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Abstract
Models of true concurrency have gained a lot of interest over the last decades as mod-

els of concurrent or distributed systems which avoid the well-known problem of state

space explosion of the interleaving models. In this thesis, we study such models from

two perspectives.

Firstly, we study the relation between Petri nets and stable event structures. Petri nets

can be considered as one of the most general and perhaps wide-spread models of true

concurrency. Event structures on the other hand, are simpler models of true concur-

rency with explicit causality and conflict relations. Stable event structures expand the

class of event structures by allowing events to be enabled in more than one way. While

the relation between Petri nets and event structures is well understood, the relation be-

tween Petri nets and stable event structures has not been studied explicitly. We define

a new and more compact unfoldings of safe Petri nets which is directly translatable

to stable event structures. In addition, the notion of complete finite prefix is defined

for compact unfoldings, making the existing model checking algorithms applicable to

them. We present algorithms for constructing the compact unfoldings and their com-

plete finite prefix.

Secondly, we study probabilistic models of true concurrency. We extend the definition

of probabilistic event structures as defined by Abbes and Benveniste to a newly de-

fined class of stable event structures, namely, jump-free stable event structures arising

from Petri nets (characterised and referred to as net-driven). This requires defining

the fundamental concept of branching cells in probabilistic event structures, for jump-

free net-driven stable event structures, and by proving the existence of an isomorphism

among the branching cells of these systems, we show that the latter benefit from the

related results of the former models. We then move on to defining a probabilistic

logic over probabilistic event structures (PESL). To our best knowledge, this is the first

probabilistic logic of true concurrency. We show examples of expressivity achieved by

PESL, which in particular include properties related to synchronisation in the system.

This is followed by the model checking algorithm for PESL for finite event structures.

Finally, we present a logic over stable event structures (SEL) along with an account of

its expressivity and its model checking algorithm for finite stable event structures.
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Lay Summary
The model checking problem in computer science is defined as the procedure of ver-

ifying if a given model, representing a system, has certain desirable or undesirable

properties. This is very useful as, for example, using model checking one can high-

light any safety or security issue within the system. The properties to be check for

are usually defined through a logical formula. This thesis studies model checking of

true-concurrent systems, i.e. concurrent systems which are loyal to the true notion of

concurrency, from two aspects.

Firstly, we study the relation between two models of such concurrent systems, namely

Petri nets and Stable Event Structures. Petri nets are well-known and widely used

models of true concurrency. However, to our best knowledge, the relation between

Petri nets and stable event structures is not studied. Thus, given a safe Petri net, we

produce a more compact structure, along with its mapping to Stable Event Structures.

We also show some of the important properties of the new compact structure, including

its suitability for verification purposes.

Secondly, we study the model checking of probabilistic models of true concurrency.

For that purpose, we introduce a logic capable of expressing probabilistic properties

for event structures. We also present the model checking produce for finite structures.

As a result, for example, we can express and verify that the likelihood of a system

modelled by event structures encountering an error is less than two per cent.
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Chapter 1

Introduction

1.1 Motivation and Context

Concurrent systems appear nowadays in various different fields such as telecommu-

nication networks, operating systems, database management systems, communication

systems, product systems, monitoring and controlling systems, etc. It is therefore not

surprising that there has been a vast amount of interest in modelling and verifying

such systems so that they can be analysed, their performance be measured and perhaps

most importantly the correctness of their behaviour can be verified. The importance

of verification of concurrent systems lies not only in the fact that their failure can be

expensive and even fatal, but also since generally they are much harder to test by the

usual testing techniques for sequential systems. That is because for example, errors

may appear rarely and therefore remain unidentified during the testing process and

even if they are identified, it is almost impossible to repeat them and find their roots.

In concurrency theory there are generally two main approaches in modelling concur-

rency, namely, the interleaving or sequential approach and the partial order or true

concurrency one. In the former, concurrency of two events is implicitly modelled as

a nondeterministic choice between different possible orderings of the events, while in

the latter, such events are explicitly defined to be concurrent and need not be in any

particular order, hence the term ‘partial order’ approach. It can therefore be said that

the latter approach is more faithful to the concept of concurrency, hence the terms

‘true concurrency’. Examples of the interleaving model include but are not limited

1



Chapter 1. Introduction 2

to Kripke structures, labelled transition systems, infinite trees while examples of true

concurrency models include Petri nets [53], (different kinds of) event structures [76],

Mazurkiewicz trace languages [49], and transition systems with independence [78].

On the one hand, the interleaving approach benefits from being less complex and also

from the massive amount of existing studies related to sequential systems which are

also applicable to concurrent systems (under such semantics). On the other hand, it

suffers from the state explosion problem [70] in verification, namely, the combinato-

rial explosion of state space. Different techniques exist for alleviating this problem

such as using binary decision diagrams or BDDs [50], abstraction techniques [14] and

partial order reduction techniques [24]. The true concurrency models, although much

more complex, are far less subject to the state explosion problem. Even then, partial

order techniques can be applied to them naturally.

A prominent technique specifically defined on true concurrency models, is that of com-

plete finite prefixes of Petri net unfoldings defined by McMillan [51]. Unfoldings of

Petri nets were first introduced in [53] and further formalised in [76] and are well-

known structures used both for verification of Petri nets and also for describing the

behaviour of a net in a simpler, more understandable manner. The latter is achieved

by representing the full state space, under the true concurrency semantics. Even with-

out considering all the interleavings, unfoldings of Petri nets grow exponentially. This

issue can be addressed by introducing other types of unfoldings, such as Merged Pro-

cesses [37], Trellis Processes[23] and Ri unfoldings [58], each of which have different

objectives including that of compactness. In this thesis we also attempt to address

this issue by defining a new unfolding which does not unfold conflicts and is therefore

more compact.

Another wide-spread approach in verification is that of model checking, where given

a model of the system (M ) and a logical formula (φ) describing a property of such

models, it is verified if the formula is satisfied by the model (M � φ). Some of the

most prominent work and references include but are not limited to [13, 15, 21]. In

general, some of the most typical properties that are verified include those of safety

and liveness. Informally speaking, safety properties express that an undesirable state

or scenario does not occur, while liveness properties express that a desirable state or
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scenario will be reached. Such properties are classified as qualitative properties of a

system. However, there are many systems for which such qualities are not guaranteed

to hold or even not hold, this arising mainly from the notion of unreliability in such

systems. For example, in telecommunication systems there is a possibility that occa-

sionally messages are lost and not delivered. Therefore, rather than requiring a system

to always satisfy a property, we are interested in determining the likelihood that the

system does so, i.e. in verification of quantitative properties of a system. This requires

representing a concurrent system by probabilistic models and expressing properties by

probabilistic logical formula.

Similar to the non-probabilistic case, major work has been achieved for modelling

and verification of probabilistic interleaving models, naming only a few would include

[64, 63, 73, 62, 79, 66, 18, 7]. However, the work on probabilistic true concurrency

models is relatively more recent [74, 26, 71, 72, 9, 1, 2] and perhaps for the same

reason probabilistic logics with true concurrent semantics are, to our best knowledge,

non-existent. In addition to the differences between the two approaches to concurrency

mentioned above, there is another crucial difference between the two in the probabilis-

tic framework, in particular when considering distributed concurrent systems. Gener-

ally, temporal stochastic processes and models capturing concurrency through nonde-

terminism such as [33, 19, 64, 65, 20] have a global state corresponding to a global

time. In a distributed system, however, this is neither feasible nor natural. Thus, in

the true concurrency approaches there is no notion of global time or state, but rather

local ones. In other words, the local components have their own local states and act in

their own local time until they communicate together. This results in a highly desirable

match between concurrency and probability, more concretely, following this point of

view concurrent choices can be made probabilistically independent.

In our opinion, among the existing probabilistic truly concurrent systems, probabilistic

event structures as defined by [1] can be considered as the state of the art. Being mainly

based on the work carried out in [9], not only they achieve the desirable objective de-

scribed above, they also generalise other definitions of probabilistic event structures

([74, 72]) by resolving the crux of the problem, namely, confusion [53, 67]. Confu-

sion arises when occurrence of an event disables two otherwise concurrent events. It

is therefore challenging to assign probabilities to occurrence of such events, as even
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though they are concurrent, they are not probabilistically independent in the real sense.

Thus, the other approaches do not consider confusion. This challenge is tackled in [1]

by decomposing the global state of the system into the local ones of sub-event struc-

tures called branching cells which resolve confusions internally and each have a local

transition probability. The probability of a global state is then defined as the product

of the probability of its consisting local states.

For all the reasons mentioned above, we focus on probabilistic event structures of [1]

in this thesis and develop a probabilistic logic with true concurrent semantics. We also

study the case of probabilistic stable event structures by showing that the technique

and results of [1] for probabilistic event structures can be applied to a subclass of stable

event structures, producing probabilistic jump-free stable event structures. Moreover,

we develop a logic for stable event structures to better understand these structures. A

detailed summary of our contribution is described in the next section.

1.2 Contributions and Outline

Our contribution in this thesis can be summarised as development of the following.

1. A new, more compact unfolding of safe Petri nets, including:

• characterisation of compact unfoldings

• properties of compact unfoldings

• complete finite prefix for compact unfoldings which is suitable for existing

verification techniques

• an algorithm for constructing compact unfoldings and complete finite pre-

fixes

• relation between compact unfoldings and stable event structures.

2. A new probabilistic logic, PESL, interpreted over probabilistic event structures

of [1], including syntax, semantics and expressivity of PESL. To our best knowl-

edge, this is the first logic with true concurrency semantics. Furthermore, PESL

can explicitly describe synchronisation properties, which is not possible in gen-

eral by other truly concurrent logics.
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3. A new logic, SEL, interpreted over stable event structures, including syntax,

semantics and expressivity of SEL.

4. Analogous definition of probabilistic stable event structures for the new class of

jump-free event structures.

The thesis is organised as follows.

Chapter 2. This chapter introduces the basic concepts, definitions and relations re-

ferred to throughout this thesis. Definitions of different types of event structures are

given, along with the less obvious mappings between them. Moreover, Petri nets and

morphisms between nets are defined.

Chapter 3 This chapter introduces a new, more compact, unfolding of safe Petri nets.

As mentioned before, the conventional unfoldings of Petri nets while being highly use-

ful for both the semantics and model checking of Petri nets, grow exponentially in the

size of the original Petri net. A major reason is that every possible firing of a transi-

tion of the net has a unique corresponding event in the unfolding. Therefore, compact

unfoldings are defined in such a way that they account for every possible marking of

the net without keeping track of how exactly a transition fires in terms of the choices

made in its history. In other words, conflicts are not unfolded as far as possible.

We start with the definition of required background concepts and present the character-

isation of compact unfoldings or unfolding−s. We describe properties of unfolding−s,

in particular their relation to the traditional unfoldings of Petri nets. This includes

proving isomorphism of configurations of the conventional unfoldings and the com-

pact ones.

We then present an algorithm for (deterministically) computing an unfolding−of a

given safe Petri net and prove its correctness. This is followed by defining the con-

cept of complete finite prefix for unfolding−s, proving that the existing verification

algorithms are applicable to it and adjusting the above algorithm to compute complete

finite prefixes.
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Finally, we define the relation between unfolding−s and stable event structures, a fam-

ily of event structures which allow for multiple (conflicting) causes and give a brief

and high-level view of other existing approaches.

Chapter 4. We start this chapter by characterising the stable event structures arising

from safe Petri nets as defined in the previous chapter. This leads to defining the class

of net-driven stable event structures.

We then present the definition of probabilistic event structures as in [1], by first defin-

ing the required background concepts, such as stopping prefixes, recuresively stopped

prefixes and branching cells. We then define the analogous concepts for net-driven

stable event structures and prove that the concept of branching cells can be defined

in a similar way for a certain newly defined class of stable event structures, namely,

jump-free event structures.

Informally speaking, in jump-free event structures the confusions occur for events

which are not causally related. Therefore, none of the events in the conflict-closed

sets of events are causally related. This constraint allows us to defined branching cells

on stable event structures analogous to those of event structures and by proving the

isomorphism between the branching cells in the two structures, the rest of the results

follows for the stable case.

Chapter 5. In this chapter we define the syntax and semantics for PESL, the first prob-

abilistic logic with truly concurrent semantics. Since PESL is defined on R-stopped

configurations (as defined in chapter 4), the logic operates at different levels, namely,

that of the events, configurations and in-between configurations. The expressivity of

PESL is described along with the proof that it encodes the behaviour of pCTL. More

interestingly, synchronisation properties expressible by PESL are discussed. Finally,

the model checking algorithm for finite event structures is presented.

Chapter 6. This chapter introduces the new logic SEL, interpreted over stable event

structures. Stable event structures have not been studied or used as extensively as event

structures. Therefore, the aim is to better understand stable event structures and ex-

press different types of relations between groups of events. The syntax and semantics
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of SEL is presented, followed by examples of its expressivity and a full comparison

with ESL-based logics [56], one of the few family of logics specifically defined for

event structures. Finally, the model checking algorithm for finite stable event struc-

tures is presented.

Chapter 7. This chapter concludes this thesis with some final remarks and directions

for future work.



Chapter 2

Preliminaries

In this chapter we introduce the background definitions and concepts referred to through-

out this thesis.

2.1 Notations

• x⊆fin y⇔ x⊆ y & x is finite

• x is minimal⊆ satisfying a property p⇔ x satisfies p & @x′ ⊂ x. x′ satisfies p.

• N= {0,1,2, . . .}

• ∃!x⇔ there is a unique x

• Given a set X and a binary relation R on X, X ′⊆X is left-closed iff x∈X ′& yRx⇒
y ∈ X ′

2.2 Multi-sets

Definition 2.2.1. A multiset µ over a set X is a function µ : X → N.

For x ∈ X , we write x ∈ µ to denote µ(x) ≥ 1 and for two multi-sets µ and µ′ over X ,

we define µ≤ µ′⇔de f ∀x ∈ X . µ(x)≤ µ′(x). We use {||} to explicitly represent a multi-

set (when it is finite), e.g. {|a,a,b,b,b|} denotes a multi-set over X = {a,b,c} where

µ(a) = 2, µ(b) = 3 and µ(c) = 0.

8
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Definition 2.2.2. The sum of two multi-sets µ and µ′ over X is defined as

(µ+µ′)(x) =de f µ(x)+µ′(x).

Similarly, the difference of µ and µ′ is defined as

(µ−µ′)(x) =de f max {0, µ(x) .− µ′(x)}

Definition 2.2.3. A multi-relation between sets X and Y is a function R : X ×Y → N,

denoted by R⊆µ X×Y . The number of times element x∈ X is related to element y∈Y

is denoted by R[x,y]. Given a multi-set µ over X , the application R.µ of R to µ is the

multi-set given by µ′(y) = ∑x∈X R[x,y].µ(x).

2.3 Event Structures

In this section we define different types of event structures, namely, elementary event

structures, stable event structures, prime event structures and event structures. As we

shall see, among these, stable event structures are a refinement of elementary event

structures (by adding a stability axiom), and event structures are a refinement of prime

event structures (by restricting the consistency to correspond to a binary conflict re-

lation). We also present translations from stable event structures into a prime event

structures and from event structures into stable event structures.

2.3.1 Elementary Event Structures [76]

Definition 2.3.1. An elementary event structure E is a triple (E,Con,`) where:

1. E is the set of events.

2. Con⊆fin ℘(E) is a non-empty consistency predicate satisfying:

X ∈Con & Y ⊆ X ⇒ Y ∈Con.

3. ` ⊆Con×E is the enabling relation satisfying:

X ` e & X ⊆ Y & Y ∈Con⇒ Y ` e.

Given an elementary event structure, its configurations are defined as follows.
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Definition 2.3.2. Let E = (E,Con,`) be an elementary event structure. A configura-

tion of E is defined as a subset X ⊆ E of events such that:

1. X is consistent: ∀X ′ ⊆fin X . X ′ ∈Con.

2. X is secured: ∀e ∈ X . ∃e0, . . . ,en ∈ X . en = e and ∀i≤ n. {e0, . . . ,ei−1} ` ei

The set of all configurations of E is represented by V (E) or VE or V when no confu-

sion arises.

We now define the notion of compatability in order to characterise family of configu-

rations of elementary event structures in the following theorem.

Definition 2.3.3. Let (P,v) be a partial order. Then S ⊆ P is compatible, represented

by S ↑ iff ∃p ∈ P. ∀s ∈ S. s v p. A subset is finitely compatible, written as S ↑fin iff

∀S0 ⊆fin S. S0 ↑.

Theorem 2.3.4. [76] Let E = (E,Con,`) be an elementary event structure. Then its

configurations V = V (E) form a family of subsets of E with the following properties.

1. Finite-Completeness:

A⊆ V & A ↑fin⇒
⋃

A ∈ V

2. Finiteness:

∀u ∈ V. ∀e ∈ u. ∃v ∈ V. (v is finite & e ∈ v & v⊆ u).

3. Coincidence-Freeness:

∀u ∈ V. ∀e,e′ ∈ u. e 6= e′⇒ (∃v ∈ V. v⊆ u & (e ∈ v⇔ e′ /∈ v)).

The next definition extends the notion of family of configurations to sets of subsets

of an arbitrary set, satisfying the axioms above; the following definition and theorem

show how to build an event structure from such a family.

Definition 2.3.5. Let V be a set of subsets. Then V is defined to be a family of config-

urations if it satisfies the axioms of theorem 2.3.4. We say V is a family of configura-

tions of E if E =
⋃

V.

Definition 2.3.6. Let V be a family of configurations of a set E. Then define E(V) =

(E,Con,`) to be the structure such that:

X ∈Con⇔def X is finite & ∃u ∈ V. X ⊆ u,
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X ` e⇔def X ∈Con & ∃u ∈ V. e ∈ u & u⊆ X ∪{e}.

Theorem 2.3.7. [76] If V is a family of configurations on a set of events E, then E(V),

as in definition 2.3.6, is an event structure such that V (E(V)) = V.

2.3.2 Stable Event Structures [76]

Elementary event structures are one of the most general classes of event structures;

they allow an event to have different causes, which is a desirable property. However,

problems arise when dealing with configurations in which an event does not have a

unique cause.Such configurations can be excluded by applying a stability constraint,

leading to the definition of stable event structures. It is worth noting that for stable

event structures there is no global partial order of causal dependency on events, but

each configuration has its own local partial order of causal dependency. This is clarified

in definition 2.3.12 and example 2.3.14.

Definition 2.3.8. A stable event structure, is an elementary event structure, satisfying

the stability axiom:

X ` e & Y ` e & X ∪Y ∪{e} ∈Con⇒ X ∩Y ` e.

Thus, the stability axiom ensures events are caused in a unique way.

Definition 2.3.9. A minimal enabling relation `min is defined as:

X `min e⇔ X ` e & (∀Y ⊆ X . Y ` e⇒ Y = X)

Then for any event structure

Y ` e⇒∃X ⊆ Y. X `min e

and for consistent enabling sets of stable event structures such an X is unique:

Y ` e & Y ∪{e} ∈Con⇒∃!X ⊆ Y. X `min e

The following theorem characterises the family of configurations of stable event struc-

tures, while the following definition does so for a family of configurations in general.
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Theorem 2.3.10. [76] The family of configurations of a stable event structures E sat-

isfies:

∀X ⊆ V (E). X 6= /0 & X ↑⇒
⋂

X ∈ V (E).

Definition 2.3.11. A family of configurations V is stable when it satisfies the stability

axiom:

∀X ⊆ V. X 6= /0 & X ↑⇒
⋂

X ∈ V.

Definition 2.3.12. Let u be a configuration of a stable family of configurations V. For

events e,e′ ∈ u we define

e≤u e′⇔∀v ∈ V. e′ ∈ v & v⊆ u⇒ e ∈ v.

For e ∈ u we define

deeu =
⋂
{v ∈ V | e ∈ v & v⊆ u}

Proposition 2.3.13. Let u be a configuration of a stable family of configurations V.

Then ≤u is a partial order on u and deeu is a configuration such that deeu = {e′ ∈
u | e′ ≤u e}. Moreover, the configurations v ⊆ u are exactly the left-closed subsets of

≤u.

Example 2.3.14. [76] Let E =(E,Con,`) be an event structure where E = {e0,e1,e2},
Con =℘(E)\{e0,e1,e2} and the enabling relation is the least one including:

/0 ` e0, /0 ` e1, {e0} ` e2, {e1} ` e2

Then it is easy to see that E is a stable event structure its family of configurations

V (E) are a stable family of configurations.

Let x = {e0,e2} and y = {e1,e2} be two configurations of E . Then e0 ≤x e2 and

e1 ≤y e2, however e0 �y e2 and e1 �y e2. Thus, ≤x and ≤y cannot be restrictions of a

global partial order on events.

2.3.3 Prime Event Structures [76]

Prime event structures are event structures whose enabling relation provides a global

partial order of causal dependency on events, as each event can be enabled in only one

way.
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Definition 2.3.15. A prime event structure is a triple E = (E,Con,≤), where ≤ is a

partial order on the set of events E, called the causality relation and Con is the consis-

tency relation as defined previously in definition 2.3.1. For all e ∈ E and finite subsets

x,y of E it satisfies:

1. {e′ | e′ ≤ e} is finite.

2. {e} ∈Con.

3. Y ⊆ X & X ∈Con⇒ Y ∈Con.

4. Y ∈Con & ∃e′∈ X . e≤ e′⇒ X ∪{e} ∈Con.

Definition 2.3.16. We define the history of e by dee=def {e′ ∈ E | e′ ≤ e}.

Definition 2.3.17. The set of configurations of a primary event structure is denoted by

V (E) (or VE or V if no confusion arises) and is defined as the set of subsets X ⊆ E

which are consistent and left-closed under ≤.

It can be proved that V (E) is a stable family of configurations for E . The translation

from stable event structures to prime event structures is presented in §2.3.5.

A stable event structure can be translated into a prime structure by extending and re-

naming the events, so that each event is augmented with the history of how it occurred

in a configuration. Then, even though the events and as such the configurations are dif-

ferent, the domains of configurations of both event structures are isomorphic as partial

orders [76].

2.3.4 Event Structures [76, 78]

Definition 2.3.18. An event structure is a triple E = (E,≤,#), where ≤ is a partial

order on the set of events E, called the causality relation and # ⊆ E ×E is a binary,

symmetric and irreflexive relation called the conflict relation, satisfying the following

for all e,e′,e′′ ∈ E.

1. {e′ | e′ ≤ e} is finite

2. e#e′ & e′ ≤ e′′⇒ e#e′′

Event structures can also be seen as prime event structures which satisfy:

X ∈Con⇔ X ⊆fin E & ∀e,e′ ∈ X .¬(e#e′)
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Definition 2.3.19. Let E = (E,≤,#) be an event structure. A configuration of E is

defined as a subset of events X ⊆ E such that:

1. X conflict-free: ∀e,e′ ∈ X . ¬(e#e′).

2. X left-closed: ∀e ∈ X . e′ ≤ e⇒ e′ ∈ X .

As before we let dee =def {e′ ∈ E | e′ ≤ e} and with abuse of notation, for a set X of

events let dXe=def {e′ ∈ dee | e ∈ X}.

2.3.5 From Stable Event Structures to Prime Event Structures [76]

Given a stable event structure, for which a global partial order on events does not

necessarily exist (example 2.3.14), a prime event structure can be derived with global

partial order of causal dependency. This requires restructuring the events to include

their history, therefore, the derived prime event structure is not isomorphic to the sta-

ble event structure. However, it can be proved that their domains of configurations are

isomorphic [76].

Definition 2.3.20. Given a stable event structure E = (E,Con,`), its associated prime

event structure E ′ = (P,ConP,≤) is defined as follows.

- The events are

P = {deex | e ∈ x ∈ V (E)}.

- The global causal dependency is given by

p′ ≤ p⇔ p′ ⊆ p.

- The consistency predicate on P is defined as

X ∈ConP⇔ X ⊆fin P & X ↑ .

The causality relation is defined based on the idea that an event p can occur only after

all events p′ included in it (representing its history) have occurred. The consistency

predicate checks if a set of events is compatible as a configuration.

Theorem 2.3.21. [76] The domain of configurations of a stable event structure E and

its associated prime event structure E ′ as defined in definition 2.3.20 are isomorphic.
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2.4 Petri nets [57, 53]

Event structures can be viewed as structures giving semantics to Petri nets which are

well-known models of true concurrency with a variety of applications. In this section

we define Petri nets along with some of the relevant concepts.

Definition 2.4.1. A general Petri net is a tuple G = (P,T,Pre,Post,M), where P is a

set of places, T is a set of transitions s.t. P∩ T = /0, Pre ⊆µ T ×P is the pre-place

multi-relation, Post ⊆µ T ×P is the post-place multi-relation and M is a non-empty

finite multi-set of P called the initial marking of G .

A graphical representation of a Petri net consists of circles for places, rectangles for

transitions, connecting arcs between transitions and places denoting Pre and Post, an-

notated by their corresponding multi-relation weight and dots in places denoting the

markings.

Definition 2.4.2. Define multi-sets •x =de f Pre.{x} and x• =de f Post.{x} where x ∈
P∪T . By abuse of notation we define the same notion for a multi-set X of transitions

or places. Namely, •X =de f Pre.X and X• =de f Post.X .

The token game of Petri nets abides by the following rules. A transition t is enabled at

a marking M iff •t ≤M.

More specifically, an enabled transition consumes Pre[t, p] tokens from p and de-

posits Post[t, p′] tokens in p′. This defines a relation between markings represented

by M X−→ M′ ⇔de f
•X ≤ M and M′ = M− •X +X• where X is a finite multi-set of

events. A marking M is said to be reachable iff there is an initial marking M′ from

which M can be reached by a finite sequence of transitions Xi−−→.

Definition 2.4.3. A Petri net is k-bounded iff for every reachable marking M and every

place p ∈ P, M(p)≤ k.

Another important concept is that of safety, as defined below.

Definition 2.4.4. A Petri net is safe iff it is 1-bounded.

Safe nets can be represented as (B,E,F,M) where B is the set of conditions, E is the set

of events and b F e and e F b represent b ∈ B being a pre-condition and post-condition

of e ∈ E, respectively.
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A morphism between general nets preserves the token game and is defined as follows.

Definition 2.4.5. [76] A morphism (η,β) : G → G ′ consists of a partial function η :

T → T ′ and a multi-relation β⊆µ P×P′ such that

1. β.M = M′

2. ∀t ∈ T. β(•t) = •(η(t))

3. ∀t ∈ T. β(t•) = (η(t))•

where we identify η with its graph viewed as a multi-relation, and write ∗ for the empty

multiset and we denote the application of η to a set X by η.X .

Definition 2.4.6. [76] A morphism between safe Petri nets is a folding iff η is total and

β can be identified by a total function.

The following defines a subnet of a Petri net.

Definition 2.4.7. [76] Let (η,β) : G → G ′ be a morphism between safe Petri nets.

Then G is a subnet of G ′ iff

η(e) = e′⇔ e = e′ and β[b,b′] = 1⇔ b = b′.

The following theorem describes the fact that morphisms preserves markings of nets.

Theorem 2.4.8. [76] Let (η,β) : G→G ′ be a morphism of Petri nets. Then β preserves

the initial and reachable markings, i.e. if M is a reachable marking of G then β.M is

a reachable marking of G ′. Furthermore, if M X−→ M′ and M is reachable in G then

β.M
η.A−−→ β.M′ in G ′.

In the following, the properties of morphism between safe Petri nets are described.

Proposition 2.4.9. [76] Let G0 = (B0,E0,F0,M0) and G1 = (B1,E1,F1,M1) be two

safe Petri nets. Then f = (η,β) : G0 → G1 is a morphism iff η is a partial function

from E0 to E1 and β is a relation between B0 and B1 satisfying all the following.

1. β(M0) = M1 and ∀b1 ∈M1. ∃!b0 ∈M0. b0βb1

2. if η(e0) = e1 then for any b1 ∈ B1

b1F1e1⇒∃!b0 ∈ B0. b0F0e0 & b0βb1

e1F1b1⇒∃!b0 ∈ B0. e0F0b0 & b0βb1
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3. if b0βb1 then for any e0 ∈ E0

e0F0b0⇒∃e1 ∈ E1. e1F1b1 & η(e0) = e1

b0F0e0⇒∃e1 ∈ E1. b1F1e1 & η(e0) = e1



Chapter 3

Compact Unfoldings

Petri nets are well-known models of true concurrency, as models which capture the

behaviour of a system in a fairly intuitive and compact manner. However, the complete

behaviour of the system is not immediately obvious from the original Petri net, as

different choices (conflicts) and concurrent components create various possibilities for

different runs of the net - even within the true concurrency framework.

Unfoldings of Petri nets, first introduced in [53] and further formalised in [76] for safe

Petri nets, describe the behaviour of the net by unfolding its conflicts and cycles. Un-

folding the conflicts results in a unique event being created for every possible history

of a transition, namely, the set of elements leading to firing of that transition. In addi-

tion to unfolding the cycles, unfoldings of Petri nets can be viewed as true concurrency

semantics for the behaviour of Petri nets. However, creating an event for every pos-

sible history results in a fast expansion of the unfolding, growing exponentially with

the choices available in the net. The problem becomes worse when when dealing with

infinite unfoldings which are usually the cases of interest.

The largeness of unfoldings of Petri nets raises the question that can unfoldings be

more compact while describing the behaviour of the net? There are other interesting

approaches attempting to achieve compactness, including Merged Processes [37], Trel-

lis Processes [23] and R-unfoldings [58]. While the nature of the problem is the same,

the main difference between the above approaches lies in the objective that each intends

to achieve. For example, merged processes are the most compact structures handling

unsafeness, Trellis processes have the factorisation property and R-unfoldings give se-

mantics for both individual and collective token philosophy and can forget history step

18
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by step.

In our approach, we primarily deal with safe Petri nets. However, our approach is

extensible to the general Petri nets as we discuss in the conclusion chapter. Our aim

is to unfold the cycles within a net and keep the conflict relation as folded as possible.

In other words, we are more interested in representing what events can be fired, how

many of them and in what order, rather than how exactly an event occurs in terms of

the choices made in its history. It turns out that we can reuse the conditions created to a

great extent, if we forget about the exact history of how an event occurred. Therefore,

by allowing backwards conflict, instead of creating a new condition for every single

possible history of an event firing, the conflicting events firing to the same place are

grouped together, as only one of them can occur at a time.

In this chapter we introduce compact unfoldings of safe Petri nets as described above,

which are occurrence nets with backwards conflict preserving the token game of the

Petri nets. We also present an algorithm for constructing the compact unfoldings of

a safe Petri net (with finitely many reachable markings) in a deterministic and more

direct manner.

Apart from defining the semantics of Petri nets, unfoldings of Petri nets are extensively

used for verification of certain properties for Petri nets, e.g. detection of deadlocks. For

the most common of such approaches, the notion of a complete finite prefix is crucial,

which was first introduced by McMillan in [51], improved in [22, 38] and further

formalised in [39]. We therefore define the complete finite prefix for the compact

unfoldings, which makes the verification algorithms based on complete finite prefixes

applicable to them.

Closely related to unfoldings of Petri nets, are event structures as models of true con-

currency which explicitly capture concurrency and in particular conflicts. The compact

unfoldings correspond directly to stable event structures as first introduced by [76]. To

our best knowledge, unlike event structures, the relation between Petri nets and stable

event structures has not been studied before. Thus, we conclude the chapter with in-

troducing the translation from safe Petri nets into stable event structures and we also

present a short comparison of our approach to the other existing ones.
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3.1 Unfoldings

In this section we briefly present the traditional unfolding of Petri nets, which unfolds

the original net into an occurrence net, as defined below. Occurrence nets can describe

the behaviour of nets in a simpler manner, while being easily translatable into other

models of concurrent and in particular into event structures. The definitions in this

section (3.1) are mostly taken from [76].

Definition 3.1.1. An occurrence net O = (B,E,F,M) is a safe net satisfying the fol-

lowing constraints.

1. ∀b ∈M. •b = /0

2. ∀b′ ∈ B. ∃b ∈M. b F∗ b′

3. ∀b ∈ B. | •b |≤ 1

4. F+ is irreflexive and ∀e ∈ E. {e′ | e′F∗e} is finite.

5. # is irreflexive, where for e,e′ ∈ E and x,x′ ∈ E ∪B:

e#me′ ⇔def e,e′ ∈ E & e 6= e′ & •e∩ •e′ 6= /0

x#x′ ⇔def ∃e,e′ ∈ E. e#me′ & eF∗x & e′F∗x′

The first constraint describes initial markings, while the second one ensures that there

are no isolated conditions. The third constraint prevents backwards conflicts, some-

thing that we shall change to achieve a different, more compact structure. The fourth

constraint guarantees that cycles are unfolded and that events have finite history. Fi-

nally, the last constraint defines the binary and irreflexive conflict relation, describing

that conflicts are inherited by elements in F relation.

A conflict-free net is then defined as below.

Definition 3.1.2. Given an occurrence net O = (E,B,F,M), a set X ⊆ E ∪B is #-free

or conflict-free iff @x,x′ ∈ E ∪B. x#x′.

In occurrence nets, each element can be enabled in a single manner. The elements

involved in enabling another element form the history of that element, as defined below.

Definition 3.1.3. We then denote the history of an element x ∈ E∪B of the occurrence

net by

[x]=def {x′ ∈ E | x′F∗x}
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Moreover, the notion of concurrency is captured by the following definition.

Definition 3.1.4. The concurrency relation co⊆ (B∪E)× (B∪E) is defined as

x co y⇔def ¬(x#y∨ xF+y∨ yF+x)

and a set A⊆ E∪B is pairwise concurrent written as co A iff ∀x 6= y ∈ A. x co y & ∀x ∈
A. [x]∩E is finite.

Unfoldings of safe Petri nets are characterised by the following theorem.

Theorem 3.1.5. [76] Given a safe Petri net G = (B,E,F,M), there is a unique oc-

currence net U(G) = (B0,E0,F0,M0) and a folding f = (η,β) : U(G)→ G given by

β((e0,b)) = b and η((A,e)) = e, for which the following hold.

M0 = {(⊥,b) | b ∈M}
B0 = M0∪ {({e0},b) | e0 ∈ E0 & b ∈ B & η(e0) ∈ •b}
E0 = {(A,e) | A⊆ B0 & e ∈ E & co A & β.A = •e}

b0F0(A,e)⇔ b0 ∈ A

e0F0b0⇔ b0 = ({e0},b)

Definition 3.1.6. [76] The unfolding of a safe Petri net is defined as the unique occur-

rence net and the folding morphism described in theorem 3.1.5.

The following theorem describes a fundamental property of the unfolding of a Petri

net, implied by theorem 3.1.5.

Theorem 3.1.7. [76] Let G be a safe net. Its unfolding U along with folding f as

defined above satisfy:

∀A⊆ B0. co A & β. A = •e⇒∃!e0 ∈ E0. A = •e0 & η(e0) = e.

3.2 Compact Unfoldings

Although occurrence nets are easily translated into event structures( and thus into a

sub-class of stable event structures), the obtained event structures do not take advantage

of the main characteristic of stable event structures, namely, that of allowing multiple

histories, uniquely enabling an event. This also implies that event structures driven

from occurrence nets are not the most compact ones representing the behaviour of the
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original net. In order to allow for multiple histories for an event, backwards conflict

should be permitted. Allowing backwards conflicts avoids the expansion caused by

creating a unique event for each history of an event. In this section, we introduce a

new and more compact unfolding of safe Petri nets, where as far as possible conflicts

are not unfolded.

Compact unfoldings of Petri nets are defined on structures called occurrence−nets,

defined below.

3.2.1 Definitions

Definition 3.2.1. An occurrence−net O− = (B,E,F,M) is a safe net satisfying condi-

tions 1, 2, and 4 of occurrence nets in addition to a modified version of condition 5 of

occurrence nets:

5′. #− is irreflexive, where for e,e′ ∈ E and b,b′ ∈ B:

e#−me′ ⇔def e 6= e′ & •e∩ •e′ 6= /0

e#−e′ ⇔def e#−me′ or ∃b ∈ •e. b#−e′ or ∃b′ ∈ •e′. b′#−e

b#−b′ ⇔def ∀e ∈ •b,e′ ∈ •b′. e#−e′ & b,b′ /∈M

e#−b ⇔def ∃b′ ∈ •e. b#−b′ or ∀e′ ∈ •b. e#−e′ & b /∈M

b#−e ⇔def defined symmetrically.

Note that the above recursive definition of #− is well-defined as the predecessor rela-

tion •x is well-founded. As explained previously, occurrence−nets allow backwards

conflict, which results in allowing multiple histories for an event. Therefore, a new

notion of conflict needs to be defined, as now two elements can be in conflict when en-

abled in one way, and not in conflict if enabled in another way. Consider the following

example.

Example 3.2.2. Consider two simple occurrence−nets, O−1 (left) and O−2 (right) in fig-

ure 3.1. In O−1 , we have b3#−b4 since ∀e∈ •b3,e′ ∈ •b4. e#−e′, namely, e1#−e3 & e2#−e3.

However, in O−2 we no longer have b′3#−b′4, since e′2 ∈ •e′3 & e′2 ∈ •e′4 and clearly

¬(e′2#−e′2) as #− is irreflexive. More intuitively, in O−1 , no matter how b3 is enabled,

b4 cannot be enabled at the same time. However, in O−2 , if b′3 is enabled through e′2,

then b′4 is also enabled, though if b′3 is enabled through e′1 then b′4 cannot be enabled at

the same time. Thus, b′3 and b′4 are not always in conflict and therefore, not in #−.
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Figure 3.1: Two simple occurrence−nets, O−1 (left) and O−2 (right)

As the above example shows, we have defined two elements to be in conflict iff they

are always in conflict, i.e. no matter how they are enabled, they are in conflict.

A conflict−-free occurrence−net is then defined as follows.

Definition 3.2.3. Given an occurrence−net O− = (E,B,F,M), a set X ⊆ E ∪B is #−-

free or conflict−-free iff @x,x′ ∈ E ∪B. x#−x′.

We have explained that in occurrence−nets, elements can be enabled in more than one

way. We now formalise this in the definition of the history of an element and that of a

set of elements below.

Definition 3.2.4. A history of an element x ∈ E ∪ B is a minimal⊆ #−-free subset

H ⊆ {y ∈ E ∪B | yF+x} satisfying the following.

1. ∀y ∈ (H ∪{x})∩B. •y 6= /0⇒∃y′ ∈ •y. y′ ∈ H

2. ∀y ∈ (H ∪{x})∩E. ∀y′ ∈ •y. y′ ∈ H

3. if T = /0 then •x = /0

The set of histories of x is then referred to by ∗x and [x]H=def H∪{x} denotes a history

of x enabling it.

The first two constraints in the definition above describe that for each condition (b), one

event is selected is its predecessor (•b) and that for each event (e), all its predecessors

(•e) should exist in the history H. Note that since occurrence−nets are safe, then a

condition cannot have more than one predecessor in a history H, as otherwise the

predecessor events cannot occur together and therefore H cannot be #−-free. The last

constraint describes the history of initial conditions.
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Remark 3.2.5. There is a slight yet deliberate inconsistency among the definition of a

history of an element in occurrence−nets and that of an event in (stable) event struc-

tures (definitions 2.3.12, 2.3.16): in occurrence−nets (and hence occurrence nets) an

element is not included in its history whereas in (stable) event structures, and event

is included in its history. This is only to simplify some of the arguments about the

occurrence−nets while maintaining the standard definitions for (stable) event struc-

tures.

Example 3.2.6. Consider O−2 in figure 3.1 and its condition b′4. Then

∗b′4 = {{b′1,e′2},{b′1,e′3}}

Lemma 3.2.7. If x#−x′ then for any history of x, H, and any history of x′, H ′, ∃e ∈
H ∪{x},e′ ∈ H ′∪{x′}. e#−me′.

Proof. Follows from the definition of #−; more concretely, from the fact that for any

two element x and x′, they are in #− iff there are always events e,e′ in their past where

e#−me′.

Lemma 3.2.8. Let O− be an occurrence−net s.t. ∀b ∈ B. |•b| ≤ 1. Then O− is an

occurrence net.

Proof. It is clear that all O− satisfies conditions 1-4 in definition 3.1.1. Thus, we only

need to show that ∀e,e′ ∈ E. e#−e′⇔ e#e′ which follows from lemma 3.2.7

Definition 3.2.9. The set of histories of a set X ⊆ E ∪B is defined as

∗S = {H | H is a minimal⊆ #−-free set s.t.∀x ∈ X . ∃J ∈ ∗x. J ⊆ H}

Example 3.2.10. Consider the occurrence−net O−5 in figure 3.2. For e4,e5 in O−5 we

have:
∗e4 = {{a1,e1,b1},{a1,a2,e2,b1}}

∗e5 = {{a2,e3,b2,b3,e5}}

∗{e4,e5}= {{a1,e1,b1,a2,e3,b2,b3,e5}}

We can now define a set to be consistent if it has a history, implying that all the elements

in the set can occur in some scenario:
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Figure 3.2: O−5

Definition 3.2.11. A set X ⊆ E ∪B is consistent iff ∗X 6= /0.

Furthermore, a concurrent set can then be defined as follows.

Definition 3.2.12. A set X ⊆ E∪B is concurrent, represented by co−X iff X is consis-

tent and ∀x,y ∈ X . ¬(xF+y or yF+x).

A #−-free yet inconsistent set appears in nets with confusion, as defined below.

Definition 3.2.13. An event e ∈ E of an occurrence− net O− is confusing iff ∃e′,e′′ ∈
E. co− {e′,e′′}& ¬co−{e,e′,e′′}.

This is in fact an extension of symmetric confusion in Petri nets defined in [53], in the

sense that it includes non-immediate conflict between events. Confusing events affect

the outcome of the firing transitions, since if a confusing event occurs, it disables (or

reflects the impossibility of) the occurrence of two or more concurrent events.

Example 3.2.14. Consider O−1 in figure 3.1. Then event e2 is confusing as co−{e1,e3},
whereas ¬co−{e1,e2,e3}.

Example 3.2.15. Consider the following occurrence−net (O−4 ). The set {c1,c2,c3}
is conflict−-free, as every pair of its elements can occur together under a certain his-

tory. However, these three elements cannot occur at the same time, hence they are

inconsistent. (Note that all the events e1, . . . ,e5 are confusing.)

In what follows, we require to refer to the elements in the unfolding and compact

unfoldings (to be defined) in an inductive manner. We therefore define the notion of

depth for the elements in occurrence and occurrence−nets.
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Figure 3.3: An occurrence−net with O−4 with conflict-free and inconsistent subset of

elements

Definition 3.2.16. The depth of an element x ∈ E∪B represented by d(x) of an occur-

rence net O = (B,E,F,M0) is defined as follows, where b ∈ B and e ∈ E.

• d(b) = 0 if ∃M ∈M0. b ∈M

• d(b) = max{d(e) | e ∈ E & eFb}

• d(e) = 1+max{d(b) | b ∈ B & bFe}

The occurrence net restricted to the elements of up to depth n is denoted by O(n) with

its events and conditions represented by E(n) and B(n), respectively.

As before, since the elements in occurrence−nets can have multiple histories, they

may also be assigned different depths. We use the definition of depth for occurrence

nets by applying it to a history of an element. Note that given x an element of an

occurrence−net, H ∈ ∗x can be seen as an occurrence net (lemma 3.2.8) and we define

d(H) = max {d(x) | x ∈ H}.

Definition 3.2.17. The set of depths of an element x ∈ E ∪B represented by D(x) of

an occurrence − net O− = (B,E,F,M0) is defined as follows, where b ∈ B and e ∈ E.

• D(b) = {d(Hi) | Hi ∈ ∗b}

• D(e) = {d(Hi)+1 | Hi ∈ ∗e}

The occurrence− net restricted to the elements which have some depth less than or

equal to n is denoted by O−(n) with its events and conditions represented by E(n) and
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B(n), respectively.

Example 3.2.18. Consider O−6 depicted in figure 3.4. Then, D(a) = {0}, D(e1) = {1}
and D(d) = {1,2}.

Figure 3.4: An occurrence−net (O−6 ), with the highest depth of 2

3.2.2 Compact Unfoldings of Safe Petri nets

We now define the new compact unfoldings for safe Petri nets. The idea is similar to

the traditional unfoldings of Petri nets with the difference that, as far as possible, we do

not unfold conflicts . As it follows from the definition of traditional unfoldings of Petri

nets where backward conflicts are not allowed, every condition in the unfolding of a net

has one preceding event and therefore a single causal path of elements or history. Here,

we try to avoid this fast growing expansion by forming the largest possible groups of

conflicting events (which fire to the same corresponding place in the original net),

which then fire to the same condition in the compact unfolding or unfolding−.

Definition 3.2.19. Let G = (B,E,F,M) be a safe Petri net. An unfolding− U−(G) =

(B1 ⊆℘(E1)×B,E1 ⊆℘(B1)×E,F1,M1 ⊆ B1) is a minimal occurrence− net closed

under the following rules, where β− : B1 → B is given by β−((X ,b)) = b, and η− :

E1→ E is given by η−((A,e)) = e.

1. M1 = {( /0,b) | b ∈M}

2. if A⊆ B1,e ∈ E. β−(A) = •e & co− A then (A,e) ∈ E1 and ∀b1 ∈ A. b1F1(A,e)
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3. if b ∈ B,X ⊆max E1.( ∀e1,e′1 ∈ X . e1#−e′1 & ∀e1 ∈ X . η−(e1) ∈ •b) then (X ,b) ∈
B1 and ∀e1 ∈ X .e1F1(X ,b)

Example 3.2.20. As a simple example consider the safe Petri net G1 depicted in figure

3.5. Then G1 has a single unfolding−which is isomorphic to G1.

Figure 3.5: A simple safe Petri net, G1

Example 3.2.21. As another example, consider the safe Petri net G2 along with its

unfolding−and traditional unfolding as depicted in figure 3.6. As the conflicting events

are kept folded, the exponential expansion occurring in the unfolding is avoided in the

unfolding−.

As we shall see in the following example, compact unfoldings are not necessarily

unique, as in some cases there are choices to be made in grouping conflicting events.

The following example is chosen from merged processes of [37], another unfolding

semantics for Petri nets, to illustrate compact unfoldings along with their similarities

and differences to the traditional unfoldings and merged processes for the interested

reader.

Example 3.2.22. Consider G3 and its unfolding U3 as in figure 3.7. Then G3 has two

unfoldings, one of which is depicted in figure 3.8. More concretely, we had a choice

between merging conditions c4 and c7 or c5 and c6 in U3 and U−3 is the result of

choosing the latter.

3.2.3 Properties of Compact Unfoldings

In this section we describe some of the properties of compact unfoldings.

Remark 3.2.23. As mentioned before, safe Petri nets are generally represented by

G = (B,E,F,M) where B is the set of conditions and E is the set of events. However,

in the rest of this thesis we represent the original Petri net by G = (P,T,F,M), referring
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Figure 3.6: A safe Petri net G2, its unfolding−U−2 (left) and its unfolding U (right)

to P as the set of places and T as the set of transitions. This is to simplify distinguishing

the original net from its unfolding or unfolding−.

We start with the concept of mergeability where merging two conditions b,b′ means

replacing b,b′ by a single condition b′′ whose flow relation is the sum of those of b and

b′.

Definition 3.2.24. Conditions b and b′ of an occurrence−net O− with a folding f =

(η,β) to a general Petri net are mergeable iff

1. β(b) = β(b′)

2. ∀e,e′ ∈ •b∪ •b′. e#−e′

3. merging b1 and b2 retains the occurrence−net (i.e. does not create cycles).

Definition 3.2.25. An occurrence−net is compact iff it does not have any mergeable

conditions.
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Figure 3.7: A safe Petri net G3 and its unfolding U3 (right)

Example 3.2.26. Consider the unfolding of the net in example 3.2.22. As explained in

the example, conditions c5 and c6 and conditions c4 and c7 are mergeable, however, in

the unfolding−, c4 and c7 are not mergeable (anymore) as they do not satisfy conditions

2 and 3 of definition 3.2.24.

Proposition 3.2.27. Unfolding−s of Petri nets are compact.

Proof. Follows from condition 3 of the definition of unfolding−s, namely, that for

every condition b = (X , p), X is maximal.

The following theorem establishes a property of compact unfoldings corresponding to

that of traditional unfolding of Petri nets in theorem 3.1.7. Additionally, it captures that

any compact occurrence net with a folding to a Petri net is isomorphic to an unfolding-
−of that net.

Theorem 3.2.28. Consider a general net G = (P,T,F,M), any unfoldings− U−i (G) =

(Bi,Ei,Fi,Mi) and the folding fi = (ηi,βi) : U−i (G)→ G . Then the following holds

co− S & β
−
i . S = •t⇒∃!ei. S = •ei & η

−
i (ei) = t (∗)

where t ∈ T , ei ∈ Ei and S⊆ Bi.

Furthermore, for any occurrence− net O−= (B0,E0,F0,M0) and folding f0 = (η0,β0) :

O−→ G where O− is a compact occurrence− net satisfying the above property, there



Chapter 3. Compact Unfoldings 31

Figure 3.8: An unfolding−of G3, U−3

is an isomorphic unfolding− U−k .

Proof. For convenience we omit the − in this proof.

The first part (property *) follows easily from the definition of the unfolding−. Given

O = (B0,E0,F0,M0) and the folding f0 : O→ G , we define a labelling function l such

that l(O) is an unfolding−.

Let l be defined as follows (note the reuse of the same notation for a set of elements,

i.e. l(S) = {l(a) | a ∈ S}):

• ∀b0 ∈M0. l(b0) = (⊥,β0(b0))

• ∀b0 ∈ B0. l(b0) = (l(•b0),β0(b0))

• ∀e0 ∈ E0. l(e0) = (l(•e0),η0(e0))

Since O is compact, it is easy to verify that l(O) as defined above is an unfolding−.

The following theorem describes the relation between occurrence nets with a mor-

phism to a safe Petri net and unfolding−s of that net.
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Theorem 3.2.29. For any occurrence net O = (B,E,F,M0) with a morphism f : (π,γ)

to a general net G = (P,T,F,M), there is a unique morphism, gi : (θ,α), for each of its

unfolding−s U−i (G) = (Bi,Ei,Fi,Mi), such that the following diagram commutes.

Ui
fi−−→ G

gi ↑ ↗ f

O

Proof. The proof follows a similar reasoning to that of Theorem 7.15 in [30]. We

define gi by defining g(n)i at each depth.

For depth 0 of the elements in O, let θ(0) be the empty function and

α
(0)(b,bi)⇔∃p ∈ P. p = γ(b) & bi = (γ.M0, p)

where b ∈ B(0) and bi ∈ B(0)
i .

For any element in O with depth less than n we define g(n)i (x) = g(n−1)
i (x). Then for

elements of depth n we define:

θ
(n)(e) =

∗, if π(e) = ∗

(A,t) if π(e) = t & α(n−1).•e = A
(3.1)

α
(n)(b,bi)⇔∃p ∈ P. p = γ(b) & bi = (X , p)

where d(e) = n, d(b) = n and n ∈ D(bi).

It can then be shown that gi : (θ,α) defined as gi(x) = g(n)(x) if d(x)≤ n is a morphism

(c.f. theorems 7.15 and 7.11 in [30]). Finally, it is straightforward to verify that gi is

the unique morphism for which the above diagram commutes.

Applying the above theorem to the traditional unfolding of a Petri net yields a stronger

morphism between the traditional unfolding of a net and its unfolding−, as the follow-

ing theorem shows.

Proposition 3.2.30. Consider a safe Petri net G and its unfolding U with the folding

f0 : U → G , and let U− be an unfolding−of G with the folding f1 : U−→ G . Then
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applying theorem 3.2.29 to U (treated as O in the theorem) yields a total and onto

morphism g : U→U−.

Proof. It is clear that g as described above is total, since U has a folding to G and

therefore, g is defined for all the events and conditions in U.

We show that g is onto by induction on the depth of the elements in U and U−. We

focus on θ being onto, from which it follows that α is onto (proposition 2.4.9).

Let U = (B0,E0,F0,M0) and U− = (B1,E1,F1,M1).

Base Case: It is clear from the definition of morphism that there is a bijection between

B(0)
0 and B(0)

1 . Then it follows that E(1)
0 and E(1)

1 are isomorphic as well, since for

U we have co A0 & β0.A0 =• t ⇒ ∃!e0. A0 =• e0. η(e0) = t and for U− we have

co− A1 & β1.A1 =
• t⇒∃!e1. A1 =

• e1. η1(e1) = t. As initial conditions are concurrent

for both occurrence nets and occurrence−nets, each set of initial conditions enabling an

event has a matching set of initial conditions in the other structure, enabling a unique

corresponding event, which is captured in the definition of θ(0).

Induction Hypothesis: g(n) : (θ(n),α(n)) is onto.

To show that θ(n+1) is onto, suppose (A1,e) is an event of U− which has a depth of

n+ 1. Then by definition of unfolding−, co−A1 & β1.A1 = •e. Now by induction

hypothesis, ∃A0. α.A0 = A1 and β0.A0 =
•e. Thus, if we show that co A0, by theorem

3.1.7 it follows that (A0,e) is an event of U and θ(n+1)(A0,e) = (A1,e), and therefore,

θ(n+1) is onto.

To prove that if co−A1 then co A0, where A0 and A1 are as described above, note that

morphisms preserve the flow relation in nets. Therefore, if ∃x0,x′0 ∈ E0 ∪B0. x0F0x′0
and g(x0) = x1,g(x′0) = x′1, then x1F1x′1. Now since co−A1, then @x0,x′0 ∈ A0. x0F+

0 x′0
as otherwise ∃x1,x′1 ∈ A1. x1F+

1 x′1 which contradicts co−A.

Moreover, from co−A1 it follows that A1 is consistent and therefore, must have at least

a history H1 ∈∗ A1. By induction hypothesis, ∃H0 ∈ E0∪B0. g(H0) = H1. Then H0 is

#-free, since otherwise: ∃e0,e′0 ∈ H0.e0#me′0 which implies ∃b0 ∈ H0.b0 ∈ •e0 ∩ •e′0;

and since g(n) is total and morphisms preserve the flow relation, then ∃e1,e′1,b1 ∈
H1. b1 ∈ •e1∩ •e′1. However, this contradicts H1 being #−-free and therefore a history

and therefore, H0 is #-free.

Thus, we have shown that A0 is #-free and that @x0,x′0 ∈ A0. x0F+
0 x′0 and therefore co A.



Chapter 3. Compact Unfoldings 34

Example 3.2.31. Figure 3.9 depicts the morphism from U3 to U−3 .

Figure 3.9: Morphism g : U3→U−3 as in theorem 3.2.29 and proposition 3.2.30

We now define the configurations of an occurrence net and occurrence−net. Roughly

speaking, the configurations of these structures correspond to a possible history of a

set of their elements.

Definition 3.2.32. A prefix w=(Bw,Ew,Fw,Mw) of an unfolding or unfolding−U(−)(G)=

(B,E,F,M0) is a subnet of U(−) for which the followings hold.

1. ∀b ∈ Bw.
•b 6= /0⇒∃e ∈ •b. e ∈ Ew

2. ∀e ∈ Ew. e•∪ •e ∈ Bw

3. ∀b ∈ Bw.
•b 6= /0⇒∃e ∈ Ew. eFb.

Definition 3.2.33. A configuration v of U is defined as any conflict-free prefix w of

U. The configuration v is maximal iff @x ∈ B∪E. x /∈ v & ‘v∪{x} is a configuration’.

Definition 3.2.34. A configuration v− of U− is defined as any consistent prefix w−
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of U−. The configuration v− is maximal iff @x ∈ B− ∪E−. x /∈ v− & ‘v− ∪{x} is a

configuration’.

It is important to note that when considering a history of a set of elements, #−-freeness

coincides with consistency:

Lemma 3.2.35. A prefix v− of an unfolding−U− is #−-free iff it is consistent.

Proof. It is clear that if v− is consistent then it has at least one history and therefore

it is #−-free (lemma 3.2.7). The opposite follows from the definition of consistency.

Suppose v− is #−-free but not consistent. Then ∗v− = /0 and v− 6= /0 (as the empty set

is consistent, i.e. if v− = /0 then ∗v− = { /0}). In other words, the set of histories of

v− cannot be empty unless there is a conflict in the union of histories of the elements

in v−, which is contained in v− by definition of prefix. Therefore, v− is not conflict-

free which is a contradiction. (For more clarity, consider figure 3.3 of example 3.2.15,

where A = {c1,c2,c3} is a #−-free and yet inconsistent set. Any attempt to expand A

into a prefix results in including two events which are in #−).

In the following theorem we draw a bijection among the configurations of an unfolding

and unfolding−of a safe Petri net. This further implies that every configuration (and

hence marking) corresponding to a Petri net is captured by the unfolding−s.

Theorem 3.2.36. The folding g = (θ,α) as in proposition 3.2.30 induces a bijection

between the configurations of U and U−.

Proof. We prove this by first showing that the morphism g defined in proposition

3.2.30 applied to a configuration v of the unfolding U = (B0,E0,F0,M0) yields a

configuration v− of U− = (B1,E1,F1,M1) and that it is injective. Then we define a

morphism from configurations of U− to U, showing it yields a configuration in U.

This is straightforward to verify, as firstly, g is a morphism and preserves F . Therefore,

a prefix in U is mapped to a prefix in U−. Secondly, since v is #-free, @e0,e′0 ∈
v. •e0 ∩ •e′0 6= /0. Therefore, g being a morphism, @e1,e′1 ∈ g(v). •e1 ∩ •e′1 6= /0 which

implies g(v) is #−-free. By lemma 3.2.35 it follows that g(v) is consistent and therefore

g(v) is a configuration of U−. We refer to g(v) by v− in the rest of this proof.

We now show that g applied to configurations of U is injective. Suppose we have

configurations v1 and v2 of U s.t. v1 6= v2 and g(v1) = g(v2) = v− where v− is a config-

uration of U−. Note that since v1 6= v2, then ∃e1 ∈ v1,e2 ∈ v2. e1 6= e2 & θ(e1) = θ(e2),
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which implies for b1 = e•1 and b2 = e•2, b1 6= b2 & α(b1) = α(b2) (by rule 2 of defi-

nition 3.2.32 of prefix and the fact that in U, |•b| ≤ 1). Thus for b1 = ({e1}, p) and

b2 = ({e2}, p) let b = (X , p) = α(b1) = α(b2). Clearly, θ(e1)∈ X and θ(e2)∈ X , how-

ever, all the events in X are pairwise in conflict, thus, θ(e1)#−θ(e2). However, that

contradicts v− being a configuration as such v− cannot be consistent.

Since g applied to configurations of U yields configurations of U− in an injective

manner, consider the inverse of g, denoted by g−1
v− = (θ′,α′), where:

θ
′(e′,e)⇔ θ(e,e′) & α. •e ∈ v−

α
′(b′,b)⇔ α(b,b′) & θ. •b ∈ v−

Note that g−1 is defined for any configuration v− as g applied to an unfolding is total

and onto (proposition 3.2.30). Then it is easy to verify that g−1
v− is a morphism and that

g−1
v− yields a configuration in U, thus, a bijection is constructed.

3.3 Complete Finite Prefix

Apart from defining the semantics of Petri nets, unfoldings of Petri nets are exten-

sively used for model checking of certain properties for Petri nets, such as detection

of deadlocks, etc. For the most common of such approaches, the notion of a complete

finite prefix is crucial, which was first introduced in [51], improved in [22] and further

formalised in [39].

In this section we briefly define the complete finite prefix for unfolding−. Similar to

merged processes, unfolding− sufficiently resemble the usual unfoldings with respect

to verification. Therefore, the most common model checking approaches based on

unfoldings can be adjusted and applied to unfolding−.

We start by recalling some of the relevant definitions which are mostly taken or inspired

from [22, 36].

Definition 3.3.1. Given a finite configuration v of an unfolding or unfolding−, we

define the corresponding marking of v as follows

Mark(v) = (
⋃
e∈v

e•)\ (
⋃
e∈v

•e)
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Definition 3.3.2. For an event e0 of an unfolding U = (B0,E0,F0,M0), let [e0] =def

{x0 ∈ B0 ∪E0 | x0F∗0 e0}. For an event e1 of an unfolding−U− = (B1,E1,F1,M1), let

[e1]t =def t ∪{e1} where t ∈ ∗e1.

Lemma 3.3.3. For an event e0 of an unfolding U, [e0] is a configuration of U and for

an event e1 of an unfolding−U− and t ∈ ∗e1, [e1]t is a configuration of U.

Proof. The lemma follows immediately from the definitions of configurations and his-

tory of events in occurrence−net.

The notions of a partial order relation and cut-off events, fundamental to defining a

complete prefix, are defined below.

Definition 3.3.4. A partial order ≺ on the finite configurations of the unfolding of a

Petri net is an adequate order if is well-founded, refines ⊂ and is preserved by finite

extensions.

Definition 3.3.5. Given a prefix ω of the unfolding U, an event e of the prefix is a

cut-off event with respect to an adequate order ≺ iff ω contains an event e′ such that

Mark([e]) = Mark([e′]) and [e′]≺ [e]. We denote the set of cut-off events by Ecut .

Definition 3.3.6. A prefix ω of U is marking-complete iff for every reachable marking

M of U, there exists a configuration v of ω such that v∩Ecut = /0 and Mark(v) = M.

Definition 3.3.7. A marking-complete prefix ω of U is complete, if it preserves the

firings, i.e. if for each configuration v of ω such that v∩Ecut = /0 and for all events e of

U such that e /∈ v and v′ = v∪{e} is a configuration of U, v′ is a configuration of ω.

The new definition of cut-off events for unfolding−s is as follows.

Definition 3.3.8. Given a prefix ω− of the unfolding U−, an event e of the prefix is a

cut-off event with respect to an adequate order ≺ iff for all t ∈ ∗{e}, ω− contains an

event e′ such that Mark([e]t) = Mark([e′]t ′) and [e′]t ≺ [e]t ′ for some t ′ ∈ ∗{e′}.

Given any algorithm for computing an unfolding−of a safe Petri net with finitely many

reachable markings, which adds events and conditions in a procedural manner, we de-

fine an algorithm for computing a complete finite prefix the unfolding−. Our algorithm

is based on that of [36], given for traditional unfoldings. More concretely, we have ad-

justed the condition for which an event is considered for being added to the prefix

(algorithm 1, line 7). In our algorithm, let P.E. denote possible extensions representing
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the events that can be added in the next stage by the algorithm which computes an

unfolding−.

Algorithm 1 Complete Finite Prefix
1: . Given a Petri net G (with finitely many initial and reachable

markings), computes ω−, the complete finite prefix of U−(G), where P.E. are the

possible extensions

2: ω−←M0

3: P.E←possible extensions of ω−

4: Ecut ← /0

5: while P.E 6= /0 do
6: choose e ∈min≺P.E

7: if ∃t ∈ ∗{e}. [e]t ∩Ecut = /0 then
8: ω−← ω−∪{e}
9: P.E←possible exntensions of ω−

10: if e is a cut-off event of ω− then
11: Ecut ← Ecut ∪{e}
12: end if
13: else
14: P.E← P.E\{e}
15: end if
16: end while
17: ω−← ω−∪Ecut
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The following results capture some properties of complete finite prefix for unfolding−

and prove the correctness of the above algorithm.

Lemma 3.3.9. If an event e′ is a cut-off event in U− of a net, then ∀e∈U. g(e) = e′⇒
e is a cut-off event, where g = (α,θ) : U→U− is the folding morphism as defined in

theorem 3.2.29.

Proof. Follows immediately from the definition of cut-off events for unfolding− and

the fact that the morphism g preserves the structure, and as such the history of the

events of unfolding are mapped.

Proposition 3.3.10. The algorithm in [36] (§2.7.1) terminates for the new cut-off def-

inition (definition 3.3.8).

Proof. As there is a bijection among the configuration of an unfolding and unfolding−

of a net, for any event ei of an unfolding of a net, there is an event e in its unfolding−

and a history t ∈ ∗{e} such that [ei] and [e]t are mapped together. Then the event e is

a cut-off point of U− as long as all such ei of the U are cut-offs. Now suppose there

is such an ei which is not a cut-off in the U. Either [ei] can enable some event e′i such

that ei ≤ e′i and e′i is a cut-off or it never yields a cut-off event which means the path

following it will eventually stop at ed (because there are finitely many markings, so

either some markings should be repeated or it should stop after finitely many steps).

In the former case, e′i will be mapped to an event e′ enabled by e and the algorithm

stops in this path as e′ is now a cut-off (recall that the extensions of a cut-off event

are cut-offs). In the latter case, ed is mapped to some event e′d . If e′d does not enable

any event, then the algorithm stops in this path, correctly showing e′d as a non-cut-off

event. If e′d does enable other events, they can be mapped to from other events of ei

and as such they are cut-offs so the algorithm stops.

Proposition 3.3.11. Given ω the complete prefix of an unfolding U, g(ω) is a subnet

of ω−, where ω− is a complete finite prefix of the unfolding− U− corresponding to U
and g = (θ,α) is the folding morphism from U→U− as defined in theorem 3.2.29.

Proof. Suppose e ∈ ω, then either e is a cut-off event or not. If it is not a cut-off

event then g(e) cannot be a cut-off either, and therefore, is added to the prefix by the

algorithm. If e is a cut-off event, then either g(e) is also a cut-off or not. In the former
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case g(e) is added to the prefix by the last line of the algorithm and in the latter case it

is added as usual.

Proposition 3.3.12. The prefix constructed by the algorithm 1 is complete.

Proof. Let ω− denote the prefix. Then from proposition 3.3.11 it follows that ω− is

marking-complete. To show that it is also complete, let v be a configuration of ω−

such that v∩Ecut = /0. Now suppose ∃e ∈ U−. e /∈ v & v∪{e} is a configuration of

U−. Then e is a possible extension of v which is either a cut-off event or not. If it is,

then it is added to ω− by the last line of the algorithm and if not, it is added to ω− as a

non-cut-off event in the possible extensions of v. Therefore, ω− preserves firings.

3.4 An Algorithm for Computing Compact Unfoldings

The definition 3.2.19 of compact unfoldings implies a non-deterministic approach for

finding unfolding−s of a safe Petri net. In this section we present a deterministic

algorithm for computing a compact unfolding of a safe Petri net. The algorithm we

provide starts with the initial markings of the net and gradually adds conditions and

events related to the existing ones by the flow relation.

Unfolding into occurrence−nets, we are allowing backwards conflict and as per the

definition of compact unfoldings, our main goal is to maximise grouping of events

in conflict which can fire to a condition. In order to achieve this, before creating a

condition corresponding to a place in the original net, we make sure that all the events

corresponding to the transitions firing to that place are created first. In other words, we

wait for all such events to be created.

Of course it may happen that a certain transition is never enabled in a net or there may

be deadlocks, when there is a cyclic dependency between the waiting conditions; that

is when two conditions are waiting for events which can only be created after those

conditions are added.

Therefore, in our algorithm, we first add conditions which are ready, i.e. conditions

for which all the possible preceding events are present. As it may be the case that

there are infinitely many ready conditions to be added, we need to stop adding such

conditions (and the in between events) at some point, e.g. at the cut-off points, to

check and resolve the waiting conditions. Therefore, we assume that the original Petri
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net has finitely many reachable markings. Now if the waiting conditions are waiting

for an event and the preceding conditions for that event are not waiting to be enabled,

then that event is impossible, therefore, we will not wait for it any longer. Otherwise,

once all such conditions are removed from the waiting list, there must be a cyclic

dependency between the remaining conditions, in which case we can define a function

(deterministic or otherwise) to choose one of them.

The following pseudo algorithm gives the high level view of the algorithm. Later in

this section we also present an example in order to further clarify the algorithm.

Pseudo - Algorithm

Algorithm 2 Pseudo - Unfold−(G)

Calculate initial conditions and events of depth 1

Add conditions and events as follows:

repeat
Pnext = /0 . Next round of conditions

repeat
Pready = Enabled conditions not waiting for any other transitions

Add conditions corresponding to Pready

Add Enext = non-cutoff events newly enabled

until Enext = /0

Pwait = Pnext . stating that Pnext only has waiting conditions now

W = waiting conditions tagged with transitions they await

Presolved = Resolve(W ) . Resolve which waiting places should be added

Add conditions corresponding to Presolved

Enext = events newly enabled

Optional: Remove cut-off events from Enext

Add Enext

until Enext = /0



Chapter 3. Compact Unfoldings 42

The complete algorithm for computing an unfolding−of a safe Petri (with finitely many

reachable markings) is given below.

Algorithm 3 Unfold−(G)

1: W = /0 . Waiting list

2: M0 = B = {( /0, p) | p ∈M} . Conditions of the unfolding−

3: E = Enext = Next Events(B,B)

4: for (A, t) ∈ E, let η−(A, t) = t and for (X , p) ∈ B, let β−(X , p) = p

5: repeat
6: Pnext = /0

7: repeat
8: Pnext = Pnext ∪{p ∈ P | η−(e) ∈ •p where e ∈ Enext} . Enabled places

9: . Places ready to be added (places not waiting for any other transition)

10: Pready = {p ∈ Pnext | ∀t ∈ •p. ∃e ∈ E. η−(e) = t & @b ∈ B. eFb & β−(b) =

p}
11: Pnext = Pnext \Pready

12: B = B∪Next Conditions(Pready,E,B)

13: Enext = Next Events(B,Bn)\Cut-offs(E,B,Enext)

14: E = E ∪Enext

15: until Enext = /0

16: Pwait = Pnext . emphasising that Pnext only has waiting places now

17: . Tag waiting places with transitions they await

18: W = W ∪ {(p,T ) | p ∈ Pwait & T = {t ∈ •p | @e ∈ E. (η−(e) = t & @b ∈
B. eFb & β−(b) = p)}}

19: Presolved = Resolve(W ) . Resolve which waiting places should be added

20: B = B∪Next Conditions(Presolved,E,B)

21: Enext = Next Events(B,Bn)

22: E = E ∪Enext

23: until Enext = /0

24: eF(X , p)⇔ e ∈ X

25: bF(A, t)⇔ b ∈ A

Algorithm 4 Next Events(B,Bn)

. Find new events (corresponding to new places in Bn)

return {(A, t) | A⊆ B & A∩Bn 6= /0 & t ∈ T & co− A & β−.A = •t}
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Algorithm 5 Next Conditions(P,E,B)

list = /0

for all p ∈ P do
Ep = {e ∈ E | η−(e) ∈ •p & @b ∈ B.(β(b) = p & eFb )}
Bp = (Ep, p)

list = list∪{Bp}
end for
return list

Algorithm 6 Resolve(W )

list = /0

for all w = (p,T ) ∈W do
. Check if w depends on something in waiting list

if ¬Depends(w,W) then
list = list∪{p} . If not, it is ready to be added

W =W \{w}
end if

end for
if list = /0 & W 6= /0 then

. There is a cyclic dependency between places

list = {w} where w is any waiting place in W (which can be determinised by any

deterministic function of choice)

end if
return list

Algorithm 7 Depends(w,W )

Dw = /0

. where w = (p,T )

for t ∈ T do
if ∃(p′,T ′) ∈W. p′Ft(i.e. there is an acylic path from p′ to t) then

return true

end if
end for
return false
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The following proposition proves the correctness of the algorithm.

Proposition 3.4.1. Given a safe Petri net G , algorithm 3 computes an unfolding−of G .

Proof. Let N be the net obtained by the algorithm. First observe that f = (η−,β−)

forms a folding N → G , which can be easily verified. It then follows that in sub-

algorithm 5, ∀e,e′ ∈ Ep. e#−e′, as otherwise Bp = (Ep, p) can have a marking bigger

than one, which is not possible since G is safe and markings are preserved by mor-

phisms (theorem 2.4.8). Thus, it is clear that N is an occurrence−net. By theorem

3.2.28, all we need to show is that N is compact.

Now consider two conditions b,b′ in N where b = (X , p) & b′ = (X ′, p). Note that

if they can be merged then ∀e,e′ ∈ X ∪X ′. e#−e′. However, if ∃e′ ∈ X ′.∀e ∈ X .e#−e′

then based on the algorithm, e′ should have been included in X , unless there was a

cyclic dependency between b and b′. Now suppose condition b is chosen to be added

first. Since condition b′ was dependent on b and morphisms preserve the flow relation,

then once condition b′ is added, we have bF∗b′. Therefore, merging b and b′ does

not preserve the occurrence−net as it would introduce a cycle. Moreover, since bF∗b′,

then it is no longer the case that ∀e,e′ ∈ X ∪X ′. e#−e′.

Example 3.4.2. In this example, we describe how the algorithm 3 can be applied to

G3 to construct U−3 (example 3.2.22).

At line 5 of the algorithm we have:

W = /0

M0 = B = {( /0, p1) = c1,( /0, p2) = c2,( /0, p3) = c3}
E = {({c1}, t1) = e1,({c2}, t2) = e2}

In the first round in inner loop (lines 8 to 14) we have:

Pnext = {p4, p5},Pready = {}
B = B∪{},Enext = {},E = E ∪{}

After the first run of lines 16 to 18 we have:

Pwait = {p4, p5}W = {(p4,{t4}) = w1,(p5,{t3}) = w2}

Running Resolve(W ), we see that w1 depends on w2 and w2 depends on w1. Assuming
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w1 is chosen, we get: Presolved = {w1}. Going through lines 19 to 22 we have:

B = B∪ ({e1}, p4)

Enext = {({c1,c4}, t3) = e3},E = E ∪Enext

The rest of the conditions and places are added by running through the inner loop.

3.4.1 Complete Finite Prefix of Algorithm 3

As mentioned previously, algorithm 1 can be adjusted to fit any algorithm which cal-

culates unfolding−s of a net by adding events and conditions in a procedural manner.

Here we describe how algorithm 1 can be used in conjunction with algorithm 3.

Observing that in algorithm 3 new events are added in two locations, namely, lines 14

and 22, the conjuncted algorithm for computing a complete finite prefix is as follows.
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Algorithm 8 Complete Finite Prefix for algorithm 3
W = /0 . Waiting list

M0 = B = {( /0, p) | p ∈M} . Initial Marking and Conditions of the unfolding−

E = Enext = Next Events( /0,B,B)

Ecut = /0

repeat
Pnext = /0

repeat
Pnext = . . .
...

Enext = Next Events(B,Bn)

while Enext 6= /0 do
select e ∈min≺Enext

if @h ∈ ∗e.[e]h∩Ecut = /0 then
Enext = Enext \{e}

else
if e is a cut-off event of (B,E,F,M0) then

Ecut = Ecut ∪{e}
end if

end if
end while
E = E ∪Enext

until Enext = /0

Pwait = . . .
...

Enext = Next Events(B,Bn)

while Enext 6= /0 do
select e ∈min≺Enext

if @h ∈ ∗e.[e]h∩Ecut = /0 then
Enext = Enext \{e}

else
if e is a cut-off event of (B,E,F,M0) then

Ecut = Ecut ∪{e}
end if

end if
end while
E = E ∪Enext

until Enext = /0
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3.5 Petri nets to (Stable) Event Structures

Given an occurrence net O = (B0,E0,F0,M0), one can derive its corresponding event

structure E0(O) = (E0,F∗0 � E0,#). For an occurrence− net O− = (B1,E1,F1,M1) de-

riving the corresponding stable event structure E1 = (E1,`,Con) is similar.

The consistency relation corresponds well to that defined for occurrence− nets, thus,

we define:

∀X ⊆ E1. X ∈Con ⇔de f X is consistent.

Then the enabling relation ` can be defined as follows for each event e in E1.

X `min e⇔de f X = T ∩E0 s.t. T ∈ ∗{e}

X ` e⇔ X ∪{e} ∈Con & ∃X ′ ⊆ X . X ′ `min e

It is straightforward to verify that the event structure defined above is indeed a stable

event structure.

Example 3.5.1. The corresponding stable event structure of unfolding− U−3 = (E,`
,Con) of G3 in example 3.2.22 is as below.

E = {e1,e2,e3,e4,e5}
Con = {X ⊆ E | e2 ∈ X ⇒ e1 /∈ X & e3 /∈ X}
{} `min e1,{} `min e2

{e1} `min e3

{e1,e3} `min e4,{e2} `min e4

{e2,e4} `min e5

3.6 Other approaches

As mentioned before, there are different approaches for defining the semantics of a net

and for forming a suitable structure for its model checking. Most of such approaches

emerge from the notion of unfolding and some of the well-known ones are Trellis Pro-

cesses [23], Merged Processes [37, 40] and Ri Unfoldings [58].
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The key point to observe is that the root of the complexity of the problem of unfolding

or unravelling a net remains the same. In other words, in any approach the behaviour

of the net in terms of the relation between configurations (or markings) has to be de-

coded from the original net. Therefore, in any approach the core issues to be addressed

are the same, arising from the nature of the problem. Nevertheless, each approach can

achieve different objectives while addressing these core issues.

As mentioned before, Trellis processes and Ri unfoldings are both defined for safe

nets. Merged processes can handle unsafeness, by allowing unsafeness in their final

outcome. In this thesis, unfolding−s are defined for safe Petri nets, however, our ap-

proach can be extended to handle unsafeness as well.

Among all these approaches, the merged processes are elegantly defined as the most

compact one. However, this is at the cost of the configurations being more complex to

define and deal with. They are also not necessarily acyclic and which makes verifica-

tion approaches based on marking equations less straightforward. Merged processes

were initially defined through merging the traditional unfoldings. Later an algorithm

for building the merged processes of safe Petri nets was introduced [40], although there

are still no algorithms for directly building the merged processes of the unsafe nets.

Trellis processes focus on having the factorisation property. They unfold time but not

conflicts. Due to using a height function, Trellis processes are perhaps more flexible

than the other approaches. Though, this requires complementing every net to a multi-

clock net and the outcome may be different from the original Trellis net and contain

non-executable cycles.

In [58] unfoldings are introduced that forget the history step by step. The Ri-unfolding

is more forgetful than the unfoldings, and less forgetful than unfolding−s. They are

also defined for safe nets only.

To sum up, in comparison to the above approaches, unfolding−s are defined for safe

Petri nets, although they can be extended to deal with unsafeness directly. Moreover,

they unfold cycles while keeping the conflicts as folded as possible. Finally, their

complete finite prefixes can be used for verification purposes.
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3.7 Conclusion

Traditional unfoldings of Petri nets, while being widely known and used as semantics

of Petri nets, have the disadvantage of growing exponentially with the choices of a net

as they create an event for every single possible occurrence of a transition in the origi-

nal net. This also implies that little can be inferred immediately about the markings of

the original net, without further computations.

In this chapter we presented compact unfoldings of safe Petri nets. Similar to the tradi-

tional unfoldings, they capture all the reachable markings of a general Petri nets, with

the difference that they do not create a new event for every single occurrence of a tran-

sition, but rather group the conflicting events together. In other words, conflicts remain

folded as far as possible. This reduces the size of the new unfoldings significantly

compared to their corresponding traditional unfolding.

In addition to describing the behaviour of nets, traditional unfoldings of Petri nets are

used extensively for verification of reachability-like problems. The majority of the

existing algorithms use a finite prefix of the unfoldings, namely, the complete finite

prefix of a Petri net. The notion of a complete finite prefix, also presented in this

chapter, can be directly defined for the compact unfoldings and is presented, making

them suitable candidates for a large body of existing model checking algorithms. We

have also presented a deterministic algorithms for constructing compact unfoldings

and their complete finite prefix in a more direct manner.
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Probabilistic Event Structures

As with the non-probabilistic systems, the two approaches of interleaving and partial-

order can be taken when considering probabilistic concurrent systems. While proba-

bilistic systems with the interleaving approach have been studied intensively (examples

include [73, 18, 11, 27] among many more), applying the true concurrency approach

has gained interest over the last decade or so. Similar to the non-probabilistic case

where the true concurrency semantics does not distinguish between the behaviours

which are equivalent up to reordering of concurrent events, in the probabilistic frame-

work such behaviours should be assigned the same probability.

Taking event structures as simple yet capable models of true concurrency, the most

prominent works in this area include randomised non-sequential processes of Volzer

[74] and probabilistic event structures of [34, 72, 1, 77]. This thesis focuses on prob-

abilistic event structures as defined in [1] and in this chapter we introduce and justify

this choice.

To our best knowledge, the first probabilistic model for event structures in the litera-

ture was given in [34], where the author defines probabilistic extended bundle event

structures. Similar to stable event structures, bundle event structures allow different

possible causes for an event, only one of which can be the cause in a run. The concept

of choice is captured by groups of events which are mutually in conflict and enabled at

the same time, called clusters. Clusters can be determined statically and maintain the

concept of choice internal to the system.

In [72] a domain theoretic view, closely related to the probabilistic powerdomains of

[32, 68], was taken by Varacca, Volzer and Winskel [72], where continuous valuations

50
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are defined on the domain of congurations. The notion of non-leaking valuations are

defined and constructed on confusion-free event structures and valuations with inde-

pendence are described. It turns out that for confusion-free event structures, the so

called non-leaking valuations with independence coincide with distributed probabili-

ties as defined by [1].

Randomised Petri nets along with their corresponding probabilistic branching pro-

cesses defined in [74] focus on free-choice Petri nets only, namely, Petri nets in which

the choice between two transitions is not influenced by the behavior of the rest of the

system. Therefore, confusion is not dealt with. Finally, the most recent probabilistic

event structures defined by Winskel [77] extend existing notions of probabilistic event

structures in order to make them suitable for dealing with certain interactions between

strategies.

Since we are more interested in probabilistic event structures arising from Petri nets

with probabilistic behaviours (rather than being concerned with strategies), and all

other such approaches do not address the notion of confusion, in this thesis we work

with probabilistic event structures proposed by [1].

As mentioned above, the main objective of a probabilistic concurrent system with par-

tial order semantics consists of finding units of choice in such a way that concurrent

units are probabilistically independent. Abbes and Benveniste in [1] define distributed

probabilities taking branching cells as units of choice and show that in probabilis-

tic event structures not only does concurrency match probabilistic independence, but

also that this cannot be achieved at a grain finer than that of branching cells. Further-

more, they show how finite configurations can be decomposed into branching cells in a

dynamic way, where maximal configurations of the branching cells enforce all the con-

flicts within the cell to be resolved. Local probabilities are assigned to each branching

cell and it is shown that this can be extended to a limiting probability measure on the

space of maximal configurations. The only constraint required is that of local finiteness

which can be viewed as bounded confusion and which is defined later in this chapter.

In this chapter, we first define net-driven stable event structures, by describing charac-

teristics of the stable event structures arising from safe Petri nets (i.e. event structures

corresponding to the compact unfoldings, defined previously in chapter 3). We then

present the definition of probabilistic event structures and the related concepts as de-

fined by [1]. In order to define probabilistic stable event structures in a similar manner,
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we need to confine the stable event structures, and consequently the original Petri net.

Thus, we define a certain class of event structures, namely, jump-free (stable) event

structures and show that probabilistic jump-free stable event structures can be defined

analogously to probabilistic event structures.

4.1 Net-driven (Stable or Prime) Event Structures

In the previous chapter we introduced compact unfoldings of safe Petri nets and saw

how they could be translated into stable event structures. In this section we define

certain characteristics of the stable event structures derived from compact unfoldings.

We start by defining the notion of morphism between stable event structures.

Definition 4.1.1. [76] Let E0 = (E0,Con0,`0) and E1 = (E1,Con1,`1) be two stable

event structures. A morphism from E0 to E1 is a partial function θ : E0→ E1 on events

satisfying:

1. X ∈Con0⇒ θ.X ∈Con1

2. {e,e′} ∈Con0 & θ(e) = θ(e′)⇒ e = e′

3. X `0 e & θ(e) is defined ⇒ θ.X `1 θ(e)

A morphism is synchronous if it is a total function.

Lemma 4.1.2. Let E1 = (E,Con,≤) be a prime event structure. There is a evident

natural and obvious map I mapping E1 to a stable event structure E0 = (E,Con,`),
where X `min e⇔ X = dee \ {e}. While we do not need it, I extends to a functor:

a morphism of prime event structures is a partial function on events which satisfies

certain conditions, and these conditions also make it a morphism of (stable) event

structures [75]. (Note: [75] uses ‘event structures’ for what he now and we here call

‘stable event structures’, with a different but equivalent notation.)

Remark 4.1.3. In this chapter we identify a prime event structure E1 with I(E1), when

required.

Recall the translation from stable event structures into prime event structures in defi-

nition 2.3.20: Given a stable event structure E0 = (E,Con,`), let Θ(E0) be the prime

event structure E1 = (P,ConP,≤), with isomorphic domain of configurations, defined

as follows.
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- P = {deex | e ∈ x ∈ V (E)}.

- p′ ≤ p⇔ p′ ⊆ p.

- X ∈ConP⇔ X ⊆fin P & X ↑ .

Then Θ extends to a functor: a morphism E→E ′ given by θ : E→E ′ maps to the mor-

phism given by {deex | e ∈ x ∈ V (E)} 7→ {dθ(e)ex′ | θ(e) ∈ x′ ∈ V (E ′)}. Moreover,

Θ is right adjoint to the inclusion function I defined above [75] (theorem 4.3).

For a stable event structure E0 we refer to Θ(E0) as its associated prime event structure.

Let SES be the category of stable event structures.

Proposition 4.1.4. Let E0 =(E,Con,`) be a stable event structure and E1 =(P,ConP,≤
) = Θ(E0) be its associated prime event structure, which can also be viewed as a sta-

ble event structure via the inclusion I. Let θE0 : E1 → E0 be the (SES) morphism

given by θE0(p) = e for p = deex ∈ P, e ∈ E & x ∈V (E0). Then θE0 is a synchronous

morphism in SES. Indeed, though we do not use this, θ : E0 7→ θE0 is a natural trans-

formation from IΘ to IdSES, and is the counit of the adjunction between I and Θ from

[75] mentioned above.

Proof. The proof follows trivially from the definition of morphism and translation of

stable event structures into prime event structures.

In the definition of stable event structures, the consistency predicate Con is required

to satisfy only one condition. Namely, Y ⊆ X & X ∈Con⇒ Y ∈Con. This does not

necessarily have to fit with the configurations of the stable event structures. Consider

the following example.

Example 4.1.5. Let E =(E,Con,`) be a stable event structure, where E = {e1,e2,e3,e4},
{e1} ` e2,{e3} ` e4, {e1,e3} /∈ Con and {e2,e4} ∈ Con. It is easy to see that even

though e2 and e4 are consistent, they can never appear together in a configuration.

Therefore, the consistency predicate is not sensible with respect to the configurations.

We therefore define sensible event structures as follows.

Definition 4.1.6. Let E be a stable or prime event structure with the consistency rela-

tion Con. We say E is sensible iff ∀X ∈Con⇔∃v ∈ V (E). X ⊆ v.

Lemma 4.1.7. Prime event structures are sensible.
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Proof. Follows trivially by the definition of prime event structures, in particular prop-

erty 4 in definition 2.3.15.

The following lemma further describes the relation between a stable event structure

and its associated prime event structure.

Lemma 4.1.8. Let E0 be a sensible stable event structure and let E1 = Θ(E) be its

associated prime event structure. Then we have the following.

e≤x e′⇔ deex ⊆ de′ex

X ∈Con⇔∀v ∈ V (E0) s.t. X ⊆ v. {deev | e ∈ X} ∈ConP

Proof. Follows trivially from the relevant definitions.

So far we have described how the consistency predicate in sensible event structures

relates to the configurations of that structure. We now define the notions of conflict

and immediate conflict, and show later that they are the source of inconsistency in

stable event structures driven from compact unfoldings.

Definition 4.1.9. Two events e and e′ of a stable event structure are in conflict under a

finite configuration v, represented by e#ve′ iff {e}∪{e′}∪ v /∈Con. Then two events

are in conflict, represented by e#e′, iff ∀v ∈ V . e#ve′.

Note that this is in line with the definition of conflict for unfolding−s. The notion of

immediate conflicts in the context of a configuration v is then defined as follows.

Definition 4.1.10. Immediate conflict between two events e and e′ of a stable event

structure under the configuration v is defined as follows.

e#µ,ve′⇔de f v ` e & v ` e′ & #v∩ (deev×de′ev) = {(e,e′)}.

We define e#µe′ iff ∀v,v′ ∈ V . v ` e & v′ ` e′⇒∃v′′ ⊆ v∪ v′. e#µ,v′′e′.

Definition 4.1.11. In the following few results, for a set X ⊆fin E, let ∗X be the set

of the sets consisting of exactly one history deev for each event e and configuration v

depending on e.

In the following definition we specify a special class of stable event structures, namely,

net-driven stable event structures. They are called net-driven stable event structures,
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because we will show later that they describe the stable event structures arising from

safe Petri nets.

Definition 4.1.12. A stable event structure E = (E,Con,`) is called net-driven iff it

satisfies the following.

1. E is sensible.

2. ∀X ⊆ f in E. X /∈Con⇒∀T ∈ ∗X . ∃e1,e2 ∈
⋃

T. e1#µe2

3. ∀e,e′ ∈ E,v ∈ V . e#µ,ve′⇒ e#e′

Note that from 2 and 3 it follows that for net-driven stable event structures, ∀X ⊆
E. X /∈Con⇒∀T ∈ ∗X . ∃e1,e2 ∈

⋃
T. e1#e2

As mentioned before, the first characteristic describes that the consistency predicate is

in line with configurations and the second one implies that the source of inconsistency

is a conflict in the past . The last constraint describes that an immediate conflict derived

from a net persists (this is because the source of the conflict of two events in the net is

a common preceding condition).

The notion of conflict for prime event structures is defined as follows.

Definition 4.1.13. Let E1 = (E,Con,≤) be a prime event structure. Define the conflict

relation # between two events by

e#e′⇔{e,e′} /∈Con

In the following theorem we show that for the associated prime event structures of

a net-driven stable event structure, the consistency predicate corresponds to a binary

conflict relation as defined above.

Theorem 4.1.14. Let E0 = (E,Con,`) be a net-driven stable event structure and let

E1 = Θ(E0) = (P,ConP,`) be its associated prime event structure. Then,we have:

X ∈ConP⇔ X ⊆fin P & ∀p, p′ ∈ X .¬(p#p′)

Proof. (⇒) follows from the definition of consistency relation. More precisely, if

∃p, p′ ∈ X . p#p′ then it follows that p and p′ are not consistent (by definition of #)

and therefore, they are not compatible as configurations of E0. Thus, X /∈ConP which

is a contradiction.
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(⇐) follows from the definition of net-driven stable event structures. More specifically,

suppose by contradiction that there is a finite set of events X s.t. ∀p, p′ ∈ X . ¬(p#p′)

and X /∈ConP. Let X = {pi | pi = deievi & vi ∈ V (E0)}. Since X /∈ConP this implies

that pi as configurations of E0 are not compatible, in other words, if we let X̄ =∪deievi ,

then X̄ /∈Con. Now since E0 is net-driven, then for any T ∈ ∗X̄ . ∃e1,e2 ∈
⋃

T. e1#e2.

For such e1,e2, suppose p1, p2 ∈ X . p1 = deev1 & e1 ∈ p1 & p2 = de′ev2 & e2 ∈ p2.

Then p1 and p2 are not compatible are configurations of E0, therefore {p1, p2} /∈ConP,

which contradicts ∀p, p′ ∈X .¬(p#p′). Therefore, X must be consistent, i.e. X ∈ConP.

Lemma 4.1.15. Let E1 = (E,Con,≤) be a prime event structure such that there exists

a binary relation # such that e#e′ ⇔ {e,e′} /∈ Con. Then E1 can also be seen as an

event structure (E,≤,#). This embedding extends to a functor I′ (leaving morphisms

f : E → E ′ unchanged) from the subcategory of prime event structures generated by

binary conflict relation to the category of event structures.

Remark 4.1.16. In this chapter we identify prime event structures whose consistency

predicate corresponds to a binary conflict relation with their natural embedding I′ into

event structures, when required.

From the above theorem it follows that a net-driven stable event structure can be asso-

ciated to an event structure.

Definition 4.1.17. Given a net-driven stable event structure E0, we denote by Θ′(E0)=

(E,≤,#) the event structure E2 = I′(Θ(E0)), and we refer to E2 as the associated event

structure of E0.

In the following lemma we show that the #−m relation in occurrence−nets corresponds

to the #µ relation for stable event structures.

Lemma 4.1.18. Let U− = (E,B,F,M0) be an unfolding−of a safe Petri net and E =

(E,Con,`) the corresponding stable event structure as defined in section 3.5. If e0#−me1,

then for E we have:

∀T ∈ ∗{e0,e1}. ∃e′0,e′1 ∈
⋃

T. e′0#µe′1

Proof. First observe that if e0#−me1 as events of U−, then e0#e1 as events of E . That is

because e0 and e1 have a common preceding condition which causes a conflict under

any configuration. Clearly, if e0#µe1 then the condition in lemma is satisfied. Now
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if ¬(e0#µe1), since we know that e0#e1, that is ∀v ∈ V (E). e0#ve1, then from the

definition of #µ it follows that ∃v0,v1. v0 ` e0 & v1 ` e1 & @v⊆ v0∪ v1. e0#µ,ve1. Now

since ∀v ∈ V (E). e0#ve1, then it must be that @v ⊆ v0∪ v1.v ` e0 & v ` e1 or if such

v exists, then #v ∩ (deev× de′ev) 6= {(e,e′)}. In either of the cases, it follows that

∃e′0 ∈ de0ev0,e
′
1 ∈ de1ev1. e′0#e′1.

Now either e′0#µe′1 or the exact reasoning applies to deduce that ∃e′′0 ∈ de′0ev0 ,e
′′
1 ∈

de′1ev1 . e′′0#e′′1 . As the events of E have finite histories, then we must reach a point

where e(n)0 #µe(n)1 , thus, the condition in the lemma is satisfied.

Finally, we show that the stable event structures driven from compact unfoldings are

net-driven.

Proposition 4.1.19. Let U− = (E,B,F,M0) be an unfolding−of a safe Petri net and

E = (E,Con,`) the corresponding stable event structure as defined in section 3.5.

Then E is net-driven.

Proof. (1) Follows from the translation in section 3.5. More concretely, X ∈Con⇔ X

(as a set of events in U−) is consistent, which is true iff X has a history h. It is now very

easy to verify that h∪X is a configuration in U− and that (h∪X)∩E is a configuration

in E .

(2) Suppose X ⊆ E and X /∈ Con. Then from the definition of Con (section 3.5) it

follows that X (as a set of events in U−) is not consistent. In other words, X has no

history and therefore, any set consisting of a history for each element in X , is not #−-

free, i.e. for any such set X̄ , ∃e,e′ ∈ X̄ . e#−e′. Then by lemma 3.2.7 in any history

of e, H, and any history of e′, H ′, ∃e0 ∈ H ∪{e},e1 ∈ H ′∪{e′}. e0#−me1. Finally, by

applying lemma 4.1.18 the proposition is proved.

(3) Follows from the fact that conflicts are first introduced in nets when two events

share a common preceding condition. More concretely, observe that if e#µ,ve′, then

∃b ∈ •e∩ •e′, as events in U−. Thus, e#me′, which implies ∀v ∈ V (E).e#ve′ as events

of E , therefore, e#e′ .
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4.2 Probabilistic Event Structures

In this section we define probabilistic event structures as introduced by [1]. We start

by presenting the definitions for the relevant concepts.

Remark 4.2.1. A substantial majority of the definitions in this section are taken from

[1].

Definition 4.2.2. A subset P⊆ E is called a prefix of an event structure E = (E,≤,#),
if P = dPe.

Definition 4.2.3. Let E = (E,≤,#) be an event structure and let F be a subset of E.

Then (F,≤� F,# � (F×F)) is an event structure (which is a sub-event structure of E).

Remark 4.2.4. In this chapter, we use F to also refer to the sub-event structure induced

by F as above, when no confusion arises.

Configurations can then be viewed as conflict-free prefixes, representing the set of

events which can occur in a specific run of an event structure and in that way they can

capture the global state of the system. As before, the set of configurations of an event

structure E is represented by V (E) or V if no confusion arises.

Definition 4.2.5. A configuration v is maximal iff ∀v′. v⊆ v′⇒ v = v′. We denote the

maximal configurations of event structure E by Ω(E) or Ω if no confusion arises.

Definition 4.2.6. The future of a configuration v of event structure E is defined as

Ev =def (Ev,≤v,#v) where,

• Ev = {e ∈ E | dee is compatible with v and e /∈ v}

• ≤v=≤ ∩ Ev×Ev

• #v = #∩Ev×Ev

Definition 4.2.7. Given configurations u ∈ V and v ∈ V u, the concatenation of u and

v is defined as u⊕ v =def u∪ v.

Definition 4.2.8. We define the subtraction of two configurations u,v ∈ V s.t. v ⊆ u

as u	 v =def u\ v

In a probabilistic event structure, the probability reflects the notion of choice which

arises whenever a conflict is encountered for the first time. Thus, we consider the
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‘first-hand’ conflicts, i.e. conflicts which are not inherited, as constituents of units of

choice. The notion of immediate conflict for event structures is formally defined as

follows.

Definition 4.2.9. Events e and e′ are in immediate conflict iff

e#µe′⇔def #∩ (dee×de′e) = {(e,e′)}.

As we shall see later in this chapter, in probabilistic event structures the configurations

are decomposed into units of choices, which are probabilistically independent. To

define these units of choice, called branching cells, we need to define a few other

concepts, including stopping prefixes, stopped configurations and recursively stopped

configurations.

Definition 4.2.10. A prefix B is called a stopping prefix if it is #µ-closed.

Proposition 4.2.11. Given a set X ⊆ E of an event structure, there is a minimal stop-

ping prefix containing X and denoted by X∗.

Proof. We define X∗ as the closure of X under the following conditions.

1. e ∈ X∗ & e′ ∈ E & e#µe′⇒ e′ ∈ X∗

2. e ∈ X∗⇒ dee ⊆ X∗

Definition 4.2.12. A configuration v of E is called B-stopped if v is a maximal con-

figuration of B; a configuration v of E is called stopped if v is a maximal configuration

of v∗.

The main idea behind stopping prefixes is that they keep conflicts and thus choices

internal. Stopped configurations then refer to the maximal configurations of such pre-

fixes, representing the maximal possible set of events contained in a stopping prefix.

Unfortunately, it can be shown that the class of stopped configurations is not closed

under concatenation (see example 4.2.14). This is undesirable since we want to de-

compose a configuration into probabilistically independent units. Therefore, a more

relaxed notion of stopped configurations is introduced, namely, the recursively stopped

configurations or R-stopped configurations.
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Definition 4.2.13. A configuration v of event structure E is R-stopped if there is a

sequence of configurations v0, . . . ,vn−1 ⊆ vn, . . ., for 0≤ n < N ≤ ∞ such that:

• v0 = /0 and v =
⋃

0≤n<N vn , and

• ∀n≥0, n+1 < N⇒ vn+1	 vn is finite and stopped in Evn.

The sequence is called a valid decomposition of v and if N < ∞ then v is said to be

finite R-stopped. Finally, we refer to the set of R-stopped configurations of an event

structure E by W (E).

R-stopped configurations are in a sense weaker than the stopped configurations. They

can be decomposed into steps which are finite and stopped, i.e. steps which keep the

choices internal while being finite. It can be shown that R-stopped configurations are

closed under concatenation. Moreover, it is obvious that finite stopped configurations

are R-stopped.

Example 4.2.14. The event structure in figure 4.1 (taken from [1]) clarifies the dif-

ference between stopped and R-stopped configurations. Consider configuration v =

{e1,e3}. Then v is not stopped (or e5 should be added) but it is R-stopped as e3 is finite

stopped in E{e1}.

Figure 4.1: An event structure, E1

Example 4.2.15. In the event structure in figure 4.2, configuration v = {e1,e3} is not

R-stopped as E{e1} includes e2,e3 and e4, thus e2 needs to be added to v in order to

make it R-stopped .

Therefore, R-stopped configurations serve as good candidates for our purpose. What

remains is to find a canonical way of decomposing a configuration. Thus, we define

branching cells and coverings through branching cells. We first define a few more

concepts including that of local finiteness.



Chapter 4. Probabilistic Event Structures 61

Figure 4.2: An event structure, E2

Definition 4.2.16. An event structure E is pre-regular, if for every finite configuration

v of E , the set of initial events in future of v, i.e. {e ∈ E | v⊕{e} is a configuration},
is finite.

More informally, in pre-regular event structures, for every configuration the next causal

step is finite. In other words, at every point, there are finitely many events which are

enabled by their causal predecessors. Pre-regular event structures are tightly connected

to unfoldings of Petri nets.

Definition 4.2.17. An event structure E is locally finite if for every event e ∈ E, there

is a finite stopping prefix of E containing e.

Locally finite event structures are also connected to unfoldings of Petri nets, although

unlike pre-regular event structures, the unfolding of a safe finite Petri net is not neces-

sarily locally finite. However, if an event structure is pre-regular and confusion-free,

then it is locally finite [1]. Therefore, the unfoldings of confusion-free Petri nets are

locally finite. An important property implied by local finiteness is that maximal con-

figurations of a locally finite event structure are R-stopped (theorem 3.12 in [1]). This

is desirable as we shall see when we have defined branching cells.

Remark 4.2.18. From this point onwards we assume that all event structures are lo-

cally finite, unless specified otherwise.

Definition 4.2.19. An initial stopping prefix is a non-empty stopping prefix for which

the only other initial stopping prefix included strictly in it is /0.

Note that initial stopping prefixes may also contain events which are not minimal and

also it is not necessarily the case that every minimal event is in an initial stopping

prefix.

Remark 4.2.20. For a set of configurations X , we denote the subset of its finite con-
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figurations by X .

Definition 4.2.21. A branching cell of an event structure E and configuration v (rang-

ing over finite R-stopped configurations W (E)) is an initial stopping prefix of Ev. The

set of all branching cells of E is denoted by C (E) and the set of maximal configura-

tions of a branching cell c is denoted by Ωc.

Definition 4.2.22. The branching cells which are initial stopping prefixes of Ev for

v ∈ W (E) are called the branching cells enabled by v and their set is denoted by

δE(v) of δ(v) if no confusion arises.

Example 4.2.23. The event structure depicted in figure 4.3 has initial stopping prefixes

c1 and c2, which do not consists of initial events only, nor do they cover all initial

events.

Figure 4.3: An event structure, E3, and its initial stopping prefixes

The relation between branching cells and R-stopped configurations is closer than ap-

pears from the definition. They go hand in hand, describing each other, as can be seen

below.

Lemma 4.2.24. [1] Let v ∈W (E) be an R-stopped configuration of some event struc-

ture E . Then there is a valid decomposition (vn) for 0≤ n < N ≤ ∞ and a sequence of

branching cells (cn) for 0 < n < N ≤ ∞ such that for 0≤ n < N−1:

• cn+1 is a branching cell enabled by vn, and

• vn+1	 vn is maximal in cn+1.

Moreover, the cn are pairwise disjoint. If (v′n) for 0 ≤ n < N′ and (c′n) for 0 < n < N′

is another pair of such sequences, then we have the following equality of sets (where
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in particular N = N′).

{cn | 0 < n < N}= {c′n | 0 < n < N′}

The above lemma enables us to define the covering of R-stopped configurations as

follows.

Definition 4.2.25. Let (vn) for 0 ≤ n < N and (cn) for 0 < n < N be two sequences

of an R-stopped v of an event structure E as described in lemma 4.2.24. Then the

covering of v is defined as ∆E(v) = {cn | 0 < n < N}.

It is important to note that while branching cells decomposing a configuration are dis-

joint, in general, different branching cells of an event structure may overlap. This is

because not all of the events that can potentially constitute a branching cell are enabled

at every configuration. Thus, configurations determine their corresponding branching

cells and in this way we say that decomposition through branching cells is dynamic.

4.2.1 Distributed Probabilities and Probabilistic Event Structures

We are now prepared to define probabilistic event structures. However, the full frame-

work of [1] requires several pages of technical definitions and theorems using sophis-

ticated probability theory. As we are taking the framework as read, and extending it,

we will here give only the definitions we need to use explicitly. For the rest of the

framework, we sketch the development, and refer the reader to [1] for the details.

Given a space Ω, a probability measure on Ω is a function from a suitable collection

(technically a σ-algebra) of subsets of Ω to the unit interval [0,1], satisfying the appro-

priate behaviour for probabilities (the measure of a union of disjoint sets is the sum of

the measures).

Now consider an event structure, and let Ω be the space of its maximal configurations

(which may be finite or infinite, perhaps uncountably infinite). There is a σ-algebra

on Ω comprising the sets {ω ∈ Ω : ω ⊇ v} for each configuration v – that is, each set

is a full subtree of the configuration tree rooted at v. Call this set S(v) (the shadow

of v). The intuition will be that the probability of v should be equal to the sum of

the probabilities of all the maximal configurations ω reachable from v – except that
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not all such configurations are probabilistically independent, so the usual probability

calculations for non-independent events have to be made.

Definition 4.2.26. A probabilistic event structure is a pair (E ,P), where P is a prob-

ability measure on the space of maximal configurations of E with the σ-algebra of

shadows.

The likelihood function on configurations of E is the function p(v) = P(S(v)).

Equipping each branching cell with a probability for its maximal configurations, we

can construct a specific class of probabilistic event structures, where the corresponding

probabilities are called distributed, in the following manner.

Now a theorem of probability known as Prokhorov’s extension theorem is used to allow

the abstract definition of probabilistic event structures to be related to a more opera-

tional definition where choice probabilities are attached to the possible next events: the

probabilities are given locally, instead of in terms of the shadow in the (infinite) future.

The branching cells of the event structure provide the connection between causal inde-

pendence and probabilistic independence.

Definition 4.2.27. A locally finite event structure E is locally randomised if each

branching cell c ∈ C is equipped with a local transition probability qc on the set ΩC of

configurations that can be chosen within the cell.

It can be shown that such a locally randomised event structure generates a probabilistic

event structure in the previous sense.

Definition 4.2.28. For a locally randomised event structure (E ,(qc)c∈C ), the likeli-

hood function p : W → [0,1] is defined as:

∀v ∈W , p(v) = ∏
c∈∆(v)

qc(v∩ c)

where ∆(v) denotes the covering of v in E .

p is indeed the likelihood function of the generated abstract probabilistic event struc-

ture.

This likelihood function in turn induces a probability measure PB on the (countable)

space B of stopping prefixes of E ; and the full probability measure P can be derived

from PB via a construction called the distributed product and the Prokhorov exten-
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sion theorem. Hence the measure P is called the distributed product of the branching

probabilities {qc : c ∈C}.

Finally, it can be shown that the above definition of likelihood function can also be

applied to the space of R-stopped configurations of E .

Thus [1] obtains a definition of probabilistic event structures in which local choice

probabilities are attached either to branching cells or to R-stopped configurations.

4.3 Probabilistic Jump-free Stable Event Structures

In this section we consider adjoining probabilities to stable event structures. We start

by presenting the definition of concepts analogous to those of probabilistic event struc-

tures. Our aim is to derive an isomorphism between the events of branching cells of

net-driven stable event structures and their associated event structure. It turns out that

such isomorphism exists if the stable event structures are jump-free, as we shall define

later in this section.

Remark 4.3.1. We assume that the stable event structures in this section are net-driven

unless stated otherwise.

4.3.1 Branching Cells on Stable Event Structures

We now define branching cells for stable event structures, in a similar manner and

show that in general, unlike the branching cells of event structures, they do not form

the units of choice.

Definition 4.3.2. A subset P ⊆ E is called a prefix of a stable event structure E− iff

∀e ∈ P. ∃X ⊆ P. X ` e.

Definition 4.3.3. Let E−= (E,Con,`) be a stable event structure and let F be a subset

of E. Then (F,Con �℘(F),`� (℘(F)×F)) is a stable event structure (which is a sub-

event structure of E).

Remark 4.3.4. In this chapter, we use F to also refer to the sub-event structure induced

by F as above, when no confusion arises.
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Configurations can then be viewed as consistent prefixes and the set of configurations

of an event structure E− is represented by V −(E−) or V − if no confusion arises.

Concepts of compatibility of configuration and maximal configurations are defined

as for event structures and we represent the set of maximal configurations of event

structure E− by Ω−(E−).

Definition 4.3.5. The future of a configuration v of event structure E− is defined as

E−v = (Ev,Conv,`v) where,

• Ev = {e ∈ E | {e}∪ v ∈Con and e /∈ v}

• Conv =Con � Ev

• `v= `� Ev

Recalling definitions of #µ,v (definition 4.1.10), the stopping prefix− for stable event

structures is defined as below.

Definition 4.3.6. A prefix B− is called a stopping prefix− if it is #µ,v-closed in the

following sense:

∀v⊆ B−. e ∈ v & ∃e′ ∈ E. e#µ,ve′⇒ e′ ∈ B

The notions of B−-stopped and stopped configurations for stable event structures are

similar to those of event structures. However, unlike event structures, given X a subset

of events, a canonical stopping prefix including X cannot be derived. This is because

in the definition of prefix for stable event structures an event can have different sets of

events enabling it. Thus, these notions are defined as follows.

Definition 4.3.7. A configuration v of E− is called B−-stopped if v is a maximal con-

figuration of B−; a configuration v of E− is called stopped if there is a stopping prefix

B− such that v is B−-stopped.

Stopping prefix−s of a net-driven stable event structures have a close relation with the

stopping prefixes of their associated event structure. To expand this further, we first

observe the relation between #µ,v of a stable event structure and #µ of its corresponding

event structure.

Lemma 4.3.8. Consider E− and E = Θ′(E−). Then we have e#µ,ve′⇔ deev#µde′ev

Proof. Follows trivially from the definitions of #µ,v, #µ and Θ′.
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Using the above lemma we can describe the relation between stopping prefix− and

stopping prefixes as follows.

Proposition 4.3.9. Consider E− and E = Θ′(E−). Then we have: B− is a stopping

prefix− of E− iff Θ′(B−) is a stopping prefix of E .

Proof. It is easy to verify that B− is a prefix− iff B=Θ′(B−) is a prefix as well (follows

from the definition of Θ′ and θ being a morphism). Also, from lemma 4.3.8 it follows

that B− is #µ,v-closed (for v⊆ B−) iff B is #µ-closed.

Definition 4.3.10. A configuration v of event structure E− is R-stopped if there is a

non-decreasing sequence of configurations (vn) for 0≤ n < N ≤ ∞ such that:

• v0 = /0 and v =
⋃

0≤n<N vn , and

• ∀n≥0, n+1 < N⇒ vn+1	 vn is finite stopped in E−vn.

The sequence is called a valid decomposition of v and if N < ∞ then v is said to be

finite R-stopped. Finally, we refer to the set of R-stopped configurations of an event

structure E− by W (E−).

Definition 4.3.11. A stable event structure E is pre-regular, if for every finite config-

uration v of E , the set {e ∈ E | v⊕{e}} is finite.

Definition 4.3.12. A stable event structure E is locally finite if for every event e ∈ E,

there is a finite stopping prefix of E containing e.

Definition 4.3.13. As before, an initial stopping prefix is a non-empty stopping prefix

which the only other initial stopping prefix it includes strictly is /0.

Definition 4.3.14. A branching cell of a stable event structure E− and configurations

v ranging over W (E−) is an initial stopping prefix of Ev. The set of all branching

cells of E− is denoted by C (E−) and the maximal configurations of a branching cell

c is denoted by Ω−c .

Definition 4.3.15. The branching cells which are initial stopping prefixes of E−v for

v ∈W (E−), are called the branching cells enabled by v and their set is denoted by

δ
−
E−(v) or δ−(v) if no confusion arises.
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4.3.2 Probabilistic Event Structures and Stable Event Structures

Probabilistic event structures as defined by [1] and presented in the previous sections

are powerful structures, coping beautifully with the notion of conflicts by viewing them

as probabilistically independent units of choices. Therefore, in this section we study

if similar structures can be defined for (net-driven) stable event structures. More con-

cretely, as branching cells are at the core of probabilistic event structures, it would be

interesting if the branching cells of net-driven stable event structures and their asso-

ciated event structures were isomorphic. However, that is not always the case as the

following example shows.

Example 4.3.16. Consider the stable event structure E− in figure 4.4 and its associated

event structure E in figure 4.5, where the dashed curved lines represent immediate

conflicts. More concretely, for E , let e1#µe2,e2#µe3,e3#µe4,e4#µe5,e5#µe7. The dotted

curved line shows immediate conflict under a particular configuration; in this case

e6#µ,{e1}e7. For E ′ we have e1#µe2, . . .e4#µe5,e5#µe7,e7#µe6.

Figure 4.4: A (net-driven) stable event structre E−

As it can be seen from the figures, E has two branching cells (c1 and c2), while θ(E)

has only one. To expand this, suppose we want to construct the branching cells of

E ′. Consider the configuration v1 = {e2,e4, ...}. Having event e2 implies that events

e1,e3,e4,e5,e7 and e6 must be added to the branching cell to comply to #µ-closure.

Thus, e′6 is not in this branching cell, but in the next branching cell, consisting of e′6
only. However, in the stable event structure, both e6 and e′6 of E ′ are represented by

event e6 of E .Therefore, it is not possible to cover E in any manner that is consistent

with the covering for E ′.
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Figure 4.5: The corresponding event structure E = Θ′(E−).

Remark 4.3.17. Note that although in this example c2 does not reflect any choice be-

ing made, more complex examples exist where all branching cells have a choice to

make. Therefore, it is not possible to resolve this at the probabilistic level, e.g. by

trying to combine a number of branching cells with respect to their probabilities.

Analysing this example (and concept) further, it can be seen that this problem arises

due to an event e of the stable event structure representing two events of its mapping

event structure (e.g. e1 and e2) which belong to different branching cells of the event

structures (e.g. e1 ∈ c1 and e2 /∈ c1). That is when we will encounter a problem when

mapping the branching cells of one structure to another. Note that for all such events,

e1#e2 & ¬e1#µe2. Therefore, they cannot be the initial events of a configuration, as the

conflict in their past must be resolved before any of them occurs. Therefore, the reason

they are grouped in the same branching cell is that at least one of them is connected to

the source of conflict in their past via a chain of events in immediate conflict.

Thus, to achieve isomorphic branching cells and avoid the above situation, we consider

the stable event structures (and their associated event structures) which do not allow

for these cases, namely, those structures which are jump-free.

Definition 4.3.18. An event structure is jump-free iff ∀e,e′. e < e′⇒ @e1, . . . ,ek. k >

1 & e#µe1,ei#µei+1 & ek#µe′, for 1≤ i≤ k.

Similarly, a jump-free stable event structure is defined as below.

Definition 4.3.19. A stable event structure is jump-free iff ∀e,e′. e<v e′⇒@e1, . . . ,ek. k>
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1 & e#µ,v0e1,ei#µ,viei+1,ek#µ,vke′, for 1≤ i≤ k−1 & vi ⊆ v.

Example 4.3.20. The stable event structure in figure 4.5 is not jump-free as either of

the chains of events e3,e4,e5,e7 and e1, . . . ,e7 break jump-freeness.

Jump-free event structures are simpler to deal with, as, unlike event structures, they are

flat in the following sense.

Proposition 4.3.21. The branching cells of jump-free event structures (as initial stop-

ping prefixes) consist of initial events only.

Proof. Suppose c has non-initial events and let e ∈ c be such event s.t. ∃e0 ∈ c. e0 <

e & @e1 ∈ c. e < e1. Then there exists an initial event e′ s.t. @e0 ∈ c. e0 < e′ & e′ < e.

Noting that c is an initial stopping prefix and therefore, @c′. c′⊂ c, then in the formation

of {e′}∗, e can only be added to achieve the closure of #µ. Therefore, there must be a

chain of events e1, . . . ,ek s.t. e′#µe1,ei#µei+1 & ek#µe. Observe that k > 1 as otherwise

¬(e#µe1). Therefore, above chain forms a jump which is a contradiction and as such c

only consists of non-initial events.

The same holds for stable event structures as expressed in the following proposition.

Proposition 4.3.22. The branching cells of jump-free stable event structures (as initial

stopping prefixes) consist of initial events only.

Proof. The proof follows a similar reasoning to that of event structures, noting that for

all the initial events in Ev, #µ is resolved meaning ∀v′ ∈ V (Ev). e#µ,v′e′⇒ e#µe′.

Lemma 4.3.23. Let E− be a net-driven stable event structure and let E = Θ′(E−) be

its associated event structure. Then we have

e#µ,ve′⇔ deev#µde′ev.

Proof. Follows trivially from lemma 4.1.8 and definitions of #µ,v and #µ.

Lemma 4.3.24. Let E be a jump-free net-driven stable event structure. Then Θ′(E) is

jump-free.

Proof. Follows trivially from lemmas 4.1.8 and 4.3.23.
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We now show that the branching cells covering the configurations of a stable event

structure are isomorphic to those of the corresponding configurations of its associated

event structure. We start by proving the following lemma.

Lemma 4.3.25. Let E− be a net-driven stable event structure and let E = Θ′(E−) be

its associated event structure. Then, for p 6= p′ if θ(p) = θ(p′)⇒ p#p′ & ¬(p#µ p′).

Proof. Suppose θ(p) = θ(p′) = e, then p = deev, p′ = deev′ . Let v0 be the subset of

v s.t. v0 `min e and similarly, let v1 be the subset of v′ s.t. v1 `min e′. By the stability

axiom it follows that v0 ∪ v1 /∈ Con. It is then obvious that p#p′. Since E− is net-

driven, it follows that ∃e0 ∈ v0,e1 ∈ v1. e0#e1, and therefore, de0ev#de1ev′ and since

de0ev < deev and de0ev′ < deev′ it follows that ¬(p#µ p′).

Recalling that the configurations of a stable event structure and its associated event

structure are isomorphic, we show in the following theorem that the branching cells

of a jump-free net-driven stable event structure and its mapping event structure are

isomorphic.

Theorem 4.3.26. Given a jump-free net-driven stable event structure E− and its map-

ping event structure E = Θ′(E−), C , the set of branching cells of E , is isomorphic to

C−, the set of branching cells of E−.

Proof. We use the morphism θ as in proposition 4.1.4 to prove this theorem. First

consider configuration v of E and v′ = θ(v) of E−. Since configurations of E and E−

are isomorphic, it is clear that ∃e ∈ E \ v. v∪{e} ∈ V (E)⇔∃e′ ∈ E− \ v′. v′∪{e′} ∈
V (E−). In other words, every initial event in future of v has an associated initial event

in future of v′ and vice versa. Let Ev
0 and E−v′

0 represent the initial events of each

structure, respectively. Then we show that θ yields a bijection between Ev
0 and E−v′

0 .

Suppose e,e′ ∈ Ev
0 and θ(e) = θ(e′) = e′′. By lemma 4.3.25 it follows that e#e′ and

¬e#µe′, i.e. there is a conflict in their past. But this is a contradiction as they are both

initial events in future of a configuration which is conflict-free. As shown above, every

initial event in future of v′ has an associated event in future of v, therefore, θ (applied

to initial events Ev) is onto (for initial events of E−v. It then follows that θ yields a

bijection between the events of Ev
0 and E−v′

0 , making them isomorphic.

Furthermore, as we are dealing with the initial events that can occur in future of v′

i.e. immediately after v′, the immediate conflict relation among the events of E−v′
0
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is resolved, in the sense that it does not depend on any configuration in E−v′
0 , and

therefore, is obviously compatible with the immediate conflict relation of Ev
0 . Thus,

the branching cells of Ev
0 and E−v′

0 are isomorphic, which implies the branching cells

of E and those of E− are isomorphic.

Recalling that the configurations of a net-driven stable event structure and its associated

event structure are isomorphic, the most important result of theorem 4.3.26 is that the

covering of any configuration in a stable event structure is exactly the same as that

of its corresponding configuration in its associated event structure. That is because

the configurations in the future of two isomorphic configurations are also isomorphic

and therefore, two isomorphic configurations have isomorphic coverings. Therefore,

all the probabilistic properties of branching cells of event structures are applicable to

those of stable event structures, and as such, all the probabilistic machinery described

in section 4.2.1 for event structures can be applied to net-driven jump-free stable event

structures. Thus, for example, the likelihood function for a stable event structure E−,

p− : W −→ R is defined as:

∀v ∈W −, p−(v) = ∏
c∈∆−(v)

qc(v∩ c)

4.4 Conclusion

In this chapter we have introduced a new class of stable event structure called net-

driven stable event structures, which describe major properties of stable event struc-

tures driven from general Petri nets. We have then presented the definition of prob-

abilistic event structures as defined by [1]. Required concepts of stopping prefix,

stopped configurations, R-stopped configurations, locally finiteness, branching cells

and local transition probabilities have been defined, which help in assigning probabil-

ities to finite R-stopped configurations. Since for local finite event structures maximal

configurations are also R-stopped [1], then branching cells decompose maximal con-

figurations in an elegant, recursive and dynamic manner. They can be considered as

units of choice constituting a configuration, which resolve choices and confusions in-

ternally. The most important result is that branching cells are the finest grain units

for which choices are resolved independently from each other, therefore, “concurrency

matches probabilistic independence” [1].
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Our aim was to prove that the solid results of [1] can also be applied to stable event

structures. We therefore studied if configurations of stable event structures can be de-

composed in the same manner, and proved that although this is not the case in general,

by avoiding certain structures, this can be achieved. More concretely, we defined the

new concept of jump-free event structures and stable event structures for which the

branching cells consist of events which are not causally related. We then proved that

for such stable event structures and their associated event structures, the branching cells

are isomorphic. Thus, probabilistic jump-free stable event structures were defined in a

similar manner to probabilistic event structures of [1].



Chapter 5

Probabilistic Event Structure Logic

Temporal logics and their verification over concurrent and reactive systems have been

studied intensely over the last decades. The most well-known logics implementing

the interleaving approach include LTL [60], CTL[13], CTL*[13], Lµ[43] (which are

usually defined on labeled transition systems )and POTL[59], ISTL[35] and TLC[5] as

partial order logics. Logics which implement the true concurrency approach are fairly

recent, and there is space for their further exploration. Main examples of these logics

include SFL[25] (inspired by [31]) and TCL[8].

The same division can be found for probabilistic logics over concurrent systems. Major

work has been achieved on studying and defining probabilistic logics with the inter-

leaving approach. Probabilities were foremost adjoined to linear temporal logics, with

the interpretation that a property is (almost) surely satisfied (i.e. with probability 1).

Such logics were defined both on finite Markov chains [46, 61, 29, 4, 62] and extended

Markov models which can capture both notions of nondeterminism and probabilistic

choice [73, 17, 62].

Later, the logics PCTL and PCTL∗ [28, 6] were developed over discrete Markov chains

which could directly express quantitative properties of such systems. Further studies

introduced interpretations of PCTL and PCTL∗ on Markov models incorporating non-

deterministic and probabilistic behaviour [11, 12, 44, 7, 45]. The interpretations of

these logics over such systems requires a notion of strategy or policy and furthermore,

due to existence of nondeterminism, only maximal/minimal probabilities can be de-

fined on each scenario.

As mentioned before, to our best knowledge, there are no probabilistic logics with the

74
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true concurrency semantics. Therefore, in order to define such a logic on probabilis-

tic event structures, new relations need to be defined between configurations. These

relations should be able to capture different types of interactions between groups of

events such as R-stopped configurations. For example, when dealing with R-stopped

configurations, one cannot immediately apply the non-probabilistic logics such as SFL

or POTL to, for example, describe an action (event) that can causally follow a config-

uration. Consider the following example.

Example 5.0.1. Consider E1 depicted in figure 5.1. Then existence of event e1 implies

occurrence of e3 in an R-stopped configuration v = {e1,e3}. Now let us consider a

configuration which is caused by v. As an example, event e4 can causally follow v,

however, its occurrence in a configuration implies existence of e6. Therefore, v can

progress to v′ = {e1,e3,e4,e6} and the events in v and v′ are related both causally and

concurrently.

Figure 5.1: Event structure E1

Thus, the relation between configurations need not be purely causal or concurrent and

as such it encompasses causality and concurrency by implying a new notion of pro-

gression.

In this chapter we introduce the logic PESL which is defined on probabilistic event

structures in a number of layers, describing properties related to events, configuration

and the interactions between R-stopped configurations. In this framework, PESL can

describe properties related to scenarios, such as ‘it is unlikely that a configuration

(scenario) can lead to an undesirable one’. We start by the definition of its syntax

and semantics, followed by a description of its expressivity and conclude by a model

checking algorithm for finite systems.

Remark 5.0.2. Note that although logics such as ISTL can differentiate concurrency

from non-determinism, they achieve this through grouping of possible interleavings
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into different sets. Therefore, it can be argued that they do not truly have the true

concurrency semantics.

5.1 Definitions and Concepts

We define the logic PESL on R-stopped configurations of probabilistic event structures

as defined in the previous chapter. The logic is structured over a number of layers,

describing configurations in terms of their constituting events and the relation between

R-stopped configurations. We start by introducing definitions of different relations

between R-stopped configurations.

Definition 5.1.1. A configuration v enables an event e denoted by v` e iff e /∈ v & dee−
{e} ⊆ v and v∪{e} is conflict-free.

Definition 5.1.2. We denote immediate causality of events by e→ e′ iff e< e′& @e′′. e<

e′′ & e′′ < e.

The following definition defines a notion related to causality between R-stopped con-

figurations. Compatibility of two configurations is defined as below.

Definition 5.1.3. Two configurations v and v′ are compatible if v∪v′ is a configuration.

The union of compatible configurations is then represented by v~ v′ =def v∪ v′ and

we also use v~ v′ to denote that v and v′ are compatible.

Recalling definition 4.2.7 of concatenation of configurations (v⊕ v′), we define a pro-

gression step of a configuration as follows.

Definition 5.1.4. For configurations v and v′ we write v→ v′ iff v′ = v⊕ (~vi) where

vi are maximal configurations of branching cells ci ∈ δ(v) s.t. ∃e ∈ v,e′ ∈ ci. e→ e′.

Note that if v→ v′ then v′ is clearly R-stopped as the cis added to the covering for v

form a covering for v′.

Example 5.1.5. Consider the event structure E2 as in figure 5.2 and its configuration

v = {e1,e3,e8}. Then v can lead to v′ ( i.e. v→ v′) where v′ = v∪{e4,e6,e9}. Note

that c1 is not enabled unless e13 is added to v.

The following definition relates configurations which are completely concurrent.
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Figure 5.2: Event structure E2

Definition 5.1.6. For configurations v and v′ we write v ‖ v′ iff ∀e ∈ v,e′ ∈ v′. e co e′.

In the following definition, we define synchronisation of two R-stopped configurations.

Definition 5.1.7. For configurations v,v′ and v′′ we write (v,v′) & v′′ iff v′′ is a minimal

R-stopped configuration such that v~v′~E& ⊆ v′′ where E& ⊆ {e′′ ∈ E \(v∪v′) | ∃e∈
v,e′ ∈ v′. e 6= e′ & e→ e′′ & e′→ e′′ & v~ v′ ` e′′} and is non-empty.

Example 5.1.8. Consider the event structure E3 as in figure 5.3. Configuration v =

{e1,e2} can synchronise with v′ = {e3,e4} into v′′ = {e5,e8}, i.e. (v,v′) & v′′.

Figure 5.3: Event structure E3

In order to define the probabilistic operator for PESL, we first define the notion of

conditional probability for two configurations.

Definition 5.1.9. Given a probabilistic event structure (E ,P), the probability of a con-

figuration v occurring given configuration v′ has occurred is defined in the usual way,

as follows.
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P(v | v′) =def

{
0 if v∪ v′ is not a configuration
P(v~v′)
P(v) otherwise

Note that P(v~ v′) represents the probability of the event that v and v′ occur, in other

words, the intersection of the events that v occurs and v′ occurs as well.

Next, we define the conditional probability of any configuration from a set of R-

stopped configurations V occurring, given that an R-stopped configuration v has oc-

curred. Since the branching cells of R-stopped configurations decompose a configu-

ration into probabilistically independent units, the probability of any configuration of

a set of configurations occurring corresponds to the probability of the union of those

configurations.

Definition 5.1.10. Given a probabilistic event structure (E ,P) and a finite set V =

{v1, . . . ,vn} of R-stopped configurations of E , the conditional probability of any of the

configurations in V occurring, if v has occurred is defined as:

P(V | v) =def

n

∑
i=1
P(vi|v)−∑

i 6= j
P(vi∪ v j|v)+ . . .+(−1)n+1P(v1∪ . . .∪ vn|v)

5.2 Syntax and Semantics

We can now define the syntax and semantics for PESL, by describing each level of

logic. The event-level formulae are represented by η formulae, while the configuration-

level formulae are represented by α formulae. Probabilistic formulae over R-stopped

configurations are then defined by logical formulae φ which in turn incorporate ψ for-

mulae describing the relation between R-stopped configurations through the operators

defined previously.

5.2.1 Event-Level formula

Given a set of events E, the basic properties of an event e∈E are described by formulae

in the form η according to the following syntax:

η := tt | a | ¬η | η∧η
′ | / η | ≤ η | ≥ η
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where a is an atomic proposition, / is the concurrency operator and ≤,≥ are the

causality operators.

The formulae over events are interpreted in the context of a set of events (X ⊆ E).

The semantics for η formulae are given below, where Q : E →℘(AP) is a validator

function for the set of atomic propositions AP.

5.2.1. ∀e ∈ E. e �X tt

5.2.2. e �X a iff a ∈ Q (e)

5.2.3. e �X ¬η iff e 2X η

5.2.4. e �X η∧η′ iff e �X η and e �X η′

5.2.5. e �X /η iff ∃e′ ∈ X . e′ �X η & e co e′

In other words, an event e satisfies a formula / η if η is satisfied concurrently by

another event.

5.2.6. e �X ≤η iff ∃e′ ∈ X . e′ �X η & e≤ e′

In other words, an event e satisfies a formula ≤ η if η is satisfied by an event in the

potential causal future of e.

5.2.7. e �X ≥η iff ∃e′ ∈ X . e′ �X η & e≥ e′

In other words, an event e satisfies a formula ≤ η if η is satisfied by an event in the

causal past of e.

5.2.2 Configuration-Level Formulae

Let E be an event structure. The properties of configurations of E are described by α

formulae according to the following syntax.

α := ¬α | α∧α
′ | ?η | ?η | ?η

The semantics for the configuration-level formulae are interpreted under the context of

a set of events (X ⊆ E), as follows.

5.2.8. v �X ¬α iff v 2X α

5.2.9. v �X α∧α′ iff v �X α and v �X α′
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5.2.10. v �X ?η iff ∃e ∈ v. e �v η

5.2.11. v �X ?η iff ∃e ∈ v\X . e �v η

5.2.12. v �X ?η iff ∃e ∈ X . e �v η

5.2.3 PESL

Let (E ,P) be a probabilistic event structure. A PESL formula capturing properties of

R-stopped configurations of E is defined as:

φ := α | ¬φ | φ1∧φ2 | P∼λψ

where P is the probabilistic operator, ∼ is one of the comparators <,>,≤,≥,=, λ

is a real number and ψ describes a set of R-stopped configurations according to the

following syntax.

ψ :=→ φ | φ1Uφ2 | ‖ φ | φ1 & φ2

The → operator corresponds to the next configuration as in definition 5.1.4, the U

operator is the until operator on a path of →-related configurations, the ‖ describes

concurrent configurations as in definition 5.1.6 and finally the & operator captures

synchronisation of configurations as in definition 5.1.7.

We are now ready to present the semantics of PESL over R-stopped configurations

which assure maximal progression with respect to executable immediate conflict. In

other words, for R-stopped configurations the (probabilistically) dependent choices are

resolved. The semantics for PESL formulae are as follows.

5.2.13. v �X α as defined above (§5.2.2).

5.2.14. v �X ¬φ iff v 2X φ

5.2.15. v �X φ1∧φ2 iff v �X φ1 and v �X φ2

5.2.16. v �X P∼λψ iff P(Vψ,v | v)∼ λ

where P(Vψ,v | v) refers to the probability of occurrence of any of the configurations in

Vψ,v as in definition 5.1.10 and Vψ,v is defined in the following.
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Remark 5.2.17. If the context X is not explicitly mentioned, then we are referring to

the empty set. In other words, let v � φ iff v �{} φ.

Given a formula ψ and an R-stopped configuration v, we define the Vψ,v, the set of

R-stopped configurations captured by ψ as follows.

5.2.18. V→φ,v =def {vi | vi �v φ & v→ vi}

5.2.19. VφUφ′,v =def {vn | there is a path π : v→ v1→∗ vn s.t. vn �vn−1 φ′ &

for every other configuration vi in the path vi �vi−1 φ, where 0≤ i < n and v0 = v}

5.2.20. V‖φ,v =def {vi | vi �v φ & v ‖ vi}

5.2.21. Vφ&φ′,v =def {vi | ∃v′. v′ is a R-stopped and minimal⊆ configuration s.t.

(v,v′) & vi & v′ �v φ & vi �(v~v′) φ′}

5.3 Expressivity

PESL is in many ways incomparable to any of the other existing logics in the related

areas. On the one hand, as mentioned before, PESL is the first probabilistic logic with

truly concurrent semantics defined for a model of true concurrency in the literature. On

the other hand, because it is defined over R-stopped configurations, a notion of pro-

gression step is introduced which does not have a parallel in other logics (probabilistic

or non-probabilistic). Therefore, in this section we attempt to describe a relatively full

picture of its expressivity, comparing it to other logics such as pCTL and SFL for com-

parable properties.

Generally, the major advantage of probabilistic logics is that they achieve a more real-

istic and detailed expressivity over the behaviour of systems. As an example, a system

which may fail with a very small probability will be labelled by a non-probabilistic

logic as a failing system without any indication of how unlikely it is to fail, whereas

a probabilistic logic assigns a likelihood to each desirable or undesirable scenario, de-

scribing the behaviour of a system in a more detailed and quantitative manner.

As mentioned above, a crucial difference between PESL and other existing logics for

event structures (both with interleaving and true concurrency semantics) is that given
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the definition of probabilistic event structures using branching cells, an atomic action

between configurations is not necessarily a single event but a particular set of events.

This follows from the fact that in probabilistic event structures probabilities are as-

signed to R-stopped configurations covered by branching cells. Therefore, it is both

interesting and important to note the new notion of progression defined by the→ op-

erator used by the logic. As example 5.1.5 shows, the idea is that given an R-stopped

configuration, there are a number of units of choices enabled to be resolved. These

choices between events may be grouped together in a branching cell, or may be con-

currently enabled in separate branching cells. Thus,→ defines in some way a notion

of maximal progression in terms of resolving all the enabled units of choices possible.

To clarify, by being enabled here we mean that the given configuration is causally re-

quired to enable those choices (branching cells). Calling this progression a step, then

since steps are defined in between groups of events, they are neither purely causal nor

concurrent but possibly a mixture of these. Therefore, it must be emphasised that PESL

describes the flow of scenarios described by events grouped together and in that sense

it is different from other existing logics for concurrent systems. The examples in this

section are aimed to clarify this difference.

We believe that the notion of step and this kind of view of the system fits the concept

of true concurrency in concurrent systems, as no order is enforced on a set of concur-

rent events. Therefore, defining the interleaving space created by such events is neither

required nor justified. Instead, we view configurations as scenarios which can lead to

other scenarios in a progressive, synchronising or concurrent manner (or a combina-

tion of them).

We also show that as a probabilistic logic, PESL is as expressive as pCTL over paths

of configurations defined by steps of progression (→). In terms of its qualitative ex-

pressivity, PESL can express certain properties as other true concurrency logics such

as SFL and LTC. The main differences lie in the expressive power resulting from us-

ing fixed points in those logics expressivity of the notion of causality between events.

On the other hand, PESL directly expresses properties related to synchronisation of

configurations, which is not possible in general by SFL. This also appears to be the

case for LTC, as it is not immediately clear if the logic can express synchronisation

properties at least in a direct manner.
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We now explain the above facts in more details along some examples. PESL, in addi-

tion to its propositional fragment, consists of three major fragments, namely, those of

progression, concurrency and synchronisation. We present examples of expressivity of

PESL for each of these fragments.

Remark 5.3.1. It should be noted that the configuration-level formulae (α) assigned to

the configurations play an important role in the expressive power of PESL. This is be-

cause the expressive power of α formulae directly affects the expressivity of the logic.

For example, another logic describing configurations such as ESL can be used instead

of the configuration-level formulae. Clearly if the underlying configuration-level logic

is more powerful then we obtain a much more expressive logic. However, it will be

very difficult to distinguish between the expressivity achieved by the probabilistic layer

and the lower layer and to determine the possible overlapping of the two. We therefore

have selected a very basic logic for the lower layer formulae on configurations and

focus more on the expressivity achieved in between configurations rather than that of

the structure of a configuration.

5.3.1 Progression

The operators→ and U are used for expressing properties on paths formed by progres-

sion of configurations with respect to the choices enabled at each step. We show that

the progression fragment of PESL can be interpreted as encoding the logic pCTL over

a tree-structured Markov chain.

Recall that a Markov chain is defined as below.

Definition 5.3.2. A (discrete time) Markov chain is a tuple M = (S,PM ,AP,L) where

S is a countable set of states, AP is a set of atomic propositions, L : S → 2AP is a

labelling function and PM : S× S→ [0,1] is the transition probability function such

that for all states s, ∑
s′∈S
PM (s,s′) = 1.

Recall the definition of pCTL over Markov chains:

φ := a | φ∧φ
′ | ¬φ | P∼λψ
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where

ψ :=→ ψ | ψ1Uψ2.

The semantics for the propositional fragment of pCTL is as expected, and the seman-

tics of the probabilistic operators over a Markov chain M is defined as below, with π[i]

representing the ith state on the path π.

5.3.3. s � P∼λψ iff PM ({π ∈ Paths(s) | π � ψ})∼ λ.

5.3.4. π � φ iff π[0] � φ.

5.3.5. π �→ ψ iff π[1] � ψ.

5.3.6. π � ψ1Uψ2 iff ∃ j ≥ 0. (π[ j] � ψ2) & ∀k. 0≤ k < j & π[k] � ψ1.

Note that for both pCTL and PESL, the operator U can be used in the usual way to

capture that a formula eventually (or dually always) holds, along a→∗ path, as defined

below.

3ψ =def tt U ψ, 2ψ =def ¬3¬ψ

Theorem 5.3.7. The logic PESL encodes pCTL interpreted over progressive paths

(formed by→∗) of configurations.

Proof. We first build the Markov chain as required by pCTL and then show PESL can

encode all operators of pCTL.

Let SE be the R-stopped configurations of the event structure E . Then the Markov chain

whose states are such configurations can be constructed as MSE = (SE ,PS ,AP,L).

The probability of a transition is then defined as PS (v,v′) = P(v′|v) where v→ v′.

Since for any configuration v, all the configurations v′ such that v→ v′ are pairwise

in conflict, then the progressive paths correspond to paths in pCTL and furthermore,

P({v′ | v→ v′}) = ∑P(v′). Consider the sub-event structure E ′ =
⋃

ci where cis are

the branching cells covering each v′ \ v (and v→ v′). Then from the definition of →
it follows that v′ \ v form the maximal configurations E ′. Since P(v′|v) = P′(v′ \ v)

(c.f. lemma 5.5. and proposition 5.6. of [1]) where P′ is the probability measure for

E ′, then ∑
v→v′

P(v′|v) = ∑
v→v′

P′(v′ \ v) = ∑
vi∈Ω(E ′)

P′(vi) = 1 (note that all configuration

of different cis are compatible with each other). Furthermore, it is clear that the above
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structure has the Markov property, although this is only because each state has all the

past information within itself.

As for the operators, first observe that in MSE a path of configurations is in fact a

configuration itself. Therefore, it is easy to see that if π(v)�→ φ then v→ π[1]& π[1]�

φ. Similarly, noting the only difference between the U operators in pCTL and PESL

is that in the latter the path has the length at least 1, the U operator of pCTL can be

simulated by π(v) � φ2∨ (φ1∧φ1Uφ2). Thus, computing the probability a set of paths

is the same as computing the probability of a set of configurations. It therefore follows

that the progressive fragment PESL encodes the behaviour of pCTL and as such all the

related expressivity results follow.

Immediate results of the above theorem include expressivity of almost sure repeated

reachability (P=1(2P=1(3?a))), persistence probabilities (P∼λ(3P=1(2?a))) and re-

peated reachability probabilities (P∼λ(3P=1(2P=1(3?a)))). It is known that pCTL

can express properties that CTL fails to do, such as P=1(3?a). On the other hand, it

fails to express some CTL properties such as ∀3a (for infinite paths). A similar argu-

ment to the proof of theorem 5.3.7 can be used to show that the same applies to PESL.

Thus, in PESL we cannot describe the property that for all paths (i.e. configurations )

v′ starting in a state (e.g. configuration v s.t. v→∗ v′) it holds that v′ �3α. Dually, it

cannot express that there is no path v′ such that v′ �2α. Therefore, in the examples be-

low we some times refer to almost sure probabilities. For example, P=1 ‖ φ expresses

that almost surely property φ can happen in parallel. Note that similar to pCTL, this

only happens when we have infinite paths (configurations).

Example 5.3.8. Consider the event structure E4 depicted in figure 5.4. Then for v =

{e}, v � P=1 ‖?b even though there is a configuration v′ = {a,a,a, . . .} such that v′ 2?b

and v ‖ v′.

Another important concept to be clarified is that of progressive steps versus causality.

For example, the notion of reachability should not be confused with causality of events.

Consider the event structure in the following example.

Example 5.3.9. Consider the event structure E5 depicted in figure 5.5. Then config-

uration v = {e1} leads to v′ = {e3} even though there is no causal relation between

e1 and e3. Thus, v→ v′ implies that in the next step following e1 one of the choices

enabled is e3.
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Figure 5.4: Event structure E4

Figure 5.5: Event structure E5

Therefore, it could be said that PESL is not directly designed for expressing causality.

In other words, dealing with confusion in event structures, requires us to consider the

notion of progress rather than causality.

This however does not imply that causality is completely indescribable, as even the

current very basic underlying configuration-level logic facilitates expressing certain

causal properties by PESL, as we shall see below. Clearly even a slightly more power-

ful logic can expand the expressive power with respect to causality.

Reachability In general reachability can be described by P>0φ.

The property that whenever an event labelled by a occurs it can lead to an event b (if

b has not already occurred) is expressed by ?a∧¬?b⇒ P>03?b, noting again that

this does not necessarily imply that b is causally related to a. We can express similar

causality related properties as below.

Request Granted We can describe that every request (event a) almost surely leads



Chapter 5. Probabilistic Event Structure Logic 87

(causally) to a grant (event b) by

¬?(a∧¬ ≤ b)∨P=13¬?(a∧¬ ≤ b).

It is interesting to note that PESL can only capture the qualitative form of the above

property, i.e. if all or some requests are granted. It cannot describe for example the

percentage of the requests being granted in the system as a whole as this notion cannot

be defined probabilistically. Consider the following example.

Example 5.3.10. Consider the event structure E6 as in figure 5.6. Then the R-stopped

configuration {a,a} does not satisfy the above formula, and we cannot assign a likeli-

hood measuring requests being granted.

Figure 5.6: Event structure E6

Thus, P∼λ3¬?(a∧¬≤ b) describes the likelihood that all the requests in a configura-

tion are granted. Clearly, this limitation is due to the concepts of branching cells and

maximal progression and cannot be lifted by a more expressive underlying logic.

We have mentioned the crucial difference in the concept of progression versus causal-

ity. The above property can be a good example to portray the benefit of this view

point. Consider the SFL formula φ1 = νZ.[a](µY.〈b〉c tt ∧ 〈−〉cY )∧ [−]Z) describing

that every request (a) is granted (b) on some of its causal paths. The PESL formula is

different as the following example shows.

Example 5.3.11. Consider the event structures E7,E ′7 as in figure 5.7. The PESL

formula above is only satisfied by the E ′7 while the SFL formula holds for both.

That is because SFL can only specify all or some of the causal paths following the re-

quests having a grant whereas PESL can specify that in all scenarios or progressions,

there is a causal path with a grant. This is indeed interesting as we can express proper-

ties related to scenarios which group the events that can occur concurrently together.
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Figure 5.7: Event structures E7 (left) and E ′7 (right)

Furthermore, note that the≤ operator of the underlying formula here implies that there

is a causal path from a which eventually leads to b. Thus, more complex properties

such as those obtained by the until operator over causal paths cannot be expressed in

the usual sense. For example, it cannot be expressed that every causal path followed a

request has a grant without expanding the expressivity of the underlying logic.

Safety (Unreachability) Safety properties can be expressed by P=03φ where φ can ei-

ther be ?error or a more complex formula describing an undesirable property (e.g. refer

to mutual exclusion below). More generally, the formula P≤ε3φ can describe that the

likelihood of a system (whose initial configurations satisfy the above property) reach-

ing the undesirable configuration is very low.

Repeated Reachability
The formula P=1(2P=1(3?a)) describes (almost sure) repeated reachability. Note that

the similar formula P=1(2P=1(3?a)) cannot describe repeated reachability since once

an event a is reached, it is included in all the configurations it leads to. Therefore, it is

important to emphasise a new a event occurs repeatedly.

5.3.2 Concurrency

As mentioned previously, concurrency is usually handled in two ways, namely, by

interleaving and true concurrency semantics. In the interleaving semantics, a sequence

is considered for every possible ordering of concurrent events which quickly leads to

the state explosion problem. For example, in the general case when there are two

concurrent events e and e′, either e can be observed next or e′. Then every event

following e (and not caused by e′ ) is also concurrent with e′ and all orderings possible
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between these events is considered which is the cause of state explosion. In the true

semantics this is avoided and the ordering between events is only considered when

they are causally related. PESL handles true concurrency in different manners as we

shall see below.

First observe that two events of an event structure can be concurrent and have a com-

mon cause in their history or be totally separate. Additionally, concurrent events can

be linked by a chain of #µ, as it can occur in a branching cell. We now define these

concepts more formally.

Definition 5.3.12. Two events e and e′ are co-concurrent iff e co e′ and ∃e′′.e′′ <
e & e′′ < e′.

Definition 5.3.13. Two events e and e′ are parallel iff e co e′ and @e′′. e′′ < e & e′′ < e′.

Definition 5.3.14. Two events e and e′ are cell-concurrent iff e co e′ and ∃e1, . . .en. e#µe1

& ei#µei+1 & en#µe′ where 1≤ i < n.

In PESL parallel and cell-concurrent events are captured by the ‖ operator and the

underlying logic / operator, respectively. Similarly, any concurrent events if already

in the configuration, are covered by the / operator. However, for co-concurrent events

it may be required to carry out at least one progressive step (→) so that all such events

are included to be covered by the / operator.

We now give some examples to clarify the above.

True concurrency
The ‖ and in particular / operators can be used to describe true concurrency. The

classical example of true concurrency versus interleaving semantics is given below.

Example 5.3.15. Consider the event structures E8 and E ′8 depicted in figure 5.8. The

systems can by differentiated by ?a∧ P>0 ‖?b satisfied only by the left hand event

structure or by ?a∧P>0→?b satisfied only by the right hand one.

Figure 5.8: Event structures E8 (left) and E ′8 (right)
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Safety - Mutual Exclusion
The safety property that two processors cannot be in the critical section at the same

time can be captured by φsa f e∧P=12φsa f e∧(?c⇒P=0 ‖?c) where φsa f e =¬?(c∧/ c).

Apart from the qualitative properties mentioned above, PESL can describe probabil-

ities of parallel configurations as well. Thus, one can specify the probability of a

desirable or undesirable scenario. For example, ?c ⇒ P≤1% ‖ c expresses that the

probability of an error in parallel mutual exclusion is less than 1%. Similarly, the

probability of ending up in an unsafe configuration from a safe one can be expressed

by φsa f e⇒ P<1%3¬φsa f e. Note that probabilities cannot be assigned to mutual exclu-

sion being violated by cell-concurrent events.

5.3.3 Synchronisation

PESL can directly describe certain aspects of synchronisation in and between config-

urations. Consider the formula ?a⇒ P>0?b &?c which describes a configuration with

an a event can synchronise with one with a b event into a configuration which has a c

event. Note that this does not indicate the exact causal relation between synchronising

events and in order to achieve that a stronger underlying logic is required. In the ex-

amples below, we only express the general form of synchronisation. We give examples

of how a stronger underlying logic can help expressing exact causal relation between

events. Furthermore, we gives examples of situations where we need to assume that

event structures are jump-free to avoid certain complications.

Can Synchronise - Exists
Formula ψ1 =?a∧P>0?b &?c holds for configurations which have an a event and can

synchronise with a configuration having a b event to enable a c event. In its general

form, φ1 ∧P>0φ2 & φ3 can be interpreted as: given a configuration φ1, there exists a

configuration φ3 caused by a synchronisation of φ1 and φ2.

Synchronisation occurs surely
Formula ψ2 =?a⇒ P=1?b &?c states that given a configuration with an a event, it will

surely synchronise with a b event to enable a c.
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For all synchronisation
Formula ψ3 =?a⇒ P=0?b &¬?c states that any synchronisation between a and b leads

to c only.

Synchronisation can occur for all parties
Extending the event-level formulae α, let e�X�η iff ∃e′ ∈X . (e′ �X η & e≤ e′& @e′′. e′′≤
e′ & e ≤ e′′). Suppose a read event a synchronises with a write b to form a commu-

nication event c. Then the formula ψ4 =?(a∧¬� c)⇒ P>0?b & (¬?(a∧¬� c))

states that every read event can engage with a write event in a communication.

Example 5.3.16. Consider event structure E9 depicted in figure 5.9 (left). Then for

configuration v= {a}we have v�ψ1∧ψ4, v2ψ2∨ψ3 . For E10 (right) and v′= {a,a},
v′ � ψ1∧ψ2∧ψ3 and v′ 2 ψ4.

Figure 5.9: E9 (left) and E10 (right)

Noting that P∼λφ & φ′ calculates the probability of configurations satisfying φ′ and oc-

curring via φ, the probability includes both the likelihood of the synchronising events

(φ) occurring and it resulting in φ′. This can be used in other ways as well. For ex-

ample the formula ?a∧¬ / b⇒ P≥λ?b &?c computes how likely is it for the synching

pair of a, namely b, to occur and further synchronise into a c. On the other hand,

?(a∧ / (b∧¬� c)⇒ P≥λ?b &?c computes the least probability of a synchronisation

happening if the synchronising elements are already present.

We now briefly justify the jump-free assumption for event structures. Consider the

following example.

Example 5.3.17. Consider the event structure E11 as in figure 5.10. Then e2 and e4
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always appear together in a R-stopped configuration.

Figure 5.10: Event structure E11

Thus, in event structures which are not jump-free, for some cases synchronisation

properties have to be expressed using the ≤ and ≥ operators of the underlying logic.

Therefore, one has to take into account the possibility of such synchronisation in the

probabilities computed.

5.4 Model Checking

The model checking problem for PESL is defined as determining if a given configu-

ration v of a probabilistic event structure E satisfies formula φ. We assume that either

E is finite or that we are considering a finite prefix of an infinite event structure. The

algorithm below sketches the model checking procedure, except for the obvious algo-

rithms for verifying α and η formulae.

Algorithm 9 MC(v,v′,φ)

. The model checking algorithm; returns true if v � φ where v′ defines previous

context if required.

if φ = α then return v �v′ α

else if φ = ¬φ then return v 2v′ α

else if φ = φ1∧φ2 then return MC(v,v′,φ1) & MC(v,v′,φ2)

else if φ = P∼λψ then return MC′(v,ψ)

end if

For clarity we have broken the algorithms for V (v,ψ) into the following parts.
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Algorithm 10 MC′(v,ψ)

. The model checking algorithm; returns true if v � ψ

if ψ =→ φ then return ∑
vi∈V (v,ψ)

P(vi|v)∼ λ

else if ψ = φ1Uφ2 then return ∑
vi∈V (v,ψ)

P(vi|v)∼ λ

else if ψ = φ1 & φ2 then return P(V (v,ψ) | v)∼ λ

else if ψ =‖ φ then return P(V (v,ψ) | v)∼ λ

end if
. Where V (v,ψ) is defined in algorithms 11-14.

Algorithm 11 V (v,→ φ)

. Computes V→φ,v as in the semantics of PESL

C := δ(v)

C =C \{ci ∈C | ∀e ∈ ci. @e′ ∈ v. e′ ≤ e} . Remove non causal cells

V = Maxim(
⋃

C) . Find maximal configurations in C

for all vi ∈V do
if ¬MC(vi,v,φ) then

remove vi

end if
end for
return V

Algorithm 12 V (v,φ1Uφ2)

. Computes Vφ1Uφ2,v as in the semantics of PESL

V =V (v,→ φ2)

V ′ = (V (v,→ φ1)\V )

while V ′ 6= /0 do
take any v′ ∈V

V =V ∪V (v′,→ φ2)

V ′ =V ′∪ (V (v′,→ φ1)\V )\ v′

return V

end while
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Algorithm 13 V (v,φ1 & φ2)

. Computes Vφ1&φ2,v as in the semantics of PESL

E& = {e′′ ∈ E \ v | ∃e ∈ v,e′ ∈ E. e 6= e′ & e→ e′′ & e′→ e′′}
ρ = {X | X ⊆ E& & X 6= /0 & X is conflict-free}
for X ∈ ρ do

Vx = {e′ | ∃e ∈ X . e′ < e}
if Vx \ v = /0 then

v′ = v

V ′ = {v′}
else

v′ =Vx \ v∪{e′ | ∃e ∈Vx. e′ < e }
V ′ = RS(v′)

end if
for v′ ∈V ′ do

if MC(v′,v,φ1) then
Vv′′ = RS(v∪ v′∪X)

for v′′ ∈Vv′′ do
if MC(v′′,v∪ v′,φ2) then

V ′′ =V ′′∪{v′′}
end if

end for
end if

end for
end for
return V ′′
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Algorithm 14 V (v,‖ φ)

. Computes V‖φ,v as in the semantics of PESL

E‖ = {e ∈ E \ v | ∀e′ ∈ v. e co e′}
Vmax = Maxim(E‖)

for v′ ∈ ρ(Vmax)\{} do
if MC(v′,v,φ) then

optimise:

if @v′′ ∈V‖. v′′ ⊂ v′ then
V‖ =V‖∪ v′

end if
end if

end for
return V‖

Algorithm 15 RS(v)

. Makes v R-stopped in all the ways possible

Let V be the set of minimal R-stopped configuration vi s.t. v⊆ vi

return V

Algorithm 16 Maxim(X)

. Computes the maximal configurations of a given set X

ρ = {x | x⊆ X}
ρ = ρ\{x ∈ ρ | ∃e,e′ ∈ x. e#e′} . Remove inconsistent subsets

ρ = ρ\{x ∈ ρ | ∃x′ ∈ ρ. x⊂ x′ . Remove non-maximal subsets

return ρ
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5.5 Conclusion

In this chapter we defined PESL interpreted on probabilistic event structures, which

to our best knowledge, is the first probabilistic logic with true concurrency seman-

tics. The main challenge in defining such logic was defining operators which could

capture the new concept of progressions of configurations, arising from dealing with

R-stopped configurations. In other words, typically in other existing logics, from par-

tial order logics such as POTL to true concurrency logics such as SFL, actions or steps

are at the granularity of events. However, this is no more the case in the framework

of probabilistic event structures. Thus, a new notion of progress was defined which

can be viewed as a maximal advancement in terms of resolving all the choices casually

following a configuration.

We then described the expressivity of PESL, by first proving that PESL encodes pCTL

with respect to the new concept of progress. Therefore, we showed that expressivity

results of pCTL follows in the new framework. We further explained how PESL is not

directly designed for expression of causality, even though some interesting properties

are still expressible, such as responsive of the system (every request begin granted). We

showed that PESL can capture different kinds of concurrency via different operators

and more interestingly, that it can directly express synchronisation of configurations.

Examples of the properties expressible by PESL include mutual exclusion, synchro-

nisation occurs surely, for all synchronisations (some property holds), etc. Finally, a

model checking algorithm for finite event structures was presented.



Chapter 6

Stable Event Structure Logic

Logics for event structures can in general be viewed from different perspectives. As

a partial order model, one can consider partial order logics, such as the classic logics

POTL [59] and ISTL[35]. These logics attribute properties to configurations, and con-

figurations are partially ordered by inclusion. Therefore, causality and concurrency are

not expressible directly. From a structural point of view, logics are specifically defined

on event structures, such as ESL [54] and its extensions [54, 55, 52]. They attribute

properties to events and describe the relation between events. Causality and concur-

rency between two events are therefore expressible, however, in general configurations

and their interactions cannot be identified.

From the implementation of concurrency point of view, partial order logics POTL and

ISTL defined over configurations of event structures follow the interleaving approach.

The concurrent system is viewed as a collection of possible runs, where the formulae

describe the properties of a run. Even though ISTL can distinguish between non-

determinism and concurrency, it achieves this through different groupings of possible

interleavings. Thus, the well-known verification problem of state explosion ([16, 70])

persists. On the other hand, POTL can also be interpreted over event structures, how-

ever, it still lacks the power to explicitly express concurrency and conflict between

events.

The other group of logics, namely, ESL and its extensions describe structural proper-

ties of event structures. Since they can describe the causal, conflict and concurrency

relations between events, we find it useful as a starting point to define a logic with a

similar point of view for stable event structures.

97
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In this chapter, we introduce Stable Event Structure Logic (SEL). The aim is to better

understand the temporal behaviour of stable event structures. We show that SEL is as

expressive as ESL-based logics interpreted over event structures which are encoded as

stable event structures. We also point out some of the conceptual differences among

SEL and ESL-based logics, which arise from the differences between event structures

and stable event structures plus the fact that SEL can describe properties about certain

sets of events.

We start by defining some relations and predicates which are later used in the semantics

of SEL.

Remark 6.0.1. We assume in this chapter that all the stable event structures are sensi-

ble (as per definition 4.1.6). However, they are not necessarily net-driven or jump-free.

6.1 Relations and Predicates

In this section a number of relations and predicates are defined which are used later in

describing the semantics of SEL.

6.1.1 Relations and Predicates on Stable Event Structures

For clarity, given a set X of sets x, let dX =def
⋃

x∈X
x.

History

Definition 6.1.1. The predecessors of a consistent set of events, y, is defined as:

pre(y) =def {x | ∃e ∈ y. x `min e}

As the definition describes, the set of sets pre(y) consists of sets of events which are

essential to enable the events in y. Thus, for example for a singleton y = {e}, pre(y)

would consist of all the sets that can enable e in a minimal way note that according

to the stability condition, all these sets are in conflict with each other). Since we are

dealing with sensible stable event structures and y is consistent, it follows that y can

be enabled and therefore, there is a subset of pre(y), for which the union of the events

involved is consistent and can enable every event in y.
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Definition 6.1.2. The enabling set of a set of events y ∈Con is defined as follows.

en(y) =def {dX | X ⊆ pre(y) and ∀e ∈ y. dX ` e}

Note that dX ` e implies that dX ∈Con.

The set en(y) exactly refers to sets of events which are required and sufficient to enable

y. The events are minimal, in the sense that all of them are required to enable something

in y. This can also be seen as a collection of causal histories for each event of y.

Example 6.1.3. Consider the stable event structure depicted in figure 6.1, where E =

({e1, . . . ,e11},`,℘(E)\{x | {{e1,e2}⊆ x or {e5,e6}⊆ x or {e6,e7}⊆ x or {e9,e10}⊆
x}) and /0 ` e1, /0 ` e2, /0 ` e3, /0 ` e4, {e1} ` e5, {e2} ` e5, {e3} ` e6, {e4} ` e7 and

so on.

We then have:

pre({e5}) = {{e1},{e2}}
pre({e9}) = {{e1,e5},{e2,e5},{e3,e6}}
pre({e9,e10}) = pre({e8,e10}) = {{e1,e5},{e2,e5},{e3,e6},{e4,e7}}
en({e5}) = pre({e5}) (as is the case for any singleton)

en({e9,e10}) = {}
en({e8,e10}) = en({e11}) = {{e1,e5,e4,e7},{e2,e5,e4,e7}}

Figure 6.1: Stable Event structure E1

Enabling - Next

Definition 6.1.4. A set y ∈Con cooperatively and immediately enables a set y′ ∈Con

represented by y→ y′ iff
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y 6= /0 and @e ∈ y′. /0 ` e and

∃x ∈ en(y). y∪ x ∈ en(y′) and y′∩ (y∪ x) = /0

This relation captures the notion of events taking part in enabling another event, in the

next step, as roughly depicted in figure 6.2.

Figure 6.2: A rough sketch of y→ y′, where x ∈ en(y)

The definition implies that every event in y, if enabled, takes part in enabling an event

in y′ (as y∪ x ∈ en(y′)). If y′ is a singleton and y has concurrent events, then this also

captures the concurrent events in y synchronising together to cause the single event in

y′. The condition y′∩(y∪x) = /0 ensures that y′ is in the next step in future (of the most

recent events).The first condition is to separate the concurrent initial events from those

which are caused by other events. It is also important to emphasise that every event in

y′ is fully enabled by some subset of y∪ x.

Example 6.1.5. For E1 as in figure 6.1 we have:

{e5,e7}→ {e8,e10}
{e5,e7}→ {e11} (capturing synchronisation in this case)

Definition 6.1.6. A set y′ is potentially enabled by set y, represented by yB y′ iff:

y 6= /0 & ∃x ∈ en(y). ∃x′ ∈ en(y′). x∪ y⊆ x′ &

@e ∈ (x′∪ y′)\ (x∪ y). /0 ` e & y′∩ (x∪ y) = /0

This relation simply captures the fact that if y is enabled, then y′ can be enabled without

requiring any other event which is not in the past or future of events of y. In other
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words, the occurrence of y can be sufficient for enabling y′. Also, all events of y should

have a role in enabling y′. This is roughly depicted in figure 6.3.

Figure 6.3: A rough sketch of y� y′, where x ∈ en(y),x′ ∈ en(y′)

Enabling-partial

Definition 6.1.7. A set (sometimes) partially enables another, represented by y≤ y′ iff

1. y∪ y′ ∈Con

2. ∀e ∈ y,∃e′ ∈ y′. e ∈ dpre(e′)

3. ∀e′ ∈ y′,∃e ∈ y. e ∈ dpre(e′)

This means that there is some configuration where y is required, though not necessarily

sufficient, for enabling y′. The first condition guarantees that y and y′ are consistent.

Definition 6.1.8. A set (sometimes) partially enables another in the next step, repre-

sented by y Z⇒ y′ iff

1. y∪ y′ ∈Con

2. ∀e ∈ y,∃e′ ∈ y′ s.t. e→ e′

3. ∀e′ ∈ y′,∃e ∈ y s.t. e→ e′

where e→ e′ iff e ∈ dpre(e′) and @e′′. (e ∈ dpre(e′′) and e′′ ∈ dpre(e′)).

This means that there is some configuration where y is required as the immediate his-

tory of y′, though not necessarily sufficient, for enabling it. The first condition guaran-

tees that events of y are not from different possible causes of any event of y′ and also

that events of y and y′ are consistent.
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Example 6.1.9. Consider the stable event structure in figure 6.4. We have:

y1 ≤ y4

y1� y4

y2 Z⇒ y4

y2 ≤ y4

y3→ y4

Figure 6.4: Stable Event Structure E2

Conflict

Definition 6.1.10. The consistency and conflict relations between two finite sets of

events are defined as follows.

y Con y′ iff y∪ y′ ∈Con

y#y′ iff y∪ y′ /∈Con

Concurrency

Definition 6.1.11. Two events are defined to be independent of each other when:

e indep e′ iff e /∈ dpre(e′) & e′ /∈ dpre(e)

Definition 6.1.12. The concurrency relation between two sets of events should capture

the fact that the events of the sets are independent and can occur together, therefore,

y ‖ y′ iff (∀e ∈ y,e′ ∈ y′. e indep e′) & y∪ y′ ∈Con
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6.1.2 Relations on Event Structures

Next - Partial Cause

Recalling definition 5.1.2, a next event of an event e is defined as follows.

e→ e′ iff e≤ e′ & @e′′. e≤ e′′ & e′′ ≤ e′

Concurrency

Definition 6.1.13. Events e and e′ are concurrent, denoted by e co e′ iff e� e′ & e′ �
e & ¬e#e′.

6.2 Syntax and Semantics

In this section we present the syntax and semantics for SEL. The formulae of SEL are

interpreted over special subsets of events, namely, the infixes of stable event structures

as defined below.

Definition 6.2.1. An infix y of an event structure E , is a subset of a configuration

v ∈ V (E) such that ∀e,e′ ∈ y. ∀e′′ ∈ E. e ∈ dpre(e′′) & e′′ ∈ dpre(e′)⇒ e′′ ∈ y.

Infixes can be seen as cuts of configurations, or configurations in the future of con-

figurations. Interpreting SEL over infixes provides us with the flexibility to capture

properties of configurations or sets of events which can occur together or even single

events. This is achieved using two types of limit (maximal/minimal) operators, as we

shall define in the semantics of SEL.

The syntax of SEL is defined as follows,

φ := p | ∀φ | ¬φ | φ∧φ | VφW | TφU | d2Rφe | b2Rφc

where p is an atomic proposition, R denotes a relation in the set of relations {�,�,→
,←,≤,≥, Z⇒,⇐\,#,‖} and V W/T U and d e/b c capture two different notions of maxi-

mality and minimality for φ and 2Rφ formulae, respectively.

We now define the semantics of SEL. In the following, let Q : ℘(E)→℘(AP) be a

validator function for the set of atomic propositions AP.

− Basics
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6.2.2. y � p iff p ∈ Q (y)

6.2.3. y � ∀φ iff ∀e ∈ y. {e} � φ

6.2.4. y � ¬φ iff y 2 φ

6.2.5. y � φ∧φ′ iff y � φ and y � φ′

− Limits

6.2.6. y � VφW iff y � φ & @y′. y′ � φ & y⊂ y′

In other words, y is a maximal set satisfying φ.

6.2.7. y � TφU iff y � φ & @y′. y′ � φ & y′ ⊂ y

In other words, y is a minimal set satisfying φ.

6.2.8. y � d2Rφe iff ∀y′ ∈ Ry. y′ is maximal in Ry⇒ y′ � φ

In other words, all maximal sets y′ which are in R relation with y satisfy φ.

6.2.9. y � b2Rφc iff ∀y′ ∈ Ry. y′ is minimal in Ry⇒ y′ � φ

In other words, all minimal sets y′ which are in R relation with y satisfy φ.

Remark 6.2.10. For convenience, in the following let 2φ denote 2�φ and let 2Rφ

denote the formulae for the reverse of R. For example, 2φ denotes 2�φ.

The intuition behind defining the above operators is clarified in the rest of this chapter,

by giving a comparison to existing ESL-based logics and giving further examples of

SEL formulae.

6.3 Logics on Event Structures

In this section we briefly introduce some of the other logics which can be interpreted

over event structures. In particular ESL-based logics are presented and later compared

with SEL.

The first temporal logic specifically defined on event structures is Sequential Event

Structure Logic (SESL) defined on the subclass of n-agent event structures by Lo-

daya and Thiagarajan [47]. An n-agent event structure consists of n sequential agents,

meaning that each agent is an event structure whose events are either related by causal-

ity or conflict, but are not concurrent. Therefore, such event structures can capture
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sequentiality and non-determinism. Concurrency is then captured via communication

between the agents. Thus, while each agent has its local state, communication between

the agents defines a global partial order. While SESL has true concurrency semantics

and can express properties such as safety and possibility properties (both at the system

or agent level), it cannot describe eventuality.

Event Structure Logic (ESL) was introduced by Penczek [54] (around the same time

that a similar logic was defined by Mukund and Thiagarajan [48]), where a modality

for conflict was introduced. ESL has the power to express properties such as con-

flict freeness and inevitability, but it cannot describe eventuality and properties related

to immediate successors/predecessors. Thus, Discrete Event Structure Logic (DESL)

was defined to extend the expressivity of ESL by describing properties of succes-

sors/predecessors [54]. Finally, ESL[c] [52] extends ESL by adding a concurrency

operator while ESL[δ] [55] allows for marking a particular run of interest.

We now present the syntax and semantics of ESL-based logics.

6.3.1 Syntax of ESL-based logics [56]

The syntax of a formula ϕ of ESL is as follows, where AP is the set of atomic propo-

sitions and p∈AP.

ϕ := p | ¬ϕ | ϕ∧ϕ
′ | 2ϕ | 2ϕ | 2#ϕ

The dual formulas 3ϕ, 3ϕ and 3#ϕ are defined in the usual way. A model for ESL

formulas is simply M = (E ,Q ) where E = (E,≤,#) is an event structure and Q : E→
℘AP is a valuation function. Then for such a model the semantics of ESL is as follows.

• e 
 p iff p∈Q (e), where p ∈ AP.

• e 
 ¬ϕ iff e 1 ϕ.

• e 
 ϕ∧ψ iff e 
 ϕ and e 
 ψ.

• e 
2ϕ iff ∀e′ ∈ E. e� e′⇒ e′ 
 ϕ.

• e 
2ϕ iff ∀e′ ∈ E. e′ � e⇒ e′ 
 ϕ.

• e 
2#ϕ iff ∀e′ ∈ E. e′#e⇒ e′ 
 ϕ.
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The logic ESL[c] extends ESL by a concurrency operator, 2c, with the following se-

mantics.

• e 
2cϕ iff ∀e′ ∈ E. e′co e⇒ e′ 
 ϕ.

Finally, the logic DESL extends ESL by forward and backward next operators, ⊗ and

⊗ with the following semantics.

• e 
⊗ iff ∀e′ ∈ E. e→ e′⇒ e′ 
 ϕ.

• e 
⊗ iff ∀e′ ∈ E. e′→ e⇒ e′ 
 ϕ.

6.4 Comparison and Expressivity

In this section we present a full comparison between SEL and ESL-based logics,

namely, ESL, DESL and ESL[c]. The comparison describes the expressive power

of ESL and we explain this further by giving some examples.

The comparison is carried out, in two parts. The first part shows that SEL can express

properties defined by ESL-based logics. Recall that since the event structures on which

ESL-based logics are defined are a simpler subclass of stable event structures (where

each event has only one possible set of events causing it), there is a natural mapping

from event structures to stable event structures . Therefore, for each ESL formula, we

present an SEL formula, proving that they are satisfied by the same events. All the

proofs are presented at the end of this chapter.

The second part focuses more on the concepts captured by SEL and ESL-based for-

mulae. Namely, it studies the main difference caused by working with sets of events

as denotations of formulae and the capability of the logics to express synchronisation

of events and certain configuration-related properties.

6.4.1 From ESL-based logics to SEL

Here, for each ESL-based formula, we present an SEL formula with the same satisfying

set of events. For some cases, extra operators need to be defined as explained below.

ESL to SEL
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Proposition 6.4.1. A formula ϕ of ESL is translated to f (ϕ) in the following manner,

where e 
ESL ϕ iff {e} 
SEL f (ϕ).

• p : f (p) = ∀p

• ¬ : f (¬ϕ) = ¬ f (ϕ)

• ∧ : f (ϕ∧ϕ′) = f (ϕ)∧ f (ϕ′)

• 2 : f (2ϕ) = d2≤∀ f (ϕ)e (Note that this is not directly translatable with causal-

ity operators 6.1.4 and 6.1.6 (conjecture 6.6.4))

• 2 : f (2ϕ) = d2∀ f (ϕ)e

• 2# : f (2#ϕ) = b2#∃ f (ϕ)c

Proof. Refer to proof 6.6.1.

Thus, in summary, SEL can be as expressive as ESL. It is important to note that, al-

though SEL can express ESL formulae, the formulae given above do not represent the

same notion for stable event structures, simply because stable event structures allow

for disjunction of causes. For example, 3ϕ in ESL, denotes that there is an event with

ϕ property in the past, thus such event is always needed. However, its equivalent in

SEL would only imply that there is some configuration for which such event exists

and is needed, but this is not necessarily the case for all configurations. This property

(necessity of an event ϕ in past) is expressible in SEL by a different formula, namely,

d2∃ f (ϕ)e.

ESL[c] to SEL

Proposition 6.4.2. The formula 2cϕ of ESL[c] is can be captured by ESL in the fol-

lowing manner, where f (ϕ) is defined in proposition 6.4.1.

e 
ESL 2cϕ iff {e} 
SEL d2 Z⇒∀ f (ϕ)e

Proof. Refer to proof 6.6.2.

DESL to ESL
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Proposition 6.4.3. DESL can be captured by ESL in the following manner, where

f (ϕ) is defined in proposition 6.4.1.

e 
ESL ⊗ϕ iff {e} 
SEL d2 Z⇒∀ f (ϕ)e

e 
ESL ⊗ϕ iff {e} 
SEL b2→∀ f (ϕ)c

Proof. Refer to proof 6.6.3.

6.4.1.1 SEL to ESL-based logics

There is an obvious difference between SEL and ESL-based logics, namely, SEL is

defined on infixes, a particular subsets of events, whereas ESL is defined on events.

This difference is enough to say that ESL cannot express SEL formulae. The main

advantage is that working with sets of events gives the power of grouping events into

different sets, which is highly desirable when working with stable event structures and

not possible with ESL-based logics. This grouping effect is what causes the major

difference in expressivity of SEL and ESL-based logics. Here we explain different

aspects of this difference.

Synchronising of events

Consider stable event structure E ′0 and its associated event structure E0 depicted in

figure 6.5.

E0 = (E = {e1, . . . ,e6},{e1 ≤ e5,e2 ≤ e5,e3 ≤ e6,e4 ≤ e6}, /0),

E ′0 = (E,{ /0 ` e1,e2,e3,e4,{e1,e2} ` e5,{e3,e4} ` e6},℘(E)),

where Q (e5) = Q (e6) = {p}.

As can be seen, events e1 and e2 synchronise to enable e5 and e3 and e4 synchronise

to enable e6. Now suppose we want to find the events that synchronise to achieve an

event with property p. This can easily be expressed in SEL by ϕ = b2→V∀pWc for

which {e1,e2} � ϕ and {e3,e4} � ϕ.However, any formula of ESL-based logics, will

either be true for all events e1,e2,e3 and e4 (such as ⊗p) or for neither. This is due to

the symmetry of the given event structure which is maintained in the translation. This
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Figure 6.5: E0

example clearly demonstrates the grouping effect mentioned above, in addition to the

expressibility of synchronisation properties by SEL.

The same concept is captured by the fact that ESL-based logic cannot distinguish be-

tween the following event structures, represented in figure 6.6.

E1 = (E,{e1 ≤ e5,e2 ≤ e5,e3 ≤ e6,e4 ≤ e6}, /0),

E2 = (E,{e1 ≤ e5,e2 ≤ e5,e3 ≤ e5,e4 ≤ e6}, /0)

where E = {e1, . . . ,e6} and Q (e5) = Q (e6) = {p}. This can be proved by exhaustive

inspection of formulae of ESL-based formulae of depth 2 or 3 at most.

Figure 6.6: E1 (left) and E2 (right)

Reachability via Cooperation
Another major difference between SEL and ESL-based logics is that SEL can express

reachability properties. For example, given a set of events, SEL can express what

other events can be reached which require all the events of that set. The formula of the

form b3(∃p1∧∃p2∧ . . .)∧¬∃(¬p1∨¬p2∨ ...))c describes what minimal infixes can

be reached with events pi. Alternatively, the maximal of the same formula yields the
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biggest reachable infixes. However, even for a stable event structure mapped from an

event structure, ei �ESL 3pi, ∪{ei} does not express the same, as it may not include

other events possibly required to enable ei. In other words, ESL-based logics can only

express partial causality and not full causality, i.e. cooperation of events, as illustrated

previously for synchronisation of events.

Steps
SEL can also express what events form a step in enabling another set of events. Con-

sider stable event structure E ′3 mapped from the event structure E3 as below, depicted

in figure 6.7.

E3 = (E = {e1, . . . ,e5},{e1 ≤ e3,e2 ≤ e4,e3 ≤ e5,e4 ≤ e5}, /0),

E ′3 = (E,{ /0 ` e1,e2,{e1} ` e3,{e2} ` e4,{e3,e4} ` e5},℘(E)).

where Q (e5) = p. Then, the SEL formula b3∀pc, yields all the sets which are suf-

ficient as steps towards enabling e5, such as {e3,e4}. However, ESL-based logics

cannot identify this but only all the events that are required, i.e. e1,e2,e3 and e4, for all

of which 3p holds.

Figure 6.7: E ′3

Conflict
Another obvious difference between expressivity of SEL and ESL results form the dif-

ference between the models they are defined on, in terms of consistency and conflict.

Suppose we are dealing with a stable event structure with more than 2 events being

inconsistent with each other. A simple example would be E4 = (E = {e1,e2,e3}, /0 `
e1,e2,e3,Con) where Con=℘(E)\{e1,e2,e3} (figure 6.8). Such stable event structure

and its isomorphic prime event structure cannot be mapped to an event structure, as the

inconsistencies here cannot be mapped into a binary conflict relation. Thus, SEL can

express conflict properties related to sets being in conflict, whereas ESL-based logics
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only describe binary conflict relations.

Figure 6.8: E4

Disjunctive Causes and Constant Requirement
The grouping capability of SEL becomes more evident when it comes to expressing

properties related to disjunctive causes. Consider the following stable event struc-

ture, E5 = (E = {e1,e2,e3,e4},{ /0 ` e1,e2,e3,{e1,e3} ` e4,{e2,e3} ` e4},Con), where

Con =℘(E)\{x | {e1,e2} ⊆ x} and Q (e4) = p (figure 6.9).

Figure 6.9: E5

Now suppose we want to know what is required to enable event 4. In SEL this is given

by d3T∀pUe, holding for {1,3} and {2,3}. Moreover, with SEL one can distinguish

that some events are always required to enable another, i.e. they are in every possible

history of that event. For example, in the previous case, suppose Q (3) = q, then

d3T∀pUe → ∃q indicates that an event q is always required to enable an event p.

Remark 6.4.4. The stable event structure E5 is translated into the event structure E ′5 =
(E ′ = {e1,e2,e3,e4,e′4},{e1 ≤ e4,e2 ≤ e′4,e3 ≤ e4,e3 ≤ e′4},{e1#e2}) and it follows

that Q (e4) = Q (e′4). Note that in E ′ e1#e2 and e1 ≤ 4 imply e1#e4 and similarly e2#e4.

Thus, as an event structure, E ′ cannot capture the complete relation between events of

E . Moreover, grouping of events is not expressible by ESL-base logics.
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6.5 Model Checking

The model checking problem for SEL is defined as the process of determining if an

infix u of a stable event structure E satisfies a formula φ of SEL. In this section we

present the model checking algorithm, under the assumption that E is finite or that we

are considering a finite prefix of an infinite stable event structure.

The model checking process presented by algorithm 19, called MC(φ), returns a list

of infixes for which φ holds and for this calculation we need to populate the list of

all possible infixes, as presented by algorithm 17. The model checking algorithm is

given for relations ≤,�,→,←,# and ‖ and the algorithm can be extended to include

≤,≥, Z⇒,⇐\ in a similar manner. All these algorithms are for a given stable event

structure, E = (E,`,Con).
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Algorithm 17 Inf
. Creates all the infixes of a stable event structure and expands Con to exclude

implied conficlits

Infixes = /0

subs =℘(E)

for all s ∈ subs do
flag = true

if s ∈Con then
if En?(s) 6= /0 then

for all e ∈ s do
for all e′ ∈ s. e 6= e′ do

for all e′′ ∈ E do
if e ∈ dPre(e′′)∧ e′′ ∈ dPre(e′)∧ e′′ /∈ s then

flag = false

break
end if

end for
if flag =? false then

break
end if

end for
if flag =? false then

break
end if

end for
if flag =? true then

Infixes = Infixes∪{s}
end if

else
Con =Con\ s

end if
end if

end for
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Algorithm 18 En?(s)
. Given a set, returns empty if it cannot be an infix due to inconsistencies or

otherwise its enabling set.

for i := 1, |s| do
Pres[i] = Pre({ei}), where ei ∈ s

Size[i] = |Pres[i]|
end for
while ∃i. Size[i] = 1 do

Fixed = Fixed∪ x, where x ∈ pre ∈ Pres[i]

if Fixed /∈Con then
return /0

end if
for all j 6= i∧Size[ j]> 1 do

for all u ∈ Pres[ j] do
if Conf(u,x) then

Pres[ j] = Pres[j]−u

Size[ j] = Size[j]−1;

end if
end for

end for
end while
for all i. Size[i]> 1 do

Var[i] = Pres[i]

Enums = Enum(Var,1)

end for
if Enums = /0 then

return /0

else
for all en ∈ Enums do

result = result∪{en∪Fixed}
end for
return result

end if
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Algorithm 19 MC(φ) - Part 1
. The model checking algorithm, returns the set of all the infixes for which φ holds.

result = /0

flag = true

if φ = p then
for all u do

if p ∈ Q (u) then
result = result∪{u}

end if
end for

else if φ = ∀φ′ then
for all u do

for all e ∈ u do
if {e} /∈MC(φ′) then

flag = false

break
end if

end for
if flag =? true then

result = result∪{u}
end if

end for
else if φ = ¬φ′ then

for all u do
if u /∈MC(φ′) then

result = result∪{u}
end if

end for
else if φ = φ′∧φ′′ then

for all u do
if u ∈MC(φ′)∧u ∈MC(φ′′) then

result = result∪{u}
end if

end for
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Algorithm 20 MC(φ) - Part 2

else if φ = Vφ′W∨φ = Tφ′U then
for all u do

if u ∈MC(φ′) then
result = result∪{u}

end if
end for
if φ = Vφ′W then

result = Max(result)

else
result = Min(result)

end if
else if φ = d2Rφ′e∨φ = b2Rφ′c then

for all u do
if φ = d2Rφ′e then

result = Max (Find(R,u))

else
result = Min (Find(R,u))

end if
for all u′ ∈ result do

if u′ /∈MC(φ′) then
flag = false

break
end if

end for
if flag =? true then

result = result∪{u}
end if

end for
end if
return result
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Algorithm 21 Find(R,u)

. Given a causal operator and an infix u, returns the set of all the infixes in relation

with u

result = /0

for all u′ do
if R =�& Future(u,u′) then

result = result∪{u′}
else if R =�& Future(u′,u) then

result = result∪{u′}
else if R =→ & Next(u,u′) then

result = result∪{u′}
else if R =← & Next(u′,u) then

result = result∪{u′}
else if R = # & Conf(u,u′) then

result = result∪{u′}
else if R = ‖& Par(u,u′) then

result = result∪{u′}
end if

end for
return result

Algorithm 22 Future(u,u′)

. Determines if uB u′

if u 6= /0 then
for all x ∈ En?(u) do

for all x′ ∈ En?(u′) do
if x∪u⊆ x′∧@e ∈ (x′∪u′)− (x∪u). /0 ` e∧ y′∩ (x∪ y) = /0 then

return true

end if
end for

end for
end if
return f alse
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Algorithm 23 Next(u,u′)

. Determines if u→ u′

if u 6= /0∧@e ∈ y′. /0 ` e then
for all x ∈ En?(u) do

if x∪u ∈ En?(u′)∧u′∩ (u∪ x) = /0 then
return true

end if
end for

end if
return false

Algorithm 24 Conf(u,u′)

. Determines if u#u′

return u∪u′ /∈Con?

Algorithm 25 Par(u,u′)

. Determines if u ‖ u′

if ¬Conf(u,u′) then
for all e ∈ u do

for all e′ ∈ u′ do
if e ∈ dPre(e′)∨ e′ ∈ dPre(e) then

return false

end if
end for

end for
return true

else
return false

end if
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Algorithm 26 Pre(u)

. Given an infix u, returns Pre(u)

result = /0

for all e ∈ u do
for all x. x `min e do

result = result∪{x}
end for

end for
return result
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Algorithm 27 Enum(X , i)

. Given an array of Pre of some events, returns all possible combinations of their

Pre’s.

result = /0

enumRest = /0

flag = true

if i≤ |X | then
enumRest = Enum(X , i+1)

if enumRest = /0∧ i < |X | then
return /0

end if
else

return /0

end if
for all pre ∈ X [i] do

if enumRest = /0 then
result = result∪{pre}

else
flag = false

for all en ∈ enumRest do
if ¬Conf(pre,en) then

result = result∪{pre∪ en}
flag = true

end if
end for

end if
end for
if flag =? false then

return /0

else
return result

end if
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Algorithm 28 Max(list)
. Given a set of infixes, returns those who are maximal

for all u ∈ list do
for all u′ ∈ list. u 6= u′ do

if u⊂ u′ then
list = list\{u}

end if
end for

end for
return list

Algorithm 29 Min(list)
. Given a set of infixes, returns those who are minimal

for all u ∈ list do
for all u′ ∈ list. u 6= u′ do

if u′ ⊂ u then
list = list\{u}

end if
end for

end for
return list
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6.6 Proofs

Proof 6.6.1. Prove that a formula ϕ of ESL is translated to f (ϕ) as in §6.4.1 , where

e 
ESL ϕ iff {e} 
SEL f (ϕ). This can be proved by induction on the formulae.

• Base case f (p) = ∀p. Clearly, if e �ESL p, then for the set {e}, it holds that all

of its events having property p. Thus, {e} �SEL ∀p. The backwards is also as

trivial.

• f (¬ϕ) = ¬ f (ϕ).
e �ESL ¬ϕ ↔ e 2ESL ϕ

↔{e} 2SEL f (ϕ) by I.H.

↔{e} �SEL ¬ f (ϕ).

• f (ϕ∧ϕ′) = f (ϕ)∧ f (ϕ′)
e �ESL ϕ∧ϕ′ ↔ e �ESL ϕ and e �ESL ϕ′

↔{e} �SEL f (ϕ) and {e} �SEL f (ϕ′) by I.H.

↔{e} �SEL f (ϕ)∧ f (ϕ′).

• f (2ϕ) = d2≤∀ f (ϕ)e. Proved in Induction Step 6.6.1.

• f (2ϕ) = d2∀ f (ϕ)e. Proved in Induction Step 6.6.2.

• f (2#ϕ) = b2#∃→ ∃ f (ϕ)c. Proved in Induction Step 6.6.3.

Proof 6.6.2. Prove that a formula ϕ of ESL[c] is translated to f (ϕ) as in §6.4.1 and

§6.4.1 , where e 
ESL[c] ϕ iff {e} 
SEL f (ϕ). This can be proved by induction on the

formulae.

As ESL[c] extends ESL by 2c operator, the proof is the same as proof 6.4.1, with one

added case, as follows.

• f (2c)ϕ = b2‖∀ f (ϕ)c. Proved in Induction Step 6.6.4.

Proof 6.6.3. Prove that a formula ϕ of DESL is translated to f (ϕ) as in §6.4.1 and

§6.4.1 , where e 
DESL ϕ iff {e} 
SEL f (ϕ). This can be proved by induction on the

formulae.

As DESL extends ESL by ⊗ and ⊗ operators, the proof is the same as proof 6.4.1,

with two added cases, as follows.

• f (⊗)ϕ = d2 Z⇒∀ f (ϕ)e. Proved in Induction Step 6.6.5.
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• f (⊗ϕ) = b2→∀ f (ϕ)c. Proved in Induction Step 6.6.6

Induction Step 6.6.1. e �ESL 2ϕ↔{e} �SEL d2≤∀ f (ϕ)e
R.H.S means: ∀y. {e} ≤ y⇒ ∀e′ ∈ y{e′} � f (ϕ), where by applying the definition of

≤ for sets of events, {e} ≤ y iff:

1. {e}∪ y ∈Con

2. ∃e′ ∈ y s.t. e ∈ dpre(e′)

3. ∀e′ ∈ y. e ∈ dpre(e′)

Note that y cannot be an empty set, as otherwise {e} � y. Therefore, if 3 holds, then

so does 2.

(⇒) e �ESL 2ϕ⇒{e} �SEL d2≤∀ f (ϕ)e
L.H.S unfolds to: ∀e′. e≤ e′⇒ e′ � ϕ by semantic rules of ESL.

Based on the translation of relations between event structureswe have:

∀e′. e ∈ dpre(e′)⇒ e′ � ϕ.

Thus, for any set y consisting of such e′ events, it holds that ∀e′ ∈ y. e′ � ϕ, or by I.H.

∀e′ ∈ y. {e′} � f (ϕ), which is denoted by y � ∀ f (ϕ).

Also, such y sets are exactly those for which {e} ≤ y as they satisfy conditions 1 and

3, and thus 2. Therefore, for all sets y such that {e} ≤ y, it holds that ∀ f (ϕ). Thus, the

same holds for all such y sets which are maximal and by semantic rules of SEL for the

d2≤e operator:

{e} �SEL d2≤∀ f (ϕ)e.

(⇐) {e} �SEL d2≤∀ f (ϕ)e ⇒ e �2ϕ

L.H.S unfolds to: for all maximal y. {e} ≤ y⇒∀e′ ∈ y. {e′} � f (ϕ).

Then, the definition of ≤ and transformation of event structures give us:

for all maximal y s.t. ∀e′ ∈ y. e ∈ dpre(e′)⇒{e′} � f (ϕ).

Clearly for any event e′ such that e ∈ dpre(e′), there is a maximal set y such that e′ ∈ y

and y consists of only such events. Therefore,

∀e′. e ∈ dpre(e′)⇒{e′} � f (ϕ),

or equivalently by I.H,

∀e′. e≤ e′⇒ e′ � ϕ.
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Induction Step 6.6.2. e �ESL 2ϕ↔{e} �SEL d2∀ f (ϕ)e

(⇒) e �ESL 2ϕ⇒{e} �SEL d2∀ f (ϕ)e
L.H.S unfolds to: ∀e′. e′ ≤ e⇒ e′ � ϕ by semantic rules of ESL. Based on the transla-

tion of relation between event structures we have

∀e′. (∃x ∈ en({e}). e′ ∈ x)⇒ e′ � ϕ.

Thus, for any set y consisting of such e′ events, it holds that ∀e′ ∈ y. e′ � ϕ, or equiva-

lently by I.H. ∀e′ ∈ y. {e′} � f (ϕ), which is denoted by y � ∀ f (ϕ).

On the other hand, the R.H.S. concerns sets yB {e} and based on the definition ofBwe

have ∃x ∈ en({e}). y⊆ x. Therefore, for any y, yB {e}⇒ ∀e′ ∈ y. ∃x ∈ en({e}). e′ ∈ x

and as shown above y � ∀ f (ϕ). Since this is true for any y B {e}, it holds also for all

such maximal sets, therefore, by semantics of 2ϕ we have

{e} �SEL d2∀ f (ϕ)e.

(⇐) {e} �SEL d2∀ f (ϕ)e ⇒ e �2ϕ

L.H.S unfolds to: for all maximal y. yB {e}⇒ ∀e′ ∈ y. {e′} � f (ϕ).

Thus, as proved in proof 6.6.5, ∀x ∈ en({e})⇒ ∀e′ ∈ x. {e′} � f (ϕ). Based on the

translation of operators, ∀e′. e′ ∈ x⇔ e′ ≤ e. Therefore, ∀e′ ≤ e⇒� f (ϕ) or equiva-

lently, by I.H., ∀e′ ≤ e⇒� ϕ.

Induction Step 6.6.3. e �ESL 2#ϕ↔{e} �SEL b2#∃ f (ϕ)c.

(⇒) e �ESL 2#ϕ⇒{e} �SEL b2#∃ f (ϕ)c.
L.H.S unfolds to: ∀e′. e#e′ ⇒ e′ � ϕ, or equivalently by I.H. {e′} � f (ϕ). Also, for

any set y, {e}#y iff y has an event e′ s.t. e#e′. Thus, for any set y in conflict with e,

there is an event e′ � ϕ. Equivalently, ∀y. {e}#y⇒∃ f (ϕ), thus, the same holds for all

minimal ys. This is exactly expressed by the semantics of the b2#c operator in SEL,

i.e. {e} � b2#∃ f (ϕ)c.
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(⇐) {e} �SEL b2#∃ f (ϕ)c ⇒ e �ESL 2#ϕ.

L.H.S unfolds to: for all minimal y. {e}#y⇒ y � ∃( f ϕ). And as we are dealing with

event structures where the conflict relation is a binary relation on events, {e}#y iff

∃e′ ∈ y s.t. e#e′. Thus, the minimal y is a singleton {e′} such that e#e′. Therefore,

from L.H.S. ∀e′. e#e′⇒{e′} � f (ϕ) or equivalently by I.H. ∀e′.e#e′⇒{e′} � ϕ which

is exactly expressed by the semantics of the 2# operator in ESL, i.e. e 
2#ϕ.

Induction Step 6.6.4. Prove that e �ESL 2cϕ iff {e} �SEL b2‖∀ f (ϕ)c.

(⇒) e �ESL 2cϕ⇒{e} �SEL b2‖∀ f (ϕ)c.
Consider y ‖ {e}. Applying the definition of concurrent sets yields y∪{e} ∈Con and

∀e′ ∈ y. e indep e′. Therefore, ∀e′ ∈ y. ¬e#e′ as otherwise y∪{e} /∈Con. Moreover, by

translation of event structures and definition of indep, ∀e′ ∈ y. e� e′ and e′ � e. Thus,

∀y. y ‖ {e}⇒ ∀e′ ∈ y. e co e′.

Now by semantic rules of ESL the L.H.S. expands to ∀e′. e co e′⇒ e′ � ϕ. Therefore,

for any y if y ‖ {e} then ∀e′ ∈ y. e′ � ϕ or equivalently by I.H. ∀e′ ∈ y. {e′} � f (ϕ).

Clearly, if this is true for any y it is also true for all minimal ys and this is exactly given

by {e} � b2‖∀ f (ϕ)c.

(⇐) {e} �SEL b2‖∀ f (ϕ)c ⇒ e �ESL 2cϕ.

By semantic rules of SEL the L.H.S. expands to for all minimal y. y ‖ {e} ⇒ ∀e′ ∈
y.{e} � f (ϕ), or equivalently by I.H., ∀e′ ∈ y.e′ � ϕ.

As we are dealing with event structures, the concurrency relation is a binary relation

defined on events. Therefore, the minimal set y ‖ {e} is a singleton {e′} such that {e′} ‖
{e}. Moreover, if {e′} ‖ {e} then applying the definition of ‖ and using translation of

event structures we obtain {e,e′} ∈Con and e� e′ and e′ � e, and thus, e co e′. Thus,

for the singleton y = {e′} we have y ‖ {e}. Therefore, for any e′ co e there is a minimal

set y′ = {e′} s.t. {e′} ‖ {e}. Additionally, from above we have ∀e′ co e⇒ e′ � ϕ which

is exactly given by the ESL formula 2cϕ.

Induction Step 6.6.5. Prove that e �ESL ⊗ϕ iff {e} �SEL d2 Z⇒∀ f (ϕ)e.

(⇒)e �ESL ⊗ϕ⇒{e} �SEL d2 Z⇒∀ f (ϕ)e
R.H.S expands to: for all maximal y. {e} Z⇒ y ⇒ ∀e′ ∈ y. {e′} � f (ϕ), where by ap-

plying the definition of Z⇒ for sets of events, {e} Z⇒ y iff:
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1. {e}∪ y ∈Con

2. ∃e′ ∈ y s.t. e→ e′

3. ∀e′ ∈ y. e→ e′

Note that y cannot be an empty set, as otherwise {e} Z⇒ y does not hold. Therefore, if

3 holds, then so does 2.

(⇒) e �ESL ⊗ϕ⇒{e} �SEL d2 Z⇒∀ f (ϕ)e
L.H.S unfolds to: ∀e′. e→ e′ ⇒ e′ � ϕ by semantic rules of ESL. Thus, for any set

y consisting of such e′ events, it holds that ∀e′ ∈ y. e′ � ϕ, or equivalently by I.H.,

∀e′ ∈ y. {e′} � f (ϕ), which is denoted by y � ∀ f (ϕ).

Also, such y sets are exactly those for which {e} Z⇒ y as they satisfy conditions 1 and

3, and thus 2. Since this holds for any such y, clearly it also holds for all maximal y as

well. Therefore, by semantic rules of SEL for the d2 Z⇒e operator:

{e} � d2 Z⇒∀ f (ϕ)e.

(⇐) {e} � d2 Z⇒∀ f (ϕ)e ⇒ e �⊗ϕ

L.H.S unfolds to: for all maximal y. {e} Z⇒ y ⇒∀e′ ∈ y. {e′} � f (ϕ).

The definition of Z⇒ for sets imposes that ∀e′ ∈ y. e→ e′ and as such:

for all maximal y s.t. ∀e′ ∈ y. e→ e′⇒{e′} � f (ϕ).

Now for any event e′ such that e→ e′, consider the singleton y = {e′}. Either y is

maximal or ∃y′. y ⊂ y′ & {e} ⇒ y′ & y′ is maximal. Thus, any such e′ is part of a

maximal set y′ such that ∀e′′ ∈ y′.e→ e′′. Thus,

∀e′. e→ e′⇒∃maximal y′. {e}⇒ y′ & e′ ∈ y′

Therefore, from above, ∀e′. e→ e′⇒{e′} � f (ϕ) or equivalently, by I.H.,

∀e′. e→ e′⇒ e′ � ϕ.

This is exactly captured by the ESL formula e �⊗ϕ
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Induction Step 6.6.6. Prove that e �ESL ⊗ϕ iff {e} �SEL b2→∀ f (ϕ)c.
This is proved using proof 6.6.6, as follows.

(⇒) e �ESL ⊗ϕ⇒{e} �SEL b2→∀ f (ϕ)c
The L.H.S. expands to ∀e′. e′ ≤ e⇒ e′ � ϕ. Consider the set y = {e′ | e′ ≤ e}, for

which ∀e′ ∈ y. e′ � ϕ. But y→ {e} by theorem 6.6.6 and y is unique. Therefore,

∀y. y→ {e} ⇒ ∀e′ ∈ y. e′ � ϕ or equivalently, ∀y. y→ {e} ⇒ ∀e′ ∈ y. {e′} � f (ϕ) (by

induction hypothesis) . But this is exactly given by the semantics of 2→∀ f (ϕ).

(⇐) {e} �SEL b2→∀ f (ϕ)c ⇒ e �ESL ⊗ϕ.

The l.h.s. expands to ∀y. y→ {e} ⇒ ∀e′ ∈ y. {e′} � f (ϕ), or equivalently, ∀y. y→
{e}⇒ ∀e′ ∈ y. e′ � ϕ. By proof 6.6.6 y = {ei | ei→ e}, therefore, ∀ei. ei→ e⇒ ei � ϕ.

But that is exactly given by the semantics of ⊗ϕ.

Conjecture 6.6.4. SEL cannot describe the ESL formula e � 2ϕ by using operators

∀, ¬, ∧, 2, 2, 2→, 2→, 2# and 2‖ .

Plausibility Argument: Consider the event structure E6 = ({e1,e2,e3,e4},≤,#) where

e1 ≤ e3, e2 ≤ e3, e2 ≤ e4 and the relation # is empty (figure 6.10). Suppose that

Q (e3) = {p} and ϕ = p. Then, clearly e1 � 2p. This would translate to the stable

event structure E ′ = ({e1,e2,e3,e4},`,Con) where {e1,e2} ` e3, {e2} ` e4 and Con

contains any subset of the events of E ′ . We will now show an exhaustive inspection of

SEL formulae.

Figure 6.10: E6

To start with, it is clear that the operators 2# and 2‖ are of no avail here, as they

only capture conflict and concurrency. Therefore, the main operators to consider are

2, 2, 2→ and 2→ in combination with the other operators. Let us first list all the sets
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which are in→ or B relation with each other.

{}9 undefined {e1,e2}→ {e3},{e3,e4} {e1,e2,e3}9
{e1}9 {e1,e3}9 {e1,e2,e4}9
{e2}→ {e4} {e1,e4}9 {e1,e3,e4}9
{e3}9 {e2,e3}9 {e2,e3,e4}9
{e4}9 {e2,e4}9 {e1,e2,e3,e4}9

{e3,e4}9

Similarly, for the sets in B relation the following list is obtained.

{}B undefined {e2,e3}7
{e1}7 {e2,e4}7
{e2}B {e4} {e3,e4}7
{e3}7 {e1,e2,e3}7
{e4}7 {e1,e2,e4}7
{e1,e2}B {e3},{e3,e4} {e1,e3,e4}7
{e1,e3}7 {e2,e3,e4}7
{e1,e4}7 {e1,e2,e3,e4}7

From the lists above, it is clear that the nothing in the relations → and B gives us

the singleton {e1}. Therefore, no matter how many levels of logic operators are used,

forwards or backwards, and applying maximal or minimal operators, there is no way

to obtain {e1} in a relevant manner. The reason is that the causality related operators in

SEL only consider full causes as opposed to partial causes considered by ESL. Since

the logic does not have any means of taking out a subset of a set, it is plausible that any

formula of ESL relating to partial causes is not expressible by SEL.

Proof 6.6.5. Prove that for any nonempty set y and y′, y is a maximal set such that

yB y′ iff y ∈ en(y′).

(⇒) Based on the definition of B, if yB y′, then ∃x ∈ en(y′). y⊆ x. Also, y is maximal

iff @y′′. y′′ B y′ & y ⊆ y′′. Clearly, the maximal subset of x ∈ en(y) is x itself. Thus,

y ∈ en(y′).

(⇐) Following the definition of B, for any nonempty set x ∈ en(y′), xB y′.
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Proof 6.6.6. Prove that for an event structure E6 = (E,≤,#) and the stable event struc-

ture E ′6 = (E,`,Con) mapped to it, for a nonempty minimal set y, y→{e}where e∈E

iff y = {ei | ei→ e} (Recall that e→ e′ iff e≤ e′ and @e′′.e≤ e′′ and e′′ ≤ e′).

The first observation is that as for event structures there are no disjunctive causes, then

each event or set of consistent events has a unique set of events causing it. Therefore,

generally for a set y, en(y) = dpre(y) and for the case of a singleton such as here,

pre({e}) = en({e}) is the singleton {x = {e′ | e′ ≤ e}}.

(⇒) y→{e}⇒ y is the minimal set s.t. y = {ei | ei→ e}.
If y→{e}, by definition of→ and the minimality condition, we have the following.

1. y 6= /0 and as such, /0 0 e

2. ∃x ∈ en(y) s.t. x∪ y ∈ en({e}) and thus, x∪ y = {e′ | e′ ≤ e} and e /∈ x∪ y

3. @y′ s.t. y′ ⊆ y and y′→{e}

From above, it is clear that ∀e′ ∈ E.e′ ∈ y⇒ e′ ≤ e. Now we just need to show that

∀e′ ∈ y.@e′′ s.t. e′ ≤ e′′ ≤ e. To prove by contradiction, suppose such e′′ exists. Then

either e′′ ∈ y or e′′ /∈ y.

If e′′ /∈ y, then this is in contradiction with x∪ y = en({e}), as en({e}) = {ei | ei ≤ e}.
Therefore, such e′′ does not exist outside y. Now suppose e′′ ∈ y and consider y′= y−z

where z = {ei | ei ∈ y and ei≤ e′′}. It can be shown that x∪y = x′∪y′ where x′= en(y′)

and therefore, ∃y′ ⊆ y s.t. y′→{e} which is a contradiction.

Consider x∪y and x′∪y′ as described above. Then ∀e′ ∈ x∪y, either e′ ∈ y or e′ ∈ x−y.

In the former case, then if e′ /∈ z ⇒ e ∈ y′, otherwise, as x′ = en(y′) = {e j | e j ≤
ei for some ei ∈ y}, then e′ ∈ x′ as e′ ∈ z and as such e′ ≤ e′′ (and e′′ ∈ y). In the lat-

ter case, i.e. e′ ∈ x− y implies that e′ ≤ ei for some ei ∈ y. If ei /∈ z, then ei ∈ y′ and

therefore, e′ ∈ x′ as e′ ≤ ei. Otherwise, if ei ∈ z, again e′ ∈ x′ as e′ ≤ ei and ei ≤ e′i
for some e′i ∈ y′ and by transitivity of ≤, e′ ≤ e′i and as such, e′ ∈ x′. Therefore,

∀e′.e′ ∈ x∪y⇒ e′ ∈ x′∪y′. Similarly, ∀e′ ∈ x′∪y′, either e′ ∈ y′, and as y′ ⊆ y, e′ ∈ y or

e′ ∈ x′−y′, which means e′ ≤ ei for some ei ∈ y′. Then again as y′ ⊆ y, e′ ≤ ei for some

ei ∈ y and as such e′ ∈ x. Therefore, ∀e′. e′ ∈ x′∪ y′⇒ e′ ∈ x∪ y. Thus, x∪ y = x′∪ y′.
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(⇐)y is the minimal set s.t. y = {ei | ei→ e}⇒ y→{e} .

As y is not empty, /0 0 e as ∃ei. ei → e. Next we show that {x ∪ y} = en({e}).
First observe that in a simple event structure, ∀ei ≤ e, either ei → e or by finite-

ness of the history of each event, ei ≤ e′ → e. The L.H.S. expands to y = {ei |
ei ≤ e and @e′i. ei ≤ e′i ≤ e}. Then x = en(y) = dpre(y) = {e j | e j ≤ ei}. Therefore,

x∪y = {ek | ek ≤ ei and @e′i. ei ≤ e′i ≤ e}. It can be shown that x∪y = en({e}). Clearly,

∀ek ∈ x∪ y, ek ∈ en({e}) as by transitivity of ≤,∀ek. ek ≤ e. Similarly, as mentioned

above ∀e′ ∈ en({e}), either e′ ∈ y or e′≤ ei for some ei ∈ y, and therefore e′ ∈ x. There-

fore, x∪ y = en({e}).

It now suffices to show that @y′ ⊆ y. y′→{e}. Suppose y′ ⊆ {ei | ei→ e} and y′→{e}.
Then x′ ∪ y′ = en({e}) = x∪ y, where x′ = en(y′). Equivalently, x′ ∪ y′ = {e j | e j ≤
e}= x∪y. Now take ei ∈ y−y′. Clearly ei ∈ x∪y and therefore, ei ∈ x′∪y′. As ei /∈ y′

then ei ∈ x′. Thus, as x′ = en(y′), ei ≤ e′ for some e′ ∈ y′ and e′ ≤ e. But that is in

contradiction with ei→ e. Therefore, such y′ does not exist.

Conjecture 6.6.7. SEL cannot express the ESL formula⊗ϕ using operators ∀, ¬, ∧, 2
2, 2→, 2→, 2# and 2‖ .

Plausibility Argument: The argument is very similar to that of conjecture 6.6.4, as

the reason this formula cannot be expressed is the same. Namely, the ESL formula

captures any event partially caused by an event, whereas in SEL, the causality operators

mentioned above express events being fully caused or enabled by other events.

Consider the event structure in the argument for conjecture 6.6.4, ESL formula⊗p and

the list of sets in→ and B relation. As before, there are no formulae with denotation

{e1} or its negation {e2,e3,e4}. Similarly, even though there are formulae with deno-

tation {e1,e2}, there are no formulae with denotation {e2} or its negation {e1,e3,e4},
so that {e1} can be extracted from it. Moreover, maximality or minimality constraints

cannot change this. Therefore, it is plausible that no SEL formulae can express this

operator of ESL.
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6.7 Conclusion

In this chapter, SEL, the first logic specifically designed for stable event structures

is presented. The aim was to better understand stable event structures, while being

able to express properties of interest. We then proved that SEL can capture ESL-

based logics over event structures encoded as stable event structures. Furthermore, the

maximal/minimal operators help with expression of properties both at the granularity

of events and sets of events. In addition to properties expressible by ESL-based logics,

PESL can capture properties such as synchronisation, disjunctive causes and constant

requirements. Finally, a model checking algorithm for finite stable event structures

was presented.



Chapter 7

Conclusion and Future Works

In this thesis we have studied different aspects related to the verification of some of the

well-known models of true concurrency, namely, Petri nets, event structures and stable

event structures.

First we considered verification of Petri nets through unfoldings. As explained in this

thesis, unfoldings of Petri nets are widely used for description and verification of the

behaviour of Petri nets. However, they have the drawback of growing exponentially

with the choices of a net, since every single concurrent or conflicting firing of a transi-

tion in the Petri net has a separate corresponding event in the unfolding. Thus, unfold-

ing of a net describes its behaviour by describing the full state space, without assigning

any order to concurrent events. The issue of unfolding a net in a more compact manner

has recently been addressed in [37, 23, 58].

In this thesis, we added to these solutions by developing a new and more compact

unfolding for safe Petri nets, namely, the unfolding−s of a net. We showed that similar

to unfoldings, they capture all the reachable markings of the net. However, by reusing

the conflicting places or in other words, by not unfolding the conflicts as far as possible,

the unfolding−s constructed are more compact.

A prominent technique for verification of Petri nets is that of McMillan [51] which

defines and uses complete finite prefix of Petri nets for verification of reachability-

like properties. Majority of the existing algorithms use or improve the same notion.

Therefore, by defining complete finite prefixes of unfolding−s, we show that a large

body of existing verification algorithms are applicable to them. We have also provided

algorithms for constructing the compact unfoldings and their complete finite stopped

132
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prefixes.

The other perspective we have investigated in this thesis is that of model checking the

probabilistic behaviour of models of true concurrency with randomness. Probabilistic

models of true concurrency have been studied only in the last decade or so, and among

such models (such as [74, 72, 1]) we have focused on probabilistic event structures

as described by [1] as the most general approach which, unlike the others, handles

confusion. We presented its definition, with the most important concept being that

of branching cells. Branching cells can be viewed as units of choice decomposing

configurations while resolving conflict and confusion internally. Thus, they decompose

configurations in a probabilistically independent manner and as such, it can be said

that in this model, concurrency matches probabilistic independence. We showed in

this thesis that the same approach can be used on stable event structures, as long as

confusions have a simple structure, and do not involve events which are causally related

to each other. We call such (stable) event structures jump-free and define probabilistic

jump-free stable event structures similar to probabilistic event structures.

The model checking problem is the procedure of verifying if a model M has a prop-

erty captured by formulae φ. Thus, having chosen a model, we required a logic which

could capture properties of interest for the verification purpose. While there are few

logics with the true concurrency semantics, we knew of no such probabilistic logic.

Therefore, we have defined a new logic, PESL, which introduces a new concept of

progress, since dealing with R-stopped configurations requires formalising the inter-

action between sets of events. We have shown that with respect to the new concept

of progress, PESL captures pCTL. Thus, in terms of expressivity it subsumes pCTL

while it also has the ability to express concurrency and more interestingly, synchroni-

sation. A model checking algorithm for finite probabilistic event structures was then

proposed.

Finally, we have developed a new logic, SEL, interpreted over stable event structures.

The aim was to better understand stable event structures, while being able to express

properties of interest related to event structures in general and more specifically, stable

event structures. We showed that an extension of SEL can capture ESL-based logics

and also presented some of the properties expressible by SEL specific to stable event

structures.
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7.1 Future Work

Some natural directions for continuation of this research include the following.

7.1.1 On Compact Unfoldings

The results and algorithms for compact unfoldings presented in this thesis are defined

for safe Petri nets. However, this approach can be extended to be applicable to general

Petri nets. The main complexity arises from the fact that in a general Petri net, mul-

tiple transitions can fire into a place. Therefore, to make sure a minimum number of

conditions are created in the unfolding process, we can have several choices. This can

be resolved using graph theory, and in particular the graph coloring problem fits this

purpose beautifully. Furthermore, it would be reasonable to give some formal measure-

ment of the extent of compactness of unfolding−s. Finding the patterns which results

in having cyclic dependencies in the algorithm can be the first step in that direction.

On another note, while we have provided the theoretical foundation related to these

unfoldings, it would be interesting to investigate these from the implementation point

of view. Seeking efficient computation algorithms can be fulfilled by taking advantage

of the existing optimisation techniques for calculating the possible extensions in con-

struction of the unfoldings (such as [36]), and in particular by investigating in efficient

ways to compute and store the consistency relation. More importantly, optimising the

‘wait’ and ‘resolve’ processes would significantly improve the efficiency of the algo-

rithm. Finally, computing the computational complexity for construction of unfoldings

can help with determining the extent of its feasibility.

7.1.2 On PESL

As mentioned before, the main challenge in defining PESL was in definition of opera-

tors suitable for capturing the interaction between sets of events. It would be interesting

to study the interaction between these sets, i.e. an R-stopped configuration and what it

can develop in to, in a more systematic manner. One direction would be that of inves-

tigation ways to formalise the way in which R-stopped configurations communicate.

Some insight may be taken from object Petri nets [69] and structured occurrence nets

[42, 41], to evaluate if this idea has scope for further research.
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The other important direction is that of model checking infinite systems. Based on

theorem 5.3.7 it is reasonable to assume that existing techniques for model checking

of infinite state systems with Markov chains and PCTL may be applicable to a major

fragment of PESL [45, 3, 10]. If that is possible, a similar approach should be taken for

the other operators. Since the synchronisation operator has a finite nature, it is likely

that only the parallelism operator has to be tackled. Another approach is studying

recurrent nets [2] and consider event structures arising from such nets.

7.1.3 On Probabilistic Stable Event Structures

We have given a definition of probabilistic jump-free stable event structures, based on

probabilistic event structures of [1]. However, it would be interesting to investigate if

other definitions or representation of the same definitions can be found which are more

intrinsic to the concept of stable event structures. To expand this, consider the compact

unfoldings developed in this thesis. The main idea is that we may not always require

the knowledge of the exact history of how an event has occurred. Therefore, finding

a class of stable event structures for which the history of an event does not affect its

future (e.g. with respect to branching cells) may be a good starting point. If the his-

tory is important and therefore required, one can consider a different representation of

probabilistic stable event structures where the sets enabling events are tagged with the

probability of being the cause for the event. Either way, there is scope for speculation

of different types of probabilistic stable event structures.
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