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Abstract

Data generation has vastly exceeded manual annotation in several areas of astronomy, biology,

economy, geology, medicine and physics. At the same time, a public community of experts

and hobbyists has developed around some of these disciplines thanks to open, editable web re-

sources such as wikis and public annotation challenges. In this thesis I investigate under which

conditions a combination of collaborative and automated curation could complete annotation

tasks unattainable by human curators alone.

My exemplar curation process is taken from the molecular biology domain: the association

all existing enzymes (proteins catalysing a chemical reaction) with their function. Assigning

enzymatic function to the proteins in a genome is the first essential problem of metabolic recon-

struction, important for biology, medicine, industrial production and environmental studies. In

the protein database UniProt, only 3% of the records are currently manually curated and only

60% of the 17 million recorded proteins have some functional annotation, including enzymatic

annotation. The proteins in UniProt represent only about 380,000 animal species (2,000 of

which have completely sequenced genomes) out of the estimated millions of species existing

on earth. The enzyme annotation task already applies to millions of entries and this number is

bound to increase rapidly as sequencing efforts intensify.

To guide my analysis I first develop a basic model of collaborative curation and evaluate

it against molecular biology knowledge bases. The analysis highlights a surprising similarity

between open and closed annotation environments on metrics usually connected with “democ-

racy” of content.

I then develop and evaluate a method to enhance enzyme function annotation using machine

learning which demonstrates very high accuracy, recall and precision and the capacity to scale

to millions of enzyme instances. This method needs only a protein sequence as input and is

thus widely applicable to genomic and metagenomic analysis.

The last phase of the work uses active and guided learning to bring together collaborative

and automatic curation. In active learning a machine learning algorithm suggests to the human

curators which entry should be annotated next. This strategy has the potential to coordinate

and reduce the amount of manual curation while improving classification performance and

reducing the number of training instances needed. This work demonstrates the benefits of

combining classic machine learning and guided learning to improve the quantity and quality of

enzymatic knowledge and to bring us closer to the goal of annotating all existing enzymes.
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Chapter 1

Introduction

1.1 Motivation

In many scientific domains, the rate of data production is overwhelming not only traditional

manual curation, but also computer-supported basic annotation. Open collaborative endeav-

ours, such as Wikipedia, have shown promise and new wiki-style environments have now

started to tackle more intensive annotation of scientific data. However, the numbers of enti-

ties in astronomy and biology are bound to challenge any worldwide community of human

curators.

This is why, in addition to manual curation, automated annotation and prediction methods

have been extensively used to enrich scientific databases. Unfortunately, automated methods

are usually used in a one-off, batch mode, without leveraging the machine learning algorithm

(and what it tells us about the data) for allocating curation priorities over time.

Beyond the checking of very simple spelling and typographical mistakes, automated meth-

ods are bound to introduce mistakes. The error rate of a machine learning method can be

evaluated in various ways, and can even compare positively with the human error rate, but, ul-

timately, we do not know with certainty if an introduced annotation is erroneous until a manual

check detects it. This risk of cascading down errors has to be stressed, and annotation should

always be presented together with its justification. This work makes a case for a combination

of machine learning and active learning to prioritise scarce manual curation towards the most

informative checks.

The aim of this work is to explore techniques capable of completing the annotation of all

existing enzymes, namely, of all proteins able to catalyse chemical reactions. This challenge

has analogous in other domains: the advantages and challenges of using automation not only

in classification tasks, but to guide the curation workflow is a little explored area of research

with significant potential applications for real data.

This work explores what happens when manual curation is limited (or very limited) com-

1



2 Chapter 1. Introduction

pared to the overall annotation task. What happens in the – often dreaded or avoided – case

when automatic curation is the only provider of annotation for most data points? Can machine

learning help not only in predicting and classifying, but also in prioritising curators efforts to

improve overall annotation quality?

The protein and enzyme function challenge To examine a particular case in molecular biol-

ogy, manual curation has not been able to provide a functional description for all the 17 million

proteins in UniProt TrEMBL [Cons 11] (as of September 2011) found with high throughput

sequencing, not to mention the hundreds of million of proteins that could be found in the esti-

mated 3 to 10 million species not sequenced – or incompletely sequenced – yet. About a third

of these proteins are enzymes. Hoping that the current horrific rate of species extinction will

not solve the problem, the challenge will require radically new approaches.

Numerous wiki solutions have been proposed to bring the “Wikipedia” effect to biology

[Wang 06]. Wikis have started to be used to share and collect knowledge in specific areas of

biology, with promising wiki initiatives led by model organisms consortia. More structured

wikis are evolving to cope with more structured data and these tools mediate between ease

of editing and the need for machine readable formats. With suitable hardware and software

infrastructure they can manage hundreds of million of records. But the specialist community

of researchers, students and hobbyists of molecular biology cannot stretch indefinitely. Manual

curation alone might never annotate all enzymes [Baum 07].

Hypothesis My main hypothesis is that knowledge quantity and quality can improve, un-

der certain conditions, when automated and open collaborative manual curation are brought

together over the same data collection and in the same curation process.

Very good methods for automated prediction of protein functions exist. Their code avail-

ability and usability varies widely though. My hypothesis is that automated methods of pre-

diction could profit from being more directly embedded in the data workflow of an open,

collaborative curation environment. For example, to retrain the machine learning algorithm on

fresh, corrected data and, where the algorithm allows, to give more weight to manually curated

data points.

In addition, this work examines the potentially positive effects that active learning could

have on the curation workflow, in orienting and allocating the manual curation effort.

To these ends, a specific new software environment is not strictly needed. In practice, a

curation process of the scale described depends on the existence of: 1. a curation environment

and 2. a machine learning environment able to cope with the data volumes involved. The

required software already exists to a large extent, from structured wikis to machine learning

libraries able to cope with million of entries, and some are discussed and used in this work. In
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addition, the two environments will need to exchange basic data (the records and their anno-

tation) and also some information usable to guide the curation process, such as a best ranking

of the entries to be curated. Again, this is not a complex task for current software. As for

the curation environment, only the possibility of viewing the data and editing its annotation is

assumed. In practice, this work has been inspired by current wiki software and its affordances

for structuring and exporting computer readable formats and for collaborative curation such as

in-line editing, separate discussion space, versioning, user identification and user notifications.

Hence this work does not aim to provide another tool of this kind.

1.2 Contributions

This work provides some elements that are still missing in order to meet the challenge of

enzyme annotation: first, an initial model to simulate manual, collaborative curation, second, a

very strong method for automatic prediction of enzyme function and, to bring the two together,

an evaluation of the integration between manual and automated curation on real data, using

active and guided learning.

In more detail, this thesis contributions are:

• A baseline model of manual collaborative curation, and its evaluation against four real

molecular biology curation endeavours.

• Novel results regarding how “democratic” wikis compare to closed annotation scenarios.

• An accurate method to predict enzymatic function from sequence, and its evaluation.

• A quantitative analysis of the effects on prediction performance of 1. dataset size, 2.

sequence redundancy, 3. grouping data by taxonomic domain and 4. data providers

disagreements.

• A range of active and guided learning curation methods to optimise the order in which

proteins are annotated, and their evaluation on real enzyme data.

A summary of the claims is found in Table 1.1 alongside their location in this thesis text

and in the relevant journal or conference publications.

1.3 Thesis structure

This thesis contains a background, three main chapters and a conclusion chapter:

Chapter 2 Background describes the problem of protein function annotation and existing

solutions for curation, from closed archives to wikis. This chapter also describes existing

automated annotation methods and introduces active and guided learning.
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Component Claim Section Reference

A model of

collaborative curation

That the model can reproduce

some aggregated measures (such

as authorship) of knowledge

collection dynamics

Section 3.4.2

on page 39
[De F 08]

Model evaluation

using manual curation

data

That measures of “democracy”

(distribution of edits per author)

are unexpectedly close in wikis

and non-wikis

Section 3.4.2

on page 39
[De F 09]

A machine learning

method to predict

enzymatic function

That high accuracy and precision

in predicting multiple enzymatic

functions can be obtained using

only the presence or absence of

conserved sequences signatures.

That predictions do not

particularly improve if data is

partitioned by taxonomic domains

Section 4.2 on

page 60

[De F 10,

De F 12b]

Evaluation of active

and guided learning to

prioritise manual

curation

That actively selecting instances

to be annotated can use less

manual curation while

maintaining high accuracy

Section 5.2 on

page 88
[De F 12a]

Table 1.1: Thesis claims. For each model or analysis component, the table gives

the claims supported by the available data and results in this thesis. More details

can be found in the corresponding thesis section and publication.
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Chapter 3 A model of collaborative curation describes an agent-based model of manual

collaborative curation. A simulation strategy was adopted as it would be unfeasible to enact

“curation experiments” in a sufficient number of real curation systems in a doctorate time-

scale. The model is compared with the curation dynamics of four real life molecular biology

knowledge bases and wikis.

Chapter 4 Multi-label prediction of enzyme function describes a new machine learning

approach able to predict real enzyme function with very high accuracy and recall. The method

is also used for the automatic side of the automatic+manual curation of protein sequences.

Chapter 5 Active curation measures the effect of adding an active or guided learning strategy

to the overall curation process. This chapter demonstrates the advantages of guided learning

in reducing the number of labelled instances needed to obtain high accuracy predictions and

illustrates the method potential for curation parallelisation.

Chapter 6 Conclusion concludes the thesis discussing its implications for real life curation

in biology and beyond, and identifies new research questions that could be addressed by future

research.

1.4 Summary

This chapter has introduced the challenge of enzyme annotation and outlined the possibilities

offered by the integration of passive and active machine learning into the manual curation pro-

cess. The overall methodology could cope with curation tasks beyond what is currently possible

even for a large scale collaborative effort. The following chapter introduces an initial model of

manual curation and uses it to explore the dynamics of existing molecular biology curation ef-

forts. This is an initial investigation in the direction of deciding which curation platform (open

or closed) could be better suited to the introduction of an active curation workflow.





Chapter 2

Background

2.1 Big data, big curation

This work contributes to the area of data annotation. Here data is intended as a collection of

real life observations. The observed instances are still material in some fields such as archae-

ology (artefacts) or biology (biological samples, cell lines, species specimens) but more and

more they are represented and shared as digital data, for example strings of genetic sequences

in molecular biology or images of astronomical objects. The known instances are often di-

vided into classes following some attribute of interest. Annotation is defined here as the act

of attributing one or more class values to an instance, hence declaring that the available class

knowledge can be applied and extended to that instance. The term curation is used here in a

more general sense, as a hypernym of annotation with stress on the whole process of complet-

ing and maintaining a collection of annotated exemplars.

This thesis explores a particular curation example: the annotation of enzymatic function,

and the findings are relevant to other curation settings where:

1. Annotation requires significant background knowledge

2. Manual curation is scarce compared to the number of items to be annotated

3. Machine learning is able to provide curation (class prediction) of above random quality

Some curation endeavours do not fall under 1. and 3. because they require little background

knowledge and yet machine learning cannot yet provide predictions of accuracy comparable to

those provided by people. Astronomy has seen some curation challenges of this kind, requiring

accurate, but non-specialist classifications that have been successfully opened to the general

public. For example, the Moon Zoo website1 aims at providing detailed crater counts for as

much of the Moon’s surface as possible. The site provides guidelines, for example, on how

1Moon Zoo http://www.moonzoo.org/

7
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users can mark a moon crater as having boulders around it, a sign of a more powerful impact.

At Galaxy Zoo2, 80,000 astronomers and members of the public have manually classified the

morphology of one million galaxies in less than three weeks. Open curation has also been

applied to Biology, for example through the gamification of protein folding in the FoldIt3 web

application.

Open curation has also been sought on general topics. Among many: the Open Mind Com-

mon Sense initiative has asked users to click on common sense sentences that could be true,

constructing a 450,000 assertions knowledge base [Sing 02]. The LabelMe4 web application

asks users to draw the contour of objects in complex images and classify them following a

vocabulary (tree, building, ship, person etc.) [Torr 10].

In contrast, most molecular biology annotation is characterised by a high number of in-

stances, but also the need for significant background knowledge, whether acquired through

academic training or personal interest. Figure 2.1 tries to position some public knowledge col-

lection efforts along the two problem boundaries listed above: how much data is there to be

annotated and how difficult it is for a collaborator to annotate one entry. Several other posi-

tionings would be equally likely, as the total data in a domain is very difficult to estimate: how

many galaxies are there in the universe, or species on Earth? Similarly, what is the amount

of data that should be curated: all the galaxies that exist in all publicly available sky surveys?

Should all sequenced proteins be curated?

As for the curation axis, the complexity could depend on annotation granularity or on

how curation difficulty is defined (by the background knowledge or by the time needed?). In

general, however, the upper panels are where annotators need to be more specialised, while the

right side panels might need automatic curation methods most. In practice, Wikipedia (dashed

rectangle) shows that an extended public community does not need to be unspecialised and

that it can tackle a high number of entries with limited automatic support. In my opinion, the

upper right panel is where integrating both open manual and automatic curation could give a

solution to the maintenance and update of the billions of entries dispersed in molecular biology

knowledge and databases, and this is where the results of this work may best apply.

2.1.1 Example problem: enzyme function annotation

Enzyme function is important for biological, medical, environmental and industrial reasons.

Enzymes can cause disease when defective, can confer antibiotic resistance to micro-organisms,

can enable a yeast to produce drugs or better beer. Enzymes are part of our everyday life. They

are in our detergents, our bread and our contact lens solutions. The study of an enzyme starts

from its sequence. Here I do not consider the technical and social challenges of full genome an-

2Galaxy Zoo http://www.galaxyzoo.org
3FoldIt http://fold.it/portal/
4LabelMe http://people.csail.mit.edu/torralba/publications/labelmeApplications.pdf
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Figure 2.1: Big Data, Big Annotation or both? This figure tries to position (qualita-

tively) some public knowledge collection efforts along two axes: how much data is

there to be collected or annotated and how difficult it is for a collaborator to annotate

one entry. Several other positionings could be equally valid, depending on how the

complexity of an annotation act is defined.

notation, for example in terms of collating fragments from high-throughput sequencing, recog-

nising genes or anonymising human sequences, but I rely on protein sequences being already

recognised and publicly available. Even excluding this, there is no clear estimate of the size of

the task of annotating the function of all proteins. The annotation of enzyme function is a sub-

problem of annotating all proteins’ function. One that involves fewer categories – since many

structural functions can be compacted into one “non-enzyme” function – but equally daunting.

Estimates of the number of species existing on Earth range from 3 to 30 million and are

more working hypotheses than estimates, as stressed by several authors [May 88, May 92,

Stor 93, Stor 07, Erwi 91]. Even the concept of species becomes less relevant for rapidly prolif-

erating bacteria and viruses with extensive horizontal transfer of genetic material. Each species

can then have from a few dozens to tens of thousands of proteins (or splice variants). As for

the functional annotation, a considerable fraction of proteins can have multiple molecular func-

tions, and hence multiple annotations, also depending on the terminology or ontology used to



10 Chapter 2. Background

express the function. It is also possible for the same biochemical function to correspond to

different cellular functions when occurring in different tissues or organs. The current average

for a UniProt Swiss-Prot [Cons 10] protein entry is four Gene Ontology [Ashb 00] annotations

[Camo 04]. These estimates generate scenarios in the range of millions of annotation acts to

curate all enzymes.

On the positive side, judging from general studies and collections such as UniProt UniRef

[Suze 07], protein sequences typically show extensive sequence homology. For example, UniRef100

clusters show that around 10% of proteins are identical in sequence to other existing – and pos-

sibly already annotated – proteins, allowing for safe direct transfer of annotation and a reduc-

tion in the overall annotation task. However, biological paradigms are not made to be simple for

curators: cases exist where only the cellular location of a protein, and not its sequence, defines

its active functionality. A well known example is the enzyme lactate dehydrogenase which

catalyses the interconversion of pyruvate and lactate, but also acts as structural protein in avian

and crocodilian eye lenses [Wist 87]. Other rare cases involve differential expression, changes

in ligand concentration, complex formation, alternative translation or post-translational modi-

fication [Todd 02].

In addition, the task could be reduced by annotating only some representative genomes,

for example only a few per taxonomic division. The Catalogue of Life [Bisb 04], compiled

from more than a hundred published taxonomic databases, divides the approximately 1,400,000

species known so far into about 98,000 taxa (September 2011), and estimates – conservatively

compared with other research – that this represents two thirds of existing species. So should

all species or only some be annotated? And should these model organisms be equally dis-

tributed among taxonomic divisions? In fact, for historical, practical and medical reasons there

is a known over-representation of mammals (mouse, rat, human, apes) and vertebrates (Danio

rerio, Xenopus leavis) among model organisms and a lack of coverage for other divisions,

especially invertebrates.

Considering the annotation of only one species for each of the about 100,000 taxonomic

domains, an average of 1000 proteins per species (up to 25,000 for human and 100,000 for the

trychomonas parasite, to give a few examples using UniProt as source) and three functional an-

notation per protein (one for each of the Gene Ontology divisions: biological process, cellular

component and molecular function) we obtain a total of around 300 million protein annota-

tions (270 million after a hypothetical elimination of identical sequences). About 30% of these

sequences could be enzymes, but we do not know which.

The curation community size is also very difficult to estimate; there could be millions of

untapped minds ready to help. However, to give an example, it took nine years and about 440

million edits to build the 22 million pages of all the Wikipedia projects (in different languages)

existing in Jan 2011. However, only a fraction of the current 13 million registered Wikipedia
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users might have some molecular biology expertise, formal or informal. Obviously, potential

contributors to the protein annotation task need not be current or future wikipedians. We do

not know how many curators contributed to the effort, but 535,698 proteins were added to the

manually curated Swiss-Prot as of April 2012, over a period of 25 years (with a notable rate

increase in recent years: 40% of the total entries was annotated in the last 6 years and 25% in

the last 3 years).

Protein curation challenges have been successfully extended to the community of university

students through initiatives such as Metagenes5 [Hing 08] and CACAO6 (Community Assess-

ment of Community Annotation with Ontologies) where student teams compete by annotating

proteins with Gene Ontology terms and refuting the annotation of their adversaries. How col-

laborative these initiatives are will depend not simply on how many people participate (this

merely makes them more parallel) but how (and by whom) the annotations are reconciled and

integrated into existing knowledge bases.

2.2 Current solutions for manual curation

Molecular biology knowledge bases are generally organised around individual pages or entries

representing biological entities (for example genes, proteins or genetic variants). In this work, I

define a knowledge base as the result of an effort to edit and aggregate all knowledge regarding

a collection of biological entries, whereas I am less concerned about biological databases or

archives, defined as initiatives that archive large quantities of data without additional aggrega-

tion and manual curation.

Examples of manually curated knowledge bases include UniProt Swiss-Prot [Cons 11],

KEGG (Kyoto Encyclopaedia of Genes and Genomes) [Kote 12, Kane 10] and PDBWiki [Steh 10].

UniProt Swiss-Prot is one of the richest collections of manually curated protein entries. PDB-

Wiki allows the community to annotate the protein structures entries deposited in the Protein

Data Bank [Rose 11]. Examples of archives are the Protein Data Bank [Rose 11] and the

EMBL (European Molecular Biology Laboratory) Nucleotide Sequence Database [Coch 09],

where 3D structures and sequences are deposited, respectively. Only the depositing authors

can annotate these entries or correct them in PDB, while any registered user can edit them in

PDBWiki. Archives contain the raw material for curated knowledge bases and are all grow-

ing rapidly [Coch 09], thanks also to social workflows that require depositing sequences and

structures upon publication or to justify public funding [Howe 08].

The knowledge bases can also be distinguished depending on the possibility for individu-

als to contribute: open knowledge bases allow registration and editing by any non-malicious

volunteer, while closed knowledge bases can only be edited by a given set of individuals, usu-

5Metageneshttp://annotathon.org/LastaccessedinMay2012.
6CACAO http://ecoliwiki.net/colipedia/index.php/CACAO_0.1LastaccessedinMay2012.
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ally expert curators employed or invited by the data provider. These categories are not sharply

defined. Archives can allow authors to change their submissions, often to correct errors, as

happens, for example, in PDB and EMBL. Also, closed knowledge bases curators often ac-

cept (and sometimes seek) suggestions by other domain scientists. In general, however, open

knowledge bases will provide the collaborative software support to publicly and directly cor-

rect, justify and discuss the deposited knowledge. Accordingly, I classify as closed knowledge

bases those that rely only on e-mail or web forms to receive suggestions for changes and give

final vetting power to internal curators.

Figure 2.2: Curation scenarios: wiki curation versus centralised curation. The left

panel represents wiki style curation (open to all registered users), the middle panel

represents closed curation (knowledge and edits from experts only), while the right

panel represents a mixed model (edits only by expert curators but other users feed-

ing suggestions).

Another axis along which knowledge bases can be distinguished is “collaborativeness” of

annotation, defined as the presence of opportunities for collaborative annotation of a given en-

try. That is, the provision of software or social support to let more than one user annotate an

individual record, and to view and discuss its annotation and its justification. Most wiki soft-

ware have these affordances, but they are used in varying degrees. Nothing stops a user from
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“adopting” an entry nobody happens to be interested in and hence see his or her annotations go

unchallenged. This concept is distinct from open/closedness, the possibility for annotators to

spontaneously join the annotation effort. Nothing stops a closed knowledge base from having a

highly collaborative software support and social environment, within a closed group of hired or

volunteer curators. In practice, in closed knowledge bases, this quality of the process is often

not visible to outsiders. It is very difficult to attempt a classification of the collaborativeness

of closed knowledge bases only based on curation manuals or similar public documentation on

their web pages.

2.3 Wikis

Previous work has highlighted the limits of manual curation in keeping up with high-throughput

molecular biology data [Baum 07]. A possible solution has been identified in open collabora-

tion, often using wiki-like software [Salz 07, Wang 06]. Wiki software provides a collection

of in-line editable web pages, with a syntax (or Graphical User Interface) that makes it easy

to create and link those pages, and search them. Wikis attract collaborators through a very

low technical entrance barrier [Brya 05]. This is different from saying that wikis are simple

systems. What makes or breaks a wiki is its community of users. Wikis have a public image

as anarchic, free-for-all communities. However, from the last five years of research, wikis (and

especially Wikipedia) emerge as complex and highly regulated systems, in terms of integration

of software features and social control [Stvi 08].

Effortless editing is just one of the functions of a wiki. The users cannot be at ease with

reorganizing other peoples’ content without the possibility to undo mistakes. For this reason,

most wikis come with a full version control system. Each page has a history of past versions,

which can usually be compared in a separate view, highlighting differences. Each change is

stamped with the user name of the author and a time stamp. Users can also register their e-mail

address to receive updates when a page is changed. The combination of these two software fea-

tures is what makes Wikipedia editors able to revert vandalism in a matter of minutes [Prie 07].

2.3.1 Measuring wikis

Wikis have been evaluated as knowledge sources, with most research concentrating on Wikipedia.

Krieger et al. [Krie 09] have divided Wikipedia research into five main areas: quantitative

understanding of participation, connecting Wikipedia users to work, trust and article quality,

analysing the policy and structure, and using Wikipedia as a corpus towards another goal (such

as Natural Language Processing).

The first area of research – quantitative understanding of participation – exists thanks to

the logs of wiki edits which, incidentally, generate a precious history of authorship, used in this
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and past studies to measure social collaboration [Wilk 07, Vieg 04, Adle 08]. Chapter 3 of this

thesis profits from these logging features to measure, model and evaluate examples of open-

collaborative wikis, comparing them with the few closed knowledge bases in molecular biology

that offer analogous edit histories. Previous work has also extensively measured the growth,

authorship and edit distributions of various language editions of Wikipedia [Orte 07b, Voss 05].

In particular, authors have tried to gauge how “democratic” Wikipedia is in terms of how dom-

inated it is by few major contributors. Kittur et al. [Kitt 07] suggests a changing picture, with

Wikipedia driven by “elite” users early on and a more recent shift towards “common” user

participation. In contrast, Ortega et al. [Orte 08] finds a greater level of inequality (with less

than 10% of authors responsible for more than 90% of contribution) in all Wikipedia language

editions and throughout their recent history, with a more mixed, participative situation only at

the very beginning, in line with the results in Chapter 3.

The literature only compares Wikipedia with itself at different times or different language

versions, or with open source initiatives. Chapter 3 will introduce closed system into the com-

parison, finding unexpected similarities between open and closed systems on many “democ-

racy” measures, suggesting either that closed systems are more democratic than expected or

that new and better defined metrics are needed to discriminate between open and closed sys-

tems. The findings also suggest that the observed long-tail distributions of edits might be a

more general characteristic of human knowledge collections.

2.3.2 Wikipedia and knowledge quality

The main point of collaboration is that it could improve knowledge quality, that is, if we believe

the empirical Linus law of software development: “given enough eyeballs, all bugs are shallow”

also defined as: “Given a large enough beta-tester and co-developer base, almost every problem

will be characterized quickly and the fix will be obvious to someone.”7 (Linus Thorvald).

If the quantity of wiki articles is easy to measure, much less so is the quality of wiki con-

tent. The most quoted and commented article is the Wikipedia vs Britannica comparison8

[Gile 05] (and Britannica’s refutation9 [Brit 06]). This article suffers from clear limitations,

the most obvious being that it was not peer-reviewed and compares only 42 entries in the two

encyclopaedias. More revealing is the immediate media storm it raised and the pride of the

Wikipedia community in having immediately corrected the factual errors highlighted10. The

open community accent was on currency as much as on factual correctness. Wikis’ stress on

perfectibility of knowledge chimes well with scientific thought, but their current stress on cur-

7http://en.wikipedia.org/wiki/Linus\%27_Law Last accessed Sep 2011
8http://www.nature.com/nature/journal/v438/n7070/full/438900a.html Last accessed Sep 2011
9http://corporate.britannica.com/britannica_nature_response.pdf Last accessed Sep 2011

10http://en.wikipedia.org/wiki/Wikipedia:External_peer_review/Nature_December_2005 Last
accessed Sep 2011
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rency of information also make it problematic to cite [Wate 07] and evaluate wikis content over

time. The perfect balance between stable but obsolete information and current but uncapturable

is certainly difficult to achieve.

Much effort has been devoted to finding information quality metrics specific for Wikipedia

[Stvi 05, Stvi 08]. This is a challenging area of research as Wikipedia has, paradoxically, grown

beyond the possibility of independent and manual evaluations of a significant portion of its to-

tal content. Wilkinson and Huberman [Wilk 07] have tried to relate Wikipedia article quality

with edit numbers: more popular articles receive a higher number of edits and hence generally

become richer in content and more polished. Nielsen [Niel 07] has tried to use the number and

impact factor of scientific quotations as a proxy for article quality, finding frequency of citation

similar to scientific literature. Evaluation is more practical for specific content areas. Medi-

cal sciences have widely participated in Wikipedia and wikis evaluation, particularly to assess

their utility in teaching [Boul 06], but also as an information source for patients. Clauson et

al. [Clau 08] find existing drug information in Wikipedia mostly correct (80 factual elements

were checked), but not very complete. That is, when information existed it was correct, but

many entries lacked particular clinical indications. However, it found the score significantly

improved three months after. Similar high quality, but not complete coverage, was found in

the comparison of 25 biographical entries [Rose 06]. However limited in scope some of these

studies might seem, it is important to highlight that comparable quality evaluations for molec-

ular biology knowledge bases have not been extensive. Chapter 4 of this thesis will show that

disagreement between data sources can be dramatic.

2.3.3 Wiki viability

In addition to quality, quantity has its importance. Another main point in favour of openness

is that it can lead to mass collaboration. One of the most referenced examples is Nupedia,

the closed, professionally-curated ancestor of Wikipedia that stopped activity after collecting

only twenty articles in eighteen months of activity, where Wikipedia collected million of arti-

cles in an equivalent time scale. Initial research on what makes a wiki thrive has started with

a one-point-in-time analysis of several thousand wikis [Roth 07], observing interesting rela-

tions such as that while activity directly scales with content size, the number of users does

not seem to. In fact, user density (number of users per content page) might reduce the growth

of content [Roth 08]. Roth [Roth 07] also notes that, to attract voluntary content, topic ap-

peal is obviously important, which might confer an advantage to all-purpose projects such as

Wikipedia. An analysis of 360 medium size (400 to 20,000 users) MediaWiki-based wikis in

time [Roth 08] notes that “user activity correlates very strongly with wiki growth, not only in

terms of content production (which is to a certain extent unsurprising) but also new member

recruitment. The effect becomes stronger with wikis that are initially populated to a significant
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extent: the more users are actively editing, the more a wiki grows in content and population.”

The model described in Chapter 3 could be the basis for experimenting on the parameters that

make a wiki thrive. This work, though, does not aim at directly contributing to this very in-

teresting area of research, I limit myself to assume that mass collaboration is possible given

certain conditions.

2.3.4 Modelling wikis

There are few publications on modelling and simulating wikis. Authors such as Stuckman

and Purtilo [Stuc 09] advocate the modelling of wikis given that so many wikis present the

same distributions of editing and authorship. Troitzsch [Troi 08] developed an agent based

simulation of Wikipedia that models collaborative writing of text, authority, plagiarism and

how different regimes emerge when agents comply to or violate social norms. Crandall et

al. [Cran 08] created a simulation using Wikipedia historical data to quantify how shared in-

teractions (editing of the same article) could predict participants further actions. They find that

similarity of interests is a better predictor of future behaviour of a given user than direct social

interaction, that is, a person is more likely to share a future pattern of edits with people who

have similar interests than people who edited the same pages. This result may reflect the fact

that the majority of edits on Wikipedia are minor corrections which do not necessarily qualify a

person as interested in the page they have just edited, while belonging to a particular Wikipedia

community or portal gives a clearer indication of what they will edit next.

Xu et al. [Xu 08] represent “facts” as strings of varying length as opposed to true/false

values and they only evaluate their model visually, in the style of [Vieg 04] History Flow,

against a few Wikipedia articles. Xu et al. [Xu 08] also explore the impact of vandalism in

Wikipedia not only in simulation, but by the perplexing (to say the least) act of vandalising real

Wikipedia articles and then timing how long it took for someone to revert them. Apparently,

thanks to their efforts, Wikipedia users looking for “Spallation” in 2008 were exposed for an

entire day to a vandalised text while the researchers were waiting for someone to restore it.

2.3.5 Molecular biology wikis

Wikis have become popular in molecular biology for online writing of documentation and lab-

oratory protocols, such as in OpenWetWare11 with 20,000 pages and over 61 million views,

and their popularity has extended to data curation. Popular off-the-shelf wiki software such as

MediaWiki (or variants adapted to the task at hand) are being used to create editable knowl-

edge bases or to re-annotate archive data. Curation efforts using wikis are currently under way

in many molecular biology projects. Some are organism specific such as EcoliWiki for Es-

cherichia coli [Ecol 11] (Figure 2.4) , Xanthusbase for Myxococcus xanthus [Arsh 07] or the
11http://openwetware.org/wiki/Main_Page Last accessed Sep 2011
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Figure 2.3: The human glucokinase article from the Gene Wiki portal in Wikipedia.

The structured section on the right side of the page contains, among other data and

identifiers, the Enzyme Commission code for the protein reaction (EC 2.7.1.2) and

Gene Ontology terms to annotate the protein function.
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Figure 2.4: A screen shot of the E. coli glucokinase article on EcoliWiki. The upper

nomenclature table contains the Enzyme Commission code for the protein reaction

(2.7.1.2). In the bottom half of the page, the protein function is annotated using

not only Gene Ontology terms, but their provenance and evidence code too: the

reason for assigning the annotation, usually a wet lab experiment or the prediction

of a computational method.
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GeneWiki portal in Wikipedia for human genes [Huss 08, Huss 10] (Figure 2.3). Other wikis

tackle molecule resources, such as PDBWiki, the wiki branch of the PDB database, publicly

curating 3D protein structures [Steh 10]. In general, wikis that are extensions of existing schol-

arly communities or established knowledge bases have fared better than top-down approaches

such as WikiProteins [Mons 08]. WikiProteins pre-populated a task-specific wiki with mil-

lions of concepts from PubMed articles, EMBL, Swiss-Prot and Gene Ontology, but has not

seen much activity in the last three years according to the number of edits and editors in its

logs.

Wikis support data structuring using templates and embedding data tables in traditional

wiki articles, generating more easily machine-readable data, as shown in Figure 2.3 for the

Gene Wiki portal [Huss 08, Huss 10] a Wikipedia collection of pages on human genes and pro-

teins. Figure 2.4 shows how EcoliWiki has customised the MediaWiki software to structure

the data over several page tabs and multiple tables. WikiPathways [Pico 08] has customised

it further to allow in-line editing of graphical blob-and-arrow diagrams representing biologi-

cal networks (Figure 2.6). WikiPathways also supports the import and export of networks in

GenMAPP format [Dahl 02, Salo 07] through PathVisio. The use of standard formats is good

practice that can help integrating manual and automated curation in wikis.

Semantic wikis offer improved support for storage and editing of structured information.

Some initiatives have extended popular existing software, such as Semantic MediaWiki for

MediaWiki [Krot 06]. Other, like OntoWiki [Auer 06], have developed dedicated software: a

semantic wiki which supports fine grained data collection and in-line editing, shown in Figure

2.5. These wiki software have potential for collaborative curation, but have yet to be widely

adopted in molecular biology.

2.4 Current solutions for automated curation

Biology has seen extensive application of machine learning techniques to predict biological

function, profiting from the fact that evolutionary mechanisms (sequence conservation) make

inference of biological function possible across species. Obviously, inference of functional

conservation across species is not completely reliable. Here I concentrate on supervised ma-

chine learning techniques, where algorithms are trained on known examples, instances asso-

ciated with zero or more functional classes, and then evaluated on how well they can predict

other instances. Supervised learning must train on known data: knowledge bases and structured

wikis are perfectly positioned to provide machine-readable examples for automatic learning.

Most of these automated methods are evaluated and applied to batches of examples. For

example, in a closed system such as UniProt, the InterPro2GO method is applied to every

UniProt release (about once per month) to predict the Gene Ontology functional classification
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Figure 2.5: An OntoWiki screen shot showing a contacts management page. The

pencil and trash bin icons link to in-line editing of each entry. The left and right

frames contain automatically generated links to the ontology classes and properties

for the entries.
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Figure 2.6: A screen shot of the human hexose transport pathway in WikiPathways.

The network nodes and connections can be added, deleted or edited in the web

page and exported in various semantic (.owl), image (.svg, .png) or text formats

(.txt, .pdf).
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of all proteins [Burg 12]. EcoCyc and MetaCyc have similar procedures to try to complete

metabolic pathways [Kese 11, Late 12]. This is the typical workflow also used in chapter 4,

with the machine learning applied to a batch of protein examples. Chapter 5 of this thesis

explores how to integrate the machine learning method more into the curation workflow.

The resulting predictions can be used as they are or as the basis of further manual annota-

tion. However, in closed knowledge bases, but also in wikis, there is a general lack of visual

indication of provenance: external and internal links appear in the same URL style, there are

few clues about which elements in a page are manually curated, automatically curated or linked

from other databases.

Open systems also have automatic scripts for basic error checking, data import or link

updating (wiki bots), but, to my knowledge, they do not include more complex machine learn-

ing methods. The integration of machine learning methods, and their community acceptance,

would require clever methods to present and preserve manual curation alongside automatic

prediction, as well as the justification and provenance of the predictions. This interesting area

of research would require very good human-computer interaction design.

2.4.1 Predicting enzymatic function

Assigning enzymatic function to the proteins in a genome is one of the first essential steps

of metabolic reconstruction, important for biology, medicine, industrial production and en-

vironmental studies. Without precise annotation of the reactions a protein can perform, the

subsequent pathway assembly and verification becomes problematic [Pitk 10]. Metabolic flux

studies that aim to understand diseased states or biomass production become almost impossi-

ble. Unfortunately, at the current rate of genome sequencing and manual annotation, manual

curation will never complete the functional annotation of all available proteomes [Baum 07].

Tetko et al. [Tetk 08] used principal component analysis to show that the highest con-

tributors to the performance of various protein function prediction methods were InterPro

signatures. InterPro is an extensive database of conserved sequence signatures and domains

[Hunt 09], an umbrella database including twelve other signatures sources: Pfam, PRINTS,

PROSITE, SMART, ProDom, PIRSF, SUPERFAMILY, PANTHER, CATH-Gene3D, TIGR-

FAMs and HAMAP. Sequence signatures can have different lengths and tolerance for muta-

tions, ranging from short catalytic sites with a stringent requirement in terms of amino acid

type to entire protein domains composed of hundreds of amino acids. InterPro also provides a

publicly available browser based, web service and offline software to match signatures to any

genetic sequence (InterProScan [Muld 07]).

Multi-label classification, that is, the direct association of multiple functions with each

protein is particularly important or enzymes. A single enzyme can perform different reactions,

either due to the presence of multiple catalytic sites, or because of substrate promiscuity, or by
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regulation of a single site, and can hence be associated with multiple EC numbers.

Despite some known limitations, such as some inconsistencies between the rules set by

the nomenclature committee and the actual EC number definitions [Egel 10], the NC-IUBMB

Enzyme Commission (EC) nomenclature is used to define enzymatic reactions, as it is the

current standard for enzyme function classification. The EC nomenclature uses a four digit

code, such as EC 1.2.3.4 to represent an enzymatic reaction. These four digit codes defined

by the Enzyme Commission will be referred to from now on as “EC numbers”12. The first

three digits of an EC number represent an increasingly detailed definition of chemical reaction

catalysed, while the last digit represents the accepted substrates.

Multi-label learning can take multiple EC numbers, and their hierarchical relationship, into

account more coherently and effectively than creating an individual classifier for each class.

2.4.2 Sequence based methods

Other sequence based methods for the prediction of EC numbers include EFICAz [Tian 04],

ModEnzA [Desa 11] and PRIAM [Clau 03]. PRIAM uses a set of position-specific scoring

matrices (profiles) specific for each EC number to predict the existence of a given EC function

somewhere in a fully sequenced genome. EnzML, ModEnzA and EFICAz assign EC numbers

to individual protein sequences or fragments. ModEnzA builds hidden Markov model profiles

of positive and negative sequences specific for each four digit EC numbers, but partial or mul-

tiple EC numbers cannot be assigned. EFICAz can assign multiple EC numbers of exactly

three or four digits by weighting information from four sequence based prediction methods us-

ing functionally discriminating residues for enzyme families, pairwise sequence comparison,

Pfam enzyme families and Prosite patterns (EFICAz2 [Arak 09] is enhanced using Support

Vector Machine methodology). EFICAz, ModEnzA and PRIAM are further discussed and

quantitatively compared with EnzML in Section 4.2.7 on page 65.

2.4.3 Multi-label prediction

Multi-label learning has been successfully applied to predict FunCat protein functions in yeast

[Clar 02], GO functions in yeast [Baru 06], CYGD functions in yeast [Lanc 04], FunCat and

GO functions in yeast and plants [Schi 10] and other species [Vale 08], but had not yet been

extensively applied to the prediction of enzyme functionality. A multi-label support vector

machines methodology was used in the past to predict EC numbers but only up to the second

EC digit (e.g.. EC 1.2.-.-) and only on 8,291 enzymes [Cai 04]. Hierarchical classification was

also applied to about 6,000 enzymes from KEGG, obtaining over 85% accuracy in predicting

12It is important to note that “EC class” is often used in the literature to indicate the first digit of an EC number.
In this work the term “EC class” will not be used to avoid confusion with the term “class” (class label) used in
machine learning.



24 Chapter 2. Background

four digit EC numbers [Asti 08].

2.5 Active learning

Active learning is an umbrella definition for all methods that allow the machine learning algo-

rithm to choose the data from which it learns. The resulting methods can sometimes achieve

greater accuracy with fewer training labels, in particular for problems where unlabelled data

are cheap and abundant, but labels are expensive to obtain, for example because they require

an expert (“oracle” is the term sometimes used in the area to refer to either a human expert or

a computational system used as a source of reliable labels).

In molecular biology, basic information about instances, including gene and protein se-

quence, or even protein structure, is relatively easy to obtain. However, functional annotation

requires at best expert annotators and at worst carefully designed and expensive wet laboratory

experiments. For the enzyme curation scenario the two potential advantages of active learning

are to improve the speed and predictive performance of the machine learning, and to avoid re-

dundant manual curation effort. Active learning for large scale, multi-label prediction problems

is still an open area of research, to which this thesis will contribute a real life example.

2.5.1 Pool-based scenario

Settles [Sett 09] describes three possible scenarios of learner querying: 1. Membership query

synthesis, 2. Stream-based selective sampling and 3. Pool-based sampling. Membership query

synthesis requires the generation of artificial instances. For example, in character recognition,

this would include examples of partial or stretched characters. This would be complex to

execute for protein sequences and awkward for annotators, for which such artificial proteins

would hardly have concrete meaning.

In stream-based selective sampling, instances arrive as a stream, for example, in a sequen-

tial order from a sensor or from a text (in part-of-speech recognition). The learner has to

decide on the spot whether it is worth requesting the label for that example or not, accounting

for the possibility that better examples might come along later on. The assumption is that the

instances are uniformly distributed and the shape of their distribution is known in advance. In

our domain, proteins’ examples do appear and are annotated in time, but their distribution is

non-uniform and getting a new example might entail a wait of anything between minutes and

days.

In pool-based sampling a large pool of unlabelled examples is assumed to be available

at once (also called Selective sampling [Lind 04]). The basic assumption of pool-based ac-

tive learning is that there are numerous unlabelled examples in the domain (the pool), all with

attribute values that are easy to calculate. However, the labelling of an instance incurs a sig-
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nificant cost and labels can only be provided by a trained annotator. The pool instances are

then evaluated by some informativeness measure and ranked in the best order to be added to

the training set.

Many molecular biology curation problems fit this scenario, as much raw data is available

(for example, genetic sequences) but not annotated. In our enzyme domain, UniProt TrEMBL

contains 13 million unlabelled proteins, versus only half a million manually curated proteins in

UniProt Swiss-Prot. The sequence attributes (InterPro domains) are either already calculated

or easy to obtain with the InterProScan service [Muld 07]. However, labelling a protein with

its enzymatic class can take a curator from hours to weeks, including the time needed to read

the literature, examine the protein sequence and similar sequences or structures.

Pool-based active learning is a strategy where an algorithm first trains on a set of labelled

examples and then actively asks for the labels of other examples taken from the unlabelled pool.

Ideally, the method should choose the new example in such a way as to optimise the predictivity

of the trained algorithm and hence improve predictions on the remaining unlabelled examples.

This is done by calculating a utility or informativeness metric for each instance. This utility

metric is usually recalculated at each active learning step to account for the change in the

dataset (at each cycle one instance moves from the unlabelled to the labelled pool). This limits

the parallelisation of the curation task to one instance at a time. Thus until the most informative

instance has been labelled, the informativeness of the remaining unlabelled instances cannot

be recalculated and hence active learning cannot proceed (the “next-best” instance might be

suboptimal).

In more detail:

1. Input: a set of labelled (L) and unlabelled (U) instances (L can initially be empty).

2. For each instance u ∈U : calculate the utility metric

3. Find the unlabelled instance with best utility metric (usually the maximum): the query

instance q ∈U

4. Label q: q /∈U, q ∈ L

5. Train on L

6. Test on U and emit evaluation metrics

7. Go to step 2

2.5.2 Query strategy frameworks

Different strategies can be used to decide the informativeness of each example and hence find

the best query instance, the one that will hopefully improve the trained learner the most. The
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categories below are further detailed in [Sett 09].

Uncertainty Sampling [Lewi 94] presents a framework where the active learner queries the

instances it is least certain how to label. The best instance query x∗ becomes:

x∗ = argmax [−∑
i

Pθ(yi | x)logPθ(yi | x)]

where yi ranges over all possible labellings and Pθ is the posterior probability under the

model θ. This approach falls into the category of “confidence” based (or “uncertainty” based)

active learning, where the general strategy is to calculate a confidence for the prediction of

unlabelled instances, and then take the instances with lowest confidence to be added next. The

underlying assumption is that low confidence instances will add more information to the next

learning run. That is, if the classifier cannot confidently predict a certain example, it means

the classifier lacks information about the particular combination of attributes contained in that

example. Hence, providing a label for that example (that set of attribute values), will improve

the classifier performance on similar instances.

For binary classification, this is equivalent to selecting and labelling the instance with class

prediction confidence closest to 0.5, that is, the least confident in either discarding (0) or accept-

ing (1) the label. This approach is natural with probabilistic classifiers and is also applicable to

the K-Nearest Neighbours algorithm [Fuji 98, Lind 04]. In K-Nearest Neighbours the principle

becomes to allow each neighbour to vote on the class labels of x, with the proportion of these

votes representing the posterior label probability. In fact, the same neighbours vote method is

used in Mulan BR-kNN algorithm [Spyr 08] to emit a confidence for each predicted label.

Query-By-Committee [Seun 92] involves maintaining a number of competing models (the

committee) and using the instance on which they most disagree as query. This is particularly

suitable for algorithms such as Support Vector Machines. This method is also computation-

ally intensive as it can grow exponentially with the size of the training set [Haus 89], so the

committee size would become problematic with a dataset of the size of all existing enzymes.

Expected Model Change [Sett 08c, Sett 08a] select the instance that would most change the

current model if we knew its label as the query. This method is also computationally very

intensive as it involves calculating over all possible labels, or combinations of labels where

there are multiple labels.

Expected Error Reduction and Variance Reduction are similar to the above, but measure

how much the generalization error (or variance) of a method would change if an instance were

to be added. This also requires averaging over all possible labels for each unlabelled instance.
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Density-Weighted methods Density-Weighted methods are now discussed in more detail as

they overcome a problem of Uncertainty Sampling; what if the most uncertain instance is a

one of-a-kind and not representative of many other instances? Such an instance is unlikely to

improve a classifier greatly. For enzymes, where the class distribution is very skewed, there is a

high risk of choosing as best query instances one-of-a-kind examples. Expected Model Change,

Expected Error Reduction and Variance Reduction implicitly avoid the problem by using the

unlabelled pool U when estimating future error and output variance, but this is computationally

expensive. In addition, the input distribution can also be modelled explicitly.

Information density, well described in [Sett 08c, Sett 08b], uses the principle that instances

should be selected not only because they are uncertain, but also because they are representative

of the underlying distribution of unlabelled instances:

x∗ID = argmax (φA(x)×
1
U

U

∑
u=1

sim(x,x(u))β)

where φA(x) is the informativeness of x according to the same base query strategy A, for ex-

ample, uncertainty sampling. The second term weights the informativeness of x by its average

similarity to all other instances in the input distribution. The β parameter controls the relative

importance of this last density term. Settles [Sett 08c] also shows that careful caching of the

information density can make this approach as fast as basic uncertainty sampling, an essential

aspect for datasets in the order of million of protein instances.

Fujii et al. [Fuji 98] adapted this strategy for the K-Nearest Neighbours algorithm to select

the instance 1. least similar to the labelled instances and 2. most similar to the remaining

unlabelled instances. However, their algorithm is not immediately applicable to the enzyme

example. Their approach was developed for text mining and makes use of the role of a word in

a sentence, a role for which there is no obvious analog for a protein in the domain of biolog-

ical function. Various other K-Nearest Neighbours algorithms have been proposed for active

learning. Lindenbaum et al. [Lind 04] have worked on binary problems with a limited num-

ber of examples (maximum 1000) and attributes (maximum 35). In contrast, Jain and Kapoor

[Jain 09] have used K-Nearest Neighbours to tackle multi-class active learning on more sub-

stantial datasets (hundreds of classes with about 40 to 800 instances per class). This is still

significantly smaller than our challenge with four thousand classes and million of instances.

Jain and Kapoor consider the Euclidean distance as too simplistic and not reflecting the knowl-

edge we have about the data and the Mahalanobis distance too expensive for large multi-label

problems, so they define their own distance metric. However, any distance more complex than

Euclidean has the potential to become a bottleneck on million of instances. Chapter 5 will

present some methods trying to profit from the ideas described while remaining applicable to

very large multi-label problems.
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2.5.3 Active learning in biology

Active learning has very recently started to be applied to biological problems. Most of the

methods that have entered the arena come from the more mature areas of text-mining or image

processing. For example, generic text mining methods have been customised to support the

annotation of biological papers [Tsur 08, Wall 10]. Active learning for image recognition has

been cleverly applied to microscopy, to help researchers define which areas of, for example,

a tissue slice, are most informative for classification, and hence reduce the image scanning

time and the cell toxicity caused by the chemicals used to highlight the structures of interest

[Jack 09].

Osmanbeyoglu et al. [Osma 10] applied active learning to identify trans-membrane pro-

teins whose structure, if revealed experimentally, would be maximally predictive of others, an

important prediction given that trans-membrane proteins are extremely difficult and hence ex-

pensive to crystallise. They use a neural network algorithm they developed previously and ap-

ply self organising maps to cluster the unlabelled instances. They then compared four different

active learning approaches: random instance selection, node coverage (size of the self organis-

ing map node the instance belongs to), maximal entropy (proteins whose feature vectors fall in

the nodes with maximum confusion between trans-membrane and non trans-membrane labels

are selected) and an ensemble method which alternates node coverage and maximal entropy

selection at each iteration. Their domain is binary and has probably less issues with the lack of

parallelisation that active learning entails, as not many groups will tackle the crystallisation of

a difficult protein at the same time.

A random forest algorithm is used by Mohamed et al. [Moha 10] to predict which protein-

protein interactions should be experimentally tested to maximally improve the Homo sapiens

interactome. The results show that with as few as 500 protein-pairs labels selected actively, the

classifier achieved a higher precision and recall than with 3000 randomly chosen real protein-

pairs. Two of the active learning approaches they used (density based and uncertainty based)

are particularly interesting because they attempts to label “batches” of instances. The density

based approach applies K-means clustering and then gets a batch of desired instances in propor-

tion to the clusters sizes. The uncertainty based method picks the 250 instances with maximum

informational entropy. This method appears to be sensitive to how the first instance is chosen

(either randomly or by density). Their problem is defined as binary though, with couples of

proteins either interacting or not, so it is not immediately applicable to the multi-label enzyme

scenario.
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2.6 Guided learning

Active learning has two main disadvantages for enzyme curation [Atte 10b, Atte 10a, Atte 11],

the first is that most methods serve one instance at a time and hence are not easy to parallelise,

and the second is that most methods have serious limitations in finding rare classes, that is,

most EC numbers in our scenario.

Attenberg et al. [Atte 10a] propose an alternative to active learning to tackle class imbal-

ance. They show that under class skew asking experts to look for examples of the minority

class provides much better accuracy than classic active learning strategies such as uncertainty

based and query committee. They use the example of classification of web pages in acceptable

or objectionable content for online advertisers. They have a problem we do not have though,

namely, having to rebuild classifiers depending on advertisers preferences (objectionable could

be adult content for one advertiser and children content for another). In biology, experts gener-

ally work towards one shared classifier. Also, the task is binary (page objectionable can be true

or false) while our problem is multi-class. However, enzymes certainly have a high number

of rare classes. Attenberg et al. [Atte 10a] use examples of highly skewed classes with ratio

of positive examples over negative examples varying between 1/80 and 1/107. In Swiss-Prot,

out of 2,958 represented EC numbers, 2,806 have less than 1/1,000 examples and 2,037 have

less than 1/10,000 examples. Hence strategies to tackle class skew are most welcome to obtain

high accuracy and recall of rare EC numbers as well. In terms of evaluation metrics, multi-label

frameworks such as EnzML can produce the macro average recall metric which is particularly

sensitive to efficiency in predicting rare classes.

The guided learning approach might superficially seem at odds with active learning. Was

it not the aim to rank informative instances without knowing their classes? Guided learning

starts from the pragmatic intuition that class definitions do exist (such as the description of

EC number chemical reactions) and that an expert should be able to find one example, any

example, of that class. Most EC numbers have at least one example in UniProt, and for the EC

numbers without any example at all (or very few examples), it becomes even more important to

quantify the advantage of a guided learning strategy aggressively directed towards the coverage

of minority classes.

Attenberg et al. [Atte 10a] reports that guided learning dominates active learning even when

search cost is eight times the labelling cost. In other words, in their example scenario, it would

be more informative for a curator to spend eight minutes finding a positive example of an

undesirable web page than it would be to spend one minute labelling each of the eight pages

suggested by an active learning strategy. Turning again to the molecular biology scenario,

the effort necessary to an expert to find an example of an EC number decided a priori might

be equivalent or even lower than the time needed to label eight unknown protein sequences

provided by an active learning strategy. In terms of work organisation, guided learning would
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make it easier to recruit experts who are most knowledgeable or interested in a given class. It

would also fit better with the self-assigning of tasks common in research or in collaborative

knowledge curation.

Another idea to note is that, if reliable class distributions are not available, guided learning

can also be applied to attributes (or InterPro attributes set for enzymes). In our scenarios,

attributes are always available for any instance and so they could be used to build a strategy that

covers the maximum number of features, either in random order or in order of their frequency

in the dataset. Whatever the choice of guided learning (over classes as in Attenberg, or over

attributes, as in my approach) it is important to know whether the order of addition of the

labelled examples matters, to overcome the active learning limitation of only one ordering

leading to an optimum build up of accuracy.

2.7 Summary

This chapter summarises the challenge of annotating molecular biology entities, the social and

software environments currently supporting curation and the automated methods to push it

further. The next chapter will use modelling and real curation logs to explore in more detail

what defines a basic curation environment.
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A model of collaborative curation

3.1 Introduction

This chapter describes and evaluates a quantitative model of knowledge collection and curation.

The aim is to compare whether open and closed knowledge bases have different properties and

whether one or the other could be more suited to molecular biology curation. The basic model,

described in Section 3.2, represents the knowledge base as a set of true or false values, added

and edited by users following a fixed set of rules. This Boolean model, where an annotation

is represented as a true or false value is particularly suited to represent structured knowledge

bases or wikis. The model developed here is only one of many possible models. However

simplistic, it still makes the parameters under study explicit and highlights questions on what

is an editable knowledge base (or wiki), what makes it a functioning collaboration and what

role it has in a curation effort.

The second section (Section 3.3) evaluates the model against real molecular biology knowl-

edge bases, to understand what could be the cause of some of the dynamics emerging from the

individual work of independent volunteers. The evaluation builds on recent literature analysing

quantitative measures of existing wikis, especially Wikipedia as detailed in the background

Section 2.3. I have compared the distributions of user edits in my simulations with those of

Wikipedia [Voss 05] first, and then four other open or closed knowledge bases. The model

is shown to reflect real curation scenarios and it shows some of the emergent properties of

wiki-like systems. The validated model is then used to try and find a quantitative reason for

the particular long tail shape of authorship. The model tries to reproduce in a simple way the

collection process of the real systems considered, and approximates some aggregate measures

well, but I would like to stress that the model does not exclude more sophisticated causative

models or dynamics.

Since the model was inspired by wiki-like systems, I called the model implementation and

simulation engine WikiSim, for wiki simulation. The software implementation tracks the system

31
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states and all user (agent) actions during the simulation, allowing collection of aggregated

measurements or potentially very detailed analysis of user actions and edit wars in the style

of graphical history flows [Vieg 04]. The software has been implemented in Java. A MySQL

database provides storage for the simulation results. All the code, tests and documentation

is available under the University of Edinburgh GNU Public License on our Systems Biology

centre wiki1 and on the SourceForge website2.

Figure 3.1: The wiki model: adding and editing elements. In the top panel user 1 has

added her first knowledge element (which is correct) to the wiki. In the bottom panel

user 2 has edited the third knowledge element to reflect her internal knowledge,

thereby introducing an error in the wiki.

1CentreforSystemsBiologywikihttp://mook.inf.ed.ac.uk/twiki/bin/view.cgi/PublicCSB/
WikiSim

2SourceForgehttp://sourceforge.net/projects/wikisim/
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3.2 Model

The basic model of curation described here contains an editable knowledge base and some

software agents (called users from now on) which add elements to the wiki guided by a fixed

action plan sketched in Figure 3.1. The main elements of the curation model are defined below.

Knowledge A knowledge element k is a Boolean, having either a true (T ) value – meaning

that the element annotation is correct – or a false (F) value – meaning the annotation is incorrect

– There is a function attributing a value to each k, and the value can only be true or false:

ρ : k→ v k, v = {T,F } (3.1)

The system knowledge S is a finite set of knowledge elements. They represent the items in

the world that can be annotated:

S = {k1, ...,kn} (3.2)

S is the pool from which the elements are taken to create the user knowledge. The universal

knowledge K would be the set of all the system elements, all true in value (correct annotations):

K = {k1, ...,kn} ∀k ∈ K : ki = T (3.3)

In practice, the maximum correct system knowledge achievable at any simulation round is

the sum of the current user knowledge (see the section Community below on page 34).

Users A user u belongs to the set of users U = {u1, ...,um}. Each user u j has a personal set

of knowledge elements KU j taken from S. Since it is very difficult for a single person to know

everything in an extensive knowledge domain, each user knowledge is a subset of the system

knowledge:

KU j ⊂ S (3.4)

Since user knowledge in the real world can be incorrect, the knowledge elements of the

users can have true or false value (knowledge mistakes).

This, in addition to the fact that the knowledge of any two users can overlap:

∃i, j : KU j ∩KUi 6= /0, j 6= i (3.5)

means that users can “disagree” on the value of knowledge elements.
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User energy Each user has a given energy EU j, to represent two real life facts: 1. users only

have a limited time to spend on a wiki and 2. users enter and exit the curation community over

time. Each action (search, add and edit) consumes a fixed amount of energy. When the user

energy falls to zero, the user stops acting on the wiki.

Community The sum of the user knowledge is the community knowledge C:

C =
m

∑
j=0

KU j (3.6)

where m is the number of users. The sum here represents the result of the Boolean OR

operator over the ki values (true or false) held by each user.

This is the community’s potential maximum knowledge, if all the true values could be

summed seamlessly. In practice, the curation process is the collection of actions trying to bring

the users’ knowledge to the knowledge base. The knowledge base is where this knowledge is

collected and can be edited. Each user knowledge (and hence the community’s knowledge)

are set at the beginning of the simulation and cannot be changed. This is a strong assumption

because biological knowledge does change over time, the change being more substantial for

increasing time scales.

Wiki The knowledge base (or wiki) W is a set of knowledge elements that the users can add

or edit. The wiki is initially empty:

W = {} (3.7)

The wiki cannot become better than the sum of all the users’ correct knowledge (the com-

munity’s knowledge). In the best scenario, the wiki will get closer and closer to the commu-

nity’s knowledge over time because the users add to and edit the knowledge therein:

lim
t→∞

W =C (3.8)

User actions A user can add elements to the wiki or edit the elements therein, and he spends

energy in doing so. An add operation adds an element k to the set, it represents the addition

of both a knowledge element k and its value (annotation). An edit operation only changes the

value of a knowledge element already in the set (from true to false or from false to true).

3.2.1 Community and curation

We can partition the model parameters into community and curation parameters. Community

parameters model those aspects which depend on the user community, but not on the particular
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software or curation methodology used, such as: the number of users, how much the user

knowledge overlaps and the distribution of incorrect knowledge in the population, potentially

producing annotation mistakes. Curation parameters depend on the methodology or software

used for curation, such as the cost of each annotation action. If we split an annotation into a

“search” action and then either an “add” action if the annotation is missing, or an “edit” action

if the entry exists (but the annotator wants to change its value) then a paper and pen method

could be as quick as a computerised data entry method to write down one annotation, but the

cost of searching through thousands of records will usually be higher on paper.

As an extreme example, if data were annotated by hand and kept on small paper cards, there

might be no space available for edits, so that each edit might require recopying an entire card.

In this case the cost of an edit could be as high (or even higher) than the cost of adding a new

annotation. At the other end of the spectrum, in a curation software searching is fast and editing

an existing entry generally takes less time than adding a completely new one, so in the model

an “edit” action should cost less than an “add” action. Different curation methods can have

different parameter values to represent the relative cost of each annotation action component.

3.2.2 Probability distributions

The distribution of knowledge among users plays a crucial role in making the model realistic.

People’s knowledge and favourite topics tend to be long tail distributed in many real world

contexts [Ande 06]. Qualitatively, this corresponds to saying there are things everybody tends

to know (or is interested in) and then a long tail of more and more specialist knowledge. De-

scribing it in the style of Bentley et al. [Bent 09], users mostly copy other users’ preferences

while, more rarely, they “innovate” and dedicate their attention to more obscure topics.

This in turn could shape biological knowledge. For example, enzyme knowledge appears

to be long tail distributed with most enzymes belonging to few classes, this could be caused

by evolutionary reuse of protein domains, but it could also be in part an effect of the way

humans cultivate and extend knowledge. We start by re-examining and extending the known

and more rarely we tackle the relatively unknown. Contributions to Wikipedia tend to be long

tail distributed too, with less than 3% of the users responsible for more than 50% of the edits

[Capo 06, Voss 05]. In the model evaluation (Section 3.3) we will see that this seems to be

confirmed for molecular biology knowledge bases as well.

In more detail, probability distributions (uniform or power-law, compared in Section 3.5)

are used in this model to represent:

1. How users’ knowledge overlaps, and hence the uniform or power law shape of the com-

munity’s knowledge (compared in Section 3.3).

2. How errors in the user knowledge are distributed (uniform, in the absence of better esti-



36 Chapter 3. A model of collaborative curation

mates from literature)

3. The order in which the users act on the wiki (uniform). However, the users are uniformly

picked from the set of users still having energy. In case of a power-law distribution of

user energy, this means that some users have more energy than others and will continue

acting long after the other users’ energy is spent.

4. Which knowledge element – from his or her internal knowledge – the user acts on (uni-

form, in the absence of better estimates from literature).

5. How the user energy is distributed among the population of users (uniform or power-law,

compared in Section 3.3)

3.3 Model evaluation
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OMIM C 1986
Jan

2009
89 20,125 72,077 2.2 2.5% 472 2.3% 809 1.1%

Reactome C 2002
Nov

2008
100 219,728 10,247 1.1 1.1% - - 102 1.0%

EcoliWiki O 2005
Feb

2009
139 56,053 19,666 1.3 0.9% 48 0.1% 141 0.7%

Wiki

Pathways
O 2007

Feb

2009
420 10,852 4,192 1.2 0.3% 5.4 0.05% 10 0.2%

Table 3.1: Summary of the data and history of the knowledge bases under analysis

(from creation to 2009). O=open (editing open to everyone) and C=closed system

(expert curators only)

3.3.1 Simulation parameters

This section describes the different model parameters that are implemented in the simulations.

All the simulation parameters, such as the number of users, the user energy, the percentage of

errors or the action costs can be varied at will. This basic, parametrised model can already
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quantify how the parameters affect knowledge quality, for example by measuring the number

of correct items present in the wiki during or at the end of the simulation.

3.3.1.1 Basic model parameters

In the simulations described in this chapter, the following parameters were used, unless other-

wise stated:

• Number of simulation steps: 1000

• Number of users: 10

• Knowledge elements per user: 20% of the 100 system elements (either normally dis-

tributed or power-law distributed using a discrete Pareto distribution with shape parame-

ter=2.0 and scale parameter=1.0, truncated at 1,000)

• Percentage of mistakes in the user knowledge: 20% (5% to 80% for Figure 3.2)

• User energy: power-law distributed (using a discrete Pareto distribution with shape pa-

rameter=2.0 and scale parameter=1.0, truncated at 1,000)

• Action costs: add=3 energy units, edit=2 units, search=1 unit.

• Results are averaged for 100 simulation runs.

A power law function can be written as:

y(x) = kxα (3.9)

where k is the scale parameter and α is the shape parameter.

Data: open and closed molecular biology knowledge bases An analysis is executed on

36 years of knowledge collected by 738 authors in two molecular biology wikis (EcoliWiki

[McIn 12] and WikiPathways [Pico 08]) and two closed knowledge bases (OMIM [Ambe 09,

Ambe 11] and Reactome [DEus 11, Crof 11]). This data is then compared with the WikiSim

model simulations.

Table 3.1 summarises the age and size of the knowledge bases. The closed systems con-

sidered have had longer lives (OMIM: 23 years, Reactome: 9 years) than the open systems

(EcoliWiki: 4 years, WikiPathways: 2 years), since wikis have only recently entered molecular

biology. The knowledge bases range from 10,000 to 220,000 entries. An entry in a wiki system

corresponds to a wiki article or page: in EcoliWiki an entry is an E. coli gene; in WikiPath-

ways a biological pathway; in Reactome a molecule, reaction or pathway; in OMIM an entry

corresponds to a human gene and its genetic diseases. An edit here is defined as a unique act
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of creation, editing or revision, marked by an author name, a time stamp and a reference to

the edited entry. Wherever edits have been marked as minor or were executed by an automatic

script they have been excluded from the analysis.

3.4 Results

3.4.1 User errors

The simulation results shown in Figure 3.2 exemplify the potential of the model. It shows how

an increasing percentage of user mistakes affects the number of correct entries accumulated in

the wiki over time. In the figure, the 100% mark represents correct values for all knowledge

items assigned to the users in that simulation. The data on individual user actions gives a

possible explanation of why the wiki never reaches more than 60% of correct elements. The

reason is that the users spend most of their energy in edit wars over the most popular topics.

The model does not provide a way for users to reach consensus (or to become annoyed and

give up quarrelling).
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Correct knowledge elements when users' mistakes increase

Figure 3.2: Percent of correct knowledge elements accumulated over the course of

the simulation. The different series represent increasing percentages of mistakes

in the user knowledge. The vertical bars represent the standard deviation over 100

simulations.
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3.4.2 Authorship

This section of the model evaluation concentrates on two metrics which have been extensively

discussed for wikis, Wikipedia and other collaborative systems. The first metric is the number

of edits per author, that is, the number of knowledge base edits (text creation, change or revi-

sion) a user has authored. In Wikipedia, it has been measured that the distribution of number

of edited pages per author follows a long tail distribution, with few authors contributing to a

high number of pages and many authors only contributing to one or two pages (excluding auto-

mated wiki-bots and minor edits) [Voss 05, Orte 07a]. This metric is seen as a measure of how

dominated a wiki is by a small core of heavy contributors.

The second metric is the number of authors per entry, that is, the number of authors that

have edited a given knowledge base entry. In Wikipedia, the distribution of the number of

authors per page also follows a long tail distribution, with few pages having a very high number

of collaborating authors and many pages having only one (the creator) or two authors [Voss 05].

This could be viewed as a measure of how “collaborative” a knowledge base is or how certain

topics command more attention.

WikiSim vs Wikipedia Figure 3.3 shows the number of authors in the model versus the num-

ber of distinct articles they have authored. The same measure is presented by Voss [Voss 05]

for the 2004 German Wikipedia. Both the data and the simulation show the expected long tail

of authorship common to many collaborative endeavours. The power-law shape parameter is

1.3 in the simulation versus 1.5 in Wikipedia and could be used to further refine the model

parameters, if the objective were to model Wikipedia in particular.

WikiSim vs molecular biology knowledge bases An overview of the growth of the four

knowledge bases is given in Figures 3.4 and 3.5 which show, respectively, the edits and the

active authors over time (authors responsible for at least one edit in the month considered). In

more detail, Figure 3.5 shows that the four systems considered have comparable numbers of

active contributors, excluding a peak at about 100 authors for WikiPathways. This is quite a feat

for wikis which rely on unpaid contributors and have had relatively short lives. Also, despite

the different life spans, Figure 3.4 shows a rather regular increase in edits over time (that is,

close to the diagonal of the plot), with the exception of OMIM, which saw little development

for almost half of its lifetime before editing took off, possibly because of funding issues.

The aggregate authorship metrics – authors per entry and edits per author – which are long

tail distributed in Wikipedia, are found to be long tailed also in the four knowledge bases under

consideration (Figures 3.6, 3.7 and 3.8). In more detail, Figure 3.6 shows the number of authors

per entry while Figures 3.7 and 3.8 show the number of edits per author for the four systems.

The data for the number of entries (instead of edits) per author give very similar distributions
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Figure 3.3: Articles per author in WikiSim and Wikipedia. On the top plot: number

of distinct articles edited per author from a simulation with parameters as in Section

3.3.1.1. On the bottom plot: the same measure for Wikipedia presented in Voss

[Voss 05] (reproduced with permission). The power-law exponential factor is about

1.3 for the top plot, about 1.5 for the bottom plot. R2 is a measure of the regression

fit.
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Figure 3.4: Edits in time in the open and closed curation systems under analysis.

The x axis (time) is represented as a percentage of each knowledge base life to

ease the comparison. Zero represents the time of the first edit and 100% the time

of the last edit done on each knowledge base in the period considered.

(data not shown). The cumulative percentage plot in Figure 3.8 is marked with lines at 80%

for the authors and 20% for the edits to compare the systems with the so called 80-20 law (or

Pareto principle), which indicates that in many systems around 80% of the contributions come

from the top 20% contributors. In the systems considered the distribution seems even more

skewed, towards a 90-20 ratio.

These results complement the current discussion on the democracy of wiki-like systems

[Orte 07b, Orte 08, Kitt 07] by showing unexpected similarities on basic metrics between open

(editing open to everyone) and the closed systems (expert curators only).

This is the first time this style of analysis has been applied to non-wiki systems. The

simulation results in Section 3.5 suggest that knowledge overlap among authors can drive the

number of authors per entry in these systems (Figure 3.10), while the distribution of the time

the users spend on the knowledge base drives the number of contributions per author (Figure

3.9).

Is authorship data power-law distributed? Power law distributions are common in many

social, economical and biological data, with variants known in different disciplines as Pareto
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Figure 3.5: Active authors over time in the open and closed curation systems under

analysis. The x axis (time) is represented as percentage of each knowledge base

total life time to ease the comparison.

distribution, Lotka’s law, Zipf’s law, Bradford’s law, scale-free or simply long tail [Ande 06].

When the frequency of an event varies as a power of some attribute of that event, the frequency

is said to follow a power law:

y(x) = kxα (3.10)

where k is the scale parameter and α is a shape parameter that influences the length of the

typical “tail” of these functions.

I used the method in [Clau 09] to test whether the metrics are distributed in a way consistent

with a power-law distribution (Matlab scripts by Aaron Clauset) or a log-normal distribution

(Matlab scripts by Ohad Gal). Tables 3.2 and 3.3 show that, in short, the authorship data could

potentially fit both a power-law or a log-normal distribution.

In general, we can never completely confirm that some data comes from a power-law dis-

tribution and a low number of data points can make the analysis more difficult, especially for

high xmin (the lower data point for which the power-law distribution holds). In addition, the

same causative model can generate both a power-law or a log-normal distribution depending

on subtle differences [Mitz 04]. For this work the key aspect is that these metrics are either

power law or log normally distributed and not, for example, linearly or normally distributed,

so the data is generically defined here as long tailed.
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Figure 3.6: Number of authors per entry in the open and closed curation systems

under analysis (double logarithmic plot). The entries have been represented as per-

centage of total entries to ease comparison between knowledge bases of different

sizes. The WikiSim model was initialised with the parameters in Section 3.3.1.1.

3.5 Model refinement

This section describes how the use of power-law distributions in the model allows for a better

fit to real data and the discrimination between potential driving forces in the authorship dis-

tributions. Different parametrisations of the model were used to compare different hypotheses

regarding what causes the authoring metrics to be long tail distributed.

What drives the long tail authorship distribution? There has been much debate in wiki re-

search about whether the authorship distribution supported a more democratic view of Wikipedia

(written by many minor contributors) or a more closed view (Wikipedia is dominated by the

edits of a few authors). The data shows that both closed and open systems seem to have a long

tail distribution of edits.

The model is used here to discriminate between two hypothesis on why the authorship is

skewed. The first hypothesis is that the cause of the long tail distribution is the difference in

time that volunteers spend on wikis: some spend long hours, other only minutes on it. The
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Figure 3.7: Edits per author in the open and closed curation systems under analysis,

as a double logarithmic plot. The WikiSim model was initialised with the parameters

in Section 3.3.1.1.

second hypothesis is that the cause might be the overlap of user knowledge: many users have

overlapping interest in common topics, followed by a long tail of very specialist topics that

fewer and fewer experts (or hobbyists) are interested in editing.

Using the model we can compare these two causative mechanisms, but other mechanisms

cannot be excluded.

The comparison in Figure 3.10 shows that the long tail distribution of the number of authors

per entry is mainly driven by a long tail distributed user knowledge. If the user knowledge

were uniform, the authors per entry would become linear and not long tailed. In contrast, the

distribution of time spent on the wiki (the user energy in my model) does not seem to affect the

number of authors per entry.

So the number of authors per entry depends on how knowledge (or interest for certain

knowledge topics) is distributed in the population. It could be an artefact of the way we label

categories: a rare, one-gene-dependent disease will require fewer edits than a broad category

such as “cancer”. This becomes less likely though when each entry corresponds to an individual

protein in a compact genome (EcoliWiki). The stress researchers put on some classes is more
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Figure 3.8: Edits per author, as cumulative percentage, in the open and closed

curation systems under analysis. The black line perpendicular to the y axis marks

the 80% of authors, while the line on the x axis indicates the 20% of edits mark. A

series following exactly the 80-20 Pareto principle would cross the two lines where

they meet (as happens for the WikiSim model and WikiPathways). The WikiSim

model was initialised with the parameters in Section 3.3.1.1.

likely linked to applications (human or crop disease, industrial interest) or ease of study of the

given protein.

The opposite is true in Figure 3.9; the long tail distribution of the entries per author is

mainly driven by a long tail user energy. If the user energy is uniform, the number of entries

per author become approximately Gaussian, and not long tailed. Compared with the first plot,

the knowledge distribution among the users does not seem to have any impact on the entries

per author.

The existence of heavy contributors seems to be a property of different engagement of user

(whether paid or volunteers). Do all human populations contain a minority of more generous

contributors? It could also be a property of the intersection between homogeneous user en-

gagement and its interest for that wiki: for all we know a contributor of only one EcoliWiki
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Figure 3.9: Double logarithmic plot showing the number of entries per author de-

pending on the user energy distribution used in the model. The WikiSim models

were all initialised with the parameter values described in Section 3.3.1.1, but differ

by the use of either a uniform or a power-law distribution (shape parameter α = 2.0,

scale parameter xmin = 2.0) to assign the user energy or user knowledge, as spec-

ified in the legend.

entry may have contributed hundreds to Wikipedia (or vice versa).

In conclusion, to obtain a plausible simulation, both the user knowledge and energy have

to be long tail distributed.

3.6 Discussion

3.6.1 Community vs. system knowledge

In a given WikiSim simulation, if no user has the correct value for a certain knowledge item, the

maximum achievable community knowledge will be one correct element less than the system

knowledge. In this case, should the knowledge base content at any given time be compared

against the community or system knowledge? In other words, if no one knows better in the

community, should an incorrect annotation be deemed the best achievable annotation? If the

curation community comprised all human beings knowing about the topic and for a consistent

span on time, this might be acceptable. However, this is rarely going to be the case or be

provable. Hence, in these simulations, correctness has been compared to the system (ideal)

knowledge, that is, all annotations should be correct (true).
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Figure 3.10: The double logarithmic plot shows the number of authors per entry

depending on which probability distribution was used to assign the system knowl-

edge to the users. The WikiSim models were all initialised with the parameters in

Section 3.3.1.1, but differ by the use of either a uniform or a power-law distribution

(α = 2.0, xmin = 2.0) to assign the knowledge elements per user or the user energy,

as specified in the legend.

Technically, the knowledge base can reach its maximum knowledge in the course of a

simulation. In practice, this is not a realistic assumption: I know of no existing molecular

biology wiki or knowledge base that has suspended activity after being declared “complete”

because all possible contributors have transmitted all their knowledge. This could be the case

though for certain groups of records or very limited areas of research.

3.6.2 Similarity of closed and open systems

Purely from the dynamics analysed (authors per entry, edits per author, edits in time and ac-

tive authors in time) I could not find significant differences between open and closed knowledge

bases, even if the two wikis have gained the same, if not higher, number of contributors and lin-

early growing edits in a relatively short time compared to the closed systems. This could mean

that the differences between the two categories is not sharp: wikis can have a core of highly

committed editors generating edit dynamics similar to the full time curators in closed systems,

with especially visible impact in young systems such as the wikis analysed here (EcoliWiki

and WikiPathways). In the same way, closed knowledge bases such as OMIM and Reactome

can accept suggestions from external authors or briefly employ specialists which affect the edit

dynamics in the same way as the occasional contributors in wikis.
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Authors per entry Edits per author

Power law

fit

Fit α xmin % of data

points

above xmin

(number)

Fit α xmin % of data

points

above xmin

(number)

Reactome 0.46 1.23 1 100% (13) 0.67 5.62 1097 21% (5)

OMIM 0.26 1.36 11 60% (12) 0.34 1.62 151 56% (36)

EcoliWiki 0.5 1.32 2 82% (9) 0.82 2.17 50 37% (14)

Wiki

Pathways

0.63 1.69 66 33% (3) 0.55 1.69 3 26% (10)

WikiSim

model

0.24 1.26 4 80% (8) 0.13 1.73 1 100% (35)

Table 3.2: Power law fitting. A fitness >0.1 is consistent with the hypothesis that

the data comes from a power-law distribution. α is the exponent (shape parame-

ter) of the power-law distribution fitted on the data. xmin is the minimum data point

from which the power-law distribution holds. If more than 50% of the data points fit

the power-law distribution, the results have been underlined. The WikiSim model,

shown for comparison in the last row, was initialised with the parameter values de-

scribed in Section 3.3.1.1, but used power-law distributions with shape parameter

α = 1.5 and scale parameter xmin = 2.0 for user energy and user knowledge.

Another possible explanation is that the long tail distributions of authorship can be a gen-

eral phenomenon caused by preferential attachment [Capo 06, Mitz 04] in the knowledge. Suc-

cessful research topics receive more funding, attention and investigation, leading to more re-

vision and editing of the corresponding entries in the knowledge bases, and more availability

of experts and expert knowledge. Heavy tail distributions could also be caused by a “hidden”

variable, usually linked to time, which here could be the different age of the entries [Mitz 04].

An elegant solution is given by Bentley et al. [Bent 09] which formulates a general model to

produce long tail distributions, of which the preferential attachment is a special case. Adapting

the terminology to our domain: their model adds n new authors at each time step. A new author

has a certain probability (1−µ) of copying the choice of past authors (that is, to edit the same

wiki article or structured entry) or else, with a probability µ the author “innovates” and creates

a new entry. This reflects well the wiki authorship dynamics where authors join and leave the

knowledge base ranks over time. WikiSim does not explicitly model the turnover in the authors

pool, but represents it by giving authors a long tail energy (so that some authors stop acting

sooner) and long tail overlap of knowledge (so authors have a certain probability of “copying”
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Authors per entry Edits per author

Log

normal fit

µ σ CRB

µ

CRB

σ

RMS

of

error

µ σ CRB

µ

CRB

σ

RMS

of

error

Reactome 4.4 14.0 1.1 30.1 1.5E-08 5.1 4.6 0.1 0.7 3.6E-07

OMIM 4.0 7.6 0.4 5.8 4.0E-06 4.3 5.6 0.2 2.6 4.4E-05

EcoliWiki 2.8 7.7 0.7 10.9 2.2E-05 3.2 2.1 0.1 0.2 1.7E-04

Wiki

Pathways

2.3 6.8 0.8 10.3 2.0E-04 0.8 1.7 0.0 0.2 6.7E-03

WikiSim

model

4.7 7.4 0.7 10.9 5.3E-06 0.3 0.8 0.02 0.04 8.0E-02

Table 3.3: Log-normal fitting. µ and σ are the estimated parameters for the log-

normal distribution fitted on the data. CRB is the Cramer-Rao lower bound for the

parameter (ideally µ≥CRBo f µ and σ≥CRBo f σ). RMS is the root mean squared

error. If each CRB is lower than its corresponding parameter and the RMS of the

error is lower than 0.1 the results have been underlined as probably log-normal dis-

tributed. The WikiSim model shown for comparison in the last row was initialised

with the parameters in Section 3.3.1.1, but used power-law distributions with shape

parameter α = 1.5 and scale parameter xmin = 2.0 for user energy and user knowl-

edge.

other authors choice of the knowledge element to edit). In [Bent 09] authors would enter the

system over time in shifts, but never leave. In WikiSim authors are all there at the beginning

but leave the action one by one at different times. Both are approximations of real life author

turnover where authors can enter and leave at different times.

3.6.3 Data availability

There is a wealth of open questions in the area of wiki research. This initial exploration led

me to discover that, unfortunately, some of the more extensive and intensively manually cu-

rated knowledge bases of enzymatic function do not provide information regarding individual

authorship. At the same time, while wikis would provide the necessary data granularity, no

current wiki curates primary enzyme annotation. Enzyme Commission numbers and Gene On-

tology terms are simply imported or linked from primary knowledge bases such as Swiss-Prot,

KEGG or Reactome.
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3.7 Summary

This chapter has used an initial model of manual curation to explore the distribution of edits and

authorship in real molecular biology knowledge bases. The results show a surprising similarity

between open and closed systems in some of the measures related to “democracy” of content.

The model also demonstrates that users’ knowledge and users’ energy must be long-tail dis-

tributed to represent real knowledge bases. The next chapter will progress in the direction of

augmenting such manual annotation processes with automated prediction of enzyme function.

It will present a combination of data schema and multi-label machine learning algorithm that

offers high accuracy and can scale to million of proteins.



Chapter 4

Multi-label prediction of enzyme

function

Manual annotation of enzymatic functions cannot keep up with automatic genome sequencing.

In this chapter I explore the use of InterPro [Hunt 09] sequence signatures to predict enzymatic

function. The method described – called EnzML from now on – applies multi-label classi-

fication to enzymes represented as sets of InterPro signatures. Multi-label classification can

efficiently account for proteins with multiple enzymatic functions: 50,000 such annotations

exist in UniProt.

EnzML was evaluated using a standard set of 300,747 proteins for which the manually

annotated Swiss-Prot [Cons 11] and KEGG [Kane 10] databases have agreeing Enzyme Com-

mission (EC) [Bioc 99] annotations. EnzML achieved more than 98% subset accuracy (exact

match of all correct Enzyme Commission classes of a protein) for the entire dataset and be-

tween 87 and 97% subset accuracy in re-annotating eight entire proteomes: human, mouse, rat,

mouse-ear cress, fruit fly, the S. pombe yeast, the E. coli bacterium and the M. jannaschii

archaebacterium. To understand the role played by the dataset size, I compare the cross-

evaluation results of smaller datasets, either constructed at random or from specific taxonomic

domains such as archaea, bacteria, fungi, invertebrates, plants and vertebrates. The results were

confirmed even when the redundancy in the dataset was reduced using UniRef100, UniRef90

or UniRef50 clusters [Suze 07].

Also, multi-label machine learning is feasible in reasonable time (30 minutes to train on

300,747 instances with 10,852 attributes and 2,201 class values) using the MULAN Binary

Relevance K-Nearest Neighbours algorithm implementation (BR-kNN) [Spyr 08]. InterPro

signatures emerge from this exploration as a compact and powerful attribute space for the

prediction of enzymatic function.

51
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4.1 Methodology

4.1.1 Data sources

The protein sequence and Enzyme Commission (EC) [Bioc 99] annotation data was taken from

UniProt Knowledge Base [Cons 11] release 2010 12 (Nov-2010) consisting of Swiss-Prot re-

lease 2010 12 and TrEMBL release 2010 12, InterPro [Hunt 09] release 30.0 (Dec 2010),

KEGG [Kane 10] release 57.0 (Jan 2011). The InterPro release used contains 21,591 sig-

natures, 21,178 of which are present in UniProt. The complete set of 5,222 EC numbers and

their status (active, deleted or transferred) was downloaded from ExPASy’s ENZYME database

[Gast 03] (11-Jan-2011 release). All annotations using “deleted” EC numbers were removed

from the data; “transferred” EC numbers were substituted with their newly assigned EC num-

ber(s). The data was further processed using Ondex [Koeh 06, Lyse 09] and MySQL. The data

source content of EC and InterPro annotation is summarised in Figure 4.1.

The overlap between UniProt and KEGG is schematically represented in Figure 4.2, which

shows that the manually curated section of the UniProt Knowledge Base (Swiss-Prot) only

contains about half a million entries, versus the over twelve million entries awaiting manual

annotation in TrEMBL. The taxonomic breakdown shows an overall dominance of bacterial

annotation, in addition to a certain over-representation of vertebrates and under representation

of invertebrates, considering their estimated number of species in the tree of life. This distribu-

tion is not an artefact of the intersection, it is due to the underlying distribution of Swiss-Prot

and KEGG data.

4.1.2 Datasets

The EnzML data schema is shown in Figure 4.3, where each instance represents a protein

(identified by a UniProt Accession Number). Each protein can have zero or more class la-

bels in the form of Enzyme Commission (EC) numbers. Each instance can also have zero or

more attributes (features), each representing the presence or absence of one or more InterPro

signatures (protein domains, catalytic sites, sequence repeats etc.).

In order to execute the different evaluations presented in the Results section (Section 4.2,

a number of datasets have been created. The data format consists of a sparse Weka ARFF

(Attribute-Relation File Format) file supplemented by a MULAN XML file containing the

class label hierarchy. I made the Java code publicly available on SourceForge1.

The Swiss-Prot ./ KEGG dataset consists of all EC annotations agreeing in both Swiss-

Prot and KEGG, an annotation being a couple of the form [UniProt Accession Number, EC

number]. The set includes 300,747 proteins, 55% enzymes and 45% non-enzymes (see below

for a definition of “non-enzyme”). The Swiss-Prot ./ KEGG dataset has thus been submitted

1https://sourceforge.net/projects/enzml/
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Figure 4.1: A summary of the EC and InterPro content of UniProt, KEGG and other

datasets used in this chapter.
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Figure 4.2: The shared protein content of UniProt and KEGG. The circle represents

KEGG, the right rectangle represents Swiss-Prot (manually curated), while the left

rectangle represents TrEMBL (mostly automatically curated). The two rectangles

together constitute the UniProt Knowledge Base. The intersection between Swiss-

Prot and KEGG has been further expanded to show the distribution of taxonomic

groups. For legibility, the areas in the pseudo Venn diagram are not exactly propor-

tional to the number of proteins.

to two manual curations, in which none of the authors were involved. The join symbol (./) of

relational algebra has been used to represent that the set contains only annotation in agreement

between the two databases.

In the same way, the TrEMBL ./ KEGG dataset includes all annotations agreeing between

UniProt TrEMBL and KEGG. The TrEMBL ./ KEGG dataset is very extensive and varied, but

it has not been manually curated in TrEMBL. This dataset has been included in the analysis

not for the purpose of method evaluation, but to review EnzML performance on a large dataset

and to judge the internal consistency of TrEMBL ./ KEGG itself. The protein instances have

surprisingly few features, having an average of 3.55 InterPro signatures (attribute values) and

3.97 EC numbers (class labels, including incomplete EC numbers) per protein.

The proportion of proteins with no EC annotations ranges from 45% of the Swiss-Prot ./

KEGG dataset to 69% of the TrEMBL ./ KEGG dataset. These sets include proteins that have

been extensively studied and do not carry enzymatic activity (especially in the Swiss-Prot ./

KEGG dataset) as well as proteins not yet characterised as enzymes or belonging to still un-

known enzymatic classes (more probable in the TrEMBL ./ KEGG dataset). Due to the diffi-

culty of distinguishing between these cases, the “non” and “not yet” EC proteins are treated
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Figure 4.3: Data schema: protein instances, InterPro attributes, EC numbers. In

the data schema used each row represents one UniProt protein. An attribute value

is the presence or absence of an InterPro signature, here shown as a geometri-

cal shape. The class labels are one or more EC numbers, either accessible to the

learning algorithm (for training) or invisible (for testing and predicting). The exam-

ple shows the InterPro signatures associated with EC number 2.6.99.2 in UniProt

(pyridoxine 5’-phosphate synthase, vitamin B6 pathway). These three combinations

of five signatures compactly represent the 1,108 UniProt proteins having function

2.6.99.2.

as one class. This allows EnzML to emit a cumulative “no EC” prediction as an alternative

to the prediction of one or more EC numbers. A protein predicted as “no EC” could thus be

either a non-enzyme or a not yet characterised enzyme or belonging to a not yet characterised

enzyme class. For simplicity, I refer to this class as “non-enzyme” from now on. The EnzML

method can accept instances with an empty set of attributes, which account for 0.3% of the

Swiss-Prot ./ KEGG dataset and 1.7% of the TrEMBL ./ KEGG dataset. These proteins are

processed normally, but they are generally predicted as “non-enzymes” due to the fact that

most proteins without InterPro signatures do not have EC annotations. The datasets used also

include (and hence the method predicts) incomplete EC numbers, such as EC 1.-.-.- , EC 1.2.-.-

or EC 1.2.3.-.

The independence of the UniProt and KEGG curation cannot be determined by the annota-
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tions alone due to a lack of provenance meta-data. Curators in both institutions use a variety of

primary (experimental data and literature) and secondary (other databases) sources to assign an

EC annotation. However, out of the 1.8 million proteins annotated in both UniProt and KEGG,

about 30% have a disagreeing annotation, showing that the two knowledge bases creators have

different scientific opinions in many cases.

In order to evaluate the impact of the dataset size and taxonomic content on prediction, the

Swiss-Prot ./ KEGG dataset has been partitioned into taxonomic domains: archaea, bacteria

and eukarya, the latter further divided into fungi, invertebrates, plants and vertebrates. For

each taxonomic domain I have investigated the individual proteome having most proteins in

the Swiss-Prot ./ KEGG set: Methanocaldococcus jannaschii for archaea, Escherichia coli

(all strains) for bacteria, Schizosaccharomyces pombe for fungi, Drosophila melanogaster for

invertebrates, Arabidopsys thaliana for plants, Homo sapiens for vertebrates. Mus musculus

and Rattus norvegicus were also included in the analysis as second and third most represented

species overall (the first is Homo sapiens).

To examine the performance on each EC main class, the Escherichia coli dataset was

further divided into seven datasets each containing exclusively either the no enzyme anno-

tation (Ecoli NoEC) or EC annotations starting with a different main EC class (Ecoli EC1,

Ecoli EC2, ..., Ecoli EC6).

As an alternative to machine learning, EC labels could be directly assigned from InterPro

domains: the InterPro2GO file associates individual InterPro signatures with GO terms, which

in turn are mapped to EC numbers in the EC2GO file. To understand if EnzML is more accurate

than this simple transitive assignment, a dataset was created containing all the Swiss-Prot ./

KEGG entries annotated using the InterPro2GO and EC2GO lists provided by the UniProt FTP

website (the dataset is named InterPro2GO2EC).

Sequence redundancy

To analyse the performance of EnzML at different levels of sequence similarity I generated

other datasets using UniRef clusters. UniRef100 is a database of clusters of UniProt proteins

that are 100% identical in sequence (UniRef90 90% similar, UniRef50 50% similar in se-

quence). Each cluster has a representative (reference) protein sequence and a group of other

sequences similar to it. To measure the effect of sequence redundancy on the method, the

Swiss-Prot ./KEGG dataset was reduced to only its UniRef representative sequences (UniRef100

from Swiss-Prot ./KEGG, UniRef90 from Swiss-Prot ./KEGG and UniRef50 from Swiss-Prot ./

KEGG datasets) and cross evaluated.
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4.1.3 EC number distribution

Enzymatic classes are long-tail distributed in the main data sources, that is, some EC numbers

are very frequent among proteins while most EC numbers only rarely occur. The distribution is

very skewed (Figure 4.4), with roughly a 80-10 ratio: 80% of EC numbers annotate only about

10% of UniProt enzymes, while the remaining 20% most common EC classes annotate 90% of

UniProt enzymes (excluding the 45% of proteins with no EC annotation). The 2,825 most rare

EC numbers (80% of the total) only annotate 185,634 enzymes (about 10% of UniProt), and

731 EC numbers have less than 5 protein examples in UniProt. 277 EC numbers only have one

protein example in UniProt, which makes them non-predictable (either the unique exemplar is

only in the training set or it is only in the test set).
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% of EC numbers
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Distribution of Enzyme Commission numbers

Figure 4.4: Distribution of Enzyme Commission numbers among proteins. To com-

pare datasets of different sizes, the distribution is represented as cumulative per-

centage, starting with the most frequent EC number. The bottom left EC number is

the one with most proteins in the data set. The x and y axes are logarithmic. The

datasets in the legend are in descending order of size. If each EC number were

to annotate exactly the same proportion of proteins, the distribution would follow a

diagonal from the bottom left to the top right corner of the plot.
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4.1.4 Algorithm

The algorithm used throughout this work is BR-kNN [Spyr 08]. BR-kNN is a multi-label

adaptation of the traditional K-Nearest Neighbours using Binary Relevance. Binary Relevance

transforms the original dataset into as many datasets as the existing labels, each example be-

ing labelled as label=true if the label existed in the original example and label=false otherwise

(also called one-against-all or one-versus-rest approach). The MULAN version 1.2.0 imple-

mentation of BR-kNN [Spyr 08] used in EnzML makes sure the (Euclidean) distance between

neighbours is calculated only once, with considerable time savings on large datasets.
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Figure 4.5: Impact of the number of neighbours on the accuracy of the BR-kNN

algorithm. Examples for the archaea and plants datasets, chosen since they are the

best and worst performing small dataset by accuracy, respectively.

The best choice for the number of neighbours was k=1 as shown in Figure 4.5. BR-kNN

is fast on the data used: less than 30 minutes per fold of a 10-fold cross evaluation of 300,747

instances, on a dedicated machine with 2 GHz CPU and 4 GB RAM (14 hours to predict over a

million instances). As baseline the Zero Rule algorithm was used, which assigns the majority

class (non-enzyme) to every instance 2.

2A Zero Rule classifier observes the class attribute values and outputs the label that is most commonly found in
the given dataset. It does take into consideration the non-class attributes and it will predict the mean for numeric
labels or, in case of nominal labels such as EC numbers, the mode.
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4.1.5 Evaluation metrics

The evaluation metrics are either based on a single round of evaluation (train-test) or, for cross

evaluation, they are the average of a number of cross-evaluation rounds. After examining the

standard deviations, the datasets with less than 40,000 proteins were submitted to two rounds

of 10-fold cross evaluation, training on 9/10 of the data and testing on the remaining unseen

1/10 (one round of cross evaluation for bigger samples). Among the performance metrics

presented, the average value of subset accuracy is particularly significant: it is a strict measure

of prediction success, as it requires the predicted set of class labels to be an exact match of

the true set of labels [Tsou 07]. For example, if a protein has these four EC class labels: [EC

1.-.-.-, EC 1.2.-.-, EC 1.2.3.- and EC 1.2.3.4], and it is assigned as prediction only the three first

labels: [EC 1.-.-.-, EC 1.2.-.-, EC 1.2.3.-], this prediction would be considered as completely

incorrect, because it misses the last label.

Where computable, also micro and macro metrics are reported. In this context micro aver-

aging (averaging over the entire confusion matrix) favours more frequent EC numbers, while

macro averaging gives equal relevance to both rare and frequent EC numbers. Hence a pro-

tein will affect the macro-averaged metrics more if it belongs to a rare EC class. Example

based metrics consider how many correct EC predictions have been given to each individ-

ual protein example. The full mathematical form of all metrics is defined by Tsoumakas et

al. [Tsou 10, Tsou 07]. The best achievable value of all these measures is 100% when all in-

stances are correctly classified. Where averaged, the metrics are presented with plus and minus

standard deviation marks.

4.1.6 Statistical significance

To judge the difference between sets of results, the p-value at 5% confidence was used and

calculated as follows. If the t-statistic is:

t =
X−M

sd√
n

where X is the average (and sd the standard deviation) of the reference set of samples, M is

the average of the other set of samples to be compared and n is the number of samples in both

sets, the p-value becomes:

p− value = tdist(abs(t),r, tails)

where r are the degrees of freedom (equal to n− 1). Here a two tailed hypothesis is con-

sidered, so tails equals 2. tdist returns the probability density function for the t-distribution,

calculating:
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Γ((r+1)/2)√
πrΓ(r/2)

(
1+

t2

r

)−r+1
2

where Γ is the Gamma function and r are the degrees of freedom. If the p− value is lower

than 5%, the confidence that the samples come from different underlying distribution is higher

than 95% and hence the two samples are declared significantly different.

4.2 Results

4.2.1 Whole, taxonomic and random datasets

The first set of experiments address the ability of EnzML to predict EC numbers using Inter-

Pro signatures by cross evaluation. The cross-evaluation results are summarised in Figure 4.6

(additional metrics in Figure 4.11 on page 67). The total dataset Swiss-Prot ./ KEGG achieves

98% (±0.1% standard deviation) subset accuracy (perfect match of all enzymatic classes of a

protein). For comparison, the Zero Rule algorithm achieves 45% ±0.2% subset accuracy.

To understand whether taxonomically related proteins were better at predicting proteins

in their own taxa, the Swiss-Prot ./ KEGG dataset has been subdivided into archaea, bacteria

and eukarya (further divided into fungi, invertebrates, plants or vertebrates). The average clas-

sification accuracy after cross evaluation of each taxonomic dataset was then compared with

sets of the same size as each taxonomic set, but comprising proteins picked at random from

Swiss-Prot ./ KEGG.

The results in Figure 4.6 show that the prediction accuracy generally increases as the dataset

size increases. Excluding distantly related species does not seem to dramatically improve re-

sults: only the archaea and bacteria sets significantly outperform a random set of the same

size, but they cover a reduced set of enzymatic functions compared to the full set. The plants,

invertebrates, fungi and vertebrates sets are not significantly different from a random set of the

same size, while the eukarya’s dataset accuracy is significantly different but lower.

4.2.2 Sequence redundancy reduction

To evaluate the impact of the sequence redundancy reduction on the method, a cross evaluation

was executed on the three sets of proteins derived from Swiss-Prot ./ KEGG by keeping only

the UniRef reference entries (Swiss-Prot ./ KEGG from UniRef100, Swiss-Prot ./ KEGG from

UniRef90 and Swiss-Prot ./KEGG from UniRef50). Hence the Swiss-Prot ./KEGG UniRef50

dataset contains only one representative sequence per each 50% similarity cluster. When the

dataset is submitted to 10-fold cross evaluation, the nine tenths of sequences that make up the

training set are all less than 50% similar to the sequences in the test set (the remaining 10th).
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Figure 4.6: Cross evaluation over taxonomic and random datasets. The plot com-

pares the subset accuracy between taxonomic datasets and random sets of the

same size. The rightmost point of the diagram is the whole Swiss-Prot ./ KEGG

dataset. The y axis (accuracy and recall) starts at 70%. An asterisk indicates signif-

icant difference in accuracy (with p-value at 5%) between the taxonomic and random

datasets below.

The cross-evaluation results of the three sets of reference proteins (UniRef100, UniRef90

and UniRef50) derived from Swiss-Prot ./ KEGG are shown in Figure 4.7. The results are

robust and not significantly affected by the reduction to UniRef100 sequences, not even when

clustering at 50% sequence similarity, despite losing 80% of the sequences. This might be

because, in spite of the dramatic reduction in the number of sequences in the set, only 4% of

the EC numbers and 3% of the InterPro signatures are lost, as shown in Figure 4.8.

4.2.3 Proteome re-annotation

The performance obtained by cross evaluating the entire Swiss-Prot ./ KEGG dataset is repre-

sentative of the success that can be expected on a metagenomic sample, especially one with a

high bacterial content, as suggested by the high bacterial content in Figure 4.2. I hence exe-

cuted another set of experiments to evaluate the performance of EnzML on annotating individ-

ual proteomes. Each experiment: 1. excluded the chosen species from the Swiss-Prot ./ KEGG

dataset, 2. trained on the remaining data, 3. re-annotated that species’ proteome (as if it were
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Figure 4.7: Cross evaluation on UniRef reference sequences. The reference

sequences are derived from Swiss-Prot ./ KEGG using UniRef100, UniRef90 or

UniRef50 clusters. The values are shown as difference to the corresponding value

for the entire Swiss-Prot ./ KEGG dataset.

from a newly sequenced genome), and 4. compared the predictions with the existing anno-

tations. This is sometimes referred to as jackknife evaluation. Figure 4.9 shows that EnzML

can re-annotate an entire proteome with subset accuracy starting at 87% for A. thaliana and

reaching 97% for E. coli.

To gauge the predictive power of a single species, the inverse was also attempted: to re-

annotate the entire Swiss-Prot ./ KEGG dataset based on a single proteome. This inverse exer-

cise (Figure 4.10) shows that up to 88% of proteins, and more than a third of the EC numbers,

can be re-annotated correctly in the Swiss-Prot ./ KEGG dataset (minus E. coli) if the training

occurs on possibly the most studied species in molecular biology, E. coli. This suggests a high

level of evolutionary conservation of core metabolism across species.

4.2.4 Comparison with InterPro2GO2EC and TrEMBL

EC labels could also be directly assigned from InterPro domains using the InterPro2GO and

EC2GO lists. As shown in Figure 4.11, this method has much lower accuracy (80%) than

EnzML (97%) on the same Swiss-Prot ./ KEGG dataset.
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Figure 4.8: UniRef datasets statistics. Reduction in the number of protein instances,

InterPro attributes and EC numbers when the Swiss-Prot ./ KEGG dataset is re-

duced to its UniRef representative sequences. The values are shown as difference

to the corresponding value for the entire Swiss-Prot ./ KEGG dataset.

4.2.5 Testing on an independent dataset

To assess computational performance, EnzML was also trained on Swiss-Prot ./ KEGG (the

right semicircle in Figure 4.2 on page 54 on page 54) and tested on the diverse and extensive

(1,099,321 proteins), but not intensively manually curated, TrEMBL ./ KEGG dataset (the left

semicircle in Figure 4.2 on page 54). Figure 4.11 compares the performance on the TrEMBL ./

KEGG dataset with the cross-evaluation performance on Swiss-Prot ./ KEGG and the cross

evaluation on the whole of Swiss-Prot.

The loss of subset accuracy on the TrEMBL ./ KEGG dataset is not due to a limitation

in EnzML, but more to the sheer variety and low internal consistency of TrEMBL ./ KEGG.

The loss of accuracy on the TrEMBL ./ KEGG set cannot be accounted for by loss of rare

EC numbers: classes existing in TrEMBL ./ KEGG but not in Swiss-Prot ./ KEGG only affect

about 7,600 proteins out of over a million. However, Swiss-Prot ./ KEGG only contains half

of the InterPro domains existing in TrEMBL ./ KEGG (see Figure 4.1). InterPro domains not

present in the training set (Swiss-Prot ./KEGG) cannot help in predicting proteins in the test set

(TrEMBL ./ KEGG). This affects about 76,000 TrEMBL ./ KEGG proteins and could account

for the reduction of subset accuracy from 98.3% (Swiss-Prot ./ KEGG cross evaluation) to

90.7% (train on Swiss-Prot ./ KEGG and test on TrEMBL ./ KEGG).

To further investigate the quality of the predictions emitted for TrEMBL ./ KEGG I com-
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Figure 4.9: Reannotation of individual species’ proteomes. The classifier is trained

on the Swiss-Prot ./ KEGG dataset (minus the species to be predicted) and then

used to predict each species’ proteome. The x axis (accuracy and recall) starts at

65%. There are no standard deviation bars since no randomisation is involved: each

value represents one experiment (one species excluded from training and used as

the test set).

pare the number of EC digits of the predictions with the number of digits in the correct EC

number annotations (Figure 4.12). As desirable, the proportion of predicted four digit EC

numbers appears to be in line with their proportion in the true dataset. The higher the num-

ber of digits, the more specific the prediction, for example: EC 1.-.-.- only provides a generic

enzymatic classification (oxidoreductases), while EC 1.2.3.4 defines the catalytic functionality

down to the substrate. The third EC number digit (sub-subclass) defines the type of substrates

(with oxygen as acceptor). The fourth EC number digit specifies the exact substrate as oxalate.

4.2.6 Prediction errors

A more detailed analysis of the prediction errors was executed using the E. coli dataset. The

predictions were obtained by training on the Swiss-Prot ./ KEGG dataset minus all E. coli

strains (286,938 instances) and predicting all strains of E. coli (13,800 instances). Figure 4.13

represents the predictive accuracy by main EC class. The highest accuracy is achieved for

classes EC 6 and EC 2, while the lowest accuracy is recorded for classes EC 1 and EC 4. Thus

the errors are not homogeneously distributed among EC numbers. Classes EC 5 and 6 (and no
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Figure 4.10: Re-annotation of the entire Swiss-Prot ./ KEGG dataset training on

individual species’ proteome. The classifier is trained on a single proteome and

then used to predict all the other species. The dashed line at 45% of accuracy

represents the baseline of subset accuracy than would be obtained if all proteins

were simply classified as non-enzyme. There are no standard deviation bars since

no randomisation is involved: each value represents one experiment (one species

is used for training and all other species are used as the test set).

EC) are not affected by a high number of errors despite being the most frequent, while classes

EC 1 to EC 4 are more affected.

Table 4.1 shows the most common mistakes by main destination EC (wrong EC) and source

EC (true EC). Out of the predictions of the 13,800 E. coli proteins, the most common mistake

is the attribution of a class EC 3 to 85 proteins that are in fact non-enzymes. When all four

EC digits are considered, the most common error for the classifier is the classification as non-

enzymes of sixteen EC 3.6.3.33 enzymes (Vitamin B12-transporting ATPase). The second

most common error was to classify as EC 2.5.1.18 eleven proteins that are in fact non-enzymes

in Swiss-Prot and KEGG. However, the vast majority of errors is spread across a variety of EC

numbers. There is no higher incidence of mistakes in less frequent classes.

4.2.7 Comparison with other EC prediction methods

This sections presents a quantitative comparison with some well known methods to predict

enzymatic function: PRIAM [Clau 03], ModEnzA [Desa 11] and EFICAz [Tian 04, Arak 09].
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Wrong EC True EC Errors % of errors

EC 3 no EC 85 24%

EC 2 no EC 78 22%

no EC EC 3 52 14%

EC 1 no EC 42 12%

EC 4 EC 5 16 4%

no EC EC 1 13 4%

EC 6 EC 2 12 3%

EC 4 no EC 12 3%

EC 4 EC 2 11 3%

EC 2 EC 3 7 2%

no EC EC 2 6 2%

EC 3 EC 5 4 1%

EC 5 no EC 4 1%

EC 4 EC 3 4 1%

EC 2 EC 4 4 1%

EC 3 EC 4 4 1%

EC 1 EC 5 3 1%

no EC EC 6 2 0.6%

Table 4.1: Most frequent errors in the classification of E. coli proteins by their main

EC class (true and predicted).
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Figure 4.11: The results of the internal cross evaluation of the entire Swiss-Prot ./

KEGG and Swiss-Prot datasets are compared with the direct transitive annotation

using InterPro2GO and GO2EC lists. The results of training on the Swiss-Prot ./

KEGG dataset and testing on the TrEMBL ./ KEGG dataset are also included. The

x axis (accuracy, precision, recall) starts at 40%.

4.2.7.1 PRIAM

PRIAM [Clau 03] was designed to predict the overall metabolism of an organism, indicating

whether particular enzyme functionalities were encoded in the genome, rather than assigning

functions to individual genes. A gene-oriented version of PRIAM was introduced in 2006 to

address this task. In contrast, EnzML is designed to associate EC numbers with individual

genes or gene fragments.

Table 4.2 compares the performance of PRIAM and EnzML in recognising EC numbers

in a dataset. EnzML improves on PRIAM results on both recall (sensitivity) and true negative

rate (specificity), for all genomes but E. coli, where specificity is higher, but recall is the same

as PRIAM and lower than the KEGG Orthology.

ModEnzA and EFICAz EnzML improves on ModEnzA [Desa 11] by supporting the predic-

tion of multiple EC numbers for a protein, and on EFICAz [Tian 04] by being able to assign

multiple EC numbers of any number of digit. EFICAz2 [Arak 09] improves the precision of

EFICAz on test sequences having less than 30% similarity to the training set, and has not been
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aphidicola
87% 80% 86% 91% 99% 98% 98%

E. coli 89% 91% 92% 88% 99% 88% 93%

H.

influenzae
88% 93% 84% 91% 99% 95% 97%

M.

genitalium
93% 95% 86% 87% 99% 96% 94%

M.

pneumoniae
91% 95% 85% 87% 99% 96% 93%

Table 4.2: Comparison between PRIAM, KEGG Orthology and EnzML. The data

for columns 1-5 (PRIAM jackknife and KEGG Orthology) are taken from [Clau 03],

where the original caption reads: “Specificity and sensitivity of PRIAM-based en-

zyme detection in five complete genomes, using SWISS-PROT annotation as a

standard. The RPS-BLAST E-value was set at 10–30. Jackknife analysis was per-

formed with PRIAM profiles in which sequences from the corresponding genome

were omitted. Specificity and sensitivity of KEGG Orthology assignments (re-

trieved from http://www.genome.ad.jp/kegg/kegg2.html; 10,25) were calculated sim-

ilarly against SWISS-PROT for comparison.” Columns 6-7 contain EnzML results

from leave-one-proteome-out experiments (jackknife) as detailed in Table 4.9 with

the addition of Haemophilus influenzae and Mycoplasma genitalium data. The high-

est specificity value for the row is underlined. The highest sensitivity value is in

bold.
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Figure 4.12: Comparison of the EC digits in the predicted and actual EC numbers

for the TrEMBL ./ KEGG dataset. All predictions = all the EC annotations emitted

by training on Swiss-Prot ./ KEGG and predicting the unlabelled TrEMBL ./ KEGG

(true positives, true negatives, false positives, false negatives). Correct predictions =

only the predictions corresponding to true, correct annotations existing in TrEMBL ./

KEGG (true positives and true negatives). Wrong predictions = false positives and

false negatives.

evaluated separately from EFICAz.

Tables 4.3 (continued in Tables 4.4 and 4.5) compare the recall (sensitivity) and true nega-

tive rate (specificity) of various methods in predicting EC numbers and assigning EC numbers

to sequences. The prediction performance published by Desai et al. [Desa 11] for one eukary-

otic and three bacterial genomes are compared to the corresponding EnzML results.

EnzML shows higher recall (sensitivity) for all genomes presented, the only exception be-

ing the recall of EC numbers (EC number sensitivity row) in E. coli where ModEnzA Tier I+II

= 91.1% while EnzML is only 88.5%. However, for the same species, the recall/sensitivity of

E. coli sequences has EFICAz=86% and ModEnzA=89-92% while EnzML has a much higher

97%. EnzML also exhibits a very high true negative rate (specificity). For E. coli sequences:

EFICAz 81%, ModEnzA 85-87%, EnzML 99.9%, in addition to high overall precision (98%)

and accuracy (97%). In addition, despite acting on multi-label data, ModEnzA and EFICAz

use metrics appropriate for binary class data, further complicating the comparison [Soko 09].
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Methods

EFICAz

(from

[Desa 11])

ModEnzA

(Tier I)

(from

[Desa 11])

ModEnzA

(Tier I+II)

(from

[Desa 11])

EnzML

Annotation

Benchmark
KEGG (Nov

2010)

KEGG (Nov

2010)

KEGG (Nov

2010)

Swiss-Prot (Dec

2010) ./ KEGG

(Jan 2011)

Training

Data

Swiss-Prot,

TrEMBL,

KEGG (2004)

Swiss-Prot,

ENZYME (Jan

2010)

Swiss-Prot,

ENZYME (Jan

2010)

Swiss-Prot (Dec

2010) ./ KEGG

(Jan 2011)

E. Coli

Sequences 856 (1051) 892(1021) 919 (1082) 13,800

Sensitivity 86.11 89.73 92.45 97.8 (A)

Specificity 81.44 87.36 84.93 99.9 (B)

Precision 98.1 (C)

Accuracy 97.3 (D)

EC numbers 647 (728) 648 (697) 683 (775) 927

Sensitivity 86.26 86.4 91.06 88.5 (E)

Specificity 88.87 92.96 88.12 99.9 (F)

Precision 93.0 (G)

Table 4.3: Comparison between methods to predict EC numbers: ModEnzA, EFI-

CAz and EnzML. Data for columns 1-4 was taken from Supplementary Table 3 in

[Desa 11], where the original caption reads: “Genome-wide enzyme identification

for three bacterial genomes (E. Coli , B. Aphidicola and M. Pneumoniae) and one

eukaryotic genome (P. Falciparum) by ModEnzA and EFICAz using KEGG anno-

tations as a benchmark. Numbers within parentheses indicate the total number of

sequences or EC numbers identified by each method.” The EnzML column con-

tains data from leave-one-proteome-out experiments (jackknife). For example, for

the E. Coli rows, all E. Coli proteins belonging to all strains were excluded from the

Swiss−Prot ./ KEGG training set and used as the test set. The metrics presented

(as a percentage) are: (A) Example based recall (sensitivity by sequence), (B) Ex-

ample based specificity (specificity by sequence), (C) Example based precision, (D)

Subset accuracy, (E) Macro-averaged recall (sensitivity by EC class), (F) Macro-

averaged specificity (specificity by EC class), (G) Macro-averaged precision. The

highest value for each row is highlighted in bold.
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Methods

EFICAz

(from

[Desa 11])

ModEnzA

(Tier I)

(from

[Desa 11])

ModEnzA

(Tier I+II)

(from

[Desa 11])

EnzML

Annotation

Benchmark
KEGG (Nov

2010)

KEGG (Nov

2010)

KEGG (Nov

2010)

Swiss-Prot (Dec

2010) ./ KEGG

(Jan 2011)

Training

Data

Swiss-Prot,

TrEMBL,

KEGG (2004)

Swiss-Prot,

ENZYME (Jan

2010)

Swiss-Prot,

ENZYME (Jan

2010)

Swiss-Prot (Dec

2010) ./ KEGG

(Jan 2011)

B. Aphidicola

Sequences 258 (273) 262 (271) 263 (273) 1,514

Sensitivity 93.81 95.27 95.63 99.5 (A)

Specificity 94.5 96.67 96.33 99.9 (B)

Precision 99.5 (C)

Accuracy 98.8 (D)

EC numbers 227 (238) 220 (229) 220 (233) 368

Sensitivity 91.53 88.7 88.7 97.5 (E)

Specificity 95.37 96.06 94.42 99.9 (F)

Precision 98.0 (G)

Table 4.4: ModEnzA, EFICAz and EnzML comparison continued. Same caption as

Table 4.3. The highest value for each row is highlighted in bold.
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Methods

EFICAz

(from

[Desa 11])

ModEnzA

(Tier I)

(from

[Desa 11])

ModEnzA

(Tier I+II)

(from

[Desa 11])

EnzML

Annotation

Benchmark
KEGG (Nov

2010)

KEGG (Nov

2010)

KEGG (Nov

2010)

Swiss-Prot (Dec

2010) ./ KEGG

(Jan 2011)

Training

Data

Swiss-Prot,

TrEMBL,

KEGG (2004)

Swiss-Prot,

ENZYME (Jan

2010)

Swiss-Prot,

ENZYME (Jan

2010)

Swiss-Prot (Dec

2010) ./ KEGG

(Jan 2011)

M.

Pneumoniae

Sequences 112 (149) 114 (139) 114 (139) 297

Sensitivity 84.84 86.36 86.36 97.7 (A)

Specificity 75.16 82.01 82.01 99.9 (B)

Precision 94.3 (C)

Accuracy 95.2 (D)

EC numbers 91 (122) 102 (122) 102 (122) 191

Sensitivity 79.82 89.47 89.47 95.6 (E)

Specificity 74.59 83.6 83.6 99.9 (F)

Precision 92.8 (G)

P.

Falciparum

Sequences 296 (480) 321 (415) 327 (431) 1,975

Sensitivity 54.91 59.55 60.66 97.9 (A)

Specificity 61.66 77.34 75.87 99.9 (B)

Precision 99.9 (C)

Accuracy 96.0 (D)

EC numbers 186 (247) 207 (234) 210 (242) 368

Sensitivity 62.2 69.23 70.23 96.7 (E)

Specificity 75.3 88.46 86.77 99.9 (F)

Precision 99.9 (G)

Table 4.5: ModEnzA, EFICAz and EnzML comparison continued. Same caption as

Table 4.3. The highest value for each row is highlighted in bold.
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Example Based Accuracy

Example Based Precision
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Macro Averaged Precision

Macro Averaged Recall
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Micro Averaged Recall

Subset Accuracy

EC 6
EC 2
EC 5
EC 3
EC 4
EC 1

Accuracy by main EC class (E. Coli)

Figure 4.13: Accuracy of EnzML predictions of E. coli by main EC class.

The comparisons show that EnzML achieves greater overall sensitivity and specificity on a

greater number of sequences, as this method uses more recent data. It also achieves very high

accuracy and precision, important measures that, unfortunately, cannot be compared as they

were not published in the papers cited [Clau 03, Desa 11, Tian 04].

4.3 Discussion

4.3.1 Effects of EC distribution

As is often the case with long-tail distributions, the shape of the distribution is conserved even

when the data are further categorised, as visible in the similarity of distributions for single

species and full databases (Figure 4.4 on page 57). This could be caused by evolutionary con-

servation of certain metabolic functions. Individual species, even compact bacterial genomes

such as E. coli, have redundancy in certain enzymatic functions, and these functions seem to

be common across species, leading to very frequent EC numbers such as cytochrome-c oxi-

dase (EC 1.9.3.1, mitochondrial respiration pathway) alone representing 12% of all UniProt

enzymes.

Rare EC numbers do not impact on most evaluation measures as they only affect a small

number of proteins. However, in Figure 4.6 on page 61 we can note that the macro-averaged
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recall, a measure affected by the misprediction of rare classes is generally the lowest and most

unpredictable metric for the EnzML method. This is also visible in the wider standard deviation

in Figures 4.7 on page 62 and 4.11 on page 67. Also, the macro-averaged recall of Swiss-Prot ./

KEGG cross evaluation is lower than expected at 83%, despite only 20% of its EC numbers

being very rare (having less than 3 proteins) versus 63% in invertebrates and 22% in bacteria.

However, the measure improves (from 83% to 88%) if 20-fold cross evaluation is used instead

of 10-fold, hence raising the probability of having more examples of rare and very rare EC

numbers in the training set (data not shown).

It is also intriguing to interpret the EC distribution in light of Bentley’s et al. [Bent 09] work

on long-tail distributions. Their model would suggest that different enzymes have repeatedly

“entered” certain catalytic functionalities and, more rarely, “innovated” into new biochemical

reactions. The “entering” of a new enzyme in the pool could be interpreted as mutations that

make its sequence different enough to become a new protein (by mutation of an existing gene,

gene duplication or gene fusion), while still preserving the EC number of its reaction. Only

much more rarely will the mutations change the EC number altogether (that is, produce a

distinct enzyme with different functionality). In addition, the effect could also be caused by

human annotation bias towards more known enzymes.

4.3.2 Effects of protein sequence redundancy

In general, a machine learning test set should mirror the distribution of instances in nature. The

results presented in this chapter have included datasets that span different levels of sequence

redundancy: from full datasets (Swiss-Prot ./ KEGG cross evaluation and TrEMBL ./ KEGG

testing), to UniRef sets, down to individual proteomes. Figure 4.14 represents in a schematic

way the effects that data redundancy can have on the machine learning results, with predictive

performance usually, but not necessarily, decreasing with redundancy (as visible in Figure 4.7

on page 62 for the UniRef50, UniRef90 and UniRef100 datasets). The use of a full, redundant

dataset generates reasonable evaluation for scenarios such as entire knowledge base verification

or metagenomic or microbiome analysis (soil, gut flora, sea floor samples). A less redundant

dataset (such as the test on individual species) generates estimates more relevant to single

proteome analysis.

4.4 Summary

The EnzML method can be applied to any sequenced protein, without the need for existing

annotation or protein structures, and it can provide quick, accurate and complete results on

extensive enzyme datasets. EnzML leverages the evolutionary similarity of metabolic function

without losing performance when sequences redundancy is reduced.
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Thanks to the MULAN BR-kNN implementation, this is possible in reasonable time even

for million of sequences, showing clear potential for metagenomic analysis. The approach

demonstrates the potential of InterPro signatures in predicting enzymatic function and easing

the backlog of manual curation of enzymatic function. EnzML also provides better classifica-

tion than simply using the InterPro2GO method [Camo 04] currently applied in UniProt and

GO to EC transitive assignments.

The final aim is to couple EnzML with active learning to further reduce the number of

annotated instances needed, saving precious annotators’ time while further speeding up the

predictions. The goal is to create a virtuous cycle between automatic and manual annotation,

able to keep up with high-throughput sequencing, as described in the next chapter.



Chapter 5

Active curation

The overall aim of this work is to scale up the curation of enzymatic function to the task of

annotating all existing enzymes. Chapter 3 explores two possible curation environments –

open and closed – that could host this endeavour. Chapter 4 presents an accurate method to

predict enzyme functionality, possibly the most accurate currently available in the literature.

This chapter brings together manual and automatic curation by introducing active and guided

learning. Active learning uses machine learning not only to predict, but also to prioritise the

labelling of individual instances by curators. Guided learning also provides heuristics to pri-

oritise the curation but it does so without the help of a machine learning algorithm. Guided

learning provides indications about the characteristics of instances to be prioritised, but leaves

the decision of which particular instance to label to the curator.

The process of curating with active or guided learning methods, which I refer to as active

curation, could help as much in prioritising scarce manual curation as it could improve the

speed and accuracy of the machine learning.

This chapter will simulate a number of active and guided learning methods on a curation

workflow. These methods will be compared in terms of speed and prediction quality. Recalling

the WikiSim model where users randomly pick records from their internal knowledge, here, in

contrast, the users can coordinate their actions using an ordering specified by the system. The

ordering is crucial to the effectiveness of the active learning. Perhaps proteins having uncertain

predictions should be annotated first, but they may be a waste of curation if they are very easy

to predict, so uncertainty, frequency of attributes, similarity to other unlabelled instances and

dissimilarity from labelled instances could all have a role to play.

77
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Figure 5.1: Distribution of InterPro signatures, InterPro signature sets and EC num-

bers in the Ecoli UniRef100 dataset. Both axes are logarithmic.
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Figure 5.2: The number of InterPro signatures for enzymes and non-enzymes in the

Ecoli UniRef100 dataset. Enzymes have, on average, larger InterPro signature sets

than non-enzymes.
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5.1 Methods

5.1.1 Data

The dataset used in this chapter is the set of UniRef100 E. coli proteins (all strains) taken from

the Swiss-Prot ./ KEGG dataset of Chapter 4 (from now on referred to as Ecoli UniRef100).

Ecoli UniRef100 provides a compact, but not too small set (5,750 proteins) taken from one

of the most intensely investigated model organisms in molecular biology. To reduce the dataset

redundancy, only one protein (the first alphabetically) for each UniRef100 cluster has been

included. Ecoli UniRef100 has all the characteristics already seen in other protein datasets in

Chapter 4: long tailed distribution of EC numbers (927 EC numbers), attributes (3,931 InterPro

signatures) and attribute sets (2,122 distinct sets of InterPro signatures). Their distribution is

shown in Figure 5.1. InterPro sets tend to be smaller in non-enzymes (with an average of 3.9

InterPro signatures) than in enzymes (5.6 signatures). Figure 5.2 shows the distribution of

InterPro sets size of enzymes and non-enzymes.

EC numbers often appear together with sets of InterPro domains, as shown in Figure 5.3.

For example, in Ecoli UniRef100, 50% of the InterPro sets are only connected to non-enzymes

and 37% are connected to a single four-digit EC number (745 InterPro sets, accounting for

2,543 proteins). This facilitates the task of the K-Nearest Neighbours algorithm.

5.1.2 Active learning

Algorithm and distance The base machine learning algorithm used in this chapter is BR-

kNN with k=1, already described in the Methods section of the previous chapter. Due to

the size of the domain, sophisticated distances (such as Mahalanobis) among instances are

too computationally intensive to be used. Hence the methods will use the Euclidean distance

(Figure 5.4 on page 81) used for BR-kNN throughout the previous chapter.

Active learning cycle The active or guided learning methodology generally works as de-

scribed below. The core difference between methods is how the utility of each unlabelled

instance is calculated. Utility here is a numerical value emitted by the method to represent the

potential contribution of each unlabelled instance to improve prediction for the next learning

step.

Input: Unlabelled instances U , Labelled instances L. L can be empty initially.

1. For each u ∈U , calculate utility

2. Select a query instance (q ∈U) with best utility: q← arg max utility(u), u ∈U

3. Label query: q ∈ L, q /∈U
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Figure 5.3: Proteins having the same superset InterPro signatures, and hence often

nearest neighbours for the purpose of machine learning, are also tightly clustered

in terms of class. Proteins (in green) connected to the same InterPro signatures (in

white) are usually connected to only one EC number (in red). Clusters having more

then one red label often contain several distinct but partly overlapping InterPro sets.

Dataset: E. coli all strains, proteins with EC 5.-.-.- base number.
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Figure 5.4: Euclidean distance. An example from a domain with two attributes: a

and b. Each set of attributes in curly brackets represents an instance. Instance

{a,b} is maximally distant (
√

2) from the empty instance {,}. Instances that differ

in only one attribute, such as {a,} and {a,b}, have a Euclidean distance of 1.

4. Train on L

5. Test on U and emit evaluation metrics

6. If U > 1, GOTO 1

Randomisation The baseline method against which the other methods are compared is a

uniformly random selection of protein instances. In fact, all methods described in this chapter

break utility ties at random, that is, if the method emits the same (best) utility for more than

one instance, the query instance to be labelled is chosen uniformly at random among those

instances having the best utility.

Three active learning methods are presented: Global Distance, Confidence Based and

Global Distance with Confidence.

A1 Global Distance The Global Distance method was inspired by Fujii et al. [Fuji 98] and

Jain and Kapoor [Jain 09] (also discussed in Section 2.5.2 on page 27). In order to pick the

best instance to be labelled next, the Global Distance method takes into account the sum of

the distance (from which the “global” term) between the unlabelled instance and the remaining

unlabelled and labelled instances. The query protein is the one having maximum distance to

other labelled proteins and minimum distance to other unlabelled proteins (graphically repre-

sented in Figure 5.5). Thus, as next query instance (instance to be labelled) Global Distance

prefers one:
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1. Close to other unlabelled (U) instances and

2. Far away from already labelled instances (L)

The Global Distance utility for each instance is defined as:

GlobalDistance(u) = λ

L

∑
i∈L

distance(u,i)− (1−λ)
U

∑
j∈U

distance(u, j) (5.1)

where u is the unlabelled instance, λ is a balancing factor (discussed below), L is the set of

i labelled instances, U is the set of j unlabelled instances and distance is a function that returns

the Euclidean distance +1 between the instance u under consideration and another (labelled li

or unlabelled u j) instance (1 is added to make sure that instances with distance 0 have an impact

on the utility). λ is a balancing factor between zero and one that gives more or less weight to the

overall distance between the instance and all the labelled instances (if set λ> 0.5) or unlabelled

instances (if set λ < 0.5). Fujii et al. [Fuji 98] obtained the best results where the two factors

were equally balanced, consequently λ = 0.5 is used in the following experiments.

U

U

U1

U

U
L

L
L
L

L

Figure 5.5: A schematic representation of the Global Distance formula. For un-

labelled instance U1, the dashed lines represents the distance to the labelled in-

stances, the continuous lines the distance to the other unlabelled instances.

A2 Confidence Based The Confidence Based method uses the measure of confidence that

the BR-kNN algorithm emits with its predictions. The utility is highest (better) for instances

having confidence close to 50%:

Utility(ui) = 0.5− | 0.5−

n

∑
l=1

ci,l

n
| (5.2)
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where the utility of unlabelled instance i is the distance from 50% of the confidence for each

of its labels’ prediction. In BR-kNN, the confidence on the prediction of label l for instance i

(ci,l) is the neighbours vote on label l: ci,l is the count of nearest neighbours of i having label l,

divided by the total number of nearest neighbours for i.

Thus instances with predictions confidences close to 100% (certain of that label prediction)

or 0% (certain of dismissing that label) are the least useful and the last to be labelled.

A3 Global Distance with Confidence The Global Distance with Confidence method com-

bines the Global Distance utility with the Confidence Based utility by multiplying them.

5.1.3 Guided learning methods

Four guided learning methods are now defined. In contrast with active learning, guided learning

does not require an input from a machine learning algorithm. The methods presented are based

on attribute statistics of the unlabelled dataset. The methods simulate a curation scenario where

a certain attribute (or set of attributes) are selected and then the curators are asked to provide at

least one labelled protein having that attribute (or set of attributes), in the style of [Atte 10a].

The decision of which exact instance to annotate is hence delegated to the curators, who have

to provide more intelligence, but are also more free to exercise their professional judgement

regarding which protein could be more fruitful to annotate.

Guided learning can have remarkable advantages over active learning. Guided methods are

computationally less intensive, more considerate in treating rare classes and can be parallelised

over a number of human oracles [Atte 10b, Atte 10a, Atte 11]. Attenberg et al. [Atte 10a]

suggests asking curators to provide a labelled instance for a defined class, whereas the methods

presented here are based on pre-selecting attributes instead. The reason is that it is easier for

biologists to find at least one protein having a certain sequence signature than finding a protein

with a certain EC number. Curators can search proteins by InterPro attributes, but they cannot

easily search them by EC class before they have been labelled. Selection by attribute is also

more appropriate when multiple EC classifications are considered. Once the attribute is set,

the protein under study can be labelled with several EC numbers if this is the opinion of the

curator, while asking a curator to come up with an example of a certain set of two or three

EC numbers might be difficult. The sheer number of combinations of two, three or four EC

numbers would overwhelm the curation process. Thus four methods are presented, two based

on InterPro attributes and two on InterPro attribute sets. In order to conduct simulation studies,

the manual step of selecting an instance for labelling is here substituted by random selection.

G1 Random selection of InterPro attributes This method selects one InterPro attribute uni-

formly at random. Once the attribute is selected, a randomly selected instance having that
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attribute is labelled. Equal curation effort is thus dedicated to each attribute, regardless of its

frequency among proteins.

G2 Ordered selection of InterPro attributes by frequency In this method the attributes are

ordered by their frequency in the unlabelled dataset first. The attributes are then tackled one

by one, starting with the most frequent. For each attribute, an instance, selected uniformly

at random, is labelled. When the end of the ranked list of attributes is reached (with 3,931

InterPro signatures and only 5,750 proteins, this happens only once), the selection starts again

from the most frequent attribute, until all unlabelled instances have been selected and labelled.

In real life, when faced with a certain attribute or attribute set, a curator might be able

to find a certain example protein based on his expertise or literature, but not another protein.

Selecting the attribute and then selecting the instance to be labelled at random tells us how much

variability the picking of one example versus another introduces in the overall accuracy. This

in turns affects the views of correct annotations available to the public during active curation.

G3 Random selection of InterPro sets This method works exactly like the random selection

of InterPro attributes, only, the selection happens over InterPro attribute sets.

G4 Ordered selection of InterPro sets by frequency This method works exactly like the

ordered selection of InterPro attributes by frequency, but the selection happens over ordered

InterPro attribute sets. With 2,122 InterPro sets and 5,750 proteins, the method scrolls over the

ranked list of attribute sets two and a half times before exhausting the unlabelled instances.

5.1.4 Hybrid active-guided methods

The two neighbourhood methods presented have characteristics of both active and guided learn-

ing. A neighbourhood is defined as all the instances being nearest neighbours of each other (it

can also be defined as the set of all the nearest neighbours of an instance, plus the instance

itself). Each instance only appears in one neighbourhood. The neighbourhood methods hence

require a K-Nearest Neighbours machine learning algorithm to calculate the neighbourhoods,

but then use simple heuristics to rank the neighbourhoods in order of utility and leave to the

curators the choice of which neighbourhood instance should be labelled.

H1 Random selection of neighbourhood In the random selection of neighbourhood, a

neighbourhood is selected at random and then one of its instances is selected at random for

labelling. The process continues with another selected neighbourhood until all neighbour-

hoods have been labelled once. The process then continues until all neighbourhoods have two

labelled instances and so on, until all the instances have been labelled.
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H2 Ordered selection of neighbourhood by frequency The ordered selection of neigh-

bourhood by frequency randomly selects one query instance from each neighbourhood, starting

from the largest neighbourhood. When all the neighbourhoods have provided one instance, the

method starts again from the biggest neighbourhood and continues until all instances have been

labelled. In practice, considering that in enzyme datasets all the instances in a neighbourhood

are likely to have the same InterPro set, this method is very close to the selection of InterPro

sets by frequency.
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Figure 5.6: Average subset accuracy of active learning methods. The dashed line

parallel to the x axis marks the maximum subset accuracy reached in 20-fold cross-

evaluation experiments (96%).

5.1.5 Evaluation

An active learning experiment starts with all instances (proteins) in the testing (unlabelled) set.

One by one the proteins are extracted in the order provided by one of the methods described

above, labelled and added to the labelled set (training set). After each labelling, the utility of

the remaining unlabelled instances is recalculated if the method requires it (Global Distance,

Confidence Based and Global Distance with Confidence). The performance of the predictions

on the remaining unlabelled instances (test set) is also re-calculated after each labelling.

The prediction metrics are then plotted and compared with the baseline of randomly se-
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Figure 5.7: Average subset accuracy of guided learning methods. The dashed line

parallel to the x axis marks the maximum subset accuracy reached in 20-fold cross-

evaluation experiments (96%). The methods in the legend are ordered from the best

to the worst performing.

lecting instances. Since all methods include some randomisation, all the experiments were

repeated five times (three times and only for the first 1000 steps for Global Distance, Confi-

dence Based and Global Distance with Confidence because of their computational intensity).

Two metrics are shown for comparison: subset accuracy, the most strict multi-label metric be-

cause it only considers the exact prediction of the entire label set and macro-averaged recall

is also included because it is regularly the lowest metric in absolute terms and it is the most

sensitive to class coverage. The macro-averaged recall is also relevant because it is biologically

important that rare classes are not overlooked. The metrics are averaged, plotted as a function

of the number of labelled instances and presented together with their standard deviation. An

algorithm or method is deemed superior to another if its curve dominates the other method’s

for most or all the points in the plot.
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Figure 5.8: Graphical view of correctly predicted proteins (green rectangles) and

incorrectly predicted (red) at the second step of active learning (with only two la-

belled proteins). The green proteins are all non-enzymes, while the red proteins are

enzymes. InterPro attributes are shown as white ovals and EC numbers as white

triangles (partial EC numbers are not included to improve readability).
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Figure 5.9: Average macro-averaged recall of active learning methods. The dashed

line parallel to the x axis marks the maximum macro averaged reached in 20-fold

cross-evaluation experiments (95%).

5.2 Results

5.2.1 Subset accuracy

Figures 5.6 and 5.7 show the subset accuracy of all active and guided learning methods pre-

sented, respectively. The accuracy of all methods starts at about 40% because the most common

class in the data set is non-enzyme. If a method does not have enough confidence yet to assign

any of the labels, then the non-enzyme instance is predicted “correctly” as not having any label.

To express this graphically, Figure 5.8 shows the Ecoli UniRef100 protein network coloured

according to the prediction status (green for correctly predicted, red for incorrectly predicted).

The figure shows that all non-enzymes already appear marked in green at the third step of active

learning (with only two labelled instances).

From these results in Figures 5.6 and 5.7, the random baseline (R - instances, selection

at random) appears to be a rather strong guided learning method in itself, probably because it

samples the underlying data well. In the following paragraphs, the other methods are discussed

from the worst to the best performing. The Confidence Based, Global Distance and Global

Distance with Confidence methods are much less effective than random. A more detailed
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Figure 5.10: Average macro-averaged recall of guided learning methods. The

dashed line parallel to the x axis marks the maximum macro averaged reached

in 20-fold cross-evaluation experiments (95%).

analysis of their choice of query instances shows that the Confidence Based method tends to

“oversample” each cluster of instances having the same InterPro set, often labelling 10 or 20

instances before moving on to a new cluster. The Global Distance method behaves in a similar

way and it also prefers instances with very small attribute sets (only one InterPro domain),

probably because they have smaller Euclidean distances overall.

The random selection of Interpro attributes, InterPro sets and neighbourhood perform

slightly worse than a random choice of instance. The ordered selection of Interpro by frequency

performs slightly better than random instance selection. The best two methods are ordered

selection of InterPro sets and neighbourhood by frequency and they are clearly better strategies

than random selection of instances. When the computational cost and the macro-averaged

recall are also considered, the ordered selection of InterPro sets by frequency appears to be the

best method. The ordered selection of InterPro sets by frequency reaches 95% subset accuracy

when only 20% of the proteins have been labelled (97% subset accuracy is reached after 35%

of the proteins have been labelled). That is, the method accuracy peaks when about four fifths

of the most common InterPro sets have one labelled instance each. For comparison, picking

instances at random only reaches 95% subset accuracy after 65% of the proteins have been

labelled.
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5.2.2 Macro averaged recall

The method of selecting InterPro sets by frequency also outperforms all the other methods in

terms of macro-averaged recall (Figures 5.9 and 5.10), reaching 95% macro averaged recall

when 37% of the proteins have been labelled. Picking instances at random only reaches 95%

macro averaged recall after 86% of the proteins have been labelled.

In terms of computational and memory cost, the Global Distance with Confidence method

is the most expensive, followed by the Confidence Based method and the Global Distance

method. The guided learning methods have very limited computational cost, but also require

more input from the oracle in terms of which instance to target.

5.3 Discussion

The results indicate that the best active curation strategy is to cover as many InterPro sets as

possible, starting with the most frequent. However, there is some circularity in the evaluation

of all these methods. The labelling of most frequent features boosts the accuracy measures by,

in a sense, bagging “easy”, similar instances. This is still good guidance for curators, in the

sense of directing effort towards proteins that can cascade information to many other sequences.

However, it is also important to examine carefully measures such as the macro-averaged recall,

which are less biased by sequence redundancy.

In the extensive datasets examined, the existence of repeated InterPro sets is unsurpris-

ing. However, InterPro sets that are most frequent in knowledge bases might not be the most

frequent in nature, but simply those more easily sequenced or frequently studied. Conserved

signatures are recognised as such exactly by the fact of appearing in many similar sequences.

Signatures are only connected to a function (and hence usable for prediction) if the sequences

have been studied experimentally, which brings us back to the initial bias on which proteins are

most studied.

In the end, EnzML and the guided curation strategies presented are simply very good at

“reproducing” human curation. This is no mean feat, but EnzML, while giving a hint of how

human curation might work (by recognition of known functional elements) also inevitably re-

produces the same bias and mistakes present in the original data. If the method is applied on a

more vast scale, the cascading of errors would be inevitable. On the other hand, with EnzML

embedded into collaborative curation, errors would also be automatically corrected in the train-

ing set when new evidence appears, and hopefully this new knowledge would be extended to

the unlabelled proteins. The emphasis of this thesis is on extrapolating existing knowledge over

proteins not yet manually curated as accurately as possible. The human-computer interaction

layer will also be of the utmost importance. Ideally, it would visually present the EnzML pre-

dictions in the curation environment as separate from manual annotations, and with as much
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justification as possible in terms of confidence and neighbours used for prediction.

An evaluation of how many EC numbers are assigned on the basis of experimental results

and how many are assigned by sequence or structure similarity would be interesting to assess

the validity of all enzyme prediction studies. EC numbers do not usually have justifications

attached, but a similar study might be possible on Gene Ontology terms related to enzymatic

function, because they better record justification.

Only three simple active learning methods have been applied, so this analysis does not

exclude that more sophisticated active learning methods might outperform guided learning.

However, the strategy of selecting InterPro attribute sets by frequency could immediately be

applied to UniProt TrEMBL. TrEMBL contains 127,127 InterPro sets which do not exist at

all in the manually curated Swiss-Prot UniProt. Of these, the most frequent, a combination of

peptidase and reverse transcriptase signatures1 alone accounts for 53,285 protein sequences.

This set has many proteins, but all very similar in sequence, possibly because many human

HIV virus variants have been completely sequenced. If the sequence redundancy is reduced,

for example considering only UniRef50 reference sequences, the most frequent InterPro set

becomes a combination of RNA polymerase sigma factors2 which includes, in the same Inter-

Pro set, a diverse group of 2,093 sequences. Based on the evidence presented in this chapter,

these InterPro sets could be a prime target for manual inclusion into Swiss-Prot (prime, but not

necessarily easy ones) as they could cause a significant improvement in TrEMBL predictions.

5.4 Conclusion

This chapter demonstrates the potential of guided learning methods based on InterPro sets for

curating enzymes. If all protein data behaved as well as the Ecoli UniRef100 set, the task

of annotating all enzymes – at accuracy close to that of current manual curation – could be

achieved with only a third of the manual curation necessary without these methods.

1Peptidase set prevalently found in viruses: IPR018061. Pept A2A retrovirus sg. IPR001995. Pep-
tidase A2 cat. IPR021109. Peptidase aspartic. IPR001969. Peptidase aspartic AS. IPR009007. Pepti-
dase aspartic catalytic. IPR000477. RVT. IPR010661. RVT thumb.

2Polymerase set: IPR014284. RNA pol sigma-70. IPR007627. RNA pol sigma70 r2. IPR013249.
RNA pol sigma70 r4 t2. IPR013325. RNA pol sigma r2. IPR013324. RNA pol sigma r3 r4. IPR011991.
WHTH trsnscrt rep DNA-bd.





Chapter 6

Conclusion

This thesis contains three main contributions: a model of annotation, a machine learning

method to annotate enzyme function, and an exploration of active and guided learning to im-

prove the enzyme curation process. This concluding chapter will discuss future extensions of

these methods to other domains and also the challenges of their evaluation.

6.1 Availability of authorship data

Wiki software is not necessarily the best solution to enter and search highly structured data.

However, wikis offer very good support for collaborative editing and tracking changes. In

particular, any edit in a wiki is usually logged with the author’s name, the time stamp of the

action and the text difference compared to the previous version. This fosters collaboration by

easily identifying contributors (even if not necessarily by their real names), eases the reversion

of vandalism and allows tracking of changes in favourite topics and pages.

In contrast, the history of edits for closed biological knowledge bases is often not provided

at the same level of detail, especially regarding authorship. For this work, and in particular

for the model evaluation (Section 3.3), I considered the closed systems OMIM [Hamo 02] and

Reactome [Matt 09] and the open systems EcoliWiki [Ecol 11] and WikiPathways [Pico 08],

which do provide authorship data. Unfortunately, many other highly curated knowledge bases

and databases either do not track or cannot publicly provide complete authorship informa-

tion, not even anonymised (communications via e-mail in 2009: from Anne Estreicher at

UniProt/Swiss-Prot, from Rachel Kramer Green at PDB and from Harold J. Drabkin at MGI-

GO).

This research highlights the lack of public availability of authorship information in many

highly curated molecular biology knowledge bases. The current discussion on wikis versus

closed systems is sometimes simplistic: wikis should not be trusted as scientific resources

because the authors can use pseudonyms, while closed and highly curated databases can be
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trusted because the authors have been selected among experts. In reality, authors and edits

can be more traceable in wikis, while no detailed information about individual edits or annota-

tors is usually available for closed systems; OMIM [Ambe 09], Reactome [Crof 11] and Gene

Ontology [Ashb 00] are notable exceptions.

The trust in closed systems seems to be based more on trust about the “source” in general.

In 2009, Magnus [Magn 09] proposed an example of how, often, trust in authorship might in

fact be trust in a knowledge provider. The example is a news published in the New York Times,

an obituary of a famous writer. The reason we trust the factual evidence (that the writer really

has died) has usually nothing to do with knowing the journalist who wrote the article and all

to do with our general trust in the New York Times as a source of reliable information. In this

sense, wikis, especially when they enforce user registration, could be paradoxically welcome

in molecular biology as an example of transparent provenance in data curation. Wikis could

also provide information on how knowledge and mistakes are distributed in a population of

users.

Unfortunately, for now, the extension of the WikiSim model to simulate potential improve-

ments to knowledge bases is limited by the lack of available logs in widely adopted closed

systems and the lack of substantial volume of high quality molecular biology annotations in

wikis, also due to their recent adoption.

6.2 Model applications

The WikiSim model (Chapter 3) allows complete control over simulations and could be ex-

tended to explore what parameters affect the completeness and correctness of the knowledge

collected. WikiSim can cover conditions not easily measurable or reproducible in real life

wikis. The model simulations have the potential to add a dynamic and measurable component

to many insights and theories that have been discussed in wiki research in recent years, for

example regarding data quality, neutrality of news or collective organisation of work in open

knowledge and open source projects.

The WikiSim model offers a framework that could be extended to several research areas.

Four areas could be of particular interest and are described in more detail below: modelling

the users’ internal knowledge, modelling software affordances, modelling structured semantic

wiki features and comparing models of open and closed curation. The model could also be used

to measure the impact of machine learning on the curation process, by simulating the impact

of algorithms exhibiting varying accuracy, or to simulate the impact of oracles with varying

quality for active learning in the style of [Donm 08].
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The user competence model The current WikiSim model is based on an implicit premise:

a user acts more on the knowledge items it is more interested in. If we go a step further and

say that wiki users are reasonably good judges of their own knowledge and competence, we

could introduce a second principle: the more the user is interested in a topic, the more likely

it is to have some correct knowledge about that topic, on average. Obviously, this does not

mean that the user knowledge will be perfect, it just introduces a correlation between the user

awareness of its expertise, the quality of the user knowledge and the probability the user acts

on it. In the model, this could be represented as a user making less mistakes on topics in its

“favourite” knowledge; the interest in a topic correlates with a higher probability of knowing

something correct about that topic, while also acting on it more often (the desire to contribute

to a favourite topic outweights the effort of adding or editing).

This principle could have a powerful effect on wiki knowledge quality, however, it is chal-

lenging to prove; it would need a way of measuring, for a high number of cases how good a

person’s knowledge of a topic is, how good the person is at judging his own expertise on the

topic and how that relates to the person’s actions, such as the willingness to edit the corre-

sponding Wikipedia article.

Modelling wiki software affordances The WikiSim model could be enriched to represent

typical wiki software features, such as discussion spaces and watch lists, and measure their

impact on user actions and knowledge quality. Discussion could be represented in the model

by allowing the user to consider, before acting, both its own knowledge and a count of other

users actions (true/false edits). Automatic notification of watched topics could be modelled by

pushing items of interest – recently edited by other users – to the top of a user’s action list. The

simulations could then quantify how these social affordances, such as visibility of other authors

choices, may help to build consensus, better allocate user effort or improve data quality. Also,

different costs of addition, edit and search could be used to simulate barriers in editing and

their effect. The challenge would then be to find datasets that have or have not been affected

by these features to evaluate the model (for example, collections of wiki pages logged before

or after a certain software affordance has been introduced to the community).

Modelling semantic wikis Structured semantic wikis (such as OntoWiki [Auer 06] or Se-

mantic MediaWiki [Krot 06]) could be modelled by introducing relations between knowledge

elements. Before changing a knowledge element in a correlated group, the user could be influ-

enced by the value of the other connected elements. This would also create another measure

of knowledge quality in the model: whether the element has been connected to an appropriate

semantic group/class. The evaluation here is limited by the limited uptake of these platforms

for annotation.
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Modelling open and closed curation In biology, the wiki approach to data curation is rel-

atively recent. The current curation scenarios (Figure 2.2) are either centralised – with edit

reserved to official curators – or mixed, with users allowed to report mistakes but not to per-

form or discuss the edits. It would be interesting to further simulate and compare the three

scenarios. Expertise could be modelled by giving expert curators more correct knowledge and

more energy than basic users. Edits could either be exclusively initiated by expert curators or

channelled through them. This could have an impact on the volume of knowledge that can be

collected. Again, the limiting factor would be the availability of logs for the closed platforms.

6.3 Prediction of enzyme function

Regarding potential extensions of the machine learning schema presented in 4, InterPro is

working on improving “EC tags” for signatures by using the PRIAM database [Clau 03]. Cur-

rently, “EC tags” are assigned statistically: if 80% of Swiss-Prot entries that have a signature

also have a certain EC number, that EC number is assigned to the InterPro signature (kindly

confirmed by David Lonsdale at EBI). InterPro “EC tags”, once improved, could be used as

attributes for learning, bypassing the direct use of InterPro signatures. They could provide an

even more compact representation of about 4,000 attribute columns (one for each EC number)

instead of the about 20,000 columns (one for each InterPro signature) in the method presented

here.

The EnzML method could also be extended to learning all gene products annotations, for

example in the form of Gene Ontology terms.

My analysis has highlighted dramatic discrepancies (on a third of the total data) between

two of the most manually curated and reliable existing knowledge bases of enzymatic function,

KEGG and UniProt Swiss-Prot. Curators have the right to disagree, but it would be useful if

enzymatic annotation was justified in the same way Gene Ontology terms are, where a func-

tional class is attached to a protein together with a standardised evidence code and link to

the evidence, usually in the form of literature or data, as shown for Gene Ontology terms in

Figure 2.4 on page 18.

The proposed EnzML method is applicable to any complete or partial protein sequence.

Any genetic sequence can be scanned in silico for the presence of InterPro signatures using

the InterProScan algorithm, also available as web service [Hunt 09, Muld 07], making EnzML

a perfect complement to high throughput initiatives as diverse as personalised medicine or

metagenomic sampling of ocean floors.

The overall success of EnzML is due to the fact that InterPro signatures provide a very

compact representation of protein functionality. The 13.5 million proteins in UniProt are de-

scribed by only 154,583 (unordered) sets of InterPro signatures (attributes). And many of these
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sets are very similar, only differing by one signature.

In relation to the method’s application and evaluation, it must be noted that the distribution

of annotation in metabolic databases tends, by definition, to be more enriched in enzymes

than in non-enzymes. Even highly-populated databases such as UniProt are biased, with more

accurate annotation (and Swiss-Prot status) going to widely studied biological functions. Using

only annotations that agree in two manually curated databases (such as Swiss-Prot and KEGG

in this work) increases trust, but decreases the number of EC numbers that can be predicted.

Swiss-Prot contains 2,850 distinct EC numbers, and KEGG contains 2,636 EC numbers, but

the set of annotations agreeing in both databases only contains 2,051 EC numbers. Rare EC

numbers can easily be lost in case of disagreement among the data sources.

The accuracy of the predictions generally increases as the dataset size increases, which,

when combined with the efficiency of the algorithm, is a good case for using a bigger training

set whenever possible. Training a classifier on more data from non-manually curated databases,

such as UniProt-TrEMBL, may reduce the bias and increase the number of predictable classes,

but will also decrease trust. Alternative biocuration scenarios may call for a different balance

between coverage and trust, to increase the probability of recognising rare Enzyme Commis-

sion classes in newly sequenced genomes.

The high accuracy of EnzML, combined with the measure of confidence that the method

emits for each prediction, enables the curators to focus their work on correcting the weakest an-

notations. The majority of erroneous annotations have low confidence, so curators could tackle

the more error prone annotations first. However, active learning research has shown that simply

correcting low-confidence annotations is rarely the best strategy, as the representativeness and

informative content of each instance also have an impact.

6.4 Active curation

Empirical analysis Active learning has proven useful on many problems. However, an active

learner builds a training set that is intimately linked to the model over time; in the worst cases,

this set may not represent the original distribution of instances. There are examples of active

learning causing the algorithm to require more instances than passive learning [Sche 07].

Attenberg [Atte 11] also notes several difficulties in applying active learning to real life do-

mains. One is the potential bias in examples selection that active learning carries, especially if

used from the very beginning of the annotation process. A related problem is to obtain enough

unbiased data in order to select the base learner algorithm. This is particularly problematic for

questions such as “label all news articles related to sports”, where no previous training sets may

exist. Starting by labelling random examples to avoid initial bias is feasible, but this approach

somehow defies the very purpose of active learning, that is to select instances in a meaningful
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way. Such an approach also reduces the budget available for the subsequent active learning.

Luckily, the enzymes domain has seen decades of annotation guided not by active learning but

by biological and medical interest. This also made it possible to experiment (in Chapter 4) with

the best algorithm ( knn) before attempting active learning. Also, guided learning has shown

promise in this analysis and could be used to enrich the training set with types of instances not

yet widely annotated.

Batch-mode active learning Most active learning publications make assumptions that may

impose limitations in real world learning. For example, the assumption that only one oracle

exists, and that it is always right. Most active learning algorithms provide only one query

instance at a time. The active learning methods explored in Chapter 5 are, unfortunately, no

exception. If several annotators are available, they will have to wait until the previous annotator

has classified a protein and the model has been refreshed. This generates a tight bottleneck

in productivity, with all-annotators-bar-one inactive, if we assume full time employment of

annotators. On the other hand, this setting might still suit a set of free-lance or volunteer part-

time curators, especially if they do not follow this methodology full time, but instead alternate

between serving labels to an active learning method and working on other tasks.

In general, a distributed, parallel curation environment would call for a batch-based ap-

proach. However, the problem of obtaining an optimal group of instances is hard. In gen-

eral, the worst approach is to simply pick the n most uncertain instances, as they could be

strictly related. A better approach would be to sample instances randomly, to forcibly intro-

duce some diversity among the picked instances. Even better are approaches that try to build

a set of diverse (distant) instances, which was implemented using Support Vector Machines by

[Brin 03, Xu 07] and for Logistic Regression by [Hoi 06, Guo 08].

In this thesis, guided learning methods have been explored instead, as a simple alternative

that allows more parallelisation. For example, ordering InterPro sets by frequency means that

a high number of curators can be deployed on the most protein rich sets at the same time. A

measure of how parallel curation is in closed systems would be of interest to extrapolate how

many curators could be needed to annotate all enzymes. If wikis start to be more widely used

for curation though, they could introduce different levels of parallelisation to the task.

Noisy oracles Another strong assumption is that the oracle is always right in selecting labels.

In a distributed environment there could exist different oracles with different expertise and error

levels. This may entail an extension of the curation scenario, where the active learning emits

some requests to de-noise already annotated instances that look like outliers, using a ”second

pass” annotation by another oracle.

De-noising would fit a wiki-style scenario of annotation well. Unfortunately, data about

individual annotators is not available for the main metabolic databases, which makes it difficult
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to evaluate and model individual error rates. Were the data available, this scenario could be

modelled with WikiSim in the style described in Chapter 3.

Cost of labelling In our scenario, the cost of labelling an instance is not equal, with some pro-

teins being less studied or having fewer published results due to funding bias, less scientific or

medical interest, or experimental difficulties (for example limited expression in a manageable

host or crystallisation difficulties). It would be interesting to account for the cost of annotation

by incorporating an estimate of the annotation cost for each enzyme. In practice, this is likely

to be very difficult for unknown proteins, and for labelled proteins not even the data providers

may have data about how long it took to annotate an individual protein (as curators might not

accurately track the exact time spent on each protein entry). If the data were available, it would

be interesting to investigate simple measures (for example, number of existing proteins in the

same family, or published articles) that correlate with the time needed to annotate an enzyme.

Also, time might not be a good proxy for economic cost, as some expert annotators may need

less time to annotate an instance, but they may also be paid more.

Stopping criteria Also, when should active curation stop? Various criteria can be devised,

for example, based on accuracy. [Sett 09] however suggests that the stopping criterion in real

life is usually economic – the cost of hiring annotators – or due to external factors. In our case,

evaluation has been performed on already annotated instances from Swiss-Prot, but in real life,

if the instances were to be drawn from TrEMBL or new sequencing projects, there could be

lack of literature or knowledge about a certain protein. Thus, it might not be possible to meet

the active learner request every time. Again, a problem that might be lessened by using guided

curation methods that allow a curator to move on to a different protein as long as it has the

same attribute set.

6.5 Conclusion

I would like to conclude with a summary of the applicability of the methods developed in this

thesis to other domains. The curation model is potentially relevant to any structured curation

process in any domain. The EnzML prediction schema is specific to enzyme function anno-

tation, but the general indications on grouping biological data by taxonomic domain or the

consequences of reducing sequence redundancy could be useful for other biological classifiers.

The active and guided learning scenarios could also be of interest to other domains having

scarce manual curation, pools of readily available unlabelled instances and where K-Nearest

Neighbours is the algorithm of choice.
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A. Gionis, and M. Sebag, Eds., Machine Learning and Knowledge Discovery in
Databases, pp. 40–55, Springer Berlin Heidelberg, 2010.

[Atte 10b] J. Attenberg and F. Provost. “Why label when you can search?: alternatives to
active learning for applying human resources to build classification models under
extreme class imbalance”. In: Proceedings of the 16th ACM SIGKDD interna-
tional conference on Knowledge discovery and data mining, pp. 423–432, ACM,
New York, NY, USA, 2010.

101



102 Bibliography

[Atte 11] J. Attenberg and F. Provost. “Inactive learning?: difficulties employing active
learning in practice”. SIGKDD Explor. Newsl., Vol. 12, pp. 36–41, March 2011.

[Auer 06] S. Auer, S. Dietzold, and T. Riechert. “OntoWiki A Tool for Social, Semantic
Collaboration”. In: The Semantic Web - ISWC 2006, pp. 736–749, Springer Berlin
/ Heidelberg, 2006.

[Baru 06] Z. Barutcuoglu, R. E. Schapire, and O. G. Troyanskaya. “Hierarchical multi-label
prediction of gene function”. Bioinformatics, Vol. 22, No. 7, pp. 830–836, Apr
2006.

[Baum 07] W. A. Baumgartner, K. B. Cohen, L. M. Fox, G. Acquaah-Mensah, and L. Hunter.
“Manual curation is not sufficient for annotation of genomic databases”. Bioinfor-
matics, Vol. 23, No. 13, pp. i41–i48, Jul 2007.

[Bent 09] R. A. Bentley, P. Ormerod, and M. Batty. “An evolutionary model of long tailed
distributions in the social sciences”. ArXiv e-prints, March 2009.

[Bioc 99] I.-I. C. on Biochemical Nomenclature. “IUPAC-IUBMB Joint Commission on
Biochemical Nomenclature (JCBN) and Nomenclature Committee of IUBMB
(NC-IUBMB), newsletter 1999”. Eur J Biochem, Vol. 264, No. 2, pp. 607–609,
Sep 1999.

[Bisb 04] F. A. Bisby, R. Froese, M. A. Ruggiero, and K. L. Wilson. “Species 2000 and ITIS
catalogue of life, annual checklist 2004: indexing the world’s known species”.
CD-ROM, 2004.

[Boul 06] M. Boulos, I. Maramba, and S. Wheeler. “Wikis, blogs and podcasts: a new gener-
ation of Web-based tools for virtual collaborative clinical practice and education”.
BMC Medical Education, Vol. 6, No. 1, p. 41, 2006.

[Brin 03] K. Brinker. “Incorporating diversity in active learning with support vector ma-
chines”. In: Proceedings of the International Conference on Machine Learning
(ICML), p. 5966, AAAI Press, 2003.

[Brit 06] E. Britannica. “Encyclopaedia Britannica. Fatally flawed: refuting the recent study
on encyclopedic accuracy by the journal Nature”. 2006.

[Brya 05] S. L. Bryant, A. Forte, and A. Bruckman. “Becoming Wikipedian: transformation
of participation in a collaborative online encyclopedia”. In: Proceedings of the
2005 international ACM SIGGROUP conference on Supporting group work, pp. 1–
10, ACM, New York, NY, USA, 2005.

[Burg 12] S. Burge, E. Kelly, D. Lonsdale, P. Mutowo-Muellenet, C. McAnulla, A. Mitchell,
A. Sangrador-Vegas, S.-Y. Yong, N. Mulder, and S. Hunter. “Manual GO an-
notation of predictive protein signatures: the InterPro approach to GO curation”.
Database (Oxford), Vol. 2012, p. bar068, 2012.

[Cai 04] C. Cai, L. Han, Z. Ji, and Y. Chen. “Enzyme family classification by support vector
machines”. Proteins: Structure, Function, and Bioinformatics, Vol. 55, pp. 66–76,
2004.

[Camo 04] E. Camon, M. Magrane, D. Barrell, V. Lee, E. Dimmer, J. Maslen, D. Binns,
N. Harte, R. Lopez, and R. Apweiler. “The Gene Ontology Annotation (GOA)



Bibliography 103

Database: sharing knowledge in Uniprot with Gene Ontology”. Nucleic Acids
Research, Vol. 32, No. suppl 1, pp. D262–D266, 2004.

[Capo 06] A. Capocci, V. D. P. Servedio, F. Colaiori, L. S. Buriol, D. Donato, S. Leonardi, and
G. Caldarelli. “Preferential attachment in the growth of social networks: the inter-
net encyclopedia Wikipedia”. Phys Rev E Stat Nonlin Soft Matter Phys, Vol. 74,
No. 3 Pt 2, p. 036116, Sep 2006.

[Clar 02] A. Clare and R. D. King. “Machine learning of functional class from phenotype
data”. Bioinformatics, Vol. 18, No. 1, pp. 160–166, Jan 2002.

[Clau 03] C. Claudel-Renard, C. Chevalet, T. Faraut, and D. Kahn. “Enzyme-specific profiles
for genome annotation: PRIAM”. Nucleic Acids Res, Vol. 31, No. 22, pp. 6633–
6639, Nov 2003.

[Clau 08] K. A. Clauson, H. H. Polen, M. N. K. Boulos, and J. H. Dzenowagis. “Scope,
Completeness, and Accuracy of Drug Information in Wikipedia”. The Annals of
Pharmacotherapy, Vol. 42, No. 12, pp. 1814–1821, 2008.

[Clau 09] A. Clauset, C. R. Shalizi, and M. E. J. Newman. “Power-law distributions
in empirical data. arXiv:0706.1062v2 [physics.data-an]”. arXiv:0706.1062v2
[physics.data-an], Feb 2009.

[Coch 09] G. Cochrane, R. Akhtar, J. Bonfield, L. Bower, F. Demiralp, N. Faruque, R. Gib-
son, G. Hoad, T. Hubbard, C. Hunter, M. Jang, S. Juhos, R. Leinonen, S. Leonard,
Q. Lin, R. Lopez, D. Lorenc, H. McWilliam, G. Mukherjee, S. Plaister, R. Rad-
hakrishnan, S. Robinson, S. Sobhany, P. T. Hoopen, R. Vaughan, V. Zalunin, and
E. Birney. “Petabyte-scale innovations at the European Nucleotide Archive”. Nu-
cleic Acids Res, Vol. 37, No. Database issue, pp. D19–D25, Jan 2009.

[Cons 10] U. Consortium. “The Universal Protein Resource (UniProt) in 2010”. Nucleic
Acids Res, Vol. 38, No. Database issue, pp. D142–D148, Jan 2010.

[Cons 11] T. U. Consortium. “Ongoing and future developments at the Universal Protein
Resource”. Nucleic Acids Research, Vol. 39, No. suppl 1, pp. D214–D219, 2011.

[Cran 08] D. Crandall, D. Cosley, D. Huttenlocher, J. Kleinberg, and S. Suri. “Feedback ef-
fects between similarity and social influence in online communities”. In: Proceed-
ings of the 14th ACM SIGKDD international conference on Knowledge discovery
and data mining, pp. 160–168, ACM, New York, NY, USA, 2008.

[Crof 11] D. Croft, G. O’Kelly, G. Wu, R. Haw, M. Gillespie, L. Matthews, M. Caudy,
P. Garapati, G. Gopinath, B. Jassal, S. Jupe, I. Kalatskaya, S. Mahajan, B. May,
N. Ndegwa, E. Schmidt, V. Shamovsky, C. Yung, E. Birney, H. Hermjakob,
P. D’Eustachio, and L. Stein. “Reactome: a database of reactions, pathways and
biological processes”. Nucleic Acids Res, Vol. 39, No. Database issue, pp. D691–
D697, Jan 2011.

[Dahl 02] K. D. Dahlquist, N. Salomonis, K. Vranizan, S. C. Lawlor, and B. R. Conklin.
“GenMAPP, a new tool for viewing and analyzing microarray data on biological
pathways”. Nat Genet, Vol. 31, No. 1, pp. 19–20, May 2002.



104 Bibliography

[De F 08] L. De Ferrari, S. Aitken, J. van Hemert, and I. Goryanin. “WikiSim: simulating
knowledge collection and curation in structured wikis”. In: WikiSym ’08: Pro-
ceedings of the 4th International Symposium on Wikis, pp. 1–2, ACM, New York,
NY, USA, 2008.

[De F 09] L. De Ferrari, S. Aitken, J. van Hemert, and I. Goryanin. “A model of social collab-
oration in Molecular Biology knowledge bases”. In: B. Edmonds and N. Gilbert,
Eds., Proceedings of the 6th Conference of the European Social Simulation Associ-
ation (ESSA’09), p. 47, European Social Simulation Association, European Social
Simulation Association, 2009.

[De F 10] L. De Ferrari, S. Aitken, J. van Hemert, and I. Goryanin. “Multi-label prediction
of enzyme classes using InterPro signatures”. In: Machine Learning for Systems
Biology Workshop (International Conference on Systems Biology), 2010.

[De F 12a] L. De Ferrari, S. Aitken, and J. Mitchell. “Active and guided learning for enzyme
function prediction”. In: 11th European Conference on Computational Biology,
2012.

[De F 12b] L. De Ferrari, S. Aitken, J. van Hemert, and I. Goryanin. “EnzML: Multi-label
prediction of enzyme classes using InterPro signatures”. BMC Bioinformatics,
Vol. 13, p. 61, 2012.

[Desa 11] D. K. Desai, S. Nandi, P. K. Srivastava, and A. M. Lynn. “ModEnzA: Accurate
Identification of Metabolic Enzymes Using Function Specific Profile HMMs with
Optimised Discrimination Threshold and Modified Emission Probabilities”. Adv
Bioinformatics, Vol. 2011, p. 743782, 2011.
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