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Abstract 

During the course of this work the genomic -lactamase from Bacillus 

ilcheniformis 6346/c was investigated. A partial genomic DNA library of this 

bacillary strain was constructed in XNM1 149 and a -lactamase producing 

recombinant isolated. The 4.71(b long insert was subcloned into pACYC184, 

shotgunned into an M13 vector and sequenced by the Sanger dideoxy chain 

termination method. Making use of the University of Wisconsin package for 

sequence analysis the assembled DNA sequence was searched for open reading 

frames and control sequences. The comparison of the deduced protein sequence 

of the three major open reading frames with the aminoacid sequence of the 

B-lactamase from Bacillus llcheniformis 749/c published by Lampen confirmed 

the presence of a closely related protein. The number of significant aminoacid 

differences between the two enzymes is quite small, most of them being located 

in the leader peptide. 

These two enzymes present a different spectrum of activity against a 

range of 8-lactams, '6346' being a better cephalosporinase than '749'. From the 

work of Pollock and Thatcher it was thought that the difference in specificity 

profile was due to a single substitution or to a small number of tightly linked 

aminoacid changes. The aim of this work was to investigate which of the 

aminoacid changes was responsible for the activity difference by substituting 

749-like residues in the corresponding positions on the 6346 enzyme. 

A 1.61(b DNA fragment containing the 6346 8-lactamase gene was 

subcloned from pACYC184 into M13mp18, but was found to be highly unstable 

and therefore unsuitable as a vector for the site directed mutagenesis (SOM) 

experiments. A new vector had to be constructed that would allow the 

maintenance of the gene in a more stable double stranded plasmid and at the 

same time would be a convenient system for the SOM experiments. This was 

achieved by partially deleting amp from pTZ19R and introducing in its place tat 

from pAT153. The 1.6Kb DNA fragment proved to be stable in the resulting pAD 

plasmid. Cells carrying the plasmid produce single stranded template in suitable 

amount both for SDM and sequencing. 

The Eckstein method and the gapped-duplex method were used to 

construct the mutants. Their products were partially purified by FPLC and the Km 
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and Vmax  for a range of substrates were estimated spectrophotometrically. The 

results of this study indicate that the change G1y238 to Ala is responsible for all 

the differences in substrate profile. All the other substitutions so far introduced 

do not significantly alter the activity spectrum of the enzyme. This information 

has been related to the recent X-ray structure of the highly homologous 

B-lactamase of Staphylococcus aureus PCi. G1y238 to Ala is the only 

substitution close to the active site; this would explain why this highly 

conservative change has such a profound influence on the substrate profile of 

the enzyme. 

Another mutant, Asnl70 to Met, was designed to test a feature of the 

mechanism of action proposed by Moult for the class A 8-lactamases, of which 

the Staphylococcus aureus and the Bacillus ilcheniformis enzymes are members. 

Preliminary experiments with this mutant protein do not appear to confirm 

Moult's proposal that the deacylation step of the reaction intermediate makes use 

of a water molecule bound in the active site at a position which would be 

blocked by the Asn 170 to Met substitution. 
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1.1 INTRODUCTION 

Since the discovery of penicillin (Fleming 1929) and of cephalosporins 

(Newton & Abraham 1954) and the first realisation of their potentiality as 

therapeutic agents (Chain et al. 1940) the family of -lactam antibiotics of which 

penicillins and cephalosporins (Figure 1.1) are members has grown enormously. 

Despite the introduction of many competitor drugs, penicillins are still regarded 

as the most potent of all agents for the treatment of acute infectious diseases. 

Their action is directed against penicillin-binding proteins (PBPs) located on the 

bacterial cell surface and interferes with the metabolism of the cell wall. 

Generally low levels of penicillin cause inhibition of cell division with consequent 

filamentation of the cells, while lysis occurs at higher antibiotic concentration 

(Spratt 1975). 

FIGURE 1.1 Action of enzymes attacking penicillins and cephalosporins 

(b) 
/ 	H 

R.CH 2 .CO./NH. C—C 

I 
r'  

' 	I 	I 
CH.COCH 

(c) 
Penicillin 

(b) 
,' H H/S\/H 

R.CH2.CO. ,'NH.C—C 
I 

(a) 
I 	I 	I 

0 

	

C---N 	C.CH 2O. ,'COCH 3  

C.COOH (c) 

a. Acyl-esterases; b. Amidases; c. Beta-lactamases; (from Pollock 1965a) 
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FIGURE 1.2 Peptidoglycan synthesis 

-G-M-G-Pl-GM-G-P1-6 

I 	 Pro 	hnq 

H,N-l-LR,- 0-Ala-Y 	 P,pI,doqI7can 

P4 1 t4-Z- tR 1- 0 -Ala -  0-Ala-OH 

O-P0-P-0-M- G•0 	0-P-0-1-1PI-G -P1-0 - 

Cytoplasmic 	A membrane 

A 	Tran,qlycolylaIion 

-G - P1-6- P1-6- P1-6- P1-

H-Z-LR,-O-Ala-y 

H,N-Z-0-Ala-0-Ala-0H 

0-P-0-P-0-M-G-P1-G-M-lj- 

• 	A 
B j Transpeptaton 

-P1-G-M-6-pI-13  0- 

H 1 PI - Z- l.R,- 0A11-HN-Z- t'Rr OAta-Y 

0
- P -0-P0-M-G-M-G-M-6 - 

H-C-Ala-OH 

Possible scheme for the integration of new disaccharide-peptide units into nascent 
peptidoglycan by transglycosylation (A) and into preexisting peptidoglycan by transpeptidation 
(B). The peptide in the preexisting peptidoglycan which serves as an acceptor in the 
transpeptidation reaction might already be engaged in another cross-link (V = -NH-Z-peptide), 
be intact (V = 0-Ala-01-1), or have been shortened by OD-carboxypeptidase activity (Y = OH). 
In some cases, the L-R3-0-Ala-011 peptide bond of the acceptor molecule has been 
hydrolysed by LD-carboxypeptidase activity (from Frere & Joris 1985). 

1.2 MECHANISM OF ACTION OF B—LACTAM ANTIBIOTICS 

1.2.1 The bacterial cell wall 

All bacterial cells are surrounded by a wall which determines the cell 

shape and protects the bacterium from osmotic lysis. In Gram positive bacteria 

the wall, which surrounds the cell membrane, is mainly formed by tiers of 

peptidoglycan forming a thick layer at the very surface of the cell. In Gram 

negative microorganisms the peptidoglcan is much thinner and it is contained 

between the outer and the inner membranes. 
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All bacterial peptidoglycans are similar, being built of long parallel 

polysaccharide molecules with alternating units of N-acetylglucosamine and 

N-acetylmuramic acid and pentapeptides attached by an amide bond to the lactyl 

side chain of the N-acetylmuramic acid residue. The structure of these peptides 

varies in different bacterial species, but it always presents a D-alanyl-D-alanine 

dipeptide at the 3' end and either lysine or diaminopimelic acid as third residue. 

During biosynthesis of the cell wall (Figure 1.2) disaccharide-peptide 

units are transported outside the cell wall and attached to the nascent 

peptidoglycan by transglycosylation. In the last stage of the synthesis the new 

peptidoglycan is cross-linked to the preexisting one by a transpeptidation 

reaction in which the free amino group of the third residue of the peptide on one 

glycan strand displaces the terminal D-Ala of a second glycan strand (reviewed 

by Tipper and Wright 1979). It is the final cross-linking step of cell wall 

biosynthesis that is inhibited by -lactam antibiotics. 

Other transpeptidases might be involved in further maturation of the 

peptidoglycan (Mirelman 1980), while a carboxypeptidase activity splitting the 

D-Ala-D-Ala terminal dipeptide could exercise control over the degree of 

cross-linking. These activities are also penicillin-sensitive. 

1.2.2 Penicillin-binding proteins 

The enzymes that perform the penicillin sensitive reactions described 

above are usually membrane bound and they are detected and isolated because 

of their ability to bind specific 8-lactam antibiotics forming stable or slowly 

degrading complexes. 

These penicillin-binding proteins (PBPs) have been studied in many 

different species and have been numbered according to their relative 

electrophoretic mobilities. So, although related species may have similar patterns 

of PBPs, there is no necessary relationship between a particular PBP number of 

two unrelated organisms. 

In E.coll PBPs have been divided in two groups depending on their 

molecular weight. High Mr  PBPs, ranging between 60000 and 90000, are 

numbered 1A, 1B, 2 and 3. They seem to have a strictly synthetic function and 

are essential to proper cell growth and division. 
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In vivo, loss of either PBP1A or PBP113 does not affect cell survival, but 

bacteria lyse when both are inactivated (Suzuki at 8/. 1978). PBP1B has been 

isolated and extensively studied. It is probably the major transpeptidase involved 

in the incorporation of new units of peptidoglycan into the cell wall and its 

activity controls cell elongation (Spratt 1975, Spratt at al. 1977). 

Inhibition of PBP2, easily achieved with mecillinam, induces loss of the 

normal rod shape and osmotically stable round cells are found in treated cultures 

(lwaya at a/. 1978). PBP3 is involved in septum formation; its inactivation 

inhibits cell division inducing filamentation of the cells and eventual death (Spratt 

1975, 1977). 

PBP1A, 18 and PBP3 have been shown to be constituted by two 

functional domains, one performing the penicillin sensitive transpeptidase activity 

mentioned above, the other functioning as a penicillin insensitive 

transglycosylase (Suzuki at al. 1980, Ishino at a/. 1980, Ishino & Matsuhashi 

1981, Hedge & Spratt 1984). On the other hand PBP2 is probably only a 

transpeptidase (Ishino et al. 1982). 

All the high Mr  PBPs have been cloned and sequenced (Broome-Smith at 

8/. 1985, Asoh at al. 1986, Nakamura at a/. 1983), but no crystallographic data 

are yet available. 

Low Mr  PBPs (30000-40000) are non-essential to the cell in normal 

laboratory conditions and mutants with no detectable levels of PBP4, 5 or 6 do 

not show any loss of viability or morphological alterations (Matsuhashi at al. 

1977, 1978, Spratt 1980, Broome-Smith & Spratt 1982). They are apparently 

involved in the maturation of the cell wall, PBP4 performing the secondary 

transpeptidation reactions (De Pedro & Schwarz 1981), while PBP5 and PBP6 are 

mainly D-Ala-D-Ala carboxypeptidases (Spratt 1983, Waxman & Strominger 1983). 

Their role in the metabolism of the peptidoglycan is still not clear (Tamura at al. 

1976, Spratt & Strominger 1976, Amanuma & Strominger 1980). Sequence 

information is available for PBP5 (Broome-Smith at al. 1983) and its amino 

terminus was shown to be similar to that of PBP6 (Waxman at al. 1982). 

Although PBP1A and PBP1B appear to be very closely related, in general 

little sequence similarity can be found within the two groups of PBPs (high M r  

and low M r) and between them. Nevertheless, in all PBPs a conserved sequence 

is found around the active site serine (Ser-Xaa-Xaa-Lys) and 
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Ser-Xaa-Xaa-Lys-Pro is present in all high Mr  PBPs. Another region of similarity 

can be detected at the amino terminus (Asoh et a/. 1986). 

Being membrane bound proteins, PBPs have proved very difficult to 

crystallize, so that the only structural information available was obtained on 

soluble 0-Ala-D-Ala carboxypeptidases produced by Streptomces R61 (Kelly at 

al. 1982, 1985) and by Streptoinyces a/bus G (Dideberg at a/. 1982). 

The wealth of information obtained on PBPs from other organisms as 

well as from E.coll has been extensively reviewed by Frere and Joris (1985). 

1.2.3 The substrate analogue hypothesis 

Already in 1965 it had been proposed (Tipper & Strominger 1965) that 

penicillins interfere with the transpeptidation of the nascent peptidoglycan by 

acting as a substrate analogue of the D-Ala-D-Ala dipeptide. It was suggested 

that the transpeptidase reaction involves the temporary acylation of an active site 

residue accompanied by the release of the terminal 0-Ala. In a second step of 

the reaction the acyl-enzyme intermediate would transfer the tetrapeptide to a 

nucleophile, reconstituting the active enzyme. When the nucleophile is a 

molecule of water a hydrolysis is performed, while during the transpeptidase 

reaction the tetrapeptide is transferred to a free amino group. 

The 8-lactam bond of penicillin is presented to the enzyme in the same 

way as the peptide bond of the terminal D-Ala-0-Ala and it is cleaved in a 

similar fashion, but in this case the enzyme  is deacylated only very slowly and is 

therefore inactivated. This theory has been more recently comfirmed by the 

sequencing of PBPs active site peptides in which a serine residue is acylated 

both in the presence of normal substrate and of 8-lactams (Yocum at al. 1979, 

1980, Waxman & Strominger 1980). 

1.3 RESISTANCE TO B-LACTAM ANTIBIOTICS 

1.3.1 Intrinsic resistance 

Many factors are involved in the bacterial resistance to B-lactam 

antibiotics. Among these an altered permeability of the outer cell membrane can 

cause intrinsic resistance in Gram negative bacteria. Strains of Neisseria 

gonorrhoeae,Serratia, Enterobacter and Pseudotnonas have been reported to 
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have altered cell envelopes that confer resistance to the cells (Neu 1982) and 

more recently a mutant of Salmonella paratyp/71 A resistant to most 8-lactam 

antibiotics was shown to have decreased quantities of three major porins 

(Gutmann et a/. 1988). 

Altered susceptibility of target sites can also form the basis of 

resistance. For example, modified PBPs have been found in a resistant strain of 

Streptococcus pneumoniae and no 8-lactam was effective against it (Williamson 

et at 1981). It is thought that the accumulation of single amino acid 

substitutions around the active site of PBPs conferring small decreases in affinity 

to B-Iactams could lead to quite considerable levels of resistance. This process 

has been demonstrated by Hedge & Spratt (1985) who followed the evolution of 

PBP3 in E.co/i for increasing levels of resistance to cephalosporins. PBP3 is 

normally a target for many cephalosporins and its inactivation can lead to cell 

death, but the cumulation of only four amino acid changes caused a one hundred 

fold decrease in sensitivity to some cephalosporins, like cefoxitin. 

1.3.2 Enzymatic resistance 

Antibiotic resistance due to the production of 8 - lactam destroying 

enzymes was reported very early by a codiscoverer of penicillin (Abraham & 

Chain 1940). Three types of 8-lactam modifying enzymes have since been found 

to be involved in the destruction of antibiotic efficiency of B-lactams (Figure 1.1). 

Acyl-esterases (Huang 	et al. 1963) are active only against 

cephalosporins and attack the ester bond of the side chain in position 3' of the 

-lactam nucleus, yielding a product with a somewhat reduced antibiotic activity. 

Amidases (Batchelor et al. 1961) split the amide bond in the side chain 

of both penicillins and cephalosporins. Their importance in the development of 

resistance is very limited, but they are now extensively used in the industrial 

production of semi-synthetic 8-lactam antibiotics. 

8-lactamases are by far the most important and effective enzymatic 

activity directed against 8-lactams. They break the 3-lactam bond of the 

nucleus of both penicillins and cephalosporins (Figure 1.3). In the case of 

penicillins the end product is penicilloic acid, which presents no antibiotic 

activity. The reaction with cephalosporins also involves only the opening of the 

8-lactam ring, but the resulting cephalosporoate is unstable and undergoes 
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FIGURE 1.3 	-Lactam bond hydrolysis 

RNH 	s CH 1 	 RN}T 	 CH3
N' 

__r  :: 
CH3 	 CH3

NH 
oJ 	COOH 	 0 OH 	COOH 

0 -lactamase 

Penicillin 	 Penicilloic acid 

RNH 	 R N H 

COOH 	 COOH 
3 -lactamase 

Cephalosporin 	 Ccphalosporoic acid 
or further decomposition 
prochicts. 

further non-catalyzed decomposition to smaller fragments (Hamilton-Miller et al. 

1970, Faraci & Pratt 1984). 

B-lactamases can probably be found in all bacterial groups 

(Hamilton-Miller 1979). 8-lactamase activity has also been reported in the 

blue-green algae Coccoch/oris elabens and Anabaena (Kushner & Breuil 1977), 

in the yeasts Candida alb/cans, C'andida bold/n/i and Pichia pinus (Metha & Nash 

1978) as well as in mammalian tissue, including human (Hamilton-Miller 1982), 

but these non-bacterial enzymes have not been characterized in great detail. 

On the other hand the bacterial B-lactamases have been much studied, 

not only because of their clinical importance in resistance of pathogens but also 

because their properties make them a convenient system for the studying of 

more general phenomena. 

1.3.3 The spread of resistance linked to 8-lactamases 

The effectiveness of 8-lactamases as a protection against antibiotically 

active 8-lactams is mainly linked to the ease with which these enzymes spread 
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across bacterial strains and species. The selective pressure that 	-lactam 

antibiotics exercise on target bacterial populations was very quickly recognised 

as a driving force for the diffusion of resistance (for example Livermore 1986). In 

the early stages of the clinical application of penicillin very few strains of 

bacteria were resistant; by 1948 already 50% of the staphylococcal strains 

isolated in hospitals survived treatment with the drug and by 1967 the incidence 

of resistance to penicillin in St.aureus had risen to 70% in the community at 

large and to 95% among the hospital population (Ridley at at. 1970, Finland 

1979). 

Many 8-lactamase genes were shown to be part of highly mobile genetic 

elements. Some genes are plasmid-borne and can therefore be easily transferred 

to other bacterial species by transduction or conjugation. Others are found to be 

part of transposable elements, e.g. the TEM gene of transposon TnA, and can 

move from replicon to replicon, be it the bacterial chromosome or a plasmid 

(Hedges & Jacob 1974, Richmond at at. 1980). This type of genetic organization 

would certainly explain the ease with which 8-lactarnase activity spreads within 

and between species. 

Good examples of this phenomenon are given by a plasmid found in 

Proteus mirabu/is that carried a 8-lactamase identical to the chromosomal 

enzyme of E.coll K12 (Bobrowski at at. 1976) or by the transfer of AmpC from 

E.coll to Shigella clinical isolates (Olsson at at. 1983). More recently a 

TEM-like enzyme (CTX-1), carried on a 84Kb plasmid in Kiebsiella pneumoniae, 

was reported to have transferred to five other enterobacterial species isolated 

from five patients in an intensive care unit (Kitzsis at at 1988). 

1.4 CLASSIFICATION Of B-LACTAMASES 

1.4.1 The Richmond & Sykes classification 

8- lactamases present an enormous variety of enzyrni and molecular 

properties, making a systematic classification based on properties extremely 

difficult. The first attempt to put some order in the hundreds of distinguishable 

B-lactamases was that proposed by Richmond & Sykes (Richmond & Sykes 1973, 

Sykes & Matthew 1976). The classification was based on the substrate profile, 

that is the activity shown by the enzyme against a series of 8-lactams relative to 
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that of benzylpenicillin, on the molecular weight of the proteins, susceptibility to 

inhibitors like cloxacilliri, as well as on the location of the gene. 

Although this classification is still very important and widely used 

because of the emphasis it puts on the clinically and therapeutically relevant 

aspects, it is now thought to be incomplete and somewhat misleading (Coulson 

1985). 

The main objection to the Richmond & Sykes classification is that it is 

applied only to enzymes produced by Gram negative bacteria. So the 

staphylococcal and bacillary -Iactamases, that are similar to the Gram negative 

TEM, could not be accounted for in this scheme. In addition, in view of what has 

just been said above about the mobility of the B-lactamase genes, their location 

is no longer considered an indication of relatedness. 

Measurement of Mr  has also proved unreliable, estimates depending very 

much on the method used: for example the M r  of the TEM enzyme of E.coll has 

been reported to be 17000 from equilibrium centrifugation studies (Datta & 

Richmond 1966), 21000 from gel filtration measurements (Dale & Smith 1971) and 

27000 from estimates of electrophoretic mobility (Scott 1972). 

Finally there is evidence that the substrate profile, on the basis of which 

8-lactamases are broadly subdivided in penicillinases, cephalosporinases and 

broad spectrum enzymes, can be altered considerably by a small number of 

amino acid substitutions (Pollock 1968, this work, Hall & Knowles 1976, Baldwin at 

al. 1980). 

1.4.2 Sequence-based classification 

Once the amino acid sequence of several 8-lactamases had been 

reported, it became possible to start a classification of the enzymes based on the 

structure and therefore on likely evolutionary relatedness (Ambler 1980, Jaurin 

and Grundstrom 1981, Dale at al. 1985). To date four classes have been 

recognized. 

CLASS A 

This class includes enzymes from both Gram negative and Gram positive 

bacteria, that differ widely in isoelectric point, molecular weight and substrate 
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TABLE 1.1 Class A -lactamases 

ORGANISM NAME GENETIC LOCATION REFERENCEd 

St.aureus PCi - plasmid 1,2 

B./icheniformis 749/c - chromosome 3,4 

B.cereus 569/1-1 and 5B 8-lactamase I chromosome 5,6,7,8 

E.coll TEM plasmid 9,10 

Rps.capsu/ata SP 108 - unknown ii 

Ps.aeruginosa RMS149 - plasmid 11 

K/.pneumoniae LEN-1 - chromosome 12 

KI.aerogenes Ki chromosome 13 

Strept.a/bus G 	- - chromosome 14 

Strept.cacaoi 	 - 	 chromosome 	15 

B.cereus 569/1-1 	 8-lactamase Ill 	chromosome 	16 

E.coll 	 PIT-2 	 plasmid 	 17 

a 1. Ambler 1980. 2. Chan 1986. 3. Ambler & Meadway 1969, 4. Neugebauer et al. 1981. 
5. Thatcher 1975a, 6. Sloma & Gross 1983, 7. Wang et al. 1985. 8. Madonna at al. 1987. 
9. Ambler & Scott 1978, 10. Sutcliffe 1978, 11. Campbell 1986, 12. Arakawa at al. 1986. 13. 
Emanuel at al. 1986. 14. Dehottay at al. 1987. 15. De Meester at al. 1987. 16. Hussain at al. 
1987, 17. Barthelemy at al. 1988. 

profiles as well as in other kinetic parameters. However, about 10% of the amino 

acid residues are identical in all the enzymes (Figure 1.4) and very few insertions 

and deletions are required in order to optimize the alignment, indicating that they 

have all diverged from a common ancestral gene. A list of the enzymes currently 

assigned to this class is given above (Table 1.1). 

The genetic location of the Class A 8-lactamases is not consistent, the 

genes being plasmid-borne in most but not all Gram negative bacteria and 

normally chromosomal in Gram positive. The enzyme is usually found in the 

periplasm in Gram negatives, while in Gram positive microorganisms the gene 

product is either found attached to the cell membrane or it is secreted. In 

B.11cheniformis about 50% of the activity is found in the growth media, while the 
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FIGURE 1.4 Protein sequence alignment of Class A —Iactamases 

-46 	 3 

	

Strept.a/bus G 	 vii 

Strept. cacaoi MNRRTRVFDV CPHRTRVFSQ LTAGRPAVVA VFPCAPAYGT AQEVPDTAYS 

	

B.cereus 569/1-1 I 	 MK 

	

B.cereus 5  I 	 LK 

	

B.cereus 569/H Ill 	 MFVLNKFF 

consensus .....................................................k 

4 	 53 

Strept.a/bus G PSTSRPSRRT LLTATAGAAL AAATLVPGTA HASSGGRGHG SGSVSDAERR 

Strept.cacaoi VPPVVFSSGP PLALVPLVAC GQASGSESGQ QPGLGGADEA HVSADAHEKE 

	

Rps.capsu/ata 	 MRFTATV LSRVTGLAL GLSMATASLA GTPVEALSET 

	

Ps.aeruginosa 	 MNKFQCH FLSVPVAILG CVGLICTSAY AMDTGILDLA 

	

E.co/i TEM 	 MSIQHFRVAL IPFFAAFCLP VFAHPETLVK 

	

St.aureus PCi 	 MKKLIF LIVIALVLSA CNSNSSHAKE 

B./icheniformis 749 MKLWFSTLK LKKAAAVLLF SCVALAGCAN NQTNASQPAE KNEKTEMKDD 

B.cereus 569/1-1 I NKRMLRIGIC VGILGLSITS LEAFTGESLQ VEAKEKTGQV KHKNQATHKE 

B.cereus 5B I NKKMLKIGMC VGILGLSITS LJVTFTGGALQ VEAKEKTGQV KHKNQATHKE 

B.cereus 569/1-1 Ill TNSHYKKIVP VVLLSCATLI GCSNSNTQSE SNKQTNQTNQ VKQENKRNHA 

	

E.co/i PIT2 	 SPQPLEQ 

	

K/.pneumoniae 	 MRYVRLCV ISLLATLPLV VYAGPQPLEQ 

consensus nkkmlksg.. v.ilg.s.ts l.a. .vgl.q . . .la.tgl. . .snpatlke 

54 	 * 	 103 

Strept.a/bus G LAGLERASGA RLGVYAYDTG SGRTV.AYRA DELFPMCSVF KTLSSAAVLR 

Strept.cacaoi FRALEKKFDA HPGVYAIDTR DGQEI.THRA DERFAYGSTF KALQAGAILA 

Rps.capsulata VARIEEQLGA RVGLSLMETG TGWSW. SHRE DELFLMNSTV KVPVCGAILA 

Ps.aeruginosa VTQEETTLQA RVGVAVIDTD SGLTW.QHRG DERFPLNSTH KAFSCAAVLA 

E.coll TEM VKDAEDQLGA RVGYIELDLN SGKILESFRP EERFPMMSTF KVLLCGAVLS 

St.aureus PCi LNDLEKKYNA HIGVYALDTK SGKEV.KFNS DKRFAYASTS KAINSAILLE 

B.11cheniformis 749 FAKLEEQFDA KLGIFALDTG TNRTV.AYRP DERFAFASTI KALTVGVLLQ 

B.cereus 569/1-1 I FSQLEKKFDA RLGVYAIDTG TNQTI.SYRP NERFAFASTY KALAAGVLLQ 

B.cereus 5B I FSQLEKKFDA RLGVYAIDTG TNQTI.AYRP NERFAFASTY KALAAGVLLQ 

B.cereus 569/H III FAKLEKEYNA KLGIYALDTS TNQTV.AYHA DDRFAFASTS KSLAVGALLR 

E.co/i PIT2 IKLSESQLSG RVGMIEMDLA SGR'TLTAWRA DERFPMMSTF KVVLCGAVLA 

K/.pneumoniae IKQSESQLSG RVGMVEMDLA NGRTLAAWRA DERFPMVSTF KVLLCGAVLA 

consensus faqlEkqlda r.Gvya.dtg .g.tv .ayra derFamaStf Kal.cga.La 

104 
Strept.a/bus 0 DLDRNGEFLS 

Strept. cacaoi QVLRDGREVR 

	

Rps.capsu/ata 	RW........ 

	

Ps.aeruginoSa 	QA........ 
E.coll TEM RV........ 

	

St.aureus PC 	QV........ 
B.11chen/form/s 749 Q......... 

	

B.cereus 569/H I 	Q......... 

	

B.cereus 5  I 	Q......... 

	

B.cereus 569/1-1 III 	Q ......... 

	

E.coli PIT2 	RV........ 
K/.pneumoniae RV........ 

	

consensus 	qv........ 

153 
RRILYTQDDV EQADGAGPET GKPQNLANAQ LTVE.... EL 
RGAEADGMDK VVHYGQDAIL PNSPVTEK.H VADGMSLREL 
.DAGRLSLSD ALPVRKADLV PYAPVTET.R VGGNMTLDEL 
.DRHKLNLEQ AIPIERTALV TYSPVTERVP PGGTLTLREL 
.DAGQEQLGR RIHYSQNDLV EYspvTEK.H LTDGMTVREL 
.PYNKLNK KVHINKDDIV AYSPILEK.Y VGKDITLKAL 

• .KSIEDLNQ RITYTRDDLV NYNPITEK.H vDTGMTLKEL 
• NSIDSLNE VITYTKEDLV DYSPVTEK.H VDTGMKLGEI 
.NSTKKLDE VITYTKEDLV DYSPvTEK.H VDTGMTLGEI 
.NSIEALDE RITYTRKDLS NYNPITEK.H vDTGMTLKEL 
•DAGDEQLER KIHYRQQDLV DYSPVSEK.H LADGMTVGEL 
.DAGLEQLDR RIHYRQQDLV DyspvsEK.H LVDGMTIGEL 
.a.ieqld. rihyt.ddlv dyspvtek.h vd.gmtlgel 
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FIGURE 1.4 (continued) 

154 	 203 

Strept.a/bus G CEVSLTASDN CAANLMLREL GGPAAVTRFV RSLGDRVTRL DRWEPELNSA 

Strept.cacaoi CDAIVAYSDN TAANLLFDQL GGRRGSTRVL KQLGDHTTSM DRYEQELGSA 

Rps.capsu/ata CLAAIDMSDN VAANILIGHL GGPEAVTQFF RSVGDPTSRL DRIEPKLNDF 

Ps.aeruginosa CRAAVSISDN TAANLALDAI GGARTFTAFM RSIGDDKTRLJ DRREPELNEA 

E.coli TEM CSAAITMSDN TAANLLLTTI GGPKELTAFL HNMGDHVTRL DRWEPELNEA 

St.aureus PCi IEASMTYSDN TANNKIIKEI GGIKKVKQRL KELGDKVTNP VRYEIELNYY 

B.//c/7eniformis 749 ADASLRYSDN AAQNLILKQI GGPESLKKEL RKIGDEVTNP ERFEPELNEV 

8.cereus 569/H I AEAAVRSSDN TAGNILFNKI GGPKGYEKAL RHMGDRITMS NRFETELNEA 

B.cereus 5B I AEAAVRYSDN TAGNILFHKI GGPKGYEKAL RKMGDRVTMS DRFETELNEA 

B.cereus 569/H III ADASVRYSDS TAHNLILKKL GGPSAFEKIL REMGDTVTNS ERFEPELNEV 

E.coll PIT2 CAAAITMSDN SAANLLLTAV GGPAGLTAFL RQIGDNVTRL DRWETELNEA 

KI.pneumoniae CAAAITLSDN SAGNLLLATV GGPAGLTAFL RQIGDNVTRL DRWETALNEA 

consensus ceaavtySDn tAaNlllkki GGpkglt.f 1 r. .GDrvtrl dR.EpeLnea 

204 	 253 

Strept.albus G EPGRVTDTTS PRAITRTYGR LVLGD .... A LNPRDRP.ILT SWLLANTTSG 

Strept.cacaoi \IPGDPRDTST PRAFAEDLRA FAVEDGEKAA VAPNDRLJQLN DWMSGKPTGD 

Rps.capsu/ata ASGDERDTTS PAAMSETLRA LLLGD .... V LSPEARGKLA EWMR}{GGVTG 

Ps.aeruginosa TPGDARDTTT PIAAARSLQT LLLDG .... V LSAPARNELT QWMLGDQVAD 

E.coll TEM IPNDERIDTTM PAAMATTLRK LLTGE.... L LTLASRQQLI DWMEADKVAG 

St.aureus PCi SPKSKKDTST PAAFGKTLNK LIANG.... K LSKENKKFLL DLMLNNKSGD 

B.11cheniformis 749 NPGETQDTST ARALSITSLRA FALED .... K LPSEKRELLI DWMKRNTTGD 

B.cereus 569/H I IPGDIRDTST AKAIATNLKA FTVGN .... A LPAEKRKILT EWMKGNATGD 

B.cereus 5B I IPGDIRDTST AKAIARNLKD FTVGN .... A LPHQKRNILT EWMKGNATGD 

B.cereus 569/H Ill NPGETHDTST PKAIAKTLQS FTLGT .... V LPSEKRELLV DWMKRNTTGD 

E.coll PIT2 LPGDARDTTT PASMAATLRK LLTSQ .... R LSARSQRQLL QWMVDDRVAG 

K/.pneumoniae LPGDARDTTT PASMAATLRK LLTAQ .... H LSARSQQQLL QWMVDDRVAG 

consensus ipgdarDT.t paa.a.tlr. lllgd .... a lsaekr.qLt dwmkgnttgd 

Strept.a/bus G 
Strept. cacaoi 

Rps. capsu/ata 
Ps.aerug/nosa 

E.co/i TEM 
St.aureus PCi 

B.Iich en/form/s 749 
B.cereus 569/H I 

B.cereus 58 I 
B.cereus 569/H III 

E.coIi PIT2 
K/.pneumoniae 

consensus 

WTLGDKTGAG 
WKVEDKSGQV 
WLILDKSGSG 
WQIADKSGAG 
WFI ADKSGAG 
YKVADKSGQA 
WEVADKTGAA 

VVGDKSGAG 
WVDADKSGAG 
WEVADKTGAG 
WFIADKTGAG 
WFIADKTGAG 
wf . aDKscag 

254 
DRFRAGLPDD 
ALIRAGVPKD 
ALLRAEAEDA 
ALLRAGLPRIJ 
PLLRSALPAG 
TLIKDGVPKD 
ALIRAGVPDG 
KLIRAGIPTIJ 
KLIRAGVPTIJ 
KLIRAGVPKG 
PLIRSVLPAG 
PLIRAVLPPG 
alirag.p.d 

303 
.RYGTNNDAG VTWP.PGRAP IVLTVLTAKT 
.KYGTRNDIA VVRP.PGRAP IVVSVMSHGD 
SH. .TINLVA VIQP.EGGAP WIATMFISDT 
.GHGSRSIIA VVWP.PKRSA VIVAIYITQT 
.ERGSRGIIA ALGP.DGKPS RIVVIYTTGS 
ITYASRNDVA FVYPKGQSEP IVLVIFTNKD 
.SYGTRNDIA IIWP.PKGDP VVL.AVLSSRD 
.SYGTRNDIA VVWP.PNRAP IIIAILSSKD 
.SYGTRNDIA IVWP.PNRSP IIIAILSSKD 
.SYGTRNDIA IIWP.PNKKP IVLSILSNHD 
.ERGARGIVA LLGP.NNKAE RIVVIYLRDT 
.ERGARGIVA LLGP.DGKPE RIVVIYLRDT 
.sygtrndia vvwP.pgrap iiv.ilsskd 
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FIGURE 1.4 (continued) 

Strept.albus 0 
Strept. cacao/ 

fips. capsu/ata 
Ps. aeruginosa 

E.co/i TEM 
St.aureus PCi 

Biicheniformis 749 
B.cereus 569/H I 

B.cereus 5B I 
B.cereus 569/H Ill 

E.co/i PIT2 
KI.aerogenes 

consensus 

304 
EQDAARDDGL 
TQDAEPHDEL 
DAEFEVRNEA 
AASMSASNQA 
QATMDERNRQ 
NKSDKPNDKL 
KKDAKYDDKL 
EKEAI YDNQL 
EKEATYDNQL 
KEDAEYDDTL 
PASMAERNQQ 
PASMAERNQH 
ea.a.ydnql 

330 
VADAARVLAE TLG 
VAEAGLVVAD GLK 
LKDLGRAVVA VVRE 
VSRIGSALAK ALQ 
IAEIGASLIK HW 
ISETAKSVMK EF 
IAEATKVVMK ALNMNGK 
IAEATKVIVK ALR 
IKEAAEVVID AIK 
IADATKIVLE TLKVTNK 
IAGIGAALIE HWQR 
IAGIGQR 
iaeagkvv.k alk ... K 

In the consensus line completely conserved residues are reported in capital letters, 
semiconserved aminoacids in lower case. 

other half remains cell-bound. This diverse cellular location is reflected in the 

absence of similarity at the amino terminal part of the preproteins, where the 

leader peptides are found. 

All these B-Iactamases share the short sequence Ser-Thr-Xaa-Lys in 

their active site peptide and other completely conserved residues are scattered 

along the sequence. It has been shown that Ser70 is the main residue involved 

in catalysis in all of them (see below) 

The crystal structure of the St.aureus PCi B-lactamase has recently 

been published (Herzberg & Moult 1987) and that of B.11cheniformis 749 is well 

advanced (Dideberg et al. 1985, Knox et al. 1987). Preliminary crystallographic 

data are also available for other members of this class (TEM: Knox et al. 1976, 

De Lucia et a/. 1980; B.cereus 8-lactamase I: Aschaffenburg et al. 1978). 

CLASS B 

So far this class has only one member, the broad spectrum B-lactamase 

II from 8.cereus. This is a metallo-enzyme requiring as a cofactor a Zn 2  ion 

liganded by three histidine and a cysteine residue (BaldWin at al. 1979). 

Sequence information (Hussain et al. 1985) clearly shows that it is structurally 
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distinct and that its mechanism of action is unlike that of Class A, C and D 

enzymes. Its crystallographic structure at low resolution is quite different from 

that of Class A enzymes, presenting very little ct-helical secondary elements and 

apparently no B-sheet (Sutton, B., Fourth B - lactamase workshop: H0IV Island 

20th-22nd April 1988). 

CLASS C 

These are also serine-enzymes, but apart from the serine residue in the 

active site and the lysine three positions later they do not share detectable 

similarities with the Class A B-Iactamases (Jaurin & Grundstrom 1981, 

Knott-Hunziker et a/. 1982). The gene of the E.coll enzyme ampC which was 

the first recognized member of this class was used as a probe to screen many 

Gram negative bacteria, revealing a large number of strains that carry a 

homologous gene (Bergstrom et at. 1983). 

Other enzymes have now been assigned to Class C from Enterobacter 

cloacae P99 (Joris at a/. 1984), Pseudomonas aeruginosa (Berks et at 1982, 

Knott-Hunziker at al. 1982), Citrobacter freundll and Shigella sonnel (Bergstrom 

at a/. 1983). 

Preliminary crystallographic data have been published for the 

Enterobacter cloacae P99 enzyme (Charlier et al. 1983) and the X-ray structure 

of the Citrobacter freundll is now refined to 3 Angstrom resolution, revealing a 

striking similarity to that of Class A enzymes (Oefner, C., Fourth 8-lactamase 

workshop: Holy Island 20th-22nd April 1988). 

CLASS D 

To date this class has two members, the OXA-2 3-lactamase and the 

PSE-2 enzyme. The gene for the OXA-2 8-lactamase was found on the R46 

factor of a Salmonella typhimurium isolate (Anderson & Datta 1965) and was 

sequenced by Dale and coworkers (1985). The overall structure of this enzyme 

presents no similarity to the members of other classes, but their pattern of 

residues Ser-Thr-Xaa-Lys is identical to that found in the active site of Class A 

and C enzymes, indicating that they all share the same mechanism of action. On 

the other hand this enzyme presents very peculiar characteristics that make it 

quite unlike any other 8-lactamase: it can hydrolyse oxacillin and other isoxazolyl 
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penicillins, it has a dimerkc structure and its affinity for cibacron blue and other 

anthraquinone dyes would suggest that it has a nucleotide binding domain (Dale 

& Smith 1976, Monaghan at 8/. 1982). 

The other member of this class, PSE-2, is found in strains of 

Pseudomonas aeruginosa. Its amino acid sequence (Huovinen at al. 1988) is 

35% identical to that of OXA-2 1  with a cluster of identical residues around the 

putative active site serine. 

UNCLASSIFIED 

Other 8-lactamases have been reported that present sufficiently peculiar 

characteristics to justify the claim that they are not part of any of the above 

classes. For example a 8-lactamase from Pseudomonas ma/top/ill/a has been 

reported to be a tetrameric enzyme that requires Zn 2  ions for activity (Saino at 

at 1982). Its amino terminal 32 amino acid residues have been sequenced and 

shown to bear no similarity to the other meta llo-B-lactamase from 8.cereus, 

thus excluding any relation with Class B (Bicknell at at 1985). 

Other novel B-lactamases have also been identified from Proteus vulgar/s 

(Matsubara at al. 1981), Bacterioldes fragiis (Yotsuji at al. 1983) and 

Pseudomonas aeruginosa (Labia at al. 1981). Only information on the structure 

of these enzymes will tell if they bear any similarity to one of the above classes 

or if new groups have to be created. 

1.5 THE REACTION MECHANISM OF SERINE- B-LACTAMASES 

A lot of work has been carried out in the last ten years to try and clarify 

the detailed mechanism of action of the serine-B-lactamases (reviewed in 

Coulson 1985). 

Both in Class A and Class C enzymes, and in Class D by comparison, the 

serine contained in the common sequence Ser-Thr-Xaa-Lys (Ser70 in Ambler 

notation, Ambler 1980) has been repeatedly indicated as the active site residue 

by chemical modification studies (Fisher at at 1981, Cartwright & Coulson 1980, 

Knott-Hunziker at al. 1979, Cohen & Pratt 1980). This residue is acylated by the 

8-lactam during the initial part of the reaction and is subsequently hydrolysed 

(Figure 1.5). In Class C 8-lactamases the acyl-intermediate accumulates during 
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FIGURE 15 Acylation of B-lactamases 
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the course of the reaction, the hydrolysis being the rate determining step, so that 

evidence of the acylation can be obtained even with good substrates like 

benzylpenicillin (Knott-Hunziker et at 1982a). On the other hand the rate of the 

reaction of Class A B-Iactamases with good substrates seems to be limited by 

the formation of the acyl-enzyme itself (Hardy & Kirsch 1984), so that information 

about the mechanism can only be obtained with bad substrates such as cefoxitin 

(Fisher et al. 1980) or with suicide active site inhibitors such as penicillanic acid 

sulphone or olivanic acid (mechanisms of inactivation reviewed by Knowles 1985). 

Site directed mutagenesis studies confirmed the importance of Ser70: 

the inversion of the active site dipeptide Ser-Thr to Thr-Ser in the TEM enzyme 

resulted in an inactive B-lactamase (Dalbadie-McFarland et al. 1982), while 

substitution of SerlO with CVs gives a protein with low 8-lactamase activity that 

can be inhibited with p-chloromercuribenzoate (Sigal et at 1982). 

Specific inactivation studies using phenylpropynal and phenylglyoxal 

seems to implicate lysine and arginine as possible other active site residues 

(Schenkein & Pratt 1980, Borders et al. 1982). The presence of a carboxyl 

residue has also been proposed (Hardy et at 1984) and in fact modification of 

carboxyl groups has been found to inactivate Class A enzymes (Waley 1975). 
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Mutants of B.cereus -lactamase I with Glu166 converted to Gin 

presented very little activity, confirming the likely involvement of a carboxyl 

residue. The substitution of the highly conserved Lys73 to Arg greatly affected 

the activity of the enzyme but did not abolish it, while Glu 168 to Asp mutation 

did not induce any appreciable change in activity (Madgwick & Waley 1987). 

1.5.1 Proposed mechanism of action 

A detailed mechanism of action has been proposed for the St.aureus 

PCi enzyme by Herzberg & Moult (1987). In their suggestion the proton of the 

active site serine, labilized because of the position of the residue at the amino 

end of an ct-helix, would attack the carbonyl carbon of the B-lactam substrate, 

forming a tetrahedral intermediate. The intermediate is stabilized by the 

interaction of the n'egatively charged carbonyl oxygen with an oxyanion hole 

formed by the main chain amino group of the Ser itself and the side chain of 

Gln237. This situation is similar to that found in serine-proteases such as 

subtilisin (Robertus et al. 1972, Kraut 1977). The transfer of the proton from the 

Ser to the 8-lactam nitrogen is facilitated by the conserved Lys73, which would 

provide a potential gradient towards the -lactam nitrogen, thus reducing the 

energy barrier for the proton transfer and the formation of the acyl-enzyme 

intermediate. A water molecule, hydrogen bonded to the main chain carbonyl 

group of Gln237 and to the side chains of Asnl70 and Glui66, probably polarized 

by G1u166, would act as nucleophile and hydrolyse the acyl enzyme, thus 

completing the reaction. 

This hypothesis, based on the modelling of an ampicillin molecule into 

the active site of the enzyme, seems to provide an explanation to the 

impossibility of trapping penicilloyl-enzymes of the Class A 8-lactamases with 

nucleophiles other than water (Brenner et al. 1981, Anderson & Pratt 1981, 

Knott-Hunziker et at 1982a). Although direct observation of the orientation of 

the 8-lactam substrate inside the active site of 8-lactamases has yet not been 

achieved because of the rapid turnover of the substrate, comparisons can be 

drawn with the behaviour and structure of PBPs. 
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FIGURE 1.6 Three dimentional structure of Streptomyces R6I carboxypeptidase 

and of B-Iactamase of Bacillus llcheniformis 

ME 

Secondary structure elements in B.licheniformis beta-lactamase (left) and Streptomyces R61 
DD-peptidase (right). Cylinders are alpha-helices and ribbons beta-strands. The two 
drawings are the results of overlaying computer graphics plots of crystallographically 
determined polypeptide folding and are to the same scale. The known site of beta-lactam 
binding in the DD-peptidase from X-ray crystallographic studies is indicated by B (from Kelly 
et al. 1986). 

1.6 6-LACTAMASES AND PBPs 

The idea that 8-lactamases have evolved from PBPs was suggested by 

Pollock (1971). Soil bacteria faced with B-lactam antibiotics would be 

advantaged by the ability to produce increased quantities of target PBPs in order 

to lower the concentration of the drug around the cell. During evolution PBPs 

could have evolved into B-lactam hydrolysing enzymes, giving origin to 

B-lactamases. This proposal has been object of long debates since, but in view 

of recent findings there seem now to be little doubt that 8-lactamases and PBPs 

do descend from a common ancestor. 

It has already been mentioned that the majority of PBPs and 

B-lactamases present the sequence Ser-Xaa-Xaa-Lys in their B-lactam binding 

site. The sequence similarity between these two groups of enzymes has been 

recently investigated (Joris et al. 1988) and several "boxes" of conserved 

residues identified. Although from this evidence all these enzymes could be 

considered members of a superfamily of serine-enzymes, the evolutionary 

distance is obviously great. 
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The relationship has also been confirmed by the elucidation of four 

crystal structures: those of the Streptomyces R61 carboxypeptidase (Kelly at al. 

1982, 1985), B.cereus 8-lactamase I (Samraoui at a/. 1986), the penicillinase of 

B./icheniformis 749 (Kelly at al. 1986) and the St.aureus enzyme (Herzberg & 

Moult 1987). The two papers on the bacillary 8-lactamases were published at 

the same time and independently drew the same comparison between the 

B-lactamase structures and that of the R61 carboxypeptidase. 

In Figure 1.6 a diagram of the tertiary structures of the B./icheniformis 

8-lactamase and of the R61 enzyme is presented. The folding of the two 

molecules is obviously very similar: both enzymes contain a 8-sheet formed by 

antiparallel strands of similar length covered on both sides by ct-helices. The 

angles and the distances between the helices and between each helix and the 

8-sheet are comparable, while differences can be found in the connections 

between the secondary structure elements. 

PBPs and 8-lactamases share a similar mechanism of action, the first 

step of the reactions been in both cases the acylation of the active site Ser, but 

the fate of the acvI-enzyme is different, depending on the enzyme and on the 

FIGURE 1.7 Mechanism of action of penicillin-binding proteins (I) and 

8-lactamases (II) 
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substrate (Figure 1.7). 	During the reaction of PBPs with their natural 

pentapeptide substrate the acylation is accompanied by the liberation of the 

terminal 0-Ala leaving group. When the intermediate is deacylated in the 

presence of the amino group of a neighbouring pentapeptide, we have a 

transpeptidation reaction. If the acceptor is instead a molecule of water, the 

result is a hydrolysis. PBPs are also acylated by -lactams, but in this case the 

deacylation is an extremely slow process, normally resulting in the fragmentation 

of the 8-lactam. 

B-lactamases also bind -lactams in an identical fashion and become 

acylated, but here the intermediate is quickly hydrolysed. Although 8-lactamases 

cannot perform the carboxypeptidation reaction, recent studies of their reaction 

with peptide analogues have shown that these enzymes can hydrolyse these 

substrates at a rate similar to that of PBPs (Govardhan & Pratt 1987). 

1-7 8-LACTAMASES Of Bacillus lichen/form/s 

8-lactamase- prod ucing strains of B.subtiis were first isolated by Pollock 

and coworkers, but only in mid-1960s the taxonomical classification of the 

Bacillus genus led to the distinction between the penicillin-sensitive B.subtiis 

species and the penicillinase-producing B.ilcheniformis. 

All the strains of B.ilcheniformis that Pollock isolated from soil samples 

collected from all over the world, including some soil attached to the roots of 

plants conserved in a Kew herbarium of 1680, were found to produce 

8-lactamase (Pollock 1971). The gene is chromosomal and presents two alleles, 

distinguishable on the basis of the enzymic properties of the proteins. The 

strains 749 and 6346 (749/c and 6346/c for the magnoconstitutive mutants 

derived from them) were chosen for further studies as representatives of the two 

alleles. 

The two proteins differ in their electrophoretic mobility and sensitivity to 

iodine and their activity is influenced to varying degree by antibodies (Pollock 

1965a, 1965b). In Table 1.2 the V max  and  Km  of the 6346/c and 749/c 

8-lactamases for a range of substrates are reported (Pollock 1965). From these 

data it is apparent that the two enzymes have a quite distinct specificity of 

action: the 749/c is a typical penicillinase, breaking down cephalosporins at about 

1-2% of the rate it hydrolyses benzylpenicillin; 6346/c on the contrary is 

relatively more active against cephalosporins, with a hydrolysis rate for 
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- TABLE 12 Comparison of -lactamases from Bacillus lichen/form/s strains 

749/c and 6346/Ca 

SUBSTRATE 	 749 	 6346 

MAXIMUM RATE OF HYDROLYSIS (Vmax)b  

Penicillin C 	 325(100) 	 54(100) 

6-Aminopenicillanic acid 	 16.2(5.0) 	 7.0(13) 

Cephalosporin C 	 3.5(1.1) 	 8.1(15) 

Cephalosporin PAC 	 7.9(2.4) 	 22.7(42) 

DISSOCIATION CONSTANTS (Km  UM) 

Penicillin G 	 49 9.5 

Cephalosporin C 	 <50 <50 

Cephalosporin PAC 	 <50 <50 

PHYSIOLOGICAL EFFICIENCY (VmaJKm) 

Penicillin C 	 6.6x10 6  5.7x106  

a Pollock (1965a) 

b Vmax  expressed as micromoles of substrate hydrolysed/micrograms of enzyme/hr at 30°C, 
pH7.0. In parenthesis the values relative to penicillin G are reported. 

benzylcephalosporin C of 42%. The Vmax  of the 6346/c -factamase for 

benzylpenicillin is about six times lower than 749/c, but because of a similar 

variation in Km  the so-called physiological efficiency of the two enzymes, that is 

the protection against B-lactams conferred to the cells, is comparable. 

The structural gene for the 749 B-lactamase has been cloned and 

sequenced (Brammar at al. 1980, Neugebauer at al. 1981). The deduced protein 

sequence is identical to the amino acid sequence published by Ambler & 

Meadway (1969) except for the leader sequence, which is absent in the latter. 

The B-lactamase is in fact synthesized as a precursor protein with an amino 
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terminal signal peptide which is shed during the maturation and secretion of the 

protein (Neugebauer et at 1981, Nielsen et al. 1981). Two forms of the enzyme 

are found in the cell supernatant, called exo-large and exo-small, differing by 

eight amino acid residues. The M r  of the smaller form, as calculated from the 

amino acid composition is 28500 and its isoelectric point is 5.0 (Thatcher 1975). 

The amino acid sequence of the 6346 -lactamase is known to differ 

from that of 749 at least at four sites. The known differences are reported in 

Table 1.3. 

TABLE 1.3 Amino acid differences between 749/c and 6346/c B_iactamasesa 

POSITIONb 749/c 6346/c 

191 Arg Gin 

287 Met Val 

293 Asn Glu 

294 Gly Ser 

a Thatcher (1975) 

b Numbering consistent with Ambler (1980) 

The 8-lactamases of B.11cheniformis have been assigned to Class A 

(Ambler 1980). Within this class the similarity is higher with the other Gram 

positive enzymes: 749 is 48% similar to the B.cereus B-lactamase I and 37% to 

the St.aureus PCi enzyme. The similarity is somewhat lower but still highly 

significant with the Gram negative Class A B-Iactamases. 

Crystallography of the 749 enzyme has been in progress for some years 

(Dideberg et al. 1985) and more recent reports have announced the collection of 

data at 2 Angstrom resolution (Knox et al. 1987). 
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1.8 OVERCOMING RESISTANCE 

Because of the continually growing problem of resistance, mainly 

connected with the spread of 8-lactamases, there has been an enormous 

development in the field of 8-lactam antibiotics. 

A great impulse to the field was given by the isolation of the two 

B-lactam nuclei 6-aminopenicillanic acid and 7-aminocephalosporanic acid, from 

which many semisynthetic antibiotics with improved stability to 8-lactamases 

were derived. 

Other -lactam compounds have been found that exhibit very weak 

antibacterial activity, but act as inhibitors of many B-lactamases, thus protecting 

other more active compounds that are susceptible to the enzyme. Clavulanic 

acid mixed with amoxycillin is already marketed under the name Augmentin and 

has proven to be active against B-Iactamase producing strains of pathogens like 

Haemop/iilus influenzae and Neisseria gonorrhoeae (Hunter et al. 1980). The 

semisynthetic inhibitor sulbactam used in conjunction with ampicillin has also 

shown synergistic activity against resistant strains, including Bacterioides fragiis 

(Campoli-Richards & Brogden 1987). 

Besides fungi, other organisms have been discovered to produce 

B-lactam compounds with antibiotic activity. Actinomycetes produce hydrophilic 

cephalosporins like cephamycins, nocardicins and carbapenems, which present 

exceptional stability to hydrolysis. Monocyclic 8-lactams, named monobactams, 

are produced by bacteria such as Gluconobacter, Chromobacter violaceum and 

Pseudomonas acidophila (Sykes et al. 1981). Because of their structure, 

monobactams lend themselves to total synthesis for the development of new 

drugs (for example Sykes and Banner 1984). 

Despite all the efforts spent in the search and development of new 

antibiotics, there is no certainty that any particular drug of this kind will retain its 

clinical usefulness indefinitely and although many of the new 8-lactams are 

actually poor substrates of 8-lactamases, their antibiotic efficiency is also 

reduced. 
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1.9 THE AIM OF THIS WORK 

The elucidation of the detailed mechanism of the hydrolysis of -lactam 

antibiotics performed by 8-lactamases and a deeper understanding of the 

relationship between structure and specificity of these enzymes are now of 

paramount importance for the rationalization of antibiotic design. 

The two types of 8-lactamases produced by B.11cheniformis are two 

naturally occurring and biologically significant mutants of the enzyme that seem 

to differ mainly in their specificity of action. The sequence information available 

pointed to the presence of very few amino acid differences. In addition in vivo 

recombinants between the two genes give rise to mutant proteins with 

electrophoretic mobilities intermediate between the two parental enzymes, but 

the enzymological properties of all the mutants always fall back to those of 

either of the two types, 749 and 6346 (Dubnau and Pollock 1965). The 

differences in specificity seem therefore due to either one or to a small number 

of closely linked amino acid substitutions, making the 8-lactamases of 

B.11cheniformis a simple model for the study of structure-function relationships. 

The work presented here is aimed to the identification of the amino acid 

(or amino acids) determining the activity profile of the B.11cheniformis 

8-lactamases. 
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2.1 CLONING IN XNM1149 

The DNA from the constitutive 	-Iactamase-producing strain of 

8.1icheniformis 6346/c was isolated, restricted with EcoRl and the obtained 

fragments separated on a 1% agarose gel. The DNA was then transferred onto 

nitrocellulose by the method of Southern and probed with Apen; this 

bacteriophage carries a 4.21(b EcoRl fragment containing the penicillinase gene 

from B.11cheniformis 749/c (Brammar et at 1980). A single EcoRl fragment of 

size estimated at about 4.71(b was found to cross-hybridize with the Xpen DNA 

probe (Figure 2.1), thus confirming that the two genes are highly homologous. 

EcoRl treated DNA of 8.1/chef/form/s 6346/c was ligated with XNM1149 

restricted with the same endonuclease. This X vector offers a very convenient 

way of selecting recombinants, which give clear plaques, while the plaque 

morphology of the parental phage is turbid. Of those obtained after tranfection 

of the ligation mixture, 350 clear plaques were replica plated for further analysis. 

Three recombinants were found to be 8-lactamase producing by staining the 

replica plate with a solution of nitrocefin; plaques of bacteriophages carrying a 

penicillinase gene are easily recognized because of the pink-red halo developing 

around them when this substrate is hydrolysed by the enzyme. One of the 

corresponding plaques on the master plate was picked and purified. The DNA of 

this recombinant was analysed by restriction and agarose gel electrophoresis. 

The size of its insert , about 4.7Kb, corresponds to that of the band of EcoRl 

digested DNA from B.11chen/formis which hybridises with the Apen probe (Figure 

2.2 and 2.3). 

2.2 SUBCLONING INTO pACYC184 

For ease of handling, the 4.7Kb EcoRl insert was transferred from Abla 

into pACYC184; the vector was cut at its single EcoRl site and ligated with Xbla 

treated with the same enzyme. The resulting Cm sTet rAmp r  plasmid, called 

pACYCbla, cross-hybridises with Xpen (Figure 2.3) 

pACYCbIa was analysed by restriction mapping (Figure 2.4) and 

successively used for the shotgunning of its insert into M13mp18 for sequencing. 

From the combined information given by the restriction analysis of the plasmid 



FIGURE 21 Probing of chromosomal DNA from 8./icheniformis 6346/c and 
749/c. 
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FIGURE 2.2 Restriction analysis of Xl 149 AmOR recombinants. 
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All the DNAs used for this analysis were restricted with EcoRl. In track 1 Xc1857 fragments 

were used as size markers In track 2 Xpen, tracks 3 and —4 two Amp Xi 149 recombinants. 

track 5 Xi 149 The recombinant phage analysed in track 4 contains one single ECORI nsert 

of approximately 4 7Kb containing the 6346 bia gene and was used for further subcloning 

FIGURE 2.3 Probing of cloned b/a. 

- vector 
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X1149 Amp recombinant (track 2) and pACYCbIa (track 1) ONAs were restricted .1th EcoRi 

and probed with Xperi 
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FIGURE 2.4 Restriction map of pACYCbIa 
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Restriction sites are denoted as follows: E, EcoRl; B, BomHI; H, Rindlil; N, Nael. 

and the sequencing of its insert (Chapter 3), it is now known that the 

B-lactamase is located within the 1.6Kb EcoRt-Nael fragment and the direction 

of transcription is from the EcoRl to the Nael site. 

2.3 THE MUTAGENESIS VECTOR 

2.3.1 Subcloning in M13mp18 

For mutagenesis it is convenient to have the gene of choice in a vector 

that produces single stranded DNA, such as the M13 vectors. Before starting the 

SOM experiments the 8-lactamase gene from B./icheniformis 6346/c was excised 

from pACYCbIa by hydrolysis with EcoRI and NaeI and ligated with M13mp18 

vector cut at the Smal and EcoRl sites of its polylinker. After transformation of 

an appropriate host strain (E.coll NM522) 3-lactamase producing plaques of 

recombinant bacteriophage could be detected by staining with nitrocefin, but, 

despite numerous attempts, it was impossible to mantain the insert in its intact 

form for more then a few rounds of replication. The instability of this DNA 

fragment was shown not to be influenced by the recA dependent pathways of 

recombination; in fact repeating the experiment with the recA host strain JM109 

did not improve stability of the fragment. It was therefore decided to abandon 
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the -M13 system and look for an alternative vector in which the advantage of 

double stranded replication, that would increase the stability of the gene, would 

be combined with the production of single stranded template production. 

2.3.2 The phagemid vectors 

A new family of plasmids, the pEMBL vectors, was developed a few years 

ago (Dente at at 1983) to reduce the need for repeated subcloning of genes 

between the single stranded vectors suitable for SOM and sequencing and the 

double stranded vectors used for maintenance and further analysis of gene and 

gene product. These are pUC derived plasmids in which part of the filamentous 

phage fi genome that includes the origin of replication has been inserted. When 

superinfected with fl helper phage, cells carrying the pEMBL plasmids produce 

virions containing either the helper phage or the single stranded plasmid DNA. 

Vectors of the pEMBL family and other chimeras which possess an origin 

for double stranded replication as well as one for single stranded replication are 

also called phagemids. 

The pTZ series of phagemids (Mead at at 1986) has been constructed on 

similar lines, by cloning the origin of replication of fi downstream the 

8-galactosidase gene of pUC. Depending on the orientation of the fi origin of 

replication either of the two strands of the plasmid is packaged: in the U 

orientation the strand which hybridises to the universal sequencing primer is 

produced; when the origin is inserted in the opposite R direction, the single 

stranded DNA produced can be sequenced using the reverse sequencing primer. 

Other advantageous features of these phagemids are the simple and quick blue 

to white colour assay for recognition of recombinants constructed by introducing 

an insert in the polylinker region and the possibility of synthesising mRNA from a 

T7 promoter also cloned in the B-galactosidase gene. 

2.3.3 Construction of pAD19R 

The pTZ phagemid, which in my hands seemed to yield more single 

stranded DNA than the pEMBL vectors when superinfected with the helper phage 

M13K07 (Mead at al. 1986), was chosen for further work. To create a vector 

suitable for cloning 8-lactamases the ampicillin resistance gene of p17 was 

inactivated by deletion and another selectable marker introduced in its stead 

(Figure 2.5). 
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FIGURE 2.5 Construction of pAD19R 
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The Amp' gene of pTZ19R was inactivated by deletion of the Scal-Avall and Avail-Avail 
fragments and substituted by the Tetr  gene excised from pAT153 with 2l  and 2Mi. In the 
resulting pAD19R piasmid the Tat' gene is oriented in the same direction as lacZ. 

pAT153, a plasmid derived from pBR322 by deletion of a 705bp section 

(Twigg and Sherratt 1980), was treated with Sspl and PpuMl and the resulting 

1.63Kb fragment comprising the tetracycline resistance gene was separated on 

agarose gel, extracted, purified and finally ligated with pTZ19R DNA hydrolysed by 

Avail and Scal endonucleases. In pAT153 the PpuMI target site (5'GGTCCT3') 

upon hydrolysis gives ends compatible to the Avail site on pTZ19R (5'GGTCC3'), 

while both Sspl and Sca]l are blunt-end cutters. In the resulting pAD19R 
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plasmid the deleted 340bp in the central part of the Amp 1 ' gene were replaced by 

the fragment carrying tet. The direction of transcription of tet in the new 

plasmid is the same as that of /acZ. The calculated length of pAD 19R (4165bp) is 

confirmed by the estimate (4.0Kb a=0.21) obtained from the analysis of the 

pTZ19R/pAD19R heteroduplex (Figure 2.7a) (spreadings and microscopy of 

heteroduplexes carried out by Miss Pamela Beattie). 

FIGURE 2.6 Construction of pSR81 
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The bla gene of B.Iicheniformis 6346/c was subcloned from pAcYCbIa to pAO19R. The 1.61(b 
EcoRl-Neel fragment containing the gene was end-repaired and inserted into the Smal site of 
pAD199. Another fragment of pACYcbIa which co-cloned with bla is represented by a black 
box (see text). 
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2.3.4 Construction of pSR81 

The B-lactamase gene of B./icheniformis 6346/c was transferred from 

pACYCbIa onto pAO19R by restricting the b/a carrying plasmid with EcoRl and 

NaeI, filling in the ends and ligating the resulting complex mixture of fragments 

with Smal treated pAD19R (Figure 2.6). Amp RTetR  colonies were selected and 

their plasmid analysed by restriction. All the isolated plasmids were bigger than 

the expected pAD 19R with the hoped for insertion of the 1.6Kb EcoRl-/Vael 

fragment carrying the 8-lactamase gene. One of them (pSR81) was chosen for 

further analysis. Sequencing of pSR81 with the reverse sequencing primer 

confirmed the presence of the 1.6Kb fragment in the proximal part of the insert. 

The direction of translation of B-lactamase gene in this construct is opposite to 

that of /acZ. Plasmid sequencing with the universal sequencing primer showed 

that the distal part of the insert was probably the other 3.11(b EcoRl-Nael 

fragment, indicating that possibly the whole EcoRl fragment, uncut by Nael, had 

in fact been cloned. The total size of the insert is estimated at about 4.71(b 

(Figure 2.7b). 

Because the presence of this extra 3.11(b insert did not in any way hinder 

the production of single stranded template from pSR81 and did not significantly 

influence the production of 8-lactamase, it was decided to use this construct for 

the SDM experiments. 



FIGURE 2.7 pTZ19R/pAD19R (A) and pAD19R/pSR81 (B) heteroduplexes. 
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pAD19R and pTZ19R were linearized with SinaI, which cuts once in the polylinkar In pSR81 

the Smal site was destroyed by the insertion of the 6346 8 - lactamase gene. so  Xmal which 

also Cuts a single time in the polylinker was used instead. The standards used for DNA 
length estimation were. single stranded M13 (6407 bases) and double stranded pATI53 (3657 

bases) 

In A three heterociuplex molecules are visible. Their left hand arm is indicated by an arrow. 
Length of left hand double stranded arm 0 88Kb (a=0.16), right hand double stranded arm 
1.41(b 117=0.051; short single stranded loop. 047Kb (a=0.15); long double stranded loop: 1 72Kb 

(=0.22) 

In B a single pAD19R/pSR81 heteroduplex is visible. The double stranded part, comprising the 
whole length of the pAD19R vector, is 4031(b long ((7=0.19). The single stranded overhanging 

insert arm starts at the arrow and measures 4 74K (a0.27l. 

Estimated lengths of the plasmids are pTZ19R 2.731(b (a0.16). pAD19R 4.01(b (G0,21), pSR81 

8.77Kb (CY =0 27) 
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3.1 INTRODUCTION 

The dideoxy chain termination method (Sanger et al. 1977, Bankier and 

Barrell 1983) has been used for the sequencing of the B.11cheniformis 6346/c 

8-lactamase. A short description of the procedure is given in Section 6.12. 

With minor differences the method can be used both on double stranded 

and single stranded templates, but because of the practical advantages given by 

the latter, it is widespread practice to start a sequencing project by introducing 

the DNA fragñient of interest into a single stranded vector like M13. 

3.2 SEQUENCING STRATEGY 

Two main avenues can be followed when planning a sequencing project: 

in the first the fragment is introduced as a whole into M13 and the sequence 

read by "walking" along the fragment with specially synthesized oligonucleotides. 

This method is generally practicable when the length of DNA to be cloned is 

limited. Long fragments are in fact known to suffer deletions when carried by 

single stranded vectors and M13 vectors do not grow well with large inserts. 

Mutants shortened by deletions tend to quickly outgrow the full length phage, 

making the maintenance of the intact clone difficult. 

Another point to be borne in mind when considering this approach is the 

high cost of the purpose-made oligonucleotides: in general to allow at least 50 

bases overlap between readings, one primer must be used every 250-300 

nucleotides. 

In the second approach random segments of the DNA to be sequenced 

are generated by any of the following methods: 

nested deletions of the cloned fragment generated with 
exonuclease Ill (Henikoff 1984) 

cleavage with restriction enzymes 

physical shearing 

Method 1 involves the cloning of the DNA fragment in a single stranded vector, 

which obviously would present the same problems discussed above. In the other 

two methods shorter fragments are generated prior to cloning, thus avoiding the 

problems connected with long fragments. Because of the large size (4.7Kb) of 
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FIGURE 3.1 Rate of sequence accumulation 
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The percentage sequence accumulation is plotted against the theoretical number of gel 
readings required to determine the sequence of a 51(b fragment on both strands, assuming an 
average of 250bp per clone (from Bankier & Barrell 1983). 

the DNA fragment to be sequenced during the course of this work, the choice of 

sequencing strategy had been narrowed down to these two methods. 

The distribution of target sites of four-base restriction endonucleases is 

known to be not completely random, so that cutting a DNA fragment with these 

enzymes often generates very small segments, which clone well into M13 and 

therefore give redundancy of information in that region, and much bigger 

fragments that sometimes can prove very difficult to retrieve. The sonication 

procedure followed by size fractionation of the fragments on agarose gel as 

described by Deininger (1983) seems to give the best distribution of random 

fragments of a predetermined size range. 

- 	If an average of 250 bases are read for each clone, the theoretical 

number of gel readings (clones) required to determine the sequence of a 5Kb 

fragment on both strands is given by the plot of Bankier and Barrell (1983) 

(Figure 3.1). The rate of sequence accumulation is at the beginning proportional 
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to the number of gel readings, but when 90-95% of the sequence is completed, 

further sequence data accumulation results in increasing redundancy of 

information. Hence the acquisition of the remaining 5% requires the sequencing 

of a number of clones equal to that needed to reach 95% completion. Once this 

plateau is attained, the employment of more direct methods is more rewarding 

by far. 

3.3 SEQUENCING THE 8-LACTAMASE GENE OF B./icheniformis 6346/c 

In Section 6.12 I will describe in detail the procedure used for the 

sequencing of the B-Iactamase gene of B.11chen/form/s 6346/c. In brief the 

4.7Kb DNA fragment comprising the gene was excised from pACYCbIa using 

EcoRl and purified after separation from the vector band on a 0.7% low 

electroendosmosis agarose gel. The fragment was then circularised by 

self-ligation in order to increase the probability of cloning the ends and 

sonicated with two bursts of 30 seconds. The single stranded ends were 

repaired with the Klenow fragment of polymerase I and the sheared DNA was 

fractionated on a 1% low electroendosmosis agarose gel. Fragments between 

300 and 600 bp were eluted from the gel, purified and ligated with Smal treated 

M13mp18. Single clear plaques obtained from the transformation of the ligation 

mixture were picked and sequenced by the Sanger method (see Section 6.12.2). 

One hundred and forty four clones were used to compile the sequence 

nearly to completion. Zones of band compression were solved by using 

sequencing reaction mixtures in which dITP substituted dGTP (Mills & Kramer 

1979). Beyond the Nael restriction site the sequence is largely completed except 

for a few bases in GC rich regions which have been read only on one strand. 

The sequence of the DNA fragment is presented in Figure 3.2. 

3.4 SEQUENCE ANALYSIS 

All the analysis of the sequence was done with the help of the Sequence 

Analysis Software Package of the University of Wisconsin Genetics Computer 

Group on a VAX computer (Devereux et al. 1984). 
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FIGURE 3.2 Sequence of Bacillus lichen/form/s 6346/c DNA fragment containing 

the b/a gene 

—35 

CCCCTCATGAC CTTTTCGTTTTTTTATTCCTTC CAAAAAACGGTTGCATTTGAAAACTTACG 
1 ---------+---------+---------+------- --+--------- +---------- i---  62 

GGGGAGTACTGGAAAAGCAAAAAAATAAGGAAGGTTTTTTGC CAACGTAAACTTTTGAATGC 
—10 

TATGTAATACTTCAAAAGACTACACTTGTAAGATTTGATGTTTGAGTTGGCCGTCCGTGT 
63 -------+---------+---------+---------+---------+---------+ 	122 

ATACATTATGAAGTTTTCTGATGTGAACATTCTAAACTACAAACTCAACCGGCAGGCACA 

TTTCAGGTG CAAGGGGTTTTCACGAATGTTGCCAGC CTTAGTTGAAATGCCTCTTGATTA 
123 -------+---------+---------+---------+---------+---------+-- 182 

AAAGTCCACGTTCCCCAAAAGTGCTTACAACGGTCGGAATCAACTTTACGGAGAACTAAT 

SD 	 MetLvs Lau 

GCACAG CTAGTCACGATCAATCAAATATTCATACGGAGGGAGACGATTTTGATGAAATTA 
183 -------+---------+---------+---------+---------+---------+-- 242 

CGTGTCGATCAGTGCTAGTTAGTTTATAAGTATG CCTCC CTCTG CTAAAACTACTTTAAT 

Trp Plie Set Thr Lau Lvs  Lau LYS Lys Val Ala Ala Val Lau Lau Phe Ser Cys Val Ala 

TGGTTCAGTACTTTAAAACTGAAAAAAGTTGCAGCTGTGTTG CTTTTCTCTTGCGTCGCA 
243 -------+---------+---------+---------+---------+---------+-- 302 

ACCAAGTCATGAAATTTTGACTTTTTTCAACGTCGACACAACGAAAAGAGAACGCAGCGT 

Lou Ala Gly CVs Civ Set Asn His Ser Asn Ala Set His Set Ala Glu LVS  Asp Glu Lys 

CTTG CAGGATGCGG CAGCAATCACTCGAATGCCTCACATTCTGC CGAGAAAGATGAAAAG 
303 -------+---------+---------+---------+---------+---------- 4--- 362 

GAACGTCCTACGCCGTCGTTAGTGAGCTTACGGAGTGTAAGACGGCTCTTTCTACTTTTC 

Thr Glu Met LyS Asp Asp Phe Ala LVS  Lau Glu Glu Gin Phe Asp Ala Lys Lau GIV lie 

ACGGAGATGAAAGATGATTTTGCAAAACTCGAGGAGCAATTTGATG CAAAACTCGGGATC 
363 -------+---------+---------+---------+---------+---------+-- 422 

TGCCTCTACTTTCTACTAAAACGTTTTGAGCTCCTCGTTAAACTACGTTTTGAGCCCTAG 

Phe Ala Lau Asp Thr Gly Thr Asn Arg Thr Val Tht Tyr Atg Pro Asp Glu Arg Phe Ala 

TTTGCATTAGATACTGGTACAAACCGAACGGTAACGTATCGGCCGGATGAGCGCTTCGCT 
423 -------+---------+---------+---------+---------+---------+-- 482 

AAACGTAATCTATGACCATGTTTGGCTTGCCATTGCATAGCCGGCCTACTCGCGAAGCGA 

Phe Ala Set Tht lie Lys Ala Lau Thr Val CIV Val Lau Lau Gin Gin Lys Set lie Glu 

TTTG CATCGACGATTAAGG CTTTAAC CGTAGGCGTGCTTTTACAACAGAAATCAATAGAA 
483 -------+---------+---------+---------+---------+---------+-- 542 

AAACGTAGCTGCTAATTCCGAAATTGGCATC CGCACGAAAATGTTGTCTTTAGTTATCTT 

Asp Lau Asn Gin Arg lie Thr Tyr Thr Arg Asp Asp Lau Val Asn TVr Asn Pro lie Thr 

GATCTG1AAC CAGAGAATAACATATACACGTGATGATCTTGTAAACTACAAC CCGATTACG 
543 -------+---------+---------+---------+---------+---------+ 	602 

CTAGACTTGGTCTCTTATTGTATATGTGCACTACTAGAACATTTGATGTTGGGCTAATGC 

Glu Lys His Val Asp Tht Clv Met Thr Lau Lys Glu Lau Ala Asp Ala Ser Lau Arg Tyr 

GAAAAGCATGTTGATACGGGAATGACGCTTAAAGAGCTTGCGGATGCTTCG CTTCGATAT 
603 -------+---------+---------+---------+---------+---------+-- 662 

CTTTTCGTACAACTATG CCCTTACTGCGAATTTCTCGAACGCCTACGAAG CGAAG CTATA 
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FIGURE 3.2 (continued) 

Set Asp Asn Thr Ala Gin Asn Leu lie Leu Lvs  Gin lie Giv Giv Pro Glu Set Leu LVS 

AGTGACAATACGGCACAGAACCTCATTCTTAAACAAATTGGCGGACCTGAAAGTTTGAAA 
663 -------+---------+---------+---------+--------+ +-- 722 

TCACTGTTATGCCGTGTCTTGGAGTAAGAATTTGTTTAACCGCCTGGACTTTCAAACTTT 

Lvs Glu Leu Arg Lys lie Giy Asp Glu Val Thr Asn Pro Glu Arg Phe Glu Pro Glu Leu 

AAGGAACTGAGGAAGATTGGTGATGAGGTTACAAATCCTGAACGATTCGAACCGGAGTTA 
723 -------+---------+---------+---------+---------+ ------+-- 782 

TTCCTTGACTCCTTCTAACCACTACTCCAATGTTTAGGACTTGCTAAGCTTGGCCTCAAT 

Asn Glu Val Asn Pro Gly Giu Thr Gin Asp Thr Set Thr Ala Atg Ala Leu Ala Tht Set 

AATGAAGTGAATC CGGGAGAAACTCAGGATACCAGTACAGCAAGAGCACTTGCGACAAGC 
783 -------+---------+---------+---------+---------+---------+-- 842 

TTACTTCACTTAGGCCCTCTTTGAGTCCTATGGTCATGTCGTTCTCGTGAACGCTGTTCG 

Leu Gin Ala Phe Ala Leu Glu Asp LVS Leu Pro Set Glu Lys Arg Glu Leu Leu lie Asp 

CTTCAAGCTTTTGCTCTTGAAGATAAACTTC CAAGTGAAAAACGCGAG CTTTTAATCGAT 
843 -------+---------+---------+---------+---------+---------+-- 902 

GAAGTTCGAAAACGAGAACTTCTATTTGAAGGTTCACTTTTTGCGCTCGAAAATTAGCTA 

Ttp Met Lys Arg Asn Thr Thr Civ Asp Ala Leu lie Atg Ala Clv Val Pro Giu Gly Trp 

TGGATGAAACGAAATACCACCGGGGACGCCTTAATCCGCGCCGGTGTGCCGGAAGGCTGG 
903 -------+---------+---------+---------+---------+--------- 	962 

ACCTACTTTGCTTTATGGTGGCCCCTGCGGAATTAGGCGCGGCCACACGGCCTTCCGACC 

Giu Val Ala Asp Lys Thr CIV Ala Cly Set Tyr Gly Thr Arg Asn Asp lie Ala lie lie 

GAAGTGGCTGATAAAACTGGAGCGGGATCATATGGAACCCGGAACGACATTGCCATCATT 
963 -------+---------+---------+---------+---------+---------+-- 1022 

CTTCAC CGACTATTTTGACCTCGC CCTAGTATACCTTGGGC CTTGCTGTAACGGTAGTAA 

Trip Pro Pro Lys Gly Asp Pro Val Val Lau Ala Val Leu Set Set Atg Asp LVS Lys Asp 

TGGCCGCCAAAAGGAGATCCTGTAGTTCTCGCAGTATTATC CAG CCGGGATAAAAAGGAT 
1023 -------+---------+---------+---------+---------+---------+-- 1082 

ACCGGCGGTTTTCCTCTAGGACATCAAGAGCGTCATAATAGGTCGGCCCTATTTTTCCTA 

Ala Lys Tyr Asp Asp Lys Leu lie Ala Clu Ala Thr Lys Val Val Val Lys Ala Leu Asn 

GC CA 4AGTATGATGATAAGCTTATTGCAGAGGCAACAAAAGTGGTAGTGAAAG CCTTAAAC 
1083 -------+---------+---------+---------+---------+---------+-- 1142 

CGGTTCATACTACTATTCGAATAACGTCTCCGTTGTTTTCACCATCACTTTCGGAATTTG 

Met Giu Set Lys End 
ATGGAAAGCAAATAAAAAAACATTG CAATACATTTTGTTAAAACATCGTCTTACATAAAG 

1143 -------+---------+---------+---------+---------+---------+-- 1202 

TACCTTTCGTTTATTT I TTTGTAACGTTATGTAAAACAATTTTGTAG CAGAATGTATTTC 
4 

TCACTTGGTGATCAAGCTCATATCATTGTCTGGCAATGGTGTGGGCTTTTTTGTTTTCTC 
1203 -------+---------+---------+---------+---------+---------+-- 1262 

AGTGAAC CACTAGTTCGAGTATAGTAACAGACCGTTACCACACCCGAAAAAACAAAAGAG 

TCTTTAAAGATAATGTGAAGAAAAACGGGAGAAT CGGTCTGCGGGAAACGAC CGGGTTTT 
1263 -------+---------+---------+---------+---------+---------+-- 1322 

AGAAATTTCTATTACACTTCTTTTTGCCCTCTTAGCCAGACGCCCTTTGCTGGCCCAAAA 
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FIGURE 3.2 (continued) 

TGTCGAAATCATAGGCGATTGGATTGATTTGCGACAAAATTCGACATATATACTGGCGGA 
1323 -------+---------+---------+---------+---------- F---------+-- 1382 

ACAGCTTTAGTATCCGCTAACCTAACTAAACGCTGTTTTAAGCTGTATATATGAC CGCCT 

GTGACTTGATCGACCATGTATCGCGTTTCTTCTCCTATTTGCAATACTTTACAGAACGTT 
1383 -------+---------+---------+---------+---------+---------+-- 1442 

CACTGAACTAGCTGGTACATAGCGCAAAGAAGAGGATAAACGTTATGAAATGTCTTG CAA 

AATAAATTCTGC CTATAATAGAACC CGATCAATCATTTGTATAGAGAGGGGTAATACGAA 
1443 -------+---------+---------+---------+---------+---------+-- 1502 

TTATTTAAGACGGATATTATCTTGGGCTAGTTAGTAAACATATCTCTCCC CATTATGCTT 

TGACACATGAAGG CACCG CTGGAGGAATGGATGAAAAAACTGAGCGAGGAAAGCCTCAAG 
1503 -------+---------+---------+---------+---------+---------+-- 1562 

ACTGTGTACTTCCGTGGCGACCTCCTTACCTACTTTTTTGACTCGCTCCTTTCGGAGTTC 

GACAATACGTTTGACCGCCGCCGCTTTATTCAAGGGGCCGGCAAAATAGCCGGGTTTCGC 
1563 -------+---------+---------+---------+---------+---------+-- 1622 

CTGTTATG CAAACTGGCGG CGGCGAAATAAGTTC C C CCC CCGTTTTATCGG C CCAAAG CC 

TCGGACTTGCGATCGCGCAATCGATGGGGGCAATGGAAGTCAATGCAGCACCGAGGTTCT 
1623 -------+---------+---------+---------+---------+---------+-- 1682 

AGCCTGAACGCTAGCGCGTTAGCTACCCCCGTTACCTTCAGTTACGTCGTGGCTCCAAGA 

CCGAATATCCGTTTACACTTGGCGTTGCATCGGGAGATCCGCTTTCTGACAGACGTCGTA 
1683 -------+---------+---------+---------+---------+---------+-- 1742 

GGCTTATAGGCAAATGTGAACCG CAACGTAG CCCTCTAGG CGAAAGACTGTCTGCAG CAT 

TTGTGGACAAGGCTGGCGCCCGATCCGCTAAACGGGGGCGGGATGCCAAATGAAGCTGTA 
1743 -------+---------+---------+---------+---------+---------+-- 1802 

AACACCTGTTCCGACCGCGGGCTAGGCGATTTGCCCCCGCCCTACGGTTTACTTCGACAT 

TCCGTGAAATGGGAGCTCGCAGAAGACGAACGCTTCCGCCGTGTCGTCAAACGGGGAACC 
1803 -------+---------+---------+---------+---------+---------+-- 1862 

AGGCACTTTACCCTCGAGCGTCTTCTGCTTGCGAAGGCGGCACAGCAGTTTGCCCCTTGG 

GAAAAAGCAACACCTCACCTTGCACATTCGGTACATGCCGAGGTATCCGGGCTGAAACCG 
1863 -------+-------------------+---------+---------+---------+-- 1922 

CTTTTTCGTTGTGGAGTGGAACGTGTAAGC CATGTACGGCTC CATAGGC CCGACTTTGG C 

AATCATGTATACTATTACCGCTTTAAATGCGGCAACCAGCTGAGTCCTGTCGGCAAGACA 
1923 -------+---------+---------+---------+---------+---------+-- 1982 

TTAGTACATATGATAATGGCGAAATTTACGCCGTTGGTCGACTCAGGACAGCCGTTCTGT 

AAGACGCTTCCGGCGCCCGGGGCAGATGTTGCTAAATTCACATTCGCTTTTGCTTCATGC 
1983 -------+---------+---------+---------+---------+---------+-- 2042 

TTCTGCGAAGGCCGCGGGCCCCGTCTACAACGATTTAAGTGTAAGCGAAAACGAAGTACG 

CAGCAGTACGAACACGGCTATTATACCG C CTATCAGCATATGGCAAAGGAAAAGCTCGAT 
2043 -------+---------+---------+---------+---------+---------+-- 2102 

GTCGTCATGCTTGTGCCGATAATATGGCGGATAGTCGTATACCGTTTCCTTTTCGAGCTA 
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FIGURE 3.2 (continued) 

CTTGTTTTTCATCTCGGCGACTATATTTATGAGTACGGTCCGAATGAATATGTTTCGAAA 
2103 -------+---------+---------+---------+---------+---------+-- 2162 

GAACAAAAAGTAGAGCCGCTGATATAAATACTCATGCCAGGCTTACTTATACAAAGCTTT 

ACAGGAAATGTCAGAACACACAGCGGTCCTGAAATCATGTCACTGCTCGATTACCGAAAC 
2163 -------+---------+---------+---------+---------+---------+-- 2222 

TGTCCTTTACAGTCTTGTGTGTCGC CAGGACTTTAGTACAGTGACGAGCTAATGG CTTTG 

CGTCATGCCCAAIACCGTTCAGATGCAAACCTGAAAGCTGCGCATGCCGCCTTCCCGTGG 
2223 -------+-------------------+---------+---------+---------+-- 2282 

GCAGTACGGGTTATGGCAAGTCTACGTTTGGACTTTCGACGCGTACGGCGGAAGGGCACC 

GTTGTCACATGGGACGAC CATGAAGTGGAGAACAACTATGCGAATGTCATC C CGGAAAAA 
2283 -------+---------+---------+---------+---------+---------+-- 2342 

CAACAG1GTACCCTGCTGGTACTTCAC CTCTTGTTGATACGCTTACAGTAGGGC CJTTTT 

GGCCAGTCAGTTGAAGCGTTTATTAAACGGCGCGCCGCATACCAAGCTTATTACGAGCAT 
2343 -------+---------+---------+---------+---------+---------+-- 2402 

CCGGTCAGTCAACTTCGCAAATAATTTGCCGCGCGGCGTATGGTTCGAATAATGCTCGTA 

ATGCCGCTCCGCCGCCTAATCCTTGCCGAACGGTCCTGATATGCAATTGTAC CGGAATTT 
2403 -------+---------+---------+---------+---------+---------+-- 2462 

TACGGCGAGGCGGCGGATTAGGAACGGCTTGCCAGGACTATACGTTAACATGGCCTTAAA 

TTCCTACGGCTAATTTAGCTGACATTAGCGTGCTGGATACCGTCAGTATCGCGATGACCA 
2463 -------+---------+---------+---------+---------+---------+-- 2522 

AAGGATGCCGATTAAATCGACTGTAATCGCACGACCTATGGCAGTCATAGCGCTACTGGT 

GGCTAACGGCGATGGCAATAAGCCGCCTTCTGATGAATCGAATGATCCGAAGCGGACGCT 
2523 -------+---------+---------+---------+---------+---------+-- 2582 

CCGATTGCCGCTACCGTTATTCGGCGGAAGACTACTTAGCTTACTAGGCTTCGCCTGCGA 

GCTTGGAGCGGAGCAGGAGGCTTGGCTGTTTGACAATCTGAGTCGCTCCGAGGCGCACTG 
2583 --------+---------+---------+---------+---------+---------+-- 2642 

CGAACCTCGCCTCGTCCTCCGAACCGACAAACTGTTAGACTCAGCGAGGCTCCGCGTGAC 

GAACATTATCGCACAGCAGATTTTCTTTG CGCAGTGGAACTTTGGGACAAG CG CGGCGCC 
2643 -------+---------+---------+---------+---------+---------+-- 2702 

CTTGTAATAGCGTGTCGTCTAAAAGAAACGCGTCACCTTGAAACCCTGTTCGCGCCGCGG 

GATTTACAGCATGGATTCGTGGGACGGATATCCCGCTCAGCGCAAGCGGGTGATCGACTT 
2703 -------+---------+---------+---------+---------+---------+-- 2762 

CTAAATGTCGTACCTAAGCACCCTGCCTATAGGGCGAGTCGCGTTCGCCCACTAGCTGAA 

CATCAAATCTCAAAAACTGAACAACATCGTCGTCCTTACCGGTGATGTGCATGCCAG CTG 
2763 -------+---------+---------+---------+---------+---------+-- 2822 

GTAGTTTAGAGTTTTTGACTTGTTGTAGCAGCAGGAATGGCCACTACACGTACGGTCGAC 

GGCAAATAATCTGCTCGTTGATTTTGACAATCCGAAATCGGACATCTTTGGCGTGGAGTT 
2823 -------+---------+---------+---------+---------+---------+-- 2882 

CCGTTTATTAGACGAGCAACTAAAACTGTTAGG CTTTAGC CTGTAGAAACCGCACCTCAA 
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FIGURE 3.2 (continued) 

CGTCGGGACGTCGATTACATCGGGAGGAAACGGCGCTGATAAAAGAGCGGATACGGATAA 
2883 -------+---------+---------+---------+---------+---------+-- 2942 

GCAGCCCTGCAGCTAATGTAGCC CTCCTTTGCCGCGACTATTTTCTCGCCTATGCCTATT 

GATTTTATCGAACAATCCTCATATAAAGTTTTTCAATGATTACCGCGGCTATGTGCGCTG 
2943 -------+---------+---------+---------+---------+---------+-- 3002 

CTAAAATAG CTTGTTAGGAGTATATTTCAAAAAGTTACTAATGGCG C CGATACACG CGAC 

TACGGTCACCCCGGAAGAATGGCGGACAGATTACCGCGTCGTCCCGTATGTGACAGAGCC 
3003 -------+---------+---------+---------+---------+---------+-- 3062 

ATGCCAGTGGGGCCTTCTTACCGCCTGTCTAATGGCGCAGCAGGGCATACACTGTCTCGG 

GGGTG CGGCGGTTTCGACAAGAGCTTCCTATGTTTATCATAAAGACTACACAGGGCTGAA 
3063 -------+---------+---------+---------+---------+---------+-- 3122 

CCCACGCCGCCAAAGCTGTTCTCGAAGGATACAAATAGTATTTCTGATGTGTCCCGACTT 

ACGGACCGCTTCCAACATTGTGCCTGGAGGCGTGAAGAAGTCAAACGAAGTAGAAGAAGA 
3123 -------+---------+---------+---------+---------+---------+-- 3182 /  

TGCCTGGCGAAGGTTGTAACACGGACCTCCGCACTTCTTCAGTTTGCTTCATCTTCTTCT 

CCGTTTCCTCGCACATACAAGGGCCCATCAGAAGCAAGTGAAGCAAAAGGAGAAAAAAGT 
3183 ----- -. —+---------+---------+---------+---------+------------ 3242 

GGCAAAGGAGCGTGTATGTTCC CGGGTAGTCTTCGTTCACTTCGTTTTC CTCTTTTTTCA 

AACC CAGTAATCAATGAAAGGATGACAGCAAATGCTTTCAAATATCGGTATTCCTGGTCT 
3243 -------+---------+---------+---------+---------+---------+-- 3302 

TTGGGTCATTAGTTACTTTC CTACTGTCGTTTACGAAAGTTTATAGCCATAAGGACCAGA 

CATCTTGGTTCTGGTAATTAGCGCTGATCATTTTCGGGCCTTCAAAGCTCCCGGAAATCG 
3303 -------+---------+---------+-------------------+--------- 	3362 

GTAGAAC CAAGACCATTAATCGCGACTAGTAAAAGCC CGGAAGTTTCGAGGGC CTTTAGC 
End Lau Glu Arg Phe Asp 

(E c oR I) 

GCCGGGCTTTTGGAAAAACGCTGACCGAATTCAGAAGCGGCTACCAAAGATGACGTTCTT 
3363 ------------------------------------------------------------ 3422 

CGGCCCGAAAACCTTTTTGCGACTGGCTTAAGTCTTCGCCGATGGTTTCTACTGCAAGAA 
Ala Pro Ser LVS  Set Phe Arg Gin Gly Phe Giu Ser Ala Ala Val Lau Set Set Thr Arg 

TGCTTAAGTGAAGTGAATTTTAAAATCAC CTCGCCATATTTGAGATGCAATTTTTTATCA 
3423 -------+---------+---------+---------+---------+---------+-- 3482 

ACGAATTCACTTCACTTAAAATTTTAGTGGAG CGGTATAAACTCTACGTTAAAAAATAGT 
Gin Lys Leu Set Thr Phe Lys Leu lie Val Giu Giv Tyr LVS  Lau His Lau LVS LVS Asp 

AGCGTTTTTAATACGGCAAAGTCG CAAGAAATCTC CATCTCTGTTTTTGCTTC CTTTGAT 
3483 -------+---------+---------+---------+---------+---------+-- 3542 

TCGCAAAAATTATG CCGTTTCAGCGTTCTTTAGAGGTAGAGACAAAAACGAAGGAAACTA 
Lau Thr LVs Lau Val Ala Phe Asp CVs Set lie Giu Met .Giu Thr LVS Ala Glu Lys Set 

AAATAC CACACGAGAGGATTAAAC CAATAGACGATTTTGGACAGGCAAAGAAAATAGTTG 
3543 -------+-------------------+---------+---------+------------ 3602 

TTTATGGTGTGCTCTC CTAATTTGGTTATCTGCTAAAAC CTGTC CGTTTCTTTTATCAAC 
Lau Tyr Trp Val Lau Pro Asn Phe Trp Tyr Val lie LyS Set Leu CVs Leu Phe Tyr Asn 
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FIGURE 3.2 (continued) 

ATGAGCATATCTTTTCGTTTACAATGGTACAGTTCATGAAGCAAAACACATTTCATCTCG 
3603 -------+---------+---------+---------+---------+---------+-- 3662 

TACTCGTATAGAAAAG CAAATGTTAC CATGTCAAGTACTTCGTTTTGTGTAAAGTAGAGC 
lie Lau Met Asp I-VS  Arg I-vs CVs His Tyt Lau Glu His I-eu Lau Val CVs LVS Met Glu 

TCGGCAGAAAACATTGAAATATC CTTTGGCAAGATAATATATGGACGGACAACCCCAAAT 
3663 -------+---------+---------+---------+---------+---------+-- 3722 

AGCCGTCTTTTGTAACTTTATAGGAAACCGTTCTATTATATACCTGCCTGTTGGGGTTTA 
Asp Ala Ser Phe Met Ser lie Asp I-Vs Pro Lau lie lie Tyr Pro Arg Val Val Gly Phe 

GTTATGGGGGATTTTATCAATGGGGAACAGCCTAAAATCACTTTTTGATGAAAGCGTATT 
3723 -------+---------+---------+---------+---------+---------+-- 3782 

CAATACCCCCTAAAATAGTTAC C CCTTGTCGGATTTTAGTGAAAAACTACTTTCG CATAA 
Thr lie Pro Set Lys lie Lau Pro Ser CVs Gly Lau lie Val LyS Gin His Phe Arg lie 

TCCTCTTTACATGTACGAAAAAGGGTTAATAGCTCTTTGTTGTTAACCATTTG CAGG dC 
3783 -----------------+---------+---------+---------+---------+-- 3842 

AGGAGAAATGTACATGCTTTTTCCCAATTATCGAGAAACAACAATTGGTAAACGTCCGAG 
Giu Glu Lys Cys Thr Arg Phe Lau Thr Lau Lau Glu Lys Asn Asn Val Met Gin I-eu Ser 

TTTTTTATTTTGCCGATTTTTCGATTGCTATAAAGAGTAGCGATAAGCATAACAGCAATG 
3843 -------+---------+---------+---------+---------+---------+-- 3902 

AAAAAATAAAACGGCTAAAAAGCTAACGATATTTCTCATCG CTATTCGTATTGTCGTTAC 
Lys LyS lie I-ys Glv lie I-VS Arg Asn Set Tyr Lau Thr Ala lie Lau Met Val Ala lie 

CCCAATATCCAGACTG CGAAAAAGGCTGAATCTATCATTTTGAAGGACGATTGTTCAATC 
3903 -------+---------+---------+---------+---------+----------i--- 3962 

GGGTTATAGGTCTGACGCTTTTTCCGACTTAGATAGTAAAACTTCCTGCTAACAAGTTAG 
Giy Lau lie Trp Val Ala Phe Phe Ala Ser Asp lie Met Lys Phe Ser Ser Gin Giu lie 

GACATCGAAAAATCCTGCAC C CAGTTTGCATGTTGGCCAATTGCTTCCG CCGTCTTATCT 
3963 -------+---------+---------+---------+---------+---------+-- 4022 

CTGTAGCTTTTTAGGACGTGGGTCAAACGTACAACCGGTTAACGAAGGCGGCAGAATAGA 
Ser Met Set Phe Asp Gin Val Trp Asn Ala His Gin Gly lie Ala Glu Ala Lys Asp Thr 

GTGGAACGGGTGTGAGATAGCGTTGAGCTAGCTCCTC CTAAATTCAGAATCCAGTCAAAA 
4023 -------+---------+---------+---------+---------+---------+-- 4082 

CACCTTG CCCACACTCTATCG CAACTCGATCGAGGAGGATTTAAGTCTTAGGTCAGTTTT 
Thr Ser Arg Thr His Set Lou Thr Set Ser Ala Gly Giy Lau Asn Lau lie Trp Asp Phe 

TGATTG CTTTTTAGATAATGAAAGGGGAGAAAAGGAG CGATCAATG CCAAAAGAGAAATC 
4083 -------+---------+---------+---------+---------+---------+-- 4142 

ACTAACGAAAAATCTATTACTTTCCCCTCTTTTCCTCGCTAGTTACGGTTTTCTCTTTAG 
His Asn Ser Lys Lau Tyr His Phe Pro Lau Phe Pro Ala lie Lau Ala I-eu I-eu Ser lie 

ACGCTAAGATGATAGTGGGTGC CTACAGTGATTTGAGC CTTCAGCAGTTTTTTTATGAGT 
4143 -------+---------+---------+---------+---------+---------+-- 4202 

TGCGATTCTACTATCACCCACGGATGTCACTAAACTCGGAAGTCGTCAAAAAAATACTCA 
Val Set I-eu His Tyr His Tht Gly Val Thr lie Gin Ala Lys I-eu I-eu I-vs I-Vs lie Lau 

ATGATGAGAGAAAAAAACAGAGACAATAGAATTTGACTAAC CAAAAAGGGAATAAAGAAA 
4203 -------+---------+---------+---------+---------+---------+-- 4262 

TACTACTCTCTTTTTTTGTCTCTGTTATCTTAAACTGATTGGTTTTTCCCTTATTTCTTT 
lie lie I-eu Set Phe Phe Lau Ser Lau I-eu lie Gin Ser Val I-eu Phe Pro lie Phe Phe 
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FIGURE 3.2 (continued) 

GAACTGCTCATTTCATTCCTTCTTTCTGTTCTTATGTTCTTCTAGTATTTGATACAACTC 
4263 -------+---------+---------+---------+---------+---------+-- 4322 

CTTGACGAGTAAAGTAAGGAAGAAAGACAAGAATACAAGAAGATCATAAACTATGTTGAG 
Ser Ser Ser Met End Glu Lys Lys Arg Asn Ls His Glu Glu Leu lie Gin Tyr Leu Glu 

SD 

ATTAATTTCTTCACCTGACAGCTGATCATTCTCCAAAAAGTTTAATACCATCGAATTAAG 
4323 -------+---------+---------+---------+---------+---------+-- 4382 

TAATTAAAGAAGTGGACTGTCGACTAGTAAGAGGTTTTTCAAATTATGGTAGCTTAATTC 
Asn lie Glu Glu Giy Ser Leu Gin Asp Asn Glu Leu Phe Asn Leu Vat Met Ser Asn Leu 

AGTGCCATTGTAAAAC CGGTTTAAAAAACTGTGACTTTTCACTTCTATATAATCATTTTC 
4383 -------+---------+---------+---------+---------+---------+-- 4442 

TCACGGTAACATTTTGGCCAAATTTTTTGACACTGAAAAGTGAAGATATATTAGTAAAAG 
Thr Giv Asn Tyr Phe Arg Asn Leu Phe Ser His Ser Lys Val Glu lie Tyr Asp Asn Giu 

GTCTATATTTGGCGTATAAACGAAAACCCGGCCTTCTTTATGGTGGTTTAATGCTCCTTT 
4443 -------+---------+---------+---------+---------+---------+-- 4502 

CAGATATAAACCGCATATTTGCTTTTGGGCCGGAAGAAATACCACCAAATTACGAGGAAA 
Asp lie Asn Pro Thr Tyr Vat Phe Val Arg Giy Glu Lys His His Asn Leu Ala Gly Lys 

TTTAATGAGGCACAGCAG CATGGTTTGGATGGTTTTAGGGCTCCATGTACTGGTTTTGGA 
4503 -------+---------+---------+---------+---------+---------+-- 4562 

AAATTACTCCGTGTCGTCGTACCAAACCTACCAAAATCCCGAGGTACATGACCAAAACCT 
Lys lie Leu CVs Leu Leu Met Thr Gin lie Thr Lys Pro Ser Trp Thr Ser Thr Lys Ser 

CAACTCTTTAATCACCTCATTGGTATTGATCGAAGAATGCTTC CAGATGACTTTCATCAC 
4563 -------+---------+---------+---------+---------+---------+-- 4622 

GTTGAGAAATTAGTGGAGTAAC CATAACTAGCTTCTTACGAAGGTCTACTGAAAGTAGTG 
Lau Glu Lys lie Vat Giu Asn Thr Asn lie Ser Ser His Lys Trp lie Val Lys Met Val 

TTCTAATTC CGCATCAGAGATTTGAGGTATTTTTTTCATTTC CATCATC CTATACTTACA 
4623 -------+---------+---------+---------+---------+---------+-- 4682 

AAGATTAAGGCGTAGTCTCTAAACTCCATAAAAAAAGTAAAGGTAGTAGGATATGAATGT 
Giu Leu Giu Ala Asp Ser lie Gin Pro lie Lys Lys Met 	 SD 

AATGTAATACTTTCATTATAGGTTTGCC 
4683 -------+---------+---------+ 4710 

TTACATTATGAAAGTAATATCCAAACGG 

The deduced protein sequences of the blaP, ORFe and ORFf are reported. 
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FIGURE 3.3 Restriction map of the 4.7Kb EcoRl fragment containing the b/a gene 
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Restriction map output of the University of Wisconsin program MAPPLOT. 

A search for restriction sites with the program MAP and MAPPLOT largely 

confirmed the results of the preliminary restriction analysis of the fragment (see 

Figure 3.3) with the exception of EcoRl site surprisingly found at position 3389. 

Upon digestion with EcoRl neither Abla nor pACYCbIa were ever seen to produce 

more than one extra fragment with respect to their corresponding vectors (see 

Figure 2.2), possibly indicating that this site is cryptic. Other EcoRl restriction 

sites are known to cut at variable frequencies (Halford et a/. 1980), but no clear 

reasons have been found to explain this phenomenon. It is possible that the 

shorter fragments of DNA (3.4Kb and 1.31(b), expected as products of the 

reactions of the restriction enzymes on this site, are generated at such a low 

level that they are not visible as a band on agarose gels, nor as a detectable 

signal after probing the digestion products with Xpen. The latter should 

hybridise at least to the larger product, the 3.4Kb fragment, which includes the 

8-lactamase gene known to cross-hybridise to Apen (see Figure 2.3). 

Alternatively, this EcORI site could be interpreted as an artifact resulting 

from the repeated reading of M13 clones in which the real ends of the original 

EcoRl fragment joined together had been cloned. This possibility is discussed in 

Section 3.10. 
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FIGURE 3.4 Open reading frames (OAFs) of the 4.7Kb EcoRl fragment containing 

the b/a gene 
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Graphic output of the University of Wisconsin sequence analysis program FRAMES. 

The program FRAMES was used to detect open reading frames (Offs), 

that is long stretches of DNA sequence between a start and a stop codon that 

could potentially code for a polypeptide. Five significantly long (more than 300 

nucleotides) ORFs were found as depicted in Figure 3.4. 

3.5 THE 8-LACTAMASE GENE 

As already mentioned the gene for the -Iactamase of 6346/c was found 

to lie at one end of the sequenced fragment, in the 1.61(b EcoRl-ItIael fragment. 

The only ORF present in this section of DNA is on frame C. It spans bases 234 to 

1154 and codes for a protein of 307 amino acids. The nucleotide composition of 

the gene is the same as that of the whole 4.71(b sequenced: it is slightly richer in 

As and Ts (A+T 56%, G+C 44%) which results in a bias toward A and T in the 

third codon position. A table of codon usage in the B-Iactamase gene is given 

in Table 3.1. 

0 
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TABLE 3.1 Codon usage in the Bacillus llcheniformis 6346/c b/a gene 

AMINOACID CODON NUMBERa ,113170b FRACTION' 

Gly GGG 2.00 6.51 0.12 
Gly GGA 8.00 28.06 0.47 
Gly GOT 3.00 9.77 0.18 
Gly GGC 4.00 13.03 0.24 
Giu GAG 10.00 32.57 0.42 
Glu GAA 14.00 45.60 0.58 
Asp OAT 21.00 68.40 0.88 
Asp GAC 3.00 9.77 0.13 
Val GIG 7.00 22.80 0.39 
Val GIA 8.00 19.54 0.33 
Val GIl 4.00 13.03 0.22 
Val GIC 1.00 3.26 0.08 
Ala GCG 3.00 9.77 0.10 
Ala GCA 13.00 42.35 0.43 
Ala OCT 7.00 22.80 0.23 
Ala GCC 7.00 22.80 0.23 
Arg AGG 1.00 3.26 0.07 
Arg AGA 2.00 6.51 0.14 
Ser AGT 5.00 18.29 0.28 
Ser AGC 4.00 13.03 0.22 
Lys AAG 8.00 26.06 0.28 
Lys AAA 21.00 68.40 0.72 
Asn AAT 7.00 22.80 0.50 
Asn AAC 7.00 22.80 0.50 
Met AIG 5.00 16.29 1.00 

la AlA 2.00 6.51 0.14 
lie ATT 8.00 26.06 0.57 
Ile AIC 4.00 13.03 0.29 
Thr ACG 8.00 28.06 0.33 
Thr ACA 7.00 22.80 0.29 
Thr ACT 4.00 13.03 0.17 
Thr ACC 5.00 18.29 0.21 
Trp TOG 4.00 13.03 tOO 
End TGA 0.00 0.00 0.00 
Cys TGT 0.00 0.00 0.00 
Cys TOC 2.00 8.51 1.00 
End TAG 0.00 0.00 0.00 
End TA.A 0.00 0.00 0.00 
Tyr TAT 5.00 16.29 0.83 
Tyr TAC 1.00 3.26 0.17 
Lou TTG 2.00 6.51 0.06 
Lou TTA 10.00 32.57 0.30 
Phe TTT 5.00 16.29 0.58 
Pha TTC 4.00 13.03 0.44 
Se, TCG 3.00 9.77 0.17 
Ser TCA 3.00 9.77 0.17 
So, TCT 2.00 8.51 0.11 
Sor TCC 1.00 3.26 0.08 
Arg COG 3.00 9.77 0.21 
Arg CGA 4.00 13.03 0.29 
Arg CGT 1.00 3.26 0.07 
Arg CGC 3.00 9.77 0.21 
Gin CAG 4.00 13.03 0.50 
Gin CAA 4.00 13.03 0.50 
His CAT 2.00 8.51 0.87 
His CAC 1.00 3.26 0.33 
Lou CTG 3.00 9.77 0.09 
Lou CTA 0.00 0.00 0.00 
Lou CIT 14.00 45.60 0.42 
Lou CTC 4.00 13.03 0.12 
Pro CCG 6.00 19.54 0.55 
Pro CCA 2.00 8.51 0.18 
Pro CCT 3.00 9.77 0.27 
Pro CCC 0.00 0.00 0.00 

N 

a Number of times codon is found in the gene 

b Number of times codon would occur per 1000 codons 

c Fraction of each aminoacid coded by a particular triplet 
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Six bases upstream from the translation start codon there is a possible 

Shine-Dalgarno sequence (GAGACG) which presents some complementarity to 

the 3' end of Bacillus subtiis 16S rRNA, 3'-UCUUUCCUCCACUAG-5' (McLaughlin 

at al. 1981, Moran at al. 1982). About 180 bases upstream from the 

Shine-Dalgarno sequence there is a typical promoter with a TTGCAT sequence at 

the -35 region, a spacer of 17 nucleotides and a TAATAC sequence at the -10 

region; this arrangement closely resembles that of the consensus sequence 

(TTGACA for the -35 region, a spacer of 17-18 bases and TATAAT for the -10 

region) observed by Moran (Moran at al. 1982) for the RNA polymerase Ea 55  of 

Bacillus subtiis. 

A typical  Rho-independent terminator (Platt 1986) can be found 57 

nucleotides downstream from the translation stop codon of the gene. It has a 

hairpin with a stem formed by 15bp and a loop of 5 bases; the free energy of 

this secondary structure, as calculated following the rules of Tinoco (Tinoco at al. 

1973) for RNA folding, was -15.0 Kcal/mol. A region extremely rich in thymine 

residues follows immediately the hairpin loop; it is probably in this region that 

the RNA polymerase falls off the messenger RNA giving rise to the main mRNA 

population of 1.2Kb (Salerno & Lampen 1986). 

3.6 SEQUENCE COMPARISON 

The first 1300 bases of the sequence, including the B.11chenhform/s 

6346/c 8-lactamase gene and' the flanking sequences, was compared to the. 

sequence published by Neugebauer (Neugebauer at al. 1981) of the 

corresponding region cloned from B.11clien/formis 749/c. In the DOTPLOT 

comparison output (Figure 3.5) three distinct zones of homology can be found. 

The central long region of matching, corresponding to the coding 

sequence and the ribosomal binding site, is preceded by a short zone of 

homology centered on the promoter. The other short match, which follows the 

gene, coincides with the terminator site. 

Of the 53 nucleotide differences found between the two coding 

sequences, 33 (62% of the total) are silent, while the other 20 (38%) give rise to 

17 amino acid substitutions. 
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3.7 ORFe and ORFf 

At the other end of the sequenced fragment and on the opposite strand 

with respect to the -lactamase gene, two open reading frames can be found, 

designated ORFe and ORFf from the frame they lie on. ORFf (bases 4273-3347) 

follows closely ORFe (bases 4661-4278). ORFf's translation start codon is 

separated from the stop codon of ORFe by only one nucleotide and its translation 

stop codon lies just beyond the cryptic EcoRl site. 

FIGURE 3.5 Dotplot comparison of B./icheniformis 6346/c and 749/c 

B-la cta ma ses 

749 

Window: 21; Stringency: 14. 
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FIGURE 3.6 Dotplot comparison of the 4.7Kb EcoRl fragment with peril and 
penRl 
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The sequence of the 4.71(b EcoRl fragment (vertical sequence) is compared with peril (A) and 
penRl  (B). Window: 21; Stringency: 14. 

Both ORFs are preceded by good Shine-Dalgarno sequences (AGGATG 

for ORFe and AGAAGG for ORFf) situated six bases upstream from their 

respective translation start codon; ORFe codes for a polypeptide of 128 amino 

acids, while the protein encoded by ORFf is 309 amino acids long. 
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Comparison of these open reading frames with the sequences of the 

regulatory genes of the penicillinase operon in B.11cheniformis 749 and 9945a 

(Imanaka et al. 1987, Kobayashi et al. 1987, Himeno et al. 1986) showed 

extensive homology between ORFe and the penl gene and between ORFf and the 

first half of the penRi gene. The DOTPLOT comparisons are shown in Figures 3.6 

A and B. 

3.8 THE PENICILLINASE OPERON IN B./icheniformis 749 

B.11cheniformis 749 is a 8-lactamase inducible strain; on induction by a 

B-lactam antibiotic such as cephalosporin C the enzyme  secretion increases very 

slowly, reaching a maximum level after about two hours and remains high for a 

few hours (Collins 1979). 

According to Sherratt and Collins (1973) three regulatory genes are 

required for B-lactamase induction in B.Iichen/formis. A negative regulatory 

gene (pen!) is 90% linked to the structural gene (penP); penP is also 50% 

linked to a second locus involved in regulation, called Ri, and not linked at all to 

the further regulatory gene R2. 

The penP structural gene and the two regulatory genes peni and penRi 

have been cloned and sequenced (Neugebauer et al. 1981, Himeno at at. 1986, 

Imanaka et al. 1987, Kobayashi at al. 1987, Nicholls 1986). PenRi follows 

closely penl in the genome and it is transcribed from the same promoter 

situated just upstream of pen!. The structural gene penP is transcribed 

divergently to penl and penRi, from a promoter which lies 5' of the two 

regulatory genes (Figure 3.7b). 

Penl gene product is a regulatory protein which binds to operator 

sequences upstream of penP and of its own gene, repressing transcription 

(Grossman & Lampen 1987). PenRi codes for a membrane protein of 601 amino 

acids with a transmembrane region at its amino terminus and a putative 

8- lactam binding site (Kobayashi et al. 1987). This protein is believed to be the 

8-lactam receptor. 

It is current thought that B-lactam antibiotics would bind irreversibly to 

the receptor protein, causing the production of an intracellular stimulus, maybe 

mediated by the still unidentified penR2 gene product, which would lift the 

repression of both penl and penP and therefore increase the production of 
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FIGURE 3.7 The B./icheniformis B-lactamase operon 
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In A the beta-lactamase operon as found in the cloned 4.71(b ECORI fragment carrying the 
B.licheniformis 6346/c beta-lactamase. In B the beta-lactamase operon of B.licheniformis 749 
(Himeno at al. 1986; Kobayashi et at. 1987; Imanaka et a11987). Restriction sites are marked 
below the line and denoted as follows: E. EcoRl; E EcoRl ; H. HindlIl. Above the line genes 
are represented by boxes. The direction of transcription in indicated by the arrows. 

penicillinase. In the absence of inducer both penl and penP are repressed by 

penl gene product. 

In the magnoconstitutive producer of penicillinase B.11cheniformis 749/c 

the defect in induction has been found to be caused by a nonsense mutation in 

codon 32 of the penl gene, resulting in the production of a non-functional 

truncated repressor (Grossman & Lampen 1987). 

3.9 THE PENICIWNASE OPERON IN B.11cheniforrnis 6346/c 

From the nucleotide sequence of the DNA fragment carrying the 

8-lactamase gene cloned from the magnoconstitutive strain of B.1107eniformis 

6346/c, it was found that the arrangement of the penicillinase operon is different 

from that described above for the 749/c strain. In this case the genes of the 

penicillinase operon (referred to as b/a for the 6346/c strain) b!aP and b/a//b/aR 1 

are still situated on different strands, but they are transcribed convergently, the 

b/a!/bIaRl unit lying at the 3' side of blaP (see Figure 3.7a). 
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As just mentioned above, the non-inducibility of the 	-Iactamase 

production in strain 749/c is due to the presence of an inactive repressor. In the 

case of 6346/c no defect has yet been found that would explain its 

magnoconstitutive production of -Iactamase. Comparison of the deduced 

sequence of the ORFe gene product with that of penl shows that these two 

proteins have the same length (128 aa) and present only two amino acid 

differences: in position 49 the Arg found in the 749 repressor is substituted by 

Cys in the ORFe gene product; in position 75 Ser is substituted by Asn. It is 

therefore clear that ORFe is in fact the gene of the penicillinase repressor in 

B.11cheniformis 6346/c and will be referred to as b/al. 

In view of what has just been said .about the b/al gene product, it is 

obvious that, whatever the defect in regulation of 8-lactamase production in 

6346/c might be, it is not similar to that of the 749/c strain where a truncated 

repressor was found. However at this stage it is not possible to rule out the 

hypothesis that one or both the amino acid substitutions could still result in an 

inactive full length repressor. 

In the 6346/c derived clone ORFf was found to be very similar to the first 

half of the blaRl gene; so instead of a full length protein of 601 amino acids in 

6346/c a shortened protein of 309 amino acids is found. This part corresponds 

to most of the transmembrane part of the 8-lactam receptor but not the 

8-lactam binding site, which lies in the carboxy terminal half of the protein. The 

similarity between the two proteins is very good up to the amino acid whose 

codon superimposes the EcoRl site internal to the b/aR 1 gene of 749. In ORFf, 

the cryptic EcoRl site is found at the same position and any similarity to blaRl 

ceases at this point. ORFf gene product is truncated at a stop codon about 40 

bases downstream from the cryptic EcoRl site. This truncated protein could 

conceivably still take up its proper transmenbrane position in the cell, but it 

could not act as a receptor for B-lactams, thereby hindering the induction 

process at the very first stage. 

It is possible that this organisation of the operon does not reflect that on 

the genome of B.11cheniformis 6346/c, but it is due to a rearrangement of DNA 

fragments during the first cloning step. This would imply that during the 

creation of the genomic library in XNM1149 (see Section 2.1) EcoRI endonuclease 

cut also at a site inside the fragment containing this part of the operon, 

corresponding to the 4.2Kb fragment derived from 749/c (Salerno & Lampen 
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1986) (see Figure 3.7b) and that during the cloning the two segments were 

rescued together, but in a different order to that on the genome. In the 749/c 

derived 4.2Kb EcoRl fragment there is an EcORI*  site (GAATTA) lying between the 

b/aP and the b/al promoters. If a similar situation were present in the 6346/c 

operon, it is conceivable that accidental cutting at this site could have caused 

the rearrengement. 

More work is needed in order to clarify the situation; possibly repeating 

the original cloning step could give us the answer. However during the course 

of this work sequencing of the regulatory region together with the sought for 

B-lactamase gene was purely accidental. So, despite the interest that these 

findings aroused, it was decided not to pursue the matter any further. 

3.10 DISCUSSION 

Some of the inconsistencies found during the analysis of the sequencing 

results could have an alternative explanation. The EcoRl site found at position 

3389 could be an artifact which arose during the sequencing of the 4.7Kb EcoRl 

fragment containing the 8-lactamase gene of BJ/chen/formis 6346/c. 

In the shotgunning procedure used to start this sequencing project, a 

step was included which involved the partial circularisation of the fragment in 

order to increase the probability of reading the ends. Normally, unless the 

joining of the ends creates artificial sequences that are difficult to clone, this 

approach leads to the definition of a circular contig (consensus sequence 

obtained from the overlapping of individual readings). In the experiments 

reported here the contig did not reflect a circular molecule and this was 

assumed to be due to difficulties in the cloning of the ends of the fragment. 

However, it could be envisaged that the apparent reorganisation of the 

penicillinase operon of B./icheniformis 6346/c with respect to that of 749 was 

due to an erroneous joining of the contig. The EcoRl site found in position 3389 

could be an artifact due to the ligation of the original ends of the fragment. Lack 

of clones covering the region between ORFe and blaP, which should now be 

thought to be contiguous as in the 749 operon (Figure 3.8), could be related to 

the particular nature of this region, which includes the promoters and operator 

regions of both blal and b/aP M13 recombinants containing a fragment covering 

this region could be difficult to obtain because of the many inverted repeats (the 

operator sequences) which could form stemloop structures. On the other hand, 



CHAPTER 3 	 57 

FIGURE 3.8 An alternative arrangement of the penicillinase operon in Bacillus 

lichen/form/s 6346/c 
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The EcoRl fragment comprising part of the penicillinase operon of B.licheniformis 749 is 
presented here in the opposite orientation with respect to Figure 3.7 for ease of comparison. 
Restriction sites are denoted as follows: E, EcoRl; E , EcoRl ; N, Nael; l4, Hindlil. 

even if these M13 recombinants were made, transcription of the lacZgene of the 

vector could start from the cloned promoters, thus giving rise to blue plaques 

that could be mistaken for wild type M13 and therefore not sequenced. 

The arrangement of the penicillinase operon in B.11cheniformis 6346/c 

would be similar to that of 749 and the truncation of blaRl (ORFf) be due to the 

presence of an EcoRl site in the middle of the gene, as in 749. The short 

extension of ORFf beyond the EcoRl site at position 3389 (see above Section 3.7) 

would be accidental. 

Whatever the cause of the rearrangement (real or apparent) of the 6346/c 

operon, the two short stretches of similarity found at the top of the dotplot 

comparison between the contig and the pen! sequence (Figure 3.6a) must be 

thought of as continuous with the major similarity between b/al and pen!. 

These two regions of similarity corresponding to ca. bases 1-260 of the contig 

are due to the homology of the promoter regions of b/al and b/aP (separated in 

the figure from b/al coding sequence) and the corresponding region as found 

immediately upstream of penL 
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3.11 OTHER OPEN READING FRAMES 

Three more open reading frames of considerable length were highlighted 

by the program FRAMES (Figure 3.4). Two of them, ORFc and ORFa, follow the 

8-lactamase gene. The third lies on the opposite strand, about 0.51(b 

downstream of ORFf. 

ORFc 	This ORF follows the 8-lactamase gene on the same reading frame. 
It has two possible starting points, one at base 1509 and the other 
at base 1533 and terminates at a stop codon at position 2439. 
Only one possible Shine -Dalgarno sequence (TGGAGG) was found, 
five bases upstream of the second initiation codon, which is 
therefore the more likely of the two to be the real starting point of 
translation. The gene product of ORFc would then be a protein of 
302 amino acids. 

ORFa 	The third ORF in the leading strand, ORFa spans nucleotides 2713 
to 3248. No similarity to .  the Shine-Dalgarno sequence was found 
immediately upstream of its translation start codon. 

ORFd 	This reading frame runs in the opposite direction from base 2814 
to 2368. No possible ribosomal binding site was found upstream 
of its start codon. 

A protein sequence comparison search between the deduced amino acid 

sequences of these ORFs and the protein database assembled by Claverie & 

Bricault (1986) was undertaken. The search, carried out on a ICL 64x64 DAP 

computer as described by Collins (Collins at al. 1988) and Coulson (Coulson at 

al. 1987), failed to uncover any significant similarity between the putative gene 

products of these ORFs and the protein sequences stored in the database. 
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4.1 INTRODUCTION 

The aim of this work was to study the influence of protein structure on 

the specificity of 8-lactamases. The system used, that of B./ic/ieniformis 

8-lactamases, was chosen because it was known that a biologically significant 

change in substrate specificity was caused by a small number of amino acid 

substitutions. 

Each natural isolate of B./ichen/formis produces one or the other of two 

types of 8-lactamases, which can be called 749 and 6346 type from the two 

magnoconstitutive strains chosen to represent them. The difference in activity 

against a range of 8-lactams is the main feature of the system (Pollock 1965a), 

the 749 type enzymes being more a penicillinase than the 6346 type, which is 

relatively more active against cephalosporins (see Table 1.2). The sequence 

differences between the two proteins were known to be few (Thatcher 1975, see 

Table 1.3) and it was suggested (Dubnau & Pollock 1965) that the difference in 

specificity is due to only one or to a group of closely linked substitutions. The 

idea was therefore that sequencing of the 8-lactamase gene of B.11chenhformis 

6346/c and comparing it with the sequence of the 749/c penicillinase (Meadway 

1969) would have comfirmed the small number of differences, of which possibly 

only one was responsible for the change in activity. All the others were 

predicted not to influence the specificity of the enzyme. 

For these reasons, the system looked particularly suitable for a protein 

engineering project. With the new tools available to molecular biologists it is 

now possible to introduce any change one likes in any protein (provided that the 

gene has been cloned and sequenced) or even construct absolutely new 

polypeptides. In fact this approach for studying proteins is constantly frustrated 

by our only partial understanding of the rules governing protein folding and of 

the relationship linking protein structure and function. Even when a detailed 

X-ray structure of the protein is available, it is still very difficult to predict what 

effects an amino acid substitution would have on the structure of a protein or to 

identify which residues once introduced are likely to have an effect on the 

activity of an enzyme which is not its complete inactivation. 

B.11cheniformis offers us two naturally occurring variants of 8-lactamase 

where an interesting difference in activity is already prepared for us to study. 

What I intended to do was to find out what caused it. 



CHAPTER 4 	 61 

FIGURE 4.1 Comparison of the 6346 and 749 -lactamases protein sequences 

1 50 
6346 MKLWFSTLKL KKVAAVLLFS CVALAGCGSN HSNASHSAEK DEKTEMKDDF 
749 A AN QT OP N 

51 	 100 
6346 AKLEEQFDAK LGIFALDTGT NRTVTYRPDE RFAFASTIKA LTVGVLLQQK 
749 	 A 

(59) 
101 	 150 

6346 SIEDLNQRIT YTRDDLVNYN PITEKHVDTG MTLKELADAS LRYSDNTAQN 
749 	 A 

(133) 

151 	 200 
6346 rJILKQIGGPE SLKKELRKIG DEVTNPERFE PELNEVNPGE TQDTSTARAL 
749 

201 	 250 
6346 ATSLQAFALE DKLPSEKREL LIDWMKRNTT GDALIRAGVP EGWEVADKTG 
749 V R 	 D 

	

(187) (191) 	 (227) 

251 	 300 
6346 AGSYGTRNDI AIIWPPKGDP VVLAVLSSRD KKDAKYDDKL IAEATKVVVK 
749 	A 	 M 

(238) 	 (287) 

301 
6346 ALNMESK 
749 	NG 

(293) (294) 

The 6346 beta-lactamase deduced sequence is shown in full; only the positions at which 
differences were found are marked for the 749 enzyme. In parenthesis the no. of each 
substitution in Ambler notation. 

4.2 A COMPARISON OF THE 6346 AND 749 8-LACTAMASES 

The comparison of the gene sequence of the B.11cheniformis 6346/c 

8-lactamase with that of the 749/c strain (Section 3.6) highlighted the presence 

of 53 nucleotide substitutions which give rise to 17 amino acid changes between 

the 749 protein (Meadway 1969) and the deduced sequence of the 6346 

8-lactamase (Figure 4.1). 

This number of substitutions is higher than that forecasted previously by 

Thatcher (1975); he had in fact identified four changes: G1n191 to Arg, Va1287 to 
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Met, G1u293 to Asn and Ser294 to Gly. One other amino acid substitution near 

the amino terminus of the protein had to be postulated in order to explain some 

genetic experiments carried out by Sherratt (1969). 

In B.11cheniform/s cultures the -lactamase protein is normally present 

in at least four forms: the full-length precursor inside the cell, a shorter 

lipoprotein form, anchored to the cell membrane through a cysteine residue 

carrying a diglyceride thioether (Nielsen et al. 1981) and two secreted forms of 

molecular weight of 30500 and 29500 (Lampen et al. 1980). 

During the normal procedure of purification of the enzyme, it is the 

secreted forms which are isolated with a prevalence of the smaller protein. 

Thatcher, who was working on the small exocellular species, could obvously not 

detect eight of the amino acid substitutions, because they are located at the 

amino terminus of the preprotein in the signal peptide and in the other fragments 

that are lost during the processing of the enzyme. His experiments were based 

on the comparison of the electrophoretic behaviour of peptides obtained by 

protease digestion of the 6346 and 749 proteins and sequencing of those 6346 

peptides that migrated differently from the corresponding 749 derived ones. 

Consequently, of the remaining nine differences he could not detect those 

changes that are electrophoretically silent, that is Thr59 to Ala, Thr133 to Ala, 

Ala187 to Val, G1u227 to Asp and G1y238 to Ala. 

4.3 DESIGN OF MUTATIONS 

In order to find out which of the amino acid changes had an influence on 

the specificity of the enzymes, 749-like residues were substituted at the 

corresponding position on the 6346 8-lactamase and the effect of the changes 

subsequently estimated. 

On the basis of the findings of Thatcher (1975), the task seemed not 

unduly daunting with four, maybe fivesubstitutions to be considered. But the 

sequencing of the B-lactamase gene of B.11cheniformis 6346/c revealed a 

number of changes three times higher than that expected. So some educated 

guesses about which of these residues were most likely to have any influence on 

the enzyme activity were needed in order to give priority to the more interesting 

changes. 
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Eight mutations located in those parts of the preprotein that are shed 

during the processing to mature secreted enzyme are highly unlikely to play any 

significant role in the function of the protein. These changes will not be 

discussed any further. 

In the absence of a detailed crystal structure, it was very difficult to 

decide on a priority list amongst the remaining nine changes, apart maybe for 

the exclusion of the two substitutions located at the carboxy terminus of the 

protein, G1u293 to Asn and Ser294 to Gly. In fact these changes are part of a 

group of five residues which are present at the carboxy terminus of 

B.11c/ieniformis B-Iactamases but do not appear in any of the other members of 

the Class A enzymes. Their direct involvment in the catalytic activity of the 

enzyme is therefore highly unlikely, but this argument is not sufficient to rule out 

entirely their possible effect on the specificity of the B.11cheniformis 

penicillinases. 

It was therefore with great pleasure that we welcomed the publication of 

the crystal structure of the Staphylococcus aureus PCi 3-lactamase at 2.5A 

resolution (Herzberg & Moult 1987). When the coordinates of the a-carbon 

atoms became available, a simple superimposition of the 6346 amino acid 

sequence onto the diagram of the three dimentional structure of the St.aureus 

enzyme offered a good picture of the position of the substitutions on the 

molecule (Figure 4.2). 

One of the changes, Va1287 to Met, is situated in the carboxy terminal 

helix, which is supposed to extend for a further five residues in the 

B.11cheniformis enzymes, among them the above mentioned Glu293 to Asn and 

Ser294 to Gly substitutions. This region is very far from the active site cleft 

All the other changes are scattered throughout the molecule. The A1a187 

to Val and Gln191 to Arg substitutions are exactly one turn apart on the same 

helix (8) on the opposite face of the molecule with respect to the active site. 

Two more substitutions can be found spatially near the carboxy terminus (G1u227 

to Asp and Thr59 to Ala). The Thr133 to Ala change is also part of an a-helix 

(a5) and it is exposed to the surface. The last and nearest change to the active 

site is Gly238 to Ala. 

It was decided to first of all test the importance of the three carboxy 

terminal differences by introducing a stop codon in position 284 where a Lysine 
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FIGURE 4.2 Three dimensional structure of St.aureus PCi B-Iactamase 

The alpha-carbon positions corresponding to the amino acid substitutions found between 
B.licheniformis 6346 and 749 exocellular beta-lactamases are marked by their relative number 
(Ambler notation). G1u293 to Asn and Ser294 to Gly substitutions, located in the longer 
carboxy-terminus of the B.licheniformis enzymes, are not reported. 

is found both in 749 and 6346. This mutation would shorten the protein by 

eleven residues, hopefully without the complete disruption of the c&-helical 

structure of the carboxy terminus. Such a major change could in fact induce 

distortions in the shape of the molecule and indirectly interfere with the activity 

of the enzyme. 

All the other changes were to be investigated by introducing the 749-like 

residues in the 6346 protein one by one, starting with the nearest to the active 

site depression. To date two of them, G1y238 to Ala and Thr59 to Ala, have been 

introduced. 
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Another mutant, Asnl70 to Met, was designed in order to assess a model 

of mechanism of action proposed by Herzberg and Moult (1987) as a 

consequence of the newly produced X-ray structure of the St.aureus 

-lactamase. This mutation will be described in detail below (Section 5.4). 

4.4 DESIGN OF OLIGONUCLEOT1DES 

In order to increase the efficiency of mutation and to avoid unexpected 

unpleasant surprises, oligonucleotides used in SOM experiments must be able to 

introduce the wanted change without causing any other modification in the DNA 

sequence. A number of factors were considered when designing the 

oligonucleotides that were successively used during the course of this work. 

Number of mismatches 	The number of mismatches needed to direct a 
certain mutation was always kept to the minimum. 
For example wanting to change Gly238 to Ala, codon 
GGA could have been mutated to 0CC, OCT. GCA or 
GCG, all coding for Ala. The oligonucleotide that 
was actually used was designed to change GGA to 
GCA because this involved only one mismatch, and 
therefore produced a more stable hybrid between 
oligomer and wild-type template. 

Position of mismatch 	As a rule at least eight matching nucleotides were 
kept at each side of the mismatch, in order to 
prevent displacement of the primer from the 
template by the 3' to 5' exonuclease activity of the 
E.coll polymerase I (Klenow fragment) used for the 
experiments and from any contaminating 5' to 3' 
activity. As far as possible the two regions flanking 
the mismatch were designed to be the same length. 
The central position of the mismatch is in fact 
important when the oligomer is used as a probe to 
screen for mutant clones. When the mismatch is 
located near the middle of the molecule, the 
difference in melting temperature of the two possible 
hybrids (perfectly matched and mismatched) is 
maximized, thus facilitating the screening procedure. 

Length of the oligomer 	An average length of 15 to 20 nucleotides was 
chosen, because oligonucleotides in this range are 
less likely to recognize spurious targets and prime 
DNA synthesis at room temperature and above. 

Spurious priming 	 The sequence of each oligonucleotide was checked 
for possible priming at more sites than that intended 
by conducting a computer analysis with the aid of 
the program FIND. The sequences of pAD19R, insert 
and M13 were searched for sites with 75% or more 
identity to the oligomer used. Under these 
conditions no matches were ever found for any of 
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the oligonucleotides designed and it is unlikely that 
any site with a number of matches below this figure 
would be stable enough to compete successfully 
with the main target. 

Secondary structure 	The possible most likely secondary structure of each 
oligonucleotide was predicted with the program FOLD 
and its free energy calculated following the rules of 
Tinoco (Tinoco at al. 1973). None of the predicted 
structures for the oligomers designed (Table 4.1) had 
a value of free energy below zero and therefore was 
not likely to obstruct the formation of the 
primer-template hybrid. 

The sequence of the oligonucleotides synthesized and their relevant 

features are listed in Table 4.1. Of the six oligomers, the top four were used to 

direct the relative mutations, number 5, designed to change Thr133 to Ala, was 

used as a sequencing primer. The last oligomer has no mismatches and binds to 

a site just downstream of the gene between the stop codon and the terminator 

sequence. It was intended for the sequencing of the 3' end of the gene. 

All the oligonucleotides with the exception of number 4 hybridize to the 

same strand of pSR81, which is that produced as a single strand upon 

superinfection with helper phage. 

TABLE 4.1 Important features in the design of oligonucleotides 

No 	 OLIGONUCLEOTIDEa 	 MUTATION 	 POSITION 	 AG 
DIRECTED 	 IN INSERT 	Kcal/mole 

1 GCCGATACGCTACCGTT T59 to A 465-449 +0.9 

2 GATTCACTTCCATTAACTCCGG N170 to M 795-774 +1.3 

3 CATATGATGCCGCTCCA G238 to A 996-980 +2.0 

4 AGGCAACATAAGTGGTA K284 to Stop 1111-1127 +2.0 

5 TCTGTGCCGCATTGTCA T133 to A 681-665 +2.4 

6 CAAGTGACTTTATGT Sequencing 1209-1195 +2.4 

a Mismatched nucleotides are underlined 
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4.5 SYNTHESIS AND TESTING OF THE OLIGONUCLET1DES 

The oligonucleotides used for this work were synthesized by the OSWEL 

DNA SERVICE of the University of Edinburgh on a DNA synthesizer made by 

Applied Biosystem with the phosphoramidite method and were not subjected to 

any further purification. 

Before use in the SDM experiments, to test that the oligomers were 

actually binding to the template DNA uniquely and at the correct position, the 

template made for mutagenesis and the oligonucleotide were used in a 

sequencing reaction, which is a stringent test for the quality of both template 

and primer. All the oligonucleotides performed well, giving a clean sequence 

with very low background, but the optimal concentration of primer to be used in 

each sequencing reaction had to be determined in each case. Depending on the 

oligomer, the amount of primer used for the sequencing of one clone varied 

between 0.2 and 10 pmoles. 

4.6 CONSTRUCTION OF THE MUTANTS 

The phosphorothioate method of mutagenesis developed by Eckstein and 

co-workers (Taylor et al. 1985a and 1985b, Nakamaye & Eckstein 1986) was used 

for constructing all the mutants, with the exception of Lys284 to Stop. This is a 

very elegant method, which gives a very high efficiency of mutagenesis, yielding 

up to 95% mutant clones carrying the mutation on both strands. The mutants 

can therefore be characterized directly by sequence analysis, avoiding the 

time-consuming-screening and purification of the clones. 

The Eckstein method for oligonucleotide-directed in vitro mutagenesis 

marketed as a kit by Amersham was used for introducing mutations in the 6346 

8-lactamase gene cloned in pSR81 (Section 2.3). Because this plasmid contains 

the origin of replication of the bacteriophage fl, single stranded template DNA 

can be made by superinfecting cells harbouring the plasmid with M13K07, an 

helper phage that preferentially packages the DNA derived from the plasmid. 

Before use on the 6346 gene, the kit was tested on the template and 

oligonucleotide provided by the firm as an internal control of the activity of the 

enzymes. The oligo directs a nonsense to sense mutation in the $-galactosidase 

gene of a IacZ M13mp8. Mutant plaques can be easily recognized because the 

mutation restores -galactosidase activity, resulting in a white to blue 
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phenotypic change. Using this test, the performance of the kit was' very 

satisfactory, with yields of mutant plaques of 92%. 

However, when employed for the construction of mutants in the 6346 

-lactamase gene, the system did not keep up to its promises, yielding mutants 

at a frequency of 5 to 15% (see Section 6.13.1). Most probably this drop in 

efficiency is to be blamed on the presence of the helper phage DNA mixed with 

the template. In fact, although the quantity of phage DNA packaged is less than 

that of the template, its presence makes the exact determination of the template 

DNA concentration quite impossible, resulting in the use of a suboptimal ratio of 

template to oligonucleotide molecules in the reaction mixture. Phage DNA 

molecules are also likely to interfere with the reactions, competing with the 

template molecules for the enzymes. 

4.7 PLASMID MUTAGENESIS 

The 	gapped-duplex 	approach 	to 	the 	construction 	of 

oligonucleotide-directed mutations (Kramer et al. 1984) has originally been 

developed for use with single stranded templates, but, with minor modifications, 

it can be applied also to double stranded molecules (Morinaga et al. 1984). 

The Lys284 to Stop mutation was constructed according to this method, 

using as template CsCl purified pSR81 double stranded DNA, as described in 

Section 6.13.2. The experiment did produce the wanted mutation, but with an 

efficiency of only 1% and therefore was not used for the construction of any of 

the other mutants. - 

4.8 SCREENING OF THE MUTANTS 

If the frequency at which mutations are produced is reliably greater than 

50%, the sequencing of a few putative clones would easily lead to the 

identification of the mutant. Because the efficiency of mutant production was 

constantly lower than 50%, mutant clones had to be identified by screening. 

Figure 4.3 shows the results of a typical screening experiment. After 

hybridisation with the labelled rnutagenic primer, colonies carrying the mutant 

clone are recognized because of the strong signal emitted after the 

discriminating temperature has been reached. This is defined as the temperature 

at which the wild type DNA and the oligonucleotide, forming an imperfect duplex, 



FIGURE 4.3 Example of mutants screening mutant Lys284 to Stop. 
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The colony on the bottom right hand corner of each photograph harbours the wild type 

pSR8I plasmid and was introduced as a negatve control. 
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TABLE 4.2 Comparison of Tm and Td 

No 	LENGTH 	 OLIGONUCLEOTIDE 	 Tm 	Td 

1 	17 	 GCCGATACGCTACCGTT 	 54 	52 

2 	22 	 GATTCACTTCCATTAACTCCGG 	 64 	54 

3 	17 	 CATATGATGCCGCTCCA 	 52 	55 

4 	17 	 AGGCAACAIAAGTGGTA 	 48 	48 

should dissociate, while the perfectly matched mutant should still hybridize to 

the probe. The melting temperature (Tm) of the duplex is usually considered a 

good estimate and it is calculated as / 

Tm = 2(A+T) + 4(G+C) ° C 

where A refers to the number of adenine residues, T the number of thymine 

residues, G the number of guanine and C the number of cytosine residues in the 

oligonucleotide. In fact, from the experience derived from the making of these 

mutants, the Tm should be used very carefully and only as an indication, 

especially when the oligomer is longer than 17 nucleotides. 

In Table 4.2 the calculated Tm and the temperature (Td) at which actual 

discrimination between wild type and mutants was achieved are reported. Only 

in one case, with oligo number 4 which was used to direct the Lys284 to Stop 

mutation, Tm and Td coincided. With the other 17-mers the difference was not 

remarkable, but in the case of the longer oligonucleotide used to change Asnl70 

to Met the deviation was considerable, Td being 10 °C lower than Tm. 

Once a mutant had been identified, the cells harbouring the clone were 

streaked out, single colonies picked for template preparation and sequenced 

across the region of mutation using an appropriate primer for each case. The 

hybridisation results were confirmed in every occasion. 

The mutant genes that coded for 8-lactamases with activity properties 

different from those of the wild type  (see Chapter 5) were completely sequenced 

to ensure that no other change had occurred in the DNA; those having activity 

similar to the parent enzyme were assumed not to have undergone any other 

change. 



CHAPTER 5 

ANALYSIS OF MUTANTS 



CHAPTER 5 
	

72 

5.1 INTRODUCTION 

As described in Chapter 4, three mutants of the B-lactamase from 

B.11cheniformis 6346/c were made in order to study the relationship between 

structure of the enzyme and its substrate specificity. A preliminary analysis of 

these "specificity mutants" (Thr59 to Ala, Gly238 to Ala and Lys284 to Stop) 

concerning their expression in E.coll and their activity against a range of 

substrates is presented here. 

The reasons for the design and the outcome of the preliminary analysis 

of a fourth mutant (Asn170 to Met) are reported in the second part of this 

Chapter. 

5.2 EXPRESSION IN Ecoll 

The expression of the 6346 wild type protein was studied in E.co/i 

NM522 (Cough & Murray 1983) harbouring the plasmid pSR81 (see Section 2.3). 

The mutant genes were also carried by the same plasmid and the protein 

expressed in E.cofi TG1 (Gibson 1984). Because the only known genotypic 

difference between the two strains used is in the F' factor they carry (F'tra 036 in 

TG1) they were considered interchangeable. 

5.2.1 Levels of resistance conferred by the mutants 

All the mutants were found to confer resistance to the host cells at the 

normal concentration of ampicillin used for marker selection (40g/ml). To test 

the enzyme activity of the mutants relative to that of the wild type enzyme, imI 

aliquots of overnight cultures of cells harbouring the relevant plasmids were 

sonicated and the activity of the extracts against penicillin G assayed 

spectrophotometrically (Section 6.17.2). The results of the experiments are 

shown below in Table 5.1. The marked decrease in activity caused by the 

AsniZO to Met mutation was expected and will be discussed below. The activity 

reduction of the Thr59 to Ala mutant was on the other hand puzzling, firstly 

because this type of change is considered a fairly conservative one and secondly 

because the position of the residue in the three-dimensional structure of the 

protein (Figure 1.6) is far from the active site pocket and therefore unlikely to 

influence directly the activity of the enzyme. 
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TABLE 5.1 Activity of 6346 mutants against penicillin G 

STRAIN 	 BETA-LACTAMASE 	 ACTIVITVa 

NM522 wild type 100 

TG  G1y238 to Ala 100 

TG1 Thr59 to Ala 42 

TG1 Lys284 to Stop 59 

TG1 Asnl70 to Met 7 

TG  - 2 

NM522 - 2 

a Relative to the wild type. 

The value corresponding to the Lys284 to Stop mutation is reported here and will 

be discussed below in Section 5.2.4. 

5.2.2 Quantitation of the protein 

The different levels of activity found in the mutants could be due to 

either a genuine alteration of the activity of the enzyme or to the presence in the 

cells of different amounts of protein. In order to check the possibility that a 

reduced level of activity was linked to poor expression or instability, it was 

decided to compare the amount of protein produced by the mutant genes with 

that of the wild type 6346 B-lactamase. 

The wild type protein produced by E.coll had shown reactivity to rabbit 

anti-8-lactamase antibodies similar to that of the secreted. enzyme produced by 

B.11chen/formis 6346/c, against which the antibodies had originally been raised. 

This serum was therefore used for the detection of the proteins in Western blots. 

Whole extracts of cells containing the mutants and wild type proteins 

were prepared by simply resuspending cells from 200l aliquots of overnight 

cultures in 40l of loading buffer and boiling for 10 minutes. The sample was 

then run on an SOS polyacrylamide gel and the separated proteins transferred 

onto nitrocellulose filter by Western blotting (Section 6.18). After reaction 



FIGURE 5.1 Western blot analysis of B-lactarnase 6346 mutants 

1 	2 	3 	4 	5 	6 	7 

TRACK STRAINSTRAIN B-LACTAMASE 

1 NM522 - 

2 NM522 6346 wild type 

3 TG1 G1y238 to Ala 

4 TG1 Asnl70 to Met 

5 TG1 Thr59 to Ala 

6 TG1 Lys284 to Stop 

7 TG1 - 

Protein extracts of Ecoli cells carrying pSR81 were run on SOS polyacrylamide gel, Western 

blotted and reacted with anti-6346 B-lactamase antibodies In the extreme right and left 

tracks -lactamase isolated from B licheniformis 6346/c was used as a control. 
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with the antibody, high molecular weight cross-reacting material as well as 

8-lactamase was visible. The amount of this material is equal for all the samples 

applied to the gel, thus ensuring that no big difference in sample loading had 

taken place (Figure 5.1). The amount of -lactamase appears to be the same for 

the wild type and all the mutants, including the Asn170 to Met, with the only 

exception of the protein carrying the Thr59 to Ala substitution. We can therefore 

conclude that except for this last mutation, no changes in 8-lactamase 

expression had taken place for any of the mutants. 

The drop in activity in the case of the Thr59 to Ala mutation could be 

due either to a lowered protein expression level or to protein instability. Mutant 

instability is not a new phenomenon in 8-lactamases. In the TEM1 enzyme, 

substitution of Thr7l with any of the other amino acid residues does not 

normally alter the stability of the protein, but when the disulphide bridge 

between Cys77 and Cys123 is not present, any change in position 71 results in 

unstable proteins (Richards, J.H., Fourth B-Iactamase workshop, Holy Island, 

20th-22nd April 1988). Only a comparison of the messenger RNAs produced by 

the Thr59 to Ala mutant could tell if expression is altered, but because no 

changes that could justify a reduced transcription rate or mRNA stability have 

been introduced in any of the signals preceeding the coding sequence of the 

gene, and in view of what just said about the TEM enzyme, we favour the 

possibility of protein instability caused by the introduced change. 

5.2.3 Processing of Biicheniforrnis B-Iactamase in E.coll 

The Western blot also showed that the size of the wild type protein 

expressed in E.coll is larger than that of the B-lactamase secreted by 

B.11cheniformis 6346/c used as a control. The marker B-lactamase has been 

prepared as described in Section 6.16.1 from a batch of B.11cheniformis 6346/c 

cells grown to logarithmic phase. In the cell supernatant two forms of the 

enzyme are found with different molecular weight: the amino terminal residue of 

the smaller form (exo-small) is Lys at position 43 (actual numbering, Fig. 5.2), 

while the exo-large form starts eight residues upstream at Ser35. The molecular 

weight of the exo-small enzyme has been calculated to be about 29500 (Lampen 

et al. 1980). 

The larger size of the 6346 wild type enzyme produced in E.coIi is 

consistent with the findings of Lai and co-workers (1981) for the expression of 
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FIGURE 5.2 The amino terminal signal peptide of B./ic/7enhformis 8-lactamase 

1 	 50 
6346 MKLWFSTLKL KKVAAVLLFS CVALAGCGSN HSNASHSAEK DEKTEMKDDF 

I 	I 
exo 	 exo 
large 	small 

749 MKLWFSTLKL KKAAAVLLFS CVALAGCANN QTNASQPAEK NEKTEMKDDF 

The recognition sequence of the glyceryl transferase is underlined. The 749 beta-lactamase 
cloned in E.coli is known to be anchored to the periplasmic membrane through a glyceryl 

residue covalently linked to the protein at the cysteine residue contained in this recognition 
sequence (Lai et al. 1981). The same tetrapeptide is found in the 6346 beta-lactamase. The 
amino terminal residues of the secreted forms of the enzyme as processed in B.licheniformis, 
exo-large and exo-small, are also indicated. 

the cloned B.11cleniformis 749 -lactamase. They demonstrated that in E.coll 

the protein is retained in the periplasm and it is anchored to the outer cell 

membrane by a glyceride residue covalently linked to Cys27. Despite the 

numerous amino acid differences found in this region between the 749 and 6346 

preproteins, the tetrapeptide Leu-Ala-Gly-Cys, thought to represent the 

recognition .site for the glyceryl transferase, is still present in the 6346 

preprotein. It is therefore reasonable to assume that the 6346 -lactamase is 

processed in E.coll in exactly the same way as the 749 enzyme. 

5.2.4 The 1ys284 to Stop mutation 

The Western blot also revealed some problems with the Lys284. to Stop 

mutation. The oligonucleotide designed for the construction of this mutant 

directed a A to T substitution, thus converting the AAA codon for lysine to the 

ochre stop codon TAA. The resulting B-lactamase would therefore be truncated 

at position 284, eleven residues upstream the normal carboxy terminus. As it is, 

the protein expressed in TG1 on SOS polyacrylamide gels does not appear to 

migrate differently from the 6346 8-lactamase produced by the same strain, 

seemingly indicating that the two proteins have the same molecular weight. 
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A reversion of the mutation was ruled out by newly sequencing the 

mutation region which still showed the presence of the ochre stop codon 

corresponding to position 284 of the protein sequence. Several explanations 

could be found for the anomalous behaviour of this protein. TG1 is a supE 

strain, that is it carries a mutation in the anticodon of tRNA2 Gin  from CAG to 

UAG, so that it will insert a glutamine residue at some amber stop codons. 

The stop codon of the wild type 6346 -lactamase and of the Lys284 to 

Stop mutant are presented below in Table 5.2. 

It has been noted before that the tRNA2 Gin  can mutate to have a UAA 

anticodon and therefore suppress ochre stop codons (lnokuchi et al 1979). If 

such a mutation had occurred in the strain used here, the normal stop codon at 

position 1155-1157 would also be expected to be partially suppressed in both 

wild type and mutants. However no other stop codons can be found in frame 

between this position and the terminator sequence and apart from the main 

B-Iactamase band, no other evident cross-reacting protein band of greater 

molecular weight appears in the cells carrying the plasmid compared to the 

pattern of bands given by the host cell alone, suggesting that no suppression 

giving rise to a B-lactamase of higher molecular weight than normal has taken 

place at the normal stop codon. 

It is also possible that the mutant protein is actually truncated as 

expected, but runs anomalously on the SOS polyacrylamide gel, migrating in a 

similar way to the full length protein. Checking these possibilities would imply 

the sequencing of the carboxy terminus of the Lys284to Stop mutant protein, an 

TABLE 5.2 Stop codons in wild type 6346 and Lys284 to Stop mutant 

B-lactamases 

BETA-LACTAMASE 	 1119-1121 	 1155_1157a 

6346 wild type 	 AAA 	 UAA 

Lys284 to Stop 	 UAA 	 UAA 

a Position of codons is numbered as in Figure 3.2. 
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exercise that requires pure protein in much greater amounts than those currently 

available. The behaviour of this enzyme however seems to indicate that it is 

actually distinct from the wild type. Its activity profile is exactly the same as 

that of the wild type 6346 -Iactamase, but it seems to be less active towards 

penicillin G than the wild type (Table 5.1) and its sensitivity to iodine is greatly 

reduced: while the 6346 enzyme is completely inactivated after a 30 minutes 

treatment, over the same time span the mutant B-tactamase is still 90% active 

(see below Section 5.3.2). 

5.3 PRELIMINARY STUDIES OF ENZYMATIC ACTIVITY 

It was already •  mentioned in Section 1.7 that the most interesting 

differences between the 749 and 6346 B-lactamases were those concerning their 

activity against a range of 8-lactams, or substrate profile. Generally speaking, 

the 6346 enzyme is a much better cephalosporinase than the 749 and both the 

relative rate of hydrolysis and dissociation constants are altered by probably only 

one of the amino acid changes found between the two enzymes. 

5.3.1 Purification of the enzymes 

Wild type enzymes were isolated from the B.11cheniformis 749/c and 

6346/c strains as described in Section 6.16.1 The cloned 6346 8-lactamase and 

the mutants derived from it were partially purified from periplasmic extracts of 

E.coll as follows. Cells from one liter batches of overnight cultures of E.coll 

harbouring the relevant pSR81 plasmid were collected by centrifugation (15 

minutes, 6000g) and resuspended in 20m1 of ice cold 30mM NaCl, 10mM Tris-HCI 

pH7.5. The cells were then pelleted by centrifugation (15 minutes, 12000g), 

resuspended in 20m1 of isotonic sucrose solution (20% w/v sucrose in 1mM 

EDTA, 30mM Tris-HCIpH7.3) and left shaking for 5 minutes at room temperature. 

After pelleting again, the cells were osmotically shocked by resuspension in 20m1 

of cold distilled water and left shaking for 5 minutes at 0 0c. The cell debris was 

separated from the soluble periplasmic fraction by centrifugation (15 minutes, 

12000g). Most of the proteins left in the supernatant were precipitated by slow 

addition of ammonium sulphate to 85% saturation at room temperature. The 

solution was left to equilibrate for 1 hour, then the precipitated protein was 

separated from the supernatant by centrifugation (30 minutes, 27000g). Under 

these condition practically all the 8 - lactamase liberated during the cold osmotic 

shock was still in the supernatant. The ammonium sulphate was removed from 
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the sample by extensively dialysing the enzyme solution against 50mM sodium 

succinate pH4.6. The sample was finally loaded onto a imI FPLC S column 

preequilibrated with 50mM sodium succinate pH4.6. The column was washed 

with the buffer until no more material absorbing at 280nm was detected in the 

effluent, then the -lactamase was eluted with a gradient of NaCl (0 to 300mM in 

50mM sodium succinate pH4.6). Fractions of lml volume were collected and 

assayed for -lactamase activity with nitrocefin. In each case, aliquots of the 

fraction corresponding to the peak of activity (estimated concentration 3-5 

pg/mI) were later used for the activity analysis. 

5.3.2 Sensitivity to iodine 

The 749 and 6346 -lactamases have been reported to differ markedly in 

their sensitivity to iodine. The 6346 enzyme activity does not decrease greatly 

after 30 minutes of treatment with iodine, while over the same period of time the 

749 8-lactamase shows a drop in activity of more than 50% (Pollock 1965b). 

The sensitivity to iodine of the 6346 mutant proteins was tested here 

and compared to that of the wild type enzyme and of the 749 8-lactamase. 

During the experiment, the enzymes were treated with 12  at a final concentration 

of 20mM in 20mM potassium phosphate buffer pH7.0. At 5 minutes intervals, 

samples were taken, the iodine neutralized by addition of one tenth of the 

volume of 200mM sodium thiosulphate and their activity assayed 

spectrophotometrically. The chromogenic substrate nitrocefin was used for the 

assays, because its degradation could be followed at 486nm, while most other 

substrates must be observed in the u.v. region of the spectrum, where any 

change would be masked by the absorption due to the iodine. The results of 

these experiments are summarized in Figure 5.3. 

It is interesting to notice that contrary to previous observations, both 

wild type enzymes were found to lose completely their activity during the 30 

minutes treatment. The 6346 -lactamase had a much slower decrease of 

activity, reaching complete inactivation after about 30 minutes of treatment; the 

749 enzyme, on the other hand, showed a sudden drop to about 10% of the 

original activity in the first 5 minutes of incubation and was not detectable after 

15 minutes. Repetition of the experiments on the wild type enzymes showed 

good reproducibility. 
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Somewhat surprisingly, three of the 6346 mutants were noted to present 

a higher degree of resistance to iodine treatment than both the wild type 

enzymes. Even small changes in the primary sequence of the protein, in this 

case the Gly238 to Ala and the Thr59 to Ala substitutions, seem to influence the 

sensitivity of tyrosine residues to iodine in a complex way, probably involving 

small but important conformational changes in the enzyme. At this stage it is 

therefore not possible to distinguish between the contributions of the different 

mutations to the distinct sensitivity to iodine showed by the 749 and 6346 

-1 a ctama ses. 

FIGURE 5.3 Iodine inactivation of B.11cheniformis 6346/c B- Iactarnase mutants 

/ 

Time (minutes) 
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5.3.3 Spectrophotometric assays 

The reactions of the wild type  and mutant enzymes with a range of 

B-lactam substrates were followed spectrophotometrically at the wavelengths 

reported below (Table 5.3). 

For each assay 5j.il of a 35mg/mi substrate solution were first mixed with 

the buffer (100 mM sodium phosphate buffer pH 6.8, 3 ml final volume) in a 

quartz cuvette, then the enzyme was added, mixed well and the progress of the 

reaction recorded by a Perkin-Elmer spectrophotometer connected to a computer. 

The recorded data were fitted to the Michaelis-Menten equation with the help of 

kinetic data analysis programs (Coulson, unpublished) and the Vmax  and  Km  

calculated. All the reaction progress curves were found to fit well the equation, 

with the exception of those relative to the hydrolysis of cephalosporin C. With 

this substrate the progress curves 'were S shaped, suggesting a complex reaction 

pathway. Values relative to cephalosporin C have therefore not been reported. 

The values of Vmax  and  Km  of the wild type 6346 and 749 8-lactamases 

and of the 6346 mutant enzymes are presented in Tables 5.4 and 5.5. In both 

tables the values for the wild type enzymes isolated from 8./icheniformis are 

found in the first two columns. In the third column the Km  and  Vmax  of the 6346 

wild type B-lactamase cloned in E.coll are reported as a control of the possible 

influence that the different processing of the protein might have on the activity. 

TABLE 5.3 Wavelength at which reactions were followed 

SUBSTRATE 	 A 	 A c (jiM) 

Penicillin G 	 232 	 0.94 

6-APA 	 223 	 1.2 

Ampicillin 	 235 	 0.67 

Cephaloridine 	 260 	 20.83 

Cephalosporin C 	 260 	 10.43 

Cephalosporin PAC 	 260 	 8.28 



CHAPTER 5 	 82 

TABLE 5.4 Km  (.iM) of mutants derived from 6346/c -lactamase 

SUBSTRATE 	 749a 	6346a 	6346 	Thr59 	G1y238 	Lvs284  
cloned 	to Ala 	to Ala 	to Stop 

Penicillin G 87.5 25.7 40.4 17.6 107.4 24.7 
(4.14) (1.06) (5.85) (2.55) (3.19) (1.59) 

6-APA 31.3 <8 <8 8.05 18.6 8.3 
(2.0) (1.83) (5.4) (2.12) 

Ampicillin 93.5 35.3 17.4 28.8 60.7 31.2 
(10.59) (4.03) (2.38) (5.22) (7.16) (1.94) 

Cephaloridine 69.6 66.7 55.2 63.8 99.3 85.9 
(0.48) (3.36) (2.88) (2.40) (4.32) (1.92) 

Cephal. PAC 47.9 67.4 46.7 53.5 54.9 52.7 
(2.41) (0.72) (4.22) (1.08) (7.85) 0.60) 

a Purified from B.licheniformis strains 749/c and 6346/c. 

b In parenthesis the range of the measurements. 

TABLE 5.5 Vm  of mutants derived from 6346 8_lactamasea 

SUBSTRATE 749b 6346b  6346 Thr59 Gly238 Lys284 

cloned to Ala to Ala to Stop 

Penicillin G 100 100 100 100 100 100 

6-APA 9.3 19.5 5.6 14.7 5.9 13.2 

Ampicillin 59.7 82.6 65.6 89.8 62.2 . 	 85.4 

Cephaloridine 5.6 46.9 53.3 46.3 16.4 42.2 

Cephal. PAC 2.3 32.2 26.3 14.2 2.3 14.5 

a Rate relative to penicillin G. 

b Purified from B.licheniformis strains 749/c and 6346/c. 
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It must be noted that, because of the small amount of enzyme available 

for the cloned enzymes, the measurements could not be repeated, so that the 

error margin of the affinity constant values are relatively high. The differences in 

Km  for penicillin G between 749 and 6346 8-lactamases is clearly detectable; as 

reported before (Pollock 1965b) the affinity constant of the 6346 enzyme for this 

substrate (25.71W) is considerably lower than the Km  of 749 (87.54M). The 

substrate profiles determined here for the two enzymes also confirmed that 6346 

is a much better cephalosporinase than 749; in fact, while the relative rate of 

hydrolysis of 749 for cephalosporins is only 2-5%, the 6346 8-lactamase breaks 

down cephalosporin PAC at 32% of the rate at which it hydrolyses penicillin C 

and destroys cephaloridine at a relative rate of 47%. The substrate profile of the 

enzyme produced by the 6346 gene cloned in E.coll agrees with that of the 

8-lactamase isolated from Bi/cheniformis 6346/c, confirming that the part of the 

leader peptide that is lost during maturation of the enzyme in Bacillus but is still 

present in the E.coll produced protein does not interfere with the activity of the 

enzyme itself. The affinity constants of the E.coll and Bacillus enzymes present 

a greater variation, that can be attributed to the fact that the measurements 

relative to the cloned 6346 could not be repeated for lack of material. 

The Lys284 to Stop mutation, already discussed in Section 5.2.4, does not 

influence the activity of the enzyme at all and the affinity constants as well as 

the relative rates of hydrolysis resemble closely those of the wild type 6346 

8- lactamase. 

The substitution of Thr59 with Ala, although possibly reducing the 

stability of the enzyme (Section 5.2.2), does not interfere with its activity 

parameters. Both the affinity constants and the substrate profile of this mutant 

are very close to those of the parental 6346 enzyme for all the substrates tested. 

The situation is very different when Ala replaces Gly238. The activity 

profile of this 6346 mutant changes drastically, coming to resemble very closely 

that of the 749 8-lactamase. The relative rate of hydrolysis of cephalosporins 

decreases from 45-50% to 16% for cephaloridine and from 25-30% to 2% for 

cephalosporin PAC. The affinity constants .for cephalosporins are similar in the 

two wild type enzymes (about 50iiM) and do not appear to be significantly 

altered by the introduction of the G1y238 to Ala substitution. However, 

differences in Km  are noticeable for the penicillins. The affinity constant for 

penicillin G rises four fold in this mutant with respect to the 6346 and the other 
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mutant enzymes. An increase in Km  is also appreciable in the case of ampicillin 

and of 6-aminopenicillanic acid, for which it rises about two fold. 

5.3.4 Discussion 

The data just presented are in agreement with the results of the in viva 

recombination experiments of Dubnau and Pollock (1965). Enzymes derived by 

the recombination of an inactive 749 gene with an active 6346 gene could 

present either of the parental specificity profiles (although the 749 type was 

much less frequent) but it was not possible to isolate mutant B-lacfamases with 

intermediate enzymatic characteristics (Dubnau & Pollock 1965). It was predicted 

that the type of activity was most likely determined by only one amino acid 

position. 

It is now clear that the residue in position 238 influences greatly the 

activity of the B.11cheniformis 8-lactamases. When Gly occupies this position, 

the enzyme is of the 6346 type, presenting a reduced affinity for penicillin G and 

relatively high activity against cephalosporins. If residue 238 is an Ala, the rate 

of hydrolysis of cephalosporins drops considerably, while the K m  for penicillin G 

increases. This change seems to be necessary and sufficient for the 

determination of the 8-lactamase type in B.11cheniforrnis. 

Although for the sake of completeness it would be desirable to check the 

possible influence on activity of all the other changes found in the secreted 

proteins, we can quite confidently predict that no other substitution is involved in 

the determination of the activity profile of the B.11cheniformis 8-lactamases. It 

has already been mentioned that the Thr59 to Ala substitution is located at the 

other side of the protein molecule with respect to the active site, so that it is no 

surprise that it exercises no influence on the activity of the enzyme. All the 

other changes found between the 6346 and 749 8-lactamases are located mainly 

on the surface of the protein at a distance from the substrate-binding cleft, 

except for the Gly238 to Ala substitution. 

The residue in position 238 is situated at the end of the 83 strand, which 

forms one side of the active site depression and could conceivably make 

contacts with the side chain of the substrate. In absence of the atom 

coordinates of the residues surrounding the active site, it is not possible at this 

stage to envisage more clearly the role of residue 238. In carboxypeptidase R61 

the 63 strand runs antiparallel to the side chain of the substrate at a distance 
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that would allow hydrogen-bonding (Knox et al. 1987). If the same type of 

arrangement is assumed for 8-lactamases, a change from Gly to Ala at the last 

position of this 8-strand could induce slight changes in the torsion of the strand 

itself, thus altering the interactions with the substrate side chain. On the other 

hand, because no evident contact with other parts of the substrate molecule is 

detectable,it is still not explained why a change in position 238 should determine 

the relative preference for one 8- lactam nucleus with respect to the other one. 

In all Class A 8-lactamases, except those of Streptomyces cacaoi and 

St.aureus which in this region present a single amino acid insertion, position 238 

(position 274 in Figure 1.4) is occupied by a Gly, like the 6346 enzyme. It would 

be informative to introduce the 749 like Ala in one of these other enzymes, for 

example the TEM enzyme, and study the influence on specificity that such 

change would have in a non-bacillary 8-lactamase. 

5.4 THE Asn 170 to Met MUTATION 

A detailed mechanism of action was proposed for the St.Aureus 

8-lactamase based on the modelling of an ampicillin molecule into the active site 

of the enzyme (Herzberg & Moult 1987) (see Section 1.5.1). It was suggested 

that the acylated intermediate of the reaction of 8-lactamases with 8-lactam 

substrates is hydrolysed by a molecule of water bound to the enzyme. This 

molecule would sit in a small depression in the active site cleft, hydrogen 

bonded to the side chains of Asn170 and Glu166. The polarisation of the water 

molecule due to the proximity of Glu 166 would make it a better nucleophile, 

capable of hydrolysing the acyl-bond, thus releasing the penicilloic (or 

cephalosporoic) acid. 

The Asnl70 to Met mutant was designed to test this hypothesis. It was 

thought that the substitution of Asn with the bulkier and less hydrophilic Met 

would disrupt the hydrogen bonding with the water molecule and also make the 

binding sterically impossible. Ttconsequent absence of the bound water 

molecule would make the hydrolysis of the acyl-enzyme more difficult, having to 

rely on the solvent molecules which would be sterically hampered from reaching 

the acyl-bond. The acyl-enzyme would be much longer lived than in the wild 

type enzyme and could therefore be "trapped". - 
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5.41 Analysis of the Asn170 to Met mutant 

Partially purified enzyme was prepared from E.co/i cells carrying the 

mutant gene as described above for the other mutants (Section 5.3.1). The 

enzyme was produced in similar amounts to the wild type -lactamase (see 

Figure 5.1) and its activity against penicillin 0 was reduced by about twentyfold 

(Table 5.1). 

Because of the small amount of enzyme purified it was not possible to 

carry out a kinetic burst experiment (Hartley & Kilby 1954). So it was decided to 

qualitatively study the reaction of this enzyme with B-lactam substrates with 

experiments based on the rationale that if the acyl-enzyme intermediate is longer 

lived than the wild type one it should be possible to detect it. Two approaches 

were taken. 

In the first experiment an affinity column was synthesized by coupling 

6-aminopenici Ilan ic acid to activated Sepharose (6-aminohexanoic 

acid-activated -Sep harose-4B). If the acyl-intermediate of the mutant enzyme is 

long lived, then the enzyme sample should either be blocked onto the column or 

its elution should be retarded with respect to the wild type enzyme. On the 

other hand mutant enzyme pre-treated with for example penicillin G would 

already be in the acylated state and therefore would not interact with the 

6-aminopenicillanic acid of the affinity column. The column (0.8x1.5 cm) was 

equilibrated with O.1M sodium phosphate buffer pH 6.8, and the sample eluted 

with the same buffer. No difference was noted between the wild type 6346 

enzyme and the mutant 8-lactamase, either pre-treated or in the absence of 

penicillin G. 

In the second experiment, mutant and wild type enzyme (about SOOng) 

were mixed with one hundredfold molar excess of [phenyl-4(n)- 3H] 

benzylpenicillin ( 3H-penicillin G). The sample was immediately applied to a 

Sephadex 025 column (0.8x11 cm) pre-equilibrated with O.1M sodium phosphate 

buffer pH 6.8 and 2001.il fractions collected. The elution pattern of the 

radioactively labelled 8- lactam noted by taking 100iI sample of each fraction, 

mixing it with 4m1 scintillation fluid (333m1 Triton X100, 667m1 toluene, 4.Og 

2,5-diphenyl-oxazole, O.lg 1,4-di-2-(4-methyl-5-phenyloxazolyl)benzene per litre) 

and counting in a Beckman LS7000 Liquid Scintillation System machine. If the 

mutant enzyme is actually blocked in its acylated state a small part of the 

substrate should be found linked to the protein fractions, separated from the bulk 
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of the free substrate. As expected, when wild type 6346 -Iactamase and 

3H-penicillin 0 were mixed and applied to the column, only one radioactivity 

peak, corresponding to the processed -lactam substrate, was found. The same 

elution pattern was also noted for the Asn 170 to Met mutant, where again only 

one radioactivity peak was detected. 

5.4.2 Discussion 

With the experiments described above it was not possible to detect a 

stable or long lived acyl-enzyme as it was expected on the basis of the reaction 

mechanism proposed by Herzberg & Moult (1987). It is suspected however that 

in the affinity column experiment the 6-aminopenicillanic acid conjugate could 

have being sterically inaccessible to the enzyme, thus making the acylation 

reaction impossible or anyway very difficult. Because there is no easy way to 

check this eventuality, it would be desirable to repeat the experiment with a 

different affinity column conjugate, maybe a cephalosporin attached to the 

activated Sepharose through its 3' side chain. The B-lactam would therefore be 

presented to the enzyme in a different orientation from that of the 

6-aminopenicillanic acid (or other penicillins) which must be linked to the 

Sepharose through its 7' reactive group. In any case before proceeding any 

further in the analysis of this mutant, it would be imperative to isolate greater 

quantities of purified enzyme, which would make proper measurements of the 

kinetics of reaction with 8-lactams possible. 
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6.1 CHEMICALS 

Chemicals used for the experiments described in this thesis were 
purchased from: 

- BDH LTD., Pool, Dorset 

- FSA LABORATORIES SUPPLIES, Loughborough Leics 

- MAY & BAKER LTD., Dagenham, England 

- SIGMA CHEMICAL COMPANY, Pool, Dorset 

- BOEHRINGER CORPORATION (LONDON) LTD., Lewes, Sussex 

Agarose for routine DNA analysis was obtained from MILES SCIENTIFIC In 

experiments where better separation of DNA fragments was needed such as 

Southern blots, fragment purification and restriction analysis, low 

electroendoosmosis (EEO) agarose bought from FMC CORPORATION, Marine 
Colloids div., Rockland, USA was used. 

Rolls of nitrocellulose filter were purchased from ANDERMAN & 

COMPANY LTD., Kingston-upon-Thames,Surrey. 

Nitrocefin was a gift from GLAXO GROUP RESARCH LTD. 

Radioactively labelled nucleotides were obtained from AMERSHAM 

INTERNATIONAL PLC., Amersham Buckingamj 

OIigonucIeotj 	
used for priming and for the site-directed mutagenesis 

(SDM) experiments were synthesised on a Applied Biosystem DNA synthesizer 

with the phosphoramidite method by the OSWEL DNA SERVICE of the University 
of Edinburgh. 

6.2 ENZYMES 

Restriction enzymes and most of the DNA modifying enzymes were 
obtained from: 

- AMERSHAM INTERNATIONAL PLC., Amersham, Buckingamshir 

- BOEHRINGER CORPORATION (LONDON) LTD., Lewes, Sussex 

- NEW ENGLAND BIOLABS, CP Laboratories, Bishop's Stortforcj, Herts 
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6.3 BACTERIAL STRAINS 

Bacillus lichen/form/s strains 749/c and 6346/c (Dubnau & Pollock 1965) 

were obtained from Miss J. Fleming, this department. Escherich/a coil strains: 

see Table 6.1 

TABLE 6.1 Strains of Escheric/71a coil K12 

STRAIN 	 GENO1ypEa.b 	 REFERENCEC 	SOURCE 

C600 	supE44, tonA21, thri, IeuB6, tb/i, lacYl 	1 	N.E.Murray 

ED8654 supE44, supF, hsdR514 M S, me(, 	 2 	N.E.ivlurray 
trpR 

NM522 	ti(/ac-proAB), supE, th/, hsdD5, 	 3 	N.E.Murray 

[F' proAB, /C/,  /acZLiMl5] 

TG1 	A(/ac-proAB), supE, thi, hsdD5, 	 4 	Amersham 
[F' traD36, proAB, laC

q,
lacZM15] 

JM109 	recAl, endAl, gyrA96, thi, hsdRiZ 	 5 	A.Robinson 
supE44, re/Al, X -, A( lac-proAB), 
[F' traD36, proAB, IaCl

q,
/acZAM151 

a Genotype symbols according to Bachmann (1983). 

b Genotype nomenclature according to Demerec et al. (1966); Novick at al. (1976). 

c 1. Appleyard 1954; 2. Borck et al. 1976; 3. Gough & Murray 1983; 4. Gibson 1984; 
5. Yanisch-Perron et al. 1985. 

6.4 PLASMIDS AND BACTERIOPHAGES 

See Tables 6.2 and 6.3. 

6.5 MEDIA AND ANTIBIOTICS 

Dried media were purchased from OXOID LTD, Basingstoke, Hants., 

England and from DIFCO LABORATORIES, Michigan, USA. 

Unless otherwise stated the following quantities are per liter of media. 

1-BROTH. Difco Bacto-tryptone lOg, Difco Bacto yeast extract 5g, NaCl 5g, 

adjusted to pH7.2. 
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TABLE 6.2 Plasmids 

PLASMID RELEVANT REFERENCEa SOURCE 

MARKERS 

pACYC 184 Cm' Tetr 1 N.E.Murray 

pBR322 Amp' Tat' 2 N.E.Murray 

pAT153 Amp' Tet" 3 N.E.Murray 

pTZ19R Amp" /acZ 4 D.J.Finnegan 

pACYCbIa Amp" Tetr - this work 

pAD19R Tetr /acZ - this work 

pSR81 Tetr Amp" - this work 

a 1. Chang & Cohen 1978; 2. Bolivar et at. 1977; 3. Twigg & Sherratt 1980; 4. Mead et al. 1986. 

TABLE 6.3 	Bacteriophages 

PHAGE DESCRIPTION REFERENCEa SOURCE 

XNM1149 immunity insertion vector with 1 N.E.Murray 
single sites for EcoRl and H/ndlIl 

M13mp18 IacZ, used for sequencing 2 N.E.Murray 

M13K07 Km', helper phage for 3 D.J.Finnegan 
pTZ19R and derived plasmids 

Apen XNM1149 recombinant carrying 4 W.Brammar 

749 8-lactamase gene 

Xc1857 used as DNA size marker laboratory N.E.Murray 

in restriction experiments stock 

Xll49pen XNM1149 recombinant carrying - this work 
6346 $-lactamase gene 

a 1. Murray et at. 1977; 2. Yanisch-Perron et al. 1985; 3. Mead et at. 1986; 4. Brammar et at. 
1980. 
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/ 	2xTY BROTH Difco Bacto-tryptone 16g, Difco Bacto yeast extract lOg, NaCl 5g. 

SOB BROTH Difco Bacto-tryptone 20g, Difco Bacto yeast extract 5g, NaCl 0.6g, 

KCI 0.5g. Just prior to use add lOmi of a stock solution consisting of 1M 

MgCl2 and 1M MgSO4  sterilized by filtration. 

CH/S BROTH (Pollock 1965) 1% w:v Difco casaminoacids, 0.02M potassium 

phosphate buffer pH7.2, 0.1% v:v Pollock's salts (MgSO 4-7H 20 25g, 

FeSO4-7H 20 100mg, ZnSO 4-7H20 100mg, .MnSO 4-4H20 10mg, 

CuSO4-51-120 1mg, Na2Cr2O 7  0.2mg, HC1 lmi dissolved in lOOmI H20) 

NUTRIENT BROTH Oxoid nutrient broth 25g, adjusted to pH7.2. 

I PLATES Difco agar 15g. NaCl 5g in L-broth. 

/ 

BBL PLATES Baltimore Biological Laboratories trypticase lOg, NaCl 5g, Difco 

agar lOg. 

BBL TOP Baltimore Biological Laboratories trypticase lOg, NaCl 5g, Difco agar 

6.5g. 

MINIMAL MEDIUM PLATES Difco agar 15g. lOmi 20% glucose, 250Mi  0.5% w:v 

thiamine, 200m1 5x Spizizen salts. 

5x SPIZIZEN SALTS (Anagnostopoulos & Spizizen 1961) K2HPO 4-3H20 91.5g, 

KH2PO4  30g. (NH 4)2SO4  lOg, trisodium citrate-2H20 5g. MgSO 4-7H20 19. 

adjusted to pH7.2. 

PHAGE BUFFER KH 2PO4  3g, Na2HPO4  7g, NaCl 5g, 0.1M MgSO 4  lOmi, 0.01M 

CaC12 lOmi, 1% w:v gelatin imI. 

All the antibiotics were obtained from the Royal Infirmary, Edinburgh. 

Stock solutions were prepared as follows and stored at -20 °C. 

Tetracycline 	 10mg/mi 	in 50% v:v ethanol 
Kanamycin 	 10mg/mi 	in water 
Ampiciiiin 	 100mg/mi 	in water 
Chloramphenicol 	10mg/mi 	in water 
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6.6 STOCK SOLUTIONS 

TE 10mM Tris-HCI, 1mM EDTA, adjusted to pH8.0 with concentrated HCl 

SEQUENCING TE 10mM Tris-HCI, 0.1mM EDTA, adjusted to pH8.0 with 

concentrated HCI 

TM 100mM Tris-HCI, 50mM MgC12,adjusted to pH8.5 with concentrated HCl 

BCIG 	5-bromo-4-chioro-3-indolyl- -D-gaiactopyranoside 	25mg/mi 	in 

dim eth ylfo rm am ide 

1PTG isopropyl - 8-D-thiogalactopyranoside 25mg/mi in water 

PEG 20% w:v PEG 6000, 2.5M NaCl, made daily 

/ 

FORMAMIDE DYES 98% v:v deionized formamide, 0.1% w:v bromophenoi blue, 

0.1% w:v xyiene cyanol, 10mM EDTA 

lOx TBE 890mM Tris, 890mM boric acid, 25mM EDTA 

40% ACRYLAMIDE STOCK 38% w:v acrylamide, 2% w:v bis-acrylamide. Stir 

with Amberlite MB-1 (20g/1), filter through Whatman filter paper. 

0.5x TBE GEL MIX 40% acrylamide stock 150m1, 10xTBE 50mi, urea 460g 

5x TBE GEL MIX 40% acrylamide stock 150ml, 10xTBE 500m1, urea 460g, 

bromophenol blue 50mg 

6x AGAROSE LOADING BUFFER 40% w:v sucrose, 0.25% w:v bromophertol blue 

DMSO Dimethylsulphoxide from a new bottle was dispensed into plastic 

universal bottles under N 2  and stored at -70 °C. For daily use small 

aliquots were dispensed in microfuge tubes and stored at -70 °C. 

TFB iOmM KMES, 100mM KCI, 45mM MnC12, 10mM CaCl2,  3mM HACoCI 3, filter 

sterilized 

20x SSC 3M NaCl, 0.3M trisodium citrate 

20x SET 3M NaCl, 20mM EDTA, 0.4M Tris-HCI pH7.8 
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PHENOL All the phenol used for the experiments described in this thesis was 

redistilled under N2 atmosphere. The redistilled liquid was collected into 

400m1 of 1M Tris-HCI pH7.5 buffer containing 1.5g 8-hydroxyquinoline 

(quantities relative to 5Kg of starting phenol) and left to stir for about 30 

minutes. The mixture was stored in plastic bottles in the dark at -20 ° C. 

6.7 HANDLING OF BACTERIAL STRAINS 

For long term storage of E.co/i strains, 5m1 of L-broth were inoculated 

with a single colony and shaken overnight at 37 °C. The antibiotic resistance was 

checked when appropriate. Aliquots of the culture (1.5ml) were spun down in 

microfuge tubes and the cell pellet resuspended in 1 ml 10 MM  MgSO4. This cell 

suspension was then mixed with 2 ml of 80% v:v glycerol and stored at -20 °C. 

For daily use a drop of the glycerol stock was streaked on an L-broth 

agar plate supplemented with the appropriate antibiotic when necessary. Under 

these conditions bacteria remained viable for about a month. 

B.11cheniformis strains were kept as spores at 4 °C. The viability of the 

spores does not decrease over many years, which makes them very convenient 

for long term storage. To induce sporulation a single colony was used to 

inoculate 100-200 ml of nutrient Oxoid broth in a 21 conical flask. The culture 

was left to shake at 37 °C for 5 to 7 days; the sporulation process was followed 

by examining a thin film of culture under a microscope. The cells and spores 

were pelleted in a bench centrifuge and washed in sterile water at least 4 times. 

This treatment removes all traces of nutrients and also kills by osmotic shock the 

remaining bacterial cells. The spores were finally resuspended in 5-10mI of 

sterile distilled water and heated for 1 hour at 60 °C in a water bath. They were 

washed again in water 3 times and finally resuspended in water at a 

concentration of about 3x10 9  cfu/mI. 

Unless otherwise stated, liquid cultures were started by inoculating Sml 

of broth with a single colony or, in the case of B./icheniform/s, with lOOpI of 

spore suspension and left to grow overnight at 37 °C with moderate shaking. 

This starter was then normally diluted 1:100 in broth and grown in a rotary 

shaker at 37°C in a conical flask of volume 5 to 10 times bigger than the culture 

itself. When appropriate, antibiotics were added to obtain the following final 

concentrations (expressed injig/ml): 
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Chloramphenicol 	50 
Ampicillin 	 40 
Tetracycline 	 20 
Kanamycin 	 50 

6.8 HANDUNG OF BACTERIOPHAGES 

6.8.1 Storage of Bacteriophage A 

Single plaques of bacteriophage A from a fresh plate containing 105-106 

pfu were picked using a sterile pasteur pipette and mixed with 500iiI of phage 

buffer. After addition of one drop of chloroform this stock can be stored for 1-2 

months at 4°C. 

6.8.2 Plating bacteriophage A 

The appropriate phage dilution (100tl) was used to infect 200il of an 

overnight culture of host cells to which 30I 100mM MgSO 4  had been added. 

The culture was left at room temperature for 15-20 minutes, then mixed with BBL 

top agar (3m1), molten and left to cool to about 45 °C, and poured on a BBL plate. 

The plate was inverted and incubated at 37 °C overnight. 

6.8.3 Plate lysates 

Concentrated phage stocks were obtained by plating about 5x10 5  pfu on 

a fresh moist plate. The growth was followed and normally stopped after 6-7 

hours when small, just confluent plaques were visible. To harvest, the plate was 

covered with 3-4ml of L-broth and left at 4 °C overnight for the phage to diffuse 

into the liquid. The broth was then pipetted off and the cells eliminated by 

adding a drop of chloroform and spinning in a bench centrifuge for 10 minutes. 

Normally titers 109_1010  pfu/ml were obtained with this method. 

6.8.4 Bacteriophage M13 storage 

Bacteriophage M13 was usually stored as frozen single stranded DNA 

prepared as from Section 6.9.6. When fresh bacteriophage was needed, 2111 of 

DNA were used to transform 2001iI of competent E.coll NM522 or TG1 cells 

(Section 6.11). Typically at least 100-200 plaques were obtained from one single 

transformation. 
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6.8.5 Plating of bacteriophage M13 

Bacteriophage M13 was plated on lawns of E.coIi NM522 or TG1 cells by 

mixing 1001.11 of the appropriate phage dilution with 200i.il of a fresh overnight 

culture of plating cells and 3m1 of BBL top agar molten and cooled to about 45 °C 

and plated on minimal medium plates. The phages were left to grow on the 

inverted plate at 37 °C overnight. When a blue to white selection of recombinant 

phages was required, 30l of the 8-galactosidase inducer solution (IPTG) and 

30j.il of the coloured substrate (BCIG) were added to each plate. 

6.9 DNA ISOLATION 

6.9.1 Plasmid DNA purification: imi scale 

Small scale plasmid DNA purification was used mainly for recombinant 

analysis after cloning experiments. Single colonies of putative recombinants 

were grown overnight at 37 °C with shaking. This culture (1.5ml) was then 

treated as follows (lsh-Horowicz & Burke 1981): 

The cells were harvested by spinning in a bench centrifuge 
for 5 minutes and resuspended in 10041 lysis solution (50mM 
glucose, 20mM Tris-HCI pH8.0, 10mM EDTA, 0.1% w:v 
lysozyme added just prior to use) and incubated for 5 minutes 
at room temperature. 

Alkaline SDS solution (2001il 0.2N NaOH, 1% w:v SOS, made 
weekly) were added, mixed gently by inverting the tube a few 
times and left on ice. After 5 minutes 1501.11 precooled 3M 
potassium acetate pH4.8 were added, mixed gently and the 
tube was left for 5 minutes more on ice. The precipitated 
protein, SDS and chromosomal DNA were then removed by 
centrifugation for 10 minutes. 	The supernatant was 
transferred to a clean tube and spun again in order to make 
sure that no precipitate was carried over to the next step. 

The nucleic acid was then ethanol precipitated, the pellet 
washed with 70% v:v ethanol, vacuum dried and resuspended 
in 30l TE. Typically 81il portions were used for each 
restriction reaction and any remaining solution was stored at 
-20°C. 

6.9.2 Plasmid DNA purification: large scale 

This is a scaled up version of the method described above for small 

scale isolation of plasmid DNA including a final density gradient centrifugation 

0 
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An overnight culture (2m1) of cells harbouring the plasmid 
was used to inoculate 200m1 of L-broth supplemented with 
the appropriate antibiotic for piasmid selection and shaken 
overnight at 37°C in 21 conical flask. 

The cells were harvested by centrifugation for 10 minutes at 
10000g and the pellet resuspended in 7m1 of lysis solution 
(50mM glucose, 20mM Tris-HCI pH8.0, 10mM EDTA, 0.1% w:v 
lysozyme added just prior to use). After 5 minutes incubation 
on ice, 14ml 0.2M NaOH, 1% w:v SOS was added, mixed 
gently and left on ice for 10 minutes. Lastly 10.5m1 of 3M 
potassium acetate pH4.8 was added and after 5 minutes on 
ice the tangle of proteins, SOS and chromosomal DNA 
precipitated by centrifugation for 30 minutes at 16000g. 

The supernatant was carefully collected through a funnel 
fitted with a plug of silanised glass wool prewashed with 
ethanol and air dried which prevents contamination by the 
precipitate. The plasmid DNA was precipitated by addition of 
SOml of propan-2-ol and incubation on ice for at least 30 
minutes. The DNA was pelleted by centrifugation for 15 
minutes at 16000g, washed with lOmI 70% v:v ethanol and 
vacuum dried for about 30 minutes. 

The pellet was then redissolved in 9.4m1 TE, 0.6ml ethidium 
bromide (10mg/mi) and 9.5g of CsCI was added. An 11.5m1 
polyallomer Sorvall tube (crimp seal) was filled with the 
mixture and when necessary the weight adjusted by small 
additions of 0.95g/ml of C5CI in TE. The closed-circular 
supercoiled plasmid DNA band was separated from the RNA 
(bottom pellet) and the nicked and linear plasmid DNA (top 
band) after a 60 hour spin in a 50Ti fixed angle rotor at 
38000rpm at 18°C. 

After separation the plasmid band was visualised under U.V. 
light and removed with a sterile plastic syringe. The ethidium 
bromide was extracted by adding to the DNA solution equal 
volumes of propan-2-oI saturated with TE and NaCl until both 
organic and aqueous layers were colourless. Two volumes of 
water were then added to the aqueous phase in order to 
lower the concentration of salt present in solution. The DNA 
was ethanol precipitated and resuspended in 500Ml  of TE. 

Any remaining contaminating protein was eliminat —ed by 
phenol extraction and a final ehtanol precipitation. After it 
was vacuum dried the DNA pellet was resuspended in 
100-500iil of TE and stored at -20 °C. 

step. 

6.9.3 Preparation of bacterial chromosomal DNA 

Chromosomal DNA of bacteria was prepared following an adaptation of 
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the method of Marmur (1961). 

A small (5m1) overnight culture of the cells was used to 
inoculate 500ml of L-broth and left to grow at 37 °C with 
vigorous shaking overnight. 

The cells were harvested by centrifugation for 15 minutes at 
16000g and resuspended in 25m1 of sucrose solution (25% 
w:v sucrose in 50mM Tris-HCI pH8.0, 250mM EDTA pH8.0) to 
the cells, which were left on ice until lysis occurred, normally 
within 5-10 minutes. 

Half a volume of 0.25M EDTA pH8.0 was added and the cells 
left on ice for 5 minutes. 

One volume of Triton solution (2% Triton X-100, 62.5mM 
EDTA, 50mM Tris-HCI pH8.0) was added and the mixture left 
on ice for 20 minutes. 

One fifth of the volume of 5M NaCI0 4  and one volume of CIA 
(chloroform:isoamylalcohol 24:1) were added. 

The mixture was spun in a bench centrifuge for 5 minutes, 
the aqueous top layer transferred to a small beaker and 2 
volumes of ethanol added; the precipitated DNA was wound 
around a glass rod and dissolved in 0.1xSSC. Once dissolved 
the solution was made up to 1xSSC by adding one tenth of 
the volume of 10xSSC and shaken for 15 minutes with an 
equal volume of CIA. The procedure for protein extraction 
described in this point was repeated until little or no protein 
was left on the interface. The DNA was finally resuspended in 
a small volume (i.e. 2m1) of 0.1xSSC. 

Ribonuclease solution (20mg/mI in 0.15M NaCI pH5.0, 
preheated for 10 minutes at 80 °C and stored at -20 °C) was 
added to a final enzyme concentration of 50ig/ml and left to 
react for 30 minutes at 37 °C. 

Finally the DNA solution was phenol extracted twice and 
dialysed extensively against 10mM Tris-HCI pH8.0. 

6.9.4 Large scale preparation of bacteriophage A DNA 

1. A fresh overnight culture of host cells (lOmI) was diluted into 
200ml of L-broth supplemented 10mM Mg 2  in a 21 flask and 
shaken at 37°C. The growth of the culture was followed at 
OD650. When it reached about 0.5, 4-6x10 10  phages were 
added and shaking continued. After rising to about 2, the 
00650 dropped to about 0.5 when the cells lysed. At this 
point 0.5ml of chloroform was added and the culture shaken 
for a further 10 minutes. 

2. NaCI (8g) and DNAse and RNAse to 1ig/mI final concentration 
were added and the culture was left to stand for 1 hour at 
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room temperature. The cell debris was eliminated by 
centrifuging the culture for 10 minutes at 16000g. 

To the supernatant containing the phage 20g of PEG 6000 
was added, slowly dissolved and left standing overnight at 
4°C. 

The following day the phage precipitate was collected by 
centrifugation for 10 minutes at 16000g. The supernatant was 
discarded, while the phage pellet was resuspended in 5ml of 
phage buffer by gently shaking the centrifuge bottles at 4 °C 
for 2 hours. 

The phage suspension was then layered onto a CsCI step 
gradient in a 14m1 polyallomer tube. The gradient, proceeding 
from bottom to top of the tube, was formed by 1.5ml of 
1.7g/ml, 2m1 of 1.5g/ml and 2ml of 1.3g/ml solutions of CsCI 
in phage buffer. 

After a 2 hour spin at 38000rpm in a 6x250 rotor (swing-out 
buckets), the phage band was visible to the naked eye and 
could be collected with a syringe by side puncture. 

The sample was dialysed extensively against TE in order to 
eliminate the CsCl and phenol extracted. The sample was 
finally dialysed again against TE. This procedure routinely 
yielded a few hundred micrograms of DNA, depending on the 
phage used. 

6.9.5 Bacteriophage M13: RF DNA purification 

A fresh single plaque of bacteriophage was used to infect 
1.5m1 of a culture of E.coll host cells grown in L-broth to 
0D650=0.3. The infected cells were grown in a large (20m1) 
glass test tube at 37 °C with vigorous shaking for 
approximately 4 hours. - 

The culture was then transferred to a microfuge tube and 
spun for 5 minutes. The titer of phage in the supernatant 
was checked. This mini-lysate was usually found to contain 
about 1x1O 11 pfu/ml. 

A culture of host cells grown in L-broth to 00650=0.2  was 
infected with the mini-lysate at a final concentration of 
1x10 9pfu/ml and left to grow overnight at 37 °C in a 500m1 
flask with very good aeration. 

The following day the cells were pelleted by centrifuging for 
10 minutes at 10000g and the supernatant titered again. 

Finally a 500m1 culture of E.coll host cells grown in L-broth 
to 00650=0.1  was infected with the phage at a final 
concentration of 1x1O 10pfu/ml. The infected cells were grown 
for 2 hours, after which time most of the phage was expected 
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to be in its replicative double stranded form (RF) inside the 
host cells. 

6. The isolation of the RF of the bacteriophage followed the 
same procedure as for plasmid isolation (see Section 6.9.2). 

6.9.6 Bacteriophage M13: single stranded DNA purification 

A fresh single plaque of the bacteriophage was toothpicked 
into 1.5m1 of 1:100 dilution of overnight culture of E.coll host 
cells in a 20m1 sterile glass test tube. The infected cells were 
grown for 4.5-5.5 hours at 37 °C with very vigorous shaking. 

The culture was transferred to a microfuge tube and spun for 
5 minutes in a benáh centrifuge. The supernatant was 
transferred to a clean tube and the process repeated again in 
order to eliminate any remaining cells. 

To the supernatant 15041 of PEG (20% w:v PEG 6000, 2.5M 
NaCl made daily) was added, the tube inverted a few times 
and then left to stand fOr 10 minutes at room temperature. 
The phage was precipitated by centrifugation for 10 minutes. 
The supernatant was carefully sucked off with a drawn out 
pasteur pipette attached to a vacuum pump. Routinely the 
tube was spun again briefly and all residual PEG solution 
sucked off. 

The phage pellet was resuspended in lOOi.il sequencing TE, 
phenol extracted and ethanol precipitated. The final DNA 
pellet was left to dry under vacuum, resuspended in 301.11 of 
sequencing TE and stored at -20 °C. Typically 8111  of this 
solution was used for one sequencing reaction (see Section 
6.12.2). 

6.9.7 pTZ19R derived plasmids: single stranded DNA 

pTZ19R transformed host cells (NM522 or TG1) were grown to 
0D650=0.5-0.6 in 2xTY media supplemented with 0.001% 
thiamine and the appropriate antibiotic. Cells from this 
culture (2ml) were infected with M13K07 helper phage at a 
final concentration of 2x10 9pfu/ml (m.o.i.=10) and shaken 
vigorously for 1 hour at 37 °C. Infected cells (800 j.il) were used 
to inoculate 20ml 2xTY media supplemented with kanamycin 
to 70.1g/mI and grown overnight at 37 °C with very good 
aeration. 

The following day all the cells were removed by centrifuging 
the culture twice for 10 minutes each time at 12000g. In a 
30m1 Corex tube 4m1 of PEG solution (20% w:v PEG 6000, 
2.5M NaCl, made daily) were added to the supernatant, the 
tube inverted a few times and left to rest for 15 minutes at 
room temperature. 
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The phage was precipitated by centrifugation at 27000g for 15 
minutes, the PEG solution carefully removed and the phage 
pellet resuspended in 400Ml  sequencing TE. 

The coat proteins were eliminated by phenol extraction, the 
DNA was ethanol precipitated, dried, resuspended in 30.tl 
sequencing TE and stored at -20 °C. Routinely 81il of this DNA 
solution were used for each sequencing reaction. 

When single stranded DNA was needed for SDM experiments, a cleaner 

preparation was needed. One extra PEG precipitation was introduced in the 

above procedure as follows: the first phage pellet was resuspended in lml 

sequencing TE, 200l PEG solution were added, the tube left at room temperature 

for 15 minutes and spun for 10 minutes in a microcentrifuge. The second phage 

pellet was then resuspended in lOOi.tl sequencing TE and treated as above at 

point 4. 

6.10 DNA HANDUNG 

6.10.1 Phenol extraction 

Redistilled phenol was used to remove contaminating proteins from DNA 

solutions (Maniatis at al. 1982). As a rule one volume of phenol was added to 

the DNA in a Corex or plastic microfuge tube, depending on the volume, and 

mixed gently by rolling or inverting- the tube several times. The organic layer 

Was separated from the aqueous by low speed centrifugation for 5 minutes and 

discarded. The procedure was repeated two or three times until both layers 

were clear and no protein was visible in the interface. The phenol treatment was 

followed by one extraction with one volume of phenol:CIA 1:1 mixture 

(CIA=chloroform:isoamylalcohol 24:1) and finally by one extraction with one 

volume of CIA to remove residual phenol. 

6.10.2 Precipitation of DNA 

Phenol extraction of DNA solutions was normally followed by ethanol 

precipitation to further clean and to concentrate the DNA. This method was also 

used when a quick change of buffer was required (Maniatis at al. 1982). 

Before precipitating, the DNA solution (normally in TE) was supplemented 

with ions by adding one tenth volume of 3M potassium acetate pH4.8. Cold 
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ethanol (-20 °C 2 volumes) was added to the DNA mixed by inverting the tube 

and incubated either for 1 minute in a dry ice/methanol bath or for 15 minutes at 

-70 °C. The precipitated DNA was collected by centrifuging for 5 minutes at 

12000g and, after discarding the supernatant, washed with cold 70% v:v ethanol. 

After spinning again for 3 minutes the supernatant was discarded and the pellet 

vacuum dried and resuspended in the appropriate buffer. 

TABLE 6.4 Buffer conditions used for restriction digests 

LOW SALT 	 MEDIUM SALT 	 HIGH SALT 

Accll Accl BamHl 

A/ui Aval Bg/ll 

Dral Avail EcoRV 

Hhal EcoRl Sa/l 

Kpnl Haell Sau3Al 

Pvu II 	 . Hae Ill Sca I 

Sad I Hincli Sspl 

Sma a Hind Ill Stu I 

NaeI Xbal 

Pstl 8 	 Xhol 

Ppu Ml 

a KCI was used instead of NaCI for Smal and ammonium sulphate for PstI. For composition of 
buffers see text. 

6.10.3 Restriction analysis 

Routinely 0.5-1 jig of DNA was cut with the restriction enzyme in a small 

final volume (10-20jil) with 5 units of enzyme in the appropriate restriction 

buffer. Incubation of the reaction was normally for 2 hours at 37 °C except for 

Sma I which was incubated at 25 °C. Depending on the conditions for optimum 

activity required by the enzyme one of three buffers containing low, medium or 

high salt concentration was used (Table 6.4). The buffers were stored as stock 
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solutions of lOx strength at -20 °C. The compositions of the three buffers were: 

- Low salt 100mM Tris-HCI pH7.4 100mM MgSO 4, 20mM NaCl, 
1mM DU 

- Medium salt 100mM Tris-HCI pH7.4, 100mM MgSO 4, 50mM NaCl, 
1mM OTT 

- High salt 500mM Tris-HCI pH7.4, 100mM MgSO 4, 100mM NaCl 

When double digests were needed, the enzyme requiring the lower salt 

concentration was left to react first. After 2 hours the higher salt concentration 

buffer and the second enzyme were added and incubation resumed. 

6.10.4 Filling-in sticky ends 

When blunt ended DNA fragments were needed but the DNA could 

conveniently be restricted only with an enzyme producing 3' recessed ends 

(sticky ends), the sticky ended fragments were made blunt ended by a filling-in 

reaction (Maniatis et a/. 1982). 

After restriction the DNA (ijig) was phenol extracted and 
ethanol precipitated to remove any trace of the enzyme. 

The DNA pellet was resuspended in 2.d 1OxNT buffer (500mM 
Tris-HCI pH7.2, 100mM MgSO 4, 1mM OTT, 500j.ig/ml bovine 
serum albumin), 1.il each 2mM dNTPs as needed depending 
on the sequence of the overhang, 5 units polymerase I 
Klenow fragment and water to 20il final volume. The 
reaction was incubated for 30 minutes at room temperature. 

Before proceeding to any following manipulation of the DNA 
(for example ligation), the enzyme was denatured by 
incubation of the reaction mixture at 65 °C for 10 minutes 
followed by phenol extraction and ethanol precipitation. 

6.10.5 Electrophoresis on agarose gels 

Analysis of DNA restriction fragments was carried out on 0.7% w:v 

agarose 1xTBE gels in an apparatus in which the gels were totally submerged 

(constructed in this laboratory from perspex). 

To pour the gel, agarose was added to the buffer and dissolved by 

boiling in a microwave oven. The cleared solution was left to cool to about 50 °C 

and poured on a slab forming plate fitted with a well forming comb. After the 
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gel had set, the comb was-removed and the gel submerged in 1xTBE buffer to 

which the fluorescent dye ethidium bromide had been added to a final 

concentration of 0.5j.ig/ml. 

DNA samples were mixed with one third volume of loading buffer (6x 

loading buffer: 40% w:v sucrose, 0.25% w:v bromophenol blue, stored at 4 0C), 

pipetted in the sample wells and run into the gel at high voltage. When the blue 

dye had migrated into the gel, the voltage was lowered to about 70-100 volts for 

big (150-200m1) gels and 40-50 volts for minigels (25ml). 

When separation was completed the gel was removed from the 

apparatus, viewed under u.v. light and when necessary photographed using Ilford 

FP4 film through a red filter (Kodak Wratten filter no.9). 

6.10.6 Recovery of DNA from agarose gels 

When purified DNA fragments were required, the restricted sample was 

run as above on 0.7% w:vlow EEO agarose gels. On this type of agarose DNA 

fragments migrated as sharper bands, ensuring separation of fragments of similar 

size. 

The gel was viewed under u.v. light and the target fragment band excised 

from it with a razor blade, making sure that the minimum of surrounding agarose 

was included. The gel slice was placed in sterile dialysis tubing together with a 

small volume (0.5-1mI) of 1xTBE making sure not to trap any air bubbles, placed 

on a submerged gel apparatus and covered with the same buffer. The DNA was 

electrophoresed out of the gel onto one side of the tubing at 200 volts for 1 

hour, then into the buffer by inverting the current for 1 minute. 

The buffer surrounding the gel slice was carefully collected, the slice and 

the tubing rinsed with a small volume of clean buffer which was also saved. The 

DNA solution was phenol extracted, ethanol precipitated and resuspended in the 

appropriate buffer. Typically about 50% DNA recovery was obtained. 

6.10.7 DNA ligation 

For ligation the restricted DNA was normally diluted to about 100 ng4il. 

The reaction was carried out in a 101.il volume containing the vector and insert 

DNA5, 1111 10mM ATP, 1MI  100mM OTT, lpl lOx ligation buffer (500mM Tris-HCI 
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TABLE 6.5 Ligation reactions and controls 

VECTOR INSERT 	LIGASE 	OTT 	ATP 	BUFFER WATER 	REMARKS 

- 	 1 - 	 1 1 1 	6 cutting control 

1 	- - 	 1 1 1 	6 cutting control 

1 	- 1 	1 1 1 	5 ligation control 

1 	0.1 1 	1 1 1 	5 
series 

1 	1 1 	1 1 1 	4 of 
ligations 

1 	5 1-"  

a All volumes are given in microlitres. Total volume of each reaction cocktail always equal to 
10 microliters. For composition of stock solutions see text. 

pH7.5, 100mM MgCl2, 2mM spermidine) and T4 ligase. Typically 0.01 units of 

ligase were used for sticky ended ligation in a 10.iI reaction mix, while blunt 

ended reactions required 1 unit of the enzyme. In both cases the ligation 

mixture was incubated overnight at 15 °C. A series of controls were set up 

alongside a number of ligation reactions where different ratios of vector to insert 

DNA were used (Table 6.5). Half of each reaction mixture was used to transform 

an appropriate E.coll host strain (Section 6.11). 

6.11 RECOVERY OF RECOMBINANTS 

Recombinant DNA molecules (plasmid or phage) were rescued by 

transforming with the ligation mixture appropriate host cells treated to make 

them competent and plating them on selective plates. 

6.11.1 Preparation of competent E.coIF cells 

The method used throughout this work to make competent E.coll cells 

was that devised by Hanahan (1983). Fresh competent cells were made every 

time they were needed and used immediately. 

1. Typically 50ml of L-broth were inoculated with a single 
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colony of the host strain taken from a fresh plate and shaken 
at 37 °C until the 006 50 was 0.6-0.7. The culture was 
transferred immediately to chilled sterile universal bottles and 
left on ice for 15 minutes. 

The cells were collected by centrifugation in a bench 
centrifuge at 4 °C for 5 minutes and, after removing carefully 
all the supernatant, resuspended in 25m1 of cold TFB buffer 
(see below) and left for 5 minutes on ice. 

After spinning for 5 minutes at 4 °C, the supernatant was 
removed and the cells resuspended in 4ml of cold TFB buffer. 
Immediately 280l DMSO was added and mixed well with the 
cells. After 5 minutes on ice, 28041 DTT was added, the 
culture swirled to mix it well and left on ice for 10 minutes. 
Finally 2803.11 DMSO was mixed with the cells and after 5 
minutes more on ice 2003.11 aliquots of the competent cells 
were dispensed into chilled sterile glass test tubes, ready to 
use. 

Solutions used 

TFB: 10mM KMES, 100mM KCI, 45mM MnC1 2, 10mM CaCl2,  3mM HACoCI 3, filter 

sterilised and stored at 4 °C 

KMES: 1M MES adjusted to pH6.2 with KOH, filter sterilised and stored at 

-20 °C 

DMSO: dimethylsuiphoxide bottled in plastic microfuge tubes under N2 

OTT: 2.25M DTT, 40mM potassium acetate pH6.0, filter sterilised, stored at 

-20°C in 500.tl aliquots. 

6.11.2 Transformation and transfection 

For transformation the DNA solution (1-10il containing 10-50ng of 

vector DNA) was mixed with 2001.il of competent cells in a chilled sterile glass 

test tube, left on ice for 30 minutes, then heat-shocked for 90 seconds at 42 °C 

and immediately cooled in ice. L-broth (8003.11) was added to each tube and the 

cells left to develop resistance at 37 °C for 1 hour before aliquots (50-200p1) were 

spread on selective L-plates. The plates were inverted and incubated overnight 

at 37°C. 

For transfection the same procedure was used, but after heat-shocking 

and chilling, 3m1 of molten BBL top agar and 200l of plating cells (usually 2001.il 
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of an overnight culture of the same strain used for transformation) were added 

to the cells. The mixture was poured on a dry plate (BBL for bacteriophage A, 

minimal medium for M13) and incubated at 37 °C overnight. 

6.12 DNA SEQUENCING 

6.12.1 Shotgun cloning 

The shotgunning strategy for DNA sequencing (Messing at al. 1981, 

Deininger 1983) requires that the fragment of interest is randomly cut into 

smaller segments, which are then cloned in a suitable single stranded vector and 

sequenced. The steps followed for the shotgunning of B.11cheniformis 6346/c 

8-lactamase. are outline here. 

The fragment of DNA to be sequenced was excised from 
pACYCbla using Eco RI and purified as described in Section 
6.10.6. 

The fragment mixture (5-10g) was self-ligated in a 30iil 
volume of ligation mixture (see Section 6.10.7) for 3 hours at 
15°C. 

The mixture of circularised and linear fragments was 
sonicated in an ELECTROSONIC H60-2 apparatus (Headland, 
London). The sample was given two bursts of 30 seconds 
each and spun to the bottom of the tube in between 
treatments. 

End repair of the fragments was carried out by adding 2j.zl 
0.25mM dNTPs (Chase mix, see below) and 20 units 
polymerase I Kienow fragment and incubating the mixture at 
15 °C overnight. 

To the reaction cocktail 611 agarose loading buffer were 
added. The sample was applied to a 1% w:v low EEO agarose 
gel with well size of 1cm and run in a minigel at 40mA until 
the bromophenol blue had entered the gel for about 2cm. 
The gel was viewed under u.v. light and a slot was cut at the 
lower limit of the required size fragments by comparing with 
an adjacent track where pBR322 which had been cut with Sau 
3Al was run (size markers: 1.65Kb, 0.65Kb, 0.35Kb and smaller). 
The trough was filled with 1xTBE and electrophoresis 
resumed. Every 45 seconds the buffer in the slot was 
collected and replaced by new buffer. This process was 
repeated until the upper size of wanted fragments had 
reached the trough. In this way fragments of size between 
300 and 700 bases were separated from the mixture. The 
electroeluted DNA was then purified by phenol extraction, 
ethanol precipitated and finally resuspended in 20.il TE. 
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The vector was prepared by digesting M13mp18 double 
stranded DNA with S,na I. 

Aliquots of M13mp18 cut vector (200ng) were ligated with the 
end repaired purified fragments in 101.11 reaction mixtures as 
described in Section 6.10.7. 

E.coll NM522 host cells were made competent by the method 
of Hanahan (see Section 6.11), transformed with the ligation 
mixtures and plated out on minimal mediUm indicator plates. 

White single plaques were picked and used for making 
templates (see Section 6.9.6). The clones were stored as 
single stranded DNA at -20 °C until needed. When fresh 
phage or more single stranded DNA was required, 21J of 
template were used to transform 200p1 of competent E.coll 
NM522, yielding 100-200 fresh plaques. 

6.12.2 Sequencing reactions 

The dideoxy chain termination sequencing procedure devised by Sanger 

and co-workers (1977) with minor changes was followed. A brief description of 

the method is given here. 

In a microfuge tube 8l of template DNA were mixed with 1l of primer 

and 11.11  TM (100mM Tris-HCI pH8.5, 10mM MgCl2);  0.2pmoles of universal 

sequencing primer (17-mer from NEB) or of reverse sequencing primer were used 

for each sequencing reaction, but the concentration of primer had to be 

determined for the purpose-made oligonucleotides. For annealing the sample 

was heated at 70 °C for 3 minutes, incubated for 30 minutes at 37 °C and chilled 

immediately on ice. Primed templates were either used immediately or stored 

overnight frozen at -20 °C. 

The sequencing reactions were carried out in siliconised microtitre plates 

with U-shaped wells as follows. 

Primed template (2j.zl) was dispensed in each of 4 wells 
marked T, A, G, C. 

The deoxy-dideoxynucleotide mixes (21J, see Table 6.6) were 
aliquoted in each of- the appropriate wells with a Hamilton 
repetitive syringe fitted with a luer tip. 

For four clones, a "Klenow solution" was prepared by mixing 
3.6I 0.1M Tris-HCI pH8.5, 3.6111 0.1M OTT, 24l water, 2.4111 
[ 35S]-dATP (811Ci/111, 650C1/mmol) and 6 units of polymerase I 
Klenow fragment. This solution was made at the last moment 
and kept on ice until used. 

0 



CHAPTER 6 
	

109 

The Kienow mix was dispensed to the wells in 2l aliquots 
and the solutions mixed by tapping gently the microtitre plate 
onto the bench. The reaction was left to proceed for 20-25 
minutes at room temperature. 

Chase mix (0.25mM dATP, 0.25mM dCTP, 0.25mM dGTP, 
0.25mM dTTP) was added in 2pl aliquots to each well and 
combined to the rest of the reaction mixture. Incubation at 
room temperature was resumed for a further 20 minutes. 

The reaction mixes were then either stored overnight at 
-20°C or used immediately. Just prior to electrophoresis 2111 
formamide dyes (98% v:v deionized formarnide, 0.1% w:v 
bromophenol blue, 0.1% w:v xylene cyanol, 10mM EDTA) were 
added to each well and the samples denatured by floating the 
microtitre plate on an 80 °C water bath for 15 minutes and 
transferring it quickly on ice. 

TABLE 6.6 Composition of deoxy-dideoxynucleotides mixes 

STOCK SOLUTION T MIX C MIX G MIX A MIX 

0.5mM dTTP . 	 25 500 500 500 

0.5mM dCTP 500 25 500 500 

0.5mM dGTP 500 500 25 500 

10mM ddTTP 50 - - - 

10mM ddCTP 	 - 	 8 	 - 	 - 

10mM ddGTP 	 - 	 - 	 16 	 - 

10mM ddATP 	 - 	 - 	 - 	 1 

sequencing TE 	 1000 	1000 	1000 	500 

a All volumes are given in microlitres. 

6.12.3 Plasmid sequencing 

In some cases, for example when the minus strand of pTZ19R derived 

plasmids had to be read, plasmid sequencing was carried out on CsCl purified 

DNA (see Section 6.9.2) as follows. 

1. A volume of DNA solution corresponding to 2ig of plasmid 
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was dried down under vacuum, resuspended in 401.11 
denaturing buffer (0.2M NaOH, 0.2mM EDTA pH8.0) and 
allowed to stand at room temperature for 5 minutes. To 
neutralise the sample, 41.11  2M ammonium acetate pH4.5 was 
added and the DNA precipitated by adding 2 volumes of cold 
ethanol. After 5 minutes at -70 °C, the precipitated DNA was 
collected by spinning the tube in a bench centrifuge for 10 
minutes at room temperature, the pellet washed with lml 
70% v:v ethanol and vacuum dried. 

The denatured DNA was resuspended in ipI oligonucleotide 
primer (2.5pmol/j.il), 21.11  [35S]-dATP (8pCi/41, 650Ci/mmol), 
1.5ijl lOx annealing buffer (70mM Tris-HCI pH7.5, 70mM 
MgC1 2, 300mM NaCl, 100mM OTT, 1mM EDTA pH8.0) and water 
to 15p1 and incubated for 15 minutes at 37 °C for the 
annealing reaction to take place. 

To the annealed DNA 1 .tl of polymerase I Kienow fragment (2 
units4il) were added and 41I of this mixture dispensed to 
each of four labelled microfuge tubes. To each tube 2j.il of 
the relative deoxy-dideoxynucleotide mix (see Table 6.6) was 
added and the tubes spun for 30 seconds. After incubating 
for 20 minutes at 37 °C, 21i1 of Chase mix were added to each 
tube, mixed by spinning for 30 seconds and incubation 
resumed for 20 minutes more. 

The sample was dried under vacuum, resuspended in 41il 
formamide dyes and denatured by incubating for 3 minutes in 
a boiling water bath and immediate cooling on ice. 

6.12.4 Electrophoresis of DNA on polyacrytamide gels 

Pouring the gel 

Routinely 20x4Ocm glass plates, one rectangular and one notched at the 

end, were used for running sequencing gels. Plates were cleaned thoroughly 

with water and detergent, rinsed well and dried. Just before use, they were first 

wiped with ethanol, then with chloroform and the notched plate was siliconized. 

The plates were taped together on all sides except the notched top side with 

2.5cm wide yellow Selotape, separated by 1cm wide plasticard spacers. 

Normally 1OxTBE gradient gels were used for DNA sequence analysis. 

For each gel a 5x gel solution (7m1 5xTBE gel mix, 7p1 TEMED, 1511I  AMPS) and 

0.5x gel solution (30ml 0.5xTBE gel mix, 35 1.11  TEMED, 701i1 AMPS) were prepared 

in two small beakers. In a lOmI pipette, 3m1 0.5xgel solution were taken up, 

followed by all the 5x gel solution and a gradient was formed by sucking up the 

pipette 2-3 air bubbles. With the plate held diagonally, the solution was poured 
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down one edge, the plates lowered to stop the flow and the rest of the 0.5x gel 

solution poured down along the same edge using a prefilled 20m1 plastic syringe. 

A edge former was introduced to rest on top of the solution about 0.5cm under 

the top border of the notched plate. The gel was left lying on the bench to set 

for 30 minutes or overnight. 

If longer runs of DNA samples were required, for example when trying to 

extend readings of particular clones, non-gradient gels were prepared by using 

40m1 0.5x gel solution (40ml 0.5xTBE gel mix, 50j.tl TEMED, 100 MI AMPS). The 

solution was poured into the taped plates with a 20m1 plastic syringe. 

Solutions used 

0.5x TBE gel mix: 150m1 40% acrylamide stock, 50m1 lOx TBE, 460g urea, water 

to ii 

5x TBE gel mix: 150m1 40% acrylamide stock, SOOml lOx TBE, 460g urea, water 

toll 

lOx TBE: 890mM boric acid, 890mM Tris, 25mM EDTA 

40% acrylamide stock: 38% w:v acrylamide, 2% w:v bis-acrylamide, stirred 

with 20g/1 amberlite MB-i and filtered through Whatman filter paper 

AMPS: 25% w:v ammonium persulphate, prepared fresh each day 

Running the gel 

After clamping the gel onto a vertical electrophoresis apparatus 

(constructed in this laboratory from perspex), the buffer tanks were filled with 

1xTBE and checked for leakages; the upper edge former was removed and 

substituted by a shark-tooth comb (from BRL). Normally a 3mm point-to-point 

comb was used, but when long runs were required this comb was substituted by 

the wider 6mm comb. 

Denatured DNA samples were applied to the wells with a drawn-out 

micropipette and run at 40W constant power until the bromophenol blue marker 

dye reached the bottom of the gel (or at a set time after that for long runs). 

When the run was completed, the notched plate was gently levered off 
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and the gel, resting on the other plate, fixed by submerging it in 11 10% v:v 

methanol, 10% v:v acetic acid for 15 minutes. The gel was transferred onto 3MM 

Whatman filter paper, covered with Saran wrap and dried under vacuum at 80 °C. 

The dried gel was autoradiographed by placing it in direct contact with 

X-ray screen film (Cronex 4) in a cassette for autoradiography overnight or 

longer as required by the intensity of the signal. 

6.12.5 Sequence assembly 

Gel readings were entered directly into a computer held databank with 

the aid of a Graph/Bar digitizer (Science Accessories Corporation) controlled by a 

gel reading program (Coulson, unpublished). Before entering the sequence 

database each gel reading was checked for homology with the vector M13 

sequence by running the program SCREENV (Staden 1982); when homology was 

detected the program automatically rejected the sequence. OBAUTO (Staden 

1982a) was used to assemble automatically the gel readings into a sequence 

database. Any correction or problem readings were dealt with by using the 

general database handling program OBUTIL (Staden 1982a). 

6.13 SITE-DIRECTED MUTAGENESIS 

6.13.1 Phosphorothioate method 
(Figure 6.1) 

The procedure for site-directed mutagenesis devised by Eckstein and 

co-workers (Taylor et al. 1985a, 1985b, Nakamaye & Eckstein 1986) and marketed 

as a kit by Amersham with minor modifications was used for constructing most 

of the mutants in this work. 

Phosphorylation of oligonucleotides 

For each oligonucleotide the following were mixed together in a plastic 

microfuge tube: 2.5il oligonucleotide (20nmoI/ml), 3.tl lOx kinase buffer (1M 

Tris-HCI pH8.0, 100mM MgCl 2, 70mM DTI, 10mM ATP), 25il water, 2 units T4 

polynucleotide kinase. The reaction mixture was incubated at 37 °C for 30 

minutes and the enzyme denatured by placing in a 70 °C water bath for 10 

minutes. The stock of phosphorylated oligonucleotide (1.6pmol/pl) was stored at 

-20°C. 
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FIGURE 6.1 Site-directed mutagenesis: the phosphorothioate method 
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Experimental details are described in the text. 
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Oligonucleotide-directed mutagenesis reaction 

The 	phosphorylated 	mutagenic 	oligonucleotide 	(541, 
1.6pmol/i.il) was annealed with 101.11 single stranded pSR81 
template (about 1g/.il, see Section 6.9.7) in a microfuge tube 
in which 71.11  "Buffer 1" and 12i.il water had been mixed. The 
tube was capped and incubated at 70 °C for 3 minutes, then at 
37°C for 30 minutes and finally transferred on ice. 

The second mutant DNA strand was synthesized by adding to 
the tube lOizI "MgCl2 solution", 38j.il "Nucleotide mix 1" 
(containing the analogue [ctS]-dCTP), 12jiI water, 12 units 
polymerase I Kienow fragment and 12 units T4 DNA ligase. 
The reaction mixture was incubated overnight at 16 °C. 

To the sample, 1701.il water and 30MI  SM NaCI were added 
and any remaining single stranded DNA removed by passing 
the sample through a double layer of nitrocellulose filter 
mounted on a small filtering unit. The filter was washed with 
1001.11 0.5M NaCI and all the filtrate collected, ethanol 
precipitated and resuspended in 50jiI "Buffer 2". 

The non-mutant DNA strand was removed by nicking and 
digestion with exonuclease Ill. To 10l of the filtered sample 
(the other 40l were stored at -20 °C) 653.11 "Buffer 3" and 5 
units Nc/I were added and the enzyme left to nick the 
non-mutant strand for 90 minutes at 37 °C. To the reaction 
mixture the following were added: 12jil 0;5M NaCl, 101.11 
"Buffer 4", 2.iI exonuclease III (25 units/3.1l). The digestion of 
the nicked non-mutant strand was allowed to proceed for 30 
minutes at 37 °C, then the enzymes were inactivated by 
incubation at 70 °C for 15 minutes. 

Because pSR81 contains many. Nc/I restriction sites, it was 
difficult to control the digestion reaction so that only that 
part of the non-mutant strand opposite the mutation was 
removed, leaving enough DNA for the priming of the-. 
repo lymerisation reaction. Another primer was therefore 
annealed to the DNA before proceeding to the next step. 
Phosphorylated universal sequencing primer (SMI, 1.6pmol/.il) 
was added to the reaction mixture and left to anneal for 3 
minutes at 70 °C and for 30 minutes at 37 °C. 

The digested non-mutant strand was repolymerised and 
ligated by adding to the sample 13p1 "Nucleotide mix 2", 51i1 
"MgCl2 solution", 3 units polymerase I, 2 units 14 DNA ligase 
and incubating the reaction mix for 3 hours at 16 °C. This 
sample was stored at -20 °C until needed. 

Transformation 

The sample from the SDM experiment (203.11) was used to transform 

20041 competent E.coll TG1 cells prepared as described above in Section 6.11. 
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After spreading onto a selective (Tet) L-broth plate, the cells were incubated at 

37°C for 16-24 hours. 

Analysis of mutant progeny 

The Tetr  colonies arising from the transformation of E.coll TG1 were 

replica plated, their DNA fixed onto nitrocellulose filters (see Section 6.14.2) and 

probed with radioactively labelled mutagenic oligonucleotide. Washes of the 

filters at progressively higher temperatures and autoradiography led to 

discrimination between mutant and non-mutant colonies (see Section 6.15.2, 

Figure 4.3). Routinely mutation efficiencies of 5-15% were obtained with the 

Eckstein method. 

6.13.2 Gapped-duplex method 
(Figure. 6.2) 

The gapped-duplex method of site-directed mutagenesis devised by Fritz 

and co-workers (Kramer at al. 1984) for use with single stranded DNA, can be 

successfully applied to plasmids as well (Morinaga at al. 1984). One of the 

mutants constructed for this work, Lys284 to Stop, was made following this 

method. 

Double stranded pSR81 DNA prepared by CsCl purification 
(Section 6.9.2) was restricted with Xho I (cutting in the b/a 
gene near its 5' end) and Xba I (cutting in the polylinker just 
downstream the b/a gene). The fragments were separated 
on a 0.7% w:v low EEO agarose gel and the bigger fragment 
(7.4Kb) comprising the whole of the plasmid except most of 
the b/a gene, recovered from the gel (fragment I) (see 
Section 6.10.6). Separately more pSR81 DNA was linearized 
with Eco RV, cutting the plasmid at a single site inside the 
Tet' gene (fragment II). 

Fragments I and II (0.24g each) were mixed in a plastic 
microfuge tube with 5l  phosphorylated oligonucleotide 
(1.6pmol/pl), 2il lOx polymerase-ligase buffer(1M NaCl, 65mM 
Tris-HCI pH7.5, 80mM MgCl 2, 10mM -mercaptoethanol). The 
DNA strands were first separated by placing the tube in a 
boiling water bath for 3. minutes, then allowed to renature 
slowly and anneal to the oligonucleotide by incubating at 
30°C for 30 minutes, at 4 °C for 30 minutes and at 0 °C for 10 
minutes. 

To the complex mixture of gapped duplex molecules the 
following were added: 1il each 10mM dATP, dCTP, dGTP, 
dTTP, 2111  10mM ATP, 21l 14 DNA ligase (1 unit/jil), 0.5il 
polymerase I Klenow fragment (5 units/pI). The repair 
reaction was incubated at 12.5 °C overnight. 
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FIGURE 6.2 Site-directed mutagenesis: the plasmid gapped-tiuplex method 
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Competent E.coli TG1 cells were transformed with 10111 of 
the sample and plated on selective (Tet) L-broth plates and 
screened as above. The efficiency of mutation achieved with 
this method was 1%. 

6.14 HYBRIDIZATION - DNA blotting onto nitrocellulose filters 

6.14.1 Southern transfer 

To check cloning experiments, usually the recombinant DNA was 

restricted, run on a low EEO agarose gel and transferred onto nitrocellulose 

filters where homology with parental DNA could be detected by hybridization. 

The DNA bands were transferred from the agarose gel to the filter according to 

the method of Southern (1975). 

/ 
The agarose gel on which the DNA fragments had been 
separated was immersed in several volumes of 1.5M NaCl, 
0.5M NaOH for 1 hour at room temperature with constant 
shaking in order to denature the DNA. The gel was then 
neutralised by soaking it in several volumes of 1M Tris-HCI 
pH8.0, 1.5M NaCl for 1 hour at room temperature with 
constant shaking. 

A plexiglass plate bigger than the gel was placed on two 
rubber bungs inside a tray filled with 10xSSC (20xSSC: 3M 
NaCI, 0.3M trisodium citrate) and the level of the buffer in the 
tray raised to about 1cm below the plate. A piece of 
Whatman 3MM filter paper was wetted in 2xSSC and laid on 
top of the plate with its overhanging ends dipped into the 
buffer. 

The gel was placed on the plate with its original underside 
uppermost and air bubbles trapped underneath carefully 
removed. A piece of nitrocellulose filter was cut just bigger 
than the gel, prewetted in 2xSSC for 2-3 minutes and laid on 
top of the gel making sure not to trap any air bubbles. 

Two pieces of Whatman 3MM filter paper, cut to exactly the 
same size as the gel, were wetted in 2xSSC, placed over the 
nitrocellulose filter and overlaid with a stack of paper towels 
cut just smaller than the gel (5-8cm high). The pile of paper 
was pressed down with another plate and a weight (0.5-11(g). 
To prevent evaporation of the tank buffer and short-circuiting 
of fluid, Saran. wrap was stretched between the edges of the 
gel and the sides of the tray. Usually the transfer was 
allowed to proceed for at least 24 hours, occasionally 
replacing the paper towels when wet. 

When transfer was completed, the paper towels and the two 
layers of filter paper were discarded, the nitrocellulose filter 
peeled off the gel and soaked in 6xSSC for 5 minutes at room 



CHAPTER 6 	 118 

temperature. The filter was drained on filter paper and 
allowed to air dry. 

6. To fix the DNA, the filter was placed between two sheets of 
Whatman 3MM filter paper and baked at 80 °C under vacuum 
for 2 hours. 

6.142 Colony transfer 

Screening of mutants was carried out by replica plating the colonies 

obtained from the transformation of the SDM DNA samples (see Section 6.13) and 

fixing their DNA on nitrocellulose filters. Hybridization with the labelled 

mutagenic bligonucleotide followed (Section 6.15.2). The fixing of DNA from 

bacterial colonies was according to the method of Grunstein & Hogness (1975) 

and Hanahan & Meselson (1980) with the omission of the stage of bacterial 

growth on the filters. 

Bacterial colonies were replica plated on selective L-broth 
plates on an asymmetric grid, 50 colonies to a plate, and left 
to grow overnight at 37 °C. 

A circle of dry nitrocellulose filter was lowered carefully onto 
the plate using two flat-bladed forceps. 

When completely wet, the filter was peeled off the plate and 
laid, colony side up, onto a stack of three sheets of Whatman 
3MM paper previously soaked in denaturing solution (1.5M 
NaCl, 0.5M NaOH). After 3 minutes the filter was transferred 
to another stack of 3MM paper soaked in neutralising buffer 
(1.5M NaCl, 1M Tris-HCI pH7.5) and left for 5 minutes. Finally 
the filter was transferred to paper saturated with 4xSET 
(20xSET: 3M NaCl, 20mM EDTA, 0.4M Tris-HCI pH7.8) for 5 
minutes more and left to air dry on filter paper for 15-30 
minutes. 

To fix the DNA, the filter was placed between two sheets of 
Whatman 3MM paper and baked at 80 °C under vacuum for 2 
hours. 

6.15 HYBRIDIZATION - Labelling of DNA probes and hybridization conditions 

6.15.1 Double stranded probes 

Nick translation 

Nick translation (Rigby et al. 1977) was used for the preparation of 

radioactively labelled double stranded DNA probes (plasmid, phage or fragments). 
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In a microfuge tube 0.5-1.ig of DNA (in 1-5jil) were mixed 
with 20Ml  lx buffer/cold dNTPs (see below), 1.5jil [ct 35S]-dCTP 
(lOpCi/pl, 3000Ci/mmol), 11.11  DNAse I stock solution and nick 
formation left to proceed for about 1 minute at room 
temperature. 

To the reaction mixture 0.5pl E.coll DNA polymerase I 
(1unit/il) was added and the tube incubated for 3 hours at 
15°C. 

The unincorporated radioactive nucleotide was separated from 
the nick-translated DNA by passing the sample through a 
sterile Sephadex G50 (fine) column (15x0.7cm). The sample 
was eluted with TE and its progress followed with' a 
minimonitor. The faster migrating peak of radioactivity, 
corresponding to the 	labelled 	DNA, was 	collected. 
Incorporation efficiency was checked by spotting a 5.il aliquot 
on a small glass filter (4F/C), letting it dry and determining 
the Cerenkov counts. The yield was usually 1-2x1O 6cpm 
(Cerenkov). 

Solutions used 

lx buffer/cold dNTPs: 100.iI 4x buffer, 41i1 2mM dTTP, 2mM dGTP, 2mM dATP, 

lpl 1M 8-mercaptoethanol, 290p1 water 

4x buffer: 210mM Tris-HCI pH7.5, 21mM MgCl 2, 20g/ml bovine serum albumin 

DNAse I stock solution (2x10 5mg/ml DNAse I in polymerase I buffer): liiI  2x 

polymerase dilution buffer, 4p1 1mg/mI DNAse I, lml glycerol. Mix 20il 

of 2x10 3mg/m1 DNAse I solution from above with imI 2x polymerase I 

dilution buffer and imi glycerol to get working DNAse I stock solution. 

Stored at -20°C. 

2x polymerase I dilution buffer: 2m1 1mg/mi bovine serum albumin, 10OI 2M 

ammonium sulphate, 20p1 1M 8-mercaptoethanol, lOOiil 1M Tris-HCI 

pH7.5. 

Hybridization 

Before starting the hybridization the nitrocellulose filter carrying the DNA 

to be analysed-  was washed in about 30ml prewarmed hybridization buffer (see 

below) for 30 minutes at 37 °C. The filter was then placed in a sealed plastic bag 

with the probe (1-2xlO 6cpm, denatured by incubating for 10 minutes at 95 °C and 

immediate cooling on ice), 50Ml  calf thymus sonicated DNA (3.5mg/mi) and lOmI 
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hybridization buffer. Hybridization was carried out at 37 °C overnight. 

The following day the radioactive probe was discarded and the filter 

subjected to a series of washes as follows: 

- 2xSSC, 0.1% w:v SOS. About 50ml in the bag at 37 °C for 1 hour 

- 2xSSC, 0.1% w:v SDS. About lOOmI in a box at 37 °C for 1 hour, 
twice 

- 1xSSC, 0.1% w:v SOS. About 200ml in a box at room 
temperature for 1 hour 

- 1xSSC. About lOOmI at room temperature for 10-15 minutes. 

The filter was then blotted dry, covered with Saran wrap and autoradiographed at 

-70 °C with a preflashed film and an intensifying screen. 

Solutions used 

Hybridization buffer: 50% v:v formamide, 4xSSC, lx Denhardt solution 

20x Denhardt solution: 0.4% w:v bovine serum albumin, 0.4% w:v 

polyvinyl pyrolidine, 0.2% v:v Ficoll, filter sterilized and stored in aliquots 

at -20°C. 

6.15.2 Labelled oligonucleotides (mutant screening) 

Kinasing 

In a microfuge tube 15pmoles of oligonuceotide (in 1-2l) were mixed 

with 31xl  lOx kinase buffer (0.5M Tris-HCI pH8.0, 0.1M MgCl2), 3Ml  [y32P]-ATP 

(10iCi4il, 3000Ci/mmol), ipI 100mM DTT and water to 30il final volume. T4 

polynucleotide kinase was added (2 units) and the reaction incubated at 37 °C for 

30 minutes. The labelled oligonucleotide was diluted with 3m1 6xSSC, filtered 

through a Millex filter (Millipore sterile Millex-GU 0.221im filter unit) and the filter 

washed with imI 6xSSC. The probe was either used immediately or stored for a 

few days at -20 °C in a plastic sterile Petri dish. 

Hybridization 

For screening of mutants, the nitrocellulose filters on which DNA of 

colonies obtained from the transformation of the SDM sample had been fixed 
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(Section 6.14.2) were prehybridized at 67 °C for 2-3 hours in a sealed bag 

containing lOmI of hybridization buffer (6xSSC, lOx Denhardt, 0.2% w:v SOS). 

After rinsing in 50ml 6xSSC for 1 minute, the filter was dropped in a sterile Petri 

dish containing kinased mutagenic oligonucleotide prepared as above, making 

sure not to trap any air bubble under the filter. Hybridization was carried out 

overnight at room temperature. 

The following day the filter was washed three times in lOOmI 6xSSC for 

5 minutes each time at room temperature and the excess liquid drained. The 

filter was covered with Saran wrap and autoradiographed at -70 °C with 

preflashed film and intensifying screen for 1-4 hours. This gave the background 

grid (see Figure 4.3). 

The filter was then washed for 5 minutes in about 50m1 6xSSC 

prewarmed to a temperature 5 °C lower than the calculated Tm (see Section 4.8) 

and autoradiographed. The washing and autoradiography procedure was 

repeated at temperatures progressively higher by 2-3 °C until discrimination 

between mutant and wild type colonies was reached. Routinely a colony carrying 

the wild type gene was introduced in the filter to be screened as a negative 

control. 

6.16 PREPARATION OF SETA-LACTAMASE SAMPLES 

6.16.1 B-lactamase isolation from B.11cheniformis 

The preparation of the exocellular 8-lactamase of B.11cheniformis strains 

6346/c and 749/c followed a modified version of the procedure given by 

Yamamoto and Lampen (1976). 

B.11chenifor,nis spores (2001l) were inoculated in 20ml 
L-broth and grown with shaking at 37 °C for about 8 hours. 
The culture was transferred to two 51 conical flasks containing 
11 CH/S medium each and incubation continued overnight. 
This inoculum was used to start a 451 culture in CH/S broth 
which was grown in a fermenter for 8 hours to late 
logarithmic phase. 

The cells were removed from the culture broth by passing the 
culture through a continuous centrifuge and the pH of the 
supernatant lowered to 4.8 by addition of glacial acetic acid. 

Ptiosphocellulose P11 (200g dry weight) was pre-swollen as 
recommended by the manyfacturers, converted to its H form 
(pH3.5) and added to the cell supernatant. The suspension 

0 
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was stirred gently overnight. 

The following day the supernatant was discarded. The 
cellulose was washed in a beaker twice with about 21 0.01M 
KH 2PO 4/NaOH pH50 and packed in a 4x1OOcm column. The 
8-lactamase was eluted from the column with 0.2M 
KH 2PO4/NaOH pH7.6 and 25ml fractions collected. 

The active fractions were pooled and ammonium sulphate 
slowly added to 100% saturation at 4 °C. The solution was left 
to equilibrate overnight at 4 °C with continuous stirring. 

The precipitated protein was collected by centrifugation for 20 
minutes at 16000g and resuspended in a small volume 
(10-20ml) of 0.01M ammonium acetate buffer pH8.0. The 
sample was dialysed overnight at 4°C against the same 
buffer. 

The dialysed sample was applied to a 5x9Ocm Sephacryl S200 
column pre-equilibrated with 0.01M ammonium acetate buffer 
pH8.0 and eluted with the same buffer. The major active 
fractions (lOml each) were pooled, freeze-dried and the 
$-lactamase powder stored at 4 °C. Routinely 20-50mg of 
pure B- lactamase was isolated with this method. 

6.16.2 6-lactamase isolation from E.coli 

Cloned 6346 8- lactamase and the mutant proteins derived from it were 

prepared as crude extracts from E.coll cells harbouring the relative plasmid. 

A periplasmic extract was prepared from a 11 overnight 
culture of E.coll cells collected by centrifugation for 15 
minutes at 6000g. The cells were resuspended in 20m1 ice 
cold 30mM NaCl, 10mM Tris-HCI pH7.5, collected by 
centrifugation (15 minutes, 12000g) and resuspended in 20ml 
isotonic solution (20% w:v sucrose, 1mM EDTA, 30mM 
Tris-HCI pH7.3). After shaking for 5 minutes at room 
temperature, the cells were pelleted again and osmotically 
shocked by resuspending them in 20ml ice cold distilled water 
and shaking for 5 minutes at 0 °C. 

The cell debris was removed by centrifugation (15 minutes, 
12000g) and ammonium sulphate added to the supernatant to 
85% saturation at room temperature. The solution was left to 
equilibrate for 1 hour at room temperature with constant 
stirring and the precipitated protein separated from the 
B-lactamase containing supernatant by centrifuging for 30 
minutes at 27000g. The sample was dialysed extensively at 
4°C against 50mM sodium succinate pH4.6. 

The sample was loaded onto a imI FPLC S column 
pre-equilibrated with 50mM sodium succinate pH4.6. After 
loading, the column was washed with the same buffer until 
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no more material absorbing at 280nm was detected in the 
effluent, then the 8-Iactamase was eluted with a NaCl 
gradient (0-300mM in sodium succinate pH4.6). Fractions of 
imI volume were collected and assayed. The fraction 
containing the peak of -lactamase activity was stored at 

-20°C. The estimated enzyme concentration in this fraction 
was about 3-5.tg/mI. 

6.16.3 Sonicated extracts 

Sonicated extracts of E.coll cells carrying the bacillary -lactamase gene 

were prepared as follows: 

Cells from an overnight culture (imI) were collected by 
centrifugation in a bench centrifuge for 5 minutes and 
resuspended in lOOMl  water. 

The tube was placed on ice and the cell suspension sonicated 
for 30 seconds at 51.im peak-to-peak. The sonicated extract 
was normally assayed immediately. 

6.17 BETA-LACTAMASE ASSAYS 

6.17.1 Qualitative assay with nitrocefin 

Nitrocefin is a chromogenic cephalosporin which allows rapid detection 

of B-lactamase activity. The hydrolysis of its 8-lactam bond results in a colour 

change from yellow to pink which can be detected by the naked eye (O'Callaghan 

et al. 1972). 

A working solution was prepared by adding 0.5m1 dimethylsuiphoxide to 

5mg nitrocefin. As soon as the solid was dissolved, 9.5m1 0.1M potassium 

phosphate buffer pH7.0 was added and the solution mixed well. This stock was 

stored in the dark at 4 °C for up to two weeks. 

Nitrocefin was used to detect b/a k  recombinant plasmids or 

bacteriophages by flooding the plates with a small volume (2-3m1) of working 

solution. Usually within 10-15 minutes 8 -Iactamase producing colonies or 

plaques were surrounded by a pink halo and could be picked and purified by 

replating, ready for further analysis. 

Nitrocefin was also used for detection of 8-lactamase activity in column 

eluates. In a microtitre plate 10-20iil aliquots of the column fractions were 
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mixed with an equal volume of working solution. Usually fractions containing the 

peak of activity turned pink within a few seconds. 

6.17.2 Spectrophotometric assays 

SpectrophotometriC assays were carried out at room temperature in a 

Perkin-Elmer spectrophotometer connected to a computer dedicated to the 

collection of data. 

In a 3ml quartz cuvette the -iactam substrate (5.il, 35mg/mi) was mixed 

with buffer (0.1M sodium phosphate buffer pH6.8) and the absorption baseline 

recorded. The enzyme was added (usually 10-100l of the appropriate dilution), 

mixed well and the decay of the substrate recorded at the wavelength 

appropriate to the substrate used (see Table 5.3). 

6.18 WESTERN BLOTS 

Western blots (Burnette 1981) were used to semiquantitatively detect 

3-lactamase in whole cell protein extracts of E.co/i carrying the cloned gene. 

Protein samples were run on a SOS polyacrylamide gel and transferred onto 

nitrocellulose filter. The filter was hybridized with rabbit anti - B- lactamase 

antibody followed by anti-rabbit IgG antibody conjugated to alkaline phosphatase. 

Upon soaking of the filter in alkaline phosphatase substrate solution, B-lactamase 

showed up as dark coloured bands. 

6.18.1 Pouring the gel 

An SIDS-discontinuous buffer system gel at 12.5% polyacrylamide 

concentration was prepared. Glass plates (16x2Ocm) were thoroughly cleaned 

with soapy water, rinsed, dried and wiped with ethanol. They were assembled 

with two perspex side spacers and taped together. 

A resolving gel was prepared by mixing in a small beaker 
12.5m1 acrylamide stock (see below), 3.75ml resolving buffer, 
0.3ml 10% w:v SOS, 1.5m1 AMPS, 11.95ml water and 15pl 
TEMED. The mixture was immediately poured down one side 
of the slab forming plates and the top overlaid with a small 
amount of water to get a clean interface. The gel was left 
standing upright on the bench until set. 

The water lying at the top of the gel was poured off and the 
stacking gel mixture (1.25ml acrylamide stock, 2.5m1 stacking 
buffer, lOOlil 10% w:v SOS, 0.5ml AMPS, 5.65ml water, 81.il 
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TEMED) was layered on top. A well-forming comb was 
inserted immediately between the plates and the gel left 
standing until set. 

3. When the gel had set, the tape was discarded and the comb 
removed. The plates were clamped to an upright 
electrophoresis apparatus constructed from perspex in this 
laboratory and upper and lower tanks filled with tank buffer. 

Solutions used 

Acrylamide stock: 30% w:v acrylamide, 0.8% w:v bis-acrylamide, filtered 

through Whatman filter paper No.1 and stored in the dark at 4 °C for up 

to one month 

Resolving gel buffer: 3M Tris-HCI pH8.8 

Stacking gel buffer: 0.5M Tris-HCI pH6.8 

AMPS: 1.5% w:v ammonium persulphate 

Tank buffer: 25mM Tris, 0.19M glycine, 0.1% w:v SDS (makes pH8.0) 

6.18.2 Preparation of the sample and running the gel 

Whole protein extracts of E.coll cells carrying the b/a gene were 

prepared from 200p1 of an overnight culture. The cells were collected by 

centrifugation in a bench centrifuge for 5 minutes, resuspended in 40311 loading 

buffer (62.5mM Tris-HCI pH6.8, 2% w:v SDS, 5% v:v -mercaptoethanol, 10% w:v 

sucrose, 0.25% w:v bromophenol blue) by pipetting up and down several times 

and boiled for 15 minutes. Pure protein samples, normally used as controls, were 

diluted in 40311 of the same loading buffer and boiled for 3 minutes. 

The samples were loaded on the gel with a Hamilton syringe and usually 

run overnight at 8-10mA constant current until the blue dye reached the bottom 

of the gel. 

6.18.3 Western blotting 

At the end of the electrophoretic run the plates were removed from the 

tank, separated and the orientation of the gel marked by cutting the top corner 
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corresponding to lane 1. 

A piece of nitrocellulose filter and two pieces of Whatman 3MM filter 

paper were cut slightly bigger than the gel and wetted in tank buffer (25mM Tris, 

0.19M glycine, 20%v:v methanol, 0.1% w:v SDS). The electrophoretic transfer was 

assembled as follows, making sure that no air bubbles were trapped between 

layers: 

foam pad 

3MM filter paper 

gel 

nitrocellulose filter, marked as gel 

3MM filter paper 

foam pad 

The sandwhich was mounted in the blotting tank (Biorad Trans_BlotTM  Cell) which 

was then filled with tank buffer. Transfer was carried out for 4 hours at 50-60 

volts, 03A. 

6.18.4 Antibody reaction and staining 

When the transfer was completed, the nitrocellulose filter was peeled off 

the gel and blocked by soaking in lOOmI TS buffer (see below) containing 5% fat 

free milk powder (Sainsbury's). The filter was left, gently rocking for 30-60 

minutes, then transferred to a sealed plastc bag containing 20ml 1:1000 dilution 

of rabbit anti-6346 B-lactamase antibody (prepared in this department by Miss 

J.Fleming) in TS/milk. The antibody-antigen reaction was left to proceed 

overnight at 4°C with gentle shaking. 

The following day, the filter was washed with four lOOml changes of 

T-TS over 30 minutes, then reacted with the second antibody by closing it in a 

plastic bag containing 15m1 1:7500 dilution of alkaline phosphatase conjugate 

anti-lgG in TS/milk for 2 hours at room temperature. The filter was then washed 

as above. 

For detection, the filter was placed in a box containing lOml alkaline 

phosphatase buffer in which 66j.il nitro blue tetrazolium and 331il 

5-bromo-4-chloro-3-indolyl-phosphate substrates (Promega Protoblot System) 
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had been diluted. The box was rocked continuously until the desired 

development of color was obtained. To stop the reaction, the filter was dropped 

in another box containing about lOOmI of water, then allowed to air dry. The 

colour remains stable indefinitely. 

Solutions used 

TS: 0.9% w:v NaCl, 10mM Tris-HCI pH7.4 

T-TS: 0.9% w:v NaCl, 10mM Tris-HCI pH7.4, 0.05% v:v Tween-20 

Alkaline phosphatase buffer: 0.1M Tris-HCI pH9.5, O.1M NaCl, 5mM MgCl2. 	 SI 
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