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Abstract 

A systolic array is essentially a parallel processor which consists of a grid of locally-

connected sub-processors which receive, process and pump out data synchronously in 

such a way that the pattern of data-flow to and from each processor is identical to the 

flow to and from the other processors. Such arrays are repetitive and modular and 

require little length of communication interconnection, so that they are relatively 

simple to design and are amenable to efficient VLSI implementation. The systolic 

architecture has been found suitable for implementing many of the algorithms used in 

the field of signal- and image-processing. 

A formal design method is a well-defined process for constructing, given a well-defined 

function from a certain class, a well-defined object (e.g. a design) which performs that 

function. When proven correct, such methods are useful for designing equipment which 

is safety-critical or where a design fault discovered after manufacture would be 

expensive. 

This thesis presents a formal design method for producing high-level implementations 

for certain signal-processing and other algorithms. These high-level implementations 

can themselves usually be easily implemented as systolic arrays. 

As a necessary preliminary to the method, a calculus is defined. The basic concept, that 

of a "computation", is powerful enough to express both abstract algorithms and those 

whose suboperations have been assigned a place and a time to execute. Computations 

may be composed or abstracted (by having their variables hidden) or may have their 

variables renamed. The "simulation" of one computation by another is defined. Using 

this calculus it is possible to formalise concepts like "dependency" (of data or control) 

and "system of recurrence equations", which often appear in the literature on systolic 

array design. The design method is then presented. It consists of five stages: pipelining 

of data dependencies, scheduling, pipelining of the control variables, allocation of 

subprocessors to the subcomputations, and the final stage (in which the design is 

constructed). The main concepts are not new, but here they have been formalised, 
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arranged and linked in a clearly defined way. The output of the method is a high-level 

design description which defines the functionality of each subprocessor in the array (for 

both data and control). It also defines scheduling and allocation of all the operations 

which are to be executed and the data and control input requirements of the array. 

The method is used to design a simple one-dimensional systolic convolver and then to 

design a more complicated two-dimensional systolic array which performs Given's 

algorithm for QR-factorisation, a task required in certain signal-processing applications 

such as adaptive estimation and bearing measurement. Alternative designs are briefly 

discussed. For the convolver and the two arrays for QR-factorisation, sketches of the 

architectures are given but these are hand-produced and are not the product of the 

method. 

A detailed proof is given that, subject to assumptions about the well-deflnedness of the 

computations handled and created, the design method will produce only designs which 

meet their specifications; however the final high-level design may imply a low-level 

implementation which may contain an interconnection structure which is arguably non-

local. A proof is given that the well-defmedness conditions hold which are required for 

the validation of data-pipelining. 
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Terminology 
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General 

The hand symbol "to"  signifies that what follows is a reference to 

a proposition and its proof in the appendices. 

The symbol ""is used to express the composition of two functions. 

So (v'RENAME)var v(RENAME(var)). 

The symbol "" signifies that the term or bracketed expression 

immediately following it is to be read as being a subscript of the one 

preceding it. 

The symbol ")" is to be read as "I" followed by ... 

dQLzI(F) denotes the domain of a function F, and n(F) denotes its 

range. The domain of a function written "p - e", where e is an 

expression in p, will often not be stated when it is implied by the 

context. 

Let  be a function from S to  and let S' be asubset of S. Then AS ,  

is the function from S' to T such that vIa' (s') v(s') for all s' in S'. 

IfFisa function then F[x -+ y] is defined to be the function with 

the same range as F and domain dom(F)L){x} which satisfies the 

following equations: 

F[x —y](x)y 

F[x —* y](x') = F(x') when x' * x 
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A functional is a function which takes a function as one of its 

arguments. 

• 	w.ri. stands for "with respect to". 

• 	LL stands for "such that". 

n.,p, stands for "not proven". 

• 	"Integer" is the set of integers. 

• 	"Real" is the set of real numbers. 

• 	Nat(n) is the set of natural numbers from 1 to n inclusive. Nat(n) 

may be written {l ... n}. 

• 	Ids is function which has domain S and maps every element of S to 

itself. 

Vector spaces 

A vector space over a field <F, +, > (e.g. the field of real numbers 

with the usual addition and multiplication operations) is a triple <V. 

, (&> where 

<V > is an Abelian group 

®:FxV-3V  and, for all a,€F and u,v€V, 

— 

aøu and a*P are usually written au and ap respectively, and the 

same sign may be used for ED and + since no ambiguity can arise. 
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However there are conceptually four distinct operations, which is 

why four symbols were used in this definition. The term "vector 

spacenlay belooSelyuSedto refer Ytotht'v'wd the  

field are taken as read. Ditto with the term "field". 

A linear transformation  from a vector space <S i,  , ®> over <F, 

+, > to a vector space <S2, 92 , 0
2>  over <F, +, *>is a function T 

from S1 to S2 which satisfies 

T(v u) = T(v) 02 T(u) and 

T( (9j v) = X ®2 T(v) 

for all V and u in S1 and all A. in F. 

Let the set of linear transformations from S1 to S2 be called L. L 

itself forms a vector space <L, OL , 
®> over <F, +, > where 

(T 	U)v = T(v) 2 U(v) 

((x ®L  T)v = a (92 (T(v)) 

for all  and  inLand all ainF. 

A linear transformation is singular iff it is not invertible. 

A map, p - A(p) + b, from a vector space to a vector space,  where 

A is a linear transformation and b is a constant vector is called affine. 

nifme map p _,A(p) + bis  defined tobeatrafbA=I 

The null space of a linear transformation T is {u T(u) = O}. 

Let lbe an indexing set. The set {v1: iE I} V is said to be linearly 

independent if El E 1 v1 =OXjO for all i€ I. 
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Let Ibean indexing set. The set {v:iE I}VspansViff, for all 

v€V,v=Z.j € i)jvj for some set {A.j:iEI}. 

A basis for V is a linearly independent set which spans V. There is 

atheorein which states that ifVhas afinite basis then all bases for 

V have the same number of elements. 

A vector space V is said to be n-dimensional iff it has an n-element 

basis. 

The dimension of the null-space of a linear transformation is called 

its nullity. 

A matrix is (informally) an array of elements of identical type. The 

following is a 2x3 matrix with integer elements: 

23-63  1 
[490] 

For a matrix A, "A(i, j)" stands for the element in the i th  row and the 

th column. 

The transpose of an nxm matrix A is the mxn matrix, which may be 

written AT  satisfying the following property: For all pairs <i, j> in 

Nat(n)xNat(m), A(i, j) = AT(j, i) 

The set of nxm matrices with elements drawn from a certain field 

form a vector space over that field. Given an ordered basis for an n-

dimensional vector space over a field, one can find a natural 

association between vectors in that space and nxl matrices with 

elements drawn from that field.; nxl matrices are called column (n-

)vectors. Similarly any n-dimensional space over a field may be 
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identified with the space of lxn matrices with elements drawn from 

the field; these are called row (n-) vectors. Given ordered bases for 

an n-dimensional vector space (S1) over a field, and an m- 

dimensional vector space (S2) one can find a natural association 

between the space formed by the set of linear transformations from 

S1 to s2  and the space of mxn matrices.The 1x2 matrix [ij] may be 

written [i, j] in order to separate the two elements visually; lxn 

matrices may be punctuated in a similar way. 

The product of an mxn matrix A and an nxp matrix B is the mxp 

matrix C, where C(i, j) := Zk to  A(i, k)B(k, j) The product of 

matrices A and B is written A.B, or just AB. 

A matrix A is said to be orthogonal if AAT  =L 

A matrix A is said to be upper-triangular if A(i, j) =0 whenever 

i <j. 

The determinant of an nxn matrix A, written "det(A)", is defined 

recursively as follows: if A is the lxi matrix [a] then det(A) = a; 

otherwise det(A) = j=i ten(lY44A(1,j)*det(A1l,j), where AIi is 

the matrix obtained from A by deleting its 1g  row and jth  column. 

Lattices 

• 	Let V be a vector space and let A equal { aj: 1 	n } be a subset of 

V; then L, defined as follows, is a lattice: 

L := ( u1a1 + u2a2 + .....+ ua: u1, u2 ... u are integers} 

• 	A (defined above) is said to be an 1-basis for L. (There may be other 

1-bases for L, for example, (a1': 1 -~i~w 	 v(ij)aj and    

v is an integer matrix with det(v) equal to 1.) 
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Let T be a linear transformation from V to another vector space U; 

let the null space of T be N. Then the null lattice of T (relative to the 

lattice L) is defined to be N n L. 
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Glossary of Terms 

AR: 	 Afflne Recurrence (see page 57) 

ARMA: 	 "Auto-Regressive Moving Average": descriptive of a filter 

whose current output is a linear combination of recent inputs and 

outputs 

CAD: 
	 Computer-Aided Design 

CCS: 	 Calculus of Communicating Systems: a formalism for 

describing the behaviour of parallel, interacting systems (see 

page 32) 

CIRCAL: 	a formalism with a similar style and purpose to CCS (see page 

32) 

CSP: 	 Communication Sequential Processes: a formalism with a 

similar style and purpose to CCS (see page 32) 

CURE: 	 Conditional Uniform Recurrence Equation (see page 71) 

LRA: 	 Linear Recurrence Algorithm (see page 34) 

M[MD: 	 Multiple-Instruction-Multiple-Data: descriptive of a certain type 

of asynchronous parallel architecture in which each processor 

has its own control unit and memory (see page 6) 

RIA: 	 Regular Iterative Algorithm (see page 34) 

SA: 	 Systolic Array 

SARE: 	 System of Afflne Recurrence Equations (see page 34) 



SIMD: 	 Single-instruction-Multiple-Data: descriptive of a certain type 

of synchronous parallel architecture which operates by the 

broadcasting of a sequence of instructions to a set of processors. 

The processors generally process separate data streams (see page 

6) 

SURE: 	 System of Uniform Recurrence Equations (see page 33) 

SRE: 	 System of Recurrence Equations (see page 71) 

QR-factorisation: 	the task of finding an upper-triangular matrix which, when 

premultiplied by some orthogonal matrix, will produce a given 

(square) matrix (see page 119) 

UR: 	 Uniform Recurrence (see page 57) 

URE: 	 Uniform Recurrence Equation (see page 71) 

VLSI: 	 Very Large Scale Integration 
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1 Introduction 

1.1 Subject of Thesis 

Many computing tasks, especially from the areas of one-dimensional signal- and two-

dimensional image-processing, have the following characteristics: 

The task needs to be done quickly. 

There are algorithms for performing it which can be parallelised. 

Characteristic (2) can be used to satisfy requirement (1). Some tasks have an algorithm 

which will run sufficiently fast on a general purpose parallel machine. However, for 

real-time processing a speed of the order of 1 billion instructions per second may be 

necessary; in such cases it is often desirable to design a custom parallel architecture 

which can be implemented efficiently using VLSI. There is a certain type of parallel 

architecture which is particularly suitable for implementing signal- and image-

processing algorithms and is also especially suited to VLSI: the systolic array. 

The pioneering work on systolic arrays was done by H.T.Kung and C.E.Leiserson in 

the late seventies [HTKun78], though the algorithms which were found to be suitable 

for running on them had been studied previously [Karp67]. In [HTKun78], Kung and 

Leiserson concisely describe a "systolic system" as "a set of processors which 

rhythmically compute and pass data through the system". The synchronised "pumping" 

of data through such a system resembles the action of the heart on blood within the 

circulatory system, hence the term "systolic". 

Regarding uses of the systolic architecture, Kung and Leiserson themselves showed 

that systolic arrays could be built which would perform certain important tasks in the 

field of linear algebra, such as band-matrix multiplication, triangularisation and back-

substitution [HTKun78]. In the last decade systolic arrays have been designed which 

implement many of the algorithms used in radar-, sonar-, image-, signal- and speech-

processing [SYKun88, McW921. 
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Also over the last decade much work has been done to develop mathematically-based 

languages which can be used to encapsulate hardware design specifications formally 

and precisely, and to develop mathematical techniques for proving that hardware 

designs meet those specifications. These languages and techniques are known as 

"formal methods" or "formal verification". To have a proof of design-correctness is 

particularly desirable for safety-critical hardware. It is possible to integrate the tasks of 

design and verification so that each step of the design process is verified as it is taken. 

This benefits the designer by alerting him to design errors at an early stage, avoiding 

costly redesign, and it also benefits the verifier since he is not fed with an 

uncommented, unstructured, design which he must verify without knowing the 

rationale behind it. 

Though a validated design process will warn the designer off incorrect designs, it may 

still be hard for him to find a correct one, due to the plethora of red-herring options. 

However, if he is willing to forego some freedom, e.g. by restricting himself to a certain 

architecture, then he can use a specialized formal design method in which some of the 

steps have been frozen, leaving fewer steps to choose and verify, thereby simplifying 

his task. (Of course the architecture must be appropriate to the algorithm to be 

implemented, otherwise the task of finding a correct design may be made more difficult 

or impossible.) This thesis presents one such specialized method - to be used in the 

design of systolic arrays. 

1.2 Systolic Arrays 

1.2.1 What is a systolic array? 

Several researchers have given more or less precise definitions of the set of systolic 

arrays (SAs) [HTKun78, U1184, Rao85, SYKun88]. In this thesis the following 

definition is adopted: 

A systolic array contains a set of processors. 

(locality) The interconnections between these processors, and between the 
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processors and the outside world, are all local. 

(homogeneity) The network formed by the processors and their 

interconnections is regular and homogeneous, at least in the interior of the 

network, and may be extended indefinitely. The type of each processor is 

ignored when examining the network for homogeneity. 

(synchronisation) The operation of the processors is synchronised by a global 

clock. 

(pacing of data) The maximum speed at which information can travel within the 

array is one processor per clock tick (or cycle); i.e. a datum which is output by 

a processor during a particular clock-cycle cannot affect the output of any other 

processor during that cycle; i.e. cascading is outlawed. 

These properties constitute an informal definition of the set of systolic arrays. For the 

purposes of this thesis, the wires used for inputting and outputting signals to and from 

the array are ignored when assessing its systolicity. A formal definition of a "strictly 

systolic computation" will appear at the end of Chapter 3. A strictly systolic 

computation can usually be neatly implemented on a systolic array in a straightforward 

manner. However, it is possible that the natural implementation may not have a local 

interconnection structure, if by "local" it is meant that the only connections are between 

nearest-neighbours or second-nearest neighbours (arguably a good definition). A 

property which the implementation will have is that the patterns of input wires toy 

two subprocessors will have the same shape, i.e. they will be congruent, in the 

geometrical sense. In the literature, the arrays termed "systolic" have had both of the 

aforementioned properties, as in fact do the arrays described in this document, but my 

method only guarantees that the latter property will hold. Figure 1.1 shows four 

interconnection structures which would be allowed by my method; the bottom two 

structures include directly-connected processor-pairs which are not nearest-neighbour 

or even second-nearest-neighbour. 
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Figure 1.1 Interconnection structures allowed by my method 

Figure 1.2 shows a sketch of a systolic array for a simulated annealing algorithm which 

uses the first-order Markov random field assumption to restore distorted images (see 

[SYKun88] pp. 592-599). Each processing element (subprocessor) stores an estimated 

value for a particular pixel in the undistorted image. As an initial estimate, the value of 

the corresponding pixel in the distorted image is used. The pixel-value-estimates are 

repeatedly updated using the value-estimates of the four nearest-neighbour pixels. A 

processing element / pixel XL is classified as odd or even depending on whether (i + j) 

is odd or even. At the beginning of each time- step, each processing element receives 

from its neighbours the current value-estimates of their corresponding pixels. If the 

parity (even/odd) of the processing element is the opposite of the parity of the time-step 

then the value-estimate of its pixel is updated; otherwise it is left unchanged. This 

means that when a processing element is updating its nearest neighbours are resting and 

vice-versa. The 50961  processing element utilization can be increased by "processing 

element sharing". Similar arrays may be used to implement other algorithms such as the 

Jacobi method, the Gauss-Siedel algorithm and the Successive Over-relaxation 

algorithms for solving elliptical partial differential equations (see [SYKun88] p.  598). 
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0 

0 

Figure 12 A systolic array for image restoration 

1.2.2 How do SAs compare with other parallel processors? 

First cousins to the systolic arrays are the wavefront arravs[SYKun88]. A wavefront 

array is like a systolic array, except that it is not clock-driven but data-driven, i.e. an 

operation takes place on a processor as soon as all its required inputs have arrived and 

the processor is available. Wavefront arrays are therefore asynchronous. The systolic 

and wavefront architectures are computationally equivalent That is, if an algBithm can 

be executed by a systolic array then it can also be executed by a wavefront array, and 

vice versa. 

Related to the systolic and wavefront arrays are processors of the following two types: 

Single Instruction Multiple Data (SIMD) and Multiple Instruction Multiple Data 
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(MIMD)[Rob841. A SIMD array is similar to a systolic array except that control signals 

(instructions) are broadcast to the array: at each clock period all the processing elements 

receive an identical instruction to execute. Data may be broadcast. An MIMD array is 

asynchronous the processing elements operating almost completely independently, 

each one having its own control unit and memory. As in a systolic or a SUM array, the 

processing elements may communicate with each other and in addition may share 

memory. Figure 1.3 shows A Venn diagram of these parallel architectures. A detailed 

discussion of parallel architectures may be found in [Hwang84]. 

No global 	/ 	\ 

I  )isc 	

connections 

Synchronous J 	I 	Asynchronous 

( 

Some global 	
1111) 

Ì -, Y connections 

Figure 13 Venn diagram ofparallel architectures 

There are at least two advantages of systolic and wavefront arrays which SIMD and 

MIMD arrays do not have: 
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On a VLSI chip, long wires are expensive in power consumption, 

area and execution time. Therefore, since these arrays don't have 

global communication, they are usually compact and cheap when 

built using VLSI technology. 

Input/Output bandwidth is small compared to computation 

bandwidth in these arrays, which also makes them suitable for 

implementation on VLSI chips. 

Systolic and wavefront arrays have two more advantages, which SIMD and MIMD 

arrays do not necessarily have: 

Because systolic and wavefront arrays are repetitive and modular, 

they are relatively simple to design. 

The regularity of these arrays improves tessellation, which makes it 

possible to produce a more compact final implementation. 

The drawback of systolic and wavefront architectures is that they can only be used to 

implement a restricted class of algorithms. Happily, as was mentioned earlier, many of 

the algorithms used in signal- and image-processing fall within that class. Some 

examples are: 

• 	The Schur algorithm, which is used for certain cases of spectral 

estimation (a task which occurs in many fields) 

• 	QR-factorisation, which is used for "beamforming", a process which 

occurs in many radar, sonar, seismic and communications systems 

to suppress unwanted interference. 

• 	Kalman filtering, which is used in communications and control 

systems, and for tracking in radar and sonar processing 
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• 	Vector quantisation and dynamic time warping, which are used in 

speech-coding and speech-recognition respectively 

Rank order filtering, which is used for noise reduction and image 

enhancement 

Relaxation algorithms, which are used for image restoration 

Two-dimensional convolution, the Hough transform and two-

dimensional normalised cross-correlation, which are used for edge-

detection, curve-detection and template-matching respectively in 

the field of image analysis 

To compare systolic arrays and wavefront arrays: 

A wavefront array can be about twice as fast as the equivalent systolic array, since some 

operations may be allowed to execute faster than others rather than being restrained by 

other, slower, operations. The wavefront array generally also has the following 

advantages: 

It is easier to program. 

Large current surges are avoided. (These may occur in 

implementations of systolic arrays due to the synchronized change 

of components' states.) 

The problem of clock-skew is avoided completely. Clock skew 

means that the clock signal doesn't arrive at all the processors 

synchronously, due to propagation delays across the processor. It 

can be a problem with systolic arrays, especially large ones. 

However, one-dimensional systolic arrays may be synchronized by 

"pipelined clocks" [Fish85], and it is possible, in some two-

dimensional arrays, to make clock skew less than it would otherwise 
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be, by routing as a recursive H-tree the wire which is to carry the 

clock signal, so that each processor is the same path-distance from 

the clock generator (SYKun88]. 

Also the wavefront architectural style is more amenable to design 

for fault-tolerance. 

However, if the systolic array is moderately-sized with simple processing elements then 

it may be more efficient than the equivalent wavefront array, since the disadvantages of 

the systolic style are not so pronounced, and the disadvantages of handshaking between 

the processing elements of the wavefront array are absent from the systolic array. These 

disadvantages are as follows: 

The average power drawn by the detection circuitry in wavefront 

arrays is greater than that drawn by a clock driver. 

More area is required by wavefront arrays than the corresponding 

systolic arrays which, as well as incurring the obvious costs, means 

that wavefront arrays are more subject to errors caused by radiation 

and processing defects. 

If "single-rail" logic handshaking is used then a wavefront array is 

often slower than the  corresponding systolic array. "Double-rail" 

logic handshaking speeds things up but at the cost of an even greater 

area requirement: the area overhead of each wavefront array 

described in [McA92] is two to six times greater than its systolic 

equivalent. 

1.3 Formal Design Methods 

13.1 What are formal design methods and their advantages over 
informal methods? 

AfQrmal design method is a well-defined process for constructing a well-defined object 
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which performs a well-defined function. 

The function is like a label on a "black box" which tells you what the object inside does 

or should do. In technical jargon, the function on the label is called the specification and 

the object is called the iplementation. If the object does indeed do what its label says 

it does, then we say that the implementation satisfies the specification. (Of course the 

object may in fact do more than its label requires, just as a Swiss army knife as well as 

cutting like a knife may also be used to open bottles and file fingernails.) 

A formal design method for which a proof has been constructed that each 

implementation it produces satisfies its specification may be described as "verified" or 

"validated". Note that it is possible for a formal design process, even a verified one, to 

fail to come up with an implementation for a given specification. 

Coming up with a suitable implementation will in general involve a series of design 

choices, which may be made by a human or by a computer. 

Advantage 1 

As was mentioned earlier, the fact that the product of a verified formal design method 

is proven correct with respect to its specification would make such methods useful for 

designing safety-critical equipment [Cohn88] for use in areas such as "defence", 

medicine and civil aviation. A formally verified design is also useful when many 

identical processors are used, in the area of telecommunications for example; it would 

be expensive to replace all of them if a design fault were discovered after manufacture. 

Such a design would also be useful where the processors are used in inaccessible places, 

for example, for sensing on pipelines or for surveillance in polar regions. [Birt88] 

Advantage 2 

If the designer is human, a formal design method may clarify his thoughts and lead him 

to solutions which he would not otherwise have thought of. 

As was noted earlier, it is a good idea for each choice to be checked for correctness as 

soon as it is made. 
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If the design method is specialised (e.g. for designing ASICs with a particular 

architecture) then many of the choices are frozen. This has at least three advantages: 

The design process is comparatively fast since there are fewer design choices to 

make. 

The task of verification is eased. 

The design process is more likely to succeed, assuming that the specification is 

of a type which is appropriate to the method. 

One disadvantage of a specialised method is that it may not allow the designer to 

proceed to valid designs which are perhaps more efficient than any which are allowed 

by the method. 

1.4 A Formal Design Method for Systolic Arrays 

The specifications to be input to the formal design method we'll be considering will 

consist of two parts. They will contain firstly a behavioural part, which specifies what 

calculation the final design must perform. Secondly they will contain the stipulation 

that the final design of a particular form which is easily implementable as a systolic 

array; to be more exact, the final design is to be an algorithm, each variable of which 

has an associated place and time of existence, and this space-time algorithm is of a 

particular form which is easily implementable on a systolic array. It should be noted 

that the behavioural part must itself be of a certain form, so the method can't necessarily 

be used to design a systolic array to do any arbitrary calculation. Sometimes it may be 

easy to re-write an unsuitable behavioural specification as a suitable one, but 

procedures for doing so are not examined in this thesis. 

The formal design method is a transformational one. A sequence of designs 

(ALGORITHM, I, 12, IMPLEMENTATION) is found such that each design satisfies 

the behavioural specification and IMPLEMENTATION is moreover easily 

iinplementable as a systolic array. 
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The designs are expressed in a formal design description language. The basic definition 

of the language is that of a computation. A computation has variables, which may be 

either inputs or outputs, and a function which relates the values of the outputs to the 

values of the inputs. The variables may for example be abstract, in which case the 

computation will express an abstract algorithm, or they may be space-time position 

vectors, in which case the computation will express an algorithm being executed on a 

processor. Computations of the latter type are called "space-time networks". 

The designs in the design method are expressed as computations. Because 

computations can express abstract as well as "concrete" algorithms, it is possible to use 

the  algorithm from the behavioural specification as the initial "design". (It may not be 

directly realisable in hardware, but that does not matter.) The complete specification for 

the final design is, informally: "the final design must 'simulate' the initial algorithm 

and be of a particular form which is easily implementable as a systolic array". The term 

"simulate" is defined formally in Chapter 3. 

The function which produces a design in the sequence from its predecessor is called a 

design transformation. The sequence of design transformations associated with the 

method is called the transformation scheme. It consists essentially of three 

transformations. The initial design (algorithm) will have a regular data-dependency 

structure. However if it were to be directly realised in hardware, it might require non-

local communication to carry some of the data. The object of the first transformation, 

called the "data-pipelining transformation", is to localise the data-dependencies. The 

combination of the initial control requirement and the one generated by data-pipelining 

may imply, in a direct implementation, control-broadcasting; the second 

transformation, the "control-pipelining transformation", removes the need for this. The 

design at this point has the pattern of a systolic implementation, except that its variables 

are still abstract. The third transformation, called the "scheduling and allocation 

transformation", maps the design into space-time by, for each variable, replacing its 

abstract position by the vector which designates the time and place of the its existence. 

The scheduling map maps the design into time and the allocation map maps the design 
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into space. The complete transformation scheme is shown in Figure 1.4. 

Data-pipelining Transformation 

I' 

Control-pipelining Transformation 

12 

Scheduling and Allocation 
Transformation 

IMPLEMENTATION 

Figure 1.4 The transformation scheme 

It would be natural in the design method, to make th e  choice(s) associated with the ith 

transformation before those associated with the (i+l)th, for each i. However, there are 

reasons for making the  choices in an 'unnatural' order. This results in the method not 

running quite parallel to the scheme, though the method is closely based on the 

scheme. The method consists of five stages (Figure 1.5). 
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Introduction 

Data-pipeliniflg 

Scheduling 

Control-pipehnmg 

Allocation 

Final stage 

Figure 1.5 The design method 

In the data-pipelining stage, the data-pipelining transformation and 11 are found; in the 

scheduling stage, the schedule (the mapping of 12 into time) is chosen, but it is not used 

until the final stage; in the control-pipeliiiiiig stage, the control-pipeliniiig 
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transformation and 12 are found; in the allocation stage, the allocation map (the 

mapping of 12 into space) is chosen; in the final stage, IMI'LEMENTATION is found, 

using the schedule and the allocation map chosen previously. 

The reason that the schedule is chosen before control-pipelining is done is that the 

choices associated with control pipelining may be done in the light of the schedule, 

which may mean that an impasse which would otherwise have occurred can be avoided. 

1.5 Overview of the Thesis 

Chapter 2 discusses background material relevant to the formal design of systolic 

arrays. Chapter 3 presents the theoretical grounding of the new design method. Chapter 

4 presents the method in detail with the aid of a simple example: convolution. In 

Chapter 5 the method is used to design a systolic implementation of the more 

complicated QR-factorisation algorithm, which is widely used for beamforming in 

antenna arrays. It is shown how different choices made during control-pipelining and 

allocation affect the design. Chapter 6 provides concluding remarks. In the appendices 

a proof is given that, subject to certain assumptions, a design produced by the method 

will satisfy its specification. Since the assumptions need to be made, the method cannot 

be described as "validated", but in Appendix H the assumptions required for two of the 

main theorems in the proof are proven. 
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2 Systolic Arrays and Formal Design Methods 

This chapter starts with the presentation of two typical systolic arrays. The rest of the 

chapter consists of a survey of existing work in the same subject area as this thesis. The 

thesis presents a formal design method for systolic arrays; it belongs to two fields: 

formal design methods for parallel systems (not necessarily systolic), and design 

methods for systolic arrays (not necessarily formal). The overlap between the two fields 

will of course be particularly relevant. Discussion will also touch on other closely 

related areas such as design of regular arrays which are not quite systolic. 

2.1 Examples of Systolic Arrays 

Here are two examples of systolic arrays. 

Example 1 (Figure 2.1) is a systolic array which implements bubble-sorting, a parallel 

sorting algorithm used in median filtering for noise reduction in images (see 

[SYKun88] pp.  122-3, 143-5, 587). It can be seen that the array consists of four 

processors, each connected to its neighbour(s) by communication wires. 

Figure 2.1 A systolic array for bubble-sorting 

The input to the bubble-sorting algorithm is a sequence of four numbers, X1, X2, X3 

and X4 say. The output is that sequence arranged in descending order of sample value, 
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Yi, Y2, Y3 and Y4. There is more than one variant of the algorithm, but all the variants 

operate by repeated transformation of the sequence and have as their middle phase the 

following characteristic motion of data. In one time-step, each datum in an odd position 

in the sequence is compared with the datum in the next higher (even) position. If the 

former is larger than the latter, the two are swapped; otherwise not. During the next 

time-step each datum in an odd position is compared with the one in the next lower even 

position and they are swapped if and only if the former is smaller than the latter. By this 

process each datum is buffeted towards its correct position. The algorithm is called 

"bubble-sorting" since the inputs can be thought of as mutually immiscible bubbles of 

liquid; each bubble moves to the level appropriate to its density. This method of sorting 

is similar to the way a squash ladder functions. 

The variant of bubble-sorting presented here has an initial phase in which data is input 

to the array and a final phase in which data is output. The bubbling activity ramps up in 

the initial phase and ramps down in the final one. In order to define the algorithm 

formally it is helpful to introduce two sets of intermediate variables, { uj ,  : 0 < i <4 & 

O<j:54} and  {dj:O<i<4&0<j:54}.  Ile former contains data which is"moving 

up" the sequence and the latter contains data which is "moving down". The recurrence 

relation defining the data-dependence is simply: 

djj := min(d1,(j...l), U(11)J) 

uij := max(d1,(j..l), U(il)j) 

If 110 , 11 1,2, 112,3,  1134 are all -0o  and d10, d20, d30and d40 are X1, X2, X3 and X4 

respectively then u41, u, u43and u44 will be Y1, Y2, Y3 and Y4 respectively. The 

data-dependence is illustrated in Figure 2.2. Each circle represents an operation 

consisting of the aforementioned pair of assignments for some i and j. 
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diol 	d2ol 	d3o1 	d's.oI 
U01 7 Ujj V U2,1 V u31 V u4,1 
100 --go. 0 pp.0 p.O pp. 

di,4 	d2,1j 	d34 d44 

V ui,2 V U2.2 V u3,2 7 u4,2 
01.0 	00.0 	pp.0pp. 

	

d2,2j d34 	'u 
V U ,3 V U3,3 V U4 ,3 

	

—ill. 0 	pp.0 	pp 

	

d331 	d4,31 
V U34 7 U44 

Figure 2.2 Sorting algorithm 

Figure 2.2 simply shows the data-dependence of the bubble-sorting algorithm; it 

doesn't show when and where each operation occurs in the functioning of the systolic 

array (Figure 2.2). It is necessary to assign a processor and a time-step to each operation 

(these assignments are called allocation and scheduling respectively). Figure 2.3 shows 

this graphically. Each diagonal line corresponds either to a processor or to a point in 

time. 
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t=l 

proc4 

proc3 

proc2 

t=7 

Figure 23 Schedule and allocation 

Figure 2.4 shows four separate snapshots of the activity of the array, one being taken 

after each of the first four time steps (t is the time). Data which has just been generated 

is shown in bold print. For simplicity the multiplexers and the control signals have not 

been included. During the first time step, d1,0 (X1), which has been input to the first 

processor, is compared with u01 (which is 0o).  The larger value, d10, is passed to the 

second processor (as "U11") while the smaller (-co) is discarded (as "d11"). Figure 

2.4(a) shows the situation when t-- 1. During the second time step, the second processor 

receives u11 from the first processor as well as the new input value, d20 (X2), from the 

outside world. The two values are compared and, as before, the larger is passed to the 

right and the smaller to the left (as "U21" and "d21" respectively). Figure 2.4(b) shows 

the situation when t=2. d21 is not discarded but caught by the first processor, where it 

is compared with u1,2 (Woo)  in the next time step. Simultaneously, u21 is being compared 

with the new input, d20 (X3), in the third processor. The larger values are passed to the 

right and the smaller to the left. Figure 2.4(c) shows the situation when t=3. In the fourth 
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time step, the final input, d40 (X) arrives at the fourth processor, where it is compared 

with the value just received from the third processor. A comparison is being done 

simultaneously on the second processor. At this time the first output, u11, which is Y1 

(the largest of X1, X2, X3 and X4), appears at the fourth processor. Figure 2.4(d) shows 

the situation when t=4. As the sorting activity continues, u4 ,2 (Y2), u (Y3) and U44 

('(4) will be output in turn from the third, second and first processors respectively. 

Figure 2.5 is Figure 2.4 with the variables replaced by their values, in the case where 

X1, X2, X3 and X4 are 4,2,7 and 1 respectively. 
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Figure 2.4 A bubble-sorter in operation 
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Figure 25 A bubble-sorter in operation: a numerical example 
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The second example of a systolic array is one which implements multiplication of band 

matrices (see [SYKun88] pp. 177-8 & 200-1). A band matrix is one that has its non-zero 

values clustered in a band around its (top-left to bottom-right) diagonal. Let us suppose 

that A and B are band matrices. For all relevant pairs <i, j>, assume that ajj := A(i, j) 

and bij := B(i, j). Let us assume that the "band" of A extends from two element-wide 

strips below the diagonal to one element-wide strip above it, and that B extends from 

one strip below the diagonal to two strips above it i.e. 

aij 	= 0 if i > j+2 or i <j-1 

and 

bij 	= 0 ifj>i+2orj<i-1 

Assume that C := AB and that, for all i and j, cj := C(ij). The formula for the product 

of two matrices is given on page xiii. In the band matrix case, many of the products of 

the matrix elements are known to be zero, so we will omit these from the sums. Assume 

that high(i, j) := min(i+1, j+l) and that low(i, j) := max(i-2, j-2). Then we have 

cij 	= Ljlow(i,j) tohigh(i.j) ajJc*bJj 	if Iij1 -5 3 	 (i) 

cjj 	= 0 	 otherwise 	 (ii) 

So C is also a band matrix which has non-zero elements only in the band extending from 

three strips below to three strips above the diagonal. We may calculate the sums in (i) 

by introducing intermediate variables sijk to hold the partial sums. Thus, if 

Ii-jI<3 

and 

Sjj,((jj)..l) 	0 

and 

5ij.k 	 + ajj *bij  when k..< high(i,j) 

then 

cia 	= Sij,high(ij) 



2 	Systolic Arrays and Formal Design Methods 	 24 

This algorithm may be executed by a two-dimensional "hexagonal" array. The 

following six figures show snapshots of its state after each of the first six time-steps. 

The strategy is to send the band of possibly non-zero elements of A, spearheaded by 

a11, into the array from the bottom-left and to send the band of B, spearheaded by b11, 

into the array from the top-left. The partial sums flow from right to left through the 

array. When an element of A meets an element of B in a processor, their product is 

formed and added to the partial sum which has just arrived from the right. The new 

partial sum is passed out to the left. The element of A and the element of B flow out of 

the processor with out being deflected from their respective courses. The band of 

possibly non-zero elements of the product matrix C flows from right to left out of the 

top-left and bottom-left edges of the array. 

Figure 2.6 (a) (t)) shows a1,1 and blj  arriving at the array. In the first time-step, those 

elements pass into the array and b12 and a21 arrive. Figure 2.6 (b) shows the state of 

affairs when t-- l. During the second time-step, the first interaction between the two 

matrices occurs: a1,1 is multiplied by b11, and the result is added to silo  and passed 

out to the left as sl,l,1; and a1,1 and b1j are each ready to pass out of the processor from 

the sides opposite their respective entrances. The state of affairs when t=2 is shown in 

Figure 2.6 (c). In this figure, more elements from A and B can be seen arriving. The 

value s110 and all the other initial values for the partial sums must be zero; this is 

achieved by ensuring that all the values which are ever input to the array are zero, apart 

from the elements of A and B. In the third time-step, products are formed in three of the 

processors. The situation at the end of the third time-step is shown in Figure 2.6 (d). The 

processor on the far left has added its product to the partial sum just received from its 

rightward neighbour. The process continues, as can be seen in Figure 2.6 (e)(t=3) and 

Figure 2.6 (f)(t=4). Notice that in Figure 2.6 (e) the first output, c1,1, emerges from the 

leftmost processor; in Figure 2.6 (f), c2 .1 and c1,2 emerge from the neighbouring 

processors. Notice also how the activity of the processors in the array displays a cyclic 

rhythm, with each processor only doing a useful calculation one time-step in three. 

The advantageous properties of systolic arrays can be clearly seen in these two 

examples (particularly the second): local communication, low ratio of input/output 
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bandwidth to computation bandwidth, and a beautiful regularity in structure and 

activity which eases design and promotes, in the final implementation, high spatial 

compactness and processor utilisation. The claim of high processor utilisation may 

seem unfounded since utilisation seems to be 50016 and 33% respectively in the first and 

second examples; but in each case if there is a sequence of tasks (bubble sorting or band 

matrix multiplication respectively) to be performed then, because of the regularity of 

the array's operation, it is possible to interleave the tasks to achieve virtually 100% 

utilisation. 
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Figure 2.6 (a) Band matrix multiplier when t=O 
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Figure 2.6 (c) t=2 
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Figure 2.6 (e) t=4 
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2.2 Formal Design Methods 

The work in this area may be classified according to the way parallel systems are 

modelled. A model may view the operation of a parallel system as a sequence of 

discrete events, without regard to time as an underlying metric, or it may view the 

operation of the system as a function of time. Models of the first type will be referred 

to as "sequential" and those of the second as "explicit-time". Sequential models are 

generally well-suited to describing the high-level behaviour of asynchronous systems, 

while the latter are better suited to describing synchronous systems and low-level 

behaviour in general. 

Three principal languages for modelling systems sequentially are the "calculus of 

communicating systems" (CCS) [RMII80, RM1183, RMil89], CIRCAL [GM1183], and 

"communicating sequential processes" (CSP) [Hoare85I. CCS is similar to CSP in that 

two events cannot occur simultaneously. They have similar basic entities (an "agent" in 

CCS corresponds to a "process" in CSP) and are overall roughly, if not exactly, equal 

in expressive power; however, the set of ways in which the basic entities may be 

combined and the concept of equality differ between the two languages. CIRCAL has 

a style very similar to CCS; the key difference is that simultaneous events can be 

expressed in CIRCAL. The programming language, "occam" [Jones87, Jones88, 

Wex891, was designed for programming parallel systems, specifically the INMOS 

transputer, and is very closely related to CSP. The major difference is the lack of 

recursion: this was found not to be implementable in general. 

Explicit-time models of parallel computer systems usually subdivide the behaviour of 

a system by focusing on the value of individual "ports" as a function of time. The 

models can be classified by how these port-functions are related to each other. In what 

will be termed fj4nctional models, all ports are classified as either "input" or "output", 

and each port-function of an output port is a function of the port-functions of the input 

ports. In relational models the ports are not divided into "input" and "output"; the 

behaviour of the system is simply a relation between all the port-functions. Work on 

functional models has been done by S. Johnson [John83], M. Sheeran [She84], and by 

A.R. Martin and J.V. Tucker [Mar87]. S. Johnson's thesis centres round the observation 
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that a certain simple type of recursive algorithm can be directly implemented as a 

sequential processor. His method is closely related to methods for designing systolic 

arrays; in fact his sequential processors are zero-dimensional systolic arrays. M. 

Sheeran's language, .iFP, was created for use in VLSI design. Martin and Tucker 

introduce an assignment language based on a functional model; the language restricts 

the output values at a point in time to be a function of the time and of the inputs at the 

immediately previous time (time is modelled on the integers rather than the real 

numbers); in other words there is no long-term memory. This notation is intended for 

simulation and testing of synchronous arrays. Work on relational models has been done 

by M. Gordon [Gor88], by M. Fourman [Mayg91], by M. Sheeran [She86, She88a] and 

by Luk and Jones [Luk88a, Luk88b]. M. Gordon's HOL is a theorem-prover for 

hardware verification. It is based on higher-order logic, as are all the explicit-time 

models. The port-functions are first-order entities; the behaviour of a circuit, being a 

relation between port-functions, is a second-order entity. M. Fourman's LAMBDA 

system has a theorem prover at its heart, and is designed for integrated synthesis and 

verification. Sheeran's language, Ruby, was developed from f.LFP; she has used it to 

design regular arrays, and incidentally formalises two techniques used by systolic array 

designers: "retiming" and "slowdown" [She88b]. Luk and Jones' work is a 

development of Sheeran's. 

2.3 Design of Systolic Arrays 

2.3.1 Beginnings 

A seminal work in the area of systolic array design is [Karp67]. A "system of uniform 

recurrence equations" (SURE) is defined to be essentially an algorithm of a certain 

type. The  authors give necessary and sufficient conditions for there to be a schedule for 

any SURE of a certain type. SUREs are significant since, by choosing a certain 

schedule and allocation function, it is often possible to implement them using a systolic 

array. 

In the late seventies and early eighties, H.T. Kung and his group at Carnegie-Mellon 

University showed how certain algorithms could be implemented on synchronous, 
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virtually homogeneous VLSI arrays with regular, local interconnections, which they 

called "systolic arrays". They showed that, because of the arrays' regularity and in 

particular the local communication structure, the arrays were particularly efficient. The 

work of H.T. Kung et al. was immediately followed by the creation of many systolic 

array designs by them and others [FostSO, Quin861. 

2.3.2 A developing discipline 

As understanding of systolic arrays and their associated algorithms grew, attention 

began to be paid to the development of systematic design methods. Rao [Rao85] 

investigates a major class of algorithms called "Regular Iterative Algorithms" (RIAs) 

which are essentially the same as the systems of uniform recurrence equations in 

[Karp67]. He carefully and precisely defines a systolic array, and shows that each RIA 

of a certain type may be directly implemented by a systolic array, (giving a procedure 

which produces a variety of systolic implementations for such an RIA) and that 

conversely every systolic array directly implements such an RIA. He also extensively 

analyses RIAs and provides a procedure for implementing them, and for deriving them 

from more general problem descriptions. Similar but less comprehensive work is 

described in [Far87]. 

One of the key properties of a regular iterative algorithm is that its "dependencies" are 

"uniform"; that is, if an indexed variable x(p) say depends on y(p-q) for some vectors 

p and q, then, for all vectors p' in the index space, x(p') depends on y(p'-q). This implies 

that, when the data-flow graph of the RIA is embedded in a natural way in Euclidean 

space, the set of vectors representing the flow of data into each node is the same, 

regardless of which node is chosen. "Linear Recurrence Algorithms" (LRAs), such as 

Gaussian Elimination and Gauss-Jordan approximation, do not necessarily have this 

property. A method for implementing LRAs as systolic arrays by first making the 

dependencies uniform is presented in [Quin89]. The set of "Systems of Affme 

Recurrence Equations" (SAREs) is similar, if not identical, to that of LRAs. The 

implementation of SAREs is tackled by Yaacoby and Cappello in [Yaa88] and S. 

Rajopadhye in [Raj89]. They also make the dependencies uniform as an intermediate 

step. [Raj89] also deals with control signals. Sometimes it isn't immediately possible 
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to make the dependencies uniform; in [Raj90] transformations are introduced which 

transform awkward SAREs into SAREs of which the dependencies can be made 

uniform. The problem of finding affine schedules for S AREs is tackled in [De186] and 

[Yaa89], separately from the problem of making their dependencies uniform. [De1861, 

[Yaa89], and [Rao85I implicitly or explicitly move into the area of non-systolic 

implementation. Other papers which deal with non-systolic implementation are 

[Roy89}, [Teich9l] and [VanSw9l]. [Roy89] deals with the implementation of RIAs, 

such as pivoting algorithms in linear algebra and certain two-dimensional filters, which 

are not directly implementable as systolic arrays. [Teich9l] deals with algorithms 

which are piecewise regular; the resulting arrays have a "dynamic configuration 

structure". [VanSw9l] deals with algorithms in which the data-flow is even less regular 

than in LRAs and SAREs. In implementations of the style aimed for, the processing 

elements will calculate and communicate synchronously; however, their 

interconnections may be neither homogeneous nor local. 

Several researchers express the algorithmic specification in other ways [Huang87, 

Len9O, Xue90, Len9l, Lee9O, 1b90, Chen9l]. However, the differences between their 

languages and the systems-of-recurrence-equations style is, I believe, superficial. 

[Huang87] presents a design method for systolic arrays. From the algorithmic 

specification a sequential "execution" or "trace" is derived; this is then parallelised; 

finally the trace is scheduled and allocated using the functions "space" and "time". The 

auxiliary functions, "flow" (encapsulating the velocity of data movement) and 

"Pattern" (encapsulating the initial position of the data) are defined. [Len90], [Xue90} 

and [Len9l] build on the work in [Huang87]. [Len90] discusses the design of a systolic 

array for pyramidal algorithms, [Xue90] discusses the description and design of one-

dimensional systolic arrays, and [Len9l] presents a scheme for compiling imperative 

or functional programs into "systolic programs". Design of one-dimensional systolic 

arrays is also the subject of (100]. [Lee9l] investigates the mapping of p-nested loop 

algorithms into q-dimensional systolic arrays (where 1 _-q q ~s p- 1). 

K.Culik [Culik84, Culik851 takes a subtly but significantly different approach from the 

above in that his specification language doesn't even implicitly embed the algorithm in 

Euclidean space; in other words it is topological and not geometrical. 
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Several papers specialize in the design of particular types of systolic array. [Xue90] and 

[1b90] have already been mentioned as dealing with the design of one-dimensional 

arrays; the  second part of [McC87I gives examples of bit-level systolic arrays, though 

not a general design method for them; [Kunde86] and [Tensi88] describe work on 

"Instruction Systolic Arrays", where the processing elements are controlled by 

instructions which flow through the array in addition to the data. 

Other papers present methods which produce optimal designs, or at least facilitate the 

choosing of an optimal design. In [Li85] the initial algorithm is constrained to be a 

"linear recurrence". (The class of linear recurrences includes matrix multiplication and 

related algorithms. These linear recurrences don't seem to bear any relation to the LRAs 

in [Quin891.) The design task is formulated as an optimization problem and a toolkit for 

solving the problem is described. [Shang89] addresses the problem of finding optimal 

linear schedules for an algorithm modelled as a set of indexed computations. [Chen91] 

presents a method for finding optimal schedules for one-dimensional "linear recurrence 

algorithms" such as the algorithm for an ARMA filter, which is used in signal 

prediction and spectrum analysis. 

The papers [Raj86], [Ling90] and [LeV85] are more oriented towards formal 

verification of systolic arrays than the above work. [Raj86] uses techniques which have 

been used for verifying programs and applies them to the verification of systolic 

architectures. The verification problem is divided into three parts: the verification of the 

data representation, the processing elements and the composition of the processing 

elements. [Ling9O] introduces a new formalism called "systolic temporal arithmetic" 

for specifying and verifying systolic arrays. Two plus points are that it is tailor-made 

for systolic arrays and is therefore efficient, and it can be unified with interval temporal 

logic "multilevel reasoning of systolic arrays". [LeV91] introduces a language called 

ALPHA which is based on recurrence equations. It is a direct descendant of a language 

called LUSTRE [Caspi87], which is descended from LUCID [Ash77]. It seems to be 

simple and straightforward. 
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2.4 Summary 

In this chapter two examples of systolic arrays were described, and a survey was given 

of related work done on formal design methods and on the design of systolic arrays. 

The following chapter lays the theoretical foundations for the formal design method to 

be presented in Chapter 4. 
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3 Computations and Recurrences 

In this chapter the concepts are defined which are required in order to define and discuss 

the formal design method to be presented in Chapter 4.. Firstly, the concept of a 

computation is defined along with three operations on computations and one relation, 

simulation (see page 12). Then four useful types of computation are introduced: 

embedded computations, recurrences, space-time networks (see page 12) and strictly 

systolic computations. An embedded computation is composed of subcomputations 

which are "located in" Euclidean space. A recurrence is a type of embedded 

computation; recurrences are exhibit a regularity which makes them useful for the 

design of systolic arrays; two types are of particular usefulness, "affine recurrences" 

and "uniform recurrences". The input to the design method has an affine recurrence as 

its main part. A space-time network is an embedded computation which models an 

algorithm executing on hardware, in that the Euclidean space is identified with space-

time and, in the light of this identification, no data is consumed before it is produced. If 

a space-time network is also a uniform recurrence, then it is called a "strictly systolic 

computation". The output of the design method has a strictly systolic computation as its 

main part. Given a strictly systolic computation, one can easily design a systolic array 

to implement it. 

3.1 Computations 

A computation is similRr to a function, where the inputs and outputs are given names 

so that they can be reasoned about separately from the function, and separately from the 

values they hold. 

A cpntpris defined tobea triple, <LO,F>, where Iis finite set 0input 

variables, 0 is a finite set of output variables, and F is a functional' such that, if vi n  is 

a function from input variables to their values, then F(v1 11) is a function from output 

variables to their values. I and 0 must be disjoint. 

1. see Terminology 
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We can define selector functions as follows (v is a function with domain IuO): 

0, F>) :=1 

Qi,O,F>) :=O; 

Vars(4, 0, F>) : 	 IuO; 

E1411(<I, 0, F>) := F; 

&d(<I, 0, F>)(v) 

(there exist v 1 , Vt such that v = vin  U vout  and F(v1) = v) 

Rel uniquely defines F since I and 0 are disjoint. (There is a simple proof of this.) 

Also 

Rel(<I, 0, F>)(v) 	F(v11) = v10 

The function v is called a valuation. on IUO. 

So a computation is defined uniquely by <Jn(C), Out(C), Fun(C)>, or, alternatively, by 

<In(C), Out(C), Re!(C)>. It is often more convenient to use the latter characterization 

(as in the four definitions given below). 

We will now define three functions (composition, hiding and renaming) and one 

relation (simulation) on computations. 

3.1.1 Composition 

Consider the computations PLUS and PLUS', defined as on page 49: 

In(PLUS) := {A, B} 

Out(PLUS) := (TEMP} 

Rel(PLUS)v v(FEW) = v(A) + v(B) 

In(PLUS') := (TEMP. C} 

Out(PLUS') {D} 

Rel(PLUS')v v(D) = v(TEMP) + v(C) 
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Ee 

Figure 3.1 PLUS and PLUS' 

It is possible to combine (technically, "compose") these in the obvious way to form 

TRIPLE-ADD defined as follows: 

In(TRJPLE-ADD) := {A, B, C} 

Out(TRIPLE-ADD) := (TEMP. D} 

Rel(TRIPLE-ADD)v v(TEMP) = v(A) + v(B) 	and 

v(D) 	= v(TEMP) + v(C) 
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A 	B 	C 

'1 

Figure 32 TRIPLE-ADD 

In the general case, the set of output variables of the computation resulting from the 

composition of two or more computations is the union of the sets of output variables of 

the component computations. The set of input variables of the resulting computation is 

the union of the sets of input variables of the component computations minus the set of 

output variables of the resulting computation. This implies that, if a variable is both an 

input (of one component computation) and an output (of another component 

computation) then it counts as an output of the resulting computation. The relation of 

the resulting computation is the conjunction of the relations of the component 

computations. The symbol used for composition is "II". Here is its definition: 

:= C 	(Jis some finite indexing set), 

where 

Out(C) = UOut(Cj) 
ic J 

In(C) 	= U In(Cj) - Out(C) 
jE I 

Rel(C)(v) 	For all j. Rel(CJ)(vk)) 
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The elements of the set {Out(Cj) : j € J} are assumed to be mutually disjoint. 

v is a function on Vars(C), which is the reason why it must be restricted to Vars(Cj) in 

the definition of Rel(C). II may be written as an infix operator i.e. '!j ,  l} Cj may be 

written CO II C1. Note that C0H C1=C1 11C0; no order need be specified for the 

composition of functions. 

In(C) and Out(C) are obviously finite. 

Instead of defining Rel(C), we may define Fun(C): 

Fun(C)(v) = Vt 	for all j in J 

there exist Vjn(j). V(j) such that Fun(Cj)(vj) = vD 

and vin  U v = U (vj U v(j)) 
JE J 

In other words: 

Fun(C)(vj) = vout  

Fun(Cj)(vlCj)) = vIocD where v = Vm U Vg 

Composition may not always be well-defined since the function of the resulting 

computation may not be well-defined. For example, if two or more of the component 

computations share and output then there may be a clash when the computations are 

united. Even if the sets of output variables are mutually disjoint, the composition may 

not be well-defined. For example, let PLUS" be defined as follows: 

In(PLUS') := (TEMP, C) 

Out(PLUS') := {D} 

Rel(PLUS')v v(D) = v(TEMP) + v(C) 

Let CIRC-ADD be PLUS It PLUS" and let us assume that addition is being performed 

on integers. If v(A) = v(C) = 1 then there is no possible vou  for which F(CIRC- 
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ADD)v = Vt (see Figure 3.3). Moreover if vm(A) = v1 (C) = 0 then there are 

infinitely many v.W  for which F(CIRC-ADD)v = v (see Figure 3.4). 

In the body of the thesis we will generally assume that all computations are well. 

definecL In the appendices the assumptions of well-deflnedness will be explicitly stated. 

c=l 

Figure 33 CIRC-ADD: no solution 

C=O 

Figure 3.4 CIRC-ADD: many solutions 

Figure 3.5 shows a more complicated example of composition. 
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Figure 35 Composition: a more complicated example 

3.1.2 Hiding 

Internal and/or irrelevant variables may be "hidden" by removing them from the input 

or output variable sets. Hiding is especially useful as a sequel to composition, in order 

to bide the internal variables. outputs can be hidden simply by ignoring them but, as a 

consequence of the way we define hiding, an input can only be hidden if its value is 

always the same (i.e. it is a constant) or if its value has no effect on the value of any 

unhidden output. The symbol for hiding is ''. Here is the definition: 

In(CVarset) 	:= In(C) - Varset 

Out(CVarset) 	:= Out(C) - Varset 

and for all valuations v on Vars(C) - Varset, 

Rel(C \ Varset)(v) 	(for all valuations v' on Vars(C), Rel(C)v' 

( v'I(Vt = "6(O-Varset 

= 

In(C\Varset) and Out(CVarset) are obviously finite. 
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Figure 3.6 Hiding 

3.1.3 Renaming 

Some of the variables of a computation may be exchanged for new variables as follows: 

Let RENAME be a function from Varset to Varset'; then 

C ® RENAME is a computation such that: 

Out(C ® RENAME) = ran(RENAME I >) 

In(C ® RENAME) = ran(RENAME I i) - Out(C ® RENAME) 

Rel(C ® RENAME)v 4*Rel(C)(vRENAME) 

(or. Fun(C ® RENAME)vj = v 	Fun(C)(vjRENAME) = v'RENAME) 

Out(C ® RENAME) and In(C ® RENAME) are obviously finite. 
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0 

Figure 3.7 Renaming 

Note that RENAME may not be i-to-i. The freedom for it not to be is required in the 

definition of recurrence (RENAME ), defined on page 54, may not be 1-to-1), but with 

the freedom comes the unwelcome side-effect that the result of the renaming may not 

be a well-defined function. Let PLUS" be such that 

In(PLUS") :={A,B} 

Out(PLUS") := {C} 

Rel(PLUS ... )v v(C) = v(A) + v(B) 

and let TIMES be such that 

In(TIMES) := {A', B'} 

Out(TIMES) := {C'} 

Rel(TIMES)v v(C') = v(A') v(B') 

and let P-T be A II B (see Figure 3.8). 
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\/B 	\/B' 	\è //B' 

	

C 	 C9 	 C 	C9 

PLUS" 
	

TIMES 	 P-T 

Figure 3.8 PLUS", TIMES and P-T 

Let RENAME be s.t. 

	

RENAME(A') 	A 

RENAME(B') := B 

and 

RENAME(C') := C' 

then P-T ® RENAME is well-defined (see Figure 3.9). 

"AB 

C 	C9 

P-T® RENAME 

Figure 3.9 P-T 0 RENAME 
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But if RENAME' is s.t. 

RENAME'(A') 	A' 

RENAME'(B') 	B' 

RENAME'(C') : C 

then P-T ® RENAME' is obviously not well-defined if the inputs may range over the 

integers (see Figure 3.10). 

P-T ® RENAME' 

Figure 3.10 P-T® RENAME' 

3.1.4 Simulation 

One computation, Be say, is said to simulate another, ALO say, if ALG is IMP with 

some of its variables bidden, and other variables renamed. Formally: 

IMP simulates ALG with respect to <Varset, RENAME>, where RENAME is a one-

to-one function, if (IMP \ Varset) is well-defined and 

ALG = (IMP\Varset) ® RENAME 

An example of the use of this definition is given at the end of subsection 3.15. 
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3.13 Example: TripleAdd 

I shall now show how a very simple algorithm is defined in my language and in a 

sequential language. 

Let us define the following procedure (in PASCAL-like language): 

procedure TripleAdd(ifl A, B, C: integer;out TEMP, D: integer); 

begin 

TEMP :=+(A,B); 

D 	:=+(TEMP,C) 

end {TripleAdd} 

In my scheme, the computation corresponding to TripleAdd would be the composition 

of two subcomputations, both of which have addition as their function but which have 

different input and output variables.. .in fact, one subcomputation is a re-naming of the 

other. 

In(PLUS) := (A, B} 

Out(PLUS) := {TEMP} 

Rel(PLUS)v v(IEMP) = v(A) + v(B) 

PLUS' := PLUS ® RENAME 

where 

RENAME(A) := TEMP', 

RENAME(B) := C 

and 

RENAME(TEMP) := D 

TRIPLE-ADD := PLUS 11 PLUS' 

Consider the similar procedure, TripleAdd', where TEMP is a local variable ... this is 

equivalent to hitling TEMP: 
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procedure TripleAdd' (in A, B, C: integer; out D: integer); 

var 	TEMP: integer; 

begin 

TEMP : +(A, B); 

D 	:= +(TEMP, C) 

end {TripleAdd} 

The corresponding computation in my scheme would be TRIPLE-ADD', where 

TRIPLE-ADD' := TRIPLE-ADD \ (TEMP) 

A 	B 
TRIPLE-ADD 

TEMP 	 D 

A 	B 

 

'LE-ADD' 

Ic 

Figure 3.11 TRIPLE-ADD and TRIPLE-ADD' 

Let us define TA-SPEC as follows: 

InFA-SPEC) 	= (X,Y,Z} 

Out(TA-SPEC) = {W} 

Rel(TA-SPEC)v 4 v(W) = v(X) + v(Y) + v(Z) 

Then TRIPLE-ADD simulates TA-SPEC because 

TA-SPEC = (TRIPLE-ADENTEMP}) ® RENAME' 

where 
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RENAME' (A) = X 

RENAME'(B) = Y 

RENAME'(C) = Z 

RENAME'(D) = W 

31 Embedded Computations 

A computation is said to be "embedded" if each of its variables is associated with a 

point of a lattice which is embedded in Euclidean space and, moreover, the computation 

is the composition of subcoinputations such that, for each subcomputation, the outputs 

of that computation are situated at a single point. A subcomputation can be considered 

to be where its outputs are. Each variable is uniquely defined by its "class" and position. 

The formal definition is as follows: 

A computation C is embedded 1if, for some integer m, some finite subset D of Integer" 

and some set of "variable classes", Varclasses, 

Vars(C) 	Varciasses X D, 

and 

C = lip ED C,),where, for all C(p).  Out(C())) 9 Varclasses x {p} 

So each variable of C is a pair whose first component is a label (from Varciasses) and 

whose second is a point (in D). Note that all the output variables of C( P) are "located" 

at p (i.e. their second component is p). 

The domain of an embedded computation, EMB, written Dom(EMB), is the minimal 

set which can be validly substituted for D in clause (1) above. ("Dom" is distinct from 

"dom" as defined on page ix.) 

1. terminology: the word "embedded" is used simply to state that each variable in the ccinputa-
twa is associated with a point in Euclidean spa. Usually when the word is used in mitKimatics 

them is as an associated "embedding fuuction" mapping an object into some spa. There is no 
such function in this case. ..the conputafm is already in the spa. 



3 	Computations and Recurrences 
	 52 

The edge of an embedded computation, EMB, written Edge(EMB), is the set of those 

points in D which have no associated output variable i.e. 

p E Edge(ENO) 	for all var, <var, p> 4t Out(EMB) 

An example will clarify this definition. Let q and q' be the points [( 0)1. and [0] 
(0)] 	[(0) 

respectively. Let Cq  and Cq' be defined as follows: 

In(Cq) = 	(4::x, 
[]>, 

c:x, [(1)1 >} 

Out(Cq) = 	{x, (0)1 1( 0) 
> 1 

Rel(Cq)v v(cx, 
1(00))]

(>) = v(x, 1(0)]'>) - v('x, 
 LWi 

In(Cq') = 	{x, [1> , [ 
[(2)] > 

Out(Cq') 	= 	[ 1>i 
Rel(Cq')v 	v(, [1>) = v(, I(2)1>) + v(, [(2)]>) 

( 0)J 	(') 

+v('x, 1(2)j]> 

Let EMBbeCq IICq' ; thenEMB isan embedded computation. EMB is shown in Figure 

3.12. 
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PA 

1 

0 	1 	2 

Figure 3.12 EMB 

It has just one variable class, x, so we may let Varclasses be {x}. Its domain is 1
[ (

0)], 

[(1)1 11 ,  11 ,(2) [(2)1
[(0)]' (1) 	o 	[(1)]' [(2)] 

C) if. when p IC (q, q'}, C,) is defined to be the null computation, i.e. the one without 

inputs or outputs. Note that C)ut(C())c (x} X {p} when p € {q, q'}. 

A computation C' is an edge-computation of an embedded computation EMB if 

Vars(C) 9 Varclasses X Edge(EMB). 

3.3 Recurrences 

Recurrences are embedded computations which have a type of regularity which makes 

them useful in systolic array design. The subcomputations of a recurrence are arranged 

in a regular pattern, e.g. a rectangular grid. The subconiputations must all calculate the 
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same function, but which variables a subcomputation has depends on its location. 

Formally: 

Assume that D integer", that D is finite and that Varclasses is a set These entities 

play the same role as they did in the definition of "embedded computation". Assume 

further that 

vcj 	€ Varciasses for all i from 1 to m 

Aj 	D-4D 

and that 

BASE C D 

From the variable classes vcj are formed the input variables to the subcomputations. LSj 

is the function that tells us from where to "fetch" vcj, given the location of the 

subcomputation we are considering. BASE is the set of points which are occupied by a 

non-trivial (i.e. non-null) computation. (Recall that in the definition of an embedded 

computation, some of the subcomputations may be null.) 

Let M be a computation such that 

Iii(M) 	= {<vcj, iS,> : i = 1...m} 

Out(M) = Varclasses X {Id} 

then the recurrence C constructed from mould M over &m BASE is the (embedded) 

computation 

'pE BASEC(p) 

where C 1,) = M ® RENAME 1,) where 

RENAME()(<vc fun>) = <vc, fun(,p)> 

for allp in BASE and all <vc, fun> in Vars(M) 
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The mould M is the pattern or generator for the subcomputations. Each variable of M 

is apair, the first of which is a variable class and the second is a "fetch" function. The 

subcomputation at a particular point p is found by replacing each fetch function fun by 

fun(p) in each variable of M. This is achieved by RENAME(& Note that the fetch 

function within each output variable of M is simply the identity since the outputs of 

each subcomputation appear simply at its location. The pairs <vnj, Ij>  are called the 

dependencies of C w.r.t. <lvi, BASE>. The pairs <vn1, L> are called the dependencies 

of C with respect to <lvi, BASE>. The pair <p, ,&,(p)> is called a dependency arc (of C 

with respect to <M, BASE>). Dependency arcs are depicted by arrows in my diagrams 

of recurrences. Note that the arrows point in the direction opposite to that of the 

corresponding data-flow. An example of an extremely simple recurrence is COPY 

which is defined as follows: 

In(COPY) = {<x, O>} 

Out(COPY) = (cx, i>: i E 11, 2, 3 } } 

Rel(COPY)v 	(i € 11, 2, 3}) => v(zx, i>) = v(cx, 0>) 

A diagram of COPY is shown in Figure 3.13. 

0 

Figure 3.13 COPY 

We can show this is a recurrence by finding a suitable mould and base. Let us note first 

of all that we may take D to be the set 10, 1, 2, 3). (Each integer is identified with the 

corresponding one-dimensional vector). Varclasses is simply (x}. We may choose as 

the base (BASE)  the set {1,2,3} and, letting mequal 1, set vc1tox and A1toq-40. 

We see that 
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COPY = Ip E BASE C(P) = 

where 

C(p) = M ® RENAME() 

where RENAME() is defined in the obvious way so that 

In(C,)) = (<x, (q —3 O)p> ) 

Out(C)) = { cx, (q —3 q)p>} 

Re1(C())v 4 v(<x, (q - q)p>) = v('x, (q —3 O)p>) 

Two types of dependency are of particular interest: 

A dependency <vn1, 	is affine if A, is an affine map, that is, if 

= Aj.p+dj, 	where Ajisa matrix and bjisavector 

The dependency <x, (q  —4 0)> in the previous example is an affine dependency. If a 

recurrence containing an affine dependency were to be mapped directly onto hardware, 

using an affine map from the space inhabited by the recurrence into space-time, a great 

deal of interconnect would often be needed. For example, if for some reason each 

subcomputation of COPY were mapped onto a separate subprocessor of a linear array, 

then connections would need to be made from one end of the processor to the other end 

and to all points in between. 

A dependency <vn1, i> is wzform  if Ai is a uniform map, that is, if 

AI(p) = p+dj 

In this case the translation vector d1 is called a dependency vector (of C with respect to 

<M, BASE>). 
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A recurrence is affine/uniform if there is a way of constructing it so that all its 

dependencies are affine/uniform respectively. "uniform recurrence" and "affine 

recurrence" may be abbreviated "UR" and "AR" respectively. 

An example of a uniform recurrence is COPY' where 

J.n(COPY') = {x, O>} 

Out(COPY') = {.zx,i>:iE 11,2,311 

Rel(COPY')v 	(i E { 1, 2, 3}) = v(<x, i>.) = v(x, i-i>) 

Figure 3.13 shows COPY' with its dependency arcs. 

0-4 O 	0 

Figure 3.14 COPY 

COPY' is a uniform recurrence since it has only one dependency, <x, i -4 i-i>, which 

is uniform, its (dependency) vector being [-1]. Another example of a uniform 

recurrence can be seen in Figure 4.7 on page 91. 

COPY is an example of a (non-uniform) affine recurrence. Again there is only one 

dependency, <x, i -4 0>. That this is affine can be seen from the fact that 

0 = [O].i+ [0] 

Another non-uniform affine recurrence can be seen in Figure 3.17 on page 63. 

(An example of a non-affine recurrence would be COPY", where 

In(COPY-) = {x,2>} 

Out(COPY") = {x, 4>, x, 8>, x, 16>1 
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Rel(COPY") 	(i € 11,2, 3, 4}) => v(x, 2'>) = v(, 2 1-1>) 

) 

In general, if a uniform recurrence is mapped to hardware, only a short amount of 

interconnect is needed. For example, if COPY' were mapped to a linear array in a 

similar way to COPY, then only connections between each processor and its neighbour 

would be needed. 

As mentioned earlier, the input to the design method has an affine recurrence as its main 

part. In data-pipelining (see page 14), the affme recurrence is transformed into a 

uniform recurrence composed with some control requirements. 

There may be more than one mould-base combination which can be used to construct 

a particular recurrence. The sets of dependencies, dependency arcs and dependency 

vectors may vary according to which combination is chosen. In this document each 

recurrence will have just one mould-base pair, implicitly- or explicitly-stated, 

associated with it. The dependencies, dependency arcs and dependency vectors referred 

to in connection with the recurrence will be with respect to that pair. 

3.3.1 Example: Convolution 

Described in this section is an example of an afflne recurrence (DATA( co ), shown in 

Figure 3.17 on page 63). When it is composed with its control requirements 

(CONTR04cONV)), it implements a modified convolution task. Modified convolution 

may be defined mathematically as follows. Given two four-dimensional input vectors, 

W and X, we are to find the vector Y, a four-dimensional vector with components 

defined by the following equation (where "Y(j)" denotes the th component of Y etc.): 

Y(j) = 	W(i)*X(ji+1) 

We may visualise this as follows. Let W be laid out in a horizontal line with W(1) at the 
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left and W(4) at the right, and let X be laid alongside W but in the reverse direction. Y 

is found by sliding X to the left and, whenever the components of X line up with the 

components of W, taking the sum of the products of the components which have met 

and assigning the result to the next highest component of Y (Figure 3.15). Figure 3.16 

is essentially the same as Figure 3.15 but it shows the input and output values when W 

isrzl,3,4,2> and Xis<1O,2O, 15,11>. 

1 2 3 	4 
W  • • S 	S 

* * * 	* 

X 
• • S 	S 

4 3 2 	1 

Y(1)  

1 	2 	3 	4 
W  • • S 

* 	* 	* 

	

X  • 	• 	S 

	

4 	3 	2 	1 

Y(2) 

etc... 

Figure 3.15 Modified convolution 

1 	3 	4 	2 

11 15 20 10 

156 

11 

1 	3 	4 
* 	* 	* 

15 20 10 

\4k f / 

115 

2 

etc... 

Figure 3.16 Modified convolution: a numerical example 
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This description has the components of Y being calculated in a certain order, but note 

that the order of calculation is not part of the task specification. 

In the language of computations, the task may be specified by ALG 0(c0NV), defined as 

follows: 

Let ALG0(CONV) be such that 

In(ALG0(coNv)) 	:= {<W,j>Ij= 1 to4}U {<X,i>Ii= 1 to4} 

Out(ALG°(C0Nv)) 	:= {<Y, > Ij = ito 4} 

and Rel(ALG°(CONV))v 	For all jin{l ... 4}, 

v(<Y, j>) = 	v(<W, i>)*v(<X,  j-i+1>) 

Let us now define the implementation of modified convolution, DATA(CONV) II 

CONTRO4CONV) (this is called ALG(CONV) and is shown in Figure 3.17 on page 63). 

DATA,) is a recurrence with four variable classes: x, w, y, and c y. Its base, 

BASE(CONV) is a right-angled triangle. The variable class x corresponds to X, which is 

input at the base of the triangle. The variable class w corresponds to W, which is 

presented at the left-hand edge of the triangle. The products are added one by one to the 

partial sums as they flow diagonally through the network from the bottom to the left of 

the triangle by means of the variable class y. The final sums of the products are output 

from the left-hand edge. c is a control variable class which is used to initialise the 

partial sums to zero. The are four dependencies, <y, p -4 p + [l]>.<x. p -4 [ ] p. 

p —p [00] p and <ci,, p -4 p>. The first two dependencies fetch to each point in 

the base the appropriate components of the input vectors to be multiplied together and 

the third dependency fetches the appropriate partial sum to which the product is to be 

added. The final dependency simply fetches c from the current point. The value of c y  

is required to be zero if we are currently at the bottom edge of the triangle and therefore 
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require initialisation of the partial sum, and one if we are not. The formal definition of 

DATA) follows. Note that the subcomputations DATA(CONV ) are defined 

directly without reference to the mould. 

Let us define the following region as the base of DATA(CONV): 

BASE(coNv):=([] : i~ O,j ~ Oandj ~ 3-i} 

Define DATA(co )(p) and DATA(CONV) as follows: 

+   	
.>' <c[-1 	[~' 	<W1  ~10 !  

Out(DATA(co)( p)) 	:= {<y, p>} 

Rel(DATA(c0p4v)(p))v 	<=> v(<y, p>) = v(<c, p>) *v(<y,  p + [_l] >.) 

+ v(x, °1  .p>)*v(<w, [0 ?] .p>) 1 oi 

DATA(CONV) 	 := (II € BASE(CONV) DATA(CONV)) 

DATA(corv) is an example of an affine recurrence, since 

InDATA v) p)) = {y, p +[1]>, x,  0  .p>, <w, 001 .p>, 

and the functions 

p—'p+ 1-111 
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11,00 

p4 [°6j .P  
p -4  p 

are all affme. (Moreover, the dependencies <y, p - p + [ 1]> and <cs,, p -4 p> are 

uniform.) 

Let us now define the control requirements (CONTRO4 CONV). Firstly we need to 

make the following definition: 

D:= 
{ [] 

:O::9i:!g3} 

Disthebottomedgeofthet1iaflgle. As stated previously, c needs tObe zero inthis 

region and one elsewhere in BASE(coNv). This requirement is expressed in 

CONTROL(CONV), defined below: 

n(CONThOL(cov)) := 0 
Out(CONTROL(cov)) := {<c, p>: p € BASE,)} 

Rel(CONTR04oNv))v 	For all p. ( (p € D 	v(<c, p>) =0) and 

(p € BASE) - D = v(<c, p>) = 1)) 

ALG(coNv) which is the composition of DATA(CONV) and CONTROL(CONV), 1185 

domain BASE yy) U Dy' where 

D' 	:= {[1]:l ~ i :94} 

ALG(CONV) is illustrated in Figure 3.17. Only the data-dependency arcs between 
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distinct points are drawn in. The shaded arrows indicate data-transfers which are not in 

fact required at a point. CONTROL(coNv) is invisible. 

D 

D ' 

	

Co-ordinate frame: 	 Directions of data-dependencies: 

j 	 <w,p- 

•1 

	

1 	 .x,p—* [ 
	

.p> 

Figure 3.17 ALG(copjv) 

Then ALG(coNv) simulates ALG0(coNv) (defined on page 60) with respect to <Varset0, 

RENAME°>, where 

Varset°:= {<y, []>: [(')11] € BASE cov) andi*0} 
a 

U{<y, [—ill>: 

Li {<w, [I> [()1 € BASE op v) and j * 0} 
[ai 
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[( 1)]> :  [(')11] € BASEv) andj* 01 
u 

L) { <c3 , p> : p € BASE co v) 

and RENAME°  is such that 

for alljin(l ... 4), 	R.ENAME0 (<Y,J>) = <y, [10]> 

and for all j in 11 ... 41,  RENAME°  (<W, j>) = <w, [10]> 

and foralliin{l ... 4}, RENAME° (<X,i>) = cx, [oj 

In other words, ALG(coNv) equals ALG0(coNv) when the internal data-transfers and all 

the control signals of the former are hidden and the remainder of its variables renamed 

appropriately. 

33.2 Shorthand expressions for computations 

There is a way of informally expressing certain computations (including all 

recurrences) in a briefer way: 

The shorthand expression of a computation, C, is essentially a description of its relation, 

Rel(C). The distinction between a variable and its value which was carefully made for 

formal purposes is blurred for the sake of conciseness: for instance, y(p 
+ 1-111 ) 

is 

written in place of v(<y, p 
+ 

[] >). The input and output sets of the computation are 

not explicitly stated in the shorthand form, but may be deduced from it: the symbol, 

":=" is not symmetric, in contrast to "=" ... the variables which are represented by an 

expression which occurs on the left of a ":=" are outputs; all other variables are inputs. 
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To provide examples of shorthand form, DATA(comv) will generally be written as: 

ft in BASE(cov) =1 y(p) := Cy(P)*Y(P +[']) + x( [ j .p)*w( ~,O !1 .p). 	1 

L 
	

j 

and ALG(coNv) can be written as: 

Ii' in BASE(CONV) 	= y(p) := p)*y(p + 1
-111) 

+x( 11
0,0

0 .p)*w( ~0' 0] •p); 1 

IP11IDy 	 = Cy(P) :=O; 	 I 
Lp in BASE(CONV) - D 	Cy(P) := 1. 	 j 

Composition 

The composition of several computations can be expressed in shorthand by the 

concatenation of the expressions representing each recurrence. 

Hiding 

There is, as far as I know, no general manipulation which can be done on computation 

expressions which corresponds to hiding. 

Renaming 

A renamed computation can be expressed by substituting the new variable names for 

the old ones in the expression of the original computation. 

3.4 Space-time networks 

A "space-time network" is a certain type of embedded computation; it models an 

algorithm executing on hardware. The Euclidean space in which a space-time network 

is embedded is identified with space-time, and in such a network a subcomputation can 

only be executed after all its inputs have been generated (i.e. the time co-ordinate of the 

position vector associated with a subcomputation must be greater than the time co- 
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ordinate of the position vector of each of its input variables). 

A space-time network is an embedded computation, C, which satisfies the following 

conditions: 

The variables of C are drawn from Varciasses X (Real X Real"- ') (where 

Varciasses is a set of variable classes). 

C will have the structure ED  C where D 9 Integer" and, for each p. C is a 

computation which produces all its output signals at point p. 

Let us define time(p) and space(p) to be such that 

time(p) = pi I 

and 

space(p)Ii = P'(i+1) 

(If a variable (i.e. a signal) is <vs, p> then time(p) is the time co-ordinate of the 

signal and space(p) is the space co-ordinate.) 

For each input <v, p'> to C (as defined in (2)), 

tirne(p') <time(p) 

If C is a recurrence then (3) is equivalent to: 

(3') For all dependencies <v, S,> of C, and all points p in D, 

time(ój(p)) < time(p) 

Not all recurrences are space-time networks. Furthermore, since a space-time network 

may not have a regular structure, not all space-time networks are recurrences. 
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If a computation simulates ALG and is a space-time network, then it is said to be a 

space-time simulation of ALG. Formally: 

If C simulates ALG with respect to <Varset, RENAME> and is a space-time network, 

then it is called a space-time simulation of ALG. 

Often a space-time simulation is formed from ALG, where ALG itself is an embedded 

computation: a one-to-one map from the domain of ALG to the domain of C is chosen 

and the variables are renamed accordingly (Varset is the empty set). Formally: 

ALG ® RENAME = C 

where RENAME: <v. p -* <v, lm(p)>, Im being some one-to-one function. We may 

make the following definitions: 

Im(p) 	:= time(Im(p)) 

and 

Ins(P) 	:= space(Im(p)) 

Now since ALG is an embedded computation, we know that it can be decomposed into 

subcomputations: 

ALO "q € D'aIg AWq 

where every output variable of ALGq  is situated at q. 

Condition (3) is equivalent to saying that for all q, and for all inputs <v, q'> to ALG q, 

time(Im(q')) < tinie(Im(q)) 

That is: 

Im(q') < In(q) 
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In this case, the dependency arc <q, q'> is said to be rime-consistent with Im. 

Let us assume that ALO and C are uniform recurrences and Imt  is .iie, so that 

A.p+bt  for some At  and bt  

Let us say that a vector b is time-consistent with Im if 

A.b <0 

In this case, (3') further specializes to: 

(3") All dependency vectors of C are time-consistent with Im. 

(For future reference, when Im and Ims  are also affine, we will define A, b, As  and b5  

to be such that 

1m5(P) = As-p + b5  

and 

Im(p)= A.p+b) 

A uniform recurrence which is also a space-time network is called a strictly systolic 

computation. The output of the design method has a strictly systolic computation as its 

main part. Given a strictly systolic computation, one can easily design a systolic array 

to implement it. 
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Strictly systolic computations 

Figure 3.18 Venn diagram of the set of computations 
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3.5 Summary, discussion and further work 

3.5.1 Summary 

In this chapter the basic concepts to be used in Chapter 4 were defined. The concept of 

a computation was defined along with three operations on computations - composition, 

biding and renaming - and one relation - simulation. The set of embedded 

computations, which are the compositions of subcomputations located in Euclidean 

space, was defined and a special type of embedded computation, the recurrence, was 

introduced along with some associated concepts, such as "afflne recurrence" and 

"uniform recurrence". The set of space-time networks, embedded computations which 

model algorithms executing on hardware, was defined along with associated concepts. 

Finally, the set of strictly systolic computations was defined. Given a strictly systolic 

computation, one can easily design a systolic array to implement it. 

3.5.2 Discussion 

Computations 

The basic entity in my theory is the computation. Although the behaviour of a 

computation is captured by a relation rather than a function (see the discussion on 

Formal Design Methods in Chapter 2), computations are functional in nature, with a 

distinction being drawn between inputs and outputs. The generality of computations 

means they can be used in algorithmic specifications, even those which would not be 

considered systolic. A distinction is drawn between a variable (input or output) and its 

value. In a simple function with multiple inputs and outputs, the inputs (and outputs) 

are ordered, and are therefore implicitly labelled by positive integers. In the explicit 

labelling of variables, the aim was to facilitate the combination of computations in 

complex ways, and to enable the capture of abstract and physical algorithmic structure 

by allowing as variables not only "atoms" (entities without internal structure) but also 

atom-vector pairs. This capturing of structure seemed to be necessary in order to define 

recurrences and systolic arrays. 
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Simulation 

In this chapter not only is equality of computations defined but also what it means for 

one to simulate another. (As far as I know, "simulation" has not been formally defined 

in any of the literature on systolic array design, and yet such a definition seems essential 

when relating such disparate things as external behaviour, algorithms and hardware 

implementations. Although two things from different categories may both be 

expressible as computations, they are unlikely to be equal in any sense. Many of the 

more general parallel formalisms have a similar concept to simulation, though. 

Recurrence 

The concept of a recurrence is derived from the concept of a system of recurrence 

equations (SREs) [Raj89]. Unlike SREs, recurrences are formally defined, and 

therefore useful for formal verification; however, their definitions are cumbersome and 

hard to read, in contrast with those of the SREs and so the definition style of systems of 

recurrence equations is re-introduced, as the "syntactic sugar" of the shorthand form. 

Using this form, it should be easy to write the algorithmic specifications for input to the 

formal design method described in the following chapter. 

Rajopadhye defines a "conditional uniform recurrence equation" (CURE) as a separate 

type of object from a uniform recurrence equation (URE) (a system of UREs 

corresponds to a uniform recurrence (UR)); a CURE is like a URE except that its output 

value at a point may depend directly on the position of that point, and not simply on the 

variable values at that or other points. In my method there is no need for conditional 

recurrences, uniform or affine (Rajopadhye uses an affine recurrence without 

introducing the type) since I hypothesise a control requirement/part right from the 

initial specification. Results in the "data part" never depend directly on the point at 

which they are generated. 

Dependencies 

The concept of dependency (data- and control-) occurs frequently in the literature. I 

give a formal definition of it. 
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Space-time networks 

A strictly systolic computation exists in space-time and must satisfy the condition that 

each subconiputation must wait until all its input values have been generated and 

received before it can generate any of its output values. This attribute is however 

independent of its systolicity; hence the separate definition of a "valid space-time 

network" as a composite computation which has the attribute but may not be systolic. 

3.5.3 Further work 

It would be useful to do a detailed comparison between the formal language of this 

thesis with other languages, especially "Ruby" [She88a] and "ALPHA" [LeV85] with 

a view to designing a language which improves on them all. 

If the shorthand form is to be used for writing algorithmic specifications, it will need to 

be given a formal semantics. 

It would be good to have a more satisfactory theory of input and output. What is the 

essential difference between an input and an output and how can the dependency of the 

output-values of a computation on those of its inputs be easily determined? If the value 

of a certain output were found to be independent of that of a certain input, then it might 

be possible to schedule the production of the latter before that of the former. 

Computations' inputs and even computations themselves could, if redundant, be 

removed, which might allow the design of a more efficient implementation. 

Redundancy of inputs often occurs where a computation is "regulated by a control 

signal" (The dotted arrows e.g. in Figure 4.7 on page 91 correspond to such inputs.) 
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4 The Formal Design Method 

In this chapter the design method is presented with the help of the convolution example 

introduced in Chapter 3. 

The design task may be outlined as follows: given an initial computation expressing an 

algorithm, we want to find a space-time simulation for the computation. We will only 

consider initial computations of a certain form: those which are the composition of an 

afflne recurrence and an initial control requirement. The control requirement is to be a 

set of control requirements of a certain form, expressed as an embedded computation. 

The space-tirnà simulation - the output of the design process - is to be the composition 

of a uniform recurrence (which includes interior data and control signals) and a control 

part (which asserts constant values only and is and edge-computation of the 

recurrence). It is usually trivial to translate the uniform part of the space-time 

simulation into a systolic array; however, the edge control part may still need a little 

massaging before it can be encapsulated in hardware. 

As described in Chapter 1, the design method is based on a transformation scheme 

(Figure 1.4), which can be broken down into three main transformations. These 

transformations are described briefly in the first part of the chapter. Most of the rest of 

the chapter is devoted toa detailed description of the design method, divided up into its 

five stages (Figure 1.5). Within this description, the transformations will be described 

in more detail. In tandem with its exposition, the design method is applied to the 

convolution example. From the space-time simulation an architecture is then 

constructed for the convolution algorithm. This architecture is systolic if the wires used 

to input and output signals to and from the array are ignored. 

Transformation 1: Data-pipelining 

By this transformation, the affine recurrence, which generally specifies the data-flow, 

is transformed into a uniform recurrence, with the generation of some control 

requirements which can be lumped together with the initial control part to form an 

aggregated control requirement. Let the initial computation be ALG, the affine 
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recurrence be DATA, the initial control part be CONTROL the uniform recurrence, 

describing the modified data-flow, be DATA', and the aggregated control part be 

CONTROL'. Then this transformation may be encapsulated diagrnin1Rtically as 

follows 

ALG 	rn' CONTROL II DATA 

CONTROL' II DATA' 

= change + design decision 
= change without design decision 

-In'- 	= no change 

CONTROL' II DATA' simulates CONTROUIDATA (n Theorem 1). 

Transformation 2: Control-pipelining 

By this transformation, a step is made towards the satisfaction of the control 

requirements - the aggregated control requirement is transformed into a uniform 

recurrence (CONTROL") (o Theorem 25) and an edge control part 

(CONTROL")(iu Theorem 19). CONTROL" has the same base as the uniform 

recurrence generated by the first transformation (DATA'). CONTROL" has all its 

variables on the edge of the recurrence. CONTROL" is called EDGE and the 

composition of CONTROL" and DATA' is called INTERIOR. The diagram of this 

transformation is shown below: 
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CONTROL' II DATA' 

CONTROL" II (CONTROL" II DATA') 

p 
EDGE II INTERIOR 

= change + design decision 

- 	= change without design decision 
IIi'. 	= no change 

EDGE II INTERIOR simulates CONTROL' U DATA'(D Theorem 5). 

Transformation 3: Scheduling and Allocation 

By this transformation, the abstract space in which the computations are embedded is 

mapped to space-time by means of an affine function, urn. (Note that the affinity of the 

space-time map is logically separate from the affinity of the dependencies within the 

computations.) The first component of IM(p) forms the time co-ordinate of p and the 

remaining components form the space co-ordinate of p. The function lint  which maps 

p to its time co-ordinate is the "scheduling" function and the function 1m 8  which maps 

p to its space co-ordinate is the "allocation" function. Formally: 

lm(p) := lm(p)'1' 
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(i.e. Im(p)  is the first component of Im(p)) 

and Im(p)'t' 	Im(p)1j 

(i.e. the i&  component of 1m5(p) equals the (i-i-i) compoint of hn(p)) 

Let RENAME be defined such that RENAME(<var, p>) = <var, Im(p)>. Then the final 

space-time simulation, IMP, equals EDGE' composed with INTERIOR', where 

EDGE' and INTERIOR' are the renamed versions of EDGE and INTERIOR 

respectively: 

EDGE' 	:= EDGE ® RENAME 

"ice) 	 1 ($) 4J 1 	I 

IIIiA1(s1 

EDGE' H INTERIOR' simulates EDGE II INTERIOR (00 Theorem 13). 

This transformation can be expressed diagrammatically: 
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EDGE II INTERIOR 

(EDGE II INTERIOR) ® RENAME 

(EDGE ® RENAME)! (INTERIOR ® RENAME) 

EDGE' II INTERIOR' 

IMP 

= change + design decision 

- 	= change without design decision 
= no change 

The result of the three transformations 

IMP is a space-time network (Ail ) which simulates ALG (j& Theorem 15) and EDGE' 

and INTERIOR' are of the required shape (go Theorem 20 and Theorem 27). 

Recall from Figure 1.5 that the design process actually consists of the five-stage 

sequence: 

Data-pipelining -4 Scheduling -4 Control-pipelining -4 Allocation -9 Final stage 

We will now look at each of the five stages in detail. Each stage will be described in the 

general case and then in the particular case of the convolution example. Each 
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computation or function in the example will be christened by adding the subscripted 

suffix, "q" to the name of the corresponding computation or function in the general 

case. For example, DATA(CONV) 
in the convolution example corresponds to DATA in 

the general case. 

4.1 Data-pipeliniflg 

As stated previously, in this stage of the design process we aim to find a computation, 

CONTROL', and a uniform recurrence, DATA' such that CONTROL' II DATA' 

simulates CONTROL II DATA. Essentially we transform the affine recurrence DATA 

into the uniform recurrence DATA', with the generation of some control requirements 

which we tack on to the control requirements from the angina! computation (specified 

by CONTROL). This transformation from uniform to affine recurrence is done by 

"pipelining the affine dependencies". The idea is that if the value of a variable (at a 

particular point) is required at more than one other point, as generally happens when 

there is an affine dependency, then the value doesn't have to be transmitted directly to 

each destination from its source, but can be passed to one point and from there 

circulated to all the others. The set of points depending on a single source is called a 

"coset". A new variable class is created to provide a channel for the value. As each 

affine dependency is pipelined, a control requirement is generated, since the 

subcomputation at each point needs to be told, by a control signal, whether it is getting 

the value directly from the original source or indirectly from a neighbour. 

Let us consider in detail how a single affine dependency may be pipelined. Figure 4.1 

on page 81 shows a typical affine dependency and Figure 4.2 on page 82 shows the 

corresponding uniform dependency paired with the new control requirement. Recall 

that we have given the affine recurrence the name DATA. Assume that it can be 

constructed from mould DATA_M over base BASE and that its dependencies are affine 

w.r.t. this choice of mould and base. Now 

DATA = 'tp€ BASE DATA_M ® R....DATA(i : p) 

where 
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R_DATA(i : p)(< fun>) = <vc, fun(p)> 

for all pairs <vc, fun> in Vars(DATA_M). 

Let the affine dependency we are considering be <ai, A2; we know that 4: p -4 B2.p 

+ d2 for some matrix B2 and vector d2. We defined C(p), the coset of p, to be the set of 

points which, regarding the dependency <a2, A2>, depend on the same point as p. 

Formally: 

C(p) := {p' € BASE: A2(p') = 

Let us further assume that there exists a vector r2 s.t., for all p, there exists a po and 

integer N s.t. 

C(p) = {s: $ = po 	mE Integer, 0 :!~. m ::g N} 

That is, C(p) is a finite row of equally spaced points parallel to r2. 

Let us now define PIPE_M(2), the pattern for a section of the "pipe" which will 

transport the data-signal: 

In(PIPE....M(2)) = {<c2, IdB>, <z2, p —' P2>' <a2' IdBASE>} 

Out(PIPE_M(2)) = {.z2, IdB>} 

Rel(PIPE_M 

v(<z2, IdBASE>) = v(<c2, 	*v(<, p —) p+r2>) 

+ (<c2 IdS1>)v(<a2,  MBASE>) 

Note that we have introduced two new variable-classes: z2, which is the variable-class 

that provides a channel for the signRl and the control variable-class c2 which acts as a 

switch which determines whether the value for z2 at a point p is obtained from z2 at the 

neighbouring point (which happens if p is not at the beginning of its coset row) or from 

a2 at point p (which happens if p is at the beginning of its row). (We are making the 



4 	The Formal Design Method 	
1 	

80 

assumption here that p0 equals L2(po).) Note that the variables of PIPE-K2) are nOt 

variable-class-vector pairs, but variable-class-function pairs, to make it suitable for 

forming the mould of DATA) when composed with the modified version of 

DATA_M Since z2 is the new name of a2, a renaming must be done on DATA_M. Let 

us define the renaming function Rj)P(2) to be s.t. 

R_DP(2)(<a2, 2>) : 'z2, p ' P2> 

and for all <a', i'>in Vars(DATA_M) not equal to <a2, 2>, 

RDP(2)(<a' 4à'>) 	:= <a', t> 

These equations express the fact that we want to replace the dependency <a2, &2> in 

DATA by <z2, IdB4&> but to leave every other dependency unaffected. We now 

compose DATA_M ® R_DP with PIPE_M to form the mould for DATA, which 

we will call DATA-K2): 

DATA_M(2) := DATA_M ® R_DP2) II PIPE-K2) 

DATA(2) 	:= II  BASE DATA-K2) ® R.DATA( : p) 

where 

RDATA(2. p)(< VC, fun>) = <vc, fun(p)> 

for all pairs <vc, fun> in Vars(DATA_M(2)). 

We must not forget the new control requirements generated by this transformation. The 

new control computation will be: 

CONTRO42) := rp in BASE fl {p' Ip' * 2(P')} 	c(p) := 1;1 

Lp n BASE C{p'Ip'=12(p')}c2(p):0.J 

The first line specifies that if p (in BASE) is not equal to L2(p) then the value of <c2, 

p> is 1and the second line specifies that if p is equal to 4ó2(p) then the value of <c2, p> 
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is 0. (The complicated appearance of the conditions preceding the implication arrows 

is because they must be written in the format required for shorthand expressions of 

recurrences.) 

Recalling that the original recurrence was called DATA, we may now state the 

following: 

If CONTROL(2), DATA(2) and DATA are as defined previously and certain 

assumptions are made then 

CONTROL(2) II DATA(2) Simulates DATA 	 (n Theorem 2) 

Figure 4.1 shows pictorially a possible affine dependency of DATA. Assume it is the 

first one to be made uniform. Figure 4.2 shows how the uniform dependency would 

appear in DATA(2) (left) and what CONTROL2) would be (right). These should be 

superimposed, but are displayed separately for clarity. 

o 0 0 

o 0 0 

Figure 4.1 An affine dependency 
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ci-i 1 1 641 	

01 01 01 

I 	
01 01 01 

(jl 	

01 	01 	01 

64 	64 	
640 	 00 00 00 

Figure 4.2 After pipelining: DATA(2) (left) and CONTROL(2) (right) 

The loop arrows in Figure 4.2 correspond to the dependency <a2, IdB&> which 

appears in the definition of PWE_M> and the straight arrows correspond to the 

dependency <2 p - P-1-2>• Solid arcs indicate that the data is actually being used, due 

to the value of c2 at the destination of the arc. 

We have now seen how to pipeline a single affine dependency. If there is more  than one 

affine dependency in DATA then DATA(2) will have at least one such and the process 

must be repeated with DATA(2), producing CONTROL(3) and DATA(3) etc... When all 

the affine dependencies have been pipelined we will have the computation (1112 to n 

CONTROL(1))ll DATA(S) which will simulate DATA. If we then tack on the initial 

control part, CONTROL (which we will call "CONTRO41)" for neatness' sake), we 

get (Ili--I to n CONTRO41)) II DATA, 
which simulates CONTROL II DATA (OD  

Theorem 1). DATA() is uniform (j& Theorem 26) so the required task, stated in the 

first sentence of this section, has been achieved, if we set DATA' equal to DATA(S) and 

CONTROL' equal to (II = i ton CONTROL(1)). The diagram on page 74 may now be 

expanded to include more details: 
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= change + design decision 

= change without design decision 

= no change 

ALO 	-- ...   ................  " 	CONTROL II DATA 

.adft' 

(CONTRO41) II CONTROL(2)) II DATA 

etc. 

(II=i ton CONTR041))II DATA(S) 

CONTROL' II DATA' 

Figure 43 Data-pipelining 

We have just seen in detail the process of data-pipelining, in which the affine 

dependencies in the data part of the original computation are progressively replaced by 

uniform dependencies. We will now see how this process operates in the particular case 

of the convolution example. 

4.1.1 Example 

Let us recall the definitions from page 61, presented this time using shorthand 

expressions for computations. 

BASB(CONV) :={ [wl : i~_>O,j ~*_O and j:!~ 3 - i} 

BASE(coyiv) is the base of DATA(CONV) defined below: 
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DATA V) := 1 in BASE(coNV) = y(p) := 	+ 1-111 )1 

L +x(  [[ o 
 .p*w([ .p). o 	J 

DATA(CONV) is the data part of the computation used in the specification of the 

convolution task. It states that if p is in the base then the running total at p (that is, the 

value of <y, p>) is equal to the running total at (p + [1]) multiplied by the value of 

the control variable <cy, p>, added to the relevant weighted input (the value of the input 

<x, [1 0] .p> multiplied by the value of the weight <w, [00]  .p>). The value of <cy, p> 

is defined (by the control part CONTRO4 CONV)) to be 1 everywhere in the base except 

the strip D at the base of the triangle, where it is 0: 

D 	 := { [] :0:r.i:!g3} 

CONTROL(cOp4v) := rp in Dy 	 cy(p) := 0; 

LP in BASE CONV) - D 	Cy(P) := I. j 

This causes the running total to be initialised at 0 along this strip. The complete initial 

computation is of course the initial control part composed with the initial data part. 

ALG(coNv) 	:= CONTROL NV) H DATA(coNV) 

A diagram of ALG(CONV) can be seen in Figure 3.17 on page 63. 

There are two dependencies which need to be pipelinecl one is <x, p —+ lio,0] .p> and 

the other is <w, p -4 [ 0] .p>. We will tackle the former first. 
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ALG(cy) is of the same form as ALO on page 79 with CONTROkCONV) identified 

with CONTROL and DATA(CONV) identified with DATA. DATA cov) satisfies the 

conditions for Theorem 2 when we identify a2 with the variable-class x, A2 with the 

functionp -) ['.p and r2 with the vector [ 0j. 

Sox is the variable-class of the dependency to be pipelined, p - [10] .p is its function 

and 
1-011 

 is the vector between a point in a coset and its neighbour in that 

Let the new variable-class for the pipe be Zx and the new control-variable class, Cx.  We 

may now follow the pattern on page 79 in making some definitions: 

In(PWE_M(coI4vX2)) 	= {<C, p p>, <Zx P P+ 	> <X, f 

Out(PIPE_M(c0liv)(2)) = { <z, P P> } 

Rel(PIPEM(C0NV)(2)) 

v(<z,p-*p>) = v(cc,1,p_+p>)*v(czx,p4P+ [0]>) 

+ 	p - p>)*v(x, p - p>) 

(This definition for PEM(covX2) COT1CSOfldS to the definition for PIPE_M(2) on 

page 79.) 

P -, 11, .p>):=x, p - + 
[ I> 

and for all <a', A'>in Var DATA_M( coNv)(2)) not equal to <a,  p - 111,0] .p>, 

R_DP()(2)(<a', A'>) := <a', A'> 

DATA_M(CONVX2) := DATA_M(CONV) 0 R_DP(,nrx2) 11 P1PE_MoNx2) 
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DATA(Cy ) := pE BASE DATA_M oyv 2) ® R_DATA(cvx2 : p) 

where 

R_DATA coyv)(2. p)(4(VC fun>) = <VC, ftm(p)> 

for all pairs <vc, fun> in VaATA_M(coy 2) 

and DATA_M v)  is s.t. 

In(DATA_M(CONV)) 	 := {<c. p -* p>, <y, p -p 
 p + [1]>. x,p 	1  0] 

<w' p—> []>i 

Out(DATA_M(co ,)) := {<y'  p -* p>} 

Rel(DATA_M(CoNV))(v) 	v(<y, p - p>) = 

1-111 >)  
+v('x,p-3 11 o] p>)*y(<, p) 

[?]•>) 

(DAT&M() is a mould for DATA(CONV). DATA(co )(2) corresponds to 

DATA(2), defined on page 80.) 

CONTR04cop vx2) 

1pinBAEcoNv){p'Ip'= [] andj*0}= c1(p):=1; 1 

nBASECO,)C{p'Ip'= [] andj=0}= c(p):=0. J 

(This definition corresponds to the one defining CONTROL(2) on page 80. The set {p' 

Ip' = [('),I and j * 0 1 corresponds to { p' Ip' * L2(p') } since in this case L2  is equated 
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withthefunctionp —) 1 01 p. Similarly the set {p' Ip' =[] and  =O} corresponds 

to {p' Ip' = 2(P')} Note that {p' Ip' = [(')"] and  = O} is coincidentally equal to Dy .) 

Using Theorem 2, we can now deduce that, assuming certain computations are well-

defined, 

CONTROL(CONV)(2) II DATA(cONv)(2) simulates DATA(CONV) (n.p.) 

Figure 4.6 shows CONTRO4 CONv)(2) and Figure 4.5 shows DATA(CONV)(2). 

10 

Co-ordinate frame: 

10 	10 

10 	10 	10 	 I 
00 00 00 00 

Figure 4.4 CONTROL( coNv)(2) (showing the values of c at each point) 
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Co-ordinate frame: 

14, 
0 	

'0 

	 i s  

1 

O = O: O.  

Directions of data-dependencies: 

	

<w, p -4 
[ 	

.p> 	
_ p + 1-111 > 

x,p-4p+ [0] > 

Figure 4.5 DATA(CONV)(2) 

We have pipelined the first dependency but we still need to pipeline the other, <w, p -4 

[ ?] .p>; the process must be repeated with new identifications: a2 is identified with 

the variable-class w, L2  is identified with the function p -9 
100

0] .p and r2 with 	the 

vector [4].lfz2is  identified with zw,c2  with  cw  and  we  make the following 

definitions (they are similar to the previous ones): 
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In(PIPE   
	
> <W, p ip>} _M 	 P [] 

 

Out PWE_M(coNyx3)) = {<Z, P -3 P>} 

Rel(PIPE_M(c0Nv)(3)) 

v(<z, p —* p>) = v(<c, p - p>)*v(<zw, , - i + 
[-0

11>) 

+ (<c, p - p>)*v(<w, p 
- 

p>) 

(This definition for PIPE_M(cONv)(3) corresponds to the definition for 

PIPE_M(coNv)(2) on page 79, but w, c,, z and [ occur in place of x, c, zx  and 

[-1 respectively.) 
 11 

R_DP(co ,)(3)(<w, p —  ~40 .p>):=<w, p — p+ 
[> 

and for all <a', i'>in Vars(DATA_M(c0Nv)(3)) not equal to <w, p -4 14,
0] .p>, 

R_DP(CO ,)(3)(<a', '>) := <a', i> 

DATPLM(CONVX3) := DATA_M(co )(2) ® R_DP(,x3) II PPE_M,X3) 

DATA(coy)(3) 	I pE BASF DATA_M oyiv 3) ® R_DATA(CONVX3 : p) 

where 

R_DATA(coNvx3 : p)(<VC, fun>) = <vc, fun(p)> 

for all pairs <vc, fun> in Vars(DATA_M(CONVX3)) 

(These definitions correspond to those for R_DP((X2), DATA_M( v)(2) 

DATA(CONV)(2), R_DATA(CONV)(2 p)- with [1] and [0 0] in place of [0]  and  [10] 

respectively, DATA_M( CONV) in place of DATA_M(CONV)(2) and 2 replaced by 3 in the 
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subscripts.) 

CONTR04coNvx3) : 

rp in BASE(CONV) fl 	i' = [ 1 and i * O}= Cw(P) : 1; 1 
[uj 

[PinBASE(CONV)fl{P' Ip'= [wl and i=0} =c(p):=O. J 

(This is the same as the definition of CONTR04coNv)(2) except that c(p) replaces 

C(p) and the strip where the value of the control variables is 0 is vertical and situated 

at the left-hand edge of the base, rather than being horizontal and below its base - see 

Figure 4.6 and Figure 4.6.) 

By Theorem 2, assuming that certain computations are well-defined, we can deduce 

that 

CONTROL(coNv)(3)I1DATA(CONvX3) simulates DATA wX2) (n.p.) 

(cf. the analogous deduction on page 87) 

MR 

Co-ordinate frame: 
00 10 

4 
00 10 10 

1 

00 10 10 10 

Figure 4.6 CONTROL( coAv v)(3) (showing the values of c, at each point) 
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41U.Q 

~ \\4111k  

	

o 	o- 0 

	

•.'*1I— 0 	0 	° 

	

V 	
•.•• 	 $ 	...3 	..,.. 

	

Co-ordinate frame: 	 Data-dependencies: 

-, 
+  1-011 

> 
	

+  1-111> 

	

1 	 <ZX
Ipp+ [j> 

Figure 4.7 DATA(CONV)(3) 

Now DATA(CONVX3) is a uniform recurrence so by the discussion on page 82 we know 

that if we change the name of the initial control computation CONTROL ONI,) to 

CONTRO4CONVX1), for neatness: 

CONTROkv)(1) := CONTR04 y) 

and define CONTROL' (co)to be the composition of the three control computations 

(the one initial one and the two just created): 

CONTROL' (coNy) := 1  1,3CONTROL,)(1)) 

and set DATA'(coNV) equal to DATA(CONVX3): 
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DATA'(CONV) := DATA(CONVX3) 

then DATA'(c0p4v) is a uniform reCUTnCC and CONTROL' (co" Ii DATA'(col 

simulates CONTROL(coNv) II DATA coriv  (n.p.) 

(CONTROL' (cONY) II DATA'(CONV) has not been drawn for the following reasons. 

DATA'(CONV) was seen in Figure 4.7; CONTROL' has no dependencies and to 

show the values of each control signal at each point would have made the diagram 

confusing.) 

Thus the data-pipelining task has been completed for the convolution example. We will 

now return to the general scheme and look at the scheduling stage. 

42 Scheduling 

We need to choose the function Imt so that the final implementation, IMP, satisfies the 

conditions which would make it a space-time network(). The conditions are as on 

page 66 with IMP substituted for C namely: 

The variables of IMP are drawn from the set Varciasses X (Real X Real) 

(where Varclasses is a set of variable classes) 

ThP will have the structure IDPp where 	subset o for 

each p. IMP1, is a computation which produces all its output signals at point p- 

For each input <v p'> to IMPp  (as defined in (2)), 

time(p') < time(p) 

This condition states that each piece of data must be produced before it can be 

consumed. 
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That condition (1) is satisfied follows from the nature of the function RENAME. 

Condition (2) needs to be proved when the design is complete. Its satisfaction doesn't 

depend on the choice ofIm t. The condition we0 consider (3) Although the 

design isn't complete, the data-dependencies are in place and lint can be tested against 

them. Since DATA' is a uniform recurrence, it can be shown that the required test is 

that A.b should be less than zero for all dependency vectors b of DATA' (where Im(p) 

= A.p + bt.) (There will be further conditions on CONTROL" and CONTROL" 

which will have to be checked when those computations are constructed.) 

Now we will schedule the convolution example, choosing Im, and performing the 

above test. 

4.2.1 Example 

Let DEP(co ) be the set of dependency-vectors of DATA(CONVX2) , then 

= 	F 
	[-1 

If we set the matrix Atv) to be equal to [1,2] then A).b <0 for all the 

dependency vectors b in DEP(CONV) and condition (3") on page 68 will be satisfied. We 

will let bco) equal zero for simplicity so we have 

I'flt(CONV) 	p —3 [1, 21.p 

Figure 4.8 shows the schedule for the convolution example. 
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Co-ordinate frame: 

3 	
is 

2 
'S. 

-S. •55 	 'S. 

0 	" -S. 	 'S.. 	
'S. 

S.' 	 'S. 
'S. 

'S.. -S 

t = -1  

-S .'S 'S 
'S. 

'S. 
'S 'S 

'S.  

"S 'S. 
'S. 'S 'S.

Nk  
Ik 

Data-dependencies: 

<zw, —+p + [ >
I_J\\\, , - , + ['i] 

> 

<z,p-4p+ 1-011  

Figure 4.8 Schedule for convolution example 

The dotted lines in the figure are equitemporal. No dependency arcs are drawn in, since 

this might mislead: the schedule is not used until after control-pipelining has been 

performed. However, the  data-dependency-Vectors are drawn in and it can be seen that 

condition (3") on page 68 will be satisfied, since they all lead to earlier times. 

We have now scheduled the convolution example; we will go on to the third stage: 

control-pipehni-ng. 

4.3 Control-pipelirnng 

As stated earlier in this chapter, the aim of control pipelining is to transform the control 

computation, CONTROL', into two parts, an edge-computation, CONTROL" which 
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introduces control signals at the edge of the array and a uniform recurrence, 

CONTROL", which transports the signals to their destinations. We will do this by 

dealing with each control signal separately and combining the results. Let us assume 

that CONTROL' may be split into several components of a certain form, each of which 

deals with a single control signal. Formally: 

CONTROL' : O= I to nCONTROL<i) where for each i 

	

CONTROL(i) := fp in {p' I A1.p' - b 1  * O} = 	cj(p):= 1; 1 

	

[pin {p'1A1.p'-b1=O} = 	cj(p):=O. j 

(We are assuming here that CONTROL = CONTRO41) see page 73 "Transformation 

1: Data-pipelining".) 

(We are here assuming that the initial  control  requirement is of this form, for a smaller 

value of n. CONTROL' may then be built up from that) 

The above definition of CONTROL( 1) says that for each point on a certain hyperplane 

the control variable cj(p) has the value zero, and it has the value one elsewhere. (Note 

that a hyperplane is a line if the space is two-dimensional.) For each i, we will look for 

a computation, CONTROL,:  1), which has all its variables on the boundary of the base 

of DATA' and a computation, CONTROLj: 2)  which is a uniform recurrence and such 

that CONTROL(, 1) 11 CONTROLç1: 2)  simulates CONTROL(,). Control-pipelmmg is 

similar to datapipelining, but it is simpler since initially there are no dependencies as 

such; all that is required in control-pipelining is that the control-variables at several 

points are assigned a common value (one or zero). 

Our pipelining strategy can be explained by the following analogy: imagine a light 

shining into a region of space and imagine that at the edge of the region there is an 

obstruction which casts a shadow into the region (Figure 4.9). 
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- - - - 

Distant light source 

obstruction pattern 

Figure 4.9 Analogy for control-pipelining 

The light and dark in the region represents the value of the control variable c1 (1 or 0), 

the pattern of obstruction represents the edge-computation (CONTROI) and the 

direction the light is shining represents the direction of signal. flow through the uniform 

recurrence (which is transporting the control signal). We need to find a direction for the 

light and an obstruction pattern which will create the desired shading. The analogy 

breaks down slightly since we are actually dealing with a lattice of points rather than a 

continuous space; so we are not merely looking for a direction for the light but a vector 

(with a length) such that every point in the base is reachable by an integer multiple of 

that vector from a point on the edge of the domain. More formally we are locking for a 

vector r, such that for all piflD, there exists a point pon the boundary ofD and afl 

integer n such that p = p 	- n*r. Furthermore, in order that the shadow is cast on the 

correct region, r must be in the null-space of A1 (see glossary for a definition of "null- 

space"); this implies that rwillbe aligned with the dark hylane.ff such azcan be 

found then we can construct the desired computations CONTRO4 .  1) and 

CONTRO4j 2) . If we have these for each i, then we can group all the edge- 
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computations together to form the edge-computation CONTROL", and all the uniform 

recurrences together to form the uniform recurrence CONTROL": 

CONTROL" := If j)nCOt1TROL(j: 1) 

CONTROL" := 11j= I to nCONTROL(i:2) 

As mentioned earlier, there are no control dependencies at the start of the control-

pipelining stage (cf. datapipelining). Therefore it is the variable classes rather than 

dependencies which will be said to be pipelined. Note also that in control-pipeliniiig, in 

contrast to data-pipelining, a new variable is not required to transport the signal: the 

control variables themselves may be used to transport it. 

Figure 4.10 shows a possible CONTROL', the numbers are the values of c1 at each 

point. 

01 	01 	01 

01 	ol 	01 

01 	01 	01 

oO oO 00 

Figure 4.10 A possible CONTROL' 

Figure 4.11 shows the result of pipelining. 
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104- 0-i4 	 0 

10- 	0-' 	 0 

1 Q 

 

0 14 0 	0 

00-4 i 014 	 0 

CONTROL(l.l) I. 
	CONTROL(1.2) 

Figure 4.11 CONTROL(l :l) II CONTROL  (I :2) 

To summarize, we have a strategy for finding an edge-computation CONTROL" (a 

Theorem 19) and a uniform recurrence CONTROL" (Oo Theorem 25) for which the 

composition CONTROL" II CONTROL" simulates CONTROL', which implies that 

CONTROL" H (CONTROL" II DATA') simulates CONTROL' II DATA' (AS  

Theorem 12); we did this by subdividing CONTROL', operating on each sub-

component separately, and combining the results. 

4.3.1 Example 

In the convolution example there are three variable classes which need to be pipelined: 

cy. Cx and c. These control variable classes correspond to the data-outputs, the data-

inputs and the weights respectively. The computations which deal with these variable 

classes are CONTRO4CONVX1) , CONTRO4CONV)(2) and CONTROL(cOp(vx3) 

respectively (which comprise CONTROL'(coNv) - see page 91). We can deal with each 

of the three subcomputations in turn. 
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Pipelining of the first control-variable class 

Let us first consider CONTROLCONVX1) (which equals CONTROL(coNv)). Looking at 

the definition of CONTROkcONv) on page 84 and noting that Dy  is the set I p in D : 

[001 .p = 0}, we can see that it is of the form required for control-pipelining if we let B 

be [?] and b1 be [j . We choose our pipelining vector to be [] ; it is in the null-

space of B1 and every point in BASE CONV) is reachable from the edge of BASE(,). 

In fact, if D(COT)(l)is defined to be the set of points { [4] I  = 0...3}, then each point 

in BASE co ) is reachable from D(c)(1) Formally, for all p in BASE( co ) there 

exists pedge  in D(coJ)(1) and integer n such that 

p = 
	 1 011 

In fact ifp = [] then 	[1] and nis(i+1).Using the pipeliningvector [we 

create the uniform recurrence to channel the control signals using the variable class c; 

it specifies that the value of <c i,, p> is the same as that of <c, p + 1-011
> when p is in 

D(): 

CONTROLcONv)(l. 2) := 

rp in BASE(CONV) => Cy(P) :=cy(p + 1-011 ). 1 

L 
	

J 

Then we define the edge-computation (the "obstruction pattern") as follows: 

CONTRO4CONV)(1. 1) := 
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[11 ' [ 2] ' [31 1 

	

Lpin{ 1-01 } 	
=> cy(p):=O. J 

CONTROkcopi,i: 1) specifies that the value of <c, p is 1 when p is in the set { 1-11 
[ij] , [.4] } and is 0 when p is the point [] . CONTROL(cOj1: 1) specifies the 

value <ci,, p> only when p is in this edge-strip. 

We can prove that CONTRO4c0Nv)(l: 1)  II CONTRO4coj)(l: 2) simulates 

CONTROL(co )(l) , so we have pipelined c (OD Theorem 6). 

Pipelining of the second control-variable class 

The variable class cx  can be pipelined in exactly the same way as c, since 

CONTR04cox2) is simply a renaming of CONTROI(c,Xl) (c is replaced by c 

- see the definition of CONTROL.)(2) on page 86). We get the uniform recurrence, 

CONTR04)(2: 2) := 

1-011 1 

L 	 J 

and the edge-computation, 

CONTROL(j)(2: 2) 

rpin{ [11_ 	[- 11 
 '[2j' [3]} 
	cx(p) := 1; 

LPin{[ 1]} 	=cx(p):=0. 
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We have now found a space-time simulation (n.p.) for the convolution task, but it still 

needs to be interpreted as hardware. 

4.6 The Architecture 

In this section we turn the space-time simulation IMP( cONV) into an architecture. This 

process is not part of the formal design method. The architecture is "hand-produced". 

Now INTER1OR'(co ), corresponding to the first six lines of the shorthand expression 

for IMP(coNv), is relatively easy to turn into an architecture, but EDGE'( CONV) 

corresponding to the last six lines of the shorthand expression, is slightly awkward. The 

method of presentation of the control signals to the array will depend on whether a 

feedback loop needs to be broken into; if so, a multiplexer will be needed (otherwise 

not). 

Figure 4.17 and Figure 4.18 show the final architecture. Figure 4.18 contains some 

notation which needs to be explained. The component 

7= 
depicts a "black box" processor, the behaviour of which is specified by the codeword 

S. S signifies the set of possible character streams which may be output on the single 

port of the processor. There is no formal semantics for the code, but here are a few 

example codewords and their meaning: 

"1O..."signifies the set of streams such that each stream consists of 

a "1" followed by an infinite stream of "O"s. (There is only one 

element in this set.) 

"1* "signifies the set of two-character lists for which the first 
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character in the list is "1". 

" I *... "Signifies  the set of streams  which start with a "1" (which may 

be followed by any infinite stream of characters). 

Figure 4.17 The architecture of each processor 
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Figure 4.18 The array architecture 
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4.6.1 Summary of section 

To summarize this section: we have turned the space-time simulation into an 

architecture. 

4.7 Summary of chapter, discussion and further work 

4.7.1 Summary 

In this chapter we have seen a five-stage method of transforming a regular algorithm 

into an implementation which is basically systolic. Both the algorithm and the 

implementation are expressed in the language of computations. The method was 

demonstrated on a simple algorithm: convolution. The output of the method may then 

be transformed fairly easily into an architecture; this was seen in the case of the 

convolution example in the penultimate section of this chapter. 

4.7.2 Discussion 

The basic ideas for the steps in my design method, data-pipelining, scheduling, control-

pipelining and allocation, final stage, are not new, being taken from [Raj89}. 

Rajopadhye's method is more sophisticated and includes many interesting ideas on 

pipelining; however, my method is more precisely stated than Rajopadhyc's, and is 

verified. The sophistications of his method weren't found necessary for the convolution 

or QR-factorisation examples. 

In Rajopadhye's method, scheduling seems to be done before data-pipelining whereas 

the order is reversed in my method. The rationale for the order: data-pipelining, 

scheduling, control-pipelining, allocation is that the more restricted choices are made 

before the less restricted, since each choice tends to constrain subsequent ones even 

more. Data-pipelining can only be done in one way. Control pipelining is more flexible: 

it can fit in with any schedule but not vice versa. (Of course data-pipelining must go 

before control-pipelining.) At the more detailed level, in my method of pipelining a 

data-dependency, P0  can be chosen (for each coset) before the dependency vector, and 
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can be chosen to be at the source of the data. In Rajopadhye's the dependency vector 

must be chosen first since its identity is completely determined by the already-chosen 

schedule, and the dependency vector, in turn, determines the identity of pt). 

Unfortunately, P0  may be at the other end of the line from the data source, causing an 

insurmountable problem. To be fair, Rajopadhye's method is also catering for 

situations in which his more sophisticated pipelining techniques would be used. In such 

situations, the choice within the data-pipelining step may be less restricted than those 

within the scheduling step; so by my rationale it would be sensible to schedule before 

data-pipelining. 

If the computations used in the method are well-defined, and if a one-to-one schedule-

cum-allocation function can be found, along with suitable dependency vectors for the 

data- and control-pipelining which are time-consistent with the function, then my 

method will guarantee a correct implementation to a level above the architectural level 

though it may not be the most efficient solution. 

Automatability of the design method 

If considering building a CAD system based on this method, an important question is: 

how automatable is the choice of pipelining vectors and the scheduling and allocation 

maps? If the question of optimality is ignored, this question becomes; can a pipelining 

vector for each data-dependency and each control variable, a schedule map and an 

allocation map be found which are consistent with each other? We will discuss the 

problem as if the choices are made in the order in which they are currently made in the 

method. 

Data-pipelining of an affine dependency shouldn't be difficult assuming that the 

following two conditions hold: the affme map (A2 on page 79) is idempotent i.e. 

repeated application of the map to any point is the same as a single application; 

secondly, the base of the recurrence (BASE on page 79) is a portion of a lattice, and it 

doesn't have any gaps in its lattice structure i.e. it is the intersection of the lattice with 

a convex set of points of the Euclidean space in which the lattice is embedded. The 

pipelining vector can be found by performing a matrix inversion, a matrix 
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multiplication and Euclid's algorithm (generalised to find the greatest common divisor 

of an arbitrary finite number of integers). 

I don't know of an algorithm for finding a scheduling function which will make the 

data-dependency vectors time-consistent with the final space-time map. Techniques for 

solving integer and linear programming problems may be relevant. 

Control pipelining may easily be automated.. Let r be the difference between two points 

on ran(L). If Im.b  >0, then let r1  equal b. If Im.b  >0, then let r1 equal -b. There will 

only be a problem if Im.b =0; in this case a different pair of points may be tried. 

Having chosen the scheduling map, Iin, allocation is done simply by finding Lm such 

that Im is invertible i.e. s.t. Det(Im) *0. Assume that lint, as a row vector, has a non- 

zero element in the i th  column, then we may take Iin to be the identity matrix with the 

th  row deleted. 

4.73 Further work 

Specification 

The input to the method consists mainly of an affine recurrence (AR). (An AR is a 

formalisation of a SARE (see page 34)). In [Raj9O], SARE to SARE transformations 

are presented which will change certain SARES into ones of which the dependencies 

can more easily be made uniform. It would be interesting to we if these transformations 

could be formally stated and verified using the computations calculus, and to see if 

there are other such transformations which are valid and useful. These other 

transformations may rely on the associativity and commutativity of operations on the 

data which is drawn from a ring, as Rajopadhye's are, or they may not. In [Raj90] the 

transformations themselves are affine; non-affine transformations could be 

investigated. 

It may be impossible to express some algorithms as ARs, and one could look at design 

methods which don't require the initial computation to be an AR. Sorter-type 
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algorithms may fall into this category of awkward algorithm. It may be that their 

recursive structure makes them in general unsuitable for implementation on a lattice 

structure. These questions could be addressed. 

Pipelining 

The pipelining techniques of the method could perhaps be made more sophisticated 

using ideas from [Raj89], but this may not be necessary in practice. One could look at 

whether pipelining is always necessary for transmittant data, i.e. whether, when a signal 

(e.g. a control signal) travels through many subprocesSOrs without change, it really 

needs to be delayed by one time step between each processor. 

Scheduling and allocation 

It is interesting to speculate whether scheduling and allocation could be automated. As 

a step towards achieving this, a constructive (in the mathematical sense) way of 

defining the space of valid schedules could be sought Also, i n  the special case of a UR 

which has dependency vectors all of which are either within or on a particular plane or 

are a positive multiple of one of the two normals to the plane, the task of finding a 

schedule may reduce to scheduling within the plane. Recurrences have a "data-flow" 

and not a "control-flow" style: the sched ule and 
 allocation functions in my method are 

not conditional on the result of any computation. It would be good to incorporate such 

conditionality into the method. It could also be interesting to investigate non-affine 

schedule and allocation functions. 

ImplementatiOn 

The method could perhaps be adapted to allow the design of non-systolic arrays, e.g. 

wavefront arrays or hypercubes. Th e  method may be more general than it appears. Non-

uniformity of operations and data-flow may be simulated by introducing control signals 

into uniform recurrences. 

Miscellaneous 

Other implementations of the convolution algorithm could be investigated including 

those which are achieved using non-affine schedules. It would be desirable for  the 
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current method to be fully validated, i.e. for it to be proven that its computations are in 

fact well-defined. It would also be interesting to implement the method using 

LAMBDA, and to see if DIALOG could also be used as well to give the designer a 

graphical interface. In doing the latter project, one might see how the method could be 

extended to achieve the final architecture (see section 4.6 (starting on page 111)). 
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5 The Formal Design Method Applied to QR- 
Factorisation Example 

We will now apply the design method to a trickier example: QR-factorisation. QR- 

factorisation is discussed and the algorithm to be input to the design method, ALG( QR), 

is defined. The five stages of the design are followed through. Two architectures are 

then shown, each resulting from a different set of design choices. The chapter finishes 

with a brief summary and a discussion of possible further work. 

The QR-factorisation problem can be described as follows: given a square (M x M) 

matrix A,  we need to find an upper triangular matrix R  which, for some orthogonal 

matrix Q, satisfies the following equation: 

Q.R = A (that is, R = QTA) 

The problem can be solved by applying a sequence of "Givens rotations" to the matrix 

A. Each Givens rotation affects just two rows of the matrix it is applied to, and is such 

that it sets one of the elements in the lower of the two rows to zero. The composition 

(in the usual functional sense) of the rotations annihilates the lower right-hand triangle 

of A,  and can be represented by an orthogonal matrix, since each rotation can be; we 

can therefore set Y to be equal to this matrix. 

We will now define the initial computation for the QR-factorization problem, 

ALG°(QR). Firstly we need to define the domain of ALG°(QR); it will be an (M x M) 

grid of points: 

• D(pJ.0)(QR) 	 I l:!gi,j :g M) 

Each point in the domain corresponds to an element position in an (M X M) matrix. The 

variable classes A and R in ALG0(QR) correspond to the matrices A and R, respectively 

in the above problem-description; the variables which have class A are the input 
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variables: 

In(ALG°(QR)) 	:= {<A, p> I  € D(JJO)(QR) ) 

and those which have class R are the output variables: 

Out(ALG°(QR)) := {<R, p>I p € D(1&j,GO)(QR) } 

There is no variable class Q since we don't need to find Q explicitly. We then define 

the relation Rel(ALG°(QR)) in such a way that the values of the input and output 

variables are such that the corresponding matrices, A and R , are related as at the start 

of this chapter. 

Rel(ALG°(QR))v 4 there exist Q, R, such that 

[1 (i, ) = v(<R, (i) 
La)] 

>)if i ~ j 

A(i, j) = v(<A, r
a
(i)1 >) 

L'] 

QR =A 

Q is orthogonal 

and 

R is upper-triangular. 

Lines (i) and (ii) define the correspondence between the matrices and the variables of 

the computation: the value of the element at (i, J) in R, equals the value of the variable 

<R, [(1)]>  and similarly for A. Lines (iii) to (v) specify the constraints on and between 
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the matrices. 

Note that the value of <R, 1( ' )',] > is only specified when i is less than or equal to j; in 

other words it is only specified for the non-trivial (i.e. possibly non-zero) values. This 

is done so that later on the algorithm we use for solving the QR-factorization problem 

will not be forced to output all the zeros from the lower triangle of R,. 

Now we will define the computation ALG(QR) which encapsulates the algorithm for 

solving QR-factorization by means of Givens rotations. Its base, BASE( QR), is a 

truncated, cube-corner pyramid (shown in Figure 5.1 for M = 5): 

BASE(QR) 	

{ [kJj 
IkE {1 ... M-1},jE {k ... M} and iE {k+l ... M}} 

Figure 5.1 BASE( QR ) 

ALG(QR) will be composed of a control part and a data part (as is required by my design 

scheme); these will be called DATA(QR) and CONTROL(QR) respectively. We will 

define these, but firstly we need to define a matrix, A', which will be used in the 

definition of DATA(QR): 
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i1000,11o   
A':= 	o 

 

So let DATA(QR) be defined as follows: 

DATA(QR) 

- 

(i) 	ft in BASE(QR)= ox(p) := ny(p + 01 ) - 

  

 

 o 
(i) 	 oy(p) 	cont(p)*nx(p + 1001) 

+ ___nt(p)*ny(p + 
-
oil )' I 

(in) 	I 	 sin(p) := oy(A'.p)/(oy(A'.p)2  + ox(A'.p)2)112, 	I 

I 	 cos(p) := ox(A'.p)/(oy(A'.p)2  + ox(A'.p)2)1, 	I 

I 	 nx(p) := ox(p)*cos(p) + oy(p)*sin(p), 	 I 

[ 	 ny(p) := oy(p)*cos(p) - ox(p)*sin(p). 	 J 

Before this can be understood, more explanation of the Givens' rotation method is 

needed. The first rotation affects just the bottom two rows of the matrix, that is rows M-

1 and M; for M =5, the rotation matrix is: 

The rotation angle 0 is chosen to be such that the element position (M, 1) (that is, the 

Mth  row and the first column) of the resultant matrix (the first of a series of intermediate 

matrices) is zero. For this to be true, tan (0) must be equal to A(M,l)/A(M-1,l). The 

rotation sequence ripples upwards, so the next rotation affects rows M-2 and M-1 and 

annihilates the element in position (M-1, 1) of the matrix it acts upon etc. When the 
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100 0 0 
010 0 0 
001 0 0 
000 e sin8 
0 0 0 -sinO cosel 

ripple reaches the top, the first column of the intermediate result matrix existing at that 

point consists of all zeros except for possibly the top element. The ripple then starts at 

the bottom again, this time eliminating elements in positions (M, 2), (M- 1, 2), (M-3, 2) 

and so on.. .until row 2 is reached, at which point the ripple returns again to the bottom. 

This process continues until we are left with an upper-triangular matrix, as required. We 

may name the rotation which annihilates the element in position (i, j), "rot(i, j)" 

Let us return to the definition of DATA( QR). The k-coordinate corresponds to the pass 

of the ripple through the rows: k = 1 corresponds to the first pass, k = 2 corresponds to 

the second pass, etc. The i and j coordinates relate in the obvious way to the position of 

the elements in the initial matrix, A. the intermediate matrices, and the final matrix, R. 

So let us consider DATA(QR) at the point p where p = [ . The value of <oy, p> is the 

value of the element in position (i, j) of the intermediate matrix to which the rotation 

rot(i, k) is being or is about to be applied; the value of <ox, p is the value in position 

(i-i, j) of that matrix. The cosine and sine of the rotation angle are calculated in lines 

(iii) and (iv) of the definition and are stored in the variables <cos, p> and <sin, p> 

respectively. The tangent of the angle of rot(i, k) is the value of the element in position 

(i, k) divided by the value of the element in position (i-i, k); the definitions in lines (iii) 

and (iv) follow easily from this when we note that A'.p is k . Note that the value of 
Lk 

<cos, p5 is going to be the same as the value of <cos, p> for all p' in the same row as 

p (and which are in DATA(QR)); similarly for <sin, p>. The rotation occurs in lines (v) 
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and (vi); in line (v) the value of the element in position (i-i, j) of the new intermediate 

matrix is calculated and assigned to <nx, p> and in line (vi) the value of the element in 

position (i, j) of the new intermediate matrix is calculated and assigned to <ny, p>. Note 

that the value of <ny, p> is zero, as intended, when j = k. In lines (i) and (ii), which 

logically precede the other lines, the values of <ox, p> and <oy, p> are brought in. The 

-1 
value of <ox, p> is retrieved from <ny, (p + o )>, which belongs to the previous 

-1 

ripple-pass. Where the value of <oy, p is fetched from depends on p: if k equals M 

then we are dealing with the first rotation in a ripple-pass, so the value of <oy, p> is 

0 
fetched from <ny, (p + o )>; if k doesn't equal M then it is fetched from <nx, (p + 1- 11  
r 
o)> the value of which was produced by the immediately previous rotation (in the 

[oJ 
current ripple-pass). The switch between the two sources is operated by the control 

variable class cont, the behaviour of which is defined below in the initial control part 

(for an understanding of how such a switch works, see the definition of PIPE_M(2) on 

page 79). 

Why are there four variable-classes as opposed to just one? Part of the reason is that the 

base has been made more compact than it would naturally have been - using a more 

straightforward approach we would have required roughly as many layers as there are 

intermediate matrices, whereas we use just M: one per ripple-pass plus one. We were 

able to do this because each rotation only affects two rows and not the whole matrix. 

The price we pay is that we need two variable classes, nx and ny; nx catches the 

intermediate value of each element as the ripple is passing through, and ironically it also 

ends up storing most of the output matrix. The variable classes ox and oy are not strictly 

necessary but they make the definition of DATA( QR) neater. 

The initial control part, CONTROL(QR), is defined below. 
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CON1RO4QR) := 
[pin BASE(QR)fl {p'I[l,O,O].p' -M*O} => cont(p):= 1; 1 
[p in BASE(QR) fl { p' I [1, 01 01 'P' - M = O} => cont(p) := 0. j 

The expression on the left-hand side of the arrow in the top line of the shorthand 

expression says that k doesn't equal M and the expression below it says that k equals 

M; so the whole definition says that if p is in BASE( QR), where p = 

	

then if k equals 

M then the value of <cont, p> is 0, otherwise it is 1. 

Now we define the initial computation to be the composition of the control part and the 

data part: 

ALG(QR) := CONTROL(QR) II DATA. 

We will now link up the Given's rotation algorithm, ALG( QR) , with the definition of 

QR-factorization, ALG°(QR): 

ALG(QR) simulates ALG°(QR) with respect to <Varset, RENAME> 

where 

	

RENAME(<ny, >) 	:= <A, 10)]
(1)> 

ljoil  

]

I>) := <R, [(1)]> 

[ 

ri 
RENAME(<ny, ji  I>) := <R, r(1)1> if i = M 

	

[_iJ 	kid 
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[i]> 	

<R, W > if 

and Varset : Vars(ALG(QR))-({<ny, p> I [0, 0, l].p = O} 

[i+ 11 
Li {<nx, p> I p = 	for some i, j} 

U {y, p>I p = [] for some i, j} 

U {<nx, 	I p = [

JOI 

for some i,j where i> j}) 

The function RENAME defines the connection between the inputs and outputs of 

ALG°(QR) and the variables of ALG( QR) The first line of the definition states that the 

elements of the input matrix, A, are found on the plane below BASE( QR) , stored in the 

obvious way in the variable-class ny. The output matrix doesn't appear quite so neatly; 

for a start only the "upper triangle" appears. (Though the rest of the matrix seems to be 

accounted for in line four of the definition, this part of the definition of RENAME is 

dummy, just put in to satisfy the criteria of simulation - that all the variables of the 

computation being simulated must be in the range of RENAME. The value of the 

variables <nx, [

JOI 

> will not necessarily be zero when i > j, but this doesn't matter since, 

in the definition of ALG0(QR) , the value of <R, [(1]>  is unspecified if i > j.) The 
W1  

possibly non-zero elements of the first M- 1 rows appear on the one of the two sloping 

faces of BASE(QR) in the variable-class nx, a bit like the flotsam left on the beach by 

the receding tide (to pursue the ripple analogy); this is stated in the second line of the 

definition. The possibly non-zero element of the last row is stored in the variable <ny, 
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Immm- 1j
lI > as stated in the third line. The set Varset details all the variables which are 

 

not used either for inputting the matrix A  or for outputting R . In other words it is all 

the variables of ALG( QR) except the ones mentioned in the four lines which define 

RENAME. (This can be seen in the structure of its definition.) 

ALG(QR) (depicted in Figure 5.2 and Figure 5.3) is more complicated than ALG( co I) 

it has more variable classes and the space in which it is embedded has three rather than 

two dimensions. However, the techniques which will be used in each of the four design 

stages are the same as those used for the convolution example and in fact no more data-

dependencies and no more control-variable classes need to be pipelined than in the 

convolution example. 

Assume that M = 5. Figure 5.1 on page 121 shows a 3-D view of the four k-planes (the 

planes which appear horizontal in Figure 5.1). Figure 5.2 shows the data-dependencies 

in the plane in which k= 1. Figure 5.3 shows the dependencies in the vertical plane in 

which j = M. As in the case of the convolution example, the control part is invisible. 
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Co-ordinate frame: 	 Directions of data-dependencies: 

	

[i1 	A > 

	

ow 
L0i 	

and <oy, p —* A' .p> 

Figure 5.2 ALG( QR ): (Horizontal Plane: k = 1) 
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-'u1I .... 0 

0- 

..IIII....0 - 	0 - 	0 4 	0 

Co-ordinate frame: 
	

Data-dependencies: 

k 

1 

[1 
<nx,p-3p+ 0 > 

[0 

<fly, P -4  P + 

.4 	. \

I 
P P + []> 

1 01 
1-011 

Figure 5.3 ALG( QR ): (vertical plane: j = 5) 

In this section we have given a high-level definition of QR-factorization as a 

computation and then defined the Givens method of performing it, also as a 

computation. This latter computation is of a suitable form to be input into my method 

and it is this and not the higher-level definition which we will treat as the initial 

computation. We will now go through each of the design stages. For each stage, one 

design choice will be presented.. .and then other options will be briefly investigated. 

5.1 Data-pipelining 

There are only two dependencies which need to be pipelined, one involving the variable 

class ox and the other involving the variable class oy. It turns out that the two control 

requirements generated will have identical values at each point. In the architecture, just 

one signal is used to satisfy both requirements (though in the space-time simulation, 
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IMP(QR), there are two (identical) control signals, c 0, and c). 

We can find ox and oy in lines (iii) and (iv) of DATA( QR). Let us pipeline the 

dependency <ox, p -* A' .p> first. Recall from section 4.1 (starting on page 78) that we 

need to find a pipelining vector such that all the points in a coset are a multiple of the 

vector away from the first point in the coset-row; and recall furthermore that we need 

to name a new variable-class (z2) to transport the data in the new pipe and a new control 

variable-class (c2) to act as a switch which is off or on depending on whether or not we 

0 
are at the beginning of the coset-row. In this case let the pipelining vector be - , let 1011  
z2 be identified with z0, and c2 be identified with c0,. The following definitions have 

the same pattern as those for the convolution example (see page 85). 

ol 
In(PIPE_M(Q )(2))= {<c0 , p - p>, <z0,, p -3 p + _i>, <ox, p -* p>} 

Out(PIPE_M(QR)(2))= {<z0 , p -* p>} 

Rel(PIPE_M(Q )(2))= 

o 
v(<z0 , p -* p>) = v(<c0 , p --3 p).)*v(<zox, p -3  p + 1-011 

+ (<c0 , p -3 p>)*v(.<ox, p -3 p>) 

(This definition for PIPE_M( QR)(2) corresponds to the definition for PIPE_M(2) on page 

79.) 

0 
R_DP(QR)(2)(<ox, p -3 A'.p>):=<ox, p -3 p + 1-011 > 

and for all <a', A'> in VarS(DATA_M(QR)(2)) not equal to <ox, p -4 A'.p>, 

R_DP(QR)(2)(<a', A'>):= <a', A'> 
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DATA(QR)(2) 	BASE DATA_M(QR)(2) ® R_DATA(QR)(2 : p) 

where 

DATA_M(QR)(2) := DATA_M(QR) ® R_DP 	II PIPE_M(Qg)(2) 

and 

R_DATA(QR)(2 : p)(<VC, fUn>) = <VC, fun(p)> 

for all pairs <vc, fun> in VarS(DATA_M( QR)(2)) 

and DATA_M(QR) is S.t. 

r- 
In(DATA_M(QR) ) 	:= {<ny, p - p + 01 >, <cont, p -3 p>, 

L- 

1001 
	1-011

o
<nx,p-3p+ >, <ny,p-3p+ 	 >, 

<oy, p -> A'.p>, <ox, p -3 A'.p>} 

Out(DATA_M(QR)) 	: {<ox, p -3 >, <oy, p -* p>, <sin, p -3 >, 

<cos, p -3 p>, <nx, p -3 p>, <ny, p -3 p>} 

Rel(DATA_M(QR))(v) 

[-1 
v(<ox,p-p>) = v(<ny,p-*p+ lo >) 

[-1 

and v(<oy, p -3 p>) = v(<cont, p -3 p>)*v(<nx, p -3 p + o>) 
0 

1 011

0
+ v(<cont, p -3 p>)*(<ny, p -4 p+ 	>) 

- 

and v(<sin, p -* p>) = 

v(<oy, p -3 A'.p>)/((v(<oy, p -3 A'.p>)) 2  + (v(<ox, p -3 A'.p>)) 2)la 

and v(<cos, p  -4 p>) = 
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v(<ox, p -+ A'.p>)/((v(<oy, p -* A'.p>)) 2  + (v(<ox, p -* 

and v(<nx, p -3 p>) = 

v(<ox, p -4 p>.)*v(<cos, p -3 p>) + v(<oy, p -9 p))*v(<sm, p -4 p>) 

and v(<ny, p - 4 p>) = 

v(<oy, p -3 p>)*v(<cos, p -* p>) - v(<ox, p -9 p>)*v(<sjfl p -3 p>) 

(DATA_M(QR) is a mould for DATA( QR). DATA(QR)(2) corresponds to DATA(2), 

defined on page 80.) 

We need also to define the computation that defines the behaviour of the switch, c 0 : 

	

CONTROL(QR)(2) := 1 in BASE(QR) fl {p' I A'.p' * p'} 	c0 (p) := 1; 1 

	

[pin BASE(QR) n ( I A'p' = p'} 	cox(p) =O . j 

In other words the value of c0 (p) is 0 if p is on the sloping face of the pyramid which 

is the set {p' I A' .p' = p' } and is 1 elsewhere in the pyramid. This definition corresponds 

exactly to the definition of CONTROL(2) on page 80 (note that in this example A is the 

function p —4 A'.p). Assuming that certain computations are well-defined, we may now 

deduce from Theorem 2 that: 

CONTROL(QR)(2) II DATA) simulates DATA(QR) (n.p) 

We may operate on DATA( QR)(2) to pipeline the dependency <oy, p -4 A' .p> in exactly 

the same way in which we operated on DATA(QR)  to pipeline the dependency <ox, p 

-4 A'.p>: 

1-011
o

In(PIPEM(QR)(3))= {<c0 .p-3p>,<z0 ,,p -3p+>' <oy, p -3 p>} 

Out(PIPE_M(QR)(3))= {<z0 , p -9  p>} 
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RelPIPE_M(QR)(3)) 

1011
0

v(<z0, p -4 p>) = v(<c, p 3 p>) * V(<Zoy, p —3 + ->) 

+ (<c0, p  -3 p>)*v(<oy, p - p>) 

0 
R_DP(Qg)(3)(<oy, p -3 A'.p>):=<oy, p - p + 

1-011> 

and for all <a', á'>in VarS(DATA_M(QR)(3)) not equal to <oy, p —* A'.p>, 

R_DP(QR)(3)(<a', A'>):= <a', 

DATA(QR)(3) 	ilpE BASE DATA_M(QR)(3) ® R_DATA(QR)(3 : p) 

where 

DATA_M{QR)(3) := DATA_M(QR)(2) ® R_DP 	II PIPE_M(QR)(3) 

and 

R_DATA(QR)(3 : p)(<vC, fun>) = <vc, fun(p)> 

for all pairs <vc, fun> in VarS(DATA_M( QR)(3)) 

We need also to define the computation that defines the behaviour of the switch, c oy : 

CONTROL(QR)(3) := 

ft in BASE(QR) ( {p' I A'.p' * p'} ==> c(p) =1; 1 
LPiI1BASEQRfl{P' IA'.p'=p'}=c0(P):=0j 

We may now deduce from Theorem 2 that: 

CONTROL(QR)(3)IIDATA(QR)(3) simulates DATA(QR)(2)  (n.p.) 

We have pipelined the two dependencies <ox, p  -3 A'.p> and <oy, p —> A'.p> and in 

doing so transformed the affine recurrence DATA( QR) into the uniform recurrence 
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DATA(QR)(3), with the generation of the two control computations: CONTROL(QRX2) 

and CONTROL(QR)(3) . Let us give the new name CONTROL( QR)(l) to the initial 

control computation CONTROL( QR) and let us define CONTROL'( Qg) to be the 

composition of the three control computations: 

CONTROL'(QR) 	(II, 1  tO3CONTRO4QR)(i)) 

and set DATA'(QR) equal to DATA(QR)(3): 

DATA'(QR) 	:= DATA(QRX3) 

Then DATA'(QR) is a uniform recurrence, all the variables of CONTROL' (QR)  are on 

the boundary of the base of DATA'( QR). and CONTROL' (QR)  II DATA'(QR) simulates 

CONTROL(QR) II DATA<QR . That is: 

CONTROL'(QR) II DATA' QR  simulates ALG(QR) (n.p.) 

We have now completed the data-pipelining stage for the QR-factorization example. 

The question is, "Can it be pipelined in any other way?"... 

5.1.1 Other Options 

0 
Only two dependencies were pipelined, resulting in the same dependency vector, -1 

0 

There is no other way to pipeline these dependencies. The same reason applies to each. 

Each coset has only two ends, and only one of these is the source of the data, so po must 

be the point at this end; having chosen P0  there is only one choice of dependency vector 

(see Theorem 3 on page 218). 

5.2 Scheduling 

Let DEP(QR) be the set of data-dependency vectors in DATA'( QR), then 
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[-ii [0

01, [ol[ol
DEP(QR)={ 0 	 0  - ' I

'J 	L-'J L0J 

In choosing the scheduling function, Imt(QR), where ImQR)(P) = At(QR).P + bQR), we 

must satisfy the condition that At(QR).b is less than zero for all dependency vectors b in 

DEP(QR) (see section 4.2 (starting on page 92)). From this we can deduce that if A = 

[a, t3,y] then a<0, >O,y>Oanda+y>O. 

The matrix [-1, 1, 21 fits the bill for AIQR).  Any value for bQR) is satisfactory, so let 

bt(QR) be zero for simplicity. 

5.2.1 Other Options 

If a, b, and c are to be integral then the matrix which was chosen, namely [-1, 1, 2],  is 

the best, i.e. the modulus of each component is no bigger than the modulus of the 

corresponding component of every other suitable matrix. (D  Theorem 14) 

5.3 Control Pipelining 

As in the case of convolution, there are three control-variable classes, namely cont, c 0, 

and c,; each of them needs to be pipelined. They correspond (respectively) to the three 

computations, CONTROL(QR)(l), CONTROL(QR)(2) and CONTROL(QR)(3) which, we 

recall, comprise the control part resulting from data-pipelining, CONTROL'( Qg) (see 

page 134). 

Let us first consider CONTROL( QR)(1). 

5.3.1 Pipelining of cont 

Let A1(QR)  and bl(Qg)  be the row-vector and the integer which characterize the value-

pattern of cont (CONTROL( QR) equals CONTRO4QR)(1) from the definition on page 
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125). From this definition, we know that A1(QR) = [110101 and bl(QR) = M. 

We will define D(QR)(1)  to be the part of the recurrence edge where the control signals 

corresponding to the variable name "cont" are to be fed in. Before we do this, we need 

1 011

o
to choose the pipelining vector. Let us choose the vector 

-
(note that we have chosen 

 

the vector to be in the null space of A1(QR)).  Then let us define D(QR)(1) to be those 

0 
points which are in the image of the map p 

- 
p + .. which are not in the base 

011  

BASE(QR); formally: 

1-011D(QR)(1) {(p + I p € BASE(QR)} - BASE(QR) 

which equals the set of points: 

(i) 
{ 	

Ik=ji-landl:!9k:9M-landk+1:!gi:!! ~ M} 
(k) 

This set borders one of the sloping faces of the pyramid which is BASE( QR). Let us 

divide this region into two disjoint subsets, D(QR)(1:0) and D(QR)(1:1): 

(i) 
D(QR)(1:0):D(QR)(1) fl { j) : i = M} 

[(k)]  

D(QR)(1:0) therefore consists of the points in D(QR)(l) for which i = M. 

(01 
D(QR)(1:1):D(QR)(1) C' { (i) I : j * M} 

1(k)J 
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D(QR)(1:0) consists of all the other points in D(QR)(l). 

We will pipe in the value 0 from D(QR)(1:0) and the value 1 from D(QR)(l:l) using the 

[0 
vector-i The validity of this piping depends on the fact that each point which needs 

[o 
a 0 (that is, each point p in BASE( QR) for which [1, 0, O].p - M =0) can be reached by 

the vector from D(QR)(1:0) and each point which needs the value 1 (all the other points 

in BASE(QR)) can be reached from D(QR)(1: ; formally: 

For all p in BASE(QR). 

[1, 0, O.p - M = 0 implies that there in exist Pedge in  D(QRX1:O)  and integer n such that 

p = Pedge 	
o 1 011 

and [1,0, O.p - M *0 implies that there exist Pedge  in D(QR)(1:1) and integer n such that 

[ol 
p = Pedge +1_1 

L 0] 

This fact is true because of our careful choice of the pipelining vector and the regions 

D(QR)(l), D(QR)(1:0) and D(QR)(1:1) (see Theorem 9). 

1011
o

We note also that _is time-consistent (with Im(QR)); this fact is not needed right 

now, but is necessary for the validity of the final space-time simulation. 

The pipelining process results in the uniform recurrence CONTROL( QR)(1.2) and the 

edge-computation CONTROL( QR)(l:l), defmed below: 
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CONTROL(QR)(1.1): 	fp in D(QR)(1:0) = cont(p) := 0; 	1 

Lp in D(QR)(1:1) 	cont(p) := 1. 	J 

o 
CONTROL(QR)(1.2):= 	1 in BASE(QR) 	cont(p) := cont(p + 1-011 ). 1 

L 

ol 
CONTROL(QR)(1.2) passes the values of cont from point to point in the direction 

1-011 ,0]
, 

and CONTROL(QR)(l 1) feeds in the values at the edge of the array as already described. 

(It forms the obstruction pattern, to return to the light analogy.) We can prove that the 

composition of these two computations simulates CONTROL(QR)(1): 

CONTROL(QR)( 1:1) 11 CONTROL(QR)(l  :2) simulates CONTROL( QR)(l). 

(u Theorem 9) 

We can pipeline c0, using similar reasoning: 

5.3.2 Pipelining of c0 , 

Recall the definition of its corresponding computation, CONTROL( QR)(2), from page 

132: 

CONTRO4QR)(2) := 

1PJ.nBASE(QR)fl{P' IA'.p' *p'} =c(p) := 1;1 

Lp in BASE(QR) n {p' I A'.p' = p'}• => Co(P) := 0. j 

The conditions on the left-hand sides of the double arrows are not in the same form as 

the general definition of CONTROL( 1) on page 95, so we need to re-jig them to work 

out what A2(QR) and  b2(QR) are. In fact we just have to look at the precondition on the 

second line. The condition that the matrix product of A' and p be equal to p, 
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A'.p = p 

is equivalent to 

(A' - I).p = 0(1 is the identity matrix) 

which is equivalent to 

[000 
[0,-i, 1].p= 0 (since A' - I = 0-1 ) 

L000 

From this we can see that 

A2(QR) 	= [0, -1, i] 

and b2(QR) 	= 0 

As before, let us choose a pipelining vector, and let it be 100i(which is in the null space 
 

of A2(QR)). Let us define D(QR)(2)  to be the part of the array boundary where the control 

signals corresponding to the variable name c0  are fed in. D(QR)(2) can be deduced in 

1001

exactly the same way as D(QR)(l), by taking the image of the function p —> p +on 
 

BASE(QR) and then discarding the points of BASE( QR) itself: 

r 
D(QR)(2) :={(p + I°) p E BASE(QR)} - BASE(QR) 

which equals 
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(i) 
{ 0)Ii=M+l and l:!~ k:!~ M-1 and k:!~ i:gM} 

(k) 

This set of points neighbours the vertical back plane of the pyramid as drawn in Figure 

5.1. 

As before, we define the subregions from which we feed the values 0 and 1 into the 

array: 

[(k )]

(i)  
D(QR)(2:0):D(QR)(2) fl { (j : j = k} 

i1 
D(QR)(2: 1):D(QR)(2) fl { j) : j * k } 

I(k) 

D(QR)(2:0) consists of all the points in D(QR)(2) for which j = k and D(QR)(2: 1) consists 

of all other points in D(QR)(2). We then find that each point in BASE(QR) which requires 

a zero (that is, each point p in BASE( QR) for which [0, -1, 1] .p = 0) is reachable from 

D(QR)(2:0) using the vector and each the point which requires a one is reachable from 

D(QR)(2:1); formally (see Theorem 10): 

For all p in BASE(QR), 10, -1, h.p =0 implies that there exist Pedge  E D(QR)(2:0)  and 

integer n such that 

p = Pede[j 

and [0, -1, 1.p *0 implies that there exist pedgr  € D(QR)(2:1) and integer n such that 
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p = Pede[j 

[001,
This means that we can pipeline c 0  using the dependency vector 	feeding in the 

	

value 0 from the region D(QR)(2.0) and the value 1 from the region D( QR)(2: 1) 	Note 

that 	is time-consistent (with Im(QR)). The pipelining process results in the uniform 

0 

recurrence CONTROL( QR)(2:2) and the edge-computation CONTROL(QR)(2. 1)' defined 

below: 

CONTROL(QR)(2.1):= 	rp in D(QR)(2:0) = cox(p) := 0; 1 

[p in D(QR)(2:1) 	C0 () := 1. J 

CONTROL(QR)(2.2): 	in BASE(QR) 	cox(p) : c0 (p + 
100 
	1 

L 
	

J 

CONTROL(QR)(2:2) passes the values of cont from point to point in the direction 
-o 1 011 , 

and CONTROL(QR)(2.1) feeds in the values at the edge of the array as already 

described. We can prove that the composition of these two computations simulates 

CONTROL(QR)(2): 

CONTROL(Qg)(2.l)IICONT1O4QR)(2.2) simulates CONTROL(QR)(2) (o  Theorem 
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10) 

5.3.3 Pipelining of c0 , 

We can now apply exactly the same method to the variable-class c 0 , (and its 

corresponding computation, CONTROL( QR)(3)). 

The definitions of the resulting computations are 

CONTROL(QR)(3 : 1): 	[p in D(QR)(3 : O) 	Coy(P) : 0; 1 

Lp in D(QR)(3:1) 	Coy(P) 	1. J 

and 

1001CONTROL(QR)(3 : 2) 	[p in BASE(QR) = c( (p) : Coy(P +) 1 

I 
	

] 

These definitions are the same as the definitions for the corresponding computations 

produced by the pipelining of c0,, with cox  replaced by cm,. 

The composition of these two computations simulates CONTROL( QR)(3): 

CONTROL(QR)(3. 1)IICONTROL(QR)(3.2)sjmulates CONTROL( QR)(3) ( 
Theorem 11) 

(Note that c and c0 , will have everywhere the same values (as c,A  and c had in the 

previous example - see page 100).) 
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5.3.4 Amalgamation of just-generated computations 

We can now splice the pipelines, composing the three edge-computations to form 

CONTROL' (QR)'  and composing the three uniform recurrences to form 

CONTROL ... (QR): 

CONTROL' (QR) 	to 3 CONTROL(QR)(i.l) 

CONTROL"(QR) "i=l to 3 CONTROL(QR)(i.2) 

CONTROL' "(QR)  is a uniform recurrence and all the variables of CONTROL"( QR) are 

on the boundary of the array [see Theorem 19 and Theorem 25] which is what we need 

(see page 74). So we have 

EDGE(QR) := CONTROL' '(QR) 

and 

INTERIOR(QR) := CONTROL"(QR) II DATA' QR  

as required. (The composition of EDGE(QR) and INTERIOR(QR) simulates the initial 

computation.) 

So we have found one way to perform control-pipelining for the QR-factorization 

example. Are there any others?... 

5.3.5 OtherOptions 

[-Oil

00
We can also pipeline cont using the dependency vector 	instead of 1-011. (We must 

make obvious changes to D(QR)(l), D(QR)(1:0) and D(QR)(l: l)) Similarly, we can pipeline 
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I01 

	1001,c0, (or c0 ) using -iiinstead of 	changing D(QR)(2). D(QR)(2:0) and D(QR)(2:1) (or 

- 'J  
D(QR)(3). D(QR)(3:0) and D(QR)(3: 1)) 

Now we have looked at alternative design choices for the control-pipelining stage, let 

us proceed to the allocation stage. 

5.4 Allocation 

Recall that the allocation function maps the original domain of computation into space 

(as opposed to the scheduling function, which maps it into time). Following from the 

definitions in section 4.4 on page 105, ImS(QR)  will be the allocation function, and 

"s(QR)(P) Will be equal to (As(QR).p + bs(QR)). '(QR) will be the complete space-time 

map and Im(QR)(p) will be equal to (A(QR).p + b(QR)). 

Let us set AS(QR) to be the simple matrix 10̀ 	]. Then the determinant of the matrix 

A(QR) will be non-zero as required (see section 4.4 on page 105 again). We will let 

-1121 
bs(QR) be zero for simplicity. So Im(Qg) equals the function p -3 1 0 o .p, Im(QR) is 

0 10] 

invertible, and RENAME maps the variable <v, p> to <v, Im(QR)(p)>. ("v" stands for 

an arbitrary variable class and p an arbitrary point in the domain for which <v, p> is a 

variable of EDGE(QR) II INTERIOR(QR).) 

Let us see if there are any other choices for the allocation function... 

5.4.1 Other Options 

Let the desired alternative allocation function be ImS(QR)',  and let Ims(QR) (p) be equal 

to((QR)'.P + bs(QR)'). (Im( QR)' will be the alternative space-time map and Ims(QR)'(p) 
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will be equal to (A(QR).p + b(QR)').) If we let As(QR)'  be [i 0 01 then the determinant 
[o 0 i 

[-i 1 2 
of A(QR)'  will be non-zero and so the IM' (equal to p -4 1 0 0 .p) will give rise 

[0 0 1 

to a space-time simulation. The resulting architecture can be seen in Figure 5.9 on page 

153. 

5.5 The Final Stage 

Let us return to the design choice corresponding to the first allocation function, Im(QR); 

with this choice, the final array will consist of twenty processors arranged in a 

rectangular grid (when M = 5). The required interconnections will be made in section 

5.6 on page 149. We can now, without having to make any more design choices, 

construct the final space-time simulation. We rename CONTROL"( QR) to create the 

edge-computation EDGE'( Qg) and we rename CONTROL ... ( QR) and DATA'(QR) and 

compose them to form the uniform recurrence INTERIOR'( QR) ; finally we compose 

EDGE'(QR) and IITI'ERIOR'(QR) to form the final space-time simulation, IMP( QR). 

EDGE'(QR) := CONTROL"(QR) ® RENAME(QR) 

INTERIOR'(QR) := 

(CONTROL"(QR) (9 RENAME(Qg)) II (DATA'(QR) ® RENAME(Qg)) 

IMP(QR) := EDGE'(QR) II llTERIOR'(QR) 

IMP(QR) is equal to: 

- 

0 
I p in BASE(QR) 	:= cox(p + 11 ), 
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.ji 
COY(p) := cO)7(p + I 	I), 

10 1  
- 

cont(p) := cont(p + 01 P ,  
- 

r-1 
ox(p) := ny(p+ 

[0 -11  

oy(p) := cont(p)*nx(p+ ll)+cont(p)*ny(p+ ____ 
-21 
ol), 

0] 	 o] 

Zox(P) := c0 (p)*zox(p + 
r- 

0 ) + 	ox(p)*ox(p), 
L-' 

z0y(p) 
Coy(,P)*Zoy(P+ 

-1 
0 )+coy(p)*Oy(p), 
-1 

sin(p) z0 (p)/(z0 (p)2  + Zox(P) 2) 112,  

cos(p) z0(p)/(z0y(p) 2  + z0(p)2)n, 

n.x(p) := ox(p)*cos(p) + oy(p)* sin(p), 

ny(p) := 	ox(p)* sin(p) - oy(p)*cos(p), 

in D(QR)(2:1) => Cox(P) 	:= 1; 

p in D(QR)(2:0) Cox(P) 	: 	0; 

P in D(QR)(3:1) => C0y(P) 	:= 1; 

P in  1 QRK3:0 Coy(P) 	0; 

P 111  D(QR)(1:1) => COflt(p) 	:= 1; 

[ 	p in D(QR)(1:0) cont(p) 	:= 0. 	 J 

The first three lines show the channelling of the three control signals through the 

variable-classes c0,, c0  and cont. Note that the dependency vectors have now been 
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[

10
ii 	ol 	-1 	-i _ -21

transformed by Im(QR) from- 	o 	o to  1 	0 	i and  0 
0] 

 1 01 [-1] -1] 	LO 	L-' [0_ 	0 

respectively. The fourth and fifth lines show the required values being loaded into the 

-ii 
variables <ox, p> and <oy, p>; in line four, the value of <ny, p + -1 > is loaded into 

0 

[-i 
<ox,p> and in line fivethe value of<nx,p+i > is loaded into <oy, p> if the value 

Lo 

-21 
of <cont, p> is 1 and the value of <ny, p + 0 > is loaded in if the value of <cont, p> 

0] 

is 0. Lines six and seven assign values to the variables <z 0 , p> and <z0 ,, p>. Recall 

that the variable-classes z and z0 ,, were created in the data-pipelining stage to ferry 

the values of ox and oy respectively from the beginning of the row. If p is at the 

beginning of a row then c 0, and coy  will be 0 and <z0,, p> and p> will be assigned 

the values of <ox, p> and <oy, p> respectively; otherwise c and c 0  will be 1 and 

<z, p> and <z0 , p> will each be assigned the value of the corresponding variable at 

the previous point. In the eighth and ninth lines the values <cos, p> and <sin, p> are 

calculated using the values of <z, p> and <z,, p>. In the tenth and eleventh lines, the 

Givens rotation is executed and values are assigned to <nx, p> and <ny, p>. The final 

six lines, grouped in pairs, correspond to the three edge-computations which deal with 

the three control-variable-classes c0 , c0 ,, and cont. (That is, these lines describe the 

"obstruction pattern" at the edge of the region, in the light analogy.) In each pair of 

lines, the first line defines the region where the control variable has the value 1, and the 

second line defines the region where the control signal is 0 (cf. the convolution 

example, page 108). 

Figure 5.4 and show the complete implementation, IMP( QR), with schedule lines drawn 

in. As in Chapter 4, the hollow arrows represent control dependencies. Only those 

corresponding to a zero signal are drawn. 
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in i:!__  

• 	
t=-2 

0 1  
o 

Co-ordinate frame: 	
Data-dependencies: 

r1 	A 

J 	< 	+ 01 > I 	 r 01 
Lo] 	<ox,p-3p-i- 	> 

Li j 	

o1011 and <oy,p-4p+ - > 
 

Control-dependencies: 
rj 

<Cox, P+ 0 > 

[1 
and <c0y, p+ 01 	

0 LoJ L
ont,pp+ [ > 

1-011  

Figure 5.4 JMP(QR ) (horizontal cross-section: k = 1) 
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5  

S.IIII .........  
t = 2 

	

Co-ordinate frame: 	 Data-dependencies: 

	

k 	

1001 1i<'-+ 	
>*.... TSSS S\< 	 > 
 L-'J 

Y,PP+ [ 1-011 
Figure 5.5 IMP(QR ) (vertical cross-section: j = 5) 

5.6 The Architecture 

Figure 5.6 and Figure 5.7 show the final architecture for the design. 
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DATA 	 CONTROL 
& 	 £ 	 £ 

Figure 5.6 The architecture of each processor 
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Figure 5.7 The architecture of the complete array 



D 
A 
T 
A 

C 
0 
N 
T 
R 
0 
L 

5 	The Formal Design Method Applied to QR-Factorisation Example 	 152 

DATA 	 CONTROL $ 

Figure 5.8 Processor for alternative design 
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Figure 5.9 Alternative architecture 

5.7 Summary of chapter and further work 

5.7.1 Summary 

In this chapter the method was used to achieve a systolic implementation of Given's 
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algorithm for QR-factorisation. An alternative implementation was achieved by 

choosing a different allocation function. Alternative ways of data-pipelining, 

scheduling and control pipelining were briefly investigated. 

5.7.2 Further work 

It might be instructive to compare the implementations of QR-factorisation in it with 

those of others (e.g. Gentleman and Kung's) and to see if the other implementations can 

be achieved by the method. There is inefficiency in my implementations of QR-

factorisation: the calculation of the coefficients for the Givens rotations ("Givens 

Generation") is done by every computation in INTERIOR'( QR). This is unnecessary. It 

would be good if the design process could be simply modified so that this redundancy 

didn't occur. 
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6 Conclusions 

This chapter summarises the contribution made by this thesis and suggests some 

avenues which could be explored in future. 

6.1 Contribution 

The contribution of this thesis is as follows 

6.1.1 Formalisation of concepts 

The concept of a computation is defined. It is possible to express 

many, if not all, algorithms as computations. 

Explicit labelling of variables in computations facilitates their 

composition in complex ways and enables physical as well as 

abstract algorithmic structure to be captured. 

The concept of simulation is formally defined. 

Two key concepts in the literature on systolic array design - 

recurrence equations and dependency - are clarified by formal 

definition. Other important concepts are also clarified: uniformity, 

affinity and conditionality. 

6.1.2 The method 

A design method is formulated which is simple and yet sufficiently 

powerful for the high-level design of a systolic array for QR-

factorisation. 

The ordering of the design steps is chosen to minimise the chance of 

an impasse in the design path. 
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The method has been mathematically proven, subject to the 

assumption that the computations in the method are well-defined. In 

Appendix H, the well-definedness assumptions required to validate 

data-pipelining have been proven to hold. 

6.2 Further work 

Here are some suggestions for further work; ideas from previous chapters are 

summarised. 

6.2.1 Priority work 

It would be good to have a proof, with minimal assumptions, that the computations in 

the method are well-defined. (In Appendix H this is done for the well-defmedness 

assumptions of Appendix D.) It might be useful to implement the method on a proof 

assistant for hardware design, like LAMBDA. It would also be interesting to see 

whether more efficient implementations of QR-factorisation and convolution could be 

achieved using the method. 

6.2.2 Analysis, extension and automation of the method 

One could investigate the feasibility of the method, e.g. when is it possible to make ARs 

uniform or to schedule URs? 

One could also extend the method. AR to AR transformations to make the input 

computation more amenable could be sought, and the class of input computations could 

perhaps be extended beyond the class of computations which are the composition of an 

AR with an initial control requirement; the class of output implementations could 

perhaps be extended to include e.g. wavefront arrays or hypercubes. It could be 

investigated whether pipelining could be made more sophisticated, using the ideas in 

[Raj89], and scheduling and allocation could be modified to allow the space-time 

mapping to be conditional on the output of the computations. One could adapt the 

method to take fault-tolerance and optimisation into account. It would be useful to 
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extend the method down to architectural level. 

The possibility could be investigated of automating the currently unautomated parts of 

the method, in particular the scheduling and allocation tasks. 

6.23 Theoretical foundation 

It would be useful to perform a critical survey of formal design languages, with a 

careful look at the relative merits of relational and functional styles, to come up with a 

more satisfactory theory of input and output and to consider how the concept of a 

systolic array should be defined. 

6.2.4 Wider issues 

Is there a connection between the design of systolic arrays and boundary value 

problems? Are there analogue methods for problems which now use systolic arrays? Is 

there a connection between systolic arrays and neural networks? They are all regular, 

parallel architectures which have simple processing elements and local connections. 

In my method the candidate "algorithms" for direct implementation by systolic arrays 

are the URs. URs already have a geometry since they are embedded in Euclidean space. 

It might be possible to abstract away from the class of URs their topological structure 

as networks. Culik does something similar to this [Culik84, Culik85]. (It might be 

possible to embed these networks in Riemannian or Spherical rather than Euclidean 

space.) If this abstraction could be done it would call into question the usefulness of 

abstract ARs and URs, affine scheduling and allocation, and in fact the whole 

geometrical design paradigm. 

6.3 In Conclusion 

This thesis provides an underlying theory for formal design methods for systolic arrays, 

which use "recurrence equations". The use of the theory is illustrated by a describing 

such a method. The method is simple and it is hoped that, now the theory is in place, 
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the method could be considerably extended to make it more useful for the design of 

practical systolic arrays. 
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Appendix A: Overview of Appendices 

These appendices contain the proof that, subject to assumptions about the well-

defmedness of the computations handled and created, the design method will produce 

only designs which meet their specifications. Appendix B and Appendix C contain 

basic results which are used by the other appendices. Appendix D, Appendix E, 

Appendix F contain propositions relating to the data-pipelining, control-pipelining and 

schedule-and-allocation transformations respectively, the principle results being that, if 

certain conditions hold, the output of each transformation simulates the input to the 

transformation. Appendix G contains three theorems which state that the output to the 

method satisfies the specification, if certain conditions hold; the theorems are proved 

using the main results of Appendix D, Appendix E, and Appendix F. Appendix H 

contains the proofs of the assumptions made in Appendix D that certain computations 

are well-defined. 

The following three pages show how the proofs of the theorems and lemmas in each 

appendix use other theorems and lemmas. The key lemmas and theorems of each 

appendix are written white-on-black. A small black blob on an intersection of lines 

indicates the forking of an arrow. 
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Appendix B: Basic Propositions I 

In this section are proved some basic properties of sets, functions and computations 

which will be used later. 

Lemma 1 "Commutativitv of Composition" 

If A H B is well-defined then so is B II A and A H B = B II A 

Trivial from definition of "II" 

Lemma 2 "Associativity of Composition" 

If (A II B), (B II C), (A II B) II C and A II (B II C) are well-defined, then 

(All B) 11 C=All (B 11  

Trivial from definition of "II" 

Lemma 3 "Generalised Associativity of Composition" 

If ("i E I  .k-1} A1), (lijE Uic} A1)and AkIl (ll 	A1) are well-defined, 

then 
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Ak U (Ili € (1...k-l} A1) = Ili € 	A1 

Proof 

Trivial from definition of "II". 

Lemma 4 

If C is a computation and R is 1-to-1, then C ® R is well-defined. 

Proof 

Obviously Out(C ® R) and In(C ® R) are well-defined (see page 45). We 

therefore simply need to prove that Rel(C ® R) corresponds to a functional on 

valuations on In(C ® R). i.e. that 

For all v, V' 'In(C®R) = V 'In(C®R) => V' 'Out(C®R) = VI() ij (C®R) 	(i) 

and 

For all valuations vin  on In(C ® R), 

there exists vout  s.t. Rel(C ® R)(vth U v) 	(ii) 

Proof of (i) 

Assume Rel(C ® R)v and Rel(C ® R)v'. By the definition of Rel(C ® R), we 

know that Rel(C)v'R and Rel(C)v'R. 

Assume further that 
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V'I(COR) = VI(C®R) 

so that 

v'Rl(Q 	= vRI(Q 

This implies, by the fact that Rel(C) corresponds to a valuation on In(C), that 

v'RI(Q 	= vRI( 

which implies that 

V 'Out(C ® R) = V 'Out(C ® R) 

Proof of (ii) 

Let v"equal vjR. Then there exists Vt"  s.t. Rel(C) (vin" U Vt") so 

Rel(C (V R)((vth" U v")'R) = Rel(C ® R)vj U (v' "R't(c ® 

So let vout  equal vt"R4  

Lemma 5 

Let C be a computation. Every valuation v on In0, where In0 c In(C) can be 

extended to v' on Vars(C) for which Rel(C)v' holds. 

Extend v arbitrarily to v" on In(C). Let v' be v" U v" where Fun(C)v" = v" 

Lemma 6 

ran(RIs u T) = ran(RIs) U ran(RIT) 

Lemma 7 
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If (A' II B), (A' II B) \Varset, (A' \Varset) and (A' \Varset) II B are well-defmed 

and if Vars(B) n Varset =0 then 

(A' II B)\Varset = (A'\Varset) II B 

Proof 

Out((A' II B)\Varset) = Out(A' H B) - Varset 

= Out(A') u Out(B) - Varset 

= (Out(A') - Varset) u Out(B) 

by the fact that Vars(B) n Varset =0 
= Out((A'\Varset) II B) 

In((A' II B)\Varset) = (In(A') u In(B) - Out(A' II B)) - Varset 

= (In(A') u In(B) - Out(A') u Out(B)) - Varset 

= (Jn(A') - Out(A')) U (In(B) - Out(A')) 

u (In(A') - Out(B)) u (In(B) - Out(B)) 

- Varset 

= ((In(A') - Varset) - (Out(A') - Varset)) 

u ((In(B) - Varset) - (Out(A') - Varset)) 

u ((In(A') - Varset) - (Out(B) - Varset)) 

u ((In(B) - Varset) - (Out(B) - Varset)) 

= ((In(A') - Varset) - (Out(A') - Varset)) 

u (In(B) - (Out(A') - Varset)) 

U ((In(A') - Varset) - Out(B)) 

u (Jn(B) - Out(B)) 

by the fact that Vars(B) n Varset =0 
= In((A'\Varset) II B) 

Rel((A' II B) \Varset)v 
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for all v', Rel(A' II B)v' 

(v' 'In(A' II B) - Varset = VIJn(A' II B) - Varset 

V 'Out(A' II B) - Varset = VIO.jt(A' II B) - varset) 

for all v', (Re1(A')v'I V (A') and Re1(B)v'I, ar )) 

(v' I J(A' II B) - Varset = VIfl(A' II B) - Varset 

= 

V 1Out(A' II B) - Varset = VI()(A' II B) - Varset) 

by definition of Rel(A' II B) 

and 

Rel((A'\Varset) II B)v 

Re1(B)vIVB) and Re1(A\Varset)vIV(A\V) 

by definition 

So it is sufficient to prove that the re-written versions of Rel((A' II B) \ 

Varset)v and Rel((A'\Varset) II B)v are equivalent, i.e. that 

(for all v', (Rel(A')v'I V (A') and Re1(B)v'I V .)) 

(v' I In(A' II B) - Varset = VIfl(A' II B) - Varset 

' 'Out(A' II B) - Varset = VIo(A' II B) - Varset)) 

Re1(B)vIVB) and Re 1(A'\Varset)vIV(A\V)) 

Let us prove the implication "=." and then the implication 

We will assume the L.H.S. of the implication and attempt to prove the R.H.S. 

Choose v' s.t. 
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VI(A' II B) = VIjfl(A' II B) and Rel(A' II B)v' 

(This is possible, by Lemma 5.) 

Then, by L.H.S., V 10ut(A' II B) - Varset = VI().jt(A' II B) - Vt which implies that 

V 'Vars(A' II B) - Varset = VIV(A' II B) - Varset 

so 

V'Iv(B) = VIv(B) 

since Vars(B) n Varset = 0. So Rel(B)vIV) holds. We now need to prove 

that Re1(A\Varset)vIV(A\Vt) i.e. that 

for all v", Rel(A')v" 

V"I(A') - Varset 	= VI(A') - Varset 

V"It(A') - Varset 	= VIojt(A') - Varset 

Take an arbitrary v" s.t. Rel(A')v" and 

V' "In(A') - Varset 	= VIJji(A') - Varset 

We just need to prove that 

V"Ijt(A') - Varset 	= V)ijt(A') - Varset 

Extend v" to v" on Vars(A' 11 B) s.t. Rel(A' II B)v" and 

V"I(A' II B) - Varset = VIJfl(A' II B)- Varset 

Is this possible? Yes: let v" be s.t. 

V .... IJn(A'  II B) - Varset = VIfl(A' IIB) - Varset 

and 

,,,, I V 'k(A') ri Varset 	- - VI(A') r Varset 

dom(v") = In(A' II B) so by Lemma 5 it can be extended to v" s.t. Rel(A' II 

B)v" holds. 

Then, by the L.H.S., 

V"I()(A' IIB) - Varset = VI1Jjt(A II B) - Varset 

which implies that 
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V ... Iijt(A') - Varset 	= "Out(A') - Varset 

But 

V'Io.j(A) - Varset 	= V"IOijt(A') - Varset 

so 

VI.jt() - Varset 	= VIOajt(A') - Varset 

Q.E.D. 

We will assume the R.H.S. and attempt to prove the L.H.S. 

So assume that 

Rel(B )vIV) 

holds and also that 

Rel(AWarset)vIV(A\V) 

holds, i.e. that 

for all v' Rel(A')v' => 

	

(v'IJn(A') - Varset 	= VIk(A') - Varset 

	

- Varset 	= vI()(A') - Varset) 

Furthermore assume that 

Rel(A')v' "Vars(A') 

and 

Rel(B)v' "Vars(B) 

and 

V"I(A' II B) - Varset 	= VI(A' II B) - Varset 

hold, where v" is an arbitrary valuation on Vars(A' II B). 

We want to prove that 

VIt(A' II B) - Varset = VIO.(A' II B) - Varset 

We know, S1flCC V'Ib(A') - Varset = vIJn(A') - Varset' that 
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V "Out(A') - Varset 	=4Out(A') - Varset 

Also 

	

V" IIfl(B) 	= VIIfl(B) 

and 

Rel(B)vIVB) and Rel(B)vIVB) 

so 

V"I t(B) = VIO(B) 

So we have the desired result. 

Lemma 8 

ran(RIs.T) 	ç ran(R15) 

Lemma 9 

	

ran(RIs..T) 	2 ran(RI) - ran(RIT) 

Lemma 10 

ran(R) U Si) = U ran(RI-) 

	

i E I 	jEl 

Lemma 11 

	

ran(RIS.T) 	= ran(RI5) - ran(RIT) 	 if R is 1-to-1 

Lemma 12 
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L) (S 1 -T1) 	
i
u Si 

i€I 	 €I 

Lemma 13 

• 

U (Si(S - Ti)T1) 	u Si - 	T 
1€! 	 €I 	i E I 

Lemma 14 

S-T-U = S-UifTU 

Lemma 15 

ScT => S-UcT-U 

Lemma 16 

AuB -(B -A)=A 

Lemma 17 

S 9 T => ran(Rls) c ran(RIT) 

Proofs 

Easy 
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Appendix C: Basic Propositions II 

The key results in this appendix are Lemma 21, Lemma 22 and Lemma 27. Lemma 21 

states that renaming distributes over composition.Lemma 22 states that (providing 

certain conditions hold) if A' simulates A then A' II B simulates All B. Lemma 27 states 

that if A simulates B and B simulates C then A simulates C, and gives the relationship 

between the parameter pairs of the simulations. These two propositions play an 

important role in the proofs of the later results which state that the transformations of 

the method preserve behaviour. The other propositions in this section are required for 

the proofs of the key results. 

Lemma 18 

For all i in I, let C1  be a computation. If "i E I Ci is well-defined and dom(R) = 

Vars(ll1 E  1C1), then 

ran(R)(LJ In(C1) - Out(" € I CO - Out((ll1 € I C) ® R) 
i€I 

= ran(R)( U  In(Cj))) - OUt((IIi € I CO ® R) 
1€' 

Proof 

C 

by Lemma 8 and Lemma 15 

by Lemma 9 and Lemma 14 

Comment: this lemma, and the following two, are used in the proof of Lemma 

21. The proof uses the fact that 
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Out((111 € i CI) ® R) = RIo1( € I) C"i) 

Lemma 19 

For all i in I, let C1  be a computation. If "i € IC 1  is well-defined and dom(R) = 

U Vars(Cj), then 
jE I 

U ran(RI(1)) - 	ran(RI()) 
i E I 	 1€! 

= U (ran(RIJ()) - ran(RI())) - U ran(RI(C)) 
iEI 	 i E I 

Proof 

C 

by Lemma 14 and Lemma 13 

by Lemma 12 

Lemma 20 

Assume that dom(v) = ran(R); then 

Re1(A)((vR)Iv(A)) 	Rel(A ® RIV(A))vIV(A ® R)Vars(A)) 

Now, using the definition of renaming on page 45 and the fact that 
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Vars(A ® RIV(A)) = ran(RIV(A)) 

Rel(A ® RIV(A))VIV I.S(A (9 R)Vars(A)) 

Rel(A)(vtr )v(A))RIV&s(A)) 

so we just need to show that 

(vR)IV(A) = VI rfl()/(A))RIV3J5(A) 

This is obviously true if both sides are well-defined and have the same domain. 

The L.H.S. is well-defined, since ran(R) = dom(v). The R.H.S. is also well- 

defined, since ran(RIv(A)) = dorn(vIpJV(A))). The domain of the L.H.S. 

= (dom(R) n Vars(A)) = the domain of the R.H.S. 

Lemma 21 

If (Ili € 1C) ® R is well-defined and, for all i, Cj ® RIv(j) is well-defined, 

then 

(IIi € I C1) ® R = "i € I (C1 ® RIv(j)) 

Out((II € I C) ® R) 

= ran(R)(Out(11 1  € i 

by definition of renaming 

= ran(R)( U Out(Cj))) 
jE I 

by definition of composition 
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= U ran(RI(1)) 
jE I 

by Lemma 10 

= U Out(C1 OR) 
jE I 

by definition of renaming 

= Out(111 € I (CI  ® R)) 

In((II1 € I C)® R) = ran(R) In(111 € I Cj)) - Out((D 1  € I C) (D R) 

by definition of renaming 

= ranR)( U  In(j) - Out(111 € I C1))) - Out((II € I C) ® R) 
iE I 

by definition of composition 

= ran(R)( •1_) In(Cj))) - Out((111 € 1C 1) ® R) 
1€' 

by Lemma 18 

= U ran(RI()) - Out((111 € I C) ® R) 

by Lemma 10 

= U ran(RI()) - .0 ran(RI(I)) 

	

i€I 	 1€! 

by definitions of renaming and composition 

= i"I (ran(RIJfl(Cl)) - ran(RIct(c..))) 

- U ran(RI(1)) 
jE I 

by Lemma 19 

= iI In(Cj ® RIy(1)) 
- I

I Out(C ® RIv(j)) 

	

= In(II 	(C1 ® R)) 

by definition of composition. 

Now to prove the equivalence of Rel((111 € i C) ® R)v and Rel(111 € i C1  ® 

RIv(1)): 
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Let v be a valuation on ran(R); then 

Rel((111 € I C) ® R)v 	Rel(111 € I Cj) (vR) 

by definition of renaming 

(For all i in I, Rel(Cj)((vR)IV(C.))) 

by definition of composition 

c Rel(111 E j Cj ® RIv(j)) 

byLemma 20 and definition of composition 

Lemma 22 

If A' II B is well-defined 

and A II B is well-defined 

and (A' II B)\Varset is well-defined 

and (A'\Varset) II B is well-defined 

and Vars(B) n Varset = 0 
and A' simulates A w.r.t. <Varset, R1> 

and R1IV(B)  fl Vars(A"\Varset) 9 Id(B 

then if R2 is s.t. 

dom(R2) = Vars(A) U Vars(B) 

and R2IV(A\V&set) = R1 

and R2Iy(B) = Id Vars(B) 

then A' 11 B simulates A 11 B w.r.t. <Varset, R2> 
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Proof 

(A'[[ B)\Varset = (A\Varset) II B 	by Lemma 7, so 

(A' II B)\Varset ® R2 = ((A'\Varset) II B) ® R2 

= (A'\Varset ® R2Iv(A'\v t)) II (B ® R2IVa )) 

by Lemma 4 

MEMM 

Lemma 23 

Assume that R is invertible (i.e. 1-to-1) with dom(R) equal to Vars(C) and that 

(C ® R)\Varset and (C\Varset') are well-defined, where 

Varset' 	= ran(R'Iv) 

then 

(C 0 R)\Varset = (C\Varset') ® (RI, 	- vt') 

Out(C ® R \ Varset) = Out(C ® R) - Varset 

= ran(RI(c)) - Varset 

by definition of renaming 

= ran(RlQ) - ran(RIvt') 

= ran(RIç>c) - vt') 	by Lemma 11 

= ran((RIv(Q - varset') 1out(c) - varset') 

= Out((C\Varset') ® (Rh5t- - vt')) 

In(C ® R\Varset) = In(C ® R) - Varset 

= ran(RI(Q) - Varset 
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(Since R is 1-to-1 we do not need to subtract Out(C ® R)) 

= ran(RiJ(Q) - ran(Rlvt') 

= ran(Rij(Q - varset') 	 by Lemma ii 

= ran((Riv(Q - Vt')'Tn(C) - varset') 

= 	((CVarset') ® (Ri 	- vt')) 

Rel(C OR \ Varset)v  

For all v', Rel(C ® R)v' 

(v'i In((C ® R)\Varset) 	= vi In((C ® R)\Varset) 

= 
v'i Out((C ® R)\Varset) 	= vi ()t((C ® R)\Varset)) 

by definition of hiding 

<' 	For all v', Rel(C)(v"R) 

(v'I Jn((C ® R)\Varset) 	= vi !n((C ® R)\Varset) 

v'i Out((C ® R)\Varset) 	= vi Out((C ® R)\Varset)) 

by definition of renaming 

< 	For all v", Rel(C)(v") = 

(v" OR-  ')l ran(R)Jn(C) - Varset') 	= vi ran(R)In(C) - Varset') 

(v"R 1 )1 ran(RjJOut(C) - Varset') 	= vi ran(R)Out(C) - Varset') 

(We are setting v" equal to V.R. We can then write v' as v".R 4  since R is 1-

to-i.) 

For all v", Rel(C)(v") 

V' 'I(Q - Varset' = v(RI1(Q - varset') 

= 
v"it(Q - Vt' = v(Rit(Q - vt') 
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Re1(CVarset') ® RIc - Varset' 	

by definition of hiding 

Lemma 24 

C\Varset is well-defined 

for all v and v", (Rel(C)v and Rel(C)v") = 

(vI(Q..V t 	= 	 Varset  

- Varset 	= "Out(C) - varset) 

C\Varset is well-defined ' 

Fun(C\Varset) is a well-defined function 

Hence it is sufficient to prove that 

for all vin  on In(C) - Varset, there exists vout  on Out(C) - Varset s.t. 

(Rel(C'.Varset) v1  U vout  

and 

for all valuations vin ' on In(C) - Varset and v' on Out(C) - Varset, 

(Rel(CVarset) vin' U Vt'  = 

(vin' = Vin 	' 

v' = v)) 

is equivalent to 

for all v and v", (Rel(C)v and Rel(C)v") = 

(vI(Q - Varset 	= V"I(Q - Varset 
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- Varset 	= V' "Out(C) - Varset) 

We will prove "=" and then 

Assume the L.H.S. is true, that Rel(C)v and Rel(C)v" hold and that 

	

VIk(Q..vt 	= 	 VarseA  

It is sufficient to prove that 

	

VIit(Q - Varset 	= 	 - varset) 

Let vin  equal VIJ(Q - vt: then Rel(CVarset)vIV(V t  holds, so 

vI(>(Q - Varset = V0 

(letting vin' equal VlJ(Q - vst and v' equal VI().dt(Q - vt in the L.H.S.) 

By a similar argument, 

V' "Out(Q - Varset = 'out 

so 

VI(C) - Varset 	= V"I(>t(O - Varset 

Assume the R.H.S. is true, and consider an arbitrary valuation vi n  on In(C) - 

Varset. By Lemma 5 there exists v s.t. 

	

- Varset 	= Vjll  

and 

Rel(C)v holds 
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Let Vt  equal vlC,>( - Vt• Firstly we will prove that Rel(C\Varset)v m  U vout  

holds. Let v" be s.t. 

Rel(C)v" 

and 

V' "Jn(Q - Varset = VI(0 - Varset = V10  

then by assumption of the R.H.S., 

V"I()ijt(Q - Varset = vI(>1(Q Varset 

so we know that Rel(C\Varset)vIV(Q 
- vart holds. But 

VIV(Q - Vt = Vj U vt so we have the desired result. 

We now just need to prove that, for arbitrary valuations vi n ' on In(C) - Varset 

and vt'  on Out(C) - Varset, 

(Re1(C'Varset) vin' U vt' =' (vi n' = vin =' Vt' = v)) 

So let us assume that Rel(C\Varset)(vj' U v') holds, that vin ' equals vin . By 

Lemma 5, we may extend vj' to v' s.t. Rel(C)v' holds. Then 

v'I01r - 	= vt' 	 (from the definition of Rel(C\Varset), 

since Rel(C\Varset)v m ' U v' holds) 

vt' = v' It( - Vt 

= vIr - Varset 

by R.H.S. (setting v" equal to v') 

= vI 	- Vamt  

= Vt 

and so the L.H.S. is true. 
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Lemma 25 

If C\V1 and (CV1)\V2 are well-defined then C(V1 U V2) is well-defined and 

(C\V 1 )\V2 = C(V1 u V2) 

Proof 

Out((C\V1)\V2) = Out(C) - V1 - V2 = Out(C) - (V1 u V2) 

= Out(C\(V1 U Va)) 

In((C\V1)\V2) 	= In(C)-V1-V2 = In(C)-(V1uV2) 

= In(Cs(V1uV2)) 

We therefore simply need to prove that, for all valuations v on Vars(C) - (V1 U 

V2), 

Rel((C\V 1)\V2)v Rel(C(V U 

This equivalence will imply that C'(V1 U V2) is well-defined, since (C\V1)\V2 

is. We will prove "=>' and then 

Let us assume the R.H.S., i.e. that, for all v', 

Rel(C)v' 

(v'I (V1) Vs*2 
	

= vi !n(OV'*1) Vs*2 

v"I Out(CV"1) -V'.2 
	= Vit(V1).Vs) 

But 
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In((C\V1)\V2) 	= In(C'(V1 U Va)) 

and 

Out((C\V1)\V2) = Out(C'(V1 u V2)) 

so this is the same as saying that, for all v', 

Rel(C)v' =' 

(v'I In(C) - V'i1 U V'2 
	

= vIj Q-V't1uV*2 

v'I Out(C) - V** I U V'2 
	

= V1Ot(V..*1UVsi2) 

In order to prove this, let us assume that Rel(C\V1)v' i.e. that for all v", 

Rel(C)v" 

(v 'In(C)-V'l 

'''I 
V 'Out(C)-V'4 

= 

= V'It(Q..V..&1) 

and also that 

V'I(VlUV2 	= VIIn(Q..V,i1V2 

It will be sufficient to prove 

V'It(VlUV*2 	= VIt(QV1uVs2 

By Lemma 5, we may extend v'I Jn(C) - vi u V2 to a valuation v" on 

Vars(C) s.t. Rel(C)v" holds; and now 

V .... I(QV1Vsj2 	= VI(Q..Vs1uVs*2 

= VI(QVluV2 
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v .... l Out(C) - V1 u V'4 = vi Out(C) - V1 u V2 

by assumed R.H.S. 

but also 

Vl)i(Q..\1sid 	= VI() jt(Q..V1 

by assumption that Rel(C\V1)v' holds 

V'It(C) - V-- 1 u V'*2 = v .... i Out(C) - V- I u V'2 

= Vit(Q - V.1 Li V*2 

which is what we were aiming to prove. 

Assume the L.H.S., i.e. (in doubly expanded form) that 

for all v', 

(for all v", Rel(C)v" = 

= 

v"I out(c) - V.- I 
	= 

= 

(v'l !n(C) - V4 u V'2 
	= Vi(V1V2 

v'l Out(C) - V'il u V'2 
	= 

We want to prove the R.H.S. To do this we will assume Rel(C)v" holds and 

that 

(v"I(Q - V"l u V'*2 = vlh(Q - V'*l uV'*2 

and prove that 
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V ... it(Q - V''l V"2 = vi ot(c) - V"l V'4) 

Since C\V1 is well-defined and Rel(C)v" holds, we may deduce from Lemma 

24 (with v' specialized to v") that 

for all v, Rel(C)v 

((vi !n(C) - Vs*1 	= 	'In(C) - V1 

,I A Out(C) - V'l 	= V 'Out(C) - V'. 0) 

which is the L.H.S. of the first hypothesis with v" replaced by v and v" 

replaced by v". (Note that v here is a dummy variable and does not necessarily 

equal the other v.) Therefore we may deduce that 

(v ... i  !n(C) - V''1 u V2 	= vi In(C) - V1 u V'*2 

V"ftt(Q - Vsl U V't2 = 	- V'*1 uV2) 

The hypothesis of this statement is true, so the conclusion is. 

Lemma 26 

C ® R(i)® R(2) = C ® (R(2)'R(l)) 

(assuming that dom(R(2)) = ran(R(l)) and dom(R(1)) = Vars(C)) 

The proof uses repeated application of the definition of renaming. 

Out(C ® R(1)0 R(2)) = ran(R(2)i4(C ® R'a(l))) 

= ran(R(2)lran(Ri)i)) 

= ran(R(2)R(l)IC)) 
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= Out(C ® (R(2)R(1))) 

In(C ® R(1)0 R(2)) = ran(R(2)I(C ® Ri(1))) - ran(R(2)I0t(C ® 

= ran(R(2)Ir 	'&(l))In(C)) - ran(R'*(1))Out(C))) 

- ran(R(2)I(C ® R--(I))) 

= ran(R(2)Ir(..i(l))T(C)) - ran(R'*(1))0ut(C))) 

- ran(R(2)Ir(l))t(C))) 

= ran(R(2)I ran((1),JT(Q) 

- ran(R(2)Ir(p.&(l))Q.j(c))) 

by Lemma 8, Lemma 9, Lemma 14 and Lemma 15 

= ran(R(2)R(l)I(C)) - ran(R(2)'R(1)I0. Q) 

= In(C®R(2)R(1)) 

Rel(C CO) R(1)(9 R(2))v 	Rel(C ® R(1))vR(2) 

Rel(C)(vR(2))R(1)  

Rel(C)v(R(2)-R(1)) 

' Rel(C ®(R(2)R(l)))v 

Lemma 27 

A simulates B wx.t. <V, R> 

and B simulates C w.r.t. <VBC, RBC> 

A simulates C, 

w.rt. <Vars(A) - VAB U VBC', RBc(RIvM u (VBC)')> 

Proof 

Assume the L.H.S. Then we know that A\VAB and B\VBC are well-defined and 
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A\VAB (9) RAB = B 

and B\VBC®RBC = C 

so 

C = (((A\V) ® R J B)\VBC)® RBC 

= (A\V\VBC') ® 	 - VAB - (V---BC)') ® RBC 

where VBC' = RAB'IVBC, by Lemma 23 with C in 

Lemma 23 equal to A\VAB and Varset' equal to VBC'. 

= (A\VAB U VBC') ® RBCRABIV3rS(A) - (V*ABu(V*BC)')) 

by Lemma 25 andLemma 26 

so A simulates C w.r.t. <Vars(A) - (V J UVBC'), RBCRJUIV(A) - 

(V*ABu(V*BC)'),> 
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Appendix D: Propositions relating to data-pipelining 

The important result of this section is Theorem 4, which states that under certain 

conditions data-pipelining preserves behaviour. Theorem 1 and Theorem 2 are also key. 

The former states that data-pipelining is valid if certain conditions are fulfilled; the 

latter states that under certain conditions the pipelining of each data-dependency is 

valid, which is one of the conditions of Theorem 1. The other propositions of the section 

support the main ones, apart from Theorem 3, which states that there is only one way 

to pipeline two of the dependencies in the QR-factorisation example (see subsection 

5.1.1 on page 134). 

The definitions and assumptions made at the start of the previous appendices are 

assumed to hold for this one. The following ones also hold: 

Definitions 

DATA is an affine recurrence with mould DATA_M(1)  over base BASE. Let its 

set of dependency vectors relative to this mould and BASE be { <a 1 , As>: 1 < i 

< n}. 

CONTROL is an embedded computation defined as follows 

In(CONTROL) 	= 0 
Out(CONTROL) 	= {<c1, p> : p € BASE} 

Rel(CONTROL)v 

For allp in BASE, 

(p € BASE(1 :0) 	v(<c 1 , p>) =0 and 

p € BASE( 1 : 1)  => v(<c1, p>) = 1) 

where {BASE(1 :0)'  BASE(1: 1)1  is a partition of BASE 



8 	Appendices 
	 197 

CONTROL(1) := CONTROL 

Let RDP(1) be defined on Vars(DATA M( 1..1)) as follows: 

R_DP(1)(<aj, As>) 	:= <z, IdBASE> 

and for all <a', A'> not equal to <a1, A1>, 

R_DP(1)(.<a',A'>) 	:= 

Let r1  be chosen to satisfy the aforementioned assumption in which it appears. 

Let DATA() be defined for each i in { 1...n} recursively as follows: 

DATA(j) 	:= DATA 

If i € {2...n}, DATA(1) is the recurrence with mould 

DATA_Ml) ® R_DP II PIPE—M(i) 

over base BASE 

where DATA—M(1-1) is such that 

DATAl) = fipE BASE  DATA_Ml) ® R_DATAi : p) 

where 

R...DATA(..l : p)(<'C, fUll>) = <vc, fun(p)> 

for all <vc, fun> in Vars(DATA_M1)) 

and PIPE—M(1) is defined to be s.t. 

In(PI1PE_M(1)) 	= { <ci, IdBASE>, <zig  j) 3 p+r1>, <aj, IdBE> } 

Out(PIPE_M(1)) = { <zj, IdBASE> } 

Rel(PIPE_M())v 
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v(<z1, IdBASE>) = v(<cj, IdBE>)*v(<zi, p —* p+rj>) 

+ (<Cj, IdBASE>)*v(<ai, IdBASE>) 

Varset(1) := {<zj, p+r1> : p E BASE) U {<z1 , p>:  p € BASE) 

u{<cj,p>:p€ BASE) 

U {<a1, p>: p € BASE and <aj, p> In(DATAl))} 

when 1 <i < n 

R(1) 	 Idv s((COflOL*(j) II DATA(i))\Varser(i)) 

when 1 <i < n 

For i in {2...n}, CONTROL(1) is defined to be s.t. 

In(CONTROL(1)) 	= 

Out(CONTROL(1)) = {<c, p>: p € BASE) 

Rel(CONTROL(1))v 

For all p in BASE, (v(<c1, p>) = 1 <> p * Aj(p)) and (v(<zc1, p>) = 0 p = 

Li(p)) 

CONTROL' 	Ili E (l}CONTROL() 

DATA' 	:= DATA() 

1 
BASE(QR) := { j I k E {1...M-1),jE {k ... M} and i€ {k+1 ... MI) 

k 

100 
A':= 001 

10011  
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Assumptions 

For all i, there exists r 1  s.t. for all p in BASE, there exist S and N s.t. 

{s: s = 	- M*r1  where m € Integer and O< m <N} 	= Cosetj(p) 

where 

Cosetj(p) = Is : s € Base and (s) = A(p) } 	 (iii) 

This assumption is used on page 214 in the proof of Theorem 2. 

The following are well-defined 

DATA_M() for iin {1...n} 

DATA() for i in 11 .. .n } 

CONTROL(1) for i in 11 .. .n) 

CONTROL(1) II DATA for i in 11 .. .n } 

llj E {l ... i 1 COT1OL(j) 	 when 1 <i < n 

Varse¼l) fl Vars(11j € Ii ... i  }CONTROL(j)) = 0 	when 1 <i < n 

('!j € (ii..! )CONTROL(j)) II (CONTROL(1) II DATA<0), 

((Ili € 11 ... i-I }CONTROL(J)) II (CONTROL( 1) II DATA()))\Varset(I), 

(CONTROL(1) II DATA(1))\Varset(), 

(j € (ii..! JCONTROL(j)) II ((CONTROL(1) II DATA(l))\Varsek)) 

when 1 <i < n 

(IIi € (! ... JCONTROL(J)) II DATA(o) 	 when 1 <i < n 

Lemma 28 
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If Cl' simulates C1 w.r.t. <Varset, R> 

and R = Idv(1vt) 

and Vars(B) n Varset =0 

and Cl' II C2 is well-defined 

and Cl II C2 is well-defined 

and (C1' II C2)\Varset is well-defined 

and (C1'\Varset) II C2 is well-defined 

then Cl' II C2 simulates C1 II C2 

Proof 

Since 

R = Idv(çv\v t)  

obviously 

RIv(2) fl Vars(C'*1\Varset) c 'dVars(C2) and the hypotheses are satisfied 

for Lemma 22 with R 1  = R, and R2 defined appropriately. 

Theorem 1 

Let n be a positive integer; if, for all i s.t. 1 <i < n, CONTROL( 1) II DATA 

simulates DATA !) w.r.t. <Varset( 1), R()> then 

CONTROL' II DATA' simulates CONTROL II DATA 

Proof 
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..by induction on n 

Base case 

The theorem is trivially true when n= 1. 

Inductive case 

Assume the theorem is true when n = N- 1, and assume the hypotheses of the 

theorem for n = N. 

From the hypotheses of the theorem for n = N, we have that CONTROLM II 

DATA is well-defined and simulates DATA l)  w.r.t. <Varset, R>; 

so, by Lemma 28, 

("i € f 1 ... N-1 )CONTROL( )) II (CONTROL II DATA) 

simulates 

(11i E {l ... N.l}C0NTR01 (i)) II DATAi 

by the fact that these two computations are well-defined, 

R 	= IdV(COOL* 	II DATA---M) 

VarsetM r Vars(IIj € {l ... Nl}CONTROL(j)) =0 
and the other well-defmedness conditions for Lemma 28 hold. 

Now (11k E {! ... Nl)CONTROL(I)) II DATA 	simulates CONTROL II DATA 

by the induction hypothesis. 

M. 

CONTROL' U DATA' simulates CONTROL II DATA 

by Lemma 27 

Lemma 29 

F(G[x -4 y]) 	= (FIRan(G)G)[x —* F(y)] 
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(For a definition of the arrow notation, see Terminology (General) on page ix) 

Proof 

F(G[x — y])x = F(G[x — y](x)) = F(y) 

F(G[x —* y])x' = F(G(x')) 	= (FIp(G)G)x' 

ifx'*x and x'E dom(G) 

and the domains of the two functions are obviously equal. 

F needs to be restricted to Ran(G) before being composed with G, since its 

domain is Ran(G[x —* y]), which may be a strict superset of Ran(G) if y 

Ran(G) 

Lemma 30 

Let the coset of p. Coset(p), be defined as follows: 

Coset(p) = {p' : p' E BASE and (p') = 

Assume that there exists an r s.t., for all p in BASE, there exists N p  s.t. 

Coset(p) = {s: s = (p) - m*r, where m € Integer and 015 m< N} 

Then, if Rem[oteness]  is a function defined as follows: 

Rem(p) := 0 	 if p = 

Rem(p) := Rem(p+r) + 1 if p * A(p) 

then Rem is well-defined. 

Proof 
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Let  be in S and assume that 

p = 

We can prove that Rem(p) is well-defined by induction on m, using the 

inductive hypothesis, "Rem(i(p) - ( m_l)*r) is well-defined." 

Base case 

m =0 so Rem(p) =0 

Inductive case 

m *0 => p * (J)) (if r *0; otherwise Rem(p) =0 as for base case) 

so 

Rem(p)= Rem(p-r) + 1=Rem(p0 - ( m 1)*r) + 1 which is well defined, by 

the inductive hypothesis. 

Lemma 31 

If the hypotheses of Lemma 30 hold then 

(For all p in BASE, 

(p:* A(p) = v(<z, p>) = v(<z, p-r>)) 

and (p = (p) v(<z, p>) = v(<a, p>))) 

2' for all p in BASE, v(<z, p>) = v(<a, (p)>) 

Proof 

The proof will proceed by induction on Rem(p) (which is well-defined, by 

Lemma 30) using the inductive hypothesis, "For all p' s.t. Rem(p') <p. v(czz, 
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= v<a, i(p')>" 

Base case 

Rem(p) =0, so 

p=i(p), 

and so 

v(<z, p>) = v(<a, p>) = v(<a, (p)>) 

Inductive case 

Rem(p) > 0, so 

p*(p) 

(assuming that r *0; If r=0 then the same argument holds as in the base case.) 

so. 

v(<z, p>) = v(<z, p+r>) 

but Rem(p-r) = Rem(p) - 1, so, by the inductive hypothesis and the fact that p+r 

E Coset(p), 

v(<z, p+r>) = v(<a, A(p+r)>) = v(<a, (p)>) 

Lemma 32 

V'IJ(Q 	= VI!fl(C) and 	Rel(C)v' and Rel(C)v" 

v'I- 	= V"I t(Q 

Proof 

• . .directly from the fact that Rel corresponds to a function from valuations on 

In(C) to valuations on Out(C). 
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Lemma 33 

If C1 and C2 are computations and Vars(C2) Vars(C) and Rel(C1)v' 

Rel(C2)v'IV(2) and C1\Varset is well-defined 

then Rel(C1\Varset)v Rel(C)v 

where Varset = Vars(C1) - Vars(C2) 

Proof 

Assume Rel(C1\Varset)v. Now, from the definition of hiding, we know that 

Rel(C1\Varset)v 

For all v', Rel(C1)v' = (v'I(1\Vt) = VJ((s1\Vt) 

=. 	 = Vt((1\Vt)) 

Let v' be constructed s.t. v'I(C1\Vt) = VIJ(C1\Vt) and Rel(C1)v' 

holds (we know from Lemma 5 that this can be done) then Re1(C2)v'I V(2)  

holds by hypothesis and V 1v(c2) = v by the above equivalence and so 

Rel(C2)v holds. 

Lemma 34 

If C1 and C2 are computations where Vars(C2) 9 Vars(C) and In(Cl)IV( 2)  

= In(C2) and Out(Cl)IV(2) = Out(C2) and C1\Varset is well-defined and 

Rel(C1)v' =* Rel(C2)v'Iv( 2)  

then 

Rel(C2)v 	Rel(C1\Varset)v 	where Varset = Vars(C1) - Vars(C2) 
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Proof 

Again, from the definition of hiding, we know that 

Rel(C 1\Varset)v ' 

For all v' Rel(C1)v' => (v'(1\Vt) = VI((1\V t) 

=> V'It(C1\%/) = VI1\V0) 

so 

(Rel(C2)v 	Rel(C1\Varset)v) 

For all v'((Rel(C2)v and Rel(C 1)v' and V'IIfl((1\V t) = VIb((S.1\V t)) 

V 	fl( 1\Varset) = VIO..tt(C 1\Varset)) 

To prove it is therefore sufficient to prove the R.H.S. Now since 

Rel(C1)v' => Re1(C2)v'Iv(>2) by hypothesis 

and 

Vars(C2) = Vars(C 1\Varset) 

we have by Lemma 32 with C2 substituted for C and v for v" that 

V 'Out(C' 1\Varset) = vIt( 1\Varset) 

Here we have used the fact that 

Jn(C1\Varset) 	= In(Cl)lV(2) = In(C2) 

and 

Out(C1\Varset) = Out(Cl)IV(2) = Out(C2) 

Theorem 2 

CONTROL(1) II DATA(j)simulates DATA(1- 1) w.r.t. <Varsekl),  R()> for all i s.t. 

1 <i<fl 
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Proof 

An overview of the proof 

Firstly DATA( 1) is examined and much rewriting of Out(DATA()) and 

In(DATA(1)) is done to obtain useful expressions for these sets. Then 

Rel(DATA(1)) is rewritten and expanded. Using this work, expressions are 

obtained for Out(CONTROL(1) II DATA), In(CONTROL( 1) II DATA(1)  and 

Rel(CONTROL(1) II DATA). Using these expressions, the statements (iv), (v) 

and (vi) (see page 213) are proven which are together equivalent to Theorem 2. 

This is the core of the proof. The proofs of (iv) and (v) are relatively easy, but 

proof of (vi) is more difficult. It is eased by the use of an intermediate result, 

(vii), which can be used for proving both that the L.H.S. implies the R.H.S. and 

vice versa. 

Expressions for Out(DATA"(i)). In(DATA*(i)) and Re1(DATA(i)) 

Let us expand DATA(1): 

DATA(1) = 

11pE BASE (DATA—M(1..1) ® R_DP(i) II PIPE.-M()) ® R_DATA(i: p) 

where R_DATA( : )(<, fun>) 	= <vc, fun(p)> for all <vc, fun> in 

Vars(DATA_M(..1) ® R_DP II PIPE—M(1)) (by definition) 

Out(DATA(1)) 

= 	U Out((DATA_41) ® R_DP II PIPE. -M()) ® R_DATA(I : 
pE BASE 

= 	U Out(DATA_M1) ® R_DP(1) ® R_DATA( p)' Var DATA..M'(i- 
pEBASE 

1) ® R_DP*(i)) 

11 PIPE_M(1) 0 R DATA(. p)1Vars(PIPE_M(i))) 
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by Lemma 21 on page 182 

= 	U Out(DATA_M(14) ® (R_DATA(1 : p)IVars(DAT&Ma0-1) ® 
p  BASE 

R_DP*(i))"-_(i)) 

II PIPE—M(i) ® R_DATA( : p)tVars(PIPEM(i))) 

by Lemma 26 on page 193 applied to the 

expression on the L.H.S. of the "II" 

Let us define "f' to be R_DATA( : p) 1Vars(DATA_M'*(i-1) ® R_Dp())R_DPW; 

then 

dom(f) 	= dom(R_DP(1)) = Vars(DATA_M(1..1)) 

Now 

f = R_DATA( : p)'V 	ATAMt(i.1) ® R_DP'*(i)) 

(IdIvDATAM(1..1))[<aj, E> — <z1, IdD>]) 

from definition of R_DP(1) on page 197 

= R_DATA( : p)tV&s(DATA_M(i.1))[<ai, A> — <zj, p>] 

by Lemma 29 on page 201 

and definition of R_DATA( : p) 

So 

U Out(DATA_M(1.l) ® (R_DATA1 : p)'Vars(DAT&M'*(i-1) ® 
p  BASE 

R_DP*(i))'_(i)) 

II PIPE_M() ® R_DATA(I p)'Vars(PIPEM(i))) 

= 	U Out((DATA_M(1..1) ® (R_DATA( p)'Vars(DATA_M'(i.1)) 
p  BASE 

[<a1, Ai> —> <zj, p>])Iout(tATA_Msi (i.1))) 

11 P]PE_M() 0 (R_DATA(1 : p)1Out(PIPE_M'*(i))) 
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= 	U ran((R_DATA(j: p)'VDAT&M(i-1)) 
p  BASE 

[<aj, A> —9 	p>])Io t(DATA_M(j1))) 

u U ran(R_DATA( : p)tVaEM(i)) 10ut(P1PEM&(i))) 
p  BASE 

by definition of renaming and 

composition 

= 	U ran((R_DATA(1 : p)'Vars(DATA_M(i-1)) 
p  BASE 

kaj, Aj> -4 <zj, p>])I0ut(ATA_M(i1))) 

u{<z1,p>: p€BASE) 

by definition of PIPE_M() on page 197 

Let us now consider In(DATA())... 

In(DATA()) 

= 	U Ifl(DATA_M(j1) ® (R_DATA1 : p)'V DATAM'*(i-1) ® 
p  BASE 

R_DP(i))R_DP(i)) 

II P1PE_M ® R...DATA( : p)'Vars(PIPEM(i))) 

- Out(DATA(1)) 

by definition of composition 

= 	U (In(DATA_M(..1) ® (R_DATA1 : p)'Vars(DATAM*0-1)) 
p  BASE 

[<a1, i> 4 <Z1 , p>])) II P1PEM() ® R_DATA( 

p)'Vars(PIPE_M(i))) 

- Out(DATA(1)) 

by rewriting f as on page 208 

= 	U ((In(DATA_Ml) ® (R_DATA( : p)'Vars(DATA_M'*(i-1)) 
p  BASE 

kaj, Ai> - <z1 , p1)) 
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U 	In(PIPE_M(I) ® R_DATAi : p)'Vars(PIPEM(i)))) 

- (Out(DATA_M(..1) ® (R_DATA1 p)'Vars(DATA_Mi(i-1)) 

[<aj, i> - <z1 , p>])) 

U 	Out(PIPE_M(1) ® R_DATA(1 : p)'Vars(PIPE_M(i))))) 

- Out(DATA()) 

by definition of composition 

= 	U ((In(DATA_M1) ® (R—DATA : p)'Vars(DATAM*(i-1)) 
p  BASE 

[<aj, i> - <z, p>])) 

U 	In(PIPE_M() ® R_DATA(i p)tVars(PIPEM(i)))) 

- Out(DATA(1)) 

by repeated application of Lemma 12, 

Lemma 13 and Lemma l4onpage 179 

= 	U ran((R_DATA(j :  p)'Vars(DATAM'*(i-1)) 
p  BASE 

[<aj, ij> + <Zi, P>I)1In(DATA_M'(i-1))) 

U U ran(&..DATA( : p) 1VaM(i))'hi(PEM'i(i))) 
p  BASE 

- Out(DATA()) 

by definition of renaming, Lemma 26, 

and by rewriting f as on page 208 

= 	U ran((R_DATA(1 : p)'Vars(DATA_M'*(i-1)) 
p  BASE 

[<aj, i> —3 <z1, p>I)IJn(DATA_M(.1))) 

U U { <cj, p>, <z1 , p+rj>, <aj, p> } 
p  BASE 

- ( U ran((R_DATA(1 : p)'Vars(DATA_M*(i-1)) 
p  BASE 

[<a, i> - <z1, P>1)IOut(JDATAM(j1))) 

u{<z1,p>: p€BASE}) 
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Now for Rel(DATA(1)) 

Rel(DATA(1))v 

Re1(IIP€BASE(DATA....M1) (V R_DP II PIPE—MO) ® R_DATA 

p))V 

Rel(IIP€ BASE(DATA_M(l.1) ® (R_DATA(1 : p)'Vars(DATA_M*6-1)) 

[<aj, z> —3 <zr, P>]) 

II (PI1PE_M(1) ® R_DATA(j : 

For all pin BASE, 

(Re1(DATA_M 1j) ® (R_DATA(1 : p)'VarDATAM(i-1)) 

[<a1 , LS> —3 <z, p]))) 

VlV(DATA_M *(j4) ® (R_DATA(i : p))Vars(DATA_M.(i-1))as*i. 	i> 

-4 <z'*i, p>])) 

and 

(Rel(PIPE_M(1) ® (R_DATA1 : p)'VaIPEM'*(i))))) 

VI\T(p1pE_M.s(j) ® (R_DATA'&(i: p))Vars(P1PE_M*(i)))) 

by definition of composition and the definition 

of the variables of a renamed computation 

For all pin BASE, 

(Re1(DATA_Ml) ® (R_DATA(j :  p)'Vars(DATA_M'*(i-1)) 

[<a1, i,> - <z1, p>]))) 

VIV(DATA_M.*(j4) ® (R_DATAS*(i p))Vars(DATA_M'*(i- 1))[<ai,  *j> 

-4 <z*'i, p>])) 

and 

v(<zj, p>) = v(<cj, p>.) *v(,  p+rj>) + v(<cj, p>)*v(<aj,  p>) 

by definition of PIPE_M() 

Expressions for In(CONTROL(i) 11 DATA'(i)). 
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Out(CONTROL(i) II DATA"(i)) and Re1(CONTROL(i) II DATA'*(Ifl 

Let us now expand CONTROL( 1). 

In(CONTROL(1)) = 0 
Out(CONTROL(1)) = {<c1, p>: p € BASE} 

Rel(CONTROL(1))v 	For all p in BASE, (v(<cj, p>) = 1 < p * j(p)) and 

(v(<c1, p>) =0 	p = j(p)) 

In(CONTROL(1) II DATA) = In(DATA(1)) - {<cj, p>:  p € BASE} 

by definition of composition and 

CONTROL(1) 

= 	U ran(R_DATA(  P)II(DATh_M( 1.1))[<a 1  i> —* <z, p.]) 
p  BASE 

U U {<zj, p+rj>, <a 1, p>} 
p  BASE 

- ( U ran(R_DATA(1 : p) 1Out(DATA.Ms(i-1))) 
p  BASE 

u{<z1,p>: pEBASE)) 

rewriting In(DATA()) and simplifying, using the fact that 

<at, i> € In(DATA_M(1.1)) and <a 1, Ai> Out(DATA_M(.l)) 

Out(CONTROL() II DATA) = 

Out(DATA(1)) u Out(CONTR041)) 

= 	U ran(R_DATA(1 : p) 10ut(DATA_M'*(i-1))) 
p  BASE 

u{<zj,p>:p€ BASE} 

u{<cj,p>:p€ BASE} 

rewriting Out(DATA(1)), OUt(CONTROL(j)) and simplifying 

Rel(CONTROL(1) II DATA)) 

For all p in BASE, 
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(Rel(DATA_M(1..1) ® (R_DATA1 : p)IVars(DATA_Mst(i1)) 

[<a1 , iS> -+ <z1 , p>]))) 

VIv(DATAM(j4) ® (R_DATA'*(i : p))Va DATA_M(i-1))[<aii, A -- i> 

-9 <z'*i, p>])) 

and 

v(<zj, p>) = v(<cj, p>) * v(<zj, p+rj>) + 	p>)*v(<a1 , p>) 

) 

and, for all p in BASE, 

(v(<c1, p>) = 1 < p:* Aj(p)) and (v(<cj, p>) =0 t*  p = p)) 

using rewriting of Rel(DATA(1)) and the 

definition of Rel(CONTRO41)) 

The core of the proof 

It is necessary and sufficient to show that 

Out(((CONTRQL(1)  II DATA())\Varset (1)) ® R) = Out(DATA( . 1)) (iv) 

In(((CONTROL(1)  II DATA(1))\Varset()) ® R) 	= In(DATA1)) 	(v) 

Rel(((CONTROL( 1) II DATA())\Varset(1)) ® R) 	Re1(DATA1)) (vi) 

Proof of (iv) 

Out(((CONTROL(1)  II DATA(j))\Varse¼l)) ® R(1)) 

= Out((CONTROL(1) II DATA(1))\Varset(j)) 

= 	U ran(R_DATA(. p)'Out(DATA_M'*(i-l))) 
p  BASE 

u{<zj,p>:pE BASE} 

U{<cj,p>:pE BASE} 
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- Varset(1) 

= Out(DATA(1 ..1)) 

Proof of (v) 

In(((CONTROL(1) II DATA(j))\Varsekj)) ® R) 

= In((CONTROL(1) II DATA( 1))\Varset( 1)) 

trivially from the definition of R(1) on page 198 

= 	U ran(R_DATA( 1 	 > —p <z1, p>]) 
pE BASE 

U 	U { <z1, p+rj>, <aj, p> } 
p  BASE 

- ( U ran(R_DATA(1 : p)tOut(DATA_M'*(i-1))) 
p  BASE 

u{<z1,p>: p€BASE}) 

- Varset( 1) 

from definition of Varset() on page 198 

= 	U ran(R_DATA(1 : p)tIn(DATA_M(i-1))- {<ai. .j> 1) 
p  BASE 

U 	U {<aj,p>) 
p  BASE 

- 	U ran(R_DATA(j :  p) 10ut(DATA_M(i-1))) 
p  BASE 

- {<a1, p>: p € BASE and <at, p> In(DATA1))} 

From (iii) on page 199, we may deduce that j(p)  E BASE for all p in BASE, 

so {<a 1, ij(p)> p € BASE) 	U {<a1, p>}; therefore we know that the 
p  BASE 

above expression equals 

U ran(R_DATA(1 : p)'Jn(DATA_M'*(i-l))) 
p  BASE 

U 	U {<aj,p>} 
p  BASE 
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- 	U ran(R_DATA(i:  p)'Out(DATA_M"(i-l))) 
pE BASE 

- {<aj, p>: p € BASE and <aj, p> In(DATAi))} 

= 	U ran(R_DATA(j :  p)'In(DATA_M(i-l))) 
PE BASE 

- 	U ran(R_DATA(j :  p) 10ut(DATA_M'*(i-1))) 
p€ BASE 

by Lemma 15 on page 179 with A equal to 

U ran(R_DATA(j :  p) 1In(DATA_M'*(i-1))) 
p  BASE 

and B equal to U  {<a,p>}, since A-B 
p  BASE 

will then' be 

{<a1 , p>: p € BASE and <a 1, p In(DATA1))} 

= In(DATAl)) 

Proof of (vi) 

Rel(((CONTROL.(1) II DATA(1))\Varset(j)) ® R) 

s Rel((CONTROL(1) II DATA())\Varset(1)) v 

For ally', 

Rel(CONTROL(1) II DATA<)v' 

(v' 'Jn((CONTROL''(i) II DATA*(i))\Varser*(i)) 

= VIJ((CON'flOL(j) II DATA(i))\VarseN(i)) 

' V'I((CONThOL(j) II DATA'*(i))\VarseN(i)) 

= Vic (CONTROLi(i) II DATA*(i))\Vai-seN(i))) 

by definition of hiding 

We want to show that this is equivalent to Rel(DATA1))v. Now 

Rel(DATA(1. l))V 

For all p, Rel(DATA_M1) ® R_DATA(14 : p))VIV)ATA Ms*(jl) ® 

R_DATA*(p)) 
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< 	For 	all 	p, 	Re1(DATA_M1))(vIVATAM(j.1) ® 

: p) 

We will divide the proof of (vi) into "" and "<", but first we will prove 

Rel(CONTROL(1) II DATA(j)v' = Rel(DATA(1. 1))v' 'Vars(DATA'i(i- 1)) 	(vii) 

Proof of (vii) 

Now 

Rel(CONTROL( 1) II DATA)v <> 

For all p in BASE, 

(Rel(DATA_M1) ® (R_DATA(i : p) 1Vars(DATA_M''(i-1)) 

[<aj, z> —p <z1, p>]))) 

VIV1ATAMs*(j..1) ® (R_DATA'*(i p))Vars(DATA_M(i1))[< as*i. *i> 

-4 <zsii, p>])) 

and 

v(czz, p>) = v(<cj, p>) *v(<zj,  p+rj>) + (<cj, p>)*v(<aj, p>) 

) 

and, for all  in BASE, 

(v(.<c1, p>) = 1 	p * ij(p)) and (v(<c1, p>) =0 < p = p)) 

from previous work 

The last two subclauses of the R.H.S. imply that 

for all p in BASE, 

(p * A(p) = v(<z1 , p>) = v(<zj, p+r1>)) 

and 	(p = A(p) => v(<z1, p>) = v(<aj, p>)) 

which implies that, for all p in BASE, v(<zz1, p>) = v(<a 1, L(p)>) 

by Lemma 31 and (iii) on page 199 
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So L.H.S. of (vi) => 

(For alip in BASE, 

(Rel(DATA_M(1.1) ® (R_DATA(1 : P)IV55S(DATA_M(1 1))[<a1 , Ai> - < 

P>]))) 

V'Iv(DATAMsi(i..1) ® (R_DATA'ii(i : p))Vars(DATA_M*(i-1))[<a'ii, *i> 

-4 <zi, p>])) 

and, for all p in BASE, 

v'(.<z1, p>) = v'(<aj, Ai(p)>) 

(For all p in BASE, 

(Rel(DATA_M(1. 1)) 

(v'IVDATA_M(j.1) ® (R_DATA*(i : p))Var DATAM*(i1))[<as*i. '*i> 

-4 <z'*i, p>])))'(R_1TA(i :  p) 1  Va (DATA_M(j.1))[<ai, A> - <z1 , p>]) 

and, for all p in BASE, 

v'(<z 1, p>) = v'(<aj, &i1(p)>) 

by definition of renaming 

(For allp in BASE, 

(Re1(DATA_M(.. 1)) 

(V'IVarATA_M*(i.1) ® (R_DATA'*(i : p))Vars(DATA_M-*(i-1))))) 

'(R_DATA(1 p)IVars(DATA_Ms*(i1))) 

) 

using the fact that for all p in BASE, 

v'(<z 1, p>) = v'(<aj, A1(p)>) 
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Re1(DATA 1))' Vars(DATA'(i- 1)) 

by definition of DATA1) on page 197 

and definition of re-naming 

• . .follows from (vii), the fact that 

Vars(DATA(l)) Vars(CONTRO4 1) II DATA() 

and 

Lemma 33 on page 205 

• . .follows directly from (vii) and the fact that 

Vars(DATA1)) Vars(CONTROL(1) II DATA) 

and 

In(CONTROL(1) II DATA(j))IvDATA 1)) = In(DATA(.. 1)) 

Out(CONTROL(1) II DATAa))Iv 	ATAS.i(i1)) = Out(DATA(i.l)) 

Lemma 34 on page 205 

Theorem 3 

There is no other way to pipeline the dependencies <ox, p —3 A'.p> and <oy, 

p —3 A'.p> (see page 134) i.e. 

If 

r, a vector with integer components is such that 

for all p in BASE(QR), there exists a positive integer m s.t. 

p = A'.pm*r 

and 

and 
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then 

0 
r= —1 

0 

Proof 

Let the components of r be d, e, and f. 

1 

Assume the hypothesis, that, for 	 in BASE(QR). there exists a positive 

integer m s.t. 

1 

(A'-I). j 	
= m*r  

k 

i.e. 

100 i 
001. j 	= m*r 

001 k 

i.e. 

0 	 d 
k—j 	= m* e  

0 	 f 

1 
Now let p equal 2 . This is in BASE (QR) so we know that 

3 

0= m*d,  -1 = m*e and 0= m*f 

This implies that 

m= 1,d=0,e=-1 and f=0 
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Theorem 4 

CONTROL' II DATA' simulates CONTROL II DATA 

Proof 

.using Theorem 1. 

By Theorem 2 on page 206, 

CONTROL(1)  II DATA(i)simulates DATA( - i)  w.r.t. <Varsek),  R(1)>, for all i 

s.t. 1<i<n 

If we can prove that, for all k s.t. 1 <k < n 

( 	U 	Vars(CONTROL(1))) n Varset 	= 0 	(viii) 
i€ Nat (k-1) 

then all the hypotheses, and therefore the conclusion of Theorem 1 will hold and 

Theorem 4 will be proven; but (viii) is true because the only control variables 

in VarSet)DATA are of class ck  and 	U 	Vars(CONTRQL()) consists 
i€ Nat(k — l) 

solely of control variables in classes c1 ck. 
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Appendix E: Propositions relating to control- 
pipelining 

The main result of this section is Theorem 12, which states that under certain conditions 

control-pipelining preserves behaviour. A key result is Lemma 35 which states 

sufficient conditions for the pipelining of each control-variable-class to be valid. Most 

of the other propositions (i.e. Theorem 7 to Theorem 11) in this section prove the 

validity of pipelining the particular control-variable-classes in the convolution and QR-

factorisation examples, assuming the well-defmedness of certain computations. 

The definitions and assumptions made at the start of the previous appendices are 

assumed to hold for this one. The following ones also hold: 

Definitions 

BASE(j : 	:= 1p: p = j(P)} 

BASE(j:l) 	:= {p:p*j(p)} 

(Consequently the definition of CONTROL(1) on on page 198 may be rewritten: 

In(CONTROL(1)) 	 = 0 
Out(CONTROL(1)) = {<cj, p> : p € BASE) 

Rel(CONTROL(1))v 

For all pin BASE, 

(p € BASE(1 : 0)=v(<cj, p>)  =0 and 

p € BASE(1 : O) v(<cj, p>) = 1)) 

Assumptions 

Assume that we can find disjoint sets D(j: 0)  and D(j: 1)  outside BASE and a 



8 	Appendices 	 222 

vector 	with integer coefficients st., for all p in BASE, 

p € BASE(j : 0)=> there exists p' in D( :0) and an integer m s.t. 

p = p' - 

and 

p € BASE(j: 1)='  there exists p' in D(j: 1)  and an integer rn s.t. 

p = p' - 

Assume further that for all p' in D(. 0) U D(j: 1)'  there exists M s.t. 1 <rn <M 

(p - 	€ BASE) 

Note that the set is the domain of the edge computation CONTRO41: 1)  and is 

outside BASE, which is a base for DATA, DATA', CONTROL" and 

INTERIOR (to be defined later). 

Definitions (continued) 

Let CONTROL(j: 1)  be s.t. 

Ifl(CONTROL(j: 1)) 	= 0 

Out(CONTROL(1. 1)) 	= {<cj, p>: p € D( :0) U D(j: 1)} 

Rel(CONTROL(1. l))V 

(p € D(j: 0) V(<cj, p>) =0 and 

p € D(j: 1) 	v(<cj, p>) = 1) 

and CONTROL(1 2)  be s.t. 
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In(CONTROL(1.2)) 	= {<cj, p> : p € D(1 :0) U D(j: l)} 

OUt(CONTROL(j: 2)) 	= {<c, p>: p E: BASE} 

Rel(CONTROL(j: 2))V 

(p € BASE => v(<cj, p>) = v(<c1 , p+rc..ij>)) 

Let R—CP(1) be Id( c i)AsE and Varset CP() be {c1}X(D( : 0) U D(j: l)) 

CONTROL" := HiE {l ... n}  CONTROL(:  1) 

CONTROL" := Ii € 11  }CONTROL(j: 2) 

R 	 := IdV(CON-OL')\ 

EDGE 	:= CONTROL" 

INTERIOR := CONTROL" II DATA' 

V 	 := 	U Varset_CP(1) 
1€ Nat (n) 

Comment 

For a discussion of the roles of CONTROL(j: 1)'  CONTROL(j: 2)'  CONTROL" 

and CONTROL", see section 4.3 (starting on page 94). These computations, 

along with EDGE and INTERIOR, appear in Figure 4.11 on page 98. The 

renaming function R—CP() and variable set Varset_CP() are used to prove that 

CONTROL(j: 1)11  CONTROL(1 :2)  implements CONTROL() (Lemma 35) and 

the renaming function R and the variable set V are used to prove that EDGE II 

INTERIOR implements CONTROL' H DATA' (Theorem 12). (CONTROL' 

and DATA' are defined, on page 198.) 
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Assumptions (continued) 

Comment 

If the following statement holds then all the computations which appear in the 

proofs in this Appendix are well-defined. 

CONTROL", 	 CONTROL", 

CONTROL" II CONTROL", 	CONTROL" II DATA', 

INTERIOR, 	 EDGEV, 

EDGE II INTERIOR, 	 CONTROL' II DATA', 

((CONTROL" II CONTROL ... )\V) II DATA', 

(EDGE U INTERIOR)\V, 	 CONTROL(j: 1)' 

CONTROL(1. 2)' 	 (CONTROL(j: 1)  II CONTROL(. 2)) 

(CONTROL(: 1)  II CONTROL( : 2))\V&5et_CP(), 

(IIi € { l ... n}(C0N101(i : l) II CONTROL(.2))) II DATA', 

(('Ii € { jj}(CONTROL(j: 1)  II CONTROL(:2))) II DATA')\V 

and (Ili € 1 1 11 }(CONTROL(.l) II CONTROL(1.2)))\V II DATA' 

are well-defined and, 

for allkin{1...n}, 

(CONTROL(k:l) II CONTROL(k:2)), 

(Iii € { 1...k-1 }(CONTROL(j: 1)  II CONTROL(.2))), 

(CONTROL ç 1) II CONTROL ç2)) 11 

Oli € 11 ... k-1 )(CONTROL(j1) 11 CONTROL(j:2))), 
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Now for Rel(DATA( 1)) 

Rel(DATA(1))v 

Rel(IIPEBE(DATA_M(j..l) ® R_DP II PIPE—M(1)) ® R_DATA 

Rel(IIP€BASE(DATA_M(i.1) ® (R_DATA(1 p)'Vars(DATA_M''(i-1)) 

[<a1, Ai> - <zj, p>]) 

II (PIPE—M() ® R_DATA(i :  p)'Vars(PIPE_M(i))))" 

For all pin BASE, 

(Rel(DATA_M(1.1) ® (R_DATA(1 : p)IVars(DATA_Ms&(i1)) 

[<a1 , Ai> —3 <zi, p>]))) 

VIVaj (DATAM' i(i4) ® (R_DATA'*(i : p))Vars(DATA_M'*(i-1))[<a'i. 	j> 

-4 <zi, p>])) 

and 

(Rel(PIPE_M(1) ® (R....DATAj :  p)'Vars(PIPE_M(i))))) 

VIV(PIpE_M*.a(j) ® (R_DATA(i : p))Vars(PJPEM*(i)))) 

by definition of composition and the definition 

of the variables of a renamed computation 

For all pinBASE, 

(Re1(DATA_M1) ® (R_DATA1 : p)IVAT&M'*(i-1)) 

[<aj, Ai> -4 <zi, p>]))) 

VIV(rJATA_M(j..1) ® (RDATA''(i p))VaDATA_M(i-1))[<a'*i, *1> 

-9 <z"i, p>])) 

and 

v(<z1 , p>) = v(<cj, p>) *v(<zi, p+rj>) + v(<cj, p>)*v(.(aj, p>) 

by definition of PIPE—M(j) 

Expressions for In(CONTROL(i) 11 DATA(i)). 
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Out(CONTROL(i) II DATA(D) and Re1(CONTROL''(i) II DATA*(i)) 

Let us now expand CONTROL(1). 

In(CONTROL(1)) = 0 
Out(CONTROL(1)) = {<c1, p>: p € BASE} 

Rel(CONTROL( 1))v 	For all p in BASE, (v(<cj, p>) = 1 	p * i1(p)) and 

(v(<c1, p>) =0 p = 

In(CONTROL(1) II DATA) = In(DATA( 1)) - {<cj, p>: p € BASE) 

by definition of composition and 

CONTROL(1) 

= 	U ran(RDATA(1 : P)IIfl(DATA_M(1 D)[<a 1  A> —p <z1, c>]) 
pE BASE 

U U { <z1, p+rj>, <a1, p> } 
p  BASE 

- ( U ran(R_DATA(i :  p)1Out(DATA_M'*(i-1))) 
p  BASE 

u{<z1,p>: p€ BASE)) 

rewriting In(DATA( )) and simplifying, using the fact that 

<a1, Ai> € In(DATA_M1)) and <a 1, A> Out(DAT&M(..l)) 

Out(CONTROL(1) II DATA) = 

Out(DATA(j)) U Out(CONThOL(1)) 

= 	U ran(R_DATA(1 : p) 10ut(DATA_M(i-1))) 
pE BASE 

u{<z1,p>:p€ BASE) 

u{<cj,p>:p€ BASE) 

rewriting Out(DATA( 1)), Out(CONTROL(1)) and simplifying 

Rel(CONTRO41) II DATA() 

For all p in BASE, 
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(Re1(DATA_M1) ® (R_DATA(j :  p)'Vars(DATA_M''(i-1)) 

[<a1, Aj> —3 <z, p]))) 

VIvATA_M'ii(j.1) ® (R-DATA--&(i : p))Vars(DATA_M%*(i.1))kas*i, *i> 

4 <z'*i, p.])) 

and 

v(<z1, p>) = v(<cj, p>) *v(<zj,  p+rj>) + (<cj, p>)*v(<aj,  p>) 

) 

and, for all p in BASE, 

(v(<c1, p>) = 1 	p * i(p)) and (v(czc 1, p>) =0 	p = A1(p)) 

using rewriting of Re1(DATA()) and the 

definition of Rel(CONTROL(1)) 

The core of the proof 

It is necessary and sufficient to show that 

Out(((CONTROL(1) II DATA(I))\Varsekj)) ® R) = Out(DATA1)) (iv) 

In(((CONTROL(1) II DATA())\Varset(I)) ® R) 	= In(DATAl)) 	(v) 

Rel(((CONTROL( 1) I! DATA(1))\Varset(1)) ® R)) 	Re1(DATA1)) (vi) 

Proof of (iv) 

Out(((CONTROL(1) II DATA(1))\Varset(1)) ® R) 

= Out((CONTROL( 1) II DATA(1))\Varset(1)) 

= 	U ran(R_DATA(1 : p) 1 0ut(DATA_M*(i-1))) 
p  BASE 

u{<zj,p>:pE BASE} 

u{<cj,p>:p€ BASE} 
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- Varsek) 

= Out(DATAl)) 

Proof of (v) 

In(((CONTROL(1) II DATA(1))\Varset( 1)) ® R) 

= In((CONTROL( 1) II DATA(1))\Varset( 1)) 

trivially from the definition of R(1) on page 198 

= 	U ran(R_DATA( 1  : P)1 DATA_M(1.l))t1<ai, L> -4 <z1, p1) 
p  BASE 

U 	U {<z1 , p+rj>, <aj, p>} 
pE BASE 

- ( U ran(R_DATA( 1  P)lOUt(DATA_M(1 1))) 
p  BASE 

u{<z 1,p>: p  BASE)) 

- Varset(1) 

from definition of Varset( 1) on page 198 

= 	U ran(R_DATA(1  p) 	ATAM"(i-1))- {<ai, 
p€ BASE 

U 	U {<aj,p>} 
p  BASE 

- 	U ran(R_DATA(1 p)IOut(DATA_M'*(i-1))) 
p  BASE 

- {zaj, p>:  p € BASE and <a 1 , p> In(DATAl))} 

From (iii) on page 199, we may deduce that zj(p) € BASE for all p in BASE, 

so (<a1, j(p)>: p € BASE} 9 	U {<a1 , p>}; therefore we know that the 
p  BASE 

above expression equals 

U ran(RJDATA(j: p)hln(DATA_M'*(i-1))) 
p  BASE 

U 	U {<aj,p>} 
pE BASE 
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- 	U ran(R_DATA(j :  p) 10ut(DATA_M'*(i-1))) 
pE BASE 

- {<aj, p> p € BASE and <aj, p> In(DATAi))} 

= 

	

	U ran(R_DATA(j : p)hIn(DATA_Ms*(i1))) 
p  BASE 

- 	U ran(R_DATA(1  p) 10ut(DATA_M*(i-1))) 
p  BASE 

by Lemma 15 on page 179 with A equal to 

U ran(R_DATA(1 
: p) 1In(DATA_M*(i-1))) 

p  BASE 

and B equal to 	U (<a1, p>}, since A - B 
P  BASE 

will then be 

(<a1, p> p € BASE and <a 1 , p> it In(DATA(..l))} 

= In(DATAl)) 

Proof of (vi) 

Rel(((CONTROL(1) II DATA(j))\Varset( -1
)) 

® R) 

Rel((CONTROL(1) II DATA())\Varset(1)) v 

For ally', 

Rel(CONTROL(1) II DATA)v' 

(v' 'In((CONTROL'a(i) II DATA''(i))\VarseN(i)) 

= VIjfl((COflOLs(j) II DATA*(i))\Varser*(i)) 

4' V'IØij ((CO llOL'*(j) II DATA'*(i))\Varset'*(i)) 

= VI().j((CONThOL.*(j) II DATA'*ci))\VarseN(i))) 

by definition of hiding 

We want to show that this is equivalent to Re1(DATA1))v. Now 

Re1(DATA l))V 

For all p. Re1(DATA_M1) ® R_DATA(1.1 : p))Vars(DATA_M*(i-1) ® 

R_DATA't(p)) 
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< 	For 	all 	p, 	Re1(DATA_M1))(vlvATA. M(j1) ® 

RDATAp))R_DATA(i4 p) 

We will divide the proof of (vi) into "" and "=", but first we will prove 

Rel(CONTROL(1) II DATA)v' = Re1(DATA(i-1))v' IV(DATAS(i. 1)) (vii) 

Proof of (vii) 

Now 

Rel(CONTROL( 1) II DATA<1 )v <> 

For allp in BASE, 

(Re1(DATA_M1) ® (R-DATA( : p)IVars(DATA_M'*(i-l)) 

[<aj, i> - <z1, p>]))) 

vIV(DATA_M%.(i4) ® (R_DATA(i : p))Vars(DATA_M'i(i- 1))[<ai. *i> 

-* <zi, p>])) 

and 

v(.<z1, p>) = v(<cj, p>) * v(<zj, p+r1>) + (<cj, p>)*v(<aj,  p>) 

) 

and, for all p in BASE, 

(v(<c1, p>) = 1 	p * Aj(p)) and (v(<c 1, p>) =0 <' p = j(p)) 

from previous work 

The last two subclauses of the R.H.S. imply that 

for all p in BASE, 

(p * i(p) 	v(<z1, p>) = v(<z1 , p+r1>)) 

and (p = A(p) = v(<z 1 , p>) = v(<aj, p>)) 

which implies that, for all p in BASE, v(<zj, p>) = v(<a 1, i(p)>) 

by Lemma 31 and (iii) on page 199 
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So L.H.S. of (vi) 

(For allp in BASE, 

(Re1(DATA_M1) ® (R_DATA( i:  P)I Vars(DATA Mu(l.1))kal, i> —* <zi, 

p>]))) 

V'IVa (DATA_M'*(i..1) ® (R_DATA(i : p))Vars(DATA_Mi(i-1))kai. stj> 

•- <zti,p>])) 

and, for allp in BASE, 

v'(<z1, p>) = v'(<aj, A 1(p)>) 

(For all pin BASE, 

(Re1(DATA_M 1)) 

(v'IVars(DATA_M'*(i..1) ® (R_DATA(i p))Vars(DATA_M's(i-1))[<a'*i, 	i> 

- <zi, >])))(R_DATA(I : p)IVa(DATA_M.(1))[<ai, Sj> —+ <z, p>]) 

and, for allp in BASE, 

v'(<z1, p>) = v'(<aj, Ai(p)>) 

by definition of renaming 

(For all p in BASE, 

(Re1(DATA_Mj..1)) 

(v'IVATA_M..(i.1) ® (R_DATA*(i: p))VaDATAM'(i-l))))) 

(R_DATA(1 : p)IVars(DATA_M*(i-1))) 

) 

using the fact that for all p in BASE, 

v'(<z 1, p>) = v'(<aj, Ai(p)>) 
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< Re1(DATA 1))V' 'Vars(DATA'*(i- 1)) 

by definition of DATA,) on page 197 

and definition of re-naming 

• ..follows from (vii), the fact that 

Vars(DATA(11)) c Vars(CONTRO41) II DATA) 

and 

Lemma 33 on page 205 

• ..follows directly from (vii) and the fact that 

Vars(DATA1)) c Vars(CONTROL(1) II DATA) 

and 

In(CONTROL(1) II DATA(j))Iv (DATA'*(i-1)) = In(DATA(11)) 

and 

Out(CONTROL() II DATA (j))V(DATA i(j..1)) = Out(DATAl)) 

and 

Lemma 34 on page 205 

Theorem 3 

There is no other way to pipeline the dependencies <ox, p — 5 A'.p> and <oy, 

p - A'.p> (see page 134) i.e. 

If 

r, a vector with integer components is such that 

for all p in BASE(QR), there exists a positive integer m s.t. 

p = A'.pm*r 
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then 

0 
r= —1 

0 

Let the components of r be d, e, and f. 

1 

Assume the hypothesis, that, for allj in BASE( QR), there exists a positive 
k 

integer m s.t. 

1 

(A'-I). j 	= m*r  

k 

i.e. 

100 i 
001. 	= m*r  

001 k 

WIM 

0 	 d 
k—j 	= m* e  

0 	 f 

1 
Now let p equal 2 . This is in BASE(QR) so we know that 

3 

0 = m*d, -1 = m*e and 0 = m*f 

This implies that 

m= 1,d=0,e=-1 andf=0 
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Theorem 4 

CONTROL' II DATA' simulates CONTROL II DATA 

Proof 

..using Theorem 1. 

By Theorem 2 on page 206, 

CONTROL(1) II DATA(i)simulates DATA1) w.r.t. <Varset (1), R(1)>, for all i 

s.t. 1 < i < n 

If we can prove that, for all k s.t. 1 < k < n 

( 	U 	Vars(CONTROL(1))) Varset 	= 0 	(viii) 
i€ Nat (k-1) 

then all the hypotheses, and therefore the conclusion of Theorem 1 will hold and 

Theorem 4 will be proven; but (viii) is true because the only control variables 

in VarSet()DATA are of class ck  and 	U 	Vars(CONTROLa)) consists 
i€ Nat(k-1) 

solely of control variables in classes c1 ck. 
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Appendix E: Propositions relating to control- 
pipelining 

The main result of this section is Theorem 12, which states that under certain conditions 

control-pipelining preserves behaviour. A key result is Lemma 35 which states 

sufficient conditions for the pipelining of each control-variable-class to be valid. Most 

of the other propositions (i.e. Theorem 7 to Theorem 11) in this section prove the 

validity of pipelining the particular control-variable-classes in the convolution and QR-

factorisation examples, assuming the well-definedness of certain computations. 

The definitions and assumptions made at the start of the previous appendices are 

assumed to hold for this one. The following ones also hold: 

Definitions 

BASE(j: 0) 	:= {p: p = Lj()} 

BASE(j : 1) 	:= {p:p*Lj(p)} 

(Consequently the definition of CONTROL( 1) on on page 198 may be rewritten: 

ln(CONTRO41)) = 0 

Out(CONTROL(1)) = {<cj, p>: p € BASE} 

Re1(CONTROL())v ' 

For allp in BASE, 

(p € BASE(j : 0)\1(<c, p>) = 0 and 

P € BASE j : 	v(<c1, p>) = 1)) 

Assumptions 

Assume that we can find disjoint sets D(j: 0)  and D(j: 1)  outside BASE and a 
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vector rc,,i with integer coefficients st., for all p in BASE, 

E BASE(1 : O)=' there exists p' in D( j: 0)  and an integer m s.t. 

p = p' - mrj 

and 

p € BASE(j: 1)  there exists p' in D(. 1)  and an integer m s.t. 

p = p' - mr 

Assume further that for all p' in D(1: 0) U D(j: 1)'  there exists M s.t. 1 <m <M 

BASE) 

Note that the set is the domain of the edge computation CONTROL(j: 1)  and is 

outside BASE, which is a base for DATA, DATA', CONTROL" and 

INTERIOR (to be defined later). 

Definitions (continued) 

Let CONTROL(. 1)  be s.t. 

In(CONTROL(.l)) 	= 0 

Out(CONTROL(1. 1)) 	= {<cj, p> : p € D(1 0) U D(. 1)1 

Rel(CONTROL(j: 1))" 

(p € D(1 O)  v(<cj, p>) =0 and 

PE D(j : 1) 	v(<cj,p>)=1) 

and CONTROL(. 2)  be s.t. 
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Ifl(CONTROL(1. 2)) 	= {<cj, p> : p € D(1 :0) U D(j: 1)) 

Out(CONTROL( : 2)) 	= {<cj, p>: p E BASE} 

Rel(CONTROL(1: 2))" < 

(p € BASE => v(<cj, p>) = v(<cj, p+rc..j>)) 

Let R-CP(1) be Id( c i} xJ3AsE and Varset....CP(1) be (Cj }X(D(j: 0) U D(j: 1)) 

CONTROL" := II i € 
( 1...nJ CONTROL(1.  1) 

CONTROL" := Ili E {1...n} CONTROL( :2) 

R 	 := IdV(CON-OL')\ 

EDGE 	CONTROL" 

INTERIOR := CONTROL" II DATA' 

V 	 := 	U VarseLCP(1) 
i€ Nat (n) 

Comment 

For a discussion of the roles of CONTROL: 1)'  CONTROL(1 : 2)' CONTROL" 

and CONTROL", see section 4.3 (starting on page 94). These computations, 

along with EDGE and INTERIOR, appear in Figure 4.11 on page 98. The 

renaming function R-CP(1) and variable set Varset_CP( 1) are used to prove that 

CONTROL(j: 1)11  CONTROL(1 :2)  implements CONTROL(1) (Lemma 35) and 

the renaming function R and the variable set V are used to prove that EDGE II 

INTERIOR implements CONTROL' II DATA' (Theorem 12). (CONTROL' 

and DATA' are defined on page 198.) 
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Assumptions (continued) 

Comment 

If the following statement holds then all the computations which appear in the 

proofs in this Appendix are well-defined. 

CONTROL", 	 CONTROL", 

CONTROL" U CONTROL", 	CONTROL" II DATA', 

INTERIOR, 	 EDGEV, 

EDGE II INTERIOR, 	 CONTROL' II DATA', 

((CONTROL" II CONTROL")\V) II DATA', 

(EDGE II INTERIOR)\V, 	 CONTROL(1.'), 

CONTROL(1. 2)' 	 (CONTROL(. 1)  II CONTROL( : 2)) 

(CONTROLç1  1)11 CONTROL(1. 2))\VarsetCP(I) 

Oli € 
I l  ... n }(C0 	0L(:l) II CONTROL(j2))) II DATA', 

((IIi € 11  1} (CONTR0L(il) II CONTROL(.2))) II DATA')\V 

and (11k € I   1} (CONTROL(I.1) II CONTROL(j:2)))\V II DATA' 

are well-defined and, 

for all k in 11 ... n),  

(CONTROL(k.1) II CONTROL(1 c2)), 

(H1 € (1 ... k-1 ) (CONTROL(1.1) II CONTROLç1 2))) 

(CONTROL.1) II CONTROL2)) II 

(i E (1 ... k-1 } (CONTROL(1.1) 11 CONTROLç12))), 
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(Iii € ij }(CONTROL(1: 1)  11 CONTROLç1:2))) II CONTROL ) , 

((0k € I , ... k- 1 	 1) II CONTROL(j:2))) II 

(CONTROL( ç 1) II CONTROL:2)))\Vk 

and ((0k € {l...k.l}(COlOI(i:l) II CONTROL(.2))) II 

((CONTROL(iç 1) II CONTROL(k2))\Vk)) 

are well-defined. 

Theorem 5 

If CONTROL" II CONTROL" simulates CONTROL' w.r.t. <Varset, R> then 

EDGE II II'TERIOR simulates CONTROL' II DATA' 

(Refer to the diagrams on page 74 and page 110.) 

from Lemma 2 on page 171. 

Lemma 35 

CONTROL( 	1) II CONTROL( : 2) simulates CONTROL( 1) w.r.t. 

<Varset_CP(1), R_CP(1)> 

(definitions at the beginning of this appendix) 
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Proof 

OUt(CONTROL(j: 1)  I CONTROL( : 2)) = {<Cj, p> Ip E BASE} 

U {<Cj,>IED(j :Ø)UD(j: 1 )} 

Ifl(CONTROL(j : 1)11  CONTROL(j: 2)) = 0 
Since OUt(CONTROL(: 1)) = Ifl(CONTROL(j: 2)) 

and Ifl(CONTROL(j: 1)) = 0 

Rel(CONTROL(1. 1)  II CONTROL(1 : 

p  D(j : 0) 	v(czc1,p>)=O and 

p€ D(j : 1) 	v(<cj,p>)=l)and 

p € BASE => v(<cj, p>) = v(<c 1 , P+Fj>) 	 (ix) 

We easily have the results 

OUt((CONTROL(j: 1) 11 CONTROL(j: 2))\V&Set_CP()) = Out(CONTROL()) 

Ifl((CONTROL(j: 1)11  CONTROL(j: 2))\V8ISet_CP()) = ln(CONTROL( 1)) 

Similarly to what was done on page 218, we can use Lemma 33 and Lemma 34 

to prove that 

Rel((CONTROL(1. 1)  11 CONTROL(j: 

Rel(CONTROL(1))v 

all we need to do is prove that 

Rel(CONTROL(1. 1)  II CONTROL(j : 

= Rel(CONTROL(I))vI{ <C..1 I P>: p € BASE} 

Now, assuming the L.H.S. of this statement, we need to prove the R. H. S., i.e. 

that, for all p in BASE, 

p€ BASE(j:0) 	v(<cj,p>)=O 	 (x) 
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and 

p € BASE(j: 1) 	v(<cj, p>) = 1 
	

(xi) 

Let us consider (x). It is sufficient to prove that, for all p' in D (j : 	and all 

integral m, 

p' - m*r.,1 j € BASE => 	v(<cj, p' - m*r >) =0 (we may deduce 

this from the assumptions starting on page 221) 

Proof of (x) 

...by induction on m, the inductive hypothesis being, "p' - m*r c j € BASE 

v(<cj, p(ml)*rc j>) = 0" 

Base case: m=1 

If p' - mr € BASE, then we know, by (ix), that 

v(<cj, p'-r. *j>)= v(<cj, p5 ) 

but 

v(czcj,p'>) 	= 0 

Inductive case: m> 1 

If p' m*r 1 € BASE then 

v(<cj, p m*rc j>)= v(<cj, pm*rc.j+rc j>)=v(<cj, p '-(rn—i )* r i>) 

but m must be less that M, so rn-i must be, sop - (m-1)r € BASE, by the last 

of the assumptions starting on page 221 So, by the inductive hypothesis, 

v(<cj, p(m_l)*rc .,ij>)= 0 

(xi) can be proved in an exactly parallel manner. 

Comment 
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Theorem 5, Theorem 6 and Theorem 8 are very similar and assert the validity 

of the pipelining for the control dependencies in the convolution example. 

Theorem 9, Theorem 10 and Theorem 11 do the same for the QR-factorisation 

example. All six theorems are simple applications of Lemma 35. 

Theorem 6 

(As well as defining certain computations, the statement of this theorem 

contains a list of well-definedness conditions.) 

If BASE(coNv), CONTROL(cONV)(l: 1)'  CONTROL(cONV)(l:  2)  and 

CONTROL(CONV)(l) are defined as follows: 

BASE(COJ) 	i > 0, j 2! 0 andj < 3-i} 

In(CONTROL(CONV)(l)) 	:= 0 

Out(CONTROL(coNvxl)) := {<c, p>: p E BASE(CONV)} 

Rel(CONTROL(CO ,)(l))v 

(pE I 
[O
il : o <  i <  3) =::, v(<cy, p>) = 0 

and 

PE (BASE(coNv){ [Oil :0<i<3})v(<cyP>)l) 

Ifl(CONTROL(cONy)(l : l)) := 0 

OUt(CONTROL(CONV)(1: 1)) := {<c, 	: 0<j <3} 
Li] 
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Re1(CONTROL(co)(1: 1)) 

(p € I[] , [ 1] [_1] } 
	v(<c, p>) = 1 

and 

p € { 111 } 	v(<c,, p>) =0) 

In(CONTROL(CONV)(l 2)) := 

{<c. p + [_1]> : p € BASE(co )} - {<c p> p € BASE(CONV)} 

Out(CONTROL(coNv)(l 2)) := {<c. p> : p € BASE(CONV)} 

Re1(CONTROL(CO T)(1 2))V 

p € BASE(CONV) v(<c, p>) = v(<c, p + [_i] >)  

and if 

CONTROL(COj)(1: 1)' 

CONTROL(COT)(l: 2)' 

(CONTROL(coNV)(l: 1)  11 C0N"110L(coNv)(1: 2)) 

and 

(CONTROL(coNV)(l: 1)  11 C0NTR0L(coNv)(1 :  l))WSet_CP(CONV)(1) 

are well-defined, where Varset_CP( CO )(l) is {Cy }X(t)(coNv)(1 :0) U D(coNv)(1 

1)) and where 

1 011D(CONV)(1: 0) •= 	
- 

r_11 r11 
D(CO)(1: 1) := 	[i] '  L2]' [_i] 
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then 

CONTROL(coNv)(l. 1)  11 CONTROL(CONV)(l: 2) 

simulates CONTROL(co )(l) 

w  M— 

.by Lemma 35 with 

 r(coNv)1) 1 011 
We can see from the definitions of CONTROL(CONV)(l: 1)  and 

CONTROL(coNv)(l. 2)  that 

BASE(CONV)(l:O)= I 	 :O<i<3} 

BASE(coNy)(l: 1) = BASE(CONV) - BASE(co,,)(l :0) 

These two sets are disjoint, and cover BASE( CONV). We just need to prove the 

assumptions starting on page 221 for BASE(j: 0)  equal to BASE(coNv)( : 0) 

etc. 

p € BASE(co)(l :0) 

==:> there exists p' € D(coNv)(1 :0) and integer m s.t. p = p' - 

m*r(co ,) l 	(xii) 

p € BASE(coNv)(l. 1) 

= there exists p' € D(co)(l. 1) and integer m s.t. p = p' - 

m*r(co ) l  

(xiii) 
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and 

for all p' in BASE(coNv)(l :0) U BASE(cONy)(l: ),there exists M' s.t. 

1 < m' < M' p' - m *r(co)l  E BASE(coNv) 	(xiv) 

Proof of (xii) 

if p= r1 then let p'= [Hi and m = i + 1. If p E BASE( CO )( 1 .0)  then j = 

0 and SO p' € BASE(coNv)(l 0) 

Proof of (xiii) 

If p = 	then let P' = 	and m = i + 1. If p € BASE(coj)(l. 1)  then 1 < 
L(J)] 	 Li] 

j <3 from the definition of BASE( CONV) on page 228 and so p' E BASE( coNv) 

(1:1) 

Proof of (xiv) 

p' = 
[ j]

where0 <j 3 
J 

etM'=4.J. Then for all m,1 ~5m'<M'P'm'*[ 1]€BASE coNv) . 

Theorem 7 

Comment 

Theorem 7 is essentially the same as Theorem 6. It states, that the pipelining of 

cy  in the convolution example is valid. 

Let CONTROL(coX2: 1)' CONTR04c0Nv)(2 :  2) and CONTROL(co )(2) be 
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defined as CONTROL(co)(l. 1)' CONTROL(cOj)(l: 2) and 

CONTROL(co ,)(l) respectively, but with c, replaced by C,A  and r(CO1qV)1 

replaced by r(coNv)2  in the definitions. 

If 

CONTROL(CO)(2: 1)' 

CONTROL(COT)(2: 2)' 

(CONTROL(CONVX2: 1) II CONTROL(COi)(2: 2)) 

and 

(CONTROL(cONv)(2: 1)  II CONTROL( CO T)(2: 1))\Varset_CP(coNv)(2) 

are well-defined, where Varset_CP(CONV)(2)is{ x}x(D(coNv)(2. 0) U D(coNv)(2 

1)) and where 

0) 	1-011 
D(cONV)(2:1) := { [_1] , [_i] , 	 ] 

then 

CONTROL(COi)(2: 1) 11 CONTROL(cONy)(2: 2) 

simulates CONTROL(co )(2) 

Proof 

Replace c by cx  in proof of Theorem 6, and the first occurrence of i in each 

subscript by 2. 

Theorem S 

Comment 
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Theorem 8 is similar as Theorem 6. It states that the pipelining of e w  in the 

convolution example is valid. 

Let CONTROL(c0Nv)(3. 1)' C'TI'R°4CONV)(3:  2)  and CONTROL(CONV)(3) be 

defined as CONTROL(coNy)(l. 1)'  CONTROL(coNv)(1. 2) and 

CONTROL(C0Nv)(1) respectively, but with c3, replaced by c r(coNv)1 

replaced by r(co )3 in the definitions and s1 replaced by I(s))]
t (i.e. all I(tj  

column vectors inverted). 

If 

CONTROL(coNv)(3. 1)' 

CONTROL(cONV)(3: 2)' 

(CONTROL(coNV)(3. 1) 11 C 	°C0NV)(3: 2)) 

and 

(CONTROL(coNv)(3. 1)  II CONTROL(CoNv)(3. l))\Varset_CP(CONV)(3) 

are well-defined, where Varset_CP( CONV)(3) is {cw}X(D(coNy)(3 : 0) U 

D(Co,)(3. 1)) and where 

1-011D(CONV)(3: 0) 
  

r 1 
D(CONV)(3: 1) := { [ 1 	2  

[—ij [1 
then 

CONTROL(coNv)(3. 1)  II CONTROL(CONV)(3. 2) 

simulates CONTROL(cQ )(2) 

CONTROL(coNv)(3. 1)  11 C0'R0!(coNv)(3: 2) 
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simulates CONTROL(cONV)(3) 

Proof 

Replace c, by ew  and [] by  [] (i.e. invert all column vectors) in proof of 

Theorem 6, and the first occurrence of 1 in each subscript by 3. 

Theorem 9 

Comment 

Theorem 9 states that the pipelining of cont in the QR-factorisation example is 

valid. Its statement and proof follow the pattern for Theorem 6, with the minor 

difference that D(QR)(1)  is defined explicitly (on page 234) whereas D(CONV)(1) 

is not. It can therefore be clearly seen how D(QR)(1 : 0) and D(QR)(1 	1) are 

constructed (page 234), whereas D(co)(l : 0) and D(CO)(l: 1) are seemingly 

plucked from nowhere (page 229). 

Let D(QR)(1), D(QR)(1 0)'  D(QR)(1 1)' BASE(QR)(l : 0)' BASE(QR)(l 	: 	1)' 

CONTROL(QR)(l: 1)'  C 4 	2) and CONTROL(QR)(l) 

be defined as follows: 

1-011

o
D(QR)(1) := {(p+ 	): p € BASE(QR)} - BASE(QR) 

1 

D(QR)(1 0) := D(QR)(1) fl {: i = M} 

k 
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[ii 
D(QR)(1 1) := D(QR)(1) n { j : i = M} 

LkJ 

[ii 
BASE(QR)(l:O) 	BASE(QR)fl{ 	:i=M} 

Lk] 

1 

BASE(QR)(l: 1) 	BASE(QR) ('i { j : i M} 

k 

In(CONTROL(QR)(l)) 	0 
Out(CONTROL(QR)(l)) 	{<cont, p>: p € BASE(QR)} 

Rel(CONTROL(QR)(l))v 

(p € BASE(QR)(l 0) => v(<cont, p>) =0 

p € BASE(QR)(l: 1)  v(<cont, p>) = 1) 

Ifl(CONTROL(QR)(l: 1)) 	:= 

OUt(CONTROL(Qg)(1: 1)) 	{<cont, p> p E D(QR)(1)} 

Rel(CONTROL(QR)(l. l))V 

(p € D(QR)(1 0) v(<cont, p>) = 1 

and 

p € D(QR)(1: 1) 	v(<cont, p>) =0) 

In(CONTROL(QR)(l 2)) 	: {<cont, p> : p € D(QR)(1)} 

Out(CONTROL(QR)(l 2)) : {<cont, p> p € BASE( QR)} 

Rel(CONTROL(QR)(l 2))V 



8 	Appendices 	 236 

0 
p € BASE(QR) => v(<cont, p>) = v(<cont, p + —1>) 

0 

and if 

CONTROL(QR)(1. 1)' 

CONTROL(QR)(l. 2)' 

(CONTROL(QR)(l. 1)  H C 	°QR)(1: 2)) 

and 

(CONTROL(QR)( 1: 1) II CONTROL( QR)( 1: l))\V etCP(QR)( 1) 

are well-defined, where Varset_CP(QR)( 1) is { cont } x(D(QR)( 1)) 

then 

CONTROL(QR)(l: 1)  11 CO "°'-'(QR)(1: 2) 

simulates CONTROL(QR) 

.using Lemma 35 with 

r 	 := [_01 	(= r(QR)1) 
0 

We just need to prove that 

p€ BASE(QR)(l:O) 

= there exists p' E D(QR)(1 	and integer m s.t. p = p' - m*r( QR 1 (xv) 
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p € BASE(QR)(l. 1) 

= there exists p' € D(QR)(1 :  1) and integer m s.t. p = p' - m*r( QR)l (xvi) 

for all p'  in BASE(QR)(1 ()) u BASE(QR)(l. 1)'  there exists M s.t. 

1 < m < M p' - m*r(QR)1 € BASE(QR) 	 (xvii) 

Note that 

1 

D(QR)(1) 	{: AE {1...M-1},j € {k-1 ... M-1J and i€ {k+1 ... M}} 

k 

1 

n { j :k 	{1...M-1},j 	{k ... M}ori 	{k+1 ... M}} 

k 

1 

= { j :k€ {1 ... M-1},j=k-1 and i€ {k+1 ... M}} 

k 

Proof of (xv) 

i 	 i 
lip = j then let p' equal k - 1 and m equal j-k+1. 

k 	 k 

If 

p € D(QR)(1 0) then i = M and so p' € D(QR)(1 :0) 

Proof of (xvi) 

lip =then let p' equal k - 1 and m equal j-k+1. 

k 	 k 

If 
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p  D(QR)(1: l)  then i*M and sop'€ D(QR)(1:1) 

Proof of (xiv) 

= 

 [

1 

k —i 1 , where k€ {1 ... M-1} and i€ {k+1 ... MI. 

k 

0 
Let M' = M-k+ i. Then for all m', 1 <m <M', p' - m'* —1 € BASE( QR) 

0 

Theorem 10 

Comment 

Theorem 10 is similar as Theorem 9. It states that the pipelining of oy in the QR-

factorisation example is valid. 

Let D(QR)(2), D(QR)(2 0)'  D(QR)(2:  1)' BASE(QR)(2. 0)'  BASE(QR)(2  

CONTROL(QR)(2: 1)'  CONTROL(QR)(2:  2)  and CONTROkQR)(2) 

be defined as follows: 

i 
D(QR)(2) := {(p+ ) : p E BASE(QR)} - BASE(QR) 1001 

1 

D(QR)(2) = { 	: k € { 1...M-1 }, j € {k ... M} and i € {k+2 ... M+1 }} 
k 
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1 

{ j :k 4t {1...M-1},j 	{k ... M}ori 	{k+1 ... M}} 

k 

1 
= { j :kE{1 ... M-1},jE{k ... M}andiM+1} 

k 

1 

D(QR)(2: 0) := D(QR)(2) (•i { 	: j =k) 

k 

1 

D(QR)(2 :  1) := D(QR)(2) (•i { j : j * k} 

k 

1 

BASE(QR)(2 0) 	:= BASE(QR) n { j j = k} 

k 

1 

BASE(QR)(2: 1) 	:= BASE(QR) n { j j:* k} 

k 

In(CONTROL(QR)(2)) 	:= 0 

Out(CONTROL(QR)(2)) 	:= {<ox, p> p € BASE(Qg)} 

Re1(CONTROL(Q )(2))v 

(p € BASE(QR)(2: 0) 	v(<ox, p>) =0 

and 

p € BASE(QR)(2: 1) 	v(<ox, p>) = 1) 

Ifl(CONTROL(QR)(2. 1)) 	0 

OUt(CONTROL(QR)(2. 1)) := (<ox, p : p € D(QR)(2)1 

Rel(CONTRO4QR)(2.1)) V 
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(p E D(QR)(2 0) = v(<ox, p>) = 1 

and 

p € D(QR)(2: 1) 	=' v(<ox, p>) =0) 

In(CONTROL(QR)(2: 2)) 	{<ox, p> : p € D(QR)(2)} 

Out(CONTROL(QR)(2 : 2)) 	(<ox, p> : p E BASE(QR)I 

Rel(CONTROL(QR)(2. 2))V 

1 
p € BASE(QR) v(<ox, p>) = v(<ox, p + 0>) 

0 

and if 

CONTROL(QR)(2: 1)' 

CONTROL(QR)(2: 2)' 

(CONTROL(QR)(2: 1)  II CONTROL(QR)(2: 2)) 

and 

(CONTROL(QR)(2: 1) 11 C0NTROL(QR)(2: 1))\b'81Set_CP(QRX2) 

are well-defined, where Varset_CP( QR)(2) is { OX) x(D(QR)(2)) 

then 

CONTROL(QR)(2: j) - 11 CONTROL(QR)(2: 2) 

simulates CONTROL(QR) 
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We parallel the proof of Theorem 9 and use Lemma 35 with 

r 	= 
1001

r(QR)2) 
 

We just need to prove that 

p E BASE(QR)(2 :0) 

= there exists p' E D(QR)(2: and integer m s.t. p = p' - m*r( QR),2(xvjn) 

p € BASE(QR)(2: 1) 

there exists p' € D(QR)(2: 1) and integer m s.t. p = p' - m*r( QR)( 2 (xix) 

for allp' in BASE( QR)(2 .0)0  BASE,QR)(2. i  there exists M s.t. 

1 <rn < M p' - m*r(Qg)2 € BASE(QR) 	 (xx) 

Proof of (xv) 

i 	r
+ 1l

If p = 	then let p' equal j 	and m equal M+1-i. 

k 	 k 

ITI 

p  D(QR)(2:) then j =k and sop' € D(QR)(2:0) 

Proof of (xvi) 

lip = 	then let p' equal k - i and m equal j-k-i-1. 

k 	 k 

If 

p € D(QR)(2 :  1) then j * k and SO p' € D(QR)(2: 1) 
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Proof of (xiv) 

p' = k-1 ,wherekE {1 ... M-1}andj€ {k ... MI. 

Lk 

1 
Let M' = M-k. Then for all m', 1< m <M',p'm'*0 € BASE(QR) 

0 

Theorem 11 

Comment 

Theorem 11 is similar as Theorem 10. It states that the pipelining of oy in the 

QR-factorisation example is valid. 

Let r(QR,3 D(QR)(3), D(QR)(3 : Ø) D(QR)(3:  1)' BASE(QR)(3 : 0)' BASE(QR)(3 

1)' CONTROL(QR)(3.  1)'  CONTROL(QR)(3  :2)  and CONTROL( QR)(3) be defined 

as their counterparts in Theorem 10, but with "oy" replacing "ox", and the first 

2 in the subscripts replaced by a 3. 

If 

CONTROL(QR)(3. 1)' 

CONTROL(QR)(3. 2)' 

(CONTROL(QR)(3. 1)11 CONTROL(QR)(3; 2)) 

and 

(CONTROL(QR)(3: 1)" CONThO'(QR)(3 :  1))\1t_G'(QR)(3) 

are well-defined, where Varset_CP( QR)(3) is {oy}x(D( QR)(3)) 

then 
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CONTROkQR)(3: 1) 11 CONTROL(QR)(3. 2) 

simulates CONTROL(QR)(3) 

As for Theorem 10, with "oy" replacing "ox" and the first 2 in the subscripts 

replaced by a 3. 

Theorem 12 

EDGE II INTERIOR simulates CONTROL' II DATA' 

Proof 

Consider the following three claims: 

We know fromLemma 35 that, for all i in { 1...n), CONTROL (j: 1)  11 

CONTROL(j: 2)  simulates CONTROL(1)  w.r.t. <VarsetCP (1), R—CP(1)>. By 

Theorem 2, the required result follows from the following three: 

11i€ 11 j11 (CONTROL(j: 1)  II CONTROL(j: 2)) 	= 

CONTROL" II CONTROL" 	(xxi) 

11iE tl ... n}(COITh04i:l)  II CONTROL(j :2)) simulates 

11iE (i j }CONTROL(1) w.r.t.<V, R> 

V n Vars(DATA') = 0 	 (xxiii) 

These statements together imply Theorem 12. To see this, the following 

reasoning may be used: 
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(xxi) and (xxii) imply that CONTROL" II CONTROL" simulates Ili € 

{!J) CONTROL(I) w.r.t. <V, R>; now 

111 € {1}CONTROL() = CONTROL' 

so CONTROL" II CONTROL" implements (CONTROL" II CONTROL") II 

DATA' by Lemma 22 on page 184, if (xxiii) holds. Now 

CONTROL" 	= EDGE 

CONTROL" II DATA' = INTERIOR 

so, by Lemma 2 on page 171, 

(CONTROL" II CONTROL") II DATA' = EDGE II INTERIOR 

and so the result follows. It is therefore sufficient to prove (xxi), (xxii) and 

(xxiii) 

Proof of (xxi) 

The R.H.S. is well-defined and CONTROL (j: 1)  II CONTROL(.2)  is well-

defined for all i in { 1...n}. It is trivial to prove that In(L.H.S.) = In(R.H.S.), 

Out(L.H.S.) = Out(R.H.S.) and Rel(L.H.S.)v ' Rel(R.H.S.)v so the L.H.S. is 

well-defined and L.H.S. = R.H.S. 

Proof of (xxii) 

We will prove, by induction on k, that, for all kin {1...n}, 

Ili E {l...k}(C"O'(i:l) II CONTROL(j:2)) simulates 

'Ii € fl j}CONTROL(j) 

w.r.t.<Vk, Idv(II1(j E (1...k})CONTROL(i)) - Vik> where 

Vk = 	U Varset_CP(1) 
iE Nat (k) 
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(The statement after "for all" reduces to (xxii) when k = n, since R and V are 

defined as at the beginning of this appendix and CONTROL' is defined as on 

page 198.) The inductive hypothesis is: 

'Ii € 1j1} (CONTROL(j: 1) II CONTROL(j:2)) simulates 

'lie { 1 ... - 1JCONTROL0) 

w.r.t.<Vk..l, IdVj.(j € (1 ... k-1})CON1'ROLi(i)) - V.'k-1>" 

Base case: k=l 

Trivial. 

Inductive case 

Assume the unquantified statement of the theorem is true for k-l. 

Let B' equal "i E {l ... kl}(CONTROLCi:l)  II CONTROL(j :2)) 

and let B equal "i € {lk..l}CONTROL(j) 

then, by the inductive hypothesis, B' simulates B 

w.r.t. <Vk.1, IdV(j € { 1...k-1 })CONThOL(i)) - Vik1> 

Now 

VarsetCP) n Vars(B') 	= 0 
since the control variable-classes are all distinct 

and 

Vk Vars(CONTROL)) 	= 0 
since (D(.0)uD (1 . l))fl BASE =O 

and, by Lemma 35 on page 225, 

(CONTROL: 1) II CONTROL2)) II B' simulates CONTROL(k) II B' 

w.r.t. <Varset CP), R_CP))> 

so by Lemma 22 on page 184 with 
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R2 equal to IdVa ') u Vars(CONTROL(k)) 

B equal to B' 

A equal to CONTROL(k) 

A' equal to (CONTROL(l) II CONTROL.2)) 

R 1  equal to R—CP) 

and 

Varset equal to VarseLCP) 

CONTROL(k) II B' simulates CONTROL(k) II B 

w.r.t. 

<Vk, Id Vars(B) u Vars(CONTROL(k))> 

so, by Lemma 27 and Lemma 3, 

Ili € {l...k}(CON'T'ROL(i : l) II CONTROL(j:2)) simulates 

Ili € { 1j}CONTROL(1) 

w.r.t. 

<V, Ids() u Vars(CONTROL(k)) - V> 

Proof of (xxiii) 

This follows from the fact that all the variables of DATA' are within BASE and 

all the variables in V are outside it. 
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Appendix F: Propositions relating to scheduling and 
allocation 

There are only two propositions in this section. Theorem 13 states that scheduling-and-

allocation is behaviour-preserving. Theorem 14 implies that the chosen scheduling 

matrix [-1, 1, 2] for the QR-factorisation example is in some sense minimal (see 

subsection 5.2.1 on page 135). 

The definitions and assumptions made at the start of the previous appendices are 

assumed to hold for this one. The following ones also hold: 

Assumptions 

There exists an invertible affine function Im which satisfies the following 

conditions: 

The uniform dependencies of DATA are time-consistent with Im 

The vectors r, where 1 ~ i ~ n, are time-consistent with Im 

The vectors 	where 1 <i < n, are time-consistent with Im 

Definitions 

Depvecs: C -4  (the set of dependency vectors of C) 

RENAME: <Varclass, p> - <Varciass, Iin(p)> 

EDGE' EDGE 0 RENAMV -J 
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INTERIOR' 	INTERIOR ® RENAME1 Vars(INTERJOR) 

Theorem 13 

EDGE' II INTERIOR' is well-defined and simulates EDGE II INTERIOR 

Proof 

_.direct from Lemma 21. 

Theorem 14 

(Recall from Chapter 4 that Imt(p):=Im(p)'Li and  Imt(p) = A.p + br.) 

IfAt = [a, 13, y], a, 13  and yare integral and 

-1 1 0 	0 
Depvecs(DATA') 	= { 0 , 101, 0 , -1 } 

-1 0 -1 0 

then IaI2t 1, 1131>  1 and 10>2. 

Proof 

All the vectors in Depvecs(DATA') must be time-consistent with Im 	(see 

section 3.4 (starting on page 65)) so a <0, 13>0, y > O and a + y> 0. Therefore 

a<1,13;>1,y>1. But y>-a,>-lsoy,>-2. 
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Appendix G: Propositions relating to the whole 
design process 

The main propositions in this section are Theorem 15, Theorem 20, andTheorem 27, 

which are the three conditions the output design must satisfy. They are proved using the 

subsidiary results of this section and the main results of the previous three sections. The 

diagram on page 110 may serve as a reminder of the roles of the various computations 

mentioned in this section. 

The definitions and assumptions made at the start of the previous appendices are 

assumed to hold for this one. The following ones also hold: 

Definitions 

Let 	be defined as follows: 

In(M.) 	 = {<cj, p - p + r.>} 

Out(M) 	 = { <Cj, p - P>) 

Re1(M1)v 

(p € BASE => v(<cj, p - p>) = v(<cj, p - p + r>)) 

ALO 	:= CONTROL II DATA 

Varclasses(C) := {varc: there exists p s.t. <varc, p> € C} 

DTOTAL 	:= BASE U 	U 	i:O)-(kl)) 
iE Nat (n) 

CONTROL(jl),) is s.t. 

In(CONTROL(.l)()) 	= 0 
Out(CONTROL(. 1)()) = { < Cj, p>1 

	

Re1(CONTROL(j:1),))v 	( pE D(j:0) =' v(<cj, p>) =0 and 
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pE D(j: 1) 	v(<cj, p>) = 1) 

if p € D(j:0)UD(j:l) 

and is the null computation if p € D.iy&j - Dç1:0)UD(j. 1) 

CONTROL2)(p) is s.t. 

Ifl(CONTROL(j:2)(p)) 	= v(<cj, p>) 

OUt(CONTROL(i:2)(p)) = {<Cj, p>} 

Re1(CONTROL(j:2),))v 	( pE D(j:0) 	v(<cj, p>) =0 and 

p€ D(j: l)  => v(<c1 , p>) = v(<c1 , 

p+rc j>)) 

ifp€ BASE 

and is the null computation if p € DyA! - BASE 

CONTROL ,,, (p) 	Uj € Ilji)CONTROL(j:2)(p) 

EDGE(p) 	:= II € l...n}CONT1OL(i:l)(p) 

DATA' is defined to be s.t. 

DATA' = "p€ BASEDATA'(p) and 

DATA' ( ,)  is null when p € DTOTAL - BASE 

INTERIOR(1,)  = CONTROL",) II DATA' 

Let the interior of an embedded computation Cj, be 

Dom(Cj) - Edge(CI) 

"the interior of Cl" may be written "Int(Cj)". 
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Assumptions 

CONTROL(j.2)(p) II DATA'(p) is well-defined for 811 pmDTOTAL and 

pE DTOTAL(C 	OL(i :2)(p) U DATA'(p)) is well-defined; 

EDGE(p) is well-defined for all p. and 

"pE DTOTALGE(P) is well-defined; 

EDGE() II 1NTERIOR() is well-defined and 

"pe DTOTAL( 	1p)ll INTERIOR()) is well-defined; 

CONTROL" is well-defined and 

"pE DiTOTAL CONTROL"() is well-defined; 

'Ii € (l ... n}(Mc ii) is well-defined; 

(NE 11 ... n)(Mc'-0  II DATA—M()) is well-defined. 

Theorem 15 

EDGE' II INTERIOR' simulates ALG 

...follows directly from Theorem 13 on page 248, Theorem 12 on page 243, 

Theorem 4 on page 220 and Lemma 27 on page 194. 

Theorem 16 

Recall the definition of "Edge" on page 52. 

Let R(<var, p>) equal <var, 1(p)> where I is invertible and R is defined, say, 
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over Varclasses x D. Let computation C have domain D; then 

Edge(C ® R)=Ran(II) 

<var, p'> E 'Out(C ® R) <> 	<var, 1 1 (p')> € Out(C) 

so 

p' € Edge(C ® R) ,:* 	for all var in Varciasses <var, p5 it Out(C ® R) 

< 	for all var in Varclasses <var, F 1 (p')> 	Out(C) 

r(p')E Edge(C) 

P 9  € Ran(IIiJge(Q) 

Theorem 17 

If (IIi € I 1 )C 1)is well-defined, then 

Edge(II € {l ... }C1) 	= Dom(II € 11}Cj)- 	U 	Int(Cj) 
i€ Nat (n) 

Proof 

p € Edge(111 € { 1 ... n }CI) 

p € Dom(II € (1 ... n}Ci) and, for all var, <var, p> 	OUtOli € { i•••1Ci) 

< p € Dom(II 1  {l  )C1) and, for all var, 1<i<n=<var,p>  4t Out(C) 

by definition of composition 

p € Dom(111 € I, ... lq-)  and 1 <i < n =>p 4t Int(Cj) 

by definition of "Int" on page 250 

p € Dom(111 € 11 ... n jCj)  and p 	U 	Int(C) 
1€ Nat (n) 

p € Dom(II1, {l ... n}Ci> 	U 	Int(C1) 
iE Nat (n) 
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Theorem 18 

DATA 1  is a recurrence over BASE. 

Proof 

DATA' = DATA(S); from the definition of DATA(k) on page 197, it is sufficient 

to prove that DATA_M() is of the right form to be a mould for a recurrence 

over BASE. It is sufficient to prove therefore that for all k in { 1.. .n } 

DATA—M(k) is of the right form to be a mould for a recurrence over BASE. We 

will prove this by induction on k with the inductive hypothesis, "DATA_M) 

is of the right form to be a mould for a recurrence over BASE". 

Base case 

DATA_M(l) is of the required form because DATA is a recurrence over BASE. 

Inductive case 

Out(DATA_M)) = 

Out(DATA_M 1) (V RENAME 1)) u Out(P1PE_M 1)) 

= (ran(RENAME))I 	ATAM'(k1))) U Out(P1PE_M1)) 

by definition of renaming 

= Out(DATA_M1)) u {<zk,  IdBE>} 

by definition of RENAMEII and PIPE—M1) 

(Varciasses U {Zk})X{IdBE} 

by the inductive hypothesis 

In(DATA_M)) 	= 
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In(DATAjvI1) ® RENAME(l4)) U In(PIPE M1)) - Out(DATA_M)) 

= (In(DATA_M(1)) - {< ak..1, k.1>}) 

U { <Zk, IdBASE>, <Ck, IdBASE>,  <Zk, 	p+rk>, <Ck, IdBASE> I 

- {<zk, IdBASE>} 

by definition of RENAMEj), PIPE-M1) and DATA-M(k) 

= (Jn(DATA_M1)) - {<ak..1, k-1>}) 

U {<c, IdBASE>, <Zk, 	p+rk>, <Ck, IdBASE>} 

which is of the required form, since In(DATA_Ml)) is a set of the required 

form (by the inductive hypothesis). 

Theorem 19 

(Recall the definition of "edge-computation" from page 53.) 

EDGE is an edge-computation of INTERIOR. 

Proof 

Since Vars(EDGE) = 	U Vars(CONTROL(1.1)), it is sufficient to prove 
iE Nat (n) 

that 

1 <i < n 	Dom(CONTROL(1.1)) Edge(INTERIOR) 

by Theorem 17 on page 252 

Edge(INFERIOR) = 

Dom(INTERIOR) - (Int(DATA') U ( U Int(CONTROL(j2)))) 
i€ Nat (n) 

Now, for all i, 



8 	Appendices 	 255 

Iflt(CONTROL(1.2)) = BASE 

Also, since DATA) is a recurrence over BASE, Int(DATA)) 9 BASE, since 

Out(DATA_M)) c Varciasses u {zk}x{IdBASE} 

(so Out(DATA(k)) Varciasses U {zk}X{BASE}) 

so 

Int(DATA') U ( U Iflt(CONTROL(1.2))) = BASE 
iE Nat (n) 

and 

Edge(INTERIOR) = Dom(INTERIOR) - BASE 

Dom(CONTROL(j: 1)) 	= D(j:0)  U D(j: 1)  

Dom(CONTROL(j:2)) 

Dom(INTERIOR) 

so it is s.t.p. that for all i, 

Dom(CONTROL(j: 1)) ( BASE = 0 
but D(j:0)  fl BASE = D(,: 1)  ( BASE = 0 
Dom(CONTROL(j:1)) fl BASE 

= (D(j: 0)  U D(j:l)) fl BASE 

=0 

Theorem 20 

EDGE' is an edge-computation of INFERIOR'. 

INTERIOR' = INTERIOR ® RENAME 

EDGE' 	= EDGE 0 RENAME 

so, 	for 	all 	i, 
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and Theorem 20 is equivalent to saying that, 

for all v, 

v € Vars(EDGE') => v = <var, p for some p in Edge(IINTERIOR') 

Now 

Vars(EDGE') = RENAMElV& lyJE) 

and byTheorem l6on page 25l 

Edge(INTERIOR') = Ran(ImIj e pjo )) 

so it is s.t.p. that EDGE is an edge-computation of INTERIOR for, if it is, then 

v € Vars(EDGE') => v = <var, Im(p)> and p € Vars(EDGE) 

v = <var, Im(p)> and p € Edge(INTERIOR) 

v = <var, p5 and p' € Edge(INTERTOR') 

so the result follows immediately from Theorem 19. 

Theorem 21 

If C is a UR and Vars(C) = dom(RENAME) then C 0 RENAME is a UR. 

Proof 

C 	= Hp€  BASE(M ® RENAME(p)) 

where M is s.t. 

In(M) 	= {<vn1, >: 1 < i < n} 

and 

Out(M) 	Q Varclasses X {IdBASE} 

and 

RENAME( ,)(<vc, fun>)=(<vc, fun(p)>) for all <vc, fun> in Vars(M) 

where for all relevant i, is uniform (Ai : p —* p+rj), say. So 

C ® RENAME=(IIP€BAsE(M ® RENAME()))) ® RENAME 
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= llp€ BASE((M ® 

RENAME(p)) ® RENAMEIV a  ® 

by Lemma 21 on page 182 

= Ilp€ BASE(M® 

(RENAMEI8ryj ® RJv1E*(p))NAME(p))) 

by Lemma 26 on page 193 

We want to show that this is equal to 

Up'€BASE'(M ® RENAME'(p )) 

(where RENAME' ( ,')(<vc, fun>) = (<vc, fun(p)>) for all <vc, fun> in 

Vars(M')) for some suitable mould, M', and base, BASE'. Assume that 

A: p - p+r 

and let A' be s.t. 

A': p' —> p' + Ax 

(recalling from page 105 and page 68 that Im : p — A.p + b) 

Then let M' equal M ® RENAME' where 

RENAME' (<vn, A>)=<vn, A'>'for all <vn, A> in Vars(M) 

Claim 

M ® (RENAMEIVa(M ® p,JJs1(p))'RENAME(p)) 

= M' ® RENAME','), where p' = Iin(p) 

Proof of claim 

M' ®RENAME',') 

= M ® RENAME' ® RENAME'(1,') 

= M ® (RENAME'(p')Iv®')RENAME') 

by Lemma 26 on page 193 

so it is sufficient to prove that 

RENAME1VaM ® PAME(p))NAME(p) 
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= RENAME' (p')I Vars(M ® RENAME') -RENAME'  

RENAMEIV(M ® 	 4>) 

= RENAME(<vn, A(p)>) 

by definition of RENAME() 

= <vn, Im(i(p))> 

by definition of RENAME 

= <vii, A.(i(p)) + b> 

by definition of Im 

= <vii, A.p + A.ri- b> 

RENA E' p ')I Vars(M ® p 	).RENAME(<Vn, A>) 

= RENAME'()')(<vn, p —3 p + Ar>) 

by definition of RENAME' 

= <vn,p'+A.r> 

by definition of RENAME() 

= <vn, A.p + b + A.r> 

 

 

The R.H.S.s of (xxvii) and (xxviii) are equal and so the claim has been proved. 

Let BASE' equal {p' p' = Im(p) for some p in BASE} and M' be as in the 

claim, then the theorem follows directly. 

Ii11i$rsl 

If, for all j and k, Out(Bj,k) 9 C, then 

U (U k(Bj- UOut(Bj)) - C 	U (U In(Bj)) - C 
k kEK jEJ 	 EK j€J  

Proof 

Easy. 
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Lemma 37 

If 11j E j  Pjk  is well-defined for all k in K and IIk E KPjJC  is well-defined for allj in 

J and IIj€J(1IkEK PJ is well-defined 

then 1Ik€K(0J€Jj.k) is well-defined and equals Ilj E j(IIkE KPj). 

Proof 

That Out(IIk€ K(IIjE JPjJJ) = Out(II € J(IIke K P)) is easily proved. 

	

1 0'k€ K( 11j€ JP,k)) = 	U In(II 1P) - Out(IIk€ K(0j€ JP3,k)) 
k E K 

= U (U '(.&- U Out(P,j)) - Out(IIk€K(IIjEJPj,k)) 
kEK jEJ 	j€i 

by definition of composition 

	

= 	U (U In(PJ,k)) - Out(IIkEK(IIjEJPj,k)) 
keK jEJ 

by Lemma 36 

= U ( U In(PJ,k)) - Out(IIj€J(IIkEKPJ,k)) 
jEJ kEK 

= In(II €  J(IIk€ KJ,k)) 

That Rel(IIkE  K("jE JPj,k)) = Rel(II €  J(IIk€ K Pj,k)) is trivial (by the reverse of a 

similar sequence). IIkK(IIjEJPJj) is well-defined since IIjEJ("kEK Pik) is. 

Theorem 22 

Assume that, for all j in J, Cj is a UR over base BASE that "jEJ  Cj is well-

defined, that C = II pE BASE(Mj ® RENAMEJ : 

where 



8 	Appendices 	 260 

In(M) 	= {<vnj, L,j>:i=l...n} 

Out(M) = Varciasses X {IdA} 

where 

Ajj= p—>p+rj,j 

for  = 1 and  

and RENAME(j:p):<vn, A>—<vn, i(p)> for all<vn, i>inVars(M) 

(dom(RENAMEj : = Vars(M3)) 

and assume that IIjEJ  M is well-defined 

then 

"jEJ Cj is a UR over BASE. 

Proof 

(€ { 1..n} Cj) = j€ { 1...n} hlp€ BASE(Mj ® RENAMEj : 

11p€BASE( 0j€ 11 ... n (Mj ® RENAIME(j : 

by Lemma 37 on page 259 

11p€BASE((0jE (1...n} M) ® RENAME p)) 

where dom(RENAME,)) = Vars(II i.. M) 

and RENAME(p) IVar*j) = RENAME(j : p) 

by Lemma 21 on page 182 

Now 

Out(II€ { 	M) 	Varciasses x {IdBASE} 

and 

In1 1...n)  M) = 

{<vn,1, L j j> : i = 1...n}) - Out(IIj {1...n)  M) 
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which is of the required form for a UR mould, since Ajj is uniform, for all 

relevant <i, j>. 

Theorem 23 

If { <aj, > : i = 1.. .n- 11 are the only non-uniform dependencies of DATA —M, 

then the set of non-uniform dependencies of DATA_Mfl) is { <aj, Ai>: k < i < 

n-i } 

• .by induction on k, the induction hypothesis being "the set of non-uniform 

dependencies of DATA—M(. 1)  is { <a1 , A> : k-i < i < n- i } ". 

Proof 

Base case: k = 1 

Trivial 

Inductive case 

We just need to consider In(DATA_M)) 

In(DATA_M)) = 

(In(DATA_M(l)) - (<ak.!, k-1>}) 

U { <ck, IdBASE>,  <Zk, + P  + rk), <ak, IdBE> } 

The elements which are added are all uniform dependencies, so the set of non-

uniform dependencies of DATA _M) is 

(<a1 , i1>:k<i<n-i} 
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Theorem 24 

For all un { 1...n}, CONTROL( 2)  is a UR over BASE. 

Proof 

In(CONTROL( : 2)) 	= {<cj, p>:  p € D(j: 0) U D(j: 1)} 

OUt(CONTROL(I : 2)) 	= {<Cj, p>: p € BASE} 

Rel(CONTRO41: 2))" 

(p € BASE => v(<cj,p>) = v(<c1, p+rc j>)) 

CONTROL(1. 2) 	= 1 PE BASE(c*i ® RENAME(j:2 : 

where RENAME(1. 2: p) : <Vfl, i> —* <vn, (p)> 

and dom(RENAME(.2 : p) = Vars(M1) 

and it is a UR. 

Theorem 25 

CONTROL" is a U.R. over BASE. 

Proof 

This follows directly from Theorem 22 and Theorem 24. 

Theorem 26 
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DATA' is a uniform recurrence over BASE. 

Proof 

We know from Theorem 18 on page 253 that DATA' is a recurrence over 

BASE. By Theorem 23, 

DATA' (= DATA(S)) is uniform, 

since the set of non-uniform dependencies in DATA_M() 

= {<aj, At>: n < i < n-i } 

=0 

Theorem 27 

INTERIOR' is a uniform recurrence. 

This follows from Theorem 21, Theorem 22, Theorem 25 and Theorem 26. 

Theorem 28 

The dependency vectors of DATA' are time-consistent with Im. 

Proof 

Claim 
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The dependency vectors of DATA(k) (which correspond to the uniform 

dependencies of DATA)) are time-consistent with Im. 

Proof 

• ..by induction on k, the induction hypothesis being, "The dependency vectors 

of DATA(k) are time-consistent with Im." 

Base case: k = 1 

Recalling that DATA( 1) = DATA, the result follows by assumption (xxiv) on 

page 247. 

Inductive case 

k(DATA_M()) = {<aj, A>:k<i<n-1} 	by Theorem 23 

so the set of dependency vectors of DATA (k)  is the set of dependency vectors 

of DATA(.l) (which by the inductive hypothesis are time-consistent with IM) 

united with {Q, rk}, the vectors of which are time-consistent with Liii by (xxv) 

on page 247. 

So Theorem 28 is proved by the claim and noting that DATA' = DATA() 

Lemma 38 

Assuming the definitions and hypotheses of Theorem 22, Depvecs(lj j  Cj) 

U Depvecs(C). 
JE J 

Proof 
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In(II €j M) 	UIn(M) 
j  J 

so 

b € Depvecs(Ij j  Cj) 

<vn,p—p+b>€ In(Il € jM) 

by the definition of Cj 

<vn,p—>p+b>€In(M) for some jin{1 ... nJ 

<z b E Depvecs(C3) for some  in 11 ... n ) 

b E U  Depvecs(Cj) 
j  J 

Theorem 29 

The dependency vectors of CONTROL" are time-consistent with Im. 

Proof 

Because Lemma 38 holds, it is s.t.p. that, for all i, the dependency vectors of 

CONTROL( :2)  are time-consistent with Im. 

Now 

CONTROL(i: 2) = Dp€BASE(Mc&i ® RENAME(i:2 : p)) 

where 

In(M) 	 = {<cj,p —*p+r>} 

Out(M) 	 = {<cj, p —p  p>} 

and 

Re1(M1)v 

(p € BASE 	v(<cj, p —+ p>) = v(<cj, p —* p + r>)) 

so the set of dependency vectors of CONTROL(j: 2)  is { rc j } and we already 
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know by (xxvi) on page 247 that is time-consistent with Im. 

Lemma 39 

If, for all i in some set I, C1  is an embedded computation s.t. 

Vars(C1) 	Varclasses1 x D 

Cj = 11pEDiii CO: p) 

and 

OUt(C( : )) 	Varclassesi x {p} 

and if II 	C( : p) and 11pE D( 11i€ I*.*pC(i p)) are well-defined (where L = ti: p 

€ D1 }), then 11iE  C1  is an embedded computation satisfying with (2) and (1) on 

page 51, with 

Varciasses 	equal to U  Varc1asses 
jE•I 

D 	equal to 	k_) Di
JE I 

and 

C() 	equal to 	IIjEIsipC(i: p) 

It is easy to see that (1) holds for C equal to 11iE I Cr We know Out(II 

U OUt(C( : p)) c Varclasses x {p}; so to prove (2) it is s.t.p. that II1C 1  
jE 'p 

= 11p€D C(p). 

Now 

iEI Ci = Hj€ i (IIp€DjC(1 : p)) 

= 0i€i (0p€Dki : 

where C(j : ) is the computation without variables, if i € D - Di 

= 11p€D(11i€I C(j : 
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by Lemma 37 and well-defmedness assumptions of this theorem 

= IIpED011iE1'*p C(j : 

Lemma 40 

If dom(R) = Vars(C) and R : <var, p> - <var, f(p)>, where R is 1-to-1 from D 

to a Euclidean space D' and C is an embedded computation then C ® R is an 

embedded computation. 

Proof 

Let (2) and (1) on page 51 hold for C. 

Let 

Varclasses' equal Varclasses 

and 

D' 	equal {f(p):p€D} 

Then Vars(C (9 R) Varclasses' x D' 

so (1) holds when C is replaced by C ® R and when Varciasses and C are 

replaced by Varciasses' and D' respectively. (2) can be deduced as follows: 

From Lemma 21, 

(IIp€ DC( p)) ® R = 0pE D(C( p) ® RIVajs(C(p))) 

and we know Out(C( ) ® RIv(( p))) Varclasses x {f(p)} so let C'(f(p)) be 

C(p)® RIV(C..j,)). (This is unambiguous since f is 1-to-1.) Then (II p€ DC( 

® R 	= IIp ' E D'C'( p') and so (2) holds. 

Theorem 30 
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CONTROL(:l) is an embedded computation with Varclasses equal to {c1}, D 

equal to DTOTAL and C() &iusJ  to CONTROL(i : l)(p). 

(1) and (2) hold on page 51. 

Theorem 31 

EDGE is an embedded computation with 

Varclasses 	equal to 	U VarclasseS(CONTROL(j: 1)) 
1€ Nat (n) 

D 	 equal to DTOTAL 

and 

C( ,) 	equal to EDGE( ,) 

Proof 

...directly from Theorem 30 and Lemma 39 with D 1  equal to DTOTAL and C(j :  

equal to CONTROL(1. l)(p) 

Theorem 32 

For all j, CONTROL(. 2)  is an embedded computation with 

Varclasses 	equal to Varclasses(CONTROL(j: 2))  which equals {cj} 

D 	 equal to Dy'&j 

and 

C( ,) 	equal to CONTROL(j: 2)(p) 



8 	Appendices 	 269 

Proof 

(1) and (2) hold on page 51 

Theorem 33 

CONTROL" is an embedded computation with 

Varclasses 	equal to 	U Varclasses(CONTROL(1 2)) 
i€ Nat (n) 

D 	 equal to DTOTAL  

and 

C(p) 	equal to 	"i € l ... n }C 	1 °1-'(i: 

Proof 

.from Theorem 32 and Lemma 39. 

Theorem 34 

INTERIOR is an embedded computation with 

Varclasses 	equal to Varclasses(CONTROL ... ) U Varclasses(DATA') 

D 	 equal to DrOTAL 

and 

C) 	equal to INTEPJOR( )  

Proof 

...immediately from assumptions at the beginning of the chapter and Lemma 39. 
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Theorem 35 

EDGE II Th1TERIOR is an embedded computation with 

Varciasses 	equal to 

Varclasses(CONTROL") u Varclasses(INTERIOR) 

D 	 equal to DTOTAL  

and 

C(p) 	equal to EDGE(p) II llTE1UOR(p) 

• . immediately from assumptions at the beginning of the chapter, Theorem 34 

and Lemma 39. 

Theorem 36 

EDGE' II INTERIOR' is an embedded computation 

Proof 

..by Theorem 35 and Lemma 40. 

Theorem 37 

EDGE' II INTERIOR' is a space-time network. (It is obviously an embedded 

computation.) 

Proof 
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EDGE' II INTERIOR' = (EDGE II DITERIOR)® RENAME 

so, by the discussion starting on page 66, it is sufficient to prove that all the 

dependency vectors of INTERIOR are time-consistent with Im. But, by Lemma 

38 and the fact that EDGE has no inputs, it is sufficient to prove that all the 

dependency vectors of CONTROL" and all the dependency vectors of DATA' 

are time-consistent with Im. This follows directly from Theorem 28 and 

Theorem 29. 

Since EDGE' has no inputs, it is sufficient to prove that INTERIOR is a space-

time network. Because Lemma 38 holds, it is sufficient to prove that all 

dependency vectors of INTERIOR are time-consistent with Im. (see 3.4 on 

page 65). To prove this it is sufficient to prove that all the dependency vectors 

of CONTROL" and all the dependency vectors of DATA' are time-consistent 

with Im. This follows from Theorem 28 and Theorem 29. 
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Appendix H: Proof of some of the well-definedness 
assumptions 

In this appendix we will prove that the following computations are well-defined when 

1 <'<fl. 

DATA_M() and DATA(1) 	 (Theorem 38) 

CONTROL(1) for i in 11 ... n I 

CONTROL(1) II DATA 

E (l}CONTROL(j) 

(Theorem 39) 

for i in { 1...n} (Theorem 40) 

(Theorem 41) 

Varsek) C Vars(113  € i 14}CONTROL(j)) =0 
(Theorem 42) 

0Ij € I i ..l}CONTROL(j)) II (CONTROL(1) II DATA<1), 

(Theorem 43) 

WIj € l ... l}CONTROL)) II (CONTROL(1) II DATA()))\Varset(1), 

(Theorem 44) 

(CONTROL(1 )  U DATA(1))\Varset(), 	(Theorem 45) 

(11j€ {l ..l}CONTROL(j)) II ((CONTROL(1) II DATA())\Varset()) 

(Theorem 46) 

(IIj € {l ... }CONThOLj)) II DATA) 

(Theorem 47) 

The well-defmedness of these computations, stated in the assumptions on page 199, is 

required for the proof of Theorem 1 on page 200 and Theorem 2 on page 206. 

The definitions and assumptions made in Appendix B, Appendix C and Appendix D 

will be assumed to hold. 
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Definitions 

Let var and var' be distinct variables in Vars(C); var' depends on var relative to 

C if, for some valuations v' and v, 

Rel(C)v' and Rel(C)v and vIJn(0 - = vI(Q - but v(var') * v'(var') 

In other words, it is possible to affect the value of var' changing the value of just 

var, keeping the values of the other inputs constant. 

Obviously, no variable depends on any output variable and no input variable 

depends on any other variable. 

Let Cbea computation when i€ {1...n}. 

Let TotVars be 	U Vars(Cj). 
i€ Nat (n) 

Ifl(C(Q(j : 	:= 0 

OUt(C(C)(j: 	:= {<cj, p>} 

Rel(C(Q(1. ))v 	(v(<c1 , p>) 	= 1 	p * A1(p) 

and 

	

v(<cj,p>) 	= 0 	p=A1(p)) 

C(D)(j: := DATA_M()®R_DATA(j p) 

C()( : p) 	C(Q(1 : p) II C)( : p) 
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Assumptions 

Assume that there exists and integer function t on BASE s.t. 

t(p) 	:5  t(p') 	 Ifl(C1 : p)) fl Out(C(1 : p'))= 0 

and 

rj is s.t., for all p in BASE, 

t(p+r) <t(p) 

(In fact, if the assumptions of Appendix F on page 247 hold, then we may take 

t(p) to be Im(p).) 

z1  is not in Varclasses(DATA_M1)) for all i in { l...n}. 

Lemma 41 

Let H be a non-empty subset of TotVars. (Note that H must therefore be finite.) 

If there is no sequence var1 ... var m  s.t. 

V511 = V9I and, for all  s.t. 1 <j <m, there exists an i in 11 ... n}  s.t. var 

depends on varj-1 relative to C 1  

then 

there exists var in H s.t. var doesn't depend on any other variable in H. 

Proof 

If every variable of H is dependent on some other relative to Cj for some i in 

{ 1.. .n }, then it is possible to construct an infinite sequence var1, var2, var3 ... s.t. 
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var1  depends on var..1 for all i s. t. i>2.  If var1  = var for any i and j then there 

would be a loop which contradicts the aforementioned property. So there is an 

infinite chain of distinct variables, which contradicts H being finite. 

Lemma 42 

Preamble 

Lemma 42 states that, if { Cj : i € 11 .. .n } } has no dependency loops, its is 

possible to build up, one element at a time, from a given valuation (vi n) on In(Ij 

€ (1}). a valuation (vk) for which Rel(Il € I1..))valk holds. 

Statement 

If there is no sequence var1 var m  s.t. 

var 1 =var and, for all js.t. 1 <j<m, there exists aniin{l ... n}s.t.var3  

depends on var.. i  relative to C 1  

then 

for all valuations vin  on In(II1 € I1)Cj), there exists a chain 

va!1, vaI2, val3 ... valk, where k = ITotVarsl - tdom(v 1 )I, va!1 = v, 

valk is a valuation on TotVars and, for all m from 1 to k inclusive, 

valm  val 

and 

for all i in 11...n}, there exists vi on Vars(Cj) s.t. Rel(Cj)v1 



8 	Appendices 	 276 

and ValmIV((j) dn(va1*m) CZ vi (XXX) 

Note that Re1(II 	1...fl )Ci)valk follows from this conclusion. (Note also that v 1  

may vary with m.) 

By induction on j, with the following inductive hypothesis: 

"If j <k then, 

for all m less than j, 

Vaim c vaIj 

for all m less than j, 

VøJm exists which satisfies (xxx) with val m  substituted for val 	(xxxii) 

and 

for all m less than j and for all var in dom(val m) and var' in TotVars - 

dom(valm), 

var does not depend on var' relative to Cj for any i in 11 ... nj 	(xxxiii) 

and 

for all m less than j, 

tdom(valm)I = Idom(vm)I + m - 1" 	 (xxxiv) 

Note that the inductive hypothesis implies (xxix) and (xxx) when j = k. 

Base case 

va!1 = vm.So 
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holds since j= 1; 

holds by Lemma 5 since (dom(vm) fl Vars(Cj)) In(Cj) 

holds since var € dom(v) implies that, for all i in { 1 ... nJ, var 

Out(C); so for no i does var depend on another variable relative to Cj. 

holds trivially. 

Inductive case 

Assume that  <k. (The case where  > k is trivial.) We assume that the inductive 

hypothesis holds withj replaced byj-l; so there exists va41 satisfying (xxxiii), 

(xxxii), (xxxiii), and (xxxiv) with j-1 substituted for j. We will now construct a 

Val which satisfies (xxxiii), (xxxii), (xxxiii), and (xxxiv). Let {v1' : i € { i...n} } 

be s.t., for all i in {l ... n}, 

val41 V ars(Cs*i) r dom(va1s*(j1)) vi' 

(we know we can do this since, by the inductive hypothesis, (xxxii) holds with 

a-i) substituted for j). Let H equal TotVars - dom(valj..1). H * 0 since j-1 <k 

so by Lemma 41, we may choose var 3  in H s.t. var is not dependent on any other 

element of H relative to C 1  for any i in 11 ... nj.  Let g be s.t. var is in Out(C g). 

Define vg  to be vg '. Define v i  (where i * g) as follows: 

Case 1 	var Vars(Cj) 

vj := v' 

Case 2 	var3  € Vars(C1) 

In this case, var3  € In(C), since Out(Cg) r Out(C) =0. 

So let v1  be the extension by of vj'IJfl(Cj)[varj —+ v(var)] s.t. Rel(Cj)v1; 

let 
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val be val..i u <var, vg(var)>. 

We will now show that ()xxiii), (xxxii), (xxxiii), and (xxxiv) hold. 

Proof of (xxxiii) 

This is trivial since valji val. 

1Ib] 

It is s.t.p. that, for all i in 11 ... nj,  

V8l I (Vars(Ci) r dom(va1*j)) Vj 

i.e., for all i in 11 ... n}  and for all var in (Vars(C) n dom(val)), 

val(var) = v1(var) 

By the inductive hypothesis we know that this holds when j is replaced by j-i 

and v1  is replaced by vi'. Now 

Vars(Cj) n dom(val) = (Vars(Cj) n dom(val..1)) U {varj} 

and we know that, for all i in (1.. .n }, 

val(var) = v1(var) 

by definitions of val3  and v. So it is s.t.p. that for all i in {1...n}, 

var in Vars(Cj) n dom(va1.i) implies 

val(var) = v3..1(var) 	 (xxxv) 

and 

v1(var) 	= v1 '(var) 	 (xxxvi) 

since we know that 

val..i(var) = v1'(var) 

(xxxv) is true by definition of val; (xxxvi) is trivially true if var 4t Vars(C) or 
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if i = g. Let's assume var E Vars(Cj) and i * g. So var E In(C) since 

Out(Cg) (- Out(C) = 0 
var does not depend on var (by the inductive hypothesis (with j replaced by j- 1 

in (xxxiii)) since var € dom(val1)) and var € TotVars -dom(val( m))) and 

Rel(C1)v1  and Rel(C1)v 1 ' hold and 

VjI(Csi j)..vaj&j = 

so 

v(var) 	= v'(var) 

Proof of (xxxiii) 

Assume var € dom(val) and var' € TotVars - dom(val). It is s.t.p. that var 

doesn't depend on var'. Well either var € dom(val..i), in which case, since 

TotVars - dom(val) TotVars - dom(val..1), var doesn't depend on var' 

relative to C 1  (by the inductive hypothesis) or var = var and var doesn't depend 

on var' relative to C 1  because of the way we chose var. 

Proof of (xxxiv) 

(xxxiv) follows since 

Idorn(val)I 

Idom(val..1)I + 1 

= Idom(val..i)I + I{var3 }I 

= Idom(vj)I + (m- 1)+1 

= Idom(vth)I + m - 1 

Lemma 43 

If (C1 : i € {i ... n}} is s.t. there is no sequence var1 var s.t. var 3  depends on 

var..1 (relative to C 1  for some i in {1...n}) for all  s.t. 1 <j <m and var1 = var 

then "i € 11 	is well-defined. 
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FM 

It is sufficient to prove that for all vi n  on In(1I1 € I 1}C), there exists a unique 

vt s.t. Rel(fl i  € (1...fl }C)(vül  U V). 

Let us choose arbitrary vin. 

If var depends on var' relative to some Cj, then let us say var var'. This may 

be extended by transitivity. The full extension will be a partial ordering since 

var var' and var' > var would together imply that var, var', var is a sequence 

which is assumed, in the assumption of the lemma, not to exist. 

By Lemma 42, there exists vt s.t. Rel(11i € I1... fl }Ci)v(lt by letting v=  equal 

vk. We now simply need to prove its uniqueness. Assume that there exists Vt' 

s.t. vt' * vt but Rel(11 1  € { l ...n }Ci)(vj U v). So for some i in 11 ... n I  

vt'Iv(ci) * v tIV((i) but Rel(Cj)v' and Rel(Ci)vout  so the well-

definedness of Cj is contradicted. 

Lemma 44 

R is 1-to-1 and C®R is well-defined implies that 

(var depends on var' relative to C) 

(R(var) depends on R(var') relative to C®R) 

Proof 

L.H.S. 

for some v and v', Rel(C)v' and Rel(C)v and 

vIln(Q..v& = 
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but 

v(var') * v'(var') 

for some v and v' (the same ones) Re1(C(DR)v"R and Rel(C®R)v'R' and 

vRI(C®R) - R(var) = V"R'I!n(C®R) - R(var) 

but 

	

v'R'(R(var')) 	* v 'R'(R(var)) 

by definition of renaming 

R.H.S. 

We can prove that R.H.S. = L.H.S. by a similar argument. 

Lemma 45 

If R is a function on Vars(C) s.t. Rkt(Q is 1-to-1 then is C®R well-defined. 

Proof 

(cf. proof of Lemma 4) 

It is s.t.p. Lemma 45 for renaming functions R for which RI t( = IdI 

since every other is the (functional) composition of such a function with a 1-to-

1 renaming function (which is the identity on In(C)), and can then be proved 

using Lemma 4 and Lemma 25. By definition of what it means for C®R to be 

well-defined, it is s.t.p. that 

(for all v and v', Rel(C®R)v and Rel(C®R)v' 

	

V'I(C®R) 	= VIh(C®R) 



8 	Appendices 	 282 

V'It(C(&R) = VI(C®R)) 
	

(xxxvii) 

and, for all valuations v 1  on In(C®R), there exists vout  s.t. Re1(C®R)v U V yj  

(mviu) 

proof of (xxxvii) 

As for (i) ofLemma 4 

proof of (xxxviii) 

Let vin ' equal vjR. Then there exists v' s.t. Rel(C)vj11' u v0 ' so 

Rel(C®R)(v u v'RIt(c®R)4),  by definition of renaming. 

Let vout  equal vt'RIt(c®R)4 . 

Lemma 46 

If there exists an integer function t on BASE s.t. 

t(p) <t(p') 	=> 	Out(C,')) r In(C) = 0 

then 

"p € BASEC(p) is well-defined. 

.by Lemma 43 

We will assume that the precondition of Lemma 43 doesn't hold for the set 

{ C : i € { 1.. .n } }, and derive a contradiction. The inverse of the precondition 

of Lemma 43 is equivalent to the statement that there exist var1, ... var, s.t. var 

depends on var(j4)mI(m4)  relative to C(J) for some Pj  in BASE. So 
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OUt(Cp ((j..1)mijcl(m..1))) C Ifl(C(p j) 	* 0 
since var..i € Out(C ( ,j..l))) and var.. i  € In(C ( J)) 

so 

t(p((j1mcx1(m_1))) 	< 	t(p) 	for all  in 1 1 ... m  

so 

t(p) 	< 	t(p) 

.a contradiction 

So the precondition of Lemma 43 holds and the lemma may be applied to 

deduce that II E BASEC(P) is well-defined. 

Theorem 38 

For all i in 1 1 ... n 1,  DATA_M(1) and DATA(1) are well-defined. 

By induction on i using the inductive hypothesis, 

"DATA_M() and DATA(1) are well-defined and R_DATA( 1  

p)'Out(DATA_M''i(i)) is 1-to-i and there exists and integer function t on BASE s.t. 

t(p) 	~ t(p') 	 II1(C)(. p)  Out(C)( : 	= 0" 

Base case 

DATA(l) (which equals DATA) and DATA ,-N(I) are well-defined. DATA 

is an embedded computation so the outputs of DATA_M(l) are all of the form 

<var, IdB1 E>, SO R_DATA(l p)'Out(DATA_M'i(1))  is 1-to-1. From the 

assumptions at the beginning of the appendix, starting on page 274, we know 

that there exists an integer function t on BASE s.t. 
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t(p) 	< t(p') 
	

In(C)(1 : p) ('1 Out(C)(1 : 

Inductive case 

Let us examine the definition of Rel(PIPE_M( 1)) on page 197. , + and - are 

well-defined functions, so PIPE_M( 1) is a well-defined computation. Let us 

assume the inductive hypothesis with i replaced by (i-i). It is s.t.p. that 

DATA_M 1)®R_DP(1) is well-defined 	 (xxxix) 

and that 

PIPE—M(1) and DATA_M(1..1)®R_DP() satisfy the condition for Lemma 43 

 

(i.e. where n =2, PIPE_M( 1) and C2 = DATA...M(.1)®R_DP() . If the condition 

for Lemma 43 is satisfied then DATA_M(1..1)®R_DP(1) II P1PE_M will be 

proven well-defined.) 

and 

(DATA_M(..1)®R_DP() II PIPE_M())®R_DATA( : is well-defined 

Up  € BASE(DATA_Mç1..l)®R_DP(i) II PIPE_M(1))®R_DATA( p)  is well- 

defined 

dil) 

and 

there exists an integer function t on BASE s.t. 

t(p) 	:!~ t(p') 	 In(C)( : p)) OUt(C(t)(i :  p')) = 0 

 

and 
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(xliii) 

Proof of (xxxix) 

This is easily proved by Lemma 4. 

Proof of (xl) 

It is s.t.p. an absence of dependency loops. The only variables of DATA_M 

l)®R_DP() II P1PE_M which can possibly participate in a dependency loop 

are those in (In(DATA_M1)®R_DP(1)) r Out(P11PE_M())) u (In(PIPE_M(0 

1) Out(DATA_Ml)(VR_DP(1))), which equals {<a1, IdBASE>, <zi, IdBASE>} 

(if r1  * 0). It is s.t.p. that <a1, IdBASE> doesn't depend on <z, IdBASE> relative 

to DATA_M(.l)®R_DP(1) (of which <a1 , IdBE> is an output and <z1, 

IdBASE> is an input) since then no dependency loop can be formed. By Lemma 

44, it is s.t.p. that <a1, IdBASE> doesn't depend on <a 1, Ai> relative to 

DATA_M1). This can be proved by induction, using the inductive hypothesis, 

"j < i-i => <a1, IdBASE> doesn't depend on <a 1, IdBASE> relative to 

DATA_M'j)" and Lemma 44. We need to assume, however that <aj, IdBE> 

doesn't depend on <aj, Ai> relative to DATA_M(1). 

Proof of (xli) 

Out((DATA_Ml)®RDP()) II PIPE —MO)) 

= Out(DATAM(..1)®R_DP()) u Out(PIPE_M(1)) 

by definition of composition 

= Out(DATA_M(1..1)) u {<zj, IdBASE>I 

by definition of R_DP(1) and PIPE..M(1) 

R_DATA(1 : p)'Out((DATA_M'*(i-1)®R_DP'*(i)) II PIPE_M*(i)) 

= R_DATA(i :  p)IOut(DATA_M'*(i.1))[<Zi ,  IdBASE> _ <zi g  p>] 

by the above re-writing 
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= R_DATA((1..l) p)I0ut((DATA_Ml01))1<zi IdBASE> <z1, p>] 

This is 1-to-1, since by the inductive hypothesis R_DATA((1..l) 

p)k)ut((DATA_M'i(i-1)) is 1-to-1, and z1  is not in Varc1asses(DATA_M 1..1)), by 

the assumption at the beginning of these appendices. Therefore, by Lemma 45, 

(DATA_M(1.1)®R_DP(1) II PIPE_M())®R_DATA(1 p) 

is well-defined. 

Proof of (xlii) and (xliii) 

If we can prove (xliii), then (xlii) follows by Lemma 46 and the definition of 

Cij)(1 : ) on page 273. 

Assume that (xliii) holds with i replaced by i-i, and assume that 

t(p) 	< t(p') 

We will show that 

In(C)(. )) n Out(C(rJ)(. i,')) 	= 0 	 (xliv) 

We know 

n Out(C)(1.1 : p')) 	= 0 

Now if we can prove that 

In(C)(i) Cp) - In(C)(1..1 p))  u {<cj, p>, <zj, p+rj>} 	 (xlv) 

and 

Out(Cj)(1 : p')) Out(C(r,)(j_l : p')) u { <z, p'> } 	 (xlvi) 
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then since, by the assumptions at the start of this appendix, rj is such that 

t(p+r) < t(p) for all p in BASE 

then 

p' * p + ri  

so (xliv) holds. 

Proof of (xlvi) 

Out(C)( : n ')) 	= 

Out((DAT&M(I..l)®R_DP() II P1PEM())®R_DATA(1 
: 

by definition 

= ran(R_DATA(1 : p')t(ATA_M(i-l)(&R_DP(i)) II PIPE_M*(i))) 

by definition of renaming 

= ran(R_DATA(1 : pOut(DATA_M&(i1))kZi, IdBAsE> <Z'  p>]) 

by proof of (xli) 

= Out(C(J))(..l n')) U {<z, p'>} 

by definition of Out(C)(..1 

Proof of (xlv) 

k(C(D)(i : ))= ran(R_DATA(1 : p)'In(DATA_M'*(i))) - Out(C)(1 : 

= ran(R_DATA( 
: 
p)1Jn(DATA_M'*(i))) - (Out(C)(..l : )) U {<z1, p>}) 

by similar proof to that of (xlvi) 

In(DATA_M(1)) 	r 	_DP(1)IIATAM(1. 1))) 

U {<cj, IdBASE>, <zi, p - p+rj>, <a1, IdBASE>} 

- Out(DATA_M( 1 1)®R_DP(1)) u Out(PIPE_M(1)) 

by definition of composition and PIPE—M(1) 

ran(R_DPCl)I)ATAM(1..l))) 

U {<cj, IdBASE>, <zi' P p+r1>} 
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since <a1, IdBE> € Out(DATA_M( 1.1)®R_DP(1)) 

So 

Ifl(C(D)(i :  p)) c ran(R_DATA(1 : P))(r( 1 _DPCO 1Ifl(DATA_M(i.1))) 

U { <cj, IdBE>, <Zj, p -* p+rj> })) 

- (Out(Cij)(..1 : p)) U { <Z, p> }) 

ran(RDATA(1. p)) 

(Jn(DATA_M1)) 

U (<C1 , IdBASE>, <z1, p -3 p+r1>, <z1, IdBE>}) 

- (Out(C(D)(j..l : p)) U { <Zj, p>}) 

by definition of R_DP( 1) 

= ran(R_DATA1 ))Ifl(DATA_M(1 4))) 

U {<cj, p>, <zj, p-i-r1>, <zj, p>}) 

- (Out(C(t))(i..l : p)) U {<zj, p>}) 

by Lemma 6 

(Ifl(Cj1_1 : p)) U  Out(C(D)(j : p)) 

U { <zj, p> } U { <Cj, p>, <z1, p+r1> }) 

- (Out(Cx..i : )) U {<z, p>}) 

by definition of renaming 

= In(CCD)(1..1 )) U {<cj, p>, <zj, p+rj>} 

Theorem 39 

CONTROL(1) is well-defined for all i in 11 .. .n } 

Proof 

It is s.t.p. that Rel(CONTROL(1)) is functional i.e. for all valuations vin  on 

In(CONTROL(1)), there exists a vout  s.t. 

Re1(CONTROL(I))v U v 
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and, for all valuations v on Vars(CONTROL(1)), 

Rel(CONTROL(1))v and VIj(C flOL"(i)) = vin  

- 

VICOflOL(j)) = Vt 

From the definition of Rel(CONTRO4)), there exists a unique v s.t. 

Rel(CONTRO41))v. In(CONTROL(1)) =0 so the above statements hold. 

Lemma 47 

If there exists a partial order> on {C: i 11 ... n I I  such that 

In(C) n Out(C) * 0 =' 	ci> ci 

then Ili € Ii...1ci is well-defined. 

Proof 

It is s.t.p. the hypothesis of Lemma 43, assuming the existence of such a partial 

order. Assume that there exists a path var1 ... var m  such that var depends on 

var..i and var1 = varm. Let var be in the output of Cj so that var is in the input 

Of Ci(0+1)mod(m..1)) so 

CNj > Ci(0+ 1)mod(m..1)) 	for all j in { 1...m-l} 

so 

q- '. I > 

.a contradiction. 

So there does not exist a path var1 ... var m  such that var depends on var.i and 

var1 = varm; so the hypothesis of Lemma 43 holds. 
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CONTROL(1) II DATA is well-defined for all i in 1 1 ... n) 

Proof 

This theorem follows from Lemma 47 and Theorem 39 since 

In(CONrROL( 1)) r Out(DATA(I)) = 	0 

Theorem 41 

Ili € {l . }CONTROL() is well-defined for all i in 1 1 ... n ) 

This theorem follows from Lemma 47 and Theorem 39 since 

In(CONTROL(1)) = 0 	for all i in { 1. ..n } 

Theorem 42 

Varset() C Vars(II € {l..i-l}CONTRO4j)) = 0 	for all i in {2...n} 

Varclasses(11j E  {l ... j..1}CONTROL(j)) 	= {cj: 1 <j  :!5 i-1} 

and 

{var: there exists p s.t. <var, p> € Varset} = {zj, cj. a} 

Theorem 42 follows. 



8 	Appendices 	 291 

Theorem 43 

(Ij € I1...i.1 }CONTROLj))II(CONTRO4 )IIDATA()) is well-defined for all i in 

{2...n}. 

Proof 

In(II E  {l ... .l}CONTRO4j)) = 0 

so 

In(II € { i...i..i }CONTRO4j)) r' Out(CONTROL(1 )  II DATA) = 0 

The theorem follows by Lemma 47. 

Lemma 48 

If, for all var in Varset and for all var' in Vars(C)-Varset, var' is not dependent 

on var relative to C, then C'Varset is well-defined. 

Assume CVarset is not well-defined. So by Lemma 24 there exist v and v' s.t. 

Rel(C) v and Rel(C)v' 

VI(Q. Varset 
=V' 

 IIn(Q Varset 

vIt( Varset * v'Ic Varset 

but 

Let v and v' be such a pair with minimal number of differences on In(C). Let 
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var on In(C) be s.t. 

v(var) * v'(var) 

Let v" be s.t. 

V"IJ(Q - (var) 	= V'IJn(C) - (var) 

and 

v"(var) = v(var) 

and 

Rel(C)v" 

then 

V"I()ij(Q - Varset 	= v'I(Q - Varset 

since no element of Out(C)-Varset depends on var; and, since the number of 

differences between v" and v on In(C) is less than between v' and v and 

V"I(Q - Varset 	= ViJj(Q - Varset 

we know that 

V"Iijt(Q - Varset 	= vI 	- Varset 

so 

vIr - Varset 	= v'I0(Q - Varset 

contradicting the assumption that v and v' are such a pair; so CVarset must be 

well-defined. 

Lemma 49 

if 

Cj has var as an input 

and 

for all var' in Out(C), var' doesn't depend on var relative to Cj 

and 

for alljin(1 ... n}s.t.j*i,var it Vars(C) 
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and 

Ili c  11 •• 1C1 is well-defined 

then 

for all var' in OUt(lli € 

var' doesn't depend on var relative to Ili € 

We know that var E In(111 € 11)C) since 

var € In(C1) 

and 

var € U Out(C) 
j*i 

.Let v and v' bes.t. 

Rel(II1 E  11}Cj)V 

and 

Rel(111 € 

v)(In(111 € 11 1Cj)-var) = v')(in(111 € I 1)C)-var). 

Now assume that v(var') * v'(var') for some var' in OUtOli € 	11 1C1). Consider 

v" defineds.t. 

v"(var") = v(var") when var" * var 

v"(var") = v'(var") when var"=var 

Now 

v' ')([n(C1)-var) = v)(In(Cj)-var) 

and 

v' ')(Out(Cj)) 
	

= v)(Out(C1)) 
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so 

Rel(Cj)v' ')Vars(Cj) 

since no output of Cj depends on var. 

But 

v")In(II 	(1 .11 }Cj) 	= v')In(II1 E {1 ... n)Ci) 

since 

V)(InOli € I 11Cj)-var) = v')(1n(II € 

so v" = v' since Ili € 	is well-defined. Hence 

v(var') 	= v"(var') = v'(var') 

...which contradicts the assumption that v(var') * v'(var'); so v(var') = v'(var') 

for all var' in Out(II { 1}Cj). Therefore, for all var' in Out(II € 1jCj), var' 

doesn't depend on var relative to Ili € 

Lemma 50 

CONTROL()IIDATA() = 11p € BASEC(i :  p) 

Proof 

CONTROL() 	= p € BASEC(C)(i p) 

from the definition of C(C)( : on page 273 

DATA() 	= Hp  € BASEC(D)(1 : p) 

from the definition of Cj)(1 : ,) on page 273 

In(CONTROL(1)IIDATA(1)) = 111(Hp € BASEC(cD)(i : 

Out(CONTROL(1)IIDATA()) = Out(II € BASEC(cD)(1 : 

Re1(CONTROL(1)IIDATA()) 	Rel(II € BASEC(cD)(i: 
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so it is sufficient to prove that C(CD)CI: : is well-defined for all p. This can be 

done using Lemma 47: we may say 

C(D)( : p) 	C(Q(1.  p) 

since 

p)) fl Out(C(Q( : d =  0 

Lemma 51 

Let A be s.t. var it Vars(A); 

let C be s.t. var Vars(C) and In(C) =0 
let B be s.t., for all var' in Out(B) and v, v', valuations on Vars(B II C), 

Rel(B II Qv 

and 

Rel(B II Qv' 

and 

vI(B) - var = V'IIfl(B) - var implies v(var') = v'(var') 

(Note that the condition involving B is a weaker one than non-dependency of 

var' on var relative to B, since Rel(B U Qv and Rel(B II Qv' must hold.) 

Then for all var' in Out(A II B), var' doesn't depend on var relative to (A II B) II 

C. 

Proof 

Assume the contrary to Lemma 51, i.e. that there exist v, v' and var' in Out(A) 

s.t. 

Rel(B II Qv 

and 
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Rel(B II Qv' 

and 

VI(B) - var = V 1 1n(B) - var 

but 	v(var') # v'(var') 

Let v" be a valuation on Vars(B II C) s.t. 

v"(var") = v(var") 

(if var" * var and var" € In(B) or var" € Vars(C)) 

v''(var") = v'(var'') 

(if var" = var) 

and 

Rel(B)v' 'Vars(B) 

Since In(C) = 0, we know that extending v" to Var(B) from In(B) doesn't 

interfere with C. so let us do this in such a way that Rel(B)v' "Vs) holds; we 

know byLemma 5 that we can do this. 

Rel(B)v' 'vS(B)  and Rel(C)v"Iv(Q and 

V"IV(B)var = VIV(var 

so 

v"(var') = v(var') 

by the assumption of the lemma. 

We may extend v" onto Vars(A) by stating that v"(var) = v'(var) for var in 

Vars(A). Then 

V' "In((A II B) II Q= V'IJn((A II B) II C) 

since 

In(C) = 0 
and 

Rel((A II B) II Qv" 

and 
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VkJ a f3>.v&  = VIV(B).. v&  = VIv(B).. v&  

and 

v"(var) = v'(var) 

so 

v''(var') = v'(var') 

since ((A II B) II C) is well-defined. 

So 

v'(var') 	= v(var') 

.a contradiction. So Lemma 51 holds. 

Theorem 44 

((I € { i ... i-1 ICONTROLO))I[(CONTR04i)IIDATA(i)))\Varset(i) is well-defined 

for all un {2...n}. 

By Lemma 48, it is sufficient to prove that 

for all var in Varset(1) 

and 

for all var' in 

Vars((Ij € Ii ... i..i  )CONTROL(j))II(CONTROL(1)IIDATA())) - Varset() 

var' is not dependent on var relative to 

(11j € 	)CONTROL))II(CONTROL(1)IIDATA()). 

Since all the elements of Varset( 1) are in 

Out((Ij € { 	}CONTROL(j))II(CONTROL()IIDATA())) 

except those in 

{<z, p+rj> : p € BASE} - {< z1, p>:  p € BASE} 
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it is sufficient to prove that 

for all varm{<zj,p+r1>:pE BASE }-{<zj,p>:p€ BASE} 

and 

for all var' in Out((II E {l ... i..l  }CONTROL(j))II(CONTROL()tIDATA())) 

var' 	doesn't 	depend 	on 	var 	relative 	to 	(IIj 	€ 	{ i...j 

l)CONTRO4j))II(CONTROL(j)IIDATAj)) 

Since var (which equals <zj, p+r1>, say) Vars(Ij € (l .. l}CONTROL(j)), by 

Lemma 49 it is sufficient to prove that, for all var' in Out(CONTROL(1) II 

DATA(1)), var' doesn't depend on var relative to CONTROL()IIDATA(1) 

(xlvii) 

We will prove using Lemma 50; by Lemma 49 it is sufficient to prove 

	

<zj, p+r1> 4t Vars(C(Q))(1 p'))  for all p' in BASE s.t. p' * p 	(xlviii) 

and 

	

for all var' in OUt(C(CD)(j :  p)) var' doesn't depend on <z 1 , p+r1> 
	

(xlix) 

Proof of (xlviii) 

Vars(Cij)(j : n ')) 	= ran(R_DATA(1 : p') 1yars(DATA_M'*(i))) 

Vars(DATA_M()) = Vars(DATA1)®R_DP()) u Vars(PIPE_M(1)) 

Vars(DATA_M1)) U {<z1, IdBASE>} 

U { <cj, IdBE>, <Zi, p -+ p+r1>, 

<zj, IdBASE>, <a1, IdBA&>} 

So 

Vars(C(t)(j : n')) 	ran(RDATA(j :  p')'Vars(DATA_M*(i-l))) 

U {<cj, p5, <zj, p'+rj>, <z1 , p5, <aj, p5} 

by Lemma 6 and Lemma 17 
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So 

Vars(C(cD)(i: n ')) 	c V&s(C(D)(i 
: n ')) U Va.rS(C(Q(i :  

	

c {<cj, i,>, <, 	<, >, <, 

U ran(R_DATA(1 : p)'Vars(DATA_M(i-1))) 

(xlviii) follows from the fact that 

p*p, , 

p+r1BASE (so p+rj*p') 

and 

zj Varclasses(DATA_M<j1)) 

Proof of (xlix) 

Case 1 	V&' € Out(C(c)(i : 

So var' = <Cj, p>. Let v and v' be s.t. 

VIJ(((Q))(j : p)) - var = V'I(((Q))(j : p)) - var 

v(<cj,p>)O 	p=A1(p) 

v' (<c1, p>) =0 

v(<cj,p>)1 	p*z(p) 

v'(<cj,p>)1 

(In fact p = Ai(p) since, if not, by assumption at start of Appendix D, 

p + r1  € Cosetj(p) 

which implies 

p+rj€ BASE 

.a contradiction) 

So v(var') 	= v'(var') = 0 
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Case 2 

var' 	E Out(C(rJ)(j: 

Now 

C(D)(i. p) = (DATA(..1)®R_DPç1)®R_DATA(j : )) II 

(PIPE_M(i)®R_DATA(i :  

<Zi, p> 4t (DATA(..1)®R_DPç1)®R_DATA(1 : 

and 

= 0 

So, by Lemma 51 with 

A equal to DATA(1..1)®R_DPç1)®R_DATA(1 : p) 

B equal to PIPE-M(i)OR-DATA( : p) 

and 

C equal to C((1. p)' 

it is sufficient to prove... 

Claim 

For all var' in Out(PIPE_M()®R_DATA(i : )) and v, v' valuations on 

Vars(PIPE_M(j)®R_DATA(j: p)  II C(c)( : 

if 

Rel(PIPE_M(1)®R_DATA( 1  : p) II C(Q(1 : p))V 

and 

Rel(PIPE_M()®R_DATA( : p) 11 C(C)(i : 

and 

v)(ln(PIPE_M(i)®R_DATA(i : p))<Zj, p + r1> = 

v)(In(PIPE_M(i)®R_DATA(i :  p))<Zj, p + r1> 

then 
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v(var') 	= v'(var') 

Proof of claim 

var' must be <z1, p., since this is the only element of PIPE_M(i)®R_DATA(i :  

Now 

v(<z, p>) = v(<z1, p+r1>)*v(<cj,  p>) + 	p>)*v(.<aj, p>) 

= v(<a, p>) 

since v(<cj, p>) =0 

= v'(<a1, p>) 

= v'(<z, pIr1>)*v'(<cj,  p>) + v'(<cj, p>)*v'(.<aj,  p>) 

since v(<cj, p>) =0 

= v'(<z1,p>) 

Theorem 45 

(CONTROL(1) II DATA() \ Varset is well-defined when 1 <i < n 

Proof 

It is sufficient to prove that, for all var in Varse¼)  and for all var' in 

Out((CONTROL(1) II DATA) \ Varset), var' doesn't depend on var relative 

to (CONTROL(1) II DATA). This is a corollary of in Theorem 44. 

Theorem 46 

(IIi € ii 1..l)CONTROL(j)) II ((CONTROL( 1) II DATA())\Varset(1)) 

when 1 <i -~ n 
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Proof 

.by Lemma 47 with 

(I € (1 ... 1 ) CONTROL(j))> ((CONTROL() II DATA(1))\Varset()) 

Theorem 47 

(Ili € (1 ... i)C 	1'1OLj)) II DATA) 	 when 1 <i < n 

Proof 

..by Lemma 47 with (IIj E {l•••} CONTROL(j)) > DATA(i) 


