
A Strategy for the Visual Recognition of Objects

in an industrial environment

Aravinda S. Athukorala

Ph. D. Thesis

University of Edinburgh

1985

Paginated
blank pages
are scanned
as found in

original thesis

No information
is missing

Abstract

This thesis is concerned with the problem of recognizing indus-
trial objects rapidly and flexibly. The system design is based on a
general strategy that consists of a generalized local feature detec-
tor, an extended learning algorithm and the use of unique structure of
the objects. Thus, the system is not designed to be limited to the
industrial environment.

The generalized local feature detector uses the gradient image of
the scene to provide a feature description that is insensitive to a
range of imaging conditions such as object position, and overall light
intensity. The feature detector is based on a representative point
algorithm which is able to reduce the data content of the image
without restricting the allowed object geometry. Thus, a major advan-
tage of the local feature detector is its ability to describe and
represent complex object structure. The reliance on local features
also allows the system to recognize partially visible objects.

The task of the learning algorithm is to observe the feature
description generated by the feature detector in order to select
features that are reliable over the range of imaging conditions of
interest. Once a set of reliable features is found for each object,
the system finds unique relational structure which is later used to
recognize the objects. Unique structure is a set of descriptions of
unique subparts of the objects of interest. The present implementa-
tion is limited to the use of unique local structure. The recognition
routine uses these unique descriptions to recognize objects in new
images. An important feature of this strategy is the transference of
a large amount of processing required for graph matching from the
recognition stage to the learning stage, which allows the recognition
routine to execute rapidly.

The test results show that the system is able to function with a
significant level of insensitivity to operating conditions; The system
shows insensitivity to its 3 main assumptions -constant scale, con-
stant lighting, and 2D images- displaying a degree of graceful degra-
dation when the operating conditions degrade. For example, for one
set of test objects, the recognition threshold was reached when the
absolute light level was reduced by 70%-80%, or the object scale was
reduced by 30%-40%, or the object was tilted away from the learned 2D
plane by 300-400. This demonstrates a very important feature of the
learning strategy: It shows that the generalizations made by the sys-
tem are not only valid within the domain of the sampled set of images,
but extend outside this domain. The test results also show that the
recognition routine is able to execute rapidly, requiring 10ms-500ms
(on a PDP11/24 minicomputer) in the special case when ideal operating
conditions are guaranteed. (Note: This does not include pre-processing
time).

iii

This thesis describes the strategy, the architecture and the
implementation of the vision system in detail, and gives detailed test
results. A proposal for extending the system to scale independent 3D
object recognition is also given.

iv

Acknowledgements

My thanks are due to many people for their help and encouragement

during the time spent on this work. I would firstly like to thank my

supervisors Robin Popplestone and Andrew Wallace for their comments on

drafts of this thesis, James McGinley for very useful discussions, Jim

Howe, Richard Tobin and Ken Gourlay for their comments on parts of

this thesis, and the Napier College statistics group for assistance

with the problem in appendix 1.

I would also like to thank John Daly and Derek Coggle for techni-

cal support, Greg McCarra for keeping the computer running, Peter

Beards for allowing me generous access to facilities at Napier Col-

lege, and the Napier College library staff.

I would like to acknowledge financial assistance from the Univer-

sity of Peradeniya Sri Lanka, and the Peoples Bank of Sri Lanka during

the first year of this work.

Finally, I would like to thank my parents and Veronique for all

the help and encouragement they gave me over this period.

V

Declaration

This thesis has been composed and written by myself and the work

described in it is my own.

Aravinda S. Athukorala

vi

L out of thesis

Prologue

Chapter 1 Introduction and survey of techniques

Chapter 2A strategy for recognizing complex objects: Basic Principles

Chapter 3A strategy for recognizing complex objects: The Architecture

Chapter 4 Implementation: Algorithms and Data structures

Chapter 5 Tests and Results

Chapter 6 Future Work and conclusions

References

Appendix 1 Probability of random matches between features
Appendix 2 User interface to the software
Appendix 3 Publications

vii

Contents

Abstract ..
ii

Acknowledgements ..
iv

Declaration ... v
Lay out of thesis ... vi
Contents .. Vii

Prologue .. xii
Reader's guide to the thesis xiv
Abbreviations and Conventions used in the Thesis xv

Chapter 1 Introduction and Survey of Techniques
1

1.1 Scope of this Work
3

1.2 Industrial Computer vision systems
5

1.3 Survey of industrial vision systems
9

1.3.1 Statistical Vision Systems
9

1.3.1.1 Statistical Binary Vision Systems
11

1.3.2 Structural Systems: The need for an alternative
approach .. 12

1.3.2.1 Shape descriptors 13
1.3.2.2 Structure from Local Features 14

1.3.3 Other binary vision systems 14
1.3.4 Structured lighting for binary vision 15
1.3.5 Binary/grey scale vision systems 16
1.3.6 Grey scale vision systems 17
1.3.7 Planes of activity 19
1.3.8 Summary ... 20

Chapter 2A Strategy for Recognizing Complex Objects: Basic
Principles ... 23

2.1 The General Strategy 23
2.1.1 Generalized Local Features 24

2.1.1.1 The need for a better description of ob-
ject structure 24

2.1.1.2 The advantage of using local features 26
2.1.2 Learning .. 27

Contents viii

2.1.2.1 Unique Structure 27
2.1.2.2 Relational structures and graph matching 28
2.1.2.3 Finding Unique Structure 33

2.1.3 The Overall Strategy 36

Chapter 3A Strategy for Recognizing Complex Objects: The Ar-
chitecture ...

40

3.1 Introduction ..
40

3.1.1 Other Objectives
41

3.1.1.1 The Importance of Execution Speed
42

3.1.2 Influence of the human visual system 42
3.1.3 The System ..

42

3.2 Pre-processing ..
44

3.2.1 Imaging Conditions
45

3.2.1.1 Object position (2D and 3D)
46

3.2.1.2 Object orientation in 2D 46
3.2.1.3 Illumination variation

47
3.2.1.4 Scale variations 50
3.2.1.5 3D orientation variation 51
3.2.1.6 Partial Obscuration 51
3.2.1.7 Summary 51

3.2.2 Gradient Detection 52
3.2.3 The Rep-Point algorithm

54
3.2.4 Constructing Local Neighbourhoods

62
3.2.5 Summary of Pre-Processor

65

3.3 The Feature Matching Algorithm
66

3.4 The Learning Stage 71
3.4.1 Model Formation 71 3.4.2 The Extended Learning Stage 72
3.4.3 Constructing a Data Structure for Recognition

81

3.5 The Recognition Stage 83

3.6 Some General Points on the Architecture 84
3.6.1 Summary of Architecture 84
3.6.2 Another perspective of the architecture 85
3.6.3 'Plane' Classification 86
3.6.4 Suitability for Parallel Processing

............... 86
3.6.5 Limitations of the Vision System 86

3.7 Comparative Survey 88
3.7.1 Systems based on concurves 88
3.7.2 Systems based on local features 92
3.7.3 Comments on Comparisons 97

Contents Ix

Chapter 4 Implementation: Algorithms and Data Structures 100

4.1 Pre-processing stage 100
4.1.1 Edge detection 102

4.1.1.1 The Walsh Transform based Edge Detector
(WTED)

......................................
102

4.1.1.2 The WTED program
107

4.1.2 The Rep-Point Algorithm
109

4.1.2.1 The 1D rep-point algorithm 109
4.1.2.2 The 2D algorithm

110
4.1.3 Constructing Local Neighbourhoods 112

4.2 The Matching Algorithm
116

4.3 The learning stage
118

4.3.1 Model Formation
118

4.3.2 The Learning Algorithm
121

4.3.3 Recognition Data Structure
123

4.4 The Recognition Algorithm
124

4.5 Comments on the overall system implementation 130

Chapter 5 Tests and Results 134

5.1 Introduction .. 135
5.1.1 Selection of Test Objects 137
5.1.2 Test Procedure 138

5.1.2.1 Forming the test library 139

5.2 Overall System Tests 147
5.2.1 Sensitivity to the Three Basic Assumptions 147

5.2.1.1 Light Variation Test 147
5.2.1.2 Scale Variation Test 154
5.2.1.3 3D Orientation Variation 156

5.2.2 Variation of other Implicit Assumptions 158
5.2.2.1 Camera Defocussing 159
5.2.2.2 Gaussian Noise 160

5.2.3 Other Miscellaneous Tests 164
5.2.3.1 Object Recognition in Ordinary Lighting

Conditions 164
5.2.3.2 Directional Lighting and Camera Blooming .. 167
5.2.3.3 Obscuration Test 167
5.2.3.4 Distance Variation Test 169
5.2.3.5 Background Variation 169
5.2.3.6 Pile of Objects 172
5.2.3.7 Recognition of 'Simple' Objects 174
5.2.3.8 Teaching More Objects 175
5.2.3.9 Swarf on the Objects 178

5.2.4 Testing the System Through Variations in Inter-

Contents x

nal Parameters 180
5.2.4.1 Variation of Edge Detector 180
5.2.4.2 Variation of Local Neighbourhood Radius 181

5.2.5 Discussion of Overall System Tests 182

5.3 Testing the Individual Parts
184

5.3.1 Testing the Edge Detector
184

5.3.1.1 Noise performance of the WTED 191
5.3.2 The Rep-point Algorithm 194
5.3.3 Local Neighbourhood Statistics 201

5.4 Execution Time ..
202

5.4.1 The Pre-Processor
202

5.4.2 The learning stage
202

5.4.3 Recognition Time
203

5.5 Summary of test results
204

Chapter 6 Future Work and Conclusions
208

6.1 Future work: Extending the architecture
208

6.1.1 Extending the system to cope with 'simple' ob-
jects ...

209
6.1.2 Coping with Scale Variations

213
6.1.3 Coping with 3D orientation variation

214
6.1.4 The Need for Clustering Objects

217
6.1.5 Possible Application to Scene Analysis and 'Very

High Level' Vision 218

6.2 Future Work: Design of a Hardware Pre-Processor 219
6.2.1 Implementation using a Cellular Array Processor .. 219
6.2.2 Pipelined Implementation 219

6.2.2.1 Walsh Edge Detection 221
6.2.2.2 The Rep-Point Algorithm 223
6.2.2.3 The Local Neighbourhood Algorithm 224
6.2.2.4 Overall System Implementation 224

6.2.3 Discussion of the Architecture
.................... 225

6.3 Conclusions ... 227
6.3.1 Contributions 227

References ..

Appendix 1 Probability of a Random match between two features ..

233

241

Appendix 2 User Interface to the Software 245

Contents X1

Appendix 3 Publications .. 250

I

Prologue

This thesis is concerned with the problem of recognizing objects

by computer. Humans and animals have had a highly developed sense of

vision for many thousands of years, but the task of teaching a machine

to 'see' has turned out to be more difficult than at first thought.

Much research has been carried out to investigate the problem, and

many techniques and systems have been designed.

What then is the motivation for research into computer vision?

Why do we need artificial vision systems? Industry has a large demand

for accurate and reliable sensing. Much of this sensing is done at

present by humans. Visual inspection of finished products is a typical

example. Such jobs are extremely tedious for humans, which results in

a low performance level. Kruger and Thompson [1981] assess the need

for computer vision in industry. They state (p. 1524):

"The economic motivation for the use of industrial computer
vision is to increase productivity through the introduction of
intelligent programmable vision-based systems for inspection
and/or robotic assembly. Productivity is defined as the output
of goods or services produced (or inspected) per unit of la-
bour input. "

They go on to quote Solow:

"More than half of the increase in productivity [in the USA]

Prologue xiii

is a residual that seems to be attributable to technical
change, to scientific advance, to industrial improvements, and
to improved management and training of labour. "

Another area of application for computer vision systems is in

environments that are unsafe for humans such as in power plants, or

underwater. There is also the possibility of using vision systems

that respond to a far wider range of electro-magnetic radiation than

the human visual system. This may give new insight into difficult

problems in many branches of physics and engineering. Vision systems

could also be used to aid blind people with their everyday lives.

Therefore, there appears to be a vast demand for artificial

vision systems that could perform as well as, or better than, the

human visual system. Unfortunately though, the problem has been found

to be of immense complexity, and this has motivated a large amount of

research in the field.

This thesis looks at the problem of industrial computer vision.

An architecture is developed for this environment, keeping in mind the

possibility of application to other similar environments. Therefore,

the vision system architecture is not designed to be limited to the

industrial environment. The principal objective in designing this

architecture was to attain flexibility of operation. The system is

expected to be insensitive to a range of operating conditions with the

aim of obtaining maximum flexibility coupled with a rapid execution

speed.

Prologue

Reader's guide to the thesis

xiv

Chapter 1 introduces the thesis. It begins with an overview of

this work, which Is followed by a brief survey of previous work in

industrial computer vision.

Chapter 2 describes the general principles on which the new sys-

tem is based.

Chapter 3 describes the architecture of my vision system.

Detailed arguments are given for the design choices. This chapter is

written in the form of a specification of the vision system, and

therefore attempts to be independent of the actual algorithms used.

The system architecture is then compared with that of previously

reported systems with emphasis on performance.

Chapter 4 gives details of the implementation, the algorithms and

data structures used, programming trade-offs etc. It is designed to

provide sufficient information to allow the vision system to be imple-

mented by the reader.

Chapter 5 reports the tests performed on the system to verify

processing speed, and the degree of operational flexibility displayed.

Chapter 6 looks at the limitations of the architecture and pro-

poses ways of removing them. In particular, this chapter suggests a

way of extending the system to '3 dimensional vision' in the indus-

trial environment. Next a strategy for implementing the pre-processor

in hardware is given. This concludes the thesis.

Prologue

Abbreviations and Conventions used in the Thesis

UF -Unique Feature

WTED -Walsh Transform based Edge Detector

The following conventions have been adopted in this thesis.

xv

1. Quotations from other authors are always bracketed by double

quotes as in " ... it.

2. Square brackets [] have been used to indicate references to

other work.

3. Curly brackets if are used to refer to material within this

thesis - as in 'see section {1.1}1.

Chapter 1

Introduction and Survey of Techniques

This thesis is concerned with the problem of recognizing indus-

trial objects rapidly and flexibly. The design objective was to attain

operational flexibility in terms of minimum requirements placed on the

operating environment coupled with a rapid execution speed using

readily available processing resources. I will be especially

interested in the problem of recognizing complex objects, i. e. objects

which cannot be easily modelled by simple geometric shapes. An attempt

has been made to keep the strategy fairly general, so that similar

problems may be tackled using the same strategy requiring only a re-

design of lower level algorithms.

The recognition strategy is based on the automatic learning of

unique, reliable features of objects. Uniqueness of a feature is

defined over the set of known objects, and reliability over the set of

possible imaging conditions. Thus, a feature F is unique to object 01

if (a) it is reliably located in the image whenever object 01 is known

to be in the image, throughout the complete range of imaging condi-

tions that the system is required to operate in, and (b) if F is never

seen in the image whenever object 01 is known to be not in the image

throughout the range of known objects and allowed imaging conditions.

Section 1 Page 2

Such a feature F may then be used (by definition) to reliably recog-

nize an object from the set of known objects throughout the range of

allowed imaging conditions. This is the strategy that is used in this

thesis. (It is useful to note here that, in general, a feature may be

a relational structure of other features, so that this algorithm can

be shown to be a general requirement of any recognition strategy).

The vision system architecture is based on three main sub-blocks:

(a) The use of generalized local features, (b) automatic learning, and

(c) the use of unique structure. In the rest of this thesis I show the

need for using generalized local features, and define what I mean by

object structure, and how I select unique structure. The importance of

defining the range of imaging conditions in advance is also explained.

It is shown that the use of an automatic learning strategy results in

a flexible recognition algorithm.

The system was tested over a range of imaging conditions. It was

able to show insensitivity to its three main assumptions: constant

lighting, constant scale, and limitation to 2D views of objects. For

example, with one set of test objects, it was possible to reduce the

light intensity by 70% before recognition was lost, or the object size.

could be reduced by 30%, or the object could be tilted 300-400 out of

the learned plane before recognition was lost. This performance was

achieved despite the fact that the initial learning stage did not

allow for variations in these parameters. A variety of other tests

such as recognition of overlapping parts, recognition despite added

Gaussian noise, image blurring, etc. demonstrate the flexibility of

the system. In addition to this flexibility, the recognition algo-

rithm was able to execute rapidly. Recognition times as low as 10ms

Section 1 Page 3

have been observed. However, average times when searching for 3

objects were from 100-500ms. For complex scenes execution times of

1-5s were reported. However, it should be noted that these times do

not include a constant pre-processing time of about 70s which may be

reduced to a negligible pipeline delay by the use of special purpose

hardware. An architecture for such hardware is presented in chapter 6.

It should also be noted that these execution times were obtained on a

small minicomputer (PDP 11/24) programmed in Fortran.

1.1. Scope of this Work

In this thesis I will discuss only the problem of recognizing

objects. I will not be concerned with the problems of symmetry

analysis, or inspection, or measurement, or the problem of determining

the position and orientation of the recognized object accurately. The

reason for not discussing these issues is that I do not have any ori-

ginal contribution to make on these subjects. See Bolles [1979] and

Olsztyn et al [1973] for a discussion of symmetry analysis. See the

following references for a discussion of inspection: Brauner [1982]

(IC chips), Baird [1982] (instrument gauges), Hara et al [1982]

(printed circuit boards), Konishi et al [1982] (CCD wafers), Zimmerman

et al [1982] (hybrid circuits), Barnard [1980] (industrial parts),

Perkins [1983] (industrial parts). Also see PAMI [1983] which has a

special section on industrial applications of machine vision; many of

the systems reported are concerned with the problem of inspection.

I am also not concerned with the problem of scene analysis as it

is normally understood, except for describing the image in terms of

known objects. Therefore, the system does not attempt to explain the

Section 1.1 Page 4

light sources, shadows, or highlights etc. i. e. it does not attempt to

account for all of the 'information' in the scene.

Section 1.2

1.2. Industrial Computer vision systems

Page 5

A large number of computer vision systems have been built, and

reported in the last few years (Cohen and Feigenbaum [1982], and Rag-

gett [1980] survey the field). A large proportion of these systems

are concerned with the recognition and (or) inspection of industrial

objects. In this section I look at the field of industrial computer

vision in general.

The industrial environment is a popular choice for the design of

computer vision systems (Chin and Harlow [1982] survey the field).

Apart from the attractions due to economic factors (i. e. availability

of resources), the industrial environment allows the vision problem to

be highly constrained, and still be of use.

A large number of constraints are commonly imposed by computer

vision systems, although not all of them are entirely acceptable to

the average industrial user. The following is a discussion of these

constraints.

1. The most important set of constraints is imposed by assum-

ing a narrow context of operation. Objects will usually be presented

to the system in a known way (e. g. on a conveyor belt). It is often

assumed that only a single object will be visible to the system at any

instant. Alternatively, some systems allow multiple objects provided

that they are not touching. Others extend to touching objects, or to

partially overlapping objects. The objects are usually seen on a uni-

form background. Some systems assume that the object is darker than

the background or vice versa (but not both). The detection of object

movement is usually not required, and many systems freeze object

Section 1.2 Page 6

movement (using hardware) before sensing the object. The recognition

of object classes is also not required (e. g. the class of chairs, or

tables). Objects are usually rigid and shape invariant (e. g. a half-

open pair of scissors would not be allowed). Objects are usually not

described in 3 dimensions, but as a set of views obtained from gravi-

tationally stable states. This removes the need for 3D interpretation

and representation.

2. It is common for computer vision systems to impose res-

trictions on the lighting conditions used. Some systems require spe-

cial lighting conditions such as light stripes and light tables. Oth-

ers use special lighting arrangements to highlight features known in

advance.

3. Most vision systems assume that there is no scale variation

i. e. the camera is fixed, and the objects are always at the same dis-

tance from the camera. Some systems show a tolerance towards small

scale variations (e. g. Perkins [1978] - 5%). A further restriction is

placed on the ratio of the largest to the smallest object. This is

necessary due to the limited picture resolution available.

4. Most systems assume that the number of possible objects in

the world of the vision system is small (of the order of 10).

5. Many assume that the objects presented contain a large pro-

portion of straight and circular features, characteristic of man-made

objects. Special feature detectors are often employed to respond to

these features.

6. Some vision systems depend on assistance from a trained

Section 1.2 Page 7

operator during the object learning stage.

Of course, not all vision systems impose all of these con-

straints. The industrial vision environment in turn imposes special

constraints on the vision system.

1. Low cost: Apart from the cost of building the vision

system, the cost of providing the industrial environment must also be

low (e. g., the cost of providing special lighting conditions, clean

conveyor belts, etc.).

2. Execution speed: The vision system must be able to per-

form at the required speed despite the constraints placed on cost.

3. Recognition must usually be achieved from a single view of

the object(s).

The classification must be reliable. It may for instance be

safer not to recognize an object (and therefore discard it), than to

misclassify it. The requirement of reliability also forces vision sys-

tems to be less sensitive to the constraints they impose on the

operating environment.

5. Some of the constraints that may be necessary for the

vision system to operate could be unacceptable for an industrial user

due to human factors. i. e., light flashes or lasers may be unsuitable

if the vision system is to operate close to human workers.

6. Industrial users may be unwilling to supply trained opera-

tors to aid the vision system. Vision systems should therefore be

Section 1.2 Page 8

designed to operate with minimum human intervention.

7. It is likely that many of the objects to be recognized will

have shiny metallic surfaces resulting in an increase of highlights in

the image.

On the basis of the constraints placed on the operating environ-

ment, industrial vision systems can be divided into special purpose

and general purpose vision systems. Special purpose systems are

defined as those that seek to solve a specific industrial vision prob-

lem. These systems often use object dependent algorithms which are

not easily generalizable to other tasks. Such systems are of limited

interest to us. General purpose vision systems, on the other hand, are

defined as systems that try to relax as many constraints as possible,

and yet achieve the cost and speed requirements of industrial users.

No system could hope to remove all of the constraints stated above (in

the near future) as such a system would surpass the performance of

even the human visual system. Therefore, the aim of a general purpose

vision system is to remove as many constraints as possible, with

priority given to those constraints that are expensive to satisfy. The

vision system proposed in this thesis is such a system.

Section 1.3 Page 9

1.3. Survey of industrial vision systems

This section looks at general techniques used in industrial

vision systems. It should be noted that the description of some sys-

terns that are directly comparable to the vision system described in

this thesis is delayed till chapter 3 where they are discussed in

greater detail. Thus, the purpose of this section is to give a brief

overview of industrial vision techniques. The discussion begins with

binary vision systems and progresses to grey scale vision systems.

General techniques will be discussed along the way.

1.3.1. Statistical Vision Systems

Computer vision systems can be divided (loosely) into two

categories: 'statistical' vision systems and 'structural' or syntactic

vision systems. Statistical vision systems are essentially concerned

with the classification of patterns using the well developed work in

statistics and probability. The basic assumption is that the pattern

generating mechanism (i. e. the scene and the imager) can be modelled

as a statistical distribution [Devijver and Kittler 1982, p. 6]. The

recognition of a pattern then becomes a problem of statistical deci-

sion theory.

Thus the recognition problem can be defined as the problem of

classifying an input pattern x to a single class Cr selected from a

finite set {C1,
... , Cn}, using a set of features {f,,

... , fm}. if

the input pattern has a feature vector V, it is classified to be in

class Cr if

D(V)-D(Cr) > D(V)-D(Ci) for all i*r,

Section 1.3.1 Page 10

where D is the discriminant function. Many discriminant functions have

been proposed. See Fu [1982], p. 35 for a list. See also Devijver and

Kittler [1982] for a detailed discussion of statistical pattern recog-

nition.

This technique, although very successful in certain domains (see

section {1.3.1.1}) of the vision problem, has two main drawbacks in

terms of general vision.

Firstly, the discriminant function is essentially impartial

towards its response to any given feature, and therefore minimizing

D(V)-D(Ci) does not guarantee a correct interpretation, especially in

the presence of noise. This is because the D function essentially has

no understanding of the physical importance of particular features in

discriminating between objects. A common solution to this problem has

been to use decision trees to reflect the importance of particular

features. The decision trees are sometimes based on ad hoc programmer

chosen criteria, which is unfortunate as the original reason for using

statistical tests - that of a rigorous mathematical background - is

lost.

Alternatively, a near optimal decision tree may be computed

[Giralt, Ghallab, and Stuck 1979] by using Bayes decision theory to

minimize the risk of misclassification. But, this requires knowledge

of the multivariate probability function p(xlC1) when pattern x is

known to belong to class C. This is sometimes computed empirically

during an initial learning stage.

Another significant drawback with this technique is the inherent

inability of statistical vision systems to analyze complex scenes, as

Section 1.3.1 Page 11

there is no statistical mechanism for handling 'structural' informa-

tion. This is discussed in more detail after the next sub-section.

1.3.1.1. Statistical Binary Vision Systems Many binary vision sys-

tems that use statistical techniques have been reported (e. g. Agin

[1975]). Objects were illuminated to produce high contrast images

(e. g. by using a light table), so that the objects were easily

separated from the background. A digitized TV image of this scene

would then be segmented into object and background, and the statisti-

cal measures computed from the sensed image of the object. These meas-

urements could then be used to recognize objects based on the heavy

operating context. Measurements such as perimeter of object, number of

holes in object, max/min moments of inertia were used. These systems

operate well if the constraints placed are acceptable. Unfortunately

though, this is not always the case. The requirement of back lighting

can be problematic in the presence of conveyor belts. Reflected light-

ing can obtain the required lighting effects, but that places con-

straints on the background reflective coefficient, and on the stabil-

ity of the incident light intensity. (Agin [1975] uses fluorescent

red paint on the background, illuminated by ultra-violet light).

Also, it is often necessary to use objects that do not fit into the

assumed context, i. e. objects that are different (to humans), which

generate similar measurements. This problem is often created by the

two sides of a flat object. Further problems are encountered if touch-

ing or overlapping objects are to be recognized, or if dirt or swarf

is present on the conveyor belt.

Section 1.3.1.1 Page 12

As with the simplest vision systems, the drawbacks of these

binary vision systems arise from their inability to handle commonly

occurring situations in industrial vision which do not fit the operat-

ing context.

1.3.2. Structural Systems: The need for an alternative approach

The success of a statistical approach is usually dependent on the

selection of a good set of features. Although this may be relatively

easy for simple scenes (such as when recognizing machine printed char-

acters) it becomes quite difficult for complex scenes (such as when

overlapping parts are present), or virtually impossible in very com-

plex situations (such as in a street scene). The reason for this is

that as the number of possible objects and the range of imaging condi-

tions is increased, the number of pattern classes explodes rapidly,

and it is no longer possible to treat the problem as one of pattern

classification.

However, the problem may be tackled using a structured approach,

by treating the scene as consisting of several subparts that are

related to each other in some way. It is now possible to treat each

subproblem as a pattern classification problem. Indeed, Devijver and

Kittler [1982] p. 3 assert that for the majority of problems "either

the original problem itself can be reformulated as a pattern classifi-

cation problem, or it may be divided into a number of classification

subproblems and sub-subproblems until, eventually, the original prob-

lem is reduced to a set of pattern classification problems".

Section 1.3.2 Page 13

For example, the recognition of a circuit diagram is a problem

that cannot be treated as a straightforward classification problem. It

could be handled by treating the recognition of individual components

(such as the resistors and capacitors) as a pattern classification

problem. Once this is done, the circuit diagram can be represented as

a relational structure of subparts that have been recognized. The

analysis of the circuit can be continued from this point.

In addition to the objective of reducing the recognition problem

to a set of (not necessarily independent) subproblems, structural sys-

tems also have the objective of 'describing the physical structure of

the objects. However, current usage of the term does not appear to

insist on this. One of the reasons for this is that it is very diffi-

cult to define what is meant by physical structure of the objects.

1.3.2.1. Shape descriptors A commonly used attribute of an object

that is accepted as reflecting its structure is the shape of its boun-

dary. A popular shape descriptor is the chain code, first suggested

by Freeman [1961]. In the general version of this technique, the local

direction of the boundary is quantized to one of a finite number of

directions. Each segment is then linked to its nearest neighbour, to

form a chain of edge segments. Kopolowitz [1981] investigates the per-

formance of chain codes. Mckee and Aggarwal [1977] use an extended

chain code to recognize partial views of objects from binary images. A

feature of the system is its ability to handle scale variations.

Karg and Lanz [1979] represent shape using concentric circles

centred on the centre of gravity of the object. Olympief et al [?]

represent shape using a polygonal approximation. Pavlidis [1978,1980]

Section 1.3.2.1 Page 14

surveys the multitude of shape descriptors that have been reported.

1.3.2.2. Structure from Local Features Another approach to improv-

ing vision system performance is to use local features that reflect

the structure of the object. Igarachi et al [1979] reports a special

purpose vision system for integrated circuit (IC) wire bonding that

has a special IC electrode detector. The system improves its noise

immunity by using a dynamic threshold to obtain the binary image. The

advantage of local feature detection is the ability to withstand a

certain amount of obscuration or noise which affects global features

such as area. Persoon [1978/9] uses local information to allow his

binary vision system to recognize touching, or partially overlapping

objects. In the learning stage the system learns local binary shape

patterns of 11 pixel diameter. The binary vision system reported by

Bolles and Cain [1983] is able to use local features such as holes and

corners.

1.3.3. Other binary vision systems

Kelley et al [1979] describe a vision system that uses binary

vision to pick objects from bins. This system is interesting in that

it is a rare example of a computer vision system that uses tactile

information and its grasping ability to aid the recognition process.

The vision system is used initially to decide on a suitable site for

the robot to grip. The robot then tries to pick up the object using

its tactile sense to detect error conditions (or success). Once the

object is picked up, it is shown to the camera on a suitable back-

ground so that it can be recognized and oriented.

Section 1.3.3 Page 15

Taylor and Ero [1980] report an unusual vision system that per-

forms a complete 2D correlation of the input image with all of the

stored images simultaneously, using special purpose hardware. The sys-

tem is able to operate at a speed of 125 objects/s. A drawback with

the system is the need to store different 2D orientations of the same

object as different models. It should be noted that direct correlation

techniques (also called template matching) have another drawback in

that they require the object position to be the same in the image as

when it was first taught. In Taylor and Ero's system, this problem is

circumvented by the use of a conveyor belt which effectively sweeps

the object over one of the axis. The object position has to be accu-

rate on the axis perpendicular to the direction of motion of the belt.

1.3.4. Structured lighting for binary vision

The CONSIGHT vision system of Ward et al [1979] is a statistical

binary vision system that uses a few global measurements of the object

for recognition. However, they circumvent one of the problems of

binary vision -the thresholding of the image to separate the object

from the background- by using a unique lighting system based on using

two planes of light which are focussed on to a thin strip of the back-

ground. This strip of light is then observed by a line scan camera.

As the light planes are projected from non-perpendicular angles, any

object with a significant thickness displaces the light stripe from

the view of the camera. Object and background are separated reliably

by this method, although some problems are introduced by a shadowing

effect which can be minimized by careful setting up of the lights.

Section 1.3.4 Page 16

1.3.5. Binary/grey scale vision systems

A major disadvantage with binary vision systems is their inabil-

ity to operate as the contrast of the input image is degraded. This

has created the necessity to quantize the intensity to more than two

levels, in order to increase the information content in the image.

Some vision systems rely on a hybrid system that uses binary and grey

scale images to improve the system performance. Malinen and Niemi

[1979] report a system that uses a binary image and an 8 level (3 bit

grey scale image for object recognition. They assume the objects are

dark when compared with the background.

Yachida and Tsuji [1977] report a sophisticated general purpose

vision system. Objects are first located in the image using a coarse

binary image. Once located, a fine grey scale image of the object area

is obtained. This image is thresholded using a local histogram tech-

nique, so that local intensity variations can be accounted for. The

resulting silhouette is classified using statistical measures and a

shape descriptor based on the distance of points on the perimeter from

the centre of gravity. The most likely matches found are then tested

for, using special feature detectors to find holes, lines, small

holes, and textures. The special feature detectors operate rapidly as

they are used only over the local area where the feature is expected.

The system contains a special learning algorithm. During the learning

stage, all matches of the new object with library objects are tested

for on the basis of the statistical measures and the silhouette

shape. The special features necessary to distinguish the new object

from the subset of matched models are taught by an operator during an

interactive learning session. The system is reported to be able to

Section 1.3.5 Page 17

operate "with considerable noise caused by dirt and grease" and

reports a fair operating speed (20-90s on a PDP8 minicomputer. This

can probably be reduced by an order of magnitude or more on a modern

(1984) minicomputer).

This versatile vision system suffers a few drawbacks as far as

general purpose vision is concerned. It assumes that objects are

brighter than the background, that the background area is larger than

the total object area, and that operator help is available to teach

local features. It is not designed to be able to handle touching or

overlapping objects, although they report that "even when there were

overlapping objects in the scene, the vision system could tell their

locations ... " which implies a degree of operational flexibility. The

system also suffers from an abundance of heuristics and programmer

chosen weighting criteria. However, it appears to be superior when

compared with standard binary vision systems.

1.3.6. Grey scale vision systems

Many of the problems associated with binary vision systems are

due to the initial loss of information when the image is thresholded.

Thus, it is necessary to use the grey scale image itself for the image

analysis. One of the best known general purpose vision systems that

uses grey scale images for object recognition was reported by Perkins

[1978].

The program first finds edge points in the input grey scale

image. This is necessary in order to reduce the data in the input

grey scale image. Perkins uses a 256x256 input image. The edge detec-

Section 1.3.6 Page 18

tion reduces the initial data of over 65000 intensity points to "less

than 1000 edge points". This is possible due to the large redundancy

in most scenes. The edge data is then thinned and linked into chains.

The thinning operation is necessary because most edge detectors pro-

duce edges more than 1 pixel thick (especially in the vicinity of a

strong edge). The chains are formed by connecting edge points to their

neighbours. The program now uses the a priori knowledge that most

industrial objects have straight and circular features, to find these

features in the chain data. The chains are therefore transformed into

a set of linked segments that are either straight or circular. These

new chains are called concurves. Models of the objects are formed dur-

ing a learning stage by storing the concurves found. In the recogni-

tion stage, model concurves are compared with input concurves. The

program is claimed to be able to operate in visually noisy scenes and

is able to recognize overlapping objects (although it was not designed

to do so). The program reports a rapid execution speed (on an IBM

370/168 mainframe computer) of between 0.1s and 0.4s for the high

level operations; the low level algorithms taking approximately 20s.

It is limited to the recognition of stable states of objects (i. e. no

3D interpretation is attempted), and it cannot handle textured object

data. It is also dependent on finding straight and circular features

in objects in order to operate efficiently. The program is not able to

handle scale variations either, although a 5% variation is tolerated.

(Shirai [1978] reports a similar system that uses straight lines and

ellipses to recognize "everyday objects" in 3D scenes).

Section 1.3.7

1.3.7. Planes of
,

activity

Page 19

Perkins' program illustrates a special instance of the strategy

used by computer vision systems. The input data is reduced and

transformed into a set of features that are independent of certain

imaging conditions such as absolute lighting level, object position

and orientation, and scale variations.

Pre-stored models of the expected objects are then used to select

(or generate) a set of possible features. The features found in the

image are then compared with the features generated from the models.

If the two sets are sufficiently similar, the object is declared

recognized. We then identify three planes of activity. The image

plane, the feature plane, and the model plane (see Fig. 1-1). These

planes of activity have only a loose association with the levels of

processing that are commonly referred to in vision research (i. e. low,

high and intermediate level vision).

Model plane Models

Feature Plane Generated features - Detected features?

Image plane Image

Fig. 1-1

Section 1.3.7 Page 20

In Perkins' program, there is hardly any distinction between the

feature plane and the model plane. During the learning stage, features

that are found are used directly to form models. Because the features

formed are dependent on the 3-dimensional orientation of the object,

each 2D view of the object generates different features (in general).

Thus, Perkins' program is limited to the recognition of stable states

(i. e. a set of 2D views) of objects (as are most industrial vision

systems). Yachida and Tsuji's program {section 1.3.51 can be classi-

Pied into the three planes in a similar way. However, their program

has a feature plane that is quite wide in terms of the level of pro-

cessing used in the feature match.

The ACRONYM vision system by Brooks et al [1979] is a good exam-

ple of a vision system that has 3 distinct planes. The model plane

contains 3-dimensional geometric models of the objects that are known

to the system. These models are given to the system by an operator.

The system then predicts the features that it expects to see in the

scene. These features are matched with features found by the low level

algorithms. The features used are "ribbons" (2D projections of gen-

eralized cones) and ellipses.

The system by Taylor and Ero {section 1.3.3} is an interesting

example. Models are formed by storing the input binary image. In this

system, the three planes coincide.

1.3.8. Summary

Computer vision systems, then, differ by the way they use

features and models. Some systems use pixel data as models and there-

Section 1.3.8 Page 21

fore can recognize an object only if it is presented in exactly the

same way as it was when the model was formed. Flexibility of operation

is achieved by extracting features of objects that are invariant with

respect to the imaging conditions of interest. These features can then

be compared with previously stored features. However, it is not possi-

ble to extract a set of invariant features with respect to certain

parameters such as 3D orientation. In order to handle such situations,

it is necessary to form 3-dimensional models of the objects, so that

the expected features can be predicted and searched for.

Chapter 2

A Strategy for Recognizing Complex Objects: Basic Principles

In this chapter I describe the strategy that was developed to

tackle the problem of recognizing complex objects in a flexible

manner.

2.1. The General Strategy

The recognition strategy is based on three building blocks:

(1) generalized local features,

(2) learning, and

(3) the use of unique structure.

The system operates as follows: During the learning stage, the gen-

eralized feature detector generates feature descriptions of the

objects to be learned. The learning algorithm observes the perfor-

mance of the feature detector and selects a set of reliable features

for each object. From this set, the learning algorithm constructs a

set of descriptions of unique, reliable subparts of each object. Dur-

ing the recognition stage these unique descriptions are searched for

in the new feature description.

I will now describe the three sub-strategies in more detail, to dis-

Section 2.1 Page 24

cover the extent of their generality.

2.1.1. Generalized Local Features

The task of the feature detector is to describe the input scene

using a set of features so that all of the information is included.

The system describes the scene at two levels. Firstly, the scene is

described by a relational structure of elementary features called

rep-points {section 3.2.31. Next, local subgraphs of rep-points are

used to form local features. The scene is then described by a rela-

tional structure of local features. Thus the local features are local

subgraphs of the rep-point relational structure. These local features

are able to describe complex local structure of the objects due to the

way they are constructed. The large vocabulary of the feature

descriptor {appendix 1} makes it a generalized local feature descrip-

tor.

Thus, a major objective in the design of the feature descriptor

was to allow it to describe object structure in detail. What then is

object structure, and why is it necessary to describe it in detail?

2.1.1.1. The need for a better description of object structure

Object structure is very important for recognition. Since the struc-

ture of an object is constant through variations in imaging condi-

tions, a vision system that is able to respond to object structure

would be very successful. But what is object structure, and how can it

be defined?

Section 2.1.1.1 Page 25

Object structure is relative. Firstly, it depends on the scale

of interest; my vision system, for instance, will not be interested in

the internal structure of objects. This is effectively a requirement

that the structure of the object be visible. Secondly, what is gen-

erally referred to as structure depends on the context of use; the

perceived structure of an object is often dependent on the perceiver

and his motivation. (Consider, for example, the perception of circuit

diagrams, chest X-rays, weather photographs, hand writing in a foreign

language, etc. by people trained to do so, and the rest of us). Thus

it appears that we need a definition of structure that is independent

of human perception, but is useful for computer vision.

The previous two paragraphs in fact provide us with the required

information for a definition of (visual) structure. From the first

paragraph it is clear that the motivation for using object structure

arises from its independence of imaging conditions. From the second

paragraph, the important condition is that the structure must be visi-

ble. Therefore, I define object structure as everything about the

object that is independent of the imaging conditions of interest, and

is visible. Imaging conditions are defined as everything that contri-

butes to the function that transforms an object into an image. In

addition to parameters such as lighting and scale, it also includes

lens aberrations and electronic noise.

The reason for the qualification on imaging conditions (to that

of the imaging conditions of interest) is due to the fact that the set

of visible features that are independent through (all variations of)

the imaging conditions is of course a null set (e. g. there must be

limits placed on the allowed variation of lighting, scale, etc.). The

Section 2.1.1.1 Page 26

reason for requiring 'everything' about the object to be structure is

because my system will depend on structure to differentiate objects,

and therefore, any two objects that have the same structure (as

defined) will be indistinguishable. It is therefore necessary to

respond to everything that might differentiate the two objects. Thus,

this requirement means that two objects can be reliably differentiated

only if they never produce exactly the same image within the imaging

conditions of interest. It will be noticed that this is not restric-

tive, and is in fact a fundamental principle of vision when external

contextual information is unavailable.

From this definition it will be clear that all of the information

regarding the object structure must be present in the image. The

objective of the local feature detector is to describe the local

structure in a form that is independent of the imaging conditions of

interest. Therefore the feature detector attempts to respond to every-

thing in the image that is independent of the imaging conditions. In

particular, the local feature detector is not designed to be limited

to those features that are thought to be important by the human visual

system.

2.1.1.2. The advantage of using local features The feature detector

is designed to detect only local features, for two reasons.

1. Local features are less sensitive to object obscuration.

2. Global features can be constructed from the local features.

The first of these is the main motivation for using local features. It

allows us to recognize partially visible objects using local feature

Section 2.1.1.2 Page 27

descriptions of the visible part.

2.1.2. Learning

The heart of the general strategy lies in the learning system.

The learning strategy is responsible for the performance of the sys-

tem. It improves the speed, the flexibility, and the reliability. The

learning stage has the following tasks:

1. Acquire a description of each object in terms of a relational

structure of rep-points, and a relational structure of local

features.

2. Observe the performance of the feature detector and form a set of

reliable features over the imaging conditions of interest. Obtain

insensitivity to internal-parameters of the system as well by this

reliability test.

3. Compare the objects that have been learned, and find feature

descriptions of subparts of each object that are unique to the

object over the imaging conditions of interest., and thereby

transfer the graph matching problem from the recognition stage to

the learning stage. These descriptions of unique subparts of the

object are called unique structure.

2.1.2.1. Unique Structure

Let us imagine that we have a perfect pre-processor that is able

to describe objects in terms of features that include all of the

information in the scene that is independent of the imaging conditions

of interest, as required in section {2.1.1}. These features will be

called structural features (see definition of object structure {sec-

Section 2.1.2.1 Page 28

tion 2.1.1.1}) to differentiate them from features which we do not

know are independent of the imaging conditions. Each object will then

be represented by a set of structural features, and since all of the

structural information is included in the feature description, the

objects can be differentiated on the basis of the feature description

alone i. e., any two objects that are indistinguishable from the struc-

tural feature description are visually indistinguishable over the

imaging conditions of interest. (Note that this is for a perfect

pre-processor). How can we compare the feature descriptions to recog-

nize objects?

It will be clear that the features have relationships between

them. That is, it is insufficient to detect each feature in isola-

tion. The complete feature description is required to specify the com-

plete object. Therefore, the object must be represented by a rela-

tional structure of features. (It should be noted that at this stage

of the discussion the word feature is used to describe any feature

that one would want to measure, and is not limited to those used in

this work, or to local features). The task of object recognition then

becomes a problem of comparing (or matching) relational structures.

The basic problem here is the one of matching two graphs. Much work

has been done on the graph matching problem, and so we digress here to

look at the problem and how it has been tackled by other researchers.

2.1.2.2. Relational structures and graph matching

The structural method for representing object model data

is as a relational structure of sub parts of the object

Section 2.1.2.2 Page 29

[Ambler et al 1975]. The comparison of objects for recogni-

tion then reduces to a problem of matching relational struc-

tares, i. e. of graph isomorphism. Unfortunately, no general

and efficient algorithm is known for testing isomorphism of

large graphs (i. e. graphs with more than about 10 nodes. Unger

[1964]). This has resulted in a number of special techniques

for reducing the execution time. Unger [1964] gives a heuris-

tic algorithm. Ullman [1976] reports an algorithm that takes

time proportional to p3 where p is the number of nodes in the

graph. The algorithm by Corneil and Gotlieb [1970] takes time

proportional to p2. However, these algorithms work best on

certain classes of graphs. Cornell and Gotlieb's algorithm,

for example, is inefficient for strongly regular graphs.

Ambler et al [1975] match relational structures by set-

ting up a new graph G whose vertices are formed from matching

nodes in the two relational structures. The edges in G link

"compatible" vertices. Vertices in G are compatible if the

transformation implied by matching nodes of the relational

structure are the same. The problem of relational structure

isomorphism then reduces to that of finding maximally con-

nected subgraphs (cliques) in G. They give an algorithm to

find cliques similar to that of Bron and Kerbosch [1971].

Osteen and Tou [1973] report a recursive algorithm for clique

detection based on neighbourhoods in graphs.

Cheng and Huang [1981] reduce the problem of relational

structure isomorphism by using "star-structures". A star-

Section 2.1.2.2 Page 30

structure is a sub-relational structure of a node and all of

its neighbours. Relational structures are matched by setting

up a graph G of matching star-structures (as above) and find-

ing cliques. They find cliques using a relaxation algorithm

that converges rapidly (10-20 iterations). Cheng and Huang

[1982] are able to use this technique to extract motion infor-

oration by image registration. In the example given, the algo-

rithm executed in 214.5s on a PDP11/70 for a 70 node graph.

Jacobus and Chien [1979] describe a system that matches

graphs of "half-chunks" to determine recognition. A half-chunk

consists of two line segments and a tangent angle. They con-

vert object graphs to histograms by recording the number of

occurrences of library half-chunks in the object. Objects are

matched by comparing histograms. The reliability of the histo-

gram matching technique is not clear.

Thus, the problem with graph isomorphism is that it is computationally

very expensive. In my vision system, the problem would be to find sub-

graph isomorphism of graphs with as many as 400 nodes. (Even more for

complex scenes). Graph isomorphism has another, very important prob-

lem. Let us imagine that we have two object models, each of which is a

relational structure of 400 nodes. Now let us also imagine that we

have a new image from which we have formed a new graph of 500 nodes.

After exhaustive graph isomorphism, let us imagine that we recognize a

subgraph of 250 nodes of the first object in the image, and a subgraph

of 300 nodes for the second object, with 100 of the nodes being com-

mon. Which object did we recognize? Are both objects in the image?

How different do the numbers have to be before we choose one object

Section 2.1.2.2 Page 31

over another? What principles do we have in choosing thresholds?

What effects did noise, and a variation of imaging conditions have on

these figures? These questions are difficult to answer, but they

illustrate that graph isomorphism is only half the problem. It is

necessary to interpret the result from the graph match.

This brings us to an important point. Similarities between

objects only serve to confuse the final decision. The fact that we

have recognized 50 features that are common to both objects tell us

nothing about which object is in the image. This is of course a funda-

mental principle of recognition; It is not possible to recognize

object A from object B from their similarities!

It is therefore very important to know what makes one object dif-

ferent from another. Once again, let us indulge in a thought experi-

ment. Imagine that we have two objects A and B with 200 features

each. Imagine that 150 of these features are common to the objects

(but not exactly the same) i. e., these features are close enough to be

confused by the feature detector. Now, it will be clear that the

remaining 50 features of each object are essential for recognition.

The problem is this: Most vision systems match objects at recognition

time without prior knowledge of the similarities and differences

between objects. Therefore, they use the 150 similar features as well

as the other features to base their decision. Now let us see what hap-

pens when we have a noisy input image. Because the similar features

are not exactly the same, the 150 features from the image (C) may

match object A features better than object B features. (See Fig. 2-1)

Section 2.1.2.2

Measurement

Page 32

Fig. 2-1 A single 'similar' feature represented in 2D parameter space

Now it is clear that fluctuations in the number of features

matched for the similar features can swamp the number of dissimilar

features matched. In an extreme case, it is conceivable for all 150 of

the similar features in C to match those in A, but not match those of

object B, while all the dissimilar features continue to match those in

B. This would result in a mismatch. However, a system which knew that

the 150 similar features in A were in fact very close to the other 150

features in B, would not use this information to differentiate between

A and B, and would place far more emphasis on the 50 dissimilar

features being matched.

Thus, the requirement placed on my system is to find similar and

dissimilar structure. (Since structure must be constant through imag-

ing conditions, dissimilarity must also hold through variations in the

imaging conditions. It is insufficient for two features to be dissimi-

I

Section 2.1.2.2 Page 33

lar under a single set of imaging conditions.) When the number of

objects is increased to more than two, the requirement is to find

unique structure for each object i. e., find out what makes an object

different from the rest of the objects over the imaging conditions of

interest.

Thus, my vision system recognizes objects on the basis of their

unique structure. Is this restrictive? Let us look at the definition

again. The unique structure of an object is everything about the

object that is

1. visible,

2. independent of imaging conditions, and

3. different from the other objects.

Therefore, if an object has no unique structure, it must be visually

indistinguishable from at least one other object in the learned set.

2.1.2.3. Finding Unique Structure The first step is to describe the

objects in terms of a set of elementary features (that contain all the

information). However, these features do not become structural

features until it is verified that they are independent of the imaging

conditions of interest. Once a set of structural features is

selected, the objects are represented by a relational graph of these

features. Unique structure is found as follows: First form a set of

Subgraphs for each object by choosing all combinations of all features

(and their relationships) so that each subgraph may have from 1 to N

features, where N is the total number of structural features in the

object. Now compare these subgraphs with those found in the other

objects through the imaging conditions of interest (i. e., the

Section 2.1.2.3 Page 34

structural feature subgraphs are compared with subgraphs formed from

all features found in each separate instance of all of the other

objects.) Those subgraphs that do not match any in all instances of

the other objects, form the set of unique structure. Some comments

are in order.

(1) It will be noticed that this is a huge task as there are

rather a large number of subgraphs (2n for n nodes). This may

be limited artificially using arbitrary rules such as limiting

the search to the 50 smallest unique subgraphs. (In the

implementation, subgraphs are limited to local subgraphs. The

locality is defined by the spatial distance between nodes.

These local subgraphs are the local features detected by the

generalized local feature detector.) Note that the time taken

to do this is not critical, as it is done during the learning

stage.

(2) A very important point now is that the recognition system has

to search only for these unique subgraphs. Firstly, this makes

the searching much faster. Secondly, since we know that the

unique subgraphs are unique throughout the imaging conditions

of interest, there is no danger of a mismatch. Thirdly and

most importantly, the detection of a single unique subgraph is

(by definition) sufficient for recognition. In practice, how-

ever, because it is not possible to guarantee a perfect relia-

bility test at the learning stage, more than one subgraph is

required for confirmation.

This strategy of finding unique structure illustrates another

reason for requiring the local features to be highly descriptive. It

Section 2.1.2.3 Page 35

increases the likelihood of each feature being unique to the object.

Thus, the learning strategy results in

(1) improved recognition reliability due to the feature reliability

test,

(2) improved speed due to the transfer of the graph matching problem

to the learning stage, which reduces the recognition search to a

single unique subgraph, and

(3) improved flexibility due to the extra unique descriptions produced

by the learning algorithm, so that the system is able to operate

despite the loss of a large number of unique subgraphs due to

object obscuration or degraded operating conditions.

In addition to these advantages, there is a fundamental need for

learning when flexibility is required. Let us imagine that we require

a vision system to be able to recognize objects despite a 10% väria-

tion in object size. This of course means that it is not possible to

differentiate between two objects that are only 10% different in size

(even if we wanted to). This is unacceptable for a 'general' system.

It is more likely that we would require that under such a situation,

the vision system should automatically reduce its flexibility to (say)

5% for the two objects of concern, and retain a flexibility of 10% for

the other objects. Further, in order to obtain maximum flexibility it

would be useful for the system to adjust its flexibility upwards when

the objects are very different.

Such variation in flexibility is clearly present in human perfor-

mance. We are able to distinguish (say) a house from a man despite a

significant amount of image degradation, but we can tolerate less

Section 2.1.2.3 Page 36

image degradation if we are to recognize one man from another, or one

'identical' twin from another. Such a variation of flexibility may be

achieved by allowing the system to learn about the similarity between

the objects of interest.

Another objective of the overall design was that the system

should be insensitive to the actual details of the implementation of

the architecture. That is, the system was expected to function prop-

erly despite minor imperfections in implementation. This insensitivity

is obtained by using the extended learning strategy which compensates

for pre-processor imperfections by observing its performance, and

rejecting features that are not reproducible, either because the

feature is dependent on imaging conditions, or because the feature is

distorted by the feature detector by being associated with a non-

linear section of the feature descriptor mapping function.

The extended learning capability of the vision system is there-

fore responsible for (1) improving the reliability, (2) improving the

speed, and (3) improving the flexibility of the system. It is felt

that a learning strategy that is able to do this is of general

interest.

2.1.3. The Overall Strategy

The strategy then is to describe objects using features that

represent all of the information in the image that is independent of

the imaging conditions of interest. Therefore, the features are

expected to have an extensive vocabulary, so that complex object

structure can be represented. The learning stage consists of finding

Section 2.1.3 Page 37

unique structure for each object. Unique structure is a set of rela-

tional subgraphs of structural features that are unique to the object

in question. A structural feature is a feature that is invariant

through the imaging conditions of interest.

Thus, the system depends mainly on these principles. There is

little emphasis on problems of detail such as threshold selection,

feature matching etc. That is, the system is expected to operate well

despite a possibly non-ideal selection of feature types, or thres-

holds, or matching criteria. The primary objective is to attain

operational flexibility and speed of operation using these three prin-

ciples, and a fairly good feature detector and feature matching algo-

rithm. Thus the performance of the system is attributed to the exploi-

tation of these ideas than to carefully worked out details of the

system implementation. For this reason it is felt that the overall

performance of the system could be improved by re-working the detailed

design using information theory, empirical test data, and other con-

siderations.

The strategy can also be expressed as follows:

Given a set of objects

A,, A2, A3 An

that are to be learned, image each object i times where i is large,

and obtain images

Akt, Akt, A k3 Aki

for each object Ak over a set of imaging conditions IC.

Form descriptive feature sets FAki for each image Aki by using a

Section 2.1.3 Page 38

feature descriptor. (Note: a feature may be a relational structure of

other features).

Now for each object Ak form two sets of features A
kV and Ak n such that

AKV :U FAkj

and

AKI an FAkJ

vi
Then, Ak V

is the set of all possible features for object Ak, and Ak n

is the set of structural features.

Now a set of unique features Ak* is formed as follows:

Ak. = Akn U Am

Vmm*k

(i. e. for 3 objects B, C, D, B* = BA - CV - DV

The recognition strategy is based on the following two properties of

Ak*: If an image I is taken, and we form a new set of features FI,

then,

Ak* C FI ----------------------------- (1)

when Ak is visible in the image, and

Aki, n FI -0 ----------------------------- (2)

when Ak is not visible in the image.

This is always true for large i over the set of imaging condi-

tions IC. This is the principle that is used in this thesis. The

learning is concerned with the generation of sets Ak*, and the pre-

processor is concerned with the generation of the features sets FAki

during learning and FI during the recognition stage. Recognition is

concerned with the verification of equation 1 above.

Chapter 3

A Strategy for Recognizing Complex Objects: The Architecture

This chapter describes the detailed architecture that was

developed to exploit the principles set out in the previous chapter. I

have tried to keep this material as independent as possible from the

implementation details so that the strategy of the architecture

becomes clear. For this reason, this chapter is written in the form of

a specification of the required system with little or no mention of

the actual algorithms and data structures used.

The chapter is organized as follows: After the introduction, sec-

tion 3.2 describes the architecture of the pre-processor. Section 3.3

looks at the feature matching algorithm. Section 3.4 describes the

learning stage, and section 3.5 the recognition stage. Section 3.6

looks at the overall architecture and makes a few general points, and

finally, section 3.7 compares this architecture with previously

reported architectures.

3.1. Introduction

The main objective {section 1.01 was to design an industrial

object recognition system that is able to operate flexibly and fast

Section 3.1 Page 41

using the principles set out in the previous chapter. However, there

were other less important objectives.

3.1.1. Other Objectives

1. In addition to being insensitive to operating conditions, the sys-

tem was expected to be insensitive to internal operating details.

For instance, a major. requirement was that the thresholds used be

static (unless it was possible to provide dynamic threshold varia-

tions within the available hardware resources). Therefore, all of

the thresholds described in this thesis are for system development

purposes only, and remain fixed when the system is used. Initial

threshold selection was dictated by hardware resource limitations,

empirical tests, and on theoretical considerations when possible.

2. The system was expected to be insensitive to minor imperfections in

implementation.

3. It was felt that the problem of recognizing complex objects had not

been properly addressed before. The objective was to use the com-

plexity of these objects to advantage by employing a generalized

feature detector to respond to these features. In fact, it was felt

that no restriction should be placed on the complexity of the

object geometry (or on surface markings etc.), apart from the una-

voidable restriction due to image resolution.

II. The system architecture was to be designed so that it could be

implemented on dedicated hardware with minimum effort. For this

reason, the simplicity and parallelism of (especially) the low

level algorithms was an important requirement.

Section 3.1.1.1 Page 42

3.1.1.1. The Importance of Execution Speed It should be noted that

execution time is of great importance in vision work even though one

may feel that it does not really matter as long as the system works,

as it is always possible to increase the execution speed by using

better hardware and optimized code. However, vision algorithms can

easily take exponential time to execute. Clearly, such algorithms

become unmanageable very quickly, and may become unusable without some

optimization. Algorithms that take long to execute become difficult

to test thoroughly, using different image data, and different parame-

ter values. It is my experience that overall execution times of more

than a few minutes make systems very difficult to test properly.

Therefore throughout this thesis execution times will be considered as

an important parameter with which to judge vision systems, with the

understanding, of course, that execution times are dependent on the

hardware that is used.

3.1.2. Influence of the human visual system

It should be noted that during the course of this work, inspira-

tion was drawn from published work into the human visual system. The

interested reader is referred to Athukorala [1985] for a discussion

and list of references to some of this work.

3.1-3. The System

The vision system consists of three main parts. The pre-

processor, the learning stage, and the recognition stage.

Section 3.1.3 Page 43

PRE-PROCESSOR LEARNING STAGE

RECOGNITION STAGE

The rest of this chapter will discuss these components in detail.

Section 3.2

3.2. Pre-processing

Page 44

The task of the pre-processor is to describe the input scene in

terms of local features that are insensitive to imaging conditions.

The pre-processor performance is not expected to be perfect. The

learning algorithm is responsible for monitoring the performance of

the pre-processor.

Ideally, the pre-processor would generate features that contain

all of the information about the object that is independent of the

imaging conditions. In other words, we would like the features to be

(a) invariant through operating conditions, but

(b) very sensitive to variations in object structure.

Further, the ideal pre-processor would be expected to display 'mono-

tonicity' in its mapping function. What does this mean?

Let us assume for the moment that the objects we need to recog-

nize can be completely specified by a single 1 dimensional feature.

For example, our problem may be to recognize a set of thin iron rods

which vary only by their length. The chosen feature would then be the

length of the rods. We would then require that the pre-processor be

able to describe this feature so that

(a) the length measured for a given rod is constant despite variations

of the position of the rod, and variations of other imaging condi-

tions, and

(b) that the length measured should vary, when the actual length of

the rod is changed.

The requirement of monotonicity means that the measured length should

increase when the actual length increases. Clearly, linearity would

Section 3.2 Page 45

be ideal, but that would be far too ambitious and demanding of a gen-

eral purpose pre-processor. Monotonicity is a less demanding require-

ment. However, the requirement that is placed on my pre-processor can

be relaxed further to that of being single valued in parts, due to the

learning strategy. Therefore, the pre-processor is expected to

deliver a subset of features that are independent of the imaging con-

ditions, and are on part of the mapping function that is locally sin-

gle valued. The learning algorithm will seek out the rest and reject

them. To restate: the pre-processor is expected to describe similar

structure using similar descriptions, and dissimilar structure using

dissimilar descriptions. The learning algorithm verifies this

behaviour over the subset of structure that has been learned.

3.2.1. Imaging Conditions

What are the imaging conditions that can vary in the restricted

industrial domain I have chosen, and what are the imaging conditions

of interest? Firstly, the definition of imaging conditions: I define

this as everything that contributes to the function that maps object

to 2D image. This includes camera view-point, lighting, lens parame-

ters, camera electronics, light detraction, lens aberrations, etc.

Clearly, we cannot hope to take account of the complete range of

values that all of these parameters can take. The following is a

detailed discussion of those imaging conditions that the system

expects will vary, and the limits of these variations the system

expects to cope with. The rest of the imaging conditions are assumed

to be constant, and if not, the system would only expect to be able to

tolerate minor fluctuations. (The system was in fact tested with

Section 3.2.1 Page 46

variations of two of these parameters: camera focus and added Gaussian

noise. See chapter 5.) In the following, I will refer to a plane (p)

which is defined to be perpendicular to the camera viewing axis (Z)

and at a distance equal to the expected distance from camera to object

(i. e. the plane of the table top or conveyor belt. Object height is

assumed to be small compared with the distance from the camera to the

object.)

3.2.1.1. Object position (2D and 3D) Clearly, it would be desirable

for the vision system to be independent of the 2D position of an

object within the visual frame i. e. the feature description generated

should be invariant with object position provided the object is in

view. Further, the feature description generated should be invariant

with 2D object position provided the feature is in view (i. e. even if

the rest of the object is hidden). Object position variations in 3D

(i. e. when the distance to the camera is changed) changes the scale of

the object and blurrs the image. Image blurring is a complex function

of imaging conditions, and depends on the camera aperture etc. The

system is expected to be resistant to a small degree of image blur-

ring. Resistance to scale changes is discussed below. (Note: 2D posi-

tion is the position of the object on plane P, and 3D position is its

position on the Z axis - see earlier definition of P and Z.)

3.2.1.2. Ob ect orientation in 2D . (i. e. rotation about an axis

parallel to Z). The system is expected to operate independent of the

2D orientation of objects, similar to the requirements for 2D posi-

tion. The feature description must be independent through all values

Section 3.2.1.2 Page 47

of the orientation of the feature, (and therefore the 2D orientation

of the object). These two requirements are achieved by describing the

features using coordinate axis defined on the features themselves.

3.2.1.3. Illumination variation The system should be insensitive to

slow variations in absolute illumination level. Illumination varia-

tions can occur due to many reasons.

(1) Variations in total intensity.

(2) Variations in lighting direction

(3) Variations due to shadows, highlights, or reflected light (i. e.

mutual illumination).

Clearly though, it is not possible for any system to operate

throughout the full range of values that some of these parameters can

take. I therefore introduce the notion of 'reasonable lighting condi-

tions'. Reasonable lighting is defined as the lighting conditions

that would normally be provided for a human to perform the same task.

For example, a human performing an assembly task would be provided

with constant, bright lighting. S/he would not be expected to work in

an environment with, say, flashing lights, moving light sources,

semi-darkness, or blinding brightness. In fact, economics would prob-

ably dictate that it is cheaper to provide 'constant' lighting (with

say, ordinary fluorescent lamps) than to provide flashing or moving

lights. This then is thought to be a reasonable condition to impose on

the industrial environment. If the system was required to operate in

extreme conditions, it would be cheaper to provide special lighting

conditions (for example by using a narrow bandwidth source and a nar-

row bandwidth filter on the camera to blanket out variations), than to

Section 3.2.1.3 Page 48

compensate for such variations using sophisticated general purpose

software routines.

However, care must be taken when designing with 'constant' light-

ing in mind, as lighting thought to be constant by humans may not be

constant 'enough'. (This is partly because we are relatively insensi-

tive to absolute quantities, and because the visual receptors have a

logarithmic response [Cornsweet 1970, p. 249]). Further, it would be

unwise to demand long term (>1 day) stability of absolute lighting

level, (as light intensity is bound to reduce with time, due to dust

etc.), nor short term stability through stray reflections, such as due

to white garments worn by humans etc. Therefore, having demanded con-

stant lighting, the system must at least be insensitive to small vari-

ations in light level and direction. This is a principle that runs

through the design of the vision system. The system demands certain

conditions from the operating environment. However, having done so,

it attempts to operate flexibly when that condition is not fully met

i. e. it attempts to degrade gracefully as the operating conditions

deteriorate from that required. The goal for coping with illumination

variations was to make the system insensitive to as large a variation

as possible. This could be achieved by 4 means.

1. By using a gradient image.

2. By using a learning algorithm to compensate for a wide variety of

imaging and processing defects.

3. By using a variable edge threshold.

4. By using hardware help in the form of an auto-aperture lens.

The basic system reported in this thesis uses only the first two tech-

niques. The use of the gradient makes the system independent of the

Section 3.2.1.3 Page $9

absolute illumination level within the limits set by the dynamic range

of the input image and the need to threshold the gradient image to

reduce the information content. The problem with the edge threshold

may be removed by varying the edge detector threshold with the overall

light intensity. However, the signal to noise ratio of the edge image

deteriorates when this is done. This problem could be avoided by

using an auto-aperture lens on the camera. The basic system (i. e.

using only the first two techniques) is able to cope with fairly large

variations in light intensity {section 5.2.1.1}. Variations of edge

detector threshold could be used at the expense of extra processing

(necessary to compute the threshold to be used). This allows the sys-

tem to cope with larger variations in absolute intensity level. The

use of an auto-aperture lens would make the system virtually insensi-

tive to variations in overall illumination, limited only by the range

of the auto-aperture lens and the sensitivity of the camera. The range

of flexibility of the the software to illumination variations takes

care of variations in aperture size of the auto-aperture lens from

ideal.

Variations in lighting direction have the effect of changing the

illumination level of local regions differently. This poses little

problem to the system so long as the variation is within the bounds of

absolute illumination variation for a minimum number of regions. (Note

that when using an auto-aperture lens this will usually be true,

within the range of the aperture, as the lens will open to allow aver-

age illumination of the scene).

Illumination variations due to areas of shadow and highlight are

handled in the same way. Provided that the shadow areas are

Section 3.2.1.3 Page 50

sufficiently illuminated (i. e. the measured intensity is not zero),
}

the system expects to pick up features in those areas. However, the

system does not attempt to find and recognize or identify shadow edges

for what they are i. e. it does not attempt to describe the lighting

conditions in the scene, and is only interested in describing the

scene in terms of known objects.

3.2.1.4. Scale variations (i. e. size variation parallel to p). The

system imposes a condition of fixed scale on the industrial environ-

ment. This restriction is argued to be acceptable for two reasons.

1. It would probably be cheaper to provide a constant scale factor,

i. e. by having a fixed camera at a fixed distance from the objects

to be recognized, than to have a roving camera with complex control

mechanisms. Therefore the capability to recognize objects at random

scale factors may not be essential in industrial vision. (I have

not had access to any market research that either confirms or con-

tradicts this).

2. It is reported that even the human visual system may not be able to

operate reliably under conditions of random scale variations.

However, having imposed the condition of fixed scale, the system

attempts to be relatively insensitive to small variations in scale. In

tests {section 5.2.1.21 it was able to cope with up to a 30% variation

in scale.

Severe shadowing is uncommon in conditions of 'reasonable' light-
ing (as defined earlier) as there usually are several light sources,
which tend to 'fill' the shadows of each other.

Section 3.2.1.5 Page 51

3.2.1.5. 3D orientation variation (i. e. rotation of the object

about an axis parallel to P). As indicated earlier, the vision system

is limited to the recognition of stable states of objects. This con-

straint is commonly encountered in industrial vision systems. How-

ever, the system attempts to be insensitive to small variations in the

3D orientation of the object away from the learned plane. Ways of

extending the system to cope with the full range of 3D orientation

variation (i. e. 3D object recognition) is discussed in chapter {6}.

3.2.1.6. Partial Obscuration The system attempts to show insensi-

tivity to partial obscuration of objects (i. e. due to 'overlapping'

objects, or due to part of the object being outside the image frame).

This is achieved by using local features of the objects.

3.2.1.7. Summary Thus there are 6 main imaging conditions to which

the vision system is designed to show insensitivity in varying

degrees. This insensitivity is achieved by using features that are

themselves insensitive to these conditions. The learning algorithm

{section 3.4} verifies this insensitivity. The chosen conditions are:

Complete range of values of

Large variations in

- 2D object position (within frame)

- 2D orientation

- Illumination

- (and hence small variations

in lighting direction),

As large a variation as possible - in object scale,

- 3D orientation, and

- partial obscuration.

Section 3.2.1.7 Page 52

The pre-processing begins with a gradient detection operation to

allow maximum insensitivity to absolute illumination level. The gra-

dient image is then processed to obtain local features. This process-

ing is concerned with representing the gradient profile of local

neighbourhoods by reducing the data content, while retaining the 'use-

ful' information content, and at the same time, making the representa-

tion as independent as possible of the chosen imaging conditions. The

pre-processing stage can be divided into 3 sub-stages as follows.

1. Gradient detection

2. Rep-point selection

3. Local neighbourhood selection.

I now describe the design philosophy, motivation, objectives, and jus-

tification of these processing stages. These descriptions should be

seen as a specification of the processing required, and therefore

attempt to be independent of the actual algorithms used.

3.2.2. Gradient Detection

As we have seen, the vision system begins processing with a gra-

dient operation in order to reduce the sensitivity of the system to

absolute lighting level. The scene and its objects are therefore

modelled by their gradient profile. However, in order for local neigh-

bourhoods to be represented and manipulated efficiently for matching

and recognition, the data content of the gradient image must be

reduced. This reduction must be achieved without reducing the 'useful'

information content significantly.
+

This is possible because most

} The fact that there is redundancy in most images is seen quite
clearly from research into image data compression, especially for low
bandwidth picture transmission (e. g. Pratt [1978] Chapters 21-24).

Section 3.2.2 Page 53

images contain large areas of approximately uniform intensity. These

regions transform to regions of approximately zero gradient in the

gradient image. Regions with zero gradient can clearly be eliminated

with no loss of information. This strategy can be extended by using a

threshold to remove all areas of small gradient. The threshold is kept

as low as possible to retain as much information as possible (for sub-

sequent processing) within the available resources. This is a recur-

ring principle throughout the vision system. Data is discarded only

when the available hardware resources force us to do so. This allows

the system to retain as much information as possible, and thereby

respond to as many weak features as possible.

Thus, the gradient operation followed by a threshold operation

results in an edge detection operation. An edge point, therefore, is

defined to be any pixel with a local gradient greater than a given

threshold. This allows the use of standard edge detectors such as

Sobel or Roberts operators. The system, however, is required to be

insensitive to the actual edge detector used i. e. the system operation

must not depend on the use of a particular edge detector.

In addition to finding edge points, the edge detector is also

required to compute the 'property' data of the edge points. The gra-

dient direction of the edge point was chosen to be its property. Other

parameters such as gradient magnitude, average local brightness, or

average local colour may also be used. However, brightness data should

not be used as it would increase the sensitivity of the system to the

absolute illumination level. The edge detector is also expected to be

able to cope with imperfections in the input grey scale image, such as

those due to electronic noise.

Section 3.2.2 Page 54

Therefore, edge detection was used as the first processing step due to

three reasons.

1. To reduce system sensitivity to absolute illumination level.

2. On the grounds of minimum information loss. (The gradient detection

operation loses only the absolute illumination level as it is a

differentiation operation. However, standard gradient detectors

lose some high frequency information because of the use of a degree

of local smoothing). This suggests a degree of reversibility of

transform.

3. Easy control of the data content of the image by use of a thres-

hold.

The following is expected from the chosen edge detector:

1. It should compute the edge property, and

2. be insensitive to noise in the image.

(An example of an edge detected image may be found in Fig. 5-3)"

3.2.3. The as -Point algorithm

The output from the gradient operation is a list of edge points.

This list usually contains from 2000-6000 edge points with the thres-

holds that are normally used.
+

This is a data reduction of over 90%

from the original image containing 64k pixels. This list of edge

points is still too large to be handled effectively for learning and

recognition. (For example, it is not possible to consider each edge

point to be a description of a small part of the object, and thereby

These thresholds are not chosen dynamically, but are constant
throughout the operation of the system. At present they are chosen em-
pirically during the initial system set up process.

Section 3.2.3

III
III
III

ýf. 11
. ýý 1

ff\ 1I1
fýý I1

11
\f\ 1I1

\fI
��II

III
111
111
1
It I
111
III

(a)

Fig. 3-1

\

\

.i

(b)

Page 55

use a relational structure of edge points. This would result in a

graph of 4000 nodes!) The task of the rep-point algorithm is to

reduce the data content further, without affecting the 'useful infor-

mation content' in the image. This can be achieved by identifying

'redundancy' in the edge data. The acceptance of which data is redun-

dant (in terms of the task at hand) could be a contentious issue.

But, it is clear that once this is agreed upon, data reduction can be

achieved without loss of useful information. My technique is to find

representative points (re - points) for small local areas of approxi-

mately uniform gradient property.

Fig. 3-1 to Fig. 3-4 illustrate the requirements placed on the

rep-point algorithm. Given an edge image as in (a) of each figure, the

rep-point algorithm is expected to generate an output as in (b) of the

Section 3.2.3

i
i
i
i
i
i

/1
/ 1

i
i
i
i
i
i
i

Fig. 3-2

/I

/

/

Page 56

same figure. The significance of these figures is described below.

Specification of the rep-point algorithm

1. Segment the thresholded gradient image (-edge image) into regions

of connected edge points of approximately uniform gradient pro-

perty. Region connectivity is 8-connectivity (i. e. two edge

points are connected if the distance between them is equal to 1 or

\F pixels.)

2. Regions have an expected size of radius r. Regions of large radius

should be segmented into several regions of smaller radius equal

to about r. (see Fig. 3-1). Note that the radius of a region is

interpreted quite liberally. The distance between the furthest

points of the region may be used to define the radius. In general

Section 3.2.3 Page 57

regions are split only if they are larger than 14r.

3. The value of radius r should be chosen so that 2r>t, where t is

the average expected thickness of edges in the image. However, r

should be kept small (i. e. just larger than t/2) to keep informa-

tion loss to a minimum.

A representative point (rep-point) is chosen for each such region

so that the property of the rep-point is equal to the average pro-

perty of the edge points it represents. The position of the rep-

point is set equal to the mean position of the edge points. The

motivation for using rep-point (and edge point) property is to

make the rep-points as unique as possible to the gradient section

being represented. For example, if property data such as local

colour is used, it reduces the probability of a rep-point matching

any other rep-point. In the implementation, however, only rep-

point direction is used. This property is insufficient to stop a

given rep-point from matching all other rep-points, but it reduces

such matches to only one instance (i. e. a single orientation) per

rep-point.

5. A set of uncorrelated edge points should be mapped to a similar

set of uncorrelated rep-points.

6. Any rep-point that is nominated by only a single edge point is

discarded as noise i. e. rep-points must represent two or more con-

nected and correlated edge points. This improves the high fre-

quency noise immunity. (see section {5.2.2.2})

7. The rep-point image is expected to be stable with line thickening

and indeed with other variations. (Compare Fig. 3-1 and Fig. 3-2).

B. The rep-point algorithm is expected to represent complex gradient

Section 3.2.3

\/
\/

f/
/

\/
ff/

f\ /f /
\\/ \/

\f /
\f\ /

\\\\ /i-"\
%%\/

fýf f f/

1f \\

Fig. 3-3

Page 58

\

/

i

i

profiles without restricting the allowed object geometry. (See

Fig. 3-3).

9. The algorithm is expected to respond to weak features. (See

Fig. 3-3).

10. Thin intensity bars should be preserved by using the gradient

direction polarity. (Fig. 3-4).

11. Finally, when implementing this algorithm, (as indeed for any

other pre-processing algorithm), a 'perfect' segmentation,

although desirable, is not expected. Problems with implementing

this algorithm may be passed on to the higher levels. (The match-

ing and learning algorithms in this case).

Thus, the rep-point algorithm converts the edge image to a rep-

point image. The algorithm copes with imperfections in the edge detec-

tor in two ways: (a) by averaging the property values of the se g-

Section 3.2.3

NF

ý1 G

ýG
7G
ýr

ýG

ýC
ýC
yG

(0) (b)

Fig. 3-4

Page 59

mented edge regions, and (b) by requiring a minimum level of agreement

between edge points (i. e. the requirement of 2 correlated and con-

nected edge points to nominate a rep-point). This algorithm is similar

to thinning algorithms [Hilditch 1969, Wong 1979, Athukorala 1980] but

is different in that continuous lines are represented by a few rep-

points. It is similar to region finding algorithms (if they are exe-

cuted on a gradient image rather than a grey scale image), but is dif-

ferent in that large regions are segmented into smaller regions. It is

similar to a simple resolution reduction algorithm, but is different

in that the resolution reduction is a function of the gradient

activity in the region. Areas of uniform gradient suffer a greater

data reduction than areas of varying gradient. The number of rep-

points generated increases with the spatial frequency of the gradient,

Section 3.2.3 Page 60

until adjacent edge points are judged to be uncorrelated.

Rep-points are the basic elements used by the vision system.

Local gradient profiles are represented by rep-points. This scheme

circumvents many problems of transforming edge points, such as thin-

ning, chain coding (e. g. Freeman [1970], McKee and Aggarwal [1977])

and line finding (e. g. Shirai [1973], Mero [1981a]). I am not aware of

an algorithm similar to the rep-point algorithm being used by previous

researchers.

The rep-point algorithm has many advantages for my purpose.

1. The rep-point data is relatively reliable. As each rep-point is

nominated by at least two correlated and connected edge points, it

is less likely that the rep-point was generated by a random pro-

cess. Further, the rep-point property data (including the rep-point

position) is reliable as it is the mean of the edge points it

represents.

2. It allows edge detector thresholds to be reduced without an accom-

panying explosion of rep-points. (See section {5.3.2}). This is

because stronger edges ideally generate the same number of rep-

points when the thresholds are reduced. However, the number of

rep-points found for weak features will increase when the thres-

holds are lowered. If necessary, the strength of the edges may be

used as an extra property, so that weak edges and strong edges do

not form single regions. (i. e. rep-points will be either weak or

strong). This differentiation is not made in my implementation.

3. The 'useful information' content of the image is expected to be

preserved despite the data reduction. This can be justified on the

grounds that uniform regions have a lower information content. The

Section 3.2.3 Page 61

final justification, however comes from the overall system tests in

Chapter 5.

u. As explained in the next sub-section, the rep-points provide an

ideal way of choosing local neighbourhoods. They also provide an

ideal way of representing, manipulating, and comparing local gra-

dient profiles {Section 3.3}.

5. No restrictions are placed on object geometry, as complex gradient

profiles can be represented. Therefore, the system does not need to

assume that the objects to be recognized contain straight lines or

circular arcs. The complexity of geometry that can be represented

is limited only by image resolution.

6. The last point leads to the possibility of representing textures.

However, this is limited to textures that can be successfully

represented by an edge image. This is effectively a requirement of

minimum feature size of a texture. (The edge detector used may have

to be changed to one using a smaller window size for this to be

successful).

7. Finally, the algorithm is suitable for parallel processor architec-

tures as serial algorithms are not necessary (unlike, for example,

for line finding algorithms).
+

A cellular array processor would be

well suited for this algorithm, although it was implemented in

software with a pipelined architecture in mind. (See also chapter

6 on hardware implementation of the pre-processor).

(An example of a rep-point image may be found in Fig. 5-4).

Although Hough transforms [Hough 1962] (which are parallel) may
be used for finding lines and arcs, finding line termination points
etc. can be problematic, and may need serial algorithms for efficient
processing.

Section 3.2.3 Page 62

3.2.4. Constructing Local Neighbourhoods

The task of the final pre-processing stage is to select local

neighbourhoods to describe the scene. Since local neighbourhoods are

allowed to overlap each other, a very large number of neighbourhoods

could be chosen over the image. Clearly though, local neighbourhoods

chosen in regions of zero gradient activity (or sub-threshold gra-

dient) will not be very informative. On the other hand, local neigh-

bourhoods chosen in regions of significant gradient activity will be

far more informative.

My technique is to use each rep-point as a focal point for

selecting local neighbourhoods. This rep-point is called the central

r_ýpo int. This technique ensures that no neighbourhoods are chosen

in regions with sub-threshold gradient (as such regions do not contain

any rep-points), while a large number of neighbourhoods will be chosen

in regions of significant gradient activity (which have a high density

of rep-points). Therefore, the number of local neighbourhoods selected

in the image will be equal to the number of rep-points. (Fig. 5-4, for

example, contains 386 rep-points).

Specification of algorithm

1. Select a local neighbourhood of radius R around each rep-point. R

should be chosen so that R»r (where r is the expected average

radius of a region represented by a rep-point). However, the value

of R should not be too large in order to retain the locality of

neighbourhoods. (I use a value of 9 pixel widths for R).

2. The gradient of the local neighbourhood is represented by the peri-

pheral rem- op ints within the neighbourhood. Thus, local neighbour-

Section 3.2"$ Page 63

hoods are a relational structure of a single central rep-point and

several peripheral rep-points. (Fig. 3-7).

3. Local neighbourhoods should be 'normalized' so that the rep-point

data is represented relative to the central rep-point. (See

Fig. 3-5). Local neighbourhood normalization results in an impli-

cit rotation of the neighbourhood so that the central rep-point is

oriented in an agreed direction. The significance of this is dis-

cussed later. {Section 3.3}.

The normalized local neighbourhoods produced by this algorithm

are the features used by the system for learning and recognition.

Local neighbourhoods, therefore, are also referred to as local

features in this thesis, and should be understood to be synonymous.

((1)
(b)

Fig. 3-5 Neighbourhood Normalization

Section 3.2.4 Page 64

Previous researchers have used local features for object recogni-

tion {sections 3.7.2}. However, they used 'conventional' features such

as corners and holes. In addition to such features, my vision system

is especially interested in 'unusual' local neighbourhoods (see

Fig. 3-6) i. e. local neighbourhoods created by the juxtaposition of

'conventional' features. (In Fig. 3-6, the broken lines represent

rep-points, and the unbroken line the boundary of a single feature. It

is clear that such features are more complex than the local features,

such as corners and straight lines, that have been used in the past).

Such features tend to be more informative and unique, but have not

been used in the past,
F

perhaps because of problems of building

/
op

\

Fig. 3-6 The system is interested in unusual local features

f However, Persoon comes close. {section 3.7.2}.

Section 3.2.4 Page 65

feature detectors that could detect such features. The system is

also designed to be sensitive to internal features of objects, (hence

the attention given to weak features), including (reliable) surface

markings and internal edges.

3.2.5. Summary of Pre-Processor

The task of the pre-processor is to extract a set of local

features from the input grey scale image. Local features are overlap-

ping local neighbourhoods of the gradient profile of the scene. The

gradient profile is modelled by rep-points which represent small

regions of approximately uniform gradient property. Regions with gra-

dient below a chosen threshold are not considered.

Each local feature consists of a central rep-point and a set of

peripheral rep-points. The rep-point data is normalized, i. e.

represented relative to coordinate axis aligned with the central rep-

point. This results in an implicit rotation of the neighbourhoods.

Local features, then, are able to describe complex gradient pro-

files. The technique of representing local neighbourhoods, together

with the matching strategy, forms a generalized local feature detec-

tor. (cf. corner detectors, hole detectors, IC-pad detectors etc.)

Section 3.3

3.3" The Feature Matching Algorithm

Page 66

The matching algorithm is used by both the learning stage and the

recognition stage to compare local features. The algorithm is expected

to give a binary result of the comparison. Therefore, although the

matching algorithm could be designed to give a value indicating the

goodness of the match, only a binary result (i. e. match or not) is

given. This is mainly because the learning algorithm and the recogni-

tion algorithm do not have a mechanism to handle partial feature

matches. However, as any given local feature is one of many, and

represents only a small local area of the scene, the loss of any one

feature is not of significance. In contrast, the loss of a global

feature (such as object area) could pose major problems to global

feature based systems.

Thus, the task of the matching algorithm is to test for isomor-

phism of two relational structures. As seen in section {2.1.2.2} this

is basically a graph isomorphism problem, but unfortunately there is

no known algorithm that is both general and efficient. My feature

matching algorithm exploits the special structure of the graphs

(Fig. 3-7) to achieve an efficient match.

The matching algorithm operates by first superimposing (conceptu-

ally) the two neighbourhoods to be compared, so that the two central

rep-points are aligned. It then counts the number of peripheral rep-

points that coincide. The measure of coincidence is flexible so that

small variations in the local features do not destroy the match. Two

peripheral rep-points coincide if they have approximately the same

orientation, and are less than a certain distance from each other. Two

Section 3.3

a1

a2

Page 67

Fig. 3-7 Local neighbourhood relational structure with
3 peripheral rep-points.

neighbourhoods are matched if the fraction of peripheral rep-points

that coincide is greater than a given threshold. The use of this

threshold allows further flexibility of match. (However, in the imple-

mentation some of these thresholds have been removed {section 4.2}.)

Thus, the matching algorithm compensates for imperfections in feature

reproduction by the pre-processor in three ways.

(1) Features are matched even if they have a slightly different number

of peripheral rep-points. In the implementation though, features

must have an equal number of peripheral rep-points {section 4.2}.

(Note that the number of rep-points in a local neighbourhood is a

measure of the complexity of the gradient profile).

(2) The orientations of the peripheral rep-points are taken to be

accurate, and result in a strict threshold being applied.

Section 3.3 Page 68

(3) However, the position of the peripheral rep-points are known to be

variable, especially along their direction. A liberal threshold

should be applied in the direction along the rep-point, while a

stricter threshold may be applied in the direction perpendicular

to the rep-point.

In the implemented system, the position threshold is liberal in all

directions, and so is not dependent on the rep-point orientation.

This has the advantage of simplicity and of allowing rep-points to

expand and contract, and so allows a degree of scale change or distor-

tion of the feature. The matching algorithm effectively tests for the

angular relationship between rep-points, and the approximate position

of the rep-points within the feature.

This algorithm executes rapidly for three reasons.

(1) Because central rep-points must be registered for a match to take

place, they provide an ideal way of registering the neighbourhoods

before matching. This means that two neighbourhoods can be

registered in only one way, (because rep-point orientations are

specified over a 3600 angle), and therefore there is only one

position in which two neighbourhoods can match. This eliminates

the need to perform incremental relative rotations and multiple

match attempts to verify a feature match.

(2) As all neighbourhoods have already been rotated by the normalizing

algorithm, there is in fact no need for the matching algorithm to

perform any rotations at all i. e. neighbourhood normalizing

results in all neighbourhoods being already registered and ready

for immediate comparison. This is the significance of the normal-

izing algorithm.

Section 3.3 Page 69

(3) It is possible to detect the non-matching condition of two dis-

similar neighbourhoods very quickly. This is discussed in the

implementation section.

But how can we be sure that two features that are matched by this

algorithm in fact do correspond to the same object structure? There

are two ways of ensuring this:

1. Firstly, the learning algorithm is responsible for ensuring that

features are reliably matched. The algorithm observes the behaviour

of features through variations in imaging conditions, and discards

features that do not map to a single object. This is discussed in

more detail in section {3.4}.

2. Secondly, it can be shown {appendix 1} that the probability of a

match between two randomly chosen local features is small, and

reduces rapidly as the radius of the local neighbourhood is

increased. This is because the vocabulary of the feature descriptor

is very large, and therefore the probability that two randomly

chosen structures will be described by the same rep-point pattern

is small.

Appendix 1 shows that the random match probability between two

local neighbourhoods is small, under the assumption that all rep-point

patterns are equally probable. However, this assumption does not hold

for ordinary scenes. Certain rep-point patterns will be far more fre-

quent than others, due to similarities in the object structure that is

being viewed. Therefore, matches between rep-point patterns generated

by similar object structure is more likely than matches for patterns

generated by different object structure. But that is of course

expected, and indeed required.

Section 3.3 Page 70

Thus the problem is as follows: When the system obtains a match

between two features, it assumes that this was not due to a random

event (especially when the number of rep-points in the feature is

large). However, it cannot be certain that the matched features are

not due to features taken from different objects that are similar to

each other i. e. when a model feature matches an object feature, there

is no guarantee that the new image feature was generated by exactly

the same object feature. All that can be said is that the object

structure in the vicinity of the feature is similar to the object

structure that gave rise to the model feature. Therefore recognition

of object features can be achieved only by learning about the way

features are generated and changed. It is necessary to observe the

generated features to see which features are most reliable in identi-

fying the original object features through variations in imaging con-

ditions. Thus, it is necessary to find a set of reliable features for

recognition. This is the job of the learning algorithm.

Section 3.4 Page 71

3. . The Learning Stage

This stage is divided into three parts.

1. Model formation to acquire an initial description of each object to

be recognized.

2. Further learning by observing the reliability of the pre-processor

over a set of imaging conditions for the objects of interest, by

selecting a set of reliable and unique features.

3. Construction of a data structure for recognition.

3.4.1. Model Formation

Object1

I1 12 13 ...

F1 F2 F3 ...

PR
PR PR

PR

PR PR
PR PR PR

I- Object Instances
F- local Features
CR - Central rep-point
PR - Peripheral rep-point

Fig. 3-8 The model data structure

Section 3.4.1 Page 72

During the learning phase, models are formed from each instance

of the object that is taught to the system. This is effectively a

storage of a feature description of the object similar to the learning

stage of many previous vision systems. (e. g. Perkins {section 1.3.61)

Objects are described in terms of rep-points and local neighbour-

hoods. This data structure contains redundant data (because the local

neighbourhoods can be generated from the rep-point data). This, how-

ever, allows faster execution of the learning algorithms. Fig. 3-8

shows the data structure of the models. The model data is a relational

structure of features and rep-points.

3.4.2. The Extended Learning Stage

In chapter 2 it was seen that there was a basic need for further

machine learning. Thus, the task of my learning algorithm is to learn

by itself the way to use the features that are generated by the pre-

processing stage i. e. the learning algorithm is required to examine

the features, compare them, notice which of them are common, which are

rare, which features are reliable, and so on. Thus, the learning algo-

rithm is required to learn how to use the features detected by the

pre-processing algorithms to recognize objects. The two basic require-

ments are (a) to verify the reliability (or independence) of the

feature description through variations in the imaging conditions of

interest, and (b) to select a set of unique features from this set of

reliable features.

Previous vision systems operated by comparing image features with

model features, and recognition was obtained if the feature sets were

Section 3.4.2 Page 73

sufficiently similar. This was done, however, without knowledge of the

the importance of particular features in discriminating between

objects. This resulted in difficulty in defining the measure of Simi-

larity especially when flexible operation was required. Some systems

circumvented this problem by using human help to identify important

features. (e. g. Yachida and Tsuji [1977], Mero [1981b], Tropf[1981],

Rummel and Beutel [1982] etc.). The main objective of my learning

algorithm is to find distinguishing features of objects automatically.

The system aims to use any distinguishing features for this purpose

i. e. it is not designed to be limited to features that the human pro-

grammer thinks is important. A feature is a distinguishing feature if

it is reliable and unique to an object. Features such as those in

Fig. 3-6 are especially important to the system.

Thus the learning algorithm attempts to answer the question''What

makes one object different from another object? '. The learning algo-

rithm that has been implemented attempts to answer this question by

using the local features of the objects (but not the relationships

between the local features). The algorithm does this by finding a set

of reliable and unique local features for each object. Chapter 6

discusses ways of extending this strategy to non-local structure and

3D interpretation. This section concentrates on the architecture of

the implemented learning algorithm.

During the learning phase the vision system is taught several

instances of each object placed in random (2D) positions and orienta-

tions. Reliability of features is computed by checking that a given

feature is reproduced in all of the instances. This allows the system

to reject

Section 3.4.2 Page 74

1. local neighbourhoods that were created by the coincidence of (say)

shadow and highlight edges with reflectance edges,

2. local neighbourhoods that were disturbed by electronic or visual

noise, and

3. local neighbourhoods that were disturbed by imperfections i n pre-

processing algorithms. This may happen due to threshold effects

when choosing local neighbourhoods and due to imperfections in the

implementation of the rep-point algorithm.

An important point here is that any feature that is reproduced

through the chosen instances is taken to be reliable. But, some of

these features may not correspond to a physical attribute of the

object being viewed. For example, it could be created, (or modified),

by stationaryf highlights or shadows, or by imperfections in pre-

processing algorithms. But this does not matter. A feature may be used

for recognition as long as it is reproducible, even though it may be a

result of an imperfect algorithm. This is an important principle.

Vision guided action can be correct even if intermediate steps are in

themselves judged to be imperfect or incorrect. Such imperfect

features, or 'incorrect' descriptions of objects can be used to pro-

duce 'correct' actions. But then it is important to ask what is meant

by a processing algorithm being incorrect, if the overall system func-

tions correctly. It is clearly not necessary for a vision system to

describe an object the same way as the human visual system in order

for it to be judged to be a correct interpretation.

Stationary with respect to object position and orientation (in
the set of random views).

Section 3.4.2 Page 75

The pre-processing stage should be seen as performing an imper-

fett transformation of local neighbourhood gradient profiles. The

higher processing levels can use this transformed output, neverthe-

less, by learning how the transformed output relates to the input

image (i. e. by using the a priori knowledge in the learning stage that

the sets of features generated for each object instance were formed

from different 2D views of the same object). Therefore, imperfections

in low level algorithms can be tolerated provided that changes in the

input image produce changes in the transformed image over the parame-

ters of interest; in this instance the parameter of interest is the

actual object i. e. the task of the ideal pre-processor is to produce

variation in feature description when different object structure is

being observed, while keeping the description constant when the imag-

ing conditions are changed. The task of the reliability algorithm in

the learning stage is to observe departures from this ideal perfor-

mance. Imperfections are compensated for by discarding features which

are not reproduced reliably by the pre-processor.

Once a list of reliable features are formed for each object, this

list is compared with all of the features found in the other objects.

This is to see if a reliable feature found in object Oi has been found

either as a reliable feature or as a spurious feature in instances of

object 01 (for all j*i). All local features that are reliable and are

not found in any other object instance form the list of unique local

features. The number of unique features found depends on the radius of

the local neighbourhoods and on the similarity between the learned

objects. The number of unique features are expected to increase with

the radius of the local neighbourhoods because each local

Section 3.4.2

neighbourhood sees more of each object.

empirical tests.

Page 76

See section {5.2.4.2} for

A major objective of the learning algorithm is to transfer as

much processing as possible from the recognition stage to the learning

stage. The recognition stage of a vision system spends much of its

time searching. The objective was to move as much of the searching as

possible to the learning stage. i. e., it was hoped that a richly con-

nected data structure could be constructed at learning time so that

the recognition algorithm had a minimum amount of searching to per-

form. The original aim was to achieve this by exhaustive comparison

of model features so that an associative data structure could be simu-

lated in software.

For example, if the recognition algorithm detected feature fl in

the image, the model data structure was expected to produce (1) a list

of objects in which the feature could be found, and (2) the positions

of fl within the object. I expected to do this using object lists for

each feature. An important (but I feel valid) assumption here is that

the learning time is not critical.
}

However, it will be clear that

this would require a large amount of storage, as features such as

straight line segments would be detected everywhere, and would result

in enormous object (and object position) lists. But this leads to an

interesting point. The knowledge that a feature such as a straight

} It should be noted that since the learning algorithm is executed
only once for a given set of objects, learning times of say 24 hrs
even, are not disastrous. Further, if the learning time was critical,
the learning algorithm could be executed on a larger machine, and the
new data structures could be passed back to the smaller vision
machine.

Section 3.4.2 Page 77

line segment is found everywhere is not a very useful piece of infor-

mation for recognition i. e. long lists of objects are not very infor-

mative. They do not contribute much to the speeding up of the recogni-

tion algorithm. Clearly then, the long lists could be eliminated

without a significant loss in the speed up of the recognition algo-

rithm, but with a significant decrease in memory required to store the

lists. My implementation is the limiting case of this, where only

lists with a single atom is retained i. e. unique features.

The reliability test is an important part of the learning stra-

tegy. The original aim was to show each object in a large number of

known positions and orientations and to make the system search for

each feature in the position at which it should appear. In this way

the system was expected to learn about the variation in rep-point pat-

terns due to imaging condition variations. However, this would

require the measurement of the positions and orientations of the

object by hand, so that the system knew where the features were sup-

posed to be, and could then compare this with the actual transforma-

tion of image features. This is unacceptable though, as it would

require too much human intervention (and effort). Alternatively, the

measurement and positioning could be achieved by a robot device. But,

that would be an unacceptable requirement to place on an industrial

user. Therefore, the present system operates without knowledge of the

actual position and orientation of the object at each instance. Dur-

ing the reliability test, features in instance 1 of each object are

searched for in the other instances. However, when a match is

obtained the positions and orientations of the two matched features

relative to the object are not compared. Therefore the reliability

Section 3.4.2 Page 78

test may confirm the reliability of a feature f1 by using a feature

somewhere else on the object that matches f1. This is not altogether

acceptable, but it is not a major problem either. This is because

1. it was shown in section {3.3} that the probability of a random

match between features is small, and therefore any match obtained

is due to similarity in the object structure and lighting condi-

tions that gave rise to the feature, and

2. because any feature that matches other features easily will be

rejected when inter-object comparisons are made. This is the case

with 'common' features such as straight line segments which get

discarded at an early stage.

In future implementations, however, it is expected that the position

and orientation of matching features will be checked during the

feature reliability test.

A useful side effect of the learning algorithm is that it allows

objects to be learned on imperfect backgrounds i. e. features in the

background will be rejected (so long) as they appear in at least two

of the objects. In normal operation, though, it is expected that the

system will learn objects on a featureless background so that the sys-

tem has the least difficulty in deciding which features are object

features and which are background features. (Note that in future sys-

tems which test for object feature positions and orientations in the

reliability test, background features will be eliminated in any case

as they do not move with the object). The system, then, does not

place any constraints on the background used, except that a relatively

featureless background would be desirable at learning time. However

this is not necessary (see section {5.2.3.5}).

Section 3.4.2 Page 79

An extension to this idea is the possibility of using the system

to recognize objects that are themselves variable from one instance to

another. The reliability test can be used to extract the common

features of such an object. Provided that there are sufficient common

(unique) features, the system is able to recognize the object using

these features.

Another useful feature of the learning algorithm is that it gives

the user advanced warning of the expected performance of the system.

For example, if the system detects a large number of unique features

for each object, it will then be able to operate despite large varia-

tions in operating conditions. However, if it detects only a few

unique features, the recognition will fail under smaller variations of

the operating conditions. This scheme is superior to schemes where

models of objects are stored, but not compared, so that any problems

due to object similarity etc. are found only during the recognition

stage. This means that these systems have to be tested on the number

of correct classifications made out of, say, 100 trials. This is

necessary because there is no measure available in advance of how dif-

ferent the objects are from the vision system's point of view. There-

fore, my system cannot make mistakes in principle because it uses

reliable unique features, and by definition the detection of a unique

feature must imply the presence of the object. This is different from

the standard strategy of computing the match weight of the input

object with all of the stored models and then using an arbitrary

threshold over global weighting criterion (e. g. the object is detected

if 50% of the features are detected). However, my system could make

mistakes if a unique feature is created by noise or coincidental

Section 3.4.2 Page 80

alignment of image features, and therefore, more than one unique

feature is required to confirm recognition. But as seen in section

{3.3} the probability of such a random event is low. I have not found

this a problem in practice as it is rarely that more than 2 unique

features are detected when they should not have been, even when the

operating conditions were outside the required range, and dirt and

swarf were present. However, this is dependent on the reliability

tests during the learning stage. The feature reliability can be

increased by extending the learning stage by using many more instances

of each object.

Therefore, unlike in most previous vision systems in which the

recognition algorithm was more complex than the learning algorithm, my

recognition algorithm has been greatly simplified at the expense of an

extended, and time consuming learning strategy. The advantage with

this is that the recognition algorithm is able to execute rapidly.

The problem of recognizing objects using structural (relational)

descriptions of objects is one of matching relational graphs. The

strategy of previous workers has been either to use heuristic algo-

rithms that take advantage of special characteristics of the particu-

lar problem (sections 3.71, or the strategy of finding maximal cliques

{section 2.1.2.2}. My proposal is to effectively eliminate the graph

isomorphism problem in the recognition stage by searching only for

unique relational structure. The graph isomorphism problem is then

transferred to the learning stage, where the problem is magnified in

scale i. e. the system is expected to find (in general) all unique

relational sub structure of all combinations of features. This prob-

lem is simplified in my implementation by restricting the search to

Section 3.4.2 Page 81

local subgraphs of rep-points only. (Note that the time taken to com-

pare 3 objects using 5 instances each to find unique local features is

only about 3 minutes on a PDP11/24). Clearly, there is scope for look-

ing for larger unique relational structures, especially as larger pro-

cessors, more efficient algorithms, and longer execution times could

be tolerated. Chapter 16} on architectural extensions discusses these

possibilities in detail.

The effect of the learning algorithm can be thought of as being

analogous to the effect of applying feedbacks to an operational

amplifier in analogue circuit design. Imperfect and noisy pre-

processor algorithms are 'cleaned up' and made 'linear' so that only

reliable and distinctive features emerge from the system. This is

achieved by selecting the section of the pre-processor mapping func-

tion that produces a locally linear mapping between object structure

and description.

3.1.3. Constructing a Data Structure for Recognition

Once a list of unique features is constructed for each object,

the learning algorithm organizes this data for the recognition algo-

rithm. The unique feature list for each object is first sorted so

that the local features with the highest number of rep-points are at

the head of the list. (i. e. features with the most complex gradient

Applying feedback to an operational amplifier (op-amp results in
the non-linearities and distortion of an open loop amplifier being re-
placed by a linear response. However, this analogy does not extend to
potential stability problems with feedback amplifiers as the learning
system is not a feedback system. The analogy is only with the effect
of feedback on op-amps.

Section 3.4.3 Page 82

profile are chosen). This is done for two reasons.

1. These features are least likely to be matched by chance as the ran-

dom match probability drops rapidly when the number of rep-points

in the neighbourhood increases. {appendix 1}.

2. Because local neighbourhoods with many rep-points are expected to

contain more information than local neighbourhoods with fewer rep-

points, as they represent complex gradient profiles.

The recognition data structure is a list of features that are to

be searched for by the recognition algorithm in the input feature

stream during the recognition phase. The feature list can therefore be

organized so that the objects are searched for depth first, breadth

first, or in some other mode (such as number of features being propor-

tional to the probability of the object appearing). In the implementa-

tion, the recognition data structure is organized so that a breadth

first search is performed. Therefore, the recognition feature list is

{U11, U12, , Urn, U21 , U22,
}

where Ujk is the jth unique feature of the kth object.

This scheme allows the search strategy of the recognition algorithm to

be changed by simply re-ordering this list.

Section 3.5

3.5. The Recognition Stage

Page 83

The task of the recognition algorithm is to search for unique

features in the input feature stream from the pre-processor. The

recognition algorithm depends on the knowledge that (by definition)

the detection or the non-detection of a unique feature is a signifi-

cant event. That is, the recognition algorithm depends on the follow-

ing result that was derived in chapter 2:

Ak*Q FI when Ak is visible in the image, and

Ak* fl FI -$ when Ak is not visible in the image.

That is, object Ak is recognized if any feature f is found such that

fe FI and fc Ak*. However, these equations hold only when a large

number (i) of images are used for learning, and when these images are

taken over a set of imaging conditions IC which includes the current

imaging condition. However, if i is small, and we are not sure of

whether the new image is taken with imaging conditions within the

domain of IC, we cannot be sure that the above conditions hold,

requiring more than one unique feature to be detected in order to con-

firm recognition. Thus, the recognition algorithm needs to be changed

so that a small set of unique features F is found such that

FC Ak* and F CFI.

The number of features required in F for a recognition to be declared,

is dependent on what is known about the severity of the expected

operating conditions during recognition. This is discussed in more

detail in chapter 4.

Section 3.6 Page 84

3.6. Some General Points on the Architecture

3.6.1. Summary of Architecture

The architecture of the vision system is based on a new general-

ized feature detector and a learning algorithm. The bottom-up pre-

processor is responsible for constructing a set of overlapping local

neighbourhoods of the scene. These local neighbourhoods are the local

features. The local neighbourhoods are represented by their gradient

profile. The gradient profile is modelled by rep-points which

represent small regions of approximately uniform non-zero gradient.

The task of the pre-processor is to generate a set of features

that are independent of, or relatively insensitive to, variations in a

set of chosen imaging parameters. The pre-processing stage consists of

a gradient detection and thresholding operation, followed by a rep-

point algorithm, neighbourhood selection and normalization. The neigh-

bourhood selection algorithm is especially interested in regions of

complex gradient profile.

The learning algorithm is responsible for learning to recognize

the objects using the local features generated by the pre-processor.

In order to do this, it first finds reliable features. It then uses

the reliable features to find a set of unique features for each

object. The recognition algorithm searches for these features in the

output feature stream from the pre-processor. It identifies objects

using the knowledge that the detection of a unique feature is a signi-

ficant event.

The implementation shows that this scheme allows the system to

cope with variations in operating conditions and to operate rapidly

Section 3.6.1 Page 85

under favourable conditions. Further, the system demonstrates that

the visual world is very rich in local information which may be used

to recognize objects. Indeed, it was not necessary to use intermedi-

ate or global features (described in chapter 6) for recognition as

sufficient unique local features could usually be found. The test

data in chapter 5 shows that the system was able to cope with large

variations in operating conditions. For example, recognition was

achieved despite a 70% reduction in light intensity, 30% reduction in

scale, and 30°-40° variation in 3D orientation. Further, the recogni-

tion algorithm operated rapidly under favourable/good conditions

(10ms-500ms). +
This performance makes the system unique amongst

reported industrial vision systems.

3.6.2. Another perspective of the architecture

This architecture can also be thought of as an extension of the

generalized Hough transform [Ballard 1979]. Ballard (p. 22) suggests

that the generalized Hough transform could be extended by using pairs

of edge points to reduce the complexity of the locus of the object

origin. Increasing the number of edge points used increases the accu-

racy of the computed locus of the origin and decreases the freedom of

movement of the origin, as the number of positions at which the chosen

edge pattern can be found on the original object is reduced. In the

limiting case the edge point pattern will be unique, and will result

in a single point prediction for the locus of the origin. My system

can be thought of as this special case of the generalized Hough

Excludes pre-processing time (70a) which is expected to be re- duced to a negligible level with the use of dedicated hardware.

Section 3.6.2 Page 86

strategy, except that the amount of data used in the computations is

reduced by using rep-point patterns instead of edge point patterns.

3.6.3. 'Plane' Classification

How does the system fit into the classification of vision stra-

tegies into processing planes? {section 1.3.7}. The feature plane of

my vision system consists of local neighbourhood data and rep-point

data. The model plane is distinct from the feature plane in that it

contains a learned description of the uniqueness of each object in

addition to the models formed by using the local features and rep-

points. Thus the unique features are the 'generated features' {sec-

tion 1.3.7} that are searched for in the 'detected feature' list.

3.6.4. Suitability for Parallel Processing

The local nature of the processing necessary for recognition

means that this architecture is inherently parallel. Therefore, this

vision system is well suited for implementation on an array processor.

Since all of the processing, including the recognition algorithm can

be executed on such a processor, this architecture would make effi-

cient use of the resources provided by an array processor. See chapter

6 for a discussion of the possible implementation of the pre-processor

using dedicated hardware.

3.6.5. Limitations of the Vision System

This architecture, and the present implementation are limited in

that

Section 3.6.5 Page 87

1. large variations of scale cannot be handled,

2. large variations in 3D orientation cannot be accommodated,

3. no attempt is made to cluster similar objects into classes, and

4. objects without unique local structure cannot be recognized.

The last of these is the most important of these limitations for

industrial object recognition. This limitation may be overcome by

extending the system to larger relational structures of the objects.

Ways of extending the architecture to remove these limitations are

described in detail in chapter 6.

Section 3.7

3.7. Comparative Survey

Page 88

This section attempts to compare the vision system with previ-

ously reported vision systems. However, I am unaware of any systems

that report a similar performance, or systems that use equivalent

algorithms. I survey comparable vision systems, which are of two

kinds. Those that use straight lines and circular arcs (concurves) and

those that use local features. I am mainly interested in systems that

claim flexible operation, or noise tolerance, or the ability to recog-

nize overlapping objects.

All of the following systems are limited to the recognition of stable

states of objects. The descriptions within each section are chrono-

logically ordered.

3.7.1. Systems based on concurves

These systems have an initial advantage over my vision system in

that a degree of error correction is achieved by restricting objects

in the scene to those that contain a significant amount of straight

line and circular are features. The error correction arises from the

fact that a given line segment with noise is known to be a straight

line and not, say, a wavy line. The error correction allows these

systems to operate under fairly noisy conditions. The benefits from

this error correction is analogous to the error correction achieved by

digital representation over analogue representation of data in commun-

ication networks. The disadvantage with the scheme is that these sys-

tems cannot operate efficiently (or at all) when the objects do not

contain large regions of straight lines or circular arcs. Although

Section 3.7.1 Page 89

these systems could attempt to operate by approximating the image

features by small line segments and small arc sections, this removes

the advantage of using concurve descriptions in terms of noise immun-

ity and reduced processing requirements. Therefore, this is a major

disadvantage of these systems. I believe that none of these systems

would be able to operate efficiently or display the same degree of

flexibility as my vision system if objects of the type in Fig. 5-1

were used. A further disadvantage with these systems is the need to

perform line tracking in order to construct concurves. The tracking

process can be seriously disturbed by texture and noise. Further,

these algorithms are not inherently parallel, and therefore tend to be

difficult to implement on parallel processors.

Mckee and Aggarwal [1977] report a system that uses binary images

to form extended chain code descriptions of objects. (See section

{1.3.1.1} for disadvantages of binary vision). Straight lines are fit-

ted to the chain data. The system is able to recognize partial views

of objects (not overlapping objects) by comparing generated line

descriptions with stored descriptions. The comparison is made on sub-

sets of the stored line descriptions so that small sections can be

matched. However, two line descriptions are matched by comparing the

area between their graphs normalized by the length of the comparison

window. This therefore is a statistical test of matching (i. e. match-

ing is not based on shape). The program is able to cope with scale

variations, but the extent of variation allowed is not reported. The

noise performance is not given either.

The system by Perkins [1978] (see description in section

11.3.6}) is reported to be able to operate in visually noisy scenes.

Section 3.7.1 Page 90

No figures are presented. The system is able to recognize partially

overlapping objects, but no figures are given of the extent of overlap

allowed. The system can handle only a 5% variation in scale. It is

unable to cope with objects that contain textured surfaces. The recog-

nition algorithm requires 0.1s-0.4s on an IBM 370/168 mainframe com-

puter for simple scenes and 10s on scenes with multiple objects [Per-

kins 1977].

Mero [1981b] reports a system that describes objects using

straight lines and circular arcs, and by using internal details such

as holes. The system performs a heuristic search for these features.

The search strategy for internal details is the same as that by

Yachida and Tsuji [1977] {section 1.3.5}. The important features of

objects are taught interactively (including the end points of the

straight lines and arcs). The system is reported to be able to operate

in noisy scenes. However, the system was tested using "shapes cut out

from drawing paper". Therefore, the scenes were of relatively high

contrast, and the objects had negligible height. The recognition algo-

rithm executes in 0.5s on a VIDEOTRON R-10 minicomputer. (Pre-

processing requires 5s on a 1411x192 image). Results of the noise per-

formance are not reported.

Presern and Kandus [1981] propose a system that uses concurves

(i. e. straight lines and circular arcs). They perform a heuristic

search, and the system is designed to be insensitive to noise. How-

ever, no results were given.

Dessimoz et al [1979] report a system that is able to recognize

overlapping objects in noisy scenes. They use the Freeman chain code

Section 3.7.1 Page 91

which is then filtered and undersampled. Contours are compared by

cross-correlation. Contour extraction is done using special purpose

hardware. The processing time for tracking, filtering, and correlating

was 10ms per contour point on a PDP11/40. (10s for 1000 points?) The

extent of the noise immunity is not reported. The recognition is lim-

ited to the part on "the top of the pile" for overlapping objects.

Cheng and Huang [1981,1982] {section 2.1.2.21 use a sub rela-

tional structure called "star-structures" to match line segment

descriptions of images. They use the system to identify aircraft in

aerial images [1981] and to extract motion information [1982] in noisy

scenes. The relational match algorithm is invariant through rotation,

scale, and grey level modification. However the extent of noise etc.

that can be handled is not reported. The processing time for matching

a 70 node relational structure in the given example [1982] was 24.5s

on a PDP11/70 minicomputer.

Hattich [1982] reports a system that uses line segments in grey

scale data in a strategy similar to that of Tropf {section 3.7.2}. The

system is able to recognize overlapping objects. Execution time, or

level of operational flexibility is not reported.

Kimura et al [1982] report an algorithm for subpattern matching

of line patterns (e. g. Japanese characters), through rubber sheet dis-

tortions. The algorithm is insensitive to scale changes, rotational

variations, extra line segments, and does not use object dependent

heuristics. The system is usable on industrial objects with user pro-

vided object models, objects being represented by straight line seg-

ments. Performance figures are not given for industrial objects.

Section 3.7.1 Page 92

3.7.2. Systems based on local features

The systems described in this section use relational structures

of local features to recognize objects. All of the systems except the

one by Persoon use 'conventional' local features such as corners and

straight line segments.

Persoon's [1978/9] system has a similar motivation to mine in its

use of local features. The system uses binary shape patterns of 11

pixel diameter with a frame size of 100x100. Objects are recognized by

matching relational structures of "distinct" local shape patterns. A

shape pattern is chosen if the centre of gravity of boundary points in

the pattern is in the centre of the window (e. g. patterns with an edge

running through the middle of the window). Distinct features are a

list of features for each object, with each feature being different

from the others within the list. This is different from unique

features in that distinct features are unique within the same object,

and not across objects. The local features used by Persoon are, how-

ever, not invariant through object rotation. Therefore each object has

to be taught in "a large number of orientations in one quadrant". The

distinct features found are then rotated by 900,1800, and 270°, and

stored back in the distinct list as separate features. The features

used are not invariant through illumination variations either, as

binary images are used, and the features themselves are represented as

binary patterns. (Note that the system therefore suffers from the

other drawbacks of binary vision such as the inability to respond to

internal features of objects, except for through-features such as

holes, and the need for high contrast images.)

Section 3.7.2 Page 93

These local features are used to perform a heuristic search for

local features in the input scene. This allows the system to recognize

partially overlapping objects. The system is able to handle scale

variations provided the features themselves are not affected by the

scale change (i. e. the relational structure is scale independent,

while the local features are not).

The processing speed, or the flexibility of the system with

noise, or with variations in operating conditions is not reported.

However, this scheme has clear advantages over standard binary vision

techniques in that it can recognize overlapping objects, and is not

sensitive to the loss of any given local feature as it does not depend

on global statistics for recognition. However, compared with my vision

system the drawbacks are as follows:

(a) The features are not rotationally invariant requiring the storage

of, and the comparison with, different orientations of the same

feature.

(b) The features have no built in resistance to illumination varia-

tions.

(c) The features have no built in resistance to scale variations and

therefore to variations in object skew away from the learned

plane.

(d) The system does not find unique structure of objects, and so the

graph isomorphism problem is left to the recognition stage.

(e) Execution time is not reported by Persoon. However, I suspect

that the execution time is not low because of (d) above, and

because of the dependence on a relational match which is poten-

tially explosive in processing requirements, especially if

Section 3.7.2 Page 94

arbitrary scale variations are checked for, and multiple objects

are present in the scene.

Jacobus and Chien [1979] report a system that uses "half-chunks"

to recognize objects. (See section {2.1.2.2} for a description). The

system is independent of scale. Performance details are not given.

However, Jacobus [1979] indicates that the low level processing

requires 20 minutes of processing time, while the "graph-based manipu-

lations" require 5 minutes per frame. The frame size was 252x238. The

programs were written in BlisslO on a DEC KI-10 processor.

Tropf [1981] reports a system that uses corners in grey scale

image data to recognize overlapping objects. The object models are

taught to the system by hand. During the recognition stage a heuristic

search called "analysis by synthesis" is performed to tackle the graph

matching problem. The system requires 0.5s for the analysis part (i. e.

recognition time), while the pre-processing requires 30s on a SIEMENS

7760 computer. The noise performance or the extent of operational

flexibility are not reported.

The system reported by Rummel and Beutel [1982] uses features

such as "corners, straight lines, circles, grey levels and textures".

Models are constructed from these features using human help to iden-

tify prominent features. The program performs a heuristic search to

match image features to model features. The recognition routine exe-

cutes in 210-640 ms for the first object in the image, running on a

SIEMENS R30 minicomputer. The pre-processing requires 50s on a 128x128

image. The recognition time is "highly influenced by the selection of

the first primitive in the model". An indication of the noise perfor-

Section 3.7.2 Page 95

mance or the degree of object obscuration allowed is not given.

Stockman et al [1982] report a system that uses local features

such as line segments, curved edge segments, circles, and intersec-

" tions. Registration is obtained by first matching image elements with

all model elements on a local basis. Each local match produces a locus

for rotation, scale and translation (RST) of the objects. However, the

RST locus is reduced to a single point by using arbitrary combinations

of two local features. (The combinatorics is controlled by using arbi-

trary rules for pairing points). The RST points are then clustered in

a4 dimensional space. This is a special case of the generalized Hough

transform [Ballard 1979]. In their implementation the problem is sim-

plified by assuming a fixed scale factor so that clustering needs to

be done in 3 dimensional space. They use the system to register aerial

images to maps, to detect airplanes in aerial images, and to recognize

industrial parts. Object models are taught to the system by hand. The

system was tested using "carburettor covers cut out of dark cardboard"

and a set of (real) hinges. The system was tested on overlapping

objects as well. Some difficulty in recognition is reported [p. 239].

Execution times, and noise performance are not reported.

Bolles and Cain [1983] report a binary vision system that is able

to use local features to recognize overlapping objects. The system

uses 'conventional' features such as holes and corners. Objects are

taught to the system interactively during the learning stage. The sys-

tem then extracts a set of "focus features" for each object. A focus

feature is a local feature used to focus the attention of the system

during the recognition phase. When a focus feature is found, its

neighbourhood is examined to detect other local features. Once the

Section 3.7.2 _
Page 96

matching local features are found, a graph matching technique similar

to that used by Ambler et al {section 2.1.2.2} is used. Their clique

finding algorithm, however, is different.

The aim of the focus feature finding algorithm is to find

unusual, or unique local neighbourhoods around a chosen local feature.

This is done on the basis of neighbourhood uniqueness over the given

object set, and on the basis of uniqueness over the same object (i. e.

a symmetry analysis). The feature selection process can be modified

interactively. The motivation for this learning algorithm is similar

to mine. However, as the model features are input by hand, there is no

need for a reliability test. Further, the uni4ueness tested is for

extended neighbourhoods, which is similar to my intermediate features

{section 6.1.11. The local features themselves are limited to holes

and corners, and therefore do not show any uniqueness. Therefore, the

system depends on a relational match for recognition. This results in

longer execution times. They report an execution time of 8s on a

PDP11/34 to recognize 4 identical overlapping hinges when only the

hinges were being searched for. Searching for 44 different objects

takes 25s. (It is not clear whether this includes the time required to

extract the local features from the binary image, but I think it

does).

This system is limited in the present implementation to binary

(high contrast) images.
}

Thus, these execution times have to be

They claim that the system can be extended to grey scale images
if the appropriate feature detectors were available. However, it must
be stated that finding local features in low contrast images is a
somewhat more difficult task, and that if the graph matching process
had to take uncertain local feature matches into account, the effect
on execution time could be significant.

Section 3.7.2 Page 97

compared with those for my system in favourable operating conditions

(with multiple objects) due to their assumption of high contrast

images. The performance of the system under noisy conditions, scale

variations, etc. is not reported.

3.7.3. Comments on Comparisons

I am unaware of any vision system that reports a better process-

ing speed coupled with the operating flexibility. Further, I am

unaware of systems that use a similar strategy. However, Persoon had a

similar motivation in choosing binary shape templates, and Bolles and

Cain had a similar motivation in the feature selection strategy of

their learning algorithm. I am unaware of any systems that have used a

generalized local feature detector, where the local features were

insensitive to a variety of imaging conditions and noise. I am also

unaware of any systems that use unique structure to recognize objects.

Finally, I am unaware of an industrial vision system that has a simi-

lar learning capability. Most of the systems described previously

require user provided object models. The learning strategy of Perkins

program is limited to a storage mechanism. Persoon's learning algo-

rithm performs an extra degree of learning, by identifying a set of

unrepeated features for each object. It does not attempt to formulate

a recognition strategy, nor to test for feature reliability. The bulk

of the processing is performed by the recognition algorithm. The

learning algorithm by Bolles and Cain generates a recognition stra-

tegy, but the task is simplified by the absolute confidence available

on the reliability of model features, as they are given to the system

by hand, and by the use of binary images. Further, the results of the

Section 3.7.3

learning algorithm

Page 98

are supervised by an operator to obtain optimal

performance.

Chapter 'I

Implementation: Algorithms and Data Structures

This chapter describes the implementation of the architecture

described in Chapter 3. The algorithms are described in detail, and

the design trade-offs are examined. All of the software was written

in Fortran on a small minicomputer (PDP 11/24) running the RSX11M

operating system. The grey scale images were taken from the vision

system described in Athukorala and Wallace [1982]. The images were of

256x256 spatial resolution and 8 bits of grey scale resolution.

Details of the user interface to this software is given in Appendix 2.

4.1. Pre-processing stage

Fig. 4-1 is a block diagram of the pre-processing stage. (A stra-

tegy for implementing the pre-processor using dedicated hardware is

presented in chapter 6). The output of the pre-processing stage is

used by both the learning and the recognition stages, and is a

bottom-up process. Therefore, high level decisions do not affect the

pre-processor. There were several design goals that had to be met

when designing the pre-processor.

(1). Each algorithm had to be designed so that it would accomplish its

task as best it could. However, no algorithm can expect a perfect

Section 4.1

Grey scale

image
Gradient Threshold Rep-point

Algorithm
Edge detection

Fig. 4-1 Pre-processor

Page 101

Lo cal
Neighbourhoods

result from the algorithm preceding it i. e. imperfections in

algorithm performance must be expected, and compensated for by

the higher level algorithms. Therefore imperfections in the grey

scale image (e. g. electronic noise) are compensated for by the

gradient algorithm. Imperfections of the gradient image (e. g.

edge orientation inaccuracy) must be anticipated by the rep-point

algorithm. Imperfect segmentations by the rep-point algorithm

(e. g. termination faults) must be handled by the matching algo-

rithm. Imperfections in all of these is compensated for by the

learning algorithm.

(2). A major objective when designing the pre-processing algorithms

was to design them so that they could be implemented in hardware

with minimum effort. I had the further objective of implementing

the algorithms to execute reasonably fast on the PDP11/24. How-

ever, the latter was only a short term objective as I would not

envisage the vision system being used without dedicated hardware.

(3). The pre-processing algorithms are expected to operate with fixed

thresholds despite the wide variety of operating conditions

expected. Threshold values could be tuned at system set-up time,

Section 4.1 Page 102

but they would then remain fixed during normal operation of the

system. The test results reported in chapter 5, for example, have

been obtained with a single set of thresholds.

The rest of this section examines the implementation of the 3 pre-

processing stages: edge detection, rep-point selection, and local

neighbourhood selection. Performance of these algorithms is discussed

in Chapter 5.

4.1.1. Edge detection

There has been much research devoted to the problem of finding a

high quality edge detector. Davis [1975] and Pratt [1978] p. 478 sur-

vey the field. Raggett [1980] gives a number of references. See also

Marr and Hildreth [1979], Abdou and Pratt [1979], and Beattie [1984].

I was not concerned with the problem of finding an ideal (or even a

very good) edge detector. The system philosophy is to be able to cope

with imperfections in algorithms as well as operating conditions. How-

ever, a few edge detectors were considered for the task. The 4x4

Walsh transform based edge detector (WTED) [O'Gorman 1978], the Sobel

operator [Sobel 1970], the 2x2 WTED, and the Wong operator [Wong 1979]

were considered. I was interested in identifying an 'efficient' edge

detector, and the 4x4 WTED was chosen for the task. However, as

reported in section {5.2. J4.1}, the system was tested with other edge

operators as well, and was found to operate satisfactorily.

4.1.1.1. The Walsh Transform based Edge Detector (WTED) This tech-

nique was first reported by O'Gorman [1978]. The WTED is similar in

concept to the Hueckel edge detector [Hueckel 19731, but is based on

Section 4.1.1.1 Page 103

Walsh functions [Walsh 1923]. Walsh functions are a set of orthogonal

functions {WO, W1, , Wk,... } which may be defined as follows. ,

When k21, Wk(x) - Wd(2x) for 05x<Z

- (-1)(k+1). Wd(2x-1) for 25x<1

where d-[2] and FO(x)-1 for 05x<1

([] means greatest integer less than.)

For example, the first 8 Walsh functions are shown in Fig. 4-2. The

number of discontinuities in each function is equal to the order of

the function. These functions are orthogonal.

1 -0 if k*j
i. e.

JWkeWj.
dx

-1 if k

Fig. 4-2 The first 8 Walsh functions.

Section 4.1.1.1 Page 104

Therefore, a function H(x) that is integrable on 0Sx <1 can be

represented by an infinite series of weighted Walsh functions [Searle

1969]. (cf. Fourier series).

go
i. e. H(x) _I Wn. Cn

n-O
1

where Cn =j Wn. H(x). dx

This can be done in two dimensions as well.

cc
Hence, H(x, y) _ Cn. Wn(x, y)

n=0
11

where, Cn =Jj H(x, y). Wn(x, y). dx. dy
00

Fig. 4-3 shows the first 16 Walsh functions in 2 dimensions. (Black

squares represent -l's and the white squares represent +1's).

The strategy of the edge detector is to first represent the grey

scale intensity of a 4x4 window, using Walsh functions. The advantage

with Walsh function representation as opposed to a Fourier representa-

tion is (a) only 16 Walsh functions are needed to represent a 14x4

square precisely, and (b) only additions and subtractions are needed

for the transformation. The weighting coefficients (Cn) are then com-

pared with pre-computed weighting coefficients of a parametrized win-

dow with the required intensity profile. In the implementation, the

parameters used are the step size, orientation, and the average

brightness of either an ideal step edge or an intensity ramp (constant

gradient) in the window. These parameters can then be computed from

the coefficient comparison. It can be shown [O'Gorman 1978] that for

a step edge or a constant gradient in the window, the following condi-

tions are necessary.

Section 4.1.1.1 Page 105

Fig. 4-3 The first 16 Walsh f unctions in 2D (Black=-1, White-+1)

a3=0 a4=0 a5-0

where {a0...... a151 are the 2D Walsh coefficients computed

from the image window.

The 'goodness' of the match is tested using two thresholds, d and k.

Section 4.1.1.1

d' Ia, I+Ia21

Page 106

and ka
Iai1+1a2)

a, +a2+a3+a4+a5

The gradient orientation is given by 0,

aý
where tan(e) -- a2

The expressions for k and 0 are different from the those given by

O'Gorman. The changes simplify the algorithms and allow the programs

to execute faster. In this implementation, the WTED differs from a

gradient detection algorithm only by the use of the k threshold. How-

ever, this threshold has an important effect on the performance of the

edge detector in that it produces thinner edges. (See section {5.3.1}

for comparison tests). However, the arguments in section {3.2.2} did

not require thin edges from the edge detector. In fact, it may be

argued that edge thinning is a loss of information. However, in order

for the vision system to operate in a reasonable time, some data must

be discarded. The advantage with the WTED is that it allows us to

trade the information loss due to edge thinning with the information

gain from reducing the edge detector thresholds (and thereby retaining

weak features). This is because the WTED allows the 'd' threshold to

be far lower than that of a gradient operator (such as Sobel) for the

same number of detected edge points i. e., as the 'd' threshold is

lowered, strong edges remain thinner with the WTED. This was one of

the main reasons for choosing this edge detector.

Another reason for using the WTED was its higher immunity to high

frequency noise. This can be seen from the transform definition. The

high frequency data is transformed into the higher order coefficients

Section 4.1.1.1 Page 107

(as in a Fourier transform) while it uses the lower order coefficients

for the computation. Another way of looking at this is to consider the

WTED as performing a certain amount of image smoothing (due to the 4x4

window) before the edge data is computed, resulting in a bandpass

characteristic. The higher noise immunity of the edge detector coupled

with the low noise, high quality image from the camera (quoted signal

to noise ratio of 50dB) removed the need for an initial smoothing, or

noise reducing stage. This saved a large amount of processing time

(of the order of 50s per frame for the software simulation) and an

extra stage of hardware processing when the pre-processor is imple-

mented in dedicated hardware.

4.1.1.2. The WTED program The WTED can be implemented in software

to execute reasonably fast, as multiplications and divisions are not

required (except when computing k and 6. However, these two parameters

are not computed for every pixel as the 'd' threshold is computed and

tested for first. 6 is computed only when an edge point is found -

which is less than 10% of the time). Searle [1969] describes a fast

Walsh transform algorithm (analogous to the fast Fourier transform)

that allows the transform to be executed even faster.

The addressing restriction of the PDP11/24 made it necessary to

store the grey scale image in virtual memory as a 32767 word linear

array with two pixels packed into a single word. This made pixel

addressing uncomfortable and slow, and required optimization of pixel

addressing. If the algorithm was implemented without optimization,

each pixel would have been accessed, and unpacked, 16 times. Optimiza-

tion was achieved by using an integer ring buffer with four pointers.

Section 4.1.1.2 Page 108

The pointers were used to keep track of the window position within the

ring buffer. Each virtual pixel was read and unpacked only once, and

inserted into the ring buffer. Since the window pixels are accessed

relative to the pointers, the ring buffer simulates a hardware serpen-

tine memory. (See Fig. 4-4). The edge orientation is computed over

the complete 360° range by using the direction of the intensity

difference (i. e. the polarity). The computed edge orientation is

then quantized to 256 levels (8 bits). The edge orientation was quan-

tized to a resolution of 8 bits due to convenience of use, rather than

due to expected accuracy. An 8 bit representation has the advantage

of automatic wrap-around during angle arithmetic. The failure of the

Fortran compiler to produce code to detect overflow and underflow con-

ditions is thereby used to our advantage. The use of a high resolution

representation also has the effect of minimizing quantizing noise.

Serpentine memory 'Ring' Buffer

Fig. u-4

Section 4.1.1.2 Page 109

Inaccuracy of the angular data is anticipated by the use of soft

thresholds (±300 for edge orientation, and ±180 for rep-point orienta-

tion).

The address of the edge point and its orientation are then passed

to the rep-point algorithm. In the software implementation, the edge

orientation is stored back in the original grey scale image, and the

complete image is stored back on disc at the end. The stored edge

image can then be used by the rep-point algorithm or by display pro-

grams.

4.1.2. The 2. E Point Algorithm

The implementation of this algorithm was expected to be the hard-

est of the three pre-processor algorithms. However, once the program

had been coded and debugged, its performance exceeded expectations.

Test results for the rep-point algorithm are given in section {5.3.2}.

The algorithm was implemented as two processes, and performs the

segmentation in a single raster scan of the edge points. The first

process segments the input edge data in the horizontal dimension to

form 1D runs, and the second process collects vertically related 1D

runs to form 2D rep-points.

4.1.2.1. The 1D rep-point algorithm This algorithm scans the input

edge data in raster fashion, and segments the edge points into runs of

similar edge orientation. Runs of length less than 2r are passed

directly to the 2D algorithm. If the run is longer than 2r, the first

r edge points are passed. The same criteria are used to segment the

Section 4.1.2.1 Page 110

remaining edge points. The algorithm can be stated as follows:

If e1, e2e3, ... en are consecutive edge points on an image row

and lOrientation(ei) - Orientation (e1)l < Orientation tolerance,

for any i,

then the run is defined as the set

{e1,
... en} for n<2r,

{el, ... er} for nz2r.

r is usually set to 4.

4.1.2.2. The 2D algorithm This algorithm attempts to perform the

same process on runs in the vertical direction, as the 1D algorithm

does on edge points. Rep-points are assembled in 256 accumulators

(which is equal to the number of pixels on a row). Each new 1D run is

then added to an accumulator. In order to do this, each accumulator

is associated with a column of the image. All the accumulators that

are near the mean column position of the new ID run are tested to find

the best accumulator for attaching. These tests are as follows.

(In the following, C1D refers to the current 1D run, i. e. the new 1D

run that is to be attached to an accumulator. 01D refers to the 1D

run that was attached last to the accumulator under consideration.)

An accumulator is chosen for adding C 1D to, if the accumulator passes

4 tests:

(a) The average orientation of C 1D is similar to the average

orientation of 01D'

(b) 01D and C1D are on consecutive image rows.

Section 4.1.2.2 Page 111

(c) C 1D is close to 01D. (Horizontal distance must be less

than R). The position of a run is the centre of gravity of

the run.

(d) C1D and 0 DD are connected (8-connectivity).

These tests are designed to determine that all of the runs attached to

an accumulator have similar orientation data, and that they are close

together on the edge image. They also ensure that diagonal rep-points

are properly formed.

If more than one accumulator passes all of the tests (which is

not common), the ID run is added to the accumulator in which the last

1D run is closest to the current 1D run. If the distance is the same,

the 1D run is attached to the left hand accumulator (as the edge image

is scanned from left to right). If an accumulator for attaching a new

1D run is not found, an empty accumulator is used to start a new 2D

rep-point. Accumulator allocation is handled on a spatial basis

(along the horizontal axis) so that accumulator searching is kept to a

minimum. 256 accumulators are sufficient as long as the value of r is

greater than about 2. Accumulators are cleared when a rep-point has

been formed, and it is made available for new rep-points. Rep-points

are formed from accumulated runs, as follows:

If R1, R2'R3, ... , Rn are runs in an accumulator

then the rep-point represents the set of runs

{R,,
... , Rn} if n<2r

{R1,
... Rr} if nZ2r

Section 4.1.2.2 Page 112

At present, this section has been implemented as follows

{rl,
... r} if nSR

{r1,
... rR} if n>R

This alteration allowed a simpler implementation of the algorithm but

results in a slight asymmetry in the way the horizontal and vertical

directions are handled.

4.1.3. Constructing Local Neighbourhoods

This algorithm may be implemented to execute 'on the fly' using a

set of accumulators in a similar way to the 2D algorithm for rep-

points. The accumulators would be used to hold unfinished features.

Each input rep-point will be considered for attaching to all of the

unfinished accumulators in which the central rep-point is close to the

position of the new rep-point. Accumulators are freed when the verti-

cal distance from input rep-points to the central rep-point is greater

than the radius (R) of local neighbourhoods: (Note that local neigh-

bourhoods are 'circular' i. e. the Euclidean distance between the cen-

tral rep-point and the peripheral rep-points must be less than or

equal to R. Therefore, neighbourhoods are circular within the bounds

set by spatial quantization. See Fig. 4-5). However, the software

implementation succumbed to the possibility of buffering the rep-point

data. This allowed a simpler implementation.

Once local neighbourhoods are constructed, they have to be nor-

malized. The normalizing algorithm is as follows.

Let the peripheral rep-points in the neighbourhood have

Section 4.1.3 Page 113

Fig. 4-5 Shape of a local neighbourhood of radius 9.

orientations given by {al. a2'..., an} relative to image coördi-

nates, and positions {(rý, ßý),..., (rn18n)I where (ri, ßi) are

polar coordinates relative to the central rep-point. If the

central rep-point has orientation a0 relative to image coordi-

nates, then the normalized neighbourhood will have rep-points

I(r1, el),..., (rn, 6n)}, with orientations {Y1,..., Yn}, relative

to the central rep-point,

where 01aBCa0 and Yi-ai-a0

The new cartesian coordinates (Xilii) of each rep-point rela-

tive to the central rep-point are given by

Xi-ri. cos(9i)ari. cos(ßi). cos(a0)+ri. sin(Bi). sin(ap)

sxi. cos(ao)+yi. sin(a0)

Section 4.1.3 Page 114

and Yi-yi. cos(a0)-xi. sin(a0)

where (xi, y1) are the coordinates of the rep-points

relative to the central rep-point before normaliza-

tion.

In the implementation, the computation of sines and cosines, and of

floating point multiplications, is avoided by using table lookup and

integer arithmetic without a significant loss of precision, as fol-

lows:

As the angle values are quantized to 256 orientations, only 256

values of sines and cosines are needed. These can be represented by a

floating point table of 256 values each. However, floating point

arithmetic is time consuming, and unnecessary, as the final result is

in fixed point integer representation. The sine and cosine values are

therefore quantized to 513 values (from +256 to -256) with the under-

standing that +256 represents +1 and -256 represents -1. Therefore,

the computation may be achieved by multiplying the integer coordinate

value (xi, say) by the integer sine value and dividing by 256. How-

ever, the division by 256 can be accomplished by simply choosing the

high byte of the result (which is equivalent to a right shift by 8

positions). Therefore, computing xi. sin(a0) which would normally

require a sine computation, a floating point multiplication, and a

real to integer conversion, is replaced by an integer table lookup and

an integer multiplication. (This in fact can be achieved in a single

machine instruction - i. e. when aO and x are in registers- as the

table lookup can be achieved with indexed addressing on the PDP11).

Section 4.1.3 Page 115

Local neighbourhoods are represented by a list of integers. Each

integer specifies a single peripheral rep-point. The first byte of the

integer gives the position of the rep-point relative to the central

rep-point, and the second byte gives the orientation of the peripheral

rep-point. This meant that the rep-points could have a maximum of 256

positions within the local neighbourhoods, which limits the maximum

local neighbourhood radius to 9 pixels. (In fact, 9 pixel radius

requires 253 codes). The codes are generated and decoded using two

lookup tables.

New code a XYtoCD(x, y)

X-coordinate - CDtoXY(code, l)

Y-coordinate - CDtoXY(code, 2)

(Note: These arrays are vectored, so that no multiplication

takes place during access. In the recognition algorithm,

CDtoXY is equivalenced to 2 linear arrays CDtoX and CDtoY

which eliminates a level of indirection for each access).

The implementation allows the system to operate with any neighbourhood

radius of up to 9 pixels. However, the limit of 9 pixels is unaccept-

able, and should be removed in future implementations. Further, the

requirement of unpacking data values using the lookup tables is also
, '. vt'ý. i "'r

Ry

unacceptable. It is recommended that rep-point data values be

represented using 3 bytes or 3 words depending on available memory

resources.

One minor problem with this implementation is that some rep-

points at the periphery of the local neighbourhood are moved outside

Section 4.1.3 Page 116

the local neighbourhood when the neighbourhood is rotated during nor-

malization. This is due to the effects of quantization. At present

these rep-points are simply discarded. A better strategy would be to

move them in towards the central rep-point until they are inside the

local neighbourhood again. However this problem will not arise in a

new implementation that does not use a positional code.

4.2. The Matching Algorithm

The matching algorithm performs a flexible match between two

neighbourhoods. It compares 3 parameters of the two neighbourhoods to

be matched in the following order of precedence:

(a) The number of rep-points in each neighbourhood.

(b) The orientation of the peripheral rep-points.

(c) The position of the peripheral rep-points.

The general version of the algorithm is as follows:

Given two normalized neighbourhoods N1 and N2, where

Nlnj(P0, a0), (P1, a1), ... ,
(Pnan)}

and N2-{(g0.60), (q1. ß1), ...
(gm, am)l

where ai and $i are rep-point orientations and pi and qi are rep-point

positions (including the central rep-points (p0, a0) and (q0, ß0)), then

Ni and N2 are matched if

(a) In-ml 5 THRESHOLDO

match(p, a , N2)
(b)

min n, mi
THRESHOLD1.

i00
match(p ,a , N1)

and (c) I
min n, m Z THRESHOLD1.

i*0

Section u. 2

match(pi, ai, N2)=1

if there exists a (q,, ßi) in N2

such that Jai-ßij<THRESH0LD2

and ipi-q, I<THRESHOLD3

else, match(pi, ai, N2l-0

Page 117

(a) requires that the number of rep-points in the two neighbour-

hoods be similar, and (b) and (c) require that, if N2 is superimposed

on N1, the percentage of rep-points in N1 and N2 which are similar in

orientation and position relative to the their central rep-points be

larger than a given threshold.

The above requirements have been designed to cope with missing

rep-points and degradation in the input data. The matching algorithm

was found to be relatively insensitive to THRESHOLDO and THRESHOLD1.

THRESHOLDO was therefore set to 0, and THRESHOLD1 was set to 100%. It

was now possible to rewrite the algorithm, resulting in a significant

increase in execution speed. The new criteria for matching N1 and N2

are

(a) n-m

(b) I match(p, ai, N2)-n
i*0

and (c) I match(pi, ai, Nl)-n
1*0

Since the sum in (b) or (c) cannot be greater than n, the non-matching

situation is easily detected (i. e. match(pk, ak, N)=O for any k). This

contributes to the increase in execution speed. An important feature

of the matching algorithm is the movement allowed for rep-points

within the local neighbourhood. This enables the algorithm to match

Section 4.2 Page 118

local neighbourhoods that have been distorted, for example, by scale

variations. The function MATCH has the feature of allowing a single

rep-point to be mapped to more than one rep-point in the corresponding

local neighbourhood which results in further matching flexibility.

4.3. The learning stage

4.3.1. Model Formation

Each object instance that is taught to the system is stored as a

model on disc. A model directory is maintained so that the software

can keep track of the objects that have been taught, and what process-

ing has been done.

The data structure used is of fixed size, which allows rapid

access of the data. The model data structure consists of four sub

structures as follows:

MDL

RP POINTR NABOUR STATUS

XYPRP contains the rep-point data. It can store up to 600 rep-points,

and contains the X and Y coordinates of each rep-point and their pro-

perty.

NABOUR is a list of neighbourhoods, which can store up to 2500

normalized peripheral rep-points. POINTR is a pointer array that

points to the location of feature lists within NABOUR. POINTR contains

the starting position of each list and the length of the list. This

organization (see Fig. 4-6) has been chosen to allow rapid processing

Section 4.3.1 Page 119

of the data structures. Note that this pointer structure allows ran-

dom access to the feature lists (i. e. the NABOUR lists do not have to

be searched sequentially).

STATUS contains 128 words of status information. The status

information records all of the processing done on the given image, the

algorithms used, the thresholds used, and the result of the process-

ing, such as the number of edge points found etc. The status informa-

tion also serves as a check to -stop incorrect sequences of algorithms

being used. Such checks are invaluable during program development.

The complete model structure is stored in a contiguous memory

block and is 'equivalenced' (Fortran EQUIVALENCE) to a linear array

named MDL. Therefore, the model may be referenced as a single struc-

XYPRP(600,3) POINTR(600,2) NABOUR(2500)

1
2
3
u
5

600

XY PRP POINTER LENGTH

STATUS(128)

Fig. 4-6 Model data structure

Section 4.3.1 Page 120

ture. This allows models to be swapped in and out of memory quickly.

In fact, the model data is read and written to disc using block I/O

which executes rapidly.
}

The model data structure requires 5628 words

of store.

The model directory is used to keep track of the objects known to

the system. It contains information regarding the names of objects,

the disc file names of the object instance models, and the processing

carried out on the models. (i. e. what learning has taken place). The

model directory structure is as follows.

DIRECT

DRSTAT OBJNAM OBJDAT INSNAM

DRSTAT stores status data of the overall system. OBJNAM remembers the

names given to the objects. OBJDAT contains additional status data on

each individual object. INSNAM remembers the names of the individual

disc files that store the object models. This data is used by the

learning algorithm during the learning phase to automatically access

the correct files containing the object models. The object names are

used by the recognition routine to report recognition success. The

model directory structure requires 505 words of store, and is also

read and written to disc rapidly using block I/O.

Block I/O does not require any formatting, and does not use an
intermediate data buffer. Therefore, it executes with minimum CPU in-
tervention. (Data is moved to disc by direct memory access - DMA.

Section 4.3.2

x. 3.2. The Learning Algorithm

Page 121

The learning algorithm is executed after all of the objects have

been shown to the system and all of the models have been constructed.

The algorithm first forms a set of common features (Ci) that are com-

mon to each object across the set of object instances (i. e. Ci con-

tains the list of reliable features). Ci is then compared with all of

the instances of the other objects so that all matching features in Ci

are deleted. The remaining features are unique to object i.

The algorithm is as follows:

Let the object set be OBJ, the instance set be INST, and the

neighbourhood set be NBHOOD. Then each object 0e OBJ has a

set of image instances Ic INST, and each instance icI has a

set of neighbourhoods Nc NBHOOD. In the following, I will

use the operator '. ' to select elements of a set. For example,

O1. I1. Nk refers to the Nkth neighbourhood of the Iith instance

of the 01th object. (see Fig. 4-7)

(a) Then, for each 0i, construct a set of common neigh-

bourhoods Cif such that each neighbourhood

Ci. Ni c O. I1, and there exists OL. Im. N< for all m*1

such that Ni and Nk are matched.

(b) For each 0i, construct a set U2i of unique sets, such

that each Ui c U2i is unique to 0i with respect to 0,,

j*i i. e. each neighbourhood U2i. Uj. Nk C Ci and there

does not exist an 0J, Im. NP for all m such that Nk and

Np are matched.

(c) For each O. construct a set UGi of unique neighbour-

Section 4.3.2 Page 122

OBJ

01 02 0i

Ii Im Cý UG1 U2

N ... N ... N ... N ... N

Ui

A..

Fig. 4-7 Data structure used by the learning algorithm

hoods, unique to object 0i with respect to all of the

other objects.

That is, UGi. Nk e U21. Ui for all j*i.

The intermediate sets U2 in (b), (which describe the differences

between any two objects), are computed as it allows the system to

be extended in future by clustering similar objects into classes

(see section {6.1.4}).

The software, at present, allows 5 image instances per object, and

up to 10 objects in the object library. The comparison routine

takes approximately 2-5 minutes for 3 objects. The time taken

Section 4.3.2 Page 123

depends on the number of neighbourhoods found in each object, (and

therefore on the size of the object). In the worst case, the exe-

cution time for learning is proportional to the square of the

number of objects . However, in practice the program executes much

faster due to the neighbourhoods that get discarded, and because

each neighbourhood is compared only with a fraction of the other

neighbourhoods due to variations in neighbourhood sizes. The algo-

rithm can be speeded up for incremental learning by saving the

results of the intermediate sets U2 in (b) above.

4.3.3. Recognition Data Structure

The recognition data structure is similar to the model data

structure, and contains the following information:

UNIQUE

OBJECT BLOB FREQ NBHOOD NABOUR

OBJECT(i) stores the object number of the ith unique feature. BLOB(i)

remembers the rep-point number of the feature within the first

instance of the object during the learning phase. FREQ(i) indicates

the frequency with which the feature has been detected by the learning

or recognition algorithms. NBHOOD(i) stores the size of each feature

in terms of the storage required in the NABOUR list. The NABOUR list

contains the normalized feature data.

In the present implementation each object is allowed a maximum of

32 unique features. (The object on the left in Fig. 5-1, for example,

had 51 unique features when compared with the other objects in the

Section 4.3.3

same figure).

Page 124

The unique data structure too is equivalenced and can be

addressed as a single unit of 3828 words. It is read to and written

from disc rapidly using block I/O.

4.4. The Recognition Algorithm

It was shown in section {3.5} that the recognition algorithm

depends on the strategy worked out in chapter 2 i. e. an object is

recognized if a single unique feature is recognized. However, this

depends on the learning algorithm being executed properly i. e. the

learning should have taken place with a large number of sample images.

Since we have reduced the number of sample images used to learn from,

our confidence in the identity

Object Ak recognized if fc FI -fc Ak*

is lowered. Thus it is necessary to detect more than one unique

feature to confirm recognition. Emperically it was found that the

number of unique features required for recognition was dependent on

whether the imaging conditions used during recognition were within

that assumed by the system, so that a single unique feature was suffi-

cient for recognition. It was also found that about 6 unique features

were necessary to confirm recognition when the operating conditions

were well outside the assumed conditions. The fact that the system

operates at all outside the assumed conditions demonstrates the

robustness of the strategy.

It is possible to optimize the recognition algorithm depending on
P. co"4

the aj knowledge of the kind of operating conditions that may be

Section u. 4 Page 125

encountered. On this basis the operating environment can be divided

into 3 categories.

1. Favourable conditions: This is defined as the best operating condi-

tions that the system could ask for, such as high contrast images

(by using a black background for instance), diffuse lighting condi-

tions, etc.

2. Good operating conditions: This refers to the conditions specified

by the vision system as being necessary i. e. reasonable lighting

conditions, fixed scale, and views of stable states of objects.

3. Poor operating conditions: This refers to operating conditions that

fail to meet the required operating conditions i. e. when the

operating conditions are not good as defined above.

The method of presenting objects to the vision system can be divided

into 4 modes in order of expected difficulty.

1. Single object in image.

2. Multiple objects - not touching.

3. Touching objects.

4. Overlapping objects.

An important feature of the recognition algorithm is its ability

to detect the special case of single object mode coupled with good or

favourable conditions to truncate the search automatically. We first

examine this condition. Under this condition the search can be trun-

cated as soon as X unique features are detected. Under favourable con-

ditions X may be set to a value of 1 or 2, and under good operating

conditions to a value of about 4. This strategy would be sufficient if

the conditions were known to be good or favourable in advance and it

was known that only a single object will be present in the scene. In

Section 4.4 Page 126

this mode, the system operates very fast. However, this mode of opera-

tion cannot respond to variations in conditions (i. e. a deterioration

of conditions). Therefore the condition for search truncation is

altered with practically no extra processing overhead, to allow the

system to check automatically whether the special operating condition

is met. The truncation algorithm is as follows.

Let R(i) be the number of unique features detected for object i.

Then, if R(i)>T and R(J)-O for all j*i then terminate,

else search for all unique features of all objects.

(Note that this condition is tested for after each complete round of

unique feature searches i. e. the number of unique features searched

for in each object is the same.)

Now the special case of favourable/good operating conditions with

a single object in the image can be detected automatically. T must be

chosen so that TZX, and is usually set to be equal to X. The effect of

this algorithm is that when T unique features have been detected for

object i, if at least one unique feature has been found for another

object then the system assumes that either there are multiple objects

in the image, or the operating conditions are not good. (i. e. they are

poor). Therefore it continues searching for all the features in the

unique feature list that remain to be searched, before deciding which

objects have been detected. However, it will be noticed that this

truncation algorithm is not foolproof. Therefore, a small value for T

(i. e. <J4) will be used only if the conditions were guaranteed to be

favourable, and rapid execution was needed, and faster processing

resources could not be provided. However a further safeguard could be

used under these conditions by counting the number of unique features

Section 4.4 Page 127

(RN) of object i that were not recognized. Therefore the new termina-

tion condition under these special conditions is

Terminate If R(i)-1 or 2, RN(i)-O, and R(j)=0 for all joi

Under these conditions the recognition algorithm executes rapidly

r50ms on the PDP11/24). Recognition times as low as 10ms have been

observed. (See section {5.4} for a discussion of execution time).

The second special case is when the system is provided with good

operating conditions, and the objects are presented in one of the

first 3 modes. (i. e. without overlapping objects). The termination

condition used is

R(i)-u and R(j)-0 for all joi

Under this condition the system operates rapidly if only a single

object is present in the image (100-500ms when three objects are being

searched for). If more than one object is in the image, all of the

features are searched for as before.

In normal operation I use the termination condition with T=6.

i. e. R(i)-6 and R(j)-O for all j*i

Finally, when the operating conditions are known to be poor, and

possibly with substantial overlapping of objects in the scene, T is

set to a large value so that all unique features are always searched

for i. e. there is no early termination condition. The system requires

about is-5s to execute under this condition (or when the termination

condition is not met by the other special conditions) when three

objects are being searched for. In this situation X remains set to 6,

so that any object for which more than 5 unique features are detected

is recognized. Objects for which between 3 and 6 features are detected

are presented as hypothetical. These hypotheses could be verified by

Section 4.4 Page 128

computing their relational structure (i. e. position and orientation

relative to each other), and (or) by searching for other (non-unique

local features of the object. This is not done in the present imple-

mentation.

This vision system, then, can be configured to operate rapidly

under favourable conditions or flexibly under poor conditions by

changing the value of T. Therefore, the system is able to deliver the

speed of a binary vision system (with higher reliability) or the flex-

ibility of a grey level vision system by simply choosing the value of

T. In practice I would expect the value of T to be set as high as the

processing resources allow (in order to achieve the required speed).

If it was necessary to have the system run at a constant execution

speed, (i. e. by not taking longer to run when the termination condi-

tion is not met), the failure of the termination condition could be

used to signal rejection. However, such implementation decisions are

highly dependent on the specific application.

The flexibility of the vision system arises from the flexibility

of the features themselves, and due to the learning algorithm select-

ing reliable unique features, which means that the system does not

have to recognize all of the features for a given object. Thus a large

number of features could be lost due to object overlap or degraded

operating conditions and still result in a 100% confidence level of

recognition.

Because of the reliance on local neighbourhoods, there is essen-

tially little difference between having two objects in the scene that

are either overlapping, touching or not touching. In the overlap

Section 4.4 Page 129

situation, small values of object skew and the loss of a large section

of the object from view, are the main obstacles to recognition. The

section on test data shows that the matching algorithm is relatively

insensitive to object skew. This is due to the movement allowed for

rep-points within neighbourhoods by the matching algorithm. As far as

the loss of unique neighbourhoods due to obscuration is concerned, the

program will not be perturbed until less than 6 unique neighbourhoods

are left.

A further problem presented by the overlapping and touching

situations is that it is possible to create new neighbourhoods from

the intersection between features of different objects, which match

unique features of objects in the library. However, as shown in sec-

tion {3.3} the probability of such random matches is low.

Therefore the system is able to recognize overlapping objects provided

that

(a) an interesting part of the object remains visible, and

(b) the object plane is not far away from the learned plane.

Once an object is recognized, its position and orientation may be

computed. Each detected feature gives a measure of the position and

orientation of the object due to the assumption of constant scale.

However, in order to obtain an unambiguous measurement of the object

position and orientation it is necessary to compute the symmetry of

the object during the learning stage. Bolles [1979] discusses a way of

computing symmetry. Once the object is registered with the model, it

may be inspected by comparing the rep-point descriptions. Perkins

[1983] and Barnard [1980] discuss alternative strategies for

Section 4.4

inspection.

Page 130

The recognition algorithm was the easiest to implement due to its

simplicity, as all of the complex searching necessary is done by the

learning algorithm. The algorithm was implemented so that it would

execute rapidly. Therefore, table look-up was used to replace pro-

cessing whenever possible to speed up computation. A further increase

in speed could be achieved by reformatting the feature data as

described in section {4.1.3}.

The recognition algorithm is limited to recognizing objects, and

does not concern itself with other tasks such as inspection. Objects

may be inspected by comparing their rep-point descriptions. In order

to do this the rep-point model has to be read into memory once the

object is recognized, and the object position and orientation com-

puted. The use of block I/O allows the model data to be read from disc

rapidly.

4.5. Comments on the overall system implementation

The programs were all written in Fortran on a PDP11/24 minicom-

puter. The Extended Instruction Set (EIS) of the PDP11 was used when

compiling programs in order to allow rapid execution. (EIS code

allowed some programs to run as much as 4 times faster). Assembly code

subroutines were not used in any of the algorithms. Therefore, an

increase in speed could be achieved by re-coding time consuming parts

of the code in PDP11 Macro. This could be especially useful for the

recognition algorithm.

Section 4.5 Page 131

The programs were written with a large amount of debug code to

allow efficient debugging and improvement of the programs. Some pro-

grams contained as much as 60% debug code. This scheme allowed me to

write the programs so that rapid execution and good diagnostics were

available. In normal execution the programs are compiled without the

debug code. In this mode only the essential processing for the algo-

rithms to execute properly is performed. This allows rapid execution

of the programs. In program development mode the debug code is com-

piled as well. This code which is interleaved with the algorithm code

generates a dynamic display of algorithm execution on the user VDU,

and computes a variety of statistics. The debug displays are con-

trolled by a debug status vector which allows different parts of the

display to be enabled and disabled, so that the user may suppress

displays that are not of interest at the time. When all of the display

is enabled, the program spends most of its time redrawing the screen.

Therefore a program -such as the rep-point program- that executes nor-

mally in 14s takes many hours to execute. In order to allow the pro-

grammer to find the parts of the execution sequence of interest, a

degree of status pattern matching is also incorporated. The program

then continues execution without displaying any information until the

specified program status is found. This scheme allowed efficient

debugging of programs. Further details of the user interface to the

software is given in Appendix 2.

It should be stated, however, that the main source of information

for program debugging comes from displaying the processed images on a

display monitor. Although it is not possible to prove the correctness

of programs by this method, it allows incorrect programs to be

Section 4.5 Page 132

detected very quickly. This gives us
,a

tremendous advantage over other
-

areas of computing, where assessing program correctness can be a major

problem. Thus, a good quality display device is invaluable during pro-

gram development.

The present implementation can be improved in several ways to

achieve better results, and faster processing. The implementation of

the rep-point algorithm has a flaw due to an asymmetry in the way the

horizontal and vertical directions are handled. This should be

removed. An alternative implementation using relaxation techniques

may also be possible. The rest of the pre-processing algorithms do

not need any special improvements, but of course they should be imple-

mented in special purpose hardware. The recognition algorithm should

be rewritten so that feature property values do not have to be

unpacked.

These are the improvements needed within the unextended architec-

ture. However, future implementations should attempt to code the pro-

posed architectural extensions {section 6.1} as well in order to allow

the limitations of the presently implemented architecture to be

removed.

Chapter 5

Tests and Results

The purpose of this chapter is to demonstrate that the strategy

developed in chapters 2 and 3 is usable, and to establish the perfor-

mance of the system in terms of the objectives set out in chapters 1

and 3. In particular, this chapter aims to indicate the extent of the

flexibility achieved by the system.

This chapter is organized as follows: Section {5.1} introduces

the system test strategy. Section {5.2} describes the overall system

tests, which is followed by a discussion of tests performed on the

individual parts of the system {section 5.3}. This is followed {sec-

tion 5.4} by a discussion of system execution speed. Section {5.5}

gives a summary of the test results.

Section 5.1

5.1. Introduction

Page 135

Testing vision systems is a difficult task. This is due to the

badly understood nature of the problem, and the huge number of possi-

bilities that would have to be considered if a vision system were to

be tested exhaustively; in fact, the number of possible input patterns

may be considered infinite for all practical purposes (e. g. a 256x256

8-bit image can take 256256x256 distinct patterns!) There are two

ways of tackling this problem:

1. Test the system to determine that the design objectives have

been met by imaging a few objects and verifying recognition.

2. Use the knowledge of the system design strategy to map the

different failure modes of the system by selecting tests that

are most likely to result in failure.

All systems that the author is aware of use the first strategy;

most published papers present a few image instances that the system

successfully recognized, so that the judgement of the merits of the

algorithms must depend almost wholly on the knowledge of the design

strategy. In this thesis, the second test strategy is used. (Note

that this includes the first). The system is tested by mapping its

performance when its basic assumptions are not met. That is, each of

the assumptions made by the system (e. g. constant lighting) is gradu-

ally (and independently) varied until recognition fails. The result is

a map of the system sensitivity to each of its assumptions. In order

that the different tests be comparable, a single set of objects was

used.

Section 5.1 Page 136

It should be noted that all thresholds were kept constant

throughout these tests. (That is, thresholds were not changed in order

to get the best performance for each test). Further, the optical

parameters were also kept constant i. e., the lens aperture was not

changed to obtain the best exposure for each object. The aperture was

chosen to allow reasonable imaging of all the objects. This means that

some objects were imaged less well due to variations in overall object

reflectance. These tests verify an important characteristic of the

feature descriptor: It will be recalled that the extended learning

algorithm confirms the reliability of unique features only over varia-

tions of 2D position and orientation of the object. Therefore, the

system does not know whether these features are structural through

other variations such as scale. Thus these tests establish the extent

to which the pre-processor and the feature selection process are able

to select features that are structural outside the sampled range of

images i. e. if the feature descriptor did not show a degree of unifor-

mity we would expect that when object A was in the image, the system

would detect unique features (UFs) of objects B and C as well. Such

features will be referred to as spurious features. The ideal perfor-

mance would be for the number of UFs found for object A to decrease

(i. e. graceful degradation) when the operating conditions degrade,

while the number of UF found for B and C remain at 0. It should be

noted that these tests are far more stringent than those reported on

most previously published systems, as the system is being tested out-

side its design limits to failure.

Section 5.1.1

5.1.1. Selection of Test Objects

Page 137

The tests performed on the system can be divided into two

categories with respect to system sensitivity to the actual objects

used:

1. Tests with the object set in Fig. 5-1, and

2. Tests with other objects.

The second class of tests may be considered another test of varying

one of the parameters of the system i. e. the 'parameter' of the actual

objects used. Thus, the tests based on all other parameter variations

were done using the object set in Fig. 5-1. The only criterion used

when selecting this test set was that the objects should have some

'local structural activity'. That is, since the implemented system was

based on the use of local features, it was clearly necessary that such

Fig. 5-1 The three test objects

Section 5.1.1 Page 138

features be available on the objects. It would have been of little

value to use objects with global unique features only (e. g. a rec-

tangular shape), as the present architecture explicitly excludes such

objects. (See chapter 6 for a discussion of how this limitation may be

removed).

Historically, the three objects in Fig. 5-1 were the first that I

found. The apparent similarity between the objects (to us), only

serves to make recognition harder, as object recognition depends on

object dissimilarity rather than similarity. However, any doubt about

whether the system is able to recognize only these three objects

should be dispelled by the additional tests which were performed with

other objects (see sections {5.2.3.7,5.2.3.8,5.2.3.9}).

5.1.2. Test Procedure The three objects in Fig. 5-1 were taught to

the system. These three objects will be referred to as cutter, gear

wheel, and tooth wheel (from left to right). This object library will

be referred to as the CTG library. The test environment is shown in

Fig. 5-2. A single object was then introduced and one of the parame-

ters was varied until the threshold of recognition was reached (i. e.

only 6 UFs were detected for the object in the scene). All of the

other conditions were kept constant. The objects were presented on a

black background for maximum contrast. The lighting was kept diffuse

using the set up shown in Fig. 5-2. Recognition was defined to have

failed when either

(a) less than 6 UF of object A was detected when A was in the

image, or

(b) more than 6 UF of object B was detected when B was not in the

Section 5.1.2

I

1 I It

Page 139

Fig. 5-2 The environment for the set of controlled tests.

image.

5.1.2.1. Forming the test library

The three objects were taught to the system by showing each

object in 5 randomly chosen 2D positions and orientations in the

image. This resulted in 15 images named CUTTER1-5, TOOTHW1-5 and

GEARW1-5. Then, each image was processed as follows: Firstly, the edge

image was formed, followed by a rep-point image. Fig. 5-3 is an exam-

Section 5.1.2.1 Page 140

ple of an edge image which was formed from image CUTTER1. Fig. 5-4 is

the rep-point image formed from Fig. 5-3.

Section 5.1.2.1 Page 141

"_ =%ss f1

; ss
I ; tf,;

III --"; "

II 2'. 7> r ,. I''f tt _

r r,

`2
__

.

X2.2,
M%

i2 if{ 2ý
`S5 `-.

ý
i "fr .'-- -2122

;1

4ýý Sr
!`I 22e2

I
2132.

f'

II 1
Iýf fssf

sr ýf+.. "t 21 i ; rr"

"

III --" ti'
14'I ýýff'

ýýýý` il 2`

"IIir
ýýýý I

ýýiýiý22

3, k It

1t: f 2ýi1
"

1,11 ý2tý
; ssf I I'

----- - ------
-- --

------- ------------------------- sf
l22

'\`

rl' ,
Irf ri "2;; 2 rYirS "t

r
ý"nf'7 'f

'f jf11 ; 3ý II IIý
; 'f if f. --. I Iyli,

Issýr
f! S ::. II ýsý33

I

>,; ssi

t Illl £yýS I fStSSý;.

Fig. 5-3 Edge image of the cutter in Fig. 5-1 (See also Fig. 5-7)

Section 5.1.2.1 Page 142

A

M.

i S

Fig. 5-4 Rep-points found in Fig. 5-3

Section 5.1.2.1 Page 143

The rep-point image was used to construct a relational model of the

object based on a relational structure of rep-points, and a relational

structure of local features. (The relational structure of rep-points

is not used by the system at present).

Next, the learning algorithm was run on these images to obtain

unique features for each object. The following table shows the pro-

gress of the learning algorithm.

(The first and second columns show the names of the models being
matched. The third column shows the number of local features from the
model in the first column that were searched for in the second model.
The fourth column shows the number of features that were found.

Find reliable features for CUTTER
CUTTER1 CUTTER2 381 225
CUTTER1 CUTTERS 225 182
CUTTER1 CUTTER1 182 145
CUTTER1 CUTTER5 145 130
Number, of reliable features for CUTTER-130

Find UF for CUTTER. Compare with TOOTHW and GEARW
CUTTER1 TOOTHW1 130 50
CUTTERI TOOTHW2 80 6
CUTTER1 TOOTHW3 74 2
CUTTER1 TOOTHWII 72 3
CUTTER1 TOOTHW5 69 1
68 features unique to CUTTER compared with TOOTHW
CUTTER1 GEARW1 130 41
CUTTER1 GEARW2 89 23
CUTTER1 GEARW3 66 9
CUTTER1 GEARW14 57 1
CUTTER1 GEARW5 56 1
55 features unique to CUTTER compared with, GEARW
51 features are unique to CUTTER compared with TOOTHW and GEARW.

Find reliable features for TOOTHW
TOOTHW1 TOOTHW2 317 80
TOOTHW1 TOOTHW3 80 56
TOOTHW1 TOOTHWI4 56 53
TOOTHWI TOOTHW5 53 48
Number, of reliable features for T00THW= 48

Section 5.1.2.1

Find UF for TOOTHW. Compare with CUTTER and GEARW

Page 144

TOOTHWI CUTTER1 48 20
TOOTHW1 CUTTER2 28 0

TOOTHW1 CUTTERS 28 0
TOOTHWI CUTTER4 28 0
TOOTHW1 CUTTER5 28 0
28 features unique to TOOTHW compared with CUTTER

TOOTHW1 GEARWI 48 16
TOOTHWI GEARW2 32 0

TOOTHWI GEARW3 28 0
TOOTHW1 GEAR W14 28 0
TOOTHWI GEARW5 28 0
28 features unique to TOOTHW compared with GEARW
27 features are unique to TOOTHW compared with CUTTER and GEARW.

Find reliable features for GEARW
GEARWI GEARW2 384 91
GEARW1 GEARW3 91 47
GEARWI GEARW4 47 23
GEARW1 GEARW5 23 18
Number of reliable features for GEARW-18

Find UF for GEARW. Compare with CUTTER and TOOTHW
GEARW1 CUTTER1 18 8

GEARWI CUTTER2 10 3
GEARW1 CUTTERS 70
GEARWI CUTT ER14 71
GEARWI CUTTER5 60
6 features unique to GEARW compared with CUTTER
GEARW1 TOOTHW1 18 7
GEARWI TOOTHW2 11 0
GEARWI TOOTHW3 11 0
GEARW1 T00THW4 11 0
GEARW1 TOOTHW5 11 0
11 features unique to GEARW compared with TOOTHW

.6 features are unique to GEARW compared with CUTTER and TOOTHW.

The final result was
Reliable Unique Unique between two

CUTTER 130 51 - 68 55
TOOTHW -48 27 28 - 28
GEARW 18 66 11 -

The matrix on the right is the number of UF for each object when com-

pared with one other object. This matrix demonstrates the difference

between any two objects. It may be used to cluster objects {section

6.1.4} and to improve the speed of the learning algorithm during

Section 5.1.2.1 Page 145

Fig. 5-5 Four of the unique features chosen for the CTG library.
(a) and (b) are from the cutter, (c) is from the tooth wheel
(d) is from the gear wheel.

incremental learning. The UF sets are the intersection of the sets in

this matrix. Fig. 5-5 are examples of four of the unique features

chosen by the system. The positions of UF(a) and UF(b) are marked on

Fig. 5-4 with arrows. UF(c) was taken from the outer edge of the

tooth wheel and shows one of the teeth. UF(d) shows one of the teeth

Section 5.1.2.1

of the gear wheel.

Page 146

Due to the fixed size of the data structures used, only 31 UF

were used for the cutter during recognition. All UF were used for the

other two objects (i. e. 27 and 6 respectively). The above table demon-

strates the way the learning algorithm operates. The reader will

notice the way the number of reliable features that match features in

the other objects drop rapidly after the first instance is matched, so

that only a small number of object instances are required for learn-

ing.

In the following discussion, a naming convention has been adopted

for object models to indicate the object name and the kind of test

being performed. There are 3 fields as follows:

<Object name> <Type of test> <Instance number>

Object names and test type are often abbreviated for convenience e. g.

CUTL1 is an image of the cutter for light variation tests, and TOOTHZ3

is the tooth wheel with the zoom changed (i. e. scale change).

During the system tests, the recognition stage was allowed to

search for all unique features. Thus, there was no early termination

condition {section 4.4}. Therefore, the recognition statistics given

should be interpreted as follows: Any object for which 6 or more UF

are detected is considered recognized by the system, while the detec-

tion of 6 or more spurious features for a single object constitutes a

mismatch.

Section 5.2 Page 147

5.2. Overall System Tests

Four types of tests were performed on the overall system.

1. Tests to verify the sensitivity of the system to the three basic

assumptions.

2. Tests to verify sensitivity to implicit assumptions.

3. Tests over other imaging conditions.

. Tests on the system response to variation of internal operating

parameters.

5.2.1. Sensitivity to the Three Basic Assumptions

The system was first tested by allowing the three basic constan-

Gies expected by the system to vary i. e. through variations of light-

ing, scale, and object plane. This was done by changing one of the

parameters until the system failed to recognize the object in the

scene.

5.2.1.1. Light Variation Test In this first test, the light inten-

sity was reduced until the system failed to recognize the object in

the image (i. e. less than 6 UF were detected). I found it difficult

to control the lighting accurately. The effective intensity was varied

by stopping down the aperture of the lens. The light intensity was

measured by summing the pixel data over a central square of the image.

It will be noticed that reducing the aperture also increases the depth

of field. However, this has a minimal effect as the object is always

in focus. (Distance from the camera to object was about 1.2m, while

the object height was about 1cm-5cros. Initial lens aperture was f2.8).

Section 5.2.1.1 Page 148

Fig. 5-6 shows the variation in the number of UFs found when the

cutter was in the image. Note that the number of UFs shown include

multiple detections of some features due to object symmetry. The fol-

lowing is the list of UF found for each instance of the cutter as the

light intensity was reduced. Note the spurious features detected for

the gear wheel. This turned out to be a high level of spurious

features for the system. It will be noticed that the number of spuri-

ous features remained less than 6, so that the highest (spurious) con-

fidence level reached was 75%. The list on the right shows the number

of UF found when the tooth wheel was in the image. Note the very low

Deýeckd

VtCccL.: 1 of

IDO' 101 9,70'& "J, sbt 401 SOL 3.1,1e1 D

Fig. 5-6 Unique features detected for cutter with light intensity

Section 5.2.1.1

level of spurious features.

Page 149

(Column (1)- instance number, Column(2)- light intensity summed over a
central square, Column(3)- UF found for cutter, Column(1)- UF found
for tooth wheel, Column(5)- UF found for gear wheel).

Intensities of original images were:
CUTTER - 4849
TOOTHW - 7349

(i)
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

CUTL 1-17

(2) (3) (4) (5)
C T G

4563 48 0 0
4182 57 0 4
3950 40 0 2
3679 58 0 5
3401 47 0 3
3088 47 0 1
2856 42 0 2
2660 25 0 u
2381 20 0 1
2182 22 0 2
1916 18 0 1
1630 3 0 1
1344 1 0 3
1108 0 0 1

809 0 0 0
534 0 0 0
458 0 0 0

TOOTHL 1-31

(2) (3) (4) (5)
C T G

7349 0 89 0
6961 0 78 0
6853 0 47 0
6 490 0 98 0
6354 0 83 0
6016 0 86 0
5823 0 84 0
5439 0 91 0
5281 0 109 0
5003 0 114 0
4712 0 121 0
4485 0 120 0
4279 0 113 0
3986 0 109 0
3739 1 135 0
3435 0 110 0
3212 0 127 0
2926 0 132 0
2635 0 -86 0
2426 0 38 0
2196 0 44 0
2009 0 58 0
1750 0 23 0
1606 0 21 0
1494 0 9 0
1316 0 0 0
1069 0 0 0

891 0 0 0
638 0 0 0
517 0 0 0
369 0 0 0

It will be noticed from the graph that the recognition failed

when the intensity was 70% below the intensity at which the cutter was

learned. (The corresponding figure for the tooth wheel was 81%).

Section 5.2.1.1 Page 150

Fig. 5-8 The cutter at the threshold of recognition ýlig'ht variation)

Fig. 5-7 The cutter as it was learned by the system
Note: Image resolution is 128x128 for display only

Section 5.2.1.1 Page 151

Fig. 5-7 shows one of the images of the cutter as it was learned, and

Fig. 5-8 shows the contrast level at which the system just recognized

the object. In order to check the importance of the edge threshold in

this particular test the edge threshold was varied proportional to the

measured brightness of the image. As expected, this improves the

recognition threshold, and allows the cutter to be recognized with the

light intensity 78% down (86% for tooth wheel), while the number of

spurious features remain low despite the increase in the amount of

noise that gets past the edge detector. This increase in noise con-

tent can be seen in Fig. 5-9 which shows the rep-points that were gen-

erated at the lower edge threshold when the cutter was just recog-

nized.

(1- instance number, 2- intensity, 3- edge threshold used (normal
threshold is d-80, k-0.75. k was not changed), 4- UF detected.)

CUTL 14-17

(1) (2) (3) (4)
CTG

14 1108 18 622
15 809 14 313
16 534 9100
17 458 8001

TOOTHL 25-31
CTG

25 1494 17 070
26 1316 15 0 13 0
27 1069 12 000
28 891 10 0 12 0
29 638 7010
30 517 6040
31 369 4000

In order to demonstrate the possibility of artificially adjusting the

Section 5.2.1.1 Page 152

i' 1- /1 I i\

il --

\II
-_I1'\1 II I\\

'II'\

If

\\
ItI \

-\\ \
// //

//I
--

1-

iI

Fig. 5-9 The cutter at the threshold of recognition (rep-point image)
Edge detector thresholds were lowered proportional to average intensity
d-18, k-. 75

system flexibility, the system was taught the cutter at normal inten-

sity, and the cutter at a lower intensity (44% of original) as

separate objects. The learning statistics were as follows.

Reliable Unique
CUTTER 130 32
CUTLL 58 1

Section 5.2.1.1 Page 153

This library was used to re-recognize the data for the cutter with

light variation. This reduced the recognition flexibility to 48% of

original intensity. (See the broken line in Fig. 5-6. Note that the

points for this graph have not been plotted). The statistics were:

(1- instance number, 2- intensity, 3- UF for CUTTER, 4- UF for cutter
at low light intensity -CUTLL).

CUTL 1-17

(1) (2) (3) (4)
C CLL

1 x+563 49 2
2 4182 41 0
3 3950 35 2
u 3679 37 2
5 3401 24 3
6 3088 26 4
7 2856 13 6
8 2660 5 u
9 2381 7 2

10 2182 0 8
11 1916 0 6
12 1630 0 2
13 1344 2 1
14 1108 2 0
15 809 1 0
16 534 0 0
17 458 0 1

The original CTG library was used to recognize the CUTLL set of images

(which are at approximately 44% of the original lighting level).

CUTLL 1-5

CTG
1.6 01
2.12 01
3. .801
u. 15 03
5.14 01

(Note: There was an inadvertent fluctuation in scale on this set of
images)

Section 5.2.1.1

5.2.1.2. Scale Variation Test

Page 154

In this test the size of the object was changed by varying the

zoom of the lens. All other parameters were kept constant. The light-

ing too was kept constant as far as possible, although this was not

easy. Fig. 5-10 shows the variation of UFs that were detected. The

threshold of recognition was reached when the object was 39% smaller

than in the learned image (43% for the tooth wheel). Fig. 5-11 is the

image of the cutter at the threshold of recognition. The recognition

statistics were as follows: (Note the low level of spurious features

despite operation well outside the original design limits.)

UNIQUE
FEATLAGS

Fig. 5-10 Unique features detected for the cutter with scale variation

SCALE

Section 5.2.1.2 Page 155

Fig. 5-11 The cutter at the threshold of recognition (scale reduction)

Size of original images were:
CUTTER - 6.3
TOOTHW - 6.2

CUTZ 1-8

Size c T G
6.0 57 0 0
5.45 52 0 0
5.0 49 2 0
4.5 13 2 0
4.0 9 0 0
3.7 5 0 0
3.25 1 0 3
2.9 3 0 5

TOOTHZ 1-6

Size C T G
5.5 0 67 0
5.1 0 47 0
4.6 0 16 0
4.0 0 14 0
3.45 0 2 0
3.0 0 1 0

Once again, in order to check the possibility of changing the system

flexibility artificially, the system was taught the original cutter

images and 5 other images of the cutter at a smaller scale as separate

objects (57% of normal size). The learning statistics were as follows:

Section 5.2.1.2

CUTTER
CUTSM

Reliable Unique
130 44
. 21 0

Page 156

The CUTZ images were then re-recognized using this library to check

the change in system flexibility.

CUTZ 1-8

Size c CSM
6.0 50 0

5.45 46 0
5.0 42 0
4.5 7 0
4.0 0 0
3.7 1 0
3: 25 0 0
2.9 0 0

This demonstrates that the recognition flexibility was reduced to

about 30%. Recognition on CUTSM itself using the original CTG library

resulted in the following figures: (This is a scale reduction of 43%.

Note the low level of spurious features).

CUTSM 1-7
C T G

1 7 0 1
2 2 0 0
3 4 0 1
14 1 0 0
5 6 0 0
6 3 0 1
7 2 0 0

5.2.1.3.3D Orientation Variation In this test the object was

tilted out of the learned plane by placing it on an inclined metal

sheet. Fig. 5-12 shows the variation in the number of UFs detected.

The recognition threshold was reached when the cutter was 32° off the

Section 5.2.1.3

ul.; I %, t at

])a 4-cc kA 7c

61

Sq

2

t

Page 157

Fig. 5-12 Unique features detected for the cutter with orientation variation

learned plane (47° for the tooth wheel). Fig. 5-13 shows the cutter on

the inclined plane at the threshold of recognition. From the follow-

ing statistics it will be noticed that the number of spurious features

were very high on this test. (But note the lack of spurious features

when the tooth wheel was in the image). This demonstrates the need to

extend the reliability check to these situations if the system is

required to operate with such images.

O° 5° lo' iS" 10" 2s° 30° 390 c. O' 45; °
Alý9te P Aid -f-am
1enwýd f 1ýý.. Q

Section 5.2.1.3 Page 158

CUTI 1-8 TOOTHI 1-11
Angle C T G Angle C T G

5° 73 1 2 51 0 108 0
10° 41 1 0 100 0 87 0
15° 51 1 0 15° 0 75 0
20° 26 17 1 20° 0 54 0
25° 19 7 0 25° 1 101 0
30° 7 14 2 30° 0 73 0
35° 4 6 1 35° 0 59 0
40° 0 4 2 40° 0 20 1

45° 0 7 0
50° 0 4 0
55° 0 3 0

5.2.2. Variation of other Implicit Assumptions

As pointed out in section {3.2.1} there are a large number, of

implicit assumptions such as proper camera operation which the system

cannot be tested for. However, two tests were carried out in this

category.

Fig. 5-13 The cutter at the threshold of recognition (3D orientation var.)

Section 5.2.2

lý' ý9ut
ýeo. ýKS

to
j e4eckd

7o

Go

0

Page 159

It

4.0 %O"U f.. 0 1.0 --v

Fig. 5-14 Unique features detected for the tooth-wheel with defocussing

5.2.2.1. Camera Defocussing The system was able to cope with a

small amount of image defocussing. Fig. 5-14 shows the variation in

the number of UFs detected for the tooth wheel when the lens focus was

changed from the correct value of 3.8ft. The aperture was f5.6. These

images were taken in ordinary lighting conditions {section 5.2.3.11.

Recognition statistics were:

TOOTHBLUR 1-5

Focusing distance C T G
u ft 0 80 0
4.5 ft 0 76 0
5.0 ft 0 71 0
6.0 ft 0 1 0
7.0 ft 0 0 0

The focusing distance was read off the lens.

Section 5.2.2.1 Page 160

5.2.2.2. Gaussian Noise Gaussian noise was added to the input

images artificially until the system failed to recognize the object in

the image. The noise was generated using an algorithm given by Knuth

[1969] p. 104. (Note that the sum was truncated to 8 bits). The signal

to noise ratio was measured using the definition given by Pratt [1978]

p. 498.

i. e., signal to noise ratio-h2
0

where h is the edge height and a is the standard deviation of the

noise. The edge height was measured by taking the average edge

strength of the edges that are detected when no noise was added.

Therefore the signal to noise ratio is the signal to noise ratio seen

by the vision system at the chosen edge threshold. Fig. 5-15 shows the

variation in the number of UFs that were detected when the signal to

noise ratio was decreased. The recognition threshold was reached when

the signal to noise ratio was 7 (8.5 dB). The corresponding value for

the tooth wheel was 4 (6 dB). The statistics were as follows: (Once

again note the lack of spurious features despite the random noise that

was added. This supports the calculation for random match probability

in appendix 1).

Section 5.2.2.2

4s

4c

3s

3c

2!

15

Page 161

-- -- +v iv LysiI
S: 9wý1 to 1. oite voMc,

Ctt Sc te)

Fig. 5-15 Unique features detected for the cutter with Gaussian noise

CUTTER1
Average edge strength of edges that are normally detected for CUTTER1-33.25

a S/N ratio CTG
3.32 100 43 00
4.71 "50 24 21
7.44 20 19 00

10.52 10 701
14.88 5100
16.64 4700
19.21 3001
23.53 2000
33.28 1000

Section 5.2.2.2 Page 162

TOOTHW1
Average edge strength of edges that are normally detected for TOOTHW1'40.25

a S/N ratio c T G
4.03 100 0 44 0
5.69 50 0 27 0
9.00 20 0 32 0

12.73 10 0 30 0
18.00 5 0 9 0
20.13 4 0 7 0
23.24 3 0 3 0
28.46 2 0 0 0
40.25 1 0 3 0

Fig. 5-16(a) shows the rep-points that were found for the cutter when

the signal to noise ratio was I. In Fig. 5-16(b), the normal require-

ment that each rep-point be nominated by at least 2 edge points has

not been enforced. This shows the dramatic improvement in the rep-

point image in the presence of high frequency noise when local corre-

lation of edge point directions is required.

A second test was carried out on the images with random data:

First, a new object library was constructed using the two sides of the

tooth wheel as separate objects. The learning statistics were:

Reliable Unique
TOOTHW 48 30
TOOTHDN 30 15

(It should be noted that the two sides of the tooth wheel appear very

similar to us despite the high level of UF found by the system). This

library was then used to recognize the tooth wheel data with added

noise. The recognition results on the TOOTHW with added noise was as

follows:

Section 5.2.2.2 Page 163

\-
/I

'
!11

1

1, \
1 .

r1\ \" ,1

'
I

y

" 1/ r

r. i. ýr

II II\

I \/ \I
/11-\

ý/ / \\
_i:

\\
1ý!

1

Fig. 5-16 Rep-point image of cutter when SN ratio=4.
Lower image is with no rep-point size threshold

Section 5.2.2.2

TOOTHW1

a S/N ratio T TDN
4.03 100 50 0
5.69 50 31 0
9.00 20 34 0

12.73 10 37 1
18.00 5 9 0
20.13 4 7 0
23.24 3 3 0
28.46 2 0 0
40.25 1 3 0

Page 164

The system did not confuse the two sides of the tooth wheel despite

the high level of added noise.

5.2.3. Other Miscellaneous Tests

The system was tested under a variety of other conditions. Most

of these tests could not be quantified either due to difficulty in

controlling the tests, or because more than a single parameter was

changed, or because it was difficult to define a quantitative measure.

5.2.3.1. Object Recognition in Ordinary Lighting Conditions The

objects were presented to the system under room lighting conditions

(see Fig. 5-17 for the test environment) to verify that it was able to

operate despite the non-diffuse and uncontrolled lighting. Fig. 5-18

shows the kind of image produced in this environment. The reader will

notice the presence of highlights in the image. It will also be

noticed that the lighting was not specially arranged for the vision

system (the four tungsten lamps in Fig. 5-17 were used only for the

directional lighting test in section {5.2.3.2}; They were normally

left switched off), but was what was previously defined as reasonable

lighting conditions i. e. lighting designed for human use. The vision

Section 5.2.3.1 Page 165

Fig. 5-17 Test environment for operation in 'ordinary' lighting

system is able to operate under these conditions without difficulty.

Note that the objects were placed on a grey metal background (see

Fig. 5-17). There was also a slight change in scale. Recognition

statistics for 6 images of each object in this environment:

Section 5.2.3.1

Fig. 5-18 Cutter in ordinary lighting conditions

CUTLAB 1-6
C T G

1 15 0 1
2 17 4 0
3 21 1 1
4 25 0 0
5 16 0 0
6 20 0 1

TOOTHLAB 1-6
C T G

1 0 19 0
2 0 7 0
3 0 25 0
u 0 35 0
5 0 4 0
6 0 6 0

GEARLAB 1-6
C T G

1 0 0 9
2 0 0 11
3 0 0 8
u 0 0 13
5 0 0 8
6 0 0 12

Page 166

Section 5.2.3.1 Page 167

5.2.3.2. Directional Lighting and Camera Blooming

The lights mounted on the roof of the box in Fig. 5-18 were used

to introduce directional lighting. Fig. 5-19 shows the sort of image

produced. Once again, the system was able to recognize the object

using the parts of the object that were not disturbed. The reader will

notice the blooming of the CCD image. Recognition statistic for this

image:

CTG
903

5.2.3.3. Obscuration Test In this test part of the object was

covered by two sheets of white paper so that a sector of the object

was visible. The angle of the visible part was reduced until the sys-

f'i ?. 1 Cutter in c: irectionai lighting

Section 5.2.3.3 Page 168

tem failed to recognize the object. However, due to certain opera-

tional difficulties, this test was not carried out systematically, and

I have access only to 4 images of the cutter and tooth wheel. The

recognition statistics for these images are unfortunately below the

recognition threshold:

CUTOCCL1 TOOTHOCCL1
CTGCTG
301000
300

000

When these images were acquired, I used a feature match that was based

on a subgraph match between neighbourhoods. With this change, the

recognition statistic was

CUTOCCL1 TOOTHOCCLI
CTGCTG

30 40261
21 10 0
11 .30

This method of matching features was discarded due to a higher level

of spurious features outside the assumed constancies. Fig. 5-20 shows

the tooth wheel when it was recognized by this feature match. Note

that the angle of the visible section was 28° of the tooth wheel which

is 8% of the surface area. I am unable to present data on the perfor-

mance of the present system on this test due to inavailability of

input data.

Section 5.2.3.4 Page 169

Fig. 5-20 The cutter at the threshold of recognition

5.2.3.4. Distance Variation Test In this test the distance to the

object was changed. It should be noted that this changes more than

one parameter (i. e. lighting, scale and focus). The system was able to

recognize the cutter at least 15cm away from the learned plane (dis-

tance to camera 1.2m). Recognition statistics at 15cm:

CUTD 1-2
CTG

24 03
23 06

5.2.3.5. Background Variation In this test the objects were placed

on a white sheet of paper and on a chess-board (Fig. 5-21). (A grey

background was used in the next test). The recognition statistics

were:

Section 5.2.3.5

CUTW 1-7
C T G
8 0 0
6 1 0

13 0 1
7 0 0

12 0 0
16 0 0

9 0 0

Page 170

CUTCHESS 1-6 TOOTHCHESS 1-6
CT G CT G

15 0 1 0 12 0
22 5 0 02 0

80 0 0 26 0
23 0 0 1 18 0
28 2 0 0 15 0
10 2 2 0 10 0

In order to test the ability of the learning algorithm to learn

despite an imperfect background, the system was taught the cutter and

the tooth wheel on the chess board using CUTCHESS and TOOTHCHESS. The

objective was to determine whether the learning algorithm was able to

discard the chess-board features such as the corners of the chess

squares. (Note also that the chess-board used had double lines

separating the squares). The learning statistics were as follows:

i
Fig. 5-21 The cutter on a chess board

Section 5.2.3.5 Page 171

Reliable Unique
CUTCHESS 93 22
TOOTHCHESS 76 3

This library was now used to recognize the cutter and the tooth wheel

images that were used in the original CTG library.

CUTTER 1-5
CUTCHESS TOOTHCHESS

1 39 0
2 39 0
3 38 0
u 32 0
5 15 0

TOOTHW 1-5
CUTCHESS TOOTHCHESS

100
200
300
u00
500

Note that although the system failed to recognize TOOTHW due to a lack

of UF in the learning stage, it did not find any spurious features

either. A further test was then carried out to determine the response

of the system to the chess-board squares. In this test, the system was

taught the cutter and the cutter on a chess board. It was hoped that

the chess-board features would then be used as part of the CUTCHESS

object, and therefore, the system should classify TOOTHCHESS as being

the same, on the basis of the chess board features. The learning

statistics are first:

Reliable Unique
CUTCHESS 114 39
CUTTER 131 20

Section 5.2.3.5

Recognition result when TOOTHCHESS was shown:
TOOTHCHESS 1-5

CUTCHESS CUTTER
297 0
250 0
243 0
301 1
170 0

Page 172

This demonstrates that the system was able to isolate the chess-board

features, which were then used to recognize the chess features in the

TOOTHCHESS images. In order to verify that the system was in fact able

to differentiate the cutter from the cutter on a chess board, the

CUTTER data and the CUTCHESS data were recognized:

CUTCHESS 1-5
CUTCHESS CUTTER

210 0
97 0
93 0

208 0
166 0

CUTTER 1-5
CUTCHESS CUTTER

0 50
0 67
o 44
0 39
0 55

(Note that since the library was formed from CUTTER and CUTCHESS, the
zero spurious features detected in this table are not significant, as
they only serve to confirm the internal consistency expected from an
error free learning and recognition program. However, the number of
features detected for each of the objects in the image give an indica-
tion of the similarity between the selected unique features).

5.2.3.6. Pile of Objects In this test almost all of the parameters

were allowed to vary. The objects were presented in a pile on a grey

metal background with scratches, in room lighting conditions. See

Fig. 5-22 and Fig. 5-23. The system detected 6 UFs of the cutter, 9

UFs of the tooth wheel, and 2 UFs of the gear wheel. (Note: The

cutter was placed on the wrong side inadvertently when this image was

taken. The recognition statistic was obtained using a library

Section 5.2.3.6

i
i

Page 173

... ý. r

. ý,

C

constructed from CUTDN 1-5, TOOTHDN 1-5, and GEARW 1-5, instead of the

Fig. 5-22 Pile of objects

Fig. 5-L3 image of Fig. 5-22

Section 5.2.3.6

CTG library.

Page 174

5.2.3.7. Recognition of 'Simple' Objects Although the system is not

able to recognize simple objects in principle {section 3.6.5} it

should be noted, however, that very complex objects are not necessary

for operation. For example, the object in Fig. 5-24 was taught to the

system. The learning statistics when this object was compared with

the cutter were:

Reliable Unique
CUTTER 130 54
SIMPLE 73 46

This is a very high level of unique features for a relatively simple

object.

Fig. 5-24 The object referred to as SIMPLE

Section 5.2.3.7 Page 175

5.2.3.8. Teaching More Objects In this test, the system was taught

5 objects. The learning statistics were:

Reliable Unique
CUTTER 130 43
TOOTHW 48 27
GEARW 18 2
PULLEY 129 14
SIMPLE 73 30

Unique between two

- 68 55 50
28 - 28 30

6 11 - 2
51 76 36 -
46 54 62 34

Fig. 5-24 shows the object called SIMPLE and Fig. 5-25 shows the

object referred to as PULLEY. Next, two more objects named CUTDN and

TOOTHDN were added. These are in fact the opposite faces of the cutter

and tooth wheel respectively. From the following learning statistics

it will be noticed that the system was able to differentiate the two

sides of the cutter and of the tooth wheel without difficulty. The

learnink, stý-itistic3 were:

º, `ý,, ý
. ý: ý

ýý

ýý

54
30
11
75

Fig. 5-, ý5 image of the PULLEY

Section 5.2.3.8

Reliable Unique
CUTTER 130 36 -
TOOTHW 48 26 28
GEARW 18 2 6
SIMPLE 73 16 46
PULLEY 129 11 51
CUTDN 137 44 48
TOOTHDN 30 13 13

Page 176

Unique between two objects
68 55 54 50 42 58

- 28 30 30 28 30
11 - 11 2 3 11
54 62 - 34 27 49
76 36 75 - 54 72
85 60 75 53 - 75
15 14 14 14 14 -

(Note: Only 32 UF were used for the CUTTER in the subsequent recogni-
tion process.)

It will be noticed that increasing the number of objects does not

result in a substantial decrease in the number of UF per object. It

should be noted that there is no real need to perform recognition

tests on other images as the learning algorithm effectively performs a

recognition test over the 5 instances used for each object. However,

in order to verify the effect of the new objects on the system, this

library was used to re-test the system with the light intensity reduc-

tion data. The new statistics for CUTL and TOOTHL were:

CUTL 1-17
Intensity CUT

1 4563 44
2 4182 65
3 3950 44
4 3679 60
5 3401 45
6 3088 53
7 2856 41
8 2660 23
9 2381 20

10 2182 14
11 1916 4
12 1630 2
13 1344 1
14 1108 1
15 809 0
16 534 0
17 458 0

TOO GEA SIM PUL CDN TDN
0 0 0 0 0 0
0 0 0 1 0 1
0 0 0 0 0 0
0 1 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 1
0 0 0 0 1 1
0 0 0 1 0 1
0 0 0 0 0 0
0 0 0 1 0 1
0 0 0 1 0 0
0 0 0 1 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

Section 5.2.3.8 Page 177

TOOTHL 1-31
Intensity CUT TOO GEA SIM PUL CDN TDN

1 7349 0 86 0 0 0 0 0
2 6961 0 76 0 0 0 0 0
3 6853 0 46 0 0 0 0 0

4 6490 0 96 0 0 0 0 0

5 6354 0 83 0 0 0 0 0
6 6046 0 85 0 0 0 0 0
7 5823 0 84 0 0 0 0 0
8 5439 0 87 0 0 0 1 2
9 5281 0 108 0 0 0 0 2

10 5003 0 113 0 0 0 1 0

11 4712 0 119 0 0 0 0 1

12 4485 0 117 0 0 0 0 0
13 4279 0 110 0 0 0 1 0
14 3986 0 107 0 0 0 0 0
15 3739 1 132 0 0 0 0 0
16 3435 0 105 0 0 0 0 0
17 3212 0 122 0 0 0 0 0
18 2926 0 125 0 0 0 2 0
19 2635 0 85 0 0 0 0 0
20 2426 0 38 0 0 0 0 1
21 2196 0 44 0 0 0 0 0
22 2009 0 54 0 0 0 0 0
23 1750 0 21 0 0 0 1 0
24 1606 0 21 0 0 0 0 0
25 1494 0 8 0 0 0 0 0
26 1316 0 0 0 0 0 0 0
27 1069 0 0 0 0 0 0 0
28 891 0 0 0 0 0 0 0
29 638 0 0 0 0 0 0 0
30 517 0 0 0 0 0 0 0
31 369 0 0 0 0 0 0 0

The reader will notice the very low number of spurious features and a

virtually unchanged resistance to light intensity reduction. An

interesting effect of increasing the number of objects has been the

reduction in the number of spurious features detected for the gear

wheel, when compared with the results for the CTG library in section

{5.2.1.1}.

Section 5.2.3.9 Page 178

5.2.3.9. Swarf on the Objects Fig. 5-26 is an image of the cutter

with swarf thrown over it. The recognition statistic for this image

was:

CTG
22 01

In a further test, a handful of swarf was placed on a grey metal sheet

and was then taught to the system as an object. The metal sheet was

carefully moved under the camera for the 5 images required so that the

swarf did not move relative to the sheet. (See Fig. 5-27). This

'object' was then compared with the cutter to find unique features.

The result was:

Fig. 5-2b The cutter with swarf

Section 5.2.3.9 Page 179

Reliable Unique
SWARF 29 8
CUTTER 140 85

(Note: The local neighbourhood radius had to be reduced for this test
to 7.)

This library was then used to recognize the 5 instances of the swarf

that was learned, and a new 6th image.

SWARF 1-6
SWARF CUTTER

1 21 0
2 23 0
3 12 0
4 12 0
5 20 0
6 8 0

Fig. 5-Z'(Swarf on a grey metal background was taught as an 'object'

Section 5.2.4 Page 180

5.2.4. Testing the System Through Variations in Internal Parameters

In these tests the system was tested by changing certain internal

operating parameters such as thresholds. The system was found to be

insensitive to small variations in threshold values. Some of the sys-

tem tests described so far were repeated using different thresholds

and resulted in similar operating characteristics.

5.2.4.1. Variation of Edge Detector In this test the system was

allowed to learn the three test objects (Fig. 5-1) using one of 3 dif-

ferent edge detectors instead of the Walsh transform based edge detec-

tor. The edge detectors used were the 2x2 Walsh, 2x2 Roberts, and the

3x3 Sobel operators. The edge detector thresholds were normalized to

reflect the size of the detector window. The system was able to find

UFs despite variations in the edge detector used.

2x2 Walsh Transform based edge detector
RU Unique between two

CUTTER 55 17 - 19 17
TOOTHW 66 41 41 - 41
GEARW 30 22 11 -

2x2 Roberts edge operator
R U

CUTTER 146 74
TOOTHW 70 35
GEARW 52 16

Unique between two
- 101 75

41 - 35
16 20 -

3x3 Sobel edge operator
R U

CUTTER 132 34
TOOTHW 58 24
GEARW 41 34

Unique between two
- 57 35

26 - 30
30 33 -

(Note: The learning statistics for the Roberts and Sobel operators were
obtained after changing one of the thresholds - the minimum number of
edge points necessary for a rep-point to be formed - from 2 to 7.)

Section 5.2.4.2 Page 181

5.2.4.2. Variation of Local Neighbourhood Radius The objective of

this test was to see the effect of varying the local neighbourhood

radius on the number of UFs detected by the learning algorithm. Due to

limitations in the implementation it was only possible to perform this

test for radii from 1 to 9. Fig. 5-28 is a graph showing the variation

of the number of UFs found by the learning stage for different values

of the radius for the CTG library. The learning statistics were as

follows:

U L.. 1.4 Feat Fout. d

cLu Leo ; tj S1o tq

3

=o

is J\

Zo

/ `1

i
i

ZO,
i

i

°p: 34S

CUTTER

\ ýE EA i2 e

7'4
Z-i) C. (Nei C, b auº L ca d

Fig. 5-28 Variation of unique features found during the learning stage

Section 5.2.4.2

Usual radius-9

Radius=8
R U Unique between two

CUTTER 132 49 - 84 57
TOOTHW 42 22 31 - 24
GEARW 68 19 23 51 -

Radius-7
R U Unique between two

CUTTER 140 22 - 87 26
TOOTHW 69 24 44 - 25
GEARW 65 26 28 35 -

Radius-6
R U Unique between two

CUTTER 123 18 - 66 21
TOOTHW 65 13 39 - 17
GEARW 88 26 141 39 -

Radius-5
R U Unique between two

CUTTER 75 4+ - 37 5
TOOTHW 24 2 9 - 2
GEARW 55 12 31 14 -

Radius-4
R U Unique between two

CUTTER 8 0 - 7 0
TOOTHW 7 0 1 - 0
GEARW 7 6 7 6 -

Radius-3
R U Unique between two

CUTTER 0 0 - 0 0
TOOTHW 0 0 0 - 0
GEARW 0 0 0 0 -

5.2.5. Discussion of Overall System Tests

Page 182

The tests performed on the overall system demonstrate three important

points:

(a) The recognition level is above that of chance.
(b) The system performance displays a degree of graceful degradation

as the image quality degrades.

Section 5.2.5 Page 183

(c) The learning algorithm is able to generalize outside the set of

sampled images. This shows that the feature descriptor produces

features that are structural over a larger range than required by

the system constraints, and that the learning algorithm is able to

pick these from the rest of the features which are not structural.

This is demonstrated by the low level of spurious features

detected despite operation outside the sampled domain of the imag-

ing conditions.

Section 5.3

5.3. Testing the Individual Parts

Page 184

These tests were mainly on the pre-processor part of the system.

The majority of tests were done to verify the performance of the edge

detector and rep-point algorithm.

5.3.1. Testing the Edge Detector

Fig. 5-3 is an edge detected image of the cutter in Fig. 5-7

using the Walsh transform based edge detector (WTED) with the usual

thresholds of d=80 and k-0.75. (Note that the edge directions in this

figure are quantized to just u directions due to display limitations.

Computations however are carried out at a resolution of 8 bits.) In

the first test, the edge thresholds were allowed to vary. Fig. 5-29

demonstrates the way the edge image changes when the d threshold is

changed. (d-160 for (a), d=80 for (b) and da40 for (c)). Fig. 5-30

shows the variation of the edge image when the k threshold is changed.

(k=0.9 for (a), k=0.75 for (b), k=0.6 for (c), and k=0.0001 for (d)).

No edge points were detected when k=1 . 0. Note the explosion in the

number of edge points (and line thickening) as k is reduced. (See

graphs in Fig., 5-31 and Fig. 5-32).

Section 5.3.1

t, I
I

,11

i1

1 'ýI1
, '' s

It" ý

1'

lu

41

14 1 4:

li iI

"t li_!
2 _" -"4

rý% l ý11
i

rf r1 ," 11

: E10 1 I: t

;; ß! i4 ý . 14 ".,

.w
.1

ý
II

It I

., 4
ht

1 ýI

1ý,.
I

Page 185

'+i
',
iJ=; Ißt

`ýý

(b) '

Fig. 5-29 Variation of edge image with d threshold

, pr-tinn 5. A. 1 Page 186

y..

1111 lý:
It

iI n"rtý
{sýyr

}}"
R1+S"ýý_!

ý --,. ý}}ý_
I

ýý.. " ill- _ __ dýjl}ýx
: "y+' i- dl (15, E}, i y. ,

. r" } S': ýi: tgt I s((]y- ss! {lýý't.

ri-" - 'WSG S `111

N
71F,

.
Kit

ýV'
l! I :i tta 3

Iý
101 ., I

i1" . 1. !1 1

t1 I
`I

-

it'll, }

III
f.

_.

yýý
fig li ýniýl.,

ýI
lýýý

Qf
ýý'

ý"e.

n"
l`N

=-a=
.. 7f- ,

sil tT

ii<:
s, 1
"ýa: "

'gi, hH� 0itýp
ýA

I
it

ýjJjýýý, 1(ý1 f . YýºlI ýIfS' MN'

(

fiiý

f ii I,
1t

Fig. 5-30 Variation of edge image with k threshold

6.. o

Iwo

Section 5.3.1

rd9c f6-, &, 4-. &
I: o, jv d.

Page 187

io to 40 S0 ýO 70 to 10 loo Mio t1o (O /40 arc ue

Fig. 5-31 Variation of number of edge points with d threshold

Section 5.3.1

Cdr- Fk5tb%i: s
PDV&Id
(x'ooo)

Page 188

Fig. 5-32 Variation of number of edge points with k threshold

t. "7 I. ', K

Section 5.3.1 Page 189

The importance of the k threshold becomes evident when the WTED is

compared with other edge detectors. Fig. 5-33 shows the edge image

produced by three other edge detectors. The edge thresholds were nor-

malized to match the detector window size. ((a) Roberts 2x2. (b) Sobel

3x3, (c) Walsh 2x2, (d) Walsh 14x4). The Roberts and Sobel edge detec-

tors result in much thicker edges. The performance of these two are

equivalent to the performance of the Walsh edge detector when k-0. The

following is a list of the number of edge points detected by the dif-

ferent edge detectors in Fig. 5-33.

Edge detector

Roberts 2x2
Sobel 3x3
Walsh 2x2
Walsh 4x4

Number of edge points

10898
13593

6924
3741

Section 5.3.1

yý'llilllý F"ý-ý , ý! Ilil''

Page 190

41,

=jýjý

*.,
'ý

tt
(¢t

tn< <i 0

tfIN s'" ! fsft ;f s" 4

"

ý4(Iý(ý4
ýý{{

ýTi
r Sfi .. 1

I' s, -"

roe Ill' II (Pl

tof d_ I"
I

,, >_>`' . ýtltt

III Iýý ýi{rý r- -cj; ýýý

'

11{{
_ ;

ý"

1

ý; 1

t"
'

ýý
Iý

" I`
,I

t'yý
"II

Ili itch

N

tTý rtNY
ý

iý

MI.

{rý , 11111 .' ll ..,
Fig. 5-33 Edge image using 4 different edge detectors

Section 5.3.1 Page 191

5.3.1.1. Noise performance of the WTED In order to verify the

response of the WTED to random noise, an ideal step edge with added

Gaussian noise was used. The Pratt [1978] p. 1197 goodness measure was

used to evaluate the performance of the edge detector. This measure

was defined to be R where

I
1 rA 1 R=

II i=1 l+ad2

where II-max(II, IA) and II and IA represent the number of ideal and

actual edge points, a is a scaling constant, and d is the separation

distance of an actual edge point from an ideal edge.

The step edge size used was 20 and the average brightness was 64.

The image size was 128x128. WTED thresholds were d=80 and k=0.75.

Fig. 5-34 (a)-(d) shows the edge image for signal to noise ratios of

co ,
400,100, and 25. Fig. 5-35 (e)-(f) shows the edge image for S/N

ratios of 16,4, and 1. The goodness measures were as follows:

(These figures are for a step size of 25).
S S/N ratio Goodness

2.5 100 100.0%
3.53 50 99.2%
5.59 20 82,7%
7.90 10 35.5%

11.10 5 16.6%
12.50 4 15.2%
14.40 3 13.5%
17.68 2 10.6%
25.00 1 9.3%

Fig. 5-36 is a graph of this variation. Note that the Pratt goodness

measure does not use edge direction data.

Section 5.3.1.1

i

i

Page 192

.u 0 --

S

1
r

Ln N

b

w
0
0

I-

Cw
0
xr

8
W

0
U,
0

4.1

Sr

z

C.
0
'4
m
CD
eo
E

W

zr
fei

1O

Section 5.3.1.1

. «� .

.. ý .,

Page 193

1

.J L

I

co

0

0

z

s:.
0 w

a> tko

cys e

bo
w

M
1

d0

Gcý

Section 5.3.1.1

la

Page 194

S+e e

»ywºI " IVwst £. ko

CLOJ sCi LL)

Fig. 5-36 Variation of Pratt goodness measure with added noise

5.3.2. The Rep-point Algorithm Fig. 5-4 is a rep-point image of

Fig. 5-3. Fig. 5-37 and Fig. 5-38 show the rep-point images produced

when the edge detector thresholds were changed. The threshold values

were as follows:

For Fig. 5-37, (a) d-40, (b) d-60, (c) d=100, (d) d=120, k-0.75.

For Fig. 5-38, (a) k-. 001, (b) k=. 4, (c) k=. 6, (d) k=. 9, d=80.

Fig. 5-39 and Fig. 5-40 are graphs of the variation of the number of

rep-points. The Pratt goodness measure was slightly modified so that

it could be used on rep-point images. The goodness measure when Gaus-

sian noise was added was as follows:

Section 5.3.2

(These figures are for a step size of 25).
S S/N ratio Goodness

2.5 100 100.0%
3.53 50 100.0%
5.59 20 95.2%
7.90 10 80.9%

11.10 5 44.0%
12.50 4 37.5%
14.40 3 37.7%
17.68 2 24.1%
25.00 1 19.6%

Page 195

Note that the rep-point image goodness measure is better than that of

the edge detector. (See graph in Fig. 5-41).

Section 5.3.2 Page 196

== ==== Z, ---= --- --- ------- --------- ----- . i= -- -- -- --- ----- - -- - ---- -- ----- --- - -- ---------

--
II _I---: a----7-

fl" "\
__ -

-'
I,

--
--

.�
--

I.
-- 5__ II

I'

----------: -_--. ---5---

-- "-- --
--

:_ --
-. -_: --

b

a,

cz 6
1

O

O

cri

N
M 1
Ln

40

Section 5.3.2 Page 197

-- ---------------------- ------------

lid

cli

c

a,
0

0
------------------- - = ---- = : ----------------- --------------- =- = - -- - - -= ------------- -- -- _ - 4.3

ro

00

Section 5.3.2 Page 198

Fig. 5-39 Variation of number of rep-points with d threshold

7o to jo too 40 Aso lio 11#0 /fD lip 0
is IIo to 40 ob b

Section 5.3.2

Rip- PD 4s

Page 199

Fig. 5-40 Variation of number of rep-points with k threshold

of D-2 o"i. v1# as O. b 0.7 0W v7 ao

Section 5.3.2 Page 200

Rc 4i0

Fig. 5-41 Variation of modified Pratt goodness measure for rep-points

Section 5.3.2 Page 201

5.3.3. Local Neighbourhood Statistics

Following are histograms of the number of rep-points in a local

neighbourhood for 2 instances each of the cutter, tooth wheel and gear

wheel:

Rep-
points CUTTER1 CUTTER2 TOOTHWI TOOTHW2 GEARW1 GEARW2

1 3 4 2 1 3 0
2 42 45 12 13 2 7
3 81 71 42 36 26 22
4 101 95 54 51 54 41
5 -44 60 62 47 63 57
6 56 53 37 66 54 60
7 34 59 43 51 69 47
8 30 29 33 31 44 59
9 24 16 16 16 40 35

10 7 11 13 2 20 30
11 2 5 10 10 12
12 2 5 4 2
13 2 1

The following table shows the way the local neighbourhood rep-point

count histogram varies when the radius of the local neighbourhood is

changed, for one object instance of the cutter.

CUTTER1
Radius, Number of rep-points

1 2 3 4 5 6 789 10 11 12

8 3 42 81 101 44 56 34 30 24 722
7 7 80 99 62 55 51 19 96
6 15 109 95 65 42 30 -8
5 42 127 82 60 29 8 1
4 82 124 50 45 12
3 110 56 14 2
2 -45 9
1 1

Section 5.4 Page 202

5.4. Execution Time

5.4.1. The Pre-Processor

The total pre-processing time for a single 256x256 image on the

PDP11/24 is about 72s excluding time needed for disc I/O between indi-

vidual pre-processor stages. (Disc I/O time is not included as it is

not an essential part of the pre-processor). Of this time, the edge

detector consumes approximately 55s, the rep-point algorithm about

14s, and the local neighbourhood algorithm about 1-3s. However, it is

expected that any industrial implementation would use dedicated

hardware to reduce these times to a negligible level. A hardware

architecture for doing so is presented in chapter 6.

5.4.2. The learning stage

The learning stage requires approximately 2-5 minutes to con-

struct the unique data structures from the object instance models.

This is for 3 learned objects. As described in section {4.3.2} the

learning time is proportional to the square of the number of objects

in the worst case. However, the learning time is assned to be non-

critical. If it were necessary to change the object library rapidly,

one possibility is to construct all of the libraries in advance, and

hold them on disc. It would for instance be possible to set up

libraries based on different subsets of the learned objects in order

to respond to particular needs dynamically.

Section 5.4.3

5.4.3. Recognition Time

Page 203

The time required to search for all unique features varies from

is to 5s when searching for 3 objects (the CTG library). However,

there is never a need for searching for more than 6 UF for any object,

as a 100% confidence level has been reached by this stage (although it

is necessary to search for UF of the other objects which have not been

recognized). Thus, it is possible to use a variety of heuristics to

limit the execution time depending on the expected operating condi-

tions etc.

For example, when ideal operating conditions are guaranteed, and

only a single object is known to be present in the image, the recogni-

tion time is about 0.1-0.5s (when 3 objects are being searched for).

In special circumstances (when only a single UF is sufficient for

recognition, and a small object is in the image), execution times as

low as 10ms have been observed (for a two object library).

Clearly though, execution times are highly dependent on the

hardware that is used. The reported times were obtained on a PDP11/24

minicomputer in Fortran. It is estimated that a speed improvement of a

factor of 10 could be obtained if the recognition algorithm was imple-

mented in assembly code on a 68020 microprocessor operating at 20MHz.

A further improvement could be achieved by removing the need to unpack

rep-point data {section 4.1.3}. At present, the recognition algorithm

spends much time doing so.

Section 5.5

5.5. Summary of test results

Page 204

The system was tested by varying a single imaging parameter until

recognition failed. This allowed us to map the vision system sensi-

tivity to each imaging parameter. The results showed that the system

performance degraded gracefully, so that catastrophic failure was not

observed in any of the tests.

Sensitivity to three main assumptions

- Light intensity could be reduced upto 80%. Lowering the edge

threshold improved the performance further. {section 5.2.1.11.

- Object scale could be reduced upto 43%. {section 5.2.1.21.

- The plane of the object could be tilted away from the learned

2D plane (by placing the object on an inclined plane) by upto

47°. {section 5.2.1.3}.

Sensitivity to implicit assumptions

-A degree of image blurring could be tolerated. {section

5.2.2.1}.

- Gaussian noise could be added until the signal to noise ratio

was as low as 6.0dB. {section 5.2.2.21.

Other tests

- The system could cope with non-ideal lighting. {section

5.2.3.1}.

- Directional lighting and camera blooming did not destroy

recognition. {section 5.2.3.2}.

- Objects could be recognized despite partial obscuration by a

sheet of paper. {section 5.2.3.3}.

Section 5.5 Page 205

- Distance between the object and the camera could be changed

(despite a scale change, lighting change, and blurring). {sec-

tion 5.2.3.4}.

- The image background could be changed to be a low contrast

grey metallic background, a white sheet of paper or a chess

board. {section 5.2.3.51.

- Two objects from a pile of objects was-"recognized despiteM

scale changes, lighting variations, low contrast background,

object obscuration, and rotation of object plane away from

learned 2D plane. {section 5.2.3.61.

- The object library could be changed by adding other objects,

including the reverse side of the cutter and toothwheel, and

objects with simpler shapes. Increasing the number of objects

in the known library (to 7) in fact resulted in an improvement

in performance in terms of detected spurious features. {sec-

tions 5.2.3.7,5.2.3.8,5.2.3.9}.

- Recognition was not destroyed despite 'physical noise' in the

form of swarf strewn over the object. {section 5.2.3.91.

Sensitivity to internal parameters

- The system operated without change when 3 other edge detectors

were substituted for the Walsh transform based edge detector.

{section 5.2.4.1}.

- The system showed some sensitivity to the size of the local

neighbourhood radius. {section 5.2.4.2}.

Tests on the edge detector

- Details of the performance of the Walsh edge detector and the

Section 5.5 Page 206

other edge detectors were given in section {5.3.1}. The per-

formance appears to be satisfactory.

Tests on the re - point algorithm

- Details of the performance of the rep-point algorithm were

given in section {5.3.2}, which shows that rep-points are more

reliable, more repeatable and less noisy than edge points.

Tests on the learning algorithm

The learning principle of the system was tested in many ways:

- The cutter (CUTTER), and the cutter at low light intensity

(CUTLL) were taught as separate objects. This library was

then used to recognize the cutter when the lighting was

changed. The results were as expected; CUTTER was recognized

when the light intensity was high, followed by a gradual tran-

sition to CUTLL when the light intensity was reduced. {section

5.2.1.11.

- The same experiment was repeated by teaching the cutter and a

low scale version of the cutter as separate objects. {section

5.2.1.21.

- The cutter and the tooth wheel were taught on a chess board.

The system was able to reject the chess board features as they

were common between the two sets of images. {section 5.2.3.51.

- The system was able to learn and recognize a handful of swarf

on a grey metallic background as an 'object'. {section

5.2.3.9}.

Execution speed

- Section {5.4} describes the execution speed tests.

Chapter 6

Future Work and Conclusions

This chapter is organized as follows: section {6.1} looks at future

work in terms of architectural extensions. Section {6.2} gives a

hardware design for a pre-processor. Section {6.3} concludes this

thesis.

6.1. Future work: Extending the architecture

The architecture described so far was that of the implemented

system. However, as pointed out in section {3.6.5}, this architecture

has four main limitations. In this chapter I propose ways of removing

some of these limitations,

(a) by exploiting further the principles described in chapter 2, and

(b) by using the flexibility achieved by the implemented system.

The four main limitations are:

(a) The restriction to unique local structure, and therefore the ina-

bility to respond to objects with only unique global features.

(b) Restriction to a constant scale factor.

(c) Limitation to stable states of objects.

(d) The inability to cluster objects into classes.

Section 6.1 Page 209

6.1.1. Extending the system to cope with 'simple' objects

An unusual limitation of the present system is that it is not

able to recognize objects with simple shapes. For example, the system

cannot recognize a (large) square from a (large) rectangle because

there are no unique local neighbourhoods. This is because the present

implementation and architecture are limited to the use of local sub-

graphs. It is clearly important to use the global relationships

between local neighbourhoods.

One possibility is to enhance the present system using concurve

descriptions. Such descriptions have been well tested and are known

to work very well for simple shapes {section 3.7.1}. The local feature

description of the present system would complement the concurve

description to form a powerful new vision system.

However, I propose that the original principles developed in

chapter 2 be used, and that the system be extended to find unique

non-local subgraphs. As described in section {2.1.2} the main problem

in doing so is the explosion in the number of subgraphs that have to

be tested for in the learning stage. Therefore it is proposed that the

combinatorics be controlled by using arbitrary rules to limit the

number of subgraphs that have to be considered.

This may be done by introducing the notion of intermediate

features. An intermediate feature is formed using local fe. tures in

the same way as local features are formed from rep-points. (See

Fig. 6-1). The radius of an intermediate feature is, of course,

larger than that of a local feature. Now, intermediate features can be

treated exactly the same way as local features, using the same match-

Fig. 6-1 An intermediate feature

ing algorithm except that instead of matching rep-points, local

features will be matched. Thus the matching algorithm will be called

recursively. Note that the combinatorial explosion of the graph match-

ing problem is controlled by the severe restriction on local features

that can be matched, and by the rapid tests that can be used to check

for intermediate features that do not match i. e. intermediate features

match only if,

Section 6.1.1 Page 210

Section 6.1.1 Page 211

1. the two intermediate features have the same number of local

features, and

2. the two central local features are matched (this is an extra condi-

tion that is not present for local feature matches, as all rep-

points match each other once),

3. the peripheral local features cover each other i. e. the peripheral

local features are matched, and they are approximately the same

orientation and position relative to the central local feature.

Intermediate features may be chosen whenever local features are

chosen so that the system would have an equal number of intermediate

features, local features, and rep-points. This method cf choosing

intermediate features has the same advantages as for choosing local

features {section 3.2.4}. If this leads to too many intermediate

features being chosen for the available resources, intermediate

features may be chosen around unique or uncommon local features only.

The learning algorithm can be used to find unique intermediate

features in exactly the same way as for unique local features. The

number of unique intermediate features found is expected to be more

than the number of unique local features because the intermediate

feature 'sees' more of the object. Therefore the motivation behind

the use of intermediate features is to allow the features to see

larger neighbourhoods. In that, case, is it not possible to simply

increase the radius of the local neighbourhoods instead? This is

indeed a possibility, especially as the execution time does not

increase dramatically with radius. This is due to the restrictions on

neighbourhoods that need to be compared due to variations in the

number of rep-points in a local neighbourhood. (However, the time

Section 6.1.1 Page 212

required to compare two local neighbourhoods that eventually match

increases with the number of rep-points in the neighbourhood.) The

disadvantage with using larger local neighbourhoods is that they will

no longer be 'local'. Therefore they will become more sensitive to

object obscuration etc., so that the probability of a local neighbour-

hood being affected by visual disturbances is increased. I would

therefore like to keep the local neighbourhoods at approximately the

present size. An alternative would be to use several local neighbour-

hood sizes simultaneously. That is the same as constructing the

intermediate features with rep-points rather than with local features.

The difference is not dramatic, but I favour the first approach of

using local features to form intermediate features, in order to reduce

the significance of the central rep-point on intermediate feature

orientation and position, and to reduce the significance of any par-

ticular rep-point on the intermediate feature match.

Clearly then, further levels of features may be formed by using

intermediate features to create larger features. I feel, however, that

two levels of local features are sufficient, but I would like to

introduce the idea of global features. These are features formed from

local features (or intermediate features) that are far apart on the

object. I propose that arbitrary rules should be used to determine

the number of local features within a global feature and the method of

choosing them, as in Stockman et al {section 3.7.21. If processing

resources at learning time allow it, all combinations of 3 uncommon

local features can be used. The reason for using global features,

rather than a relational search of local features at recognition time,

is to allow the learning algorithm to identify unique global

Section 6.1.1 Page 213

structure. Therefore the difference between a square and a rectangle

would be detected using unique global features. It is felt that the

graph matching problem at learning time can be effectively controlled

in this way (cf. general proposal in section {2.1}).

6.1.2. Coping with Scale Variations

When designing for scale variations, it is necessary to talk of

the extent of scale variation that needs to be handled, as it is

clearly not possible to cope with the full range of scale variations.

How then can a vision system be designed to handle as large a scale

variation as possible? The vision system is already able to cope with

small variations of scale of up to about 30% {section 5.2.1.2}. One

way of extending this is to teach each object at different scales as

examples of the same object. Reliability tests will not be done across

examples so that new unique features will be formed at different

scales. (However, the reliability test should be done within each

example to verify that a ±30% scale variation can be tolerated by all

the chosen features.) Therefore, examples can be used to tailor the

match response of the system. Although the present implementation does

not allow this to be done explicitly, I have tested this possibility

by showing images of the object 43% smaller as ndi examples. This

reduces the match flexibility as expected {section 5.2.1.2}. There-

fore, objects can be taught at scale intervals of 30%-50% (so that

each model has to cope with a scale variation of ±15% to ±25%). The

usable scale of a 256x256 image could be covered by about 5 models per

object.

Section 6.1.2 Page 214

6.1.3" Coping with 3D orientation variation

The vision system is at present limited to the recognition of

objects in their stable states or just outside their stable states (by

up to about 30° {section 5.2.1.31). How can the system be extended to

cope with 3D orientation variation over the possible range? First an

important point about 3D views of objects: Researchers have for many

years been used to the idea of representing 2D views of objects by a

finite set of pixels (say 128x128) i. e. the approximation was accept-

able. Clearly then, the 3D viewing angle could be quantized too, so

that a tolerable approximation of an object can be formed from multi-

ple 2D views. The proposal is to represent objects by a relational

structure of local features over the surface of the object. How many

views of the object do we need? Assuming that local feature descrip-

tions can be chosen to be invariant through object rotations of from

200-30° only a small number of views are necessary. (Note that the

learning algorithm has to be extended so that it verifies that the

chosen features are structural through the assumed angular variation.)

There are two constraints placed on the number of 3D views needed.

1. The area covered by any one view must not be more than that due to

a rotation of the object by more than 20°-300 from the centre of

the view.

2. The number of views must be manageable.

Using the lower limit of 200 allowed for the rotation, I now try

to compute (approximately) the number of views needed.

Section 6.1.3

Fig. 6-2

Page 215

Constraint 1 requires that the angle between two views be not

greater than 400 (see Fig. 6-2) (i. e. each view copes with an object

rotation of ±200 In any direction). Therefore the question is, how

many vectors can we draw emanating from the centre of the object such

that no two vectors are less than 40° apart? The problem may be

worded differently to allow an approximate answer to be computed

easily. How many squares can be drawn on a sphere, so that the angle

subtended at the centre of the sphere by the sides of the square is

400?

area of square - 2R. tan(200)2

area of sphere - 4nR2

hence number of squares -
tan(200)2
23.7

Therefore it is possible to cover an object with about 24 views

(10 views if a figure of 30° is chosen) such that the neighbouring

squares of any square is less than 200 away (see Fig. 6-4).

Section 6.1.3

a

Fig. 6-3

Fig. 6-4

Page 216

In the object learning stage the 24 views of the object can be

taught to the system. Once an object is represented by a relational

structure (Fig. 6-5) of local features, the learning algorithm should

find unique local features, and unique intermediate features. If

unique global features are used, it is necessary to ensure that the

global features are visible from a single view.

Section 6.1.3

Fig. 6-5

6.1.4. The Need for Clustering Objects

Page 217

If the present system is given the task of recognizing 5 dif-

ferent objects, with two of the objects being very similar to each

other so that (say) only 2 unique features are found for these two

objects, the system would not be able to recognize these two objects

(under poor operating conditions) even if these two objects, as a

class, were very different from the rest of the objects. One solution

is to place the two objects (A and B) in a single class, and then find

unique structure to separate class AB from the other objects. A dif-

ferent set of features (including the two unique features found ear-

lier) could then be used to separate A from B once the class is recog-

nized.

The feature sets U2 {section 4.3.2} were generated for this rea-

son. Each set in U2 describes the similarity (and difference) between

two of the learned objects. These sets could be used to cluster

objects that are similar. Each class would then be treated as a new

Section 6.1.4 Page 218

composite object. A new set of unique features will be generated

within each class to separate the objects in the class.

6.1.5. Possible Application to Scene Analysis and 'Very High Level'

Vision

I feel that local and intermediate features may be of use in pro-

ducing hypothesis of what may be in the scene for general scene

analysis work. They can be used to choose frames+ rapidly. The main

advantage is the rapid execution speed possible, especially on paral-

lel processors, so that a large number of unique local features from

completely different contexts can be tested for at high speed. Any

matches found can be used to inject asynchronous hypothesis to a scene

analysis program.

}A frame is a data structure for representing information about a
particular situation. See Minsky [1975].

Section 6.2 Page 219

6.2. Future Work: Design of a Hardware Pre-Processor

In this section I propose a hardware implementation for the algo-

rithms described in this thesis. This proposal is based on experience

gained by the author during the design and implementation of a

hardware vision processor which is described in detail in Athukorala

[1981].

6.2.1. Implementation using a Cellular Array Processor

The vision algorithms described in chapter 3 are well suited for

implementation on a cellular array processor.
+

The data should be

organized so that each processor is responsible for a single local

neighbourhood. The complete system including the recognition algorithm

could be implemented on such a processor. For example, it would be

possible to give the list of unique local features to each processor

in the array, so that each processor can search for this list indepen-

dently in its section of the image. The pre-processing could also be

carried out by the same processor. Clearly, such a strategy would make

good use of the resources of the array processor. Thus, very high

resolutions could be handled by increasing the number of processing

elements used, without a significant increase in execution time.

6.2.2. Pipelined Implementation

Despite these advantages with array architectures, a pipelined

architecture is preferred at present for three reasons.

See Duff [1982], Hunt [1981] and Potter [1982] for examples of
array processors.

Section 6.2.2 Page 220

I. The ability to use off-the-shelf components.

2. Lower expected cost.

3. Flexibility of implementation (i. e. the problem could be tackled in

stages using a modular approach).

The proposed implementation is based on the following basic architec-

ture. (Fig. 6-6). The complete pre-processor will be based on several

of these blocks used in a pipeline. The data buffers are used to link

processing stages of different speed, and to provide parallel access

to data.

As we have seen {section 3.2}, the pre-processor consists of the fol-

lowing stages.

1. Walsh transform edge detection.

2. Rep-point selection.

3. Neighbourhood selection and normalization.

In the following, I will assume that the processing is to be done

at video speed (20ms/frame) on 256x256 images. pixel time will be The

approximately 200ns. I will also assume that the processing will be

carried out using high speed 32 bit microprocessors (such as the

Motorola 68020) whenever possible. It will be noticed that special

serial data. Structure

data Processing
parallel

buffer access
Serial
out put

Fig. 6-6 Architecture of a single stage of the pipeline

Section 6.2.2 Page 221

purpose hardware will be needed at the beginning of the pre-processor

due to the large processing requirement, while later processing could

be carried out using one or more microprocessors.

6.2.2.1. Walsh Edge Detection

This algorithm requires a very high processing rate, which can be

provided (at present) only by using special purpose hardware. The

input data buffer will be a delay line structure providing a 1x4 win-

dow of pixels. The following processing is needed for each pixel.

1.43,16 bit additions (and subtractions).

2.5 absolute value computations.

3.1 division.

ü. 2 comparisons.

At this stage, an edge point is found. The following processing is

A1, A2 - First two Walsh coefficients
X, Y - Address of edge points
a- Edge orientation

Fig. 6-7 The edge detection stage

Section 6.2.2.1 Page 222

required on each edge point.

5.1 division.

6. An inverse tangent operation.

7. Quantization to 8 bits.

Processes 1-4 above will have to be implemented using special purpose

hardware. The edge detection stage could be simplified by using some

other edge detector (e. g. Sobel), but would result in an increase of

the processing requirements placed on the rep-point stage (as these

edge detectors result in much thicker -and therefore numerous- edges),

which would be an unwise choice, as the Walsh edge detector is simpler

to implement than the rep-point algorithm. Therefore an increase of

processing at the rep-point stage may require it to be implemented in

special purpose hardware as the microprocessors may no longer be able

to cope with the processing demand. Given this choice, it would be

simpler to implement the Walsh edge detector in special purpose

hardware, than to implement the rep-point algorithm in special purpose

hardware.

Processes 5-7 could be implemented with a single microprocessor

using a look up table to achieve processes 6 and 7. This is possible

due to the relatively small number of data points (-1000) that have to

be processed. Process 5 may need special arithmetic support. A 68020

operating at 20MHz would be able to compute the angle data for about

4000 edge points in the 20ms frame time. (It should be noted that this

is possible due to the limited resolution -8 bits- of the computa-

tions, which allows the use of small look up tables etc.). Fig. 6-7 is

a block diagram of the edge detection stage. The A1A2 buffer and the

XYa buffer are FIFO buffers accessed via pointers. The pointer

Section 6.2.2.1 Page 223

manipulations (i. e. incrementing, decrementing and clearing) could be

accomplished by the hardware, so that the 68020 need not be aware of

their presence. The 68020 will simply perform memory reads and writes

to and from reserved locations. The resulting edge data will be stored

in the XYa data buffer which will be used by the rep-point stage.

6.2.2.2. The Rep Point Algorithm

The rep-point algorithm may be implemented using two processors

in a manner similar to the software implementation. The first proces-

sor will be used to segment the rep-points in the horizontal direc-

tion, and the second processor will collect vertically related 1D

rep-points to form 2D rep-points. Fig. 6-8 is a block diagram of the

rep-point stage.

Fig. 6-8 The rep-point stage

Section 6.2.2.3 Page 224

6.2.2.3. The Local Neighbourhood Algorithm

This algorithm can be implemented in the same way as the rep-

point algorithm. However, only a single 68020 will be needed as only a

small number of data points are to be processed (usually about 200-

400).

6.2.2.4. Overall System Implementation

Fig. 6-9 shows the overall system implementation. The final 68020

will be responsible for executing the recognition algorithm and the

learning algorithm. It will also perform the system control functions

and communicate with the outside world.

Edge Detection r--ýj----i Rep-Points I Local Neighborhoods

Buffer

68020

Buffer

Fig. 6-9 Block diagram of overall system implementation

Section 6.2.3

6.2.3. Discussion of the Architecture

Page 225

An important feature of this architecture is its flexibility for

implementation. For example, a basic system could be implemented using

a single 68020 plus the front-end of the Walsh processors. This would

result in a much slower, but cheaper implementation. Each stage of the

pipeline could then be added, so that the burden on the final 68020 is

gradually reduced. The full configuration would be able to operate at

video speed. However, it should be noted that this depends on the com-

plexity of the input image. The system will be able to operate at

video rates provided that there are less than a pre-specified number

of edge points in the image. If the number of edge points exceeds this

threshold, the system could be designed to take one of two courses of

action. It could ignore the lower part of the image that has not been

processed, or ignore the next frame of data. If the first course is

taken, the system would be designed so that the complete pre-processor

is reset after each frame, so that unprocessed edge data is discarded.

Alternatively, if the next frame of data is discarded, the extra time

could be used to process the old frame. This could be extended to as

many frames as necessary. This facility could be program selectable.

Another advantage with this configuration is that the system

could be easily extended to cope with larger image resolutions, as

only the delay line structure needs to be changed. (The Walsh

transform processors may need to be replaced as well if there is a

substantial change in the pixel frequency).

Finally, the system may be implemented using custom VLSI chips,

or special hardware instead of the microprocessors. This implementa-

Section 6.2.3 Page 226

tion too could be achieved in stages beginning from the front-end of

the processor. This then points to a clear upgrade path for product

development. The penalty paid for this flexibility is the need for

large amounts of buffer memory. However, this may not be a cause for

concern if the present trend of falling memory costs continues.

Section 6.3 Page 227

6.3. Conclusions

6.3.1" Contributions

This thesis was concerned with the problem of recognizing indus-

trial objects rapidly and flexibly. These objectives were achieved

using a general strategy based on a generalized local feature detec-

tor, an extended learning algorithm, and the use of unique object

structure. The main contribution of this thesis is the overall stra-

tegy that allowed flexible and fast operation of the system; It was

shown in section {3.7} that the system performance compares favourably

with previously reported vision systems.

The task of the generalized local feature detector is to generate

a highly descriptive representation of local object structure so that

the description is independent of the imaging conditions of interest.

(Object structure was defined as everything about the object that is

visible and independent of the imaging conditions of interest

12.1.1.1}). This is achieved by first using an edge detection opera-

tion to reduce the sensitivity to absolute lighting level, and to

achieve a degree of data reduction with a minimum loss of useful

information. A new algorithm called a rep-point algorithm is then used

to find representative points for small areas of approximately uniform

edge property. These rep-points form the elementary features of the

system. In the next stage, the rep-points are used to form local

features by using each rep-point as a focal point for choosing a local

neighbourhood. Thus, local features are local subgraphs of the rep-

point relational structure. Locality is defined by the spatial dis-

tance between the rep-points. This method of feature detection was

Section 6.3.1

seen to have many advantages:

Page 228

1. The feature descriptor is able to represent complex object struc-

ture. No restrictions are placed on object complexity except due to

image resolution i. e. the feature detector is not limited to the

detection of straight lines, circular arcs, and 'conventional'

local features, and therefore is able to operate on objects that do

not have a significant amount of these features {5.2.3.9}.

2. The features are insensitive to a variety of imaging conditions

including feature ' position and orientation in 2D, and overall

lighting level 13.2.11.

3. The pre-processor algorithms are inherently parallel as all compu-

tations are based on local neighbourhoods. This makes the pre-

processor ideal for implementation on special hardware architec-

tures.

ý. The feature descriptor, along with the feature matching algorithm

{3.3}, form a new generalized feature detector that may be of gen-

eral interest.

The performance of the overall system is attributed to the

extended learning strategy. The learning strategy is based on a reli-

ability test and on finding unique structure of the learned objects.

The task of the reliability algorithm is to observe the performance of

the pre-processor over the imaging conditions of interest, and select

a set of features that are reliably reproduced by the pre-processor.

In this way the system compensates for pre-processor imperfections,

and improves the recognition reliability.

Unique structure of an object is a set of descriptions of sub-

parts of the object that remain unique over the imaging conditions of

Section 6.3.1 Page 229

interest. Unique structure is found as follows: Once all the object

instances have been represented by a relational structure of elemen-

tary features, all possible subgraphs are formed. Reliable subgraphs

are then searched for in the subgraphs found for the other objects in

the library. All subgraphs that do not find a match are unique to the

original object. In order to reduce the combinatorics of this stra-

tegy, subgraphs are limited to local features generated by the pre-

processor.

This strategy has many advantages:

1. The graph matching problem is transferred from the recognition

stage to the learning stage, as the recognition algorithm has to

search only for unique subgraphs {3.14.2}.

2. It is sufficient to find just one unique subgraph for recognition,

which allows rapid execution of the recognition algorithm. How-

ever, since it is not possible to guarantee a perfect reliability

test, more than one unique feature is required to confirm recogni-

tion when ideal operating conditions cannot be guaranteed.

3. This also allows the system to operate flexibly, as it is able to

reach a 100% confidence level of recognition even if a substantial

number of unique features are lost due to object obscuration or

degraded operating conditions.

4. The reliability test allows the system to compensate for pre-

processor imperfections. It also allows the system to extract the

common features from an object that may itself be variable from one

instance to another (perhaps because of manufacturing variations).

Further, the reliability test allows the system to discard back-

ground features during the learning stage {3.14.2}.

Section 6.3.1 Page 230

5. The user is given advanced warning of the system performance on the

particular object library that was chosen {3.4.2}.

The task of the recognition algorithm was to search for unique

features, and execute rapidly. It was shown that the execution speed

could be minimized by the use of various heuristics to respond to par-

ticular situations. When high contrast images were guaranteed, the

system was able to execute rapidly (10ms for a small object {section

5.4.3}), while the time taken to search for all unique features of 3

objects was 1-5s. Therefore, it was shown that the system could be

easily configured to operate rapidly with high quality images, or

flexibly in poor conditions {4.4}.

The test data shows that the system displays a significant degree

of insensitivity to variations in its three main assumptions {5.2.1}:

constant lighting (up to 70% reduction), constant scale (up to 30%

reduction), and 2D views (300-400 outside the learned 2D plane). The

system was also able to demonstrate a degree of insensitivity to a

variety of other operating conditions {5.2} such as the addition of

Gaussian noise (signal to noise ratio as low as 8.50). This perfor-

mance demonstrates that the generalizations made by the learning algo-

rithm hold, not only within the domain of the sampled images, but well

outside this domain. Thus the system demonstrates a real learning

capability.

In order to remove some of the limitations of the system, it is

necessary to extend the learning algorithm further, so that

1. the reliability test is carried out over a larger range of varia-

tions in imaging conditions,

Section 6.3.1 Page 231

2. unique intermediate structure and unique global structure is used

to allow objects without unique local structure to be recognized

{6.1.1},
3. scale and 3D orientation independent recognition is obtained by

teaching several views of the same object at different scales and

3D orientations 16.1.2,6.1.3},

4. similar objects are clustered into classes so that new composite

objects may be formed from these classes {6.1.4}

Thus, the overall strategy of the system {2.1} is to learn

automatically what makes an object unique over the expected variation

of imaging conditions. This is achieved by exhaustive subgraph isomor-

phism in the learning stage to find reliable and unique subgraphs. It

is believed that this technique is of general interest when the

objects to be recognized can be represented by a set of features, a

subset of which describe the objects sufficiently well, and are

independent of the imaging conditions through the required range. The

particular feature detector used is also thought to be of general

interest for vision work as it allows a much larger range of local

features to be used than before {2.1.1}.

References

Abdou J. E. and Pratt W. K. [1979], Quantitative design and evaluation
of enhancement/ thresholding edge detectors, Proc. of the
IEEE, Vol 67, No. 5, May 1979, pp. 753-763

Agin G. J. [1975], 'An experimental vision system for industrial appli-
cation', 5th Int. symp. on Industrial Robots, Sept. 1975, pp.
135-148

Agin G. J. and Binford T. O. [1973], 'Computer recognition of curved
objects', Proc. 3rd int. jnt. conf. on artificial intelli-
gence, Stanford, CA, pp. 641-647.

Ambler A. P, Barrow H. G, Brown C. M, Burstall R. M, and Popplestone R. J.
[19751, 'A versatile system for computer controlled assembly',
Artificial Intelligence 6, pp. 129-156

Antonsson D., Danielsson P-E, Gudmundsson B., Hedblom T., Kruse B.,
Linge A., Lord P., and Ohlsson T. [1981], 'PICAP -A system
approach to image processing', Proc. computer architecture for
pattern analysis and image data base management, Virginia,
USA, IEEE, pp. 35-42

Athukorala A. S. [1980], 'Low level vision', DAI Working paper no: 66,
Dept. of Artificial Intelligence, Univ. of Edinburgh, UK.

Athukorala A. S. [1981], 'Some hardware for computer vision', DAI work-
ing paper no: 102, Dept. of Artififcial Intelligence, Univ. of
Edinburgh, UK.

Athukorala A. S. [1985], 'An essay on the aspects of the human visual
system that influenced my thesis work', DAI working paper,
Dept. of Artificial Intelligence, Univ. of Edinburgh, UK.

Athukorala AS. and Wallace A. M. [1982], 'Image processing for indus-
trial component identification using hardware techniques',
Int. conf. on electronic image processing, pp. 129-133, July
192.

Baird M. L. [1982], 'GAGESIGHT: A computer vision system for automatic
inspection of instrument gages', IEEE conf. on industrial
applications of machine vision, pp. 108-111

References Page 234

Ballard D. H. [1979], 'Generalizing the Hough transform to detect arbi-
trary shapes', TR-55, Computer Science Dept., Univ. of Roches-
ter, USA, Oct. 1979

Barnard S. T. [1980], 'Automated inspection using gray-scale statis-
tics'. Proc. 1st annual national conf. on Artificial Intelli-

gence, Stanford Univ., pp. 49-52

Beattie R. J. [1984], 'Edge detection for semantically based early
visual processing', PhD thesis, Dept. of Artificial Intelli-
gence, Univ. of Edinburgh.

Bolles R. C. [1979], 'Symmetry analysis of 2-dimensional patterns for
computer vision', Tech note: 186, SRI International, June 1979.

Bolles R. C. and Cain R. A. [19831, 'Recognizing and locating partially
visible objects: The local-feature-focus method', in Robot
vision, ed. A Pugh, Springer-Verlag.

Brauner R. [1982], 'Automated chip (die) inspection', IEEE conf. on
industrial applications of machine vision, Research triangle
park, N. C., USA, May 1982, pp. 43-50

Bron C. and Kerbosch J. [1971], 'Algorithm 457: Finding all cliques of
an undirected graph [H]', Communications of the ACM, Vol 16,
No. 9, Sept 1973, pp. 575-597

Brooks R. A., Greiner R., Binford T. O. [1979], 'The ACRONYM model-based
vision system', 6th Int. jnt. conf. on AI, Tokyo, Japan, pp.
105-113

Cheng J. K. and Huang T. S. [1981], 'Image recognition by matching rela-
tional structures', Proc. IEEE cont. on pattern recognition
and image processing, Dallas TX, Aug 1981, pp. 542-547

Cheng J. K. and Huang T. S. [1982] 'Image registration by matching rela-
tional structures', 6th Int. conf. on pattern recognition,
Munich 1982, IEEE, pp. 35'I-356

Chin R. T. and Harlow C. A. [1982], 'Automated visual inspection: A sur-
vey', IEEE trans. on pattern analysis and machine intelli-
gence, Vol PARI-u, No 6, Nov 1982, pp. 557-573

Cohen P. R. and Feigenbaum E. A. [1982], The handbook of AI, Vol. 3,
Pitman 1982.

Corneil G. and Gotlieb C. C. [1970], 'An efficient algorithm for graph
isomorphism', Jnl. of the ACM, Vol. 17, No. 1, Jan 1970, pp.
51-64.

References Page 235

Cornsweet T. N. [1970], Visual perception, Academic press

Davis L. S. [1975], 'A survey of edge detection techniques', Computer
graphics and image processing, Vol. 4, pp. 248-270.

Dessimoz J-D, Kunt M., Zurcher J. M., Granlund G. H. [1979], 'Recogni-
tion and handling of overlapping industrial parts', 9th Int.
symp. on industrial robots, pp. 357-366

Devijver P. A. and Kittler J. [1982], Pattern recognition: A statisti-
cal approach, Prentice-Hall.

Duff M. J. B. [1982], 'Special hardware for pattern processing', 6th
Int. conf. on ate tern recognition, Munich, IEEE, pp. 368-379

Freeman H. [1961], 'On the encoding of arbitrary geometric configura-
tions', IRE trans. elec. comp., EC-10, pp. 260-268, June 1961

Fu K. S. [1982], Syntactic pattern recognition and applications,
Prentice-Hall.

Giralt G., Gallab M., and Stuck F. [1979], 'Object identification and
sorting with an optimal sequential pattern recognition
method', 9th int. symp. on industrial robots, pp. 379-389.

Hara Y., Akiyama N., Karasaki K. [1982], 'Automatic inspection system
for printed circuit boards', IEEE conf. on industrial applica-
tions of machine vision, pp. 62-70.

Hattich W. [1982], 'Recognition of overlapping workpieces by model
directed construction of object contours', Digital systems for
industrial automation, Vol. 1, Part 2, Nos. 2.3, pp. 223-239.

Hilditch C. J. [1969], 'Linear skeletons from square cupboards',
Machine Intelligence u, eds. Meltzer and Michie, pp. 403-420.

Horn B. K. P. [1974], 'Determining lightness from an image', Computer
graphics and image processing, Vol 3(1), pp. 277-299.

Hough P. V. C. [1962], 'Method and means for recognizing complex pat-
terns', US patent 3069654,18 dec 1962.

Hueckel M. [1973], 'An operator which locates edges in digitized pic-
tures', Jnl. of the ACM, Vol 18 (1), Jan 1971, pp. 113-125.

Hunt D. J. [1981], 'The ICL DAP and its application to image process-
ing', in Languages and architectures for image processing,
eds. Duff M. J. B. and Levialdi S., Chapter 22, Academic press

References Page 236

Igarachi K, Naruse M, Miyazaki S and Yamada T [1979], 'Fully automated
integrated circuit wire bonding system', 9th int. symposium on
industrial robots, pp. 87-97.

Jacobus C. J. [1979], 'Visual recognition of artifacts by computer',
PhD thesis, Univ. of Illinois at Urbana-Champaign, USA.

Jacobus C. J. and Chien R. T. [1979], 'Recognition of visual forms by
features drawn from graphical relations', Proc. of the int.
conf. on cybernetics and society, IEEE, Denver CO., _USA, Oct
1979, pp. 50-55

Karg R. and Lanz O. E. [1979], 'Experimental results with a versatile
optoelectronic sensor in industrial applications', 9th int.
symposium on industrial robots, pp. 247-264

Kelley R, Birk J, Duncan D, Martins H and Tella R [1979], 'A robot
system which feeds workpieces directly from bins into
machines', 9th int. symposium on industrial robots, pp. 339-
355

Kimura F, Yoshimura M and Miyake Y [1982], 'An algorithm for subpat-
tern matching of line patterns', 6th int. conf. on atp tern
recognition, IEEE, Munich, pp. 461-464.

Knuth D. [1969] The art of computer programming, Vol 2, Addison-
Wesley.

Konishi T, Misono M and Kato T [1982], 'A new technique for inspecting
CCD wafers for defects', IEEE conf. on industrial applications
of machine vision, pp. 51-54

Kopolowitz J. [1981], 'On the performance of chain codes for quantiza-
tion of line drawings', IEEE trans. on pattern analysis and
machine intelligence, PAMI-3, No 2, March 1981, pp. 180-185.

Kruger R. P. and Thompson W. B. [1981], 'A technical and economic
assessment of computer vision for industrial inspection and
robotic assembly', Proc. of the IEEE, Vol 69, No 12, December
1981, p. 1524-1538.

Malinen P. and Niemi A. [1979], 'Reduction of visual data by a program
controlled interface for computerized manipulation', 9th int.
conf. on industrial robots, pp. 391-1103.

Marr D. [1974], 'An essay on the primate retina', MIT AI Lab, Memo No.
296, Jan 1974

Marr D. and Hildreth E. [1979], 'Theory of edge detection', MIT AI
Lab, AI memo no. 518, April 1979

References Page 237

Mckee J. and Aggarwal R. [1977], 'Computer recognition of partial
views of curved objects', IEEE trans. on computers, Vol C-26,
No 8, pp. 790-800

Mero L. [1981a], 'An optimal line following algorithm', IEEE trans. on
pattern analysis and machine intelligence, Vol PAMI-3, No 5,
Sept 1981, pp. 593-598.

Mero L. [1981b] 'An algorithm for scale - and rotation - invariant
recognition of two dimensional objects', Computer graphics and
image processing, Vol 15, pp. 279-287

Minsky M. [1975], 'A framework for representing knowledge', in The
psychology of computer vision, ed. Winston P. H., McGraw hill.

O'Gorman F. [1978], 'Edge detection using Walsh functions', Artificial
Intelligence, Vol 10, pp. 215-223

Olsztyn J. T, Rossol L, Dewar R, Lewis N. R [1973], 'An application of
computer vision to a simulated assembly task', Proc. int.
joint conf. on pattern recognition, Washington DC, USA, pp.
505-513

Olympief S, Pineda J. C, Horaud P [?], 'The use of vision for indus-
trial inspection', Lab. d'Automatique de Grenoble, ENSIEG, BP
46,38402 St Martin d Hbres, France. Date not known.

Osteen R. E. and Tou J. T. [1973], 'A clique detection algorithm based
on neighbourhoods in graphs', Int. jnl of computer and in for_
mation sciences, Vol 2, No 4, pp. 257-268.

PAMI [1983], Pattern analysis and machine intelligence, Vol PAMI-5, No
6, Nov 19833, pp. 561-630.

Pavlidis T. [1978], 'Survey: A review of algorithms for shape
analysis', Computer graphics and image processing, Vol 7, PP-
248-258.

Pavlidis T. [1980], 'Algorithms for shape analysis of contours and
waveforms', IEEE trans. on pattern analysis and machine intel-
ligence, Vol PAMI-2, No 4, July 1980, PP. 301-312.

Perkins W. A. [1977], 'Model based vision system for scenes containing
multiple parts', 5th int. joint conf. on AI, Cambridge, Has,
USA. pp. 678-684. --

Perkins W. A. [1978] 'A model based vision system for industrial
parts', IEEE trans. on computers, Vol C-27, No 2, Feb 1978,
pp. 126-143

References Page 238

Perkins W. A. [1983], 'INSPECTOR: A computer vision system that learns
to inspect parts', in IEEE trans. on pattern analysis and
machine intelligence, Vol PAMI-5, No 6, pp. 584-592.

Persoon E. H. J. [1978/9], 'A system that can learn to recognize 2-
dimensional shapes', Philips tech. review, 38, No. 11/12, pp.
356-363

Potter J. L. [1981], 'Continuous image processing on the MPP', Proc.
computer architecture for atp tern analysis and image data base
management, Virginia, USA, IEEE, pp. 51-56

Potter J. L. [1982], 'Pattern processing on STARAN', in Special com-
puter architectures for pattern processing, eds. Fu K. S. and
Ichikawa T., Chapter 5, CRC press

Pratt W. K. [1978], Digital image processing, John Wiley and sons.

Presern S. and Kandus G. [1981], 'Object recognition by computer
vision. An application of intelligent measurement system in
industry', 1st IMEKO summer school on the application of
microcomputers in measurement, Dubrovnik, Yugoslavia, Sept
1981. pp. 71-75

Raggett D. [1980], 'A survey of computer vision research', Machine
Intelligence Research Unit, Edinburgh University, Sept 1980.

Rummel P. and Beutel W. [1982], 'A model based image analysis system
for workpiece recognition', 6th int. conf. on pattern recogni-
tion, IEEE, pp. 1014-1017

Searle N. H. [1969], 'Shape analysis by use of Walsh functions',
Machine Intelligence, Vol 5, pp. 395-110

Shirai Y. [1973], 'A context sensitive line finder for recognition of
polyhedra', Artificial Intelligence, Vol 3, pp. 95-119.

Shirai Y. [1978], 'Recognition of real-world objects using edge cues',
in Computer vision s stems, eds. Hanson A. R. and Riseman E. M.,
Academic press

Sobel I. [1970], 'Camera models and machine perception', Stanford AI
project, AIM-121, Dept. of Comp. Science, Stanford univ.,
Stanford, CA, USA.

Stockman G, Kopstein S, and Benett S. [1982], 'Matching images to
models for registration and object detection via clustering',
IEEE trans. on pattern analysis and machine intelligence, Vol
PAMI-14, No 3, Jan 1982, pp. 229-249.

References Page 239

Taylor-W. K. and Ero G. [1980], 'Real time teaching and recognition
system for robot vision', The industrial robot, June 1980.

Tropf H. [1981], 'Analysis-by-synthesis search to interpret degraded
image data', 1st int. conf. on ROVISEC, Stratford-upon-Avon,
UK, April 1981, pp. 25-33.

Ullman J. R. [1976], 'An algorithm for subgraph isomorphism', Jnl. of
the ACM, Vol 23, No 1, Jan 1976, pp. 31-42.

Unger S. H. [1964], 'GIT- A heuristic program for testing pairs of
directed line graphs for isomorphism', Communications of the
ACM, Vol 7, No 1, Jan 1964, pp. 26-35.

Walsh I. L. [1923], 'A closed set of orthogonal functions', Amer. jnl.
of mathematics, Vol 55, pp. 5-24.

Ward M. R, Rossol L, and Holland S. W [1979], 'CONSIGHT: A practical
vision based robot guidance system', 9th int. symposium on
industrial robots, pp. 195-211

Wong V. S. [1979], 'Computational structures for extracting edge
features from digital images for real time control applica-
tions', PhD thesis, California Institute of Technology.

Yachida M. and Tsuji S. [1977], 'A versatile machine vision system for
complex industrial parts', IEEE trans. on computers, Vol C-26,
No 9, Sept 1977, pp. 882-8914.

Zimmerman N. J, Scheerboom P. L, Steenvoorden G. K, Groen F. C. A [1982],
'Automatic visual inspection system for hybrid circuits', IEEE
conf. on industrial applications of machine vision, pp. 55-61.

Appendix 1

Probability of a Random match between two features

This appendix is concerned with obtaining an approximate expres-

sion for the likelihood of a match between two local features picked

at random. This calculation gives the basic result that may be used

for other computations. This appendix also aims to demonstrate that

the vocabulary of the feature descriptor is very large.

Due to the complexity involved in obtaining an exact expressionj

it is sufficient for our purpose to make a few simplifying approxima-

tions in order to establish the scale of the probability figure. I

first look at the probability of an exact match occurring at random.

Since I am considering random events, I can assume that all (Possible)

rep-point patterns are equally probable.

Consider Fig. Al-1. The number of rep-point positions possible will be

proportional to the area of the local neighbourhood. Thus, there are

CnR2 positions in which the first peripheral rep-point can be chosen,

where C compensates for quantization and is approximately equal to 1.

However, since each rep-point has underlying structure, rep-points

}I would like to thank the Napier College statistics group for
time spent on this problem.

Appendix 1

Fig. Al-1 A feature with two rep-points

Page 242

will occupy a certain number of pixel positions which other rep-points

cannot occupy. Assuming that the average number of pixel positions

occupied by a rep-point is given by Cwr2, the first peripheral rep-

point can therefore be chosen in only Cn(R2-r2) positions. Since the

peripheral rep-point can have D distinct orientations relative to the

central rep-point, the total number of possible patterns with two

rep-points is given by Cr(R2-r2)D. From a similar line of reasoning,

the second peripheral rep-point can be chosen in C%(R2-2r2)D ways, and

so there will be

C2n2(R2-r2)(R2-2r2)D2

patterns with 3 rep-points. (Note that this progression does not

strictly hold when the rep-point density within the local neighbour-

hood increases). It will be noticed that the total number of possible

rep-point patterns (and therefore the vocabulary of the feature

descriptor) is very large, and increases rapidly when the radius of

the local neighbourhood is increased. The probability of a random

match between rep-point patterns that contain three rep-points (count-

Appendix 1 Page 243

ing the central rep-point) is then given by

1

C2¶2(R2-r2)(R2-2r2)D2

For an inexact match (i. e. using the matching criterion in section

14.21), where p is the positional variation allowed and d is the

orientation variation allowed, the

match a given rep-point - Cip2d

number of rep-points that will

Therefore the randan match probability for patterns with 2 rep-points

is given by

2 d
(R2 2D

Probability for patterns with 3 rep-points=

p d2

(R2-r2)(R2-2r2) D2

However, the probability of matching two arbitrary neighbourhoods N1

and N2 will be even smaller, as N1 and N2 will not in general have the

same number of rep-points. Therefore the random match probability

will be further reduced by the distribution of local neighbourhood

rep-point numbers. (Section 15.3.3} gives empirical data for variation

of rep-point numbers).

For the parameters that I use, the following approximate values hold:

CITR2-256, Curt<10, Cirp2-14, D=256, and d=12

Then for 2 rep-points, the probability = 2.610-3

For 3-7.4*1o-6

-9 For 4= 21.010

In fact the unique neighbourhoods chosen by my program often contain

neighbourhoods with up to 10 rep-points (including the central rep-

Appendix 1

point).

Page 244

If the radius of the neighbourhoods is doubled, the values above

change to:

For 2a0.6*10-3

For 3-0.14*10-6

For 4a0.3*10-9

This result demonstrates that the match probability for two

neighbourhoods selected at random is small. It is important to note

that this does not necessarily apply to neighbourhoods that are gen-

erated by a real scene because (of course) they are not random. There-

fore, it is fair to assume that any match that is obtained is due to

the original pattern generating mechanism (i. e. the object + imaging

conditions) rather than due to a random event. In other words, when a

match is obtained between feature fl and feature f2, the system con-

eludes that this was due to similarity in the object structure that

gave rise to the two features. It must be pointed out that this is not

the same as saying that f1 and f2 were due to the same object. (i. e.

the feature matching algorithm does not recognize features, but com-

putes similarities). It is the task of the learning stage to use such

similarity measures to produce an overall recognition capability.

Support for this computation on random match probability comes from

the Gaussian noise tests in section {5.2.2.2}.

Appendix 2

User Interface to the Software

The purpose of this appendix is to briefly indicate the form of

the software as at present. Firstly, it should be said that the

software is not in an industrially usable form, and is mainly geared

towards program development. A large amount of the code is devoted to

debugging and display of program execution.

There are 6 main processing programs:

WALSH. FTN - Walsh transform based edge detection

REP. FTN - Finds rep-points in the edge image

NABOURS. FTN - Finds neighbourhoods, normalizes them, and

forms object models

COMPARE. FTN - The main learning routine

SORT. FTN - Sorts the unique features to form the recog-

nition data structure

RECOGNIZE. FTN - The recognition routine

Communication between these programs is via disc files. This is for

ease of program development. The time required to read and write from

disc is not included in the processing times reported in section {5.4}

because these overheads would not exist in a proper industrial imple-

Appendix 2

mentation.

Page 246

As mentioned earlier, all of these programs contain a large

amount of debug code, which is selected (or de-selected) at compile

time. The debug code produces a dynamic display of program execution.

All data files carry a status area that allows the progress of the

data through the different processing stages to be monitored. In addi-

tion to the displays provided by the debug code, a number of special-

ized display programs are also available. They operate directly on the

data files and process them for viewing either on a VDU, line printer,

or graphics terminal. The most commonly used program (called

EDGESHOW. FTN) is able to display grey scale images, edge images and

rep-point images in a variety of formats.

In normal use, the interface between the different programs is

handled by a few command files. They construct standard data file

names and call the processing routines in the correct sequence to

allow the system to carry out the processing with a minimum of user

effort. The command files also allow the system tests to be run

automatically by allowing processing parameters (such as thresholds)

to be varied, and transferred to the processing routines when they are

called.

However, due to the overheads created by shuffling data between

disc and main memory, the total time taken to teach 3 different

objects from 15 instances (for example) is about 50% more than the

time taken for processing alone. In fact when the system is busy, it

can take up to an hour to teach 3 objects. It will be appreciated that

under these conditions the total time taken to test the system over a

Appendix 2 Page 247

variety of imaging and operating conditions is very large. (I used 500

images to obtain the required variations of objects and imaging condi-

tions). This explains the earlier comments on the problems of testing

the system exhaustively; The number of combinations of different

thresholds, different imaging conditions, and different objects, is

very large indeed.

The following figures (Fig. A2-1 to Fig. A2-3) give an idea of

the programmer interface when using the vision system.

Data type Standard file Program Command file
name name name

Grey scale - <OBJ><IN>. DAT
image <OBJ>-Object name

<IN>=Instance number

T(, WALSH. FTN PROCESS. CMD

Edge image - EDG files

REP. F rN PROCESS. CMD

Rep-point - BLB files and
image . ADR files

NABOURS. FTN - NABOURS. CMD

Instance - MDL files
model

Fig. A2-1 The Pre-Processor

Appendix 2 Page 248

. MDL MDL MDL Model files

. DIR --- Directory
file

learning """"""" " COMPARE. FTN

"
Unsorted unique feature data

unique . all """"""""""". and similarity data of all
I combinations of two objects.

sorting " -. -.... -.. SORT. FTN

unique. srt """""-"""" """ Recognition data structure

Fig. A2-2 The Learning Stage

unique. srt DIR

RECOGNIZE. FTN

Fig. A2-3 The recognition stage

. MDL

The command sequence for a typical learning session would be
as follows:

¬PROCESS cutter 15
@PROCESS tooth 15
@PROCESS gear 15

; Find rep-points in first 5 instances
; of cutter, tooth, and gear.

QNEWDIR

@NABOURS cutter 15C
@NABOURS tooth 15T
@NABOURS gear 15G

; Create new directory for objects

; Form models for each instance of each
; object and name the three objects
; C, T, G, respectively

Appendix 2 Page 249

@COMPARE ; Extended learning routine.

@SORT ; Sort unique features and create
; recognition data structure

Several other command files for activating display programs, and for

task building the system, are also available.

Appendix 3

Publications

As required by the university regulations, the following is a

list of papers and reports in which parts of this work have been

reported.

Athukorala A. S., Low level vision, Dept. of Artificial Intelligence.
University of Edinburgh. Working paper No. 66. April 1980

Athukorala A. S., A strategy for recognizing complex objects with
operational flexibility, Submitted to IEEE Trans. on Pattern
Analysis and Machine Intelligence, May 1984. Also as DAI
Research paper No: 225, Dept. of Artificial'Intelligence, Edin-
burgh University, June 1984.

Athukorala A. S. [1985], A strategy for recognizing complex objects,
Proc. of the 2nd Int. tech. symp. on optical and electro-
optical applied science and engineering, SPIE, ANRT, Cannes,
France, 2-6 December 1985.

Athukorala A. S. [1985], An essay on the aspects of the human visual
system that influenced my thesis work, DAI working paper,
Dept. of Artificial Intelligence, Univ. of Edinburgh, UK.

Other papers are also planned.

