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ABSTRACT 

A genetic dissection of signal transduction pathways underlying the oxidative 
burst, cognate redox signalling, and establishment of systemic acquired 
resistance 

Recognition of avirulent microbial pathogens activates an oxidative burst, leading to 
the accumulation of reactive oxygen intermediates (ROTs), which are thought to 
integrate a diverse set of defence mechanisms resulting in the establishment of plant 
disease resistance. Two contrasting experimental strategies were devised to dissect 
genetic mechanisms governing these signal transduction pathways. 

Firstly, a novel transgenic Arabidopsis line containing a GSTJ::LUC transgene was 
developed and employed to report the temporal and spatial dynamics of ROl 
accumulation and cognate redox signalling in response to attempted infection by 
avirulent strains of Pseudomonas syringae pv. tomato (Pst). Strong engagement of 
the oxidative burst was dependent on the presence of functional Pst hrpS and hrpA 
gene products. Experiments employing specific pharmacological agents suggested at 
least two distinct sources, including a NADPH oxidase and a peroxidase-type 
enzyme, contributed to the generation of redox cues. The analysis of GSTJ::LUC 
gene expression in specific mutant backgrounds suggested engagement of the 
oxidative burst and cognate redox signalling functioned independently of ethylene, 
salicylic acid and methyl jasmonate in local RPM] mediated resistance. In contrast, 
studies using a panel of specific protein kinase and phosphatase inhibitors revealed 
mitogen activated protein kinase kinase (MAPKK) activity was required for the 
activation of the ROT-regulated genes GSTJ and PAL] in response to redox cues. 
Thus the engagement of a redox signalling network dependent on MAPKK activity 
may contribute to the establishment of plant disease resistance and the development 
of cellular protectant mechanisms. 

Secondly, Activation Tagging was employed in conjunction with the reporter gene 
line PR]a::LUC, to uncover a mutant with constitutive defence gene expression. 
This mutant, subsequently named activated disease resistance 1-dominant (adrl-D), 
was shown to have enhanced resistance to fungal and bacterial pathogens. adr]-D 
mutants were also shown to have enhanced drought tolerance, and as such are 
believed to be the first plants engineered with elevated resistance to both disease and 
drought stress. Accumulation of different defence related transcripts in adrl-D lines 
introgressed into different mutant backgrounds suggested that the gross phenotype is 
largely but not exclusively mediated by SA accumulation. The corresponding ADRJ 
gene was cloned and its overexpression was shown to recapitulate the adrl-D 
phenotype. Furthermore, ADRJ was shown to be induced following pathogen attack 
and wounding. Potential biotechnological applications of the ADRJ gene, shown to 
have close homologues in agronomically important crops, are also discussed. 
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SYNTAX USED IN THESIS 
(in accordance with the journal GENETICS) 

Type 	 Format 	 Example 
Wildtype gene 	 Italics, uppercase 	 NDRJ 

Mutant gene/plant 	Italics, lowercase 	 eds] 

Protein 	 Non-italics, 1st letter uppercase 	 Gstl 
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However, there are a number of exceptions to the above conventions which were 
adopted if widespread throughout the literature: 
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and following letters in lower case (e.g. Cf-9, Xa21, Pto, Pr]) 
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1) INTRODUCTION 

"Whoever could make two ears of corn, or two blades of grass grow upon a 
spot of ground where only one grew before; would deserve better of Mankind, 

and do more essential service for his country, than the whole race of 
politicians put together." 

Gulliver's Travels (Swift, 1727) 

i) Context 

Despite the use of sophisticated and intensive crop protection measures, around 13% 

of crops are lost globally every year to insect predation and microbial diseases. 

Agriculture is still heavily reliant on chemical control of such pathogens, with 

current annual global expenditure estimated at around $8.7 billion (Shah et al. 1995). 

In developing countries, where chemicals are often an unaffordable luxury, crop 

losses are often measured in terms of famine and death. This is likely to be 

exacerbated in coming years: by 2025 there will be an extra 2.3 billion people on the 

earth with 95% of this growth in the less developed countries. The environment is 

also inextricably bound into the equation in both the developed and the developing 

world as chemical pesticides may be detrimental to natural habitats. More indirectly, 

greater efficiency of land use would necessitate a reduction in the conversion of 

marginal areas such as rainforests to agricultural use. 

Recent advances in biotechnology offer new potential to control plant disease 

through the development of more efficient and environmentally friendly pesticides, 

the identification of resistant germplasm, and the genetic engineering of plants with 

enhanced resistance to disease. There have been a number of early successes of 

genetically engineering resistance into crops. The two strategies to date that have 

been commercially exploited are crop plants expressing the Bt toxin gene derived 

from the bacterium Bacillus thuringiensis for insect resistance (de Maagd et al. 1999) 

and coat-protein mediated resistance for protection against viruses (Fitchen & 

Beachy 1993). 



Whilst both examples illustrate the potential of genetic engineering in this context, 

they have two major draw-backs. Firstly, the transgenic crops are only resistant to a 

limited range of pests and are thus susceptible to attack by other pathogens. 

Secondly, as the engineered resistance is dependent on the action of a single protein, 

pathogens are liable to rapidly evolve resistance, a problem which is already coming 

to light in B! crops (Frutos et al. 1999). Therefore such strategies may only provide a 

short-term solution. Moreover, a common theme of negative reporting of so-called 

genetically modified (GM) crops in the media concerns the use of genes of non-plant 

origin in crop plants. Conceivably, 'second generation' GM crops engineered with 

genes of plant origin may be more palatable to a currently mistrustful public. 

The overall remit of the work subsequently outlined in this thesis was to gain further 

understanding into the genetic processes underlying plant defence against disease. 

More indirectly, such research might contribute to the development of crops with 

enhanced endogenous protection against pathogens. 

ii) The gene-for-gene concept 

Plants are constantly subject to attack by a plethora of microbial organisms, 

including fungi, bacteria, and viruses, and have evolved an array of sophisticated 

defence mechanisms to protect themselves against disease. Physical barriers such as 

the waxy cuticle may prevent pathogen ingress in the first instance (Jackson & 

Taylor, 1996), and preformed anti-microbial chemicals such as saponins may also 

inhibit the pathogen's attempts at colonisation (Osbourn, 1996). Assuming the 

pathogen is able to overcome these defences and the plant in turn can support its 

particular niche requirements, two principle outcomes are possible: successful 

colonisation resulting in disease, or the plant may be resistant to infection. If the 

interaction is 'incompatible' the pathogen is said to be avirulent; conversely only so-

called 'virulent' pathogens may cause disease in a compatible interaction. 

Such plant-pathogen interactions are exquisitely specific and are thought to be the 

result of a single recognition event. In an incompatible interaction, an avirulence 

(Avr) gene product encoded by the pathogen is thought to interact directly or 
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indirectly with a resistance (R) gene product encoded by the plant. This event 

triggers a signal transduction pathway that unleashes a battery of defences both 

locally during the hypersensitive response (HR) and systemically in a process known 

as systemic acquired resistance (SAR). If the plant is lacking in the relevant R-gene, 

such defences are induced significantly later following the onset of disease 

symptoms and are much reduced in magnitude (Ryals, 1996). 

iii) Resistance genes 

Although over 20 R-genes from seven plant species have been cloned to date (Martin 

1999), surprisingly little is known about their precise function. The first R-gene to 

be cloned, Hml, was shown to confer resistance to Race 1 strains of the fungal 

pathogen Cochliobolus carbonum in maize and was subsequently shown to encode a 

NADPH-dependent reductase that inactivates a potent toxin produced by the fungus 

(Johal and Briggs, 1992). However, as Hm] is functionally distinct from all other R-

genes which are all thought to be involved in signal transduction and does not 

function in a classical Avr-dependent manner, it will not be classified as an R-gene 

for the remainder of this study. 

The different classes of R-genes identified to date that function in an Avr-gene 

dependent manner are summarised in Figure 1. Probably the best characterised is 

Pto of tomato, the first 'classical' R-gene to be cloned, which recognises the AvrPto 

gene product of Pseudomonas syringae (Martin et al., 1993). Plo encodes a 

cytoplasmic serine-threonine kinase suggesting it plays a role in a phosphorylation 

cascade, and has been shown to exhibit kinase activity in vitro (Lob & Martin 1995). 

Direct physical interaction between the Pto and AvrPto proteins has been 

demonstrated by means of a yeast two-hyrid assay (Scofield et al. 1996; Tang et at. 

1996). 

All other R-genes share one common feature, a region composed of leucine rich 

repeats (LRR), and can be sub-grouped according to the additional structural 

domains they possess. LRRs consist of leucines and other hydrophobic residues at 

regularly spaced intervals (described in further detail in Chapter 7), which are 
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thought to specify protein-protein interactions (Kobe and Deisenhofer, 1994). 

Analysis of the crystalline structure of another LRR-containing protein, porcine 

ribonuclease inhibitor, has suggested that it is the interstitial residues between the 

conserved leucines that determine specificity of ligand binding (Kobe and 

Deisenhofer, 1993), a model which might be equally applicable to plant LRRs (Bent, 

1996). 

Aside from Plo, only one other R-gene has been shown to have a kinase domain, 

Xa21 of rice, which encodes a membrane-bound receptor kinase-like protein (Song et 

al. 1995). It has an external LRR domain which is postulated to interact with an Avr 

protein, which may in turn activate the cytoplasmic kinase domain triggering a signal 

B 

C 

Cytoplasm 

D 
	

E 

Serine-threonine kinase 
A - Serinc-ilireonine kinase 
(e.g. Pin (Martinet al.. 1993)) 

Transmembrane domain B - Receptor-like kinase 
(e.g. Xa21 (Song et al., 1995)) 

111111111 Leucirie Rich Repeat region 
C - Extracellular LRR 

Nucleotide Binding Site region (e.g. C'f-9 (Jones et al.. 1994)) 

D - TIR-NBS-LRR 
C) 	Coiled-coil/Leucine Zipper region (e.g. iV (Whitam et al., 1994)) 

• 	Toll/lnicrleukin-1 receptor homology E - CC-NBS-LRR 
(e.g. RPMI (Grant et al.. 1995)) 

Figure 1: The different classes of R-genes and their structural domains 

Schematic shows the five characterised classes of R-genes and their corresponding structural domains 

(Hammond-Kosack & Jones. 1997). Drawings not to scale and N- and C-terminal regions are not 

shown. 
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transduction cascade culminating in various defence responses. The Cf R-genes of 

tomato (e.g. Cf-9, Cf-2) that convey resistance to the fungus Cladosporium fulvum 

also encode extracellular LRRs but lack any obvious domains that could effect 

downstream signal transduction (Jones et al. 1994; Dixon et al. 1996). 

A possible model for signal transduction incorporating both types of membrane-

bound protein has been devised by drawing analogies to the CLAVATA (CLV) 

system in Arabidopsis which is involved in development of the shoot meristem 

(Jeong et al., 1999). In the CLV system, CLV1 encoding a LRR receptor kinase 

similar to Xa2] binds CLV2, a membrane spanning anchor that is structurally 

analogous to the Cf genes. A small extracellular protein, CLV3, may act as a ligand 

to activate the CLV complex, a role that might conceivably be performed by an 

avirulence protein in R-gene interactions (Ellis et al., 2000). This model is supported 

by the recent observation that one member of the Xa2 1-complex that conveys partial 

resistance to bacterial blight, Xa21D, encodes a truncated homologue of Xa21 that is 

structurally analogous to Cf proteins (Wang etal., 1998). 

The most prolific class of R-genes contain a nucleotide binding site (NBS) located at 

the N terminus of the protein in addition to the LRR at the C terminus. The 

nucleotide binding domain primarily consists of the P-loop that is required for 

phosphate binding of ATP and GTP and is common to a vast array of proteins of 

diverse organisms (Saraste et al. 1990; Walker et al. 1982). A number of conserved 

motifs have been identified within the NBS domain (Traut et al. 1994) that are 

described more fully in Chapter 7. Intriguingly, these motifs are also found in the 

pro-apoptotic genes APAF-] and CED-4 of humans and C. elegans respectively, 

suggesting that regulation of these cell-death pathways might share conserved 

elements (van der Biezen & Jones, 1998). 

R-genes containing NBS-LRRs can be further sub-divided according to whether they 

possess an amino terminus coiled-coil (CC) domain (e.g. RPM] (Grant et al. 1995)) 

or region with homology to Toll/Interleukin- 1 receptors (TIR) (e.g. N of tobacco 

(Whitam et al. 1994)). Toll and interleukin receptor proteins are known to be 
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involved in non-specific cell-immunity in animals and it has been postulated that 

plant TIRs may be involved in signal transduction (Young, 2000). However, recent 

data suggests that this region may play a role in pathogen recognition, as two alleles 

of the flax resistance gene L have different specificities for distinct flax rust isolates 

and yet only differ in the their respective TIR regions (Ellis et al. 1999), 

Coiled-coil (CC) structures are known to promote dimerization and facilitate protein-

protein interactions (Alber, 1992), however little is known about their role in R-gene 

signal transduction. Leucine zippers (LZ) comprise a sub-set of CC structures 

characterised by a predominance of leucine residues at position d of the heptad 

repeat. Although all CC-NBS-LRR R-genes to date have been classified as LZ-NBS-

LRRs, it has recently been noted that of the identified R-genes, only RPS2 possesses 

a bonafide leucine zipper and the remainder have CC domains. Interestingly, whilst 

TIR-NBS-LRR genes comprise 75% of NBS-LRRs, they have so far only been found 

in dicots despite exhaustive searching in cereals. In contrast, NBS-LRRs with a CC 

domain are widespread throughout the angiosperms (Pan et al., 2000). 

Intriguingly, these two classes of NBS-LRR R-genes appear to have different 

specificities in terms of their immediate downstream effectors. Pathogenicity 

analysis revealed that the mutant edsi is compromised in its ability to mount a 

resistance response that is mediated by TIR-NBS-LRRs, while resistance conferred 

by CC-NBS-LRRs is abrogated in the ndrl mutant background. This correlation is 

not perfect, as resistance to at least one CC-NBS-LRR is not compromised by either 

edsi or ndrl, and resistance conveyed by the EDSJ-dependent genes, RPP4 and 

RPP5, was slightly impaired by ndrl, implicating a degree of cross-talk between the 

two pathways. However, this finding does indicate that signalling following R-gene 

recognition is mediated by at least two distinct signalling pathways and may lead to 

further understanding of how this class of R-gene functions (Aarts et al., 1998). 

Whilst the specific roles of R-genes in the disease resistance signal transduction 

pathway remain elusive, some insights have been gleaned from studies in tomato. 

Pto and a related serine/threonine protein kinase Fen (conferring sensitivity to the 

r1 



herbicide Fenthion) have been shown to both be dependent on an additional gene, Prf 

that encodes a CC-NBS-LRR (Salmeron et al. 1994). This implicates both LRR-

containing proteins and protein kinases as components of the same signalling 

pathway and this relationship is further underlined by the fact that the Xa21 protein 

contains both kinase and LRR domains. It is conceivable that other NBS-LRR genes 

may also have respective protein kinase partners. Furthermore, recent studies in 

protoplasts have also demonstrated that Rps2 co-immunoprecipitates with its 

respective avirulence gene product AvrRpt2, in addition to an unknown 75kD plant 

protein (Leister and Katagiri, 2000). This suggests that the formation of a complex 

involving at least three proteins may be necessary for the elicitation of a resistant 

response. 

iv) Avirulence genes 

Although numerous Avr genes have been cloned in the last decade, comparatively 

little is known about the biochemical function of their corresponding proteins. Some 

Avr genes act as pathogenicity factors (e.g. AvrRpml) (Lorang et al., 1994) which 

may account for their evolutionary conservation, though this is not always the case 

(Kjemtrup et al., 2000). Some Avr genes can be lost with no obvious penalty, for 

example the Avr9 gene of Cladosporium fulvum appears to be dispensable and is 

lacking in some races virulent on Cf-9 tomato (De Wit et al. 1995). Others such as 

AvrBs2 play a disease causing role and contribute to the virulence of the pathogen in 

a compatible plant-pathogen interaction (Kearney & Staskawicz 1990). However, a 

specific role in virulence has not yet been assigned to many avirulence proteins 

(Alfano & Collmer, 1996). This is an important consideration from an agricultural 

perspective as the effectiveness of single R-genes in preventing disease is often 

compromised by shifts in pathogen populations towards individuals lacking 

avirulence, and hence may not be a durable strategy for engineering crop resistance. 

Delivery of bacterial avirulence proteins to the interior of plant cells is mediated by a 

type III secretory system analogous to that employed by Gram-negative bacterial 

pathogens of animals (Fenselau et al., 1992). Genes encoding components of this 

secretory system in bacterial phytopathogens are referred to as hypersensitive 
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response and pathogenicity (Hrp) genes, many of which have homologues in animal 

bacterial pathogens (Galan & Collmer, 1999). The function of a number of Hrp 

genes has been identified, for example HrpA encodes the major structural protein of 

the pilus, which acts as an appendage through which the bacteria may secrete 

virulence factors (Rome et al. 1997). Moreover, the regulation of this gene is known 

to be mediated in part by the HrpS gene (Wei et al. 2000). 

v) The hypersensitive response & systemic acquired resistance 

Following recognition of an avirulent pathogen, a signal transduction cascade is 

rapidly induced that triggers the hypersensitive response (HR) of the plant. This is 

characterised by localised cell death and necrosis of plant tissue, arresting further 

pathogen spread. Pathogens may be killed directly from exposure to toxic 

compounds and in the case of biotrophs this may be exacerbated by nutrient 

deprivation (Hammond-Kosack & Jones 1996). 

Whilst there is a wealth of data to implicate the hypersensitive cell death as a vital 

component in the containment of biotrophic pathogens, recent evidence suggests that 

cell death may in fact enhance the ability of necrotrophic pathogens to colonise plant 

tissue. Growth of the necrotrophic fungal pathogen Botrytis cinerea was shown to be 

increased when co-inoculated with an avirulent strain of the biotrophic bacteria 

Pseudomonas syringae. This effect was not observed when the fungus was co-

inoculated with hrp- strains that are unable to elicit an HR response (Govrin & 

Levine, 2000). Moreover, fungal growth was also suppressed in the HR-deficient 

mutant dndl (Yu et al., 1998) suggesting that cell death may be beneficial to 

necrotrophs who use dead plant tissue as a food source (Govrin & Levine, 2000). 

Following HR formation is the establishment of immunity to secondary infections in 

systemic tissues, termed systemic acquired resistance (SAR), which conveys 

protection against a broad spectrum of normally virulent microbial pathogens (Ryals, 

1996). Associated with the onset of SAR is the production of so-called 

pathogenesis-related (PR) proteins. Direct anti-microbial function both in vivo and 

in vitro has been demonstrated for a number of PR proteins such as PR 1 a of tobacco 



(Alexander et al. 1993; Niderman et al., 1995). Expression of some PR genes is 

tightly correlated with the onset of SAR making them useful marker genes (Ward et 

al. 1991; Uknes et al. 1992). 

vi) The role of salicylic acid in SAR 

Although there is significant evidence to implicate salicylic acid (SA) as a key 

signalling molecule in the establishment of SAR, the exact nature of its role remains 

to be rigorously established. There is a considerable amount of data to suggest a 

strong correlation between the local and systemic concentration of SA and the 

establishment of SAR (e.g. Malamy et al. 1990; Rasmussen et al. 1991; Yalpani et 

al. 1993). In addition, there is much evidence to suggest that exogenous SA can 

induce SAR gene expression (Uknes et al. 1992) and SAR (Vernooij et al. 1995). 

This relationship is reinforced by observations in transgenic plants that express the 

enzyme salicylate hydroxylase (nahG) which catalyses the breakdown of SA to the 

inactive metabolite catechol. Such plants not only are unable to accumulate free SA, 

but they are incapable of mounting a SAR response when infected with an avirulent 

pathogen (Gaffney et al. 1993; Friedrich et al. 1995), suggesting that SA 

accumulation is required for SAR induction. Intriguingly, depletion of SA also 

causes a breakdown of gene-for-gene resistance. Inoculation of nahG Arabidopsis 

with an incompatible isolate of Peronospora parasitica, leads to the development of 

severe disease symptoms, whereas wildtype plants are unaffected (Delaney et al. 

1994). 

Whilst it is clear that SA is required both locally in gene-for-gene resistance and 

systemically in SAR, other studies appear to refute the idea that SA is the 

translocated signal that induces SAR in leaves distal to the site of infection. Firstly, 

primary leaves of cucumber infected with P. syringae can be removed at 6hr after 

inoculation, before SA accumulates in the phloem, yet systemic increases in SA and 

SAR gene expression remain unaffected (Rasmussen et al. 1991). This finding is 

reinforced by grafting experiments between nahG and wildtype tobacco plants. 

When a nahG scion was grafted on to wildtype rootstocks, no SAR nor PR gene 

expression was detected in the leaves of the scion, following immunisation of leaves 



of the rootstock with TMV. Conversely, plants with a nahG genotype rootstock still 

show SAR and PR gene induction in the wildtype scion following immunisation of 

leaves below the graft junction (Vernooij et al. 1994). 

The isolation of mutants with aberrant disease resistance has further consolidated the 

role of SA in this signalling pathway. A number of mutants such as cprl, cpr5 and 

cpr6, all exhibit enhanced SA accumulation, constitutive expression of PR genes and 

resistance to bacterial and fungal pathogens (Bowling et at. 1994; Bowling et al. 

1997; Clarke et at. 1998). Conversely, the mutants pad4 and nprl (also called nimi) 

which have defects in SA accumulation and SA-dependent defence responses 

respectively, display enhanced susceptibility to bacterial and fungal pathogens 

(Glazebrook etal. 1997; Cao etal. 1994). 

A significant body of evidence suggests that SA may also have an agonistic role in 

activating downstream defence responses. Hypersensitive cell death, and 

accumulation of H202  and transcripts of the defence-related genes phenylanaline 

ammonia-lyase (PAL) and glutathione S-transferase (GSJ) were all shown to be 

potentiated by addition of 50.iM SA to soybean cell suspension cultures following 

infection by P. syringae pv glycinae. Production of peroxide was also synergistically 

activated by cantharadin, a phosphatase 2A inhibitor, in a manner that was 

cycloheximide-insensitive, suggesting that engagement of the oxidative burst in this 

context may require protein phosphorylation without de novo protein synthesis 

(Shirasu et al., 1997). 

These studies are apparently in conflict with previous assumptions that SA 

accumulation occurs long after activation of the oxidative burst (Dempsey et at., 

1999). This paradox might be reconciled by observations of tobacco plants infected 

with avirulent P. syringae pv. phaseolicola. In this system, a small transient rise in 

SA was observed that overlapped with the second phase of the oxidative burst and 

occurred prior to the sustained increase in SA previously documented (Draper, 

1997). It has been postulated that this early induction of SA may potentiate the 

oxidative burst itself, which in turn may drive further SA production in a self- 
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amplification loop ultimately resulting in cell death, a process termed the oxidative 

cell death (OCD) cycle (Draper, 1997; Van Camp et al., 1998). 

While SA clearly plays an integral role in dicot disease signalling, its role in 

monocots is more ambiguous. Application of SA was shown to induce PR gene 

expression in rice (Matsuta et al., 1991), maize (Morris et al., 1998) and to a limited 

extent in barley (Val lélian-Bindschedler et al., 1998). Furthermore, the functional 

analogues of SA 2,6-dichloroisonicotinic acid (INA) and benzo(1,2,3)thiadiazole-7-

carbothioic acid S-methyl ester (13TH), are known to convey resistance to certain 

pathogens in wheat (Gorlach et al., 1996), barley (Wasternack et al., 1994; Kogel et 

al., 1994), and maize (Morris etal., 1998). However, SA levels remain unchanged in 

rice following infection with either a fungal or bacterial pathogen (Silverman et al., 

1995). As rice is known to produce constitutively high levels of SA, it is 

hypothesised that defence responses may be activated by changes in sensitivity to 

SA, rather than a rise in SA levels per se (Chen et al., 1997). 

Recent evidence has also implicated lipid signalling in the SAR signal transduction 

pathway. Two Arabidopsis genes, designated PAD4 and EDSI, which are required 

for resistance against virulent and avirulent pathogens respectively, have been shown 

to encode products with homology to phospholipases (Jirage et al. 1999; Falk et al. 

1999). Furthermore, gene products of PAD4 and EDS] have been shown to interact 

in yeast two-hybrid analysis (J. Parker - pers. comm.). Moreover, a lipid-transfer 

protein has been shown to be required for the establishment of SAR following the 

HR (Cameron et al. - unpublished). Current research in mutant analysis and use of 

microarrays is likely to shed more light on this section of the signalling pathway. 

vii) The role of redox signalling in disease resistance 

The production of Reactive Oxygen Intermediates (ROT) and subsequent cognate 

redox signalling underpins both the formation of the HR and establishment of SAR 

(Grant & Loake, 2000). This is initiated by the engagement of the so-called 

oxidative burst, a rapid biphasic production of ROIs, primarily superoxide (02)  and 

hydrogen peroxide (H 202), at the site of attempted infection (Apostol et al., 1989; 
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Levine et al., 1994). Multiple cellular functions have been ascribed to ROIs 

including the oxidative cross-linking of cell wall structural proteins (Bradley et al., 

1992) and direct antimicrobial activity (Peng and Kuc, 1992). Moreover, the 

accumulation of ROIs may also initiate the development of hypersensitive cell death 

(Jabs et al., 1996; Levine et al., 1994) and engage the deployment of cellular 

protectant functions in distal cells to limit cell death expansion (Tenhaken et al., 

1995; Kliebenstein et al., 1999). 

Reactive nitrogen intermediates (RNIs) have recently been proposed to function in 

concert with ROIs to both potentiate cell death and induce the expression of specific 

defence genes (BoIwell, 1999). Nitric oxide (NO) has been shown to accumulate 

during incompatible but not compatible plant:pathogen interactions and 

pharmacological inhibitors of NOS have been shown to ameliorate the establishment 

of plant disease resistance (Delledonne et al., 1998). NO was also observed to 

potentiate ROT-mediated induction of cell death in soybean cells (Delledonne et al., 

1998). Thus ROIs may function in combination with NO to drive the development 

of host cell death during the formation of the HR, possibly after reacting together to 

form highly toxic peroxynitrite (ONOO). However, the identity of the agent(s) that 

directly execute plant cells still remains to be rigorously established. 

Additional support for a role of NO in disease resistance is derived from the 

observation that the transient accumulation of NO in tobacco plants via the injection 

of mammalian NOS elaborated resistance against a previously virulent strain of 

tobacco mosaic virus (Durner et al., 1998). To date however, a plant gene encoding 

NOS has not been identified, suggesting NO generation might occur by an alternative 

mechanism, such as respiration, de-nitrification or nitrogen fixation, via the 

production of NO2. 

viii) Production of ROl 

While some of the cellular consequences of ROI accumulation have been uncovered, 

the identity of the molecular machinery underlying the oxidative burst remains to be 

rigorously established. Recent evidence has implicated a number of possible 
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mechanisms including: a plasma membrane located NADPH-dependant oxidase 

(Keller et al., 1998; Groom et al., 1996); a cell wall peroxidase (Bolwell and 

Wojtaszek 1997; McLusky et al., 1999); an extracellular germin-like oxalate oxidase 

(Zhang et al., 1995); and apoplastic amine, diamine and polyamine oxidase-type 

enzymes (Allan and Fluhr, 1997; Tipping et al., 1995). 

Of these proposed mechanisms the NADPH-dependant oxidase system, similar to 

that present in mammalian neutrophils, has received the most attention. Homologues 

of the mammalian gp9 i0hx subunit of the NADPH oxidase complex have recently 

been identified in both rice and Arabidopsis (Groom et al., 1996; Keller et al., 1998). 

In other plant species there is accumulating evidence for the involvement of 

apoplastic peroxidases in the oxidative burst. These enzymes have been shown to 

produce H202  at an alkaline pH, as found in the apoplast during an incompatible 

interaction (Bolwell and Wojtaszek 1997), and may be directly secreted to the sites 

of attempted microbial infection (McLusky et al., 1999). 

ix) Regulation of ROl 

Due to the highly cytotoxic and reactive nature of ROIs, their accumulation must be 

under tight control (Figure 2). Studies employing pharmacological agents have 

shown the plant oxidative burst to be regulated, at least in part, by a 

phosphorylationldephosphorylation poise (Levine et al., 1994). Phospholipases are 

thought to be intimately involved in the activation of the mammalian NADPH 

oxidase complex, which prompted studies to investigate if these enzymes have a 

similar function in plants. No role for phospholipase D has been identified, which is 

particularly important in mammals. However, inhibitors of phospholipase A have 

been shown to blunt the oxidative burst in tobacco suspension cells in response to 

specific recognition of the Cf-9 elicitor of Cladosporium fulvum (Piedras et al., 

1998). Moreover, a role for phospholipase C mediated production of inositol 1,4, 5-

triphosphate in engagement of the plant oxidative burst has also been proposed 

(Legendre etal., 1993). 
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Figure 2. Schematic model for engagement of the NADPII oxidase-dependent oxidative burst 

in plants. 

Pathogen recognition results in an influx of Ca 2+ which may activate both the production of NADPH 

via NAD kinase and the traiislocation of p67b0X  and p47/thor  from the cytosol to the plasma membrane. 

Moreover, Ca 2+  may also activate gp9 i0x  directly, by binding to the two EF-hand motifs present in 

this protein, or indirectly via phosphorylation, following the Ca 21 -mediated activation of a specific 

CDPK. The small GTP-binding protein p2lrac  may also make an important contribution to the 

activation of the NADPH oxidase complex. 

A striking feature of the plant homologue of gp9FUh0X,  designated rho/iA, is the 

presence of an extended amino terminus which is followed by two Ca 2 -binding EF 

hand motifs (Keller el cii., 1998), where E and F refer to two of the seven a-helices 

found in extracellular calcium binding modules (Kretsinger, 1996). This suggests 

Ca 2-1-  may play an important role in the regulation of NADPH oxidase activity (Keller 

et cii., 1998). Structural predictions of RbohA suggest that the two EF hand motifs 

are located within the cytosol. The rapid accumulation of cytosolic Ca 24  in responses 

to elicitors and avirulent pathogens has been well documented (Zimmermann et cii. 

1997; Xu and Heath 1998). Thus Ca  release following pathogen recognition may 

drive a conformation change in RbohA leading to transient 01 production. 

Recent evidence has also been presented suggesting that Ca 
2+ may modulate the 

NADPH oxidase complex via a more indirect route. NAD kinase catalyses the final 

step in the production of NADPH and the activity of this enzyme is dependent on the 

Ca2tbinding  protein calmodulin. Transgenic plants containing a constitutively 

active synthetic calmodulin have been generated and shown to possess increased 
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basal and induced levels of NADPH in response to elicitor treatment, resulting in 

elevated levels of ROl production (Harding et al. 1997). Hence, Ca 2+  may also 

regulate the NADPH oxidase complex indirectly by elevating the concentration of 

available NADPH via modulation of NAD kinase activity. 

Biochemical studies of the human NADPH oxidase complex have identified two 

further cognate proteins: the small GTP binding protein p21 '  and the GDP-

dissociation inhibitor factor rhoGDI. Thus GTP binding and its subsequent 

hydrolysis to GDP may play an important role in modulating 02 production. 

Recently, a number of rice genes have been identified as homologues of human 

p2 1rac  and dominant gain-of-function and dominant negative forms of one such gene, 

designated OsRaci, have been expressed in rice cell cultures and transgenic plants. 

Intriguingly, while expression of constitutively active OsRaci resulted in the 

production of ROl, expression of the dominant negative form ameliorated ROl 

generation (Kawasaki et al., 1999). Hence, OsRacl may function to modulate the 

oxidative burst in rice by regulating the activity of an NADPH oxidase complex. 

The active movement of the 47Jth0x  and p67x  components of the NADPH oxidase 

complex from the cytosol to the plasma membrane is thought to be a key point of 

regulation in neutrophils. Antibodies raised against these proteins, which cross-react 

with proteins of a similar mass in plants, have been employed to show translocation 

of these proteins may also occur to the plasma membrane of tomato, in response to 

race-specific elicitors of the leaf mould pathogen Cladosporium fulvum (Xing et al., 

1997). In animals, phosphorylation of these proteins has been proposed to initiate 

their translocation to the plasma membrane. In neutrophils protein kinase C is 

thought to phosphorylate these proteins, while in tomato this process may be 

mediated via a Ca 2+  protein kinase (CDPK) (Xing et al., 1997). 

Unfortunately, plant gene homologues encoding p471h1X  and p67Ihb0X  have yet to be 

uncovered. In this context, an alternative mechanism for the activation of the plant 

NADPH oxidase independent of these proteins has been proposed. The R-gene 

dependent activation of a CDPK which functions upstream of the oxidative burst has 
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recently been reported (Romeis et al. 2000). While the molecular target of this 

CDPK remains enigmatic, it may phosphorylate the plant NADPH oxidase, as this 

protein possesses CDPK phosphorylation signature sites. Hence, this kinase may 

directly contribute to the activation of NADPH oxidase activity (Figure 2). 

Mechanisms regulating the production of ROIs via the modulation of cell wall 

associated peroxidase activity are also now beginning to emerge. Peroxidase 

isoforms have been isolated that actively produce H 202  in vitro at an alkaline pH 

(Boiwell and Wojtaszek, 1997). This is an important criteria, because following 

pathogen recognition there is a rapid alkanisation of the apoplast. Hence, an increase 

in apoplastic pH, mediated via plasma membrane ion channels, could engage the 

activity of the relevant peroxidase isoforms, driving the production of H 202. The 

delivery of substrate(s) to the apoplast may provide another powerful mechanism for 

the regulation of peroxidase dependent ROT production, although the existence of 

such a regulatory mechanism remains to be established. 

A recent study has highlighted the possible co-localisation of peroxidase activity and 

H202 accumulation at Botiytis allii infection sites in onion epidermal cells (McLusky 

et al., 1999). The directed secretion of peroxidases to sites of attempted pathogen 

infection could thus provide an elegant mechanism for regulating peroxidase-

dependent ROl generation. Finally, like the NADPH oxidase complex, the activation 

of apoplastic peroxidase activity may also be coupled to Ca 2+  fluxes, as Ca 2+  is 

required for optimal enzyme activity. 

Genetic evidence for the involvement of ROIs in the HR has been provided by 

studies employing the recessive isdi lesion mimic mutant of Arabidopsis. The 

accumulation of 02 preceded the onset of cell death and the local accumulation of 

02 but not H202  in Isdi was sufficient to initiate the development of runaway cell 

death in this mutant (Jabs et al., 1996). Thus runaway cell death in isdi plants 

probably reflects abnormal accumulation of 02 and an inability to respond to signals 

derived from it. LSD] has been shown to encode a zinc finger transcription factor 
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and may function by monitoring a superoxide-dependent signal and negatively 

regulating a cell death pathway. 

Recently, some of the targets of LSDJ gene function have begun to emerge: LSD] 

has been shown to be required for the induction of CuZn superoxide dismutases in 

response to SA accumulation (Kliebenstein, et al., 1999). Thus the runaway cell 

death phenotype in isdi probably reflects the accumulation of 02 to a critical 

threshold concentration, due to a reduction in CuZnSOD activity, which engages the 

mechanism(s) underlying runaway cell death in this mutant. However it is currently 

unclear how this mechanism operates because 02  production is presumed to be 

extracellular and the target CuZnSOD intracellular. Furthermore, 02 will not 

typically cross biological membranes due to its inherent charge. 

x) Role of RO1 in systemic acquired resistance 

In addition to their proposed role in local, R-gene mediated resistance, the oxidative 

burst and cognate redox signalling may also play a pivotal function in the 

establishment of systemic acquired resistance (SAR). This was highlighted by an 

elegant series of experiments in transgenic tobacco plants which contained an 

antisense catalase gene (Chamnongpol et al., 1998). Exposure of these plants to high 

light levels for two days resulted in visible necrosis and induced PR-proteins in light 

shielded local and systemic leaf tissues. In contrast, exposure to high light levels for 

4 hours induced PR-proteins in local light shielded but not systemic tissue, in the 

absence of necrosis. Thus the R01-mediated activation of SAR genes could be 

uncoupled from cell death in local tissues. However, local R01-mediated cell death 

was necessary for the accumulation of PR proteins in systemic tissues. 

Studies employing Arabidopsis have placed similar observations in a more biological 

context (Alvarez et al., 1998). Engagement of a local oxidative burst in response to 

an avirulent isolate of P.syringae pv. tomato (Psi) induced "micro-bursts" in 

systemic leaf tissue. These "micro-bursts" drove the formation of "micro-HRs" 

which preceded the establishment of SAR. Co-infiltration of the NADPH oxidase 

inhibitor diphenylene iodinium (DPI) with avirulent Psi ameliorated engagement of a 
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local oxidative burst and blocked the formation of systemic "micro-bursts" and the 

development of SAR. In the corresponding gain-of-function experiment local 

infiltration of an H 202 generating system induced systemic "micro-bursts" and 

subsequently SAR. Hence, a ROl-mediated systemic signalling network may also 

mediate the establishment of plant immunity. ROl accumulation may therefore 

integrate a plethora of local and systemic defence responses (Figure 3). 
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Figure 3.: Functional integration of defence responses by reactive oxygen intermediates during 

the establishment of plant disease resistance. 

SA, salicylic acid; BA2H, benzoic acid 2-hydroxylase; PAL, phenylalanine ammonia lyase; MAPK, 

mitogen activated protein kinase; GSH/GSSG, reduced and oxidised forms of glutathione 

respectively. 

xi) SA-independent disease resistant pathway 

Plant defence responses are not universally mediated by salicylic acid and alternative 

pathways are known to exist that function independently of SA. A subset of 

pathogens induce defence gene expression that is mediated by components of the 

jasmonic acid (JA) and ethylene signalling pathways (Creelman & Mullet, 1997). JA 

has previously been characterised as an important component of the wound-response 

and insect-herbivory pathways (Doares et al., 1995). JA and its methyl ester, 

methyl-jasmonate (MeJA), have been shown to confer local and systemic protection 

against the fungal pathogen Phytophthora infestans in potato and tomato (Cohen et 

al., 1993). Moreover, exogenous application of JA causes induction of the anti- 
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microbial peptides thionin Thi2. 1 (Epple et al. 1995) and defensin Pdfl .2 (Penninckx 

et al. 1996) which are not inducible by SA. Furthermore, inoculation of Arabidopsis 

with the avirulent fungal pathogen, Alternaria brassicola, induces PDFI.2 

independently of SA. Lastly, studies using the ethylene insensitive mutant ein2, and 

coil, a mutant insensitive to coronatine (an analogue of JA), suggested that JA and 

ethylene are required concomitantly for PDFI .2 expression of the defensin gene 

(Penninckx et al. 1996; Penninckx etal. 1998). 

Recent data suggest that ethylene might play a more influential role in conveying 

resistance to necrotrophic pathogens. ein2 mutants were found to be markedly more 

susceptible as compared with wildtype to the fungal necrotroph, Botrytis cinerea. In 

contrast, resistance to avirulent strains of a biotrophic oomycete, P.parasitica, and an 

avirulent necrotrophic fungus, A!ternaria brassicicola, remained unaffected 

(Thomma et al. 1999). 

There is considerable evidence for a degree of cross-talk between the SA and JA 

signalling pathways (Dong, 1998). For example, the mutants eds4 and pad4 which 

have reduced ability to accumulate SA have been shown to display enhanced 

responses to the inducers of JA expression, Me-JA and rose bengal (Gupta et al. 

2000). This relationship was placed in a more biological context by a series of 

experiments in tobacco whereby phenylalanine ammonia-lyase (Pal) expression, a 

precursor in SA biosynthesis, was manipulated to affect corresponding levels of 

SAR. Plants with reduced SAR displayed greater resistance to grazing-induced 

resistance to larvae of He!iothis virescens, whilst in plants with an elevated SAR 

response the reverse was true (Felton et al. 1999). However this apparent 

antagonism between SA- and JA-mediated defence pathways is not incontrovertible. 

A recent study showed that simultaneous activation of SAR and JA-dependent 

induced systemic resistant (ISR) via treatment with the Pst(AvrRpt2) and the non-

pathogenic Pseudomonas rhizobacteria WCS4 1 7r respectively, resulted in additive 

resistance against virulent Pst (van Wees et al., 2000). Further work is now required 

to characterise cross-talk between SA-and JA-dependent disease resistance pathways, 
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not least because of the obvious implications it has regarding the potential to transfer 

of this technology to engineer pathogen and pest resistant crops. 

A) Summary 

Perhaps one of the most neglected areas of plant disease resistance has been research 

into the genetic mechanisms underlying the production of ROl and cognate redox 

signalling. Despite their obvious importance in mediating the defence response (as 

well as in many other signalling pathways), the mechanism by which ROl are 

generated is still disputed. Moreover, data has been collated from a variety of 

different pathosystems and as such is difficult to consolidate and draw meaningful 

universal conclusions. In addition, almost nothing is known about the genetics of 

ROT perception and the defence pathways engaged immediately after ROl 

accumulation. 

To address these questions, we constructed a novel transgenic Arabidopsis line that 

faithfully reports the oxidative burst and cognate redox signalling. This technology 

was employed in conjunction with different pharmacological inhibitors, in a variety 

of mutant backgrounds, and with different pathosystems and inducing chemicals to 

gain further insights into the genetic determinants of this pathway. This transgenic 

line has also been deployed in a mutant screen to uncover genes involved in ROl 

production and perception (not described herein). 

Activation Tagging in a designer background was also employed to identify mutants 

that display elevated resistance to microbial pathogens. One such mutant was 

isolated, subsequently named adrl-D (activated disease resistance 1-dominant), and 

was shown to be resistant to bacterial and fungal pathogens. adrl-D also displayed 

strongly enhanced drought tolerance and as such is believed to be the first mutant 

isolated that is resistant to both disease and drought stress. Furthermore, ADRJ was 

shown to be induced following pathogen attack, wounding, and treatment with SA or 

BTH. ADR1 encodes a novel signal transduction gene that is thought to act as a 
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global regulator effecting plant responses to biotic and abiotic stress. As such, the 

potential for the commercial exploitation of this gene is also considered. 
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2) MATERIALS & METHODS 

1) Reagents 

Unless otherwise stated, all reagents used were supplied by Sigma (Poole, Dorset, 

UK). 

Nucleic acid analysis 

Total RNA was extracted from 4-6 week old plants according to standard procedures 

(Reuber and Ausubel, 1996). For Northern analysis, 12 .tg total RNA samples were 

separated by electrophoresis through formaldehyde-agarose gels and transferred to a 

nylon membrane (Amersham) exactly according to manufacturers instructions 

(Hybond booklet) . 32P-labelled DNA probes were prepared using a Prime-a-Gene ®  

labelling kit (Promega). Hybridisation conditions and stringency washes (always at 

65°C) were as described by Ausubel et al,. 1996. Blot hybridizations were 

quantified with a Phosphorlmager (Molecular Dynamics Inc., Sunnyvale, CA) in 

conjunction with ImageQuant 3.3 software and normalised with reference to R18 

hybridisation. 

Sequencing reactions were prepared and run on a HYBAID Omnigene Thermocycler 

using the PERKIN-ELMER ABI PRISM Dye Terminator Cycle Sequencing Ready 

Reaction Kit, according to the manufacturers instructions. Sequence data was 

transferred to the UNIX-based GCG package for further analysis. 

Cloning of the GSTJ promoter 

A cosmid library of Arabidopsis (ecotype Ws) genomic DNA (Arabidopsis Stock 

Center, Ohio) was screened at 65°C with a 32P-labelled gene-specific probe of the 

GSTJ gene. The fragment was obtained by PCR amplification of the 3' untranslated 

region of a template GSTI eDNA clone using primers previously designed by 

Sharma et al. (1996). DNA from a positive clone was isolated and subjected to 

restriction analysis followed by hybridisation with the GST1 gene-specific probe. An 

8 kb KpnI fragment containing GSTJ was sub-cloned from a positive cosmid into 
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pBluescript SK (Stratagene), further digested with EcoRl and resulting fragments 

sub-cloned into pBluescript SK -  nd sequenced (see also Figure 5A-D, chapter 3). 

Generation of GSTJ::LUCtransgenic plants 

PCR was used to amplify a 909 bp promoter fragment (GST]) with Sacl and NcoI 

sites at respective 5' and 3' ends using the following primers: 

5 'primer-5 '-TATAGAGCTCGGAAACAGCTATGACCATG-3' 

3 'primer-S '- TTGATTCCTGCCATGGGTTAATACTGTGT-3' 

This fragment was subsequently sub-cloned into pART7 (Gleave 1992) containing a 

LUC reporter gene and OCS termination sequence and transgenic plants generated by 

'floral dip' (dough and Bent 1998). 

Cross-pollination and selection of mutant backgrounds 

Genetic crosses were undertaken by dissecting and emasculating unopened flower 

buds and then using the remaining pistils as recipients for pollen from 4 opened 

flowers. Transgenics with a selectable marker (i.e. GSTI::LUC and adrl-D) were 

always used as the pollen donor and mutant lines as recipient, enabling kanamycin 

and Basta selection as appropriate, on MS plates or soil respectively. Successful 

crosses were allowed to self and homozygous transgenic plants were screened from 

their progeny. 

Progeny containing nahG were identified by virtue of their brown deposits in root 

tissue when grown on MS media containing 1mM salicylic acid (Bowling et al., 

1994). The ethylene insensitive mutants etri and ein2-1 were selected at 2-3 weeks 

on MS plates containing 50iM ACC by virtue of having significantly longer roots 

than wildtype plants. Mutants successfully introgressed into the coil background 

were selected by normal growth on MS plates containing 200tM Me-JA in 

comparison to stunted wildtype plants. The nprl-1 mutant background was selected 

by Nia III digestion of PCR product of genomic DNA amplified by CAPS markers 

(Li et a!,, 1999). Appropriate controls were always used to check selection method. 
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Treatment of Plants 

Bacteria were maintained as previously described (Dangi et al. 1992). Mutant hrp 

Pseudomonas strains were transformed with the pVBO 1 plasmid by electroporation 

as described by Keen et al. (1990). Bacteria were inoculated into individual leaves by 

pressure infiltration using a 1 ml syringe; 10 il of bacteria were infiltrated into the 

abaxial leaf surface. 

Aspergillus niger glucose oxidase 2.5U/ml was added to 2.5mM D-glucose in 20niM 

Na phosphate buffer pH (6.5), immediately prior to infiltration. Catalase (bovine 

liver) (300U/ml), superoxide dismutase, (25U/ml) DPI (31.iM), sodium azide (IPM), 

K252a (Calbiochem) (1tM), staurosporine (Calbiochem) (IPM), and PD98059 

(Calbiochem) 1001iM, sodium nitroprusside (0.5mM) in 10mM Tris-HC1 pH7.5, 

putrescine (1mM), L-arginine (1mM), L-NNA (lOOjiM) and cantharidin 

(Calbiochem) (5!IM) were co-inoculated with 10il of bacterial suspension or H 202-

generating system as appropriate. Controls were also carried out using buffers alone. 

Bacterial growth curves were used to ensure inhibitors did not adversely affect 

bacteria. BTH (Novartis) was painted on leaves as a 300iM solution containing 

0.01% Silwet (Union Carbide). DAB staining was as described by Thordal-

Christensen et at. (1997) and leaves photographed in 80% glycerol. Imaging of 

autofluorescence was performed using a Polyvar confocal microscope (Reichert-

Jung) with a UV light source at x 10 magnification. 

Real time in planta imaging of LUC activity 

Leaves of GSTJ::LUC or PRJa::LUC transgenic plants were painted with a solution 

containing 1mM Luciferin (Promega) and 0.01% triton X-100 and 0.03% Silwet 

(Union Carbide) in a 1mM sodium citrate buffer (pH 5.8). All in planta LUC 

imaging was performed using an ultra low light imaging camera system (EG & G 

Berthold Luminograph 980). Images were routinely collected over a Is 

(GSTJ::LUC) or lOs (PRJa::LUC) time period. Microscopy imaging was carried out 

using Nikon Optiphot-2 microscope. 
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Activation tagging mutagenesis and screen 

Agrobacterium GV3 101 transformed with the pSKI015 vector (gift from I. 

Kardailsky) was grown overnight at 30°C in LB media containing 50 mg.1' 

kanamycin (to select for the helper plasmid) and 50 mg/I ampicillin (to select for the 

pSKI015 binary vector) and used to transform PRJa::LUC by floral dip method 

(dough & Bent, 1998). Seed harvested from transformed plants was sown in flats 

and selected by 100mg/i Basta (Agrevo) spraying two weeks after germination, then 

three times at four day intervals. Resistant plants were visually inspected for any 

abnormalities, sub-planted and F 2  seed collected in individual lines. Mutant screen 

was carried out by sowing pools containing around 10 seed from 25 different F 2  lines 

in 8cm high pots. Two weeks post-germination seedlings were painted with luciferin 

and imaged for constitutive luciferase activity. 

Fungal pathogenicity assays 

Peronospora parasitica N00O2 (gift from Jane Parker) was maintained on Col-0 

seedlings grown in majenta jars. For the P.parasitica disease resistance assays, 

conidiospores were harvested by vortexing infected seedlings in water. Spore 

concentration was determined using a haemocytometer, and resuspended in sterile 

distilled water to 1x10 5  spores per ml. Four-week old plants grown under short day 

conditions were sprayed with the conidiospore solution and placed in trays covered 

with Saran wrap to maintain a humid environment. Fungal growth on plant leaves 

(visualised as condiophore growth) was scored 10 days post-infection using 

qualitative method adapted from Cao et al. (1997). Scoring was as follows: 0 - no 

infection, 1 - less than 25% of one leaf with conidiophore growth, 2 - 25 to 50% of 

one or two leaves covered with condiophores, 3 - 25 to 50 % of three or four leaves 

covered with conidiophore growth, 4 - 25 to 50% of all leaves covered with 

condiophore growth, 5 - all leaves covered with conidiophore growth. Plants in 

different replicates were assigned a disease index as follows: D.I.=iXj/n, where 

I=infection class, j=the number of plants scored for that infection class and n=the 

total number of plants in the replicate (based on Epple et at. 1997). 
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Powdery mildew (Erisyphe cichoracearurn) infection assay was performed by simply 

transferring 4 week old plants to the transgenic greenhouse, an environment 

conducive to promiscuous growth of the pathogen. Plants were scored ten days later 

by number of leaves infected. 

Bacterial pathogenicity assay 
P. syringae pv. tomato DC3000 (Pst) was grown in King's broth (KB) liquid media 

(King, 1954) supplemented with 50 mg.1' rifampicin. Four week old plants were 

infected with a Pst suspension (0D 600  = 0.0002) in 10 MM  MgCl2  by pressure 

infiltration of the abaxial side of the leaf with a imi syringe. Three leaves per plant, 

and three plants per line were infiltrated. After three days, plants were inspected for 

development of symptoms. Leaves were also harvested at this time point for analysis 

of bacterial growth. Leaf discs of the same size (0.5cm 2) were made from these 

samples using a cork borer. Three leaf discs from each plant were ground in 9900 

10 MM MgCl2 in a pestle and mortar. Serial dilutions were made from the resulting 

bacterial suspension, and 100iil of each dilution was plated onto KB plates 

containing 50 mg/I rifampicin. The plates were incubated at 30°C for 2 days, and the 

number of bacterial colonies for each sample was recorded. 

Cloning of the ADR1 genomic clone 

Performed exactly as described in chapter 6, paragraphs 1-4 and Figure 25A-E. 

Homology searches and sequence analysis 

The following web-sites (Table 1) were used and instructions followed as detailed at 

site. Coiled-coil structure prediction was performed with COILS (Lupas, 1997) and 

scans were made with variable window sizes of 14-28 residues using the MTIDK 

matrix. GCG1O and Genejockey were also used for sequence analysis and alignment 

purposes. 
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Name Function Web address 

BLAST Homology 	searches 	in www.arabidopsis.org/blastl  

plants 

BLAST2 Homology in all organisms www.blast.genome.adjp/ 

Genscan Identification of OREs genes.mit.edu/GENSCAN.h  

tml 

Proscan Protein motifs pbil.ibcp.fr/cgi- 

binlnpsa_automat.pl?page= 

npsa_prosite.html 

PLACE Motifs in promoter www.dna.affrc.go.jp/htdocs/  

PLACE 

ISREC 	COILS Prediction 	of 	coiled-coil www.ch.embnet.org/softwar  

Server regions (Lupas's method) e/COILS—form.html 

PSORT N-glycosylation 	sites 	and psort.nibb.ac.jp/form.html  

prediction sub-cellular localisation 

ClustaiW Alignment 	of 	multiple www2.ebi.ac.uk/clustalw/  

peptide sequences 

Boxshade 3.21 Shading of conserved a.a.'s www.ch.embnet.org/softwar  

in different sequences e/BOX_form.html 

Tablel: Web-sites used for sequence analysis 

xiii) Generation of ADR1 transgenic lines 

PCR amplification was performed in capillary tubes using a Rapidcycler (Idaho 

Technology) exactly according to manufacturers instructions. The 5.5 kb SpeI/PstI 

fragment containing the ADRJ genomic clone was used as a template (bOng/ui) and 

the concentration of MgC1 2  in the buffer was 3mIVI. Cycles were as follows: 

a) 94°C - 15"; b) 94°C - 15"; c) 65°C - 30";d) 72°C - l'30" (Repeat b-d for 30 

cycles); e) 72°C - 1 '45" 

The expression cassettes were created as outlined below, transformed into 

Agrobacterium by freeze-thaw method which was then used to transform PRJa::LUC 

lines by 'floral dip' method. 
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CaMV 35S::ADRJ - PCR was used to amplify the ADR1 genomic fragment with 

KpnI and BamHl immediately adjacent to the start (ATG) and stop codon 

respectively using the following primers (bold indicates start/stop codons, italics 

shows RE recognition site): 

KpnI primer -5'- GCTTAGGTACCAAGATCGGTCTCGAT 3I 

BainHl primer -5'- GCGAAGGATCCAGAAGCCTAATCGTC -3' 

This fragment was subsequently sub-cloned into KpnI/BamHI sites of the MCS of 

pART7 (Gleave 1992) downstream of the CaMV 35S promoter. 	The 

CaMV 35S::ADRJ::OCS cassette was sub-cloned by NotI digestion to pGreen and 

this binary vector was then used to transform Agrobacterium containing the trans 

functioning plamid pJIC Sa_Rep (Hellens et al., 2000). Transgenic plants generated 

were selected by spraying with 100mg/i Basta (Agrevo).. 

pTA700I::ADRJ - PCR was used to amplify the ADRI genomic fragment with 

Sail and SpeI immediately adjacent to the start (ATG) and stop codon respectively 

using the following primers: 

Sail primer -5'- GCTTAGTCGACAAGATCGGTCTCGAT 	-3' 

Spel primer -5'- GCGAAACTAGTAGAAGCCTAATCGTCA -3' 

This fragment was subsequently sub-cloned into XhoJ/SpeI sites of pTA7001 (gift 

from N-H Chua; McNellis et al., 1998) and this cassette pTA7001::ADRJ used to 

transform Agrobacterium. Transgenic plants were selected on MS plates containing 

20tg/ml hygromycinB (Calbiochem). Transgenics were selected at two weeks then 

transferred to 50tg/ml kanamycin MS plates for seven days to ensure that 

PR1a::LUC cassette was intact. Seedlings were then transferred to MS plates 

containing 30tM Dexamethasome (DEX). Luciferase imaging was performed ten 

days later in comparison to the following negative controls: empty vector pTA700 1 

(PRJa::LUC) on DEX plates; pTA7001 ::ADRI (PRIa::LUC) on non-DEX plates. 

xiv) Drought stress assay 

Around 20 seedlings (14 days old) of both adrl-D and Col-0 plants were 

transplanted into two separate halves of the same tray under short day conditions. 

Watering was stopped 11 days later and differences recorded. Dead plants were 
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confirmed by failure to resuscitate on resumption of watering. This experiment was 

also carried out under long day conditions. In a different experiment, 6-8 seedlings 

of Col-O, adrl-D, adrl-DxnahG, adrl-Dxetrl and adrl-Dxnprl were subplanted to 

separate segments of the same tray and assay performed as described above. Assays 

were also performed in 8cm high pots (4 plants/pot) using Col-O, adrl-D, and coil, 

under long and short day conditions. 
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3) GENERATION OF A NOVEL ROl-REPORTER SYSTEM 

Introduction 

To facilitate genetic dissection of the dynamic events surrounding HR formation, we 

engineered a novel transgenic Arabidopsis line that would report accumulation of a 

gene tightly correlated with redox signalling during the oxidative burst. The 

principle advantages of such an approach are: spatial and temporal accumulation of 

marker transcripts can be imaged in real-time in a non-destructive manner; 

experiments can be performed in plan to and thus results are more likely to reflect 

mechanisms that are actually occurring in the plant; it is less labour intensive than 

comparable techniques; high-throughput saturating mutant screens can be carried out 

with transgenic lines. To engineer a reporter cassette for subsequent plant 

transformation, the promoter region of the marker gene was fused to the firefly 

luciferase gene (Millar et al. 1995a). Such transgenic plants may also be utilised for 

high-throughput mutant screens (e.g. Millar et al., 1 995b; Ishitani et al. 1997). 

Identification of a ROI/Avr-inducible reporter gene 

Marker genes are a useful means of monitoring dynamic events in a signal 

transduction pathway. The PR genes have been used extensively to monitor SAR 

responses (Ryals, 1996), whilst genes encoding glutathione S-transferases (GSTs) 

have been employed as molecular markers for the oxidative burst (e.g. Jabs et al. 

1996; Alvarez et al. 1998). Gsts are enzymes ubiquitous to nearly all aerobic 

organisms whose main function is to detoxify toxic compounds by catalysing the 

nucleophilic attack of the sulphur atom of reduced glutathione (GSH) to the 

electrophilic centre of the substrate. Gsts may often also function as peroxidases by 

means of the GSH-dependent reduction of H 202  (Mans, 1996). 

A gene encoding a glutathione S-transferase, designated GSTJ was previously 

isolated in a differential screen to uncover genes rapidly induced following avirulent 

pathogen attack (Greenberg et al., 1994; Yu & Ausubel - unpublished). It had also 

previously been shown to be induced by 03 in a SA-dependent manner probably via 

the accumulation of ROT (Sharma et al. 1996). As GST1 was rapidly induced during 



the establishment of the HR and was implicated in oxidative stress responses, it was 

deemed to be a suitable marker gene. 
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Figure 4: Rapid induction of GSTJ transcripts following oxidative burst or inoculation with 
H202-generating system. 

Northern blot hybridisation of GSTI transcripts following inoculation with Psi DC3000(Avi-B) at 
different time intervals post-inoculation and with Glucose/Glucose Oxidase (G/GO), and mock 
inoculation with 10mM MgCl 2 . 

Time course for accumulation of GSTI transcripts (quantified using phosphorlmage and 
normalised to R18) in leaves challenged with Psi DC3000(AvrB). 

To further characterise the expression pattern of GSTJ, Northern blot analysis was 

performed using a GSTJ gene-specific probe corresponding to a fragment of the 3' 

untranslated region (UTR) of the gene (Sharma et al. 1996). Levels of GSTJ 

transcript accumulation were quantified by using phosphorlmager analysis and 

normalised to ribosomal R18. GST1 mRNA was shown to accumulate within one 

hour of inoculation with Pseudomonas syringae pv. tomato (Pst) strain DC3 000 

expressing the AvrB avirulence gene (Tamaki et al. 1991) and showed maximum 18- 
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fold accumulation at 2-3 hours (Figure 4A&B). Mock inoculation with MgC1 2  alone 

only caused a five-fold induction of GSTJ. 

Leaf infiltration with the H 202-generating system glucose/glucose oxidase (G/GO) 

strongly induced the accumulation of GSTJ transcripts after 2 hours (Figure 4a). 

DAB staining (performed by G.Loake) was used to confirm the temporal 

accumulation of endogenous H 202  in response to Pst DC3000(AvrB) was congruent 

with GSTI expression (Figure 9B&C). 

iii) Cloning of the GSTJ promoter region 

Having confirmed that GSTJ expression was tightly con-elated with the oxidative 

burst and accumulation of H 202 , the corresponding upstream regulatory promoter 

region was isolated (Figure 5). The GSTJ gene-specific probe was employed to 

identify the corresponding genomic clone from a genomic cosmid library (Schulz et 

al., 1994). Chapter 42 of the library gave a positive band following Southern 

hybridisation and colony blotting was performed to obtain a single cosmid clone 

containing the GSTJ genomic region (Figure 5A). 

DNA from the positive colony was subject to restriction digest by 10 different 

enzymes (ClaI, EcoRI, HindIII, KpnI, PstI, Sad, Smal, SpeI, XbaI, and XhoI) which 

were probed with the GST] gene-specific probe by Southern hybridisation. A 

positive KpnI fragment of approximately 8 kb was selected for further analysis and 

cloned to pBluescriptSlC. This construct was further digested with EcoRI and 

products of 5 kb, 2 kb, 1 kb, and 0.35 kb sub-cloned to pBluescriptSK (Figure 5B). 

Sequencing was carried out on the KpnI/EcoRI fragments using T3 and T7 primers 

enabling the fragments to be ordered relative to one another as detailed in the 

schematic (Figure 5C). 

Sacl and NcoI sites were engineered at the 5' and 3' ends of the GSTJ promoter by 

PCR mutagenesis to enable sub-cloning into the reporter cassette. The GSTI 

promoter was transcriptionally fused to the firefly luciferase (LUC) reporter gene 
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(Figure 5D) which had previously been cloned into the pART7 plasmid upstream of 

an OCS terminator region (Gleave et cii. 1992; Thomson & Loake - unpublished). 
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_ 
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Kpnl 	EcoRI EcoRI 	 EcoRl 	 Kpnl 

SK-- 	 pill 	4 	 P4 
1 kb 	0.35 kb 	2 kb 	 5 kb 

1 
All 4 fragments sub-cloned to pBluescriptSK and sequenced 
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GSTI 	 LUC 	 OCS 	j-_NPTII 	
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Figure 5: Cloning of the GSTJ promoter and construction of the reporter-gene cassette 
The 3'UTR of GSTJ was used to probe a cosmid library and a single positive colony 

isolated. 
An 8 kb KpnI fragment from the single colony containing GSTI is cloned into pBluescript, 

then cut with EcoRI and fragments sub-cloned to pBluescriptSK. 
Coding regions of GSTJ genomic clone identified following assembly of sequenced contig. 
The GSTI promoter in the pART27 binary transformation cassette including: left border 

(LB), right border (RB). luciferasc LUC). and octopine synthase (OCS) terminator. Neomycin 
phosphotransferase (NPTII) gene confers kanarnycin resistance in plants. 

33 



Deletions were made in the resulting GSTJ::LUC cassette to enable sequencing of 

the entire promoter region and functional analysis of putative regulatory motifs that 

were identified. Digestion by BstXI and EcoRI followed by incubation with 

Exonuclease III at staggered timepoints was performed in order to generate 

fragments differing in size by -200 bp, which were subsequently transformed into E. 

coli DH5c. Sequencing of the deletions was carried out enabling a contiguous 

overlapping sequence of the GST] genomic clone to be assembled (Figure 6). 

A 909 bp promoter sequence upstream of the translation start site was uncovered, the 

translated region was 1092 bp in length and contained two introns of 92 bp and 110 

bp (Fig. 5C). The GSTJ gene is composed of two introns and three exons: in 

accordance with evolutionary classification by Droog, this gene encodes a type I 

plant Gst (Droog et at., 1993). This class of Gst is thought to function as a key 

cellular protectant and other members of this class are inducible by pathogen attack, 

wounding and lipid peroxidation (Mans, 1996). During the course of this work a 

GST from a different Arabidopsis accession (Y 11727) with 98% sequence homology 

to GST1 was reported, (Yang et al. 1998), suggesting these sequences encode the 

same protein. 

iv) Identification of putative regulatory motifs in the GST1 promoter 

A number of putative regulatory motifs were found in the promoter region of GSTI 

which were in concordance with the diverse stimuli known to induce other Gsts 

(Marrs, 1996). A G-box motif was located at -411 (all positions of motifs are given 

in relation to translation start site). This element is present in many diverse plant 

genes that respond to an array of stimuli and has been shown to bind basic leucine 

zipper (bZIP) proteins (Droge-Laser et al. 1997). It is thought to be important for 

transcriptional activation per Se, rather than conveying responsiveness to specific 

stimuli (Menkens et al. 1995). Subsequent analysis of transgenic plants transformed 

with deletions of the GSTJ promoter fused to luciferase showed that a 200 bp region 

containing the G-box was required for background and inducible GSTJ::LUC activity 

(data not shown). 
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-909 GGTACCAAAAGAAGAAGAATTAATCTTATAATCTTGTGATGTACTTTCGG 
-859 TGATTTCTTTAAGTTTGATGTTATGAATAAAAGGCAAAGCTTTTGCAAAA 
-809 ATCACTCTTTTTTTTGCCATAATGATTTCAAAATTCCAAAGAATAATATA 

ERE 
-759 TACTTCAATATACATGTCACAAGATTAAATGTCA.kAGTTGTTTATAATGA 
-709 GCATTTTTGTGGATGTGGAAAATGTGAAAATTACTCTGTTCCTTTGAATG 
-659 TTTCTATACGAAATTATAGTTAGGATTTAGTAATGTATTTCTCCATAATT 
-609 ATGCThAATTTAGTTAGTTACTTCAATATGATTAAATACTTTATTGACCC 
-559 CAAATTTGTAATTGTACCAGATTGTCAAAAGTGTGAAACCAAATTTTCTT 
-509 TTCTTTTGATATTGTTTTGTTTCTTATTATCTCTCGTTCTATCGAATGAT 
-459 CTAACTCGAGCATCCAACGATCTAACTCGAGCATCAACGATCCACGTGGA 

G-BOX 
-409 CCCAACAACGTCGGTCAGAGTTTGACTAGTAGATGAAGGACTATTCTTGT 
-359 GGTCGTTGTCACGCGGTGGCTGATATTTTCTCTTATTTTTATTTTATTTT 
-309 AACTATTTTTTACGTTATATTTAAGTCTTGAACCAATAGAAACGACGAAT 
-259 CATACATTACTCAGCTTGACTTTGAAATAATCCTATAACWAGAGCATT 

ERE 
-209 CCAAGAATTTTATCCAAAAAACAAAATAAAPJLAGAGTATTCAAGCTTGGT 
-159 GGCGCCGTTTGTTTTTGGTTTATTCACTAkAGTTACTCTGTTTTAGTTGT 
-109 ATAAATACACACTCCCATTTGTGTATTTCTTTTCATCAATCACA/½.AGATC 
-59 TCTCTACTTCAATAAATCTCCACCTTACTTTAAGAACAAGAAAA.ACACAG 

TCA 
-9 TATTAACAATGGCAGGAATCAAAGTTTTCGGTCACCCAGCTTCCACAGCC 

MA G I K V F G H PASTA 
+59 ACTAGAAGAGTTCTCATCGCTCTTCACGAGAAGAATGTCGACTTTG?ATT 

T R R V L 	AL HE K N V D FE F 
+109 CGTTCATGTCGAGCTCAAAGATGGTGAACACAAGPJ.AGAGCCTTTCATCC 

V H V ELK D GE H K K E P F IL 
+159 TTCGCAACgtgagtacataaaacatCtgtCaagaCaaaatattatatttC 

RN 
+209 atctagatactgaatcttggtcttaacaatCttgaatattgtttttgCag 
+259 CCCTTTGGTAAAGTTCCAGCCTTTGAAGATGGAGACTTCAAGATTTTCGg 

P F C K V P A FED G  F K IF E 
+309 taaatacaaatatatatcattatagtcatgtttaCaaatttttggtttta 
+359 tgatcattgcaataatagaaagcagaaaCaCtCaaaaatgtttttttttt 
+409 ggtgggcagAATCAAGAGCAATTACTCAATACATAGCTCATGAATTCTCA 

SR A IT Q Y IA HE F S 
+459 GACAAAGGAAACAACCTTCTCTCAACTGGCAAGGACATGGCGATCATAGC 

D KG N N L L ST G K DMA II A 
+509 CATGGGCATTGAAATTGAGTCGCATGAGTTTGACCCACTTGGTTCAAAGC 

M G I El ES HE F D P V G S K L 
+559 TTGTTTGGGAGCAAGTCTTAAAGCCTTTGTATGGTATGACCACAGACAA2 

V W E 	V L K PLY GM T T D K 
+609 ACCGTTGTTGAAGAAGAAGAGGCTAAGCTAGCCAA.AGTCCTCGATGTTTA 

TV V E E E E A K LA K V L DV Y 
+659 CGAACACAGGCTTGGTGAGTCCAAGTATTTGGCTTCTGACCACTTCACTT 

E HR L GE SKY LAS D H FT L 
+709 TGGTCGATCTTCACACTATCCCTGTGATTCAATACTTACTTGGAACTCCA 

V DL H TIP VI Q Y L L G T P 
+759 ACTAAGPAACTCTTCGACGAGCGTCCACATGTGAGTGCTTGGGTTGCTGA 

T K K L F D ER PH V SAW V AD 
+809 CATCACTTCAAGGCCTTCTGCTCAGPAGGTTCTTTAAGTGAATCTCAAAC 

ITS R PS A Q K V L * 
+859 TATTTATCGATCAGAAGATGTATAA.AAGTGGCGATGACCTAATTGCCCA 
+909 ATTCTCATAAACTCTGTTTTTCTTTTTGTGTTTACTCTGTTTTTCTGCTG 
+959 CCGAGTGTTTGATTTGATGTAATCTTCGATAATGAGTCTTGATAThATA 

+1009 AA.ATATTTCTTATCTTAAAGTTTAACTACCAATTAATGTTGATCTCATTC 
+1059 TTCIAAGTTGACTATCATTCTCCTAAGTCTTGAACGTTGACTTCCAAATT 

Figure 6: The GSTJ genomic clone 

Numbers refer to nucleotide position in relation to translation start site. Introns are indicated in lower 

case. The TATA box and two polyadenlyation sites are shaded and motifs in the promoter are in bold. 

An asterisk indicates the stop codon. 
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A putative TCA element was found at the 3' end of the GST1 promoter (-28). This 

motif is highly conserved in over 30 different stress-inducible genes, including 

tobacco PRJa. This sequence has been shown to bind tobacco nuclear protein 

(TCA-1), and this binding activity was increased in the presence of SA (Goldsbrough 

et al. 1993). In addition, two ethylene responsive elements were located at -787 and 

-240. This motif has previously been shown to be essential for ethylene 

responsiveness when incorporated into a heterologous promoter (Ohmetakagi & 

Shinshi, 1995). The presence of the TCA and ERE motifs is in accordance with 

previous observations that GST] is induced following treatment with ethylene and 

SA (Conklin & Last, 1995). 

iv) GSTJ::LUC plants faithfully report redox signalling following pathogen 

attack 

The reporter gene cassette, GSTI::LUC::OCS, was cloned into the binary plant vector 

pART27 (Gleave et al. 1992). This was then transformed into Agrobacterium 

tumifrzciens which was used to transform Arabidopsis accession Col-0, and over 100 

transgenics were generated. Analysis of 20 of these lines revealed that whilst there 

was some variation in the background level of GSTI::LUC (probably due to different 

points of integration into the plant genome), relative induction in response to 

different stimuli remained constant (data not shown). One of these lines was selected 

for further analysis. 

Expression of the GSTJ::LUC cassette was quantified using an ultra low light 

imaging camera system, following leaf inoculation with Psi DC3 000 expressing 

either the AvrB or AvrRpt2 (Innes et al. 1993) avirulence genes (Figure 7). The 

temporal profile of Luc activity established following Pst DC3000(AvrB) inoculation 

was congruent with the expression of the endogenous GSTI gene: Luc activity was 

first detected approximately 45 minutes post-inoculation, with a maximal induction 

of approximately 20 fold at 2-3 hours, followed by a steady decay of Luc activity. 

Similar results were obtained following inoculation of Psi' DC3000(AvrRpt2), 

although the maximum Luc activity measured was approximately 25% less than 
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following Psi DC3000(Avi'B) inoculation. Infiltration with MgC1 2  or virulent Pst 

DC3000 resulted in an approximately 5 fold increase in Luc activity. 
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Figure 7: The GSTI::LUC reporter cassette faithfully reports accumulation of H 202  in planta. 

Time course of GSTJ : :L UC induction post inoculation with M902. Pst DC3000 harbouring the AvrB 

or AvrRpt2 avirulence genes and virulent Pst DC3 000. 

PHOTONS 

Figure 8: GSTJ::LUC induction is dependent on accumulation of H 202  but not 02. 

(A)(B)(C)(D) Bioluminescent images of GSTJ::L(JC induction collected following inoculation with 

Pst DC30004vrB) at 0 hours (A). 2 hours (B), and at 2 hours with superoxide dismutase (C) or 

catalase (D). 
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In order to confirm ROl accumulation is responsible for activation of the GSTI::LUC 

transgene, two enzymatic scavengers, catalase (CAT) and superoxide dismutase 

(SOD) were independently co-inoculated with Psi DC3000(A%'JB) (Figure 8). While 

Luc activity was substantially reduced following co-inoculation of CAT (Figure 8D), 

in contrast SOD did not significantly diminish Luc activity (Figure 8C). This 

observation suggested that accumulation of H 202  rather than 02  was the major cue 

responsible for GSTJ::LUC induction. 

v) A functional bacterial secretion system is necessary to engage oxidative burst 

and downstream signalling 
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Figure 9.GSTI::LUC induction is dependent on functional HrpS and HrpA gene products. 
(A) GST]..LUC induction measured 2 hours after mock inoculation with MgCl ,-. Psi DC3000. and Pst 

DC3000(.i4vrB) with null mutation in I-IrpS or FirpA gene respectively. 
DAB staining carried out in leaves challenged with Psi 13000O14'rB) at 0 hours (B). 2 hours (C), 
and with hrpS mutant (transformed with pAvrB plasmid) at 2 hours (D). 
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The hypersensitive response and pathogenicity (Hrp) genes of Gram-negative plant 

pathogenic bacteria are thought to encode a type III protein-secretion system that 

may deliver avirulence proteins inside host plant cells (Fenselau et al., 1992). This 

prompted us to examine if engagement of the oxidative burst and cognate redox 

signalling was Hrp gene dependent. Strains of Pst DC3000 possessing a null 

mutation within either the HrpA or HrpS gene (Rome et al., 1997) were transformed 

with plasmid pVBO1 containing the AvrB gene (Innes et al., 1993) and assessed for 

their ability to engage the oxidative burst. Inoculation of Pst DC3000(AvrB) hrpA or 

hrpS mutants failed to induce Luc activity above the levels recorded for Pst DC3000 

and MgCl 2  control inoculations (Figure 9A). 

Moreover, no significant accumulation of H 202  was detected by DAB staining 

(performed by G.Loake) following inoculation with Pst DC3000(AvrB) hrpS (Figure 

9D) nor hrpA strains (data not shown). Therefore, functional HrpA and HrpS gene 

products are required for successful engagement of the oxidative burst during 

A vrB/RPMJ mediated disease resistance. 

vi) GSTJ::LUC expression shows distinct changes in spatial expression during 

development of the HR 

Using time lapse image capture for 24 hrs, we determined the temporal and spatial 

profile of Luc activity established during the dynamic events associated with the 

hypersensitive response (HR). Key images are shown in Figure 10. Interestingly, 

the presence of Luc activity within directly challenged cells at 8 hours post Pst 

DC3000(AvrB) inoculation, suggested GSTJ transcript accumulation preceded their 

subsequent programmed execution during the HR (Figure 1OB&C). This observation 

differs from that predicted by previous models in which GST gene expression was 

proposed to occur only in the distal unchallenged cells (Tenhaken et al. 1995). 

The onset of hypersensitive cell death usually occurred between 7-12 hours post Pst 

DC3000(AvrB) inoculation and resulted in a rapid reduction of Luc activity in 

directly challenged cells during the phase of lesion spread. At 16 hours post 

inoculation, viable unchallenged cells delimiting the developed HR lesion continued 
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to express Luc activity, probably reflecting the impact of other defence signals 

temporally resolved from ROIs (Figure bC). Observation of this cellular margin, 

Figure 10: Spatial expression of GS1'I ::L (IC changes with onset of the hypersensitive response. 
(A)(B)(C) Bioluminescent images of GSTJ::LUC induction collected following inoculation with Pst 
DC30004t'rB) at 0 hours (A). 8 hours (B) and 16 hours (C). 

using a light microscope attachment, revealed the width of Luc activity was 

approximately 20 cells (data not shown). 

Having previously demonstrated that the GSTI::LUC transgenic line faithfully 

reports accumulation of H 202 and immediate signalling events, it could be employed 

in conjunction with mutant bacteria, plants and loss and gain of function inhibitor 

studies. Inoculation of Psi DC3000(AvrB) containing mutations in either 1-JipA or 

HrpS failed to result in significant ROT accumulation or strong induction of Luc 

activity. The HrpS and HrpA gene products are thought to be required for the 

development and structural integrity respectively of the Hrp pilus, a filamentous 

surface appendage which may function as a conduit for the delivery of Psi avr gene 

products to the inside of plant cells (Rome el al., 1997). Hence, Hrp pilus formation 

and possibly the successful delivery of Avr proteins may constitute a prerequisite for 

successful engagement of phase II of the oxidative burst. 
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vii) Discussion 

To aid the functional dissection of the oxidative burst and cognate redox signalling, 

we developed a novel GSTI::LUC transgenic line to report, in real time, these 

dynamic cellular processes during the establishment of plant disease resistance. Leaf 

infiltration of MgC12  or virulent Psi DC3000 resulted in a small but reproducible 

increase in Luc activity. This response probably reflected engagement of the so-

called phase I oxidative burst, which is thought to be associated with wounding or 

inoculation with virulent microbial pathogens. in contrast, the large increase in Luc 

activity induced following Pst DC3 000(AvrB/A vrRpt2) inoculation probably resulted 

from engagement of the phase II burst, which is thought to correlate with the 

establishment of disease resistance (Levine et al., 1994). 

Co-inoculation of the H 202  scavenging enzyme CAT with Psi DC3000(AvrB) 

significantly blunted the induction of Luc activity, confirming ROIs functioned as 

the signal mediating GSTJ::LUC gene expression. Due to size exclusion, infiltrated 

CAT was not expected to enter plant cells. The source of the ROI signal is therefore 

presumably the apoplast. Co-inoculation of the 02  scavenger SOD with Psi 

DC3000(AvrB) in contrast, did not significantly decrease Luc activity. Hence, H 202  

rather than 02  is likely to be the ROl that cues the activation of GSTJ::LUC 

expression. 

In bacteria and yeast compelling evidence suggests ROl can engage distinct redox 

signalling pathways. For example, H 202  signalling is mediated through the 

transcription factor OxyR in Escherichia co/i (Storz et al., 1990), while the SoxR and 

SoxS gene products are required for the perception of 02  (Demple and Amabile-

Cuevas, 1991). In a similar fashion, the redox signalling pathway mediating the 

activation of GST1, a prominent marker for the establishment of local and systemic 

disease resistance, may be engaged specifically by apoplastic H 202 . 

Having established that the GSTJ::LUC transgenic line faithfully reports 

accumulation of H 202  and immediate signalling events, it was employed in 
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conjunction with mutant bacteria impaired in the delivery of avirulence proteins. 

Inoculation of Pst DC3000(AvrB) containing mutations in either HrpA or HrpS failed 

to result in significant ROl accumulation or strong induction of Luc activity. The 

HrpS and HrpA gene products are thought to be required for the development and 

structural integrity respectively of the Hrp pilus, a filamentous surface appendage 

which may function as a conduit for the delivery of Pst Avr gene products to the 

inside of plant cells (Rome et al., 1997). Hence, Hrp pilus formation and possibly the 

successful delivery of Avr proteins may constitute a prerequisite for successful 

engagement of phase II of the oxidative burst. 
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4) GST1::LUC TRANSGENICS AS A TOOL TO DISSECT REDOX 

SIGNALLING 

i) At least two distinct sources of redox cues activate GSTJ gene expression 

A number of possible sources may contribute to ROl accumulation during the 

pathogen activated oxidative burst including a NADPH-dependent oxidase (Keller et 

al., 1998; Groom et al., 1996), cell-wall bound peroxidases (Bolwell and Wojitaszek 

1997) and apoplastic amine oxidase-type enzymes (Allan and Fluhr 1997). The 

contribution of these enzymes to ROl accumulation in Arabidopsis has not 

previously been directly compared. Co-inoculation of diphenylene iodonium (DPI), 

a specific inhibitor of the NADPH-dependent oxidase complex with Psi' 

DC3000(AvrB) reduced Luc activity by 36% compared to the value obtained with 

inoculation of Pst DC3000(AvrB) alone (Figure 11). In a similar experiment, co-

inoculation with sodium azide (NaN3), a specific peroxidase inhibitor, reduced Luc 

activity by 28% (Figure 11). 

Conversely, no reduction in Luc activity was observed when these phamacological 

agents were individually co-inoculated with H 202 , suggesting these agents inhibited 

H202  production not perception (data not shown). Neither DPI or NaN3 blocked the 

induction of Luc activity in an Arabidopsis line containing a PRJa::LUC marker 

gene, suggesting these agents did not inhibit either Pst DC3000 or Luc activity in 

planta (data not shown). Amines can induce ROl production by acting as substrates 

for amine oxidases (Allan and Fluhr, 1997). We therefore tested the ability of 

putrescine and arginine to activate GSTJ::LUC gene expression. Infiltration of these 

amines failed to induce Luc activity above the levels for control inoculations (Figure 

11). 

The emerging evidence suggests NO may function as a key signal in disease 

resistance (Delledone etal., 1998; Durner etal., 1998). This prompted us to examine 

if NO could impact GSTJ::LUC gene expression. Infiltration of the NO donor 

sodium nitroprusside (SNP) failed to induce significant Luc activity and co- 

inoculation of the NO scavenger N ° -nitro-L-arginine (L-NNA) with 
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Figure 11: GSTI expression is dependent on two distinct sources of ROIs but is not potentiated 

by nitric oxide. 

Relative GSTJ::LUC induction 2 hours post-inoculation with MgCl 2 , Psi DC3000, Psi 

DC3000(AvrB), Psi DC3000(AvrB)+DPI, Psi DC3000(AvrB)+Sodium Azide, G/GO, Putrescine, L-

Arginine, Sodium nitorprusside (SNP), SNP+G/GO, and Psi DC3000(AvrB)+L-NNA. 

Psi' DC3000(AvrB) did not significantly blunt the activation of Luc activity (Figure 

11). Moreover, co-inoculation with G/GO and SNP did not significantly potentiate 

the induction of Luc activity compared to G/GO alone. In total, these observations 

suggested that NO did not directly or indirectly impact the redox signalling network 

that mediates GSTJ gene expression. Our results therefore suggested that at least 

two distinct enzymatic sources including an NADPH oxidase and a peroxidase-type 

enzyme generated the redox cues that engaged GSTI gene expression. 

ii) Engagement of the oxidative burst and cognate redox signalling is 

independent of ethylene, SA or Me-JA 

Ethylene, Me-JA and SA are thought to play key roles in plant defence signalling 

(Xu et al., 1994; Gaffney et al., 1993). We therefore investigated if any of these 

signal molecules mediated either the activation of the oxidative burst or the 

subsequent transduction of redox signals. Arabidopsis Col-0 plants containing the 

GSTI::LUC transgene were crossed with plants containing the ethylene insensitive 

allele etri (Bleecker et al., 1988) and with plants containing the nahG transgene, 
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Figure 12: ROl mediated induction of GSTJ is not dependent on ethylene, SA or Me-JA. 

Time course of GSTJ..LUC induction in etrl mutant background cf Col-O wild-type. 

Time course of GSTI::LUC induction in nahG mutant background cf. Col-O. 

Northern blot hybridisation of GSTJ transcripts following inoculation with Pst DC3000(AvrB) at 

different time intervals, and GIGO in nahG background. 

Northern blot hybridisation following inoculation with Pst DC3000(AvrB) at 0 hours in Col-0, and 

at 2 hours in Col-0 and coil mutant. 
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which converts SA to catechol (an inactive metabolite with respect to defence 

signalling) (Gaffney et al., 1993). These plants were infiltrated with Pst(AvrB) and 

Luc activity recorded over time using an ultra low light imaging camera system. No 

consistent differences were observed in the profile of GSTI : :L UC gene expression in 

either the etri or nahG genetic backgrounds compared to the wildtype Col-O 

accession (Figure 12A and 12B). These observations suggested that neither ethylene 

nor SA impacted either the engagement of the oxidative burst or the subsequent 

transduction of redox signals. 

We also undertook Northern analysis of GSTJ gene expression in nahG plants as an 

alternative experimental strategy to confirm our previous data. The accumulation of 

GST1 transcripts in nahG plants closely paralleled that observed for wildtype Col-O 

plants (Figure 12C), with maximum GSTI transcript accumulation at 2-3 hours post 

Pst(AvrB) inoculation. Furthermore, infiltration of GIGO into nahG plants induced 

maximum GSTJ transcript accumulation at approximately 2 hours, similar to that 

obtained for wildtype Col-O plants (Figure 12C). These experiments therefore 

confirmed our previous observations, which in total showed that local SA accretion 

was not necessary for the engagement of GSTJ : :LUC gene expression in response to 

redox cues. Northern analysis of GSTJ gene expression in the Arabidopsis mutant 

coil (Feys et al., 1994), which is insensitive to Me-JA, was also indistinguishable 

from that observed with wildtype Col-O plants (Figure 12D). Hence, the lipid 

signalling molecule Me-JA also does not appear to play a role in either the activation 

of the oxidative burst or the subsequent transduction of redox cues. 

iii) ROl-induced gene expression is dependent on MAPKK activity 

A key feature of redox signalling in animal cells is the pivotal role played by protein 

kinase cascades (Bauskin et al., 1991). We therefore tested a variety of specific 

protein kinase inhibitors for their ability to blunt H 202  induced GSTJ gene 

expression. Col-O GSTI::LUC plants were inoculated with either G/GO or H 202  in 

the presence or absence of a given kinase inhibitor and the relative induction of 

GSTJ : :L UC gene expression was subsequently determined by measuring the level of 

Luc activity 2 hours post inoculation. 
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Figure 13: ROl-induced GSTJ and PALl gene expression is dependent on MAPKK activity. 

GSTI::LUC induction 2 hours post-inoculation with MgCl 2, Psi DC3000(AvrB), G/GO, 

G/GO+staursoporine, G/GO+K252a, GJGO+PD98059, cantharidin, and cantharidin+catalase. 

Northern hybridisation of PAL] transcripts following inoculation with Pst DC3000(AvrB) at 0 

hours, Psi DC3000(AvrB), Psi DC3000(AvrB)+catalase, H202, and Psi DC3000(AvrB) in nahG, coil 

and etri respectively (all at 2 hours). 

Northern hybridisation of PAL] transcripts 2 hours post-inoculation with Psi 

DC3000(A vrB)+PD98059, G/GO+PD98059, and cantharidin+catalase. 

Quantification of PALl transcripts (normalised to R18) 0 hours post-inoculation with G/GO 

(control), G/GO (2 hours), G/GO+PD98059 (2 hours), and cantharidin+catalase (2 hours). 



Neither staurosporine nor K252a, two broad spectrum kinase inhibitors, which are 

widely used in studies of plant biology, significantly inhibited the induction of Luc 

activity. These two pharmacological agents are well characterised inhibitors of 

protein kinase C (PKC), protein kinase A (PKA), calmodulin dependent kinase 

(CaMK) and protein kinase G (PKG). In contrast, co-inoculation of GIGO with 

PD98059, a specific inhibitor of mitogen activated protein kinase kinases (MAPKKs) 

(Cohen, 1997), strongly blunted the induction of Luc activity by 46% (Figure 13A). 

Therefore, a MAP kinase cascade may be an integral component of the redox 

signalling network that engages GSTJ gene expression in response to ROl 

accumulation. 

To explore this possibility further, we undertook a complementary gain-of-function 

experiment, using the specific phosphatase 2A inhibitor cantharidin, to examine if 

this pharmacological agent could induce GSTJ : :L UC gene expression in the absence 

of redox cues. To discriminate between activation of the oxidative burst (which is 

also regulated by a phosphorylation cascade (Levine et al., 1994)) and engagement 

of redox signalling, cantharidin was co-inoculated with the H 202  enzyme scavenger 

catalase (CAT), in order to blunt any H 202  accumulation resulting from possible 

engagement of the oxidative burst machinery. Inoculation of 300 units/ml of CAT 

had previously been demonstrated to strongly diminish the magnitude of GST] : :LUC 

gene induction in response to H 202  generated in response to Pst DC3000(AvrB) 

inoculation (Figure 8D). The results clearly demonstrated that cantharidin strongly 

induced Luc activity even in the presence of CAT (Figure 13A). The expression of 

the GSTJ gene may therefore be regulated by a poise between 

phosphorylationldephosphoiylatiOn. Similar results were obtained using Northern 

blot analysis (data not shown). 

In addition, we also examined the response of a phenylalanine ammonia-lyase 

(PAL 1) gene, which has been previously demonstrated to be strongly induced in 

response to ozone in a SA-independent manner (Sharma et al., 1996). Inoculation 

with Pst DC3000(AvrB) resulted in strong accumulation of PALl transcripts within 

two hours (Figure 13C). Revealingly, co-inoculation of Pst DC3000(AvrB) with 
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CAT significantly blunted PAL] gene expression, while inoculation of G/GO 

strongly induced the expression of this gene. Thus, ROIs may constitute a key signal 

for the activation of PAL] in response to Pst DC3000(AvrB) inoculation. 

In a similar fashion to GST], engagement of PAL] gene expression in response to Pst 

DC3000(AvrB) inoculation was not abrogated in either a nahG, coil or etrl genetic 

background (Figure 13C). We therefore investigated if the engagement of PALl 

gene expression by ROIs also depended on MAPKK activity. Co-inoculation of 

PD98059 with either Pst DC3000(AvrB) or G/GO significantly reduced the induction 

of PAL] compared to that observed with either alone (Figure 13B&D). 

In the corresponding gain-of-function experiment, inoculation of cantharidin in the 

presence of CAT strongly induced PAL] gene expression in the absence of H 202 . 

Quantification of these results using phosphorlmage analysis, revealed that PD98059 

decreased G/GO induction of PALl by 99.5%. In contrast, cantharidin in the 

presence of CAT activated PALl gene expression by 17-fold (Figure 1313). The sum 

of the data therefore suggests that MAPKK activity is an integral component of the 

signal network that couples the induction of both PAL] and GSTJ gene expression to 

redox cues. 

To confirm the data derived from the deployment of pharmacological agents, we also 

determined MAPK activity directly by means of in-gel kinase assay (experiments 

performed by B-Y Wook - data not shown). Two kinases that bound the myelin 

basic protein (MBP) substrate of approximately 48- and 46-kD were rapidly induced 

by leaf infiltration of G/GO from a low basal level of activity. Induction of both 

bands was unchanged in the etr] and coil mutant backgrounds. In the nahG 

background however, while the basal activity of the 46-kD MBP kinase was similar 

to that determined for Col-O plants, the relative induction of this kinase was 

consistently reduced. Furthermore, PD98059 was shown to significantly blunt 

G/GO-mediated induction of these two MBP kinases. Subsequent results obtained 

by means of Western analysis using a radiolabelled antibody (Phospho-p44/42 MAP 

kinase (Thr202/Tyr204) Antibody - New England Biolabs) raised against 
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phosphorylated MAPK were entirely consistent with the data derived from the in-gel 

kinase assays. Thus, PD98059 may blunt activation of GSTJ and PALl expression 

by inhibiting MAPKK activity and consequently suppressing the activation of the 

two MAPKs. 

iv) Discussion 

While it is becoming increasingly apparent that ROT integrate a diverse set of 

complementary defence mechanisms, the identity of the molecular machinery 

underlying the oxidative burst still remains to be rigorously established. In bean and 

cotton the pathogen activated oxidative burst is cyanide sensitive and apoplastic 

peroxidases are thought to be a direct source of ROTs in these cases (BolwelI and 

Wojtaszek 1997; Martinez et al., 1998). However, a DPI inhibited NADPH oxidase 

activity has been proposed to mediate the oxidative burst in soybean and tobacco cell 

suspension cultures (Levine et al., 1994; Piedras et al., 1998). 

As many of the reported studies to date have been undertaken in different 

experimental systems and have focused on only one possible enzymatic mechanism, 

we employed a variety of pharmacological agents to investigate the enzymatic 

source(s) of the redox cues responsible for engaging GSTJ gene expression. Co-

inoculation of either the NADPH oxidase inhibitor DPI or the peroxidase inhibitor 

NaN3 in combination with Pst DC3000(AvrBIAvrRpt2) significantly decreased the 

induction of GSTJ gene expression. In contrast, no role could be found for the 

generation of ROTs via amine oxidase-type enzymes. Subject to the usual caveats 

associated with the deployment of these pharmacological agents (Barcelo, 1998), the 

data suggested that both an NADPH oxidase and a peroxidase-type enzyme 

contributed to the generation of redox signals that cued the engagement of GSTJ 

gene expression in response to attempted Pst DC300(AvrB) infection. Hence, 

mechanistically, the oxidative burst in Arabidopsis may resemble that of lettuce, 

which may also generate ROIs via both an NADPH oxidase system and apoplastic 

peroxidases (Bestwick et al., 1998). It will be interesting to assess if the contribution 

of these enzymes to ROT production varies in response to different pathogens. 
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Recently, NO has been proposed to potentiate the induction of hypersensitive cell 

death in soybean cells by ROIs and function independently of such intermediates to 

induce gene expression during the establishment of disease resistance (Delledone et 

al., 1998; Durner et al., 1998). The deployment of both gain- and loss-of-function 

experiments however did not identify a direct function for NO in the engagement of 

GSTJ gene expression. Moreover, NO was found not to potentiate the activation of 

GSTJ via ROIs. No direct or indirect role for NO in the redox regulation of GST1 

was therefore established. Thus, the key redox responsive switch(es) integral to the 

signalling network regulating GSTJ gene expression are more likely to constitute 

critical regulatory thiols, the preferred targets of ROIs, rather than iron targets, the 

prototypic preference of NO (Stamler 1994). 

Ethylene, SA and Me-JA are thought to constitute key defence signalling molecules 

that function to coordinate a diverse array of defence mechanisms which underlie the 

establishment of disease resistance (Xu et al., 1994; Gafthey et al., 1993; Feys et al., 

1994). We therefore examined the potential role of these molecules on both the 

generation and perception of ROIs by monitoring GSTI gene expression in coil and 

etrl plants, which are insensitive to ethylene and Me-JA respectively. Neither 

mutant background significantly impacted either the magnitude of induction or the 

temporal expression profile established by the GSTJ gene in response to inoculation 

with Pst DC3000(AvrB1AvrRpt2). Moreover, similar observations were derived from 

Northern analysis of the redox responsive PAL] gene. Thus, engagement of the 

oxidative burst and cognate redox signalling may occur independently of Me-JA and 

ethylene. These conclusions however, do not preclude a potential role for these key 

defence signalling molecules in the engagement of the oxidative burst and cognate 

redox signalling in tissues exhibiting either local or systemic acquired resistance, 

where their respective concentrations may exceed a critical threshold value. 

Similar experiments were undertaken in nahG plants, which show reduced 

accumulation of SA in response to attempted pathogen invasion (Gaffney et al., 

1993). Neither expression of a GST]::LUC reporter gene nor the accumulation of 

endogenous gstl transcripts were affected in a nahG genetic background. Hence, a 
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suppression in the local accretion of SA was found not to impact either ROl 

production or the subsequent transmission of redox signals. These observations 

contrasted with previous studies that have suggested SA accumulation may 

potentiate the oxidative burst (reviewed in Van Camp et al., 1998). In cucumber 

hypocotyls however, this phenomenon required an 18 hour conditioning process that 

depended on de novo protein synthesis (Fauth et al., 1996). This mechanism would 

therefore probably not be operational in our experimental system. In contrast, co-

application of SA in conjunction with an avirulent pathogen has been reported to 

potentiate the oxidative burst without a prior conditioning step in soybean suspension 

cultures (Shirasu et al., 1997). However, the required SA concentration has only 

been measured routinely in tissues surrounding local HR lesions (Malamy et al., 

1990). Thus, this mechanism also may not be operational in naive tissue but 

deployed following the development of acquired resistance in local and possibly 

systemic tissues. Our observations of redox responsive gene expression in naive 

tissue of nahG transgenic plants would be consistent with this hypothesis. 

A pivotal role for MAPKs in disease resistance has recently begun to emerge 

(Ligterink et at., 1997; Romeis et al., 1999), although these kinases are thought to 

function independently of the oxidative burst. Interestingly, it has recently been 

reported that the overexpression of constitutively active deletion mutants of a 

mitogen activated protein kinase, kinase, kinase (MAPKKK), activated 2 of the 6 co-

overexpressed MAPKs tested in Arabidopsis protoplasts exposed to acute H 202  

stress (Kovtun et at., 2000). Moreover, exposure of tobacco cell suspension cultures 

to necrosis inducing concentrations of ozone has also recently been proposed to 

stimulate MAPK activity (Samuel et al., 2000). 

In the context of plant disease resistance, our observations have extended these 

studies by demonstrating that sustained production of sub-lethal concentrations of 

ROIs, mimicking the kinetics of the oxidative burst, resulted in the rapid activation 

of 48- and 46-kD MBP kinase activities in Arabidopsis leaf tissue. The substrate 

specificity and molecular mass of these kinases predicted a MAPK identity, later 

confirmed by Western blot analysis using an antibody raised against a 
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phosphorylated MAPK. Moreover, PD98059, an inhibitor of MAPKKs, completely 

suppressed the activation of both kinases, suggesting MAPKK activity is a 

prerequisite for their activation, further underscoring their proposed MAPK identity. 

The molecular mass and activation kinetics of the 48- and 46-kD MBP kinases 

suggest they belong to the stress activated class of MAPKs in Arabidopsis 

(Mizoguchi et al., 1997), which contain orthologues of the SA inducible (SIPK) and 

wound inducible (WIPK) MAPKs from tobacco, which may be important mediators 

of SA and Me-JA-dependent signalling respectively (Zhang and Klessig, 1997; Seo 

et al., 1995). 

The induction of the redox responsive genes GST1 and PAL] were found to occur 

independently of SA, Me-JA and ethylene. We therefore investigated the activation 

of the 48- and 46-kD kinases in nahG, coil and etrl genetic backgrounds in response 

to sustained ROl accumulation. Activation of the 48-kD kinase in these genetic 

backgrounds paralleled that which occurred in wildtype plants. Hence, this kinase is 

activated independently of the action of SA, Me-JA and ethylene. In contrast, while 

the activation of the 46-kD kinase was similar in coil and etri mutants compared to 

that of wildtype plants, in a nahG genetic background the activation of this kinase 

was consistently reduced in comparison with wildtype plants. Hence, SA may be 

either necessary or sufficient for maximum activation of this kinase. The 48- and 46-

kD kinase activities can therefore be resolved in the absence of SA. As the induction 

of GSTJ and PAL] genes are not affected within a nahG genetic background, the 48-

kD rather than the 46-kD kinase probably undertakes a predominant functional role 

in the transmission of redox cues. A MAPK module may therefore be a key feature 

of the redox signalling pathway engaged following activation of the oxidative burst 

during the establishment of disease resistance. 

In animal cells there is compelling evidence for both direct and indirect mechanisms 

for the regulation of gene expression in response to changes in cellular redox status. 

In response to severe hyperoxic states, key cysteine residues of redox modulated 

transcription factors may become oxidised, effecting changes in the expression 

profile of their target genes (Abate et al., 1990). In contrast, signal transmission in 
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response to lower levels of ROIs may require the action of specific protein kinases. 

Recently, ROIs have been shown to engage the stress-activated class of MAPKs 

(SAPKs), including the c-Jun N-terminal kinase (INK) group, that contribute to a 

MARK cascade activated in response to specific environmental stresses (Klotz et al., 

1999). Hence our data highlighting a pivotal role for a MAPK module in ROl-

mediated signalling during the establishment of disease resistance suggests 

significant parallels may exist in the transduction of stress induced redox signals in 

plants and animals. 

Local ROl accumulation has recently been shown to lead to the establishment of 

acquired resistance in both local and systemic tissues (Chamnongpol et al., 1998; 

Alvarez et al., 1998). This mechanism is thought to operate via the SA-dependent 

induction of acidic PR proteins (Chamnongpol etal., 1998) and the production of SA 

precursors is known to be a major function of PAL during the development of 

disease resistance (Mauch-Mani and Slusarenko 1996). We have demonstrated that 

expression of the Arabidopsis PAL] gene is mediated via redox cues following 

engagement of the oxidative burst. Moreover, this redox signalling network 

functions independently of SA, Me-JA and ethylene but is dependent on a 48-kD 

MAPK activity. Thus, local ROT production during the oxidative burst and reiterated 

systemic microbursts may activate the expression of PAL], thereby driving the 

biosynthesis of SA, leading to the accumulation of PR proteins and the subsequent 

establishment of acquired resistance in both local and systemic tissues. The 

oxidative burst may therefore engage a bifurcating redox signalling pathway that 

orchestrates the production of both key defence signals and pivotal antioxidant 

defences, leading to the development of both disease resistance and the limitation of 

HR lesion formation respectively. 

The GSTJ::LUC transgenic line described here has been deployed to undertake a 

saturating genetic screen to uncover mutations that impact redox signal transmission 

through this network (screen performed by B-W Yuri). The characterisation of the 

corresponding mutants should provide significant insights into the mechanisms 

underlying redox signalling during the establishment of plant disease resistance. 
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5) ISOLATION AND CHARACTERISATION OF A NOVEL DISEASE 

RESISTANT MUTANT BY ACTIVATION TAGGING 

i) Introduction 

Mutant screens have been used extensively as a means of dissecting genetic 

pathways in a wide array of different organisms. In plants this has often taken the 

form of EMS mutagenesis, neutron particle bombardment and T-DNA tagging. EMS 

and irradiation are efficient methods of generating large numbers of mutations that 

effectively saturate the genome. However, a significant drawback of these methods 

is the subsequent lengthy process of gene-cloning associated with chromosome 

walking. Cloning genes from T-DNA tagged plants is comparatively more 

straightforward, although chromosomal rearrangements may make plasmid rescue 

difficult (Feldmann, 1991). 

One major shortcoming of all three methods of mutant isolation is that they are 

largely confined to the isolation of loss-of-function mutations. As such, genes whose 

function is essential during multiple stages of the plant life-cycle will not be 

uncovered if their disruption results in a lethal phenotype. In addition, sequencing of 

the Arabidopsis genome has revealed a high degree of apparent gene duplication 

(Bevan ci al. 1998), so loss of function screens rarely identify genes that act 

redundantly. 

Activation tagging has recently been developed as a means of isolating gain-of-

function mutations and corresponding genes (Kakimoto 1996; Kardailsky et al. 1999; 

Weigel ci al. 2000). In addition to gain-of-function mutants, insertional loss-of-

function knockouts can also be uncovered in the T 2  generation. The binary vector 

pSKI015 (Figure 14A) (Walden ci al., 1994; Weigel ci al. 2000) has been designed 

specifically for this purpose: between the left and right border is a tetramer of the 

CcilvfV 35S enhancer (Fang et al. 1989) that is randomly integrated in the plant 

genome. Endogenous expression of genes immediately adjacent to the site of 

insertion should thus be significantly enhanced (Figure 14B), Also integrated into 

the transformation cassette is the BAR gene, facilitating high-throughput screening of 
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Figure 14: The activation tagging vector pSKI015 

T-DNA insertion cassette enclosed by left border (LB) and right border (RB) containing Basta 

resistance gene (BAR), origin of replication of E. coil (as part of pBstKS plasmid) and tetramer of the 

35S enhancer (from Weigel lab web site: www.salk.edu/LABS/pbio-w/researclifs.litiiil).  

Endogenous expression of genes adjacent to the 4x35S enhancer region may be enhanced 

following integration of the activation cassette into the plant chromosome. 
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primary transformants by Basta herbicide selection. In addition, the oriV origin of 

replication of E. coil enables regions of the plant genome flanking the T-DNA point 

of insertion to be cloned by plasmid rescue. 

ii) Isolation of a mutant displaying spontaneous lesion formation 

Approximately 3,000 novel transgenic Arabidopsis lines were generated containing 

the binary cassette of pSKI015 randomly integrated into their genome. A transgenic 

PRJa::LUC line was used for transformation, comprising the tobacco PR1a promoter 

(Uknes el al., 1993) fused to the firefly luciferase gene (Thomson & Loake, 

unpublished). Such plants had previously been shown to faithfully report 

accumulation of Arabidopsis PR] transcripts following pathogen attack and had been 

successfully deployed in an EMS mutant screen to isolate SAR signalling mutants 

(Murray et al. - unpublished). These lines were screened in the first (T i ) generation 

for visual peculiarities and constitutive luciferase activity. 

One mutant (subsequently named adrl-D for activated disease resistance 1-

dominant), characterised by its dwarf phenotype, curled leaves, constitutive 

luciferase activity (Figure 15) and the development of the spontaneous formation of 

small necrotic lesions under high light conditions was isolated for further analysis. A 

number of lesion mimic (LM) mutants exhibiting a similar morphological phenotype 

have previously been isolated, most notably the accelerated cell death (acd) mutants 

(Greenberg el al. 1994) and lesions simulating disease resistance response (lsd) 

mutants (Dietrich et al. 1994). Such mutants often display elevated levels of SA and 

enhanced disease resistance (Greenberg 1994 ci al.; Dietrich ci al. 1994). 

Furthermore, no gain-of-function mutant of this type, as distinct from the loss of a 

negative repressor such as isdi (Jabs ci al., 1996), has previously been reported 

making it an intriguing candidate for further analysis. 

Onset of the adrl-D phenotype was observed to occur 2-3 weeks after germination 

prior to which time mutants are indistinguishable from wildtype. From this point, 

mutants became progressively stunted, and the development of leaf curling was 
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apparent, with adult plants significantly dwarfed compared to wildtype (Figure 16). 

Interestingly, the phenotype appeared to be semi-dominant: in homozygotes (i.e. two 

Figure 16: The adrl-D mutant in comparison to wiidtypc Col-0 

copies of 4x35S) leaf curling and dwarfing were greatly exacerbated as compared 

with the hemizygote and lesions formed even in the absence of high light conditions 

(Figure 18). Semi-dominance has also been observed in a number of other activation 

tagged mutants including another disease resistant mutant, cdrl (Weigel et al., 2000). 

Unlike Isdi, the phenotype was not strictly dictated by day-length (Jabs et at 1996). 

The adrl-D mutant was allowed to self-pollinate and the F 2  generation analysed. 

Basta resistance in the progeny always segregated with lesion formation and 

constitutive luciferase expression suggesting that the gene conveying this phenotype 

was tagged. Furthermore, progeny segregated 3:1 (B astaR : BastaS) in 120 lines 

tested, suggesting T-DNA insertion had occurred at one locus only. adrl-D was 

back-crossed to wildtype Col-0 and progeny allowed to self-fertilise. The resulting 

F2  generation of the successful cross were selected for Basta resistance and scored 

for loss of PRIa::LUC cassette by lack of constitutive luciferase activity, and these 

plants were crossed to transgenic GSTI::LUC plants. Basta resistant progeny of 

successful crosses showed constitutive Luc activity (Figure 17) that also segregated 

with lesion formation and Basta resistance. 

The mutant was crossed to a number of different mutant backgrounds, and progeny 

of successful crosses allowed to self-pollinate before selecting for homozygotes with 
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Figure 15: The adrl-D mutant constitutively expresses a PRIa::LUC reporter gene as ShOWfl by 

luciferase imaging 

Images routinely collected over 10 seconds exposure. Light intensity corresponds to accumulation of 

PR I gene expression (Thompson and Loake - unpublished). 
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Figure 17: The adrl-D mutant constitutively expresses a GST1::LUC reporter gene as shown by 
luciferase imaging 
Bioluminescent images collected over 1 second. Light intensity corresponds to GSTJ expression 
(Chapter 3). 

60 



•F 
, •• 

- 	
. 

.: -  RRI 

Figure 18: 	adrl-D in different mutant 

backgrounds 

Top picture in each rectangle is homozygous with 

respect to acfr1-D bottom picture is hemizygous. 
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respect to mutant background. The mutants (nahG, etri, ein2-1, coil, nprl) were 

chosen for crossing purposes as they have all been implicated in disease resistance 

pathways (chapters 1 and 4). The double mutants were characterised at 4 weeks in 

terms of severity of the adrl-D visible phenotype and accumulation of defence-

related transcripts. In the case of adrl-DxnahG mutants, H202  accumulation and 

lesion proliferation were also assessed, and bacterial and fungal pathogenicity assays 

performed. 

iii) Morphological phenotype is mediated by SA, ethylene, and NPR1, but not by 

JA signalling 

The gross morphology of double mutants relative to wildtype is summarised in the 

panel of photos in Figure 18. Some lesion mimic mutants such as lsd6 and lsd7 have 

previously been shown to lose the visible phenotype in the nahG background, 

suggesting that a SA-regulated positive feedback mechanism mediates lesion 

formation (Weymann el al., 1995). This phenomenon was also observed in 

hemizygous adrl-DxnahG plants which were indistinguishable from Col-OxnahG. 

However, homozygous adrl-DxnahG displayed a significant degree of leaf-curling, 

slight reduction in size, and lesion development was visible under conditions of high 

light, suggesting that SA is not completely broken down by the salicylate 

hydroxylase. 

Application of INA, an analogue of SA that is not a substrate for salicylate 

hydroxylase, has previously been shown to reiterate lesion development in 

nahGxlsd6 and nahGxlsd7 (Weymann el al. 1995). Due to the unavailability of this 

compound, its functional analogue benzothiadiazole (BTH) (active ingredient of crop 

protectant, BionTM) (Schweizer et al. 1999; Lawton etal. 1996) was used in a similar 

recapitulation experiment (Figure 19). Leaves of the adrl-DxnahG double mutant 

developed lesions approximately five days after BTH application whilst no 

significant difference was observed in nahG+BTH nor adrl-DxnahG+silwet control 

plants (data not shown). Intriguingly, emergent and systemic leaves also showed 

lesion formation in adrl-DxnahG plants despite not having been directly treated. 



Figure 19: Local application of BTH causes systemic induction of cell death 

Leaves of adrl-DxnahG plants were shown to undergo cell death when painted 

with 300piM BTh within 4-5 days of application. Emergent and systemic leaves 

also showed a similar cell death phenotype. nahG controls were not affected. 

Photos taken 7 days alter BTH application. 
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The formation of micro-lesions has previously been observed in naive leaves distal to 

those undergoing the hypersensitive response (Alvarez ci al., 1998), thus this 

observation in BTH-treated adrl-DxnahG double mutants may in effect be an 

amplified reiteration of lesions mediated by a similar enigmatic diffusible signal. 

Lesion development, dwarfing and leaf-curling were partially attenuated in ein2, 

etrI, and nprl mutant backgrounds, though not to the same extent shown by nahG. 

adrl-Dxnprl double mutants also exhibited a pronounced yellowing chiorosis which 

increased in severity towards the centre of the rosette. A similar effect has been 

reported in the lesion mimic mutants cpr5 and acd6 crossed with nprl (Bowling ci 

al., 1997; Rate et al., 1999), suggesting that nprl mutants are hypersensitive to SA 

phytotoxicity. coil did not appear to significantly block the LM phenotype though 

natural variation within the adrl-Dxcoil population appeared greater than observed 

for other double mutants. 

H202 accumulation was assayed in adrl-D in Col-0 and nahG backgrounds (Figure 

20). DAB staining was greatly enhanced in the adrl-D mutant but confined to the 

periphery of the leaf being largely absent in the region surrounding the main vein in 

the hemizygote. Staining was intensified in the homozygote but more homogenous 

in distribution. No staining was evident in the nahG background for the hemizygote, 

though the homozygote exhibited a light brown staining suggesting that excess H 202  

accumulation was not completely abrogated. 

UV confocal microscopy revealed the presence of discreet patches of autofluorescent 

tissue in the adrl-D mutant but absent in the wildtype (Figure 21). This is indicative 

of the biosynthesis or deposition of secondary metabolites such as phytoalexins and 

is associated with cells undergoing the hypersensitive response (Dietrich ci al., 

1994). Regions of autofluorescence were around 10 cells in diameter, whereas in the 

homozygote the frequency and size of lesions was approximately double. No such 

micro-Lesions were observed in the adrl-DxnahG double mutant implicating SA in 

mediating hypersensitive cell death. 
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Col-O 

adrl-D hemizygote 

adrl-Dxn a/i G 

adrl-D homozygote 

Figure 20: H202 accumulation and lesion development is SA-dependent 

DAB staining was perfonned to assess H 202  accumulation. adrl-DxnahG is 
hemizygous with respect to the ADRJ gene. Photo of adrl-D homozvgote 
taken at x4 magnification. 
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Col-O 

adrl-D hem izygous 

adrl-Dxnah G 

adrl-D homozygous 

Figure 21: Lesion formation is SA-dependent 

Cell death in adrl-D mutant is visualised as clusters of autofluorescent cells 
using a confocal microscope as described in Chapter 2. adrl-Dx.nahG is 
liemizygous with respect to ADRI gene. 
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iv) Defence genes are strongly are upregulated in the adrl-D mutant 

The proliferation of mRNA transcripts of five different genes was measured by 

Northern analysis in adrl-D double mutants. GSTJ, PR], and PDFI.2 were chosen 

as markers of H202  accumulation, SAR and JA-dependent signalling respectively 

(chapter 1). Probing with ADRJ was performed to assess if co-dominance was 

mediated at the transcriptional level and whether ADRJ might be activated by a 

feedback mechanism. This was carried out after cloning of the ADR1 gene described 

in the following chapter. The results of the Northern analysis are summarised in 

Figure 22. 

High levels of GSTI transcript were shown to accumulate in the adrl-D mutant with 

significantly greater amounts present in the homozygote than the hemizygote. 

adr]-D seedlings also over-express GST] but not to the same extent as adult plants. 

Expression in adr]-D mutants was significantly reduced but not completely blocked 

in the nahG background. GSTI expression appeared to be slightly higher in 

adrl-Dxcoil, but was unaffected in ein2, etri, and nprl backgrounds. This apparent 

insensitivity and only partial reduction of GST] in homozygous adrl-DxnahG is in 

contrast to PR] and may reflect different induction specificities of the respective 

genes. For example, GSTs may be induced by ROT, lipid peroxides, ethylene, and 

jasmonic acid (Marrs, 1996) which may not necessarily be reduced in the nahG 

background. 

The expression pattern of PR] was broadly similar to that of GSTJ, however relative 

induction of PR] was significantly higher in adrl-D mutants than GST]. This was 

not the case in adrl-D seedlings in which GST] but not PR] induction was evident. 

nahG completely abolished PR] gene expression in both the adr]-D homozygote and 

hemizygote thus underlining its dependency on SA accumulation. Expression also 

appeared slightly reduced in coil, ein2, and etr], but significantly lower in the nprl 

background. 

Transcript levels of PDFI.2 contrasted markedly with GSTJ and PR] expression 

patterns, reflecting the different specificities of this SA-independent gene. All 
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Figure 22: Expression of defence-related transcripts in different mutant backgrounds 
Northern analysis shows mRNA levels of PRJ, GSTJ, PDFJ.2, ADRI, and R18, in mutant 

backgrounds as indicated. 

(H) - homozygous 

(h) - hemizygous 

Approximate size on right as indicated by RNA ladder (Promega #G3191). 
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mutants showed high expression of PDF1.2 except for adrl-Dxcoil in which 

expression was entirely abolished, as would be expected for this JA-dependent gene. 

The ein2, etri, and nprl mutant backgrounds appeared to partially attenuate 

expression of PDF1.2. The results for adrl-DxnahG are more ambiguous as 

expression appears to be reduced in the hemizygote but increased in the homozygote 

relative to adrl-DxCol-O. Surprisingly, expression in adr]-D seedlings was non-

existent despite being evident in naïve adult Col-0 plants suggesting that PDF1.2 

expression may be developmentally regulated. 

As expected, ADRI gene expression was upregulated in all adrl-D mutant 

backgrounds but could not be detected in Col-O. Although relative induction of 

ADRI is high, the net gene expression of ADRI was much less than was evident for 

all the defence genes tested. This may testify to the potency of ADRI as a signalling 

gene if such a dramatic phenotype can be attained by relatively low gene expression. 

Intriguingly, ADRJ appears to be multiply spliced as at least 4 putative transcripts 

were observed. However, it was not possible to reconcile the transcript sizes that 

were obtained with possible splicing mechanisms. 

ADR1 gene expression varied in different genetic backgrounds and broadly 

correlated with phenotype severity. ADRJ expression was stronger in homozygotes 

than hemizygotes indicating that gene load dictates severity of phenotype to some 

degree. However, ADRI expression was only marginally lower in the phenotypically 

normal seedlings, suggesting that initiation of the LM phenotype at the seedling stage 

may depend on attaining a sufficient threshold of pro-death effectors such as SA and 

ROl. Like GSTJ and PR] expression, ADR] was significantly abrogated by nahG 

suggesting that the ADR1 gene is SA-inducible, a fact which was later confirmed 

(chapter 6), thus creating a positive feedback loop absent in a nahG background. 

However, unlike PR] SA-dependent activation of ADRI is independent of NPRJ. 

Overall, the ADRJ expression pattern was almost identical to that of GSTI so it is 

tempting to speculate that both are regulated by similar cues, and it is interesting to 

note that the promoters of both genes contain TCA elements, at -19 in GST] and at - 

93 and -33 in ADRI with respect to translational start site. 
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Resistance to Peronospora parasitica 

4 

2 
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Figure 23: adrl-D conveys resistance to Pernosporaparasitica (downy mildew) 

Disease index scored for multiple replicates according to method devised by Cao ci al. 1997. No 

bar is visible for adrl-D as disease index score was 0 - no disease symptoms visible on any leaves. 

10 days following spraying with fungal spore suspension, no infection is evident on adrl-D 

mutant (top left), whereas adrl-DxnahG is heavily infected and dies soon after. 
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adrl-D mutants display enhanced resistance to fungal pathogens 

The overexpression of defence transcripts and hyperaccumulation of SA prompted us 

to examine whether adrl-D mutants exhibit enhanced resistance to virulent 

pathogens. This was assessed by scoring disease symptoms in adrl-D in comparison 

to Col-O, nahG, hemizygous adrl-DxnahG, and the disease resistant mutant cprl 

(Bowling el al., 1997) following infection with the biotrophic oomycete 

Peronospora parasilica. The scoring method took into account number of leaves 

infected and proportion of leaf covered. 

The results of the P. parasitica resistance assay are summarised in Figure 23A&B. 

There was no sign of fungal infection on any of the adrl-D plants. However, this 

resistance was dramatically abrogated in the nahG background which was the most 

susceptible of the lines. nczhG was also significantly more susceptible than Col-O 

with around three times the disease index score of the wildtype. Conversely, cprl 

was marginally more resistant than Col-O with approximately half the disease index 

score of wildtype. adrl-D also exhibited enhanced resistance to an isolate of 

Erysiphe cichoracearurn as compared with Col-O that was also abolished in the nahG 

background (data not shown). 

adrl-D mutants display enhanced resistance to a bacterial pathogen 

adrl-D plants were also deployed in a bacterial disease resistance assay using 

virulent Psi DC3000 pv. tomato, the causal agent of bacterial speck disease in 

tomato. Adult adrl-D, adrl-DxnahG, and Col-O plants wer le hand infiltrated with a 

bacterial suspension of lO cfti/ml and visually scored for disease symptoms. Leaf 

disks from individual lines were also homogenised and plated at different dilutions to 

assess bacterial growth. As shown in Figure 24 bacterial growth in adrl-D was 

almost an order of magnitude less than Col-O, whereas the adrl-DxnahG was 

significantly more susceptible than wildtype. Leaves of Col-O plants exhibited 

yellowing chiorosis symptomatic of this disease. Some leaves of adrl-D plants 

displayed visible signs of infection though disease symptoms were less severe and 

fewer leaves were diseased as compared with wildtype. Resistance did not seem as 

robust as conveyed against the fungal pathogens which may reflect problems 
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associated with infiltrating the small leaves of the mutant, or variations between 

conditions of growth chambers. 

lx 106 

1x105  

lx10 

ft  1x103 

C 
- 	 I 

Figure 24: adrl-D displays enhanced resistance to Pseudomonas svringae pv. tomato 

Virulent P. syringae were inoculated into leaves with -40 cfuirnl and colonies counted three days 

later following plating of homogenised leaf disks on KB agar at 30°C. 

vii) Discussion 

The aforementioned data clearly indicate that SA accumulation underpins almost all 

aspects of the adrl-D phenotype. This is evident in terms of H202 accumulation, 

lesion formation, GSTI and PRJ transcript levels, and disease resistance to two 

fungal pathogens, and virulent Psi DC3000, which were all significantly enhanced in 

the adrl-D mutant and markedly reduced in adrl-DxnahG mutants relative to 

wildtype. Furthermore, all these characteristics with the exception of disease 

resistance which was not tested, were further enhanced in the adrl-D homozygote 

which probably reflects greater SA accumulation than in the hemizygote. Only 

PDFJ.2 expression appeared unaffected by SA, which is perhaps not surprising 

given that its regulation is largely JA-dependent (Chapter 1). 

Ethylene signalling also appears to regulate the adrl-D phenotype though to a much 

lesser extent than SA. The visible phenotype was partially attenuated in both the 
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ethylene insensitive mutants ein2 and efri. Furthermore, accumulation of PR], 

PDFJ.2 transcripts but not of GSTI also appeared slightly decreased. Induction of 

these transcripts appears to correlate with severity of the visual phenotype although it 

remains to be established whether ethylene insensitivity affects gene induction 

directly, or indirectly by virtue of attenuating the LM phenotype. Thus, there 

appears to be some evidence for a degree of cross-talk between ethylene and SA 

signalling pathways. However, to determine the epistatic position of ein2/etrl 

relative to SA accumulation would require analysis of the triple mutant adrl-D 

(homozygote)xein21e1r1xnahG or SA quantification in adr1-Dxein21e1rI in 

comparison to adrl-D. 

JA signalling did not appear to have a big impact on the gross phenotype of adrl-D, 

though there appeared to be a greater variation of morphology within a adr]-Dxcoil 

population, so this was difficult to ascertain conclusively. PR] expression was 

slightly reduced suggesting possible cross-talk between SA and JA pathways, whilst 

expression of the JA-dependent gene PDF1.2 was entirely abolished in the coil 

background. 

Prior results suggest that ADRI functions upstream of NPRJ in the signalling 

pathway and this is reinforced by data from the adrl-Dxnprl cross. Although 

adr]-Dxnprl mutants were characterised by a yellowing chlorosis, they appeared to 

have fewer lesions. Moreover, and leaf curling and dwarfing were not as 

exacerbated as in adrl-D. Furthermore, PR] transcript levels were markedly 

reduced whilst GST], and PDFI. 2 were slightly lower in adr]-Dxnprl mutants. 

These observations may be attributed to the fact that in some respects npr] is 

insensitive to SA, in terms of defence responses (Bowling et al. 1997) and yet 

apparently hypersensitive to the phytotoxic effects of high SA levels. One possible 

explanation for this apparent paradox is that NPRJ might be involved in the 

perception of SA thus activating a negative feedback mechanism to prevent 

accumulation of high levels of SA. 
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To conclude, the regulation of a number of different aspects of the adrl-D phenotype 

is largely dictated by SA, although ethylene, JA and NPRI signalling all appear to 

play minor roles. Furthermore, ADRI is likely to be upstream of the H 202  

accumulation, HR formation, and SA production in the signalling pathway. In 

addition, the overexpression of PDFI.2 in adrl-D mutants suggests that ADRI also 

functions upstream of the branch point between SA and JA signalling pathways. The 

interaction of these different signalling pathways and will be discussed further in the 

final chapter. 

74 



6) STRUCTURE AND FUNCTION OF THE ADR1 GENE 

I) Cloning of the ADR1 gene 

Plasmid rescue was carried out using EcoRI-digested adrl-D genomic DNA to 

obtain sequence downstream from the point of T-DNA insertion. 21 positive 

colonies were obtained and digestion with EcoRI/BainIIl revealed that all contained a 

650 bp fragment downstream from the 4x35S enhancers (Figure 25A) confirming 

that only one T-DNA insertion event had taken place. Two of these colonies also 

released 3 kb and 4 kb fragments respectively following EcoRI digestion, possibly 

due to incomplete digestion of the genomic DNA during plasmid rescue. Digests 

with EcoRV and XbaI also confirmed the tetramer of 35S enhancers was intact (data 

not shown). A 2.2 kb EcoRI/BamHI fragment containing the 4x35S enhancers and 

rescued DNA was cloned into pBluescript SK for sequencing (Figure 2513). 

Homology searches using this sequence revealed that this area had not already been 

sequenced by the Arabidopsis Genome Initiative (AGI). Sequence immediately 

adjacent to the 4x35S enhancers was exactly homologous to EST A1995729 which 

encodes a gene with homology to serine carboxypeptidases. However, the T-DNA 

appeared to have inserted into the coding region of this gene thus it was unlikely that 

this disrupted gene would give rise to a functional gene product and therefore 

probably did not account for the dominant mutant phenotype. 

Sequence further downstream from the 4x35S enhancers was obtained by probing a 

Ws-0 cosmid genomic library (as described in chapter 3). A 650 bp XbaI fragment 

(Figure 25C) was used to probe the library and chapter 46 was shown to give a 

positive band. A single colony from this chapter was isolated by probing with the 

XbaI fragment. DNA from this positive colony was digested with SpeI in tandem 

with 13 other restriction enzymes (BamHI, Cia!, HindIII, EcoRI, KpnI, Not!, PstI, 

Sacl, SacII, SmaI, SpeI, XbaI, and XhoI), the digests run on a gel and Southern 

hybridisation performed. This blot was probed with a 400 bp SpeL/XbaI fragment 

(Figure 25D) to isolate fragments downstream of the region already rescued. 

Autoradiography revealed positive bands ranging in size from 1 kb to 6 kb and one 
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Figure 25: Cloning of ADRJ by plasmid rescue and genomic library screening 

The rescued plasmid containing masS' promoter, pBluescript, 4x35S and 650 bp of ADRI 
genomic DNA. 

A 2.3 kb EcoRI/BarnHJ fragment containing enhancers and rescued DNA is cloned to pBluescript. 
Sequencing is performed with this construct using the T7 primer. 

A 650 bp XbaI fragment of rescued DNA is used to probe a cosmid genomic library and a single 
colony is isolated. 

A 400 bp SpeI/XbaI fragment was used to probe DNA from the positive cosmid previously 
digested with Spel and in conjunction with a number of different enzymes. 

A 5.5 kb SpeI/PstI positive fragment is cloned to pBluescript. A nested set of deletions is 
generated which are sequenced using the T3 primer. 

Abbreviations: B - BainHI; E - EcoRI; Sc - Sad; S - SpeI; P - PstI; X- XbaI; 
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SpeL'Ps!l band of 5.5 kb was cloned to pBluecript SK for further analysis (Figure 

25E). 

The 5.5 kb fragment was sequenced to determine whether it contained any genes that 

might account for the adrl-D phenotype The 5.5 kb fragment cloned into 

pBluescript SK was digested with Sacl and Spel then incubated with Exonuclease III 

to generate a nested set of deletions. Timepoints for incubation with the exonuclease 

were chosen so as to generate fragments differing in size by 300-400 bp, which were 

subsequently transformed into E. co/i DH5ct. Sequencing was performed using the 

T3 primer and a contiguous overlapping sequence assembled (Appendix 1). 

The sequenced contig was analysed for the presence of open reading frames (ORFs) 

by Genscan on the web-server. The 5.5 kb fragment was predicted to contain a gene 

designated C of 2787 bp approximately 700 bp downstream from the 4x35S 

enhancers (Figure 26), which was later shown to encode the ADRI gene (Appendix 

I). A 500 bp fragment of a gene was identified 1411 bp downstream from the stop 

codon of C, referred to as gene D. Homology searches indicated that C had 

homology to R-genes whilst D was similar to genes encoding transposon-like 

proteins. Gene C was thus a suitable candidate for further analysis as it was 

immediately adjacent to the 35S enhancers and was possibly implicated in disease 

resistance signalling by virtue of its sequence. Moreover, gene C had very high 

homology (98-100%) at the nucleotide level to 3 ESTs (F19983; N96117; Z25604) 

in the database suggesting it encoded an expressed gene, while no ESTs were found 

for gene D. 

Figure 26: The relative position of ADR1 in the gcnome 

Schematic shows genes adjacent to ADR I. the point of T-DNA integration (depicted by 4 block 

arrows), and the 5.5 kb fragment cloned from the genomic library. Small arrows (4-) indicate 

direction of gene transcription. 
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During the course of this work AGI released the sequence of BAC F1OC21 which 

was shown to contain the isolated 5.5 kb sequence. This BAC is located on the top 

arm of chromosome I near genetic marker mi423a. Although the ADR1 and Ft 0C21 

sequences are from different ecotypes (Ws-0 and Col-O respectively) they differ by 

only 1 nucleotide (G 141 3 to T 141 3 which changes a methionine to an isoleucine) in the 

entire 2787 bp gene sequence. Sequence from this BAG was used to determine what 

genes were located upstream of ADRI. Gene B was predicted to encode a serine 

carboxypeptidase of 225 amino acid residues and further upstream was located a 

gene designated 'A' (Figure 26) with no homology to any known genes. 

P 

Figure 27: Structure of the ADRJ genomic clone 
Schematic shows five exons (rectangle boxes) and four introns (diagonal lines). Motifs as indicated 

below: 

CDPK homology I nucleotide binding site region 	P 	P-loop 

coiled-coil region I Ieiicine rich reneat 

BlastX homology searches using the entire ADRI translated nucleotide sequence 

revealed two distant homologues of ADRJ in Arabidopsis, AL 162972 on 

chromosome 5 (62%) and AL 161583 on chromosome 4 (56%) subsequently referred 

to as ADRJ-LIKEI (ADRJ-Li) and ADRJ-LIKE2 (ADRI-L2) respectively. Both 

genes encode disease-resistance like proteins and a number of ESTs exist for each 

suggesting they both encode functional genes (Table 2). The higher similarity 

between translated ADRI and the ESTs of its two homologues is probably a more 

accurate reflection of the degree of homology as they are not distorted by the introns 

which show no conservation. 

Gene C, later named Activated Disease Resistance I (ADRI), is predicted by 

Genscan to be 2787 bp in length from start to stop codon and contains five exons and 
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four introns (Figure 27; Appendix I). Sequence obtained from eDNA clone (RTPCR 

and sequencing performed by D. Basu) revealed that the full length transcript of 

ADRJ is 2361 bp, which is consistent with a transcript size of 2.4 kb which was 

subsequently obtained by RTPCR using primers immediately adjacent to putative 

start and stop codons (data not shown). As the full length transcript obtained by 

Northern analysis was shown to be approximately 2.8 kb this suggests that there is a 

relatively large combined 5' and 3' untranslated region of 400 bp. 

ii) ADRJ encodes a novel gene product with CDPK, CC, NBS, and LRR 

domains 

The Adri protein is made up of four principle regions: the N terminus (residues 1-

187) containing a coiled-coil (CC) region (Lupas, 1996); a nucleotide binding site 

(188-463) (NBS) (van der Biezen & Jones 1998); a region containing leucine rich 

repeats (464-736) (LRRs) (Jones & Jones 1997) (Figure 29), followed by a small 

region at the C-terminus (737-787) containing no obvious domains. 

The N terminus had no strong resemblance to other genes in the protein database 

except for a small region (residues 28-52) which shared significant identity (44%) to 

a domain highly conserved amongst plant calcium-dependent protein kinases 

(CDPKs) (Figure 28). This homology was significantly lower in Adrl-Ll and 

Adrl-L2 suggesting conservation is confined to Adrl. The peptide sequences shown 

were selected for box-shade comparison as they represent closest homology to AdrI 

in this region: overall (Adri-Li); to known proteins (AtCDPK3, Urao et al. 1994); 

to monocot proteins (maize CDPK); to non-plant proteins (human leucine zipper-

serine/threonine protein kinase (Ruiz-Perez et al. 2000)). 

A recent wealth of evidence has implicated an important role for calcium signalling 

in the establishment of disease resistance (reviewed in Grant & Loake, 2000). 

However, the region of similarity with CDPKs is relatively small (25 aa) and is 

confined to sub-domains II and III of the kinase (Hanks & Quinn, 1991). This region 

does not correspond with the catalytic site of kinases (sub-domain VII) and may be 

involved in substrate binding or necessary for proper conformation of the kinase 
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CDPK homology 	 * 	 * 

AtCDPK3 	 50 
CDPK (Zea mays 	53 	L ..... :i 3D 
Kinase (Homo sapiens) 49 	M YR 	C 	RN
Adri 	 28 ____GLjTNI0I QPT
Adri-Li 	 25 L 	G 

Kinase la (P-loop) 
Adr 1 
Adri-Li 
N 
Rpr 1 
Apa f-i 

IkGI

GN GKTT
G GKTT 
G 	GKTT 
G
n,- GG

KTTL  
GKIL 

Kinase 2 
P1dri 	 247 
Adri-Li 	 266 
N 	 291 
Rpri 	 265 
Apaf-i 	 221 

Kinase 3a 

DG1Q 	1I 1!&T 
TLPESI 	iA1 
LRs.: 	:N 
KLKDEN 	N 
LRKIP ;  L 

Adrl 	 271 'L QV ECKGLPLL 
'P 	 364 VI  LLQV__ECKGLPLALKV 

N 	 324 RKL VV_KGLPLAL 
Rprl 	 : EKL IIV C GLPLP 
Apaf-1 	 247 EI_._II_ECKGPLIV 

Figure 28: Conserved motifs in Adri 

Box shade was performed to highlight homologies between peptide residues of AdrI and other genes. 
Grey boxes indicate similar residues, black boxes indicate identical residues. GenBank accession 
numbers as follows: AtCDPK3 (BAA05918), CDPK (Zea mays) (103271), Adrl-Ll (AL162972), N 
(A54810), Rprl (BAA758 12), Apaf- 1 (AFO 13263). 
Number refers to amino acid residue position in translated sequence. An asterisk (*) indicates the K 
and E residues that are highly conserved in serine threonine kinases (Hanks and Quinn, 1991). 
N.B. translated sequence of ADRI-LI is based on computer prediction. 

VLRDLALHMSNRV 	463 
RLRVLVI INNGI4SPARLFIGF 552 
KLRSLWLKRVHVPELTSCTI 579 
NLHKIHLIFC 602 
SLSDLTIDHCDDLLELKSIF 629 
SLNSLSITNCPRILELPKNL 652 
SLERLRLYAC 	 677 
ELISLPVEVC 	 687 
CLKYVDISQCVSLVSLPEKF 701 
SLEKIDMRECSLL 	725 

xLXxLxLxXCxXLXXLXXXX consensus 

Fig 29: The ten imperfect LRRs of the Adri peptide sequence 

L stands for leucine though can include isoleucine and other aliphatic residues (F,V,M) and x stands 
for any other residue (Jones & Jones 1997). Number refers to amino acid residue position in peptide 
sequence. 
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(A.Harmon - pers. comm.). The region of homology does, however, have a 

conserved lysine (K) and glutamic acid (E) residue in sub-domains II and III 

respectively that are present in the same position (in sub-domains II and III 

respectively) in virtually all known serine-threonine kinases (Hanks & Quinn, 1991). 

It is also interesting to note that in most serine-threonine kinases sub-domain I is a 

nucleotide binding site (P-loop) and in Adri a P-loop is also closely associated with 

this region, located downstream from sub-domain III. 

NBS-LRRs form a prolific class of genes in plants that includes many of the known 

R-genes. It is estimated that there are as many as 200-300 different NBS-LRRs in 

Arabidopsis comprising 1% of the genome and tentative estimates in rice place this 

number as high as 1500 (Young, 2000). The presence of a coiled-coil (CC) structure 

at the amino terminus (96-112) classifies Adri as a Group I (or non-TIR) NBS-LRR, 

which is widespread throughout the angiosperms. Leucine does not predominate at 

position d of the heptad repeat so Adri does not belong to the sub-class of CCs 

known as leucine zippers (LZ) (Pan et al. 2000). 

The domains that constitute the NBS were previously shown to be conserved 

between R-genes and pro-apoptotic factors, Apaf- 1 & CED-4 (van der Biezen & 

Jones, 1998). Conserved residues with other selected proteins are highlighted in 

Figure 28. These peptide sequences were selected for comparison as they represent 

the closest homology to Adri: overall, Adrl-L1; of known proteins, N (Whitam et 

al., 1994); of monocots Rprl (Sakamoto et al. 1999); and of non-plant proteins, 

Apaf-1 (Zou et al., 1997). These motifs are distributed between predicted exons 1-4 

(Appendix I). A kinase la (P-loop) (consensus GXXXXGKT[T/S]) is present which 

is common to an array of ATPIGTP binding genes (Saraste et al., 1990). In addition 

there is a kinase 2 domain and a HD motif located further downstream. The kinase 

3a domain, and motifs 2, 4 and 5 are also present though these domains are less well 

conserved. 

In total, nine imperfect LRRs of 20 aa were found, all but one located in the fifth 

exon. The broad consensus (xLxxLxLxxCxxLxxLxxxx) is suggestive of LRRs 
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belonging to cytoplasmic rather than extracytoplasmic proteins (Jones & Jones 

1997). The Adri protein is not predicted to be highly glycosylated having only three 

putative N-linked glycosylation sites (consensus NXS/T), as compared with 22 in the 

plasma-membrane localized Cf-9 protein (Piedras et al., 2000). Moreover, no 

cleavable signal sequence is apparent in the Adri peptide sequence. Taken together 

these results suggest that the Adri protein is localised within the cytoplasm. 

iii) The ADRJ gene is highly conserved in different agronomically important 

plant species 

TBlastN was performed to compare the Adsl protein sequence against all higher 

plant DNA sequences translated in all three reading frames. In total eight different 

species besides Arabidopsis were shown to have transcribed sequences in the form of 

expressed sequence tags (EST5) in the database with significant identity (>40% at the 

predicted amino acid level) to Adri. The distribution of hits reflects the fact that 

sequencing projects have concentrated on agronomically important crops or model 

species (e.g. L. japonicus and M. trunculata). Most of the ESTs with predicted 

identity to Adri were short sequences at the 3' end suggesting that the ESTs are not 

full length or that only one sequencing run was performed. The only ESTs from 

Arabidopsis with high identity to ADRJ were ADRJ-L2 (71%) and ADRJ-Li (68%). 

From an evolutionary perspective the high degree of apparent conservation in the 

monocot species (Sorghum and maize) and a gymnosperm (loblolly pine), is 

particularly intriguing, given that evolutionary branchpoints from dicots and 

angiosperms are thought to have occurred approximately 150 million years ago 

(Cronquist, 1971). Furthermore, the fact that one of the highest predicted identities 

to Adri was found in a monocot suggests that genes with an even greater degree of 

homology may exist in the much less divergent dicot species. Interestingly, when a 

similar TBlastN search was performed for a cross-section of known R-genes (e.g. 

RPS2, Prf, Cf-9 and A'), the only ESTs with high identity (>40%) in other species 

were confined to the same family i.e. Brassicaceae and Solanaceae. 
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When searches against genes of known function (performed by BlastP search) were 

performed, the Adri was shown to share most identity with NBS-LRR R-genes. This 

reflects the fact that with one exception, RPRJ, the only functionally 

Genbank 
Accesssion 

Plant species Predicted 
identity 

Conserved area in 
Adri 

AV536466 A. thaliana 
(Adri -L2)  

71 434-575 

AV546640 A. thaliana 
(Adri-Li)  

68 662-787 

A1163353 Populus tremula 
x P. trernuloides 

66 460-533 

AW676969 Sorghum bicolor 62 3 86-525 

AW039749 Lycopersicon 
esculen turn 

56 420-580 

AW598621 Glycine max 55 659-736 

AW410194 Lotus japonicus 52 419-789 

A1855190 Zea mays 50 563-718 

AW684410 Medicago 
trunculata 

48 446-647 

A1813065 Pinustaeda 40 494-611 

Table 2: ESTs from other plant species with homology to ADRJ 

TblastN was performed against all Viridiplantae sequences in GenBank (www.arabidopsis.org/blastl) . 

Identity refers to percentage of exactly conserved residues based on predicted amino acid sequence of 

the ESTs. All hits are listed as obtained with default settings of BLAST. Multiple hits were evident 

in some species but only the highest predicted identities are shown. 'Conserved area in Adri' refers 

to the residue positions in Adri with identity to the translated EST. 

characterised NBS-LRRs are R-genes. However, the R-gene with highest identity to 

Adri (N of tobacco) only shares 24% identity, largely confined to specific domains 

of the NBS and conserved leucines in the LRR. 

iv) Motifs in the ADR1 promoter 

The 5' regulatory region of ADRJ was analysed for regulatory motifs that might 

account for the pattern of inducible expression previously observed. An ASF- 1 motif 
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(TGACG) was found at -592 relative to translation start site. This motif is thought to 

be involved in the transcriptional activation of several genes by auxin and/or salicylic 

acid (Terzaghi and Cashmore, 1995). Additional support for SA-mediated 

transcription of ADRJ comes from the presence of two TCA-elements (-32 & -93) 

containing 8/10 nucleotides conforming to the consensus TCATCTTCTT as 

previously found in the GSTJ promoter (Chapter 3). Lastly, a motif (CACATG) 

found at -177 was shown to be necessary for drought/ABA-induction of the 

dehydration-responsive gene RD22 in Arabidopsis, and binds a drought-regulated 

Myc transcription factor (Abe et al., 1997). Although these are only computer 

predictions, it is interesting to note that ADRJ expression was shown to be regulated 

by SA and its overexpression conveys substantial drought tolerance. 

v) The ADR1 gene is inducible by BTH, SA, and pathogen attack 

A putative role of ADR1 in disease resistance signalling was consolidated following 

Northern blot analysis following different treatments (Figure 30). 

phosphate 	Psi DC3000 Psi DC3000 SA BTH 

control 	buffer 	AvrB) 
(5 days) 	(3 hours) (5 days) (5 days) (5 days) 

adri 

—1.0 

Figure 30: Induction of ADRJ in response to different treatments 

Treatments (from left): 	control - naive Col-0 plants; 1mM phosphate buffer pH5.8; Psi 

DC3000(AvrB); Psi DC3000; salicylic acid 1mM (infiltrated in 1mM phosphate buffer pH5.8); BTH 

300 jiM painted on leaves (in 0.01% silwet). Arrows indicate approximate sizes as inferred from RNA 

ladder (not shown). 
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ADRJ was shown to have a vanishingly low basal level of transcription in naive 

Col-0 plants, however, significant up-regulation of ADRI was observed following 

treatment with avirulent bacteria (Pst DC3000(AvrB)) 3 hours post-inoculation, and 

by virulent Pst DC3000, SA, and BTH, all 5 days after treatment. A small induction 

was observed following inoculation with 1mM phosphate buffer (used as a negative 

control for SA treatment), suggesting that ADR] induction might also be mediated by 

a wound response pathway. Only two of the four previously observed transcripts 

were evident which is probably because endogenous expression of ADR1 is relatively 

weak. Intriguingly, relative induction of the 1 kb transcript was significantly 

stronger following treatment with Pst DC3000(AvrB) at three hours as compared 

with other treatments. Similar results were also obtained with Pst DC3000(AvrRpt2) 

at three hours (not shown). This suggests that ADR1 may be differentially spliced in 

response to different stimuli such as SA or pathogen recognition, although further 

confirmation is required by means of Northern analysis using polyA RNA and 

sequencing of respective transcripts. 

vi) Discussion 

As a putative role for ADRJ will be discussed in the concluding chapter, here we 

consider sequence and functional similarities with R-genes and other uncharacterised 

NBS-LRRs. There is evidence both to suggest that ADRJ might encode a R-gene 

that recognises a hitherto unknown pathogen-derived elicitor, but perhaps stronger 

evidence to refute it. All R-genes classified as such have been cloned by a functional 

approach, i.e. they were shown to be essential to confer resistance against specific 

pathovar(s) of pathogen (e.g. N specifies resistance to tobacco mosaic virus). 

Endogenous expression of ADRJ has not been shown to be specific for a particular 

pathovar although theoretically it may confer resistance to an as yet unknown or 

extinct pathovar. 

Sequence homology searches identify similarities to a large number of NBS-LRR R-

genes. However, overall identity is weak, and is largely confined to specific domains 

of the NBS and the leucine residues of the LRR. Genes containing LRRs are the 

largest known class to have been found in Arabidopsis (Bevan et al. 1998) and the 

85 



NBS is common to a large number of genes from a diverse array of organisms. The 

Arabidopsis genome is thought to contain around 200-300 NBS-LRR genes (Pan et 

al. 2000). Whilst a significant proportion of these are likely to encode R-genes and 

also serve as a large gene pool to keep pace with continually evolving avirulence 

genes, it is conceivable that many also have additional roles. However as no other 

purpose outside of Avr gene recognition has been definitively ascribed to NBS-

LRRs, it is difficult to assign other possible roles to this class. 

Furthermore, most but not all R-genes, such as the RPPJ complex of Arabidopsis 

ecotype Ws-0, have been shown to occur in clusters (Botella et al., 1998) as this 

favours evolution by intergenic crossover enabling the plant to keep pace with 

rapidly evolving avirulence genes (Richter and Ronald, 2000). Thus, many R-genes 

have virtually identical genes in the immediate vicinity, e.g. Cf-2 of tomato (Dixon et 

al., 1996). ADRJ has no close homologues, and the sequence of adjacent genes 

suggests they have completely unrelated functions. 

Another apparent difference with classical NBS-LRR R-genes is the region of 

homology shared with the kinase domain of CDPKs. Whilst the functional 

significance of this domain has yet to be demonstrated, comparison with the 

overexpression phenotype of other R-genes lends additional support to the hypothesis 

that ADRI may possess domains involved in signal transduction that are absent in 

NBS-LRR R-genes. Overexpression of four other NBS-LRRs has previously been 

reported, both from the TIR class (N and L6) and CC class (Prf and RPS2). Of 82 

CaMV 35S::RPS2 transgenics generated, only 5 were able to complement a non-

functional mutant and no constitutive resistance or lesion formation was observed. I 

fact many of the transgenics were actually RPS2-suppressed (Mindrinos et al, 1994; 

Katagiri - pers. comm.). Tomato plants with 1 or 2 additional copies of Prf displayed 

elevated disease resistance and SA accumulation. No LM phenotype was observed, 

however, it is not known whether this can be attributed to a relatively lower 

upregulation of Prf(Oldroyd & Staskawicz, 1998). Transgenic CaMV 35S::L6 flax 

plants show no change in resistance phenotype as compared with the endogenous L6 

gene and do not exhibit lesion formation (Ellis et al., 1999; Ellis - pers. comm.). 
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Moreover, CaMV 35S::N plants failed to confer complete TMV resistance and no 

lesion development is reported (Dinesh-Kumar and Baker, 2000). 

These results are in contrast with tomato plants overexpressing the serine-threonine 

kinase, Plo, which display constitutive resistant responses and spontaneous cell death 

(Tang et al., 1999). Thus, it is possible that an additional signalling event such as 

protein phosphorylation is necessary to effect a pro-death pathway which may be 

mediated by the CDPK-like domain in ADRJ. An alternative hypothesis is that 

ADRI might encode a gene responsible for coordinating resistance responses for 

multiple resistance genes, much as Pto and Fen resistance are both dependent on Prf 

in tomato (Salmeron et al., 1996). In support of this theory is the fact that of five 

reports of NBS-LRR overexpression, only Prf and ADRJ confer broad spectrum 

resistance. Furthermore, it is interesting to note that both genes, unlike most NBS-

LRR R-genes, possess relatively long N-termini that do not strongly resemble other 

sequences found in protein databases. Analysis of anti-sense ADRI lines is now 

required to assess whether resistance responses are compromised when ADRJ-

signalling is down-regulated. 

From an evolutionary standpoint, ADRJ appears distinct not only from R-genes but 

also from other members of the NBS-LRR gene family. A phylogenetic analysis of 

NBS sequences from NBS-LRRs classifies ADRJ-Li and ADRJ-L2 (ADRJ had not 

been sequenced at time of publication) as belonging to an evolutionarily distinct 

dade (Meyers etal., 1999). Furthermore, despite extensive analysis of over 20 NBS-

LRRs and membrane-bound LRRs (not shown), only ADRJ shares high identity at 

the predicted amino acid level to monocot genes. 

Lastly, from a functional point of view, the fact that ADRJ is inducible following 

various stimuli further sets it apart from R-genes. Whilst pathogen inducibility has 

also been observed for two other R-genes conferring nematode resistance in sugar 

beet, HS" (Cai etal., 1997) and against bacterial blight in rice, Xal (Yoshimura et 

al., 1998), lack of data for other R-genes suggests that this is the exception rather 

than the rule. Furthermore, non-R-gene NBS-LRRs have been shown to be inducible 

by pathogen attack and SA in rice and rye (Sakamoto et al., 1999). This is one 
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example of recent data that has challenged former preconceptions regarding R-genes, 

reinforcing the notion that NBS-LRRs may have diverse roles not merely confined to 

pathogen recognition in the case of R-genes. 

To conclude, it is ultimately impossible to determine if ADRJ encodes a R-gene 

without being able to show that this gene is directly responsible for recognition of a 

specific avirulence gene product. Antisense ADRJ plants (engineered by D.Basu) are 

currently being assayed and a knock-out line is being screened for, which may help 

clarify the role of ADR1 in disease resistance. However, the implication of ADR1 in 

the mediation of multiple stress responses heralds a new paradigm of NBS-LRR 

analysis. It is anticipated that with the advent of sophisticated functional genomics 

techniques of analysis, further light will be shed on the enigmatic NBS-LRR gene 

family both in and outwith pathogen resistance. 
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7) THE ROLE OF ADR1 IN ABIOTIC STRESS SIGNALLING 

The adrl-D mutant has enhanced resistance to drought stress 

Parallels have recently been drawn between the pathways governing responses to 

abiotic stress and disease. A number of signals are common to both pathways, such 

as an increase in cytostolic calcium, production of RU!, activation of MAPK 

cascades, and upregulation of antioxidant genes (reviewed in Bowler & Fluhr, 2000). 

This fact coupled with the identification of a putative binding site for a drought-

responsive Myc transcription factor in the ADRJ promoter prompted us to investigate 

whether adrl-D was altered in its ability to withstand drought conditions. 

A drought stress assay was carried out using 23 Col-0 and 19 adrl-D plants grown in 

two halves of the same tray under short day conditions (Figure 31). Watering was 

stopped 25 days after germination and the tray was transferred to long day 

conditions. Severe wilting was first evident 11 days later in Col-0 but adrl-D plants 

appeared normal. At +15 days all wildtype plants were dead and severe wilting was 

evident in adrl-D plants. Watering was resumed at this point to confirm plant death. 

In a different experiment in which plants were grown in 8 cm high pots (4 plants/pot 

in 6 pots) under long day conditions, adrl-D plants were shown to survive for up to a 

week longer than Col-0. Drought resistance has yet to be confirmed in CaMV 

35S::ADRI transgenics (Chapter 8) so it is not yet known whether drought resistance 

is some aberrant phenotype resulting from the activation tagging process. 

Similar results were obtained under short day conditions. However, drought 

tolerance in adrl-D relative to Col-0 appeared enhanced under long days. This may 

be due to a greater propensity for the mutant to initiate bolting under long day 

conditions as compared with Col-0 which could in turn limit water loss and/or reduce 

water requirement, though this hypothesis has yet to be proven. 

SA, NPRI, JA, and ethylene are not key determinants of ADRJ-mediated 

drought tolerance 

The adrl-D lines that had been introgressed into different mutant backgrounds 
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Col-O 	adrl-D 

Figure 31: The adrl-D mutant has enhanced drought tolerance 
23/23 Col-0 and 0/19 aa'rI-D plants are dead 16 days post-watering. 

Re-watered plants at day 17 confirm death is confined to Col-O, 
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(described in Chapter 5) were deployed in drought assays to assess what signal 

transduction pathways might govern ADRJ-mediated drought resistance. Between 6-

8 lines of Col-0, adrl-D, adrl-DxnahG, adrl-Dxetrl, and adrl-Dxnprl, were sub-

planted at 14 days post-germination into different segments of the same tray and 

watering was stopped 11 days later (results not shown). 16 days after watering was 

stopped, all Col-O plants but none of the other lines were dead, although some 

exhibited severe wilting. After 17 days between 1-3 plants of all the mutant lines 

except adrl-Dxnprl were dead. Dead plants were confirmed by resumption of 

watering. In a separate experiment, adrl-Dxcoil mutants were shown not to be 

significantly compromised in drought resistance. Two novel disease resistant 

mutants which accumulate high levels of SA (Murray et al., - unpublished) were also 

tested for drought tolerance, but did not appear to have enhanced protection as 

compared with wild-type (results not shown). 

From this data we can conclude that neither SA, JA, ethylene, nor NPRJ significantly 

abrogate ADR]-mediated drought resistance. Furthermore, the fact that 

adrl-DxnahG plants show drought resistance suggests that tolerance is not a function 

of size. However, due to the small numbers of plants used in the assay, we cannot 

conclusively state whether differences between the adrl-D double mutant 

backgrounds are actually significant. Therefore, the study should be repeated using 

larger numbers of plants in each class. As two of the four identified pathways 

governing drought resistance are mediated by abscisic acid (ABA) (Shinozaki & 

Yamaguchi-Shinozaki, 2000), adrl-D has also been crossed into the ABA-

insensitive mutant abil (Koornneef et al., 1984) to determine whether ADR1-

mediated drought resistance is compromised in this background. Moreover, the 

induction of stress-associated genes will also be examined. 

iii) Discussion 

In this chapter we have shown that the adrl-D mutant displays significantly 

enhanced resistance to drought. adrl-D mutants appeared to survive drought 

conditions 1-2 days longer than wildtype plants under a short-day light regime and 
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this difference was accentuated under long-day conditions. This is believed to be the 

first report of a mutant that is resistant to both disease and drought. 

The mechanism by which ADRI is able to confer drought tolerance when 

overexpressed remains open to conjecture, and it is conceivable that this protection is 

specifically engaged by the ADRJ gene. This is particularly pertinent in the light of 

the CDPK-like domain located in the ADRJ gene and a number of reports in the 

literature that correlate induction of CDPKs with drought and cold stress (e.g. 

Pestenacz and Erdei, 1996; Li and Komatsu, 2000). Indeed expression of a rice 

CDPK gene was recently shown to confer salt, drought and cold tolerance (Saijo et 

al., 2000). 

It remains to be determined if drought resistance is common among disease resistant 

plants or whether this phenotype is specific to the overexpression of ADR1. 

Conversely, it is possible that in some instances elevated abiotic stress resistance 

may correlate with disease resistance. Such cross-tolerance assays will help localise 

genes epistatically in stress signalling pathways, assist in defining a branch-point for 

abiotic and disease signalling, and further advance our understanding of cross-talk in 

stress resistance. These results may have a significant impact on current thinking 

regarding drought and disease resistance pathways. In the past, abiotic stress and 

pathogen resistance signalling have been considered separate disciplines and very 

little research has been carried out encompassing both fields. These findings may 

help redress this somewhat limited perspective and encourage an approach that 

incorporates both areas. 

A number of other models, not mutually exclusive to one another, may also account 

for ADR 1-mediated drought resistance. Recently published data of Avr9/Cf-9 rapidly 

elicited (ACRE) genes by means of cDNA amplified fragment length polymorphism 

(AFLP) analysis in tobacco cell cultures may provide a clue as to a possible 

mechanism of ADR1-mediated drought resistance. One such ACRE gene, 

subsequently shown to be rapidly and transiently induced in Avr9-treated Cf-9 

tobacco cell suspension cultures in a DPI-insensitive manner, was shown to have 
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99% homology to the DREB1A gene (Durrant et al., 2000). This stress responsive 

transcription factor has previously been shown to mediate cold and drought 

responses. Furthermore, overexpression of DREB1A by the CaMV 35S promoter was 

shown to convey enhanced freezing and drought tolerance (Liu et al., 1998). 

Further support for a rapidly induced stress response following the Avr-R interaction 

is implicated by the recent report of an Arabidopsis relA/spoT homologue, At-RSHI 

that was shown to specifically interact with the NBS of the R-gene, RPP5, in a yeast 

two-hybrid assay. relA/spoT genes determine the levels of guanosine tetraphosphate 

(ppGpp) and guanosine pentaphosphate (pppGpp), which are effector nucleotides of 

the prokaryote stringent response, which are known to be activated under conditions 

of environmental stress in bacteria. Furthermore, At-RSH1 was able to complement 

an E.coli relA mutant to enable growth on minimal SMG medium that is inhibited in 

the mutant. Perhaps somewhat surprisingly given the degree of conservation 

between motifs in NBS domains, no interaction was observed when the NBS from 

other R-genes was used as bait (van der Biezen et al., 2000). 

However, the only direct evidence for induction of a drought-inducible gene in the 

adrl-D mutant is the overexpression of GSTI, which was originally isolated as the 

early response to drought gene ERDIJ (Kiyosue et al., 1993). This is reinforced by 

data showing that the overexpression of a cDNA with Gst and glutathione peroxidase 

activity was able to enhance seedling growth compared with wildtype plants under 

conditions of salt and chilling stress (Roxas et al., 1997). However, Northern 

analysis showed that GST] induction in adrl-DxnahG was substantially reduced, yet 

this double mutant did not seem significantly different from adrl-D in terms of 

drought tolerance. Furthermore, whilst the induction of antioxidants such as Gsts 

may enhance stress tolerance, this may well be negated by additional oxidative stress 

in adrl-D mutants. DAB staining had previously shown that H 202  accumulated to a 

much higher extent than in wildtype plants despite high induction of GSTJ, 

suggesting that the redox 'balance' at least in terms of peroxide was tipped in favour 

of ROTs. Thus, overall the evidence does not appear to be strongly in favour of an 

antioxidant-mediated mechanism of drought tolerance in adrl-D. However, this 
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does not rule out possible stress protection afforded by other antioxidants such as 

superoxide dismutases (SODs), which have previously been shown to convey 

protection to abiotic stresses when overexpressed (reviewed in Allen et al., 1997). 

Further reports also hint at similarities between gene induction following biotic and 

abiotic stress. Two such examples include the observation that enhanced protection 

against the bacterial pathogen Erwinia carotovora and dehydration stress was 

conferred by the inoculation of Arabidopsis plants with plant-growth-promoting 

rhizobacteria (PGPR) (Timmusk and Wagner, 2000). Furthermore, different abiotic 

stresses caused the induction of cystatin in Castanea sativa, a protein previously 

characterised as an anti-fungal agent (Pernas et al., 2000). This is in addition to a 

plethora of biochemical processes previously mentioned that are common to both 

pathogen and abiotic induced stress responses of plants. 

Mechanisms that convey resistance to both pathogens and drought might also be 

mediated at the physical level. For example, it seems logical to suggest that a plant 

cell with high turgor pressure would be more resistant to penetration by a fungal 

appressorium than a more flaccid drought-stressed cell, though this remains to be 

proven. In addition, some pathogen defence responses could be an indirect 

consequence of drought stress mechanisms. For example, in most pathosystems such 

as Xanthomonas campestris pv. campestris/Arabidopsis and Peronospora 

parasitica/Brassica oleracea, bacterial and fungal infection occurs via the stomata 

(Hugouvieux et al., 1998; Achar, 1998), which might be inhibited if stomatal pores 

were closed as a result of drought stress. 

From an evolutionary perspective the degree of overlap between abiotic and biotic 

stress responses is perhaps not that surprising. If a plant is being subject to abiotic 

insults it is may be more vulnerable to pathogen attack and thus it makes sense to 

activate defences that counteract both threats. This notion is reinforced by the fact 

that some fungal diseases of plants are often triggered by drought stress, such as the 

fungal stalk rots. Indeed varieties of sorghum with enhanced drought tolerance are 

also more resistant to fungal stalk rot (Diourte et al., 1995). 
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To conclude, we have shown here that ADR 1-mediated drought protection is 

apparently independent of SA, JA, ethylene and NPRJ. However, the analysis of 

abiotic stress associated gene expression in adrl-D introgressed into mutants with 

aberrant stress responses (e.g. abil (Koornneff et al., 1984)) is now required to 

determine more precisely the role of ADRJ in drought signalling. Work is also 

currently in progress to determine whether adrl-D is also more tolerant of heat, 

freezing and high salt stress which should also facilitate the genetic dissection of 

abiotic stress tolerance in adrl-D. As drought is second only to disease in terms of 

natural causes of crop losses worldwide, this finding also has obvious important 

implications from a biotechnological perspective which are discussed further in the 

final chapter. 



8) MANIPULATION OF ADRJ EXPRESSION 

i) Introduction 

In Chapter 6 the ADRJ candidate gene was shown to be strongly upregulated in the 

adrl-D mutant. However, to prove that this gene was directly responsible for the 

adrl-D phenotype, it was necessary to show that its overexpression could 

recapitulate the adrl-D phenotype. This would require the generation of a large 

number of transgenic plants overexpressing the candidate ADR1 gene which would 

be likely to exhibit a spectrum of phenotypes with respect to the disease architecture 

as previously observed for background levels of luciferase activity in GSTJ :L UC 

lines (data not shown). Therefore, ADRJ overexpressing lines might also help 

answer pertinent questions about ADRJ-mediated disease resistance. For example, 

whether it is possible to uncouple lesion development from disease resistance and to 

what extent does severity of lesions correlate both with resistance and PRJ::LUC 

expression. In addition, the disease resistant phenotype has potential for use in a 

biotechnological context, as a means of conveying broad spectrum resistance to crop 

plants. Thus, it is important to investigate whether the yield penalty associated with 

the dwarf phenotype can be attenuated without substantially compromising disease 

resistance. 

As a complementary approach, an inducible system was also employed to transiently 

express ADRJ. Controlled expression of ADRJ might thus confer disease resistance 

without the yield penalty associated with constitutive overexpression. This would 

demonstrate the 'proof of principle' for the use of a transient induction system that 

could ultimately be engineered into crop plants enabling a farmer to activate 

resistance at will using an analogous but non-toxic system. 

To achieve these aims, the ADRJ genomic clone was introduced into Arabidopsis 

under the two different expression regimes. Firstly, the entire CaMV 35S promoter 

(Odell et al., 1985) was used to convey constitutive ectopic expression of ADRJ. 

Secondly, the glucocorticoid-inducible GVG gene was employed to drive 

downstream transcription of the ADR1 gene following treatment with the synthetic 
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steroid dexamethasone (DEX) (Aoyama & Chua, 1997). The GVG system had 

previously been used in a similar context whereby dexamethasone-mediated AvrRpt2 

expression was shown to drive downstream defence responses in transgenic plants 

(McNellis et al., 1998). 

ii) Constitutive expression of the ADR1 gene recapitulates the lesion mimic 

phenotype 

The overexpression cassette was constructed by engineering KpnI and Barn I-Il sites 

by PCR immediately adjacent to the respective start and stop codons of the ADR1 

genomic clone. This fragment was then cloned into the multiple cloning site (MCS) 

of pART7 (Gleave, 1992) to generate the overexpression cassette 

CaMV35S::ADRJ::OCS (Figure 32). This construct was cloned into the NotI site of 

pGREEN (Basta R)which was transformed into an Agrobacteriurn strain containing 

the trans-acting plasmid, pJIC Sa_Rep (Hellens et al., 2000). The resulting construct 

was then transformed into genetic background PRJa::LUC by Agrobacteriurn 

transformation to facilitate subsequent screening of transgenics by means of 

luciferase imaging. 

Nod 	 KpnI 	 Sam/-Il 	No 

Figure 32: The ADRI overexpression cassette 
The ADRJ genomic clone was ligated into the KpnI/BamHT site of the MCS of pART7 to generate the 

overexpression cassette CaMV 35S::ADR/::OCS. This was then cloned into the NotI site of the 

binary vector pGREEN, also incorporating the bar gene (promoter and terminator of bar omitted) for 

Basta resistance between the left and right border. 

In total 110 CaMV 35S: :ADRJ transgenics were generated which were characterised 

with respect to morphology, luciferase activity, and disease resistance. This was 

carried out in the F 1  generation due to time limitations but will be repeated in the 

progeny. A range of visible phenotypes was observed which were grouped into four 
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Figure 33: Constitutive expression of the ADRJ candidate gene recapitulates the adrl-D 
phenotype 
Plants transformed with the construct CaMV 35S: ADRI show a spectrum of phenotypes which were 
grouped into four classes A. B. C, D according to severity. 

Figure 35: rraiiienI cession ol tt)R1 induces I'RJ gene expression 
Luciferase activity is evident 61 0/4 seedlings transformed with empty vector 'fl (top left) and 5110 
seedlings transformed with '14 ::ADRJ (bottom right) after they have been transferred to a MS plate 
containing 30itM DEX. 
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distinct classes as depicted in Figure 33: A) normal; B) slight dwarfing, leaf curling, 

lesions apparent under long-day conditions; C) severe dwarfing, visible lesions 

(equivalent to hemizygous adrl-D mutant); D) very severe dwarfing, lesions, often 

non-viable (equivalent to homozygous adrl-D mutant). In total 46% of transgenic 

plants exhibited some form of aberrant morphology or LM phenotype (classes B-D). 

The spectrum of phenotypes obtained is probably a consequence of the level of 

endogenous transcription in the area of T-DNA insertion and number of insertional 

events that have taken place. In addition, different insertion events at identical 

positions in the plant genome may also give rise to different levels of expression. 

iii) CaMV 35S::ADRJ transgenics have elevated PRI::LUC expression and 

enhanced resistance to a fungal pathogen 

Two leaves of every plant were imaged for luciferase activity with reference to 

PRJa::LUC (Col-0) control plants. In total 46% of plants belonging to phenotypic 

classes B-D but none from class A had significantly elevated luciferase expression. 

Previous observations had indicated that luciferase imaging was less sensitive than 

Northern analysis, thus it is likely a number of transgenic lines had elevated 

accumulation of pr] transcripts that could not be detected by ultra-low light imaging 

camera. 

Disease resistance in transgenic lines was recorded 14 days after transferring plants 

to an environment conducive to powdery mildew infection. Plants were scored as 

follows: 0 - No infection; 1 - 1-2 leaves infected; 2 - mild infection on 3 or more 

leaves; 3 - heavy infection on 3 or more leaves. There was a significant correlation 

between adrl-D phenotype and resistance: 100% of plants of class A, but only 7% 

of B-D had infection scores of 2 or 3. Furthermore, resistance was shown to 

correlate strongly with severity of the phenotype, as D was the only class to exhibit 

zero infection. However, it should be noted that plants were scored at 8 weeks by 

which stage it had previously been observed that senescing leaves of adrl-D mutants 

may become infected, as was the case in this instance in classes B & D. 
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iv) Transient expression of ADRJ induces PRJ::LUC gene expression 

A glucocorticoid-inducible transcription system has been developed enabling a much 

greater degree of control of transgene expression in plants in comparison with 

constitutive promoters such as CaMV 35S. This expression system consists of two 

components: a glucocorticoid-regulated transcription factor, GVG, containing the 

DNA binding domain of the yeast transcription factor GAL4, the transactivation 

domain of herpes viral protein VP 16 and the receptor domain of the rat glucorticoid 

receptor. The second component of the system consists of a promoter containing six 

GAL4 DNA binding sites which drives downstream expression of the gene of 

interest. Following addition of glucocorticoid, the constitutively expressed GVG 

protein is activated upon binding with the steroid, which in turn binds to the GAL4 

binding sites driving transcription of the downstream gene of interest (Aoyama & 

Chua, 1997; McNellis et al., 1998). 

The ADRI genomic clone was cloned into the binary vector pTA7001 containing the 

GVG expression system, and this cassette was then used to transform PRJa::LUC 

transgenics by Agrobacterium-mediated transformation. Firstly Sail and SpeI sites 

were engineered by PCR at the 5' and 3' ends respectively of the ADRJ genomic 

clone. This fragment was then cloned into the XhoI (which is compatible with a Sail 

sticky end) and Spel sites of the vector pTA7001 to generate the construct TA::ADRJ 

(Figure 34). In addition to this construct, PRJa::LUC plants were also transformed 

with the empty vector pTA7001 as a negative control to generate lines subsequently 

referred to as TA. 

Again due to time limitations, TA::ADRJ transgenics could only be screened as 

primary transformants purely to ascertain that the system was working rather than to 

obtain any data regarding ADRJ expression. Transformants were selected on 

hygromycin MS plates then transferred at two weeks to kanamycin MS plates to 

select for the TA::ADRJ and PRJa::LUC cassettes respectively. Seedlings were then 

transferred to MS plates containing 30M Dexamethasome (DEX). No discernible 

difference was observed when luciferase imaging was performed three days later. 

Imaging 14 days later revealed that 5110 TA::ADRJ plants, but 0/4 TA lines displayed 
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luciferase activity (Figure 35). No luciferase activity was evident in the negative 

controls TA on DEX plates and TA::ADRI on plates lacking DEX (data not shown). 

LB 
	

RB 

6xUAS.,. I ADR1 I 3A HH HPT  HH pq  I (;VG I CaMV35S 

Spel 	XhoI 

Figure 34: The glucocorticoid-inducible system for transient expression of ADRI in plants 

(adapted from McNelIis et aL, 1998) 

The TA::ADRI binary cassette depicted in the schematic was engineered by cloning ADRI into the 

SpeI/XhoI site of the vector pTA7001 between the glucocorticoid activated promoter (6XUAS gQI4) and 

pea rbcsS-A polyadenylation sequence (3A). The glucocorticoid responsive transcription factor 

(GVG) is driven by CaMV 35S, and E9 corresponds to the pea RBCS-E9 polyadenylation sequence. 

The hygromycin phosphotransferase (HPT) gene confers hygromycin resistance in plants (promoter 

and terminator not shown). 

This experiment confirms that the DEX system can be used to drive defence gene 

expression via ADRJ induction. Furthermore, expression is dependent on the 

presence of both the ADRJ gene and application of DEX. There appeared to be a 

long time delay before PRJ::LUC induction was evident given that maximal gene 

induction directly mediated by DEX (i.e. ADRJ expression) is likely to occur 24 

hours after DEX treatment (Aoyama and Chua, 1997), although imaging was not 

carried out between 3-14 days. However, it is likely that PR] transcripts accumulate 

much sooner than is possible to detect by the less sensitive means of luciferase 

imaging. Furthermore, ADRJ expression is not being directly measured but 

induction of a downstream gene. In addition, it was previously observed that PR] 

gene expression was evident in ADRJ adult plants but not seedlings thus DEX-

induced defence gene induction in the TA::ADRJ transgenics might also be partly 

developmentally regulated. 

v) Discussion 

The fact that overexpression of the ADRJ candidate gene was able to recapitulate 

lesion development and luciferase expression confirms that this gene is responsible 
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for the ADRJ phenotype. Although a large proportion of transgenics appeared 

phenotypically normal, this may be attributable to poor expression of ADRI possibly 

arising from integration of the transgene in a region of low transcriptional activity. 

An alternative explanation for the lack of any observable phenotype in CaMV 

35S::ADR1 transgenics is that ADR1 expression maybe inhibited by sense 

suppression (Napoli et al., 1990; van der Krol et al., 1990). It is worth noting that in 

another reported instance of CaMV 35S-mediated overexpression of a NBS-LRR, 

RPS2, only 6% of transgenics were able to complement a RPS2-null mutation. 

Furthermore, most of the wildtype plants transformed with CaMV 35S: :RPS2 were 

unable to mount a HR in response to AvrRpt2 suggesting that sense suppression 

might be occurring (Mindrinos et al., 1994). When inoculated with Pst 

DC3000(AvrB), CaMV 35S: :ADRJ transgenics were not found to be compromised in 

HR formation. Thus if sense suppression is occurring it does not appear to manifest 

itself by negating gene-for-gene interactions, at least in the case of AvrB-RPM]. 

Further studies need to be carried in the F 2  generation to determine whether any of 

the transgenic lines are compromised in their ability to mount broad spectrum 

resistance or drought tolerance. 

Time limitations meant that only crude luciferase and disease resistance assays could 

be performed on the F1 generation. However, to draw conclusions regarding the 

relationship between ADRJ expression, the induction of other defence genes, and 

disease resistance, multiple plants from different transgenic lines would have to be 

assayed in the F 2  or F3 generation. It would also be interesting to determine whether 

CaMV 35S: :ADRJ transgenics exhibit co-dominance like the adrl-D mutant. Lastly 

whilst at the morphological level CaMV 35S::ADR1 transgenics appear similar to the 

adrl-D mutant it would be worthwhile to analyse differences in gene expression at 

the developmental level as at least in other example, enhancement of endogenous 

gene expression in an activation tagged mutant differed from constitutive ectopic 

expression (Weigel et al., 2000). 

We have also demonstrated in principle that PR] may be induced by DEX in 

TA::ADRJ transgenics but not in TA lines. However, Northern analysis and disease 
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resistance assays must be performed in multiple transgenic homozygote lines in the 

F3 generation before the usefulness of this system can be assessed. Furthermore, the 

DEX inducible system is far from optimal because of associated pleiotropic effects 

including growth retardation and induction of defence genes PDFL2, PR5, but not 

PR], observed in plants containing the empty vector following DEX application 

(Kang et al., 1999). However, these shortcomings can be readily addressed by the 

use of appropriate controls. Alternative approaches for engineering resistance 

without compromising yield are discussed in the final chapter. 
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9) DISCUSSION 

Introduction 

In this concluding chapter, I explore a number of different themes that have arisen 

over the course of this work. However the GST] : :L UC data is largely ignored in this 

section having been covered comprehensively earlier on. Firstly, I attempt to 

integrate current understanding of ADRJ signalling into disease resistance and 

abiotic stress signal transduction pathways, and ascribe a putative function for the 

endogenous ADRJ gene. Secondly, a model is formulated to account for 

overexpression of the ADR1 gene giving rise to the adr]-D mutant phenotype. 

Finally, the potential for biotechnological exploitation of ADRJ-derived technology 

is discussed. 

ADR1 encodes a putative early regulator integrating multiple stress 

pathways 

Having analysed ADR1 from sequence, evolutionary, and functional perspectives we 

are now in a position to ascribe a putative function to this gene. The NBS-LRR gene 

family to which ADR] belongs is estimated to comprise 200-300 genes in 

Arabidopsis, (Young, 2000), making it one of the most prolific and yet enigmatic 

classes of plant genes. In the past, this class of genes has generally been considered 

in a resistance gene context due to lack of data pertaining to other NBS-LRRs, 

however data presented in this work suggests this is too great an oversimplification. 

Indeed established preconceptions of R-gene functions are continually being 

challenged in the light of new data that increasingly hints at diverse functions outside 

of their hypothesised role in Avr gene recognition. One such example of this is the 

observation that a point mutation in the resistance gene RPS5 was shown to partially 

compromise gene-for-gene resistance to several bacterial and fungal isolates. This is 

in apparent contradiction to the proposed model of race-specific recognition which 

would predict that only resistance to bacteria harbouring AvrPphB, the avirulent gene 

recognised by RPS5, would be compromised (Warren etal., 1998). 
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This notion of a more diverse and complicated role for NBS-LRRs is strongly 

reinforced by data presented within this work. Here we show that ADRJ is rapidly 

inducible prior to SA accumulation following pathogen attack and also by wounding, 

BTH, and drought. Furthermore the overexpression of the ADRJ gene resulted in 

constitutive activation of defences, perhaps not unsurprising in itself, but also 

conveyed protection to drought. 

These results demand a reappraisal of the current perception of defence and abiotic 

stress signalling commonly treated as distinct disciplines. Furthermore, the results 

underline the use of activation tagging as a powerful functional genomics tool as it is 

probable that adr]-D would not have been isolated by knock-out mutagenesis. This 

can be inferred from the fact that no NBS-LRR other than R-genes is known to have 

been isolated by EMS or T-DNA disease resistance mutant screens despite the fact 

that they comprise 1% of the genome. This could be attributable to a degree of 

redundancy which may arise from overlapping functions of genes within this large 

gene family. 

The fact that ADRJ apparently regulates disease and drought resistance and is also 

activated by wounding suggests that it might act as a global regulatory gene to 

activate different pathways following diverse forms of environmental insult. This 

then alerts the plant to any impending danger, be it microbial, abiotic or perhaps even 

wounding as a result of insect feeding, thus causing the plant to activate its defences. 

Thus it may be advantageous to ensure against drought stress upon pathogen attack 

as dehydrated plants may be more disease susceptible (Chapter 7) and vice versa. 

One caveat in this theory is that whilst ADR1 has been shown to be inducible by 

pathogen attack, it has yet to be shown to be expressed during drought stress. Thus it 

is conceivable, although unlikely, that drought tolerance may be a pleiotropic effect 

caused by the massive upregulation of ADRJ, and not associated with the 

endogenous expression of ADRJ. 

A second intriguing point for analysis is the issue of differential splicing observed in 

response to avirulent pathogen attack in comparison with the other treatments. 
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Results suggest (Chapter 6) that a truncated form of ADRI is induced within 3 hours 

of pathogen recognition in addition to the full length transcript. These observations 

reflect similar data regarding tobacco N splicing following tobacco mosaic virus 

(TMV) infection. The full length TIR-NBS-LRR (Ns) transcript was more prevalent 

for the first three hours of TMV infection, whereas a truncated form lacking the LRR 

(NL) predominated 4-8 hours post-infection (Dinesh-Kumar & Baker, 2000). In 

addition, a transcript with 82% identity to Ns  was shown to be induced during Avr9-

and Cf'9-mediated defence responses in tobacco cell cultures (Durrant et al., 2000). 

Thus it is possible to speculate that truncated ADR1 might be more responsive to 

signals specifically associated with the Avr-R interaction, whereas the full-length 

ADR1 transcript could be induced by a plethora of signalling events associated with 

the establishment of SAR, including ROI/RNI generation, ion fluxes, protein kinase 

cascades, and SA accumulation. A timecourse of ADRJ expression during HR 

establishment and analysis using a similar suite of ROI/RNI and protein kinase 

inhibitors as used previously, would help identify the exact signals required for the 

rapid induction of this gene. 

A number of questions still remain unanswered regarding ADRJ in relation to other 

NBS-LRRs. Firstly, is the expression pattern and overexpression phenotype of 

ADRJ unique to this gene and maybe its close homologues (Table 2), or common to 

a large proportion of NBS-LRR genes. If the latter scenario is true then it is likely 

that a number of similar mutants would have been identified by the dearth of 

activation tagging projects in progress. This has not been the case so far suggesting 

that ADRJ may possess some unique feature. Perhaps more pertinent is the question 

regarding function of other uncharacterised NBS-LRRs which are likely to have 

some role other than acting as a genetic reservoir of R-gene-like genes enabling the 

plant to keep pace with the continuing diversification of pathogen avirulence genes. 

This might be addressed by taking a more directed functional approach such as 

overexpressing/antisensing sample NB S-LRRS from the different evolutionary 

clades. 



Sequence comparison of the ADRJ gene would appear to distinguish it from other 

NBS-LRRs analysed to date. Of particular prominence is the region with homology 

to CDPKs. Although this region of conservation is small and confined to two sub-

domains, it is more highly conserved that many of the other sub-domains that make-

up the NBS (van der Biezen & Jones, 1998). Furthermore, it contains the only two 

residues in these sub-domains that are ubiquitous to virtually all serine threonine 

kinases. In addition, the sub-domains are located near to the P-loop like in all serine 

threonine kinases. Moreover, overexpression of four other NBS-LRRs does not 

confer a LM phenotype (Chapter 6). Lastly the CDPK-like region appears to be 

present in all four ADRI transcripts (data not shown). Taken together, this data 

presents a compelling case for the adrl-D phenotype being in part mediated by a 

unique structural domain which may be the CDPK-like region. This area could 

hypothetically function in tandem with the P-loop to activate downstream effectors 

possibly by means of a phosphorylation cascade. Kinase assays using the purified 

ADR1 protein are now required to ascertain if this is indeed the case. 

The uniqueness of ADRI is reinforced by the high degree of conservation in at least 

two monocot species which was not found in over 20 other NBS-LRRs tested to date. 

Moreover, ADR1-Li and ADR1-L2 also retain this conservation with a diverse 

number of species including monocots. Proof of the evolutionary divergence of the 

dade to which ADRJ belongs has been previously documented (Meyers et al., 1999). 

The explanation for the existence of this distinct dade containing high conservation 

between genes of different classes may be central to resolving the question of the 

role of NBS-LRR genes. 

Recent data suggests that even highly conserved NBS-LRRs may have divergent 

functions. At-RSHJ was recently shown to interact specifically with the NBS of the 

R-gene RPP5 in a yeast two-hybrid assay, whilst NBS sites of other Arabidopsis R-

genes including the closely conserved expressed homologue, RPP5-Co1F (92% 

similarity), failed to elicit a positive response (Van der Biezen et al., 2000). Thus it 

would appear that not only do LRRs seem to be highly specific in terms of their 

ligand specificity (Ellis et al., 2000), but individual NBSs may also differ 
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considerably in terms of their molecular interactions. It is anticipated that further 

yeast two-hybrid assays using both characterised R-genes and other NBS-LRRs may 

help illuminate functions of this class of genes in coming years. 

From the previously mentioned data it is possible to speculate on the position of 

ADRJ in a signal transduction pathway as illustrated in the schematic in Figure 36. 

ADRJ is likely to be induced immediately downstream of the Avr-R complex as it 

was previously shown to be expressed within 3 hours of pathogen attack. 

Avr-R complex 

AdriT 	Adri 
DREBIA? 

coil; 	 IF 

H202  

Ein2/Etrl? Q SA 
NprI? 

I Pdfl.2 	I 

Nor! I 

I PR1 I 

JA-DEPENDEN 	
(SA-DEPENDENT 	

Q:~) 	

DROUGHT 
- RESISTANCE 	RESISTANCE J 	TOLERANCE 

Figure 36: ADRI mediates multiple pathways involved in disease and drought resistance 

Speculative model integrates Adri into different signal transduction pathways downstream of the Avr-

R interaction. Dashed line indicates negative feedback pathways; 	GD 	define positive and 

negative feedback loops respectively. Adri T  refers to the truncated form ofAdri. 
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However, induction of ADRJ might also occur downstream of H202, as at three hours 

post-inoculation there is also substantial accumulation of ROT during the oxidative 

burst (Chapter 2). There is convincing evidence to support a SA-mediated positive 

feedback loop that induces ADRJ, probably giving rise to hypersensitive cell death 

from the combined effect of ROl and SA as well as other effectors. Osti and other 

cellular protectants probably act to negatively regulate this pathway to prevent 

runaway cell death in distal cells. In the adrl-D mutant however, this balance is 

tipped in favour of a pro-death pathway, which may be exacerbated by additional 

ROT generated by photo-oxidation, giving rise to localised regions of tissue necrosis 

under high-light conditions. 

At present it is not possible to determine the exact nature of negative regulation 

mediated by ein2, etri, or nprl in attenuating the adrl-D phenotype but it is 

conceivable that these genes may be involved in the SA-positive feedback loop. 

pdfl.2 expression and drought tolerance are both mediated independently of SA, the 

former via a JA-dependent signalling pathway. The mechanisms of drought 

tolerance in the adrl-D mutant remain enigmatic, though by analogy to Avr9/Cf-9-

induced gene expression (Durrant et al., 2000) it is tempting to speculate that the 

DREB 1 A transcription factor may mediate this process. One major caveat in the 

model as a whole is that it is based on data obtained from the adrl-D mutant and 

endogenous expression of the ADRJ gene and it may not necessarily be possible to 

reconcile these two different systems. 

This last point raises the pertinent question of how exactly at the molecular level 

does ADRJ overexpression give rise to the observed phenotype. The obvious 

assumption is that signal transduction pathways normally activated following Avr 

recognition are constitutively switched on. Thus, assuming that ADR1 acts at a 

similar section of the pathway to the Avr-R interaction, there are a number of 

potential mechanisms to account for overexpression leading to constitutive activation 

of downstream pathways. Assuming that the LRR of the endogenous ADR 1 protein 

functions in ligand binding, the NBS and potentially the CDPK-like domain may 

then activate a downstream effector by means of phosporylation. This may or may 
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not require an additional protein, as the NBS lacks the recognised signature sequence 

for the catalytic site of a serine-threonine kinase. 

Overexpress ion might thus activate downstream pathways by one of two 

mechanisms which are not mutually exclusive. Firstly, if the putative 

phosphorylation cascade is held in check by constitutive phosphatase activity, 

upregulation of ADR1 would override this means of negative regulation thus 

switching on downstream pathways. Alternatively, the Adri protein may become 

activated following autophosphorylation, possibly via dimerisation mediated by the 

coiled-coil domain, and thus phosphorylated Adri may then be capable of activating 

downstream signalling components. 

Whilst these hypotheses remain unsubstantiated, there is some degree of 

corroboration from the literature. Firstly overexpression of Pto confers a similar 

phenotype to that of ADR1 (Tang et at., 1999) and the Pto protein, albeit a bonafide 

protein kinase, has been shown to be capable of autophosphorylation (Sessa et al., 

2000). Indeed autophosphorylation is also known to modulate protein-protein 

interactions as in the case of the receptor-like kinase RLK5 of Arabidopsis (Stone et 

at., 1994), and thus could conceivably affect the specificity of ligand binding. 

Furthermore, a novel class of kinases have been identified that only share homology 

with the ATP-binding site of conventional protein kinases (Ryazanov et al., 1997 and 

references therein) so it is conceivable that Adri and other proteins with a NBS 

might also fall into this category. However, at present biochemical data for NBS-

LRRs specifically pertaining to kinase activity remains conspicuously absent. 

To conclude, a wealth of questions remain to be answered pertaining to the exact 

mechanism by which ADRJ activates signal transduction pathways leading to disease 

and drought resistance. It is anticipated that biochemical studies, in depth analysis of 

ADR] endogenous expression as outlined, transgenic antisense lines, and the use of 

the inducible system to dissect the early events surrounding activation of ADR1, 

should yield novel insights into ADRJ signalling. Yeast two-hybrid analysis using 

different portions of ADRJ as bait might also produce interesting findings, given the 
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evolutionary divergence of ADRJ from other NBS-LRRs. Lastly, a suppresser 

screen could be used to isolate mutants that block the adrl-D phenotype. This 

approach has previously been used to isolate suppressers of the cell death mutant 

lsd5, which were shown to convey altered patterns of disease susceptibility in 

response to different pathogens (Morel and Dangl, 1999). 

iii) ADR1 from a biotechnological perspective 

ADRJ is believed to be the first report of a plant mutant that conveys resistance to 

both disease and drought stress. As these two factors comprise the two greatest 

environmental causes of crop losses, there is considerable potential for the 

commercial exploitation of this technology. Furthermore, preliminary results 

indicate that the mutant may also be resistant to freezing and high salinity (D.Basu - 

unpublished), problems often associated with land under irrigation and or prone to 

frost. However, we must first consider the applicability of the technology from a 

scientific perspective. Such a feasibility study should also take into account other 

factors, such as existing alternatives, perceived benefits to both farmer and 

consumer, and public acceptance of such genetically modified (GM) foods, however 

there is insufficient scope for in depth discussion here. 

One of the most important questions to address regarding the feasibility of ADRJ as a 

method of crop protection, is whether the technology will actually function in 

agronomically important crop species. This could be ascertained either using the 

Arabidopsis ADRJ gene in a heterologous system, or using the genes predicted to 

high identity with ADR1 at the amino acid level (Table 2) in the endogenous plant 

species. The apparent high conservation of ADR1 in other plant species including 

monocots and even gymnosperms is encouraging when considered in comparison 

with data of heterologous expression of another NBS-LRR, the Bs2 gene of pepper. 

In addition to pepper, this gene is also able to convey gene-specific resistance to 

bacterial spot in tomato and tobacco (Tai et al., 1999). This is despite TblastN 

searches revealing that the closest known Bs2 homlogue in tomato shares only 43% 

identity with the pepper gene and no close homologues are apparent in tobacco 

(results not shown). However, as all three plants belong to the Solanaceae family, it 
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is possible that this reiteration of function might be more dependent on conservation 

of downstream signalling machinery rather than the Bs2 gene itself. 

Assuming function is conserved between evolutionary diverse plant species, another 

important consideration is the need to manipulate expression so as to generate plants 

which retain the beneficial attributes without a yield penalty. Preliminary data 

suggests that there is a strong correlation between disease resistance and severity of 

LM phenotype, including dwarf stature and associated low yield. However 

observations in the F 1  generation of CaMV 35S::ADRJ transgenics indicate that it 

may be possible to have moderately enhanced resistance with no yield penalty, 

though this remains to be substantiated in the F 2  generation. Indeed, it is interesting 

to note that only five-fold rises in PR] expression mediated by overexpression of the 

NBS-LRR Prf are required to confer bacterial resistance in tomato with no associated 

yield penalty (Oldroyd & Staskawicz, 1998). This strategem could equally be 

applied to ADRJ by transforming Arabidopsis with the gene under the control of its 

native promoter and screening for disease resistance in plants of normal stature. 

An inducible expression system has been employed in an attempt to address the 

resistance: yield issue. Preliminary results have shown that transient expression can 

induce PR] gene expression in seedlings grown on DEX plates. Furthermore DEX 

treatment of adult plants does not adversely affect size or yield (results not shown). 

Crucially however, it remains to be determined whether transient induction of ADRJ 

in adult plants can convey broad spectrum disease resistance without compromising 

yield. Support for this assumption can be gleaned from the observation that 

overexpression of another activation tagged gene, CDR], was shown to cause 

stunting and a LM phenotype when overexpressed. However, when CDR] was 

transiently expressed using the DEX system, resistance was attained in plants 

without compromising size (Xia et al., - unpublished). If the same is true for ADRJ 

then an environmentally friendly analogous system, such as the ethanol-inducible 

promoter (Salter et al., 1998), could be a viable alternative for use in crop plants. 

Indeed in some instances, transient rather than constitutive expression of defence 
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pathways may be obligatory because pathogenesis-related proteins are known plant 

allergens (Hoffman-Sornmergruber, 2000). 

Aside from constitutive or chemically inducible transient expression there are a 

number of alternative options for engineering ADRJ-mediated resistance without 

yield penalties. Other examples include the use of tissue specific promoters such as 

the leaf-specific promoter RBCS-3C ( Dai et al., 2000); a promoter of a gene that is 

switched on by virulent pathogens such as GSTJ, perhaps as a tetramer to enhance 

expression; or even circadian-regulated promoter such as CAB2 (Millar et al., 1992). 

Lastly, ADRJ gene expression under the control of a tetramer of the ADRI promoter 

might significantly enhance upregulation of endogenous defence responses following 

attempted infection. 

One last issue for consideration is the matter of pleiotropic effects mediated by 

ADRJ, in that defence, abiotic stress, and conceivably other pathways are 

constitutively activated in the ADRI mutant. In some cases it may be beneficial to 

have both defence and drought response pathways activated, for example, if the crop 

is prone to drought or infection by a disease that is provoked by dehydration stress 

(e.g. stalk rot in sorghum). However, drought protection in crops grown in latitudes 

not subject to drought might amount to an unwanted drain on the plant's resources. 

Thus it would be interesting to determine whether it is possible to uncouple disease 

and drought resistance. One approach might be to overexpress different transcripts 

of ADRJ to determine if different portions of the gene govern different signalling 

pathways. Genes downstream of the disease/drought resistance branchpoint could 

also be isolated by means of a suppresser screen or yeast two-hybrid experiments. 

To conclude, I have shown that whilst ADR1-based technology shows considerable 

potential for use in a crop-protection context on a global scale, further experiments, 

as outlined above, are required for complete validation. Whilst the need for 

increased agricultural productivity in both developed and developing world was 

highlighted in the first chapter, altruistic and capitalistic motives might seem too 

diametrically opposed to be mutually compatible. However, the royalty-free 
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donation of technology to subsistence farmers in the developing world might serve as 

a shrewd public relations strategy for the embattled agbiotech companies. This 

concept has apparently already been realised by Monsanto and Novartis who have 

waived their intellectual property rights associated with the much publicised vitamin 

A-enriched 'Golden Rice' (Nomile, 2000). 
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APPENDIX I: SEQUENCE OFADR1 GENOMIC CLONE 

-689 ataccattaa gtaatttgaa gaaatatata aaatattaat caaaacgcgt 
-639 aaaaagagta aagtgatctt tgatgattag atctacaaat cgacgtcaaa 

ASF-1 motif 
-589 aggaaaaaaa aaaaaaaagc tacaaataa acattgaaaa agttcgagtc 
-539 cctaatccct atatagttta tacacatatc aacaccaaat aatcacaaga 
-489 aaaaaaaatt ataaacaagg ttgcatatgg gatcgttttt ctttcccaat 
-439 tagttaaatt agatagagat agcgaccaaa aaaaacaaga ttagaggtat 
-389 taatccaat aggatttagc taactttaaa caattacct cccaaagtga 
-339 ttgaacccgt atggccgtat tagggaatat cgtaatttag agtttgtcta 
-289 gataatcgaa ttcgaaaaaa aactactaaa tcgatctgtt tgataataag 
-239 tgaaaaact.q atacgtaacc ataagatcca tacattctct. gaaatctatt 
-189 acaaagctat tacatgtgtt accgcagaaa caaaacttta aaacactaaa 

NYC 
-139 cgcaaaacg tatgttattg gaagttgcta agaaacttcg_tcttcttcgc 

TCA motif 
-89 tattttctaa tctaaaaacg tatcaaccct tattaccact caaccatctc  
-39 actttctttt ttctgtctta cactccaaga tcggtctcg 

TCA motif 
1 ATGGCTTCGTTCATAGATCTTTTCGCCGGCGACATCACGACGCCTCTTAGCTGCTC 
1M A SF1 DL F A G 	ITT Q L L K L L 

61 GCTCTAGTAGCTACACAGTCTACAGTTGCAAAGGAATCGCCGAACGACTGATCACGATG 
21A L 	A N TV Y SC KG I A ER LIT N 

CDPK homology 
121 ATCAGAGACGTTCAACCAACGATCAGGGAGATCCAATACAGTGGCGCGGAGCTGAGTC 
411 RD V Q PT I R El Q Y S GA EL S N 

181 CATCACCAACTCAACTGGGAGTATTCTATGAGATCTTGGAGAGCGAGCTATGT 
61H H Q T Q L G V F YE IL E K AR K L C 

241 GAAGGTTTTAAGATGCAATAGGTGGAACCTTAACATGTGTACCACGCGTGATG 
81E K V L R C N R W N L K H V Y H A N KM 

301 AAGGATCTCGAGAAACAAATATCTCGTTTCCTCAACAGCCAGATTTTGCTCTTTGTTCTT 
101K DL E K Q I SR FL N S 	ILL F V L 

coiled-coil region 
361 GCTGAGGTATGTCATCTACGGGTCAATGGTGACAGGATTGAGAGGTATGGATAGACTG 
121A E V C H L R V N G D R I E R N M D R L 

421 TTGACTGAGCGGAATGATTCTTTGTCGTTTCCGGAGACTATGATGGAGATTGAGACGGTA 
141L T E R N D S L S F P E T M N E I E T V 

481 AGCGATCCGGAGATTCAGACGGTATTGGAATTGGGGAAGAGGTGGGAGATGATG 
1619 D P El Q TV L EL G K K K V K EM N 

541 TTTAAGTTTACGGATACACATTTGTTTGGGATCTCTGGAATGAGCGGTTCAGGGAAAACC 
181F K FT D T H L F G IS G MS G S G K T 

Kinase la 
601 ACTCTTGCAATAGAGCTTTCAAAGGACGATGATGTTCGAGgtttgtgaagttttattgaa 

201T L A I E L S K D D D V R G 

661 ttttgttttgtgttgatggtcatgagttctaatcaagatttttgtgcagGACTCTTTAAG 

215 	 L F K 

721 AATAAGGTTTTGTTTTTGACTGTGTCACGGTCTCCGAATTTTGAGAATTTGGAGTCTTGT 
218N K V L F L T V S R S P N F E N L E S C 

781 ATACGAGTTTCTTTATGATGGAGTTCATCCGGGCTAGTGATTCTTGATGATGTT 
2381 REF L Y D G V H Q R K L V I L D DV 

Kinase 2 
841 TGGACAAGGGAGTCCTTGGACAGGCTGATGTCTAATTCGTGGGCACTACTTTAGTA 
258W T R E S L D R L M S K I R G S T T L V 

Kinase 3a 
901 GTGTCACGGTCCAAGCTTGCAGATCCTAGAACCACCTACAATGTGGAATTATTAAAGAAA 

278V S R S K L A D P R T T Y N V E L L K K 

961 GATGAAGCAATGTCTCTTTTGTGTCTCTGTGCTTTCGCGTCCCCGCCTTCTCCA 

298D E A MS L L CL CAFE Q KS PP S P 

Motif 4 
1021 TTCAACAAATATTTGGTGAAGCAGgtactaatgcctttttataaatatttgaatctgtaa 

318 F N K Y L V K Q 
Motif 3 
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1081 ctaaaaacacactttgcttccaaatactaaaattgttactctgtttggtagGTTGTTGAT 

327 	 V V D 

1141 GAGTGTAAGGTTTACCTTTATCTTTGAAAGTTCTTGGTGCTTCGTTAAAACACCT 

329 E C K G L P L S L K V L G A S L K N K P 
RD Motif 

1201 GAAAGATATTGGGAAGGCGTAGTGAAGAGGTTATTAAGAGGAGGCTGCTGATGACT 
349 E R Y W E G V V K R L L R G E A A D E T 

1261 CATGAGAGCAGAGTGTTTGCTCATATGGAAGAAAGTCTAGCCTCGACCCGTC 
369H ES R V F A H ME ES LEN L D P K I 

Motif 2 
1321 CGAGACTGTTTCTTGGATATGGGTGCTTTCCCTGGACGGATCCCTCTTGATCTT 
389R ID C F L ID M G A F P E D K K I P L D L 

1381 CTCACGAGCGTGTGGGTTGAGAGGCATGATATTGACGAGGACTGCGTTTTCCTTTGTT 
409 L T S V W V E R H ID I ID E E T A F S F V 

1441 CTTCGTTTAGCTGACAAGAATCTCCTTACTATAGTGAACAATCCGAGgtattcgctcttt 
429L R L A D K N L L T I V N N P R 

1501 tatgactttgtctcttgtaccaacacttcagtgggattaatcatattaaatttgcagG 

1561 TTTGGCGATGTGCACATTGGCTACTATGATGTATTTGTGACGCCACGATGTTTTGAGA 
445 F G D V H I G Y Y ID V F V T Q H ID V L  

Motif 5 
1621 GACCTAGCCCTTCATATGTCCAATCGTGTGGACGT.TAGGAGAGCTTATTTG 
465 ID L A L H M S N R V D V N R R E R L L M 

1681 CCAAAAACAGAGCCAGTGCTTCCAAGAGAATGGGAAAGAATAGATGAGCCATTTGAT 
485 P K T E P V L P R E W E K N K D E P F D 

1741 GCCAAGATAGTTTCCCTTCATACAGgcaagacttctttaactttaaatgaatttggttag 
505 A K I V S L H T G 

1801 tgactagagtcttcaagttgatacgagccaaagatttagtctttgaactcgtaatcctag  
1861 actttcttaacgtgataaataagaaagccactaaaataaaaccaaaacacctaaaactct 
1921 tatcacgtatcaggtttgatagatttttttgtgtctttagGGGAAATGGATGAAATGAAT 

514 	 E M ID E N N 

1981 TGGTTTGACATGGACCTCCCTAAGGCAGAAGTTTTAATACTGAACTTCTCTTCGGACAAC 

520W F ID N D L P K A E V L I L N F S S D N 

2041 TACGTCTTGCCACCATTTATTGGTGATGAGTAGACTCAGGGTGCTCGTGATTATCC 
540 Y V L P P F I C K M S R L R V L V I I N 

2101 A.ATGGCATGTCTCCTGCGCGTCTACATGGCTTCTCCATCTTTGCCAATTTGGCCAAACTG 
560N GM SPAR L HG F S 	F A N LA K L 

2161 AGGAGTCTCTGGCTCAAGAGGGTACATGTCCCTGCTCACCAGCTGCACCATTCCACTG 
580R S LW L KR V H V PELTS CT I P L 

2221 AAAACCTGCACAAGATACATCTAATCTTTTGTGGTCGCAGCTTTGTTCAGACG 
600 K N L H K I H L I F C K V K N S F V Q T 

2281 TCATTCGACATCTCGAAAATATTCCCAAGCTTGTCTGATCTCACTATTGATCACTGTGAT 

620 S F ID I S K I F P S L S ID L T I D H C ID 

2341 GATCTTTTGGAACTAATCCATATTTGGTCCTCTCTCCTCTCTCAGCATCC 
640D L L H L K S I F G I T S L N S L S I T 

2401 
660N C P R I L E L P K N L S N V Q S L E R 

2461 CTAAGGTTATATGCCTGCCCCGAGCTGATATCCCTCCCGGTCGGTTTGTGAGCTGCCA 
680L R L Y A C P E L I S L P V E V C H L P 

2521 TGTCTAAAGTACGTTGACATTTCACAGTGTGTCAGCCTGGTTTCTCTTCCTGGTTT 

700C L K Y V ID I S 0 C V S L V S L P E K F 

2581 GGAAGCTAGGGAGTCTTGAGAAATTGACATGAGAGTGCAGTTTATTGGGTTTACCA 
720G K L G S L E K I D M R E C S L L G L P 

2641 AGTTCTGTAGCTGCACTTGTGTCTCTACGCCATGTCATTTGCGATGAGGAGACTTCGTCT 
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740 S S V A A L V S L R H V I C D E E T S S 

2701 ATGTGGGAAATGGTCAAGAAGGTGGTTCCTGAACTTTGCATTGAAGTCGCCTGC 
760M W E M V K K V V P E L C I E V A K K C 

2761 TTCACCGTGGATTGGCTTGACGATTAGgCtCttgtaatCattgaCagCagtaattagag 
780 F T V D W L D D * 

2820 cgagttagagcgagttatttgaagtttggaatgtttCtctctatatataagatcattttt 

2980 agctatccatcttaactttaagaagagtt.gttttCtgtttatgaagttaatgcactggtt 

3040 ctaggagcggagccaattaaggaggaggggatCatttaaCCccataacattataattttt 
3100 ttaattataaggtaaattacctaataattatLaatgttttggtataaactttctaagttg 

3160 accccatgtcatgccctagttttCtaCttttgatCCCattCatatttgtttttCtCtCa 
3220 cattaatttcttttccatgtttattttgtgctttcctaacaaatgattacaaatctctag 
3280 tattgattacacattaggcttttCaCatattgattgttttttcttctcattggatatcat 

3340 gttgttttttgtccttcttCttCaaaatCgtttttaCatatatttCtatgtaagtcaa 
3400 aattgtttttaaataagCCtaatgtgtaataaatagaaC 

Appendix I: Sequence of the ADRI genomk clone 
Numbers relate to position with respect to translation start site; non-translated regions (i.e. promoter, introns and 

5' and 3' UTR) in lower case; motifs in promoter and amino acid sequence indicated in bold, LRRs underlined. 

Putative TATA box and two polyadenylation signals are shaded. XhoI site in italics (307) indicating that region 

approx. 1kb upstream from here used as ADRI probe in Northern analysis. 
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