
Modelling, Analysing and Model
Checking Commit Protocols

Tim Kern pster

Doctor of Philosophy
University of Edinburgh

2000

To My Mother

Abstract

Distributed transactions are playing, and will continue to play, an increasingly

important role in all forms of electronic business. A key ingredient of a distributed

transaction is a commit protocol. We present a novel modelling technique for

commit protocols and the environments in which they execute. We devise a

new commit protocol X3PC using this modelling technique. We demonstrate

that our modelling technique is flexible and formal enough to support automatic

verification of behavioural properties of commit protocols, using tools such as

model checking as well as more traditional proof techniques. It is possible to

verify many different properties of commit protocols by expressing properties in

temporal logics and then performing model checking to verify them. In order to

carry out model checking a labeled transition system must first be generated from

our models. We will describe different techniques that allow us to automatically

generate transition systems.

The role of commit protocols in providing transaction isolation for distributed

transactions is studied. We present novel definitions for the four different levels of

transaction isolation first proposed by the ANSI community. By first modelling a

system of multiple concurrent distributed transactions, using our new technique,

we show how to verify that a particular level of isolation is attained within the

system. This, once again, demonstrates the applicability and flexibility of our

modelling technique.

Acknowledgements

I would like to express my gratitude towards my supervisors Peter Thanisch and

Cohn Stirling. Their continuous support, friendly encouragement, and general

involvement over the years has made studying for this degree a pleasure.

Declaration

I declare that this doctoral thesis was composed by myself and the work contained

therein is my own, except where explicitly stated otherwise in the text.

The following articles were published during my course of research.

• T. Kempster, C. Stirling, and P. Thanisch. A more committed quorum-

based three phase commit protocol. In LNCS: The Tweith International

Symposium on Distributed Computing, pages 246-257, 1998.

• T. Kempster, C. Stirling, and P. Thanisch. A critical analysis of the trans-

action internet protocol. In Proceedings of the Second International Con-

ference on Telecommunications and Electronic Commerce (ICTEC), pages

245-271, 1999. Longer version to Journal of Electronic Commerce Research.

• T. Kempster, C. Stirling, and P. Thanisch. Diluting ACID. ACM SIGMOD

Record, 28(4), December 1999, pages 88-94.

• T. Kempster, C. Stirling, and P. Thanisch. Games-based model checking

of protocols: counting doesn't count. In Proceedings of the International

Workshop on Distributed System Validation and Verification, 2000, pages

111-117.

• T. Kempster, G. Brebner, and P. Thanisch. A transactional approach to

network management. In Proceedings of the 1999 Workshop on Databases

in Telecommunications. Springer-Verlag, 1999, pages 224-252.

Table of Contents

Chapter 1 	Introduction 4

1.1 	Transactions 5

1.2 	Message Passing Protocols 6

1.3 	Model Checking 8

1.4 	Commit Protocols 8

1.5 	Thesis Contribution 9

1.6 	Thesis 	Structure 10

Chapter 2 	Commit Protocols 13

2.1 Introduction 13

2.2 Core Atomic Commit Literature 15

2.3 Non-blocking Protocols 21

2.4 Two-Phase Commit Optimisations 23

2.5 Failure models 28

2.5.1 	Site Failure 28

2.5.2 	Communication Failure 29

2.6 Casting the Net Wider 32

2.7 Conclusions 32

Chapter 3 	Modelling Atomic Commit Protocols 33

3.1 Introduction 33

3.2 I/O Automata 33

3.3 A Knowledge Theoretic Approach 38

3.3.1 	Modelling Distributed Systems 38

3.3.2 	A Knowledge Logic 40

3.4 The Calculus for Communicating Systems 42

3.5 Comparing Techniques 44

3.6 The Views Model 45

3.6.1 	Processes, local state and views 47

3.6.2 	Protocol rules 48

1

3.6.3 Environment rules 	 48

3.6.4 	Global state and executions49

3.6.5 Modelling centralised two-phase commit50

3.7 	Summary 52

Chapter 4 A More Committed Three Phase Commit Protocol 	54

4.1 Introduction 54

4.2 Adding failure to 2PC 56

4.2.1 	2PC 	blocks 57

4.2.2 	Help-Me messages 58

4.3 Modelling 3PC 60

4.4 Modelling quorum based commit protocols 60

4.4.1 	Views and process state 60

4.4.2 	Updating views 63

4.4.3 	Protocol rules for E3PC 63

4.4.4 	Q3PC: Skeen's Quorum-based 3PC 66

4.4.5 	Configurations and executions 66

4.5 E3PC's advantage over Q3PC 66

4.6 Constructing X3PC from E3PC 67

4.7 X3PC Solves Atomic Commitment 69

4.8 Performance Comparison 73

4.9 Conclusions and Future Research Directions 74

Chapter 5 Model Checking Two Phase Commit 78

5.1 Introduction 78

5.2 Modelling Two-Phase Commit 79

5.3 Generating Transition Systems from Rules 80

5.3.1 	A Concrete approach 81

5.3.2 	Multi-set representation 83

5.4 Expressing Properties of Protocols 87

5.5 Games-Based Model Checking 89

5.6 Applying CTL 	to CON and MULTI 93

5.7 Checking CTL 	Properties of Two Phase Commit 95

5.8 Conclusions 96

Chapter 6 Diluting ACID 	 97

6.1 	Introduction97

6.2 Classical Recoverability and Serializability Theory99

2

6.2.1 	Recoverability 99

6.2.2 	Serializability 101

6.3 Modelling simple schedules 103

6.4 Extended Conflict Serializability 104

6.5 Redefining Phenomena 108

6.6 Disallowing Phenomena Provides Conflict Serializability 110

6.7 Enriching Schedules with Predicate Accesses 111

6.8 Conclusion 113

Chapter 7 Verifying Isolation Levels in Distributed Transactions 115

7.1 Introduction 115

7.2 Modelling Distributed Schedules 116

7.3 Serializability of Distributed Schedules 118

7.3.1 	Local rules for distributed serializability 120

7.4 Modelling Distributed Transactions 122

7.4.1 	Protocol Rules 123

7.5 An example execution 125

7.6 Verifying Isolation Levels 127

7.7 Overlapping Prepare 128

7.8 Conclusions 130

Chapter 8 	Conclusions and Future Research Directions 132

8.1 Introduction 132

8.2 Commit Literature and Modelling Techniques 132

8.2.1 	Future Research Directions 134

8.3 Putting our Model to Work 135

8.3.1 	Future Research Directions 135

8.4 Automatic Verification Techniques 136

8.4.1 	Future Research Directions 137

8.5 Commit and Isolation 137

8.5.1 	Future Research Directions 138

8.6 Concluding Remarks 139

Bibliography 	 140

3

Chapter 1

Introduction

Computers and computing systems are becoming connected in ways that will

change the way people interact dramatically. Advances in computer networks [79]

will provide huge bandwidth communication channels between every corner of the

globe, connecting billions of autonomous computing devices into large distributed

systems. In the future, for example, embedded processors in electrical appliances

might communicate their usage patterns, via the Internet, to electricity providers

allowing them to better plan production.

Important building blocks of these distributed computing environments are

communication protocols that involve multiple (three or more) computing agents.

In these protocols groups of autonomous computing agents exchange information

to solve a common task. Examples are leadership election [29], atomic broad-

cast [49], and commit protocols [9]. In this thesis we will focus on commit proto-

cols. Commit protocols are designed to execute in a wide variety of environments.

For example, special variants of commit protocols exist for e-commerce when the

agents involved do not trust one another [81].

Almost as soon as a new problem or novel environment arises a commit pro-

tocol is devised that is claimed to solve that problem. These solutions are pro-

viding the foundations of new and exciting applications in environments such as

Intranets, wireless broadcast environments and high speed LANs.

It is important to fully understand a proposed protocol and to be confident

that the behaviour of systems of processes executing the protocol is as intended.

One way of achieving this is to formally verify properties of these systems. For

example, one might want to ensure that a client purchasing a book over the

Internet is only charged once the book is guaranteed to be delivered by some

third party delivery company, even in the event of message loss.

As in many other areas of computer science the high demand and rewards for

developing a rapid solution often leads to ad hoc implementations. Although these

4

solutions often do behave as intended (although many have reached production

and later have failed), initially only informal arguments are proposed to support

their correctness. In fact, proving the correctness of complex distributed systems

is notoriously difficult. In this thesis we present a novel technique for modelling

commit protocols. We demonstrate its applicability and show how it can be used

to understand the role of a wide range of commit protocols as they interact with

their environments and with each other.

1.1 Transactions

In almost all electronic business processes the unit of work can be thought of

as a transaction [34]. A transaction is a group of actions that are executed

(often by a transaction processing system) in a way that imparts certain guar-

antees on their behaviour. These guarantees are often referred to as the ACID

properties of transactions. 'A'tomicity guarantees that either all the actions of

a transaction take place or none take place. Transactions can also guarantee

'C'onsistency properties. For example in an e-commerce transaction electronic

money is neither created nor destroyed by e-transactions. Consistency is slightly

different from the other ACID properties in that it is the transaction itself not

the transaction processing system that provides the property. A system can im-

part different 'I'solation guarantees on its transactions. This limits the extent

to which interference is permitted between concurrently executing transactions.

Finally 'D'urability guarantees are often imparted upon a transaction by the sys-

tem in which it executes to ensure that if a transaction makes a change, then that

change will survive a level of system failure .

Transactions perform actions on data objects. The data objects represent

values of real world entities. For example, the wealth of a person is captured

by the data object recording her bank account balance in a database. For the

purposes of this thesis, we assume that the actions of a transaction fall into two

categories, read and write. Although, traditionally these actions represented the

actions carried out on data objects in a relational database, in this thesis, we will

take a much broader view [80]. A write action changes the state of a system.

This might be for example starting a robot welder in a car factory. Whereas a

read access gathers a value from an external environment. For example reading

a temperature gauge of a steel furnace.

In many transactions, it is often the case that the data objects of a transac-

'Obviously no system can protect against total destruction.

tion are distributed. For example, the transaction that represents the sale of an

online book requires actions to be performed for billing, delivery and inventory.

These actions are distributed across many different computers. For our purpose

a transaction can be distributed even if all the processes in the transaction reside

on the same computer system. We define a process as a thread of computing con-

trol that is autonomous and has the ability to fail without failing the system as a

whole. We therefore include single processor machines running multiple processes

or threads as distributed systems.

Although the theory of transactions was founded in early databases sys-

tems [28, 9], and extended to distributed systems with the advent of distributed

file systems and distributed databases [25], the same theory has found applica-

tions in many different new areas. See [80] for a survey.

The birth and exponential growth of the Internet and wireless communication

devices has meant that many millions of computing devices from vending ma-

chines to personal organisers have, or will soon have, the ability to communicate

with one another. It will not be long before large amounts of electronic business

is carried out by these connected autonomous processes 2 , as they participate in

distributed transactions.

There are three important properties that these new distributed computing

environments exhibit. Firstly, the numbers of processes involved in a transaction

can be very large. Secondly, the processes communicate by asynchronous message

passing. In asynchronous message passing systems, the delay a message is subject

to is not known by the processes in the system. Lastly, the reliability of the

message passing medium that connects the processes, the network, may be very

dubious. The processes themselves may also be unreliable. This means many

different types of failure are possible in the system.

1.2 Message Passing Protocols

The distributed systems that we are interested in, in this thesis, are often referred

to as asynchronous message passing systems [52]. In these systems processes

communicate by sending messages to one another. Each process resides on some

hardware platform and there is some kind of message passing medium which

connects the hardware. In this way the processes exchange messages to achieve a

common goal. In asynchronous systems the delay a message undergoes in order to

propagate from one process to another is unknown by any process in the system. It

2 \Ve use the term process to mean an autonomous thread of execution.

Net
failure.

is this property that makes the system asynchronous. In synchronous systems this

delay is bounded and the bound is known to the processes in the system. Another

category, partially synchronous also exists. Since asynchrony of message passing

is the weakest assumption it provides the most applicable modelling framework.

In some work, for example [27] the the asynchronous nature of message passing is

exploited fully. In reality of course there is some bound in which a message will

arrive if not lost. In the systems we model in this thesis we take this more practical

approach and do not use derive results exploiting total asynchrony. Figure 1.1

sets the scene.

Figure 1.1: A simple message passing system in which three processes exchange
messages in order to complete a common task.

We will also be interested in systems where messages are lost and systems

where processes fail and then perhaps recover. Different assumptions have been

made when modelling message and process failure. We will describe them in

more detail in chapter 3. In summary, we are mostly interested in the case that

messages are completely lost, sometimes referred to as omission failure, rather

than corrupted or interfered with. In the case of process failure we will study the

case that a process crashes and then perhaps recovers rather than models that

capture process misbehaviour.

The actions that processes are permitted or required to take while exchanging

messages and responding to failure constitute a protocol. Each process has some

internal state. When it receives a message it performs an action based on this

state and the content of the message it received. An action consists of changing

state and sending messages. The aggregated behaviour of all the processes as

they perform actions is a protocol execution.

1

1.3 Model Checking

Model checking [19] is an automatic technique for verifying properties of con-

current systems. The method has been very successful in verifying properties of

complex sequential circuit designs and more recently it has been useful for verify-

ing properties of communication protocols. Various methods have been employed

to model check these systems, but in order to do so, one must first construct a

formal model that describes the behaviour of the system. This often takes the

form of a labelled transition system. A point in the labelled transition system

describes the global state of the distributed system. A transition from one point

to another represents an action occurring within the system, for example a mes-

sage arriving at a process. The transitions are often labelled with the name of

the action.

The need for model checking is clear. As distributed systems become more

and more integrated in applications such as telephone switching networks, air

traffic control systems etc. we become more and more reliant on them. In order

to gain confidence in their correctness it is important to fully understand their

behaviour. By providing formal modelling techniques, and methods whereby

properties of these models can be formally verified, we make progress towards

being confident that the systems we model behave as intended.

1.4 Commit Protocols

Processes carrying out distributed transactions make use of commit protocols

to provide the atomicity and isolation guarantees of transactions. A commit

protocol is executed by processes in a system in order to provide these guarantees.

Commit protocols have been studied and developed for many years by academics

and practitioners alike [50, 9, 68].

In order to study the behaviour of a commit protocol, the protocol and the en-

vironment in which it executes are first modelled. The behaviour of these models

can be studied and, if the model is a true reflection of a potential implementation,

the model will reflect the behaviour of the commit protocol when implemented. It

is the modelling and verification of the behavioural properties of commit protocols

that is central to this thesis.

The changing and diverse environments in which distributed transactions now

execute give rise to a diverse set of modelling assumptions. In fact it is often

more important to accurately describe the way a commit protocol interacts with

its environment (for example how it reacts to failure within the system) than the

E1

way the processes exchange messages while carrying out the protocol.

In this thesis we will provide a modelling technique that can be used to cap-

ture the behaviour of many different commit protocols and the environments in

which they execute. We will demonstrate that this modelling technique is for-

mal enough to support rigorous arguments about the behavioural properties of

commit protocols. We will show it is flexible enough to model a wide variety of

commit protocols and distributed computing environments. It is scalable in the

sense that the arguments constructed using the model can be applied to arbitrary

numbers of processes. This is important since the number of processes involved

in transactions can be very large. We will also demonstrate that our modelling

technique is highly amenable to automatic verification using model checking.

1.5 Thesis Contribution

In this thesis we derive a novel modelling technique which is particularly appropri-

ate for modelling commit protocols and the environments in which they execute.

The main novelty of this technique is its use of views to abstract details of message

passing and communication failure. Our model uses rules to describe the actions

processes take in a protocol. Each rule has a pre-condition and a post-action.

If the pre-condition is satisfied at a process then the post-action may happen.

Rather than modelling message passing explicitly we prefer to maintain, within

the local state of a process, that process's view of other processes' local state.

This approach affords an intuitive and highly scalable and flexible framework in

which to describe commit protocols.

Using our technique we demonstrate its effectiveness by formally modelling

many existing commit protocols and environments. Our models of these protocols

are "modular" in the sense that a more complex protocol can be derived from

a simple protocol by extending the model of the simple protocol. Using our

technique we show first how to model simple protocols and environments and then

show, by modifying and extending the rules of our models, how more complex

protocols can be derived. We formally verify properties of commit protocols using

these models. For example we show how they provide transaction atomicity.

A new protocol, X3PC is presented. This was devised by first modelling an

existing protocol using our modelling technique and then extending this model

in a very natural way. In this new model we derive interesting properties and

formally verify them.

We show how to generate a labelled transition system from our views based

model that accurately captures all the possible execution behaviours of the proto-

col being modelled. In order to formally verify properties of commit protocols we

must formally specify properties. We do this by describing properties using tem-

poral logic in our case CTL [16]. Once a property has been described using CTL

we show how it can be automatically verified by model checking the transition

systems we previously generated.

Transactions can attain different levels of isolation depending on the type

of concurrency control methods they use to restrict how one transaction might

interfere with another. It is interesting to study how commit protocols are used to

provide transaction isolation. In order to verify that a commit protocol provides a

particular level of isolation we must first carefully define isolation levels. Recently,

the ANSI community provided a specification [3] of different levels of isolation.

This specification was criticised by Berenson et al. in [6] who gave a more complete

and rigorous definition. Unfortunately, this criticism had some shortcomings. By

building on the work of Berenson et al. we formally define the four isolation levels

first proposed by the ANSI community in a way that allows more transaction

concurrency than previous definitions.

By extending our definitions of isolation to distributed transactions we ex-

amine the role commit protocols play in providing transaction isolation. To do

this we use our views based model to describe the behaviour of a very simple

transaction processing environment. In this model multiple transactions perform

read and write accesses on multiple data objects before carrying out a commit

protocol. A subtle change to the model describes two different ways in which the

commit protocol can be invoked to provide two different levels of isolation. We

formally prove the level of isolation attained for each type of invocation.

1.6 Thesis Structure

In the next chapter we provide a survey of commit protocols and the environ-

ments in which they execute. This survey first looks at core literature on the

subject. The topic of blocking, an undesirable feature of many commit protocols,

is surveyed here. This leads to a discussion of protocols that provide resilience to

blocking (defined and discussed later), so called non-blocking protocols. Commit

protocols have been highly optimised over the years and we survey some of these

optimisations. As previously mentioned we are just as interested in modelling the

environments in which protocols execute as the protocols themselves. In the next

chapter we survey many different types of failure models that have been used

10

when describing commit protocol behaviour. Finally in this chapter we discuss

some of the newer application areas of commit protocols.

In chapter 3 we discuss existing modelling techniques that have been used

to model the behaviour of commit protocols. We discuss three main general

techniques that have been used; I/O automata, a knowledge theoretic approach

and the calculus for communicating systems. We compare these techniques before

introducing our views based model. We round off chapter 3 by using this views

based model to model a very simple commit protocol, two-phase commit.

In chapter 4 we extend the simple two-phase commit model by enriching the

environment in which it executes to include communication failure. We study

some properties of the behaviour of the protocol in this enriched model and show

how it can be made more resilient to failure. A model of three-phase commit

is derived from two-phase commit that is used to introduce the main topic of

this chapter, quorum based three phase commit protocols. Using our modelling

technique we describe progressively more complex protocols leading to the devel-

opment of a new protocol X3PC.

In chapter 5 we study the simple two-phase commit model introduced in chap-

ter 3. We describe two ways to automatically generate a labelled transition system

from views based models. These transition systems capture all possible behaviour

of protocol executions. We define properties of protocols using CTL [16], a tem-

poral logic, and verify these properties using the games based model checking

technique proposed in [76]. This technique employs a game between two players,

the verifier who tries to show that the CTL formula is true and the refuter who

attempts to disprove it. Players take turns by making moves on the transition

system or by performing operations on the formula to be proved. This approach

is very intuitive. The runtime of this approach, as for most model checking algo-

rithms, depends on the size of the transition system generated. It soon becomes

apparent that the transition systems even for very simple commit protocols can be

very large. This chapter examines a technique to reduce the size of the transition

system while still capturing protocol behaviour.

In Chapter 6 we consider the isolation properties of transactions. In this

chapter we produce novel definitions of isolation that formally describe the levels

proposed by the ANSI community. The motivation for our definitions comes

from the desire to study the role commit protocols play in providing transaction

isolation.

In chapter 7 we generalise the definitions of the previous chapter to encom-

pass distributed transactions. We then set about using our modelling technique

11

to model a very simple distributed transactions system. Using this model we

formally show the role a commit protocol plays in providing different levels of

transaction isolation. Chapter 8 provides a conclusion to the thesis and discusses

possible future research directions.

12

Chapter 2

Commit Protocols

2.1 Introduction

Atomic commit protocols have been widely studied, both by academics and prac-

titioners. Although the problem of atomic commit is fairly well defined, literature

relating to the subject is diverse. This diversity, is in the main part, due to four

interacting factors.

Firstly, modelling assumptions about the environment in which proposed

atomic commit solutions execute vary. Different modelling parameters, for ex-

ample asynchronous versus synchronous message passing assumptions, give rise

to different distributed system models and thus different commit protocol solu-

tions. Perhaps the most important modelling assumptions relate to the extent to

which communication and site failure is allowed in the model. For example, the

correctness of some proposed atomic commit protocols depends on the assumption

that once a message is sent it is guaranteed to be delivered [4].

Secondly, different protocol solutions to the atomic commit problem address

different design concerns or optimise the "cost" of execution of a protocol in

different ways. Examples include protocols that minimise logging to non-volatile

storage or reduce a protocol's vulnerability to certain types of failure. Although

we are particularly interested in behavioural properties, rather than performance

issues, many of the optimisations surveyed in this chapter were derived from

observations about protocol behaviour.

Thirdly, the generality of the atomic commit problem has meant that, over

the years, it has found applications in many different areas. Each area has posed

different research questions which have been answered in different ways. These

vary from the role of atomic commit in transaction processing monitors to inter-

operability issues and commit style transaction processing in e-commerce.

Lastly, literature tends to be divided between work that presents new atomic

13

commit protocols and work that produces negative results (e.g. non-existence

proofs). In the latter case authors need to reason about "the set of all commit

protocols". Their task is usually made simpler if they can define what constitutes

a commit protocol in such a way as to exclude obviously useless protocols (e.g.

a protocol that always aborts). This change of focus leads to different modelling

assumptions. For instance, in the former case, a new protocol might be presented

and then shown to be behaviourally correct assuming a known bound on message

delay. By contrast, when a non-existence proof is derived, no such restriction

needs to be placed on the model (in fact often the proof depends on restrictions

like bounds on message delay not being in place). This unfortunately leads to sets

of results that at first sight seem contradictory. However upon closer inspection

of the models presented we see that the correctness of a protocol that seems to

provide a counter example to a non-existence proof relies on assumptions that

are not found in the environment of the model where the non-existence proof was

derived. For example, it is well known that if sites can crash no two-phase commit

protocol can be non-blocking [72] 1 . This seems to contradict a non-blocking

two-phase commit protocol presented in [4]. In reality, no such contradiction

exists because in the latter text a communication service is assumed whereby

a broadcast message is guaranteed to be delivered by all or no recipients. A

method for implementing such a service is given, but in the worst case it makes

the protocol non two-phased.

It is perhaps then not surprising that within this diverse field of literature there

are few generally applicable modelling approaches in which the behavioural prop-

erties of commit protocols and their environments can be analysed. Furthermore,

well founded precise models of atomic commit protocols and the environments in

which they execute seem lacking for systems with more than a very low level of

complexity. Descriptions of more complex commit protocols tend to be less formal

and therefore only informal arguments are given to justify their correctness.

In this chapter we first focus on some fundamental work on the atomic commit

problem. We then broaden our discussion in order to survey the more general

field. Throughout the survey, the emphasis will be on the important behavioural

aspects of commit protocols and the environments in which they execute. This

will motivate the next chapter where a modelling technique for commit protocols,

used throughout the dissertation, will be presented. A large part of the disser -

tation is concerned with modelling and model checking. This chapter does not

contain a literature survey of general modelling techniques. This can be found at

'We will discuss blocking in much greater detail later in section 2.3.

14

the start of the next chapter before our model is presented. The focus of this the-

sis is on modelling and verification techniques of commit protocols and their role

within transaction processing. For this reason an in depth discussion of practical

transaction processing systems is inappropriate.

2.2 Core Atomic Commit Literature

Atomic commit protocols are best known in the field of distributed transaction

processing (TP) [34]. Bernstein et al. [9] provide an excellent account of the role

of commit protocols in this area. They provide a definition of the problem of

atomic commit which has been adopted extensively. Their distributed system

consists of a set of sites which communicate by sending messages to one another.

At the outset the sites are required to vote either yes or no in order to start

the process whereby they might terminate, that is, reach a "commit" or "abort"

decision. A definition of the atomic commit problem is given by means of a set of

axioms found in figure 2.1. A protocol that satisfies these criteria is said to solve

the atomic commit problem. Although these axioms have often been referred to

as a problem definition they do not provide a complete definition. For example,

although they make reference to failure they say nothing about the nature of

failure itself.

• AC1 No two sites that decide, do so differently.

• AC2 A site cannot reverse its decision once it has reached one.

• AC3 If any site decides commit then all sites voted yes.

• AC4 If all participants vote yes and no failures occur, then the decision
will be commit.

• AC5 At any point in the execution of the protocol, if all existing failures
are repaired and no new failures occur for sufficiently long then all sites will
reach a decision.

Figure 2.1: Axioms that capture the correctness of a commit protocol

The autonomous sites referred to model data managers (DMs) involved in a

particular distributed transaction. Each site will vote yes if it is able to commit

its part of a transaction or vote no if for some reason (for instance an integrity

constraint is violated) it cannot. An ACP is deemed correct if it fulfills axioms

AC1-5. Arguably these definitions seem to capture several different aspects of

15

correctness. AC1 is also sometimes referred to as atomicity. AC2 is often im-

plicitly assumed. AC3 is an important axiom of commit, without which commit

reduces to the problem of consensus [27]. AC4 and AC5 are slightly different in

that they put performance rather than behavioural restrictions on what consti-

tutes a commit protocol. Another important difference is that their reference to

failures suggests that both the protocol and the environment in which it executes

are important when one wishes to determine correctness. We will return to this

point later when we see that in order to give a complete account of commit pro-

tocol behaviour we often must include the behaviour of the environment in which

it executes.

The above definition of atomic commit seems to capture the problem at hand

although perhaps it is a little informal. It still leaves open questions like "What

is the meaning of sufficiently long in ACV", "What constitutes a failure (real

or just suspected) and how it is detected in ACV". Also under this definition

if a permanent failure is experienced then the participating sites need not reach

a decision. We will see that it is possible for some commit protocols to allow

non-failed sites to reach a decision in many situations where only partial failure

occurs.

As well as offering a definition of the atomic commit problem Bernstein et

al. discuss solutions. In the centralised two-phase commit (2PC) protocol [32], a

coordinator collects votes on whether or not participants can commit a transaction

and broadcasts whether or not there is unanimity for commit.

Problems arise with 2PC when site and/or network failures occur. Some work-

ing sites may become blocked: they want to commit the transaction, but they are

unable to proceed until one or more failures at other sites have been repaired.

The blocked site must hold locks on resources on behalf of the stalled transaction,

preventing other transactions from proceeding. In figure 2.2 a coordinator and

two participants attempt to carry out centralised 2PC. The coordinator sends a

prepare message to each participant who both respond with yes votes. Suppose

the coordinator receives these votes and then crashes. This leaves both partici-

pants blocked 2 . They cannot commit or abort without first contacting other sites.

After voting yes they are said to be in their uncertainty phase.

Despite its potential for blocking, the family of 2PC protocols, which include

centralised 2PC, decentralised 2PC [70], linear or nested 2PC [32] and so on, form

cornerstone solutions for the atomic commit problem. Centralised 2PC has been

2 0f course the participants might be able to contact one another and resolve the outcome
of the transaction, but in our simple example we insist that they rely on the coordinator to
determine an outcome.

16

Participant 1 	Coordinator 	Participant 2

epw 	 Prepa re

yes

CRASH

Blocked 	 Blocked

Figure 2.2: Particpants in two-phase commit become blocked after voting yes due
to a failure at their coordinator.

the subject of a great deal of research and for reasons discussed later it has been

adopted widely as a commercial solution.

Skeen and Stonebraker [69, 72] provide one of the first formal models of commit

protocols. Within this model several results are derived. In their model finite

state automata (FSA) are used to describe the behaviour of sites participating

in a commit protocol. Sites communicate by passing messages and take atomic

steps from one state to another based on incoming messages and their current

state. A step may cause messages to be sent.

In this model messages are assumed to propagate within a known time, from

one operational site to another. Because the message propagation time is bounded,

site failure or message loss can be reliably detected using timecuts (if a site does

not receive a message it is expecting, it can assume that the sender has crashed or

the message is lost). Sites incorporate timeout transitions intc their finite state

control to model the behaviour of "timing out" when waiting for a message.

Skeen introduces the concept of a termination protocol which is executed by

operational sites when a failure is detected in order to terminate a. commit protocol

(i.e. reach a commit or abort decision). He also introduces the concept of a

recovery protocol. After a site fails it might recover at which point it then executes

a recovery protocol. A protocol is said to have the independent recovery property

if a recovering site can reach a commit or abort decision without requiring further

communication. Clearly, independent recovery is potentially a desirable property

of a protocol since it allows sites to terminate transactions aitonomously. If a

protocol does not have this property, upon recovery, a site will have to contact

other sites to reach a decision. If, due to a failure, communication with other

sites is not possible the site cannot proceed and is thus blocked. If however

independent recovery is paid for (e.g. with extra messages) during normal failure

free execution (as it is in the three-phase commit protocol discussed later), this

17

overhead may be unacceptable if failures are uncommon.

To reason about protocol executions, Skeen describes the global state of the

distributed system he models as a vector of local site states together with a

message buffer containing any undelivered messages still propagating through

the network. A protocol step is then a transition in the global state brought

about by one of the sites taking a step. A step may also change the outstanding

messages in the message buffer, modelling the sending or delivery of messages.

Prepare
Yes

Participant Coordinator

Prepare

W

	

Yes.Yes 	 _N2_.

	

Commit 	 b:rt

Figure 2.3: Skeen's FSA for 2PC. The local states are initial (i), wait (w), commit
(c) and abort (a). Transitions are labeled r,, msg to represent the sending and
receipt of messages.

Figure 2.3 shows the FSA for 2PC. In Skeen's model the labels on the tran-

sitions represent a request/ response dialogue between the coordinator and its

participants. For example if a participant receives a prepare message in state i

it might then reply with a no vote and move to the a state.

Skeen developed the idea of concurrency sets. Two local states x and y are

said to be potentially concurrent if there exists a reachable global state where

two participants in the global state are in x and y respectively. Thus for at least

one possible execution of the protocol, state x is occupied by one site at the same

time that y is occupied by another site. In figure 2.3 the concurrency set for w

is {w, c, a). Thus, for example, in some execution one site might be in state w

at the same point at which a second site is in either w, c or a.

Skeen shows that if a protocol has a local state with both c and a in its

concurrency set then in some execution, if failure occurs at a site, then that site

cannot independently recover without potentially violating atomicity. This is

because the recovering site can't safely move to a since some other site might be

in c and similarly it can't move to c since another state might be in a. Since the

concurrency set of the local state w contains both c and a we can conclude that

a process may not be able to recover independently if it were to fail, in this state.

By adding a buffer state called pre-commit (pc), to the 2PC FSA the three-

phase commit (3PC) protocol is derived, see figure 2.4. 3PC does have the in-

dependent recovery property in the face of single site failure. In a committing

run of 3PC after voting a site receives a pre-commit message, moves to the pc

state and sends an acknowledgment to this message to its coordinator. Once the

coordinator has collected acknowledgements from all sites it broadcasts the com-

mit outcome. 3PC is non-blocking for single site failure', but it is not resilient

to blocking if message loss is possible. In this restricted model where only single

site failure is possible, once a failure has been detected a site can always make a

safe transition to a final state, without having to contact other sites. This has the

advantage that, provided only single site failures are possible, a recovery protocol

exists such that any recovering site can terminate a transaction and any locks on

resources held on behalf of that transaction can be released without having to

wait for a failure to be repaired. For example, let participant p be in its pc state.

If p times out, waiting for a message from its coordinator, it can safely move

to abort. This is because the timeout signifies that the coordinator has crashed

and that all the other participants, which are either in wait or pre-commit will

also timeout and move to abort. Figure 2.4 shows all the timeout and failure

transitions. If we allow double failure then we see this scheme has a major short-

coming. Suppose one participant is in state pc and its coordinator is also in state

pc. Now suppose both sites crash. The crashes happen so close together that

the participant (who is waiting for a commit message) does not get a chance to

timeout. By studying figure 2.4 we can see that upon recovery the participant

will move to state c, the failure transition. The coordinator upon recovery will

move to state a, the failure transition, and so an inconsistent global state will be

reached violating atomicity.

Although 3PC is non-blocking for single site failure, this extra resilience is of

little practical use because in practice the type of failures that might occur (e.g.

double failure) cannot be restricted. Furthermore, this extra resilience comes

at the cost of an extra round of messages, even during failure-free execution of

the protocol. These two facts have meant that 3PC has not been adopted in

commercial systems.

'Single site failure means that when a site crashes it is guaranteed to have detected the
possible crash failure of all other sites. Double failure occurs when one site fails before it
detects the failure of another failed site. 3PC does not provide resilience to blocking in the
latter case of double failure.

19

Participant 	 Coordinator

	

Prepare 'Ppare 	 -

Yes 	 \No 	 Prepare

[IIIIIIh\ \ N
Pre-commit 	

Prfl/ \

_J_J LJLJ
I Commit 	 Ack Ack

k r Commit
Failure 	-

- 	Timeout 	-- - -
C 	 ci

Figure 2.4: Skeen's FSA for 3PC. The local states are i (initial), w (wait), pc
(pre-commit), c commit and a abort.

Skeen also models a type of communication failure called network partition-

ing. In this model sites can become partitioned into groups. When this happens

messages in transit between sites are lost, and subsequently communication is

only possible between sites in each component of the partition. It is shown that,

in this richer model, no commit protocol can be non-blocking. We discuss an

improvement to 3PC later which circumvents blocking for certain types of parti-

tioning.

The formal model proposed by Skeen provides a structure in which to derive

some fundamental results. The main focus of this work provides sufficient condi-

tions which allow non-blocking solutions to the atomic commit problem. Perhaps

quite pessimistically, it is shown that the simple 2PC protocol does not have the

independent recovery property, thus upon recovery a site typically has to contact

other sites in order to resolve the outcome of a transaction. By adding a buffer

state the (3PC) protocol can protect against blocking in the presence of single

site failure. If message loss, site partitioning or double failure are possible, Skeen

shows no recovery protocol allows sites to independently recover, and so they

might block.

20

2.3 Non-blocking Protocols

The fundamental observation [72] that no protocol can solve the non-blocking

atomic commit problem in the presence of message loss motivated researchers to

devise protocols that partially solve the non-blocking problem. The non-blocking

result states that in the presence of message loss or network partitioning it is not

possible to devise a protocol that is non-blocking for all sites. This does however

admit the possibility of protocols that allow some of the sites to remain unblocked

for certain types of failure.

In [71] Skeen extends his 3PC protocol to provide a protocol, called Q3PC,

that is non-blocking for certain classes of communication failure. In this model

communication failure isolates sites by partitioning them into connected groups

or components. When a failure occurs the sites in each component execute a

termination protocol. An election [29] takes place to elect a new coordinator

within the group. This coordinator collects the states of the sites within that

group. If any site has committed or aborted the decision is passed on to the

non-decided sites in the component by the coordinator.

Some of the commit protocols we study in this thesis make use of quorums,

which have the desirable property that a common site exists in any two quorate

subsets of a set of sites. A quorum is a predicate Q over subsets of P which has

the following property.

VX, Y c P, if Q(X) A Q(Y) then X fl Y 0

The simplest quorum scheme is "Q(X) if X is a majority of sites" [63]. We assume

a majority quorum scheme is used in our examples, although any quorum scheme

with the above property is sufficient.

In a quorum based 3PC, if a quorum of sites exists in a component such that

at least one of these sites is in state pc and the others have voted yes or are

themselves in pc the coordinator of the new component can send a pre-commit

message and after receiving a quorum of acknowledgements sends a commit mes-

sage. Note, no other site outside of the connected component can abort or could

have aborted.

If the coordinator determines that a quorum of sites exists within the com-

ponent that have either voted yes, (if it determines that a site has voted no

and aborted then it can immediately abort itself and inform the other sites to

abort) or are in the pre-abort (pa) state', the coordinator sends a pre-abort

4 The pa state is introduced in the quorum based 3PC. It is a symmetrical buffer state to
PC.

21

message to the sites. On receipt of the pre-abort message the sites enter their

pa state and acknowledge the message. Once a quorum of acknowledgements to

the pre-abort message have been received an abort message is sent to the sites.

If any quorate partition persists for sufficiently long, the termination protocol

described will allow all sites in that quorum to terminate and thus these sites will

not block.

Kiedar and Dolev [41] show that it is possible for Q3PC to block even when

a quorum of sites form. In order to exhibit this pathological behaviour a com-

munication failure must happen during the termination protocol of Q3PC. They

call this repeated failure cascading failure. In this type of failure there are several

successive partial network failures, and possibly some repairs too, but the net-

work is not totally failure free at any time during the failure period. There may

be times of calm where some progress is made but more disruption soon follows.

If a network undergoes cascading failure after which sites again become con-

nected in a quorum, then the termination protocol of Q3PC can be insufficient

to prevent these sites from becoming blocked. Kiedar and Dolev introduce two

counters, namely last elected (le) and last attempt (la). The counters are updated

to ensure that if a network event disrupts a quorum of sites A and later a quorum

of sites B forms then the sites in A will have a strictly smaller la counter than

the those in B. In the new protocol proposed, called E3PC, if two sites are in the

pa or pc state, by using the la counter, E3PC can determine which site moved

to that state most recently. This extra knowledge can be used to ensure a con-

nected quorum does not block even in the event of cascading failure. In Kempster

et al. [43] we model the Q3PC and E3PC protocols in order to provide a more

precise account of their behaviour. Although E3PC does solve the problem of

blocking under cascaded failure it will tend to terminate transactions by aborting

them in many cases where it could have committed. By adding extra rules to our

model we enhance the termination protocol of E3PC (to derive X3PC) so that

a commit outcome is reached in many cases where an abort is reached in E3PC.

We will return to this topic in greater deatail in Chapter 4.

Cheung and Kameda [12] analyse the set of different possible termination

protocol executions of 3PC. They assign a probability to each possible different

partitioning of sites that might result from a network failure. For example, if

three sites are executing 3PC and failure takes place when one is in c and the

other two are in pc respectively, a possible partition is that two sites are grouped

in states c and pc, and another is separated in state pc.

Given a probability distribution over the set of possible partitions they define

22

the efficiency of a termination protocol as the expected number of sites which

are not terminated by that protocol. Termination protocols are grouped into

classes. A termination protocol is said to be site optimal within a class if it has

the minimum expected number of blocked sites among all termination protocols

of that class. Two classes of termination protocols are defined and site optimal

termination protocols are derived within each class.

2.4 Two-Phase Commit Optimisations

So far our review has focused on literature that analysed the problem of commit

in a rather isolated way. This analysis tended to focus on the subject of blocking.

In many commercial environments where sites are highly reliable, and message

loss only happens with a very low probability, and high transaction throughput

is required, a different focus is then more appropriate.

It was shown in [74] that the commit part of transaction processing typically

represents about one third of the total transaction duration. In a tightly coupled

or centralised system the cost of logging dominates commit time, whereas in a

geographically distributed system, the message latency becomes a more significant

factor. This suggests that the commit time for such distributed systems will

represent an even higher proportion of the total transaction time. This fact has

motivated researchers to develop optimised versions of commit protocols. A faster

commit protocol increases transaction throughput by not only reducing the time

each transaction takes to execute but also reducing the time transactions hold

locks, thereby increasing transaction concurrency in the system.

The simple models presented earlier do not take account of, amongst other

things, the read and write operations transactions perform before entering their

commit phase, how a group of concurrently executing transactions interact, and

how commit protocols interact with transaction logs. In order to analyse the

behaviour of these optimised commit protocols therefore, researchers developed

richer models that included these features.

An excellent survey of a host of commercial two-phase commit optimisations

was given by Chrysanthis et al. [14]. All the optimisations work in one of two

ways. Either the number of messages (or message rounds) is reduced so that the

overall commit process is faster or the number of forced log writes is reduced.

A forced log write requires the commit process to wait until the write has been

flushed to stable storage. This represents a significant overhead since writing

to non-volatile storage is usually several orders of magnitude slower than writes

23

to volatile storage. Currently, minimum volatile memory cycle times are as low

as 50 nanoseconds (DRAM) compared with minimum disk access of about 10

milliseconds.

To enable centralised 2PC to recover from site crashes it is necessary for both

coordinator and participant sites to record, usually in the transaction log, their

current state in the commit protocol as they proceed. If a site crashes, upon

recovery it can then determine the correct course to take in order to terminate

the transaction. In the most extreme case a site could force write a log record,

whenever it changed state. Upon recovery it would be guaranteed to be in the

state it was in before the crash and so could resume execution exactly at the

point it crashed. Writing log records to stable storage before every state change

is very expensive. For this reason researchers sought to minimise the number of

log writes required.

In the presumed abort (PA) [57] 2PC variant, if a transaction coordinator or

participant crashes, upon recovery, the absence of a log record for a transac-

tion implies that a transaction should be aborted. If no trace of the transaction

remains then no action need be taken, but in some cases partial effects of the

transaction may need to be undone. Given this presumption sites must force

write records when entering states where, upon recovery, the abort presumption

might lead to incorrect behaviour (i.e. a violation of transaction atomicity Ad).

Conversely, sites need not perform any writes to the log when the abort presump -

tion leads to correct behaviour. For instance, when a coordinator decides commit

it must force write this to its log. If it did not, and then subsequently crashed,

upon recovery it would find no record of the transaction and if interrogated by a

recovering participant as to the transaction outcome it would reply abort. The

coordinator might have already sent commit messages to other participants who

could have committed and thus this would violate atomicity.

The presumed commit (PC) 2PC variant [57] is similar to PA but the appro-

priate logging is designed to safeguard against violation of atomicity in the event

of an erroneous commit presumption. For example, before sending a prepare mes-

sage to participants a coordinator must force write a log record to logically erase

the implicit commit presumption. Suppose prepare messages were sent before

writing this record. One participant could receive the prepare message and reply

yes and enter prepare, while another could reply no and enter its abort state.

Meanwhile if the coordinator was to crash and recover it would interpret the lack

of log entries for the transaction as commit. If the prepared participant times

out waiting for a response from the coordinator and makes a further request it

24

will receive a commit message and move to c. Clearly, this violates atomicity.

Figure 2.5 describes the logging activity required by a committing or aborting

transaction using either PC or PA.

PRESUMED ABORT (ABORT CASE)
	

PRESUMED COMMIT (COMMIT CASE)

Coordinator 	 Participant

prep&e

prepare

es

-abort

Coordinator 	 Participant

initiation

prepare -

prepare

yes

commit

Commit

PRESUMED ABORT (COMMIT CASE)

Coordinator 	 Participant

prep-e

prepare

es

commit

commit ____..

commit

aCl(

end

PRESUMED COMMIT (ABORT CASE)

Coordinator 	 Participant

* initiation*

—prepare —>
prepare

abort

abort

.- ack -
end

Figure 2.5: Logging required for PC and PA. We denote a forced log write,
*prepare * and a non-forced write end.

At first sight it might be tempting to think that the PA protocol requires more

messages and log writes than the PC protocol since most transactions commit

and its presumption is to abort. Indeed for a committing update transaction PC

requires one less forced log write at each participant and one less message to be

sent from each participant. There are however other factors to consider.

Since many transactions involve sites that participate only as read-only sites [68],

and furthermore many transactions are completely read-only at all sites, these

sites need not be involved in the last round of the two-phase commit. The read-

only optimisation allows sites to vote read-only, and then behave as if they voted

25

no and release their shared locks'. Coordinators interpret a read-only vote as a

yes vote, but need not inform sites that voted read-only of the final decision.

Although the read-only optimisation can be used with PC, shared locks cannot

be released as soon as they are if it is combined with PA. If a transaction is read-

only at all sites, and presumed-abort with the read-only optimisation is used,

no forced logging and only one message per participant is required. PC, on the

other hand, requires the coordinator to force write an initiation record, to prevent

erroneous commit presumptions, before asking sites to vote regardless of whether

or not the transaction is read-only. Of course if the transaction coordinator knows

before starting the transaction that all the actions of the transaction will be read-

only then it need not force write a record.

If carefully analysed, for transaction mixes containing read-only operations,

presumed-abort is usually more efficient in terms of messages and log write over-

heads. This observation has meant that PA with the read-only optimisation

has been adopted in almost all distributed database and transaction processing

products. These include Tandem's TMF [30], DEC's VMS [7], BEA systems'

TUXEDO [40] and more recently Microsoft's DTC [20]. The 2PC protocol com-

bined with PA is now part of the ISO/OSI and X/Open distributed transaction

processing standards.

Attempts have been made to eliminate the requirement of the coordinator to

force write an initiation record, when using PC. The new presumed commit 2PC

variant [46] achieves this by maintaining two sets of transactions: the set of recent

transactions, and the set of potentially initiated transaction. We omit the details

here but by using these sets, after a crash, upon recovery a coordinator can safely

presume a transaction has committed if it is not potentially initiated.

Yet another strategy, used this time to eliminate the voting phase, gives rise

to the unsolicited update vote (UUV) 2PC variant [78]. In this protocol when a

participant site acknowledges its last transaction operation it also votes. After

receiving all the vote/ acknowledgments the coordinator can go straight to the

second phase and sends the sites the commit or abort decision. Unfortunately,

this strategy has the shortcoming that a participant must know when it has

finished all its operations for a particular transaction or as we will see in the early

prepare protocol it must act as though each action was its last. The early-prepare

protocol [75] works in a similar way. This time a site force writes a prepare record

every time it sends an acknowledgement of a read or write operation. If this is the

'Transactions often lock data objects to provide different levels of isolation. A shared lock
prevents other write accesses to a data object, while still allowing reads.

26

last action the coordinator can proceed to the last phase and send the outcome

to the participant sites. If the coordinator sends another operation request to a

site the transaction again becomes active at that site. Because sites must force

write a record with every operation acknowledgement the early-prepare protocol

requires an environment where the cost of writing to stable storage is low.

The coordinator log (CL) protocol and the implicit yes vote (IYV) protocols

work in a similar fashion to early-prepare but improve upon early prepare by elim-

inating the need for participants to force write log records with each acknowledg-

ment. In the coordinator log protocol this is accomplished by participants sending

log records with their vote. In this way logging is centralised at the coordinator.

The IYV protocol works in a similar way, while each participant still maintains

a transaction log, it eliminates the requirement for each participant to log a pre-

pare record by replicating the redo part of its log at the coordinator. Many

of these variants (e.g. IYV and UUV) can be combined with PC to remove the

requirement for PC to force write an initiation record when transactions are read-

only. The argument against PC and in favour of PA when read-only transactions

are present then swings more in favour of PC. There are many other two-phase

commit optimisations for instance last agent [68] and group-commit [31].

We have discussed 2PC protocol optimisations where the structure of the

commit protocol is flat. That is to say we analysed the situation where one

coordinator manages several child participants. Hierarchical variants of 2PC are

also common in transaction processing systems. In these variants coordinators,

both coordinate, and are themselves participants. This gives rise to a transaction

tree structure as found in IBM's LU 6.2 [23].

In this section we have surveyed several commit optimisations of the popular

2PC protocol. The emphasis has shifted away from analysing the behaviour of a

single commit protocol and towards the interaction of many concurrent transac-

tions and the way they interact in a distributed transaction processing environ-

ment. In so doing, the environment in which the protocols are studied has become

much richer. Locking and logging are introduced. Different types of transactions

such as read-only are considered and their impact on the optimisation of commit

protocols was examined. This extra complexity required modelling, not only the

commit protocol, but also the preceding read and write operations a transaction

performs during its execution. Modelling this richer environment is much harder

since not only are the components of the systems more complex but there may

be arbitrary numbers of transactions executing concurrently.

The models that describe these richer systems are particularly useful for be-

27

havioural analysis. They tend to describe the different local states of processes

in the system and also describe what kinds of messages are exchanged and when

they are exchanged. If one is interested in measuring the performance of a pro-

tocol, often expressed as the number of messages sent or log writes performed,

these types of models are often not appropriate. The reason for this is that in real

distributed transaction processing systems many optimisations are employed. For

example, messages are usually piggybacked to reduce the load on a network or

log writes are batched and then performed together. When analysing the role of

commit protocols from a performance perspective therefore other modelling tech-

niques are often more appropriate. To date techniques for analysing performance

have fallen into three broad categories. Prototype systems such as ARIES and

R* [57] are built and different techniques are tested. Discrete event simulation

models are constructed and performance is evaluated by executing these mod-

els with different modelling parameters [65]. Lastly, stochastic process algebra

models such as PEPA [15] or GSPNs [67] can be used.

2.5 Failure models

Current literature relating to commit protocols makes different assumptions about

failure. In general, failure is classified into two different categories site failure and

communication failure. A model may assume that neither, one of, or both of

these types of failure are possible.

2.5.1 Site Failure

Site failure is usually modelled by allowing sites in the system to crash. Some

models allow them to recover from a crash failure and some do not. The concept

of non-volatile state, often in the form of a transaction log, is often included in

models that consider recovery. Upon recovery, sites lose their pre-crash state

unless it was written to non-volatile storage before the crash. Lampson and

Sturgis [47] discuss physical devices and their failure modes, and how to build

stable storage and transactions on top of them. Many different models of crash

failure exist.

Another model of failure is so called Byzantine failure [45] in which a faulty or

rogue site may misbehave and produce spurious messages to disrupt a protocol.

Some interesting bounds are derived on the number of rogue processes that are

allowed in a protocol that solves the so called byzantine agreement problem before

it is disrupted to such an extent that the protocol fails. A comparison of Byzantine

agreement and atomic commit is given in by Gray in [33].

2.5.2 Communication Failure

Communication failure is usually modelled in one of three different ways. The

first assumes the sending and receipt of messages is unreliable. A message might

be lost after sending and thus never received. This type of failure assumption

can be found in the "best effort datagram" model on which the Internet Protocol

(IP) is based [64]. Basu et al. [5] classify two types of unreliable link 6 , known

as eventually reliable, and fair lossy links. A fair lossy link guarantees that if an

infinite number of messages are sent, then an infinite subset of these messages

are received. Clearly such a link can lose an infinite number of messages. With

an eventually reliable link, there is a time (not necessarily known) after which

all messages sent are eventually received. Messages sent before that time may

be lost. Any link that is eventually reliable is also fair lossy. From a practical

perspective, the eventually reliable and fair lossy links seem to capture message

passing behaviour in networks that might fail but at some point recover.

To see why the fair lossy assumption is useful consider two processes, a sender

s and a receiver r connected by a bidirectional channel over which they pass

messages. Process s wishes to send a message m to r. If we put no restriction

on message loss it is obviously impossible to ensure that r receives rn. If however

the link is fair lossy one can adopt the following strategy. s can send copies of m

forever, and r is guaranteed to eventually receive m. We still have the problem

that s never stops sending messages. To fix this r can send an ack(m) on every

receipt of ri-i and once s receives the ack(m) it stops sending. This in turn means

that r will stop sending ack(m). Note the protocol is quiescent: eventually no

process sends or receives messages.

If we now also allow processes to crash the situation changes. The simple

protocol above still works but, if for instance r crashes before sending an ack(m)

s will send messages forever. The protocol is no longer quiescent. It turns out

that there is no quiescent protocol that ensures that even if s and r do not

crash then r eventually receives m. This would appear to suggest that quiescent

reliable communication channels cannot be built on top of unreliable channels in

asynchronous message passing systems. The problem centres around the inability

to detect whether a site has failed or if it is just slow in responding. In fact this

is the crux of the well known impossibility of consensus result of [27].

A failure detector [11] is an oracle that a process can query. It produces a list of

6 An unreliable link contrasts with a reliable link which never loses a message.

29

processes that it suspects may have crashed. The list provided is unreliable in the

sense that it might at any time make errors of omission and errors of commission in

compiling its list of crashed processes. The eventually perfect failure detector OP

has the following properties: (1) if a process crashes there is a time after which it

is permanently suspected, and (2) if a process does not crash for sufficiently long

then there is a time after which it is never suspected. Using OP we can modify

our simple protocol to provide quiescence. If s has not received an ack(m) from r

it periodically consults OP to see if r is suspected. If it is not suspected s sends

a copy of m to r. Clearly, the protocol is now quiescent. It turns out OP is the

weakest failure detector that can be used to provide quiescent communication [2].

Unfortunately, OP is not implementable in asynchronous systems so it would

seem we are no nearer to solving the problem of quiescent communication over

lossy links with process crashes. The goal posts have shifted but the problem still

remains. However, Aguilera and Toueg [1] introduce a heartbeat failure detector

7-15 that is not limited to just producing lists of suspects. Essentially each process

sends a keep alive messages to all others. At p, ?-W(q) outputs the number of keep

alive messages p has received from q. Using 9W, quiescent reliable communication

is possible. Obviously, the fl8 mechanism itself is not quiescent (because of the

keep alive messages) but it can be implemented as an operating system service.

Although of theoretical interest the theory of failure detectors does not seem

to reflect message passing systems in a practical sense. For instance the TCP/IP

protocol [22] has been used for many years to send billions of messages over

the Internet (which does not provide reliable links) reliably. In essence TCP

implements a protocol where s sends m until it receives an ack(m). If no ack(m)

is received it will retry but there is a bound on how long it will continue to retry,

likewise r will not try to ack(m) forever. Once this bound is reached TCP reports

that the link or connection has been lost and gives up. In a practical sense this

protocol provides reliable communication over links that may lose messages.

A second interpretation of communication failure is the partition model, al-

ready seen in our discussion of Skeen's quorum based protocol. In fact, the two

models are related. If messages between one group of sites and another are lost

for a period of time (perhaps because a router or bridge between those sites has

failed) we could conclude that the sites are partitioned. Other relationships exist

between site failure and communication failure. If a site is relied upon as a third

party to forward messages (for instance using IP forwarding), and that site fails

7 A complex sliding window is implemented with backoff and resend parameters for increased
efficiency.

30

this causes communication failure. Furthermore, the distinction between site and

communication failure is not always helpful since many protocols guarantee reli-

able communication between two sites as long as they both remain operational

for "long enough". They do this by means of acknowledgements and re-sends.

Ricciardi et al. [66] discuss the relationship between the partitioning model and

the lossy link model. Once again there is a great diversity in the different types

of failure assumptions made within commit protocol models. This often leads to

a lack of clarity in their specification and analysis.

Figure 2.6: Relationship of different failure assumptions in protocol models.

Some message failure models allow for messages to be corrupted or maliciously

altered while in transit. From a practical perspective corrupted messages are

of little interest as algorithms exist which can detect, with very high accuracy,

corrupted messages and either rectify the corruption in the case of Hamming

Codes [39], or detect the corruption and discard the message, in the case of

cyclic redundancy checks [26]. More interesting is the case where messages are

deliberately altered. For instance, an attack on TIP, an Internet transaction

commit protocol is possible by maliciously altering messages [44]. Again from a

practical perspective, using crytography [79] messages can be securely signed and

encrypted to prevent this type of malicious attack. Figure 2.6 summarises the

domain of different failure assumptions that can be made in protocol models.

31

2.6 Casting the Net Wider

Atomic commit protocols have been adopted in many different areas. They are

used for example in IBM's reliable message queue, MQSeries [56] to provide trans-

actional semantics in messaging. Kempster et al. [42] discuss how to extend

network management protocols with atomic commit protocols to provide trans-

actional properties to network reconfiguration. Luan and Gligor [49] use them

to implement a novel atomic broadcast and Li et al. [48] propose a commit style

protocol to facilitate connection setup in telecom switches. Tygar [81] discusses

commit style protocols and outlines some open research questions in the growing

area of e-commerce. Thanisch [80] provides a survey of the role of atomic commit

protocols in many of these less traditional environments.

The extent to which computing devices are becoming connected is staggering.

The advent of wireless communication means that almost any device mobile or

static can be connected to a network. Economies of scale are reducing the cost of

sending messages over these networks dramatically. For example, it is now usually

more expensive to produce and send a domestic customer's phone bill than it is

to physically route their calls. As this trend continues more and more challenges

will face protocol designers that want to provide new applications which exploit

these new opportunities.

2.7 Conclusions

In this chapter we have reviewed the role of commit protocols in many different

areas from transaction processing to e-commerce. Of particular interest was the

way atomic commit protocols behave in isolation, particularly with respect to

blocking, and also how they interact when they take part in more complex trans-

action processing systems. Although many different models have been proposed,

no one model or modelling technique seems to be generally applicable. Further-

more, assumptions about the distributed environment in which the atomic commit

protocols are studied varies widely. This is particularly true of assumptions made

about site and communication failure. For these reasons it is difficult to mould

the various models of commit into a hierarchy. Some models are non-comparable

and thus a unified notation for all models is very difficult.

32

Chapter 3

Modelling Atomic Commit
Protocols

3.1 Introduction

Although in the majority of literature on commit protocols pseudo-code and ad

hoc arguments and notation are used, attempts have been made to use general

modelling techniques. In this chapter we will examine three such modelling tech-

niques for distributed systems: the I/O automata model [51, 52], a knowledge

based model proposed by Hadzilacos [36] and the calculus for communicating

systems [55]. We discuss the merits of each and examine how they have been

used to provide a formal basis for analysing various aspects of commit protocol

behaviour. After summarising the strengths and weaknesses of these approaches

we introduce our views based modelling technique and compare it to the other

modelling techniques presented.

3.2 I/O Automata

I/O automata provide a general modelling framework for describing a wide variety

of distributed message passing systems. An I/O automaton models a component

in a distributed system. Essentially it is a state machine with transitions that are

associated with actions. These actions are one of three types: input, output, or

internal. Input and output actions are used to communicate with other automata

whereas internal actions are invisible outside of the automata. An example of a

simple I/O automaton model of one bit latch is given in figure 3.1. A latch

has an output action, out and an input action in whose purpose is to store a

single bit of information. To describe distributed systems using I/O automata

smaller automata are composed into larger systems by matching the input of one

33

in <D-0u-t---P-
Figure

 3.1: A Simple single bit latch I/O Automaton.

automaton with outputs of others with the same name.

Formally an I/O automaton, A, consists of five components:

• sig(A), a signature consisting of three disjoint sets of actions. The internal

actions int(A), the output actions out(A), and the input actions in(A). We

denote all the actions of A, acts(A).

• states(A) a (possibly infinite) set of states.

• start(A) a non-empty set of initial states for A.

• trans (A) a (possibly infinite) state transition relation. trans (A) c states (A) x

acts(A) x states(A), for every state s e states(A) and every input action

ir e in(A) there is a transition (s, ir, s') e traris(A). The transition relation

is often specified as a set of pre-conditions and post-actions see Table 3.1.

The pre-condition restricts the set of states in which an action may take

place and the post-action produces a new state from the state in which the

action was applied. The set of pre-conditions, taken together, must ensure

that for each input action and state there is a transition.

• tasks(A), a partition of the set of external actions used to define what it

means for the automaton to have fair executions.

The transition relation of I/O automata is usually given in a pre-condition, post-

action or effect style. If a pre-condition is true then an action may happen. The

action or effect is an indivisible event that takes a state s satisfying the pre-

condition to a post state s'. For example the one bit latch I/O automaton is

shown in Table 3.1.

An execution fragment of an I/O automaton is a finite sequence,
711 	 71,.

	infinite
	 711 	 71,.

S0 	" S . . . Sr-1 	,' Sr, or infinite sequence 	,' s . . . , s_ 	' Sr 	" ... of

alternating states and actions of A such that (Sk, 7k+1, Sk+i) E trans(A) for every

k > 1. An execution fragment beginning with a start state is called an execution.

The set of executions is denoted exec(A). It is often useful to discuss just the

external behaviour of A. We call this a trace of A, denoted trace(A) which is the

34

Signature
Input: in 	 Output: out

States
boolean b; initially false

Transitions
in 	 out
precondition: 	 precondition: b
b:=tt 	 b:=ff

Tasks
{{out}, {in}}

Table 3.1: An I/O automaton for simple one bit latch

subsequence of an execution restricted to just the external actions. For example

a trace of the one bit latch automaton is in out in out.

The I/O automata model has an implicit notion of fairness. It is argued that

the most interesting executions are those that are fair'. In other words if the task

classes represent independent threads of execution within each automaton each

thread should not be starved within any execution. More formally an execution

fragment a of A is said to be fair if the following condition holds for each class

C of tasks(A):

. If a is finite, then C is not enabled in the final state of a.

• If a is infinite, then a contains either infinitely many events from C or

infinitely many occurrences of states in which C is not enabled. This is

sometimes referred to as strong fairness [59]

A key property of I/O Automata is the ability to compose multiple automata

into larger systems. When two automata A and B are composed, denoted A I I B,

the composition operator identifies actions with the same name, say 7t, from A

and B. In the composed automaton when a component takes a step involving

it both A and B take a step involving it. Several restrictions are imposed: 1) A

and B must have disjoint sets of internal actions because internal actions should

not be seen outside of the automata, and so should not take part in communi-

cation. 2) A and B should have disjoint output actions, this ensures that only

1[is also interesting to see what are the consequences for a system which does not guarantee
fairness.

2 A class C is said to be enabled in state s when some action in C can happen from s.
3 We consider the case for two, but the case for many is similar.

35

one output can control inputs of other automata. There is no restriction on the

number of inputs a single output action may control. The transitions of the com-

posed automata are obtained by allowing all the component automata that have

a particular action it to participate simultaneously in steps involving it, while all

Other component automata do nothing. The task partition of the composition is

formed by taking the union of the component's task partitions. A hiding operator

\ is also defined so that output actions can be internalised preventing them from

being used for communication. For example the latch automaton, L, of figure 3.1

could be restricted so that it could only produce output using such an operator

thus L\{out}. A renaming operator is also introduced. L{out/synch} is the I/O

automata L with its out action renamed synch. Figure 3.2 shows how two single

bit latch automata can be composed into a two bit buffer.

in synch 	 synch 	out
Ll 	 11 	L2

in C:: out

(LI II L2)\synch

Figure 3.2: Composing two one bit latches.

We have discussed how I/O automata can be used to model distributed sys-

tems but it is useful to see how, once modelled, properties of these systems can

be proved. Because the set of all execution traces captures all possible behaviour,

safety properties over these traces can be expressed, by asserting that in every

trace (or fair trace) of an automaton some undesirable action never happens.

Similarly, liveness properties can be expressed by stating that in every trace (or

fair trace) a desirable action eventually happens.

The I/O automata model lends itself to compositional reasoning. Suppose

automaton A is constructed by composing a set of automata {A : i e I}.

Suppose also that A i satisfies some trace property P and each property P belongs

to a special class of trace properties that are preserved under composition. We

can then deduce that the composed I/O automaton A will satisfy the composed

trace property P. We will return to this subject later in chapter 5 when we

carefully define these types of properties for our views based model.

4 This is sometimes referred to as a strong safety property as opposed to a weak safety
property where at least one trace must have the property.

36

Compositional reasoning is very useful as it facilitates the proof of properties

of larger systems by proving properties of their constituent parts. A technique

known as simulation is also commonly used in I/O automata to show that a

higher level abstraction, say automaton A, is equivalent to (exhibits the same

external behaviour as) a lower level automaton say B. A formal account of what

it means for A to simulate B can be given. This technique has been used to

give hierarchical proofs of properties [53] of distributed systems. It can also be

automated to some extent with the aid of theorem provers. Nipkow [60] uses the

Isabelle theorem prover and Søgaard-Andersen et al. [73] use the Larch theorem

prover to this end.

Das and Fekete [21] use I/O automata to model a transaction processing

system. The components of the system are transaction automata which model

the operations of a transaction, local manager automata that model a distributed

commit protocol and crashing object automata that model resources that are

accessed by the operations of transactions. Requirements are given for each of

the automata that constitute the overall system. It is then shown that if all these

requirements are met the composed system is correct. A particular instance of

a commit protocol (2PC) automaton is given and it is shown that it meets their

requirement specification. Perhaps the most interesting part of this work is its

compositional approach.

I/O automata provide a framework that is both general and formal in which to

specify, model and verify properties of distributed systems. Unfortunately, due to

its generality, when modelling asynchronous message-passing systems, message-

passing is modelled explicitly. Furthermore, to model systems with arbitrary

numbers of processes I/O automata and their message passing connectives are

usually parameterised. This means that automating proofs of properties modelled

in this way becomes difficult. Our model presented later in this chapter addresses

these problems by introducing views. Using views means that message passing

need not be made explicit within the model.

As we have seen a notion of fairness is implicit in the I/O automata model. In

our views based model we make no restrictions on executions but instead prefer to

include this as part of the property being checked. This reduces the complexity of

the model and furthermore accommodates different definitions of fairness such as

those found in [59]. As we shall see later, in some cases, our modelling technique

allows us to reason about systems with arbitrary numbers of processes. In so

doing we will examine classes of properties that are preserved by compositional

operators similar to the techniques used in I/O automata.

37

3.3 A Knowledge Theoretic Approach

A different approach to modelling and analysing commit protocols is rooted in

knowledge theory [38]. The I/O automata technique provides an operational

semantics, where the details and contents of messages and the state of each process

and its communication medium are modelled explicitly. There are also fairness

constraints placed on the actions of the automata. In contrast the knowledge

based approach constructs arguments based on the information that must be

present, at a particular site, or within a group of sites, in order, for example,

that that site may commit or abort a transaction. In so doing it uses a very

general model of distributed computation and then constructs arguments about

the amount of information which a site must acquire, if for example blocking is

to be avoided in the presence of site failure 5 .

3.3.1 Modelling Distributed Systems

Hadzilacos [36] constructs a model of a distributed system that consists of a set

of sites H = {p, q,. . . } and a message buffer M. Sites in H communicate by

exchanging messages through the message buffer M. A site p can execute one of

three types of actions, where m is the value of some message.

• SEND(m, q) process p sends a message m to process q;

• RCV(m, q) process p receives a message m from q, a null message) is intro-

duced to model the case where p tries to receive a message from q but there

is no message in M for it to receive.

• LOCAL this models a process taking some internal step. A special LOCAL

action FAIL exists to model crash failure. Once a process executes this

action it can take no more actions.

Hadzilacos models an execution of a distributed system as a run. Informally

we imagine that there is an omnipresent observer that samples the states of the

processes and the message buffer at discrete real time instances 0, 1, 2. . .. The

state of a process, at a point in a run, is the (finite) sequence of actions it has

executed up to that point in the run. The state of a message buffer is the set

of messages (messages can be assumed to be unique by tagging each one with a

unique identifier) that have been sent but have been neither delivered nor lost.

We can think of the sampling instants as the ticks of a perfect clock available

5 A later result introduces the possibility of message loss.

to the observer; this clock is a fictional device - in particular, we assume that

processes do not have access to it.

We will now introduce some notation on sequences. Let x, y be sequences

of actions. We write e E x to denote that action e is in x. x o e denotes the

sequence resulting by appending e to x. x < y (x <y) denotes that x is a prefix

(proper prefix) of y; in that case we write y \ x to indicate the sequence whose

concatenation to x equals y. We denote the length of sequence x, 11 x 11. We

adopt the convention that the letters p, q denote processes from H and i, j, k, I

denote natural numbers.

Formally a run is a function r mapping each pair (p, i) to a sequence of actions

(the actions executed by p up to and including time i) and the pair (M, i) to a

set of triples of the form (q, m, p) where m is a non-null message (the contents of

the message buffer just before the actions at time i + 1 are performed). (q, m, p)

indicates that q sent message m to p. A run r must satisfy the following properties:

• r(p, 0) is the empty sequence and r(p, i) < r(p, Z'+ 1) - initially, each process

starts having executed no actions and the sequence of actions taken by a

process can only be extended or remain unchanged with each clock tick.

• 11 r(p, i + 1) \ r(p, i) 11 < 1 - for each i, the clock ticks sufficiently often so

that no process performs more than one action between successive ticks.

• If FAIL e r(p, i), no event may follow FAIL in r(p, i).

• If RCV(m,q) = r(p,i + 1)\ r(p,i) and m =A A then (q,m,p) e r(M,i) - a

non-null message can be received only if it was in the message buffer in the

previous time instant.

• r(M,0) = 0 and, for all i > 0, r(M,i + 1) c r(M,i) U {(q,m,p)

SEND(m, p) = r(q, i+ 1) \ r(q, i)} \ {(q, m, p) : RCV(m, q) = r(p, i + 1) \ r(p, i)}

- the message buffer contains only messages that were sent but not yet re-

ceived. If SEND(m,q) e r(p,i), RCV(m,p) V r(p,i), we say m is a lost

message.

Using this structure we can model a distributed system as the set of all possible

behaviours of its constituent components, i.e. of the processes and the message

buffer. Thus the distributed system is defined as a set of runs. Not all runs are

valid and so we require some closure properties to capture the idea that processes

can only effect each others behaviour through communication actions. We can

informally state these as follows.

Wei

Si The ability of a process to perform a LOCAL or SEND action is determined

by its own behaviour, not the behaviour of other processes.

S2 The ability of a process to attempt to receive a message from some other

process is determined by its own behaviour; the message it actually receives

(possibly null) depends on other processes.

S3 The behaviour of a process after it sends a message cannot determine the

recipient's ability to receive that message.

S4 Process q can prevent p from performing RCV), q) only by sending messages

top.

At this point it is useful to define some further notation and terminology.

A point is a pair (r, i) where r is a run and i is a natural number. We say a

run s extends point (r,i) if for every j < i and every p, s(p,j) = r(p,j), and

s(M,j) = r(M,j) i.e., up to time i, all processes and the message buffer behave

identically in r and s.

For any process p a relation , is defined between points as follows: (r, i)

(s, j) iffr(p,i) = s(p,i). Informally this says that (r,i) and (s,j) look the same to

p. The relation can be extended to sets of processes as follows: (r, i) p (s, j) if

r(p, i) = s(p, i) for every p e P.

3.3.2 A Knowledge Logic

Hadzilacos makes use of a knowledge logic introduced by Halpern and Moses [37]

in order to state precisely and succinctly various properties of distributed com-

putations.

For a fixed set of processes fl and primitive propositions F, including the prim-

itive propositions true and false, the set of formulae can be defined inductively,

where P c H, as follows:

• Every primitive proposition is a formula.

• If 1i and '12 are formulae, so are ', 	V 	, D, 	, K1

We write (r, i) 1= 1 to express that 1 is true at point (r, i). Truth of a formula

at a point is defined by structural induction on the syntax of I as follows.

• If 1' is a primitive proposition then its truth is defined by an interpretation

function I() that specifies at which points a primitive proposition holds.

• (r, i) = -4 if it is not the case that (r, i) = I.

Rol

• (r,i) = i V cI if (r,i) = 	or (r,i) =

• (r, i) = 01' if for every run s extending (r, i) there is some j ~! i, (s, j) =

- i.e. 1 is true now or will eventually become true at some point, in any

possible future.

• If 4D = D, (r, i) = 1 if for every run s extending (r, i) and every j > i,

(s, j) = 4D - i.e. 'I is true now and will remain so in any possible future.

• (r,i) 1= KT' if for every (s, j) such that (s, j) p (r, 0, (s, j) = 1 i.e.,'I'

is true at every point which, from P's (collective) point of view, are indis-

tinguishable from the present point.

The definition of 	is known as the total view interpretation of logic; other

definitions are proposed in [37]. The following facts follow from these definitions.

• If (r, i) = 	then (r, i) = 	i.e. only truths are known.

• If (r, i) 1= 	and P c Q then (r, i) j= KQ.

• If (r,i) 	and (s, j) p (r,i) then (s,j)

In order to model a commit protocol some primitive propositions are intro-

duced namely; YES which is true at a point if p has voted yes (similarly no),

COMMIT which is true if a process has committed (similarly aborted). The propo-

sition FAILED is also introduced. A formula c1 is local to a set of processes

P if the truth or falsity of 1 is always known to P. That is, for all (r,

(r,i)

Using this knowledge logic Hadzilacos defines the problem of Atomic Commit-

ment by restricting possible runs. For example, initially a process has not cast

its vote and, until it does, it can vote either way. This can be stated formally as

follows:

for all points (r, i) and for all p E H, (r, 0)1= — (YES V NO R)

To express the property of AC2 that the decision to commit is reached only if

all process' votes are yes we write

for all points (r, i) and for all p e H, (r, i) 1= COMMIT 	A YES,
qEH

Within this knowledge model Hadzilacos also defines what he calls 2PC level

of knowledge. A protocol has this property if, for all runs, a site commits if and

41

only if it is known by that site that all sites have voted yes.

for all points (r, i) and for all p E H, (r, i) 	COMMIT if (r, i) 	K A YESq.
qEll

It is then shown that any protocol that solves the AC problem must exhibit

this property. Suppose not. Thus, for some point (r, i) and p E H, (r, i) =

COMMIT but (r,i) = 'Kp A q11 YES q . Therefore there must exist some (s,j)

(r,i) such that (s, j) 	Aqll 'ES q . Since COMMIT is local top, (r,i) = COMMIT

and (s, j) 	(r,i), it follows that (s, j) = COMMIT. But then (s, j) contradicts

AC2.

A 3PC level of knowledge is also defined. It is shown that for a protocol to

be non-blocking (when site but not communication failures may happen) a site

commits if and only if it knows every non-failed site knows all sites voted yes.

Using these techniques two interesting results are derived. Firstly, a non-existence

proof for a non-blocking atomic commit protocol in the presence of communication

failure is constructed. This supports Skeen's alternative proof. Secondly, a lower

bound of 2(n - 1) on the number of messages required by a protocol to solve the

atomic commit problem in this model is given. In fact, linear 2PC [32] achieves

this bound. Hazilacos makes no attempt to model recovery. When a site crashes

perhaps unrealistically it never recovers.

The modelling approach used is general, formal and concise. It focuses on

what is known and what must be known in a system to solve the atomic commit

problem. The declarative style means that protocol descriptions are divorced from

implementation details. One of its major strengths is that because it focuses on

what level of knowledge is acquired by sites, it is not burdened by having to model

message passing explicitly. This important observation motivates our views based

model where we incorporate a site's knowledge of other sites state explicitly within

that site's state. This abstracts the details of message passing while at the same

time maintaining some of the desirable properties of an operational modelling

approach.

3.4 The Calculus for Communicating Systems

Many process algebras have been proposed for modelling distributed systems.

CCS [55] provides a framework in which to describe communicating processes or

agents. Agents have state and perform actions which are either input, output

or so called silent or r actions'. After performing an action an agent changes

'The r action is similar to the internal actions of I/O Automata.

42

state. Operators are defined allowing, amongst other things, the composition of

agents. In a composed agent, communication can take place between two agents

when one agent has an output action with the same name as another agents input

action. In this case both actions can happen (sometimes called a handshake) to

form a silent T action. We can model a FIFO buffer below as:

del
FIFO() 	 = send(m). FIFO (m)

def
FIFO(mi ,. . . ,m) = 	ëY(m). FIFO (m i ,. . . ,m_ i)

+send(m). FIFO (m, m 1 ,.. . , Mn)

A transition semantics is given for CCS in which agents exhibit behaviour as

sequences of actions. For example for the model above we have the following

transition semantics.

FIFO()
send(m)

FIFO(mi ,. . .,m) —4

FIFO(m1 ,...,m)
send(m

—+)

FIFO (m)

FIFO(mi ,. ..,m_ 1)

FIFO(m, m 1 , . . . , m_)

Equivalence of agents can be defined using bisimulation. This is similar to the

simulation techniques used in I/O automata. For example, consider the two CCS

agents that model a ticking clock below.

C1 1 I tick.C1 1 + tick.tick.0 1

C12
del
= tick-C12

C1 1 is bisimulation equivalent to C12 because any action C1 1 performs can be

matched by C12 and furthermore the resulting agents reached after this action

are themselves bisimilar.

Using the transition semantics one can unfold a CCS agent into a transition

system. For example the transition system of C1 1 and C12 are given in figure 3.3.

Behavioural properties of agents can be verified using model checking techniques

r/ c1l tick.tick.C1 I
OC12

Figure 3.3: Transition systems generated from two simple of a simple CCS agents.
All transitions are tick transitions.

on the resulting transition systems. For example the games-based model checking

techniques of Stirling [77] are used to check modal i-calculus properties of CCS

agents. An implementation of these techniques exists in the Edinburgh Concur -

rency Workbench [58].

To model a commit protocol, for example Centralised 2PC, using CCS we

define a set of participant processes P as CCS agents. We also define a co-

ordinator agent C. A protocol system is then the composition of these agents

P1 P2 ... PTI C. Each process communicates with the coordinator by means of

handshakes. Often we wish to model failure or message passing delay. In this

case we must introduce some kind of environment like a message buffer. Agents

now communicate through the message buffer. When modelling commit proto-

cols using I/O Automata a similar strategy is used. Simple I/O Automata are

defined to model components in the commit protocol and then they are composed

to model the whole system.

CCS provides a very general modelling technique. Unfortunately this gener-

ality means that when used to model message passing systems such as commit

protocols the state space of the resulting transition systems is very large even

for very simple commit protocols. This state explosion problem, in the case of

centralised commit protocols, seems to be due to two factors. Firstly if messages

are modelled explicitly a coordinator must keep a state to reflect which out of

the n participant agents have voted yes. There are 2" different states between

nobody voting yes and the state where everyone has voted yes. Although differ-

ent techniques exist for reducing the number of states, the problem seems rooted

in the requirement to explicitly model message passing with agent handshakes.

Secondly, a naive approach to modelling arbitrary numbers of sites gives rise to

infinite state spaces as we describe later in chapter 5.

The state space explosion problem aside, in basic CCS there is no mechanism

for specifying the behaviour of individual agents using the pre-conditions and

post-actions method, as there is in I/O Automata. This means it can be very

difficult to write down succinctly the behaviour of complex protocols. Perhaps

for these reason CCS has not been widely adopted as a modelling technique for

commit protocols.

3.5 Comparing Techniques

Each of the models we describe has some similarities. When protocols are mod-

elled using these techniques the behaviour of the sites taking part in a protocol

are described by the possible steps or actions they might take. By composing

groups of sites (often within an environment) we can generate runs or executions

as sequences of actions taken by the sites. The set of all possible runs captures

the behaviour of the entire system. A property of the protocol being modelled

therefore is defined as a proposition (often formalised in temporal logic) over

these runs. For example, a property might be that in every run eventually the

coordinator decides commit or abort.

Ideally, a good modelling technique for commit protocols should be: intuitive

enough so that protocol designers can easily model their protocols; expressive

enough to facilitate the modelling of a wide and rich variety of commit proto-

cols and environments; precise enough to accurately describe the behaviour of

the protocol being modelled; and designed in a way that allows support for auto-

mated reasoning techniques, such as model checking. The techniques we surveyed

fulfil some but not all of these requirements. For example CCS provides a very

well structured and precise account of communicating systems which has a for-

mal transition semantics that can easily be used to generate transitions systems

thus supporting automatic verification through model checking. Unfortunately,

its generality means that it quickly becomes cumbersome and difficult to use for

anything other than the simplest commit protocols. I/O automata allow more

complex protocols to be modelled easily but the resulting state space and transi-

tion systems that express their behaviour can be very large. This is largely due

to the fact that message passing behaviour must be made explicit. Knowledge

based protocol analysis abstracts message passing but because the knowledge is

not made part of the site's state it is more difficult to generate a transition se-

mantics for the protocols being modelled. Table 3.2 describes these differences,

including a comparison with the views based model developed as part of this

thesis and described in the next section.

3.6 The Views Model

The I/O automata and CCS modelling techniques are highly operational in their

semantics. This has the advantage that transition systems can easily be generated

from the models to reflect behaviour. Unfortunately, when modelling message

passing systems, because messages are usually modelled explicitly, very large and

intractable state spaces often result. The knowledge based modelling approach,

on the other hand, abstracts many of the details of message passing preferring to

construct arguments based on the level of knowledge acquired by processes in the

system. Unfortunately, the resulting knowledge based models lack the desirable

operational qualities of CCS and I/O automata models. It seems that, for the

45

I/O Automata KB CCS 	
]

_Viewj

Suitability for
modelling atomic commit

medium medium poor good

Generality high medium high low
Generation of transition system
Ease of transition
system generation

medium medium easy easy

Size of resulting
state space

large/oo medium large/oo small

Easily scalable to
arbitrary size

no yes no yes

Support for automated proof techniques
Amenable to
model checking

yes medium yes yes

Amenable to
theorem proving

yes yes yes yes

Messages communication structures
Message modelling explicit knowledge

based
explicit views

based

Compositional operators
Ease of composition good reasonble good yes

Table 3.2: Comparing the I/O automata, Knowledge based (KB), CCS and views
based approaches to modelling commit protocols. We have not made clear how a
transition system could be generated from a KB model. A process's state in a KB
model consists of all the actions that process has taken up to that point and so
this could provide method for producing a transition system for model checking.

case of commit protocols at least, a hybrid modelling technique, that captures

the desirable abstractions of knowledge based models together with operational

approach of CCS and I/O automata might be more suitable. This observation

motivates our views based model which will be used throughout this thesis for

modelling commit protocols.

We first describe the components of our model and then discuss how they can

be used to model commit protocols. Finally, by way of a simple example, we

model a 2PC protocol.

we

3.6.1 Processes, local state and views

We model a commit protocol as a system of processes'. Processes communicate

by means of message passing'. Each process belongs to a particular class of

processes, corresponding to the role it plays in the protocol. Processes have a

set of local state variables, together these variables constitute a process's internal

state. Unless otherwise stated the internal state variables of each process, within

• particular class, are usually initialised with the same values. Each class has

• set of rules that determine the behaviour of all processes that belong to that

class.

Let p be a process from class P. We denote p's local state variable s as p.s.

Each variable has a value. If p's variable s has value x we say p.s = x holds (at

p).

Together with its local state variables a process may have a view of the internal

state variables of other processes. This view is constructed from information it

receives from these processes in the form of messages. We say,

©p(q.s = x)

holds at process p if the most up-to-date view p has of q.s is x. That is p has

received a message from q9 informing p that q's variable s had the value x. It is

important to note that if at some point, q.s has value x then this does not imply

that, ©p(q.s = x) holds. This is because the message reporting q's state change

may not have arrived at p. Depending on assumptions about the message passing

environment the message may never arrive. Similarly, if ©p(q.s = x), this does

not imply that q's variable s still has value x, merely that at some point in the

past, q's variable s had value x. A process always has an up-to-date view of its

own state so, P.S = x implies ©p(p.s = x).

We often wish to express the fact that our view of at least one (some) pro-

cess(es) within a particular class, P, has (have) reached a particular state x, and

so we introduce quantifiers for instance ©p(q e P, q.s = x) or ©p(Vq E P, q.s =

X).

7 1n the literature the word site or agent is often used instead of process.. In our context, each
different term describes an entity with its own internal state, thread of control and message
passing capabilities.

8 1n fact the particular mechanism used for communication is not relevant. It could equally
well be shared memory. The important feature is that the communication may be asynchronous.

9p need not receive this message directly from q. In principle the information about q could

be received from a third party.

47

3.6.2 Protocol rules

The behaviour of each process within a particular class is defined by a set of

protocol rules. Each rule consists of a pre-condition and a post-action. Let R

be a rule for a class of processes P, and p be a process from that class. The

pre-condition of R makes assertions over p's local state variables together with

p's view of remote process variables. If the pre-condition of rule R holds at p, we

say R is applicable at p and then R's post-action may happen changing the local

state at p. When p's local state is updated in the post-action of a rule, messages

are sent' 0 to any process that maintains a view of p's state, enabling them to

update their view of p, if and when these messages arrive. For example, suppose

we have a system consisting of a process p from class P and a set of processes

from class Q. To express the behaviour that p may move to state y from initial

state x, if it believes some process from class Q to be in state z, we write the

following rule.
Q (p) s = x A ©p(q e , R 	

q.s =z)

The pre-condition of this rule is a conjunct of two clauses. The first clause

state that the process executing the rule, p, has state variable s set to x. The

second clause states that p views some other process q in the Q class with its

internal state variable set to z. If this is the case p can execute the post-action

and assign y to its internal state variable p.s.

In general a post-action may contain more than one assignment. It is assumed

that all the assignments in the post-action are performed atomically (i.e. as one

atom) and are ordered from left to right.

3.6.3 Environment rules

Let a process p have a view of variable s at a remote process q. When q assigns"

a value x, by executing an assignment in the post-action of a rule, a message is

sent to p informing p that q.s was updated.

At the point the message arrives and is delivered 12 at p, p's view of q.s is

updated. That is ©p(q.s = x) now holds at p. Again we model this behaviour

using rules. We call these rules environment rules rather than protocol rules.

Although the rule can be thought of as taking place at the process where the

'°Messages are only sent to processes that are interested in that particular update.
"Sometimes a message is sent even if the assignment does not change the value of a variable

but more normally only changes cause messages to be sent.
12 The term "delivered" is often used to mean that the incoming message is processed rather

than just residing in a buffer on the input device.

S:= y

message arrives, say p, the pre-condition of the rule often makes reference to state

that is not local to p. The post-action of the rule updates p's view of some remote

state variable. If process p updates its view of q.s to be x we write ©p(q.s := x)

in the post-action of p's environment rule. A typical rule for updating p's view

of a process q is as follows.

UV1(p)
qeQAq.s=yA©p(q.sy)

©p(q.s := y)

It is not always possible to update a process's view based solely on the current

global state of variables within the system. This is because a process may change

a state variable causing a message to be sent and then make a further assignment

to the same variable causing a second message to be sent before the first message

is delivered. We can still model this situation using rules. Suppose q changes

state from x to y and then again from y to z then the following rule might be

appropriate.

UV2(p)
q E Q A (q.s = y V q.s = z) A ©p(q.s y) A @p(q.s z)

©p(q.s := y)

In any exucution as the protocol progresses protocol rules are applied, envi-

ronment rules however need not necessarily be applied. For example, to model

message loss we say that rules such as UV1 might be applied (representing a

message arriving) or that they might not (representing the message being lost).

If message loss is possible, when the system reaches a configuration (defined later)

where only environment rules are applicable, since they need not always be ap-

plied, we can assume we might have reached the end of an execution. We can use

this technique when modelling commit protocols to show that they might block.

3.6.4 Global state and executions

If we restrict our model to a fixed number of processes (we will investigate tech-

niques to relax this condition later), a protocol configuration C can be modelled

as a vector of internal states and views, with an entry for each process. We denote

this (s i ,. . . ,s,), where each si is the internal state and view of a process.

The system takes a step whenever a process within the composition takes

a step by executing a protocol rule. Thus if process p i is in state si and rule
R(p2) 	 R(p)

R(p) happens which we can write as s, -+ s, then C -+ C' where C' =

(s i ,. . . , s, . . . , sj 13 . A process (and therefore the system) can also take a step

when its view is updated through the application of an environment rule.

"Sometimes we omit the name of the process that the rule is applied to.

49

An execution p, of a protocol therefore is a possibly infinite evolution of system

configurations.
R1

CO 	 ,' C1 1'

2

where Co is the initial configuration obtained by composing processes in their

initial states.

Sometimes the pre-condition of more than one rule might hold for a process

allowing more than one rule to be applied at that process. In some cases we allow

both rules to be applied leading to two new system states (for example when

a participant can choose to vote yes or no) and in other situations we define a

precedence over the rules. If rule Ri has higher precedence than rule R2, R2

can only be applied once Ri can no longer be applied.

3.6.5 Modelling centralised two-phase commit

A very simple 14 2PC protocol consists of a transaction coordinator and some

number of participants. When the operations of a transaction have completed

the commit protocol is invoked. The coordinator asks each participant to vote on

the feasibility of the transaction. If all participants vote yes then the coordinator

can decide to commit the transaction and thus sends a commit message to each

participant. On receipt of this commit message a participant enters its commit

state. If any participant votes no it enters its abort state and sends an abort

message to its coordinator. When the coordinator receives this message it sends

an abort message to each remaining participant. On receiving an abort message

each participant enters its abort state.

To model this protocol we create two classes of processes, a coordinator class

C and a participant class P. There is a single instance of the coordinator class

c and we let p, q, range over elements of the participant class P. Both types

of process have a single state variable s. In the case of the coordinator, c, this

variable may take values i (initial), c (commit) or a (abort). In addition to these

states participant processes, p, have a further state w (wait). In the centralised

2PC we model, all communication is between a participant and the coordinator.

For this reason each participant maintains a view of its coordinator's state and

the coordinator maintains a view of the state of each of the participants it is

coordinating. Table 3.3 summarises this.

We now give the rules for both classes. The participant processes have four

rules: the first two rules, PVY and PVN, allow a participants, p, to vote yes

and enter their w state or vote no and enter their a state respectively. It should

"This is a restricted version which does not model either site failure or messages loss.

50

Participant P Coordinator C
State Values i, w, a, c 1, a, c
Number Many processes Single Process
Views View of coordinator Views of participants

Table 3.3: Modelling centralised two-phase commit

be noted that this gives participants autonomy over whether to force abort or try

to commit.

PVY(p)
8: 	

PVN(p)
s 	v

	
::=:

The structure of these rules is the pre-condition post-action style. In PVY if any

process p is in a state such that p.s = i then the rule can be applied. This means

that the post-action is applied to p changing p.s to w.

The next two rules, PC and PA, allow participants to enter either the c or a

state if they view the coordinator in the c or a state respectively.

PC(p)
s = w A ©p(c.s = c)

PA(p)
 s E {w, i} A ©p(c.s = a)

s:=c 	 s:=a

The coordinator class C has only two rules. The first allows it to enter the c

state if its view of all of its participants shows that they have all entered their w

state (i.e. they have all voted yes). The second rule allows a coordinator to enter

the a state if its view of any of its participants shows that one has entered the a

state (i.e. one of the participants has voted no). In this particular model of 2PC

we do not allow the coordinator to vote.

CC(c)
S = i A ©c(Vp e P, P.S =

w) CA(c)
5 = i A ©c(p e F, p.s = a)

	

s:=c 	 s:=a

In this simple example we will assume message delivery is reliable, messages

are never lost and sites never crash. Later we will see how to model protocols

with arbitrary numbers of participants but for now let us assume we have a

single coordinator and two participants. The environment rules to update views

therefore are very simple. If the view of a process's state is out of date, that is,

the actual value at the remote process has changed then the view can be updated.

We denote updating a view of q.s at p to value x, ©p(q.s := x).

The environment rules for the coordinator and participant processes respec-

tively are given below.

p.s = x A ©c(p.s = i)
x E {w, a}

	

CUV(c) 	
©c(p.s := x)

c.s = x A ©p(c.s = i)

	

PUV(p) 	 xe{c,a}
©p(c.s := x)

51

i,i i>,i <ij>

<wi ,i i>i<i,i> — <i i ,w i>i
cUv

<ii ,wi>i<i ,w>
vY \cuv

<wi ,w i > i <w,i>
cUv

<wi ,wi>i<w,w>

cc

iS (,w',w)C
<W,W>

UV

<wi ,wc>c w,w> 	 <wc,wi>c<w,w>

Figure 3.4: Execution fragment of a simple 2PC protocol

In some rules in order to simplify their presentation, we let x range over the values

that a variable might take. For example the rule PUV(p) is shorthand for the

two very similar rules

c.s = c A ©p(c.s = i) c.s= a A ©p(c.s = 1)

©p(c.s := c)
	

©p(c.s := a)

Let us represent the system state as a triple where the first entry is the state

of the coordinator and the second and third entries are the states of the two

participants. We write the views as superscripts. So (''i) denotes the state of a

coordinator with c.s = i and with views such that ©c(p 1 = w A P2 = i) for the

participants Pi and P2• Figure 3.4 shows some of the possible executions of our

simple protocol. In the diagram we drop the index p i on a rule since it can be

ascertained from the transition.

Given our rules it is possible to generate a transition system that represents

all the possible executions of the protocol. Using the transition system we can

verify properties of our system. One such property is "if the coordinator knows

(has views) that both participants are in w then eventually those participants

commit by reaching C. For the simple protocol above this property does hold.

We will return to the subject of verifying properties at length when we introduce

games-based model checking in chapter 5.

3.7 Summary

We have discussed some general modelling techniques that have been used for

modelling commit protocols and the environments in which they execute. A re-

52

quirement emerged from our survey of three general modelling techniques that

seemed to suggest that a technique that captured the desirable operational fea-

tures of CCS, the declarative style of knowledge based reasoning, and the pre-

condition post-action specification technique of I/O automata would be most

appropriate. This motivated the development of our views based model. Using

an example we showed, how this technique can be used to model a simple 2PC

protocol.

53

Chapter 4

A More Committed Three Phase
Commit Protocol

4.1 Introduction

To recapitulate in the centralised 2PC protocol, a coordinator collects votes on

whether or not participants can commit a transaction and broadcasts whether or

not there is unanimity for commit. Problems arise with 2PC when site and/or

network failures occur. Some working sites may become "blocked", they want

to commit the transaction but they are unable to proceed, neither commit nor

abort, until an external failure has been repaired. 3PC was developed which pro-

vides some protection against blocking under a restricted failure model. Skeen [71]

recognised that 3PC could only protect against blocking for this restricted class of

failure and developed a quorum-based three-phase commit protocol which we shall

call Q3PC. If a network failure occurs preventing some processes from commu-

nicating but still allowing a quorum of processes to communicate, Q3PC ensures

this quorum will not block.

Kiedar and Dolev [41] describe a cascading network failure. Such a failure

occurs when there are several successive partial network failures, and possibly

some repairs too, but the network is not totally failure free at any time during

the failure period. There may be times of calm where some progress is made

but more disruption soon follows. In Q3PC, it is possible that, after cascading

network failures, a quorum of sites may form, yet those sites remain blocked.

However the Enhanced 3PC Protocol (E3PC) [41] extends Q3PC in a way that

ensures that a quorum never blocks.

We now proceed to use the views based modelling technique to describe, and

reason about the behaviour of, these protocols. We first extend the simple 2PC

protocol of the last chapter to include communication failure. We show in this

54

enriched model that 2PC might block. By adding some extra rules we show how

2PC can provide protection against blocking but for some communication failures

it still cannot protect against blocking completely. We then go on to briefly model

the basic 3PC by way of introduction to modelling complex quorum based 3PC

protocols that will be central to this chapter. By enhancing 3PC with a recovery

protocol (by the addition of more protocol rules) we can derive Skeen's Q3PC

from 3PC which is the basis for our investigation into quorum based commit

protocols. By enriching the internal state held at the participants of Q3PC we

can derive a model of Kiedar and Dolev's E3PC [41] protocol that enhances

Q3PC by protecting against cascading network failure. Once more by extending

the protocol rules of E3PC we then derive an improved version of E3PC called

X3PC in which a coordinator can use the distributed knowledge within a quorum

to detect situations where it is possible to make progress towards committing a

transaction. Like E3PC, in X3PC a connected quorum of sites never blocks, but

X3PC will decide commit more often than E3PC and in no more attempts'. We

will see that E3PC, Q3PC and X3PC have similar message-passing behaviour,

but differ in the amount of state information that is exchanged in a message.

A pattern is starting to emerge. As the environment in which the processes

interact becomes richer, with for example the possibility of communication failure

the local states of the processes involved and the number and complexity of the

protocol rules increases. With this increased richness comes the ability to reason

about more complicated behaviour such as blocking. Figure 4.1 depicts this.

X3PC with comms failure

E3PC with comms failure

Q3PC with comms failure

3PC with comms failure

2PC with comms failure and help me

2PC with comms failure

2PC

I?

ii
Il l

El El 1E
101 1 0
1 L) 1

l - 1 I l_I I
II I
IOU I-
II Cla ' IE .i
l - I ii

Figure 4.1: The increased complexity of a protocols environment is mirrored by
the increased complexity of rules and the ability to reason about more complicated
behaviour.

'An attempt is started when a coordinator updates it's last attempt counter.

55

4.2 Adding failure to 2PC

In the models of commit protocols we study we model communication failure

by allowing processes to become disconnected from one another and partitioned

into groups or components. All messages in transit at the time of the failure are

assumed to be lost and it is assumed that processes can no longer communicate

unless they are in the same component.

We model a communication network, which may fail and divide the set of all

processes P (now and in the following we use the set P for all processes including

the coordinator) arbitrarily, using a partition Par so that the following holds.

• Par (p) = {q E P I q can communicate with p}

• Vp e P, p e Par(p)

• Vp e P, if p E Par(q) then Par(p) = Par(q)

It follows from this definition that if p ' Par(q) then Par(p) fl Par(q) = 0.

Sometimes we write Par as a set of disjoint subsets or components of P whose

union is P. For example, let P = { p1,p2,p3} and Par(pi) = {pl,p2}, Par(p2) =

{p1,p2} and Par (P3) = {p}, then we write Par = {{pl,p2}, {p3}}. Using this

representation we write X e Par to mean X is one of the components in the

partition Par, thus p's component is Par (p). In our example {p1,p2} E Par. To

model communication failure and repair Par may change Par —* Par'. Extending

our example, suppose P2 loses communication with Pi and gains communication

with p3 , can write this as follows.

{{pl,p2},{p3}} —+ {{pl},{p2,p3}}

or more generally as the environment rule:

NET
Far —+ Far'

Since the pre-condition of NET is empty Par may change at any time, allowing

communication failure at any point in a protocol execution. Initially Par = {P}.

To enhance the simple 2PC protocol of section 3.6.5 we need only extend the

environment rules CUV and PUV that update the views of participants and

coordinators. We simply add the extra clause p e Par(c) to both pre-conditions

to reflect the fact that a coordinator (participant) can only update its view of

56

Pv;(/ Nvv

<i,",w',i'>,P 	<i,",i',w'>,P

cu ,,, Nuv

<j , w ,i,W i,ji>,P 	<j , Iw,ji,Wi>,P

CUV /uv
<j, ww ,W i,WI>,P

NET

<j,ww,Wi,Wi>,P
<C 	 N.cc

NET
<C

<c,w,w,wi,w i>, p, 	

,w,w,wi,wi>, p

<C,ww,Wc,Wi>,P

F ' ,

Figure 4.2: Part of the execution diagram of 2PC in the presence of network
partitioning. NET events in these executions result in the protocol blocking. In

the diagram P = {{c,p 1 ,p2 }}, P' = {{c}, {p1,p211 and F" = {{c,p i }, {p211.

a participant (coordinator) if it is in the same component. Our rules are thus

changed as follows.

CUV(c) 	
= X A c(p.s = i) A p E Par(c) x

e {w, a}
©c(p.s := x)

c.s = x A ©p(c.s = i) A p E Par(c)
PUV(p) 	 x e 1c, al

©p(c.s := x)

4.2.1 2PC blocks

With the addition of network partitioning to the simple 2PC we see that our

simple protocol might now block. Consider the following execution involving two

participants and a coordinator. We use a similar notation for a configuration

as in figure 3.4 by appending the current value of Par to form a configuration.

Figure 4.2 shows several executions of 2PC. Network events in these executions

result in the protocol blocking.

57

The leftmost execution can be written as follows.

pvY2 ... 	 cUv2
(jii 1i i1){{c,p 1 , P2}} -* (i", w 1 , 'w1){{c,pi, P2}} —4

cc 	 NET
(jWW w1 , w'){{c,pi,p2}} 	(WW, W I , w 1){{c,p1,p2}} -*

(c"',w 1 ,w1){{c}, {p1,p211 74

The only rule applicable to the last configuration, in this execution is the environ-

ment rule NET. In other words no process can make progress towards reaching

a commit or abort decision until the network is repaired and so they are deemed

blocked.

4.2.2 Help-Me messages

In the last example, the leftmost branch in figure 4.2 the protocol blocked even

though there was enough knowledge within the participants' component to com-

mit because both participants voted yes. Unfortunately, for the simple 2PC

described participants rely on their coordinator for communication. Once the

coordinator is isolated in a different component all communications break down.

One solution to this problem is that once a participant discovers that it has be-

come disconnected from its coordinator it can send out a help-me message to

other participants. If another participant in the same partition receives such a

message, and has itself decided, it can help the undecided participant reach a

decision. Furthermore, if a participant receives help-me messages from all other

participants it is safe to deduce that all other sites have voted yes and thus itself

commit. Many implementations of 2PC include help-me messages as a way of

reducing blocking.

We can model help-me messages using views. In RHQ below, when a partic-

ipant detects that it has become isolated from its coordinator it enters a help-me

state, h. In PH any decided participant that views another participant in state

h provides help by moving to either Ch or ah depending on its decision.

RHQ(p)
s = w A c V Par(p)

S h
PH(p)

s=xA©p(qE P,q.s=h)

s := Xh
X E 1c, a)

If a participant views all other participants in the help-me state, h, then it can

safely deduce that all sites voted yes and move to c. This is modelled by the rule

PDC below. Similarly, if it views a participant as having helped, states Ch or ah,

it can commit or abort accordingly. This is modelled by the rule PRH below.

PDC(p)
s=hA©p(Vq e P, q.s=h)

S := Ch

PRH(p)
s=hA©p(qE P, q.S=Xh)

s:= x
58

X e {c, a}

Once again we must provide environment rules for propagating help-me messages

within a component which we call PHUV and help responses which we call

[i4SA!i

PRUV(p)
S = h A q.s = Xh A @p(q.s :A x) A p e Par(q)

©p(q.s := Xh) 	
x e {c, a}

s =X A q.s = h A ©p(q.s 0 h) A p E Par(q)
PHUV(p) 	 x E {c, a, h}

©p(q.s := h)

Consider again the execution where 2PC blocked in section 4.2.1. The last

system configuration in the execution was (C%rW, w 1 , w){{c}, {pl,p2}}. Using our

help-me rules we see that RHQ can be applied by each participant to request

help. After this each participant can apply environment rule PHUV to update

its view of its cohort to be h. Finally PDC can be applied at both participants

because each participant can deduce that, because all participants are in state h,

they must all have voted yes, and so it is safe to commit.

In this enriched model a participant must maintain a view, not only of its co-

ordinator, but also of the other participants. We therefore extend the participant

state so that a participant's view is a pair of states (as it is in the coordinator)

the first denotes its view of its coordinator and the second its view of the other

participant. Using this notation we can extend the previous execution as follows.

(CWW, 	w' 1){{c, Pi, P2}}
PU_ji)

PC(pi)
—+

(cww , cc , w 1 i){{c,p i , p2 }} __4
NET

W,W CJ {P2}} 74

And so we see that in this example blocking is prevented. Unfortunately, although

help-me messages relieve the problem they do not entirely eliminate it. For

example suppose that the NET event results in the more disruptive partition

{ {c,p}, {p21}, after Pi has committed but before P2 receives a commit message

then, although P2 can issue a help-me message this will not help it reach a decision

until the network is repaired.

.

(C'"", w", 	
RH

'){{}, {pi}, {p2}} —+
Q2 (CWW, h, h"){{c}, {pi}, {p211 74

Finally, for completeness sake, we should note that if a participant becomes

blocked because it is isolated from its coordinator, and then a NET event hap-

pens, rejoining that participant and its coordinator, then the coordinator should

interpret a view of sate h as state w, similarly Ch and ah states should be inter-

preted as c and a states. This requires some small changes to our existing rules

but we omit the details.

59

4.3 Modelling 3PC

As we have seen in section 2.2 by adding a buffer state (pc) to the simple 2PC

(without help-me rules) we can derive, 3PC, a protocol that is slightly more

resilient to blocking than the basic 2PC. We can simply describe this protocol

by introducing the new state pc, making changes to the rules PC, CC and

introducing two new rules PPC and CPC as follows.

PPC(p)
s = w A ©p(c.s = pc)

S PC

PC(p) s
= pc A ©p(c.s = C)

S 	C

CPC(c)
S=iA©c(VpEP,p.SW)

s:=pc

CC(c)
S = C A ©c(Vp E P, p.s = pc)

S := C

The addition of this state does provide some tolerance to blocking in the rather

unrealistic case where failure is restricted to single site failure only. By adding

timeout and crash actions to the rules of 3PC above, it is possible to model this

particular environment and show that for this restricted case of failure 3PC is

non-blocking. Since in practice it is impossible to restrict the types of failures

that might occur, we will not proceed in this direction. Instead, we will investigate

more realistic quorum based 3PC protocols that provide blocking tolerance for a

more general class of failure.

4.4 Modelling quorum based commit protocols

In this section we provide a views based model for two existing quorum based three

phase commit protocols namely Q3PC and E3PC. Since E3PC is an extension

of Q3PC they share many of the same protocol rules. Both of these protocols

have a similar structure. In their so called initial phase, before any failures, each

protocol carries out a basic 3PC 2 . If a failure occurs then the protocols enter their

termination phase. It is in their termination phase that Q3PC and E3PC differ.

During this phase each protocol, where possible, attempts to reach a commit

(abort) decision, by first moving processes to pre-commit (pre-abort) and then to

commit (abort). We first model E3PC and then show how to simplify its protocol

rules to derive Q3PC.

4.4.1 Views and process state

Unlike the commit protocol models we considered earlier all processes in our

model are from a single class of processes P. In the protocols we consider any

2 1f no failures occur during the initial phase the executions of Q3PC and E3PC are identical
to 3PC.

process p can assume the role of a coordinator. The identity of a processes's

coordinator is stored in the internal state variable p.c. Thus if p.c = q then q is a

coordinating participant. Another important internal state variable of processes

is p.r, which if true means p has detected a communication failure and is executing

its termination phase.

Fig. 4.1 describes the state variables at each process p E P. As before we

include the internal state variable s, e.g. p.s = c means p is committed. In the

case of E3PC we add the two counters p.le and p.la of [41]: p.le = m means

that p's last-elected counter is m. We will discuss how these counters are used to

derive E3PC from Q3PC in detail later.

Later when we further extend E3PC we will employ an internal state object p.h

which records a history of attempts that process made to move to the pre-abort

(pa) state during the termination phase: its details are discussed later. As in

our previous example, processes have views about the states of other processes.

For p, ©p(q.s = pc) means that p knows q was at some time in pc. For p,

©p(q.la = rn) means that p knows q's last attempt counter was at some time

equal to m.

We say ©p(q.s x) if ©p(q.s = x) A ©p(q.le = p.le) A ©p(q.c = p.c) holds.

Similarly we write ©p(q.s x) holds at p if ©p(q.s x) A ©p(q.la = p.la)

holds. We use the notation =, and to denote stronger and stronger versions

of equality. ©p(q.s x) means not only ©p(q.s = x) but also that ©p(q.le =

p.le) A ©p(q.c = p-c), i.e. the state was reached during the last election and p

believes q has the same coordinator. Stronger still ©p(q.s x) adds the further

condition that p believes q is in the same attempt as p.

A new' feature of this model allows a view to be updated by a process locally

in the post-action of a protocol rule in the same way as local state is updated.

Updating a view allows a process to change its belief of what a remote processes's

state might be. When views are updated the change does not produce messages;

this disallows views of views.

When modelling quorum based commit protocols we will again adopt the

partition based model of communication failure. This means we include in a

configuration the partition Par and the environment rule NET that can disrupt

the network at any time. All processes affected by a network disruption detect it

and new coordinators are elected [29] in each new component of the new partition.

During the election a coordinator in a group, X, can compute the maximum

may possibly still be in state pc.
'Previously, views were updated only in environment rules.

61

P.S e {pa, PC, 1, w, a, c} state of a process
p.c E P 	 p's coordinator

p.le 	 p's last elected counter

p.la 	 p's last attempt counter
p.r E {tt, f } 	 p has entered the recovery phase

p.! e {tt, ff} 	coordinator is collecting participant's state

p.h 	 history of attempts to move to pa

Table 4.1: a, C, represent the abort and commit decision states. i is the initial
state before a process has voted, w is entered after a yes vote. pc and pa are
entered during attempts to commit and abort respectively. During termination a
proces must record when a coordinator is collecting participant states and behave
accordingly. This is reflected in the value of the variable p.r.

last elected counter me(X) = max qx {q.1e} 5 , within the component. When a

participant adopts a new coordinator it updates its last elected counter to be

me + 1 and begins the termination phase of the protocol. We model this change

with NET(c) as follows where me = maxqx {q.1e}, c is a process chosen from X

during an election.

Par —+ Par' A X e Par' A X Par

UPDATE (c, X)

where

UPDATE(c, X) I Aqx (q .c := c A q.r := tt A q.le := me + 1 A 	(1)
©c(q.s := q.$) A ©c(q.le := q.le) A ©c(q.la := q.la) (2)
©q(c.f := tt)) 	 (3)

The UPDATE macro is a little complicated and so requires some explanation.

For each process q in X there are three parts to the update. The first part, line

(1), sets process q's coordinator variable q.c to be c, sets q.r to tt and also sets

q.le to be me + 1. The next part, line (2), sets the elected coordinator, c's view

of q.s, q.le and q.la to be the actual values of q.s, q.le and q.la. Finally, in line

(3), q's view of c.f is set to be tt.

We can assume the post-action is atomic because if it is interrupted by another

network event, Par' —+ Par", the leadership election can be restarted [29] and

any partial changes ignored.

It should be noted that this is the first example of a rule that we have seen

where, in the post-action, a view is updated at more than one process, in this case

at c and at p. Clearly if these non-local actions are to be assumed to be atomic

5 A coordinator need not store me(X) as part of its state it need only calculate it during an
election.

62

we require further justification. Although we will not elaborate on the details it

is possible to achieve these updates atomically during a leadership election. An

example application of the NET rule can be seen in figure 4.3 where it is applied

twice to the fourth state in the diagram.

4.4.2 Updating views

Views are updated in a way which is similar to, but slightly different from, the

way they were in the simple 2PC example presented earlier in section 3.6.3. If

a process p has a view that is out of date with respect to the current state of

another process within the same component of its partition (i.e. within Par(p)),

that view may be updated. Notice this models the situation where messages

within a component eventually arrive, provided the component does not change,

but still allows message loss if a network event occurs re-partitioning the system

and changing the component. The rules for updating the view of a coordinator

and a participant process are given below. Notice a participant p does not update

its view of a coordinator c if it views c.f to hold, this models the situation where

a coordinator is collecting state after a network event during an election.

c=pAq E Par (p) Aq. = A©p(q.
UCV(p) 	 =(s,la, le, c)

©p(q.z := tr)

UPV(p) 	 - . 	
- (s, a, e, f, c)

©

4.4.3 Protocol rules for E3PC

Initially all processes p start in the i state with -'p.f and their last attempt and

last elected counters set to 0 and 1 respectively. All processes are connected and

there exists a process which is the coordinator for all processes. More formally

(Vp E P, p.s = i A p.la = 0 A p.le = 1 A -p.f A p.r A Par(p) = P)A

(aqEP, VpEP,p.c=q)

The protocol rules are divided into four groups. One group for the initial phase

where -'r holds at all processes and another for the termination phase where r

holds. The rules are further divided between participant rules, where c = p and

coordinator rules, where p c. Rules for coordinator processes begin with C and

those for participants begin with P. Rules for the initial phase end with I and for

the termination phase end with T.

A step is applicable to a process if the pre-condition for that step is satisfied

at that process. The initial phase of E3PC is described by the following rules.

63

The first group of rules describe the behaviour of participants not executing their

termination protocol. We therefore omit - A (c =~ p) from the pre-conditions for

the sake of brevity.

PVYI(p) s = v : 	PVNI(p) := •
s: 	

a

s
PPCI(p) 	

pc A ©p(c.s = pc)

S := PC

PCI(p)
s C A©p(c.s = c) 	

PAI(p)
S a A©p(c.s = a)

In the rules PVYI and PVNI participants vote yes and no respectively moving

to either wait (w) or abort (a). The rule PPCI allows a participant to enter pre-

commit (pc) and the rules PCI and PAT allow a participants to decide commit

(c) or abort (a). We now give the rules for coordinators not executing their

termination protocol so this time we omit -'r A (c = p) from each pre-condition.

CPCI(p)
s=iA© 	

CVNI(p)
p(VqpEP,q.s=w) 	 s=i

s:=pcAla:=le 	 s:=a

CCI(p)
S = PC A ©p(Vq 0 p E P, q.s = pc)

s := C

CAI(p)
s=iA©p(qpEP,q.sa)

S := a

CVNI allows a coordinator to vote no from its initial state i, CPCI moves

a coordinator to pc while CCI and CAT allow a coordinator to move to c or a

respectively.

In some cases more that one pre-condition may be true for a process. For

example suppose a coordinator, p, is in state i with a view that all other processes

have voted yes, or more formally ©p(Vq p e P, q.s = w) holds, either CNVI

or CPCI might happen. This reflects the fact that a coordinator (because it is

also a participant in its own right) may itself abort a transaction even though all

other processes voted yes. We do not, in this case but will sometimes, restrict

this type of choice by providing a precedence on the rules.

We also make use of the predicate isMaxAttemptCommittable (defined in [41]

which we rename IMAC(X)) over X c P. IMAC(X) is true at coordinator p

where ma = max{m I @p(q E X, q.la m)} if

Vq e X, @p(q.la ma) = @p(q.s pc)

I.e., p believes no member of X with the greatest last attempt counter, within

X, is in a state other than pc. We now present the rules of the termination

protocol. We first give rules for participants this time omitting r A (c 0 p) from

each pre-condition.

la le A ©p(c.s pc A -'c.f)

	

PPCT(p) 	
Ia le A s := pc

	

la le A ©p(c.s = pa A -c-f)
PPAT(p) 	

la := le A s := pa

PCT(p) s
C A ©p(c.s = C)

PAT(p)
s a A ©p(c.s = a)

s:=C 	 s:=a

In PPCT (PPAT) a participant moves to pc (pa). In PCT (PAT) a par-

ticipant commits (aborts) when it views the coordinator as having committed

(aborted). Finally we can give rules for the coordinator's behaviour during the

termination phase of the protocol, this time we omit r A (c = p) from each pre-

condition. In CPCT we make reference to the quorum predicate Q(Par(p)),

this was defined in section 2.3. One can think of a quorum as a majority for the

purposes of this chapter.

CC1T(p)
f ©p(q E Par(p), q.s = c)

C Al := ff

f A ©p(q E Par(p), q.s a)
CA1T(p) 	

if s := aA f :=

f A Q(Par(p)) A IMAC(Par(p))
CPCT(p) la

:= le A s := pc A f := ff

CPAT(p) f A Q (Par (p)) A -iIMAC (Par (p))
la := IeAs :=paAf :=ff

CC2T(p)
-if A 3X C Par(p), (Q(X) A (gp(Vq E X, q.s PC))

S 	C

CA2T(p) - f A 3X C Par(p), (Q(X) A ©p(Vq e X, q.s pa))
S := a

If a process exists in the coordinator's component in a C or a state, then

the coordinator propagates the value using rules CC1T and CA1T, which have

highest precedence. If a quorum of pc states exist and IMAC holds, the rule

CPCT is used to move participants to the pc state. Likewise, CPAR is used to

advance processes to the pa state. If enough processes are in pc the coordinator

decides commit with CC2T or if enough are in pa it moves to status a with rule

CA2T.

65

4.4.4 Q3PC: Skeen's Quorum-based 3PC

Using this notation for modelling E3PC as a starting point, we can obtain a model

of Q3PC by changing the pre-condition of CPCT and CPAT as follows.

CPCT'(p) f A ©p(q, q.s = pc) A Q({r e Par(p) I ©p(r.s = pc V r.s = w)})

CPAT'(p) f A Q({r e Par(p) I @p(r.s = pa V r.s = w)})

The post-actions of the rules remain the same. Using these modified pre-conditions,

if cascading network partitioning is possible this introduces the possibility of

blocking. We will examine this further in the example in section 4.5.

4.4.5 Configurations and executions

As before a configuration C is a collection of processes with their internal state

and views together with Par.

C = (s1 ,. . . , s,), Par

An execution of a protocol is a sequence of configurations Ci, . .. , Cm,.. . where

C 1 is derived from Ci by a protocol step, for example applying the rule CA2T,

a network event NET, or an update of a view, for example UPV. A decided

process is one in state c or a. A deciding configuration is one which has a

quorum of decided processes and a deciding execution is one which contains a

decided configuration.

4.5 E3PC's advantage over Q3PC

Example 1 See [41], three processes, Pi, P2 and P3, initially all connected, carry

out E3PC. All processes vote yes and the first coordinator, Pi, moves to pc. A

network partition causes P2 and p3 to become isolated. They are both in state

w, and form a quorum. The second coordinator P2 moves to pa, (rule CPAT)

updating its last attempt counter. Another network event occurs and now P2

rejoins p. Q3PC would now block, but E3PC can abort. See figure 4.3 towards

the end of this chapter for a diagram of this execution.

0

We are now in a position to express the previous example 1 using our views

based model. Figure 4.3 shows an execution sequence for the previous example

up to the point where a coordinator decides a.

We

Interestingly, by replacing CPCT and CPAT with CPCT' and CPAT' re-

spectively, thus deriving Q3PC from E3PC we see that in the seventh configu-

ration represented in figure 4.3 neither CPCT' nor CPAT' apply. In fact no

protocol rule applies to the seventh state and so even though Pi and P2 form a

quorum they cannot make progress until a network event happens and so they

are deemed blocked.

By examining the pre-conditions of CC1T, CA1T, CPCT and CPAT we

can see that at least one of them must hold within a quorate component. This

means that, unlike Q3PC, in E3PC a coordinator can make progress towards

terminating a transaction within every quorate component.

4.6 Constructing X3PC from E3PC

We note that it would have been safe to commit rather than abort in example 1

of this chapter, because there is enough information for the coordinator in the

last attempt to know the second attempt was unsuccessful and so view p2's pa

state as its previous state w. This motivates the development of our new protocol

X3PC.

We now show how to derive X3PC from E3PC. To do this we change the rules

CPAT and PPAT and add two extra protocol rules, CUV1T and CUV2T

which change a coordinator's view during the termination phase of the protocol.

The update view rule allows a coordinator, p, to determine if a participant's earlier

attempt to abort did not result in any process moving to a. The coordinator might

be able to reach this conclusion in two ways.

CASE 1: Let q be a participant in state pc in coordinator p's component Par(p)

and let q.la = i. If the coordinator of attempt i is also in Par(p) and that

coordinator's status is not a, then p can safely assume no process reached a in

attempt i where q moved to pa. Accordingly, p may adjust its view of q.s.

CASE 2: If the coordinator of attempt i is not present in Par(p) but enough

processes are present in Par(p) that were also involved in attempt i, but did not

move to pa during that attempt then the coordinator can deduce whether or not

a quorum of processes moved to pa in attempt i. If not then the coordinator for

attempt i could not have moved to a. Accordingly, p may safely adjust its view

of q.s.

For processes to reason in these ways they must exchange extra information.

Each process therefore keeps a history h. A process updates h when it enters

the pa state. The history is indexed by last attempt number, i. If a process

67

moved to pa in attempt i, then it contains all of the processes involved in the

i'th attempt denoted h[i].involved, the coordinator of the attempt h[i].c, and the

process' previous state and last attempt counter before moving to pa are denoted

respectively by h[i].Sprev and h[i].laprev. Initially, at all processes p, Vi, p.h[i] = 0.

During an election a coordinator updates its view of all the histories of processes

within its component. To reflect this in our rules we must extend the vector in the

NET rule to include h so it becomes = (s, la, le, h). Finally we must change

the post-action of the rules CPAT, and PPAT by replacing the post-action of

CPAT with

SH(p) A p.Ia := p.le A P.S := pa

and the post-action of PPAT with

SH(p) A p.Ia := p.le A p.S := pa

where

SH(p) Ih[le].involved = Par(p) A h[le].c = P.0 A

h[le].sprev = p.s A h[le}.laprev = p.la

We are now in a position to define two new rules for coordinator p. Let

del
M = max{t I 3r E Par(p), ©p(r.Ia t A r.s pa)}

be the highest non pa attempt in a coordinator p's component. The rules attempt

to change p's view of a participant q, if p's view of q's last attempt counter is

greater than or equal to m, and p's view of q's state is pa. In both rules we

omit p.c = p A p.f from the pre-conditions for the sake of brevity. The first rule

CUVT1 corresponds to CASE 1 above.

©p(q.s = pa A q.la > m A q.h[q.Ia].c = C' A c'.s 0 a) A c' e Par(p)
CUVT1(p)

©p(q.s := q.h[q.la].sprev A q.la := q.h[q.la].laprev)

In the second rule CUVT2 corresponding to CASE 2 above, let

L(q) I ©p(q.h[q.la].involved) be coordinator p's view of q's involved set at at-
, 	del

tempt q.Ia and L (q) 	{r E Par(p) I ©p(r.h[q.la].zrivolved = 0)} be p s view

of those processes in the current partition that were not involved in attempt q.la.

CUVT2 (p)
q G Par(p) A ©p(q.s = pa A q.Ia > m) A -Q(L(q) - L(q'))

©p(q.s := q.h[q.la].sprev A q.la 	q.h[q.Ia].Iaprev)

The rules "roll back" the view of q's pa state when there is enough infor-

mation within the component of the current attempt to be sure that the earlier

attempt, q.Ia did not result in any process moving to state a. The pre-condition

of CUVT1 ensures that the coordinator of attempt q.la is in the current at-

tempt with state not equal to a. The pre-condition of CUVT2 ensures that the

coordinator of attempt q.la could not have moved to state a because a quorum

of processes did not move to pa in that attempt. The rules consider processes

with attempt numbers greater than or equal to the highest non pre-abort at-

tempt. CUVT1 has higher precedence than CUVT2 so the precedence of all

protocol rules for coordinators in the termination phase of X3PC is then (CC 1T,

CA1T)-<(CUVT1, CUVT2)-< (CPCT, CPAT, CC2T, CA2T).

These update rules are by no means optimal. When initiating an attempt

a coordinator could pass on all the attempt histories it collected to each of the

participating processes which would put them in a better position to provide in-

formation to a future coordinator about the possible success of an abort attempt.

We do not consider these further optimisations here.

In Example 1, it was the coordinator of the second attempt which returned

to form a quorum with the first processes. At this point Pi applies CUVT1 to

its view of p2 updating this view so that ©pl(p2.s = w) and ©pi (p2 .la = 0). Now

rule CPCT allows P1 to enter pc, rather than pa. If no more network events

interrupt this component a commit decision is eventually reached. Figure 4.4

depicts these events.

4.7 X3PC Solves Atomic Commitment

In this section we appeal to the rules of our model to prove that executions

of X3PC solve the atomic commit problem. We use the problem definition of

Bernstein et al. [9] which can be found in figure 2.1 as a starting point. We will

see that we can make more precise statements of what it means for our protocol

to be correct than those made in this definition. In particular, since we have a

more precise idea of what it means for communication to fail, we can give a more

precise account of how resilient our protocol is to different types of failure.

We can divide any execution p of X3PC into attempts. The ith attempt is

started within a component when the coordinator, p, of that component updates

its last attempt counter to i. This happens in the rule CPAT in the case of an

abort attempt or in the rule CPCT in the case of a commit attempt. We call

the first attempt before the invocation of the termination phase attempt 0.

Lemma 1 If a coordinator process decides c (a) during attempt i > 0 in an

execution p then no process will decide a (c) during any attempt j > i.

93,11,

Proof Let attempt i be the first time any coordinator process, p, decides c (a).

First consider the case p decides a. This must be in rule CA1T, CAI, CVNI

or CA2T. Consider each case in turn.

• CA1T: By the pre-condition of CA1T p must have a view of some process

q e Par(p) in state a, i.e. ©p(q.s = a) holds. For this to happen p's

view must have been updated earlier in p by the rule NET or UCV. In

either case for some q, q.s = a must have held earlier in p. q cannot be a

coordinator, in this earlier attempt, since this contradicts our assumption

that p was the first coordinator to decide so it must be a participant. This

means q must decide in attempt 0 since no participant may decide in the

termination phase before its coordinator. Clearly, if any participant decides

a at attempt 0 then no process can reach pc and so even if subsequent

NET events happen no process can decide c.

• CAI or CVNI: If a coordinator decides a during the initial phase (attempt

0) then by the pre-condition of PPCI and PCI and the new rules UCV

and UPV no process exists up to this point in state pc or c. After this point

either no NET event happens and so c is never reached or NET happens.

After a NET event CPCT will never hold since IMAC will always fail since

no process reached pc before leaving the initial phase and therefore c will

not be reached by any process.

• Suppose at attempt i > 0, p decides a during rule CA2T. So by the pre-

condition of CA2T, 3X c Par(p), Q(X) A ©p(Vq e X, q.s pa). Thus in

attempt i a quorum of processes are in pa this change was conveyed to p

with rule UVC. This took place during attempt i since ©p(q.s pa) holds

at p only if p views q to have the same last attempt counter as itself. For the

processes q e X to have moved to pa during attempt i their coordinator p

must have moved to pa, earlier in p, during attempt i with the rule CPAT.

Let us consider two cases from this point in p.

- No further NET events happen. So within the component Par(p)

CPCT can never happen because its pre-condition cannot hold once

the pre-condition of CPAT holds. So no process will reach pc during

attempt i and so no process will reach c. Furthermore, since Q(Par(p))

for any component Y outside of Par(p), Q(Y) fails. This means in

Y neither CPAT nor CPCT will be applicable and since -'p.f will

hold for the new coordinator of Y, CC2T, CA2T will not apply and

70

CC1T CA1T will not apply by the assumption that p is the first

coordinator to decide. Similarly, PPCT, PPAT, PCT and PAT are

not applicable in Y.

- A further NET event happens. Consider any new component Y

formed after this event. There are two cases to consider.

* Y does not contain any process from X. It cannot therefore be

quorate. Only rules CC1T or CA1T are applicable but this

would mean some process must have decided before p did during

attempt i violating our assumption.

* Y does include a process q from X. q must have the highest

last attempt in the component. To see this note that the NET

rule ensures all processes from quorate components formed in p

have monotonically increasing last elected counters. We now show

that neither CUV1T nor CUV2T are applicable. If p E Y then

clearly at the coordinator, p', for this attempt ©p'(p.s a) and so

CUV1T will not apply. Furthermore, L(q) = X and L(q) cannot

contain any q e X i.e. L(q) fl L'(q) = 0 therefore L(q) - L'(q) =

L(q) and thus Q(L(q)—L'(q)) holds making CUV2T inapplicable.

An exactly similar argument but slightly easier applies if in attempt i a process

decides commit. An intersecting site in any subsequent quorate component will

be in state pc, with a maximal last attempt counter, and so IMAC will hold,

without the need for any applications of CUV1T or CUV2T.

70

Theorem 1 X3PC satisfies AC1.

Proof: Any decision must be the result of a successful attempt during the ter-

mination phase of the protocol or during the initial phase. It is clear that if any

process decides a in the initial phase no process could reach state pc and thus all

subsequent attempts will never result in c. Also if any process was to decide c in

the initial phase all processes must be in state pc so in all subsequent attempts

IMAC will hold preventing any process from deciding a.

In the termination phase a coordinator can only move to a (c) if the component

of the attempt is quorate. Of course a coordinator may propagate a (c) decisions

within a non-quorate group using rules CC1T and CA1T but the decision will

remain consistent. In any execution p no two quorate attempts may be interleaved

71

so by lemma 1 after one successful attempt a decision value is locked for all future

attempts

Lemma 2 X3PC satisfies A C2.

Proof: Follows from lemma 1.

Lemma 3 X3PC satisfies ACS

Proof: Let p be a process that decides c in an execution p of X3PC. There are

two cases. Either it is a coordinator or it is not. If it is not, then it can decide

commit as the consequence of one of the rules PCI or PCT. In either case the

pre-condition ©p(c.s = c) must hold. So there must have been an earlier point

in the execution when at p's c.s = c. Thus some coordinator decided c, either

during an earlier attempt or during the initial phase. If that coordinator decided

c during the initial phase then all processes must have voted yes when applying

rule PVYI therefore we may restrict our attention to earlier attempts in the

termination phase.
Consider the first time a coordinator, p changes state to pc in the termination

phase. Such an event must occur (if not then no process could reach a c decision).

When p entered pc it must have been because of rule CPCT a pre-condition

of which is IMAC(X) A Q(X) for some subset X of Par(p). For IMAC(X) to

hold we know that the coordinator p must have constructed a view of some q E X

where ©p(q.s = pc), so q entered pc in an earlier attempt. By assumption this

is the first such attempt in the termination phase where a coordinator p moves

to pc, thus some process must have been in pc in the initial phase. By the pre-

condition of rule CPCI and the UCV rule if some process was in state pc in the

initial phase all processes must have voted yes.

10

Lemma 4 XSPC satisfies AC.

Proof: If no NET rules occur then X3PC does not enter its termination phase

so it behaves as 3PC.

10

FM

72

Lemma 5 X3PC satisfies AG5.

Proof If even only a quorate group X becomes connected for sufficiently long

they will reach a decision and if any process becomes connected to a decided

process it too will decide. This follows from the fact that the pre-condition of at

least one protocol rule holds until a decision is reached.

Theorem 2 If using the rules of E3PC a commit decision is reached during the

termination phase where no more than two quorums have formed then using the

rules of Q3PC will also lead to a commit decision.

Proof: In a committing run of E3PC there exists a configuration in the initial

phase before the first network failure of the form

n-rn 	 m

'WW pc ... pc p

where m > 0. This follows from the proof of Lemma 3. Consider the first

time a quorate component X forms after a NET event. X must either consist

of processes all in state w, or processes in pc and w, in the latter case, for

both E3PC and Q3PC, the newly elected leader of X, will apply rules CPCT

and participant processes will attempt to move to pc. In the former case both

E3PC and Q3PC will carry out rule CPAT to attempt to move processes to pa.

Let L be the set of processes that move to pa during this attempt. From this

point another network event must occur, if not this quorum would decide abort.

Consider the next quorum. By assumption this must be the last quorum to form

and must result in a commit decision. So we know rule CPCT must be applicable

in E3PC. Clearly no process from L could be present in this quorum as it would

have a maximum attempt counter and then IMAC would not hold invalidating

the pre-condition of CPCT so the quorum can only consist of processes in pc and

w and at least one process must be in PC. We see then that Q3PC can also apply

rule CPCR and behave in an identical way to E3PC producing a committing

execution.

IMI

4.8 Performance Comparison

To compare the three protocols we considered runs from the point that all partic-

ipants had voted yes and entered their w state and the coordinator had collected

73

these votes and changed state to pc. This is the most interesting initial condition

because if any process votes no, or if all vote yes but the coordinator does not

change to pc, before entering the recovery phase then all protocols will abort the

transaction.
Each protocol was compared by examining random runs. Between each pro-

tocol step a network event could occur with uniform probability 'y, causing the

network to partition. We only considered network events which resulted in quo-

rums being formed. The same failure pattern was applied to all protocols during

each run. Where there was a choice of steps to apply (i.e. more than one process

could take a step) one was picked at random. The protocol was deemed to have

decided once a quorum of processes decided, or in the case of Q3PC blocked if no

process could take a step. The results of 500 runs for seven processes and seven

values of 'y are presented in Fig 4.5.

The behaviour of E3PC and Q3PC is similar in executions when the outcome

is commit. E3PC will often abort a transaction if it would block in Q3PC for

an identical failure pattern. This is not generally true but by theorem 2 holds in

the case where failures are followed by the formation of less than two quorums.

E3PC is far superior to the Q3PC at avoiding blocking, especially when network

disruption is high. In our experiments a run of Q3PC was deemed blocked if

it could not take a step. The equivalent E3PC run would continue but might

have undergone several more network partitions before reaching a decision. In-

terestingly if Q3PC was allowed to run for as long (i.e. allowing further network

partitioning) as E3PC took to reach a decision it would still block in many cases.

X3PC will commit in all runs that E3PC commits. Especially under high net-

work disruption, X3PC will commit many of the transactions that E3PC aborted.

When network disruption is very high both E3PC and X3PC take many attempts

to reach a decision. X3PC is more likely to decide to commit under high, rather

than medium, disruption. This is because under high levels of random disrup-

tion more information can be exchanged between processes about unsuccessful

attempts to abort. When a period of calm returns X3PC is then in a good posi-

tion to move towards commit, whereas in E3PC there is a much greater chance

that pre-abort attempts dominate.

4.9 Conclusions and Future Research Directions

It is possible to further optimise X3PC. Processes could store not only their

own histories of attempt to pre-abort but also the histories of other processes.

74

Coordinators, after gathering this information, could distribute this information

to all participants. This process could go on even in a non-quorate components.

This would further improve the likelihood that pre-abort attempt could be rolled

back using an update view rule.

Up to this point we have assumed that all processes have perfect knowledge of

which other processes are in their own component. This is equivalent to having

a perfect failure detector [11]. The protocol is also correct if processes only have

access to an unreliable account of which other processes are in their component,

as long as this knowledge is eventually reliable. For example, a process p may

suspect that it has lost communication with another process q provided that

eventually 1) all real lost connections are eventually suspected and 2) no process

that is really connected is suspected indefinitely. If we assume this weaker model

we must change AC4 in the problem definition to:

If all processes voted yes, and no process is ever suspected then the decision

will be to commit.

Like E3PC, X3PC solves this weaker version, of the problem, called the Non-

blocking Atomic Commit [35], using only an eventually perfect-failure detector

[24, 11]. As in E3PC, X3PC will terminate once a quorum of processes become

connected and no failures or suspicions occur for sufficiently long.

In a mobile computing or Internet environment where network disruption is

common E3PC gives a greater availability of service than Q3PC. As applications

use transaction semantics in increasingly varied ways it may become more difficult

to restart transactions frequently. X3PC provides a protocol which combines the

high availability of E3PC with a greater chance of committing a transaction even

when network disruption is high.

Recently IBM and Microsoft have cooperated on a new protocol called SOAP.

SOAP provides remote procedure calls over the Internet using HTTP. Because

the HTTP protocol is stateless (each HTTP request appears as a new connection)

X3PC would be a perfect protocol to build on top of SOAP as the basis of an

Internet transaction processing system.

We have shown that our views based model is sufficient to model the execution

of complex protocols within a rich environment that includes a notion of failure.

The rules define precisely the actions of processes within a protocol and also the

types of environment changes that might take place. By interleaving these rules

we can generate a set of possible protocol executions and by appealing to the

rules we can show properties over the set of all protocol executions.

75

00 	0 	0 	00 	 .1 	0010 	
0 	00

I 	 1 	1 	 1 	1 wj 1 	i w
0
? 	

ffff0lffif0ifPVYOLflJ0 if0[fl

ff 	ff 	ff 	 ff
* 	 *

	

ICPCI
 --- -_ 	rji 	I 	 -

I 	 I

ff 	ff

1r0 o

1 1iWI1 	iwH
uvc 2 0[if 0 L f, 	if I0 ti if

1-- 	- 	I
ff 	ff 	ff
*

	

0 	 	 I 	0 	l 	00 	 0010 	O 	00

PC 	1 1 I pa 1 	2 w 1 1 1 	CPAT pc 	1 iJ W[1 	2 I wI 1 1 	NET2 PC 	1 1 W1 1 	1 W 1 1

	

wlFI 	

1

	

L 	
I

	

2 	2 	 1 	- 	I 	1 2 	 2 - 	 --- 	 2 L_ 	
0 	if] 0 [
	

0[0 	ff

tt 	 ff 	ff 	 it 	 it 	 ff 	 ff 	ff
* 	* 	 * 	* 	 *

NET2 	 --

Pa W r11 - I 	r
 pa w 	pa -

2 0 	 01 	00 	I 	 ___

pcI 	3 1 I pa 1 	2 WI 1 1 	
pa

L 	

1 IIWI 	I> 	3 i Ipa 3 	1 I wI 1

8 	i 	1 	

w 1

I___ I 	2 a I 	3 	0 	0 0

	

2
 L 	

o 	CPAT3 	2 ____--i° 	JUVP I
	

2 [if 	if I
3 	---- 	 3 	- 	13

	

iftt 	 3 	 3
3 - 	- 3 .--- 	3 -- 	-- 	 I

ff 	 ti 	if 	ff 	 ff 	ff 	it
* * * IMAC fails because * * *

@13 1 (p2.la=2 and p 2 .s= pa) 	 PAT

F 	paw 	pa 	II 	 p 	pa 	i 	 1 	pa 	I
I 	3 0 	L 	

aw 	 paw
0 	[00 	1 	[3 01 	

0 	

o 	 2 0 	3 	OI 	0 0

I 	I [0 	J CA2T 3 	3 	0
 [

JUVC L --
	I 	1

a I 	3 i Ipal 	1 	WI i 1 	- Pa 	 1

 j 	

I .E..... pa 	3 i pa I 	1 1 WI 1

3 ---------3 	--- - 3 -- --- 	3 	3 3 	 3 	3
1

ff 	ff 	it 	 ff 	ff 	 ff 	lit
* 	 * 	 * 	 * 	 *

Figure 4.3: One execution of example 1 for three processes P1,P2 and p3 . The

fifth configuration in the execution represents Par = {{Pi}, {p2,p3}}, p 1 .c =

p 1 .s = pc, p 1 .1a = 1, p 1 .le = 2, pi.f = tt etc. Views are also represented for

	

example in the fifth state at @p2 (p 1 .s 	i) holds and, ©p 1 (p2 .s w A p3 .8 w)

holds. Since a process' view of itself is alwa ys up-to-date it is omitted. When

a rule changes the value of a variable we italicise the change in the next state,

for instance at Pi, p 1 .1a = 0 —* p 1 .1a = 1 between the third and fourth states
represented. Here, and in the rest of the thesis, when a rule R is applied n-times
we write R'. We use a (*) to label a coordinator and thus omit p.c as a variable

explicitly.

76

	

r-r- 1 r 1 	 I 	 1 r71

0 	0 	0 	1 	0 	L 	I 	00 	1 	01 	00

P1 	1 1 pa 1 1 	2W

	

I 	1 	ICPAT PC I 	1 1 WI 1 	2 WI i i 	INET2
2 l ff 	if 0 f if 	

1 	0I ff 	if 	0 	f 	if

2 L 	2 	 2 	2[2h.

	

ff 	
k

It 	 It 	 ff tt
h 0 	h 1 	h0 	 h 0 	h 0 	h 0
* 	* , NE72 	 * 	*

W W 	 I r 	I 	; 	rI 1 I 0 	0 	I I 	2 	0 l 	1 0 	0 Io 	I PC 	3 i Ipa 	I 	Wl i

1 I 	2 	if o[CUVR1 	
h; 	 3

PC 	3 1 pa 	2 WI 1 1 	 2 I 	if]CPCT

- L 	hO h0 	 II 	 ff 	 ti
It 	 ff 	 it 	 h 0 	h 1 	 *
h 0 	h 1 	ho 	 *
* *

w w

:: rr 	i
PC I 	3 1 pa 1 	1 W 	1

if 	if 	2 	tt 	if 	O[iftt

10 	h 1 	 *

Figure 4.4: One execution of example 1 using X3PC. In the diagram h0 is the

empty history and hi[2].Sprev = w, hi[2].laprev = 01 hi[2].involved = {p2, p3} and

hi[2].c = P2•

Comparison of Protocols

100

80

a) 	 60
E
0
()

0
o 	 40

20

0

Q3PC Commit

03PC Abort -+--

03PC Block E3

... 	 Commit

• F73 X3PC Commit

'U S 	 -

+-.

-------- 	I 	 I 	 I

40 	50 	60 	70 	80 	90
	100

1 00-Gamma%

Figure 4.5: Comparison of E3PC, X3PC and Q3PC

77

Chapter 5

Model Checking Two-Phase
Commit

5.1 Introduction

In this chapter we will present methods by which a transition system can be

automatically generated from a views based model of a commit protocol. Each

state in the resulting transition system will represent a configuration in a protocol

execution. A transition from one state to another reflects the evolution of the

system during a protocol execution. The entire transition system therefore models

the possible behaviour that can occur during any protocol executions that were

included in the views based model.

Temporal logics such as CTL [16] have been used extensively to formally

express properties and capabilities of transition systems. Using these logics we

can express properties of protocol executions. For example, that a path exists

in a commit protocol's transition system to a state which has no successors and

yet no commit or abort decision has been reached. This example captures the

property that the protocol might block. It lacks the capability of taking a step

from some reachable undecided state.

Many algorithms exist which take as input a labelled transition system' and

a property expressed in a logic such as CTL and outputs whether or not' the

property holds or fails for the transition system supplied. This technique is known

as model checking [19].

Our strategy therefore, is to first generate transition systems from views based

models that capture the behaviour of commit protocols and then verify properties

of the resulting transition systems using model checking. We will see in this

'The entire transition system need not be supplied in every case.
'Some algorithms have the desirable property that if a property fails for a particular tran-

sition system, an explanation of why the property failed is given.

chapter that we can formally express many useful properties of commit protocols

using CTL. A good example is atomicity, that is the safety property that in no

protocol execution one participant can abort and another commit.

Model checking facilitates an iterative design process whereby a protocol can

be modelled, a transition system automatically generated and then properties

of that system model checked. If a desirable property fails due to a bug in the

protocol (or model) this can be rectified and the process repeated. Of course this

design process is only as good as the extent to which the model reflects the real

system being modelled and the property reflects the designer's intended property.

In this chapter we present a model checking algorithm based on games [76]

and use it to model check properties, expressed using a sub-logic of CTL, of the

simple 2PC protocol presented in chapter 3.

Although model checking is a very useful and powerful technique it suffers

from a major drawback. For complex protocols (exactly those that benefit from

the support of automated verification) the size of transition systems generated

are often very large or even infinite. This is known as the state space explosion

problem [17]. For many properties the time and space required to check a property

depend on the size of the transition system being checked. To circumvent this

problem abstraction techniques [18] have been devised to reduce the size of the

resulting transition systems. We will see in this chapter that our views based

modelling technique accommodates a very natural abstraction technique that

allows us, to some extent, to alleviate the state space explosion problem.

5.2 Modelling Two-Phase Commit

Recall the simple model of 2PC from section 3.6.5. We restate the rules of this

simple protocol.

s=i 	 =
PVY(p) 	 PVN(p)

s i

8 	 s

PC(p)
s = w A © 	

PA(p)
p(c.s = c) 	 s E {w, i} A ©p(c.s = a)

s:=c 	 s:=a

CC(c)
s=iA © 	

CA(c)
c(VpEP,p.s=w) 	 s=iA ©c(peP,p.s=a)

s:=c 	 s:=a

79

p.s=xA©c(p.s=i)
CUV 	

©c(p.s x)

PUV
c.s = x A ©p(c.s = i)

©p(c.s := x)

x e {w, a}

x {c,a}

In this model there are two classes of processes, the coordinator class C, and

the participant class P. Processes from each class have a single state variable S.

In the case of the coordinator this variable may take values i (initial), c (commit)

or abort a (abort). In addition to these states participants have a further state

w (wait). Table 3.3 of section 3.6.5 summarises this. We will use the notation

xy to denote a participant (coordinator) that is in state x with a view that its

coordinator (participants) is (are) in state(s) y. For example in the case of a

participant in state w with a view that its coordinator is in state i we write w 1 .

In this case the view is of a single state but this is not always the case. For example

the coordinator keeps a view of the states of all the processes it is coordinating.

For example, if the coordinator, in state i, has a view of three participants that

are in states i, w, i respectively, we might write j(1,W) It will always be clear

from the context when we use the notation xy whether we are describing the

state of a participant or a coordinator. When representing multiple states we will

sometimes use vectors as in this example and sometimes sets or multi-sets.

5.3 Generating Transition Systems from Rules

For the commit protocols in which we are interested, the number of processes

within the participant class P may be large. We would like to construct arguments

about protocol executions involving n participant processes, which are valid for

all n > 0. In order to generate a transition system from our set of rules we

must find a way to represent the state of all n processes within a particular

class. In this section we discuss two approaches to this problem, the second more

abstract than the first. The first approach is the most concrete but it results in

very large transition systems, whereas the second approach is the most abstract

representation. By means of an argument based on simulation we will show that

for particular classes of properties it is sufficient to show that if properties hold

(fail) in the abstract system then they also hold (fail) in the concrete system.

5.3.1 A Concrete approach

A simple approach to representing the states of n processes in a system uses a

vector of length n. We have already used this approach in section 3.6.5 where a

system configuration C was represented by the composition of a fixed number of

process states together with a coordinator, (Si, . .. , s,-), t, where si is the state of

pi and t is the state of c. We call this representation CON. For example we can

represent four processes P1,P2,P3,P4 and a coordinator, c, where P1,P2,P3 are in

state w', p4 is in state j1 and the coordinator c is in state i with an up-to-date

view of its participants as

(v1 , 'wi , 'wj, ji)j(WWWi)

Not all combinations of state vectors are valid in CON. In order to restrict

configurations to just those that are valid, we define a partial order on the states

a process may take. This order is

i < w < c, a

A CON configuration

(Xzl i , . . , x) y (U1 Un)

is valid if u, < x, and zi < y, 1 < i < ii. An example of a configuration that is

not valid is
(ii, i 1i i)j(W,W,W,i)

From this point onwards in the thesis we restrict our attention to valid CON

configurations only. One can see that the validity condition we place on CON

configurations is preserved by our rules for 2PC.

When a rule is applied to a process in the vector a new vector is produced.

Thus if rule R happens at a process p i in the vector (Si, . . . , S i , . . . , s,) which we

can write as si -* s, then we have the following transition in our representation

(\R 	 (
(Si,.. . ,5,. . ., sn), t 	' 	', (s 1 ,. . . , s, . . . , sn), t

In fact we can allow any type of rule that produces valid future configurations.

Generating a transition system in this way is straightforward. The applicabil-

ity of a rule, PVY, PVN, PC or PA, is tested by evaluating its pre-condition for

each participant process in the vector. If the pre-condition holds, a post-action

can be applied to that process resulting in a new vector. In order to update a

view at a participant, we apply the rule PUV by checking if the coordinator state

is different from the participant's view, if so we update the view. The coordinator

rules are similar. The pre-conditions of the rules CC and CA can be determined

by examining the view vector of the coordinator, and an appropriate change made

to the coordinator's state, if a rule is applicable. Finally CUV is applicable if in

the view vector of the coordinator, the view of a participant, is out of date; we

give an example of this below.

cUv
'w 'w i)1(wwii) 	(,1 .i 	1i)j(WWWi)

CON has a major drawback. Suppose we use it to represent ri participant

processes and a coordinator and now consider all the possible executions that

result from the simple 2PC protocol where each participant votes yes up until

the point that all participants have voted. Figure 5.1 (a) depicts this. This gives

rise to greater than n! transitions. To see this note the number of transitions is the

solution to the recurrence relation S = n(Sn_i + 1) and n(S_i + 1) > rt(S_i).

In fact matters are worse if we allow participants to vote no or include transitions

whereby a coordinator updates its view.

Jim }
it "

,•••,i,•.•, 	1 	> 	
i

<I,..., 	
< /

•> 	 {i n-I, w.I }

/".\/... \...\
<w,..., w,...,i>i <•> <i,..., W•••

I.. 	 I.. 	 •SI

{i:1,w:n-I}
> <w,...,i,..., w>i <. ••

<w,..., w,...,i>i <•••> 	 <i,... W•••

<W,..., W,..., W>i <> 	 {w:n }(ifl)

(a) 	 (b)

Figure 5.1: In (a) the state space explosion that results from using the CON
representation. The MULTI representation in (b) reduces this.

CON produces unmanageable state spaces for even small fixed numbers of

participant processes.

5.3.2 Multi-set representation

We can represent a set of n processes as a multi-set. To do this we list, in any

order, each different state together with the number of times it occurs. Following

on from the previous example, the four processes, three in w 1 , and one in j 1 ,

together with a coordinator can be represented as follows.

1w 1 3, i': l}j{W:3i:1}

We call this representation scheme MULTI. The size of a MULTI configuration

is the number of participants represented in the participant multi-set. In the

example above therefore the size is 4.

It is useful to be able to map between CON and MULTI representations. To do

this we define a function f CON -+ MULTI and a relation G C MULTI x CON.

To simplify their definition we first define auxiliary functions a and a' that map

an n length vectors of states to a multi set of states as follows.

	

a((si , . . . , s,) 	= {s : ci I si occurs ci times in (s i ,. . . , s,)}

s)) = {s : 	occurs c times in (st',...

We now define function f and its inverse relation G using a and a'.

f(.,t) 4i

GI f-i

We use the symbol . to denote the state of a group of n processes using one

of the representations (either a vector or a multi-set), t denotes the state of the

coordinator and 5 the coordinator's view, again using one of our representations.

Although the notation is a little heavyweight the transformations are really very

simple. Consider the examples below.

(w', 'W i , 'wi, j1), 1(w,w,i,i) E G({vr 1 3, P: 11, j{w:2i:2})

	

I ((ji, %V 1 , 	

i'), j(W,i,1,w)) = {w' : 2, j : 2}, j{w:2,i:2}

Again not all possible combinations of multi-sets constitute valid MULTI repre-

sentations. We say a MULTI representation . is valid if there exists a valid CON

representation ' such that ' e G(). Again we restrict our attention to MULTI

representations that are valid from this point on.

Later when we come to show how to model check properties of protocols

we will be particularly interested in classes of statements where the truth or

FW

falsity is preserved by these transformations. These will form atomic sentences

in the temporal logics we use to express properties. For example the property

"all participants are in state w 1 " is preserved by our function f and relation

G whereas the statement p4 is in state i1 " is not preserved because the MULTI

representation does not retain which participant processes are in which states. We

will show that there is a simulation relationship between the MULTI and CON.

We now address an important question, when can a protocol rule be applied

to a MULTI representation and what effect does it have on that representation?

A rule can be applied to a MULTI representation if there exists a corresponding

CON representation where the same rule can be applied. Suppose a participant

process, p, in state si moves to state s then in our multi-set representation we

decrease the counter associated with si and increase the counter 3 associated with

s. In our example if the participant process in state j moves to w 1 during rule

PVY we have the following transition in a MULTI representation.

{ v' : 3, 1': i}j{W:3i:1} '.!I1 {.i : 4}j{w:3i:1}

The rules PVN, PC, PA are similar. The rule PUV is applicable to a partic-

ipant process when its view of the coordinator is out of date. The CC rule is

applicable when the coordinator views all participants in state w so in the MULTI

representation this means the view consists of the multi-set {w : n}. Similarly,

the CA rule is applicable if the coordinator views any participant in state a.

This corresponds to a being in the coordinator's view multi-set with any positive

count. CUV is applicable when the the coordinator's view multi-set is out of

date, i.e. the count of participants viewed to be in a state x e {a, w} is less than

the count of processes in that state'. This is exemplified below.

{ w' : 3, i': 1 }j{W:2,I:2} 	{...i : 3, i': 1}j{W:3i:1}

Fact 1: The sum of the counters in any MULTI configuration is preserved by the

application of any of the protocol rules. This follows from the observation that

participants and coordinators are neither created nor destroyed by the rules.

Proposition 1 If a rule R is applicable to a CON representation 9 1 , t' to reach

2, t 2 then R is applicable to f(1, t), a MULTI representation, to derive a state
tV4 and 2,t 2 E G(. 4 , t 4). This is depicted below, strictly speaking the arrow

labeled G should be broken but typographical restrictions prevented this.

3 1f a counter is decreased to 0 that element is removed. If no element for s exists it is added
with counter value 1.

4 This follows from the fact that the state must be valid.

CON
R

p

f C

f(1 ,t')
R 	 -

-----p 	t'
MULTI

Proof: First consider the case where a participant process applies R. Let S i be

the state in the CON representation 9 1 that changes to s after R is applied. Let

us also assume that the pre-condition of R is determined only by the state 5, this

is true for rules PVY, PVN, PC and PA. Let 1, m be the number of si and s

states in . respectively. R is applicable to the MULTI representation f(.i, t1) by

definition. Furthermore, after application 1 is decreased by one and m is increased

by one so 2, t 2 E G(94, t 4) as required.

If PUV is applicable to some pi in state si within . it will also be applicable

to f(i, t 1) by definition. Clearly after the application 92, t 2 E G(. 4 , t) as

required.

If CC is applicable then '3 = (w, . . . , w) and after CC is applied t2 = c and

so CC will also be applicable to f(i, t) by definition. The multi-set viewb 3 will

be {w : n}. After the application t4 = c assuring 92, t 2 e G(4 , t 4) as required. 2 	9 4

If CA is applicable then 0 will contain some a and so CA will be applicable

to f(, tr) because the multi-set view will contain some a. After the application

t4 = a as required.

Finally if CUV is applicable then some Pi exists with value x e {c, a} in

. such that the coordinator's view of Pi in i is not x. By definition CUV is

applicable to f(i, t1). The count of processes in the coordinator's view that are

in state x will be less than the number of processes in state x in s3. Therefore after

the applicationwill have the required property that

R1 	R2 	R_j
Corollary 1 If in CON C1 —p C2 —*... —* C —f ... then in MULTI

	

C2 	 it

	

Cl —3 C2 	C

	

I 	 t

	

f 	G 	 G

	

- 	 I
R1 	R2 	 i 	R

	

f(C 1) —* C2, 	
Rn_ C —*

85

such that Ci E G(C) for 2 < i < n.

U

Proposition 2 If a rule R is applicable to a MULTI representation .i, t to reach

92 , t 2 then R is applicable to all CON representations in G(. 1 , t 1). Moreover for

any s4 , t that results from the application of R f(, t) = s2 , t 2 . This is

depicted as follows.
CON

93, t3
R

tv4 ---4 	94,

T
G f

V1
R tV2

,

MULTI

Proof: Again consider the case where a participant process applies R. Let si be

the state in the MULTI representation 9 1 that changes to s after R is applied.

Let us also assume that the pre-condition of R is determined only by the state

s, this is true for rules PVY, PVN, PC and PA. Clearly some process is in

state s i in all possible 53 so R is applicable as it only depends on the state S i .

Furthermore, after R is applied to 53, t resulting in .94, t, one less process will

be in si and one more in s therefore 2, t2 = f(.,
t14) as required.

If PUV is applicable to some process in state s i within . it will also be

applicable to all 53, t because applicability depends only on the state s2 which

will be present in . and the state of the coordinator c3 which is preserved by G.

Clearly after application 2, t2 = f(., t 4) as required.

If CC is applicable then i5 i 	{w : n} and and after the application of CC

= c and so CC will be applicable to all 53, t 3 because the resulting view vectors

for the coordinator, v 3 will be (w,.. . , w). After the application t4 = c assuring

s2, = f(i, t 4) as required.

If CA is applicable then 3i will contain some a and so CA will be applicable

to all 53, t because v 3 will contain a. After the application t 4 = a assuring

2, 2 = f(i, t 4) as required.

Finally if CUV is applicable then some participant exists with state x e {c, a}

in .i with count m and in the coordinator's view 01 the count of participants in

state x is less than m. This means for all e G(§,, t") a processes in

state x will be in §3 and the coordinator's view of that process in 33 will be i

therefore CUV will be applicable resulting in a 04 with the required property

that = f(. 4 ,t 4).

86

D

R1 ,-, R2 	R_ 	,
Corollary 2 If in MULTI C 	C -+... then in CON for all

C1 E G(C)

Cl

T
G

f-I,

such that C = f(C) f(

-c2

f
"-

Ri / —C 2
)r 2 < Z'< fl

R2 	R _1 c R
-+ C', -+

I

R2 	Ri fIF R
-> ... -+ L -+

Corollary 1 and 2 are useful as they allow us to infer properties of executions in

the CON representation by showing that they hold or fail for executions using the

MULTI representation. Informally, if a property fails for an execution using the

MULTI representation then by corollary 1 the same execution exists in CON, and

so that property must also fail in CON. Similarly, if a property holds in MULTI

no execution in CON provides a counter example because by corollary 2 the same

counter example would then also exist in the MULTI representation. Of course in

order for this technique to work we must restrict our atomic sentences to those

preserved by f and G. A formal proof of this argument is given in theorem 3.

5.4 Expressing Properties of Protocols

In the previous sections we have shown how to generate a labelled transition sys-

tems from a views model. We can generate transition systems using various levels

of abstraction and have proved simulation relationships between the different ab-

stractions, for a particular model 2PC. In this section we show how to verify or

refute temporal properties of protocols by model checking the resulting transition

systems. For example, suppose we want to show that a commit protocol has the

desirable property of atomicity. That is, in any execution, if one participant de-

cides commit (abort) no other participant may decide abort (commit). To show

this we need to verify that in no execution (traversal of the transition system from

the initial state) can we reach a state where one participant is in a while another

is in c. Our views based model has the advantage that we can make "knowledge

statements". For example we can express that if the coordinator believes (has a

view) that all participants have voted yes then the decision will be to commit.

More generally, for any property 4D we say

C =

M.

if property 	holds of a configuration C. Since temporal logic expresses the

capability of actions over time, we are able to determine properties of protocol

executions by determining if a temporal property holds of the initial configuration

Co . For example, in order to express that a commit protocol never aborts we

express that Co has the property that in no reachable configurations from Co can

we reach a state where a process aborts.

The temporal logic we use to express properties is a subset and slight variant

of computation tree temporal logic, CTL due to Clarke, Emerson and Sistla [16].

We call this subset CTL. In the following let R ranges over rules.

In this and the next section we define CTL relative to some arbitrary config-

uration scheme C and set of paths, over these configurations, P. The set of paths
R1 	R2 	R3 	 B.2 	B.3

P is suffix closed, that is if Co -+ C1 -+ C2 —*e P then C1 -~ C —*e P.

Later we will "plug in" our configurations schemes CON and MULTI and the paths

generated from the protocol rules, to show how to apply CTL to prove proper-

ties of our protocol. For now though the discussion of CTL is independent of a

particular configuration scheme.

A property in our logic can be expressed as follows.

tt I X 1 -' 	 I
A(1 U 2) I E(1U2)

The definition of satisfaction between a configuration Co and a formula pro-

ceeds by induction on the formula.

Co 1= tt
co = X if X holds of Co with respect to some valuation function
C0 = -' if C0 &cT

if C0 = 	and Co =W

Co 	[R+] if VC1 , co 	C1 , C1 	CD

Co = A(U W) if for all runs Co ---* C 	--*
there is i > 0 with C = 'I' and
for all j:0j <i, C3 	=1

C0 =E(U) if
R2 R1

	C, -!% ... forsomerunCo —*
there is i > 0 with Ci = 'I' and
for all j:Oj <i, C3 =cI

We let if abbreviate -itt, (RI abbreviate -i[R]-' and V IJ abbreviate

-i(-i A -ui), and so the derived clauses for these abbreviations are

C0 ff

C0 1= (R) 	if Co - C1 , C1 =
C0 =vW if C0 =orCo =P

MM

A useful formula is -E(tt U W) this expresses the property that in all runs 'I'

fails at all points. We can derive a definition for this formula as follows.

Co = -iE(tt U 'I') if for all runs t
,-

—f - 1%
for all i> 0, C =

Strong liveness properties are expressed using A(,1 U ii'). The formula A(tt U 'I')

means in all paths eventually T. In CTL we often write this as AF(T).

Strong safety properties are expressed using -'E((D U 'J!). For example if we

were using the paths generated by our 2PC protocol and X was the sentence "A

participant is in c and another is in a", then the formula -iE(ttUX), which is

often abbreviated as -EF(X), expresses the inability in any execution to reach

a state where X holds i.e. atomicity is ensured.

The more expressive logic CTL includes an explicit next operator LJ. This

expresses that 40 will be true in all next states. More formally it is defined as

follows.

Co EJ if VR, VC 1 , CO -- C1 C1

We do not wish to include this operator in our logic because it introduces a form

of counting. A possible further abstraction of MULTI removes counters from the

configurations. So as to future proof our logic and safe gaurd its applicability we

use a logic that does not allow counting properties to be expressed.

5.5 Games-Based Model Checking

The "property checking game" G(C, '1), when C is a system configuration and 'J

is a formula, is played by two players, players R (the refuter) and V (the verifier).

Player R attempts to show that C fails to have the property whereas player V

wishes to establish that the property holds of C.

A play of the game G(CO3 (D o) is a finite or infinite length sequence of the form

where each formula 	is a subformula5 of o, and each C2 is a configuration.

If part of a play is (CO3 o). . . (C3 ,) then the next move and which player

makes it depends on the main connective of the formula . We write Cj if

R, 3C, C3 —* C. All the possibilities are presented below.

• if (Dj = W 1 A XP2 then player R chooses one of the conjuncts T i , i e 11, 2}:

the state C 1 is C3 and 	is T i .

5 A formula is the composition of subformulas using connectives. For example, 4 and W are
subformulas of the formula A W.

• if (Di = (Ti V 4J) then player V chooses one of the disjuncts T i , i E 11, 21:

the state C3+1 is C3 and 1j+1 is Ti.

• if 	= [R+]I1 then player R chooses any non-zero number of R transitions

C3 -~ C31 and +i is T.

• if = (R+)P then player V chooses any non-zero number of R transitions

C3 -+ C31 and +i is T.

• if T = -, --iW then C31 is C3 and 	is 'I'.

• if I = A('I' 1 UW2) and not (C3 -4) then 1j+i = I2 and C3+1 = C3 .

• if 	= A(W 1 UW 2) and C3 --3 then player V chooses;

+i = IJ2 and C31 = C3 or

allows player R to choose

'j+1 = Ti and C +i = C3 or

any rule R and a transition such that C3 -- C3+i and +i =

• if 	= -A(W 1 U1h2) and not(C3 --*) then 	= 'W2 and C31 = C3 .

• if Dj = -iA("P 1 UW 2) and C3 -- then player R chooses;

j+1 = "41 2 and C3+1 = C3 or

allows player V to choose

j+i = I'i and C31 = C3 or

any rule R and a transition such that C3 -- C31 and j+i

• if (Dj = E(4' 1 UW 2) and not (C3 -0 then ji = 'P2 and C +i = C3 .

• if 	= E(W 1 U'h' 2) and C3 -- then player V chooses;

allows player R to choose

.,+i = Tiand C31 = C, or

force player V to choose a transition such that C3 --* C, 1 and

j+ 1 = :hj.

• if (Dj = -iE('P 1 UW 2) and not(C3 --*) then 	= 'W2 and C, 1 = C3 .

R • if Dj = -'E('h' 1 UW2) and C3 -~ then player R chooses;

90

Player R wins

The play is (CO , (D) ... (Cs , I) and

. 	= f or

• 	= (R)'IJ and not SC', C - 	C' or

• 	= X and X is not true at configuration C.

The play (CO , 1 o) . . . (Ca , I)... has infinite length and there is an until

formula A('I 1 UW2) or E(1 UW2) which occurs infinitely often.

Player V wins

The play is (CO , (D) . .. (Ca , I) and

• 410, = tt or

• 	= [R]W and not SC', C - C' or

• 	= X and X is true at configuration C.

The play (CO, 	. . (Ca , 'I)... has infinite length and there is a negated
until formula -A('I' 1 UW 2) or -E(W 1 U'IJ2) which occurs infinitely often.

Figure 5.2: Winning conditions

±i = -iW2 and C31 = C3 or

allows player V to choose

+i = -'W 1 and C3i = C3 or

force player R to choose a transition such that C3 -- C31 and

j+1 =

The rules appear to be complicated because of the presence of negation in the

logic. The refuter chooses the next position when the formula has the form '11 1 A'I' 2

or [R]W and the verifier chooses when it has the form (W 1 V W 2) or (R)W. In

the case of A('11 1 U'I'2) and E(I' 1 UW2) an initial choice is made by player V but

V may choose to defer this choice to R. Likewise in the cases -A(' 1 U'I'2) and

-E(I' 1 U'I' 2) player R has an initial choice but may choose to defer this choice

to player V. As there are no choices in the remaining rules neither player is

responsible for them. The first of these reduces a double negation.

Figure 5.2 captures when a player is said to win a play of a game. Player R

wins if a blatantly false position is reached and player V wins if a blatantly true

position is reached. Condition 2 identifies which player wins an infinite length

91

play. For any infinite length play of a CTL game there is only one until formula

or negation of an until formula which occurs infinitely often. It is this formula

which decides who wins. If it is an until formula then it is the refuter that wins

and if it is the negation of an until formula then it is the verifier that wins. To

detect when a formula and configuration can appear infinitely often we need only

detect repeats.

A strategy for a player is a family of rules which tell the player how to move.

It suffices to consider history-free strategies, whose rules do not depend upon

previous positions in the play. For player R rules have the following form.

. At position (C, (D j A (T)2) choose (C,) where i E {1, 21.

At position (C, [R]) choose (C',) where C 	C.

• At position (C, -'A(T) j UCT 2)) or (C, -iE(T) i U1)2)) choose one of the two op-

tions discussed earlier possibly deferring a choice to V.

The verifier rules have a similar form.

. At position (C, i V (T)2) choose (C, CT) where i E 11, 21.

• At position (C, (R)CT) choose (C', cT)) where C -* t

. At position (C, A(T) 1 U(D 2)) or (C, E(4 1 U1) 2)) choose one of the two options

discussed earlier possibly deferring a choice to R.

A player uses the strategy iv in a play if all her moves in the play obey the

rules in iv. The strategy iv is winning if the player wins every play in which she

uses iv. The following result provides an alternative account of the satisfaction

relation between system configurations and formulas.

Proposition 3 	1. If CT e CTL then C 1= T) if player V has a history-free

winning strategy for G(C, T)).

2. If CT E CTL then C 	cJ if player R has a history-free winning strategy

for G(C,'T)).

Proof: Follows from [77].

U

92

5.6 Applying CTL to CON and MULTI

In this section we set about model checking CTL properties of the 2PC protocol

using the different representations CON and MULTI. Recall we defined CTL

with reference to a set of valid configurations and paths over these configurations.

When checking properties using the CON representation, the configurations are

those of CON and the paths are those generated by the application of rules in

CON. Likewise for MULTI configurations we use the MULTI configuration and

paths generated by applications of the rules in MULTI.

At this point we will introduce labelled atomic sentences X, Y,.... We restrict

these sentences to those preserved by the transformation, G and f that we used

previously to map between CON and MULTI. More formally X is preserved if for

any MULTI configuration C1

C1 X if VC2 e C(C1), C2 X

and for any CON representation C1

C1 =X if f(C 1) = X

Examples of atomic sentences, X, that are preserved include, "the coordinator is

in state c" or, "all participants are in state a".

The next theorem expresses the relationship between model checking using

our two representations. They allow us to model check properties in the more

abstract and efficient representation of MULTI and then infer properties in the

more concrete representation of CON.

Theorem 3 For any configuration C

C 	in CON if f (C) =in MULTI

Proof The proof is by induction on the structure of ob and makes use of corollar-

ies 1 and 2.

Base Cases: If 4D = tt trivially true. If 1 = X then if follows because X is

preserved by f and C.

Induction:

case = -"I'.

C = -iW if C 	'P therefore by the induction hypothesis if f(C) V= 'I' if

f(Cfl= lb -

case = IJ1 A W 2 .

93

C = W 1 A W 2 if C = W and C = I2 therefore by the induction hypothesis

ifff(C) =W 1 and 1(C) 1= IJ 2 and ifff(C)

case = [R]W.

=> Assume C [R]%F in CON but f(C) K [R]q/ in MULTI so f(C) -

C3 and C3 K W in MULTI. By corollary 2 if f(C) -Z C3 in MULTI then

C -+ C2 in CON with f(C2) = C3 . Applying the induction hypothesis

C2 	JJ and so C 	[R]W a contradiction.

= Assume f(C) = [R]W in MULTI but C V= [R]W in CON so C - C2

in CON and C2 T. By Corollary 1 f(C) -Z G in MULTI and c2 e

G(C3). Applying the induction hypothesis C3 V= 'I' and so f(C) = [R]W

a contradiction.

case = A(W 1 UW2) or 1 = E(W 1 UW 2). We prove the case for = A(W 1 UW 2),

= E(W 1 UW 2) being very similar.

= Assume C 	A(1 U 2) in CON but f(C) 	A(1 U 2) in MULTI. If

f 	A(1 U 2) then there exists a path f(C) = Co -* C -- ... '-

C -* ... such that either 1?i fails before 12 holds or '2 never holds.

Consider the first case the second being similar. So there exists n > 0 such

that C 	1i and C 	2 and furthermore for each i < n, C = 4'i and

C 	'2• For each prefix of the path apply Corollary 2 and so for each

D E G(f(C)) there is a path in CON D0 -* D -- ... ' 	D -*

such that f(D) = C2 . Applying induction hypothesis D 	'T'i and

D 	and furthermore for each i <ri, D2 = i and D2 	2, therefore

C K A(1 U 2) a contradiction.

= Assume f(C) = A(W 1 UW2) in MULTI but C A(1 U 2) in CON. If

C 	A(1 U 2) then there exists a path C = Co 2* C1 --* ...

C -+ ... in CON such that either T fails before 42 holds or never

holds. For each prefix of the path apply corollary 2 and so there exists a path

f(C) = D0 -* D -+ . .. '- D -* . . . in MULTI such that C2 e G(D2).

Applying induction hypothesis at each point in the MULTI path we have 'LIi

fails before 2 holds or '12 never holds, therefore f(C) A(4 1 UI2). The

cases for 1 = E(1 UcI 2) is very similar.

.

Theorem 3 allows us to model check properties in the more compact MULTI

representation and then infer properties in concrete representations. If for exam-

ple a property holds in MULTI we know that property holds in CON.

94

5.7 Checking CTL Properties of Two Phase Com-
mit

As a simple example let ONE(x) be the set of atomic sentences "there exists a

participant p with P.S = x", p.s = x means that the participant is in state x

with any view of the coordinator, and let ALL(x) be the set of atomic formaulas

"for all participants p, p.s = x, where x E {a, c, w, i}. We can see that both

ONE(x) and ALL(x) are preserved by the abstraction translations, f and G.

The safety property -'EF(ONE(c) A ONE(a)) expresses the property that

in any protocol execution a state is never reached where one participant has

committed and another has aborted.

We model checked this property, using an implementation of the games based

algorithm above, against our simple two-phase commit protocol. As expected the

verifier V produced a history free winning strategy. If we add the following rule

to our system 	
PVY(p) ::=

and check the same property we find that the refuter has a winning strategy. This

is to be expected because participants are now able to unilaterally commit as well

as abort.
A more complicated property makes use of views. Suppose we wish to verify

that in any run if the coordinator has a view that all participants have voted

yes then eventually all participants will commit. Let Z be the property that the

coordinator's view is that all participants are have voted yes. Z is preserved,

because f and C maintain the validity of the coordinators view of participant's

state. We are are then required to model check the following formula.

-EF(Z A -iAF(ALL(c)))

Since this is an example of aliveness property we can see by figure 5.2 that if a

negated until formula is repeated then the verifier has a winning strategy.

In chapter 2 we saw an axiomatic specification for the correctness of a commit

protocol due to Berstein et al. [9]. We can use our model checker to verify these

axioms. We have already verified AM which is atomicity. AC2 is implicit in our

model since a participant can only vote once. AC3 states that "if any participant

decides c then all participants voted yes". This follows from the property that in

no run can any participant vote no and then from that point some site eventually

commit which we express as follows.

-'EF(ONE(a) A EF(ONE(c)))

95

Since we do not model failure we can interpret AC4 as the statement "If all

participants vote yes, then the decision will be commit" which we can express as

follows.
-'EF(ALL(w) A -'AF(ALL(c)))

AC5 deals with failure which is not modelled in our simple 2PC but its analogy

might be that eventually a decision is reached by all participants which we can

express as follows.
AF(ALL(c) V ALL(a))

Games-based model checking has the advantage of producing a strategy that

proves or refutes the property being checked. This provides a protocol designer

with a design cycle. For example, if a safety property were to fail a designer

can "play" the game and see exactly why the property fails. This then leads to

modifications of the original protocol and re-verification. Another useful property

of the games-based approach is that, because the game is played only until a

winning strategy is found, in many cases the entire transition system need not be

generated ie. the transition system can be generated on demand.

5.8 Conclusions

We have shown how a simple views based model can be used to construct a

labelled transition system using different abstraction techniques. The most con-

crete approach led to large state spaces. A slightly less concrete approach reduced

the state space. Using a simulation argument we show that for many properties

model checking in the abstract system is equivalent to model checking in the

concrete system. We defined a sub-logic CTL that captured these properties

and also developed algorithms to automatically generate transition systems from

views based models, so that our models could support automatic model checking

of these properties.
Because our views based model captures a processes belief of another processes

state explicitly within its own state, we are able to express belief type properties

within CTL. For example, we can express properties like "If the coordinator

believes that all participants have voted yes then it will eventually enter its c

state."
We will see in following chapters that our technique could be used for more

complex protocols. Another avenue to explore is to introduce failure for example

the partitioning network model of the previous chapter, into our models. If we

were to do this many interesting properties of protocols might emerge.

Chapter 6

Diluting ACID

6.1 Introduction

We have seen the role a commit protocol plays in guaranteeing the atomicity of

a set of actions in a transaction. Equally important is the role it plays when

interacting with concurrency control mechanisms to guarantee a particular level

of transaction isolation, i.e. the 'I' in the ACID properties of transactions.

So far, we have only looked at transactions from a single transaction point-

of-view. If only one transaction happens at a time, then each transaction occurs

serially and does not have to contend with interference from other transactions.

However, with many transaction execute at the same time, transactions can occur

simultaneously and each transaction has the potential to interfere with another

one. Transactions that have the potential of interfering with one another are said

to be interleaved or parallel transactions. When transactions are interleaved,

mechanisms often exist to protect them interfering with one another. The level

to which they are allowed to interfere is the level of transaction isolation that they

attain. Informally, transactions that run totally isolated from each other are said

to be serializable, which means that the results of running them simultaneously

will be the same as the results of running them one right after another (serially).

In this chapter we will provide a formal definition of some different types of

transaction isolation.

The life-cycle of a distributed transaction can be thought of as an operational

phase, where transactions perform read and write accesses to data objects followed

by' the invocation of a commit protocol. Up until this point our models focused

on the commit phase of a single transaction while ignoring the operational phase.

In order to study the role of commit protocols in transaction isolation we must

enrich our models in two ways. Firstly, we must include read and write accesses

'We will see in the next chapter than sometimes these phases can be overlapped.

97

to simple data objects prior to the invocation of a commit protocol, and secondly,

we must also model the concurrent interaction of many transactions rather than

just considering the case of a single transaction.

Before we introduce a views based model of a very simple distributed trans-

action processing environment, that includes these features, we must first define

what we mean by transaction isolation. Unfortunately, the current literature is

inconsistent on the subject. Most definitions appeal to specific concurrency con-

trol techniques, in particular lock management schemes such as strict two phase

locking (S2PL). In response to this, different levels of isolation were defined in

part of the ANSI SQL 92 standard [3] and many database and transaction pro-

cessing vendors have implemented this facility, or something similar. In order

to remain neutral to particular concurrency control implementations the ANSI

community constructed a definition based on "phenomena". In their definition,

a level of isolation is achieved when a set of phenomena, is prevented from occur-

ring. For example, a basic phenomenon is that one transaction cannot write to

the same data object as another, until the first transaction has terminated, that

is committed or aborted.
In order to simplify our account of transaction isolation we first consider the

case when our transactions are not distributed. For this centralised case transac-

tions do not require a commit protocol. Although it may seem we have departed

from the analysis of the behaviour of commit protocols, we will see that the frame-

work we construct in this chapter for centralised transactions can be generalised

to the distributed case. In the next chapter we will re-introduce commit proto-

cols and study the role they play in providing levels of transaction isolation using

our views based modelling techniques combined with games-based model check-

ing. Another motivating factor for this aside comes from the realisation that the

current literature on transaction isolation is rather unclear. To analyse the role

of commit protocols in transaction isolation we must have a clear idea of what

attaining a particular isolation level actually means.

A classical theory of serializability (the highest level of transaction isolation 2),

and the related theory of recoverability has been in existence for quite some time.

In the next section 6.2 we will we will briefly survey some relevant literature

in the field. We base our discussion on the seminal work found in [9] and [34].

In section 6.3 we introduce some notation for reasoning about the order of a

transaction's actions. In section 6.4 we extend the classical theory of conflict seri-

2 Unfortunately, the ANSI community muddied the waters by calling this level of isolation
REPEATABLE READ and using the term SERIALIZABLE when predicates (discussed later)
are included.

alizability to include the commit or abort outcome of a transaction. Berenson et

at. [6] criticise the ANSI standard and give a more precise phenomena based def-

inition that corrects some of the deficiencies they discovered. In section 6.5 we

describe their work and in turn criticise their phenomenon based definitions of

isolation and construct our own definition that we claim better captures isolation

levels. In section 6.6 we prove that our new definition coincides with the extended

definition of conflict serializability we gave in section 6.4. For completeness we

enrich our model with predicate read and write accesses allowing us to complete

our discussion by defining the four levels of transaction isolation (see table 6.1),

discussed in the ANSI standard, using the theory we develop.

6.2 Classical Recoverability and Serializability
Theory

Concurrency control is the activity of coordinating the actions of transactions

that access shared data objects, and therefore potentially interfere with one an-

other. Recovery is the activity of ensuring that system failures do not corrupt

data. Concurrency control and recovery problems arise in the design of hardware,

operating systems, realtime systems, middleware systems, and database systems

among others. In order to hide many of the details of the particular system we

are interested in, a transaction is modelled as sequence of four different types of

actions, sometimes called a schedule'. We write read t (x) to denote a transac-

tion t, reading a data object x and write t (x,v) 4 to denote a write of value v

to x. Once t has completed all of its read and write accesses it terminates by

either committing the transaction by performing a commit action, or aborting the

transaction by performing an abort action.

6.2.1 Recoverability

Recoverability guarantees that data objects contain all the effects of committed

transactions and none of the effects of uncommitted ones. If transactions never

abort, recoverability is rather simple to ensure because all transaction eventually

commit, the access of each transaction can just be carried out as they arrive. To

understand recovery therefore we must look at the processing of aborts. When

a transaction aborts all the effects of the transaction must be wiped out. The

'Strictly speaking a schedule is really a partial order.
'The actual values read or written are not always important to our discussion of concurrency

control and recoverability and so they are sometimes omitted.
'An uncommitted transaction is either aborted or not yet terminated.

effects of a transaction t are twofold: effects on data objects due to write accesses

carried out by t; and effects on other transactions, namely, transactions that read

values written by t. For example, suppose the initial values of data objects x and

y are' 2, and suppose transactions t 1 and t2 issue accesses that are executed in

the following order.

write i (x,3) read2 (x) write 2 (y,3)

Now suppose t 1 aborts. This means that the write 1 (x, 3) must be undone, restor-

ing x to its initial value 2 and because t 2 read the value of x written by ti it

must also be aborted. This is sometimes referred to as a cascading abort because

write 2 (y, 3) must also be undone due to t 1 's abort.

Because a committed transaction cannot be subsequently aborted it is impor-

tant, given the possibility of cascading aborts, that a transaction is not committed

when there is a chance it may later be required to be aborted. Therefore, a trans-

action, t, cannot commit until all the transactions that wrote values read by t

are guaranteed not to abort, that is, are themselves committed. Executions that

satisfy this condition are called recoverable. More formally we say a transaction

t3 reads x from transaction t i in an execution, if

t3 reads x after t 2 has written to it and;

t, does not abort before t 3 reads x and;

every transaction (if any) that writes to x between the time t i writes it and

t3 reads it, aborts before t 3 reads it.

A transaction t 3 reads from ti if t3 reads any data object from t. An execution

is recoverable if, for every transaction t that commits, t's commit follows the

commit of every transaction from which t read. Consider the following example.

write i (x,2) read2 (x) write 2 (y,3) coimnit 2

This is not recoverable, because t 2 read x from t 1 and yet the commit of t 2 does

not follow the commit of t 1 . A problem would arise if t 1 were now to abort.

Enforcing recoverability does not remove the possibility of cascading aborts.

Consider the example below.

write i (x,2) read2 (x) write i (y,3) abort 1

6 1n all our examples the data objects we consider will be simple integer values but the results
we derive are valid for any data types.

100

Although this execution is recoverable it requires cascading aborts because t 1

aborted and so to remain recoverable t 2 must now abort. To ensure that cas-

cading aborts are avoided we must place the following further restriction on the

order of actions. Every transaction must read only those values that were written

by committed transactions. Thus, only committed transactions can affect other

transactions. This means that each read(x) must be delayed until all transac-

tions that have previously issued a write(x, v) have terminated. In so doing

recoverability is also achieved. From a practical viewpoint, a further restriction

is required. Consider the following execution sequence, assuming the value of x

before the execution is 0.

write i (x, 1) write 2 (x,3) abort 2 abort 1

Aborting t 2 then t 1 should remove all the effects of both ti and t 2 and thus should

restore the value of x to be 0. A very natural implementation is to undo a write

by restoring its previous value. In this case when t 2 aborts it will be restored to

1 and then when t 1 aborts it will be restored to 0 as required. Consider the case

where the abort actions are transposed as follows.

write i (x, 1) write 2 (x,3) abort 1 abort 2

We see now that simply restoring previous values fails. In order to prevent this

from happening and ensuring that writes can be undone by restoring previous

values we must place a further restriction on the order of actions. We must delay

a write access on x until all transaction that have previously written x are either

committed or aborted. This is similar to the requirement for avoiding cascading

aborts. Executions that satisfy both these conditions are called strict [9].

From this short discussion we see that in order to implement the semantics of

commit and abort, executions sequences must be recoverable. Due to practical

considerations it is often preferable that they are also cascadeless. If in addition

to this the undo of writes is to be implemented by replacing the value before the

write took place then executions should also be strict.

6.2.2 Serializability

When the accesses of two or more transactions execute concurrently causing their

actions to be interleaved, the interleaving can cause incorrect behaviour. To

understand this consider the simple transaction that deposits a sum of money in

a bank account with balance b in figure 6.1.

101

deposit (amount){
t := read(b);
t := t+amount;
write(b, t);
commit;

}

Figure 6.1: A simple deposit transaction.

Suppose the account has a balance of £1000 and customer 1 (transaction t 1)

deposits £100 into this account, at the same time that customer 2 (transaction t 2)

deposits £100, 000 into the same account. A possible execution sequence might

be as follows.

read i (b) read2 (b) write 2 (b, £101,000) commit 2 write i (b, £1100) commit 1

The result is that the balance b contains £1100, although t 2 executed successfully

its deposit of £100, 000 was lost. Clearly this is incorrect.

To avoid this and similar behaviour, the kinds of interleaving between transac-

tion accesses must be controlled. One possible way to accomplish this is to insist

that the actions of transactions are not interleaved. This leads to serial execu-

tions, i.e. all actions of a transaction t j are either strictly before or after those of

another transaction t2 . Unfortunately, this leads to very poor performance since

the level of concurrency is severely restricted. A better approach is to only allow

executions that have the same effect as a serial execution. Such an execution is

called serializable. There are several different definitions of serializable [9, 10] but

the most widely accepted is that of conflict serializability.

Two accesses, from different transaction tj and t, are said to conflict if

they both operate on the same data item and at least one of them is a write.

Thus read(x) conflicts with write(x,v), while write(x,v) conflicts with both

read3 (x) and write 3 (x, v). Using this definition of conflicting accesses execution

sequences, cr1 and 02 are defined to be equivalent when

they inlcude the same actions; and

they order conflicting accesses of non-aborted transactions in the same way;

that is, for any conflicting access oi and 03 belonging to t j and t3 (respec-

tively) where neither t 2 nor t3 abort, if oi is before 03 in or, then oi is before

oj in a2 .

A conflict serializable history is now defined as one which is equivalent to a

102

serial history. In the following example the execution

read 1 (x) write 2 (x,3) read 1 (y)write2(y,4) commit 2 Commit

is conflict equivalent to the serial execution

readi (x) read i (y) commit 1 write 2 (x,3) write 2 (y,4) commit 2

and is thus serializable whereas

write2 (x,3) read i (x) read l (y)write2(y,4) commit 2 commit 1

is not conflict equivalent to any serial schedule and so is not conflict serializable.

In much of the literature on the classical theory of serializability [9, 34] there

is an assumption that a mechanism exists to ensure schedules are recoverable, and

often that they avoid the possibility of cascading aborts'. Under this assumption

the classical theory need not distinguish between two schedules, say o 1 and 0 2 ,

where the only difference is that, in a 1 a transaction, t2 , reads a value for a data

object that was written by another transaction, t 1 , before t 1 aborted because such

schedules are disallowed by recoverability constraints.

a1 : write l (x,3)read2 (x)comrnit2abortl a2 : write i (x,2)abort l read2 (x)commit2

In the above example a 1 is disallowed by recoverability constraints because t2

reads x from t 1 before t 1 terminates.

In the extensions to the classical theory we make in section 6.4 we do not pre-

suppose a technique exists to ensure recoverability and so our account of isolation

is independent of recoverability assumptions. In order to do this we include in

the theory of conflicting actions the context of the outcome (i.e. either commit

or abort) of the transactions in which these actions appear.

6.3 Modelling simple schedules

Let t, t3 denote transactions and d, d' denote data objects. It is assumed that

ti =A t3 , unless otherwise stated, but we do not assume d $ d'. A transaction, t,

consists of actions. These actions are divided into four categories. The first two

categories are read and write actions, which we call accesses, and which we denote

r, w, respectively, or oi to denote either a ri or w. The second category are

7 1f cascading aborts are required by the concurrency control mechanism in place to ensure
recoverability a mechanism is assumed to exist to detect when they are required and perform
the necessary transaction aborts.

103

commit and abort actions which we call terminals and denote c, a1 respectively or

e2 to denote either c1 or a. When a transaction commits, the changes it has made

to the data objects are made durable, and the values it has read are returned to

the user. If a transaction aborts, all write actions are undone leaving any data

objects with the value that they would have had if the transaction had never

executed, furthermore no read values are returned.

Accesses 	11 Terminals
w[d] I t1 writes d 11 c1 I t2 commits

I[d] I t2 reads d 11 a1 I t1 aborts

We assume each type of access within a transaction is to a unique data object 8

and also that exactly one terminal for each transaction occurs exactly once'. A

schedule, s, is the sequence' ° of actions generated by transactions as they execute

concurrently. We say o[d] -< o[d] if an action o2 [d] is earlier than an action o[d]

in s. In any schedule no terminal of a transaction precedes an action of that

transaction. An example of a schedule is w i [d] r2 [d] wi [d'] c1 c2 . A serial schedule

is one in which all actions of one transaction are completed before any action of

another transaction is started, for instance w i [d] wi [d'] c1 r2 [d] c2 .

By slightly abusing notation we write c1 (a1) is true over a schedule if action

c1 (a1) happens at some point. We use w[d] -•< c, to denote that t3 commits and

does so after a write action of t 1 on data object d. We write w 1 [d] -< e, to mean

that either t 3 aborts or commits but does so after a write action by t, on data

object d. Similarly, we write r[d] -< (ai A c3), to say t1 aborts after a read of d by

t3 and also t3 commits, note there is no assumed order between a1 and c3 in this

case. Finally, we write r[d] -< w[d] A (ai A c,), to say t1 aborts and t3 commits

and that r1 [d] is before wi[d]. It should be noted this allows a1 before or after

w3 [d].

6.4 Extended Conflict Serializability

To define serializability we must first define an equivalence over schedules. The

most common and useful definition is that of conflict equivalence [9], which we

discussed earlier in section 6.2. Unfortunately, this definition fails to capture the

inequivalence of schedules containing aborting transactions. For example, in this

8 The results in this chapter do not depend on this but it is a useful notational convenience.
9 Schedules with this property are often called complete schedules.

10 A schedule is also sometimes defined as a poset of actions, and sometimes called a history.
We choose to define it as a sequence in order to keep it consistent with [6].

104

definition the following two schedules are defined to be equivalent.

wi [x]r2 [x]ai c2 	wl[xJalr2[x]c2

The classical definition of conflict equivalence requires the ordering of conflict-

ing accesses from committing transactions to be maintained, but says nothing

about the ordering of actions of aborting transactions. To capture this behaviour

we extend the classical definition of conflict equivalence by first extending the

definition of a conflict.

Two transactions t i and t3 are said to conflict on a data object, d, if both

access d and transposing the order of these accesses on d might result in either a

different value being read by one of the transactions, or a different value resulting

at d after the transactions terminate. We enumerate all the possible types of

conflict that can occur in a schedule below.

I r4d] -< w[d] A (ci A c)

II w 2 [d] -< r[d] A (ci A c)

III w4d] -< w[d] A (ci A c)

IV r[d] -< w[d] A (ci A a)

V w[d] -< r3 [d] -< (ai A c)

We can see that we have extended the classical notion of a conflict to in-

clude the context of the outcome of the transactions. If we remove this context

the five conflict types collapse into the classical three conflict types: read/write,

write/write and write/read, that we saw in section 6.2.

At first sight type IV might not look like a conflict. If we reorder the accesses

w[d] and r[d] we arrive at either

w3 [d] -< a3 -< r [d] -< c

or

w[d] -< r[d] -.< (ci A a3).

depending on whether or not a i happens before or after a 3 . The first reordering

does not change the values read or written by the transactions but in the second

re-ordering it does. If recoverability mechanisms are assumed to be in place the

second type of schedule could not occur because in the case a3 -< c2 ti 's abort

action would cascade and cause ti to abort and the case c -< a, t2 cannot be

105

allowed to commit until t3 had terminated. Type IV conflicts are included because

we seek a definition that does not assume recoverability.

The schedule

ri [d] W2 [d] W2 [d'] ri [d'] c1 a2

has two conflicts, the first between r1 [d] and w 2 [d], an instance of IV above,

and the second between w 2 [d'] and ri [d'] which is an instance of V above. The

extended definition of conflict equivalence naturally follows from the extended

definitions of conflicts.

Definition 1 Schedules a and a' are conflict equivalent if

. or and a' have the same actions and

• for each conflict of type C E {I,. . . , V} involving actions o, o, e, e, in or

the same conflict of type C appears in a' involving the same actions o, o,

e, e3 .

FEW

Definition 2 Schedule a is conflict serializable if it is conflict equivalent to some

serial schedule.

FE

Our definition of conflict serializability coincides with classical theory [9], in the

case when the committed projection" of schedules is considered. However we

can now judge equality between schedules containing aborting transactions. For

example, under our new definition

wi [XI r2 [x]a j c2 	w 1 [x]a i r2 [XI c2

because the write-read conflict (type V) on the left hand side does not exist on

the right hand side.

Although conflict serializability has been defined only on complete schedules

(i.e. those where all transactions in the schedule eventually either abort or com-

mit) we can extend the definition to incomplete schedules. Any incomplete sched-

ule can be extended to a complete schedule by aborting all the transactions with-

out a terminal. We call the resulting schedule the aborting-completion. We now

"The committed projection of a schedule is obtained by removing any action from the sched-
ule that belongs to a transaction that does not commit in that schedule.

106

define an incomplete schedule as serializable if its aborting-completion is serial-

izable.

In real systems failures can truncate schedules at any point. In many database

systems, after failure and upon recovery (in the centralised case) active transac-

tions are aborted. For this reason a useful property of any serializability definition

over schedules is that if a' is a prefix of a serializable schedule a, then a' is seri-

alizable.

Proposition 4 Any prefix of a complete conflict serializable schedule is conflict

serializable.

Proof Let a denote a complete serializable schedule and User denote a serial

schedule that is conflict equivalent to a. Let a' denote any prefix of a. We

will construct a serial schedule aer from User that is conflict equivalent to the

aborting-completion of a', which we denote aom. This shows that any prefix of

a complete serializable schedule is serializable. We do this in two steps.

Si For each a 2 e a om such that c2 E aser, replace c2 in User with a 2 to form a".

S2 If any action appears in a" but not in aom remove the action from a" to

form a er .

We will now show that aer is a serial schedule that is conflict equivalent to

a om . Clearly a er is serial and has the same actions as a om because of the way it

was constructed from Us'er' We must now show that if a conflict of type C appears

in aom it also appears in a er .

If U.0M has a conflict of type I, II or III, then it will also be in User because it

was in a. Steps Si and S2 will not remove this conflict so it will also be present

in a er .

Suppose a om has a conflict of type IV or V, then either it was in a', and by a

similar argument to the one above will be in a er , or a new conflict will have been

formed when the abort completion of a' was taken to give atom. If a new conflict

was formed of type IV (V) in am then a conflict of type I (II) must have been
CO

present in s so it will also be present in User and will be changed to a conflict of

type IV (V) by step Si when constructing User as required.

107

6.5 Redefining Phenomena

As pointed out by Berenson et al. the phenomena based definitions of isolation

levels proposed in the ANSI standard [3] are ambiguous and incomplete. Berenson

et al. give more precise definitions in response to these deficiencies. We restate

these improvements in our notation and extend them a little further. Essentially

we are looking for sufficient conditions, which are as weak as possible, which

prevent cycles of conflicts, as defined above, occuring in a schedule.

Berenson et al. considered two possible interpretations of the ANSI Dirty Read

phenomenon; a strict (P1 below) and a loose interpretation. They argued that

the strict interpretation was required to prevent the classical inconsistent analysis

problem exemplified in the history al below. We use the notation r2 [x = 50] to

denote the action of t 2 reading data object x as having a value 50. Similarly

w i [y = 901 denotes t 1 writing a value of 90 to data object y.

a1 : ri [x = 50]wi [x = 10}r 2 [x = 10]r2 [y = 50]c2ri [y = 50]wi [y = 901c1

P1 	w[d] -< r[d] -< e

Clearly, the intention is to disallow the situation where t 3 reads the changes made

by t i before they are committed. However, it is not always unsafe to do so. In

fact, it is only unsafe in the case that t i aborts after t 3 read d and also when t3

commits. For example, consider the serializable schedule w[d] r3 [d] ci a3 which is

disallowed by P1.
We propose that the loose interpretation of the phenomenon, below, more

accurately captures the idea of a Dirty Read. We rename this NP for consistency

but it is identical to the loose interpretation called Al in [6].

NP1 : w[d] -< r3 [d] -.< (c3 A a)

Unfortunately, the loose interpretation still admits schedules with the inconsis-

tent analysis problem exemplified by history o. This problem is better captured

by the introduction of a new phenomenon we call NP2L (see below). Further-

more, we argue that this phenomenon should be disallowed at the higher ANSI

REPEATABLE READ isolation level but not at the READ COMMITTED level

c.f. [6]. The inconsistent analysis problem arises from transaction t 2 reading an

inconsistent view of the data objects x and y. Item x is read after t 1 has up-

dated it and y is read before t 1 has updated it. The problem therefore is better

described as a Fuzzy or Non-Repeatable read not as a Dirty Read. From a user's

perspective the value read by t 2 in a1 is not one that is later aborted as it is in

110

the case of a Dirty Read. Rather the values reflect partial changes made by other

transactions. It should therefore be admitted at the READ COMMITTED level

but excluded at the REPEATABLE READ level. Another example of the Fuzzy

read problem appears in a 2 , a history that is symmetric to cr 1 .

02 : r 2 [x = 50]r1 [x = 50]wi [x = 10]ri [y = 50]wi [y = 90]ci r2 [y = 901c2

To prevent this problem Berenson et al. defined phenomena P2 which we state

below.
P2: r[d] -< w[d] -< e

Again the intention is to prevent inconsistent reads of data objects by ensuring

no other transaction t 2 may change the value of a data object once read by t

until after t i has terminated. It is not always unsafe to do this. For example the

schedule, r[d] w[d] ai c, is serializable but not allowed by P2.

In our definition we replace P2 with two phenomena NP2R and NP2L to

capture the two symmetric phenomena that lead to Fuzzy reads of data objects.

NP2L captures the problems of inconsistent analysis found in 01 (thus allowing

us to use the loose interpretation NP1 admitting more schedules at the lower

ANSI READ COMMITTED level) and NP2R captures the Fuzzy read problem

Of cr2 . 	
NP2R : r[d] -< w[d] -< (ci A c)

NP2L : w[d] - r[d] -< (c2 A c)

Although excluding phenomena NP2L, and NP2R from schedules allows more

serializable schedules than disallowing P2, they still disallow some serializable

schedules. For example, the schedule r[d] w[d] c2 c3 is serializable but disallowed

by NP2R. This raises the following question. Can we simply characterise using

our notation a phenomenon that captures only the schedules that read inconsis-

tent views and no more? The answer to this is no. Such a definition would need

to include reachability in the associated conflict graph of a schedule, but this type

of property is not expressible in our notation.
The ANSI standard did not disallow schedules containing so called "dirty

writes". This was identified and correctly rectified by the addition of the P0

Phenomenon in [6]. This phenomenon can also be weakened to NPO (below) if

we are only interested in isolation properties. In practice its stricter form P0 is

more useful for recoverability and consistency reasons.

P0: 	w[d] - w3[d] - e

NPO: w[d] -< w3 [d] -< (Ci A c3)

109

Using these phenomena we provide definitions for the lowest three isolations levels;

see Table 6.1 towards the end of this chapter.

6.6 Disallowing Phenomena Provides Conflict Se-
rializability

We now show that if a schedule exhibits none of the phenomena NPO, NP1,

NP2L or NP2R then it will be conflict serializable' 2 as defined in definition 2

of section 6.4. We first prove the following lemma.

Lemma 6 If a conflict exists between two transactions, t i and t3 (t2 	ti), on

data object d which we can write generically as

o2[d] -< o3 [d] A e 2 A e 3

in a schedule s and phenomena NPO, NP1, NP2L, NP2R do not occur over

the actions of this conflict then either (e 2 -< o3 [d] and e2 = c) or e3 = a3 .

Proof By case analysis of the types of conflict.

I rj [d] -< w[d] A (ci Ac 2) but NP2R does not occur so c2 - w[d], as required.

II w4d] -< r[d] A (ci A c 3) but NP2L does not occur so c2 -< r[d], as required.

III w[d] -< w[d] A (ci A c) but NPO does not occur so c2 -< w[d], as required.

IV r2 [d] -< wj [d] A (c2 A a3) but e3 = a, as required.

V w[d] -< r[d] -< (a2 A c) but NP1 does not occur which rules out this type

of conflict completely.

Lemma 7 If transaction t2 aborts in a schedule, s, that contains no NP1 phe-

nomena then no conflict can exist in s between t 2 and some other transaction, say

t, that would order the accesses of t 3 after t2 .

Proof The only possible conflict candidate to order t3 after t 2 is a conflict of type

V but this conflict is excluded by NP1.

Theorem 4 All schedules, s, which do not exhibit phenomena NPO, NP1,

NP2L, and NP2R are conflict serializable.

12 This is equivalent to the ANSI Isolation level REPEATABLE READ.

110

Proof Suppose s is not conflict serializable. Let C = (1/ E) be the directed

conflict graph constructed from s as follows. The vertices of G are the transactions

in s and an edge (ti , t3) is in E if there is a conflict between ti and t, (ti =A t) and

the accesses of this conflict are ordered o2 [d] -< o3 [d]. Clearly, s is serializable if

C is acyclic (a proof of this is a special case of proposition 6 in the next chapter).

Suppose s is not serializable. Without loss of generality let the smallest cycle

in the conflict graph G be denoted by

d1 	d2 	dm 	dm
t1 	,' t2 	,' ... 	,

-i
 t 	, t1

	

By Lemma 7 no conflict ordering t -- ti 	1 < i < m in the cycle exists

where e+i = a+j (so all conflicting transactions in the cycle commit).
By Lemma 6in each conflict c i -<oi+i [d] 1< 1 <m and also o-<c :

i < m because all actions must be before their terminals, thus we can order the
conflicts in the graph as follows.

	

0 1 [di] -< e1 -< 02 [di] -< e -< 02 [d2] 	e3... -< em < oi[dm]

This leads to a contradiction since e 1 -< Oi[dm] may not occur in s, so s is

serializable.

0

6.7 Enriching Schedules with Predicate Accesses

We now extend our model with some new types of accesses. Given a predicate P

we add a new action, r[P], to denote a read of the set of data objects that fulfill

P. For example, P might be "all employees that are male", so that r[P] denotes

transaction t2 reading all those employees that are male. We also add two types

of write actions w[insert y in P] and w[delete y in P], these denote actions

that insert or delete a new data object, y, in a way that could change the values

returned by a r[P] access". We write Wj[y in P] to denote either an insert or

• delete access. In our example above Wj[y in P] might be inserting or deleting

• male employee. In this extended model, a phenomenon known as a phantom

may occur. We restate an example from [6] that exemplifies this.

Example 2 Transaction ti performs a <search-condition> to find the list of

active employees. Then transaction t 3 performs an insert of a new active employee

and then updates z, the count of employees in the company. Following this t 2 reads

13 Item y does not have to directly satisfy P for this to be true.

111

the count of employees as a check and finds a discrepancy. The schedule can be

written as:-

r[P] w3 [insert d in F] r[z] w[z] c3 r[z] c2

Berenson et al. provide the following definition of a phantom.

P3: r[P] .-< w3 [d in P] -.< e

Strictly speaking this does not completely characterise all phantom phenomena.

Consider Example 3 below.

Example 3 Transaction ti deletes an active employee. Transaction t3 then reads

the count of active employees z, this will include the one previously deleted by t.

Transaction t3 then reads the set of all active employees, this will not include the

employee deleted by t, and then commits. Finally ti updates the count of new

employees and commits. The schedules can be written as follows.

w[delete y in P] r[z] r3 [P] c3 r[z] w[z] c

The schedule in example 3 contains a phantom not disallowed by P3 there-

fore strictly speaking the characterisation of phantom phenomena, P3, given by

Berenson et al. appears to permit some kinds of phantoms. Furthermore, it is

claimed this phenomena based definition is equivalent the locking based defini-

tion of serializable isolation LOCKING SERIALIZABLE they give [6]. In this

definition predicate write locks are not released until the transaction commits or

aborts, which would prevent the problem in Example 3.

It appears that Berenson et al.'s phenomenon based definition of SERIALIZ-

ABLE isolation admits schedules with phantoms, and that it is not equivalent to

the locking based definition they provide which does not allow phantoms.

This discrepancy seems to originate from an assumption that a predicate read

access r[P] will conflict with any previous writes (be they deletes or inserts) to

data objects satisfying the predicate. Implementations do exist to detect exactly

this. In some a flag is set in all index entries when a row is deleted, this flag is

later garbage collected. Similar implementation details could solve the problem

exemplified in Example 2. Rather than make reference to implementations it

seems more sensible to define a complete set of phenomena that capture the

behaviour of both examples. We therefore define phenomena NP3R, and NP3L

in an analogous way to NP2R and NP2L as alternatives to P3. We also define a

112

predicate form of the dirty read and dirty write phenomena which we call NP2

and NP2 1 respectively.

NP3R: r2 [P] -< w3 [d in P] -< (c2 A c3)

NP3L: w[d in P] -< r3 [P] -< (ci A c3)

NP2: w[d in P] -< r3 [P] -< (c3 A a)

NP2: w[d in P] -< w3 [d in P] -< (c2 A c3)

We are now in a position to define isolation levels in terms of all our new phe-

nomena see Table 6.1.

P0 NP1 NP2R NP3R
Isolation Level NP2 1 NP2L NP3L

N P 2
READ UNCOMMITTED - + + +
READ COMMITTED - - + +
REPEATABLE READ - - - +
SERIALIZABLE - - - -

Table 6.1: Definition of isolation levels. [+] denotes a phenomena that is allowable
at a particular isolation level whereas [-] denotes that the phenomena is not
allowed in any schedules achieving this isolation level.

6.8 Conclusion

In order to discuss the role of commit protocols in providing different transaction

isolation levels we need to clarify what we mean by a particular transaction iso-

lation level. In this chapter we provided a definition of conflicting actions that

includes the commit or abort outcome of the transactions involved in the conflict.

Under this extended definition we need not make any recoverability assumptions

about schedules. This leads to a definition of conflict serializability that is in-

dependent of recoverability. This definition of conflict serializability does not

include the phantom phenomenon because it is defined over schedules that do

not include reads and writes over predicates. It is therefore equivalent to the

ANSI definition REPEATABLE READ.

Secondly, we provided a definition of the lowest three ANSI isolation levels

based on phenomena. Our phenomena are weaker than those proposed in [6] and

thus admit more serializable schedules. Furthermore, we argued that the NP2L

113

phenomena should be excluded at the higher REPEATABLE READ level of iso-

lation but not at the READ COMMITTED level thus admitting more schedules

at the READ COMMITTED level.

Lastly, we enrich schedules to include read and write actions on predicates.

Within these enriched schedules we discuss Phantom Phenomena and characterise

them in a way that is independent of predicate concurrency control mechanisms.

Excluding these phantom phenomena results in a level of isolation termed SERI-

ALIZABLE by the ANSI community.
Many textbooks state that isolation and serializability are synonymous [10,

34]. We argued in this chapter that isolation is really a sufficient but not necessary

condition for serializability. Indeed, the isolation levels defined in the literature

exclude many serializable schedules. We are now in a position to generalise the

theory we developed in this chapter to include distributed transactions and to

discuss the role of commit protocols in transaction isolation.

114

Chapter 7

Verifying Isolation Levels in
Distributed Transactions

7.1 Introduction

When transactions perform accesses on data objects that are distributed across

a set of autonomous sites, we call those transactions distributed. Many mid-

dieware systems now support distributed transactions such as CORBA transac-

tion services [61] or Microsoft's DTC [20], as well as more traditional distributed

database management systems. Distributed transactions must fulfill the following

additional requirements over centralised transactions:

• Distributed transactions must be atomic across sites, that is if t2 commits

(aborts) at one site it must not abort (commit) at another. This statement

is of course trivially true in the centralised case.

• A distributed transaction must have the ability to unilaterally abort at a

site if, for example, an access at that site caused a deadlock or violated

an integrity constraint. This means that all the accesses required for a

transaction at a site must be completed before that site can determine if it

is willing or prepared to commit. If a site were prepared to commit before

completing its accesses future accesses may require the transaction to be

aborted, but the site has already announced its willingness to commit.

We have seen in previous chapters the role a commit protocol plays in pro-

viding distributed transactions with these additional properties. In this chapter

we will study its role in providing distributed transactions with a particular level

of isolation. In the previous chapter we defined isolation levels for centralised

transactions. In this chapter we will generalise these ideas to distributed transac-

tions. We have shown that the exclusion of NP phenomena from a schedule was

115

sufficient to ensure serializability in the centralised case. A distributed schedule

can be modelled as a vector of local schedules with one entry for each site where

a data objects reside. In the case of distributed schedules, the exclusion of NP

phenomena at each local schedule alone is not enough to ensure distributed se-

rializability. Another property is required. We define such a property and call

it synchpoint prepare. As we have seen, a commit protocol is used to ensure the

atomicity of distributed transactions. We will see how commit protocols play

another vital role in providing this synchpoint prepare property, and thus a level

of transaction isolation.

In order to increase distributed transaction concurrency in a system, some

transaction processing systems such as Microsoft's DTC [20] support an opti-

misation whereby read locks are released immediately after the read has been

performed. Under this scheme the synchpoint prepare property is lost. In this

chapter we will use our views based modelling technique to show the effect this

optimisation has on the isolation level attained.

7.2 Modelling Distributed Schedules

When transactions are distributed, data objects are distributed across a set of

sites S. We let SITE(d) denote the unique site to which data object d belongs.

Read and write accesses as before are denoted r[d], w[d] as in the previous

chapter. Once the accesses of a transaction have completed, at a site, they can

be terminated at that site, we denote these terminals in distributed schedules

c[s], a[s] making reference to the site at which they occur.

The accesses of concurrently executing distributed transactions produce ac-

tions that execute locally at each site s E S. We refer to these local execution,

at s, as the transactions local schedule at s.

We discussed at length in chapters 4 to 5 how a commit protocol is used to

provide atomicity. We have seen that in a commit protocol, before any site can

commit, that site must acquire (usually by the receipt of messages) knowledge that

each site involved in the transaction is willing or prepared to commit. We saw in

chapter 2 that this property is true for all 2PC protocols' and was called the 2PC-

level of knowledge. It follows from these observations that in every distributed

transaction, each local site must perform a prepare action before committing a

transaction 2 . We denote transaction t i 's prepare action at site s, pj [S]. At each

'Unless some special mechanism, such as compensating transactions is in place.
2 1n the early prepare variant of two phase commit this action is implicit after each access is

performed. In the read-only optimisation the prepare action is not followed by a final commit,

116

site, all transactions must perform their prepare action before committing, that is

pi [s] -< c[s], holds for each local schedule. A prepare action is neither a terminal

nor an access, the table below summarises this.

Accesses I 	Prepare action I 	Terminals

I w [d] I t2 writes d I p [s] I ti prepares at s I 	c [s] t commits at s

r[d] I ti reads d I 	 I a[sj I t4 aborts at s

Definition 3 A complete distributed schedule, p is a vector of complete local

schedules p = (a 31 ,... ,aj, with one entry in the vector for each site, where

data objects reside, in the distributed system.

U

For notational convenience we write distributed schedules as a list of local

schedules. An example is given below, where s = SITE(d) and s' = SITE(d').

a3 	ri [d] 	r2 [d] p[d] w 2 [d] P2[d] ci [s] c2 [8]

a3' : r2 [d'] w2 [d'] r1 [d'] Pi [d] P2 [d] C2[8'1 c1 [s']

We use the same notational conventions as we did in centralised schedules, that

if one action is to the right of another in the same row then the rightmost, of

the two actions, took place later. If however two actions are in different rows we

can only determine their relative order if we know some information about the

global order of events. For example, if we know that all accesses across all sites

are finished before any prepare actions are taken at any sites, then we are often

able to determine the order of events in the distributed schedule.

In the example above if we assume that all accesses are finished before any

prepare actions are taken then we know that ri [d'] in sequence a3 ' is before c2 [8]

in sequence a 3 by applying transitivity to the facts that ri [d'] must be before Pi [s]

and that p1 [s] is before c2 [s] by the local order in the local schedule a 3 .

Definition 4 A complete distributed schedule is serial if there exists a total order

of the transactions such that if t i precedes t3 in the order, then all of t i 's accesses

precede all of t j 's accesses in each local schedule where both appear [8].

U

if no writes have been performed at the site on behalf of the transaction. These variants were
discussed in chapter 2

117

Definition 5 A prefix of a distributed schedule is the vector of (possibly empty)

prefixes of the original local schedules. A prefix p' = (o 1 , . .. , o"r) of p =

(o-81 ,. . . , o) is admissible provided

if c[s] e a'8 . then VSk e S, if o[d] E °s then o[d] 	
Sk

If a transaction commits in a prefix of a schedule, then all accesses of that trans-

action from the original schedule are present in the prefix.

U

In distributed transactions processing systems logging to stable storage en-

sures that the prefix reconstructed on recovery from a failure of any site is always

admissible. Since we want to concentrate on isolation we will assume that all pre-

fixes are admissible. By modelling failure, and the actions taken upon recovery

this assumption could be verified.

Definition 6 The abort-completion of a prefix of a distributed schedule p, is

formed by extending each local schedule a8 of p in the following way. An a[s]

is appended to a for each transaction t j with an access but no terminal in a,

provided t j has not committed in any other local schedule of p. If it has been

committed elsewhere and some access o[d] exists in a8 we append c[s] to o.

Clearly, an abort-completed prefix of a complete distributed schedule is a com-

plete distributed schedule. Furthermore, because any prefixes must be admissible,

any transaction that commits in the abort-completed prefix must contain all the

actions that it did in the original schedule.

7.3 Serializability of Distributed Schedules

Definition 7 Distributed schedules p and p' are conflict equivalent if

. p and p' have the same actions and

• for each conflict of type C E {I,. .. , V} involving accesses r[d] w[d] (w[d] w3 [d])

(w[d] r3 [d]) and terminals e[s], e3 [s], in p, the same conflict of type C ap-

pears in p' involving the same accesses r[d] w3 [d] (w[d] w3 [d]) (w2 [d] r3 [d])

and terminals e[s], e3 [s].

U

118

Definition 8 A complete distributed schedule p is serializable if it is conflict

equivalent to some complete distributed serial schedule [8].

IN

Just as in the centralised case of section 6.4 in chapter 6 we define a prefix

of a complete distributed schedule to be serializable if its abort-completion is

serializable.

Proposition 5 All prefixes of complete serializable schedules are serializable.

Proof Let p = (U51 	. , ask) be a complete distributed serializable schedule and

let Ppref be any admissible prefix of p. Let Pcom be the abort-completion of Ppref.

If accesses o [d] and o [d] exist in ,0com then they also exist in p and furthermore

they are in the same order in each of the schedules. The terminals e, e2 in Pcom

need not be the same (or be in the same order) as e, e3 in p. We do however

know that if e (e3) is c (ci) in p then it will also be c (ci) in Pcom, from the

way Pcom is constructed and the atomicity of transactions in p. It thus follows for

each conflict ordering t j before tj in Pcom, at some site sk, involving accesses o[d]

and o[d], there exists a conflict ordering t j before t3 involving the same accesses

o[d], o[d] at sk in f. Pcom will therefore have a subset of the conflicts found in p.

Since p is serializable then so is Pcom

10

As in the centralised case a graph theoretic characterisation exists for the

conflict serializability of a distributed schedule. Let G be a directed graph whose

nodes are the transactions of a schedule p. If a conflict exists in a schedule we

add a directed edge between t —+ t 3 to the graph G.

Proposition 6 If G is acyclic then p is serializable.

Proof Suppose no cycle exists in C. We will now show p is serializable. If no

cycle exists then a topological sort of G will provide a total order, such that if

tj is before t 3 in the total order either no conflict exists between t j and t3 or a

conflict exists ordering t j before t3 . By definition therefore p is conflict equivalent

to a serial schedule.

El

Proposition 7 If a complete distributed schedule p is serializable then each com-

plete local schedule is also serializable.

119

Proof If p is serializable then it is conflict equivalent to a serial distributed

schedule p'. This means each local schedule of p is conflict equivalent to the

corresponding local serial schedule of p'

U

We can see in the example below the converse of Proposition 7 does not necessarily

hold (c.f. [62]).

ri [d] 	pi[s] 	ci [s] w 2 [d] p2 [8] 	c2 [s]
w 2 [d'] P2 [s'] c2 [s'] r1 [d'] Pi [9'] Ci [s']

In o t 1 —+ t2 because of the conflict ri[d]w2[d] and in o 8', t2 - t 1 because of the

conflict w2[d']ri[d']. That said, each local schedule, o, o 2 , is serializable.

7.3.1 Local rules for distributed serializability

In section 6.6 of the previous chapter we saw that the absence of phenomena PO,

NP1, NP2L, NP2R gives rise to serializable executions of local schedules. Un-

fortunately, serializability of each local schedule does not imply the serializability

of a distributed schedule. We require a further condition to achieve this.

Definition 9 A distributed transaction obeys synchpoint prepare if for all sites

s e S all accesses of the transaction are before any prepare action. More formally:

vo i e p, o - pjIs]

where ---* is the order of events in the distributed system.

Although it is often impossible for processes in a distributed system to know

the global order of events, -, this does not mean that the order does not exist.

Consider an omnipresent observer who samples the global state of the system at

regular time intervals. Provided the samples are frequent enough that observer

can determine the order of events.

We saw in chapter 2 a read-only optimisation for 2PC. In this optimisation

if a transaction performs only read accesses of data objects at a site then after

it is asked to prepare it can vote read-only and need no longer be involved

in the transaction. In a distributed transaction therefore, the point at which a

site performs a prepare action can mark the end of the transaction at that site.

120

For this reason in a distributed transaction we should change the NP2R rule as

follows, where SITE(d) = s.

NP2R' : r2 [d] -< w[d] -< (pi [s] A c3 [s])

Whereas the absence of NP2R in a schedule stipulates that c[s] must be before

w[d], the absence of NP2R' in a schedule stipulates the weaker condition that

pi[s] must be before w[d]. It is thus possible for c[s] to be after w[d] as long

as pi[s] is before w3 [d]. If we are using strict two phase locking for concurrency

control this translates to saying that it is safe to release shared locks at prepare

time.

Lemma 8 Let t2 and t3 be two distributed transactions that participate in a con-

flict of type I, II or III on a data object d at site s which we write as

I 	r4d] -< w[d] A (c2 [s] A c3 [s]) II w4d] -< r3 [d] A (c[s] A c[s])
III w[d] -< w[d] A (c[s] A c[s])

If phenomena P0, NP1, NP2L, NP2R' do not occur over the actions of the

particular conflict then in the case of conflict types I and II c[s] - o[d], and for

conflict type III p i [s] -< o3 [d]. Recall o[d] is shorthand for r[d] or w[d].

FEW

Proof For conflict types I and II see the proof of lemma 6 in the previous chapter.

For type III note that the absence of NP2R' in any schedule means pi [s] - o[d]

as required.

Theorem 5 Any complete distributed schedule which obeys synchpoint prepare

and contains no local phenomena of the type P0, NP1, NP2L and NP2R' is

serializable.

Proof If a schedule p is not serializable then (by proposition 6) a cycle of conflicts

between transactions must exist. Each conflict must be on a particular data object
d2 	 dm

so we can denote this cycle as ti +
d1

t2 	+ .. t,11 4 ti.

No conflict in this cycle can be of type V because type V conflicts w[d] -

w[d] -< (a[s] A c3 [s]) are disallowed by NP 1. Furthermore, no conflict ti --* tj 1

can be of type IV because this implies a+i and so no conflict can order any

transaction after ti which gives rise to a contradiction because is part of a

conflict cycle.

121

Using lemma 8 and the fact that pi[s] -< c[s] in any transactions we have
Pi[s] -.< o3 [d]. We also know that our transactions have the synchpoint prepare
property and so we can derive the following order on actions in p. The notation
.J, denotes a vertical version of —+ which was not available to the author.

oi (di] 	-< 	pj[sl] 	-< 	02[dj) 	-.< 	e2[di]

02[d2) 	-< 	p2[s21 	-.< 	03[d2) 	-< 	e3(32)

03[d3] 	-.< 	P3[S3] 	-.< 	0[d3] 	•.< 	e4[33]

Om[dm] 	 pm[3m] 	-< 	oi[dm] 	< C[8 m]

This gives rise to the contradiction that oi[dm] is after p i [s i] which violates the

synchpoint prepare property.

Fol

We can see if exclusive locks are held until commit time and read locks held

until prepare time then P0, NP1, NP2L and NP2R' will be prevented. If in

addition to this the commit protocol used has the synchpoint prepare property

then distributed transactions will be serializable.

7.4 Modelling Distributed Transactions

In this section we use our views based modelling technique to model a very sim-

ple distributed transaction processing system in which concurrent transactions

perform read and write accesses to distributed data objects.

The processes in our system are from two different classes. The data object

class D and the transaction class T. Let t and d range over the classes T and D

respectively.

Each transaction t has the following local state. First there is a set of write

accesses to be performed denoted t.W. This contains the identities of the data

objects to be written to. If initially d e t.W then transaction t requests a write

access on data object d. Similarly if d e t.R, then t requests a read access on d.

In our simple model each transaction can carry out at most one access at each

data object which can be either a read or a write access. We also assume only

one data object per site, however the results in this chapter do not rely on this

restriction. The set t.A contains the protocol actions that t requests of the data

objects. For example if Pd E t.A then t requests data object d to prepare.

The data objects in our model have an acknowledgement set d.X. If w t E d.X,

for example then data object d is replying with a yes vote to transaction t.

'Recall in our simple model each data object undergoes either a read access or a write access
but not both. In the more complex model when data objects are both read and written to
exclusive locks are held until the transaction terminates.

122

Similarly if Xt e d.X then d is acknowledging t's request to either read or write.

In addition to this data objects maintain a set, d.S, to record those transaction

that hold a shared lock on their data. Data objects also record which transaction

holds an exclusive lock on their data using the variable d.e. If d.e = I then no

transaction holds an exclusive lock at d. If t E d.S for example then t holds a

shared lock on data object d, similarly if d.e = t then t holds an exclusive lock

on data object d.

Transaction objects communicate with data objects by viewing sets. For in-

stance,

©d(d e t.R)

means d views the set t.R as containing the element d. In this case data object

d has received a read request from transaction t requesting a read access on data

object d. Similarly, ©t(x t E d.X) then transaction t has received an acknowl-

edgement for its access at d. Table 7.4 summarises the states of transaction and

data object processes.

Name Description Range Initial Value Viewable

t.R Transaction read requests 2' c D Y
t.W Transaction write requests 2 D c D Y

t.A Transaction protocol actions 2{p,w,a} 0 y

d.X Data object acknowledgements 0 y

d.S Data object shared locks 2 T 0 N

d.e Data object exclusive lock T 0 N

Table 7.1: Local state at transaction and data object processes.

7.4.1 Protocol Rules

First we consider four rules that govern how a transaction process and a data

object communicate when performing either a read or write access. In our very

simple model a transaction knows at the start exactly what it will want to read

and write. In practice this is not always the case.

DR(d) ©d(dEt.R)AtSA(e=tVe=J-) TRt ©t(xEd.X)AdER
S:= S U {t} A X := X U {Xt} 	 R := R - {d}

DW(d) ©d(d
e t.W) A e = I A S = 0 	

TW(t) 	
dx) A d E W

e:=tAX:=XU{x t } 	 W:=W—{d}

In the rule DR a data object, once it has viewed a read request, will carry out

that request if no other transaction holds an exclusive lock. Once carried out a

123

shared lock is added and an acknowledgement is sent, by updating d.X. DR is

matched by rule TR. In TR, if t views an acknowledgement to a read access from

d it removes d from its read request set t.R. Similarly the rules DW and TW

allow the communication of a write access. This time an exclusive locking policy

is employed. In order for data objects to receive requests from transactions for

reads and writes they must be able to update their views of a transaction's t.R

and t.W sets. In the following rule let 0 be either set W or set R.

DUVO(d) d
e t.0 A ©d(d V t.0)

©d(t.O := t.0 U {d})

Similarly TUV allows a transaction process to update its view of a data object

when that object acknowledges an action or votes. DUV allows a data object to

update its view for prepare, commit or abort requests.

TUV(t)
Zt e d.X A ©t(z d.X)

z e {x, w, a}
©t(d.X := {Zt})

Zt E t.A A ©d(z 	t.A)
z e {p, c, a}

DUV(d) ©d(t.A := t.A U {Zt})

In the next rule a transaction process starts to prepare the transaction. We
def

define DATA I t.RUt.W, PREPARE t tef {pd' I d' e DATA}, COMMIT

{Cd' d' E t.W} and ABORT 'I {& d' e t.W}, where t.R and t.W are their

values before any TW or TR rules take place.

TP(t)
R=OAW=0
A:= PREPARE

The next three rules model the response a data object makes to a prepare request.

Either it votes yes to transaction t modelled by rules DSVY and DEVY (DSVY

for a read-only response) or votes not and releases all locks.

DSVY(d) 	
t E S A @d(pd e t.A)

X:=XU{w t }—{xt}AS:S{t}

DEVY (d) e = t A ©d(p d E t.A)

X := X U {Wt} - {Xt}

The next two rules model an abort response from a data object when it views a

prepare request. Again we model the case where the data object holds a shared

lock separately, DSVN, to the case where the data object holds an exclusive lock

124

DEVN. 	
E S A ©d(pd E t.A)

DSVN(d) X X
U {at} - {Xt} A S := S - {t}

	

DEVN (d) 	
e = t A ©d(pd E t.A)

X:=XU{a}—{xt}Ae=I

Finally we model a transaction process deciding either commit or abort using the

rules TC and TA, and also, once it has viewed this decision, a data object using

the rules DC, DA, to decide accordingly.

TC(t) ©t('1d e DATA, Wt E d.X)
TA(t)

 ©t(d (E DATA, at e d.X)

t.A := COMMIT 	 t.A := ABORT

DC(d) e = t A ©d(c d E t.A) 	DA(d) e = t A ©d(a d e t.A)

	

e:=I 	 e:=I

7.5 An example execution

We now give an example execution involving two data objects d 1 , d2 and two

transaction objects t 1 and t2 . Initially t 1 .R = {d 1 , d2 }, t 1 .W = 0 and t2 .R = {d 1 },

t2 .W = {d 2 } modelling an initial configuration where t 1 attempts read operations

on both d1 and d2 and t2 attempts a read on d1 and a write on d2 . To model

a configuration we compose the states of t 1 , t2 , d, d2 . The state of a transaction

object t is represented as a triple, using a superscript for t's view of a data object's

acknowledgement sets written as t.R t.W t.A 1 ' d2-X. Using this representation

initially the state of t 1 is {d 1 , d2100. Similarly we represent the state of a data

objects d as d.S d.e d.Xt1.R t1.W t1.A t2.R t2.W t2.A and so the initial state of d 1 is
O_i_ OøxOøøø .

An execution of a the system can be found in figure 7.5. In this execution

t 1 and t2 both perform read operations on d1 after which t2 performs a write

operation on d2 . After this t2 holds an exclusive lock on d2 and so t 1 's read

operation cannot take place. After receiving acknowledgements, t2 proceeds to

issue a prepare to d1 and d2 . They respond with yes votes and t2 decides commit.

On receiving commit d2 can release its exclusive lock allowing t 1 to read d2 . d2

acknowledges this read and t 1 prepares the transaction. Both d1 and d2 respond

to this prepare by releasing their locks and finally t 1 commits.

125

{d 1 d2}00 {d1}{d2)0 00 0 -L 000000 0

I. DUVO(di)

{d1 d2}OO
010{dj}Oø{di}00

J_ DR(di)

{d1,d2}00 {d1}{d2}0 {tl}..L{xL1}{dl}øO{hl}Oø

J_ DR(dj)

{d1,d2}00 {d1}{d2}0 0°

J. TUV(t1) I. TUV(t2)

{d1 	d2}OO{"tl }O {d1 }{d2}O{"tl }{xtj {t1, t2}i{xt j 	x)(dl)O@(dl)00

TR(tj) J. I TR(tz) J. TW(t2)

{dz}øO{"ul }ø 000{xt1){xti {tj, t2}..L{xt 1
 ,xt2 }{dl }øO{dj}@O

J, TP(t)

{d2}OO("tl 0O{Pd1 	
}{X2 }{xt2 } {t1, t2}L{xt 1 	x2

}{dl }Øø{d1 }OO

DUV(di)

{d2}øO{"tl 0 0 Pd 1 	Pd} 	
t2 	"2 {t1, t2}J..{xt1 I x 	

} {dl)øø{dl}O{Pd l }

DSVY(di)

{d 2 }øØ { "tl 00{pd 1 	Pd} 	
t2){} {ti }..L{ Xg1

wt2} {d1 }@O(dj)O{pd 1 }

{d2 }00 { " tl

J. TUV(t2) 	TUV(t2)

OO{Pa 1
 ,Pd2 }{wt2){wt2 } {t1 }..L{xt 1 	w 	

(a j)OO{d1 }O{pd1)

{d2} øO"1)ø

.L TC(t2)

{
't2 }{wt2} øO{cd2} __t {ti}.L{xt1 	

{dl}øO{dl}O{pd 1 }
2 }

{d2}OO"t1 }ø 00{cd2 }{wt2 }—t2 } {tj }±{xt1 	wt2} (
	0{dl}O{pd 1 }

{d2 }OO { " tl 00{cd2
} {wt 2 }{''t2 } {t1 }J_{xt 1 	

wtZ } {ij }00{dl}G{pd 1 }

{d2 }øO { "t1 10 00{cd2}'t2rt2} {tl 	-LI X t1 	wt2 I
{dl}OO{dl}O{pd1}

TUV(t)

{d2 }ØØ{"ul } {x 	} OO{cd 2){-t }{w22 } {tj }.L{xt 1 	w 	
{d1 }øO{d1 }ø{Pd 1 }

t2}

TR(tj)
000{xt 1 }{xt 2 } Oø{cd2 }{wt2 }("t2) {t1 }..L{ 	

{d1 }O@{dj}ø{p 1 }
xj 1 	wt 2 }

i_ TP(ti)

OO{pj 1 	Pd2 }{'tl }{xt2 } O@{ca2 }{wt2){"t2 } {ti }..L{x 	
{d1 }øO{dl}ø{pd 1

t1 	w 2 }

J, DUV(d1)

Oø{Pd 1 ,p2
}{Xtj }{xt2 } OO{cd2 }{"t2 }{''t2) {t1 }J_{x 	w2 	

{d1 }0Pd1 {d1)O(Pd 1)
}

DSVY(d)

OO{pd 1 	Pd2
} {xt l }{xt2 OO{cd2 }{wi2 }{wt2} OJ{wt 1 w 2

)1"u1 {dj }ø{Pd 1

TUV(t) J_ TUV(t1)

OO{pd 1 	Pd 	
} {wt I){wt 2 }

2 OO{cd2
} {wt 2){'t 	} Ø1{wt 1 wj2

} {dl}OPd l 	d1)G{Pa1)

J. TC(ti)
ØØØ{wtj }{wj2} OO{cd2 }(t2 v t2) OJ{wj j ,wt2

} {dl)øPd l {dl}O{pd 1 }

, DUVO(d2)
0j {d2 }OGO{d2}ø

DW(d2)
0t2{xt2 }{d2}000{d2}O

0t2{xj2 }{d2)Oøø{d2}ø

0t2{xt2 }{d2)OøOd2)O

0t2{xt2 }{d2}OøOd2}ø

0t2{xt2 }{d2}øOO{d2)ø

.. DUV(d2)
0t2{xt2 }{d2}øøø(d2){Pd2}

DEVY(d2)
0t2{wt2 }{d2}øøO{d2}{Pd2}

0t2{wt2 }{d2}OOø{d2}{Pd2}

0t2{wt2 }{d2}OO@{d2}{Pd2}

, DUV(d2)

0i2{wt2
} {dZ}Oø{d2}{cd Z }

, DC(t2)
ØJ{wt2 }2 }OøO{dZ}{cd 2 }

DR(d2)

{ii }1{xt 1 w2
} {d2}øOO{d2}{cd 2 }

{t1 }J.{xj 1 wt2
} {d2)Oøø{dZ){cd 2 }

{t1 }l{xt 1
 wt2 {d2}000{d2}{cd2)

J

{t1}.L{x 1
 w 2 {d2}øOø{d2}{cd 2 }

- OUV(d2)
{ti}i{xt1wt2 }{d2}OPd2ø{d2){0d2}

DSVY(d2)
O1{wt1wj2 }{d2}øPd2O{d2}{cd2)

O.L{wt j w 2
 } {d2}øpd2 Ø{d2}{cd 2 }

O1{wt1wt2 }{d2}øPd2ø{d2}{cdz}

Figure 7.1: An execution of a multiple transaction commit protocol.

126

7.6 Verifying Isolation Levels

In this section we will prove that the NP phenomena defined earlier in chapter 6

are prevented by our rules. We will then go on to show that the prepare synchpoint

property holds and thus deduce that any distributed schedule, of our model, is

indeed serializable. To do this we must first define when a sequence of rules in an

execution constitutes a phenomenon. Clearly if data object d executes rule DR

(DW) when ©d(d E t.R) (©d(d E t.W)) holds in the rule's pre-condition then

a read (write) at d for transaction t has occurred which we previously denoted

rt[d] (w[d]). Similarly, a data object d acts on the receipt of a prepare, commit

or abort request in the rules DSVY or DEVY, DC and DA, we say t prepares,

commits or aborts at t which we previously denoted Pt, Ct and at.

The execution in figure 7.5 therefore gives rise to the following distributed

schedule. In our simple model we only allow one object per site and so we do not

need to distinguish between data objects and the sites where they reside.

rt1 [d1] 	rt2 [d1] pt, pt,
ad2 : Wt2 [d2] Pt2 	Ct 2 rt1 [d2] Pt2

Proposition 8 NPO, NP1, NP2L, NP2R' cannot occur in any schedule pro-

duced by the rules of our model.

Proof We will consider each phenomenon in turn and show that they are pre-

vented by the rules of our system.

NPO: w[d] -< w[d] -< (c2 A c3). w[d] happens when d applies the DW(d)

rule. In the post-action of this rule e t. The pre-condition of DW(d)

contains the clause e = t and therefore while e = t, d cannot apply DW

for any other transaction t3 . The only other rules that change the value of e

are DC(d), DA(d) and DEVN(d). We need not consider the cases DA(d)

and DEVN(d) since ci must occur in NPO. DC corresponds to ci so we

know w[d] c2 as required.

NP 1: w[d] -< r[d] - (c3 A a) and NP2L: w[d] -< r3 [d] - (ci A c3). A very

similar argument to the one presented in NPO. This time while e = t, d

cannot apply rule DR for any other transaction t3 .

NP2R': rj[d] -< wj[d] -.< (pi A c3) r[d] happens when d applies the DR(d)

rule. In the post-action of this rule S := S U {t2 }. The pre-condition of

DW(d) contains the clause S = 0 and therefore while ti E 5, d cannot

apply DW for any other transaction t 3 . The only rules that remove ti from

127

S are DSVY(d) and DSVN(d). DSVN(d) can not happen since t3 must

commit and DSVY(d) corresponds to p2 so we know w3 [d] p2 as required.

Proposition 9 Synchpoint prepare is guarenteed in any execution produced by

the rules of our system.

Proof We must show for any transaction t all read and write accesses for t are

before any prepare action. Suppose this is not the case then there exists an

execution where a prepare rule for t, either DSVY or DEVY, is before a read

or write rule, either DR or DW, for t. In the pre-condition of both rules DSVY

and DEVY we have the clause ©d(pd E t.A). For this to happen d must have

applied the rule DUV to update its view of transaction t's t.A set and before that

t must have applied the rule TP(t). The pre-condition to TP is R = 0 A W = 0.

Clearly in order for both these sets to be empty t must have executed TR or

T'W for each of its read and write accesses, the pre-condition to both these rules

contains the clause ©t(x t E d.R) and so all read and write rules DR and DW

for t must have already been applied.

Theorem 6 All distributed schedules produced by the rules of our system are

serializable.

Proof By proposition 8, no NP phenomena are present by proposition 9, synch-

point prepare is guaranteed and so by theorem 5 all distributed schedules are

serializable.

FE-1

7.7 Overlapping Prepare

To increase transaction throughput, in transaction processing systems, many dif-

ferent strategies have been used. Many rely on increasing transaction concurrency.

As we have seen before, in the read-only optimisation, an effective strategy to this

end is for a distributed transaction to release its locks as early as possible. The

transactions in our model release their read locks as soon as they have received

acknowledgements for all their accesses (i.e. at prepare time). Another strategy

is to send a prepare message to any read-only site as soon as the transaction

128

Read and Write
accesses take
place and are

acknowledged

Read and
Write

accesses take
place and are

Time

I All acks received 	I

prepare
messages sent

prepare
messages
sent

I==>_

	

Data 	 Data

	

(a) 	 (b)

Figure 7.2: In (a) a transaction collects acknowledgements for all accesses before
any prepare messages are sent. In (b) prepare messages are overlapped with
accesses to increase transaction concurrency.

has received an acknowledgements from that site only, that all read accesses have

taken place. In this strategy the transaction process need not wait until it has

received acknowledgements from every site before sending a prepare message.

In Microsoft's Distributed transaction manager [20], just such a facility exists.

Figure 7.2 depicts the two different strategies.

It is interesting to model this new strategy using our rules, which we do by

making some small changes. First we add A := A U {pd} to the post-action of

TR(t) thus.
E d.X) A d E R

TR(t)

This change means a transaction can start to prepare a read-only data object as

soon as it receives an acknowledgement of its read. The only other change we

must make is to the definition of PREPARE This now becomes PREPARE 1
 def

t .

{Pd' I d' e t.W}. This means that in the post-action of TP, prepare messages

will only be sent to data objects that have been written to.

It is interesting to ask, what level of transaction isolation is now attained. The

level of isolation claimed by Microsoft for this type of strategy in their distributed

transaction server is READ COMMITTED. Clearly, full or serializable isolation

R := R - {d} A A := A u {Pd}

129

is not attained; consider the example below.

Ordi 	Tt 1 [d1] pt, Wt 2 [d1] Ct2

0d2 : 	 Wt2 [d2] Ct2 rt 1 [d2] Ct 1

If we assume in this example that w2[d1] and wt2[d2] happen at d1 and d2 at the

same time then the schedule is not serializable. t 1 reads the value of d1 before t 2

writes to it, whereas t 1 reads the value of d2 after t 2 writes to it.

Interestingly, the proof of proposition 8 still holds. The problem here is that

we have lost the synchpoint prepare property. It is no longer the case that all

accesses for a transaction must take place before any prepare actions. The lack

of synchpoint prepare results in distributed schedules no longer being serializable

(each local schedule however does remain serializable). Although it was not per-

formed we could model check this version of our model to automatically verify

that the synchpoint property does not hold.

7.8 Conclusions

In this chapter we studied the way a commit protocol is used within a distributed

transaction to provide a level of transaction isolation. In chapter 6 we saw how

to define transaction isolation levels for transaction schedules produced by non-

distributed transactions. In this chapter we extended these definitions for dis-

tributed transaction schedules. In particular we introduced the idea of when a

transaction prepares within a distributed transaction.

Using these extensions we formally defined distributed serializability. The

NP rules of chapter 6 were extended for distributed schedules and NP2R was

modified to take account of the prepare point in a distributed transaction. In the

non-distributed case the exclusion of NP phenomena guaranteed serializability,

but this exclusion alone does not guarantee serializability for distributed trans-

actions. If a further condition, that we defined and named synchpoint prepare,

holds then distributed schedules are serializable.

In order to study the role of commit providing a mechanism whereby the NP

phenomena are excluded and synchpoint prepare property is provided, we con-

structed a very simple views based transaction processing system model. This

model incorporated centralised 2PC. In this model we showed that the NP phe-

nomena are indeed excluded. We also showed how 2PC helps provide synchpoint

prepare and concluded that schedules of this model are serializable.

A commercial optimisation technique to increase transaction concurrency is

often used, for example in Microsoft's DTC [20]. In this optimisation a trans-

action's accesses and prepare messages are overlapped. By changing our model

130

slightly we capture this situation and show that the synchpoint prepare prop-

erty is lost. Thus the extra transaction concurrency is at the cost of a loss of

serializability in the resulting schedules.
The chapter demonstrates how our modelling technique can be used to model

the more complex situation where many concurrent transaction interact while

executing a commit protocol. We see how we can formally describe this com-

plex behaviour and analyse properties of this behaviour, for example the level of

transaction isolation attained within the system.

131

Chapter 8

Conclusions and Future Research
Directions

8.1 Introduction

In this last chapter we will summarise the work presented in this dissertation.

In so doing we will highlight the research contributions made and discuss further

possible research directions.

The thesis centres around the views based modelling technique presented.

During this summary therefore, we will support our claim that the modelling

technique is suitable for modelling and analysing commit protocols and the envi-

ronments in which they execute.

In particular we will highlight evidence that, as claimed in the introduction,

our views based model is formal enough to support rigourous arguments about

the behavioural properties of commit protocols as well as supporting automated

techniques such as model checking. Our views based model is flexible enough to

model a wide variety of commit protocols, and is scalable in the sense that the

arguments constructed using the model can be applied to arbitrary numbers of

processes.

8.2 Commit Literature and Modelling Techniques

We started the dissertation by reviewing some literature on the problem of atomic

commit. This review concentrated on the types of environments in which commit

executes describe some formal models that have been used for commit protocols.

Bernstein et al. provide an early definition of the problem of commit and in-

troduce us to 2PC. The subject of blocking has attracted much academic interest

and it was discussed with the introduction of Skeen and Stonebreaker's formal

132

model of a commit protocol. In order to give a flavour of the different environ-

ments and versions of commit protocols we described a whole host of different

commit protocols and protocol optimisations. We saw as the protocols became

more complex the models used in their description became richer. For example

the presumed abort 2PC optimisation reduces the extent to which logging needs

to be carried out. A model of presumed abort therefore must model a log if we

are to reason about its behaviour. Paralleling these richer environments we also

saw richer behavioural properties expressed. For example, if network failure is

modelled then we can pose questions about blocking. It soon came apparent that

because of the huge diversity in the different environments, it is difficult to define

the problem of commit precisely for all environments. Furthermore it is difficult

to encompass all these models using one modelling technique.

A key component of the environment in which atomic commit executes is the

extent to which failure is modelled. Many different models of failure have been

proposed. The diversity of failure assumptions again adds another dimension to

the task of modelling the environments in which commit protocols execute.

Over the years atomic commit protocols have found applications in many

different areas. In fact, the atomicity property of commit protocols is so useful

we find commit or commit style protocols in the most unlikely areas. Finding

new applications for atomic commit protocols, particularly in e-commerce and

Internet applications, is a whole area of active research.

Although many different models have been proposed, no one model, or mod-

elling technique, seems to be generally applicable. Furthermore, assumptions

about the distributed environment in which the atomic commit protocols are

studied varies widely. This is particularly true of assumptions made about site

and communication failure. For these reasons it is difficult to mould the various

models of commit into a hierarchy.

By way of introducing our views based model we studied three general mod-

elling techniques used to model asynchronous message passing distributed sys-

tems. I/O automata have been widely used to model and specify distributed

systems. These models support a powerful pre-condition post-action style speci-

fication of the behaviour of processes within a system. Knowledge based models

were introduced by Hadzilacos. In these models processes communicate by send-

ing messages but a more declarative semantics is given to the processes within the

system. The knowledge based technique is formal, concise and provides a good

abstraction to the explicit message passing details that are found in many other

models. The calculus for communicating systems is a very general technique for

133

modelling distributed systems of agents. Agents communicate by handshaking. A

formal transition semantics is given for CCS agents which means that properties

of agents can be easily automatically verified using model checking. Unfortu-

nately it is difficult to specify complex protocols using CCS. Message passing

details are explicit which often results in very large transition systems.

Our views based technique draws upon some of the strengths of these models.

We use the expressive pre-condition post-action methods of I/O automata to

specify behaviour. The main novelty is the incorporation of message passing

within a processes state in the form of views. A pre-condition can contain a

clause of the form:

©p(q.s = x)

meaning that p's most up-to-date knowledge of q's state variable s is that its

value is x.

In all of these models an execution of a protocol is expressed using a sequence

of configurations. A configuration captures the global state of the processes in the

system and the environment in which they execute. By taking steps (applying

rules) a configuration evolves. A protocol execution therefore is a sequence of

configurations.

8.2.1 Future Research Directions

Although there is a large amount of academic research on atomic commit pro-

tocols, almost all protocols commercially in use are based around centralised

two-phase commit. The subject of blocking has received much attention from

academics but in practice it is enough to take steps, such as the help-me messages

we modelled in chapter 4, to relieve the problem and live with its consequences.

The family of three-phase commit protocols are unlikely to be of use within tradi-

tional environments where high transaction throughput is very important. This

may soon change however. Wireless communication systems and Internet com-

munication increases the likelihood of partitioning networks, and highly variable

message propagation times. In e-commerce style transactions, throughput may

not be of paramount importance over reliability.

These new transaction processing environments are likely to give rise to a

whole new set of requirements. Already we see requirements for commit style

protocols which involve parties that may not trust one another [44, 54], reaching

agreement.

134

8.3 Putting our Model to Work

In order to demonstrate the flexibility of our views based model we used it to

model the simple centralised 2PC. We achieved this using only six protocol rules.

Our simple model did not include any types of failure, and so, in order to model

failure we introduced the partitioning model of communication failure where pro-

cesses become disconnected into groups. We showed in this enriched model that it

is possible to formally capture properties like blocking and we produced protocol

executions, in our model, that did indeed block.

By adding a buffer state to 2PC we arrive at 3PC which is the basis for a

family of commit protocols called quorum based three phase commit protocols.

In this more complex class of protocols blocking is avoided in quorate connected

components. We use our model to describe a quorum version of 3PC, called

Q3PC, and model the recent extended version of Q3PC called E3PC.

Our model allows us to reason about the behaviour quite naturally even for

the more complex protocols such as E3PC. This lead to the innovation of our

new quorum based 3PC, which we named X3PC. A views based model of X3PC

is derived from a model of E3PC by enriching the state of a process in the E3PC

model and adding some protocol rules. We formally prove that X3PC provides a

solution to the atomic commit problem, demonstrating the model's applicability

in this arena. The traditional proof technique we use makes reference to the order

that rules of the protocol obey in any protocol execution. We show that X3PC

provides an identical level of tolerance to blocking as E3PC but that it commits

in many of the failure scenarios in which E3PC aborts.

By deriving quite complex commit protocols, in a non-trivial environment,

where communication failure is possible, we see that our views based model pro-

vides us with a flexible modelling technique. We also demonstrate that it pro-

vides good support for reasoning about commit protocol properties by proving

behavioural properties of the most complex protocol presented, X3PC.

8.3.1 Future Research Directions

Our modelling technique was tailored to commit protocols but it can be used

for many other types of protocols involving groups of homogenous agents. It is

particularly useful in protocols involving agreement amongst these agents. It is an

interesting research question to define the types of protocols that it is applicable

to, its strengths and limitations.

In order to further increase the performance of X3PC one could include, in a

135

process's state, histories of other processes' histories. This would further increase

a terminations protocol's chances of reaching commit over abort. More analysis

could be performed to analyse X3PC's performance. One strategy similar to the

techniques of Peleg and Wool [63] would be to consider the behaviour of X3PC

under all possible partitioning scenarios.

It is possible to generate a transition system, as we did in chapter 5 from a

model of X3PC. The state of a process in X3PC is much larger than the simple

example we considered in chapter 5 but in theory the same principles apply. Using

the abstraction techniques we discussed it should be possible to automatically

verify properties of complex protocols such as X3PC using the same techniques.

8.4 Automatic Verification Techniques

It is possible to express the behaviour of a commit protocol by expressing all its

possible execution paths as a labelled transition system. Using a views based

model of a simple centralised 2PC protocol as a starting point we showed how a

transition system can be automatically generated. The size of resulting transition

system depends on how the global state of the system, the configuration, is rep-

resented. We described how to generate a transition system using two different

representations. CON, a concrete representation, produces very large transition

systems, MULTI gives rise to smaller ones.

Using these representations we describe a simulation technique that allows

us to reason about the behaviour in the concrete representation, CON using the

abstract representation MULTI.

A sub-logic of CTL we name CTL is defined. Using this logic we can formally

express properties of commit protocols. The logic CTL cannot express counting

properties. Its inability to express these properties means that the properties

it does capture are preserved between our representations. This means we can

show, for our simple 2PC model, that if a CTL property holds (fails) by model

checking in the MULTI representation then it will also hold (fail) if the CON

representation was used.
Using this strategy we verify many properties of the simple views based model

automatically using a games based model checking algorithm. This demonstrates

that our model supports model checking techniques for automated verification.

136

8.4.1 Future Research Directions

The success of the abstraction techniques we discussed depend on the fact that our

processes communicate using views and also that they are largely homogeneous

in their behaviour. They all follow the same set of rules.

Many different protocols can be modelled and model checked using our views

based models . For example, recently Chkliaev [13] formally prove properties of a

non-blocking atomic broadcast protocol first proposed by Babaoglu and Toueg [4],

using a automated proof tool called PVS. Our techniques are highly suitable for

this protocol and some preliminary research has been carried out in to model check

CTL - properties of this protocol. Another avenue to explore involves leadership

election protocols in partitioning networks. The extent to which our techniques

are applicable is an open research question.

Although we only model check a very simple protocol in this thesis it should

be clear how we can extend our models to allow the model checking of more

complex systems. In particular we could quite easily add partition failure to our

simple two-phase commit and model check the resulting system.

8.5 Commit and Isolation

Commit protocols help ensure distributed transactions are atomic they also play

a role in providing transaction isolation. In order to study the role of a com-

mit protocol in this area we must first define what it means for a distributed

transaction to attain a particular level of isolation.

Unfortunately, definitions of isolation levels in the literature, for even non-

distributed transactions are not clear. A good starting point is the ANSI 92

standard, but the definitions found within are too ambiguous for our purposes. A

critical analysis of the ANSI definitions was given by Berenson et al., where clearer

definitions were presented. We built on these definitions and further refined them.

Like Berenson et al. our definitions were based around phenomena. For a specific

isolation level particular sets of phenomena are disallowed in a schedule. These

types of definitions are completely independent of assumptions about particular

concurrency and recoverability mechanisms (e.g. locking) that might be in place.

Furthermore they are weaker, than those presented by Berenson et al., in the

sense that at a particular isolation level more concurrency is permitted

Once we were able to define what it meant for a centralised transaction to

attain a particular isolation level, we could then proceed to generalise our defi-

nitions to distributed transactions. In so doing, we saw that although excluding

137

phenomena in local schedules provided serializable isolation in each local schedule

is does not provide a level of serializable isolation for the complete distributed

schedule. It turns out that, if we supplement this with an extra condition we

named synchpoint prepare, it is enough to ensure a serializable level of isolation

for distributed transactions.
Using our views based model we modelled a very simple transaction processing

system. The system included a two phase commit protocol. We showed that the

phenomenon defined in the previous chapter are excluded in any execution of our

system. Furthermore, we showed that 2PC does provide the synchpoint prepare

property and thus we can conclude only serializable schedules are produced.

A common optimisation overlaps the accesses of distributed transactions with

their commit phase. This increases transaction concurrency and thus perfor -

mance. We made some changes to our model to reflect this situation and then

showed that the synchpoint prepare property was lost.

Once again we have demonstrated the power of our modelling technique. By

defining isolation level as a restriction on the possible ordering of rules within

a protocol execution we are able to verify that a protocol supports a particular

level of isolation. We can appeal directly to the rules of our protocol in order

to verify that certain phenomena are prevented. Furthermore, in the case that

synchpoint prepare is not provided we can exhibit a counter example in the form

of a protocol execution.

8.5.1 Future Research Directions

Model checking techniques could be applied to these and similar models. The

same abstraction methods could be used as those found in chapter 5 to provide

automated checking of properties for arbitrary numbers of concurrently executing

transactions. Although in the isolation properties counting does count to a certain

extent processes are still largely anonymous. A possible strategy therefore would

be to name two transactions and two data objects and then model all others

generically as a third anonymous transaction and data object. We would then be

required to show that this abstraction preserves certain properties. In particular

if an isolation phenomenon exists in the multi—process model it will also exist in

our abstraction. -
It is also interesting to consider other levels of transaction isolation and how

they are defined. As new applications such as Internet transaction processing and

mobile e-commerce protocols become more prevalent it is likely that these lower

levels of isolation will become more important. For example, in mobile commerce,

138

hand held mobile devices may perform transactions while periodically connected

to larger systems guaranteeing only READ UNCOMMITTED levels of isolation

to ensure large levels of concurrency.

8.6 Concluding Remarks

Throughout this dissertation we have seen how the views based modelling tech-

nique can be used to model and analyse the behaviour of commit protocols. The

process of modelling a commit protocol often provides insight into its behaviour

which can lead to further improvements. An example of this was the derivation

of X3PC from E3PC. A novel feature of our technique allows us to incorporate

message passing details as views within a process's state. This provides a a solid

and scalable basis on which to generate transition systems that describe protocol

behaviour, which in turn supports abstraction techniques, that allow automated

proofs of properties of systems using model checking. In order to study the role

of commit in providing transaction isolation we first constructed a formal account

of transaction isolation. Our model then captured a simple transaction process-

ing system and we were able to prove different levels of isolation were supported

within this system.
The techniques presented in this thesis are of little direct practical use for

today's protocol designers and software engineers. They are however a step in

the right direction. The extent to which these and similar tools are adopted will

largely depend on how easy they are to use and how useful their output is. It is

unlikely they will be palatable in their current state but they could form the basis

of a suite of software tools. Model checking has found commercial applications in

hardware design and is being used successfully by companies like Intel. The extra

effort involved with model checking is justified in this case due to the large costs

associated with making changes to hardware once in production. As protocols

are embedded as firmware in devices such as smart phones a formal techniques

such as model checking will likely be justified on a similar basis.

139

Bibliography

Marcos Kawazoe Aguilera, Wei Chen, and Sam Toueg. Heartbeat: a timeout-

free failure detector for quiescent reliable communication. In pro- WDA G97,

pages 126-140, September 1997.

Marcos Kawazoe Aguilera, Wei Chen, and Sam Toueg. On the weakest failure

detector for quiescent reliable communication. Technical Report TR97-1640,

Cornell University, Computer Science, July 18, 1997.

ANSI. ANSI x3.135-1992. American National Standard for Information

Systems-Database Language-SQL, November 1992.

0. Babaoglu and S. Toueg. Non-blocking atomic commitment. In Distributed

systems, pages 147-168. ACM Press/Addison-Wesley, second edition, 1993.

A. Basu, B. Charron-Bost, and S. Toueg. Simulating reliable links with

unreliable links in the presence of process crashes. In 0. Babaolu and

K. Marzullo, editors, Distributed Algorithms - Proceedings of the Tenth In-

ternational Workshop, WDAG'96, pages 105-122. Springer, 1996.

H. Berenson, P. Bernstein, J. Gray, J. Melton, E. O'Neil, and P. O'Neil. A

critique of ANSI SQL isolation levels. ACM SIGMOD Record, 24(4), 1995.

P. Bernstein, W. Emberton, and V. Trehan. DECdta-digital's distributed

transaction processing architecture. Digital Technical Journal, 3(1): Winter

1991, 1991.

P.A. Bernstein and N. Goodman. Concurrency control in distributed

database systems. ACM Computing Surveys, 13(2):185-221, June 1981.

P.A. Bernstein, V. Hadzilacos, and N. Goodman. Concurrency Control and

Recovery in Database Systems. Addison-Wesley, Reading, MA, 1987.

P.A. Bernstein and E. Newcomer. Principles of Transaction Processing.

Morgan-Kaufmann, San Mateo, CA, 1997.

140

T.D. Chandra and S. Toueg. Unreliable failure detectors for reliable dis-

tributed systems. Journal of the ACM, 43(2):225-267, 1996.

D. Cheung and T. Kameda. Site-optimal termination for a distributed

database under netwrok partitioning. In Proceedings of the 4th ACM-

SIGA CT-SIGOPS Symposium on Principles of Distributed Computing, pages

111-121, Minaki, Ontario, August 1985.

Dmitri Chkliaev, Peter van de Stok, and Jozef Hooman. Mechanical verifi-

cation of a non-blocking atomic commitment protocol. In Proceedings of the

International Workshop on Distributed System Validation and Verification,

pages 96-103, 2000.

P.K. Chrysanthis, G. Samaras, and Y.J. Al-Houmaily. Recovery and per-

formance of atomic commit processing in distributed database systems. In

V. Kumar and M. Hsu, editors, Recovery Mechanisms in Database Systems,

chapter 13, pages 370-416. Prentice-Hall, New Jersey, 1998.

G. Clark, S. Gilmore, and J. Hiliston. Specifying performance measures for

PEPA. Lecture Notes in Computer Science, 1601:211-227, 1999.

E. M. Clarke, E. A. Emerson, and A. P. Sistla. Automatic verification of

finite-state concurrent systems using temporal logic specifications. ACM

Transactions on Programming Languages and Systems, 8(2):244-263, 1986.

Edmund M. Clarke. Temporal logic model checking: Two techniques for

avoiding the state explosion problem. Lecture Notes in Computer Science,

531, 1991.

Edmund M. Clarke, Orna Grumberg, and David E. Long. Model checking

and abstraction. ACM, pages 343-354, 1992.

Edmund M. Clarke, Orna Grumberg, and Doron Peled. Model Checking.

MIT Press, 1999.

Microsoft Corporation. Microsoft Distributed Transaction Coordinator Re-

source Manager Implementation Guide, January 1996. Version 6.5.

R. Das and A. Fekete. Modular reasoning about open system: a case study of

distributed commit. In Proceedings of the Seventh International Workshop

on Software Specification and Design, pages 30-39, Redondo Beach, CA,

December 1993. IEEE Computer Society Press.

141

J. Davidson. An introduction to TCP/IP. Springer-Verlag, 1988.

L. Davis. Peering at the LU 6.2 choice. Datamation, 36(3):49-50, 52, Febru-

ary 1990.

D. Dolev, R. Friedman, I. Keidar, and D. Malkhi. Failure detectors in omis-

sion failure environments. Technical Report 96-1608, Dept. of Computer

Science, Cornell University, September 1996.

D. J. Faber and F. R. Heinrich. The structure of a distributed computer

system-the distributed file system. In Proc. 1st Internat. Con!. on Computer

Communications, October 1972.

Robert Felice. Implementing the CCITT cyclic redundancy check. C Users

Journal, 8(9) :61-77, September 1990.

M. J. Fischer, N. A. Lynch, and M. S. Paterson. Impossibility of distributed

consensus with one faulty processor. Journal of the ACM, 32(2):374-382,

1985.

M. Franklin. Concurrency control and recovery. Handbook of Computer

Science, pages 334-368, 1996.

H. Garcia-Molina. Elections in a distributed computing system. IEEE Trans-

actions on Computers, C-31(1):48-59, January 1982.

D. Gawlick, M. Haynie, and A. Reuter. A distributed, high-performance,

high-availability implementation of SQL. In NonStop SQL, volume 359 of

Lecture Notes in Computer Science, New York, N.Y., 1989. Springer-Verlag.

D. Gawlick and D. Kinkade. Varieties of concurrency control in IMS/VS

fast path. In IEEE CS Technical Corn. on Database Engineering Bulletin,

volume 8, June 1985.

J. Gray. Notes on database operating systems. In Operating Systems An

Advanced Course, pages 394-481. LNCS Springer Verlag, Berlin, 1978.

J. Gray. A comparison of the byzantine agreement problem and the trans-

action commit problem. In B. Simon and A. Spector, editors, Fault Tolerant

Distributed Computing, pages 10-17. Springer Verlag, Berlin, 1990. Lecture

Notes in Computer Science, 448.

142

J. Gray and A. Reuter. Transaction Processing: Concepts and Techniques.

Morgan Kaufmann, San Mateo, CA, 1993.

R. Guerraoui. Revisiting the relationship between non-blocking atomic com-

mitment and consensus. In J.-M. Helary and M. Raynal, editors, Proceedings

of the 9th International Workshop on Distributed Algorithms, pages 87-100.

Springer Verlag, 1995.

V. Hadzilacos. A knowledge theoretic analysis of atomic commitment pro-

tocols. In ACM Principles of Database Systems (PODS), pages 129-134,

1987.

J. Y. Halpern and Y. 0. Moses. Knowledge and common knowledge in

distributed environments. In Proceedings of the 3rd ACM Conference on

Principles of Distributed Computing. ACM Press, 1984.

Joseph Halpern and Yoram Moses. Knowledge and common knowledge in a

distributed environment. In Proceedings of the Third Annual ACM Sympo-

sium on Principles of Distributed Computing, pages 50-61, 1984.

R. W. Hamming. Coding and Information Theory. Prentice-Hall, 1986.

M. Hesseigrave. Considerations for building distributed transaction process-

ing systems on unix system v. In Washington, editor, Proceedings of UNI-

FORM, January 1990.

I. Keidar and D. Dolev. Increasing the resilience of atomic commit, at no ad-

ditional cost. In Proceedings of the 14th ACM SIGACT-SIGMOD-SIGART

Symposium on Principles of Database Systems, pages 245-254, 1995.

T. Kempster, G. Brebner, and P. Thanisch. A transactional approach to

network management. In Pproceedings of the 1999 Workshop on Databases

in Telecommunications, pages 224-252. Springer-Verlag, 1999.

T. Kempster, C. Stirling, and P. Thanisch. A more committed quorum-

based three phase commit protocol. In LNCS: The Tweith International

Symposium on Distributed Computing, pages 246-257, 1998.

T. Kempster, C. Stirling, and P. Thanisch. A critical analysis of the transac-

tion internet protocol. In Proceedings of the Second International Conference

on Telecommunications and Electronic Commerce (ICTEC), pages 245-271,

1999. Longer version to Journal of Electronic Commerce Research.

143

L. Lamport, R. Shostak, and M. Pease. The Byzantine generals problem.

ACM Transactions on Programming Languages and Systems, 4(3):382-401,

July 1982.

B. Lampson and D. Lomet. A new presumed commit optimisation for two

phase commit. Research Note CRL 93/1, Digital Equipment Corporation,

Cambridge Research Laboratory, 1 Kendall Square, Cambridge, MA 02139,

February 1993.

B. W. Lampson. Atomic transactions. In Distributed Systems-Architecture

and Implementation, volume 105 of Lecture Notes in Computer Science,

pages 246-265. Springer-Verlag, New York, N.Y., 1981. This is a revised ver-

sion of Lampson and Sturgis's unpublished Crash Recovery in a Distributed

Data Storage System.

C.-S. Li, C.J. Georgiou, and K.W. Lee. A hybrid multilevel control scheme for

supporting mixed traffic in broadband networks. IEEE Journal on Selected

Areas in Communications, 14(2):306-316, February 1996.

S. Luan and V.D. Gligor. A fault-tolerant protocol for atomic broadcast.

IEEE Transactions on Parallel and Distributed Systems, 1(3):271-285, July

1990.

N. A. Lynch, M. Merritt, W. E. Weihi, and A. Fekete. Atomic Transactions.

Morgan Kaufmann, San Mateo, 1994.

N. A. Lynch and M. R. Tuttle. An introduction to input/output automata.

CWI Quarterly, 2(3) :219-246, 1989.

Nancy A. Lynch. Distributed Algorithms. Morgan-Kaufmann, San Francisco,

CA, 1996.

Nancy A. Lynch and Mark R. Tuttle. Hierarchical correctness proofs for

distributed algorithms. In Fred B. Schneider, editor, Proceedings of the 6th

Annual ACM Symposium on Principles of Distributed Computing, pages 137-

151, Vancouver, BC, Canada, August 1987. ACM Press.

Moses Ma. Agents in e-commerce. Communications of the ACM, 42(3):79-

91, March 1999.

R. Milner. A calculus of communicating systems. Lecture Notes in Computer

Science, 92, 1980.

144

C. Mohan and D. Dievendorif. Recent work on distributed commit proto-

cols, and recoverable messaging and queuing. Data Engineering Bulletin,

17(1):22-28, March 1994.

C. Mohan, B. Lindsay, and R. Obermark. Transaction management in the R*

distributed database management system. ACM Transactions on Database

Systems, 11(4) :378-396, December 1986.

F. Moller and P. Stevens. 	The Edinburgh Concurrency Work-

bench. Technical report, University of Edinburgh, July 1999. On-line,

http://www.dcs.ed.ac.uk/home/cwb/doc/manual.pdf.

N. Francez. Fairness. Springer-Verlag, New York, 1987.

T. Nipkow. Formal verification of data type refinement - theory and prac-

tice. In J. W. de Bakker, W.-P. de Roever, and G. Rozenberg, editors,

Stepwise Refinement of Distributed Systems, Models, Formalisms, Correct-

ness, REX Workshop, Mook, The Netherlands, volume 430 of Lecture Notes

in Computer Science, pages 561-591. Spring-Verlag, May/June 1989.

Robert Orfali and Dan Harkey. Client-Server Programming with Java and

CORBA. La Nuova Italia, Firenze, Italy, 19xx.

M.T. Ozsu and P. Valduriez. Principles of Distributed Database Systems.

Prentice-Hall, Englewood Cliffs, NJ, 1991.

David Peleg and Avishai Wool. The availability of quorum systems. Infor-

mation and Computation, 123(2):210-223, December 1995.

J Postel. Internet datagram protocol RFC791. USC/Information Sciences

Institute, RFC 791, September 1981.

S. Ramsay, P. Thanisch, R. Pooley, S. Gilmore, and J. Numenmaa. Inter-

active simulation of distributed transaction processing commit protocols. In

Proceedings of the Third UK Simulation Society Conference, April 1997.

A. Ricciardi, A. Schiper, and K. Birman. Understanding partitions and the

"no partition" assumption. In Proceedings of the 4th IEEE Computer Society

Workshop on Future Trends in Distributed Computing Systems (FTDCS-4),

pages 354-360, Lisbon, Portugal, September 1993.

145

I. Rojas. General marking-dependent rates and probabilities in gspns. In

Proceedings of UK Performance Engineering of Computer and Telecommu-

nications Systems, pages 138-152. Springer, 1995.

G. Samaras, K. Britton, A. Citron, and C. Mohan. Two-phase commit opti-

misations in a commercial distributed environment. Distributed and Parallel

Databases, 3(4):325-360, October 1995.

D. Skeen. Nonbiocking commit protocols. In Proceedings of the ACM SIG-

MOD Conference on the Management of Data (SIGMOD'81), pages 133-142,

1981.

D. Skeen. Crash recovery in a distributed database system. Technical report,

University of California at Berkeley, 1982.

D. Skeen. A quorum-based commit protocol. In Berkeley Workshop on Dis-

tributed Data Management and Computer Networks, pages 69-80, February

1982.

D. Skeen and M. Stonebraker. A formal model of crash recovery in a dis-

tributed system. IEEE Transactions on Software Engineering, SE-9(3):220-

228, May 1983.

J. Søgaard-Andersen, S. Garland, J. Guttag, N. A. Lynch, and

A. Pogosyants. Computer-assisted simulation proofs. In C. Courcoubetis,

editor, Proceedings of the 5th International Conference on Computer Aided

Verification, Elounda, Greece, volume 697 of Lecture Notes in Computer

Science, pages 305-319. Springer-Verlag, 1993.

P.M. Spiro, A.M. Joshi, and T.K. Rengarajan. Designing an optimized trans-

action commit protocol. Digital Technical Journal, 3(1):1-10, 1991.

J.W. Stamos and F. Cristian. A low-cost atomic commit protocol. In Proceed-

ing of the Ninth Symposium on Reliable Distributed Systems, pages 66-75.

IEEE Comput. Soc. Press, 1990.

C. Stirling. Local model checking games. In Insup Lee and Scott A. Smolka,

editors, Proceedings of the 6th International Conference on Concurrency

Theory (CONCUR '95), volume 962 of LNCS, pages 1-11, Berlin, GER, Au-

gust 1995. Springer.

C. Stirling. Bisimulation, modal logic and model checking games. Logic

Journal of the IGPL, 7(1):103-124, 1999.

146

M. Stonebraker. Concurrency control in distributed ingres. IEEE Transac-

tions on Software Engineering, 5(3):188-194, 1979.

Andrew S. Tanenbaum. Computer Networks (Third Edition). Prentice—Hall,

Upper Saddle River, NJ 07458, 1996.

P. Thanisch. Atomic commit in concurrent computing. IEEE Concurrency,

8(4):34-41, December 2000.

J.D. Tygar. Atomicity in e-commerce. Proceedings of the 15th Annual ACM

Symposium on Principles of Distributed Computing, pages 8-26, May 1996.

147

