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Abstract 

This thesis is concerned with the problem of recognizing indus- 
trial objects rapidly and flexibly. The system design is based on a 
general strategy that consists of a generalized local feature detec- 
tor, an extended learning algorithm and the use of unique structure of 
the objects. Thus, the system is not designed to be limited to the 
industrial environment. 

The generalized local feature detector uses the gradient image of 
the scene to provide a feature description that is insensitive to a 
range of imaging conditions such as object position, and overall light 
intensity. The feature detector is based on a representative point 
algorithm which is able to reduce the data content of the image 
without restricting the allowed object geometry. Thus, a major advan- 
tage of the local feature detector is its ability to describe and 
represent complex object structure. The reliance on local features 
also allows the system to recognize partially visible objects. 

The task of the learning algorithm is to observe the feature 
description generated by the feature detector in order to select 
features that are reliable over the range of imaging conditions of 
interest. Once a set of reliable features is found for each object, 
the system finds unique relational structure which is later used to 
recognize the objects. Unique structure is a set of descriptions of 
unique subparts of the objects of interest. The present implementa- 
tion is limited to the use of unique local structure. The recognition 
routine uses these unique descriptions to recognize objects in new 
images. An important feature of this strategy is the transference of 
a large amount of processing required for graph matching from the 
recognition stage to the learning stage, which allows the recognition 
routine to execute rapidly. 

The test results show that the system is able to function with a 
significant level of insensitivity to operating conditions; The system 
shows insensitivity to its 3 main assumptions -constant scale, con- 
stant lighting, and 2D images- displaying a degree of graceful degra- 
dation when the operating conditions degrade. For example, for one 
set of test objects, the recognition threshold was reached when the 
absolute light level was reduced by 70%-80%, or the object scale was 
reduced by 30%-40%, or the object was tilted away from the learned 2D 
plane by 300-400. This demonstrates a very important feature of the 
learning strategy: It shows that the generalizations made by the sys- 
tem are not only valid within the domain of the sampled set of images, 
but extend outside this domain. The test results also show that the 
recognition routine is able to execute rapidly, requiring 10ms-500ms 
(on a PDP11/24 minicomputer) in the special case when ideal operating 
conditions are guaranteed. (Note: This does not include pre-processing 
time). 



iii 

This thesis describes the strategy, the architecture and the 
implementation of the vision system in detail, and gives detailed test 
results. A proposal for extending the system to scale independent 3D 
object recognition is also given. 
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Prologue 

This thesis is concerned with the problem of recognizing objects 

by computer. Humans and animals have had a highly developed sense of 

vision for many thousands of years, but the task of teaching a machine 

to 'see' has turned out to be more difficult than at first thought. 

Much research has been carried out to investigate the problem, and 

many techniques and systems have been designed. 

What then is the motivation for research into computer vision? 

Why do we need artificial vision systems? Industry has a large demand 

for accurate and reliable sensing. Much of this sensing is done at 

present by humans. Visual inspection of finished products is a typical 

example. Such jobs are extremely tedious for humans, which results in 

a low performance level. Kruger and Thompson [1981] assess the need 

for computer vision in industry. They state (p. 1524): 

"The economic motivation for the use of industrial computer 
vision is to increase productivity through the introduction of 
intelligent programmable vision-based systems for inspection 
and/or robotic assembly. Productivity is defined as the output 
of goods or services produced (or inspected) per unit of la- 
bour input. " 

They go on to quote Solow: 

"More than half of the increase in productivity [in the USA] 
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is a residual that seems to be attributable to technical 
change, to scientific advance, to industrial improvements, and 
to improved management and training of labour. " 

Another area of application for computer vision systems is in 

environments that are unsafe for humans such as in power plants, or 

underwater. There is also the possibility of using vision systems 

that respond to a far wider range of electro-magnetic radiation than 

the human visual system. This may give new insight into difficult 

problems in many branches of physics and engineering. Vision systems 

could also be used to aid blind people with their everyday lives. 

Therefore, there appears to be a vast demand for artificial 

vision systems that could perform as well as, or better than, the 

human visual system. Unfortunately though, the problem has been found 

to be of immense complexity, and this has motivated a large amount of 

research in the field. 

This thesis looks at the problem of industrial computer vision. 

An architecture is developed for this environment, keeping in mind the 

possibility of application to other similar environments. Therefore, 

the vision system architecture is not designed to be limited to the 

industrial environment. The principal objective in designing this 

architecture was to attain flexibility of operation. The system is 

expected to be insensitive to a range of operating conditions with the 

aim of obtaining maximum flexibility coupled with a rapid execution 

speed. 
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Reader's guide to the thesis 

xiv 

Chapter 1 introduces the thesis. It begins with an overview of 

this work, which Is followed by a brief survey of previous work in 

industrial computer vision. 

Chapter 2 describes the general principles on which the new sys- 

tem is based. 

Chapter 3 describes the architecture of my vision system. 

Detailed arguments are given for the design choices. This chapter is 

written in the form of a specification of the vision system, and 

therefore attempts to be independent of the actual algorithms used. 

The system architecture is then compared with that of previously 

reported systems with emphasis on performance. 

Chapter 4 gives details of the implementation, the algorithms and 

data structures used, programming trade-offs etc. It is designed to 

provide sufficient information to allow the vision system to be imple- 

mented by the reader. 

Chapter 5 reports the tests performed on the system to verify 

processing speed, and the degree of operational flexibility displayed. 

Chapter 6 looks at the limitations of the architecture and pro- 

poses ways of removing them. In particular, this chapter suggests a 

way of extending the system to '3 dimensional vision' in the indus- 

trial environment. Next a strategy for implementing the pre-processor 

in hardware is given. This concludes the thesis. 
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Abbreviations and Conventions used in the Thesis 

UF -Unique Feature 

WTED -Walsh Transform based Edge Detector 

The following conventions have been adopted in this thesis. 

xv 

1. Quotations from other authors are always bracketed by double 

quotes as in " ... it. 

2. Square brackets [] have been used to indicate references to 

other work. 

3. Curly brackets if are used to refer to material within this 

thesis - as in 'see section {1.1}1. 





Chapter 1 

Introduction and Survey of Techniques 

This thesis is concerned with the problem of recognizing indus- 

trial objects rapidly and flexibly. The design objective was to attain 

operational flexibility in terms of minimum requirements placed on the 

operating environment coupled with a rapid execution speed using 

readily available processing resources. I will be especially 

interested in the problem of recognizing complex objects, i. e. objects 

which cannot be easily modelled by simple geometric shapes. An attempt 

has been made to keep the strategy fairly general, so that similar 

problems may be tackled using the same strategy requiring only a re- 

design of lower level algorithms. 

The recognition strategy is based on the automatic learning of 

unique, reliable features of objects. Uniqueness of a feature is 

defined over the set of known objects, and reliability over the set of 

possible imaging conditions. Thus, a feature F is unique to object 01 

if (a) it is reliably located in the image whenever object 01 is known 

to be in the image, throughout the complete range of imaging condi- 

tions that the system is required to operate in, and (b) if F is never 

seen in the image whenever object 01 is known to be not in the image 

throughout the range of known objects and allowed imaging conditions. 
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Such a feature F may then be used (by definition) to reliably recog- 

nize an object from the set of known objects throughout the range of 

allowed imaging conditions. This is the strategy that is used in this 

thesis. (It is useful to note here that, in general, a feature may be 

a relational structure of other features, so that this algorithm can 

be shown to be a general requirement of any recognition strategy). 

The vision system architecture is based on three main sub-blocks: 

(a) The use of generalized local features, (b) automatic learning, and 

(c) the use of unique structure. In the rest of this thesis I show the 

need for using generalized local features, and define what I mean by 

object structure, and how I select unique structure. The importance of 

defining the range of imaging conditions in advance is also explained. 

It is shown that the use of an automatic learning strategy results in 

a flexible recognition algorithm. 

The system was tested over a range of imaging conditions. It was 

able to show insensitivity to its three main assumptions: constant 

lighting, constant scale, and limitation to 2D views of objects. For 

example, with one set of test objects, it was possible to reduce the 

light intensity by 70% before recognition was lost, or the object size. 

could be reduced by 30%, or the object could be tilted 300-400 out of 

the learned plane before recognition was lost. This performance was 

achieved despite the fact that the initial learning stage did not 

allow for variations in these parameters. A variety of other tests 

such as recognition of overlapping parts, recognition despite added 

Gaussian noise, image blurring, etc. demonstrate the flexibility of 

the system. In addition to this flexibility, the recognition algo- 

rithm was able to execute rapidly. Recognition times as low as 10ms 
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have been observed. However, average times when searching for 3 

objects were from 100-500ms. For complex scenes execution times of 

1-5s were reported. However, it should be noted that these times do 

not include a constant pre-processing time of about 70s which may be 

reduced to a negligible pipeline delay by the use of special purpose 

hardware. An architecture for such hardware is presented in chapter 6. 

It should also be noted that these execution times were obtained on a 

small minicomputer (PDP 11/24) programmed in Fortran. 

1.1. Scope of this Work 

In this thesis I will discuss only the problem of recognizing 

objects. I will not be concerned with the problems of symmetry 

analysis, or inspection, or measurement, or the problem of determining 

the position and orientation of the recognized object accurately. The 

reason for not discussing these issues is that I do not have any ori- 

ginal contribution to make on these subjects. See Bolles [1979] and 

Olsztyn et al [1973] for a discussion of symmetry analysis. See the 

following references for a discussion of inspection: Brauner [1982] 

(IC chips), Baird [1982] (instrument gauges), Hara et al [1982] 

(printed circuit boards), Konishi et al [1982] (CCD wafers), Zimmerman 

et al [1982] (hybrid circuits), Barnard [1980] (industrial parts), 

Perkins [1983] (industrial parts). Also see PAMI [1983] which has a 

special section on industrial applications of machine vision; many of 

the systems reported are concerned with the problem of inspection. 

I am also not concerned with the problem of scene analysis as it 

is normally understood, except for describing the image in terms of 

known objects. Therefore, the system does not attempt to explain the 



Section 1.1 Page 4 

light sources, shadows, or highlights etc. i. e. it does not attempt to 

account for all of the 'information' in the scene. 
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1.2. Industrial Computer vision systems 

Page 5 

A large number of computer vision systems have been built, and 

reported in the last few years (Cohen and Feigenbaum [1982], and Rag- 

gett [1980] survey the field). A large proportion of these systems 

are concerned with the recognition and (or) inspection of industrial 

objects. In this section I look at the field of industrial computer 

vision in general. 

The industrial environment is a popular choice for the design of 

computer vision systems (Chin and Harlow [1982] survey the field). 

Apart from the attractions due to economic factors (i. e. availability 

of resources), the industrial environment allows the vision problem to 

be highly constrained, and still be of use. 

A large number of constraints are commonly imposed by computer 

vision systems, although not all of them are entirely acceptable to 

the average industrial user. The following is a discussion of these 

constraints. 

1. The most important set of constraints is imposed by assum- 

ing a narrow context of operation. Objects will usually be presented 

to the system in a known way (e. g. on a conveyor belt). It is often 

assumed that only a single object will be visible to the system at any 

instant. Alternatively, some systems allow multiple objects provided 

that they are not touching. Others extend to touching objects, or to 

partially overlapping objects. The objects are usually seen on a uni- 

form background. Some systems assume that the object is darker than 

the background or vice versa (but not both). The detection of object 

movement is usually not required, and many systems freeze object 
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movement (using hardware) before sensing the object. The recognition 

of object classes is also not required (e. g. the class of chairs, or 

tables). Objects are usually rigid and shape invariant (e. g. a half- 

open pair of scissors would not be allowed). Objects are usually not 

described in 3 dimensions, but as a set of views obtained from gravi- 

tationally stable states. This removes the need for 3D interpretation 

and representation. 

2. It is common for computer vision systems to impose res- 

trictions on the lighting conditions used. Some systems require spe- 

cial lighting conditions such as light stripes and light tables. Oth- 

ers use special lighting arrangements to highlight features known in 

advance. 

3. Most vision systems assume that there is no scale variation 

i. e. the camera is fixed, and the objects are always at the same dis- 

tance from the camera. Some systems show a tolerance towards small 

scale variations (e. g. Perkins [1978] - 5%). A further restriction is 

placed on the ratio of the largest to the smallest object. This is 

necessary due to the limited picture resolution available. 

4. Most systems assume that the number of possible objects in 

the world of the vision system is small (of the order of 10). 

5. Many assume that the objects presented contain a large pro- 

portion of straight and circular features, characteristic of man-made 

objects. Special feature detectors are often employed to respond to 

these features. 

6. Some vision systems depend on assistance from a trained 
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operator during the object learning stage. 

Of course, not all vision systems impose all of these con- 

straints. The industrial vision environment in turn imposes special 

constraints on the vision system. 

1. Low cost: Apart from the cost of building the vision 

system, the cost of providing the industrial environment must also be 

low (e. g., the cost of providing special lighting conditions, clean 

conveyor belts, etc. ). 

2. Execution speed: The vision system must be able to per- 

form at the required speed despite the constraints placed on cost. 

3. Recognition must usually be achieved from a single view of 

the object(s). 

The classification must be reliable. It may for instance be 

safer not to recognize an object (and therefore discard it), than to 

misclassify it. The requirement of reliability also forces vision sys- 

tems to be less sensitive to the constraints they impose on the 

operating environment. 

5. Some of the constraints that may be necessary for the 

vision system to operate could be unacceptable for an industrial user 

due to human factors. i. e., light flashes or lasers may be unsuitable 

if the vision system is to operate close to human workers. 

6. Industrial users may be unwilling to supply trained opera- 

tors to aid the vision system. Vision systems should therefore be 
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designed to operate with minimum human intervention. 

7. It is likely that many of the objects to be recognized will 

have shiny metallic surfaces resulting in an increase of highlights in 

the image. 

On the basis of the constraints placed on the operating environ- 

ment, industrial vision systems can be divided into special purpose 

and general purpose vision systems. Special purpose systems are 

defined as those that seek to solve a specific industrial vision prob- 

lem. These systems often use object dependent algorithms which are 

not easily generalizable to other tasks. Such systems are of limited 

interest to us. General purpose vision systems, on the other hand, are 

defined as systems that try to relax as many constraints as possible, 

and yet achieve the cost and speed requirements of industrial users. 

No system could hope to remove all of the constraints stated above (in 

the near future) as such a system would surpass the performance of 

even the human visual system. Therefore, the aim of a general purpose 

vision system is to remove as many constraints as possible, with 

priority given to those constraints that are expensive to satisfy. The 

vision system proposed in this thesis is such a system. 
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1.3. Survey of industrial vision systems 

This section looks at general techniques used in industrial 

vision systems. It should be noted that the description of some sys- 

terns that are directly comparable to the vision system described in 

this thesis is delayed till chapter 3 where they are discussed in 

greater detail. Thus, the purpose of this section is to give a brief 

overview of industrial vision techniques. The discussion begins with 

binary vision systems and progresses to grey scale vision systems. 

General techniques will be discussed along the way. 

1.3.1. Statistical Vision Systems 

Computer vision systems can be divided (loosely) into two 

categories: 'statistical' vision systems and 'structural' or syntactic 

vision systems. Statistical vision systems are essentially concerned 

with the classification of patterns using the well developed work in 

statistics and probability. The basic assumption is that the pattern 

generating mechanism (i. e. the scene and the imager) can be modelled 

as a statistical distribution [Devijver and Kittler 1982, p. 6]. The 

recognition of a pattern then becomes a problem of statistical deci- 

sion theory. 

Thus the recognition problem can be defined as the problem of 

classifying an input pattern x to a single class Cr selected from a 

finite set {C1, 
... , Cn}, using a set of features {f,, 

... , fm}. if 

the input pattern has a feature vector V, it is classified to be in 

class Cr if 

D(V)-D(Cr) > D(V)-D(Ci) for all i*r, 
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where D is the discriminant function. Many discriminant functions have 

been proposed. See Fu [1982], p. 35 for a list. See also Devijver and 

Kittler [1982] for a detailed discussion of statistical pattern recog- 

nition. 

This technique, although very successful in certain domains (see 

section {1.3.1.1}) of the vision problem, has two main drawbacks in 

terms of general vision. 

Firstly, the discriminant function is essentially impartial 

towards its response to any given feature, and therefore minimizing 

D(V)-D(Ci) does not guarantee a correct interpretation, especially in 

the presence of noise. This is because the D function essentially has 

no understanding of the physical importance of particular features in 

discriminating between objects. A common solution to this problem has 

been to use decision trees to reflect the importance of particular 

features. The decision trees are sometimes based on ad hoc programmer 

chosen criteria, which is unfortunate as the original reason for using 

statistical tests - that of a rigorous mathematical background - is 

lost. 

Alternatively, a near optimal decision tree may be computed 

[Giralt, Ghallab, and Stuck 1979] by using Bayes decision theory to 

minimize the risk of misclassification. But, this requires knowledge 

of the multivariate probability function p(xlC1) when pattern x is 

known to belong to class C. This is sometimes computed empirically 

during an initial learning stage. 

Another significant drawback with this technique is the inherent 

inability of statistical vision systems to analyze complex scenes, as 



Section 1.3.1 Page 11 

there is no statistical mechanism for handling 'structural' informa- 

tion. This is discussed in more detail after the next sub-section. 

1.3.1.1. Statistical Binary Vision Systems Many binary vision sys- 

tems that use statistical techniques have been reported (e. g. Agin 

[1975]). Objects were illuminated to produce high contrast images 

(e. g. by using a light table), so that the objects were easily 

separated from the background. A digitized TV image of this scene 

would then be segmented into object and background, and the statisti- 

cal measures computed from the sensed image of the object. These meas- 

urements could then be used to recognize objects based on the heavy 

operating context. Measurements such as perimeter of object, number of 

holes in object, max/min moments of inertia were used. These systems 

operate well if the constraints placed are acceptable. Unfortunately 

though, this is not always the case. The requirement of back lighting 

can be problematic in the presence of conveyor belts. Reflected light- 

ing can obtain the required lighting effects, but that places con- 

straints on the background reflective coefficient, and on the stabil- 

ity of the incident light intensity. (Agin [1975] uses fluorescent 

red paint on the background, illuminated by ultra-violet light). 

Also, it is often necessary to use objects that do not fit into the 

assumed context, i. e. objects that are different (to humans), which 

generate similar measurements. This problem is often created by the 

two sides of a flat object. Further problems are encountered if touch- 

ing or overlapping objects are to be recognized, or if dirt or swarf 

is present on the conveyor belt. 
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As with the simplest vision systems, the drawbacks of these 

binary vision systems arise from their inability to handle commonly 

occurring situations in industrial vision which do not fit the operat- 

ing context. 

1.3.2. Structural Systems: The need for an alternative approach 

The success of a statistical approach is usually dependent on the 

selection of a good set of features. Although this may be relatively 

easy for simple scenes (such as when recognizing machine printed char- 

acters) it becomes quite difficult for complex scenes (such as when 

overlapping parts are present), or virtually impossible in very com- 

plex situations (such as in a street scene). The reason for this is 

that as the number of possible objects and the range of imaging condi- 

tions is increased, the number of pattern classes explodes rapidly, 

and it is no longer possible to treat the problem as one of pattern 

classification. 

However, the problem may be tackled using a structured approach, 

by treating the scene as consisting of several subparts that are 

related to each other in some way. It is now possible to treat each 

subproblem as a pattern classification problem. Indeed, Devijver and 

Kittler [1982] p. 3 assert that for the majority of problems "either 

the original problem itself can be reformulated as a pattern classifi- 

cation problem, or it may be divided into a number of classification 

subproblems and sub-subproblems until, eventually, the original prob- 

lem is reduced to a set of pattern classification problems". 
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For example, the recognition of a circuit diagram is a problem 

that cannot be treated as a straightforward classification problem. It 

could be handled by treating the recognition of individual components 

(such as the resistors and capacitors) as a pattern classification 

problem. Once this is done, the circuit diagram can be represented as 

a relational structure of subparts that have been recognized. The 

analysis of the circuit can be continued from this point. 

In addition to the objective of reducing the recognition problem 

to a set of (not necessarily independent) subproblems, structural sys- 

tems also have the objective of 'describing the physical structure of 

the objects. However, current usage of the term does not appear to 

insist on this. One of the reasons for this is that it is very diffi- 

cult to define what is meant by physical structure of the objects. 

1.3.2.1. Shape descriptors A commonly used attribute of an object 

that is accepted as reflecting its structure is the shape of its boun- 

dary. A popular shape descriptor is the chain code, first suggested 

by Freeman [1961]. In the general version of this technique, the local 

direction of the boundary is quantized to one of a finite number of 

directions. Each segment is then linked to its nearest neighbour, to 

form a chain of edge segments. Kopolowitz [1981] investigates the per- 

formance of chain codes. Mckee and Aggarwal [1977] use an extended 

chain code to recognize partial views of objects from binary images. A 

feature of the system is its ability to handle scale variations. 

Karg and Lanz [1979] represent shape using concentric circles 

centred on the centre of gravity of the object. Olympief et al [? ] 

represent shape using a polygonal approximation. Pavlidis [1978,1980] 
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surveys the multitude of shape descriptors that have been reported. 

1.3.2.2. Structure from Local Features Another approach to improv- 

ing vision system performance is to use local features that reflect 

the structure of the object. Igarachi et al [1979] reports a special 

purpose vision system for integrated circuit (IC) wire bonding that 

has a special IC electrode detector. The system improves its noise 

immunity by using a dynamic threshold to obtain the binary image. The 

advantage of local feature detection is the ability to withstand a 

certain amount of obscuration or noise which affects global features 

such as area. Persoon [1978/9] uses local information to allow his 

binary vision system to recognize touching, or partially overlapping 

objects. In the learning stage the system learns local binary shape 

patterns of 11 pixel diameter. The binary vision system reported by 

Bolles and Cain [1983] is able to use local features such as holes and 

corners. 

1.3.3. Other binary vision systems 

Kelley et al [1979] describe a vision system that uses binary 

vision to pick objects from bins. This system is interesting in that 

it is a rare example of a computer vision system that uses tactile 

information and its grasping ability to aid the recognition process. 

The vision system is used initially to decide on a suitable site for 

the robot to grip. The robot then tries to pick up the object using 

its tactile sense to detect error conditions (or success). Once the 

object is picked up, it is shown to the camera on a suitable back- 

ground so that it can be recognized and oriented. 
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Taylor and Ero [1980] report an unusual vision system that per- 

forms a complete 2D correlation of the input image with all of the 

stored images simultaneously, using special purpose hardware. The sys- 

tem is able to operate at a speed of 125 objects/s. A drawback with 

the system is the need to store different 2D orientations of the same 

object as different models. It should be noted that direct correlation 

techniques (also called template matching) have another drawback in 

that they require the object position to be the same in the image as 

when it was first taught. In Taylor and Ero's system, this problem is 

circumvented by the use of a conveyor belt which effectively sweeps 

the object over one of the axis. The object position has to be accu- 

rate on the axis perpendicular to the direction of motion of the belt. 

1.3.4. Structured lighting for binary vision 

The CONSIGHT vision system of Ward et al [1979] is a statistical 

binary vision system that uses a few global measurements of the object 

for recognition. However, they circumvent one of the problems of 

binary vision -the thresholding of the image to separate the object 

from the background- by using a unique lighting system based on using 

two planes of light which are focussed on to a thin strip of the back- 

ground. This strip of light is then observed by a line scan camera. 

As the light planes are projected from non-perpendicular angles, any 

object with a significant thickness displaces the light stripe from 

the view of the camera. Object and background are separated reliably 

by this method, although some problems are introduced by a shadowing 

effect which can be minimized by careful setting up of the lights. 
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1.3.5. Binary/grey scale vision systems 

A major disadvantage with binary vision systems is their inabil- 

ity to operate as the contrast of the input image is degraded. This 

has created the necessity to quantize the intensity to more than two 

levels, in order to increase the information content in the image. 

Some vision systems rely on a hybrid system that uses binary and grey 

scale images to improve the system performance. Malinen and Niemi 

[1979] report a system that uses a binary image and an 8 level (3 bit 

grey scale image for object recognition. They assume the objects are 

dark when compared with the background. 

Yachida and Tsuji [1977] report a sophisticated general purpose 

vision system. Objects are first located in the image using a coarse 

binary image. Once located, a fine grey scale image of the object area 

is obtained. This image is thresholded using a local histogram tech- 

nique, so that local intensity variations can be accounted for. The 

resulting silhouette is classified using statistical measures and a 

shape descriptor based on the distance of points on the perimeter from 

the centre of gravity. The most likely matches found are then tested 

for, using special feature detectors to find holes, lines, small 

holes, and textures. The special feature detectors operate rapidly as 

they are used only over the local area where the feature is expected. 

The system contains a special learning algorithm. During the learning 

stage, all matches of the new object with library objects are tested 

for on the basis of the statistical measures and the silhouette 

shape. The special features necessary to distinguish the new object 

from the subset of matched models are taught by an operator during an 

interactive learning session. The system is reported to be able to 
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operate "with considerable noise caused by dirt and grease" and 

reports a fair operating speed (20-90s on a PDP8 minicomputer. This 

can probably be reduced by an order of magnitude or more on a modern 

(1984) minicomputer). 

This versatile vision system suffers a few drawbacks as far as 

general purpose vision is concerned. It assumes that objects are 

brighter than the background, that the background area is larger than 

the total object area, and that operator help is available to teach 

local features. It is not designed to be able to handle touching or 

overlapping objects, although they report that "even when there were 

overlapping objects in the scene, the vision system could tell their 

locations ... " which implies a degree of operational flexibility. The 

system also suffers from an abundance of heuristics and programmer 

chosen weighting criteria. However, it appears to be superior when 

compared with standard binary vision systems. 

1.3.6. Grey scale vision systems 

Many of the problems associated with binary vision systems are 

due to the initial loss of information when the image is thresholded. 

Thus, it is necessary to use the grey scale image itself for the image 

analysis. One of the best known general purpose vision systems that 

uses grey scale images for object recognition was reported by Perkins 

[1978]. 

The program first finds edge points in the input grey scale 

image. This is necessary in order to reduce the data in the input 

grey scale image. Perkins uses a 256x256 input image. The edge detec- 
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tion reduces the initial data of over 65000 intensity points to "less 

than 1000 edge points". This is possible due to the large redundancy 

in most scenes. The edge data is then thinned and linked into chains. 

The thinning operation is necessary because most edge detectors pro- 

duce edges more than 1 pixel thick (especially in the vicinity of a 

strong edge). The chains are formed by connecting edge points to their 

neighbours. The program now uses the a priori knowledge that most 

industrial objects have straight and circular features, to find these 

features in the chain data. The chains are therefore transformed into 

a set of linked segments that are either straight or circular. These 

new chains are called concurves. Models of the objects are formed dur- 

ing a learning stage by storing the concurves found. In the recogni- 

tion stage, model concurves are compared with input concurves. The 

program is claimed to be able to operate in visually noisy scenes and 

is able to recognize overlapping objects (although it was not designed 

to do so). The program reports a rapid execution speed (on an IBM 

370/168 mainframe computer) of between 0.1s and 0.4s for the high 

level operations; the low level algorithms taking approximately 20s. 

It is limited to the recognition of stable states of objects (i. e. no 

3D interpretation is attempted), and it cannot handle textured object 

data. It is also dependent on finding straight and circular features 

in objects in order to operate efficiently. The program is not able to 

handle scale variations either, although a 5% variation is tolerated. 

(Shirai [1978] reports a similar system that uses straight lines and 

ellipses to recognize "everyday objects" in 3D scenes). 
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Perkins' program illustrates a special instance of the strategy 

used by computer vision systems. The input data is reduced and 

transformed into a set of features that are independent of certain 

imaging conditions such as absolute lighting level, object position 

and orientation, and scale variations. 

Pre-stored models of the expected objects are then used to select 

(or generate) a set of possible features. The features found in the 

image are then compared with the features generated from the models. 

If the two sets are sufficiently similar, the object is declared 

recognized. We then identify three planes of activity. The image 

plane, the feature plane, and the model plane (see Fig. 1-1). These 

planes of activity have only a loose association with the levels of 

processing that are commonly referred to in vision research (i. e. low, 

high and intermediate level vision). 

Model plane Models 

Feature Plane Generated features - Detected features? 

Image plane Image 

Fig. 1-1 
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In Perkins' program, there is hardly any distinction between the 

feature plane and the model plane. During the learning stage, features 

that are found are used directly to form models. Because the features 

formed are dependent on the 3-dimensional orientation of the object, 

each 2D view of the object generates different features (in general). 

Thus, Perkins' program is limited to the recognition of stable states 

(i. e. a set of 2D views) of objects (as are most industrial vision 

systems). Yachida and Tsuji's program {section 1.3.51 can be classi- 

Pied into the three planes in a similar way. However, their program 

has a feature plane that is quite wide in terms of the level of pro- 

cessing used in the feature match. 

The ACRONYM vision system by Brooks et al [1979] is a good exam- 

ple of a vision system that has 3 distinct planes. The model plane 

contains 3-dimensional geometric models of the objects that are known 

to the system. These models are given to the system by an operator. 

The system then predicts the features that it expects to see in the 

scene. These features are matched with features found by the low level 

algorithms. The features used are "ribbons" (2D projections of gen- 

eralized cones) and ellipses. 

The system by Taylor and Ero {section 1.3.3} is an interesting 

example. Models are formed by storing the input binary image. In this 

system, the three planes coincide. 

1.3.8. Summary 

Computer vision systems, then, differ by the way they use 

features and models. Some systems use pixel data as models and there- 
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fore can recognize an object only if it is presented in exactly the 

same way as it was when the model was formed. Flexibility of operation 

is achieved by extracting features of objects that are invariant with 

respect to the imaging conditions of interest. These features can then 

be compared with previously stored features. However, it is not possi- 

ble to extract a set of invariant features with respect to certain 

parameters such as 3D orientation. In order to handle such situations, 

it is necessary to form 3-dimensional models of the objects, so that 

the expected features can be predicted and searched for. 





Chapter 2 

A Strategy for Recognizing Complex Objects: Basic Principles 

In this chapter I describe the strategy that was developed to 

tackle the problem of recognizing complex objects in a flexible 

manner. 

2.1. The General Strategy 

The recognition strategy is based on three building blocks: 

(1) generalized local features, 

(2) learning, and 

(3) the use of unique structure. 

The system operates as follows: During the learning stage, the gen- 

eralized feature detector generates feature descriptions of the 

objects to be learned. The learning algorithm observes the perfor- 

mance of the feature detector and selects a set of reliable features 

for each object. From this set, the learning algorithm constructs a 

set of descriptions of unique, reliable subparts of each object. Dur- 

ing the recognition stage these unique descriptions are searched for 

in the new feature description. 

I will now describe the three sub-strategies in more detail, to dis- 
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cover the extent of their generality. 

2.1.1. Generalized Local Features 

The task of the feature detector is to describe the input scene 

using a set of features so that all of the information is included. 

The system describes the scene at two levels. Firstly, the scene is 

described by a relational structure of elementary features called 

rep-points {section 3.2.31. Next, local subgraphs of rep-points are 

used to form local features. The scene is then described by a rela- 

tional structure of local features. Thus the local features are local 

subgraphs of the rep-point relational structure. These local features 

are able to describe complex local structure of the objects due to the 

way they are constructed. The large vocabulary of the feature 

descriptor {appendix 1} makes it a generalized local feature descrip- 

tor. 

Thus, a major objective in the design of the feature descriptor 

was to allow it to describe object structure in detail. What then is 

object structure, and why is it necessary to describe it in detail? 

2.1.1.1. The need for a better description of object structure 

Object structure is very important for recognition. Since the struc- 

ture of an object is constant through variations in imaging condi- 

tions, a vision system that is able to respond to object structure 

would be very successful. But what is object structure, and how can it 

be defined? 
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Object structure is relative. Firstly, it depends on the scale 

of interest; my vision system, for instance, will not be interested in 

the internal structure of objects. This is effectively a requirement 

that the structure of the object be visible. Secondly, what is gen- 

erally referred to as structure depends on the context of use; the 

perceived structure of an object is often dependent on the perceiver 

and his motivation. (Consider, for example, the perception of circuit 

diagrams, chest X-rays, weather photographs, hand writing in a foreign 

language, etc. by people trained to do so, and the rest of us). Thus 

it appears that we need a definition of structure that is independent 

of human perception, but is useful for computer vision. 

The previous two paragraphs in fact provide us with the required 

information for a definition of (visual) structure. From the first 

paragraph it is clear that the motivation for using object structure 

arises from its independence of imaging conditions. From the second 

paragraph, the important condition is that the structure must be visi- 

ble. Therefore, I define object structure as everything about the 

object that is independent of the imaging conditions of interest, and 

is visible. Imaging conditions are defined as everything that contri- 

butes to the function that transforms an object into an image. In 

addition to parameters such as lighting and scale, it also includes 

lens aberrations and electronic noise. 

The reason for the qualification on imaging conditions (to that 

of the imaging conditions of interest) is due to the fact that the set 

of visible features that are independent through (all variations of) 

the imaging conditions is of course a null set (e. g. there must be 

limits placed on the allowed variation of lighting, scale, etc. ). The 
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reason for requiring 'everything' about the object to be structure is 

because my system will depend on structure to differentiate objects, 

and therefore, any two objects that have the same structure (as 

defined) will be indistinguishable. It is therefore necessary to 

respond to everything that might differentiate the two objects. Thus, 

this requirement means that two objects can be reliably differentiated 

only if they never produce exactly the same image within the imaging 

conditions of interest. It will be noticed that this is not restric- 

tive, and is in fact a fundamental principle of vision when external 

contextual information is unavailable. 

From this definition it will be clear that all of the information 

regarding the object structure must be present in the image. The 

objective of the local feature detector is to describe the local 

structure in a form that is independent of the imaging conditions of 

interest. Therefore the feature detector attempts to respond to every- 

thing in the image that is independent of the imaging conditions. In 

particular, the local feature detector is not designed to be limited 

to those features that are thought to be important by the human visual 

system. 

2.1.1.2. The advantage of using local features The feature detector 

is designed to detect only local features, for two reasons. 

1. Local features are less sensitive to object obscuration. 

2. Global features can be constructed from the local features. 

The first of these is the main motivation for using local features. It 

allows us to recognize partially visible objects using local feature 
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descriptions of the visible part. 

2.1.2. Learning 

The heart of the general strategy lies in the learning system. 

The learning strategy is responsible for the performance of the sys- 

tem. It improves the speed, the flexibility, and the reliability. The 

learning stage has the following tasks: 

1. Acquire a description of each object in terms of a relational 

structure of rep-points, and a relational structure of local 

features. 

2. Observe the performance of the feature detector and form a set of 

reliable features over the imaging conditions of interest. Obtain 

insensitivity to internal-parameters of the system as well by this 

reliability test. 

3. Compare the objects that have been learned, and find feature 

descriptions of subparts of each object that are unique to the 

object over the imaging conditions of interest., and thereby 

transfer the graph matching problem from the recognition stage to 

the learning stage. These descriptions of unique subparts of the 

object are called unique structure. 

2.1.2.1. Unique Structure 

Let us imagine that we have a perfect pre-processor that is able 

to describe objects in terms of features that include all of the 

information in the scene that is independent of the imaging conditions 

of interest, as required in section {2.1.1}. These features will be 

called structural features (see definition of object structure {sec- 
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tion 2.1.1.1}) to differentiate them from features which we do not 

know are independent of the imaging conditions. Each object will then 

be represented by a set of structural features, and since all of the 

structural information is included in the feature description, the 

objects can be differentiated on the basis of the feature description 

alone i. e., any two objects that are indistinguishable from the struc- 

tural feature description are visually indistinguishable over the 

imaging conditions of interest. (Note that this is for a perfect 

pre-processor). How can we compare the feature descriptions to recog- 

nize objects? 

It will be clear that the features have relationships between 

them. That is, it is insufficient to detect each feature in isola- 

tion. The complete feature description is required to specify the com- 

plete object. Therefore, the object must be represented by a rela- 

tional structure of features. (It should be noted that at this stage 

of the discussion the word feature is used to describe any feature 

that one would want to measure, and is not limited to those used in 

this work, or to local features). The task of object recognition then 

becomes a problem of comparing (or matching) relational structures. 

The basic problem here is the one of matching two graphs. Much work 

has been done on the graph matching problem, and so we digress here to 

look at the problem and how it has been tackled by other researchers. 

2.1.2.2. Relational structures and graph matching 

The structural method for representing object model data 

is as a relational structure of sub parts of the object 
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[Ambler et al 1975]. The comparison of objects for recogni- 

tion then reduces to a problem of matching relational struc- 

tares, i. e. of graph isomorphism. Unfortunately, no general 

and efficient algorithm is known for testing isomorphism of 

large graphs (i. e. graphs with more than about 10 nodes. Unger 

[1964]). This has resulted in a number of special techniques 

for reducing the execution time. Unger [1964] gives a heuris- 

tic algorithm. Ullman [1976] reports an algorithm that takes 

time proportional to p3 where p is the number of nodes in the 

graph. The algorithm by Corneil and Gotlieb [1970] takes time 

proportional to p2. However, these algorithms work best on 

certain classes of graphs. Cornell and Gotlieb's algorithm, 

for example, is inefficient for strongly regular graphs. 

Ambler et al [1975] match relational structures by set- 

ting up a new graph G whose vertices are formed from matching 

nodes in the two relational structures. The edges in G link 

"compatible" vertices. Vertices in G are compatible if the 

transformation implied by matching nodes of the relational 

structure are the same. The problem of relational structure 

isomorphism then reduces to that of finding maximally con- 

nected subgraphs (cliques) in G. They give an algorithm to 

find cliques similar to that of Bron and Kerbosch [1971]. 

Osteen and Tou [1973] report a recursive algorithm for clique 

detection based on neighbourhoods in graphs. 

Cheng and Huang [1981] reduce the problem of relational 

structure isomorphism by using "star-structures". A star- 
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structure is a sub-relational structure of a node and all of 

its neighbours. Relational structures are matched by setting 

up a graph G of matching star-structures (as above) and find- 

ing cliques. They find cliques using a relaxation algorithm 

that converges rapidly (10-20 iterations). Cheng and Huang 

[1982] are able to use this technique to extract motion infor- 

oration by image registration. In the example given, the algo- 

rithm executed in 214.5s on a PDP11/70 for a 70 node graph. 

Jacobus and Chien [1979] describe a system that matches 

graphs of "half-chunks" to determine recognition. A half-chunk 

consists of two line segments and a tangent angle. They con- 

vert object graphs to histograms by recording the number of 

occurrences of library half-chunks in the object. Objects are 

matched by comparing histograms. The reliability of the histo- 

gram matching technique is not clear. 

Thus, the problem with graph isomorphism is that it is computationally 

very expensive. In my vision system, the problem would be to find sub- 

graph isomorphism of graphs with as many as 400 nodes. (Even more for 

complex scenes). Graph isomorphism has another, very important prob- 

lem. Let us imagine that we have two object models, each of which is a 

relational structure of 400 nodes. Now let us also imagine that we 

have a new image from which we have formed a new graph of 500 nodes. 

After exhaustive graph isomorphism, let us imagine that we recognize a 

subgraph of 250 nodes of the first object in the image, and a subgraph 

of 300 nodes for the second object, with 100 of the nodes being com- 

mon. Which object did we recognize? Are both objects in the image? 

How different do the numbers have to be before we choose one object 
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over another? What principles do we have in choosing thresholds? 

What effects did noise, and a variation of imaging conditions have on 

these figures? These questions are difficult to answer, but they 

illustrate that graph isomorphism is only half the problem. It is 

necessary to interpret the result from the graph match. 

This brings us to an important point. Similarities between 

objects only serve to confuse the final decision. The fact that we 

have recognized 50 features that are common to both objects tell us 

nothing about which object is in the image. This is of course a funda- 

mental principle of recognition; It is not possible to recognize 

object A from object B from their similarities! 

It is therefore very important to know what makes one object dif- 

ferent from another. Once again, let us indulge in a thought experi- 

ment. Imagine that we have two objects A and B with 200 features 

each. Imagine that 150 of these features are common to the objects 

(but not exactly the same) i. e., these features are close enough to be 

confused by the feature detector. Now, it will be clear that the 

remaining 50 features of each object are essential for recognition. 

The problem is this: Most vision systems match objects at recognition 

time without prior knowledge of the similarities and differences 

between objects. Therefore, they use the 150 similar features as well 

as the other features to base their decision. Now let us see what hap- 

pens when we have a noisy input image. Because the similar features 

are not exactly the same, the 150 features from the image (C) may 

match object A features better than object B features. (See Fig. 2-1) 
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Fig. 2-1 A single 'similar' feature represented in 2D parameter space 

Now it is clear that fluctuations in the number of features 

matched for the similar features can swamp the number of dissimilar 

features matched. In an extreme case, it is conceivable for all 150 of 

the similar features in C to match those in A, but not match those of 

object B, while all the dissimilar features continue to match those in 

B. This would result in a mismatch. However, a system which knew that 

the 150 similar features in A were in fact very close to the other 150 

features in B, would not use this information to differentiate between 

A and B, and would place far more emphasis on the 50 dissimilar 

features being matched. 

Thus, the requirement placed on my system is to find similar and 

dissimilar structure. (Since structure must be constant through imag- 

ing conditions, dissimilarity must also hold through variations in the 

imaging conditions. It is insufficient for two features to be dissimi- 

I 
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lar under a single set of imaging conditions. ) When the number of 

objects is increased to more than two, the requirement is to find 

unique structure for each object i. e., find out what makes an object 

different from the rest of the objects over the imaging conditions of 

interest. 

Thus, my vision system recognizes objects on the basis of their 

unique structure. Is this restrictive? Let us look at the definition 

again. The unique structure of an object is everything about the 

object that is 

1. visible, 

2. independent of imaging conditions, and 

3. different from the other objects. 

Therefore, if an object has no unique structure, it must be visually 

indistinguishable from at least one other object in the learned set. 

2.1.2.3. Finding Unique Structure The first step is to describe the 

objects in terms of a set of elementary features (that contain all the 

information). However, these features do not become structural 

features until it is verified that they are independent of the imaging 

conditions of interest. Once a set of structural features is 

selected, the objects are represented by a relational graph of these 

features. Unique structure is found as follows: First form a set of 

Subgraphs for each object by choosing all combinations of all features 

(and their relationships) so that each subgraph may have from 1 to N 

features, where N is the total number of structural features in the 

object. Now compare these subgraphs with those found in the other 

objects through the imaging conditions of interest (i. e., the 
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structural feature subgraphs are compared with subgraphs formed from 

all features found in each separate instance of all of the other 

objects. ) Those subgraphs that do not match any in all instances of 

the other objects, form the set of unique structure. Some comments 

are in order. 

(1) It will be noticed that this is a huge task as there are 

rather a large number of subgraphs (2n for n nodes). This may 

be limited artificially using arbitrary rules such as limiting 

the search to the 50 smallest unique subgraphs. (In the 

implementation, subgraphs are limited to local subgraphs. The 

locality is defined by the spatial distance between nodes. 

These local subgraphs are the local features detected by the 

generalized local feature detector. ) Note that the time taken 

to do this is not critical, as it is done during the learning 

stage. 

(2) A very important point now is that the recognition system has 

to search only for these unique subgraphs. Firstly, this makes 

the searching much faster. Secondly, since we know that the 

unique subgraphs are unique throughout the imaging conditions 

of interest, there is no danger of a mismatch. Thirdly and 

most importantly, the detection of a single unique subgraph is 

(by definition) sufficient for recognition. In practice, how- 

ever, because it is not possible to guarantee a perfect relia- 

bility test at the learning stage, more than one subgraph is 

required for confirmation. 

This strategy of finding unique structure illustrates another 

reason for requiring the local features to be highly descriptive. It 
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increases the likelihood of each feature being unique to the object. 

Thus, the learning strategy results in 

(1) improved recognition reliability due to the feature reliability 

test, 

(2) improved speed due to the transfer of the graph matching problem 

to the learning stage, which reduces the recognition search to a 

single unique subgraph, and 

(3) improved flexibility due to the extra unique descriptions produced 

by the learning algorithm, so that the system is able to operate 

despite the loss of a large number of unique subgraphs due to 

object obscuration or degraded operating conditions. 

In addition to these advantages, there is a fundamental need for 

learning when flexibility is required. Let us imagine that we require 

a vision system to be able to recognize objects despite a 10% väria- 

tion in object size. This of course means that it is not possible to 

differentiate between two objects that are only 10% different in size 

(even if we wanted to). This is unacceptable for a 'general' system. 

It is more likely that we would require that under such a situation, 

the vision system should automatically reduce its flexibility to (say) 

5% for the two objects of concern, and retain a flexibility of 10% for 

the other objects. Further, in order to obtain maximum flexibility it 

would be useful for the system to adjust its flexibility upwards when 

the objects are very different. 

Such variation in flexibility is clearly present in human perfor- 

mance. We are able to distinguish (say) a house from a man despite a 

significant amount of image degradation, but we can tolerate less 
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image degradation if we are to recognize one man from another, or one 

'identical' twin from another. Such a variation of flexibility may be 

achieved by allowing the system to learn about the similarity between 

the objects of interest. 

Another objective of the overall design was that the system 

should be insensitive to the actual details of the implementation of 

the architecture. That is, the system was expected to function prop- 

erly despite minor imperfections in implementation. This insensitivity 

is obtained by using the extended learning strategy which compensates 

for pre-processor imperfections by observing its performance, and 

rejecting features that are not reproducible, either because the 

feature is dependent on imaging conditions, or because the feature is 

distorted by the feature detector by being associated with a non- 

linear section of the feature descriptor mapping function. 

The extended learning capability of the vision system is there- 

fore responsible for (1) improving the reliability, (2) improving the 

speed, and (3) improving the flexibility of the system. It is felt 

that a learning strategy that is able to do this is of general 

interest. 

2.1.3. The Overall Strategy 

The strategy then is to describe objects using features that 

represent all of the information in the image that is independent of 

the imaging conditions of interest. Therefore, the features are 

expected to have an extensive vocabulary, so that complex object 

structure can be represented. The learning stage consists of finding 
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unique structure for each object. Unique structure is a set of rela- 

tional subgraphs of structural features that are unique to the object 

in question. A structural feature is a feature that is invariant 

through the imaging conditions of interest. 

Thus, the system depends mainly on these principles. There is 

little emphasis on problems of detail such as threshold selection, 

feature matching etc. That is, the system is expected to operate well 

despite a possibly non-ideal selection of feature types, or thres- 

holds, or matching criteria. The primary objective is to attain 

operational flexibility and speed of operation using these three prin- 

ciples, and a fairly good feature detector and feature matching algo- 

rithm. Thus the performance of the system is attributed to the exploi- 

tation of these ideas than to carefully worked out details of the 

system implementation. For this reason it is felt that the overall 

performance of the system could be improved by re-working the detailed 

design using information theory, empirical test data, and other con- 

siderations. 

The strategy can also be expressed as follows: 

Given a set of objects 

A,, A2, A3 .... An 

that are to be learned, image each object i times where i is large, 

and obtain images 

Akt, Akt, A k3 .... Aki 

for each object Ak over a set of imaging conditions IC. 

Form descriptive feature sets FAki for each image Aki by using a 
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feature descriptor. (Note: a feature may be a relational structure of 

other features). 

Now for each object Ak form two sets of features A 
kV and Ak n such that 

AKV :U FAkj 

and 

AKI an FAkJ 

vi 
Then, Ak V 

is the set of all possible features for object Ak, and Ak n 

is the set of structural features. 

Now a set of unique features Ak* is formed as follows: 

Ak. = Akn U Am 

Vmm*k 

(i. e. for 3 objects B, C, D, B* = BA - CV - DV 

The recognition strategy is based on the following two properties of 

Ak*: If an image I is taken, and we form a new set of features FI, 

then, 

Ak* C FI ----------------------------- (1) 

when Ak is visible in the image, and 

Aki, n FI -0 ----------------------------- (2) 

when Ak is not visible in the image. 

This is always true for large i over the set of imaging condi- 

tions IC. This is the principle that is used in this thesis. The 

learning is concerned with the generation of sets Ak*, and the pre- 

processor is concerned with the generation of the features sets FAki 

during learning and FI during the recognition stage. Recognition is 

concerned with the verification of equation 1 above. 





Chapter 3 

A Strategy for Recognizing Complex Objects: The Architecture 

This chapter describes the detailed architecture that was 

developed to exploit the principles set out in the previous chapter. I 

have tried to keep this material as independent as possible from the 

implementation details so that the strategy of the architecture 

becomes clear. For this reason, this chapter is written in the form of 

a specification of the required system with little or no mention of 

the actual algorithms and data structures used. 

The chapter is organized as follows: After the introduction, sec- 

tion 3.2 describes the architecture of the pre-processor. Section 3.3 

looks at the feature matching algorithm. Section 3.4 describes the 

learning stage, and section 3.5 the recognition stage. Section 3.6 

looks at the overall architecture and makes a few general points, and 

finally, section 3.7 compares this architecture with previously 

reported architectures. 

3.1. Introduction 

The main objective {section 1.01 was to design an industrial 

object recognition system that is able to operate flexibly and fast 
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using the principles set out in the previous chapter. However, there 

were other less important objectives. 

3.1.1. Other Objectives 

1. In addition to being insensitive to operating conditions, the sys- 

tem was expected to be insensitive to internal operating details. 

For instance, a major. requirement was that the thresholds used be 

static (unless it was possible to provide dynamic threshold varia- 

tions within the available hardware resources). Therefore, all of 

the thresholds described in this thesis are for system development 

purposes only, and remain fixed when the system is used. Initial 

threshold selection was dictated by hardware resource limitations, 

empirical tests, and on theoretical considerations when possible. 

2. The system was expected to be insensitive to minor imperfections in 

implementation. 

3. It was felt that the problem of recognizing complex objects had not 

been properly addressed before. The objective was to use the com- 

plexity of these objects to advantage by employing a generalized 

feature detector to respond to these features. In fact, it was felt 

that no restriction should be placed on the complexity of the 

object geometry (or on surface markings etc. ), apart from the una- 

voidable restriction due to image resolution. 

II. The system architecture was to be designed so that it could be 

implemented on dedicated hardware with minimum effort. For this 

reason, the simplicity and parallelism of (especially) the low 

level algorithms was an important requirement. 
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3.1.1.1. The Importance of Execution Speed It should be noted that 

execution time is of great importance in vision work even though one 

may feel that it does not really matter as long as the system works, 

as it is always possible to increase the execution speed by using 

better hardware and optimized code. However, vision algorithms can 

easily take exponential time to execute. Clearly, such algorithms 

become unmanageable very quickly, and may become unusable without some 

optimization. Algorithms that take long to execute become difficult 

to test thoroughly, using different image data, and different parame- 

ter values. It is my experience that overall execution times of more 

than a few minutes make systems very difficult to test properly. 

Therefore throughout this thesis execution times will be considered as 

an important parameter with which to judge vision systems, with the 

understanding, of course, that execution times are dependent on the 

hardware that is used. 

3.1.2. Influence of the human visual system 

It should be noted that during the course of this work, inspira- 

tion was drawn from published work into the human visual system. The 

interested reader is referred to Athukorala [1985] for a discussion 

and list of references to some of this work. 

3.1-3. The System 

The vision system consists of three main parts. The pre- 

processor, the learning stage, and the recognition stage. 
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PRE-PROCESSOR LEARNING STAGE 

RECOGNITION STAGE 

The rest of this chapter will discuss these components in detail. 
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The task of the pre-processor is to describe the input scene in 

terms of local features that are insensitive to imaging conditions. 

The pre-processor performance is not expected to be perfect. The 

learning algorithm is responsible for monitoring the performance of 

the pre-processor. 

Ideally, the pre-processor would generate features that contain 

all of the information about the object that is independent of the 

imaging conditions. In other words, we would like the features to be 

(a) invariant through operating conditions, but 

(b) very sensitive to variations in object structure. 

Further, the ideal pre-processor would be expected to display 'mono- 

tonicity' in its mapping function. What does this mean? 

Let us assume for the moment that the objects we need to recog- 

nize can be completely specified by a single 1 dimensional feature. 

For example, our problem may be to recognize a set of thin iron rods 

which vary only by their length. The chosen feature would then be the 

length of the rods. We would then require that the pre-processor be 

able to describe this feature so that 

(a) the length measured for a given rod is constant despite variations 

of the position of the rod, and variations of other imaging condi- 

tions, and 

(b) that the length measured should vary, when the actual length of 

the rod is changed. 

The requirement of monotonicity means that the measured length should 

increase when the actual length increases. Clearly, linearity would 
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be ideal, but that would be far too ambitious and demanding of a gen- 

eral purpose pre-processor. Monotonicity is a less demanding require- 

ment. However, the requirement that is placed on my pre-processor can 

be relaxed further to that of being single valued in parts, due to the 

learning strategy. Therefore, the pre-processor is expected to 

deliver a subset of features that are independent of the imaging con- 

ditions, and are on part of the mapping function that is locally sin- 

gle valued. The learning algorithm will seek out the rest and reject 

them. To restate: the pre-processor is expected to describe similar 

structure using similar descriptions, and dissimilar structure using 

dissimilar descriptions. The learning algorithm verifies this 

behaviour over the subset of structure that has been learned. 

3.2.1. Imaging Conditions 

What are the imaging conditions that can vary in the restricted 

industrial domain I have chosen, and what are the imaging conditions 

of interest? Firstly, the definition of imaging conditions: I define 

this as everything that contributes to the function that maps object 

to 2D image. This includes camera view-point, lighting, lens parame- 

ters, camera electronics, light detraction, lens aberrations, etc. 

Clearly, we cannot hope to take account of the complete range of 

values that all of these parameters can take. The following is a 

detailed discussion of those imaging conditions that the system 

expects will vary, and the limits of these variations the system 

expects to cope with. The rest of the imaging conditions are assumed 

to be constant, and if not, the system would only expect to be able to 

tolerate minor fluctuations. (The system was in fact tested with 
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variations of two of these parameters: camera focus and added Gaussian 

noise. See chapter 5. ) In the following, I will refer to a plane (p) 

which is defined to be perpendicular to the camera viewing axis (Z) 

and at a distance equal to the expected distance from camera to object 

(i. e. the plane of the table top or conveyor belt. Object height is 

assumed to be small compared with the distance from the camera to the 

object. ) 

3.2.1.1. Object position (2D and 3D) Clearly, it would be desirable 

for the vision system to be independent of the 2D position of an 

object within the visual frame i. e. the feature description generated 

should be invariant with object position provided the object is in 

view. Further, the feature description generated should be invariant 

with 2D object position provided the feature is in view (i. e. even if 

the rest of the object is hidden). Object position variations in 3D 

(i. e. when the distance to the camera is changed) changes the scale of 

the object and blurrs the image. Image blurring is a complex function 

of imaging conditions, and depends on the camera aperture etc. The 

system is expected to be resistant to a small degree of image blur- 

ring. Resistance to scale changes is discussed below. (Note: 2D posi- 

tion is the position of the object on plane P, and 3D position is its 

position on the Z axis - see earlier definition of P and Z. ) 

3.2.1.2. Ob ect orientation in 2D . (i. e. rotation about an axis 

parallel to Z). The system is expected to operate independent of the 

2D orientation of objects, similar to the requirements for 2D posi- 

tion. The feature description must be independent through all values 
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of the orientation of the feature, (and therefore the 2D orientation 

of the object). These two requirements are achieved by describing the 

features using coordinate axis defined on the features themselves. 

3.2.1.3. Illumination variation The system should be insensitive to 

slow variations in absolute illumination level. Illumination varia- 

tions can occur due to many reasons. 

(1) Variations in total intensity. 

(2) Variations in lighting direction 

(3) Variations due to shadows, highlights, or reflected light (i. e. 

mutual illumination). 

Clearly though, it is not possible for any system to operate 

throughout the full range of values that some of these parameters can 

take. I therefore introduce the notion of 'reasonable lighting condi- 

tions'. Reasonable lighting is defined as the lighting conditions 

that would normally be provided for a human to perform the same task. 

For example, a human performing an assembly task would be provided 

with constant, bright lighting. S/he would not be expected to work in 

an environment with, say, flashing lights, moving light sources, 

semi-darkness, or blinding brightness. In fact, economics would prob- 

ably dictate that it is cheaper to provide 'constant' lighting (with 

say, ordinary fluorescent lamps) than to provide flashing or moving 

lights. This then is thought to be a reasonable condition to impose on 

the industrial environment. If the system was required to operate in 

extreme conditions, it would be cheaper to provide special lighting 

conditions (for example by using a narrow bandwidth source and a nar- 

row bandwidth filter on the camera to blanket out variations), than to 
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compensate for such variations using sophisticated general purpose 

software routines. 

However, care must be taken when designing with 'constant' light- 

ing in mind, as lighting thought to be constant by humans may not be 

constant 'enough'. (This is partly because we are relatively insensi- 

tive to absolute quantities, and because the visual receptors have a 

logarithmic response [Cornsweet 1970, p. 249]). Further, it would be 

unwise to demand long term (>1 day) stability of absolute lighting 

level, (as light intensity is bound to reduce with time, due to dust 

etc. ), nor short term stability through stray reflections, such as due 

to white garments worn by humans etc. Therefore, having demanded con- 

stant lighting, the system must at least be insensitive to small vari- 

ations in light level and direction. This is a principle that runs 

through the design of the vision system. The system demands certain 

conditions from the operating environment. However, having done so, 

it attempts to operate flexibly when that condition is not fully met 

i. e. it attempts to degrade gracefully as the operating conditions 

deteriorate from that required. The goal for coping with illumination 

variations was to make the system insensitive to as large a variation 

as possible. This could be achieved by 4 means. 

1. By using a gradient image. 

2. By using a learning algorithm to compensate for a wide variety of 

imaging and processing defects. 

3. By using a variable edge threshold. 

4. By using hardware help in the form of an auto-aperture lens. 

The basic system reported in this thesis uses only the first two tech- 

niques. The use of the gradient makes the system independent of the 
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absolute illumination level within the limits set by the dynamic range 

of the input image and the need to threshold the gradient image to 

reduce the information content. The problem with the edge threshold 

may be removed by varying the edge detector threshold with the overall 

light intensity. However, the signal to noise ratio of the edge image 

deteriorates when this is done. This problem could be avoided by 

using an auto-aperture lens on the camera. The basic system (i. e. 

using only the first two techniques) is able to cope with fairly large 

variations in light intensity {section 5.2.1.1}. Variations of edge 

detector threshold could be used at the expense of extra processing 

(necessary to compute the threshold to be used). This allows the sys- 

tem to cope with larger variations in absolute intensity level. The 

use of an auto-aperture lens would make the system virtually insensi- 

tive to variations in overall illumination, limited only by the range 

of the auto-aperture lens and the sensitivity of the camera. The range 

of flexibility of the the software to illumination variations takes 

care of variations in aperture size of the auto-aperture lens from 

ideal. 

Variations in lighting direction have the effect of changing the 

illumination level of local regions differently. This poses little 

problem to the system so long as the variation is within the bounds of 

absolute illumination variation for a minimum number of regions. (Note 

that when using an auto-aperture lens this will usually be true, 

within the range of the aperture, as the lens will open to allow aver- 

age illumination of the scene). 

Illumination variations due to areas of shadow and highlight are 

handled in the same way. Provided that the shadow areas are 
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sufficiently illuminated (i. e. the measured intensity is not zero), 
} 

the system expects to pick up features in those areas. However, the 

system does not attempt to find and recognize or identify shadow edges 

for what they are i. e. it does not attempt to describe the lighting 

conditions in the scene, and is only interested in describing the 

scene in terms of known objects. 

3.2.1.4. Scale variations (i. e. size variation parallel to p). The 

system imposes a condition of fixed scale on the industrial environ- 

ment. This restriction is argued to be acceptable for two reasons. 

1. It would probably be cheaper to provide a constant scale factor, 

i. e. by having a fixed camera at a fixed distance from the objects 

to be recognized, than to have a roving camera with complex control 

mechanisms. Therefore the capability to recognize objects at random 

scale factors may not be essential in industrial vision. (I have 

not had access to any market research that either confirms or con- 

tradicts this). 

2. It is reported that even the human visual system may not be able to 

operate reliably under conditions of random scale variations. 

However, having imposed the condition of fixed scale, the system 

attempts to be relatively insensitive to small variations in scale. In 

tests {section 5.2.1.21 it was able to cope with up to a 30% variation 

in scale. 

Severe shadowing is uncommon in conditions of 'reasonable' light- 
ing (as defined earlier) as there usually are several light sources, 
which tend to 'fill' the shadows of each other. 
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3.2.1.5. 3D orientation variation (i. e. rotation of the object 

about an axis parallel to P). As indicated earlier, the vision system 

is limited to the recognition of stable states of objects. This con- 

straint is commonly encountered in industrial vision systems. How- 

ever, the system attempts to be insensitive to small variations in the 

3D orientation of the object away from the learned plane. Ways of 

extending the system to cope with the full range of 3D orientation 

variation (i. e. 3D object recognition) is discussed in chapter {6}. 

3.2.1.6. Partial Obscuration The system attempts to show insensi- 

tivity to partial obscuration of objects (i. e. due to 'overlapping' 

objects, or due to part of the object being outside the image frame). 

This is achieved by using local features of the objects. 

3.2.1.7. Summary Thus there are 6 main imaging conditions to which 

the vision system is designed to show insensitivity in varying 

degrees. This insensitivity is achieved by using features that are 

themselves insensitive to these conditions. The learning algorithm 

{section 3.4} verifies this insensitivity. The chosen conditions are: 

Complete range of values of 

Large variations in 

- 2D object position (within frame) 

- 2D orientation 

- Illumination 

- (and hence small variations 

in lighting direction), 

As large a variation as possible - in object scale, 

- 3D orientation, and 

- partial obscuration. 
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The pre-processing begins with a gradient detection operation to 

allow maximum insensitivity to absolute illumination level. The gra- 

dient image is then processed to obtain local features. This process- 

ing is concerned with representing the gradient profile of local 

neighbourhoods by reducing the data content, while retaining the 'use- 

ful' information content, and at the same time, making the representa- 

tion as independent as possible of the chosen imaging conditions. The 

pre-processing stage can be divided into 3 sub-stages as follows. 

1. Gradient detection 

2. Rep-point selection 

3. Local neighbourhood selection. 

I now describe the design philosophy, motivation, objectives, and jus- 

tification of these processing stages. These descriptions should be 

seen as a specification of the processing required, and therefore 

attempt to be independent of the actual algorithms used. 

3.2.2. Gradient Detection 

As we have seen, the vision system begins processing with a gra- 

dient operation in order to reduce the sensitivity of the system to 

absolute lighting level. The scene and its objects are therefore 

modelled by their gradient profile. However, in order for local neigh- 

bourhoods to be represented and manipulated efficiently for matching 

and recognition, the data content of the gradient image must be 

reduced. This reduction must be achieved without reducing the 'useful' 

information content significantly. 
+ 

This is possible because most 

} The fact that there is redundancy in most images is seen quite 
clearly from research into image data compression, especially for low 
bandwidth picture transmission (e. g. Pratt [1978] Chapters 21-24). 
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images contain large areas of approximately uniform intensity. These 

regions transform to regions of approximately zero gradient in the 

gradient image. Regions with zero gradient can clearly be eliminated 

with no loss of information. This strategy can be extended by using a 

threshold to remove all areas of small gradient. The threshold is kept 

as low as possible to retain as much information as possible (for sub- 

sequent processing) within the available resources. This is a recur- 

ring principle throughout the vision system. Data is discarded only 

when the available hardware resources force us to do so. This allows 

the system to retain as much information as possible, and thereby 

respond to as many weak features as possible. 

Thus, the gradient operation followed by a threshold operation 

results in an edge detection operation. An edge point, therefore, is 

defined to be any pixel with a local gradient greater than a given 

threshold. This allows the use of standard edge detectors such as 

Sobel or Roberts operators. The system, however, is required to be 

insensitive to the actual edge detector used i. e. the system operation 

must not depend on the use of a particular edge detector. 

In addition to finding edge points, the edge detector is also 

required to compute the 'property' data of the edge points. The gra- 

dient direction of the edge point was chosen to be its property. Other 

parameters such as gradient magnitude, average local brightness, or 

average local colour may also be used. However, brightness data should 

not be used as it would increase the sensitivity of the system to the 

absolute illumination level. The edge detector is also expected to be 

able to cope with imperfections in the input grey scale image, such as 

those due to electronic noise. 
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Therefore, edge detection was used as the first processing step due to 

three reasons. 

1. To reduce system sensitivity to absolute illumination level. 

2. On the grounds of minimum information loss. (The gradient detection 

operation loses only the absolute illumination level as it is a 

differentiation operation. However, standard gradient detectors 

lose some high frequency information because of the use of a degree 

of local smoothing). This suggests a degree of reversibility of 

transform. 

3. Easy control of the data content of the image by use of a thres- 

hold. 

The following is expected from the chosen edge detector: 

1. It should compute the edge property, and 

2. be insensitive to noise in the image. 

(An example of an edge detected image may be found in Fig. 5-3)" 

3.2.3. The as -Point algorithm 

The output from the gradient operation is a list of edge points. 

This list usually contains from 2000-6000 edge points with the thres- 

holds that are normally used. 
+ 

This is a data reduction of over 90% 

from the original image containing 64k pixels. This list of edge 

points is still too large to be handled effectively for learning and 

recognition. (For example, it is not possible to consider each edge 

point to be a description of a small part of the object, and thereby 

These thresholds are not chosen dynamically, but are constant 
throughout the operation of the system. At present they are chosen em- 
pirically during the initial system set up process. 
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use a relational structure of edge points. This would result in a 

graph of 4000 nodes! ) The task of the rep-point algorithm is to 

reduce the data content further, without affecting the 'useful infor- 

mation content' in the image. This can be achieved by identifying 

'redundancy' in the edge data. The acceptance of which data is redun- 

dant (in terms of the task at hand) could be a contentious issue. 

But, it is clear that once this is agreed upon, data reduction can be 

achieved without loss of useful information. My technique is to find 

representative points (re - points) for small local areas of approxi- 

mately uniform gradient property. 

Fig. 3-1 to Fig. 3-4 illustrate the requirements placed on the 

rep-point algorithm. Given an edge image as in (a) of each figure, the 

rep-point algorithm is expected to generate an output as in (b) of the 



Section 3.2.3 

i 
i 
i 
i 
i 
i 

/1 
/ 1 

i 
i 
i 
i 
i 
i 
i 

Fig. 3-2 

/I 

/ 

/ 

Page 56 

same figure. The significance of these figures is described below. 

Specification of the rep-point algorithm 

1. Segment the thresholded gradient image (-edge image) into regions 

of connected edge points of approximately uniform gradient pro- 

perty. Region connectivity is 8-connectivity (i. e. two edge 

points are connected if the distance between them is equal to 1 or 

\F pixels. ) 

2. Regions have an expected size of radius r. Regions of large radius 

should be segmented into several regions of smaller radius equal 

to about r. (see Fig. 3-1). Note that the radius of a region is 

interpreted quite liberally. The distance between the furthest 

points of the region may be used to define the radius. In general 
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regions are split only if they are larger than 14r. 

3. The value of radius r should be chosen so that 2r>t, where t is 

the average expected thickness of edges in the image. However, r 

should be kept small (i. e. just larger than t/2) to keep informa- 

tion loss to a minimum. 

A representative point (rep-point) is chosen for each such region 

so that the property of the rep-point is equal to the average pro- 

perty of the edge points it represents. The position of the rep- 

point is set equal to the mean position of the edge points. The 

motivation for using rep-point (and edge point) property is to 

make the rep-points as unique as possible to the gradient section 

being represented. For example, if property data such as local 

colour is used, it reduces the probability of a rep-point matching 

any other rep-point. In the implementation, however, only rep- 

point direction is used. This property is insufficient to stop a 

given rep-point from matching all other rep-points, but it reduces 

such matches to only one instance (i. e. a single orientation) per 

rep-point. 

5. A set of uncorrelated edge points should be mapped to a similar 

set of uncorrelated rep-points. 

6. Any rep-point that is nominated by only a single edge point is 

discarded as noise i. e. rep-points must represent two or more con- 

nected and correlated edge points. This improves the high fre- 

quency noise immunity. (see section {5.2.2.2}) 

7. The rep-point image is expected to be stable with line thickening 

and indeed with other variations. (Compare Fig. 3-1 and Fig. 3-2). 

B. The rep-point algorithm is expected to represent complex gradient 
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profiles without restricting the allowed object geometry. (See 

Fig. 3-3). 

9. The algorithm is expected to respond to weak features. (See 

Fig. 3-3). 

10. Thin intensity bars should be preserved by using the gradient 

direction polarity. (Fig. 3-4). 

11. Finally, when implementing this algorithm, (as indeed for any 

other pre-processing algorithm), a 'perfect' segmentation, 

although desirable, is not expected. Problems with implementing 

this algorithm may be passed on to the higher levels. (The match- 

ing and learning algorithms in this case). 

Thus, the rep-point algorithm converts the edge image to a rep- 

point image. The algorithm copes with imperfections in the edge detec- 

tor in two ways: (a) by averaging the property values of the se g- 
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mented edge regions, and (b) by requiring a minimum level of agreement 

between edge points (i. e. the requirement of 2 correlated and con- 

nected edge points to nominate a rep-point). This algorithm is similar 

to thinning algorithms [Hilditch 1969, Wong 1979, Athukorala 1980] but 

is different in that continuous lines are represented by a few rep- 

points. It is similar to region finding algorithms (if they are exe- 

cuted on a gradient image rather than a grey scale image), but is dif- 

ferent in that large regions are segmented into smaller regions. It is 

similar to a simple resolution reduction algorithm, but is different 

in that the resolution reduction is a function of the gradient 

activity in the region. Areas of uniform gradient suffer a greater 

data reduction than areas of varying gradient. The number of rep- 

points generated increases with the spatial frequency of the gradient, 
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until adjacent edge points are judged to be uncorrelated. 

Rep-points are the basic elements used by the vision system. 

Local gradient profiles are represented by rep-points. This scheme 

circumvents many problems of transforming edge points, such as thin- 

ning, chain coding (e. g. Freeman [1970], McKee and Aggarwal [1977]) 

and line finding (e. g. Shirai [1973], Mero [1981a]). I am not aware of 

an algorithm similar to the rep-point algorithm being used by previous 

researchers. 

The rep-point algorithm has many advantages for my purpose. 

1. The rep-point data is relatively reliable. As each rep-point is 

nominated by at least two correlated and connected edge points, it 

is less likely that the rep-point was generated by a random pro- 

cess. Further, the rep-point property data (including the rep-point 

position) is reliable as it is the mean of the edge points it 

represents. 

2. It allows edge detector thresholds to be reduced without an accom- 

panying explosion of rep-points. (See section {5.3.2}). This is 

because stronger edges ideally generate the same number of rep- 

points when the thresholds are reduced. However, the number of 

rep-points found for weak features will increase when the thres- 

holds are lowered. If necessary, the strength of the edges may be 

used as an extra property, so that weak edges and strong edges do 

not form single regions. (i. e. rep-points will be either weak or 

strong). This differentiation is not made in my implementation. 

3. The 'useful information' content of the image is expected to be 

preserved despite the data reduction. This can be justified on the 

grounds that uniform regions have a lower information content. The 
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final justification, however comes from the overall system tests in 

Chapter 5. 

u. As explained in the next sub-section, the rep-points provide an 

ideal way of choosing local neighbourhoods. They also provide an 

ideal way of representing, manipulating, and comparing local gra- 

dient profiles {Section 3.3}. 

5. No restrictions are placed on object geometry, as complex gradient 

profiles can be represented. Therefore, the system does not need to 

assume that the objects to be recognized contain straight lines or 

circular arcs. The complexity of geometry that can be represented 

is limited only by image resolution. 

6. The last point leads to the possibility of representing textures. 

However, this is limited to textures that can be successfully 

represented by an edge image. This is effectively a requirement of 

minimum feature size of a texture. (The edge detector used may have 

to be changed to one using a smaller window size for this to be 

successful). 

7. Finally, the algorithm is suitable for parallel processor architec- 

tures as serial algorithms are not necessary (unlike, for example, 

for line finding algorithms). 
+ 

A cellular array processor would be 

well suited for this algorithm, although it was implemented in 

software with a pipelined architecture in mind. (See also chapter 

6 on hardware implementation of the pre-processor). 

(An example of a rep-point image may be found in Fig. 5-4). 

Although Hough transforms [Hough 1962] (which are parallel) may 
be used for finding lines and arcs, finding line termination points 
etc. can be problematic, and may need serial algorithms for efficient 
processing. 
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3.2.4. Constructing Local Neighbourhoods 

The task of the final pre-processing stage is to select local 

neighbourhoods to describe the scene. Since local neighbourhoods are 

allowed to overlap each other, a very large number of neighbourhoods 

could be chosen over the image. Clearly though, local neighbourhoods 

chosen in regions of zero gradient activity (or sub-threshold gra- 

dient) will not be very informative. On the other hand, local neigh- 

bourhoods chosen in regions of significant gradient activity will be 

far more informative. 

My technique is to use each rep-point as a focal point for 

selecting local neighbourhoods. This rep-point is called the central 

r_ýpo int. This technique ensures that no neighbourhoods are chosen 

in regions with sub-threshold gradient (as such regions do not contain 

any rep-points), while a large number of neighbourhoods will be chosen 

in regions of significant gradient activity (which have a high density 

of rep-points). Therefore, the number of local neighbourhoods selected 

in the image will be equal to the number of rep-points. (Fig. 5-4, for 

example, contains 386 rep-points). 

Specification of algorithm 

1. Select a local neighbourhood of radius R around each rep-point. R 

should be chosen so that R»r (where r is the expected average 

radius of a region represented by a rep-point). However, the value 

of R should not be too large in order to retain the locality of 

neighbourhoods. (I use a value of 9 pixel widths for R). 

2. The gradient of the local neighbourhood is represented by the peri- 

pheral rem- op ints within the neighbourhood. Thus, local neighbour- 
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hoods are a relational structure of a single central rep-point and 

several peripheral rep-points. (Fig. 3-7). 

3. Local neighbourhoods should be 'normalized' so that the rep-point 

data is represented relative to the central rep-point. (See 

Fig. 3-5). Local neighbourhood normalization results in an impli- 

cit rotation of the neighbourhood so that the central rep-point is 

oriented in an agreed direction. The significance of this is dis- 

cussed later. {Section 3.3}. 

The normalized local neighbourhoods produced by this algorithm 

are the features used by the system for learning and recognition. 

Local neighbourhoods, therefore, are also referred to as local 

features in this thesis, and should be understood to be synonymous. 

((1) 
(b) 

Fig. 3-5 Neighbourhood Normalization 
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Previous researchers have used local features for object recogni- 

tion {sections 3.7.2}. However, they used 'conventional' features such 

as corners and holes. In addition to such features, my vision system 

is especially interested in 'unusual' local neighbourhoods (see 

Fig. 3-6) i. e. local neighbourhoods created by the juxtaposition of 

'conventional' features. (In Fig. 3-6, the broken lines represent 

rep-points, and the unbroken line the boundary of a single feature. It 

is clear that such features are more complex than the local features, 

such as corners and straight lines, that have been used in the past). 

Such features tend to be more informative and unique, but have not 

been used in the past, 
F 

perhaps because of problems of building 

/ 
op 

\ 

Fig. 3-6 The system is interested in unusual local features 

f However, Persoon comes close. {section 3.7.2}. 
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feature detectors that could detect such features. The system is 

also designed to be sensitive to internal features of objects, (hence 

the attention given to weak features), including (reliable) surface 

markings and internal edges. 

3.2.5. Summary of Pre-Processor 

The task of the pre-processor is to extract a set of local 

features from the input grey scale image. Local features are overlap- 

ping local neighbourhoods of the gradient profile of the scene. The 

gradient profile is modelled by rep-points which represent small 

regions of approximately uniform gradient property. Regions with gra- 

dient below a chosen threshold are not considered. 

Each local feature consists of a central rep-point and a set of 

peripheral rep-points. The rep-point data is normalized, i. e. 

represented relative to coordinate axis aligned with the central rep- 

point. This results in an implicit rotation of the neighbourhoods. 

Local features, then, are able to describe complex gradient pro- 

files. The technique of representing local neighbourhoods, together 

with the matching strategy, forms a generalized local feature detec- 

tor. (cf. corner detectors, hole detectors, IC-pad detectors etc. ) 
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The matching algorithm is used by both the learning stage and the 

recognition stage to compare local features. The algorithm is expected 

to give a binary result of the comparison. Therefore, although the 

matching algorithm could be designed to give a value indicating the 

goodness of the match, only a binary result (i. e. match or not) is 

given. This is mainly because the learning algorithm and the recogni- 

tion algorithm do not have a mechanism to handle partial feature 

matches. However, as any given local feature is one of many, and 

represents only a small local area of the scene, the loss of any one 

feature is not of significance. In contrast, the loss of a global 

feature (such as object area) could pose major problems to global 

feature based systems. 

Thus, the task of the matching algorithm is to test for isomor- 

phism of two relational structures. As seen in section {2.1.2.2} this 

is basically a graph isomorphism problem, but unfortunately there is 

no known algorithm that is both general and efficient. My feature 

matching algorithm exploits the special structure of the graphs 

(Fig. 3-7) to achieve an efficient match. 

The matching algorithm operates by first superimposing (conceptu- 

ally) the two neighbourhoods to be compared, so that the two central 

rep-points are aligned. It then counts the number of peripheral rep- 

points that coincide. The measure of coincidence is flexible so that 

small variations in the local features do not destroy the match. Two 

peripheral rep-points coincide if they have approximately the same 

orientation, and are less than a certain distance from each other. Two 
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Fig. 3-7 Local neighbourhood relational structure with 
3 peripheral rep-points. 

neighbourhoods are matched if the fraction of peripheral rep-points 

that coincide is greater than a given threshold. The use of this 

threshold allows further flexibility of match. (However, in the imple- 

mentation some of these thresholds have been removed {section 4.2}. ) 

Thus, the matching algorithm compensates for imperfections in feature 

reproduction by the pre-processor in three ways. 

(1) Features are matched even if they have a slightly different number 

of peripheral rep-points. In the implementation though, features 

must have an equal number of peripheral rep-points {section 4.2}. 

(Note that the number of rep-points in a local neighbourhood is a 

measure of the complexity of the gradient profile). 

(2) The orientations of the peripheral rep-points are taken to be 

accurate, and result in a strict threshold being applied. 
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(3) However, the position of the peripheral rep-points are known to be 

variable, especially along their direction. A liberal threshold 

should be applied in the direction along the rep-point, while a 

stricter threshold may be applied in the direction perpendicular 

to the rep-point. 

In the implemented system, the position threshold is liberal in all 

directions, and so is not dependent on the rep-point orientation. 

This has the advantage of simplicity and of allowing rep-points to 

expand and contract, and so allows a degree of scale change or distor- 

tion of the feature. The matching algorithm effectively tests for the 

angular relationship between rep-points, and the approximate position 

of the rep-points within the feature. 

This algorithm executes rapidly for three reasons. 

(1) Because central rep-points must be registered for a match to take 

place, they provide an ideal way of registering the neighbourhoods 

before matching. This means that two neighbourhoods can be 

registered in only one way, (because rep-point orientations are 

specified over a 3600 angle), and therefore there is only one 

position in which two neighbourhoods can match. This eliminates 

the need to perform incremental relative rotations and multiple 

match attempts to verify a feature match. 

(2) As all neighbourhoods have already been rotated by the normalizing 

algorithm, there is in fact no need for the matching algorithm to 

perform any rotations at all i. e. neighbourhood normalizing 

results in all neighbourhoods being already registered and ready 

for immediate comparison. This is the significance of the normal- 

izing algorithm. 
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(3) It is possible to detect the non-matching condition of two dis- 

similar neighbourhoods very quickly. This is discussed in the 

implementation section. 

But how can we be sure that two features that are matched by this 

algorithm in fact do correspond to the same object structure? There 

are two ways of ensuring this: 

1. Firstly, the learning algorithm is responsible for ensuring that 

features are reliably matched. The algorithm observes the behaviour 

of features through variations in imaging conditions, and discards 

features that do not map to a single object. This is discussed in 

more detail in section {3.4}. 

2. Secondly, it can be shown {appendix 1} that the probability of a 

match between two randomly chosen local features is small, and 

reduces rapidly as the radius of the local neighbourhood is 

increased. This is because the vocabulary of the feature descriptor 

is very large, and therefore the probability that two randomly 

chosen structures will be described by the same rep-point pattern 

is small. 

Appendix 1 shows that the random match probability between two 

local neighbourhoods is small, under the assumption that all rep-point 

patterns are equally probable. However, this assumption does not hold 

for ordinary scenes. Certain rep-point patterns will be far more fre- 

quent than others, due to similarities in the object structure that is 

being viewed. Therefore, matches between rep-point patterns generated 

by similar object structure is more likely than matches for patterns 

generated by different object structure. But that is of course 

expected, and indeed required. 
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Thus the problem is as follows: When the system obtains a match 

between two features, it assumes that this was not due to a random 

event (especially when the number of rep-points in the feature is 

large). However, it cannot be certain that the matched features are 

not due to features taken from different objects that are similar to 

each other i. e. when a model feature matches an object feature, there 

is no guarantee that the new image feature was generated by exactly 

the same object feature. All that can be said is that the object 

structure in the vicinity of the feature is similar to the object 

structure that gave rise to the model feature. Therefore recognition 

of object features can be achieved only by learning about the way 

features are generated and changed. It is necessary to observe the 

generated features to see which features are most reliable in identi- 

fying the original object features through variations in imaging con- 

ditions. Thus, it is necessary to find a set of reliable features for 

recognition. This is the job of the learning algorithm. 
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3. . The Learning Stage 

This stage is divided into three parts. 

1. Model formation to acquire an initial description of each object to 

be recognized. 

2. Further learning by observing the reliability of the pre-processor 

over a set of imaging conditions for the objects of interest, by 

selecting a set of reliable and unique features. 

3. Construction of a data structure for recognition. 

3.4.1. Model Formation 

Object1 

I1 12 13 ... 

F1 F2 F3 ... 

PR 
PR PR 

PR 

PR PR 
PR PR PR 

I- Object Instances 
F- local Features 
CR - Central rep-point 
PR - Peripheral rep-point 

Fig. 3-8 The model data structure 
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During the learning phase, models are formed from each instance 

of the object that is taught to the system. This is effectively a 

storage of a feature description of the object similar to the learning 

stage of many previous vision systems. (e. g. Perkins {section 1.3.61) 

Objects are described in terms of rep-points and local neighbour- 

hoods. This data structure contains redundant data (because the local 

neighbourhoods can be generated from the rep-point data). This, how- 

ever, allows faster execution of the learning algorithms. Fig. 3-8 

shows the data structure of the models. The model data is a relational 

structure of features and rep-points. 

3.4.2. The Extended Learning Stage 

In chapter 2 it was seen that there was a basic need for further 

machine learning. Thus, the task of my learning algorithm is to learn 

by itself the way to use the features that are generated by the pre- 

processing stage i. e. the learning algorithm is required to examine 

the features, compare them, notice which of them are common, which are 

rare, which features are reliable, and so on. Thus, the learning algo- 

rithm is required to learn how to use the features detected by the 

pre-processing algorithms to recognize objects. The two basic require- 

ments are (a) to verify the reliability (or independence) of the 

feature description through variations in the imaging conditions of 

interest, and (b) to select a set of unique features from this set of 

reliable features. 

Previous vision systems operated by comparing image features with 

model features, and recognition was obtained if the feature sets were 
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sufficiently similar. This was done, however, without knowledge of the 

the importance of particular features in discriminating between 

objects. This resulted in difficulty in defining the measure of Simi- 

larity especially when flexible operation was required. Some systems 

circumvented this problem by using human help to identify important 

features. (e. g. Yachida and Tsuji [1977], Mero [1981b], Tropf[1981], 

Rummel and Beutel [1982] etc. ). The main objective of my learning 

algorithm is to find distinguishing features of objects automatically. 

The system aims to use any distinguishing features for this purpose 

i. e. it is not designed to be limited to features that the human pro- 

grammer thinks is important. A feature is a distinguishing feature if 

it is reliable and unique to an object. Features such as those in 

Fig. 3-6 are especially important to the system. 

Thus the learning algorithm attempts to answer the question''What 

makes one object different from another object? '. The learning algo- 

rithm that has been implemented attempts to answer this question by 

using the local features of the objects (but not the relationships 

between the local features). The algorithm does this by finding a set 

of reliable and unique local features for each object. Chapter 6 

discusses ways of extending this strategy to non-local structure and 

3D interpretation. This section concentrates on the architecture of 

the implemented learning algorithm. 

During the learning phase the vision system is taught several 

instances of each object placed in random (2D) positions and orienta- 

tions. Reliability of features is computed by checking that a given 

feature is reproduced in all of the instances. This allows the system 

to reject 
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1. local neighbourhoods that were created by the coincidence of (say) 

shadow and highlight edges with reflectance edges, 

2. local neighbourhoods that were disturbed by electronic or visual 

noise, and 

3. local neighbourhoods that were disturbed by imperfections i n pre- 

processing algorithms. This may happen due to threshold effects 

when choosing local neighbourhoods and due to imperfections in the 

implementation of the rep-point algorithm. 

An important point here is that any feature that is reproduced 

through the chosen instances is taken to be reliable. But, some of 

these features may not correspond to a physical attribute of the 

object being viewed. For example, it could be created, (or modified), 

by stationaryf highlights or shadows, or by imperfections in pre- 

processing algorithms. But this does not matter. A feature may be used 

for recognition as long as it is reproducible, even though it may be a 

result of an imperfect algorithm. This is an important principle. 

Vision guided action can be correct even if intermediate steps are in 

themselves judged to be imperfect or incorrect. Such imperfect 

features, or 'incorrect' descriptions of objects can be used to pro- 

duce 'correct' actions. But then it is important to ask what is meant 

by a processing algorithm being incorrect, if the overall system func- 

tions correctly. It is clearly not necessary for a vision system to 

describe an object the same way as the human visual system in order 

for it to be judged to be a correct interpretation. 

Stationary with respect to object position and orientation (in 
the set of random views). 
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The pre-processing stage should be seen as performing an imper- 

fett transformation of local neighbourhood gradient profiles. The 

higher processing levels can use this transformed output, neverthe- 

less, by learning how the transformed output relates to the input 

image (i. e. by using the a priori knowledge in the learning stage that 

the sets of features generated for each object instance were formed 

from different 2D views of the same object). Therefore, imperfections 

in low level algorithms can be tolerated provided that changes in the 

input image produce changes in the transformed image over the parame- 

ters of interest; in this instance the parameter of interest is the 

actual object i. e. the task of the ideal pre-processor is to produce 

variation in feature description when different object structure is 

being observed, while keeping the description constant when the imag- 

ing conditions are changed. The task of the reliability algorithm in 

the learning stage is to observe departures from this ideal perfor- 

mance. Imperfections are compensated for by discarding features which 

are not reproduced reliably by the pre-processor. 

Once a list of reliable features are formed for each object, this 

list is compared with all of the features found in the other objects. 

This is to see if a reliable feature found in object Oi has been found 

either as a reliable feature or as a spurious feature in instances of 

object 01 (for all j*i). All local features that are reliable and are 

not found in any other object instance form the list of unique local 

features. The number of unique features found depends on the radius of 

the local neighbourhoods and on the similarity between the learned 

objects. The number of unique features are expected to increase with 

the radius of the local neighbourhoods because each local 
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See section {5.2.4.2} for 

A major objective of the learning algorithm is to transfer as 

much processing as possible from the recognition stage to the learning 

stage. The recognition stage of a vision system spends much of its 

time searching. The objective was to move as much of the searching as 

possible to the learning stage. i. e., it was hoped that a richly con- 

nected data structure could be constructed at learning time so that 

the recognition algorithm had a minimum amount of searching to per- 

form. The original aim was to achieve this by exhaustive comparison 

of model features so that an associative data structure could be simu- 

lated in software. 

For example, if the recognition algorithm detected feature fl in 

the image, the model data structure was expected to produce (1) a list 

of objects in which the feature could be found, and (2) the positions 

of fl within the object. I expected to do this using object lists for 

each feature. An important (but I feel valid) assumption here is that 

the learning time is not critical. 
} 

However, it will be clear that 

this would require a large amount of storage, as features such as 

straight line segments would be detected everywhere, and would result 

in enormous object (and object position) lists. But this leads to an 

interesting point. The knowledge that a feature such as a straight 

} It should be noted that since the learning algorithm is executed 
only once for a given set of objects, learning times of say 24 hrs 
even, are not disastrous. Further, if the learning time was critical, 
the learning algorithm could be executed on a larger machine, and the 
new data structures could be passed back to the smaller vision 
machine. 
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line segment is found everywhere is not a very useful piece of infor- 

mation for recognition i. e. long lists of objects are not very infor- 

mative. They do not contribute much to the speeding up of the recogni- 

tion algorithm. Clearly then, the long lists could be eliminated 

without a significant loss in the speed up of the recognition algo- 

rithm, but with a significant decrease in memory required to store the 

lists. My implementation is the limiting case of this, where only 

lists with a single atom is retained i. e. unique features. 

The reliability test is an important part of the learning stra- 

tegy. The original aim was to show each object in a large number of 

known positions and orientations and to make the system search for 

each feature in the position at which it should appear. In this way 

the system was expected to learn about the variation in rep-point pat- 

terns due to imaging condition variations. However, this would 

require the measurement of the positions and orientations of the 

object by hand, so that the system knew where the features were sup- 

posed to be, and could then compare this with the actual transforma- 

tion of image features. This is unacceptable though, as it would 

require too much human intervention (and effort). Alternatively, the 

measurement and positioning could be achieved by a robot device. But, 

that would be an unacceptable requirement to place on an industrial 

user. Therefore, the present system operates without knowledge of the 

actual position and orientation of the object at each instance. Dur- 

ing the reliability test, features in instance 1 of each object are 

searched for in the other instances. However, when a match is 

obtained the positions and orientations of the two matched features 

relative to the object are not compared. Therefore the reliability 
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test may confirm the reliability of a feature f1 by using a feature 

somewhere else on the object that matches f1. This is not altogether 

acceptable, but it is not a major problem either. This is because 

1. it was shown in section {3.3} that the probability of a random 

match between features is small, and therefore any match obtained 

is due to similarity in the object structure and lighting condi- 

tions that gave rise to the feature, and 

2. because any feature that matches other features easily will be 

rejected when inter-object comparisons are made. This is the case 

with 'common' features such as straight line segments which get 

discarded at an early stage. 

In future implementations, however, it is expected that the position 

and orientation of matching features will be checked during the 

feature reliability test. 

A useful side effect of the learning algorithm is that it allows 

objects to be learned on imperfect backgrounds i. e. features in the 

background will be rejected (so long) as they appear in at least two 

of the objects. In normal operation, though, it is expected that the 

system will learn objects on a featureless background so that the sys- 

tem has the least difficulty in deciding which features are object 

features and which are background features. (Note that in future sys- 

tems which test for object feature positions and orientations in the 

reliability test, background features will be eliminated in any case 

as they do not move with the object). The system, then, does not 

place any constraints on the background used, except that a relatively 

featureless background would be desirable at learning time. However 

this is not necessary (see section {5.2.3.5}). 
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An extension to this idea is the possibility of using the system 

to recognize objects that are themselves variable from one instance to 

another. The reliability test can be used to extract the common 

features of such an object. Provided that there are sufficient common 

(unique) features, the system is able to recognize the object using 

these features. 

Another useful feature of the learning algorithm is that it gives 

the user advanced warning of the expected performance of the system. 

For example, if the system detects a large number of unique features 

for each object, it will then be able to operate despite large varia- 

tions in operating conditions. However, if it detects only a few 

unique features, the recognition will fail under smaller variations of 

the operating conditions. This scheme is superior to schemes where 

models of objects are stored, but not compared, so that any problems 

due to object similarity etc. are found only during the recognition 

stage. This means that these systems have to be tested on the number 

of correct classifications made out of, say, 100 trials. This is 

necessary because there is no measure available in advance of how dif- 

ferent the objects are from the vision system's point of view. There- 

fore, my system cannot make mistakes in principle because it uses 

reliable unique features, and by definition the detection of a unique 

feature must imply the presence of the object. This is different from 

the standard strategy of computing the match weight of the input 

object with all of the stored models and then using an arbitrary 

threshold over global weighting criterion (e. g. the object is detected 

if 50% of the features are detected). However, my system could make 

mistakes if a unique feature is created by noise or coincidental 
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alignment of image features, and therefore, more than one unique 

feature is required to confirm recognition. But as seen in section 

{3.3} the probability of such a random event is low. I have not found 

this a problem in practice as it is rarely that more than 2 unique 

features are detected when they should not have been, even when the 

operating conditions were outside the required range, and dirt and 

swarf were present. However, this is dependent on the reliability 

tests during the learning stage. The feature reliability can be 

increased by extending the learning stage by using many more instances 

of each object. 

Therefore, unlike in most previous vision systems in which the 

recognition algorithm was more complex than the learning algorithm, my 

recognition algorithm has been greatly simplified at the expense of an 

extended, and time consuming learning strategy. The advantage with 

this is that the recognition algorithm is able to execute rapidly. 

The problem of recognizing objects using structural (relational) 

descriptions of objects is one of matching relational graphs. The 

strategy of previous workers has been either to use heuristic algo- 

rithms that take advantage of special characteristics of the particu- 

lar problem (sections 3.71, or the strategy of finding maximal cliques 

{section 2.1.2.2}. My proposal is to effectively eliminate the graph 

isomorphism problem in the recognition stage by searching only for 

unique relational structure. The graph isomorphism problem is then 

transferred to the learning stage, where the problem is magnified in 

scale i. e. the system is expected to find (in general) all unique 

relational sub structure of all combinations of features. This prob- 

lem is simplified in my implementation by restricting the search to 
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local subgraphs of rep-points only. (Note that the time taken to com- 

pare 3 objects using 5 instances each to find unique local features is 

only about 3 minutes on a PDP11/24). Clearly, there is scope for look- 

ing for larger unique relational structures, especially as larger pro- 

cessors, more efficient algorithms, and longer execution times could 

be tolerated. Chapter 16} on architectural extensions discusses these 

possibilities in detail. 

The effect of the learning algorithm can be thought of as being 

analogous to the effect of applying feedbacks to an operational 

amplifier in analogue circuit design. Imperfect and noisy pre- 

processor algorithms are 'cleaned up' and made 'linear' so that only 

reliable and distinctive features emerge from the system. This is 

achieved by selecting the section of the pre-processor mapping func- 

tion that produces a locally linear mapping between object structure 

and description. 

3.1.3. Constructing a Data Structure for Recognition 

Once a list of unique features is constructed for each object, 

the learning algorithm organizes this data for the recognition algo- 

rithm. The unique feature list for each object is first sorted so 

that the local features with the highest number of rep-points are at 

the head of the list. (i. e. features with the most complex gradient 

Applying feedback to an operational amplifier (op-amp results in 
the non-linearities and distortion of an open loop amplifier being re- 
placed by a linear response. However, this analogy does not extend to 
potential stability problems with feedback amplifiers as the learning 
system is not a feedback system. The analogy is only with the effect 
of feedback on op-amps. 
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profile are chosen). This is done for two reasons. 

1. These features are least likely to be matched by chance as the ran- 

dom match probability drops rapidly when the number of rep-points 

in the neighbourhood increases. {appendix 1}. 

2. Because local neighbourhoods with many rep-points are expected to 

contain more information than local neighbourhoods with fewer rep- 

points, as they represent complex gradient profiles. 

The recognition data structure is a list of features that are to 

be searched for by the recognition algorithm in the input feature 

stream during the recognition phase. The feature list can therefore be 

organized so that the objects are searched for depth first, breadth 

first, or in some other mode (such as number of features being propor- 

tional to the probability of the object appearing). In the implementa- 

tion, the recognition data structure is organized so that a breadth 

first search is performed. Therefore, the recognition feature list is 

{U11, U12, .... , Urn, U21 , U22, .... 
} 

where Ujk is the jth unique feature of the kth object. 

This scheme allows the search strategy of the recognition algorithm to 

be changed by simply re-ordering this list. 
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The task of the recognition algorithm is to search for unique 

features in the input feature stream from the pre-processor. The 

recognition algorithm depends on the knowledge that (by definition) 

the detection or the non-detection of a unique feature is a signifi- 

cant event. That is, the recognition algorithm depends on the follow- 

ing result that was derived in chapter 2: 

Ak*Q FI when Ak is visible in the image, and 

Ak* fl FI -$ when Ak is not visible in the image. 

That is, object Ak is recognized if any feature f is found such that 

fe FI and fc Ak*. However, these equations hold only when a large 

number (i) of images are used for learning, and when these images are 

taken over a set of imaging conditions IC which includes the current 

imaging condition. However, if i is small, and we are not sure of 

whether the new image is taken with imaging conditions within the 

domain of IC, we cannot be sure that the above conditions hold, 

requiring more than one unique feature to be detected in order to con- 

firm recognition. Thus, the recognition algorithm needs to be changed 

so that a small set of unique features F is found such that 

FC Ak* and F CFI. 

The number of features required in F for a recognition to be declared, 

is dependent on what is known about the severity of the expected 

operating conditions during recognition. This is discussed in more 

detail in chapter 4. 
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3.6. Some General Points on the Architecture 

3.6.1. Summary of Architecture 

The architecture of the vision system is based on a new general- 

ized feature detector and a learning algorithm. The bottom-up pre- 

processor is responsible for constructing a set of overlapping local 

neighbourhoods of the scene. These local neighbourhoods are the local 

features. The local neighbourhoods are represented by their gradient 

profile. The gradient profile is modelled by rep-points which 

represent small regions of approximately uniform non-zero gradient. 

The task of the pre-processor is to generate a set of features 

that are independent of, or relatively insensitive to, variations in a 

set of chosen imaging parameters. The pre-processing stage consists of 

a gradient detection and thresholding operation, followed by a rep- 

point algorithm, neighbourhood selection and normalization. The neigh- 

bourhood selection algorithm is especially interested in regions of 

complex gradient profile. 

The learning algorithm is responsible for learning to recognize 

the objects using the local features generated by the pre-processor. 

In order to do this, it first finds reliable features. It then uses 

the reliable features to find a set of unique features for each 

object. The recognition algorithm searches for these features in the 

output feature stream from the pre-processor. It identifies objects 

using the knowledge that the detection of a unique feature is a signi- 

ficant event. 

The implementation shows that this scheme allows the system to 

cope with variations in operating conditions and to operate rapidly 
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under favourable conditions. Further, the system demonstrates that 

the visual world is very rich in local information which may be used 

to recognize objects. Indeed, it was not necessary to use intermedi- 

ate or global features (described in chapter 6) for recognition as 

sufficient unique local features could usually be found. The test 

data in chapter 5 shows that the system was able to cope with large 

variations in operating conditions. For example, recognition was 

achieved despite a 70% reduction in light intensity, 30% reduction in 

scale, and 30°-40° variation in 3D orientation. Further, the recogni- 

tion algorithm operated rapidly under favourable/good conditions 

(10ms-500ms). + 
This performance makes the system unique amongst 

reported industrial vision systems. 

3.6.2. Another perspective of the architecture 

This architecture can also be thought of as an extension of the 

generalized Hough transform [Ballard 1979]. Ballard (p. 22) suggests 

that the generalized Hough transform could be extended by using pairs 

of edge points to reduce the complexity of the locus of the object 

origin. Increasing the number of edge points used increases the accu- 

racy of the computed locus of the origin and decreases the freedom of 

movement of the origin, as the number of positions at which the chosen 

edge pattern can be found on the original object is reduced. In the 

limiting case the edge point pattern will be unique, and will result 

in a single point prediction for the locus of the origin. My system 

can be thought of as this special case of the generalized Hough 

Excludes pre-processing time (70a) which is expected to be re- duced to a negligible level with the use of dedicated hardware. 
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strategy, except that the amount of data used in the computations is 

reduced by using rep-point patterns instead of edge point patterns. 

3.6.3. 'Plane' Classification 

How does the system fit into the classification of vision stra- 

tegies into processing planes? {section 1.3.7}. The feature plane of 

my vision system consists of local neighbourhood data and rep-point 

data. The model plane is distinct from the feature plane in that it 

contains a learned description of the uniqueness of each object in 

addition to the models formed by using the local features and rep- 

points. Thus the unique features are the 'generated features' {sec- 

tion 1.3.7} that are searched for in the 'detected feature' list. 

3.6.4. Suitability for Parallel Processing 

The local nature of the processing necessary for recognition 

means that this architecture is inherently parallel. Therefore, this 

vision system is well suited for implementation on an array processor. 

Since all of the processing, including the recognition algorithm can 

be executed on such a processor, this architecture would make effi- 

cient use of the resources provided by an array processor. See chapter 

6 for a discussion of the possible implementation of the pre-processor 

using dedicated hardware. 

3.6.5. Limitations of the Vision System 

This architecture, and the present implementation are limited in 

that 
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1. large variations of scale cannot be handled, 

2. large variations in 3D orientation cannot be accommodated, 

3. no attempt is made to cluster similar objects into classes, and 

4. objects without unique local structure cannot be recognized. 

The last of these is the most important of these limitations for 

industrial object recognition. This limitation may be overcome by 

extending the system to larger relational structures of the objects. 

Ways of extending the architecture to remove these limitations are 

described in detail in chapter 6. 
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This section attempts to compare the vision system with previ- 

ously reported vision systems. However, I am unaware of any systems 

that report a similar performance, or systems that use equivalent 

algorithms. I survey comparable vision systems, which are of two 

kinds. Those that use straight lines and circular arcs (concurves) and 

those that use local features. I am mainly interested in systems that 

claim flexible operation, or noise tolerance, or the ability to recog- 

nize overlapping objects. 

All of the following systems are limited to the recognition of stable 

states of objects. The descriptions within each section are chrono- 

logically ordered. 

3.7.1. Systems based on concurves 

These systems have an initial advantage over my vision system in 

that a degree of error correction is achieved by restricting objects 

in the scene to those that contain a significant amount of straight 

line and circular are features. The error correction arises from the 

fact that a given line segment with noise is known to be a straight 

line and not, say, a wavy line. The error correction allows these 

systems to operate under fairly noisy conditions. The benefits from 

this error correction is analogous to the error correction achieved by 

digital representation over analogue representation of data in commun- 

ication networks. The disadvantage with the scheme is that these sys- 

tems cannot operate efficiently (or at all) when the objects do not 

contain large regions of straight lines or circular arcs. Although 
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these systems could attempt to operate by approximating the image 

features by small line segments and small arc sections, this removes 

the advantage of using concurve descriptions in terms of noise immun- 

ity and reduced processing requirements. Therefore, this is a major 

disadvantage of these systems. I believe that none of these systems 

would be able to operate efficiently or display the same degree of 

flexibility as my vision system if objects of the type in Fig. 5-1 

were used. A further disadvantage with these systems is the need to 

perform line tracking in order to construct concurves. The tracking 

process can be seriously disturbed by texture and noise. Further, 

these algorithms are not inherently parallel, and therefore tend to be 

difficult to implement on parallel processors. 

Mckee and Aggarwal [1977] report a system that uses binary images 

to form extended chain code descriptions of objects. (See section 

{1.3.1.1} for disadvantages of binary vision). Straight lines are fit- 

ted to the chain data. The system is able to recognize partial views 

of objects (not overlapping objects) by comparing generated line 

descriptions with stored descriptions. The comparison is made on sub- 

sets of the stored line descriptions so that small sections can be 

matched. However, two line descriptions are matched by comparing the 

area between their graphs normalized by the length of the comparison 

window. This therefore is a statistical test of matching (i. e. match- 

ing is not based on shape). The program is able to cope with scale 

variations, but the extent of variation allowed is not reported. The 

noise performance is not given either. 

The system by Perkins [1978] (see description in section 

11.3.6}) is reported to be able to operate in visually noisy scenes. 
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No figures are presented. The system is able to recognize partially 

overlapping objects, but no figures are given of the extent of overlap 

allowed. The system can handle only a 5% variation in scale. It is 

unable to cope with objects that contain textured surfaces. The recog- 

nition algorithm requires 0.1s-0.4s on an IBM 370/168 mainframe com- 

puter for simple scenes and 10s on scenes with multiple objects [Per- 

kins 1977]. 

Mero [1981b] reports a system that describes objects using 

straight lines and circular arcs, and by using internal details such 

as holes. The system performs a heuristic search for these features. 

The search strategy for internal details is the same as that by 

Yachida and Tsuji [1977] {section 1.3.5}. The important features of 

objects are taught interactively (including the end points of the 

straight lines and arcs). The system is reported to be able to operate 

in noisy scenes. However, the system was tested using "shapes cut out 

from drawing paper". Therefore, the scenes were of relatively high 

contrast, and the objects had negligible height. The recognition algo- 

rithm executes in 0.5s on a VIDEOTRON R-10 minicomputer. (Pre- 

processing requires 5s on a 1411x192 image). Results of the noise per- 

formance are not reported. 

Presern and Kandus [1981] propose a system that uses concurves 

(i. e. straight lines and circular arcs). They perform a heuristic 

search, and the system is designed to be insensitive to noise. How- 

ever, no results were given. 

Dessimoz et al [1979] report a system that is able to recognize 

overlapping objects in noisy scenes. They use the Freeman chain code 
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which is then filtered and undersampled. Contours are compared by 

cross-correlation. Contour extraction is done using special purpose 

hardware. The processing time for tracking, filtering, and correlating 

was 10ms per contour point on a PDP11/40. (10s for 1000 points? ) The 

extent of the noise immunity is not reported. The recognition is lim- 

ited to the part on "the top of the pile" for overlapping objects. 

Cheng and Huang [1981,1982] {section 2.1.2.21 use a sub rela- 

tional structure called "star-structures" to match line segment 

descriptions of images. They use the system to identify aircraft in 

aerial images [1981] and to extract motion information [1982] in noisy 

scenes. The relational match algorithm is invariant through rotation, 

scale, and grey level modification. However the extent of noise etc. 

that can be handled is not reported. The processing time for matching 

a 70 node relational structure in the given example [1982] was 24.5s 

on a PDP11/70 minicomputer. 

Hattich [1982] reports a system that uses line segments in grey 

scale data in a strategy similar to that of Tropf {section 3.7.2}. The 

system is able to recognize overlapping objects. Execution time, or 

level of operational flexibility is not reported. 

Kimura et al [1982] report an algorithm for subpattern matching 

of line patterns (e. g. Japanese characters), through rubber sheet dis- 

tortions. The algorithm is insensitive to scale changes, rotational 

variations, extra line segments, and does not use object dependent 

heuristics. The system is usable on industrial objects with user pro- 

vided object models, objects being represented by straight line seg- 

ments. Performance figures are not given for industrial objects. 
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3.7.2. Systems based on local features 

The systems described in this section use relational structures 

of local features to recognize objects. All of the systems except the 

one by Persoon use 'conventional' local features such as corners and 

straight line segments. 

Persoon's [1978/9] system has a similar motivation to mine in its 

use of local features. The system uses binary shape patterns of 11 

pixel diameter with a frame size of 100x100. Objects are recognized by 

matching relational structures of "distinct" local shape patterns. A 

shape pattern is chosen if the centre of gravity of boundary points in 

the pattern is in the centre of the window (e. g. patterns with an edge 

running through the middle of the window). Distinct features are a 

list of features for each object, with each feature being different 

from the others within the list. This is different from unique 

features in that distinct features are unique within the same object, 

and not across objects. The local features used by Persoon are, how- 

ever, not invariant through object rotation. Therefore each object has 

to be taught in "a large number of orientations in one quadrant". The 

distinct features found are then rotated by 900,1800, and 270°, and 

stored back in the distinct list as separate features. The features 

used are not invariant through illumination variations either, as 

binary images are used, and the features themselves are represented as 

binary patterns. (Note that the system therefore suffers from the 

other drawbacks of binary vision such as the inability to respond to 

internal features of objects, except for through-features such as 

holes, and the need for high contrast images. ) 
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These local features are used to perform a heuristic search for 

local features in the input scene. This allows the system to recognize 

partially overlapping objects. The system is able to handle scale 

variations provided the features themselves are not affected by the 

scale change (i. e. the relational structure is scale independent, 

while the local features are not). 

The processing speed, or the flexibility of the system with 

noise, or with variations in operating conditions is not reported. 

However, this scheme has clear advantages over standard binary vision 

techniques in that it can recognize overlapping objects, and is not 

sensitive to the loss of any given local feature as it does not depend 

on global statistics for recognition. However, compared with my vision 

system the drawbacks are as follows: 

(a) The features are not rotationally invariant requiring the storage 

of, and the comparison with, different orientations of the same 

feature. 

(b) The features have no built in resistance to illumination varia- 

tions. 

(c) The features have no built in resistance to scale variations and 

therefore to variations in object skew away from the learned 

plane. 

(d) The system does not find unique structure of objects, and so the 

graph isomorphism problem is left to the recognition stage. 

(e) Execution time is not reported by Persoon. However, I suspect 

that the execution time is not low because of (d) above, and 

because of the dependence on a relational match which is poten- 

tially explosive in processing requirements, especially if 
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arbitrary scale variations are checked for, and multiple objects 

are present in the scene. 

Jacobus and Chien [1979] report a system that uses "half-chunks" 

to recognize objects. (See section {2.1.2.2} for a description). The 

system is independent of scale. Performance details are not given. 

However, Jacobus [1979] indicates that the low level processing 

requires 20 minutes of processing time, while the "graph-based manipu- 

lations" require 5 minutes per frame. The frame size was 252x238. The 

programs were written in BlisslO on a DEC KI-10 processor. 

Tropf [1981] reports a system that uses corners in grey scale 

image data to recognize overlapping objects. The object models are 

taught to the system by hand. During the recognition stage a heuristic 

search called "analysis by synthesis" is performed to tackle the graph 

matching problem. The system requires 0.5s for the analysis part (i. e. 

recognition time), while the pre-processing requires 30s on a SIEMENS 

7760 computer. The noise performance or the extent of operational 

flexibility are not reported. 

The system reported by Rummel and Beutel [1982] uses features 

such as "corners, straight lines, circles, grey levels and textures". 

Models are constructed from these features using human help to iden- 

tify prominent features. The program performs a heuristic search to 

match image features to model features. The recognition routine exe- 

cutes in 210-640 ms for the first object in the image, running on a 

SIEMENS R30 minicomputer. The pre-processing requires 50s on a 128x128 

image. The recognition time is "highly influenced by the selection of 

the first primitive in the model". An indication of the noise perfor- 
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mance or the degree of object obscuration allowed is not given. 

Stockman et al [1982] report a system that uses local features 

such as line segments, curved edge segments, circles, and intersec- 

" tions. Registration is obtained by first matching image elements with 

all model elements on a local basis. Each local match produces a locus 

for rotation, scale and translation (RST) of the objects. However, the 

RST locus is reduced to a single point by using arbitrary combinations 

of two local features. (The combinatorics is controlled by using arbi- 

trary rules for pairing points). The RST points are then clustered in 

a4 dimensional space. This is a special case of the generalized Hough 

transform [Ballard 1979]. In their implementation the problem is sim- 

plified by assuming a fixed scale factor so that clustering needs to 

be done in 3 dimensional space. They use the system to register aerial 

images to maps, to detect airplanes in aerial images, and to recognize 

industrial parts. Object models are taught to the system by hand. The 

system was tested using "carburettor covers cut out of dark cardboard" 

and a set of (real) hinges. The system was tested on overlapping 

objects as well. Some difficulty in recognition is reported [p. 239]. 

Execution times, and noise performance are not reported. 

Bolles and Cain [1983] report a binary vision system that is able 

to use local features to recognize overlapping objects. The system 

uses 'conventional' features such as holes and corners. Objects are 

taught to the system interactively during the learning stage. The sys- 

tem then extracts a set of "focus features" for each object. A focus 

feature is a local feature used to focus the attention of the system 

during the recognition phase. When a focus feature is found, its 

neighbourhood is examined to detect other local features. Once the 
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matching local features are found, a graph matching technique similar 

to that used by Ambler et al {section 2.1.2.2} is used. Their clique 

finding algorithm, however, is different. 

The aim of the focus feature finding algorithm is to find 

unusual, or unique local neighbourhoods around a chosen local feature. 

This is done on the basis of neighbourhood uniqueness over the given 

object set, and on the basis of uniqueness over the same object (i. e. 

a symmetry analysis). The feature selection process can be modified 

interactively. The motivation for this learning algorithm is similar 

to mine. However, as the model features are input by hand, there is no 

need for a reliability test. Further, the uni4ueness tested is for 

extended neighbourhoods, which is similar to my intermediate features 

{section 6.1.11. The local features themselves are limited to holes 

and corners, and therefore do not show any uniqueness. Therefore, the 

system depends on a relational match for recognition. This results in 

longer execution times. They report an execution time of 8s on a 

PDP11/34 to recognize 4 identical overlapping hinges when only the 

hinges were being searched for. Searching for 44 different objects 

takes 25s. (It is not clear whether this includes the time required to 

extract the local features from the binary image, but I think it 

does). 

This system is limited in the present implementation to binary 

(high contrast) images. 
} 

Thus, these execution times have to be 

They claim that the system can be extended to grey scale images 
if the appropriate feature detectors were available. However, it must 
be stated that finding local features in low contrast images is a 
somewhat more difficult task, and that if the graph matching process 
had to take uncertain local feature matches into account, the effect 
on execution time could be significant. 
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compared with those for my system in favourable operating conditions 

(with multiple objects) due to their assumption of high contrast 

images. The performance of the system under noisy conditions, scale 

variations, etc. is not reported. 

3.7.3. Comments on Comparisons 

I am unaware of any vision system that reports a better process- 

ing speed coupled with the operating flexibility. Further, I am 

unaware of systems that use a similar strategy. However, Persoon had a 

similar motivation in choosing binary shape templates, and Bolles and 

Cain had a similar motivation in the feature selection strategy of 

their learning algorithm. I am unaware of any systems that have used a 

generalized local feature detector, where the local features were 

insensitive to a variety of imaging conditions and noise. I am also 

unaware of any systems that use unique structure to recognize objects. 

Finally, I am unaware of an industrial vision system that has a simi- 

lar learning capability. Most of the systems described previously 

require user provided object models. The learning strategy of Perkins 

program is limited to a storage mechanism. Persoon's learning algo- 

rithm performs an extra degree of learning, by identifying a set of 

unrepeated features for each object. It does not attempt to formulate 

a recognition strategy, nor to test for feature reliability. The bulk 

of the processing is performed by the recognition algorithm. The 

learning algorithm by Bolles and Cain generates a recognition stra- 

tegy, but the task is simplified by the absolute confidence available 

on the reliability of model features, as they are given to the system 

by hand, and by the use of binary images. Further, the results of the 
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are supervised by an operator to obtain optimal 

performance. 





Chapter 'I 

Implementation: Algorithms and Data Structures 

This chapter describes the implementation of the architecture 

described in Chapter 3. The algorithms are described in detail, and 

the design trade-offs are examined. All of the software was written 

in Fortran on a small minicomputer (PDP 11/24) running the RSX11M 

operating system. The grey scale images were taken from the vision 

system described in Athukorala and Wallace [1982]. The images were of 

256x256 spatial resolution and 8 bits of grey scale resolution. 

Details of the user interface to this software is given in Appendix 2. 

4.1. Pre-processing stage 

Fig. 4-1 is a block diagram of the pre-processing stage. (A stra- 

tegy for implementing the pre-processor using dedicated hardware is 

presented in chapter 6). The output of the pre-processing stage is 

used by both the learning and the recognition stages, and is a 

bottom-up process. Therefore, high level decisions do not affect the 

pre-processor. There were several design goals that had to be met 

when designing the pre-processor. 

(1). Each algorithm had to be designed so that it would accomplish its 

task as best it could. However, no algorithm can expect a perfect 
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result from the algorithm preceding it i. e. imperfections in 

algorithm performance must be expected, and compensated for by 

the higher level algorithms. Therefore imperfections in the grey 

scale image (e. g. electronic noise) are compensated for by the 

gradient algorithm. Imperfections of the gradient image (e. g. 

edge orientation inaccuracy) must be anticipated by the rep-point 

algorithm. Imperfect segmentations by the rep-point algorithm 

(e. g. termination faults) must be handled by the matching algo- 

rithm. Imperfections in all of these is compensated for by the 

learning algorithm. 

(2). A major objective when designing the pre-processing algorithms 

was to design them so that they could be implemented in hardware 

with minimum effort. I had the further objective of implementing 

the algorithms to execute reasonably fast on the PDP11/24. How- 

ever, the latter was only a short term objective as I would not 

envisage the vision system being used without dedicated hardware. 

(3). The pre-processing algorithms are expected to operate with fixed 

thresholds despite the wide variety of operating conditions 

expected. Threshold values could be tuned at system set-up time, 
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but they would then remain fixed during normal operation of the 

system. The test results reported in chapter 5, for example, have 

been obtained with a single set of thresholds. 

The rest of this section examines the implementation of the 3 pre- 

processing stages: edge detection, rep-point selection, and local 

neighbourhood selection. Performance of these algorithms is discussed 

in Chapter 5. 

4.1.1. Edge detection 

There has been much research devoted to the problem of finding a 

high quality edge detector. Davis [1975] and Pratt [1978] p. 478 sur- 

vey the field. Raggett [1980] gives a number of references. See also 

Marr and Hildreth [1979], Abdou and Pratt [1979], and Beattie [1984]. 

I was not concerned with the problem of finding an ideal (or even a 

very good) edge detector. The system philosophy is to be able to cope 

with imperfections in algorithms as well as operating conditions. How- 

ever, a few edge detectors were considered for the task. The 4x4 

Walsh transform based edge detector (WTED) [O'Gorman 1978], the Sobel 

operator [Sobel 1970], the 2x2 WTED, and the Wong operator [Wong 1979] 

were considered. I was interested in identifying an 'efficient' edge 

detector, and the 4x4 WTED was chosen for the task. However, as 

reported in section {5.2. J4.1}, the system was tested with other edge 

operators as well, and was found to operate satisfactorily. 

4.1.1.1. The Walsh Transform based Edge Detector (WTED) This tech- 

nique was first reported by O'Gorman [1978]. The WTED is similar in 

concept to the Hueckel edge detector [Hueckel 19731, but is based on 
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Walsh functions [Walsh 1923]. Walsh functions are a set of orthogonal 

functions {WO, W1, .... , Wk,... } which may be defined as follows. , 

When k21, Wk(x) - Wd(2x) for 05x<Z 

- (-1)(k+1). Wd(2x-1) for 25x<1 

where d-[2] and FO(x)-1 for 05x<1 

([] means greatest integer less than. ) 

For example, the first 8 Walsh functions are shown in Fig. 4-2. The 

number of discontinuities in each function is equal to the order of 

the function. These functions are orthogonal. 

1 -0 if k*j 
i. e. 

JWkeWj. 
dx 

-1 if k 

Fig. 4-2 The first 8 Walsh functions. 
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Therefore, a function H(x) that is integrable on 0Sx <1 can be 

represented by an infinite series of weighted Walsh functions [Searle 

1969]. (cf. Fourier series). 

go 
i. e. H(x) _I Wn. Cn 

n-O 
1 

where Cn =j Wn. H(x). dx 

This can be done in two dimensions as well. 

cc 
Hence, H(x, y) _ Cn. Wn(x, y) 

n=0 
11 

where, Cn =Jj H(x, y). Wn(x, y). dx. dy 
00 

Fig. 4-3 shows the first 16 Walsh functions in 2 dimensions. (Black 

squares represent -l's and the white squares represent +1's). 

The strategy of the edge detector is to first represent the grey 

scale intensity of a 4x4 window, using Walsh functions. The advantage 

with Walsh function representation as opposed to a Fourier representa- 

tion is (a) only 16 Walsh functions are needed to represent a 14x4 

square precisely, and (b) only additions and subtractions are needed 

for the transformation. The weighting coefficients (Cn) are then com- 

pared with pre-computed weighting coefficients of a parametrized win- 

dow with the required intensity profile. In the implementation, the 

parameters used are the step size, orientation, and the average 

brightness of either an ideal step edge or an intensity ramp (constant 

gradient) in the window. These parameters can then be computed from 

the coefficient comparison. It can be shown [O'Gorman 1978] that for 

a step edge or a constant gradient in the window, the following condi- 

tions are necessary. 
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Fig. 4-3 The first 16 Walsh f unctions in 2D (Black=-1, White-+1) 

a3=0 a4=0 a5-0 

where {a0...... a151 are the 2D Walsh coefficients computed 

from the image window. 

The 'goodness' of the match is tested using two thresholds, d and k. 
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d' Ia, I+Ia21 
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and ka 
Iai1+1a2) 

a, +a2+a3+a4+a5 

The gradient orientation is given by 0, 

aý 
where tan(e) -- a2 

The expressions for k and 0 are different from the those given by 

O'Gorman. The changes simplify the algorithms and allow the programs 

to execute faster. In this implementation, the WTED differs from a 

gradient detection algorithm only by the use of the k threshold. How- 

ever, this threshold has an important effect on the performance of the 

edge detector in that it produces thinner edges. (See section {5.3.1} 

for comparison tests). However, the arguments in section {3.2.2} did 

not require thin edges from the edge detector. In fact, it may be 

argued that edge thinning is a loss of information. However, in order 

for the vision system to operate in a reasonable time, some data must 

be discarded. The advantage with the WTED is that it allows us to 

trade the information loss due to edge thinning with the information 

gain from reducing the edge detector thresholds (and thereby retaining 

weak features). This is because the WTED allows the 'd' threshold to 

be far lower than that of a gradient operator (such as Sobel) for the 

same number of detected edge points i. e., as the 'd' threshold is 

lowered, strong edges remain thinner with the WTED. This was one of 

the main reasons for choosing this edge detector. 

Another reason for using the WTED was its higher immunity to high 

frequency noise. This can be seen from the transform definition. The 

high frequency data is transformed into the higher order coefficients 
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(as in a Fourier transform) while it uses the lower order coefficients 

for the computation. Another way of looking at this is to consider the 

WTED as performing a certain amount of image smoothing (due to the 4x4 

window) before the edge data is computed, resulting in a bandpass 

characteristic. The higher noise immunity of the edge detector coupled 

with the low noise, high quality image from the camera (quoted signal 

to noise ratio of 50dB) removed the need for an initial smoothing, or 

noise reducing stage. This saved a large amount of processing time 

(of the order of 50s per frame for the software simulation) and an 

extra stage of hardware processing when the pre-processor is imple- 

mented in dedicated hardware. 

4.1.1.2. The WTED program The WTED can be implemented in software 

to execute reasonably fast, as multiplications and divisions are not 

required (except when computing k and 6. However, these two parameters 

are not computed for every pixel as the 'd' threshold is computed and 

tested for first. 6 is computed only when an edge point is found - 

which is less than 10% of the time). Searle [1969] describes a fast 

Walsh transform algorithm (analogous to the fast Fourier transform) 

that allows the transform to be executed even faster. 

The addressing restriction of the PDP11/24 made it necessary to 

store the grey scale image in virtual memory as a 32767 word linear 

array with two pixels packed into a single word. This made pixel 

addressing uncomfortable and slow, and required optimization of pixel 

addressing. If the algorithm was implemented without optimization, 

each pixel would have been accessed, and unpacked, 16 times. Optimiza- 

tion was achieved by using an integer ring buffer with four pointers. 
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The pointers were used to keep track of the window position within the 

ring buffer. Each virtual pixel was read and unpacked only once, and 

inserted into the ring buffer. Since the window pixels are accessed 

relative to the pointers, the ring buffer simulates a hardware serpen- 

tine memory. (See Fig. 4-4). The edge orientation is computed over 

the complete 360° range by using the direction of the intensity 

difference (i. e. the polarity). The computed edge orientation is 

then quantized to 256 levels (8 bits). The edge orientation was quan- 

tized to a resolution of 8 bits due to convenience of use, rather than 

due to expected accuracy. An 8 bit representation has the advantage 

of automatic wrap-around during angle arithmetic. The failure of the 

Fortran compiler to produce code to detect overflow and underflow con- 

ditions is thereby used to our advantage. The use of a high resolution 

representation also has the effect of minimizing quantizing noise. 

Serpentine memory 'Ring' Buffer 

Fig. u-4 
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Inaccuracy of the angular data is anticipated by the use of soft 

thresholds (±300 for edge orientation, and ±180 for rep-point orienta- 

tion). 

The address of the edge point and its orientation are then passed 

to the rep-point algorithm. In the software implementation, the edge 

orientation is stored back in the original grey scale image, and the 

complete image is stored back on disc at the end. The stored edge 

image can then be used by the rep-point algorithm or by display pro- 

grams. 

4.1.2. The 2. E Point Algorithm 

The implementation of this algorithm was expected to be the hard- 

est of the three pre-processor algorithms. However, once the program 

had been coded and debugged, its performance exceeded expectations. 

Test results for the rep-point algorithm are given in section {5.3.2}. 

The algorithm was implemented as two processes, and performs the 

segmentation in a single raster scan of the edge points. The first 

process segments the input edge data in the horizontal dimension to 

form 1D runs, and the second process collects vertically related 1D 

runs to form 2D rep-points. 

4.1.2.1. The 1D rep-point algorithm This algorithm scans the input 

edge data in raster fashion, and segments the edge points into runs of 

similar edge orientation. Runs of length less than 2r are passed 

directly to the 2D algorithm. If the run is longer than 2r, the first 

r edge points are passed. The same criteria are used to segment the 
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remaining edge points. The algorithm can be stated as follows: 

If e1, e2e3, ... en are consecutive edge points on an image row 

and lOrientation(ei) - Orientation (e1)l < Orientation tolerance, 

for any i, 

then the run is defined as the set 

{e1, 
... en} for n<2r, 

{el, ... er} for nz2r. 

r is usually set to 4. 

4.1.2.2. The 2D algorithm This algorithm attempts to perform the 

same process on runs in the vertical direction, as the 1D algorithm 

does on edge points. Rep-points are assembled in 256 accumulators 

(which is equal to the number of pixels on a row). Each new 1D run is 

then added to an accumulator. In order to do this, each accumulator 

is associated with a column of the image. All the accumulators that 

are near the mean column position of the new ID run are tested to find 

the best accumulator for attaching. These tests are as follows. 

(In the following, C1D refers to the current 1D run, i. e. the new 1D 

run that is to be attached to an accumulator. 01D refers to the 1D 

run that was attached last to the accumulator under consideration. ) 

An accumulator is chosen for adding C 1D to, if the accumulator passes 

4 tests: 

(a) The average orientation of C 1D is similar to the average 

orientation of 01D' 

(b) 01D and C1D are on consecutive image rows. 
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(c) C 1D is close to 01D. (Horizontal distance must be less 

than R). The position of a run is the centre of gravity of 

the run. 

(d) C1D and 0 DD are connected (8-connectivity). 

These tests are designed to determine that all of the runs attached to 

an accumulator have similar orientation data, and that they are close 

together on the edge image. They also ensure that diagonal rep-points 

are properly formed. 

If more than one accumulator passes all of the tests (which is 

not common), the ID run is added to the accumulator in which the last 

1D run is closest to the current 1D run. If the distance is the same, 

the 1D run is attached to the left hand accumulator (as the edge image 

is scanned from left to right). If an accumulator for attaching a new 

1D run is not found, an empty accumulator is used to start a new 2D 

rep-point. Accumulator allocation is handled on a spatial basis 

(along the horizontal axis) so that accumulator searching is kept to a 

minimum. 256 accumulators are sufficient as long as the value of r is 

greater than about 2. Accumulators are cleared when a rep-point has 

been formed, and it is made available for new rep-points. Rep-points 

are formed from accumulated runs, as follows: 

If R1, R2'R3, ... , Rn are runs in an accumulator 

then the rep-point represents the set of runs 

{R,, 
... , Rn} if n<2r 

{R1, 
... Rr} if nZ2r 
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At present, this section has been implemented as follows 

{rl, 
... r} if nSR 

{r1, 
... rR} if n>R 

This alteration allowed a simpler implementation of the algorithm but 

results in a slight asymmetry in the way the horizontal and vertical 

directions are handled. 

4.1.3. Constructing Local Neighbourhoods 

This algorithm may be implemented to execute 'on the fly' using a 

set of accumulators in a similar way to the 2D algorithm for rep- 

points. The accumulators would be used to hold unfinished features. 

Each input rep-point will be considered for attaching to all of the 

unfinished accumulators in which the central rep-point is close to the 

position of the new rep-point. Accumulators are freed when the verti- 

cal distance from input rep-points to the central rep-point is greater 

than the radius (R) of local neighbourhoods: (Note that local neigh- 

bourhoods are 'circular' i. e. the Euclidean distance between the cen- 

tral rep-point and the peripheral rep-points must be less than or 

equal to R. Therefore, neighbourhoods are circular within the bounds 

set by spatial quantization. See Fig. 4-5). However, the software 

implementation succumbed to the possibility of buffering the rep-point 

data. This allowed a simpler implementation. 

Once local neighbourhoods are constructed, they have to be nor- 

malized. The normalizing algorithm is as follows. 

Let the peripheral rep-points in the neighbourhood have 
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Fig. 4-5 Shape of a local neighbourhood of radius 9. 

orientations given by {al. a2'..., an} relative to image coördi- 

nates, and positions {(rý, ßý),..., (rn18n)I where (ri, ßi) are 

polar coordinates relative to the central rep-point. If the 

central rep-point has orientation a0 relative to image coordi- 

nates, then the normalized neighbourhood will have rep-points 

I(r1, el ),..., (rn, 6n)}, with orientations {Y1,..., Yn}, relative 

to the central rep-point, 

where 01aBCa0 and Yi-ai-a0 

The new cartesian coordinates (Xilii) of each rep-point rela- 

tive to the central rep-point are given by 

Xi-ri. cos(9i)ari. cos(ßi). cos(a0)+ri. sin(Bi). sin(ap) 

sxi. cos(ao)+yi. sin(a0) 
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and Yi-yi. cos(a0)-xi. sin(a0) 

where (xi, y1) are the coordinates of the rep-points 

relative to the central rep-point before normaliza- 

tion. 

In the implementation, the computation of sines and cosines, and of 

floating point multiplications, is avoided by using table lookup and 

integer arithmetic without a significant loss of precision, as fol- 

lows: 

As the angle values are quantized to 256 orientations, only 256 

values of sines and cosines are needed. These can be represented by a 

floating point table of 256 values each. However, floating point 

arithmetic is time consuming, and unnecessary, as the final result is 

in fixed point integer representation. The sine and cosine values are 

therefore quantized to 513 values (from +256 to -256) with the under- 

standing that +256 represents +1 and -256 represents -1. Therefore, 

the computation may be achieved by multiplying the integer coordinate 

value (xi, say) by the integer sine value and dividing by 256. How- 

ever, the division by 256 can be accomplished by simply choosing the 

high byte of the result (which is equivalent to a right shift by 8 

positions). Therefore, computing xi. sin(a0) which would normally 

require a sine computation, a floating point multiplication, and a 

real to integer conversion, is replaced by an integer table lookup and 

an integer multiplication. (This in fact can be achieved in a single 

machine instruction - i. e. when aO and x are in registers- as the 

table lookup can be achieved with indexed addressing on the PDP11). 
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Local neighbourhoods are represented by a list of integers. Each 

integer specifies a single peripheral rep-point. The first byte of the 

integer gives the position of the rep-point relative to the central 

rep-point, and the second byte gives the orientation of the peripheral 

rep-point. This meant that the rep-points could have a maximum of 256 

positions within the local neighbourhoods, which limits the maximum 

local neighbourhood radius to 9 pixels. (In fact, 9 pixel radius 

requires 253 codes). The codes are generated and decoded using two 

lookup tables. 

New code a XYtoCD(x, y) 

X-coordinate - CDtoXY(code, l) 

Y-coordinate - CDtoXY(code, 2) 

(Note: These arrays are vectored, so that no multiplication 

takes place during access. In the recognition algorithm, 

CDtoXY is equivalenced to 2 linear arrays CDtoX and CDtoY 

which eliminates a level of indirection for each access). 

The implementation allows the system to operate with any neighbourhood 

radius of up to 9 pixels. However, the limit of 9 pixels is unaccept- 

able, and should be removed in future implementations. Further, the 

requirement of unpacking data values using the lookup tables is also 
, '. vt'ý. i "'r 

Ry 

unacceptable. It is recommended that rep-point data values be 

represented using 3 bytes or 3 words depending on available memory 

resources. 

One minor problem with this implementation is that some rep- 

points at the periphery of the local neighbourhood are moved outside 
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the local neighbourhood when the neighbourhood is rotated during nor- 

malization. This is due to the effects of quantization. At present 

these rep-points are simply discarded. A better strategy would be to 

move them in towards the central rep-point until they are inside the 

local neighbourhood again. However this problem will not arise in a 

new implementation that does not use a positional code. 

4.2. The Matching Algorithm 

The matching algorithm performs a flexible match between two 

neighbourhoods. It compares 3 parameters of the two neighbourhoods to 

be matched in the following order of precedence: 

(a) The number of rep-points in each neighbourhood. 

(b) The orientation of the peripheral rep-points. 

(c) The position of the peripheral rep-points. 

The general version of the algorithm is as follows: 

Given two normalized neighbourhoods N1 and N2, where 

Nlnj(P0, a0), (P1, a1), ... , 
(Pnan)} 

and N2-{(g0.60), (q1. ß1), ... 
(gm, am)l 

where ai and $i are rep-point orientations and pi and qi are rep-point 

positions (including the central rep-points (p0, a0) and (q0, ß0)), then 

Ni and N2 are matched if 

(a) In-ml 5 THRESHOLDO 

match(p, a , N2) 
(b) 

min n, mi 
THRESHOLD1. 

i00 
match(p ,a , N1) 

and (c) I 
min n, m Z THRESHOLD1. 

i*0 



Section u. 2 

match(pi, ai, N2)=1 

if there exists a (q,, ßi) in N2 

such that Jai-ßij<THRESH0LD2 

and ipi-q, I<THRESHOLD3 

else, match(pi, ai, N2l-0 
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(a) requires that the number of rep-points in the two neighbour- 

hoods be similar, and (b) and (c) require that, if N2 is superimposed 

on N1, the percentage of rep-points in N1 and N2 which are similar in 

orientation and position relative to the their central rep-points be 

larger than a given threshold. 

The above requirements have been designed to cope with missing 

rep-points and degradation in the input data. The matching algorithm 

was found to be relatively insensitive to THRESHOLDO and THRESHOLD1. 

THRESHOLDO was therefore set to 0, and THRESHOLD1 was set to 100%. It 

was now possible to rewrite the algorithm, resulting in a significant 

increase in execution speed. The new criteria for matching N1 and N2 

are 

(a) n-m 

(b) I match(p, ai, N2)-n 
i*0 

and (c) I match(pi, ai, Nl)-n 
1*0 

Since the sum in (b) or (c) cannot be greater than n, the non-matching 

situation is easily detected (i. e. match(pk, ak, N)=O for any k). This 

contributes to the increase in execution speed. An important feature 

of the matching algorithm is the movement allowed for rep-points 

within the local neighbourhood. This enables the algorithm to match 
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local neighbourhoods that have been distorted, for example, by scale 

variations. The function MATCH has the feature of allowing a single 

rep-point to be mapped to more than one rep-point in the corresponding 

local neighbourhood which results in further matching flexibility. 

4.3. The learning stage 

4.3.1. Model Formation 

Each object instance that is taught to the system is stored as a 

model on disc. A model directory is maintained so that the software 

can keep track of the objects that have been taught, and what process- 

ing has been done. 

The data structure used is of fixed size, which allows rapid 

access of the data. The model data structure consists of four sub 

structures as follows: 

MDL 

RP POINTR NABOUR STATUS 

XYPRP contains the rep-point data. It can store up to 600 rep-points, 

and contains the X and Y coordinates of each rep-point and their pro- 

perty. 

NABOUR is a list of neighbourhoods, which can store up to 2500 

normalized peripheral rep-points. POINTR is a pointer array that 

points to the location of feature lists within NABOUR. POINTR contains 

the starting position of each list and the length of the list. This 

organization (see Fig. 4-6) has been chosen to allow rapid processing 
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of the data structures. Note that this pointer structure allows ran- 

dom access to the feature lists (i. e. the NABOUR lists do not have to 

be searched sequentially). 

STATUS contains 128 words of status information. The status 

information records all of the processing done on the given image, the 

algorithms used, the thresholds used, and the result of the process- 

ing, such as the number of edge points found etc. The status informa- 

tion also serves as a check to -stop incorrect sequences of algorithms 

being used. Such checks are invaluable during program development. 

The complete model structure is stored in a contiguous memory 

block and is 'equivalenced' (Fortran EQUIVALENCE) to a linear array 

named MDL. Therefore, the model may be referenced as a single struc- 

XYPRP(600,3) POINTR(600,2) NABOUR(2500) 

1 
2 
3 
u 
5 

600 

XY PRP POINTER LENGTH 

STATUS(128) 

Fig. 4-6 Model data structure 
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ture. This allows models to be swapped in and out of memory quickly. 

In fact, the model data is read and written to disc using block I/O 

which executes rapidly. 
} 

The model data structure requires 5628 words 

of store. 

The model directory is used to keep track of the objects known to 

the system. It contains information regarding the names of objects, 

the disc file names of the object instance models, and the processing 

carried out on the models. (i. e. what learning has taken place). The 

model directory structure is as follows. 

DIRECT 

DRSTAT OBJNAM OBJDAT INSNAM 

DRSTAT stores status data of the overall system. OBJNAM remembers the 

names given to the objects. OBJDAT contains additional status data on 

each individual object. INSNAM remembers the names of the individual 

disc files that store the object models. This data is used by the 

learning algorithm during the learning phase to automatically access 

the correct files containing the object models. The object names are 

used by the recognition routine to report recognition success. The 

model directory structure requires 505 words of store, and is also 

read and written to disc rapidly using block I/O. 

Block I/O does not require any formatting, and does not use an 
intermediate data buffer. Therefore, it executes with minimum CPU in- 
tervention. (Data is moved to disc by direct memory access - DMA. 
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The learning algorithm is executed after all of the objects have 

been shown to the system and all of the models have been constructed. 

The algorithm first forms a set of common features (Ci) that are com- 

mon to each object across the set of object instances (i. e. Ci con- 

tains the list of reliable features). Ci is then compared with all of 

the instances of the other objects so that all matching features in Ci 

are deleted. The remaining features are unique to object i. 

The algorithm is as follows: 

Let the object set be OBJ, the instance set be INST, and the 

neighbourhood set be NBHOOD. Then each object 0e OBJ has a 

set of image instances Ic INST, and each instance icI has a 

set of neighbourhoods Nc NBHOOD. In the following, I will 

use the operator '. ' to select elements of a set. For example, 

O1. I1. Nk refers to the Nkth neighbourhood of the Iith instance 

of the 01th object. (see Fig. 4-7) 

(a) Then, for each 0i, construct a set of common neigh- 

bourhoods Cif such that each neighbourhood 

Ci. Ni c O. I1, and there exists OL. Im. N< for all m*1 

such that Ni and Nk are matched. 

(b) For each 0i, construct a set U2i of unique sets, such 

that each Ui c U2i is unique to 0i with respect to 0,, 

j*i i. e. each neighbourhood U2i. Uj. Nk C Ci and there 

does not exist an 0J, Im. NP for all m such that Nk and 

Np are matched. 

(c) For each O. construct a set UGi of unique neighbour- 
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OBJ 

01 02 ..... 0i 

Ii Im Cý UG1 U2 

N ... N ... N ... N ... N .... 

Ui 

A.. 

Fig. 4-7 Data structure used by the learning algorithm 

hoods, unique to object 0i with respect to all of the 

other objects. 

That is, UGi. Nk e U21. Ui for all j*i. 

The intermediate sets U2 in (b), (which describe the differences 

between any two objects), are computed as it allows the system to 

be extended in future by clustering similar objects into classes 

(see section {6.1.4}). 

The software, at present, allows 5 image instances per object, and 

up to 10 objects in the object library. The comparison routine 

takes approximately 2-5 minutes for 3 objects. The time taken 
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depends on the number of neighbourhoods found in each object, (and 

therefore on the size of the object). In the worst case, the exe- 

cution time for learning is proportional to the square of the 

number of objects . However, in practice the program executes much 

faster due to the neighbourhoods that get discarded, and because 

each neighbourhood is compared only with a fraction of the other 

neighbourhoods due to variations in neighbourhood sizes. The algo- 

rithm can be speeded up for incremental learning by saving the 

results of the intermediate sets U2 in (b) above. 

4.3.3. Recognition Data Structure 

The recognition data structure is similar to the model data 

structure, and contains the following information: 

UNIQUE 

OBJECT BLOB FREQ NBHOOD NABOUR 

OBJECT(i) stores the object number of the ith unique feature. BLOB(i) 

remembers the rep-point number of the feature within the first 

instance of the object during the learning phase. FREQ(i) indicates 

the frequency with which the feature has been detected by the learning 

or recognition algorithms. NBHOOD(i) stores the size of each feature 

in terms of the storage required in the NABOUR list. The NABOUR list 

contains the normalized feature data. 

In the present implementation each object is allowed a maximum of 

32 unique features. (The object on the left in Fig. 5-1, for example, 

had 51 unique features when compared with the other objects in the 
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same figure). 
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The unique data structure too is equivalenced and can be 

addressed as a single unit of 3828 words. It is read to and written 

from disc rapidly using block I/O. 

4.4. The Recognition Algorithm 

It was shown in section {3.5} that the recognition algorithm 

depends on the strategy worked out in chapter 2 i. e. an object is 

recognized if a single unique feature is recognized. However, this 

depends on the learning algorithm being executed properly i. e. the 

learning should have taken place with a large number of sample images. 

Since we have reduced the number of sample images used to learn from, 

our confidence in the identity 

Object Ak recognized if fc FI -fc Ak* 

is lowered. Thus it is necessary to detect more than one unique 

feature to confirm recognition. Emperically it was found that the 

number of unique features required for recognition was dependent on 

whether the imaging conditions used during recognition were within 

that assumed by the system, so that a single unique feature was suffi- 

cient for recognition. It was also found that about 6 unique features 

were necessary to confirm recognition when the operating conditions 

were well outside the assumed conditions. The fact that the system 

operates at all outside the assumed conditions demonstrates the 

robustness of the strategy. 

It is possible to optimize the recognition algorithm depending on 
P. co"4 

the aj knowledge of the kind of operating conditions that may be 



Section u. 4 Page 125 

encountered. On this basis the operating environment can be divided 

into 3 categories. 

1. Favourable conditions: This is defined as the best operating condi- 

tions that the system could ask for, such as high contrast images 

(by using a black background for instance), diffuse lighting condi- 

tions, etc. 

2. Good operating conditions: This refers to the conditions specified 

by the vision system as being necessary i. e. reasonable lighting 

conditions, fixed scale, and views of stable states of objects. 

3. Poor operating conditions: This refers to operating conditions that 

fail to meet the required operating conditions i. e. when the 

operating conditions are not good as defined above. 

The method of presenting objects to the vision system can be divided 

into 4 modes in order of expected difficulty. 

1. Single object in image. 

2. Multiple objects - not touching. 

3. Touching objects. 

4. Overlapping objects. 

An important feature of the recognition algorithm is its ability 

to detect the special case of single object mode coupled with good or 

favourable conditions to truncate the search automatically. We first 

examine this condition. Under this condition the search can be trun- 

cated as soon as X unique features are detected. Under favourable con- 

ditions X may be set to a value of 1 or 2, and under good operating 

conditions to a value of about 4. This strategy would be sufficient if 

the conditions were known to be good or favourable in advance and it 

was known that only a single object will be present in the scene. In 
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this mode, the system operates very fast. However, this mode of opera- 

tion cannot respond to variations in conditions (i. e. a deterioration 

of conditions). Therefore the condition for search truncation is 

altered with practically no extra processing overhead, to allow the 

system to check automatically whether the special operating condition 

is met. The truncation algorithm is as follows. 

Let R(i) be the number of unique features detected for object i. 

Then, if R(i)>T and R(J)-O for all j*i then terminate, 

else search for all unique features of all objects. 

(Note that this condition is tested for after each complete round of 

unique feature searches i. e. the number of unique features searched 

for in each object is the same. ) 

Now the special case of favourable/good operating conditions with 

a single object in the image can be detected automatically. T must be 

chosen so that TZX, and is usually set to be equal to X. The effect of 

this algorithm is that when T unique features have been detected for 

object i, if at least one unique feature has been found for another 

object then the system assumes that either there are multiple objects 

in the image, or the operating conditions are not good. (i. e. they are 

poor). Therefore it continues searching for all the features in the 

unique feature list that remain to be searched, before deciding which 

objects have been detected. However, it will be noticed that this 

truncation algorithm is not foolproof. Therefore, a small value for T 

(i. e. <J4) will be used only if the conditions were guaranteed to be 

favourable, and rapid execution was needed, and faster processing 

resources could not be provided. However a further safeguard could be 

used under these conditions by counting the number of unique features 
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(RN) of object i that were not recognized. Therefore the new termina- 

tion condition under these special conditions is 

Terminate If R(i)-1 or 2, RN(i)-O, and R(j)=0 for all joi 

Under these conditions the recognition algorithm executes rapidly 

r50ms on the PDP11/24). Recognition times as low as 10ms have been 

observed. (See section {5.4} for a discussion of execution time). 

The second special case is when the system is provided with good 

operating conditions, and the objects are presented in one of the 

first 3 modes. (i. e. without overlapping objects). The termination 

condition used is 

R(i)-u and R(j)-0 for all joi 

Under this condition the system operates rapidly if only a single 

object is present in the image (100-500ms when three objects are being 

searched for). If more than one object is in the image, all of the 

features are searched for as before. 

In normal operation I use the termination condition with T=6. 

i. e. R(i)-6 and R(j)-O for all j*i 

Finally, when the operating conditions are known to be poor, and 

possibly with substantial overlapping of objects in the scene, T is 

set to a large value so that all unique features are always searched 

for i. e. there is no early termination condition. The system requires 

about is-5s to execute under this condition (or when the termination 

condition is not met by the other special conditions) when three 

objects are being searched for. In this situation X remains set to 6, 

so that any object for which more than 5 unique features are detected 

is recognized. Objects for which between 3 and 6 features are detected 

are presented as hypothetical. These hypotheses could be verified by 
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computing their relational structure (i. e. position and orientation 

relative to each other), and (or) by searching for other (non-unique 

local features of the object. This is not done in the present imple- 

mentation. 

This vision system, then, can be configured to operate rapidly 

under favourable conditions or flexibly under poor conditions by 

changing the value of T. Therefore, the system is able to deliver the 

speed of a binary vision system (with higher reliability) or the flex- 

ibility of a grey level vision system by simply choosing the value of 

T. In practice I would expect the value of T to be set as high as the 

processing resources allow (in order to achieve the required speed). 

If it was necessary to have the system run at a constant execution 

speed, (i. e. by not taking longer to run when the termination condi- 

tion is not met), the failure of the termination condition could be 

used to signal rejection. However, such implementation decisions are 

highly dependent on the specific application. 

The flexibility of the vision system arises from the flexibility 

of the features themselves, and due to the learning algorithm select- 

ing reliable unique features, which means that the system does not 

have to recognize all of the features for a given object. Thus a large 

number of features could be lost due to object overlap or degraded 

operating conditions and still result in a 100% confidence level of 

recognition. 

Because of the reliance on local neighbourhoods, there is essen- 

tially little difference between having two objects in the scene that 

are either overlapping, touching or not touching. In the overlap 
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situation, small values of object skew and the loss of a large section 

of the object from view, are the main obstacles to recognition. The 

section on test data shows that the matching algorithm is relatively 

insensitive to object skew. This is due to the movement allowed for 

rep-points within neighbourhoods by the matching algorithm. As far as 

the loss of unique neighbourhoods due to obscuration is concerned, the 

program will not be perturbed until less than 6 unique neighbourhoods 

are left. 

A further problem presented by the overlapping and touching 

situations is that it is possible to create new neighbourhoods from 

the intersection between features of different objects, which match 

unique features of objects in the library. However, as shown in sec- 

tion {3.3} the probability of such random matches is low. 

Therefore the system is able to recognize overlapping objects provided 

that 

(a) an interesting part of the object remains visible, and 

(b) the object plane is not far away from the learned plane. 

Once an object is recognized, its position and orientation may be 

computed. Each detected feature gives a measure of the position and 

orientation of the object due to the assumption of constant scale. 

However, in order to obtain an unambiguous measurement of the object 

position and orientation it is necessary to compute the symmetry of 

the object during the learning stage. Bolles [1979] discusses a way of 

computing symmetry. Once the object is registered with the model, it 

may be inspected by comparing the rep-point descriptions. Perkins 

[1983] and Barnard [1980] discuss alternative strategies for 
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The recognition algorithm was the easiest to implement due to its 

simplicity, as all of the complex searching necessary is done by the 

learning algorithm. The algorithm was implemented so that it would 

execute rapidly. Therefore, table look-up was used to replace pro- 

cessing whenever possible to speed up computation. A further increase 

in speed could be achieved by reformatting the feature data as 

described in section {4.1.3}. 

The recognition algorithm is limited to recognizing objects, and 

does not concern itself with other tasks such as inspection. Objects 

may be inspected by comparing their rep-point descriptions. In order 

to do this the rep-point model has to be read into memory once the 

object is recognized, and the object position and orientation com- 

puted. The use of block I/O allows the model data to be read from disc 

rapidly. 

4.5. Comments on the overall system implementation 

The programs were all written in Fortran on a PDP11/24 minicom- 

puter. The Extended Instruction Set (EIS) of the PDP11 was used when 

compiling programs in order to allow rapid execution. (EIS code 

allowed some programs to run as much as 4 times faster). Assembly code 

subroutines were not used in any of the algorithms. Therefore, an 

increase in speed could be achieved by re-coding time consuming parts 

of the code in PDP11 Macro. This could be especially useful for the 

recognition algorithm. 
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The programs were written with a large amount of debug code to 

allow efficient debugging and improvement of the programs. Some pro- 

grams contained as much as 60% debug code. This scheme allowed me to 

write the programs so that rapid execution and good diagnostics were 

available. In normal execution the programs are compiled without the 

debug code. In this mode only the essential processing for the algo- 

rithms to execute properly is performed. This allows rapid execution 

of the programs. In program development mode the debug code is com- 

piled as well. This code which is interleaved with the algorithm code 

generates a dynamic display of algorithm execution on the user VDU, 

and computes a variety of statistics. The debug displays are con- 

trolled by a debug status vector which allows different parts of the 

display to be enabled and disabled, so that the user may suppress 

displays that are not of interest at the time. When all of the display 

is enabled, the program spends most of its time redrawing the screen. 

Therefore a program -such as the rep-point program- that executes nor- 

mally in 14s takes many hours to execute. In order to allow the pro- 

grammer to find the parts of the execution sequence of interest, a 

degree of status pattern matching is also incorporated. The program 

then continues execution without displaying any information until the 

specified program status is found. This scheme allowed efficient 

debugging of programs. Further details of the user interface to the 

software is given in Appendix 2. 

It should be stated, however, that the main source of information 

for program debugging comes from displaying the processed images on a 

display monitor. Although it is not possible to prove the correctness 

of programs by this method, it allows incorrect programs to be 
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detected very quickly. This gives us 
,a 

tremendous advantage over other 
- 

areas of computing, where assessing program correctness can be a major 

problem. Thus, a good quality display device is invaluable during pro- 

gram development. 

The present implementation can be improved in several ways to 

achieve better results, and faster processing. The implementation of 

the rep-point algorithm has a flaw due to an asymmetry in the way the 

horizontal and vertical directions are handled. This should be 

removed. An alternative implementation using relaxation techniques 

may also be possible. The rest of the pre-processing algorithms do 

not need any special improvements, but of course they should be imple- 

mented in special purpose hardware. The recognition algorithm should 

be rewritten so that feature property values do not have to be 

unpacked. 

These are the improvements needed within the unextended architec- 

ture. However, future implementations should attempt to code the pro- 

posed architectural extensions {section 6.1} as well in order to allow 

the limitations of the presently implemented architecture to be 

removed. 





Chapter 5 

Tests and Results 

The purpose of this chapter is to demonstrate that the strategy 

developed in chapters 2 and 3 is usable, and to establish the perfor- 

mance of the system in terms of the objectives set out in chapters 1 

and 3. In particular, this chapter aims to indicate the extent of the 

flexibility achieved by the system. 

This chapter is organized as follows: Section {5.1} introduces 

the system test strategy. Section {5.2} describes the overall system 

tests, which is followed by a discussion of tests performed on the 

individual parts of the system {section 5.3}. This is followed {sec- 

tion 5.4} by a discussion of system execution speed. Section {5.5} 

gives a summary of the test results. 
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Testing vision systems is a difficult task. This is due to the 

badly understood nature of the problem, and the huge number of possi- 

bilities that would have to be considered if a vision system were to 

be tested exhaustively; in fact, the number of possible input patterns 

may be considered infinite for all practical purposes (e. g. a 256x256 

8-bit image can take 256256x256 distinct patterns! ) There are two 

ways of tackling this problem: 

1. Test the system to determine that the design objectives have 

been met by imaging a few objects and verifying recognition. 

2. Use the knowledge of the system design strategy to map the 

different failure modes of the system by selecting tests that 

are most likely to result in failure. 

All systems that the author is aware of use the first strategy; 

most published papers present a few image instances that the system 

successfully recognized, so that the judgement of the merits of the 

algorithms must depend almost wholly on the knowledge of the design 

strategy. In this thesis, the second test strategy is used. (Note 

that this includes the first). The system is tested by mapping its 

performance when its basic assumptions are not met. That is, each of 

the assumptions made by the system (e. g. constant lighting) is gradu- 

ally (and independently) varied until recognition fails. The result is 

a map of the system sensitivity to each of its assumptions. In order 

that the different tests be comparable, a single set of objects was 

used. 
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It should be noted that all thresholds were kept constant 

throughout these tests. (That is, thresholds were not changed in order 

to get the best performance for each test). Further, the optical 

parameters were also kept constant i. e., the lens aperture was not 

changed to obtain the best exposure for each object. The aperture was 

chosen to allow reasonable imaging of all the objects. This means that 

some objects were imaged less well due to variations in overall object 

reflectance. These tests verify an important characteristic of the 

feature descriptor: It will be recalled that the extended learning 

algorithm confirms the reliability of unique features only over varia- 

tions of 2D position and orientation of the object. Therefore, the 

system does not know whether these features are structural through 

other variations such as scale. Thus these tests establish the extent 

to which the pre-processor and the feature selection process are able 

to select features that are structural outside the sampled range of 

images i. e. if the feature descriptor did not show a degree of unifor- 

mity we would expect that when object A was in the image, the system 

would detect unique features (UFs) of objects B and C as well. Such 

features will be referred to as spurious features. The ideal perfor- 

mance would be for the number of UFs found for object A to decrease 

(i. e. graceful degradation) when the operating conditions degrade, 

while the number of UF found for B and C remain at 0. It should be 

noted that these tests are far more stringent than those reported on 

most previously published systems, as the system is being tested out- 

side its design limits to failure. 
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The tests performed on the system can be divided into two 

categories with respect to system sensitivity to the actual objects 

used: 

1. Tests with the object set in Fig. 5-1, and 

2. Tests with other objects. 

The second class of tests may be considered another test of varying 

one of the parameters of the system i. e. the 'parameter' of the actual 

objects used. Thus, the tests based on all other parameter variations 

were done using the object set in Fig. 5-1. The only criterion used 

when selecting this test set was that the objects should have some 

'local structural activity'. That is, since the implemented system was 

based on the use of local features, it was clearly necessary that such 

Fig. 5-1 The three test objects 
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features be available on the objects. It would have been of little 

value to use objects with global unique features only (e. g. a rec- 

tangular shape), as the present architecture explicitly excludes such 

objects. (See chapter 6 for a discussion of how this limitation may be 

removed). 

Historically, the three objects in Fig. 5-1 were the first that I 

found. The apparent similarity between the objects (to us), only 

serves to make recognition harder, as object recognition depends on 

object dissimilarity rather than similarity. However, any doubt about 

whether the system is able to recognize only these three objects 

should be dispelled by the additional tests which were performed with 

other objects (see sections {5.2.3.7,5.2.3.8,5.2.3.9}). 

5.1.2. Test Procedure The three objects in Fig. 5-1 were taught to 

the system. These three objects will be referred to as cutter, gear 

wheel, and tooth wheel (from left to right). This object library will 

be referred to as the CTG library. The test environment is shown in 

Fig. 5-2. A single object was then introduced and one of the parame- 

ters was varied until the threshold of recognition was reached (i. e. 

only 6 UFs were detected for the object in the scene). All of the 

other conditions were kept constant. The objects were presented on a 

black background for maximum contrast. The lighting was kept diffuse 

using the set up shown in Fig. 5-2. Recognition was defined to have 

failed when either 

(a) less than 6 UF of object A was detected when A was in the 

image, or 

(b) more than 6 UF of object B was detected when B was not in the 
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Fig. 5-2 The environment for the set of controlled tests. 

image. 

5.1.2.1. Forming the test library 

The three objects were taught to the system by showing each 

object in 5 randomly chosen 2D positions and orientations in the 

image. This resulted in 15 images named CUTTER1-5, TOOTHW1-5 and 

GEARW1-5. Then, each image was processed as follows: Firstly, the edge 

image was formed, followed by a rep-point image. Fig. 5-3 is an exam- 
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ple of an edge image which was formed from image CUTTER1. Fig. 5-4 is 

the rep-point image formed from Fig. 5-3. 
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Fig. 5-3 Edge image of the cutter in Fig. 5-1 (See also Fig. 5-7) 
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Fig. 5-4 Rep-points found in Fig. 5-3 
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The rep-point image was used to construct a relational model of the 

object based on a relational structure of rep-points, and a relational 

structure of local features. (The relational structure of rep-points 

is not used by the system at present). 

Next, the learning algorithm was run on these images to obtain 

unique features for each object. The following table shows the pro- 

gress of the learning algorithm. 

(The first and second columns show the names of the models being 
matched. The third column shows the number of local features from the 
model in the first column that were searched for in the second model. 
The fourth column shows the number of features that were found. 

Find reliable features for CUTTER 
CUTTER1 CUTTER2 381 225 
CUTTER1 CUTTERS 225 182 
CUTTER1 CUTTER1 182 145 
CUTTER1 CUTTER5 145 130 
Number, of reliable features for CUTTER-130 

Find UF for CUTTER. Compare with TOOTHW and GEARW 
CUTTER1 TOOTHW1 130 50 
CUTTERI TOOTHW2 80 6 
CUTTER1 TOOTHW3 74 2 
CUTTER1 TOOTHWII 72 3 
CUTTER1 TOOTHW5 69 1 
68 features unique to CUTTER compared with TOOTHW 
CUTTER1 GEARW1 130 41 
CUTTER1 GEARW2 89 23 
CUTTER1 GEARW3 66 9 
CUTTER1 GEARW14 57 1 
CUTTER1 GEARW5 56 1 
55 features unique to CUTTER compared with, GEARW 
51 features are unique to CUTTER compared with TOOTHW and GEARW. 

Find reliable features for TOOTHW 
TOOTHW1 TOOTHW2 317 80 
TOOTHW1 TOOTHW3 80 56 
TOOTHW1 TOOTHWI4 56 53 
TOOTHWI TOOTHW5 53 48 
Number, of reliable features for T00THW= 48 
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TOOTHWI CUTTER1 48 20 
TOOTHW1 CUTTER2 28 0 

TOOTHW1 CUTTERS 28 0 
TOOTHWI CUTTER4 28 0 
TOOTHW1 CUTTER5 28 0 
28 features unique to TOOTHW compared with CUTTER 

TOOTHW1 GEARWI 48 16 
TOOTHWI GEARW2 32 0 

TOOTHWI GEARW3 28 0 
TOOTHW1 GEAR W14 28 0 
TOOTHWI GEARW5 28 0 
28 features unique to TOOTHW compared with GEARW 
27 features are unique to TOOTHW compared with CUTTER and GEARW. 

Find reliable features for GEARW 
GEARWI GEARW2 384 91 
GEARW1 GEARW3 91 47 
GEARWI GEARW4 47 23 
GEARW1 GEARW5 23 18 
Number of reliable features for GEARW-18 

Find UF for GEARW. Compare with CUTTER and TOOTHW 
GEARW1 CUTTER1 18 8 

GEARWI CUTTER2 10 3 
GEARW1 CUTTERS 70 
GEARWI CUTT ER14 71 
GEARWI CUTTER5 60 
6 features unique to GEARW compared with CUTTER 
GEARW1 TOOTHW1 18 7 
GEARWI TOOTHW2 11 0 
GEARWI TOOTHW3 11 0 
GEARW1 T00THW4 11 0 
GEARW1 TOOTHW5 11 0 
11 features unique to GEARW compared with TOOTHW 

.6 features are unique to GEARW compared with CUTTER and TOOTHW. 

The final result was 
Reliable Unique Unique between two 

CUTTER 130 51 - 68 55 
TOOTHW -48 27 28 - 28 
GEARW 18 66 11 - 

The matrix on the right is the number of UF for each object when com- 

pared with one other object. This matrix demonstrates the difference 

between any two objects. It may be used to cluster objects {section 

6.1.4} and to improve the speed of the learning algorithm during 
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Fig. 5-5 Four of the unique features chosen for the CTG library. 
(a) and (b) are from the cutter, (c) is from the tooth wheel 
(d) is from the gear wheel. 

incremental learning. The UF sets are the intersection of the sets in 

this matrix. Fig. 5-5 are examples of four of the unique features 

chosen by the system. The positions of UF(a) and UF(b) are marked on 

Fig. 5-4 with arrows. UF(c) was taken from the outer edge of the 

tooth wheel and shows one of the teeth. UF(d) shows one of the teeth 
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Due to the fixed size of the data structures used, only 31 UF 

were used for the cutter during recognition. All UF were used for the 

other two objects (i. e. 27 and 6 respectively). The above table demon- 

strates the way the learning algorithm operates. The reader will 

notice the way the number of reliable features that match features in 

the other objects drop rapidly after the first instance is matched, so 

that only a small number of object instances are required for learn- 

ing. 

In the following discussion, a naming convention has been adopted 

for object models to indicate the object name and the kind of test 

being performed. There are 3 fields as follows: 

<Object name> <Type of test> <Instance number> 

Object names and test type are often abbreviated for convenience e. g. 

CUTL1 is an image of the cutter for light variation tests, and TOOTHZ3 

is the tooth wheel with the zoom changed (i. e. scale change). 

During the system tests, the recognition stage was allowed to 

search for all unique features. Thus, there was no early termination 

condition {section 4.4}. Therefore, the recognition statistics given 

should be interpreted as follows: Any object for which 6 or more UF 

are detected is considered recognized by the system, while the detec- 

tion of 6 or more spurious features for a single object constitutes a 

mismatch. 
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5.2. Overall System Tests 

Four types of tests were performed on the overall system. 

1. Tests to verify the sensitivity of the system to the three basic 

assumptions. 

2. Tests to verify sensitivity to implicit assumptions. 

3. Tests over other imaging conditions. 

. Tests on the system response to variation of internal operating 

parameters. 

5.2.1. Sensitivity to the Three Basic Assumptions 

The system was first tested by allowing the three basic constan- 

Gies expected by the system to vary i. e. through variations of light- 

ing, scale, and object plane. This was done by changing one of the 

parameters until the system failed to recognize the object in the 

scene. 

5.2.1.1. Light Variation Test In this first test, the light inten- 

sity was reduced until the system failed to recognize the object in 

the image (i. e. less than 6 UF were detected). I found it difficult 

to control the lighting accurately. The effective intensity was varied 

by stopping down the aperture of the lens. The light intensity was 

measured by summing the pixel data over a central square of the image. 

It will be noticed that reducing the aperture also increases the depth 

of field. However, this has a minimal effect as the object is always 

in focus. (Distance from the camera to object was about 1.2m, while 

the object height was about 1cm-5cros. Initial lens aperture was f2.8). 
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Fig. 5-6 shows the variation in the number of UFs found when the 

cutter was in the image. Note that the number of UFs shown include 

multiple detections of some features due to object symmetry. The fol- 

lowing is the list of UF found for each instance of the cutter as the 

light intensity was reduced. Note the spurious features detected for 

the gear wheel. This turned out to be a high level of spurious 

features for the system. It will be noticed that the number of spuri- 

ous features remained less than 6, so that the highest (spurious) con- 

fidence level reached was 75%. The list on the right shows the number 

of UF found when the tooth wheel was in the image. Note the very low 

Deýeckd 
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Fig. 5-6 Unique features detected for cutter with light intensity 
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(Column (1)- instance number, Column(2)- light intensity summed over a 
central square, Column(3)- UF found for cutter, Column(1)- UF found 
for tooth wheel, Column(5)- UF found for gear wheel). 

Intensities of original images were: 
CUTTER - 4849 
TOOTHW - 7349 

(i) 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 

CUTL 1-17 

(2) (3) (4) (5) 
C T G 

4563 48 0 0 
4182 57 0 4 
3950 40 0 2 
3679 58 0 5 
3401 47 0 3 
3088 47 0 1 
2856 42 0 2 
2660 25 0 u 
2381 20 0 1 
2182 22 0 2 
1916 18 0 1 
1630 3 0 1 
1344 1 0 3 
1108 0 0 1 

809 0 0 0 
534 0 0 0 
458 0 0 0 

TOOTHL 1-31 

(2) (3) (4) (5) 
C T G 

7349 0 89 0 
6961 0 78 0 
6853 0 47 0 
6 490 0 98 0 
6354 0 83 0 
6016 0 86 0 
5823 0 84 0 
5439 0 91 0 
5281 0 109 0 
5003 0 114 0 
4712 0 121 0 
4485 0 120 0 
4279 0 113 0 
3986 0 109 0 
3739 1 135 0 
3435 0 110 0 
3212 0 127 0 
2926 0 132 0 
2635 0 -86 0 
2426 0 38 0 
2196 0 44 0 
2009 0 58 0 
1750 0 23 0 
1606 0 21 0 
1494 0 9 0 
1316 0 0 0 
1069 0 0 0 

891 0 0 0 
638 0 0 0 
517 0 0 0 
369 0 0 0 

It will be noticed from the graph that the recognition failed 

when the intensity was 70% below the intensity at which the cutter was 

learned. (The corresponding figure for the tooth wheel was 81%). 
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Fig. 5-8 The cutter at the threshold of recognition ýlig'ht variation) 

Fig. 5-7 The cutter as it was learned by the system 
Note: Image resolution is 128x128 for display only 
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Fig. 5-7 shows one of the images of the cutter as it was learned, and 

Fig. 5-8 shows the contrast level at which the system just recognized 

the object. In order to check the importance of the edge threshold in 

this particular test the edge threshold was varied proportional to the 

measured brightness of the image. As expected, this improves the 

recognition threshold, and allows the cutter to be recognized with the 

light intensity 78% down (86% for tooth wheel), while the number of 

spurious features remain low despite the increase in the amount of 

noise that gets past the edge detector. This increase in noise con- 

tent can be seen in Fig. 5-9 which shows the rep-points that were gen- 

erated at the lower edge threshold when the cutter was just recog- 

nized. 

(1- instance number, 2- intensity, 3- edge threshold used (normal 
threshold is d-80, k-0.75. k was not changed), 4- UF detected. ) 

CUTL 14-17 

(1) (2) (3) (4) 
CTG 

14 1108 18 622 
15 809 14 313 
16 534 9100 
17 458 8001 

TOOTHL 25-31 
CTG 

25 1494 17 070 
26 1316 15 0 13 0 
27 1069 12 000 
28 891 10 0 12 0 
29 638 7010 
30 517 6040 
31 369 4000 

In order to demonstrate the possibility of artificially adjusting the 
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Fig. 5-9 The cutter at the threshold of recognition (rep-point image) 
Edge detector thresholds were lowered proportional to average intensity 
d-18, k-. 75 

system flexibility, the system was taught the cutter at normal inten- 

sity, and the cutter at a lower intensity (44% of original) as 

separate objects. The learning statistics were as follows. 

Reliable Unique 
CUTTER 130 32 
CUTLL 58 1 
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This library was used to re-recognize the data for the cutter with 

light variation. This reduced the recognition flexibility to 48% of 

original intensity. (See the broken line in Fig. 5-6. Note that the 

points for this graph have not been plotted). The statistics were: 

(1- instance number, 2- intensity, 3- UF for CUTTER, 4- UF for cutter 
at low light intensity -CUTLL). 

CUTL 1-17 

(1) (2) (3) (4) 
C CLL 

1 x+563 49 2 
2 4182 41 0 
3 3950 35 2 
u 3679 37 2 
5 3401 24 3 
6 3088 26 4 
7 2856 13 6 
8 2660 5 u 
9 2381 7 2 

10 2182 0 8 
11 1916 0 6 
12 1630 0 2 
13 1344 2 1 
14 1108 2 0 
15 809 1 0 
16 534 0 0 
17 458 0 1 

The original CTG library was used to recognize the CUTLL set of images 

(which are at approximately 44% of the original lighting level). 

CUTLL 1-5 

CTG 
1.6 01 
2.12 01 
3. .801 
u. 15 03 
5.14 01 

(Note: There was an inadvertent fluctuation in scale on this set of 
images) 
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5.2.1.2. Scale Variation Test 
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In this test the size of the object was changed by varying the 

zoom of the lens. All other parameters were kept constant. The light- 

ing too was kept constant as far as possible, although this was not 

easy. Fig. 5-10 shows the variation of UFs that were detected. The 

threshold of recognition was reached when the object was 39% smaller 

than in the learned image (43% for the tooth wheel). Fig. 5-11 is the 

image of the cutter at the threshold of recognition. The recognition 

statistics were as follows: (Note the low level of spurious features 

despite operation well outside the original design limits. ) 

UNIQUE 
FEATLAGS 

Fig. 5-10 Unique features detected for the cutter with scale variation 

SCALE 
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Fig. 5-11 The cutter at the threshold of recognition (scale reduction) 

Size of original images were: 
CUTTER - 6.3 
TOOTHW - 6.2 

CUTZ 1-8 

Size c T G 
6.0 57 0 0 
5.45 52 0 0 
5.0 49 2 0 
4.5 13 2 0 
4.0 9 0 0 
3.7 5 0 0 
3.25 1 0 3 
2.9 3 0 5 

TOOTHZ 1-6 

Size C T G 
5.5 0 67 0 
5.1 0 47 0 
4.6 0 16 0 
4.0 0 14 0 
3.45 0 2 0 
3.0 0 1 0 

Once again, in order to check the possibility of changing the system 

flexibility artificially, the system was taught the original cutter 

images and 5 other images of the cutter at a smaller scale as separate 

objects (57% of normal size). The learning statistics were as follows: 
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CUTTER 
CUTSM 

Reliable Unique 
130 44 
. 21 0 
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The CUTZ images were then re-recognized using this library to check 

the change in system flexibility. 

CUTZ 1-8 

Size c CSM 
6.0 50 0 

5.45 46 0 
5.0 42 0 
4.5 7 0 
4.0 0 0 
3.7 1 0 
3: 25 0 0 
2.9 0 0 

This demonstrates that the recognition flexibility was reduced to 

about 30%. Recognition on CUTSM itself using the original CTG library 

resulted in the following figures: (This is a scale reduction of 43%. 

Note the low level of spurious features). 

CUTSM 1-7 
C T G 

1 7 0 1 
2 2 0 0 
3 4 0 1 
14 1 0 0 
5 6 0 0 
6 3 0 1 
7 2 0 0 

5.2.1.3.3D Orientation Variation In this test the object was 

tilted out of the learned plane by placing it on an inclined metal 

sheet. Fig. 5-12 shows the variation in the number of UFs detected. 

The recognition threshold was reached when the cutter was 32° off the 
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Fig. 5-12 Unique features detected for the cutter with orientation variation 

learned plane (47° for the tooth wheel). Fig. 5-13 shows the cutter on 

the inclined plane at the threshold of recognition. From the follow- 

ing statistics it will be noticed that the number of spurious features 

were very high on this test. (But note the lack of spurious features 

when the tooth wheel was in the image). This demonstrates the need to 

extend the reliability check to these situations if the system is 

required to operate with such images. 

O° 5° lo' iS" 10" 2s° 30° 390 c. O' 45; ° 
Alý9te P Aid -f-am 
1enwýd f 1ýý.. Q 
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CUTI 1-8 TOOTHI 1-11 
Angle C T G Angle C T G 

5° 73 1 2 51 0 108 0 
10° 41 1 0 100 0 87 0 
15° 51 1 0 15° 0 75 0 
20° 26 17 1 20° 0 54 0 
25° 19 7 0 25° 1 101 0 
30° 7 14 2 30° 0 73 0 
35° 4 6 1 35° 0 59 0 
40° 0 4 2 40° 0 20 1 

45° 0 7 0 
50° 0 4 0 
55° 0 3 0 

5.2.2. Variation of other Implicit Assumptions 

As pointed out in section {3.2.1} there are a large number, of 

implicit assumptions such as proper camera operation which the system 

cannot be tested for. However, two tests were carried out in this 

category. 

Fig. 5-13 The cutter at the threshold of recognition (3D orientation var. ) 
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Fig. 5-14 Unique features detected for the tooth-wheel with defocussing 

5.2.2.1. Camera Defocussing The system was able to cope with a 

small amount of image defocussing. Fig. 5-14 shows the variation in 

the number of UFs detected for the tooth wheel when the lens focus was 

changed from the correct value of 3.8ft. The aperture was f5.6. These 

images were taken in ordinary lighting conditions {section 5.2.3.11. 

Recognition statistics were: 

TOOTHBLUR 1-5 

Focusing distance C T G 
u ft 0 80 0 
4.5 ft 0 76 0 
5.0 ft 0 71 0 
6.0 ft 0 1 0 
7.0 ft 0 0 0 

The focusing distance was read off the lens. 



Section 5.2.2.1 Page 160 

5.2.2.2. Gaussian Noise Gaussian noise was added to the input 

images artificially until the system failed to recognize the object in 

the image. The noise was generated using an algorithm given by Knuth 

[1969] p. 104. (Note that the sum was truncated to 8 bits). The signal 

to noise ratio was measured using the definition given by Pratt [1978] 

p. 498. 

i. e., signal to noise ratio-h2 
0 

where h is the edge height and a is the standard deviation of the 

noise. The edge height was measured by taking the average edge 

strength of the edges that are detected when no noise was added. 

Therefore the signal to noise ratio is the signal to noise ratio seen 

by the vision system at the chosen edge threshold. Fig. 5-15 shows the 

variation in the number of UFs that were detected when the signal to 

noise ratio was decreased. The recognition threshold was reached when 

the signal to noise ratio was 7 (8.5 dB). The corresponding value for 

the tooth wheel was 4 (6 dB). The statistics were as follows: (Once 

again note the lack of spurious features despite the random noise that 

was added. This supports the calculation for random match probability 

in appendix 1). 
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Fig. 5-15 Unique features detected for the cutter with Gaussian noise 

CUTTER1 
Average edge strength of edges that are normally detected for CUTTER1-33.25 

a S/N ratio CTG 
3.32 100 43 00 
4.71 "50 24 21 
7.44 20 19 00 

10.52 10 701 
14.88 5100 
16.64 4700 
19.21 3001 
23.53 2000 
33.28 1000 
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TOOTHW1 
Average edge strength of edges that are normally detected for TOOTHW1'40.25 

a S/N ratio c T G 
4.03 100 0 44 0 
5.69 50 0 27 0 
9.00 20 0 32 0 

12.73 10 0 30 0 
18.00 5 0 9 0 
20.13 4 0 7 0 
23.24 3 0 3 0 
28.46 2 0 0 0 
40.25 1 0 3 0 

Fig. 5-16(a) shows the rep-points that were found for the cutter when 

the signal to noise ratio was I. In Fig. 5-16(b), the normal require- 

ment that each rep-point be nominated by at least 2 edge points has 

not been enforced. This shows the dramatic improvement in the rep- 

point image in the presence of high frequency noise when local corre- 

lation of edge point directions is required. 

A second test was carried out on the images with random data: 

First, a new object library was constructed using the two sides of the 

tooth wheel as separate objects. The learning statistics were: 

Reliable Unique 
TOOTHW 48 30 
TOOTHDN 30 15 

(It should be noted that the two sides of the tooth wheel appear very 

similar to us despite the high level of UF found by the system). This 

library was then used to recognize the tooth wheel data with added 

noise. The recognition results on the TOOTHW with added noise was as 

follows: 
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Fig. 5-16 Rep-point image of cutter when SN ratio=4. 
Lower image is with no rep-point size threshold 
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TOOTHW1 

a S/N ratio T TDN 
4.03 100 50 0 
5.69 50 31 0 
9.00 20 34 0 

12.73 10 37 1 
18.00 5 9 0 
20.13 4 7 0 
23.24 3 3 0 
28.46 2 0 0 
40.25 1 3 0 
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The system did not confuse the two sides of the tooth wheel despite 

the high level of added noise. 

5.2.3. Other Miscellaneous Tests 

The system was tested under a variety of other conditions. Most 

of these tests could not be quantified either due to difficulty in 

controlling the tests, or because more than a single parameter was 

changed, or because it was difficult to define a quantitative measure. 

5.2.3.1. Object Recognition in Ordinary Lighting Conditions The 

objects were presented to the system under room lighting conditions 

(see Fig. 5-17 for the test environment) to verify that it was able to 

operate despite the non-diffuse and uncontrolled lighting. Fig. 5-18 

shows the kind of image produced in this environment. The reader will 

notice the presence of highlights in the image. It will also be 

noticed that the lighting was not specially arranged for the vision 

system (the four tungsten lamps in Fig. 5-17 were used only for the 

directional lighting test in section {5.2.3.2}; They were normally 

left switched off), but was what was previously defined as reasonable 

lighting conditions i. e. lighting designed for human use. The vision 
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Fig. 5-17 Test environment for operation in 'ordinary' lighting 

system is able to operate under these conditions without difficulty. 

Note that the objects were placed on a grey metal background (see 

Fig. 5-17). There was also a slight change in scale. Recognition 

statistics for 6 images of each object in this environment: 
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Fig. 5-18 Cutter in ordinary lighting conditions 

CUTLAB 1-6 
C T G 

1 15 0 1 
2 17 4 0 
3 21 1 1 
4 25 0 0 
5 16 0 0 
6 20 0 1 

TOOTHLAB 1-6 
C T G 

1 0 19 0 
2 0 7 0 
3 0 25 0 
u 0 35 0 
5 0 4 0 
6 0 6 0 

GEARLAB 1-6 
C T G 

1 0 0 9 
2 0 0 11 
3 0 0 8 
u 0 0 13 
5 0 0 8 
6 0 0 12 

Page 166 
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5.2.3.2. Directional Lighting and Camera Blooming 

The lights mounted on the roof of the box in Fig. 5-18 were used 

to introduce directional lighting. Fig. 5-19 shows the sort of image 

produced. Once again, the system was able to recognize the object 

using the parts of the object that were not disturbed. The reader will 

notice the blooming of the CCD image. Recognition statistic for this 

image: 

CTG 
903 

5.2.3.3. Obscuration Test In this test part of the object was 

covered by two sheets of white paper so that a sector of the object 

was visible. The angle of the visible part was reduced until the sys- 

f'i ?. 1 Cutter in c: irectionai lighting 
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tem failed to recognize the object. However, due to certain opera- 

tional difficulties, this test was not carried out systematically, and 

I have access only to 4 images of the cutter and tooth wheel. The 

recognition statistics for these images are unfortunately below the 

recognition threshold: 

CUTOCCL1 TOOTHOCCL1 
CTGCTG 
301000 
300 

000 

When these images were acquired, I used a feature match that was based 

on a subgraph match between neighbourhoods. With this change, the 

recognition statistic was 

CUTOCCL1 TOOTHOCCLI 
CTGCTG 

30 40261 
21 10 0 
11 .30 

This method of matching features was discarded due to a higher level 

of spurious features outside the assumed constancies. Fig. 5-20 shows 

the tooth wheel when it was recognized by this feature match. Note 

that the angle of the visible section was 28° of the tooth wheel which 

is 8% of the surface area. I am unable to present data on the perfor- 

mance of the present system on this test due to inavailability of 

input data. 
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Fig. 5-20 The cutter at the threshold of recognition 

5.2.3.4. Distance Variation Test In this test the distance to the 

object was changed. It should be noted that this changes more than 

one parameter (i. e. lighting, scale and focus). The system was able to 

recognize the cutter at least 15cm away from the learned plane (dis- 

tance to camera 1.2m). Recognition statistics at 15cm: 

CUTD 1-2 
CTG 

24 03 
23 06 

5.2.3.5. Background Variation In this test the objects were placed 

on a white sheet of paper and on a chess-board (Fig. 5-21). (A grey 

background was used in the next test). The recognition statistics 

were: 
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CUTW 1-7 
C T G 
8 0 0 
6 1 0 

13 0 1 
7 0 0 

12 0 0 
16 0 0 

9 0 0 
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CUTCHESS 1-6 TOOTHCHESS 1-6 
CT G CT G 

15 0 1 0 12 0 
22 5 0 02 0 

80 0 0 26 0 
23 0 0 1 18 0 
28 2 0 0 15 0 
10 2 2 0 10 0 

In order to test the ability of the learning algorithm to learn 

despite an imperfect background, the system was taught the cutter and 

the tooth wheel on the chess board using CUTCHESS and TOOTHCHESS. The 

objective was to determine whether the learning algorithm was able to 

discard the chess-board features such as the corners of the chess 

squares. (Note also that the chess-board used had double lines 

separating the squares). The learning statistics were as follows: 

i 
Fig. 5-21 The cutter on a chess board 
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Reliable Unique 
CUTCHESS 93 22 
TOOTHCHESS 76 3 

This library was now used to recognize the cutter and the tooth wheel 

images that were used in the original CTG library. 

CUTTER 1-5 
CUTCHESS TOOTHCHESS 

1 39 0 
2 39 0 
3 38 0 
u 32 0 
5 15 0 

TOOTHW 1-5 
CUTCHESS TOOTHCHESS 

100 
200 
300 
u00 
500 

Note that although the system failed to recognize TOOTHW due to a lack 

of UF in the learning stage, it did not find any spurious features 

either. A further test was then carried out to determine the response 

of the system to the chess-board squares. In this test, the system was 

taught the cutter and the cutter on a chess board. It was hoped that 

the chess-board features would then be used as part of the CUTCHESS 

object, and therefore, the system should classify TOOTHCHESS as being 

the same, on the basis of the chess board features. The learning 

statistics are first: 

Reliable Unique 
CUTCHESS 114 39 
CUTTER 131 20 
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Recognition result when TOOTHCHESS was shown: 
TOOTHCHESS 1-5 

CUTCHESS CUTTER 
297 0 
250 0 
243 0 
301 1 
170 0 
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This demonstrates that the system was able to isolate the chess-board 

features, which were then used to recognize the chess features in the 

TOOTHCHESS images. In order to verify that the system was in fact able 

to differentiate the cutter from the cutter on a chess board, the 

CUTTER data and the CUTCHESS data were recognized: 

CUTCHESS 1-5 
CUTCHESS CUTTER 

210 0 
97 0 
93 0 

208 0 
166 0 

CUTTER 1-5 
CUTCHESS CUTTER 

0 50 
0 67 
o 44 
0 39 
0 55 

(Note that since the library was formed from CUTTER and CUTCHESS, the 
zero spurious features detected in this table are not significant, as 
they only serve to confirm the internal consistency expected from an 
error free learning and recognition program. However, the number of 
features detected for each of the objects in the image give an indica- 
tion of the similarity between the selected unique features). 

5.2.3.6. Pile of Objects In this test almost all of the parameters 

were allowed to vary. The objects were presented in a pile on a grey 

metal background with scratches, in room lighting conditions. See 

Fig. 5-22 and Fig. 5-23. The system detected 6 UFs of the cutter, 9 

UFs of the tooth wheel, and 2 UFs of the gear wheel. (Note: The 

cutter was placed on the wrong side inadvertently when this image was 

taken. The recognition statistic was obtained using a library 
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constructed from CUTDN 1-5, TOOTHDN 1-5, and GEARW 1-5, instead of the 

Fig. 5-22 Pile of objects 

Fig. 5-L3 image of Fig. 5-22 
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CTG library. 
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5.2.3.7. Recognition of 'Simple' Objects Although the system is not 

able to recognize simple objects in principle {section 3.6.5} it 

should be noted, however, that very complex objects are not necessary 

for operation. For example, the object in Fig. 5-24 was taught to the 

system. The learning statistics when this object was compared with 

the cutter were: 

Reliable Unique 
CUTTER 130 54 
SIMPLE 73 46 

This is a very high level of unique features for a relatively simple 

object. 

Fig. 5-24 The object referred to as SIMPLE 
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5.2.3.8. Teaching More Objects In this test, the system was taught 

5 objects. The learning statistics were: 

Reliable Unique 
CUTTER 130 43 
TOOTHW 48 27 
GEARW 18 2 
PULLEY 129 14 
SIMPLE 73 30 

Unique between two 

- 68 55 50 
28 - 28 30 

6 11 - 2 
51 76 36 - 
46 54 62 34 

Fig. 5-24 shows the object called SIMPLE and Fig. 5-25 shows the 

object referred to as PULLEY. Next, two more objects named CUTDN and 

TOOTHDN were added. These are in fact the opposite faces of the cutter 

and tooth wheel respectively. From the following learning statistics 

it will be noticed that the system was able to differentiate the two 

sides of the cutter and of the tooth wheel without difficulty. The 

learnink, stý-itistic3 were: 

º, `ý,, ý 
. ý: ý 

ýý 

ýý 

54 
30 
11 
75 

Fig. 5-, ý5 image of the PULLEY 
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Reliable Unique 
CUTTER 130 36 - 
TOOTHW 48 26 28 
GEARW 18 2 6 
SIMPLE 73 16 46 
PULLEY 129 11 51 
CUTDN 137 44 48 
TOOTHDN 30 13 13 
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Unique between two objects 
68 55 54 50 42 58 

- 28 30 30 28 30 
11 - 11 2 3 11 
54 62 - 34 27 49 
76 36 75 - 54 72 
85 60 75 53 - 75 
15 14 14 14 14 - 

(Note: Only 32 UF were used for the CUTTER in the subsequent recogni- 
tion process. ) 

It will be noticed that increasing the number of objects does not 

result in a substantial decrease in the number of UF per object. It 

should be noted that there is no real need to perform recognition 

tests on other images as the learning algorithm effectively performs a 

recognition test over the 5 instances used for each object. However, 

in order to verify the effect of the new objects on the system, this 

library was used to re-test the system with the light intensity reduc- 

tion data. The new statistics for CUTL and TOOTHL were: 

CUTL 1-17 
Intensity CUT 

1 4563 44 
2 4182 65 
3 3950 44 
4 3679 60 
5 3401 45 
6 3088 53 
7 2856 41 
8 2660 23 
9 2381 20 

10 2182 14 
11 1916 4 
12 1630 2 
13 1344 1 
14 1108 1 
15 809 0 
16 534 0 
17 458 0 

TOO GEA SIM PUL CDN TDN 
0 0 0 0 0 0 
0 0 0 1 0 1 
0 0 0 0 0 0 
0 1 0 0 0 0 
0 0 0 0 0 0 
0 0 0 0 0 1 
0 0 0 0 1 1 
0 0 0 1 0 1 
0 0 0 0 0 0 
0 0 0 1 0 1 
0 0 0 1 0 0 
0 0 0 1 0 0 
0 0 0 0 0 0 
0 0 0 0 0 0 
0 0 0 0 0 0 
0 0 0 0 0 0 
0 0 0 0 0 0 
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TOOTHL 1-31 
Intensity CUT TOO GEA SIM PUL CDN TDN 

1 7349 0 86 0 0 0 0 0 
2 6961 0 76 0 0 0 0 0 
3 6853 0 46 0 0 0 0 0 

4 6490 0 96 0 0 0 0 0 

5 6354 0 83 0 0 0 0 0 
6 6046 0 85 0 0 0 0 0 
7 5823 0 84 0 0 0 0 0 
8 5439 0 87 0 0 0 1 2 
9 5281 0 108 0 0 0 0 2 

10 5003 0 113 0 0 0 1 0 

11 4712 0 119 0 0 0 0 1 

12 4485 0 117 0 0 0 0 0 
13 4279 0 110 0 0 0 1 0 
14 3986 0 107 0 0 0 0 0 
15 3739 1 132 0 0 0 0 0 
16 3435 0 105 0 0 0 0 0 
17 3212 0 122 0 0 0 0 0 
18 2926 0 125 0 0 0 2 0 
19 2635 0 85 0 0 0 0 0 
20 2426 0 38 0 0 0 0 1 
21 2196 0 44 0 0 0 0 0 
22 2009 0 54 0 0 0 0 0 
23 1750 0 21 0 0 0 1 0 
24 1606 0 21 0 0 0 0 0 
25 1494 0 8 0 0 0 0 0 
26 1316 0 0 0 0 0 0 0 
27 1069 0 0 0 0 0 0 0 
28 891 0 0 0 0 0 0 0 
29 638 0 0 0 0 0 0 0 
30 517 0 0 0 0 0 0 0 
31 369 0 0 0 0 0 0 0 

The reader will notice the very low number of spurious features and a 

virtually unchanged resistance to light intensity reduction. An 

interesting effect of increasing the number of objects has been the 

reduction in the number of spurious features detected for the gear 

wheel, when compared with the results for the CTG library in section 

{5.2.1.1}. 



Section 5.2.3.9 Page 178 

5.2.3.9. Swarf on the Objects Fig. 5-26 is an image of the cutter 

with swarf thrown over it. The recognition statistic for this image 

was: 

CTG 
22 01 

In a further test, a handful of swarf was placed on a grey metal sheet 

and was then taught to the system as an object. The metal sheet was 

carefully moved under the camera for the 5 images required so that the 

swarf did not move relative to the sheet. (See Fig. 5-27). This 

'object' was then compared with the cutter to find unique features. 

The result was: 

Fig. 5-2b The cutter with swarf 
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Reliable Unique 
SWARF 29 8 
CUTTER 140 85 

(Note: The local neighbourhood radius had to be reduced for this test 
to 7. ) 

This library was then used to recognize the 5 instances of the swarf 

that was learned, and a new 6th image. 

SWARF 1-6 
SWARF CUTTER 

1 21 0 
2 23 0 
3 12 0 
4 12 0 
5 20 0 
6 8 0 

Fig. 5-Z'( Swarf on a grey metal background was taught as an 'object' 
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5.2.4. Testing the System Through Variations in Internal Parameters 

In these tests the system was tested by changing certain internal 

operating parameters such as thresholds. The system was found to be 

insensitive to small variations in threshold values. Some of the sys- 

tem tests described so far were repeated using different thresholds 

and resulted in similar operating characteristics. 

5.2.4.1. Variation of Edge Detector In this test the system was 

allowed to learn the three test objects (Fig. 5-1) using one of 3 dif- 

ferent edge detectors instead of the Walsh transform based edge detec- 

tor. The edge detectors used were the 2x2 Walsh, 2x2 Roberts, and the 

3x3 Sobel operators. The edge detector thresholds were normalized to 

reflect the size of the detector window. The system was able to find 

UFs despite variations in the edge detector used. 

2x2 Walsh Transform based edge detector 
RU Unique between two 

CUTTER 55 17 - 19 17 
TOOTHW 66 41 41 - 41 
GEARW 30 22 11 - 

2x2 Roberts edge operator 
R U 

CUTTER 146 74 
TOOTHW 70 35 
GEARW 52 16 

Unique between two 
- 101 75 

41 - 35 
16 20 - 

3x3 Sobel edge operator 
R U 

CUTTER 132 34 
TOOTHW 58 24 
GEARW 41 34 

Unique between two 
- 57 35 

26 - 30 
30 33 - 

(Note: The learning statistics for the Roberts and Sobel operators were 
obtained after changing one of the thresholds - the minimum number of 
edge points necessary for a rep-point to be formed - from 2 to 7. ) 
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5.2.4.2. Variation of Local Neighbourhood Radius The objective of 

this test was to see the effect of varying the local neighbourhood 

radius on the number of UFs detected by the learning algorithm. Due to 

limitations in the implementation it was only possible to perform this 

test for radii from 1 to 9. Fig. 5-28 is a graph showing the variation 

of the number of UFs found by the learning stage for different values 

of the radius for the CTG library. The learning statistics were as 

follows: 
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Fig. 5-28 Variation of unique features found during the learning stage 
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Usual radius-9 

Radius=8 
R U Unique between two 

CUTTER 132 49 - 84 57 
TOOTHW 42 22 31 - 24 
GEARW 68 19 23 51 - 

Radius-7 
R U Unique between two 

CUTTER 140 22 - 87 26 
TOOTHW 69 24 44 - 25 
GEARW 65 26 28 35 - 

Radius-6 
R U Unique between two 

CUTTER 123 18 - 66 21 
TOOTHW 65 13 39 - 17 
GEARW 88 26 141 39 - 

Radius-5 
R U Unique between two 

CUTTER 75 4+ - 37 5 
TOOTHW 24 2 9 - 2 
GEARW 55 12 31 14 - 

Radius-4 
R U Unique between two 

CUTTER 8 0 - 7 0 
TOOTHW 7 0 1 - 0 
GEARW 7 6 7 6 - 

Radius-3 
R U Unique between two 

CUTTER 0 0 - 0 0 
TOOTHW 0 0 0 - 0 
GEARW 0 0 0 0 - 

5.2.5. Discussion of Overall System Tests 
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The tests performed on the overall system demonstrate three important 

points: 

(a) The recognition level is above that of chance. 
(b) The system performance displays a degree of graceful degradation 

as the image quality degrades. 
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(c) The learning algorithm is able to generalize outside the set of 

sampled images. This shows that the feature descriptor produces 

features that are structural over a larger range than required by 

the system constraints, and that the learning algorithm is able to 

pick these from the rest of the features which are not structural. 

This is demonstrated by the low level of spurious features 

detected despite operation outside the sampled domain of the imag- 

ing conditions. 
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5.3. Testing the Individual Parts 
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These tests were mainly on the pre-processor part of the system. 

The majority of tests were done to verify the performance of the edge 

detector and rep-point algorithm. 

5.3.1. Testing the Edge Detector 

Fig. 5-3 is an edge detected image of the cutter in Fig. 5-7 

using the Walsh transform based edge detector (WTED) with the usual 

thresholds of d=80 and k-0.75. (Note that the edge directions in this 

figure are quantized to just u directions due to display limitations. 

Computations however are carried out at a resolution of 8 bits. ) In 

the first test, the edge thresholds were allowed to vary. Fig. 5-29 

demonstrates the way the edge image changes when the d threshold is 

changed. (d-160 for (a), d=80 for (b) and da40 for (c)). Fig. 5-30 

shows the variation of the edge image when the k threshold is changed. 

(k=0.9 for (a), k=0.75 for (b), k=0.6 for (c), and k=0.0001 for (d)). 

No edge points were detected when k=1 . 0. Note the explosion in the 

number of edge points (and line thickening) as k is reduced. (See 

graphs in Fig., 5-31 and Fig. 5-32). 
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Fig. 5-29 Variation of edge image with d threshold 
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Fig. 5-32 Variation of number of edge points with k threshold 
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The importance of the k threshold becomes evident when the WTED is 

compared with other edge detectors. Fig. 5-33 shows the edge image 

produced by three other edge detectors. The edge thresholds were nor- 

malized to match the detector window size. ((a) Roberts 2x2. (b) Sobel 

3x3, (c) Walsh 2x2, (d) Walsh 14x4). The Roberts and Sobel edge detec- 

tors result in much thicker edges. The performance of these two are 

equivalent to the performance of the Walsh edge detector when k-0. The 

following is a list of the number of edge points detected by the dif- 

ferent edge detectors in Fig. 5-33. 

Edge detector 

Roberts 2x2 
Sobel 3x3 
Walsh 2x2 
Walsh 4x4 

Number of edge points 

10898 
13593 

6924 
3741 
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5.3.1.1. Noise performance of the WTED In order to verify the 

response of the WTED to random noise, an ideal step edge with added 

Gaussian noise was used. The Pratt [1978] p. 1197 goodness measure was 

used to evaluate the performance of the edge detector. This measure 

was defined to be R where 

I 
1 rA 1 R= 

II i=1 l+ad2 

where II-max(II, IA) and II and IA represent the number of ideal and 

actual edge points, a is a scaling constant, and d is the separation 

distance of an actual edge point from an ideal edge. 

The step edge size used was 20 and the average brightness was 64. 

The image size was 128x128. WTED thresholds were d=80 and k=0.75. 

Fig. 5-34 (a)-(d) shows the edge image for signal to noise ratios of 

co , 
400,100, and 25. Fig. 5-35 (e)-(f) shows the edge image for S/N 

ratios of 16,4, and 1. The goodness measures were as follows: 

(These figures are for a step size of 25). 
S S/N ratio Goodness 

2.5 100 100.0% 
3.53 50 99.2% 
5.59 20 82,7% 
7.90 10 35.5% 

11.10 5 16.6% 
12.50 4 15.2% 
14.40 3 13.5% 
17.68 2 10.6% 
25.00 1 9.3% 

Fig. 5-36 is a graph of this variation. Note that the Pratt goodness 

measure does not use edge direction data. 
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Fig. 5-36 Variation of Pratt goodness measure with added noise 

5.3.2. The Rep-point Algorithm Fig. 5-4 is a rep-point image of 

Fig. 5-3. Fig. 5-37 and Fig. 5-38 show the rep-point images produced 

when the edge detector thresholds were changed. The threshold values 

were as follows: 

For Fig. 5-37, (a) d-40, (b) d-60, (c) d=100, (d) d=120, k-0.75. 

For Fig. 5-38, (a) k-. 001, (b) k=. 4, (c) k=. 6, (d) k=. 9, d=80. 

Fig. 5-39 and Fig. 5-40 are graphs of the variation of the number of 

rep-points. The Pratt goodness measure was slightly modified so that 

it could be used on rep-point images. The goodness measure when Gaus- 

sian noise was added was as follows: 
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(These figures are for a step size of 25). 
S S/N ratio Goodness 

2.5 100 100.0% 
3.53 50 100.0% 
5.59 20 95.2% 
7.90 10 80.9% 

11.10 5 44.0% 
12.50 4 37.5% 
14.40 3 37.7% 
17.68 2 24.1% 
25.00 1 19.6% 
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Note that the rep-point image goodness measure is better than that of 

the edge detector. (See graph in Fig. 5-41). 
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Fig. 5-39 Variation of number of rep-points with d threshold 
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Fig. 5-40 Variation of number of rep-points with k threshold 
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Rc 4i0 

Fig. 5-41 Variation of modified Pratt goodness measure for rep-points 
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5.3.3. Local Neighbourhood Statistics 

Following are histograms of the number of rep-points in a local 

neighbourhood for 2 instances each of the cutter, tooth wheel and gear 

wheel: 

Rep- 
points CUTTER1 CUTTER2 TOOTHWI TOOTHW2 GEARW1 GEARW2 

1 3 4 2 1 3 0 
2 42 45 12 13 2 7 
3 81 71 42 36 26 22 
4 101 95 54 51 54 41 
5 -44 60 62 47 63 57 
6 56 53 37 66 54 60 
7 34 59 43 51 69 47 
8 30 29 33 31 44 59 
9 24 16 16 16 40 35 

10 7 11 13 2 20 30 
11 2 5 10 10 12 
12 2 5 4 2 
13 2 1 

The following table shows the way the local neighbourhood rep-point 

count histogram varies when the radius of the local neighbourhood is 

changed, for one object instance of the cutter. 

CUTTER1 
Radius, Number of rep-points 

1 2 3 4 5 6 789 10 11 12 

8 3 42 81 101 44 56 34 30 24 722 
7 7 80 99 62 55 51 19 96 
6 15 109 95 65 42 30 -8 
5 42 127 82 60 29 8 1 
4 82 124 50 45 12 
3 110 56 14 2 
2 -45 9 
1 1 
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5.4. Execution Time 

5.4.1. The Pre-Processor 

The total pre-processing time for a single 256x256 image on the 

PDP11/24 is about 72s excluding time needed for disc I/O between indi- 

vidual pre-processor stages. (Disc I/O time is not included as it is 

not an essential part of the pre-processor). Of this time, the edge 

detector consumes approximately 55s, the rep-point algorithm about 

14s, and the local neighbourhood algorithm about 1-3s. However, it is 

expected that any industrial implementation would use dedicated 

hardware to reduce these times to a negligible level. A hardware 

architecture for doing so is presented in chapter 6. 

5.4.2. The learning stage 

The learning stage requires approximately 2-5 minutes to con- 

struct the unique data structures from the object instance models. 

This is for 3 learned objects. As described in section {4.3.2} the 

learning time is proportional to the square of the number of objects 

in the worst case. However, the learning time is assned to be non- 

critical. If it were necessary to change the object library rapidly, 

one possibility is to construct all of the libraries in advance, and 

hold them on disc. It would for instance be possible to set up 

libraries based on different subsets of the learned objects in order 

to respond to particular needs dynamically. 
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5.4.3. Recognition Time 
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The time required to search for all unique features varies from 

is to 5s when searching for 3 objects (the CTG library). However, 

there is never a need for searching for more than 6 UF for any object, 

as a 100% confidence level has been reached by this stage (although it 

is necessary to search for UF of the other objects which have not been 

recognized). Thus, it is possible to use a variety of heuristics to 

limit the execution time depending on the expected operating condi- 

tions etc. 

For example, when ideal operating conditions are guaranteed, and 

only a single object is known to be present in the image, the recogni- 

tion time is about 0.1-0.5s (when 3 objects are being searched for). 

In special circumstances (when only a single UF is sufficient for 

recognition, and a small object is in the image), execution times as 

low as 10ms have been observed (for a two object library). 

Clearly though, execution times are highly dependent on the 

hardware that is used. The reported times were obtained on a PDP11/24 

minicomputer in Fortran. It is estimated that a speed improvement of a 

factor of 10 could be obtained if the recognition algorithm was imple- 

mented in assembly code on a 68020 microprocessor operating at 20MHz. 

A further improvement could be achieved by removing the need to unpack 

rep-point data {section 4.1.3}. At present, the recognition algorithm 

spends much time doing so. 
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5.5. Summary of test results 
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The system was tested by varying a single imaging parameter until 

recognition failed. This allowed us to map the vision system sensi- 

tivity to each imaging parameter. The results showed that the system 

performance degraded gracefully, so that catastrophic failure was not 

observed in any of the tests. 

Sensitivity to three main assumptions 

- Light intensity could be reduced upto 80%. Lowering the edge 

threshold improved the performance further. {section 5.2.1.11. 

- Object scale could be reduced upto 43%. {section 5.2.1.21. 

- The plane of the object could be tilted away from the learned 

2D plane (by placing the object on an inclined plane) by upto 

47°. {section 5.2.1.3}. 

Sensitivity to implicit assumptions 

-A degree of image blurring could be tolerated. {section 

5.2.2.1}. 

- Gaussian noise could be added until the signal to noise ratio 

was as low as 6.0dB. {section 5.2.2.21. 

Other tests 

- The system could cope with non-ideal lighting. {section 

5.2.3.1}. 

- Directional lighting and camera blooming did not destroy 

recognition. {section 5.2.3.2}. 

- Objects could be recognized despite partial obscuration by a 

sheet of paper. {section 5.2.3.3}. 
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- Distance between the object and the camera could be changed 

(despite a scale change, lighting change, and blurring). {sec- 

tion 5.2.3.4}. 

- The image background could be changed to be a low contrast 

grey metallic background, a white sheet of paper or a chess 

board. {section 5.2.3.51. 

- Two objects from a pile of objects was-"recognized despiteM 

scale changes, lighting variations, low contrast background, 

object obscuration, and rotation of object plane away from 

learned 2D plane. {section 5.2.3.61. 

- The object library could be changed by adding other objects, 

including the reverse side of the cutter and toothwheel, and 

objects with simpler shapes. Increasing the number of objects 

in the known library (to 7) in fact resulted in an improvement 

in performance in terms of detected spurious features. {sec- 

tions 5.2.3.7,5.2.3.8,5.2.3.9}. 

- Recognition was not destroyed despite 'physical noise' in the 

form of swarf strewn over the object. {section 5.2.3.91. 

Sensitivity to internal parameters 

- The system operated without change when 3 other edge detectors 

were substituted for the Walsh transform based edge detector. 

{section 5.2.4.1}. 

- The system showed some sensitivity to the size of the local 

neighbourhood radius. {section 5.2.4.2}. 

Tests on the edge detector 

- Details of the performance of the Walsh edge detector and the 
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other edge detectors were given in section {5.3.1}. The per- 

formance appears to be satisfactory. 

Tests on the re - point algorithm 

- Details of the performance of the rep-point algorithm were 

given in section {5.3.2}, which shows that rep-points are more 

reliable, more repeatable and less noisy than edge points. 

Tests on the learning algorithm 

The learning principle of the system was tested in many ways: 

- The cutter (CUTTER), and the cutter at low light intensity 

(CUTLL) were taught as separate objects. This library was 

then used to recognize the cutter when the lighting was 

changed. The results were as expected; CUTTER was recognized 

when the light intensity was high, followed by a gradual tran- 

sition to CUTLL when the light intensity was reduced. {section 

5.2.1.11. 

- The same experiment was repeated by teaching the cutter and a 

low scale version of the cutter as separate objects. {section 

5.2.1.21. 

- The cutter and the tooth wheel were taught on a chess board. 

The system was able to reject the chess board features as they 

were common between the two sets of images. {section 5.2.3.51. 

- The system was able to learn and recognize a handful of swarf 

on a grey metallic background as an 'object'. {section 

5.2.3.9}. 

Execution speed 

- Section {5.4} describes the execution speed tests. 





Chapter 6 

Future Work and Conclusions 

This chapter is organized as follows: section {6.1} looks at future 

work in terms of architectural extensions. Section {6.2} gives a 

hardware design for a pre-processor. Section {6.3} concludes this 

thesis. 

6.1. Future work: Extending the architecture 

The architecture described so far was that of the implemented 

system. However, as pointed out in section {3.6.5}, this architecture 

has four main limitations. In this chapter I propose ways of removing 

some of these limitations, 

(a) by exploiting further the principles described in chapter 2, and 

(b) by using the flexibility achieved by the implemented system. 

The four main limitations are: 

(a) The restriction to unique local structure, and therefore the ina- 

bility to respond to objects with only unique global features. 

(b) Restriction to a constant scale factor. 

(c) Limitation to stable states of objects. 

(d) The inability to cluster objects into classes. 
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6.1.1. Extending the system to cope with 'simple' objects 

An unusual limitation of the present system is that it is not 

able to recognize objects with simple shapes. For example, the system 

cannot recognize a (large) square from a (large) rectangle because 

there are no unique local neighbourhoods. This is because the present 

implementation and architecture are limited to the use of local sub- 

graphs. It is clearly important to use the global relationships 

between local neighbourhoods. 

One possibility is to enhance the present system using concurve 

descriptions. Such descriptions have been well tested and are known 

to work very well for simple shapes {section 3.7.1}. The local feature 

description of the present system would complement the concurve 

description to form a powerful new vision system. 

However, I propose that the original principles developed in 

chapter 2 be used, and that the system be extended to find unique 

non-local subgraphs. As described in section {2.1.2} the main problem 

in doing so is the explosion in the number of subgraphs that have to 

be tested for in the learning stage. Therefore it is proposed that the 

combinatorics be controlled by using arbitrary rules to limit the 

number of subgraphs that have to be considered. 

This may be done by introducing the notion of intermediate 

features. An intermediate feature is formed using local fe. tures in 

the same way as local features are formed from rep-points. (See 

Fig. 6-1). The radius of an intermediate feature is, of course, 

larger than that of a local feature. Now, intermediate features can be 

treated exactly the same way as local features, using the same match- 



Fig. 6-1 An intermediate feature 

ing algorithm except that instead of matching rep-points, local 

features will be matched. Thus the matching algorithm will be called 

recursively. Note that the combinatorial explosion of the graph match- 

ing problem is controlled by the severe restriction on local features 

that can be matched, and by the rapid tests that can be used to check 

for intermediate features that do not match i. e. intermediate features 

match only if, 
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1. the two intermediate features have the same number of local 

features, and 

2. the two central local features are matched (this is an extra condi- 

tion that is not present for local feature matches, as all rep- 

points match each other once), 

3. the peripheral local features cover each other i. e. the peripheral 

local features are matched, and they are approximately the same 

orientation and position relative to the central local feature. 

Intermediate features may be chosen whenever local features are 

chosen so that the system would have an equal number of intermediate 

features, local features, and rep-points. This method cf choosing 

intermediate features has the same advantages as for choosing local 

features {section 3.2.4}. If this leads to too many intermediate 

features being chosen for the available resources, intermediate 

features may be chosen around unique or uncommon local features only. 

The learning algorithm can be used to find unique intermediate 

features in exactly the same way as for unique local features. The 

number of unique intermediate features found is expected to be more 

than the number of unique local features because the intermediate 

feature 'sees' more of the object. Therefore the motivation behind 

the use of intermediate features is to allow the features to see 

larger neighbourhoods. In that, case, is it not possible to simply 

increase the radius of the local neighbourhoods instead? This is 

indeed a possibility, especially as the execution time does not 

increase dramatically with radius. This is due to the restrictions on 

neighbourhoods that need to be compared due to variations in the 

number of rep-points in a local neighbourhood. (However, the time 
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required to compare two local neighbourhoods that eventually match 

increases with the number of rep-points in the neighbourhood. ) The 

disadvantage with using larger local neighbourhoods is that they will 

no longer be 'local'. Therefore they will become more sensitive to 

object obscuration etc., so that the probability of a local neighbour- 

hood being affected by visual disturbances is increased. I would 

therefore like to keep the local neighbourhoods at approximately the 

present size. An alternative would be to use several local neighbour- 

hood sizes simultaneously. That is the same as constructing the 

intermediate features with rep-points rather than with local features. 

The difference is not dramatic, but I favour the first approach of 

using local features to form intermediate features, in order to reduce 

the significance of the central rep-point on intermediate feature 

orientation and position, and to reduce the significance of any par- 

ticular rep-point on the intermediate feature match. 

Clearly then, further levels of features may be formed by using 

intermediate features to create larger features. I feel, however, that 

two levels of local features are sufficient, but I would like to 

introduce the idea of global features. These are features formed from 

local features (or intermediate features) that are far apart on the 

object. I propose that arbitrary rules should be used to determine 

the number of local features within a global feature and the method of 

choosing them, as in Stockman et al {section 3.7.21. If processing 

resources at learning time allow it, all combinations of 3 uncommon 

local features can be used. The reason for using global features, 

rather than a relational search of local features at recognition time, 

is to allow the learning algorithm to identify unique global 
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structure. Therefore the difference between a square and a rectangle 

would be detected using unique global features. It is felt that the 

graph matching problem at learning time can be effectively controlled 

in this way (cf. general proposal in section {2.1}). 

6.1.2. Coping with Scale Variations 

When designing for scale variations, it is necessary to talk of 

the extent of scale variation that needs to be handled, as it is 

clearly not possible to cope with the full range of scale variations. 

How then can a vision system be designed to handle as large a scale 

variation as possible? The vision system is already able to cope with 

small variations of scale of up to about 30% {section 5.2.1.2}. One 

way of extending this is to teach each object at different scales as 

examples of the same object. Reliability tests will not be done across 

examples so that new unique features will be formed at different 

scales. (However, the reliability test should be done within each 

example to verify that a ±30% scale variation can be tolerated by all 

the chosen features. ) Therefore, examples can be used to tailor the 

match response of the system. Although the present implementation does 

not allow this to be done explicitly, I have tested this possibility 

by showing images of the object 43% smaller as ndi examples. This 

reduces the match flexibility as expected {section 5.2.1.2}. There- 

fore, objects can be taught at scale intervals of 30%-50% (so that 

each model has to cope with a scale variation of ±15% to ±25%). The 

usable scale of a 256x256 image could be covered by about 5 models per 

object. 
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6.1.3" Coping with 3D orientation variation 

The vision system is at present limited to the recognition of 

objects in their stable states or just outside their stable states (by 

up to about 30° {section 5.2.1.31). How can the system be extended to 

cope with 3D orientation variation over the possible range? First an 

important point about 3D views of objects: Researchers have for many 

years been used to the idea of representing 2D views of objects by a 

finite set of pixels (say 128x128) i. e. the approximation was accept- 

able. Clearly then, the 3D viewing angle could be quantized too, so 

that a tolerable approximation of an object can be formed from multi- 

ple 2D views. The proposal is to represent objects by a relational 

structure of local features over the surface of the object. How many 

views of the object do we need? Assuming that local feature descrip- 

tions can be chosen to be invariant through object rotations of from 

200-30° only a small number of views are necessary. (Note that the 

learning algorithm has to be extended so that it verifies that the 

chosen features are structural through the assumed angular variation. ) 

There are two constraints placed on the number of 3D views needed. 

1. The area covered by any one view must not be more than that due to 

a rotation of the object by more than 20°-300 from the centre of 

the view. 

2. The number of views must be manageable. 

Using the lower limit of 200 allowed for the rotation, I now try 

to compute (approximately) the number of views needed. 
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Constraint 1 requires that the angle between two views be not 

greater than 400 (see Fig. 6-2) (i. e. each view copes with an object 

rotation of ±200 In any direction). Therefore the question is, how 

many vectors can we draw emanating from the centre of the object such 

that no two vectors are less than 40° apart? The problem may be 

worded differently to allow an approximate answer to be computed 

easily. How many squares can be drawn on a sphere, so that the angle 

subtended at the centre of the sphere by the sides of the square is 

400? 

area of square - 2R. tan(200 )2 

area of sphere - 4nR2 

hence number of squares - 
tan(200)2 
23.7 

Therefore it is possible to cover an object with about 24 views 

(10 views if a figure of 30° is chosen) such that the neighbouring 

squares of any square is less than 200 away (see Fig. 6-4). 
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In the object learning stage the 24 views of the object can be 

taught to the system. Once an object is represented by a relational 

structure (Fig. 6-5) of local features, the learning algorithm should 

find unique local features, and unique intermediate features. If 

unique global features are used, it is necessary to ensure that the 

global features are visible from a single view. 
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If the present system is given the task of recognizing 5 dif- 

ferent objects, with two of the objects being very similar to each 

other so that (say) only 2 unique features are found for these two 

objects, the system would not be able to recognize these two objects 

(under poor operating conditions) even if these two objects, as a 

class, were very different from the rest of the objects. One solution 

is to place the two objects (A and B) in a single class, and then find 

unique structure to separate class AB from the other objects. A dif- 

ferent set of features (including the two unique features found ear- 

lier) could then be used to separate A from B once the class is recog- 

nized. 

The feature sets U2 {section 4.3.2} were generated for this rea- 

son. Each set in U2 describes the similarity (and difference) between 

two of the learned objects. These sets could be used to cluster 

objects that are similar. Each class would then be treated as a new 
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composite object. A new set of unique features will be generated 

within each class to separate the objects in the class. 

6.1.5. Possible Application to Scene Analysis and 'Very High Level' 

Vision 

I feel that local and intermediate features may be of use in pro- 

ducing hypothesis of what may be in the scene for general scene 

analysis work. They can be used to choose frames+ rapidly. The main 

advantage is the rapid execution speed possible, especially on paral- 

lel processors, so that a large number of unique local features from 

completely different contexts can be tested for at high speed. Any 

matches found can be used to inject asynchronous hypothesis to a scene 

analysis program. 

}A frame is a data structure for representing information about a 
particular situation. See Minsky [1975]. 
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6.2. Future Work: Design of a Hardware Pre-Processor 

In this section I propose a hardware implementation for the algo- 

rithms described in this thesis. This proposal is based on experience 

gained by the author during the design and implementation of a 

hardware vision processor which is described in detail in Athukorala 

[1981]. 

6.2.1. Implementation using a Cellular Array Processor 

The vision algorithms described in chapter 3 are well suited for 

implementation on a cellular array processor. 
+ 

The data should be 

organized so that each processor is responsible for a single local 

neighbourhood. The complete system including the recognition algorithm 

could be implemented on such a processor. For example, it would be 

possible to give the list of unique local features to each processor 

in the array, so that each processor can search for this list indepen- 

dently in its section of the image. The pre-processing could also be 

carried out by the same processor. Clearly, such a strategy would make 

good use of the resources of the array processor. Thus, very high 

resolutions could be handled by increasing the number of processing 

elements used, without a significant increase in execution time. 

6.2.2. Pipelined Implementation 

Despite these advantages with array architectures, a pipelined 

architecture is preferred at present for three reasons. 

See Duff [1982], Hunt [1981] and Potter [1982] for examples of 
array processors. 
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I. The ability to use off-the-shelf components. 

2. Lower expected cost. 

3. Flexibility of implementation (i. e. the problem could be tackled in 

stages using a modular approach). 

The proposed implementation is based on the following basic architec- 

ture. (Fig. 6-6). The complete pre-processor will be based on several 

of these blocks used in a pipeline. The data buffers are used to link 

processing stages of different speed, and to provide parallel access 

to data. 

As we have seen {section 3.2}, the pre-processor consists of the fol- 

lowing stages. 

1. Walsh transform edge detection. 

2. Rep-point selection. 

3. Neighbourhood selection and normalization. 

In the following, I will assume that the processing is to be done 

at video speed (20ms/frame) on 256x256 images. pixel time will be The 

approximately 200ns. I will also assume that the processing will be 

carried out using high speed 32 bit microprocessors (such as the 

Motorola 68020) whenever possible. It will be noticed that special 

serial data. Structure 

data Processing 
parallel 

buffer access 
Serial 
out put 

Fig. 6-6 Architecture of a single stage of the pipeline 
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purpose hardware will be needed at the beginning of the pre-processor 

due to the large processing requirement, while later processing could 

be carried out using one or more microprocessors. 

6.2.2.1. Walsh Edge Detection 

This algorithm requires a very high processing rate, which can be 

provided (at present) only by using special purpose hardware. The 

input data buffer will be a delay line structure providing a 1x4 win- 

dow of pixels. The following processing is needed for each pixel. 

1.43,16 bit additions (and subtractions). 

2.5 absolute value computations. 

3.1 division. 

ü. 2 comparisons. 

At this stage, an edge point is found. The following processing is 

A1, A2 - First two Walsh coefficients 
X, Y - Address of edge points 
a- Edge orientation 

Fig. 6-7 The edge detection stage 



Section 6.2.2.1 Page 222 

required on each edge point. 

5.1 division. 

6. An inverse tangent operation. 

7. Quantization to 8 bits. 

Processes 1-4 above will have to be implemented using special purpose 

hardware. The edge detection stage could be simplified by using some 

other edge detector (e. g. Sobel), but would result in an increase of 

the processing requirements placed on the rep-point stage (as these 

edge detectors result in much thicker -and therefore numerous- edges), 

which would be an unwise choice, as the Walsh edge detector is simpler 

to implement than the rep-point algorithm. Therefore an increase of 

processing at the rep-point stage may require it to be implemented in 

special purpose hardware as the microprocessors may no longer be able 

to cope with the processing demand. Given this choice, it would be 

simpler to implement the Walsh edge detector in special purpose 

hardware, than to implement the rep-point algorithm in special purpose 

hardware. 

Processes 5-7 could be implemented with a single microprocessor 

using a look up table to achieve processes 6 and 7. This is possible 

due to the relatively small number of data points (-1000) that have to 

be processed. Process 5 may need special arithmetic support. A 68020 

operating at 20MHz would be able to compute the angle data for about 

4000 edge points in the 20ms frame time. (It should be noted that this 

is possible due to the limited resolution -8 bits- of the computa- 

tions, which allows the use of small look up tables etc. ). Fig. 6-7 is 

a block diagram of the edge detection stage. The A1A2 buffer and the 

XYa buffer are FIFO buffers accessed via pointers. The pointer 
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manipulations (i. e. incrementing, decrementing and clearing) could be 

accomplished by the hardware, so that the 68020 need not be aware of 

their presence. The 68020 will simply perform memory reads and writes 

to and from reserved locations. The resulting edge data will be stored 

in the XYa data buffer which will be used by the rep-point stage. 

6.2.2.2. The Rep Point Algorithm 

The rep-point algorithm may be implemented using two processors 

in a manner similar to the software implementation. The first proces- 

sor will be used to segment the rep-points in the horizontal direc- 

tion, and the second processor will collect vertically related 1D 

rep-points to form 2D rep-points. Fig. 6-8 is a block diagram of the 

rep-point stage. 

Fig. 6-8 The rep-point stage 
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6.2.2.3. The Local Neighbourhood Algorithm 

This algorithm can be implemented in the same way as the rep- 

point algorithm. However, only a single 68020 will be needed as only a 

small number of data points are to be processed (usually about 200- 

400). 

6.2.2.4. Overall System Implementation 

Fig. 6-9 shows the overall system implementation. The final 68020 

will be responsible for executing the recognition algorithm and the 

learning algorithm. It will also perform the system control functions 

and communicate with the outside world. 

Edge Detection r--ýj----i Rep-Points I Local Neighborhoods 

Buffer 

68020 

Buffer 

Fig. 6-9 Block diagram of overall system implementation 
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An important feature of this architecture is its flexibility for 

implementation. For example, a basic system could be implemented using 

a single 68020 plus the front-end of the Walsh processors. This would 

result in a much slower, but cheaper implementation. Each stage of the 

pipeline could then be added, so that the burden on the final 68020 is 

gradually reduced. The full configuration would be able to operate at 

video speed. However, it should be noted that this depends on the com- 

plexity of the input image. The system will be able to operate at 

video rates provided that there are less than a pre-specified number 

of edge points in the image. If the number of edge points exceeds this 

threshold, the system could be designed to take one of two courses of 

action. It could ignore the lower part of the image that has not been 

processed, or ignore the next frame of data. If the first course is 

taken, the system would be designed so that the complete pre-processor 

is reset after each frame, so that unprocessed edge data is discarded. 

Alternatively, if the next frame of data is discarded, the extra time 

could be used to process the old frame. This could be extended to as 

many frames as necessary. This facility could be program selectable. 

Another advantage with this configuration is that the system 

could be easily extended to cope with larger image resolutions, as 

only the delay line structure needs to be changed. (The Walsh 

transform processors may need to be replaced as well if there is a 

substantial change in the pixel frequency). 

Finally, the system may be implemented using custom VLSI chips, 

or special hardware instead of the microprocessors. This implementa- 
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tion too could be achieved in stages beginning from the front-end of 

the processor. This then points to a clear upgrade path for product 

development. The penalty paid for this flexibility is the need for 

large amounts of buffer memory. However, this may not be a cause for 

concern if the present trend of falling memory costs continues. 
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6.3. Conclusions 

6.3.1" Contributions 

This thesis was concerned with the problem of recognizing indus- 

trial objects rapidly and flexibly. These objectives were achieved 

using a general strategy based on a generalized local feature detec- 

tor, an extended learning algorithm, and the use of unique object 

structure. The main contribution of this thesis is the overall stra- 

tegy that allowed flexible and fast operation of the system; It was 

shown in section {3.7} that the system performance compares favourably 

with previously reported vision systems. 

The task of the generalized local feature detector is to generate 

a highly descriptive representation of local object structure so that 

the description is independent of the imaging conditions of interest. 

(Object structure was defined as everything about the object that is 

visible and independent of the imaging conditions of interest 

12.1.1.1}). This is achieved by first using an edge detection opera- 

tion to reduce the sensitivity to absolute lighting level, and to 

achieve a degree of data reduction with a minimum loss of useful 

information. A new algorithm called a rep-point algorithm is then used 

to find representative points for small areas of approximately uniform 

edge property. These rep-points form the elementary features of the 

system. In the next stage, the rep-points are used to form local 

features by using each rep-point as a focal point for choosing a local 

neighbourhood. Thus, local features are local subgraphs of the rep- 

point relational structure. Locality is defined by the spatial dis- 

tance between the rep-points. This method of feature detection was 
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1. The feature descriptor is able to represent complex object struc- 

ture. No restrictions are placed on object complexity except due to 

image resolution i. e. the feature detector is not limited to the 

detection of straight lines, circular arcs, and 'conventional' 

local features, and therefore is able to operate on objects that do 

not have a significant amount of these features {5.2.3.9}. 

2. The features are insensitive to a variety of imaging conditions 

including feature ' position and orientation in 2D, and overall 

lighting level 13.2.11. 

3. The pre-processor algorithms are inherently parallel as all compu- 

tations are based on local neighbourhoods. This makes the pre- 

processor ideal for implementation on special hardware architec- 

tures. 

ý. The feature descriptor, along with the feature matching algorithm 

{3.3}, form a new generalized feature detector that may be of gen- 

eral interest. 

The performance of the overall system is attributed to the 

extended learning strategy. The learning strategy is based on a reli- 

ability test and on finding unique structure of the learned objects. 

The task of the reliability algorithm is to observe the performance of 

the pre-processor over the imaging conditions of interest, and select 

a set of features that are reliably reproduced by the pre-processor. 

In this way the system compensates for pre-processor imperfections, 

and improves the recognition reliability. 

Unique structure of an object is a set of descriptions of sub- 

parts of the object that remain unique over the imaging conditions of 
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interest. Unique structure is found as follows: Once all the object 

instances have been represented by a relational structure of elemen- 

tary features, all possible subgraphs are formed. Reliable subgraphs 

are then searched for in the subgraphs found for the other objects in 

the library. All subgraphs that do not find a match are unique to the 

original object. In order to reduce the combinatorics of this stra- 

tegy, subgraphs are limited to local features generated by the pre- 

processor. 

This strategy has many advantages: 

1. The graph matching problem is transferred from the recognition 

stage to the learning stage, as the recognition algorithm has to 

search only for unique subgraphs {3.14.2}. 

2. It is sufficient to find just one unique subgraph for recognition, 

which allows rapid execution of the recognition algorithm. How- 

ever, since it is not possible to guarantee a perfect reliability 

test, more than one unique feature is required to confirm recogni- 

tion when ideal operating conditions cannot be guaranteed. 

3. This also allows the system to operate flexibly, as it is able to 

reach a 100% confidence level of recognition even if a substantial 

number of unique features are lost due to object obscuration or 

degraded operating conditions. 

4. The reliability test allows the system to compensate for pre- 

processor imperfections. It also allows the system to extract the 

common features from an object that may itself be variable from one 

instance to another (perhaps because of manufacturing variations). 

Further, the reliability test allows the system to discard back- 

ground features during the learning stage {3.14.2}. 
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5. The user is given advanced warning of the system performance on the 

particular object library that was chosen {3.4.2}. 

The task of the recognition algorithm was to search for unique 

features, and execute rapidly. It was shown that the execution speed 

could be minimized by the use of various heuristics to respond to par- 

ticular situations. When high contrast images were guaranteed, the 

system was able to execute rapidly (10ms for a small object {section 

5.4.3}), while the time taken to search for all unique features of 3 

objects was 1-5s. Therefore, it was shown that the system could be 

easily configured to operate rapidly with high quality images, or 

flexibly in poor conditions {4.4}. 

The test data shows that the system displays a significant degree 

of insensitivity to variations in its three main assumptions {5.2.1}: 

constant lighting (up to 70% reduction), constant scale (up to 30% 

reduction), and 2D views (300-400 outside the learned 2D plane). The 

system was also able to demonstrate a degree of insensitivity to a 

variety of other operating conditions {5.2} such as the addition of 

Gaussian noise (signal to noise ratio as low as 8.50). This perfor- 

mance demonstrates that the generalizations made by the learning algo- 

rithm hold, not only within the domain of the sampled images, but well 

outside this domain. Thus the system demonstrates a real learning 

capability. 

In order to remove some of the limitations of the system, it is 

necessary to extend the learning algorithm further, so that 

1. the reliability test is carried out over a larger range of varia- 

tions in imaging conditions, 
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2. unique intermediate structure and unique global structure is used 

to allow objects without unique local structure to be recognized 

{6.1.1}, 
3. scale and 3D orientation independent recognition is obtained by 

teaching several views of the same object at different scales and 

3D orientations 16.1.2,6.1.3}, 

4. similar objects are clustered into classes so that new composite 

objects may be formed from these classes {6.1.4} 

Thus, the overall strategy of the system {2.1} is to learn 

automatically what makes an object unique over the expected variation 

of imaging conditions. This is achieved by exhaustive subgraph isomor- 

phism in the learning stage to find reliable and unique subgraphs. It 

is believed that this technique is of general interest when the 

objects to be recognized can be represented by a set of features, a 

subset of which describe the objects sufficiently well, and are 

independent of the imaging conditions through the required range. The 

particular feature detector used is also thought to be of general 

interest for vision work as it allows a much larger range of local 

features to be used than before {2.1.1}. 
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Appendix 1 

Probability of a Random match between two features 

This appendix is concerned with obtaining an approximate expres- 

sion for the likelihood of a match between two local features picked 

at random. This calculation gives the basic result that may be used 

for other computations. This appendix also aims to demonstrate that 

the vocabulary of the feature descriptor is very large. 

Due to the complexity involved in obtaining an exact expressionj 

it is sufficient for our purpose to make a few simplifying approxima- 

tions in order to establish the scale of the probability figure. I 

first look at the probability of an exact match occurring at random. 

Since I am considering random events, I can assume that all (Possible) 

rep-point patterns are equally probable. 

Consider Fig. Al-1. The number of rep-point positions possible will be 

proportional to the area of the local neighbourhood. Thus, there are 

CnR2 positions in which the first peripheral rep-point can be chosen, 

where C compensates for quantization and is approximately equal to 1. 

However, since each rep-point has underlying structure, rep-points 

}I would like to thank the Napier College statistics group for 
time spent on this problem. 
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Fig. Al-1 A feature with two rep-points 
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will occupy a certain number of pixel positions which other rep-points 

cannot occupy. Assuming that the average number of pixel positions 

occupied by a rep-point is given by Cwr2, the first peripheral rep- 

point can therefore be chosen in only Cn(R2-r2) positions. Since the 

peripheral rep-point can have D distinct orientations relative to the 

central rep-point, the total number of possible patterns with two 

rep-points is given by Cr(R2-r2)D. From a similar line of reasoning, 

the second peripheral rep-point can be chosen in C%(R2-2r2)D ways, and 

so there will be 

C2n2(R2-r2)(R2-2r2)D2 

patterns with 3 rep-points. (Note that this progression does not 

strictly hold when the rep-point density within the local neighbour- 

hood increases). It will be noticed that the total number of possible 

rep-point patterns (and therefore the vocabulary of the feature 

descriptor) is very large, and increases rapidly when the radius of 

the local neighbourhood is increased. The probability of a random 

match between rep-point patterns that contain three rep-points (count- 
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ing the central rep-point) is then given by 

1 

C2¶2(R2-r2)(R2-2r2)D2 

For an inexact match (i. e. using the matching criterion in section 

14.21), where p is the positional variation allowed and d is the 

orientation variation allowed, the 

match a given rep-point - Cip2d 

number of rep-points that will 

Therefore the randan match probability for patterns with 2 rep-points 

is given by 

2 d 
(R2 2D 

Probability for patterns with 3 rep-points= 

p d2 

(R2-r2)(R2-2r2) D2 

However, the probability of matching two arbitrary neighbourhoods N1 

and N2 will be even smaller, as N1 and N2 will not in general have the 

same number of rep-points. Therefore the random match probability 

will be further reduced by the distribution of local neighbourhood 

rep-point numbers. (Section 15.3.3} gives empirical data for variation 

of rep-point numbers). 

For the parameters that I use, the following approximate values hold: 

CITR2-256, Curt<10, Cirp2-14, D=256, and d=12 

Then for 2 rep-points, the probability = 2.610-3 

For 3-7.4*1o-6 

-9 For 4= 21.010 

In fact the unique neighbourhoods chosen by my program often contain 

neighbourhoods with up to 10 rep-points (including the central rep- 
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If the radius of the neighbourhoods is doubled, the values above 

change to: 

For 2a0.6*10-3 

For 3-0.14*10-6 

For 4a0.3*10-9 

This result demonstrates that the match probability for two 

neighbourhoods selected at random is small. It is important to note 

that this does not necessarily apply to neighbourhoods that are gen- 

erated by a real scene because (of course) they are not random. There- 

fore, it is fair to assume that any match that is obtained is due to 

the original pattern generating mechanism (i. e. the object + imaging 

conditions) rather than due to a random event. In other words, when a 

match is obtained between feature fl and feature f2, the system con- 

eludes that this was due to similarity in the object structure that 

gave rise to the two features. It must be pointed out that this is not 

the same as saying that f1 and f2 were due to the same object. (i. e. 

the feature matching algorithm does not recognize features, but com- 

putes similarities). It is the task of the learning stage to use such 

similarity measures to produce an overall recognition capability. 

Support for this computation on random match probability comes from 

the Gaussian noise tests in section {5.2.2.2}. 
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User Interface to the Software 

The purpose of this appendix is to briefly indicate the form of 

the software as at present. Firstly, it should be said that the 

software is not in an industrially usable form, and is mainly geared 

towards program development. A large amount of the code is devoted to 

debugging and display of program execution. 

There are 6 main processing programs: 

WALSH. FTN - Walsh transform based edge detection 

REP. FTN - Finds rep-points in the edge image 

NABOURS. FTN - Finds neighbourhoods, normalizes them, and 

forms object models 

COMPARE. FTN - The main learning routine 

SORT. FTN - Sorts the unique features to form the recog- 

nition data structure 

RECOGNIZE. FTN - The recognition routine 

Communication between these programs is via disc files. This is for 

ease of program development. The time required to read and write from 

disc is not included in the processing times reported in section {5.4} 

because these overheads would not exist in a proper industrial imple- 
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As mentioned earlier, all of these programs contain a large 

amount of debug code, which is selected (or de-selected) at compile 

time. The debug code produces a dynamic display of program execution. 

All data files carry a status area that allows the progress of the 

data through the different processing stages to be monitored. In addi- 

tion to the displays provided by the debug code, a number of special- 

ized display programs are also available. They operate directly on the 

data files and process them for viewing either on a VDU, line printer, 

or graphics terminal. The most commonly used program (called 

EDGESHOW. FTN) is able to display grey scale images, edge images and 

rep-point images in a variety of formats. 

In normal use, the interface between the different programs is 

handled by a few command files. They construct standard data file 

names and call the processing routines in the correct sequence to 

allow the system to carry out the processing with a minimum of user 

effort. The command files also allow the system tests to be run 

automatically by allowing processing parameters (such as thresholds) 

to be varied, and transferred to the processing routines when they are 

called. 

However, due to the overheads created by shuffling data between 

disc and main memory, the total time taken to teach 3 different 

objects from 15 instances (for example) is about 50% more than the 

time taken for processing alone. In fact when the system is busy, it 

can take up to an hour to teach 3 objects. It will be appreciated that 

under these conditions the total time taken to test the system over a 
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variety of imaging and operating conditions is very large. (I used 500 

images to obtain the required variations of objects and imaging condi- 

tions). This explains the earlier comments on the problems of testing 

the system exhaustively; The number of combinations of different 

thresholds, different imaging conditions, and different objects, is 

very large indeed. 

The following figures (Fig. A2-1 to Fig. A2-3) give an idea of 

the programmer interface when using the vision system. 

Data type Standard file Program Command file 
name name name 

Grey scale - <OBJ><IN>. DAT 
image <OBJ>-Object name 

<IN>=Instance number 

T( , WALSH. FTN PROCESS. CMD 

Edge image - EDG files 

REP. F rN PROCESS. CMD 

Rep-point - BLB files and 
image . ADR files 

NABOURS. FTN - NABOURS. CMD 

Instance - MDL files 
model 

Fig. A2-1 The Pre-Processor 



Appendix 2 Page 248 

. MDL MDL ..... MDL Model files 

. DIR --- Directory 
file 

learning """"""" " COMPARE. FTN 

" 
Unsorted unique feature data 

unique . all """"""""""". and similarity data of all 
I combinations of two objects. 

sorting " -. -.... -.. SORT. FTN 

unique. srt """""-"""" """ Recognition data structure 

Fig. A2-2 The Learning Stage 

unique. srt DIR 

RECOGNIZE. FTN 

Fig. A2-3 The recognition stage 

. MDL 

The command sequence for a typical learning session would be 
as follows: 

¬PROCESS cutter 15 
@PROCESS tooth 15 
@PROCESS gear 15 

; Find rep-points in first 5 instances 
; of cutter, tooth, and gear. 

QNEWDIR 

@NABOURS cutter 15C 
@NABOURS tooth 15T 
@NABOURS gear 15G 

; Create new directory for objects 

; Form models for each instance of each 
; object and name the three objects 
; C, T, G, respectively 
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@COMPARE ; Extended learning routine. 

@SORT ; Sort unique features and create 
; recognition data structure 

Several other command files for activating display programs, and for 

task building the system, are also available. 
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