem 36

EDGE' II INTERIOR' is an embedded computation

Proof

..by Theorem 35 and Lemma 40.

Theorem 37

EDGE' II INTERIOR' is a space-time network. (It is obviously an embedded

computation.)

Proof

8 	Appendices 	 271

EDGE' II INTERIOR' = (EDGE II DITERIOR)® RENAME

so, by the discussion starting on page 66, it is sufficient to prove that all the

dependency vectors of INTERIOR are time-consistent with Im. But, by Lemma

38 and the fact that EDGE has no inputs, it is sufficient to prove that all the

dependency vectors of CONTROL" and all the dependency vectors of DATA'

are time-consistent with Im. This follows directly from Theorem 28 and

Theorem 29.

Since EDGE' has no inputs, it is sufficient to prove that INTERIOR is a space-

time network. Because Lemma 38 holds, it is sufficient to prove that all

dependency vectors of INTERIOR are time-consistent with Im. (see 3.4 on

page 65). To prove this it is sufficient to prove that all the dependency vectors

of CONTROL" and all the dependency vectors of DATA' are time-consistent

with Im. This follows from Theorem 28 and Theorem 29.

8 	Appendices 	 272

Appendix H: Proof of some of the well-definedness
assumptions

In this appendix we will prove that the following computations are well-defined when

1 <'<fl.

DATA_M() and DATA(1) 	 (Theorem 38)

CONTROL(1) for i in 11 ... n I

CONTROL(1) II DATA

E (l}CONTROL(j)

(Theorem 39)

for i in { 1...n} (Theorem 40)

(Theorem 41)

Varsek) C Vars(113 € i 14}CONTROL(j)) =0
(Theorem 42)

0Ij € I i ..l}CONTROL(j)) II (CONTROL(1) II DATA<1),

(Theorem 43)

WIj € l ... l}CONTROL)) II (CONTROL(1) II DATA()))\Varset(1),

(Theorem 44)

(CONTROL(1) U DATA(1))\Varset(), 	(Theorem 45)

(11j€ {l ..l}CONTROL(j)) II ((CONTROL(1) II DATA())\Varset())

(Theorem 46)

(IIj € {l ... }CONThOLj)) II DATA)

(Theorem 47)

The well-defmedness of these computations, stated in the assumptions on page 199, is

required for the proof of Theorem 1 on page 200 and Theorem 2 on page 206.

The definitions and assumptions made in Appendix B, Appendix C and Appendix D

will be assumed to hold.

8 	Appendices
	 273

Definitions

Let var and var' be distinct variables in Vars(C); var' depends on var relative to

C if, for some valuations v' and v,

Rel(C)v' and Rel(C)v and vIJn(0 - = vI(Q - but v(var') * v'(var')

In other words, it is possible to affect the value of var' changing the value of just

var, keeping the values of the other inputs constant.

Obviously, no variable depends on any output variable and no input variable

depends on any other variable.

Let Cbea computation when i€ {1...n}.

Let TotVars be 	U Vars(Cj).
i€ Nat (n)

Ifl(C(Q(j : 	:= 0

OUt(C(C)(j: 	:= {<cj, p>}

Rel(C(Q(1.))v 	(v(<c1 , p>) 	= 1 	p * A1(p)

and

	

v(<cj,p>) 	= 0 	p=A1(p))

C(D)(j: := DATA_M()®R_DATA(j p)

C()(: p) 	C(Q(1 : p) II C)(: p)

8 	Appendices 	 274

Assumptions

Assume that there exists and integer function t on BASE s.t.

t(p) 	:5 t(p') 	 Ifl(C1 : p)) fl Out(C(1 : p'))= 0

and

rj is s.t., for all p in BASE,

t(p+r) <t(p)

(In fact, if the assumptions of Appendix F on page 247 hold, then we may take

t(p) to be Im(p).)

z1 is not in Varclasses(DATA_M1)) for all i in { l...n}.

Lemma 41

Let H be a non-empty subset of TotVars. (Note that H must therefore be finite.)

If there is no sequence var1 ... var m s.t.

V511 = V9I and, for all s.t. 1 <j <m, there exists an i in 11 ... n} s.t. var

depends on varj-1 relative to C 1

then

there exists var in H s.t. var doesn't depend on any other variable in H.

Proof

If every variable of H is dependent on some other relative to Cj for some i in

{ 1.. .n }, then it is possible to construct an infinite sequence var1, var2, var3 ... s.t.

8 	Appendices 	 275

var1 depends on var..1 for all i s. t. i>2. If var1 = var for any i and j then there

would be a loop which contradicts the aforementioned property. So there is an

infinite chain of distinct variables, which contradicts H being finite.

Lemma 42

Preamble

Lemma 42 states that, if { Cj : i € 11 .. .n } } has no dependency loops, its is

possible to build up, one element at a time, from a given valuation (vi n) on In(Ij

€ (1}). a valuation (vk) for which Rel(Il € I1..))valk holds.

Statement

If there is no sequence var1 var m s.t.

var 1 =var and, for all js.t. 1 <j<m, there exists aniin{l ... n}s.t.var3

depends on var.. i relative to C 1

then

for all valuations vin on In(II1 € I1)Cj), there exists a chain

va!1, vaI2, val3 ... valk, where k = ITotVarsl - tdom(v 1)I, va!1 = v,

valk is a valuation on TotVars and, for all m from 1 to k inclusive,

valm val

and

for all i in 11...n}, there exists vi on Vars(Cj) s.t. Rel(Cj)v1

8 	Appendices 	 276

and ValmIV((j) dn(va1*m) CZ vi (XXX)

Note that Re1(II 	1...fl)Ci)valk follows from this conclusion. (Note also that v 1

may vary with m.)

By induction on j, with the following inductive hypothesis:

"If j <k then,

for all m less than j,

Vaim c vaIj

for all m less than j,

VøJm exists which satisfies (xxx) with val m substituted for val 	(xxxii)

and

for all m less than j and for all var in dom(val m) and var' in TotVars -

dom(valm),

var does not depend on var' relative to Cj for any i in 11 ... nj 	(xxxiii)

and

for all m less than j,

tdom(valm)I = Idom(vm)I + m - 1" 	 (xxxiv)

Note that the inductive hypothesis implies (xxix) and (xxx) when j = k.

Base case

va!1 = vm.So

8 	Appendices 	 277

holds since j= 1;

holds by Lemma 5 since (dom(vm) fl Vars(Cj)) In(Cj)

holds since var € dom(v) implies that, for all i in { 1 ... nJ, var

Out(C); so for no i does var depend on another variable relative to Cj.

holds trivially.

Inductive case

Assume that <k. (The case where > k is trivial.) We assume that the inductive

hypothesis holds withj replaced byj-l; so there exists va41 satisfying (xxxiii),

(xxxii), (xxxiii), and (xxxiv) with j-1 substituted for j. We will now construct a

Val which satisfies (xxxiii), (xxxii), (xxxiii), and (xxxiv). Let {v1' : i € { i...n} }

be s.t., for all i in {l ... n},

val41 V ars(Cs*i) r dom(va1s*(j1)) vi'

(we know we can do this since, by the inductive hypothesis, (xxxii) holds with

a-i) substituted for j). Let H equal TotVars - dom(valj..1). H * 0 since j-1 <k

so by Lemma 41, we may choose var 3 in H s.t. var is not dependent on any other

element of H relative to C 1 for any i in 11 ... nj. Let g be s.t. var is in Out(C g).

Define vg to be vg '. Define v i (where i * g) as follows:

Case 1 	var Vars(Cj)

vj := v'

Case 2 	var3 € Vars(C1)

In this case, var3 € In(C), since Out(Cg) r Out(C) =0.

So let v1 be the extension by of vj'IJfl(Cj)[varj —+ v(var)] s.t. Rel(Cj)v1;

let

8 	Appendices 	 278

val be val..i u <var, vg(var)>.

We will now show that ()xxiii), (xxxii), (xxxiii), and (xxxiv) hold.

Proof of (xxxiii)

This is trivial since valji val.

1Ib]

It is s.t.p. that, for all i in 11 ... nj,

V8l I (Vars(Ci) r dom(va1*j)) Vj

i.e., for all i in 11 ... n} and for all var in (Vars(C) n dom(val)),

val(var) = v1(var)

By the inductive hypothesis we know that this holds when j is replaced by j-i

and v1 is replaced by vi'. Now

Vars(Cj) n dom(val) = (Vars(Cj) n dom(val..1)) U {varj}

and we know that, for all i in (1.. .n },

val(var) = v1(var)

by definitions of val3 and v. So it is s.t.p. that for all i in {1...n},

var in Vars(Cj) n dom(va1.i) implies

val(var) = v3..1(var) 	 (xxxv)

and

v1(var) 	= v1 '(var) 	 (xxxvi)

since we know that

val..i(var) = v1'(var)

(xxxv) is true by definition of val; (xxxvi) is trivially true if var 4t Vars(C) or

8 	Appendices 	 279

if i = g. Let's assume var E Vars(Cj) and i * g. So var E In(C) since

Out(Cg) (- Out(C) = 0
var does not depend on var (by the inductive hypothesis (with j replaced by j- 1

in (xxxiii)) since var € dom(val1)) and var € TotVars -dom(val(m))) and

Rel(C1)v1 and Rel(C1)v 1 ' hold and

VjI(Csi j)..vaj&j =

so

v(var) 	= v'(var)

Proof of (xxxiii)

Assume var € dom(val) and var' € TotVars - dom(val). It is s.t.p. that var

doesn't depend on var'. Well either var € dom(val..i), in which case, since

TotVars - dom(val) TotVars - dom(val..1), var doesn't depend on var'

relative to C 1 (by the inductive hypothesis) or var = var and var doesn't depend

on var' relative to C 1 because of the way we chose var.

Proof of (xxxiv)

(xxxiv) follows since

Idorn(val)I

Idom(val..1)I + 1

= Idom(val..i)I + I{var3 }I

= Idom(vj)I + (m- 1)+1

= Idom(vth)I + m - 1

Lemma 43

If (C1 : i € {i ... n}} is s.t. there is no sequence var1 var s.t. var 3 depends on

var..1 (relative to C 1 for some i in {1...n}) for all s.t. 1 <j <m and var1 = var

then "i € 11 	is well-defined.

8 	Appendices 	 280

FM

It is sufficient to prove that for all vi n on In(1I1 € I 1}C), there exists a unique

vt s.t. Rel(fl i € (1...fl }C)(vül U V).

Let us choose arbitrary vin.

If var depends on var' relative to some Cj, then let us say var var'. This may

be extended by transitivity. The full extension will be a partial ordering since

var var' and var' > var would together imply that var, var', var is a sequence

which is assumed, in the assumption of the lemma, not to exist.

By Lemma 42, there exists vt s.t. Rel(11i € I1... fl }Ci)v(lt by letting v= equal

vk. We now simply need to prove its uniqueness. Assume that there exists Vt'

s.t. vt' * vt but Rel(11 1 € { l ...n }Ci)(vj U v). So for some i in 11 ... n I

vt'Iv(ci) * v tIV((i) but Rel(Cj)v' and Rel(Ci)vout so the well-

definedness of Cj is contradicted.

Lemma 44

R is 1-to-1 and C®R is well-defined implies that

(var depends on var' relative to C)

(R(var) depends on R(var') relative to C®R)

Proof

L.H.S.

for some v and v', Rel(C)v' and Rel(C)v and

vIln(Q..v& =

8 	Appendices 	 281

but

v(var') * v'(var')

for some v and v' (the same ones) Re1(C(DR)v"R and Rel(C®R)v'R' and

vRI(C®R) - R(var) = V"R'I!n(C®R) - R(var)

but

	

v'R'(R(var')) 	* v 'R'(R(var))

by definition of renaming

R.H.S.

We can prove that R.H.S. = L.H.S. by a similar argument.

Lemma 45

If R is a function on Vars(C) s.t. Rkt(Q is 1-to-1 then is C®R well-defined.

Proof

(cf. proof of Lemma 4)

It is s.t.p. Lemma 45 for renaming functions R for which RI t(= IdI

since every other is the (functional) composition of such a function with a 1-to-

1 renaming function (which is the identity on In(C)), and can then be proved

using Lemma 4 and Lemma 25. By definition of what it means for C®R to be

well-defined, it is s.t.p. that

(for all v and v', Rel(C®R)v and Rel(C®R)v'

	

V'I(C®R) 	= VIh(C®R)

8 	Appendices 	 282

V'It(C(&R) = VI(C®R))
	

(xxxvii)

and, for all valuations v 1 on In(C®R), there exists vout s.t. Re1(C®R)v U V yj

(mviu)

proof of (xxxvii)

As for (i) ofLemma 4

proof of (xxxviii)

Let vin ' equal vjR. Then there exists v' s.t. Rel(C)vj11' u v0 ' so

Rel(C®R)(v u v'RIt(c®R)4), by definition of renaming.

Let vout equal vt'RIt(c®R)4 .

Lemma 46

If there exists an integer function t on BASE s.t.

t(p) <t(p') 	=> 	Out(C,')) r In(C) = 0

then

"p € BASEC(p) is well-defined.

.by Lemma 43

We will assume that the precondition of Lemma 43 doesn't hold for the set

{ C : i € { 1.. .n } }, and derive a contradiction. The inverse of the precondition

of Lemma 43 is equivalent to the statement that there exist var1, ... var, s.t. var

depends on var(j4)mI(m4) relative to C(J) for some Pj in BASE. So

8 	Appendices
	

283

OUt(Cp ((j..1)mijcl(m..1))) C Ifl(C(p j) 	* 0
since var..i € Out(C (,j..l))) and var.. i € In(C (J))

so

t(p((j1mcx1(m_1))) 	< 	t(p) 	for all in 1 1 ... m

so

t(p) 	< 	t(p)

.a contradiction

So the precondition of Lemma 43 holds and the lemma may be applied to

deduce that II E BASEC(P) is well-defined.

Theorem 38

For all i in 1 1 ... n 1, DATA_M(1) and DATA(1) are well-defined.

By induction on i using the inductive hypothesis,

"DATA_M() and DATA(1) are well-defined and R_DATA(1

p)'Out(DATA_M''i(i)) is 1-to-i and there exists and integer function t on BASE s.t.

t(p) 	~ t(p') 	 II1(C)(. p) Out(C)(: 	= 0"

Base case

DATA(l) (which equals DATA) and DATA ,-N(I) are well-defined. DATA

is an embedded computation so the outputs of DATA_M(l) are all of the form

<var, IdB1 E>, SO R_DATA(l p)'Out(DATA_M'i(1)) is 1-to-1. From the

assumptions at the beginning of the appendix, starting on page 274, we know

that there exists an integer function t on BASE s.t.

8 	Appendices
	 284

t(p) 	< t(p')
	

In(C)(1 : p) ('1 Out(C)(1 :

Inductive case

Let us examine the definition of Rel(PIPE_M(1)) on page 197. , + and - are

well-defined functions, so PIPE_M(1) is a well-defined computation. Let us

assume the inductive hypothesis with i replaced by (i-i). It is s.t.p. that

DATA_M 1)®R_DP(1) is well-defined 	 (xxxix)

and that

PIPE—M(1) and DATA_M(1..1)®R_DP() satisfy the condition for Lemma 43

(i.e. where n =2, PIPE_M(1) and C2 = DATA...M(.1)®R_DP() . If the condition

for Lemma 43 is satisfied then DATA_M(1..1)®R_DP(1) II P1PE_M will be

proven well-defined.)

and

(DATA_M(..1)®R_DP() II PIPE_M())®R_DATA(: is well-defined

Up € BASE(DATA_Mç1..l)®R_DP(i) II PIPE_M(1))®R_DATA(p) is well-

defined

dil)

and

there exists an integer function t on BASE s.t.

t(p) 	:!~ t(p') 	 In(C)(: p)) OUt(C(t)(i : p')) = 0

and

8 	Appendices 	 285

(xliii)

Proof of (xxxix)

This is easily proved by Lemma 4.

Proof of (xl)

It is s.t.p. an absence of dependency loops. The only variables of DATA_M

l)®R_DP() II P1PE_M which can possibly participate in a dependency loop

are those in (In(DATA_M1)®R_DP(1)) r Out(P11PE_M())) u (In(PIPE_M(0

1) Out(DATA_Ml)(VR_DP(1))), which equals {<a1, IdBASE>, <zi, IdBASE>}

(if r1 * 0). It is s.t.p. that <a1, IdBASE> doesn't depend on <z, IdBASE> relative

to DATA_M(.l)®R_DP(1) (of which <a1 , IdBE> is an output and <z1,

IdBASE> is an input) since then no dependency loop can be formed. By Lemma

44, it is s.t.p. that <a1, IdBASE> doesn't depend on <a 1, Ai> relative to

DATA_M1). This can be proved by induction, using the inductive hypothesis,

"j < i-i => <a1, IdBASE> doesn't depend on <a 1, IdBASE> relative to

DATA_M'j)" and Lemma 44. We need to assume, however that <aj, IdBE>

doesn't depend on <aj, Ai> relative to DATA_M(1).

Proof of (xli)

Out((DATA_Ml)®RDP()) II PIPE —MO))

= Out(DATAM(..1)®R_DP()) u Out(PIPE_M(1))

by definition of composition

= Out(DATA_M(1..1)) u {<zj, IdBASE>I

by definition of R_DP(1) and PIPE..M(1)

R_DATA(1 : p)'Out((DATA_M'*(i-1)®R_DP'*(i)) II PIPE_M*(i))

= R_DATA(i : p)IOut(DATA_M'*(i.1))[<Zi , IdBASE> _ <zi g p>]

by the above re-writing

8 	Appendices 	 286

= R_DATA((1..l) p)I0ut((DATA_Ml01))1<zi IdBASE> <z1, p>]

This is 1-to-1, since by the inductive hypothesis R_DATA((1..l)

p)k)ut((DATA_M'i(i-1)) is 1-to-1, and z1 is not in Varc1asses(DATA_M 1..1)), by

the assumption at the beginning of these appendices. Therefore, by Lemma 45,

(DATA_M(1.1)®R_DP(1) II PIPE_M())®R_DATA(1 p)

is well-defined.

Proof of (xlii) and (xliii)

If we can prove (xliii), then (xlii) follows by Lemma 46 and the definition of

Cij)(1 :) on page 273.

Assume that (xliii) holds with i replaced by i-i, and assume that

t(p) 	< t(p')

We will show that

In(C)(.)) n Out(C(rJ)(. i,')) 	= 0 	 (xliv)

We know

n Out(C)(1.1 : p')) 	= 0

Now if we can prove that

In(C)(i) Cp) - In(C)(1..1 p)) u {<cj, p>, <zj, p+rj>} 	 (xlv)

and

Out(Cj)(1 : p')) Out(C(r,)(j_l : p')) u { <z, p'> } 	 (xlvi)

8 	Appendices 	 287

then since, by the assumptions at the start of this appendix, rj is such that

t(p+r) < t(p) for all p in BASE

then

p' * p + ri

so (xliv) holds.

Proof of (xlvi)

Out(C)(: n ')) 	=

Out((DAT&M(I..l)®R_DP() II P1PEM())®R_DATA(1
:

by definition

= ran(R_DATA(1 : p')t(ATA_M(i-l)(&R_DP(i)) II PIPE_M*(i)))

by definition of renaming

= ran(R_DATA(1 : pOut(DATA_M&(i1))kZi, IdBAsE> <Z' p>])

by proof of (xli)

= Out(C(J))(..l n')) U {<z, p'>}

by definition of Out(C)(..1

Proof of (xlv)

k(C(D)(i :))= ran(R_DATA(1 : p)'In(DATA_M'*(i))) - Out(C)(1 :

= ran(R_DATA(
:
p)1Jn(DATA_M'*(i))) - (Out(C)(..l :)) U {<z1, p>})

by similar proof to that of (xlvi)

In(DATA_M(1)) 	r 	_DP(1)IIATAM(1. 1)))

U {<cj, IdBASE>, <zi, p - p+rj>, <a1, IdBASE>}

- Out(DATA_M(1 1)®R_DP(1)) u Out(PIPE_M(1))

by definition of composition and PIPE—M(1)

ran(R_DPCl)I)ATAM(1..l)))

U {<cj, IdBASE>, <zi' P p+r1>}

8 	Appendices 	 288

since <a1, IdBE> € Out(DATA_M(1.1)®R_DP(1))

So

Ifl(C(D)(i : p)) c ran(R_DATA(1 : P))(r(1 _DPCO 1Ifl(DATA_M(i.1)))

U { <cj, IdBE>, <Zj, p -* p+rj> }))

- (Out(Cij)(..1 : p)) U { <Z, p> })

ran(RDATA(1. p))

(Jn(DATA_M1))

U (<C1 , IdBASE>, <z1, p -3 p+r1>, <z1, IdBE>})

- (Out(C(D)(j..l : p)) U { <Zj, p>})

by definition of R_DP(1)

= ran(R_DATA1))Ifl(DATA_M(1 4)))

U {<cj, p>, <zj, p-i-r1>, <zj, p>})

- (Out(C(t))(i..l : p)) U {<zj, p>})

by Lemma 6

(Ifl(Cj1_1 : p)) U Out(C(D)(j : p))

U { <zj, p> } U { <Cj, p>, <z1, p+r1> })

- (Out(Cx..i :)) U {<z, p>})

by definition of renaming

= In(CCD)(1..1)) U {<cj, p>, <zj, p+rj>}

Theorem 39

CONTROL(1) is well-defined for all i in 11 .. .n }

Proof

It is s.t.p. that Rel(CONTROL(1)) is functional i.e. for all valuations vin on

In(CONTROL(1)), there exists a vout s.t.

Re1(CONTROL(I))v U v

8 	Appendices 	 289

and, for all valuations v on Vars(CONTROL(1)),

Rel(CONTROL(1))v and VIj(C flOL"(i)) = vin

-

VICOflOL(j)) = Vt

From the definition of Rel(CONTRO4)), there exists a unique v s.t.

Rel(CONTRO41))v. In(CONTROL(1)) =0 so the above statements hold.

Lemma 47

If there exists a partial order> on {C: i 11 ... n I I such that

In(C) n Out(C) * 0 =' 	ci> ci

then Ili € Ii...1ci is well-defined.

Proof

It is s.t.p. the hypothesis of Lemma 43, assuming the existence of such a partial

order. Assume that there exists a path var1 ... var m such that var depends on

var..i and var1 = varm. Let var be in the output of Cj so that var is in the input

Of Ci(0+1)mod(m..1)) so

CNj > Ci(0+ 1)mod(m..1)) 	for all j in { 1...m-l}

so

q- '. I >

.a contradiction.

So there does not exist a path var1 ... var m such that var depends on var.i and

var1 = varm; so the hypothesis of Lemma 43 holds.

8 	Appendices 	 290

CONTROL(1) II DATA is well-defined for all i in 1 1 ... n)

Proof

This theorem follows from Lemma 47 and Theorem 39 since

In(CONrROL(1)) r Out(DATA(I)) = 	0

Theorem 41

Ili € {l . }CONTROL() is well-defined for all i in 1 1 ... n)

This theorem follows from Lemma 47 and Theorem 39 since

In(CONTROL(1)) = 0 	for all i in { 1. ..n }

Theorem 42

Varset() C Vars(II € {l..i-l}CONTRO4j)) = 0 	for all i in {2...n}

Varclasses(11j E {l ... j..1}CONTROL(j)) 	= {cj: 1 <j :!5 i-1}

and

{var: there exists p s.t. <var, p> € Varset} = {zj, cj. a}

Theorem 42 follows.

8 	Appendices 	 291

Theorem 43

(Ij € I1...i.1 }CONTROLj))II(CONTRO4)IIDATA()) is well-defined for all i in

{2...n}.

Proof

In(II E {ll}CONTRO4j)) = 0

so

In(II € { i...i..i }CONTRO4j)) r' Out(CONTROL(1) II DATA) = 0

The theorem follows by Lemma 47.

Lemma 48

If, for all var in Varset and for all var' in Vars(C)-Varset, var' is not dependent

on var relative to C, then C'Varset is well-defined.

Assume CVarset is not well-defined. So by Lemma 24 there exist v and v' s.t.

Rel(C) v and Rel(C)v'

VI(Q. Varset
=V'

 IIn(Q Varset

vIt(Varset * v'Ic Varset

but

Let v and v' be such a pair with minimal number of differences on In(C). Let

8 	Appendices 	 292

var on In(C) be s.t.

v(var) * v'(var)

Let v" be s.t.

V"IJ(Q - (var) 	= V'IJn(C) - (var)

and

v"(var) = v(var)

and

Rel(C)v"

then

V"I()ij(Q - Varset 	= v'I(Q - Varset

since no element of Out(C)-Varset depends on var; and, since the number of

differences between v" and v on In(C) is less than between v' and v and

V"I(Q - Varset 	= ViJj(Q - Varset

we know that

V"Iijt(Q - Varset 	= vI 	- Varset

so

vIr - Varset 	= v'I0(Q - Varset

contradicting the assumption that v and v' are such a pair; so CVarset must be

well-defined.

Lemma 49

if

Cj has var as an input

and

for all var' in Out(C), var' doesn't depend on var relative to Cj

and

for alljin(1 ... n}s.t.j*i,var it Vars(C)

8 	Appendices
	 293

and

Ili c 11 •• 1C1 is well-defined

then

for all var' in OUt(lli €

var' doesn't depend on var relative to Ili €

We know that var E In(111 € 11)C) since

var € In(C1)

and

var € U Out(C)
j*i

.Let v and v' bes.t.

Rel(II1 E 11}Cj)V

and

Rel(111 €

v)(In(111 € 11 1Cj)-var) = v')(in(111 € I 1)C)-var).

Now assume that v(var') * v'(var') for some var' in OUtOli € 	11 1C1). Consider

v" defineds.t.

v"(var") = v(var") when var" * var

v"(var") = v'(var") when var"=var

Now

v' ')([n(C1)-var) = v)(In(Cj)-var)

and

v' ')(Out(Cj))
	

= v)(Out(C1))

8 	Appendices 	 294

so

Rel(Cj)v' ')Vars(Cj)

since no output of Cj depends on var.

But

v")In(II 	(1 .11 }Cj) 	= v')In(II1 E {1 ... n)Ci)

since

V)(InOli € I 11Cj)-var) = v')(1n(II €

so v" = v' since Ili € 	is well-defined. Hence

v(var') 	= v"(var') = v'(var')

...which contradicts the assumption that v(var') * v'(var'); so v(var') = v'(var')

for all var' in Out(II { 1}Cj). Therefore, for all var' in Out(II € 1jCj), var'

doesn't depend on var relative to Ili €

Lemma 50

CONTROL()IIDATA() = 11p € BASEC(i : p)

Proof

CONTROL() 	= p € BASEC(C)(i p)

from the definition of C(C)(: on page 273

DATA() 	= Hp € BASEC(D)(1 : p)

from the definition of Cj)(1 : ,) on page 273

In(CONTROL(1)IIDATA(1)) = 111(Hp € BASEC(cD)(i :

Out(CONTROL(1)IIDATA()) = Out(II € BASEC(cD)(1 :

Re1(CONTROL(1)IIDATA()) 	Rel(II € BASEC(cD)(i:

8 	Appendices 	 295

so it is sufficient to prove that C(CD)CI: : is well-defined for all p. This can be

done using Lemma 47: we may say

C(D)(: p) 	C(Q(1. p)

since

p)) fl Out(C(Q(: d = 0

Lemma 51

Let A be s.t. var it Vars(A);

let C be s.t. var Vars(C) and In(C) =0
let B be s.t., for all var' in Out(B) and v, v', valuations on Vars(B II C),

Rel(B II Qv

and

Rel(B II Qv'

and

vI(B) - var = V'IIfl(B) - var implies v(var') = v'(var')

(Note that the condition involving B is a weaker one than non-dependency of

var' on var relative to B, since Rel(B U Qv and Rel(B II Qv' must hold.)

Then for all var' in Out(A II B), var' doesn't depend on var relative to (A II B) II

C.

Proof

Assume the contrary to Lemma 51, i.e. that there exist v, v' and var' in Out(A)

s.t.

Rel(B II Qv

and

8 	Appendices 	 296

Rel(B II Qv'

and

VI(B) - var = V 1 1n(B) - var

but 	v(var') # v'(var')

Let v" be a valuation on Vars(B II C) s.t.

v"(var") = v(var")

(if var" * var and var" € In(B) or var" € Vars(C))

v''(var") = v'(var'')

(if var" = var)

and

Rel(B)v' 'Vars(B)

Since In(C) = 0, we know that extending v" to Var(B) from In(B) doesn't

interfere with C. so let us do this in such a way that Rel(B)v' "Vs) holds; we

know byLemma 5 that we can do this.

Rel(B)v' 'vS(B) and Rel(C)v"Iv(Q and

V"IV(B)var = VIV(var

so

v"(var') = v(var')

by the assumption of the lemma.

We may extend v" onto Vars(A) by stating that v"(var) = v'(var) for var in

Vars(A). Then

V' "In((A II B) II Q= V'IJn((A II B) II C)

since

In(C) = 0
and

Rel((A II B) II Qv"

and

8 	Appendices 	 297

VkJ a f3>.v& = VIV(B).. v& = VIv(B).. v&

and

v"(var) = v'(var)

so

v''(var') = v'(var')

since ((A II B) II C) is well-defined.

So

v'(var') 	= v(var')

.a contradiction. So Lemma 51 holds.

Theorem 44

((I € { i ... i-1 ICONTROLO))I[(CONTR04i)IIDATA(i)))\Varset(i) is well-defined

for all un {2...n}.

By Lemma 48, it is sufficient to prove that

for all var in Varset(1)

and

for all var' in

Vars((Ij € Ii ... i..i)CONTROL(j))II(CONTROL(1)IIDATA())) - Varset()

var' is not dependent on var relative to

(11j €)CONTROL))II(CONTROL(1)IIDATA()).

Since all the elements of Varset(1) are in

Out((Ij € { 	}CONTROL(j))II(CONTROL()IIDATA()))

except those in

{<z, p+rj> : p € BASE} - {< z1, p>: p € BASE}

8 	Appendices 	 298

it is sufficient to prove that

for all varm{<zj,p+r1>:pE BASE }-{<zj,p>:p€ BASE}

and

for all var' in Out((II E {l ... i..l }CONTROL(j))II(CONTROL()tIDATA()))

var' 	doesn't 	depend 	on 	var 	relative 	to 	(IIj 	€ 	{ i...j

l)CONTRO4j))II(CONTROL(j)IIDATAj))

Since var (which equals <zj, p+r1>, say) Vars(Ij € (l .. l}CONTROL(j)), by

Lemma 49 it is sufficient to prove that, for all var' in Out(CONTROL(1) II

DATA(1)), var' doesn't depend on var relative to CONTROL()IIDATA(1)

(xlvii)

We will prove using Lemma 50; by Lemma 49 it is sufficient to prove

	

<zj, p+r1> 4t Vars(C(Q))(1 p')) for all p' in BASE s.t. p' * p 	(xlviii)

and

	

for all var' in OUt(C(CD)(j : p)) var' doesn't depend on <z 1 , p+r1>
	

(xlix)

Proof of (xlviii)

Vars(Cij)(j : n ')) 	= ran(R_DATA(1 : p') 1yars(DATA_M'*(i)))

Vars(DATA_M()) = Vars(DATA1)®R_DP()) u Vars(PIPE_M(1))

Vars(DATA_M1)) U {<z1, IdBASE>}

U { <cj, IdBE>, <Zi, p -+ p+r1>,

<zj, IdBASE>, <a1, IdBA&>}

So

Vars(C(t)(j : n')) 	ran(RDATA(j : p')'Vars(DATA_M*(i-l)))

U {<cj, p5, <zj, p'+rj>, <z1 , p5, <aj, p5}

by Lemma 6 and Lemma 17

8 	Appendices
	 299

So

Vars(C(cD)(i: n ')) 	c V&s(C(D)(i
: n ')) U Va.rS(C(Q(i :

	

c {<cj, i,>, <, 	<, >, <,

U ran(R_DATA(1 : p)'Vars(DATA_M(i-1)))

(xlviii) follows from the fact that

p*p, ,

p+r1BASE (so p+rj*p')

and

zj Varclasses(DATA_M<j1))

Proof of (xlix)

Case 1 	V&' € Out(C(c)(i :

So var' = <Cj, p>. Let v and v' be s.t.

VIJ(((Q))(j : p)) - var = V'I(((Q))(j : p)) - var

v(<cj,p>)O 	p=A1(p)

v' (<c1, p>) =0

v(<cj,p>)1 	p*z(p)

v'(<cj,p>)1

(In fact p = Ai(p) since, if not, by assumption at start of Appendix D,

p + r1 € Cosetj(p)

which implies

p+rj€ BASE

.a contradiction)

So v(var') 	= v'(var') = 0

8 	Appendices
	 300

Case 2

var' 	E Out(C(rJ)(j:

Now

C(D)(i. p) = (DATA(..1)®R_DPç1)®R_DATA(j :)) II

(PIPE_M(i)®R_DATA(i :

<Zi, p> 4t (DATA(..1)®R_DPç1)®R_DATA(1 :

and

= 0

So, by Lemma 51 with

A equal to DATA(1..1)®R_DPç1)®R_DATA(1 : p)

B equal to PIPE-M(i)OR-DATA(: p)

and

C equal to C((1. p)'

it is sufficient to prove...

Claim

For all var' in Out(PIPE_M()®R_DATA(i :)) and v, v' valuations on

Vars(PIPE_M(j)®R_DATA(j: p) II C(c)(:

if

Rel(PIPE_M(1)®R_DATA(1 : p) II C(Q(1 : p))V

and

Rel(PIPE_M()®R_DATA(: p) 11 C(C)(i :

and

v)(ln(PIPE_M(i)®R_DATA(i : p))<Zj, p + r1> =

v)(In(PIPE_M(i)®R_DATA(i : p))<Zj, p + r1>

then

8 	Appendices 	 301

v(var') 	= v'(var')

Proof of claim

var' must be <z1, p., since this is the only element of PIPE_M(i)®R_DATA(i :

Now

v(<z, p>) = v(<z1, p+r1>)*v(<cj, p>) + 	p>)*v(.<aj, p>)

= v(<a, p>)

since v(<cj, p>) =0

= v'(<a1, p>)

= v'(<z, pIr1>)*v'(<cj, p>) + v'(<cj, p>)*v'(.<aj, p>)

since v(<cj, p>) =0

= v'(<z1,p>)

Theorem 45

(CONTROL(1) II DATA() \ Varset is well-defined when 1 <i < n

Proof

It is sufficient to prove that, for all var in Varse¼) and for all var' in

Out((CONTROL(1) II DATA) \ Varset), var' doesn't depend on var relative

to (CONTROL(1) II DATA). This is a corollary of in Theorem 44.

Theorem 46

(IIi € ii 1..l)CONTROL(j)) II ((CONTROL(1) II DATA())\Varset(1))

when 1 <i -~ n

8 	Appendices 	 302

Proof

.by Lemma 47 with

(I € (1 ... 1) CONTROL(j))> ((CONTROL() II DATA(1))\Varset())

Theorem 47

(Ili € (1 ... i)C 	1'1OLj)) II DATA) 	 when 1 <i < n

Proof

..by Lemma 47 with (IIj E {l•••} CONTROL(j)) > DATA(i)

