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ABSTRACT

The AMI and AMIDA projects are collaborative EU projects
concerned with the automatic recognition and interpretation
of multiparty meetings. This paper provides an overview of
the advances we have made in these projects with a particular
focus on the multimodal recording infrastructure, the publicly
available AMI corpus of annotated meeting recordings, and
the speech recognition framework that we have developed for
this domain.

Index Terms— Meetings; speech recognition; AMI cor-
pus; evaluation

1. INTRODUCTION

Since the mid-1990s a number of researchers have investi-
gated the automatic recording, recognition and interpretation
of meetings, e.g. [1, 2]. From 2004, the AMI consortium1,
has investigated the development of technologies to enhance
human collaboration in the domain of meetings. AMI is con-
cerned with the automatic interpretation of human communi-
cation in meetings, with a particular emphasis on the devel-
opment of approaches that help people to interact more ef-
fectively in meetings, and to easily access related information
(including parts of previous meetings). The practical moti-
vation for this research has come from two principal direc-
tions. First, the development of “smart” instrumented meet-
ing rooms which are able to recognize and track the content
of a multiparty meetings. Second, the need to develop more
effective interfaces for remote participation in meetings that
can provide a similar sense of “presence” and engagement
compared with face-to-face meetings.

Communication in multiparty meetings is multimodal,
factored across modalities including speech, gesture, pro-
jected displays and handwritten notes. The automatic record-
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ing, recognition and interpretation of such communication
scenes is a considerable scientific challenge: separating com-
munication information from multiple sources, integrating
information from source across multiple modalities, and re-
lating “lower level” information extracted from the signals
to “higher level” semantics. Within the AMI consortium
we have addressed these problems through a general ap-
proach of building statistical models using annotated corpora.
A multidisciplinary approach has been crucial with active
collaboration between researchers from speech recognition,
computer vision, machine learning, social and organizational
psychology, computational linguistics and human-computer
interaction.

In section 2 we discuss the capture and development of
the multimodal AMI corpus of multiparty meetings, using an
instrumented meeting room (recently extended to enable the
capture of remotely connected participants). Based upon this
corpus we have developed and evaluated a number of audio-
video recognizers, outlined in section 3. A major focus of the
project is the development of automatic speech transcription
for multiparty meetings, from both close-talking microphones
and microphone arrays, discussed in section 4. Based upon
the outputs of the multimodal recognizers we have developed
a number of automatic approaches to content extraction (sec-
tion 5) and a number of prototype applications that are con-
cerned both with online meeting support and efficient access
to meeting archives.

2. THE AMI CORPUS

Much of our research is built on the use of instrumented meet-
ing rooms to collect recordings of multiparty meetings. Three
standardized meeting rooms were designed and constructed at
AMI partners IDIAP, TNO and the University of Edinburgh.
These rooms, which were designed for the collection of four
person meetings, all contained a set of standardized recording
equipment that included: six cameras (four providing close-
up views of the participants, two providing a view of the
whole room); twelve microphones (a headset microphone per
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Figure 3: Overhead Schematic View of the UEDIN Instrumented Meeting Room, Show-
ing the Participant Positions (P1-4), the Microphone Arrays, and the Wide Angle Camera
Position.

Figure 4: Diagram of the connectivity of the A/V Capture Equipment in the UEDIN room.
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Fig. 1. Overhead schematic view of the instrumented meet-
ing room at Edinburgh showing participant positions (P1–P4),
two circular microphone arrays, and a room-view camera po-
sition (the second room-view camera was a ceiling-mounted
overhead camera).

participant and an 8-element circular microphone array); data
projector capture (VGA); whiteboard capture; and digital pen
capture. There were also additional recording devices in each
of the rooms, including an additional microphone array (Ed-
inburgh), a binaural manikin (IDIAP) and additional cameras
(IDIAP). A schematic plan of the instrumented meeting room
at Edinburgh is shown in figure 1.

These instrumented meeting rooms were used to record
the AMI Meeting Corpus [3], which consists of 100 hours of
multimodal meeting recordings, with the different recording
streams synchronized to a common timeline. The corpus in-
cludes manually produced orthographic transcriptions of the
speech used during the meetings, aligned at the word level.
In addition to these transcriptions, the corpus includes man-
ual annotations that describe the behaviour of meeting partici-
pants at a number of levels. These include dialogue acts, topic
segmentation, extractive and abstractive summaries, named
entities, limited forms of head and hand gestures, gaze direc-
tion, movement around the room, and where heads are located
on the video frames. Not all 100 hours of meetings have been
marked with all kinds of annotations. The linguistically mo-
tivated annotations have been applied most widely, covering
at least 70% of the corpus in all cases. The annotations were
carried out using NXT (the NITE XML Toolkit) [4], an open
source XML-based infrastructure for the annotation and man-
agement of multimodal recordings2.

The corpus is publicly available on the web at http:
//corpus.amiproject.org, and is released under a li-
cence that is based on the terms of the Creative Commons
Attribution NonCommercial ShareAlike 2.5 Licence. It has

2http://sourceforge.net/projects/nite/

already been employed for a number of international evalu-
ations including the NIST Rich Transcription evaluations3,
the CLEAR evaluation4 and the CLEF question-answering
evaluation5. A number of “spoke” corpora have also been
collected using the AMI instrumented meeting rooms, in-
cluding the multi-channel Wall Street Journal audio-video
(MC–WSJ–AV) corpus in which sentences from the Wall
Street Journal speech recognition database were recorded
(using lapel, headset and microphone arrays) in a variety of
conditions including single stationary speaker, single mov-
ing speaker, and concurrent stationary speakers [5], which
was used for the PASCAL Speech Separation Challenge 2
(SSC-2) [6, 7]

3. MULTIMODAL RECOGNITION

In the AMI project we have developed a number of recogniz-
ers for the multimodal meeting recordings, including speech
transcription (discussed below), speaker diarization [8],
audio-video localization and tracking [9], and visual focus
of attention [10]. The outputs of these recognizers may be
used directly, e.g. in a meeting browser, or as input for the
automatic structuring or extraction of content from meetings.

4. MEETING SPEECH RECOGNITION

In this section we briefly describe the essential components
of a meeting transcription system [11] and its accuracy in
recent evaluations. The system is targeted on conference
room meetings (as opposed to lectures or seminars), with the
audio captured using both individual headset microphones
(IHM) and microphone arrays (multiple distant microphones,
MDM). The MDM is a more challenging speech recogni-
tion task, due to the additional reverberation and interference
from other acoustic sources. We have employed a stan-
dard ASR framework using hidden Markov model (HMM)
based acoustic modeling and N-gram based language models
(LMs). Since an order of magnitude more transcribed data
is available from domains such as conversational telephone
speech (CTS), our system is bootstrapped from acoustic mod-
els trained on CTS (about 2000 hours in total), adapted using
about 170 hours of multiparty meeting data from the AMI
and ICSI [2] corpora.

Prior to recognition, the captured audio is pre-processed
to address several issues including cross-talk detection and
suppression for the IHM condition [12] and delay-sum beam-
forming and speaker segmentation and clustering for the
MDM condition (fig. 2). Processing of MDM data takes
account of the varying number of microphone channels and
potentially unknown location of microphones in relation to
each other (to allow for comparison beyond the AMI corpus).

3http://www.nist.gov/speech/tests/rt/
4http://www.clear-evaluation.org/
5http://www.clef-campaign.org/
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Fig. 2. Front-end processing stages for IHM and MDM.

System Training criterion PLP LCRC+PLP
Baseline ML 28.7 25.2
SAT ML 27.6 23.9
SAT MPE 24.5 21.7

Table 1. %WER results on rt05seval IHM (manual segmen-
tation) with and without LCRC features.

The processing operates in several stages. First gain calibra-
tion is performed by normalizing the maximum amplitude
level of each of the input files. Then the background noise
spectrum is estimated using the lowest energy frames in the
recording and this is used to Wiener-filter the data to remove
stationary noise. In the next step delay vectors between chan-
nels are calculated on a per frame basis using generalized
cross-correlation. Delays are computed in relation to a refer-
ence channel which also yields a relative scale factor. Delays
and scale factors are then used in the final stage implement-
ing superdirective beam-forming. Although this approach is
robust to a variety of configurations, for a small number of
sparsely located microphones the estimates are unreliable. In
this case simply selecting the channel with the highest energy
for every time frame was found to yield substantially lower
word error rates.

Twelve MF-PLP features are extracted at a rate of 100 Hz
and together with the zeroth cepstral coefficient form the basic
feature vector. First and second derivatives are added. More
recently the standard systems augment this feature vector with
25 phoneme posterior derived components. These so-called
left context – right context (LCRC) features [13] are derived
from multiple stages of MLPs that try to estimate phoneme
state posterior probabilities. The input to these is not only the
feature vector at the current time, but 25 surrounding frames
as well.

All acoustic models employ cross-word state-clustered
triphone models. It was found that, similar to CTS, 10–15%
relative WER gain can be obtained using maximum likelihood
based vocal tract length normalization (VTLN) [14]. Sec-
ondly, heteroscedastic linear discriminant analysis (HLDA)
gives consistent performance improvements [14]. Further
gains can be obtained by discriminative training based on
the minimum phone error (MPE) criterion, also jointly with
constrained maximum likelihood regression (MLLR) based
speaker adaptive training (SAT). The left column of Table 1

Description Tot CMU AMI NIST VT
Initial decode 37.4 47.7 29.3 33.8 38.4
Adapted 28.2 37.9 21.9 24.6 27.9
Best single output 25.4 34.5 20.4 21.1 25.3
Combined 24.9 33.9 19.8 20.9 24.7

Table 2. %WER results on IHM data of the AMI 2007 system
on the NIST RT’07 evaluation set.

Description Total Sub Del Ins

Initial 44.2 25.6 14.9 3.8
Adapted 38.9 18.5 16.8 3.5
Final 33.7 20.1 10.7 2.9

Final - Man, Segments 30.2 18.7 9.4 2.0

Table 3. %WER results on MDM data of the AMI 2007 sys-
tem on the NIST RT’07 evaluation set.

shows WER results for models trained on 100 hours of meet-
ing data and the rt05seval test set. In both cases substantial
improvements are found.

The complete AMI system for the transcription of meet-
ing as used in the NIST RT’07 evaluations operates in a total
of 10 passes. The initial pass only serves to obtain a rough
transcript to provide input to adaptation with VTLN, SAT,
and MLLR. The following passes then generate bigram word
lattices which are expended using 4-gram language models
and rescored using models that are differently trained, for ex-
ample on meeting data only, or adapted models, or different
configurations in the feature extraction. Table 2 shows de-
tails for various stages in the system, from the initial decod-
ing with unadapted models to the output of the best branch in
the system. The outputs of several branches then can be com-
bined, yielding the lowest word error rate. Data in this test set
are taken from four different corpora. The substantial differ-
ence in performance between these data sets mostly originates
from a different quality of microphones, even though heavily
accented speech plays a role.

Table 3 shows results on the same data, obtained by using
MDM input and a less complex system structure. One can
observe that the difference in the initial pass between IHM
and MDM recordings is 7% WER absolute which remains up
to the final pass. Whereas the difference between the manual
and automatic segmentation of data on IHM was found to give
only 1.3%, it can be observed that for MDM the difference is
2.5%.

5. EXTRACTION OF STRUCTURE AND CONTENT

Automatically extracted content enables meetings to be in-
dexed and structured at a semantically richer level than is
possible using the raw output of the audio-video recogniz-
ers. Much existing work in this area is concerned with the



extraction of content from written language; a major focus of
AMI has been the extension of textual approaches to multi-
modal settings, involving the use of prosodic, video and con-
textual features, with an emphasis on models and algorithms
that combine modalities.

Our work in this area has included the development of au-
tomatic approaches to the segmentation and classification of
phenomena such as dialogue acts [15], topics [16], and domi-
nance and influence [17], as well as abstractive and extractive
summarization [18] and content-based automatic camera se-
lection [19]. Using the AMI corpus for all tasks, we have been
able to agree on evaluation measures and procedures that al-
low us to compare different approaches and techniques, both
internally and externally.

6. CONCLUSIONS

This paper has provided an overview of our work on the
recognition and interpretation of multiparty meetings with a
focus on speech recognition. In addition to the basic recog-
nition and content extraction technologies described here,
we have also developed a number of prototype applications
including a number of configurable meeting browsers, and
approaches to implicit extraction of information from meet-
ings, based on the current context, such as the automatic
linking of recorded previous meeting excerpts based on an
online estimate of the content of a running meeting.
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