
The Design and Implementation of Vision-Based
Behavioural Modules for a Robotic Assembly System

Prabhas Cliongstitvatana

' "
. -"'CIA!- INTELLIGENCE

* n*p- i** 1 * -T\ "" » i • ' 4
^ ' • - • »w

CO Coutn Sn J, 3

Edinuu'qh EH 1 IHN

Ph.D.

University of Edinburgh
1992

1

Abstract

The work drsrrihrd in this thesis ia about, how to program robots to work re

liably in the presence of uncertainty. Some architectural principle!: are proposed
which address the problem of decomposing robotic assembly tasks into modular
units such that a robot program can be implemented efficiently, tested easily, and
can be maintained or modified without undue complexity. This architecture also
provides a framework to integrate sensors into a robotic, assembly system.

These modular units arc called behavioural modules. They perforin their tasks
reliably. The problem of uncertainty is dealt with by encapsulating sensing and
variation reducing strategies inside these modules. Experiments are performed with
a working robotic assembly system using vision based behavioural modules. Analy
sis of this system validates the principles presented in this thesis.

i -'CIAL !MTELUGEr;CF a— "

i J C~*utn bnA. J
EdinLfJigb EH1 1HM

Or
30150

urn ii
013450231

11

Acknowledgements

First and foremost, I would like lo thank my mipcrviuor, Chris Malcolm, for his
untiring support and encouragement, and Hen:mark Malcolm, for her hospitality.
Thanks to Tim Smithers, who taught me the difference between a scientist and an

engineer, and Boh Fisher, who showed me how to resolve a dilemma. Thanks to
all my former teachers: Robin Popplcstonc, Jim Howe, Susak Thongthammachart,
Vinai Varanyananda, and Supachai Tangvongsarn, who lead my life smoothly into
this path and taught me to be the way I am. Also thanks to my examiners: (lillian
llayos and Nigel Hardy, whose comments have helped to improve the presentation
ot this thesis.

My father teaches me about life and gives me support in every way, my sister and
brother always help inc. Many friends have helped mo to finish this work. Special
thanks to Graham Deacon who laboured over my English, and Jaruloj Eamsiri who
listened to all my ideas. Jeremy Wyatt, Edward Jones and Manuel Trucco helped me

greatly, and Kittisak Yongsiri did many illustrations. Thanks to all my friends and
colleagues: Alistair Oonkie, Lykourgos Petropoulakis, Li-Dong (!ai, Mitch Harris,
Peter Raich, Brian Logan, Howard Hugos, Myra Wilson, Jim Donnett, and many

others, who made my life in Edinburgh a happy and stimulating one. Thanhs to
the staff of the Department of Artificial Intelligence, especially Janet Lee and David
Wyse, and AOME/SERO who provided travelling funds. Thank you again, with all
your helps I have learnt how to write a thesis not a second too late.

Finally, I would like to dedicate this thesis to the memory of my mother, 1
couldn't find enough words t.o thank her.

Declaration

1 declare that this thesis has been composed by myself and that the work described
in it is my own, except where stated otherwise.

Table of Contents

1. Introduction 1

1.1 Programming an assembly robot 1

1.2 Why a robot is difficult to program 3

1.3 Classical approach to robotic assembly 4

1.4 Behaviour-based approach to robotic assembly 5

1.5 To make a robot easier to program 0

1.6 Organisation of thesis 7

1.7 A note on support and prior publication 9

2. Previous work 10

2.1 Review of classical robotic assembly systems 10

2.2 Incorporating sensing into robotic assembly tasks 13

2.3 Visual sensing 15

2.4 Behaviour-based systems 18

2.5 Conclusion 30

3. Behavioural modules 21

3.1 Problems with the classical approach 21

3.2 Behaviour-based robotic assembly systems 23

iii

Table of Contents >v

3.3 Criteria for decomposing a task into behavioural modules 26

3.4 An example 29

3.5 Characterisation of behavioural modules 32

3.6 Design and implementation 34

3.6.1 Combining behavioural modules 35

3.6.2 The reuse of behavioural modules 35

3.6.3 Implementation requirements 37

3.7 Conclusion 37

4. Extending SOMASS: visual sensing 39

4.1 The .SOMASS assembly system 40

4.1.1 The Soma assembly domain 40

4.1.2 The planner 40

4.1.3 The execution system 44

4.1.4 Reliability 45

4.2 Experiments in extending SOMASS: visual sensing 45

4.3 Equipment and setup 47

4.4 First, experiment : picking up a Soma part 48

4.4.1 Sensing-action strategy 49

4.4.2 Visual servoing 50

4.4.3 Analysis of the perspective distortion 51

4.5 Second experiment: tracking the robot hand 53

4.6 Vision processing 54

4.7 Test results 55

4.8 Discussion 57

Table of Content.^ v

5. Stereo visual sensing 59

5.1 Introduction 60

5.2 Stereo geometry 61

5.3 The experiments 62

5.3.1 Controlling the robot hand 62

5.3.2 Stacking blocks 63

5.4 Vision processing 65

5.5 Test results 67

5.6 Discussion 67

5.7 Multiple matrices 68

6. Active mobile vision 70

6.1 Introduction 71

6.2 The equipment setup 72

6.3 The task 73

6.4 The camera motion 74

6.5 Finding an occlusion-free view 75

6.6 Visual servoing of the hand 75

6.7 Mating blocks 77

6.8 Choosing the features to track 78

6.9 Test results 79

6.10 Discussion 79

7. Analysis 81

7.1 Naming convention 81

7.2 SOMASS 82

Table of Contents v'

7.3 Single camera experiments 83
7.4 Stereo vision 87

7.5 Active mobile vision 89

7.6 Discussion 92

7.7 Structure 93

7.8 Size of the system 93

8. Visual routines 96

8.1 Heal time constraint 97

8.2 Image segmentation 98
8.2.1 Thresholding 98
8.2.2 Optimal threshold selection 99
8.2.3 The method in the experiments 100

8.3 Tracing the boundary 103
8.4 Attributes of objects 105

8.5 Corner filter 106

8.6 Shape attractor 108
8.6.1 Closeness function 108

8.6.2 Computing the translation 110

8.7 Tune up for speed "0
8.8 Discussion 1"

9. Conclusion 113

9.1 Contributions 115

9.2 Future work 116

9.3 Epilogue 117

Table of Contents vii

A. Catalogue of behavioural modules 118

A.l Naming convention 118

A.2 Pseudocode 118

A.3 Hierarchical structure 123

Bibliography 125

List of Figures

3-1 The classical approach 29

3-2 The behaviour-based approach 30

3-3 The hierarchical structure of behavioural modules 32

4-1 Soma-4 set 40

4-2 Several possible Soma-4 assemblies 41

4-3 Padding of an assembly 41

4-4 Representation of the shape 42

4-5 A plan generated by the planner 43

4-6 Sweeping motions to centre Soma part 44

4 7 A double snap to centre a Soma part 45

4-8 The assembly cell and Soma parts 46

4-9 System architecture 47

4-10 The diagram of the strategy 49

4—11 Determination of the perspective distortion 52

4-12 Plot of errors from the perspective distortion 53

4-13 Components of the histogram 54

4-14 Data from the accuracy test 56

4-15 The ambiguity in choosing the edge 58

viii

List of Figures ix

5-1 Control scheme 60

5-2 Aligning two triangles 63

5-3 Stacking three blocks 64

6-1 A,view of the assembly system 72

6-2 The image processing method 74

6-3 The camera motion 75

6-4 A view with occlusion 76

6-5 The shape attractor method 76

6-6 Two bottom edges 77

6-7 Mating Blocks 78

7-1 The control loop of head-follow 84

7-2 Shift the reference point 84

7-3 The hand rotates to parallel to the edge 86

7-4 The list of behavioural modules 34

7-5 The levels in the hierarchy of behavioural modules 35

8 -1 The sum of two probability density function 33

8 2 A typical scene 1 131

8 3 A typical scene 2 101

8 4 A typical scene 3 102

8-5 A typical scene 4 102

8-6 Tracing the boundary 104

8-7 Local maxima of a sharp corner 107

8-8 Deviation measure 107

8-3 The result of applying the corner filter 103

Chapter 1

Introduction

What is a symbol, that intelligence may use it,
and intelligence, that it mag use a symbol?

Warren McCulloch (1961)

Reliable assembly with a robot must meet the challenge of dealing with the piubleiu
of uncertainty in the real world. Today's assembly robot systems cannot cope with
uncertainty nor handle sensing adequately and are in general hard to program. The
work described in this thesis is about how to program robots to work reliably in the
presence of uncertainty. It addresses the problem of decomposing robotic, assembly
tasks into modular units ouch that a robot program can be implemented efficiently,
tested easily, and can be maintained or modified without undue complexity! It also
provides a framework for integrating sensors into a robotic assembly system.

1.1 Programming an assembly robot

An assembly robot deals with physical objects and their spatial relationships. The.
relationships between objects are constrained by their geometry. The environment
and the task determine the robot motions.

Robots have not been used successfully to perform assembly for many reasons.

The assembly task needs dextrous manipulation. Actions like insertion and part

mating can not bo easily done by blind positioning without using sensors when a

high precision is required. The current generation of industrial robots are primarily

Chapter 1. Introduction 2

position controlled devices and therefore sensing systems, like force sensing or visual
sensing, are still difficult to incorporate. The industrial robot can be programmed
but the programming is done at a low level; in terms of robot motions.

A popular method is to program by teaching in which a programmer leads the
robot through the required action and stores all the relevant motions to be re¬

played in use. Because of this method, even a small alteration may requires a lot
of re-teaching. People have to use the robot to do programming and debugging.
Debugging the robot program is time consuming. In order to get good reliabil¬
ity, several hundred test runs are required. Inevitably, there are variations in the
shape or position of the parts. The robot motion has to take into account these
uncertainties. Finding a robot motion strategy to achieve a desired part motion is
difficult.

One way to reduce the uncertainty is to use sensors. For example the dimension of
a part can be measured by both contact or non contact sensing devices such as tactile
sensors and vision. Its position or orientation can be measured by many means such
as by analysing range data from laser ranging or a stereo vision system. Interpreting
the data from sensors is also difficult because of the noise in the measurements. Very
frequently the data are inconsistent. To get good results the environment and sensors

need to be set up carefully and precisely calibrated. It makes programming with
sensors difficult and of very limited use.

A program is built upon tbe layers of abstraction in the languages. Robot, pro¬

gramming languages can be characterised by the programmer's view of the world
offered by the languages. The successive layers of abstraction are built from the set
of primitives provided by the level below. Malcolm and Fothergiil (1986) describe
these layers:

• The joint-level is the lowest level. A robot is programmed in terms of positions
of the end-effector specified by the joint-angles or joint-displacements.

• In the manipulator-level, the trajectory of motion is specified in terms of (Carte¬
sian co-ordinates in a reference frame. The robot follows trajectories with a

specified velocity and acceleration.

Chapter I. Introduction

• III the object-level, a programmer specifies geometric constraints on objects.
The program statements specify the constraints on the relationships between
objects, for example face-1 against facc-2, shaft-!) colincar with bcaring-3.
These statements are translated into the robot motions that will achieve the

desired object relationships.

• In the task-level, a programmer specifies only the goals for the relationships
among objects, rather than the motions needed to achieve those goals, for
example, put peg-1 into holc-f. This high level description is then translated
into a program at the lower level.

1.2 Why a robot is difficult to program

At the joint-level and the manipulator-level, to program a robot involves thinking
about a sequence of motions to manipulate objects into the desired configurations.
Although a trajectory is parameterised and symbolised such that a programmer

does not have to think in terms of numeric coordinates, the sequence of motions is
often long and complex and prone to errors. A program is sensitive to change in
the geometry of objects. A small change may result in a large change in the robot
program because the change in the geometry of objects may affect all subsequent
motions.

At the object-level, a program is stated in terms of the relationships of the
objects. Knowledge of object geometry and robot kinematics is used to translate
the program statements into sequences of robot motions. The robot must know the
exact geometry and position of objects in the environment and the precise actions
to be performed. This translation does not cope satisfactorily with the uncertainty
in the real world. To cope with the uncertainty, sensors can be used to access the
real world. Sensing depends on the geometry of the task. Programming with sensors

results in numerous branchings in program flow because of the enumeration of the
possible sensing situations and the possible actions. There is 110 effective way to
foresee all the possibilities. The generation of robot motion sequences incorporating
sensing automatically is still an active area of research.

Chapter I. Introduction 4

There are many problems that must be solved in order to program a robot at
the task-level: how to acquire the part; how to choose the location in the workcell
to perform assembly operations; how to choose the fixtures to hold the parts to the
required accuracy; how to synthesis the fine motions for parts mating; how to grasp

each part; and how to generate collision-free paths for the manipulator and the parts
it carries; etc. These problems make the translation of the task-level specification to
the lower level specification very difficult. A simple task-level description leads to a

complex lower level program because of the presence of uncertainty. Incorporating
a sensing strategy into the automatic translation process is of limited success (Yin,
1987; Donald, 1987; Jennings and others, 1989; Hutchinson and Kak, 1990).

The difficulty in programming a robot stems from the fact that, to increase
the flexibility of the robot, its sequence of motions must accommodate changes in
the real world. A robot must be competent to work reliably and robustly. To do
this, it must cope with the uncertainty in the real world, which requires the use of
sensors. However, a robot with sensors is difficult to program. Programming at a
low abstraction level is a burden and error prone and the program is also sensitive
to minor task changes. If a higher abstraction level is to be achieved, an effective
way to program the use of sensors must be found. These are problems which have
limited the progress of assembly by robots.

1.3 Classical approach to robotic assembly

It should be much easier to program a robot at task level, for example, put pry in
hole, move top plate to mate with subassembly. From this task level specification
the system analyses and generates the sequence of robot motions automatically.
Planning the motion generation is complicated by many factors. First of all the
motions generated must be collision free. Secondly sensing is needed to correct for
deviations that might occur. It is also desirable for the system to be able to recover

from small errors without resort to human operators.

To achieve task-level programming, past research has focused on the study of
supporting functions. These functions are, for example, grasp selection, collision free
trajectory planning, motion planning, error detection and recovery (Lozano-Perez

Chapter 1. Introduction

and Brooke, 15)85). The emphasis is on the modelling of geometrical characteristics
of objects and the planning system. The planner ha:; only limited capability in
dealing with uncertainty in the real world. Taking uncertainty into account in
reasoning during plan time is very complicated (Brooks, 198*2). There are many

sources of uncertainties: from the part tolerance; whether two parts fit together given
their tolerances (Fleming, 1087), from the programming of sensors; what sensors to
U3G and how to use them, from the possibility of error that can occur in each step
of assembly, etc. It is an enormous task to analyse them.

The classical approach to assembly robot programming system:; can be charac
terised as based on the geometry of the objects, relying extensively on the exact

knowledge of this geometry to generate robot motions. Sensors are used to update
a representation of a world model. Robot motions are planned based on this world
model. Because robot motions are based on planned motions, the uncertainty in
the real world is accommodated by sensing and updating the world model. The
problem then lies in the quality of the sensing and how accurately the world model
reflects the real world. The detailed geometric representation of the world, how-
ovor, makes it difficult to use sensors effectively. The world model might include
complete geometric descriptions of objects, the kinematic model of the robot, the
physical characteristics of the robot: speed, positioning accuracy, workspace bounds,
otc. In this kind of terms, the space of interpretation of sensor readings is very large.
A more detailed model increases the sensing accuracy which improves the reliability
of robot operations but it also increases the problem of interpreting the sensed data.

1.4 Behaviour-based approach to robotic
assembly

The behaviour based approach argues that the classical decomposition of the. prob
lem is not correct. Instead of breaking it into functional modules which are controlled
by a central system, with perceptual modules as inputs and action modules as out

puts, it should be broken into many task achieving units, where the task is some

useful accomplishment in the assembly world in question such as acquiring a part.
Each unit individually connects sensing to action, each unit pursues its specific goal

Chapter I. Introduction 6

but co-operates with other units to achieve the desired goal. Rather than rely on

a world model, the individual unit concentrates on those aspects of the world that
are directly relevant to it, i.e. a minimal distributed world model rather than a

centralised world model. They may work in parallel and interact with each other.

Brooks has demonstrated this approach successfully in his series of wheeled mo¬

bile robots (Brooks, 1985, 1986, 1987) and six legged walking robots (Brooks, 1989).
In robotic assembly, a system by Malcolm (1987) called SOMASS, can plan and per¬

form assembly in the domain of the Soma-4 world.1 Given the desired final shape
of the assembly, the system plans the sequence of operations that will put the seven

component parts together. The planning of motions is decomposed in terms of task-
achieving units called behavioural modules. The uncertainty is dealt with within
these units. The robot program is more robust and requires significantly less debug¬
ging as reported in (Malcolm and Smithers, 1988a).

1.5 To make a robot easier to program

Smithers and Malcolm (1989) propose that a program for robotic assembly should
be in terms of task-achieving behavioural modules. Behavioural modules isolate the
details of the real world and its uncertainty from a programmer. Sensors can be
integrated such that these modules can be guaranteed to perform their intended
assembly tasks reliably within a certain range of uncertainty.

This enables a robot program to be constructed without a programmer having to

worry about the uncertainty of the real world. Given suitably competent behavioural
modules a program can be described at the task-level. The programmer makes
sure that the ranges of parameters of the task fall within the competence of the
behavioural modules. It is also possible (as the SOMASS system demonstrates in
its limited domain) to generate a reliable robot program from a task-level description
automatically.

This thesis aims to study the problem of decomposing assembly tasks into be¬
havioural modules. The central claim of this thesis is that this decomposition should
be based on the principles that:

'A detailed description of this system is given in chapter 4.

Chapter 1. Introduction 7

• there i3 no reliance on a central model of the world for combining sensing and
action;

• sensing and action should be tightly coupled within the module;

• prefer to pace control via perception of the world rather than by parameters.

Those principles arc verified by a series of experiments. A working robotic as

ccmbly system is demonstrated. Behavioural modules used in it are designed and
implemented based on the above principles and tested on a number of assemblies
successfully. Visual sensing is used in the experiments. The first experiment, user, a

single camera system and the second experiment extends that to a two camera sys¬

tem. The third experiment adds mobility to the two camera system which increases
the range of assembly tasks that can be performed.

1.6 Organisation of thesis
The next chapter presents previous work on robotic assembly: the attempt to raise
the level of description of an assembly task, the use of a geometrical world model
in planning and reasoning about robot motions, and the problems of using a world
model in robotic assembly. It, goes on to describe this new emerging paradigm in
robotics, the behaviour based approach. The use of visual sensing in robotics is dis
cussod, in hand eye ro ordination tasks and in dynamic situations. Relevant, work in
the computer science literature about design methodologies and the modularisation
of programs is also examined.

Chapter 3 describes the central idea of this thesis: the concept of behavioural
modules. It. addresses the problem of robot, programming and the use of sensors. The
difficulty in introducing sensors into robotic assembly systems is discussed. Then
the behaviour based approach to robotic assembly is introduced. The charaeterisa
tion of behavioural modules and the principles for decomposing assembly tasks into
behavioural modules are discussed. An example of two different decompositions is
given. The issues in design an<l implementation of behavioural modules are exam¬

ined. The next three chapters ('1,5 and 6) present a series of experiments to verify
these ideas.

('hapter I. Introduction 8

Chapter 4 describes an experiment of integrating visual sensing into a robotic
assembly system. The experiment is based on an oxisting system: SOMASS, which
originally did not use sensors, but whose architecture was designed to facilitate
their incorporation. This system is extended to incorporate a camera. The task of
acquiring a part is implemented using a new behavioural module. This new module
uses visual sensing. The sensing strategy is described. The result shows that visual
sensing can be integrated seamlessly into the existing system. The vision system
also works without having to rely on any central world model.

Chapter 5 describes the second experiment. The limitation of the single camera

system of the previous chapter is that the sensing gives only two-dimensional data,
therefore in order to resolve depth ambiguity along the line of sight some a priori
knowledge must be available. This experiment introduces the second camera and
does not require that knowledge. This two camera system is unealibrated. ft does
not use a central world model. It, uses a similar sensing strategy to the single camera

system. A simple task of stacking blocks is demonstrated.

Chapter 6 describes an experiment that adds mobility to the two camera system.
This enables it to change its view. This increases the range ol assembly tasks that
can be performed using visual sensing. New behavioural modules are designed to
move the camera head around the object of interest without calibration between
the position of the camera head and the object. This experiment demonstrates
tliC U3C of ft 111obile camera head to find good viowu that arc suitable for assembly
operations. It is also used to perform a part-mating operation which require close
range visual sensing. The result shows that moving cameras to view different parts
can be achieved without requiring calibration between the robot's and cameras'
reference frames, thus preserving the 'no central world model' principle.

Chapter 7 analyses all robot programs used in the experiments. The programs

are examined and behavioural modules are explained: how they work, why they
work and what are their assumptions about the world. The analysis is done along
three dimensions: connections between modules, coupling of sensing and action in
modules, and implicit, assumptions of modules. The application of the principles of
task decomposition is discussed. Finally, the conclusion drawn from this analysis is
presented.

Chapter 1. Introduction !)

Chapter 8 describes the visual routines that are used in the behavioural mod¬
ules, The justification of the choice of algorithms is discussed and is supported
by the experimental data. The vision process is based 011 segmentation of image
using a global threshold. The objects are presented by their attributes such as:

centroid, area, corners, lines, etc. The results of implementation and the limitations
of algorithms are discussed.

Chapter 1) summarises the work presented in the previous chapters. It notes the
problems and points out important directions for future research. The appendix
contains a full catalogue of behavioural modules.

1.7 A note on support and prior publication
The SOMASS system and its development to include sensors way the subject of
SERC/ACME research grant CR./E/68075 during my studentship, one of the prin
cipal investigators being my supervisor, Chris Malcolm. I would like especially to

acknowledge the assistance of Alistair Conkie, my friend and colleague, at the time
a research fellow employed by the grant, and with whom 1 have published a number
of papers on aspects of this work.

My original ideas are the single camera system described in chapter 4 and the
mobile camera system in chapter 6. Conkie invented the strategy to use two cameras

to control a robot. I performed the implementation and all the experiments, Conkie
contributing discussion of many of the issues. Most of the ideas about behavioural
modules are the result of many years of discussion and experimentation in the robotic
research group in the Department of Artificial Intelligence, University of Edinburgh.
Thus many colleagues contributed to the concept which I have distilled to present

my own version in chapter 3.

An abridged report of the experiments in chapter 4 is in the paper: 'Behaviour
based assembly experiments using vision sensing', presented at the Vision Interface
Conference 1991, Calgary, Canada (Chongstitvatana and Conkie, 1992a). Chap¬
ter 5 grew out from the paper: 'An uncalibrated stereo visual servo system', pre¬

sented at the British Machine Vision Conference, 1990, Oxford, UK (Conkie and
Chongstitvatana, 1990). Chapter () grew out from the paper: 'Active mobile stereo
vision for robotic assembly', presented at the 23rd Symposium on Industrial Robots,
Barcelona, Spain, 1992 (Chongstitvatana and Conkie, 1992b).

Chapter 2

Previous work

In order to understand the problems of robotic assembly, we will review the devel¬
opment of robotic assembly systems. We will start from a historical perspective
and then cover related work in incorporating sensing into robotic assembly tasks,
with emphasis on visual sensing. The behaviour-based approach is introduced, and
finally a discussion of the problems of previous approaches to robot programming,
and the technical material which is the foundation of this thesis are presented.

2.1 Review of classical robotic assembly systems

In the early days, the Freddy system (Ambler and others, 1975) demonstrated
robotic assembly in a simplified world. This world consisted of several parts piled
into a heap. The Freddy system separated the individual parts, recognised, and
assembled them. It demonstrated the use of force and tactile sensors to handle and

assemble the parts, and '2D vision combined with manipulation to recognise and
locate parts. It showed the importance of assembly strategies, the use of fixtures
and demonstrated robot programming.

Much work has gone into raising the level of robot programming languages, in
order to make robots easier to program. An overview can be found in Lozano-Perez
(1982). A method of specifying an assembly in terms of the spatial relations between
parts (i.e. object-level programming) has been developed into a robotic assembly
programming language called RAPT (Popplestone and others, 1978, 1980). This

10

Chapter 2. Previous work 11

system relies on symbolic inferences for spatial reasoning. A user describes how the
various objects relate to each other in various situations in terms of their surface fea
tures such as planes, cylinders, holes, etc. The assembly process is described by the
series of distinct situations required. The spatial relationships specifiable between
the features include ouch concepts as against, coplanar, aligned, fits, and parallel.
The type of feature and relationship specified determines the geometric relationships
between the parts, for example, edge-1 against facc-2. From this description, the
RAPT system infers facts about the actual position of objects in each situation.
The robot motions are derived directly from these positions and knowledge of the
relationship between the robot arm and the parts. The success of such a program

depends on the robot motion strategies adopted to reduce the uncertainty in loca¬
tions and dimensions of the parts, and this must be decided by the user. RAPT
does not perform any planning or determination of intermediate positions.

The spatial reasoning engine employed in RAPT has also been used to plan mo

tions in contact (Koutsou, 1986). The plan is formulated in terms of the interactions
between the features of the objects involved. This suggests the use of tactile sensing
for part mating operations.

The ultimate aim of robotic assembly research is to be able to interpret, a high
level task specification into robot motions automatically. One good example is
TWAIN (Lozano-Perez and Brooks, 1985). In their study, they decomposed the
system into many parts: part feeding, layout, fixturing, fine motion, grasping, gross
motion. They advocated the use of number of powerful planning modules, the use

of constraint propagation to choose feasible values of parameters, the use of skeleton
programs, and the use of configuration space to find a collision free path (Udupa,
1977; Lozano-Perez and Wesley, 1979; Lozano-Perez, 1983). Skeleton programs

(Taylor, 1976) arc. paramctcriacd robot programs for particular tasks which include
motions, error tests, and computations, in which error estimates are used to install
tiate parameters in the skeleton.

Brooks (1982) developed a formal method for using symbolic constraints to prop

agate error computations. It is used to check the plan in the presence of errors in the
parts' placement and tolerances. The computation can be reversed and the desired
resultant tolerance can be used to infer the required initial tolerances or the noc.es

oity for sensing. An analysis of the spatial uncertainties arising from tolcraneing was

Chapter 2. Previous work 12

presented in (Fleming, 1987). The uncertainties come from tlie constraints of indi¬
vidual relationships and the difference between the nominal sizes of parts. Fleming
used spatial reasoning to analyse the possibility of parts of given tolerances fitting
together. This method can be used in a planner which works in an ideal world to

cope with tolerancing.

In part mating operations, compliant motion is necessary but difficult for hu¬
mans to specify. The study in (Lozano-Perez and others, 1983) described a formal
approach to the synthesis of compliant motion strategics from geometric descrip¬
tions of assemblies and explicit estimates of errors in sensing and control. Using
configuration space* the pre images of a goal region are computed recursively back
towards the cunent position (backward chaining) and the resulting strategy is a

sequence of guarded motions1.

Variation in the position of an object can also be taken into account in config¬
uration space by creating a sphere around the point representing the manipulated
object, where the radius of the sphere represents the positional uncertainty (Lozano
Perez and others, 1983). Erdmann (1984) developed a representation of friction in
configuration space which is used in Erdmann and Mason (1988) to predict the
motion of a sliding object.

Donald (1987, 1990) proposed a strategy to incorporate uncertainty in the ge¬

ometry of the environment (model errors). IIis system takes into account sensing
errors, control errors and model errors. It plans by using sensor based gross motions,
compliant motions, and pushing operations. Some experimental work is reported in
Jennings, Donald and Campbell (1989).

This kind of motion planning is highly analytical. In practice, motion planning
is computationally expensive because the required information about the geometry
of the paits, the tasks and the enviiuuiiieiit is extensive, anil because a large amount,
of knowledge is required to support the reasoning systems. In coping with the real
world, some simplifications are adopted to reduce the complexity of calculations.
These systems also cannot deal with deviations that occur at execution time. In

1A guarded move is the strategy of moving under trajectory control until some sensed
condition is met, and then halting motion.

Chapter 2. Previous work 13

order to cope with events that cannot be pre-compnted, sensors are incorporated
into the system.

2.2 Incorporating sensing into robotic assembly
tasks

Sensor feedback was used in assembly as early as (Inoue, 1974). He used a robot with
force feedback to achieve tight tolerance assembly. The assembly strategies adopted
played a significant role. For a peg-in-hole task, the alignment was achieved by slid¬
ing on contact surfaces. Other strategies adopted were tilting, aligning, and pushing.
These techniques are known as compliant motion. An overview of compliant motion
can be found in (Mason, 1984). One robot programming system based 011 compli¬
ant motion is (Buckley, 1987). The planner plans compliant motion strategy by
decomposing the task's configuration space into a finite state space, then searches
and expands states to find a path from start state to goal state. States are linked
to each other by arcs, which represent reliable compliant motions.

In his work on uncertainty reduction for robotic assembly from a manufactur¬

ing point of view, Gordon (1986) studied two methods: one is by engineering the
world, and the other one entails measurement and correction. The latter method
used a light stripe vision technique to measure the alignment errors for peg-in-hole
assembly. To reduce the cycle time of an assembly, the sensing is performed while
the robot is moving. A light strobe is used to freeze the image and the position of
the part is determined by reading the robot position at the same time. This work
showed that by careful measurement, tightly toleranced and high speed assembly
can be achieved.

Yin (1984, 1987) extended RAPT (Popplestone and others, 1980) with its mod¬
elling system ROBMOD (Cameron, 1984), to include visual sensing to determine
the transformation between the nominal part position and the actual part position.
A user can specify a vision task to determine the deviation of an actual position
from a planned position. The system reasons about spatial constraints at compile
time and leaves run time variables to be instantiated by the vision system. However

Chapter 2. Previous work 14

the use of sensors to change the ordering of actions was not easily achieved without
bringing more information into the planning system.

The Handey system (Lozano-Perez and others, 1987) is an exercise in system

integration. Handey can locate a part in a pile of objects, choose a grasp, plan a

motion to pick it up, and move to place it at the destination. It used a laser range
finder with a vision system to locate the parts. In order to integrate the system, some
simplifications were adopted. Collision free path planning is in a reduced dimension:
the last three links, the hand and any object in the hand are replaced by a box. Grasp
planning was performed based on the potential field method (Khatib, 1986) instead
of fine motion synthesis. They concluded that, although the heuristic planner left
much to be desired, using constraint propagation and satisfaction techniques were

extremely difficult and computationally expensive, so they were not used.

Spar (Hutchison and Kak, 1990) plans assembly tasks and takes into account

spatial uncertainty. Spar uses knowledge about uncertainty in the world description
to assess the possibility of run-time errors and adds sensing to reduce uncertainties,
or, if the resultant uncertainty is still too large, the system adds post-verification
sensing. Spar uses a hierarchical refinement method of planning: from high-level
operations (i.e. pick up a block), to geometric configurations of actions (i.e. the
position and orientation of the hand relative to the object that is to be grasped) in
an ideal world (e.g. without uncertainty), then adds uncertainty-reduction to the
ideal world plan. When the plan fails because the uncertainty is too large, sensing
operations are added to the plan for verification, and when possible, precompiled
error-recovery plans are also added.

Spar has limitations: 1) it concerns only the end points of actions, and does
not plan the motions required to move the manipulator (neither can it plan fine
motions or compliant motions), and 2) its geometrical reasoning is limited in that
its constraint manipulation system cannot distinguish between the relevant and
irrelevant features of geometric configurations, because that depends on the task.

The InFAOT system (Hardy and others, 1992; Eoughlin, 1992) uses separate

sensing and action modules which are linked by a supervisory system. Uncertainties
and variations are dealt with by measurement strategies which are only used in
situations where problems or ambiguities may occur. Each recognised problem is

Chapter 2. Previous work 15

matched with a specific measurement strategy tn deal with it, for example, a strategy
of moving a part past, a tactile sensor in a specific direction may resolve an ambiguity
about the orientation of a part.

2.3 Visual sensing

Visual feedback lnu; boon used to guide robots in hand-eye coordination tasks since
the early days of rohoticu research. Jones (1971) used a simple tracking method to
control a camera's aim and derived useful information from the image in terms of
pixel coordinates. lie demonstrated the use of visual tracking methods to perform
block stacking and loose insertion. The system was limited by the technology of
that period; PDP 10 computer, franieotorc of 252x238 pixels, with acquisition time
of 32 ins, fi bits per pixel. Real time performance was accomplished by using a

small window of 36x36 pixels to track simple features of objects, i.e. area, centroid,
perimeter, etc.

A geometric modelling system was introduced to facilitate the method of spec¬
ifying objects, and to allow programming robots in terms of objects' features, The
geometric, model is also used to reason about spatial occupancy, for collision avoid
ance, and to plan robot actions, The use of geometric modelling together with the
control of a robot band in a Cartesian coordinate system gives rise to the need to

map objects into a common coordinate frame.

In a traditional robot vision system, to work out bow to move a robot to ma

nipulatc an object, the location of that object must be found in terms of a common
reference frame between the vision system, the workspace and the robot hand, (tin-
so called 'world coordinate, frame'). It requires a calibrated vision system, i.e. cam¬

era parameters must be known. The systems must incorporate explicit geometric
models of the environment, the robot, and the camera. Success of operation relies
heavily on the accuracy of these models and the calibration of the vision system
with respect to the robot and the environment. Methods of calibration to get an

accurate model of camera geometry are well established (Tsai, 1987; Chang and
Liang, 1989).

Chapter 2. lJrevious work 16

Also, a traditional robot system works in its reference frame (the so called 'base
coordinate frame'). A model of the kinematics of the manipulator is used to trans¬
late between the Cartesian frame and the measured joint space (Paul, 1981). The
measurements come from the information from the encoders in the joints of the
manipulator. While the ultimate accuracy is limited by the resolution of the joint
encoders in a particular robot configuration, in practice the accuracy of going to a

location depends mainly on the accuracy of the kinematic, model.

Stereo vision can be used to derive depth information. To do so, the location
of the two cameras must be known in order to do triangulation calculations. For
example, edge-based binocular stereo can provide accurate depth data, provided
that the camera geometry is known (Pollard and others, 1989).

An example of the use of vision to determine the position of the part is (Horn
and Ikeuchi, 1983). The vision system determines the position and attitude of a part
in a pile of parts using photometric stereo. The attitude of an object is determined
using a histogram of the orientations of visible surface patches, matched against
prototype models. Because the photometric stereo does not provide absolute depth
information, a robot executes guarded moves to pick up the part using the infrared
light beam sensor at the finger.

Lougheed and Sampson (1988) described bin picking by a robot that can operate
in real-time. The system uses a laser-ranging sensor and a special cellular array
pipeline processor to construct 3D information of the parts. Using this information
the best grasping point is chosen from the contour map of the scene.

In dealing with a dynamic world, a ping-pong player robot (Andersson, 1988)
combines real-time visual feedback with the task that demands high speed response.

The system uses special hardware and sophisticated calibration techniques to achieve
the accuracy required.

Inoue an<l Inaba (1984) presented a system which used visual feedback to control
a robot hand to handle a flexible object, a rope. It used measurements of specific
information, the tip ol the rope. In a more general approach, a full geometric model
of robot hands, parts and workcell were used in Sakane and others (1987), Heikkila
and others (1988). They focussed the visual processing on small sub-windows and

Chapter 2. Previous work 17

tracked edge-type features. They used two cameras to guide a hand and planned a

viewpoint based on stability criteria to get an occlusion free viewpoint.

Weiss (Weiss, 1984; Weiss, Sanderson, and Neuman, 1987) proposed visual servo-
ing of a manipulator cyutorn based on position or image data, and later an adaptive
control scheme basod on image feature references was developed, where the values of
image features were used in the control loop. One method suggested was a system
that measures features in image space. This could be applied to 'teach-by-showing'
in the control of a camera in hand robot. The results of studies performed show the
possibility of its use in 1, 2, and 3 1)0F task. The features to be used in feedback
are selected based on the degree of coupling between features and the desired con

trol parameters and t he minimisation of the sensitivity to change along the desired
trajectory. In higher DOF tasks, the selection is done by trial and error.

Aloimonos and others (1987) presented some theoretical work on active vision.
An active observer performs activities to control the geometric parameters of visual
sensing. If is shown that, the controlled alteration of viewing parameters yields
stable and robust perception in a, more computationally efficient way than a passive,
observer. It. is worth noting that the technique of using image sequences, rather
than static scene analysis, helps to simplify stereo calculations (Brown, 1988) and
is useful for deriving depth information (Hayes, 1989).

An uncalibrated stereo vision system (i.e. no prior calibration, or self-calibrating
on the run) has been used to navigate a mobile robot (Brooks, Flynn, and Marill,
1987). Sarachik (1989) also employed an uncalibrated vision system to determine
the size and shape of a room by a mobile robot.. The advantage of an uncalibrated
vision system is that, it, does not rely on precise modelling or precisely calibrated
equipment..

Wolfe and Richards (1990) demonstrated in a 21) hand-eye system that by using
a vision system to track an end-effector in real-time in conjunction with a ('artesian
controller, a significant improvement in robustness to the effects of vision system
miscalibrations and errors in the parameters of a kinematic model can be achieved.

The type of vision sensing that is used in systems that employ a world model
(Born and Ikeuchi, 1983; Inoue and Inaba, 1984; Sakane and others, 1987; Ileikkila
and others, 1988; Lougheed and Sampson, 1988; Andersson, 1988) requires accurate

Chapter 2. Previous tvork IS

calibration to establish the mapping between the sensor's field of view and a common

coordinate system. This type of vision system cannot easily cope with changes in
camera parameters, such as changing the position of the camera or changing the view
point, zoom, etc. Uncalibrated vision systems avoid problems normally associated
with static cameras and also exploit the motion of the observer to derive some useful
parameters for the purpose of accomplishing the task in hand (Brooks, Flynn, and
Marill, 1987). Visual servo control, which uses image features (i.e. image areas, and
centroids) as feedback control signals, eliminates a complex interpretation step, i.e.
interpretation of image features to derive world coordinates (Weiss, 1984).

2.4 Behaviour-based systems

The behaviour-based approach to robotics began with mobile robots. In his now

well known paper Brooks argued against the traditional AI approach of relying on

the symbol manipulation system (Brooks, 1986). His approach to mobile robotics
contrasted strongly with that of other mobile roboticists (Nilsson, 1984; Moravec,
1983; Giralt and others, 1984). He advocated the decomposition of system into task
achieving units2 instead of the traditional functional units.3 For Brooks, the program

of a robot is composed of levels of competences in which higher levels can subsume
lower levels. At each level, behavioural modules tie their sensors to actions, are

interconnected and execute concurrently. The robustness of the system comes from
the fact that lower levels can perform their own tasks despite the absence of higher
levels. Brooks' robots were built incrementally, i.e. higher levels can be added on

without any alteration to lower levels. He called this the subsumption architecture.

He demonstrated the new approach in a series of mobile robots (Brooks, 1991b).
His early robots have simple goals, for example roaming the room without hitting
any objects. More sophisticated behaviours are demonstrated in a mobile robot with
an arm on board that can find and pick up a can (Oonnell, 1989) and a six-legged

2We will call these, behavioural modules.

3Function here being interpreted as computational functions, i.e., a modularisation
based on information processing requirements.

Chapter 2. Previous work 19

walking robot (Brooks, 1989). The use of a vision system is demonstrated in a

mobile robot that can chase an interesting object (Horswill and Brooks, 1988).

How to create this program seems to be a difficult task. Presently, the programs

to generate particular behaviours are individually hand-crafted. Kaelbling (1988)
proposed a scheme to synthosise behaviours from a goal specification. The code
generated by her scheme was decentralised and employed fixed priorities to resolve
any behaviour selection conflict at compile time. In a sense, this attempts what
(Lozano-Perez, Mason, and Taylor, 1983) try to do in a well characterised situation
in assembly tasks. Brooks (1990) produced a language, the Behavior language:, which
could be used to implement, behaviours on mobile robots. This language compiles
into subsumption architecture programs with a fixed priority arbitration scheme.

A formal model of distributed computation for sensory-based robot control has
been studied in (Lyons, 198G). Behavioural modules can be seen here as perception
action agents. The model of sensori motor action is based on schemas (Arbib and
others, 1984) and can be used to describe behavioural modules. His intention was

to use it for t he formulation and verification of robot programs.

There has been very little work on behaviour based robotic a-ssembly systems

due to its youth. Emerging from previous experience with tin? classical robotic as

sembly system (RAPT), we can find arguments for the behaviour based approach
in Smithers and Malcolm (1989). It describes the complexity of geometric and un¬

certainty reasoning in the construction of robot programming support, systems that
make use of sensors to reduce, uncertainty. Smithers and Malcolm argue that iobot.
programs should be constructed in terms of task achieving behavioural modules,
Each behavioural module contains its own sensing. The distinction between sens¬

ing and action is hidden from higher levels. A robotic assembly system based on

this concept is reported in Malcolm (1987). It is a complete and fully autonomous

system, It plans and executes the assembly of Soma parts , Although this system
doesn't use sensors, it is designed to facilitate their inclusion.

I lie. be,haviuui-ba.M,d architecture avoid.-* the, problem.-* of complexity iuhcn.iif m
classical s-yslems by iinl trying lo build a model of I he world, therefore I lie ' ompul a-

4 A detailed description of this system is given in chapter 4.

Chapter 2. Previous work 20

tional problems of uncertainty are reduced. In order to achieve a task, sensing-action
feedback loops are used in a tight coupling with the world. Also this paradigm ad¬
vocates building and testing robots in the real world so that from the bottom-up,
design decisions have to be made to ensure that robots operate robustly in the real
world.

2.5 Conclusion

From the early days (Ambler and others, 1975), it has been shown that robot pro¬
gramming is difficult. Attempts to raise the level of robot programming languages
revealed many hard problems. For example the use of a geometric model of the
objects leads to analysis which is complex and computationally expensive, such as

configuration space, uncertainty analysis, etc. Planners that deal with uncertainty
are very complicated. Besides various efforts on these problems; the integration of
robotic assembly systems has been discouraging, these complicated techniques must
be simplified in order to make the robot work in real-time.

The use of sensors is necessary in robotic assembly but the attempts to automate
the generation of strategies for using sensors have also met with similar problems.
The emergence of behaviour-based systems showed that these problems can be solved
in a different way. Most of the work so far on behaviour-based systems is on mobile
robots, but the architectural problems faced by assembly robots are similar. We
conclude from this that it should be possible to develop robot systems with complex
behaviour, and reliable achievement of their goals, with notably less computational
complexity than suggested by the classical approach, by using the behaviour-based
approach. The key concept is in the decomposition ol tasks into task-uc.liii vintj units.

The work in this thesis is built on the foundations of the behaviour-based robotic

assembly system proposed in (Malcolm, 1987; Malcolm and Smithers, 1988b; Smithers
and Malcolm, 1989). This thesis sets out to incorporate vision sensing into a robotic
assembly system. The basis of the vision system is based on the method of visual
servoing described by (Weiss, 1984), and is inspired by (Jones, 1974) in the use of
simple processing to satisfy real-time constraints.

Chapter 3

Behavioural modules

What magical trick makes us intelligent?
The trick is that then is no trick.

Marvin Minsky (1987)

This chapter describes the main idea of this thesis: the concept of behavioural
modules. We address the problem of how to program assembly robots to perform
reliably in the presence of uncertainty. The classical approach to this problem is
described and its difficulties in dealing with uncertainty are analysed. We intro
duce the behaviour based approach as a means to solve this problem. It employs
an alternative to the classical approach to task decomposition. Criteria for task
decomposition are proposed and discussed. These criteria directly address the prob
lems of the classical approach. In this new approach, a task is decomposed into
task achieving units called behavioural modules. An example is given to compare

the two methods of task decomposition. We then discuss the characterisation of
behavioural modules, their design and implementation.

3.1 Problems with the classical approach

The purpose of the process of assembly is to bring the parts involved into desired
relationships as specified in the final state of assembly. These relationships and the
ways in which they can be achieved are constrained by the geometry of the parts
The ordering of the assembly cannot be arbitrary. It is constrained t oo, by the shape

21

Chapter 3. lh-liavioural modules 22

of the parts. In order to assemble two parts together, some part mating strategies
are required. The assembly at this level is described in terms of part motions. But
current assembly robots are programmed only in terms of their motions. If we know
exactly the shape of the parts, and the relationship between the robot and the
parts, then we can derive the robot motions from tho (locirod part motions directly
(Popplestone and others, 1980). But 1) in the real world the shape of the parts
are not perfect; 2) tho relationship between the robot and the parts are not known
exactly because of the uncertainty in the location and dimensions of the parts; 3)
and it is useful to use compliant and constrained motions where the motion of the
part is only indirectly if at all - related to the motion of the robot (Mason, 1985),
lor example: dropping a peg into a hole, or the use of remote centre compliance
device (ROC!) (Whitney and Nevins, 1979). Therefore it is difficult and sometimes
impossible to derive a robot motion strategy to achieve the desired part motion from
the knowledge of the required specified relationships.

In the classical approach, an assembly system plans lor robot motions. It makes
assumptions about the predictability of the physical world and only works when
the assembly work cell is engineered to keep those assumptions true. It achieves
reliability by I) using a world model and 2) engineering the environment to be close
to this model. If this engineering goes wrong, the assembly will not work. This is
because the assembly is achieved as a side-effect of robot motions that interact with
the environment to achieve the desired part motion. Because the goal is not known
it has no control over this interaction, and therefore cannot correct the deviations
of the actual situation at run-time from that predicted by the model.

The classical approach bases the interpretation of sensed data on a central world
model. It relies on the calibration of sensors, which needs a world model and an

accurate model of the sensors. For example, in visual sensing, calibration is done to
establish the transformation from an image reference frame to the world coordinate
frame. Lens parameters are also derived from the calibration based on the camera

model. II the camera has moved, the new transformation is calculated from the

previous one. Its accuracy depends on the accuracy of motion, which relies on the
accuracy ol t he kinematic model of the device that moves the camera. For example,
if a resolution ol 0.5 mm/pixel is required and the camera is at a. distance 50 cm,

the resolution ol the angular motion must be at least 1 milliradian: this is a severe

Chapter 3. Behavioural modules 23

requirement of motion accuracy, especially when carrying what, in often a relatively
(for a robot) heavy camera.

The problems with the classical approach are that 1) it assumes the world to
be perfect, then 2) the uncertainty in the geometry of the parts and their locations
are added in and are analysed to determine whether sensing is necessary to reduce
uncertainty to an acceptable level. This makes it. necessary to do the uncertainty
analysis after a plan or partial plan has been created. The results of this analysis
are then used to correct or modify the initial plan (Brooks, 1982). Sensing can

be introduced to reduce uncertainty at some point in the plan (Lozano-Perez and
Brooks, 1985; Hutchinson and Kak, 1990). This cycle of plan, analyse, and modify is
repeated until the analysis uncovers no further problems, This makes the production
of each robot program a large task since the problem of uncertainty plagues all
aspects of a program.

The classical approach deals with uncertainty in an nil line way which is based
upon computationally expensive analytical techniques which are only able to rcpre

sent a subset of the types of uncertainty actually experienced at execution time. As
a result the task of planning and programming a robot is made very complicated and
the uncertainty analysis carried out is specific to each task. And yet. the programs

so produced are known not to work in practice without further on line testing.

3.2 Behaviour-based robotic assembly systems

The behaviour based approach suggests an alternative way of decomposing the prob
lem of programming robotic systems. It separates the problem of task planning and
programming from the problem of dealing with the inevitable uncertainty of the
real world. An assembly system is decomposed into two parts: a planning system
and an execution system. They are interfaced via a plan. The plan describes part
motions that achieve the desired assembly. These part motions are translated into
robot motions by the execution system.

The difference between this approach and the classical approach as typified by
TWAIN (Lozano-Perez and Brooks, 1985), Handey (Lozano-Perez and others, 1987),

Chapter ,'i. Behavioural modules 24

and Spar (Hutchinson and Kak, 1!)!)0), lies in the fact that in behaviour-based
systems the planner relies on the execution system to cope with uncertainty. As
a consequence it is able to plan in an ideal world, unlike the classical systems;
TWAIN and Spar plan from task-level specifications and synthesise sensing and
motion strategies down to the manipulator-level; Handey, although it uses sensing
in its run-time system to locate objects and to make decisions about grasping, still
relies largely on the planning system to plan for robot motions.

In the behaviour-based approach the execution system is composed of task-
achieving units. These modular units are designed, implemented and tested in
the real world to perform their intended tasks reliably, and they can be guaranteed
to perform their tasks within a certain range of uncertainty. They are called be¬
havioural modules. Behavioural modules facilitate the use of sensors to cope with
uncertainties, therefore increasing the reliability of assembly tasks. It is an abstrac¬
tion that makes an assembly robot more easily programmed. This is achieved by
hiding the specifics of the use of sensors as much as possible from a planner and by
avoiding explicit reasoning about uncertainty.1 The planner, therefore, deals with
an ideal world in which the robot carries out its operations reliably in the presence

of uncertainty, 't his leaves the planner to deal with the problem of reasoning about
the ordering of the assembly and other high level assembly strategies rather than
concerning itself with the actual details of robot motions in the assembly cell.

A behavioural module is implemented as robust, goal achieving actions that
are executed in the real world. Programming a robot is a process of composing
abstract operations of robotic devices, i.e. robot motions, the use of sensors, object
manipulations, etc.. The behavioural module maps these abstract operations onto a

physical instance of the task.

The interplay between robot motions, objects, and sensing is encapsulated in
a behavioural module. It makes use of action coupled with sensing to gain infor¬
mation about the world to achieve the task in an economical fashion; this kind ol

1 Implicit reasoning about uncertainty, i.e., reasoning by the system designer which is
incorporated into the system design, and so is not accessible to the system's own reasoning,
is permitted. This distinction is discussed in (Malcolm and Sinithers, 1989).

Chapter 3. Behavioural modules 25

dynamic sensing can reduce the computational requirement of sensing a lot (Aloi-
monos and others, 1987; Brown, 1988). The encapsulation of sensing within a

behavioural module is important. It allows the management of complexity in cop

ing with uncertainty and facilitates the use of sensors. It enables the uncertainty
to be encapsulated within a behavioural module and therefore limits the propaga

tion of uncertainty. It trades some sensory/action redundancy for the benefit in
computational simplification.

A behavioural module can be parameterised for a range of objects. Although it
depends on the geometry of the objects, it can be parameterised for a class of objects
with similar features, for example, similar shaped objects of different size. This
makes behavioural modules usable for a class of tasks. Behavioural modules can be

regarded as library routines for assembly tasks. They provide a set of capabilities
of a robotic assembly system to a user. The user can then use these available
behavioural modules without having to invent new behavioural modules for every

new assembly in that class.

An important point of behavioural modules is that they abstract away some of
the uncertainty management from the user of a robot such that the? module will
'do the right thing' for its task. This abstraction is important because, by using
behavioural modules, a user can compose a robot program to do assembly without
having to be concerned with the details of the use of sensors to manage uncertainty
and the program will work reliably. There are many levels of abstraction, from the
details of physical devices* to the intermediate level of the strategy of assembly to
the highest level such as a behavioural module that 'makes' the whole assembly. A
behavioural module will not be useful if it. is expressed at an inappropriate level. A
robot program comprised of behavioural modules is easy to write and to test for its
correctness because of the level of abstraction that behavioural modules provide. It
can raise robot programming to the task-level.

The main difference between behaviour based systems and classical system:; is
that, iii bchavioui-bascd systems the management of uiiccitaiiity is at tie bchaviumal
modules' design stage i ather than at the planning stage. Most uf the uiueitainties
arc dealt with at a local level. A planner for behaviour based systems is therefore
much more tractable than a planner for classical systems. Also behavioural modules
arc designed and tested in the real world, so tlicy are likely to be more robust than

Chapter 3. Behavioural modules 26

classical systems which have to take into account large amounts of detail about the
real world in order to plan robot motions to achieve a given task.

3.3 Criteria for decomposing a task into
behavioural modules

How should a task be decomposed into behavioural modules? We shall refer to some

work in the computer science literature on system design and program design for
providing a basis to develop our answer to this question (Parnas, 1971, 1972; Your-
don and Constantino, 1979). Parnas suggested decomposing a system into design
units. Design units are related by interfaces which are any sort of interrelationship
or interdependenc.y. A structured description of a system shows the system divided
into a set of modules, gives some characteristics of each module, and specifies some

connections between modules.

The structure of a system is important because it has impact on: 1) the ability
of the system to tolerate changes and 2) the ability to check for correctness. A
system should be divided into a number of modules with well-defined interfaces;
each one is small enough and simple enough to be thoroughly understood and well
implemented.

The connections between modules are the assumptions which the modules make
about each other. A good design should strive for a system that has weak connections
because it will give the system the ability to tolerate changes. A change that occurs
in a single module will not affect other modules only as long as the connections still
'fit'. A module should have a simple interface; that is, it should minimise the amount
of information flow passed in the connections. This suggests that the connections
should contain as little information as necessary.

The question about task decomposition will be addressed by using these concepts
of modularisation.

The central problem of assembly systems is the presence of uncertainty. The
classical approach addresses this problem by using a centralised representation of
the world which is updated by sensors and needs the added complexity of being

Chapter 3. Behavioural modules 27

decorated by uncertainty {.specifications and relations. The use of an explicit world
model requires that all know ledge about the world should be collected and converted
to a symbolic form. There are problems of choosing a common representation and
the interpretation of sensed data. Also the central world model encourages the use

of complex and computationally expensive algorithms.

The connections between modules in the classical approach are centred 011 this
world model, therefore the modules are strongly connected. When uncertainty arises
in one module, it propagates and affects all the rest of the system. It is difficult
to keep this world model accurate. Its accuracy depends on various factors: the
accuracy of the model of sensors, the accuracy of the kinematic model of the ma

nipulator, the calibration procedure, the accuracy of a motion etc. When there is a

change in the system: for example, objects have moved, the lighting condition has
changed, it might invalidate assumptions about the world of other modules. Be
cause all modules arc strongly connected it is difficult to limit the effect of changes;
This sensitivity to small changes of position, uncertainty, etc., happens because the
world model is constructed in terms of position and uncertainty in order to be able
to construct a robot-motion-based plan.

Another criterion to be considered is the degree and nature of coupling between
sensing and action. A robot might derive the state of the world from its input
sensors, then use its reasoning system to decide what commands to send to the
output effectors. "This cycle will then repeat. The amount of symbolic processing
affects the cycle time. This cycle time must be fast enough to pre-empt significant
change in the world. In the classical system, this process of the deriving the state
of the world from sensed data and reasoning about cause and effect can be very

expensive (therefore slow) because all knowledge about the world must, be included;
it is difficult to select what is important, the so called frame problem (McCarthy
and Hayes, 1969).

Agre and Chapman (1987) argue that general reasoning is not often required in
many situations, for example, rather than stating that: 'for all car ;c, if robot is
moving toward x then slow down', in order to use the knowledge that is indexed by
the sensors, we could use: 'if thing in the centre of visual field is getting closer, slow
down', thus avoiding searching the world model for x.

Chapter 3. Behavioural modules 28

In fact, one of Brooks' mobile robots (Brooks and others, 1987) uses this scheme
to avoid hitting objects by measuring 'time to collision' without recognising objects.
Brooks and his colleagues (Brooks, 1989, 1991b; Connell,1989) have had remarkable
success in building complex systems that can co-ordinate the behaviour of different
modules without using a representation of the world and without direct commu¬

nication between modules. Instead the modules are initiated by sensing the effect
of activity of other modules or the perception of the world. Using the perception
of the world, rather than parameters, as a control-passing mechanism reduces the
assumptions made by the system, thus increasing reliability.

Ideally, sensing and action should be tightly coupled at a low level to simplify
processing and to limit the information flow to other modules. At one extreme of the
spectrum, sensing and action can be built into mechanical systems, like the remote
centre compliance device (ROC) (Whitney and Nevins, 1979). Other examples are:

• a mobile robot (Brooks and others, 1987), which can wander around a room

while avoiding hitting obstacles, using a cylindrical lens to compress an image
into one horizontal strip, which works well for detecting vertical edges in the
environment;

• Sarachik (1989) used the sequences of the central strip of the image to construct
a view of a room to detect the height of the ceiling;

• retina chips by Mead (1989), an analog VLSI device that can detect visual
motion in real-time using very little computational power.

This exploitation of contextual information and the tight coupling of sensing and
action reduce the sense-act cycle time and simplify the computation.

In conclusion three criteria are proposed to decompose robotic assembly tasks
into behavioural modules:

1. There is no reliance on a central model of the world for sensing and action.

2. Sensing and action should be tightly coupled within the module.

3. Prefer to pass control via perception of the world rather than by parameters.

Chapter 3. Behavioural modules 29

The next section discusses the characterisation of behavioural modules and shows

that their characteristics are the direct consequence of using these decomposition
criteria.

3.4 An example

In this section, we give an example of two alternative decompositions of a task to
illustrate the differences between the classical and behaviour based approaches.

Suppose we want to pick up a part. A camera is used to locate the part. The
classical approach will decompose this task into two steps:

1. locate the part (locate-part);

2. move the hand to pick it up (pick-up).

Figure 3-1: The classical approach

There are 3 reference frames: A the robot, B the world and C the camera. The
camera sees the part at (:v,y) in its image coordinates. The location of the camera

must be known, he. the transformation T, from (' to B. A calibration procedure is
used to find the mapping of image coordinates to world coordinates. It must take
into account the lens parameters (focus, distortion etc.). After this, the location of
the part in the world coordinate can be calculated; This location then is transformed
into the robot's coordinate, knowing the transformation of the reference frame B
to A. Then the robot is commanded to pick the part up.

dhapter 3. Behavioural modules 30

The success of this task depends on knowing T\ and T2 to a sufficient degree of
accuracy. l\ depends on the accuracy of the calibration of the camera.

Alternatively, using the behaviour-based approach, one way that we can decom¬
pose this task into 3 steps:

1. move the hand down to M (move-down-half);

2. move the hand from M to TV, N is directly above the part (move-above);

3. move down to pick up the part (move-down-pick).

We assume that the hand is near the part so that the camera can see both the
hand and the part, at the same time.

Step 1: The hand moves down to A/, half the height from the part (so the height
of the hand above the part H must be known). It also relies 011 the fact that the
hand moves down vertically.

Step 2: From M, which lies 011 a plane, the hand moves to N by visual servoing:
the camera observes the relative position of the hand (m) and the point above the
part in the image (11), and repeatedly moves the hand (only moving in the plane
P)2 to bring it to n. This is achieved by iteratively using a local mapping between
the hand's commanded motion and its observed motion in image coordinates.

2This is because we don't know how far the part is from the camera. Using 2L) infor¬
mation we can only control two of the degrees of freedom of a hand motion.

Figure 3-2: The behaviour-based approach

Chapter 3. Behavioural modules

Step 3: The hand moves down and grasps the part.

Tills second method doesn't rely on knowing the camera position, nor the precise
calibration of it. Instead* it employs a tight coupling between sensing and action to

guide the hand to the part. The knowledge that is required here is much simpler
than that needed in the first method; only // and h, instead of the transformation
matrices T, and Because the second method doesn't use common coordinates to

communicate, it doesn't matter if the camera has moved slightly. Because visual ser
voing is used, it will not matter if the robot doesn't have the required accuracy.3 As
long as the robot and the camera have enough resolution, the task will bo performed
successfully.

When we compare the connections between modules in both decompositions,
wo can coo that the classical approach has much stronger connections than the
behaviour-based approach. In the first method, locate-part and pick-up are con¬

nected by the world coordinates and the shared object model, thus the. assumption
about the accuracy of 1\ and Ti is important, locate-part is also required that
its knowledge about the camera calibration bo accurate. In the second method*
move-down-half, move-above, and move-down-pick are much more weakly con¬

nected. move-above doesn't, need to know about the camera calibration, therefore
the lens can be changed or adjusted and the camera can be moved. The behaviour
based approach doesn't use either, so it can be robot independent.

3Tho (iccumcy of a robot refers to the precision with which the robot can go to a

position described in terms of a general spatial co ordinate. Accuracy depends 011 the
accuracy of the kinematic model of the robot, the construction of the robot and its cali
bration. Resolution refers to the smallest amount of movement that a robot is capable of
detecting. Resolution depends on the robot construction and the resolution of the robot's
joint encoders.

Chapter 3. Behavioural modules

| zput | | ztnari i p~| | zgvt |

|f<»l low| |approach] | |

>, i 77 i ,, L—TT i , iI find-marker| |head-rotatfc | [find-fingertipsj [move-above |

Eg i tt..-K-tipsi

Figure 3—3: The hierarchical structure of behavioural modules

3.5 Characterisation of behavioural modules

In behaviour-based robotic assembly systems, the planning system relies on the
execution system to perform the task reliably. The execution system is composed of
behavioural modules which are combined together in a hierarchy with the top level
interfaced to the planner (figure 3 3). We will discuss what are the characteristics
of behavioural modules in the following paragraphs.

Behavioural modules are not just software.
A behavioural module may consist of several parts: mechanical, electrical, computer
software, etc. They act together in the real world to achieve a task. A behavioural
module can contain other behavioural modules, thus forming a hierarchical struc¬
ture. Behavioural modules are connected to the world via their sensors and actua¬

tors. This implies that a computer system cannot by itself be termed a behavioural
module.

Behavioural modules have well-defined interfaces.

The interfaces between behavioural modules need to be clearly defined. They are

documented in the form of module specifications. Part of the specification for such
modules should contain a clearly stated objective: what the module tries to ac¬

complish, whereas another part states what this module assumes other modules

Chapter 3. Behavioural modules

guarantee. Other information contained in the specification is the details of the
parameters that are passed in and out of the module.

Behavioural modules don't rely on a global world model.
Each behavioural module has its own representation of the part of the world that
is relevant to it, so the information to pass to other modules is minimised. Unlike
classical systems, for example, RAPT and Spar (Popplestone and others, 1978;
Hutchinson and Kak, 1990), which try to use one representation of the world for
the whole system and rely on powerful inference techniques to deduce (calculate)
what to do, behavioural modules only need private and local representations that
are tailored to their tasks.

Behavioural modules have tight coupling of sensing and action.
Sensing must be designed to match the task. Questions about how to use sensors,

what to sense, what actions to take, etc., are determined by the task that is to be
performed. A behavioural module will exploit contextual information. It can make
use of the knowledge of a motion that it has created to find the in variance in its
perception. For example, a block on the table can be distinguished from a block in
the hand by moving the hand and observing the block that doesn't move (assuming
only two blocks in view and the camera stationary).

Behavioural modules prefer communicating via the world.
To make the connections between modules weaker (to assume less about what other
modules will guarantee), a behavioural module should prefer knowledge from direct
sensing of the world to knowledge about the world that is deduced from information
from other modules. It has the effect that a change in one module will not affect
other modules.. This also suggests that a behavioural module should minimise its
reliance on a priori knowledge. The less knowledge it has to use, the less chance of
it being affected by the change in that piece of knowledge.

Behavioural modules are context sensitive.

Behavioural modules are designed to perform in a chosen environment, therefore
they are not context free. The context is dependent on the layers of abstraction of
the robot program: from a high level that describes an assembly in terms of part
motions and part relationships; to a low level that describes the individual behaviour
of a physical device. A behavioural module can be composed of other behavioural

Chapter 3. Behavioural modules 34

modules. In this hierarchical structure, there is a level at which some modules don't
contain other modules, we called such modules grounded. At the point at which we

can not identify a meaningful objective for a module with regards to the task, in
other words, when it becomes free, from the context that we are interested in, that
module will cease to be designated a behavioural module. Behavioural modules are

purposeful. It is connected to the world by purpose via sensors which grounds them
and gives them context sensitivity.

In Malcolm, Smithers and Hallam (198'J), an emerging paradigm in robotic ar¬

chitecture is discussed. Many of its characteristics agree with our discussion of be¬
havioural modules. Especially, in Malcolm and Howe (1990) the following properties
have been suggested as general properties of behavioural modules:

• they handle the variations and uncertainties typical of the task;

• they integrate sensing and action at a low level;

• they are computationally minimal;

• they know (i.e., represent, symbolically) as little as possible.

All of these fit into our characterisation.

3.6 Design and implementation

Behavioural modules are hand-crafted by a human designer such that they can per¬

form the task reliably. The overall strategy for achieving reliability in the presence

of uncertainty and variations in the work cell is devised by the designer. The diffi¬
culty of part manipulation in an assembly task is dealt with by this person who has
years of experience in object manipulation to call on when designing a behavioural
module.

A behavioural module ran be composed of other behavioural modules, thus a

hierarchical structure is formed. A hierarchical structure has the benefits that: 1)
individual modules are simplified because they can use other modules in turn; 2)
some modules ran be reused.

Chapter 3. Behavioural modules

The decomposition criteria enable a clean and well-defined interface which makes
behavioural modules easy to use and implement. These two properties: hierarchical
structure, and clean decomposition, are desirable but independent.

The implementation of behavioural modules can be carried out in an independent
manner from other parts of the system development once the specifications of the
behavioural modules arc defined. Each module can be implemented separately in
a bottom-up fashion. Their specifications facilitate the testing of the modules and
the system integration process.

3.6.1 Combining behavioural modules

Each behavioural module can be treated as a reliable component. Modules can be
combined together to form a new module that has a different ability. The range of
possible operations can be extended this way. For example, one module can pick
up a cylindrical part, another module can pick up a square block. Given that the
requirements of both modules are not in conflict, they can be combined to form a

new module which can pick up either part.

Behavioural modules can also be combined to handle an exceptional case in
which one module has failed, by activating another module to perform a recovery

task. For example, assume there are two modules, one module can track the target

(track), the other one can locate the target (locate). If the track module loses its
target, the locate module can be activated to re-locate the target. In this sense, the
new module that combines track and locate ran handle this exception internally.
Wilson (1992) constructed behavioural modules this way to increase the reliability
of an assembly system.

3.6.2 The reuse of behavioural modules

The broad general competence of the behavioural modules in the SOMASS system

(Malcolm, 1987) was shown by their incorporation in an automatic planning system
in which they were tested over a wide range of assemblies (section 4.1.1 p. 45).
Because of the hierarchical structure of behavioural modules it is often possible to
reuse some of their component, modules for a new task. Behavioural modules are not

Chapter 3. Behavioural modules 36

context free, but the adaptation of existing behavioural modules to a new task is
not difficult. Many modules, especially low level modules, contain little contextual
information about the task (they gain context from sensing), hence they can be
easily adapted. The strategy for achieving a reliable operation may be changed
according to the task, but if the new modules for the task use the old modules, they
can inherit the old modules' reliability. Most of the examples from our experiments
(chapter 4,5 and 6) showed that this is the case. Many modules were reused in the
construction of new higher level modules.4

In many cases existing behavioural modules have a wide enough general compe¬
tence that they can be used in new tasks without change. Where change is required,
this is usually no more than a change of parameters. For example, the module that
tracks a moving target (section 4.5 p. 53) was reused in the module that moves the
camera head while keeping a target in the middle of its view (section 6.4 p. 74),
and the module that finds a robot hand by moving the robot fingers and taking
the difference of two images (section 4.6 p. 54) was used to start the tracking-hand
module and subsequently was reused to find the hand in the calibration of the stereo
head module (section 5.4 p. 65). In these two examples, the existing modules were

adapted without change. In some other cases, as in the tracking module, the pa¬

rameters of the intended target (its size, and other attributes) need to be changed
when reusing it in a new situation.

Another way to look at the reuse of behavioural modules is to think of their
descriptions (as in appendix A) as a design specification similar to a description of
an algorithm in computer science. The level of description given in this thesis is
not totally machine independent (as it depends on some of the characteristics ol
the. device used in the experiments) but one can usefully derive some analysis or

implement a concrete system from this description. This is quite similar to the use

of a hypothetical computer by Knuth (1968) in his famous text book on computer

algorithms in which he describes and analyses algorithms, and presents concrete
results based on the running of these algorithms on a hypothetical computer (MIX).

4The structure of the behavioural modules in the experiments are explained in section
7.7. Also see figure 7 1 for a classification of behavioural modules into low and high levels,
and the appendix A.3 for the details of the hierarchical structure of behavioural modules.

Chapter 3. Behavioural modules 37

The reuse then is a process of using the same description in another program (as
much as one can implement Knuth's MIX assembly language programs using any

programming language).

3.6.3 Implementation requirements

Behavioural modules can be executed concurrently, for example, a robot hand is
moved by one module and at the same time in another module a camera tracks
it Therefore the run time system must be capable of creating and synchronising
multiple processes.

A robot program, which is composed of behavioural modules, can be imple¬
mented in many available computer languages. It does not require that the robot
program has to be in any special form. Behavioural modules can bo implemented
in an ordinary computer language but to run them concurrently requires that the
system has the ability to create and start concurrent processes. The robot program
can use the data abstraction and control structures that are available in that com

puter language. The ability to pass data between concurrent processes depends on

the underlying mechanisms of the support system.

In summary, the behavioural module concept is independent of the implementa
tion language (provided it has sufficient resources) and can be implemented using
existing computer languages.

3.7 Conclusion

The behaviour based approach to robotic assembly systems suggests a solution to
the problem of achieving reliable operations in the presence of uncertainty by a

different decomposition of the assembly task. The task is decomposed into modules
which have weak connections as opposed to the classical approach which has very

strong connections between modules. The strong connections between modules in
the classical system come from the common use of the world model. The classical
system uses a centralised world model to communicate between its modules which
makes the problem of uncertainty permeate into every part of the system.

Chapter 3. Behavioural modules 38

By avoiding this centralised world model, by employing tight coupling between
sensing and action, and by communicating through the world, which also weakens
connections, behaviour-based systems achieve reliable assembly operations in the
presence of uncertainty.

A behaviour-based assembly system is comprised of two parts: the planning
system and the execution system. The planning system plans in terms of operations
in an ideal world and concerns only the high level strategy of the assembly task.
The execution system, which is comprised of task-achieving units called behavioural
modules, deals with the uncertainty in the world and achieves reliable operations.

Behavioural modules are connected with the real world, they have hierarchical
structure, they prefer direct sensing in the world, and they exploit contextual infor¬
mation. The sensing in behavioural modules is simplified by its tight coupling with
action. The uncertainties are reduced by the use of sensors and other manipulation

strategies inside the module, therefore avoiding placing the burden 011 to the user.

Chapter 4

Extending SOMASS: visual sensing

The principles for the design of behavioural modules have been proposed and die
cussed in the previous chapter. In this chapter, and the next two chapters (5 and 6),
the}' are applied in order to construct a working system. We start, in this chapter,
with an extension of the SOMASS system that incorporates visual sensing using a

stationary camera. We then describe a two camera system in chapter 5, before going
on to the use of mobile cameras in chapter 6. These three chapters will describe
experiments in the design and implementation of new behavioural modules and dis¬
cuss the test results. The analysis of the system will be described in chapter 7. All
the visual processing algorithms will be discussed in detail in chapter 8.

This chapter describes an experiment in extending SOMASS. The aim is to

investigate tho problems associated with integrating sensors into a robotic assembly
system. SOMASS is chosen because it provides a reliable, working system that is

already available. It is used as a base to carry out experiments with new behavioural
modules so that they can be tested for a complete assembly task, in a realistic
environment.

A detailed description of SOMASS is given in the next section in order to fa¬
cilitate an understanding of its extension. The experiments in the design and im¬
plementation of new behavioural modules are then described. The limitations, the
comparison of these modules with the old modules and the method of integrating
new modules into the system are discussed.

3!)

Chapter 4. Extending SOMASS: visual sensing 40

4.1 The SOMASS assembly system

The SOMASS (Soma Assembly System) by Malcolm (1987) is a complete and inte¬
grated planning and execution system which performs the assembly of Soma shapes
(figure 4-1 and 4 - 2). (liven the desired final shape of an assembly, the system plans
the sequence of operations that will put the component parts together.

SOMASS is divided into two parts: the symbolic planner system and the exe¬

cution system. The symbolic planner uses an abstract representation of the task
and isn't concerned with details of the real world. It generates plans which are then
carried out by the execution system. The execution system deals with variations
and uncertainty in the locations and dimensions of the parts.

4.1.1 The Soma assembly domain

The Soma cube was invented by the mathematician Piet Ilin (Gardner, 1972). Soma
shapes are built from individual cubes which are joined together to form shapes
which have a surface concavity. The Soina-4 set is the set of Soma parts that
contains 4 or less cubes in one of each shape (figure 4 1). There are many different
shapes which can be constructed from these parts (figure 4-2). The shape-dependent
part-fitting properties of Soma assemblies retain the essential features of the general
assembly problem.

loll ell fork2 zed left right fork3

Figure 4—1: Soma-4 set

4.1.2 The planner

The planner is told the final shape of an assembly and it works out how the parts are

to be disposed to form this assembly. There are rules of assembly embedded in the

Chapter 4. Extending SOMASS: visual sensing ■11

Figure 4-2: Several possible Soma-4 assemblies

1 pad
1 pad

2 pads

Figure 4-3: Padding of an assembly

planner. These rules aim to: 1) simplify the assembly operation, 2) deal with the
fact that the robot that is used to perform assembly has only 5 degrees of freedom
and 3) increase the reliability of assembly. The following paragraph lists some of
these rides.

Soma parts are placed in a stable configuration; they have adequate space be¬
tween them for the part acquiring operation; the parts arc placed within known
bounds; the parts are to be picked up by the top cube (the only exception is the zed
shape which has two top cubes); the putting-down is done vertically; the topmost
cubic (which is to be grasped) of each new part must not be lower than the topmost
cubie of the rest of the assembly so far; etc.

The planner deals with the tolerance of the parts when they are placed into the fi
nal assembly by leaving gaps between them, called padding spaces

(figure 4-3). When all parts are assembled, the final assembly can be pushed to¬

gether; this operation is called patting. Salmon (1989) implemented a strategy that
will pat most assembly shapes.

Chapter 4. Extending SOMASS: visual sensing 42

[[0,0,0], [1.0.01,(0,1.0], [0,0,1]]

(a) W

Figure 4—4: Representation of the shape a) a fork3 part, b) a final assembly
solution of a 3x3x3 cube

The planner was designed to have as little knowledge as possible about the details
of the real world such as: the layout of the work cell, the size of the parts, etc. It
uses an abstract representation of the shape of the part which is independent of the
actual size of the part. A part is represented by a list of triples [x,y,z] of space that
the cubes occupy (figure 4-4).

The planning process is based upon stepwise refinement: it forms a complete gen¬

eral solution at one level, and then adds constraints, solves the consequent problems,
and adds details to the plan to form the next level. If any stage fails it backtracks.
These stages in the processes are as follows:

1. A general solution is found in which the parts will fit into the final assembly.

2. A gravitalionally stable ordering of the assembly is found. The part is to be
inserted vertically and must come to rest in a gravitationally stable position.

3. Valid put-down grasps are determined. There must be clearance for the gripper
fingers to open while releasing a part into the assembly without clashing with
other parts.

4. Any necessary regrasps are planned. The intermediate put-down and regrasp

strategy must be found for any part that has different pick-up and put-down
grasps. The intermediate grasp must be a gravitationally stable orientation of
the part. It takes into account the limited degrees of freedom of the robot.

After a final solution is found, the planner generates a plan incorporating all the
parameters which are required by the execution system (figure 4-5).

er 4. Extending SOMASS: visual sensing

This is plan56 of the chair assembly using the soma4 part set.

CALL sinitO

CALL zjustz(b4.get, 2)

CALL zpcalc(centre, b4.put, 1 ,-1 ,2 ,2*gap, 0«gap, drop)
CALL zpcalc(centre, bS.put, -1,-1,2 ,0«gap, 0«gap, drop)
CALL zpcalc(centre, b7.put, l,l,2,2*gap, 2*gap, drop)
CALL zpcalc(centre, b6.put, 0,1,3,l*gap, l*gap, drop)
CALL zpcalc(centre , b3.put, -1,1,3,0*gap, l*gap, drop)
CALL zpcalc(centre , bl.put, -1,1,5,0*gap, 0*gap, drop)
CALL zpcalc(centre, b2.put, l,l,5,2*gap, 0*gap, drop)

The placing of fork3
CALL zpatget(b4.get , RZ(90), -1.5,0.5, RZ(0) , -1.5,0.5)
CALL zget(b4.get:RZ(0))

- Io regrasping required.
CALL zput(b4.put:RZ(-270))

The placing of left
CALL zpatget(b5.get, RZ(90), -1.5,0.5, RZ(0), -1.5,0.5)
CALL zget(b5.get:RZ(0))

- Straight case.
CALL zmanip(table, RZ(-180):RY(-90),1,0,2,RZ(0),0,0,2)
CALL zput(b5.put:RZ(0))

The placing of right
CALL zpatget(b7.get, RZ(90), -1.5,0.6, RZ(0), -0.5,1.5)
CALL zget(b7.get:RZ(0))

- Straight case.
CALL zmanipCtable, RZ(-90):RY(-90),0,-1,2,RZ(-90):RZ(0),0,0,2)
CALL zput(b7.put:RZ(-90):RZ(0))

The placing of zed
CALL zpatget(b6.get, RZ(90), -0.5,1.5, RZ(0), -0.5,0.5)
CALL zpick(b6.get:RZ(0))

- Reversed case.

CALL zmanip(table, RZ(-90),0,0,2,RZ(-90):RZ(0):RY(-90),0,-1,2)
CALL zput(b6.put:RZ(-90))

The placing of fork2
CALL zpatget(b3.get, RZ(90), -1.5,1.5, RZ(0), -0.5,0.5)
CALL zget(b3.get:RZ(0))

- Straight case.
CALL zmanip(table, RZ(-270):RY(90),0,-1,2,RZ(0),0,0,3)
CALL zpul(b3.put.RZ(0))

The placing of lell
CALL zpatget(bl.get, RZ(90), -0.5,1.5, RZ(0), -0.5,0.5)
CALL zget(bl.get:RZ(-90))
■o regrasping required.
CALL zput(bl.put:RZ(-90):RZ(0))

The placing of ell — —
CALL zpatget(b2.get , RZ(90), -0.5,2.5, RZ(0), -0.5,0.5)
CALL zget(b2.get:RZ(0))
Straight case.
CALL zmanip(table, RZ(-180):RY(-270),-1,0,3,RZ(0),0,0,3)
CALL zput(b2.put:RZ(0))

Figure 4-5: A plan generated by the planner

Chapter 4. Extending SOMASS: visual sensing 44

2
4

y

X

Figure 4-6: Sweeping motions to centre Soma part

4.1.3 The execution system

The execution system is composed of behavioural modules. Behavioural modules
know nothing of the assembly order or the shape of the parts. The positions in the
assembly are represented symbolically by the planner arid instantiated at run-time.
At run-time, the nominal initial locations of the parts, the nominal cube size, and
several placing locations (such as a location which defines where the final assembly
should be built) are instantiated.

Although the SOMASS system does not use sensors, its architecture was designed
to accommodate them within the behavioural module. To cope with uncertainty
without sensors, the SOMASS system uses constrained motion to reduce uncertainty
(Mason, 1985; 1986). This technique is used in the modules that acquire parts. We
will describe the behavioural modules in the system, they are: zpatget, zget,

zpick, zmanip, and zput.

zpatget centres a Soma part by using a straight edge made of wood to sweep

the part from four sides so that the part ends up in a known location. The first two
sweeps constrain the x position and the last two constrain the y position (figure 4—6).

zget then is used to pick up the part from that location, zget does final adjust¬
ments to locate the part exactly in the middle of the grasp by making two snaps in
orthogonal directions across the faces of the top cube (figure 4-7). For the zed part
this is not possible because there are two cubes on the top. The module zpick is
used instead for this part; zpick performs only one snap.

zmanip performs a regrasp operation. It transfers a. part to a small regrasp table
(due to the construction of the wrist of the robot that is used in this system, the
gripper cannot reach the part from the side without hitting the table top, so a small

Chapter 4. Extending SOMASS: visual sensing 45

1 st snap of the gripper 2nd snap of the gripper

table is needed to elevate the part) and then picks it up again in the new orientation,
zput puts down the part into the aocombly. The dimensional tolerance of the part
is taken care of by the padding gap that is calculated by the planner.

4.1.4 Reliability

The results of some reliability tests for SOMASS were reported in Malcolm and
Sinithers (1988a). The planner generated 50 plans (39 for cube shapes and II
for other shapes) and fast-running plans were selected for the repetitive test of
a total 517 assemblies. This test represented the testing of about 4,000 lines of
automatically generated robot code, in repetitive testa, for about 15 hours with
2.3 % failure (half of these were due to planner bugs).

4.2 Experiments in extending SOMASS: visual
sensing

The SOMASS system uses no sensing. Instead it employs constrained motion to
locate the parts. This section describes extensions to the SOMASS system which
use vision sensing for acquiring the parts. This extension avoids the use of a global
coordinate system for using the vision data and employs a self-calibration procedure
to help achieve robustness. The position of the camera does not need to be known.

Chapter 4. Extending SOMASS: visual sensing 46

Figure 4-8: The assembly cell and Soma parts

As will be seen, the experiments also demonstrate that two robots, one holding
a camera, and the other performing the assembly, can co-operate with each other in
a very natural way without either having to know exactly where the other is

The first principle is to try arid replace, as far as is possible, calculations by sens¬

ing. This equates to preferring perception over representation. Several techniques
are used that contribute to this end. Frequent vision sensing, for example, allows
motions in the world to be viewed as linear approximations, and only short term
predictions of motion need be made for following an object. The tracking algorithm
adopted is similar to that used by others (Jones, 1974; Brown, 1988).

The system is purposefully made as calibration free as possible. Relative quanti¬
ties are used and self-calibration is done while carrying out tasks. This approach is
possible because adequate sensing allows self-calibration. The need for calibration to
establish the mapping of image data to world coordinates is absent from the system
described here. The camera position need not be known.

The system does not rely on explicit models of the objects nor does each assembly
agent need to know about the other(s). The system does not maintain representa¬
tions of the Soma pieces, the camera, the robots nor of possible uncertainties due
to inaccuracies of the model with respect to the real world.

Chapter 4. Extending SOMASS: visual sensing 47

frameslore VME bus
&

digitiser
Sun

Serial lines

Adepl
controller

Adept —

video signal

Figure 4-9: System architecture

4.3 Equipment and setup

The system adopted consists of two robots and a Sun workstation with some vision
processing hardware (figure 4- 9).

One robot is an AdeptOne industrial robot, with 5 degrees of freedom. This
robot carries out the assembly task. It has a simple pneumatic close-open parallel
grippor. The fingers are painted white and the rest of the hand painted black.

A second robot arm, an RTX made by UMI Ltd., is used to hold a small camera
in the second experiment. The robot/camera combination is moved to track the
movements of the Adept arm.

The Sun machine contains two MaxVidco boards: an image digitiscr arid a frame-
store A subset, of the data in the framestore is selected and analysed on the Sun.
The hardware is driven in interrupt mode. Both robots are controlled via serial lines
from the Sun. The software is written in C and Prolog.

The camera is a CCD video camera with' automatic gain control, a Sony DXC-
101P with a 1G mm lens. The work cell is lit by a white light lamp, and the surface
of the table is covered by a black cloth, which gives adecpiate contrast.

The Soma set we used is mado of hardwood and is not painted. It is in its natural
texture and colour. The plan for the complete assembly is generated by the planner
of SOMASS. Only the new vision-using part-acquiring module is substituted into
the plan.

Chapter 4. Extending SOMASS: visual sensing 48

Two experiments were carried out.1 In the first a behavioural module was devised
(hand-approach) to pick up a Soma part from the work area. The camera is moved
manually to aim properly at each part. Starting with the robot hand above the
nominal (or predefined) position of the part, and the part in approximately its
nominal position, a limited amount of image data combined witli a simple strategy
to move the hand can guide the hand to pick up the part. This was done without
referring to robot, part, or camera coordinates.

The second experiment supplements the first. A behavioural module
(head-follow-hand-to) capable of finding the robot hand is used. The camera

is then able to follow the hand to a position directly above the nominal position
of the part. This tracking behaviour thus aims the camera at the correct location
for the hand-approach behavioural module to start, replacing the manual camera
movements of the first experiment.

By using these two behavioural modules, the vision system does not have to
recognise the individual part. Before a part is picked up the hand moves directly
above the nominal position of the part and the camera follows the hand. Because
the fingertips can be located their positions in the image are known. The area below
the hand in the image is searched for the part (find-part). The camera is moved
to aim at the correct part each time the new part is to be acquired.

4.4 First experiment : picking up a Soma part

In this experiment the camera is moved manually, for each part, so that both the
robot hand and the part to be picked up are within the field of view. The part has
a nominal position with the translation variance of the part being about twice its
cube size and the rotation variance being plus or minus 30 degrees.

The camera looks down at an angle that can vary between approximately 30
and 60 degrees, and approximately plus or minus 15 degrees horizontally, from the

lrrhe name of the relevant behavioural module is given in the form (module-name).
They are also referred to in the analysis in chapter 7.

Chapter 4. Extending SOMASS: visual sensing 49

N

Figure 4-10: The diagram of the strategy

ideal 'head-on to the robot fingers' position. A wide range of positions are possible.
The gna 1 is tn i.ive the information derived from the image data to guide the hand
to align the finger tips with one edge of the top cube of the part. The height of the
part is assumed to be known, and the part lies flat on the working surface with the
cube to be grasped pointing up. The technique used requires that both the fingers
and the specified edge are in clear view.

4.4.1 Sensing-action strategy

The strategy is as follows (figure 4-10): a plane is defined, parallel to the work
surface at a known height and above the tops of the parts, which is called the
approach plane. There are two points of interest that are then projected onto the
approach plane. The first (A/) is the midpoint between the two fingers of the grippcr.
The second (/') is the midpoint of the top edge (in the image) of the part. The
projection of this point is called the approach point (/I). The robot is driven in the
approach plane so as to minimise the distance between these two points (M and A).

There is a cont inuous 1 -to-1 mapping from the image plane to the approach plane,
assuming the camera optical axis is not lying in the approach plane. This means

that in practice we can work with the image data only. The robot hand is driven
vertically a known distance to lie in the approach plane (hand-move-down-half).
The resulting pixel displacement of the hand allows us to deduce the approach point
in the image. Successive estimates are made of how the robot should move which are

refined based on the actual movements (again in the image plane), until the error

(Chapter 4. Extending SOMASS: visual sensing 50

is reduced to an acceptable level (hand-move-above). Finally the hand is rotated
so that it is parallel to the edge (hand-rotate-to-parallel) and then it can move

down to the final position (hand-move-down-close).

The analysis of this strategy is discussed in the next two sections. The first
part treats the method of visual servoing the hand and the second part analyses the
perspective distortion involved in projecting the image into the camera.

4.4.2 Visual servoing

Consider the mapping of the motion in a plane in the robot coordinate frame to the
image plane.

where m is a vector PQ joining the point P to the point Q in the robot coordinate
frame which lies on the approach plane, v is the corresponding vector in the image
plane formed by projecting P, Q into p, q. T is the transformation of the points in
the approach plane into the image plane.

For the purpose of this vision-guided grasping the robot hand has two trans-
lational and one rotational degrees of freedom. The translational components are

considered first. The transformation T is estimated Relatively. The first estimate
of T, T[, comes from observing the vector between the fingertips, with « priori
knowledge about their position in the rohot coordinate frame. In general, once an

estimate of Tj and the image vector v, are known, we can estimate mj (the required
motion) by:

v = Tm (4.1)

nii = T; 1 Vj

The robot is then moved by nij. The observed movement is v[

(4.2)

v| = T mi (4.3)

and

Vi - v| = (T - TiJmi (4.4)

From this a new estimate of T can be calculated. The next move Vj+1 is given by

Vi+i = ^ - v[(4.5)

Chapter 4. Extending SOMASS: visual sensing 51

The iteration is ctoppod when the hand in close to the goal, i.e., when the term
v; — v[is smaller than a preset value.

For the rotational degree of freedom, the robot hand in moved by small steps 0 in
the direction that will reduce the difference between the orientation of the gripper
and the top edge of the part (these two lines are observed in the image). This is
repeated until the gripper is parallel to the top edge. Although this parallelism is
true only in an affine transformation (parallel lines in the world project to parallel
image lines) and the perspective projection distorts this in the image, it is a sufficient
approximation for matching the rotation of the gripper and the part. The result, is
within the tolerance required to successfully grasp a Soma part (see section 4.7 p.

55 for the test result).

4.4.3 Analysis of the perspective distortion

The visual servoing method described in the previous section assumes that the length
PA = MN (the approach point is found by moving the hand downward by half of
the vertical distance from the top of the object thus mailing the line PA parallel to
MN and of equal length). This is true ordy if it is orthographic projection. But
because of the perspective distortion, there will be a discrepancy QA, (figure 4 1 1)
which will create an error AA' in determining the approach point. We will derive
QA in order to ensure that for a particular setup, this error can be made small
enough so that the robot hand can reach the part within its range of grasping.

QA is determined as follows: </,, dz are measured along the, optical axis of the
camera and / is the focal length of the camera.

From the triangle OMN,
ON MN

, ,

(4.6)sin/?, sin 7

PC
_ BC

sin Oi sin 7
(4.7)

DC'k7m— (CHIUN sin Ofj

and similarly the triangle OPQ, where BC = DE

DB=PQ™±i>
UQ sin a2

Chapter 4. Extending SOMASS: visual sensing 52

camera

\o ' °Pl'ca'
'±.'1 axis

h

\
N

;v
V /

Y72

)\ image plane
approach plane

M •••y /
li

P

f%/

Eb
Figure 4-11: Determination of the perspective distortion

from Qc = j_ . oe 1_11UII1 ON dt , OQ di

PQ
d-2 sin/3i sin 0*2

(/] sin /?2 sinoi

QA = h- PQ

I d2 sin A sin rv2 \
QA = h 1 - T -Y sin f12 sin«i J

if we align the optical axis along OQ and 0 is the elevation angle

QAAA' =
tan 0

(4.10)

(4.11)

(4.12)

(4.13)

The camera position can be arranged such that QA is small. The above equation
suggested that to do so h should be small. We found that, with the following ranges

of parameters; the distance between the camera and the part 50-150 cm, the angle
of the camera 25-50 degrees from horizontal, and setting h — 40 mm, AA is within
the bound l.(i mm. A sample of the plot of errors as function of the angle and the
distance is shown in figure 4 12. This bound is satisfactory because the gripper of
the AdeptOne robot can tolerate the error of 5 mm in grasping a Soma part. To
reduce h further will affect the accuracy of determining the vector in the image.
This does not mean that the exact position of the camera must be known. The
permissible range is large enough such that the camera can be positioned without
any measurement tools.

Chapter 4. Extending SOMASS: visual sensing 53

distance (cm)

Figure i 12: Errors as function of the camera angle and the distance. The part
is at 3 cm from its nominal position.

4.5 Second experiment: tracking the robot hand

The manual positioning of the camera in the first experiment is replaced by au

tomatic positioning using tracking. To establish the correct preconditions for the
hand-approach behavioural module a second robot (the RTX) is used to hold the
camera and to aim it correctly for each part to be picked up. This is done by track
ing the hand. The method of tracking does not require any knowledge about tho
camera position. It starts with seeing tho hand move, and follows it until it goes to
the ready position to pick up a part. When the hand is there, the camera is already
aiming at about the right place. The camera motion stops, the pick up behaviour
carries on until it is finished, the part is placed in the assembly then the camera

follows the hand to the next acquisition.

The tracking system is composed of two behaviours, one for following tho moving
hand (head-follow), and the second for locating the hand (head-look-down).

The head-follow behavioural module does not assume any knowledge of the
shape of the hand. It is based on finding the difference between two successive
images. The moving camera is instructed to centre its view on the part of the image
that has changed. This in itself does not give accurately the location of the hand in

Chapter 4. Extending SOMASS: visual sensing 54

Figure 4-13: Components of the histogram

motion and cannot be used when the hand does not move. In conjunction with this
behaviour, a second behaviour was used to locate the hand.

The behavioural module to locate the hand looks for a special mark on the robot
hand (find-hand-marker). This mark is brightly coloured. A simple spectrum
classification scheme based on intensity values of {Red,Green,Blue} is used to sep¬

arate the mark from the background and calculate its centroid. Finally, the camera

is view-centred on this point (head-look-down). The two behavioural modules are

simple and complement each other well, and are sufficient to establish the proper

preconditions for the hand-approach behavioural module.

4.6 Vision processing

The information needed from the image is the boundary of the Soma part, and the
pixel coordinates of the fingertips.

In order to find in the first instance where the fingertips are, the difference of two
pictures is calculated with only the fingers in different positions. Thus the initial
finger positions can be located and two small windows enclosing the tips selected.
Each fingertip is tracked throughout the hand motion by moving the windows to

keep the finger centroids in the centres of the windows. The fingertips are painted
white, so they are the brightest objects in the scene. This makes their identification
more robust against the background.

The background is the easiest and most invariant thing to identify in the image.
Use is made of knowledge about the. image histogram (figure 4-13), in particular that

Chapter 4. Extending SOMASS: visual sensing 55

it is composed of three distributions; from the part, which has low peak and large
variance, from the background which has high peak and small variance and from the
shadow which is darker than the background. The histogram is first smoothed. To
separate the background the maximum peak, which is the mean of the background
distribution, it: found. The variance of this distribution is analysed and the threshold
selected. This algorithm works well even if shadows are present.

The system doesn't recognise the part in the usual sense. It follows the hand,
using it as a pointer. A binary representation of the area of the image below the
hand is made using thresholding at: described above. The outline of the part is traced
and a polygonal approximation of that shape derived (Malcolm, 1983). Then the
most horizontal top edge is selected. It is the least obscured against the background
and other objects, and the most reliable feature to look for. Since the assembly rules
present the parts with a topmost 'handle' cube for gripping (figure 4- 10), the actual
grasping position is a simple offset from this.

4.7 Test results

We tested the complete assembly system for reliability by running the Soma assembly
2 times for each of (i plans, a total of 12 runs (this amounted to about 1000 lines of
the top level plan). The parts were placed by disturbing them from their nominal
positions randomly within a translational variation of 00 mm (twice the cube size of
the Soma parts we used), and an orientation variation of ±15 degrees. All runs were

successful without a single failure. Although this number of urns is not large, It is
sufficient to test the integration of the new behavioural modules into SOMASS. The
SOMASS system itself has already been extensively tested (section l.l.'l p. 15).

We performed a separate tout to determine the accuracy of the part acquisition
module (reach), which includes hand-approach and head-follow-hand-to. The
setup parameters are as follows; the distance of the camera to the part is 510 to
600 mm, the height of camera above the part is 330 mm, the pitch angle of the
camera is 25 to 35 degrees, the yaw angle is —10 to 20 degrees, the hand travelled
downward 40 mm, the part varied in position ±30 mm from its nominal position.
The parts are placed by the robot at the positions calculated from their nominal

Chapter 4. Extending SOMASS: visual sensing 56

actual positions reaching positions errors

x mm y mm r deg x mm y mm r deg tlx mm dy mm dr deg
723.46 9.97 6.60 725.67 9.97 4.86 -2.21 0.00 1.74

698.16 88.28 -9.87 699.36 88.68 -9.03 -1.20 -0.40 -0.84

727.67 206.59 8.49 727.03 205.45 5.99 0.64 1.14 2.50

693.64 322.40 5.18 692.71 324.27 2.01 0.93 -1.87 3.17

712.88 -120.68 -13.23 711.50 -117.52 -12.91 1.38 -3.16 -0.32

610.35 418.27 -1.00 612.11 414.98 0.00 1.76 3.29 -1.00

620.87 -219.62 17.25 622.57 -219.16 11.99 -1.70 0.46 5.26

688.54 -13.50 -1.64 689.65 -11.34 0.00 -1.11 -2.16 -1.64

706.69 99.58 14.79 708.83 99.02 16.03 -2.14 0.56 -1.24

731.14 193.09 14.06 731.83 193.06 9.98 -0.69 0.03 4.08

686.26 289.65 2.62 686.74 289.94 1.95 -0.48 -0.29 0.67

699.23 -138.43 18.36 696.32 -137.17 15.00 2.91 -1.26 3.36

632.28 407.38 1.93 634.12 409.01 0.00 -1.84 -1.63 1.93

613.74 -235.42 -4.37 613.92 -233.34 -5.03 -0.18 -2.08 0.66

Figure 4-14: Data from the accuracy test

positions plus random disturbances. We performed the part acquisition 14 times
(7 different parts on 14 different places) and recorded the actual positions of the
parts and the positions that the hand arrived at before picking up the parts. These
positions are in robot coordinates, reading directly from the robot controller (figure
4-14). The errors are calculated to be y/tlx2 + r/y2 and dr. The mean error and the
standard deviation in reaching the position and orientation of the part are 2.10 mm,

0.91 mm, 2.02 degrees and 1.41 degrees respectively. Under these conditions, it took
3 to 5 moves on average for the hand to reach an approach point with the required
accuracy of 2 mm.

The system will fail, as would be expected, if certain conditions are not met. 11
the contrast is sufficiently low the thresholding will fail. Tracking the fingers will
fail if they appear too small in the image, for example if a wide angle lens is used.
The angle of the camera with respect to the plane of the table is not critical, but
near the horizontal the strategy employed gives less accurate results and near the
vertical (top view) the fingers of the hand are more likely to be obscured. It was

possible to arrange the environment so that all these failure modes were avoided
without difficulty.

Chapter 4. Extending SOMASS: visual sensing 57

4.8 Discussion

Integrating the new behavioural module into the SOMASS system is simple. The
new behavioural module (reach) replaces the old module (zpatget). The lines in
the plan that call zpatget are replaced by a call to reach, for example:

CALL zpatget(b4.get, RZ(90), -1.5,0.5, RZ(0), -1.5,0.5)

is replaced by

CALL reach(b4.get)

No other change is necessary. This in fact simplifies the planning process because
the number of parameters in reach is less than those in zpatget.

Visual sensing is integrated into SOMASS seamlessly. The new module does not
alter any assumptions of any of the other modules of the system. Two additional
piece? of knowledge are introduced into the system: the height of the hand above
the part, and the meeting point of the hand and the camera. The height of the
hand above the part, is determined by li which is the amount that the hand travels
downward to the approach plane (figure 4-11). The meeting point is the place where
the camera can detect the hand initially before the tracking behaviour is started,
this point is a predetermined position and is represented in the two robots (one is
the AdeptOne robot, and the other is the IITX robot that holds the camera) in their
respective reference frames.

We will compare the operations of zpatget with reach, zpatget requires more

spacing between the parts in the layout (because of the sweeping motions) than
reach, and also zpatget needs to move the hand to pick up the brush. Therefore
the total distance of the hand movement in zpatget is more than in reach. It seems
that reach should be faster than zpatget. But in an actual run the. time taken by
both methods is comparable because reach moves the hand slower than zpatget

(the speed that zpatget moves the hand is 50 upto 100 mm/s and that of reach is
10 mm/s). This speed limitation occurs because of the processing time limits of the
vision system and the RTX that holds the camera. Improving the hardware could

Chapter 4. Extending SOMASS: visual sensing 58

speed this up a lot, whereas the speed limits on zpatget are necessary to preserve

the assumption of quasi-static movements, e.g. no part is bouncing etc.

The range of variation allowed in the orientation of parts in zpatget is ±40 de¬
grees, but in reach it is limited to ±15 degrees. The reason for this is the ambiguity
in the vision system in choosing the edge of the part. Consider the following sce¬

nario: when the camera faces the part squarely there is an ambiguity arising when
the part is turned more than 45 degrees from the nominal position (figure 4-15),
that is, one cannot tell whether the edge to the left or to the right of the top corner

is corresponded to the top edge. In a normal case, where the part rotates much less
than 45 degrees from its nominal position, this decision will be simply to choose
the edge that is oriented more horizontally. Also in tracking the hand, the camera

might be panned (in the worst case in our experimental set up) ±20 degrees, and
this angle must be taken into account when considering the worst case. Therefore
to avoid this ambiguity a part must not be turned more than ±25 degrees. We limit
this to ±15 degrees in the experiments to be safe. This ±15 degrees limit could be
substantially improved if knowledge about the angle that the camera has panned
were incorporated into the module that makes this decision (find-part).

Figure 4-15: The ambiguity in choosing the edge

The reach behavioural module is designed using the principles discussed in the
previous chapter. It doesn't use any central world model, nor common coordinates
in communicating between modules. The tight coupling of sensing and action in
following the hand to the part (head-follow-hand-to) simplifies the perceptual
process (no recognition is required). The strategy for reducing variations in the
part-acquiring task is encapsulated inside the module. This allows reach to be
integrated into SOMASS almost without change to other parts of the system.

Chapter 5

Stereo visual sensing

Good judgement comes from experience,
and experience comes from bad judgement.

Fred Brooks1

The result of the experiment!; in the previous chapter is encouraging. The new

part-acquiring behavioural module (reach) performs reliably and is integrated well
into a complete robotic assembly system. In this chapter wo explore a method to

improve that module.

The method of visual sensing in reach has a limitation in that it can only control
a robot hand in a 2 dimensional plane. This is because it uses only one camera and
the information obtained is essentially 2D. By using two cameras we can have enough
information to control a robot hand to move in 3 dimensions.

We describe fyperirnenls that use this idea to guide a robot hand to a visil.de
target. The camera positions are known only approximately. The system does not
use the details of the kinematics of the manipulator. There is no common frame of
reference linking the vision system, the workspace and the robot hand. The stereo
vision system gives information only in terms of image coordinates. This information
is used to control a three degree of freedom robot hand in terms of lines and points
visible in the images. We discuss the implications that arise from the results of these
experiments.

'Ill Huntley (1988).

59

Chapter 5. Stereo visual sensing 60

Self-Calibration R,.ai World

Figure 5-1: Control scheme

5.1 Introduction

A traditional robot system works in its reference frame (the so called 'base coordinate
frame'). A model of the kinematics of the manipulator is used to translate between
the Cartesian frame and the measured joint space (Paul, 1981). The measurements
come from the information from the encoders in the joints of the manipulator. Some
experimental systems do use external measurement to determine the position of the
robot hand, for example the system by Inoue and Inaba (1985). (Sanderson and
Weiss, 1983; Weiss, 1984; Weiss and others, 1987) proposed the visual servoing of
a manipulator system based on position of image data. Wolfe and Richards (1990)
also used image information directly to control 2 degrees of freedom ol a robot hand
in a pick-and-place task.

Our system measures positional displacements in the picture coordinates (2D
pixel coordinates) of the object relative to the target. We use two cameras to derive
the information to control 3 degrees of freedom of a robot. Because we measure the
relative displacements and map them directly into the joint motion commands, we
do not need to know the camera positions or optical parameters. The measurement
is done in terms of the difference between the hand and the target in the images.
Very little prior knowledge is required. The accuracy of the system does not depend
on knowing the kinematics of the robot.

Chapter 5. Stereo visual sensing 61

5.2 Stereo geometry

The cameras are sot up co that the field of view of both cameras covers the area

of interest. A point in the field of view of both cameras, P, can be represented
as and (.171,1in) in the left and light images respectively. Both y axes are

assumed to point upwards, and the two optical axes arc assumed not to be eollinear.
The elevation angler of the two cameras are arbitrary, but approximately equal. In
an arbitrary but fixed global Cartesian space, P can be represented uniquely as

x — (,t,;/,c). Each point P can also he represented uniquely by a vector in the
space of points p — (.17,, x/i,;//,). The transformation between ('artesian coordinates
and image coordinates, J„ is a function of the geometry of the cameras and lenses.
Approximate values can be calculated by considering pinhole cameras in n specific
configuration (Pollard and others, 1989). Consequently,

P = J,.x (5.1)

and

x = J~'p (5.2)

We consider only 2 translation degrees of freedom for the robot. There is a

transformation from the robot joint space represented by the set of points m —

(trii,m2,ra]) and Cartesian space, as follows:

x = J,m (5..'i)

This matrix can be shown to be invcrtible for a 3 degree of freedom robot win n It
is restricted to cover a connected region with no singularities, and a function of x
and m. So

p = J„J, m = Jm (5.4)

and since J is invert.ible if we restrict the domain of interest to a connected region
of space where both J„ and J,, are invertible (distant from any singularities of the
robot):

Chapter 5. Stereo visual sensing 62"

That is, given the uniqueness of the mapping we can attempt to control the robot
using image data directly for the feedback and reference signals by observing the
vector from the robot hand to the target in the images.

For control purposes, we found that J could be approximated sufficiently by
measuring the result of a sequence of independent small motions of each of the
motors mi,mj,m3 and noting the resultant changes in p.

Ax,. Ax,.
Amj Ami Amj

Axr Axr Axr
Ami Ami Ami

Aye Ayr Ay;,
Ami Ami Am $

This worked sufficiently well to allow us to use only an initial sequence of three
movements to serve in calculating a value of J used in subsequent control. Clearly
on a global scale this approximation is unjustified, but it worked over the control
area of interest. With the equation 5.62 and with the target point and the robot end
effector in the field of view, the measured parameters are the vectors from the robot
hand to the target. This equation was subsequently derived by Domingo (1991)
using tensor network theory as a part of his project. His work which used a similar
technique to acquire a part will be discussed in section 5.7 p. 68.

5.3 The experiments
We used an RTX robot arm from Universal Machine Intelligence Ltd. The first
camera was a Sony DXC-101P with a 16 mm lens; the second was a Panasonic F10
with a 10.5mtn-8 1mm zoom lens (both have CCD sensors). We adjusted the focal
length so that the scale of the images from the two cameras did not differ by more

than about a third, which could be done easily by hand.

5.3.1 Controlling the robot hand

Conkie (Conkie and Chongstitvatana, 1990) demonstrated the validity of the ap¬

plication of the equation 5.6 by a clear and simple experiment. His setup will be

2lt was formulated by Conkie (Conkie and Chongstitvatana, 1990).

Chapter 5. Stereo visual sensing 03

Figure 5-2: Aligning two triangles

explained as follows: the targets for the stereo vision system to track were simple,
two white triangles. One was fixed to the robot hand the tip pointing downward,
the other lay on the surface table in the working region with the tip pointing upward
(figure 5-2).

The tips of two triangles were detected in both cameras. The goal was to align
them in 3D space. The matrix of equation (5.6) was constructed as described above
and then the motion strategy adopted in this case was to move the hand so at: to

align tho two triangles vertically and then move downward half the calculated goal
distance. The motion was decoupled into two separate error reducing processes.

The goal position was achieved by repeating these processes several times.

The variation of the target position is in the area 10x10 cm and the height of
tho hand is 20 cm. It was found that the target was reached within 1 2 mm in every

one of a dozen runs, with approximately eight iterations.

5.3.2 Stacking blocks

We applied the scheme above to a task of picking up and stacking three blocks (figure
5 3). For this task, beside the tranclational motion in 3 dimensional spare the hand
must rotate about the vertical axic in order to align the fingers with the grasping
surface of a cube. The visual features that we used for control were the fingertips
of tho manipulator, which are painted white, and the centroid of the blocks. The

Chapter 5. Stereo visual sensing 64

Figure 5-3: Stacking three blocks

hand position was taken as the point midway between the two fingertips with the
hand empty (not holding a block) and the centroid of the silhouette of the block
when there was the block in the hand.

Three blocks were laid in a line without touching each other. Their individual
orientations were arbitrary and they were allowed to be anywhere inside the region
visible to both cameras.

The strategy for picking up a block is similar to that of guiding the hand to a

target in section 5.3.1 p. 62. The matrix (equation 5.6) is constructed by moving
the robot hand by three small motions in independent directions and observing
the resultant changes in the images (calibrate). The motion strategy is to align
the hand vertically with the block and then approach using a downward motion
(hand-move-above-stereo and hand-move-down-half-stereo). The gripper is
then oriented with the block's faces (hand-rotate-to-parallel). This is done
using the edge of the block and uses the view from only one camera; the task
has only one degree of freedom therefore one camera is sufficient (this behavioural
module is similar to the one used in the experiment in chapter 4). The last move is
downward, to pick up the block without using visual feedback (hand-move-down).
We didn't use visual feedback because when the hand is close to the block there will

be an occlusion between the fingertips and the block and the vision system will lose
track of the fingertips. Our present vision processing routines cannot rope with this
occlusion as these routines are simple binary vision algorithms. Also, the last, move
can be reliably accomplished by 'blind' motion because the hand is quite close to

Chapter 5. Stereo visual sensing 65

the block at this stage and the vertical distance between the hand and the block can

be sufficiently approximated by using the 'calibration matrix' (equation 5.6) that
was constructed earlier.

To stack blocks, we place them in a known place with the same orientation
(hand-move-to and put-on). This is done using predefined heights to offset the
stacking positions. Wc tried not to use predefined height in the earlier experiments,
by using visual servoing instead. In order to do that, we tried to find a good set
of image features to align the block in the hand with the block on the table. The
features that we considered are: centroid, edges, corners. For example, in orienting
the block in the hand, we used the bottom edge of the block in the hand and the
top edge of the block on the table. For vertical alignment, we used visible vertical
edges of both blocks. For mating blocks, the gap between them must be observed
somehow, but when the blocks are getting close to each other this gap cannot be seen.

This is because the camera view is looking down about 20 degrees (from horizontal),
which is suitable for the pick-up task but renders the gap invisible when the blocks
are close. We tried to use the distance between centroids but the centroid ol the

block in the hand is not sufficiently accurate because the block is partly obscured by
the hand (figure. 5 3). We also tried to approximate the vertical distance by using
the 'calibration matrix' and moved 'blind'. The accuracy is not sufficient for this
part mating task (overshoot is destructive in this situation). In the end, we had to
resort to using a predefined height. This lack of accuracy, however, is not a failure iu
principle of the general strategy; it could be remedied by more sophisticated vision
algorithms, and moving the camera for better views (as we will show in chapter (i).

5.4 Vision processing

The basic vision processing is similar to that described in chapter 4. Similar meth¬
ods arc used to locate the fingertips and to get the boundary and corner points of
the blocks.3 The difference is that here we need 2D information from both cameras,

3These visual routines are fully explained in chapter 8.

Chapter .5. Stereo visual sensing 66

therefore the vision processing load is double. Several additional task specific con¬

straints are used to locate the features of the blocks, as in finding vertical edges and
finding the bottom edge of the block in hand. From the corner points, the edge lists
are constructed and the edges are examined. The vertical edges are defined as the
edges that lie within ±15 degrees from the vertical axis (in image coordinates). Any
small 'noise' edges ran be rejected by examining their length. For vertical align¬
ment of two blocks, the selected vertical edges are the two on the extreme left and
right of the blocks. Also, we know that the block in the hand is higher (in image
coordinates) than the block on the table, therefore the vision system can distinguish
between the two blocks. Spatial information is also used in matching the blocks
in the left and right cameras. By using the left-of, right-of relations amongst the
blocks, we can match which blocks in the left image correspond to which blocks in
the right image. We are not trying to solve a general vision problem, therefore these
constraints, despite being specific to this task, are appropriate to our purposes in
this experiment.

To guide the hand to the target, an error vector is measured. The error vector
is defined as the vector in the image from a reference point in the robot hand to
a point on the target. We used the middle point between two fingertips as the
reference point of the hand and the centroid of the block on t he table as the target

point. To measure the error vector, both the hand and the target must be clearly
seen. We get this information by tracking the selected features of the robot hand
and the blocks. The visual routines run continuously at the rate of 3 Hz (using both

cameras) while the hand is moving. In the situation where only one camera is used,
the processing rate goes up to 6 Hz.

4We performed a better 'low level' speed tuning for visual routines in the next exper¬
iment described in the next chapter. See the result in section 6.9 p. 79 and the tuning
methods in section 8.7 p. 110.

Chapter 5. Stereo visual sensing 67

5.5 Test results

The setup for the block stacking task is as follows: the blocks are toy wooden blocks
of size Ixlxl cm, the working area (representing the uncertainty in the position of
blocks) is 25x18 cm, the two cameras have a base line of 60 cm, arc 70 cm from
the middle of the working area, look down 20 degrees (measured from horizontal),
and arc verged to the middle of working area. We performed 10 runs of the task to
confirm its reliability and measured the accuracy of the hand in reaching the block
which was 1 2 mm in every run. The orientation accuracy was within 5 degrees.
This is measured from the 'ideal' position for grasping a block. The number of
iterations of the hand movement to reach a specified goal was 3-1 moves.

Wc did not report the measurement in terms of world coordinates because the
RTX that we used was controlled in terms of joint angles, and the best kinematics
available for the RTX contains errors larger than the 1 2 mm we are concerned with
here; in addition, backlash and other mechanical sources of error arc larger than
this, making more accurate kinematics pointless. Wc performed the measurement

by hand, measuring the distance between the objects and the robot hand in the
work coll, so they are only approximate, unlike the result reported in the previous
chapter in which we used the Adept robot, and reading the world coordinates of the
position of hand directly from the robot controller (the Adept that we used is very

precisely calibrated).

5.6 Discussion

The principles proposed in chapter 3 arc used in the design and implementation of
behavioural modifies for tho experiments described in this chapter. The module to

pick up a block (pick) arises from an attempt to extend the technique of the module
hand-approach in the previous chapter to deal with 3D. The use of stereo visual
servoing was captured inside the modules: calibrate, hand-move-above-stereo
and hand-move-down-half-stereo. The sensing-action strategy for a hand to
reach a target is similar to the idea used in the previous chapter. The module

Chapter 5. Stereo visual sensing 08

hand-rotate-to-parallel is exactly the same as the one used in the previous
chapter (section 4.4.1 p. 50). In fact, the module stack-blocks, which is the
top-level module for this task, can be regarded as 'a plan' that is composed of the
sequence: pick, hand-move-to and put-on (compare it with the plan in figure 4-5).
It is also interesting to compare pick and hand-approach, pick uses less a priori
knowledge than hand-approach in that it doesn't need to know the height of the
hand above the part, and the height of the part. Mating the parts is still a problem
without this piece of knowledge. We will describe a solution to this in the next

chapter. The detailed analysis of these behavioural modules is given in chapter 7.

The result shows that the accuracy achieved by our technique in guiding the
RTX robot to reach a target is better than that of using the inverse kinematics
of the RTX. The HTX has position repeatability 0.5 mm at best and from our

measurements typically it has accuracy with in 2 mm with small rotations as in
these experiments; with large rotations the inaccuracy can be as much as 10 mm.

The accuracy depends on initial arm measurements, calculations, and calibration
errors on an individual robot. In real use, it is worse than that because the RTX
has low stiffness. For instance, a force of 100 gm will move the hand by 1 mm in the
horizontal direction or 0.5 mm vertically. We generally expect accuracy no better
than within 3-4 mm from the RTX that we use.

A list a i r Oonkie verified this method's independence of robot kinematics by re-

implementing pick on the AdeptOne robot. Similar results were achieved, despite
the different kinematics between the RTX and the AdeptOne robots.

5.7 Multiple matrices

One interesting piece of work has come out of the technique used in this chapter.
During a discussion with Brendan McGonigle,5 we were informed about the possibil¬
ity of the 'memory' of this 'calibration matrix' (equation 5.0) in animals. The work

5Department of Psychology, University of Edinburgh.

Chapter 5. Stereo visual sensing 69

of Floolc and McGonigle (1977) shows that monkeys and huniauu ran loarn and to

tain the adaptation of hand eye co ordination to sensory diutortion conditions. Their
experiments6 demonstrate the ability of their subjects to retain multiple adaptations.

It is interesting that these multiple adaptations can both be remembered and
applied in the immediate situation. The subject learned to adapt to one hind of
visual displacement distortion, and then learned a second adaptation with a different
displacing prism. These adaptations did not interfere with each other. Humans liavo
been shown to be able to recall the adaptation immediately once having recognised
the apparatus. This can be due to some clue about the prisms: the converging lines
near the rim of the glass, the reflection on glass edges (rainbow), etc.

Based on this observation, Domingo (1991) employed the technique of the stereo
visual scrvoing presented in this chapter and extended it to work over a wider area.
He calibrated and stored a number of calibration matrices over the working area and
used grid co ordinates to index them. The interpolation of these matrices then is
used to guide a hand to any location in that area. To determine how many matrices
are required for a given task, some details of this system will be discussed. In order
to have calibration matrices vary smoothly over a working area, a constraint was

imposed, such that any element of the matrix must not change more than 10%
from one point to an adjacent one. Using an RTX robot and a working volume of
25><50;<35 cm this constraint can be satisfied by setting the grid size to 5x5 cm.

Therefore there are 0x11 x8 = 528 matrices.

Those multiple matrices are rather like an implementation of the mapping be
tween sensor state space and motor state space which Churchland (1980) called a

stale-eparr. sandwich system. In Domingo's system, the robot hand is moved, by
approximating its inverse kinematics, to a grid point near the target. The calibra
lion matrices in that neighbourhood are used to interpolate the required motion
to reach the target. I lie visual scrvoing is a function that maps the sensed target

point into motor space. This is a proposed solution for the problem of sensorimotor
coordination in the neurost ieuces (Churchland, 1980).

6Thc subjects look through the window, in which laterally displacing prisms are in
sortod, locate a target and reach for it through the slit aperture located below the window.

Chapter 6

Active mobile vision

In the last chapter, we demonstrated a visual servoing technique that is capable
of controlling a robot hand in three dimensions. But because the cameras are sta¬

tionary, their assembly task applications are limited. In the previous experiment,
we could not find a set of features to be used to perform part-mating operations
reliably. This is because the cameras' viewing angle is not suitable.

This chapter describes a mobile stereo vision system that is actively controlled
to guide a robotic assembly task. The system is uncalibrated, and we apply princi¬
ples similar to those used in the vision system of the previous chapter; the camera

positions are known only approximately, the vision system does not, rely on precise
modelling of the parts or of the cameras, and there is 110 need to use a common

frame of reference* linking the vision system, the workspace and t he robot hand.

A block stacking task is demonstrated. A robot hand moves to pick up randomly
placed blocks and stacks them. A stereo camera head is moved to find good views
and is used in feedback control of the robot hand. The visual feedback control uses

signals which are measured in terms of the feature space in both cameras. The task
was performed by a 4 degree of freedom (I)OF) robot hand and a 5 DOF mobile
stereo camera head.

70

Chapter 6. Active mobile vision 71

6.1 Introduction

The method of visual ocrvoing assumes that the cameras have clear views of the
relevant area all the time while the task is in progress. The ability to movo the
camera head provides the flexibility to use visual servoing for various tasks. It
enables the choice of views that are best suited to the task for different situations.

For example, a close view is good for fine motions of the hand, as occurs in mating the
parts, a more distant view is better for covering a large area, to facilitate locating
the objects, a view from above is needed for observing the orientation of objects
about their vertical axis, and a horizontal view is more appropriate for observing
the vertical alignment of two objects.

This chapter is a logical development of our previous work on uncalibratcd vision.
In chapter 1, we presented a single camera system that performs a part acquiring
task. Chapter 5 presents a work that generalises one camera to two cameras but with
a fixed viewpoint. This chapter presents a mobile two camera system with multiple
possible viewpoints that are not predefined. A mobile stereo camera is used to find
good views such that suitable features for visual servoing can be detected and tracked
reliably. The experiment emphasises the strategy for using vision for manipulations
that require a close up view, for example fine motions of a robot hand and part

mating tasks. This is different from other work (Hcikkila and others, 1988; Sakane
and others, 1987) which use preselected alternative viewpoints. In this work, the
movement of the camera pair is determined by continuously tracking the change
of parameters of the selected features In Zheng arid others (1991) a similar idea
is presented but the movement of a camera was from a front view to a side view
only. In oui experimenU' the movement of a camera pair is used to accomplish many

tasks; occlusion free viewing, alignment and part mating.

Chapter 6. Active mobile vision 72

Figure 6—1: A view of the assembly system, the RTX robot (left) manipulates
blocks. The Adept, robot (right) holds the camera head.

6.2 The equipment setup

The system consists of two robots and a Sun workstation. The vision equipment
consists of two cameras and Maxvideo boards: an image digitizer and a framestore.
The hardware is driven in interrupt mode. Both robots are controlled via serial lines
from the Sun.

An Adept-One industrial robot, with 5 DOF, is used to carry a mobile stereo
head. The camera head consists of two small colour COD cameras, Panasonic
WVCD1E, with 1.6 f and focal length 7.5 mm lenses, mounted with a fixed base
line of 18 cm and verged to a distance 38 cm ahead. Another robot, an RTX robot,
is used to manipulate the parts. The control of the RTX is limited to 4 DOF;
x,y,z translations and a rotation around the z-axis, rz. These robots are position
controlled via their standard controllers in a look and move fashion. The image
processing is all done in the workstation (figure 6-1).

Chapter 6. Active mobile vision 73

6.3 The task

The task of picking up randomly placed blocks and stacking them it: demonstrated.
Two blocks lie on the table. We assume that the blocks arc at least a few centimeters

apart, such that it is possible for the robot band to grasp one block without colliding
with the other, and that their orientations are random.

First, the vision system looks from a distance to get an overall view of the work
cell and to locate the blocks (figure 6-2). The camera head is moved to find a view
of a block that is occlusion-free (view-separate) (this method will be described
later). The behavioural modulo pick, described in the last chapter, is used to pick
up one block. The choice of the block is arbitrary, for example, the block on the left.
The hand moves into the scene, and performs self-calibration (calibrate). It picks
up the chosen block. The camera head adjusts its view by centering and zooming to

get both blocks in its field of view with a reasonable size (view-closeup). It does
this by moving closer to the block in the hand while monitoring its area, then moves

up and looks down at the block at an angle of about 20-30 degrees (head-vertical).
The hand performs sell calibration for this view and moves to place one block
above the other (hand-move-above-approximate), then rotates this block until the
two blocks are in the same orientation (hand-uith-block-rotate-to-parallel).
The camera head moves down to get a side view that can see the edge view of
the mating surfaces (view-gap), i.e. the bottom edge of the block in the hand
and top edge of the block on the table are almost horizontal. The band self-
calibrates again for this view and moves to align the two blocks vertically, then
moves half way down (hand-move-down), aligns them again to improve the accu¬

racy (hand-move-above-precise), then slowly puts down the block until the two
blocks mate using visual feedback (mate-blocks).

Chapter 0. Active mobile vision 74

'

©

□
V

Left camera

Figure 6-2: The image processing in the system extracts the outlines of the objects.
The figure shows typical shapes seen from the left and right camera. The upper

shapes are the block in the hand. Also shown are the self-calibration vectors from
both cameras.

6.4 The camera motion

The camera head can move in various ways. The camera head motion ran be
tangential to the line of sight while maintaining the field of view on the objects
in the scene. Another motion is to zoom in or out, along the line of sight. In all
there are (i movements : left, right, up, down, zoom in, zoom out (figure 6-3). The
motion of the camera head need only be approximate, because we are not interested
in knowing the distance from the objects. A camera keeps its fixation point on a

target in the image and rotates the head to centre its view on that point when the
head is moved, thus describing a some what elliptical path when it moves around
the objects.

Right camera

JIt is possible to calculate the distance, using the knowledge of the camera head motion
and the angular change of the line of sight.

Chapter 6. Active mobile vision 75

y

X 0

Figure 6-3: The camera motion

6.5 Finding an occlusion-free view

If both cameras register two objects in their fields of view, then there is no occ lusion.
When an occlusion occurs, the images of two objects merge into one. We use the
axis of eccentricity, as defined in Ballard and Brown (1982, p. 255) to guide the
move to find an occlusion-free view. The eccentricity is a measure ol 'elongation' ol
a shape, it can be calculated from the ratio of principal axes of inertia. Assume we

select a camera (left, or right) to guide the head movement. It tries to move left
or right so that the axis of eccentricity becomes more horizontal, and detects when
the objects separate, e.g. when there are two objects in the image (figure 6-4). The
choice of camera depends on which one has the better view initially. Motion it: then
in the direction of the camera that registers no occlusion (occlusion might not occur
in both cameras simultaneously), or registers a more horizontal axis of eccentricity.

6.6 Visual servoing of the hand

To find the displacement of an object from its goal position, we use the shape
attractor algorithm (Harris, 1992), in which, given the outlines of two shapes, the
algorithm will find the translation, scaling, and rotation vectors that will make the
two shapes 'fit' together. This method does not require any heuristic to choose the
edges to be matched (figure 6-5). We use the block on the table as the goal to
attract the block in the hand. The translation vectors from both cameras are used

to control the movement of the hand to put one block above the other. The height

Chapter 6. Active mobile vision 76

r Ihe axis of eccentricity

\

J V

Left camera Right camera

Figure 6-4: A view with occlusion. The left camera registers no occlusion, the
right camera registers an occlusion. The axis of eccentricity is used to determine
the direction to move the camera head.

Figure 6-5: The shape attractor algorithm provides the translation vector that
will bring the two shapes together.

(vertical movement) is controlled separately. This is because of the fact that the
translation vector:; calculated arc actually for transferring one block into the other
rather than above it.

In aligning two blocks, only some edges are used for matching in order to calculate
the translation and rotation vectors. To move one block precisely above the other
before mating them, vertical edges are chosen. The camera view is from the side
such that the vertical edges can be seen clearly. The most prominent edges are

selected. In the left camera, the right vertical edges are used, and vice versa for the
right camera.

The two bottom edges are used in rotating a block in the hand to align it with

the initial state

the goal state

Chapter 6'. Active mobile vision 77

Figure 6-6: Two bottom edges

the block on the table (figure 6-6). Only one camera is needed because the task
has only 1 degree of freedom. We choose the camera that can see the view of the
bottom edges most clearly. The choice is based on the length of the edge and its
slope.

When the camera head changes views, especially when it zooms in and looks
down, the image projection becomes subject to perspective distortion (in general,
we assume an orthographic projection). The vertical lines will verge to a vanishing
point. Therefore, the vertical alignment must be compensated by a factor which is
extracted from the self-calibration matrix (z-axis calibration). This factor is used
to take account of the tilt of the vertical axis. It is used in the calculation of the

translation vector in placing one block above the other block.

6.7 Mating blocks

The goal is to reduce the gap between two blocks. This gap is determined from the
side view of both blocks. A small window is assigned to track the moving bottom
edge. The small size of the window enables a fast visual feedback loop because it
reduces the amount of data to be processed. The hand is stopped when the gap is
closed (figure 6-7). The terminating condition is that the gap is less than 5 pixels.
With a reasonably close view, a final gap less than 1 mm is achievable.

Chapter 6. Active mobile vision 78

Figure 6-7: Mating blocks by tracking the edges until the gap between two blocks
disappears.

6.8 Choosing the features to track

To track an object while a motion occurs (either the camera head motion or the
motion of the hand), we use the centroid of the object or the aggregation of them if
more than one object is involved. In some circumstances, when we want to focus on

a particular ob ject, and if there is more than one object in the window, we choose to
track the object, that is most similar (in shape) to the previous target. The success

relies on the assumption that the object will not change its appearance suddenly.2
There is one case when this is not true. This is when the motion of the camera

head causes the image of two objects to merge into one shape (two outlines merge

into one) or when one shape becomes separated into two. We treat this as a special
case by choosing to focus on the new shape (if they merge) or vice versa when it
separates.

2It depends on the ability to track the object fast enough, compared to the change.

Chapter 6. Active mobile vision 7!)

6.9 Test results

The average linear speed of the hand and the head is Hi 111111/s. The slow speed
of the hand in mating blocks is 3 mm/s. The average sampling rate of the visual
feedback ranges from 8 Hz, with a window 200x318 pixels, to 12.5 Hz, with a window
40x40 pixels whilst mating blocks (this is measured for one camera). The number of
iterations of the hand movement to reach a specified goal is 3-4 moves. The accuracy

in stacking the blocks is 1-2 mm. When mating the blocks, the final gap is less than
1 mm before the hand releases the block from its grip. The tolerance is large because
of the nature of the mechanics of the RTX robot, but this is better than the accuracy
that can be achieved by driving it using inverse kinematic calculations alone.

6.10 Discussion

It has been shown that active mobile vision works well for the task demonstrated.

The ability to move the cameras based on the configuration in the workcell can
simplify vision tasks because a view that is suitable for a particular situation can be
selected, rather than a static and therefore possibly unsuitable view. For example,
a view from above is used to align the orientation of two blocks, a side view is used
in mating them. Once a suitable view is achieved, the tracking of selected features
simplifies the detection of goal states. An example is of tracking appropriate edges to
mate the blocks. Further work is necessary to increase the generality of the feature
selection.

The integration of visual sensors using an uncalibrated vision system is use¬

ful in practice and is achieved by using position control via standard interfaces to
commercial industrial robots. The system would certainly benefit both in terms
of responsiveness and speed if more sophisticated servoing techniques were to be
adopted, but the basic results would remain unchanged. Many parts of the system,
given their generality, ran lie carried over to different assembly tasks, and towards
the ultimate aim of being able to specify tasks simply and have them achieved
robustly.

Chapter 6. Active mobile vision 80

The criteria proposed in chapter 3 have been applied in the design of the new

behavioural modules used in the experiment described in this chapter. By not relying
on a central world model; by employing a tight coupling between sensing and action;
and by communicating via the world, we have built a system that performs a fairly
complicated task reliably. The experiments show that we can add, extend, improve,
and reuse a set, of behavioural modules to perform new tasks without difficulty.

Chapter 7

Analysis

Meno: And how will yon inquire, Socrates, into that which you know not?
What will you put forth as the subject of inquiry'? And if you find
what you want, how will you ever know that this is what you did not know?

Plato

In thi3 chapter we look at the behavioural modules that are used in the experiments.
We explain what they do and how they do it, then go on to analyse their structures
and their relationships in order to understand why they work. The analysis is along
three dimensions: 1) the connections between modules: their assumptions about the
world and other modules; 2) the coupling between sensing and action in modules;
and 3) the communication between modules.

The analysis follows the order of the experiments: the single camera system of
chapter 4, the stereo camera system of chapter 5, and the mobile camera system of
chapter 6. Finally, observations about the structure and the size of the programs

are given.

7.1 Naming convention

The names of behavioural modules are given in the form Noun-Verb-Object and will
be unique for each module. Noun denotes the agent like hand, head, camera. When
there is no ambiguity it is omitted. A long name usually indicates that it is similar
to another module but with extra qualifications, for example, hand-move-above

81

Chapter 7. Analysis 82

and hand-move-above-stereo. The appendix lists the complete pseudo code of
all the programs used in the experiments and also the hierarchical structure of the
behavioural modules. They should be consulted if more details about the programs

are needed.

7.2 SOMASS

We start with behavioural modules in the original SOMASS. To perform a pick-and-
place of one part, the sequence of calls to behavioural modules might be:

zpatget(bl.get, sweeping parameters...)
zget(bl.get)
zmanip(table, putgrasp..., getgrasp...)
zput(bl.put)

The parameters that are instantiated at run-time are the predefined locations:
bl.get, table, bl.put, etc. Only zpatget and zget communicate by a parameter
bl.get, the other modules don't communicate, zget assumes that the part will be
in a predefined location. It can cope with small uncertainty by using a double snap

strategy. It relies on zpatget, which can cope with a wider range of variations in
locations and orientations of a part, to put the part in a predefined location, zmanip
assumes that the part is in the hand with the right orientation. It also relies on the
fact that, during a regrasp the part is stable and can be picked up properly, zput
assumes that the part has the right orientation and the place where it is to be put
down is surrounded by sufficiently large gaps to allow for the tolerance in dimensions
of the part.

These modules are loosely coupled and the reliability of the whole assembly
comes from the ability to arrange for the assumptions of all modules to be true.
For example one of these assumptions, that the part is stable during a regrasp in
zmanip, is the cause of half of the failures that involved instabilities as reported in
Malcolm and Smithers (1988). It is because the L-shape part used in their test is

Chapter 7. Analysis 83

not stable when it is in an upside-down position so it falls over or wobbles out of
position during a regrasp.1

In single camera experiments, zpatget is replaced by reach. Because reach
doesn't break any assumptions of zget and because it doesn't have any communi¬
cation with other modules, its substitution doesn't affect other modules.

7.3 Single camera experiments

Now we will go on to analyse the behavioural module reach, reach moves the hand
to the nominal position of the part, and uses the camera to locate the part, then
moves the hand to the part. It updates the actual position of the part so that zget
can pick it up later. The code for reach is shown below:

reach(p)
meeting
head-follow-hand-to(p)
edge = find-part
hand-approach(edge)

meeting brings the hand and the camera to their initial states. Two predefined
locations are needed; they refer to the meeting place: 1) in hand co-ordinates, 2)
in camera co-ordinates, meeting also confirms the presence of the hand by using
find-hand-marker.

meeting
hand-move-to(x)
head-move-to(y)
find-hand-marker ;; check to see that camera cam see hand

head-follow-hand-to(p)
loc = find-hand-marker

while hand-move-to(pos)
head-follow

head-look-down

1 There are two simple remedies: 1) tell the system this is unstable; and 2) add restora¬
tive patting to zmanip.

Chapter 7. Analysis 84

Camera motion

Figure 7—1: The control loop of head-follow

Figure 7-2: Shift the reference point

head-follow-hand-to uses head-follow to track the hand. The visual routine

find-moving locates the moving hand and then head-rotate pans and tilts the
camera to centre the view on the target. The control loop is a simple look-and-move
with a proportional controller. The feedback error is the offset of the position of the
hand from a reference point (figure 7-1). The control gains are found empirically.
The performance is acceptable as long as the sampling rate is adequate.

head-follow

while hand-is-moving
loc = find-moving
m = the move to centre view on loc

head-rotate(m)

Once the hand stops, the camera tilts down to aim at the part, head-look-down
uses find-hand-marker to locate the hand and centres the view on the part under¬
neath the hand, head-look-down uses a similar feedback loop to head-follow but
it shifts the reference point (figure 7-2).

Chapter 7. Analysis 85

head-look-down

loc = offset

repeat
x = find-hand-marker

m = the move to shift view from x to loc

head-rotate(m)
until hand-marker is at loc

Before we go further, we will discuss these modules. The precondition of
hcad-f ollow io that the camera has a proper initial view (the hand is in the view),
and the postcondition is that the hand is near the part (at the nominal position of
the part) with the camera aiming at the part, head-follow has an assumption that
the head doesn't move too fast for it to track. This depends 011 the vision process

find-moving and the motion of head-rotate, find-moving uses the difference be¬
tween successive images to detect a moving object. It assumes that there is no other
object moving except the hand.

In find-part, the camera io already aiming at the part (as a consequence of
executing head-look-down), find-part looks for a part underneath the hand. It
finds the hand by using the motion of the fingers: the difference of two images
is calculated with only tho two fingers in different positions (open and closed),
find-part returns an edge that is to be used by hand-approach. A11 appropriate
view for find-part depends 011 the layout of the worked! and the. location of the
camora. When the camera tracks the hand and arrives at a part, the camera, should
have a cloar view of that part; the part should be near the hand and not overlap
with other parts. Tho noxt step is that the hand moves to reach for the part by
hand-approach.

hand-approach(edge)
z = down half height
hand-move-track(z)
a = mid point
hand-move-above(a)
hand-rotate-to-parallel(edge)
z = down close to near point
hand-move-track(z)
b = near point
hand-move-above(b)

Chapter 7. Analysis 86

Figure 7-3: The hand rotates to parallel to the edge

The location of the hand is represented by the middle point between the fin¬
gertips. hand-move-track moves the hand down, which creates an image vector
to be used to calculate the approach point, hand-move-above servos the hand to
this point, hand-rotate-to-parallel aligns the hand with the edge of the part
(figure 7-3) by using hand-rotate in small steps until the gripper is parallel to
the edge. Next, hand-move-track moves the hand down again nearer to the part.
Then hand-move-above is used again to move the hand to the final place. From the
location of the hand, the actual location of the part can be found.

The use of tight coupling between sensing and action appears in these modules.
The success of the strategy in hand-approach is based on knowing the height of
the hand above the part. The motion of the hand is part of the sensing strat¬

egy. hand-move-above works because it uses the observed motions of the hand
and employs a feedback loop to reduce the deviation of the hand from the target,
head-follow and head-look-down use tracking. These modules use their own ref¬
erence frames, for example the camera uses image coordinates and the command
to move the hand is in hand coordinates. They need no common coordinates to

operate. The communication between these modules is via the world. There is no

need to keep any centralised world representation.

Because the vision system is uncalibrated, it doesn't need to keep precise knowl¬
edge about the camera locations, or the lens parameters. It is therefore tolerant to
changes of these values.

The behavioural modules in reach prefer sensing the world to performing deduc¬
tion from information given by other modules or by a priori knowledge. For example:
head-follow-hand-to uses find-hand-marker to locate the hand; find-part lo-

Chapter 7. Analysis 87

cates the hand by itself using find-hand; hand-move-track locates the fingertips
while tracking them continuously.

7.4 Stereo vision

We will begin with the top level module: stack-blocks. At this level, the sequence

of operations is simply: locate the parts, pick them up one by one, and stack them
at a predefined location.

stack-blocks

;; place, table, blockl, block2 are predefined
get-three-blocks(bl, b2, b3)
pick(bl)
hand-move-to(place)
put-on(table)
pick(b2)
hand-move-to(place)
put-on(blockl)
pick(b3)
hand-move-to(place)
put-on(block2)

get-three-blocks is a visual routine that finds the locations of the blocks in
both cameras (more details about the visual routines in the next chapter), pick

picks up a block. The sequence of hand-move-to, put-on is a sequence of 'blind'
operations that stacks the blocks. We will now analyse pick:

pick(p)
f ind-hand-stereo

calibrate

hand-move-above-stereo(p)
hand-move-down-half-stereof p)
hand-move-above-stereo(p)
edge = choose one camera and get a block edge
hand-rotate-to-parallel(edge)
z = vertical distance between hand and block

open-fingers
hand-move-down(z)
close-fingers
hand-move-up

Chapter 7. Analysis 88

find-hand-stereo is similar to find-hand in the previous experiment but it
uses both cameras, calibrate moves the hand in 3 orthogonal directions and cal¬
culates the 'calibration matrix'. The key strategy of pick is the combination of
hand-move-above-stereo and hand-move-down-half-stereo. The hand is con¬

trolled by the method described in chapter 5 using the observed vector from the
hand to the target, hand-rotate-to-parallel is the same as in the previous ex¬

periment, in which the camera to be used io chocon arbitrarily. The sequence of
open-fingers, move-down, close-fingers, and move-up is a sequence of 'blind'
operations, but it is adequate because the hand is sufficiently close to the block such
that there is no need to use visual feedback to servo the hand.

hand-move-above-stereo(p)
repeat

x = vector from hand to block p
v = Jinv * x

hand-move(v.x) ;; no vertical motion
until no movement

hand-move-down-half-stereo(p)
v = Jinv * z ;; z is height from hand to p
hand-move-down(v.z / 2)

This strategy of 'move above then move down half' is based on decoupling of
the movement of the hand in the vertical and horizontal planes. It assumes that
the vertical alignment of the robot z axis is within about ±10 degrees (empirically
determined), which is not difficult to arrange.

It can be clearly seen that pick contains the sensing-action strategy to achieve
the part-acquiring operation, pick makes no assumption about the kinematic model
of the robot (with some restriction on the vertical axis, but this is only for this
experiment; the method described in chapter 5 is general enough to move a hand
in 3 dimensions, the vertical axis restriction merely simplifies the strategy for the
hand to reach a target). The program at the top-level (e.g. stack-blocks) does
not have to concern itself about the sensing strategy at all.

Chapter 7. Analysis 89

7.5 Active mobile vision

At the top-level:

stack-two-blocks

view-separate
view-facing
b = choose a block ;; use two cameras

pick(b)
view-closeup
head-vertical(y) ;; to increase tilt angle
view-gap
hand-put-block-down

It starts with the camera head trying to find an occlusion free view of two blocks
using view-separate and then view-facing, pick (from the previous experiment)
picks up one block. The camera head then moves close in by view-closeup to

prepare to stack the block, head-vertical moves the camera head up and tilts it
down, and align-blocks moves one block to be above the other, viou-gap changes
the view to a side view and hand-put-down mates the blocks.

The method of finding an occlusion-free view will now be analysed.

view-separate
get-blocks
while see-one-object

s = calculate the axis of eccentricity of the object
d = motion in the direction according to the slope s
head-horizontal(d)
get-blocks

head-horizontal(x)
head-centre

repeat
head-move(dx) ;; dx is small step in x direction
head-centre

until head had moved x

The camera head is moved until it registers two objects. In moving the camera

head, small steps are used (dx). The assumption about moving the camera head is

Chapter 7. Analysis 90

that the step size is small enough to allow the object to remain in the view all the
time. Once two objects are seen, view-facing moves the camera head to face them
so that two objects are seen well separated.

The camera head motions are achieved by a tight coupling of sensing and action
inside the head-centre module, head-centre pans and tilts the camera head to
centre the view 011 the target. The modules that want to move the camera head do
not have to concern themselves with keeping the object in view and only need to be
concerned about their task, for example, view-facing moves the camera head and
just keeps monitoring the position of the two blocks without having to deal with
the details of the camera head motion, view-closeup is similar but monitoring the
area of the block.

view-facing
;; move head to face two blocks squarely
;; measure the slope of the line between centroids
while I slope I > s ;; s is a small constant

head-horizontal(d)

When a good view is achieved, pick is used to pick up the part, pick from
the previous experiment is used without any change. The next step is to align the
blocks, align-blocks uses a similar technique of 'hand moves above then rotates':

align-blocks
find-hand-stereo

calibrate-with-block

hand-move-above-approximate
hand-with-block-rotate-to-parallel

calibrate-with-block is similar to calibrate but uses the block in the hand

instead of just the hand (it is also simpler to find the block than to find the hand),
hand-move-above-approximate differs from hand-move-above-stereo only in the
use of the shape attractor method. The shape attrac.tor method has the bene¬
fit that it uses all the edges of the image without having to select which edges
to be used (as opposed to the experiment with stereo visual sensing in which
the vertical edges are used), hand-with-block-rotate-to-parallel is similar to
hand-rotate-to-parallel but uses the bottom edge of the block in the hand to

align with the edge of the block on the table.

Chapter 7. Analysis 91

view-gap moves the camera head by head-vertical and monitors the tilt angle.
It aoGumos that when the camera head is horizontal, the view of the gap between
the two blocks will be an edge-on view. This assumption is quite contrived but it
works for this experiment. A more general strategy, for example, monitoring the
edges of the gap until they are parallel, ran be used instead without affecting other
modules. As long as view-gap achieves its post condition of having the view of the
gap edge-on, other modules will continue to work. The final step is to mate the
blocks:

hand-put-block-down
calibrate-with-block

hand-move-above-approximate
z = calculate gap
hand-move-down(z/2)
hand-move-above-precise
window at gap use right camera
mate-blocks

open-fingers
hand-move-up

hand-move-block-down uses the same strategy of 'move above then move down
half' to place the block nearer to the target, hand-move-above-precise uses the
vertical odgou to align the block because we found that the shape attractor method
doesn't givo enough accuracy to mate the blocks. This inaccuracy arises from the
fact that the shape of the block in the hand is partly obscured by the fingers so that
it didn't match the shape of the block on the table well, mate-block monitors the
gap until it disappears and stops the hand, mate-block needs a fast feedback loop
to prevent overshoot. This is achieved by using a small sized window.

mate-blocks

while hand-move-down-slowly
repeat

get-two-blocks
calculate gap

until gap < e ;; e is a small constant
hand-stop

(Chapter 7. Analysis 92

7.6 Discussion

The sensing-action strategy is encapsulated in each module. The strategies used
are suitable for the task of each individual module. In selecting the view, align¬
ing the blocks, putting down the block, etc., each module has its own appropriate
strategy. Some modules from one experiment are used in another experiment with¬
out change: calibrate, pick, etc. Some are modified: hand-move-down-stereo,

hand-move-above-approximate, etc.

The ability to combine modules can be used to create a. more robust mod¬
ule. For example, one may recover from the failure in tracking the fingertips in
hand-move-track by using find-hand to re-establish the location of the hand and
then continue the previous hand motion.

hand-move-track(m)
p = find-fingertips
while hand-move(m)

camera-track-tips(p)

hand-move-track-improve(m)
p = find-fingertips
while hand-move(m)

camera-track-tips(p)
if lost-track then

hand-stop
find-hand

continue

The three principles proposed in chapter 3 are applied thoroughly in the design
and construction of the behavioural modules used in the experiments described.
The demolition of the centralised world model is very important and has a profound
effect on the structure of the whole system. The sub-systems do not rely on a fixed
set of knowledge so they are not sensitive to any change in that knowledge. Things
like camera calibrations, camera locations, etc., do not play important roles in the
system. Their absences simplify the system and make the system more robust. The
assumptions in each module are contained within the module so the higher level
modules become easier to use. The reuse of modules has been shown to be simple.

Chapter 7. Analysis !)3

7.7 Structure

By looking at tlio code in the system, we can construct the hierarchy of modules
(Appendix A). The modules can be classified into ground (not containing other
modules) and non ground. Almost all ground modules belong to one of two groups:

visual routines and robot motion routines. The list of all tho module names is givon
in figure 7 1. Thus ground modules are like tho lowest level instruction set that
other modules can use. From this level, other modules are created by combining
the lower level modules into new functionality at the intermediate level (figure 7 5),
and these intermediate level modules are combined into the modules at the top level.
Most of the ground modules reflect the capability of the physical devices.

7.8 Size of the system

To give an idea about the complexity of the system, wc shall present some statistics
about the size of the implementation. All programs that arc used in the experiments
were written in a combination of PROLOG, C, and VAL-II languages. The planner,
and most of the top level and some near top level modules, arc implemented in
PROLOG, which then calls other modules implemented in G and VAL-II. All visual
routines arc implemented in C and some robot control programs are implemented
in VAL 11 for the Adept One robot. Other robot control programs are implemented
in C. The approximate size of various parts of the system arc shown in the following
table:2

2The planner isn't implemented by the author, the rest of the rode is. The planner is
the work of Malcolm (1987).

Chapter 7. Analysis

GROUID MODULES

Visual routines

find-hand-marker

get-blocks
find-fingertips
camera-track-tips
take-picture
substract-pictures
get-three-blocks
get-two-blocks
get-vertical-edges

Hand and head motions
head-move-to
head-move
head-rotate

close-fingers
open-fingers
hand-move-to
hand-move
hand-rotate

hand-move-up
hand-move-down

hand-move-down-slowly
hand-stop

I0I-GR0UID MODULES
reach

meeting
head-follow-hand-to

find-part
hand-approach
head-follow
head-look-down
find-hand
hand-move-above
hand-move-track
hand-rotate-to-parallel

stack-blocks
find-hand-stereo
calibrate

pick
put-on
hand-move-above-stereo
hand-move-down-half-stereo

stack-two-blocks

view-separate
view-facing
view-closeup
view-gap
align-blocks
calibrate-with-block
hand-move-above-approximate
hand-move-above-precise
hand-with-block-rotate-to-parallel
hand-put-block-down
head-vertical
head-horizontal
head-centre
head-zoom
mate-blocks

Figure 7-4: The list of behavioural modules

Chapter 7. Analysis 95

high levels

meeting head-follow-hand-to find-part hand-approach
•

...•••
head-follow head-look-down find-hand hand-move-above

cainera-track-tips find-fingertips hand-move

ground modules

Figure 7-5: The levels in the hierarchy of behavioural modules

Program lines

planner (PROLOG) 6,000
behavioural modules (PROLOG) 1,300
behavioural modules (G) 3,400
visual routines (C) 9,700
robot control (G) 2,000
robot control (VAL-1I) 200

total 22,600

These 22,600 lines of code represents the system described in this thesis. (This
doesn't count the interface to the user which is a PostScript like script language
running under the X windows system. The interpreter of this script language is
implemented in about 2,000 lines of C). The assemblies described in the experiment
of SOMASS with vision were based on 6 plans, with a total amount of 502 linos in
the top-level plan.

Chapter 8

Visual routines

This chapter discusses the vision algorithms used in the experiments. The justifi¬
cation of the choice of algorithms is discussed and supported by the experimental
data. The data structures representing the objects are explained.

How to choose amongst so many algorithms available in the literature of machine
vision? The answer is to look at the aim of our experiments, what we try to achieve.
This thesis is about programming a robotic assembly system and how to integrate
sensing into it. We didn't try to invent new vision algorithms, instead we tried
to use at best the existing techniques. The Soma assembly domain turned out to

simplify vision tasks a lot.

The methods we used are as follows. An image is acquired and segmented by
global thresholding. Then it is scanned to find objects and the boundaries of the ob¬
jects are traced. From the boundary lists the attributes of the objects are computed;
the choice of attributes depends on the particular task. The corners of objects are

found and linked together by straight lines to form structures of objects. The cor¬

ners of an object are found by the corner filter. The sections that follow discuss all
algorithms in detail.

96

Chapter 8. Visual routines 97

8.1 Real time constraint

Our experiment;! use vision in closed loop control and also in tracking a target. The
time limit is a real constraint in the system. We will present a 'back of an envelope'
calculation to illustrate this point. Assume that a robot hand moves at the speed
20 mm/a and a camera set up boa a resolution of 0.5 mm/pixel, the camera then
will observe the hand moves at the rate 40 pixel/s. Assume the sampling rate of
4 Hz is required for the tracking task. The target will travel 10 pixels within one

sampling period. Assume the target (hand) is 40-50 mm, e.g. about 100 pixels. It
then follows that the region that needs to be processed must he 120x120 pixels in
size (allow the object to move 10 pixels in any directions) and the processing must
be done within 250 ms.

Wc checked the equipment we used to find out some basic facts. An image can

bo acquired every 20 ms and then the data can he transferred. The transfer times
are:

size in pixel ms

512x512 800

256x256 200

128x128 50

It can bo clearly seen that there is not much time to process one image at the rate
of 4 lie. The 512x512 is impossible, the 256x250 leaves us 30 ms, and the 128x128
leaves us 180 ms. Therefore the algorithm that can be used must be a fast one.

Chapter 8. Visual routines 98

8.2 Image segmentation

Segmentation is a process of partitioning an image into units that are homogeneous
with respect to one or more characteristics. A popular technique is thresholding,
which is computationally simpler than other existing algorithms, such as boundary
detection or region-dependent techniques. A survey of thresholding techniques for
image segmentation can be found in Sahoo and others (1988). Lee, Chung and Park
(1990) also gave the performance evaluation of five global thresholding algorithms:
simple image statistic method (Kittler and Illingworth, 1985); between class variance
method (Otsu, 1979); entropy method (Kapur, Sahoo and Wong, 1985); moment

preserving method (Tsai, 1985); and quadtree method (Wu, Hong and Rosenfeld,
1982).

8.2.1 Thresholding

An image contains objects and background. We can pick a threshold that divides
the image pixels into either objects or background:

T = T[x,y,p(x,y),f(x,y)] (8.1)

when f(x,y) is the intensity of point (x,y) and p{x,y) denotes some local property
measured in the neighbourhood of this point. We then can divide the image by
using the following rule:

(x,y) is part of object if f(x,y) > T
otherwise it is part of background

Assume that the intensity of the object is greater than the intensity of back¬
ground. When T depends only on f{x,y) the threshold is called global. If T depends
on both f(x,y) and p(x,y) then it is called local and if T depends on the spatial
coordinates x and y it is called a dynamic threshold. A global threshold is one that
divides the entire image with a single threshold value, whereas a dynamic threshold
partitions a given image into subimages and determines a threshold for each of these
images.

Chapter 8. Visual routines 99

Figure 8-1: The sum of two probability density function

Global thresholds have applications in situations where there is a clear separation
between objects and background and where illumination is relatively uniform.

8.2.2 Optimal threshold selection

If we assume bimodal images, the histogram is the sum of two probability density
functions. The function approximating the. histogram (figure 8-1) is given by:

p(z) = PlPl(z) + P2p2(z) (8.2)

when z is a random variable denoting intensity, pi(z) and p2(z) are the probability
density functions, and I\ and P2 are called a priori probabilities. It is required that

Pi + Pi = 1 (8.3)

Let us form two functions of z, as follows:

di(z) = Ptp,(z) (8.4)

d2(z) = P2p2(z) (8.5)

We classify the pixel as an object if dt(z) > d2(z) or as background if d2(z) >

rii(rr). The average error of misclassifying an object as background or vice versa is
minimised by choosing c such that

di(z) = d2[z) (8.G)

if we set z = T. We have that the optimal threshold satisfies the equation:

PiPi(T) = P2V2(T) (8.7)

Chapter 8. Visual routines 100

Thus if the function forms of p\(z) and P2(z) are known, we can solve for the optimal
threshold that separates objects from background.

We can model a multimodal histogram as the sum of n probability density func¬
tion so that

p(z) = P\Pl(z) + •■ • + PnPn(z) (8.8)

Then the optima] thresholding problem may be viewed as classifying a given pixel
as belonging to one of n possible categories. The minimum error decision is based
on n functions of the form:

<l,(z) = P,p,(z) i = 1,2,..., n (8.9)

A given pixel with intensity z is assigned to the fctli category if dk(z) > (l,(z) j =
1,2,...,n;j ^ k. The optimum threshold between category k and category j,
denoted by 7'r,, is obtained by solving the equation:

PkPk(Tk]) = PjPj(Tki) (8.10)

8.2.3 The method in the experiments

To decide what method to use we took many images of the typical scene in the
workcell of the Soma assembly domain (figure 8-2 to 8-5). Figure 8-2 shows a

white plastic part with a good contrast. Figure 8-3 shows a wooden part; the part
has a wider spread of its intensity value. Figure 8-4 shows a wooden part with
shadow; the histogram is trimodal. Figure 8-5 shows a wooden part, with a smaller
window; the area of the part has a larger proportion than all previous pictures, and
shadows are present. We collected histograms and found that they were strongly
bimodal, and only became triinodal when there were shadows. From this knowledge,
we decided to use the simplest method of global thresholding. Relying on the most
invariant feature of the histogram, that is the peak of the background, our method
searches for the valley to the right of the background peak to find a threshold that
divides the image into objects and background. As seen from the typical images,
the histograms are quite noisy, and must be smoothed before doing the search to

prevent choosing the wrong valley (local minima).

Chapter 8. Visual routines 101

Figure 8-3: A typical scene 2

Chapter 8. Visual routines 102

Figure 8-5: A typical scene 4

Chapter 8. Visual routines 103

We use Gaussian smoothing by repeated averaging using a 1x3 mask. There
are many possible masks. To speed up the smoothing, one ean design a Gaussian
smoothing mask with a smaller central coefficient.1 For example, start with a Gaus¬
sian mask 1/16 x [1,14,1], move to a spline smoothing mask 1/6 x [1,4,1],2 and
further to a Gaussian mask 1/5 x [1,3, 1], even a Gaussian mask 1 /4 X [1, 2,1], where
each of the,1 x3 masks must be subject to a formula for 3 coefficients: [/J, 1 — 2/f, /!].
We use tbe mask 1/4 x [1,2,1]. It is derived from a 3x3 Gaussian mask which is
the optimal integer value mask in overall accuracy approximation as shown in Gai
(1990, theorem 3.8, p.42).

This mask is the best one in tbe sense that it has the smallest central weighting
coefficient, except the simple averaging mask 1/3 x [1,1,1], thus it provides the
maximal Gaussian smoothing rate. Also, all the weighting coefficients within this
mask are powers of 2. Hence, oidy operations of shifting and addition are involved
in the smoothing, thus working much faster than any other Gaussian masks where
multiplications are required.

8.3 Tracing the boundary

The algorithm to trace a boundary is as follows (figure 8 -6): imagine an observer sits
between the pixels at the boundary of an object, this observer traces the boundary
by looking at 2 pixels ahead (L and R) and keeps the object on its right-hand side,
it uses the following rules (X = background, 0 = object):

L R Action

X X turn right
X 0 report this point and go ahead
0 0 report this point, turn left (move diagonally)
0 X same as above (this is to prevent going 'into' the object)

1 Li-Dong Cai pointed this out to the author.

2B-spline mask is equivalent to a specific Gaussian mask, see (Cai, 1990, chapter .1) for
more details.

Chapter 8. Visual routines 104

□ □ □ □
mm

mm

□ □
mm

] k □

□ □

mm
mm

next pixels inspected

□ IKI [
turn right ahead turn left

'

j object background jX^/j current pixel j

Figure 8-6: Tracing the boundary

Terminate upon returning to the starting point with the same orientation. This
algorithm reports 8-connected boundary lists. It uses only 4 directional headings.
Of 8-connected vectors in a list, four right angle components are produced by the
move ahead and the other four 45 degrees components are produces by the left turn.
The algorithm inspects as few pixels as possible. It turns right to inspect two pixels
on the other side of the current pixel and does not inspect the same pixel twice in
a move.

To find a starting point, an image is scanned until it hits the object pixel. To
prevent a false trigger by small noise, the scanner checks the width of the object
by counting the number of consecutive object pixels, which must be greater than
fc, a constant which denotes the minimum width of the object of interest. Many
algorithms to follow contours of irregular 8-connected figures are given in Rosenfeld
and Kak (1982).

Chapter 8. Visual routines 105

8.4 Attributes of objects

From the boundary of objects, simple attributes can be calculated. We used the
following, when xpj, are coordinates on the boundary list:

1) centroid
En— 1isi!—i (8.11)

n

EjzzO1 Vi /t' I o\
Vc = (b.12)

ii

2) area; the area of a closed curve is given by

X I - x-+i!/') I (8-13)
1 «=o

3) perimeter; it is the length of boundary list n 4) compactness

perimeter2
area

5) eccentricity (from Ballard and Brown, 1982, p.255);
start with the mean vector

x0 = - x (815)

when 11 i» the boundaiy list, then compute the ijth moments MX1 defined by

M>j = (:,'o - xY(yu - v)J (8 16)
X in R

(8.14)

The orientation, 0, is given by

+ (8-17)

and the approximate eccentricity e is

(M20 - Mmy + 4Mu

Chapter 8. Visual routines 106

8.5 Corner filter

Malcolm (1983) reported an algorithm to find the corner points from a boundary
list. The goal of the corner filter was to find a good polygonal approximation to an

object outline as fast as possible. The corner points are the basis for discovering
features of the object relevant to assembly. We used an updated version based on

that algorithm.3 The algorithm is easy to visualise by imagining a worm crawling
around the boundary. As it moves, the gradient of the line joining its head and tail
will change. The determination of the corner points is based on this change.

We considered 2w pixels on the boundary. P = (x,y) is a point on the boundary,
n is an index into the boundary point, Pn is at the head of the worm, its mid-point
is at Pn_u, and its tail is at Pn_2«/- The mid-point is used to report a corner.

We define the estimated gradient by forward differencing:

VP, = P,+tu - P, (8.19)

An estimate of the curvature of P's trajectory is the second difference. We use its
absolute value because we are not interested in its sign:

Dn =| VPn-u, — VPn_2lu | (8.20)

and therefore

Dn = | Pn ~~ 2Pn—w T Pn-2t«» | (8.21)

By setting a threshold at «, the local maximum between the points at which Dj > n

and Dk < a is reported as the corner point (figure 8-7).

For a slow changing curve, the point cannot be reported by Dn > a. The
accumulated change is used instead:

Tn= jr D„ (8.22)
! =p+l

3Our algorithm uses s = w, when s is the number of pixels over which the smoothing
total is maintained and w is the size of the worm in that report.

Chapter 8. Visual routines 107

max

a

I—
n

k

Figure 8-7: Local maxima of a sharp corner

when p = the last reported corner point. The mid-point is reported when Tn > t.
There is a 'left over' accumulation (T„) when the worm goes out from a sharp corner,

therefore we set 7'„ = 0 until n > p + 2iu.

The last kind of corner point reported ia when the boundary deviates from the
straight line between the head of the worm and the last point reported.

Let O be the middle point on the boundary between P„ and Pp, and M the
middle point of the line joining P„ and Pp. The deviation is the distance between
O and M (figure 8-8).

when ||H|| is the magnitude of H. The mid-point is reported when Eu > e. In short,
the corner finder is a function:

corner(w, a, t., e)

o

Figure 8-8: Deviation measure

En = ||O - M|| (8.23)

when w = smoothing interval
a = threshold for sharp corners

t = threshold for curve corners

e = threshold for deviation corners

Chapter 8. Visual routines 108

(Malcolm, 1983) contains the details of a fast implementation of this algorithm.
Figure 8 9 chows the result of applying this algorithm to a typical imago. In the
experiments, we set the parameters w = 10 and a = 7, and only sharp corners are

considered ((and e are set arbitrarily large). This is because the features of interest
are characterised by sharp corners (i.e. top edges of a cube).

8.6 Shape attractor

Harris (1992) reported an algorithm to align two sets of edges together despite the
presence of significant distortion and missing or extraneous line segments. This algo
rithm works by iteratively translating, rotating and dilating one set of line segments
onto its target. The following sections are summarised from that paper.

8.6.1 Closeness function

Consider the m moving lino segments and n target segments. Tho algorithm com

pules a weight for all to x n possible mapping of mobile segments onto target seg¬

ments. The weight u>,, is bigger the closer the ith (mobile) and jth (target) segments
are to each other, Closeness is defined to be a function of orientation, length and
distance apart of line segments. It depends on the dot product of and the divergence
(<5) between the line segments. If two lines are represented as follows:

p (/.) = p, + tp2

q(f) = qr + <q2
(8.24)

divergence is defined as:

(8.25)

This works out to be

II?IP + d|s||2 + f.s3
(8.26)

where
r = Pi - qi

s = p2 - q2

The closeness value is given by:

«> = (llP-ill + IM)er(Cc°"-A'42) (8.27)

Figure 8-9: The result of applying the corner filter

Chapter 8. Visual routines 110

C and K are positive constants and 0 < r < 1. This function is Gaussian with
respect to the divergence of the two line segments. When r is 1, A determines
the spread of the Gaussian and thus the range of distance over which differences in
separation have a strong effect on w. K depends on the amount of noise expected
in the data. We used C = 5 and K = 0.001 where coordinates are pixel values.

8.6.2 Computing the translation

The overall translation applied to the mobile segments, v', is the weighted sum of
the individual V;, between the centres of segments i (mobile) and j (target):

Similarly, for rotation the individual rotations are those that would make segment i
parallel with segment j. The centroid of the mobile segments is used as the centre
for the resulting rotation vector:

For the first iteration r can be set close to zero. Each weight then becomes the sum

of the lengths of the two segments and the resulting translation aligns the centroids
of the two figures, with no overall rotation. For the next iteration, the radius r' is
used.

To measure what is the processing rate we can achieve, we tested a simple process

of acquiring an image, thresholding it and tracing the boundary, then finding all
corners. The scene (figure 8-2) has only one Soma part in it and the background is
clear (only single object detected). A straightforward implementation is timed:

y, = E,j '".jVp
Wi,

(8.28)

(8.29)

8.7 Tune up for speed

Chapter 8. Visual routines ill

Process time in ms for 25(ix25fi 128x128

acquire image 20 20

transfer data 200 50

compute histogram 120 00

smooth and threshold 200 '200

trace 40 40

corner 40 40

total C20 410

From this profilo, the data transfer bccomco the bottleneck when an image is
large, also the smoothing which is an iterative process becomes the next bottle
neck. We reduced the time to transfer data by using subsampling to compute a

histogram, and by accessing only the required pixel in scanning to find objects
and in tracing the boundaries. We avoided computing a new threshold whenever
possible, especially when it is in a tight loop and a fast processing speed is required.
For example, in tracking the fingertips, the threshold is found once in the beginning
and is used throughout the subsequent processing to find the fingertips. With a

careful implementation, we achieved the rate of 8 Hz with a window of size 200 ;c318
pixols and 12.5 IIz with a small window of size 10x10 pixels while tracking the gap

in the part-mating task.

In many circumstances speed of processing is not essential. For example, in
finding the hand by locating its marker or in finding a part to be picked up, we were

not worried if the visual routines took one second to complete the task.

8.8 Discussion

The choice of algorithms is constrained very much by the real time limit. Our visual
routines are task specific but they performed well in the experiments. The Soma
domain simplifies the task of vision processing because we can rely on using just
the outside edges and other attributes that can be computed using the boundary
list. The limitation arises when there is a need to inspect the 'inside' of an object.
The algorithms wo chose consider only the 'silhouette' (or outline) of objects. For

Chapter 8. Visual routines 112

the purpose of using the 'internal' edges a standard edge detector like Canny can

be used (Canny, 1983). In tracking features, 'snakes' as originally proposed by
(Kass, Witkin, and Terzopoulos, 1987), can be used for locating features of interest
in images and tracking their image motion as long as the feature does not move

too fast. A 'snake' is an active contour model which minimises an expression of
energy to locate image features. (Curwen, Blake, and Oipolla, 1991) also reported
an implementation of this mechanism using B-spline model of the feature (to reduce
the state space of the problem). For the corner finder, a new algorithm is reported in
Smith (1992) that can work with gray levels without image segmentation. Because
of the real-time constraint, special hardware might be necessary in order to compute
more elaborate algorithms.

Chapter 9

Conclusion

All things transitory
But as symbols are sent:
Earth's insufficiency
Here grows to Event:
Here it is done:
The Woman-Soul leadctli us

Upward ami on!

from Faust
Johann W olfgang von (loethe

How to program robots to work reliably in the presence of uncertainty?

The classical approach to this problem is to analyse the uncertainty of the parts'
geometry and their locations to determine the sensing and actions that arc necessary

to reduce the uncertainty to an acceptable level. The problem with the classical
approach is that the analysis of uncertainty and the synthesis of sensing and action
to reduce the uncertainty are computationally expensive and generally intractable.
Presently, this analysis of uncertainty also is only able to represent a subset of the
types of uncertainty actually experienced at execution time.

The behaviour based approach suggests a different solution: use a competent
execution system to deal with the inevitable uncertainty of the real world. This
has a profound effect on the architecture of robotic assembly systems. The sensing
operations are embedded in the run-time system, which allow the programming (or
task planning) to be carried out in an ideal world in which robots perform then-
tasks reliably.

113

Chapter 9. Conclusion 114

This thesis suggested an architecture for the execution system and proposed the
criteria for decomposing a task into modular units which are called behavioural mod¬
ules. Behavioural modules are task-achieving units (the task is in the world, e.g.,
computational tasks don't count). Programming a robot in terms of behavioural
modules leads naturally to task-level programs. Experiments described in this the¬
sis show that behavioural modules can encapsulate the essential information about
the world and communicate without relying on a centralised model of the world and
without a global coordinate system. An individual module only receives the infor¬
mation that is required to perform its task. The tight coupling of the sensing and
action inside individual modules is an important idea in coping with the uncertainty
of the real world.

Behavioural modules in this work have the following general properties :

1. In terms of computational structure and modularity; behavioural modules can

be easily combined to create new modules.

2. In terms of the assembly operations they achieve; the behavioural module
interface easily matches to the appropriate atomic plan terms.

3. Generality over variations of the forms and positions of the parts; the planner
does not deal with uncertainty, leading to simplification of the planning and
assures reliability.

4. Independent of technology; the independence of the programmer from knowing
the sensing strategies and type of sensors.

The rest of this chapter consists of three sections. The first briefly lists the con¬

tributions of the work described in this thesis. The second discusses some directions

for extending this research. The third briefly summarises the work in terms of the
expectations originally set at in chapter 1.

Chapter 9. Conclusion 115

9.1 Contributions

The work described in this thesis has made a number of contributions to solving
tho problom of programming assembly robots to perform reliably in the presence of
uncertainty. They are summarised below.

Integration of sensing into assembly systems
Tho decomposition of tasks into task achieving units gives rise to a new modular
isation of assembly systems in which the modules may contain sensing operations.
Tho work in this thesis demonstrates that this modularisation allows sensing opera

tions to be seamlessly integrated into a robotic assembly system (section 1.8 p. 57).
Moreover, the introduction of sensing into the system doesn't require that the pro

grammar or the task planner has to know the details of the sensors or the strategy
to use them. This contrasts to the previous work in this area which required the
intimate connection of sensing operations and task planning.

Uncalibrated vision

The uncalibrated vision presented in this work shows that visual sensing in a robotic,
assembly system doesn't have to rely either on precise calibration or on using a ccn

tralised model of the world. This visual sensing can be used in a feedback control
loop, and it can be self calibrating so that the locations of cameras or their lens
parameters are not required as a priori knowledge (chapters 4 and 5). This enables
tho use of visual sensing in a more flexible way because the camera can be moved
(chapter 6). The scheme of visual servoing presented is computationally cheap and
can be applied to commercially available position controlled manipulators. It also is
demonstrated in one case that the accuracy achieved by this visual servoing method
is better than the accuracy of using the robot's inverse kinematics calculation (see
tion 5.6 p. 67).

The design and implementation of behavioural modules
The design of behavioural modules is dictated by the criteria of the task decomposi
tion (section 3.3 p. 26). From the analysis of the system presented in this work, it is
shown that behavioural modules have hierarchical structures and their interfaces can

be clearly defined. The assumptions about the world in which they operate and the

Chapter 9. Conclusion 116

assumptions about the operations of other modules can be made explicit (chapter
7). The implementation of behavioural modules can be carried out in an indepen¬
dent manner from other parts of the system development once the specifications of
behavioural modules are defined. Each module can be implemented separately in a

bottom-up fashion. The specification of behavioural modules facilitates the testing
of the modules and the system integration process (section 3.6 p. 34).

9.2 Future work

There is a long list of interesting variations and extensions that could be made to
the work described in this thesis. Some of them which promise direct applications
are described here.

Extension of the stereo vision system
The uncalibrated stereo vision system presented in this work could be extended so

that the calibration matrix can be updated on the run. This would be a generali¬
sation of the method for storing and indexing the calibration matrices in Domingo
(1991). The limitation of the storing and indexing method is that the matrices are

built only for a fixed camera location. The ability to update the calibration matrix
on the run will enable cameras to be moved about without recalibration for different

views.

Sensor fusion

The architecture proposed in this work allows the use of multiple sensors, even with
sensing of a different modality. Although this work demonstrates vision sensing,
other work had demonstrated tactile sensing (Wilson, 1992) and force sensing (Balch,
1992) in a similar framework. Although none of these systems demonstrates the
use of more than one mode of sensing, fusion of multiple modes is a clear logical
development. Sensor fusion can be made based on a task, e.g., several behavioural
modules which have different sensing modalities, each of which achieves its task, can
collaborate to achieve a desired task.

Multiple robots co-operation
This work demonstrates two robots co-operating in sensing and manipulation but

Chapter 9. Conclusion 117

only ono robot manipulate;! the objects. It is possible to envisage more than one

robot that can co operate in the task of objert manipulation. Steels (198'J) has given
examples of how distributed agents can ro operate and Brooks (l!)!)la) suggested an

approach to studying the control of multiple agents. Behavioural modules could be
designed to take into account more than one agent performing a task. Behavioural
modules can be used at task level so the programming of a system of this type should
not be overly complicated. It will be interesting to understand how resources can be
shared amongst the agents. For example, a camera can observe both robot hands
at the same time, therefore it can participate in the control of both robots. The
interaction between agents inside a module and between modules will be of great,
interest.

9.3 Epilogue

Programming robots and sensors to do assembly tasks is very much simplified by
using behavioural modules. Simply by inspecting the. code for robots to do the
assemblies presented in this work, one can see that, at, one extreme, the code at
the level of individual motions is lengthy, and this makes it hard to maintain or to

modify. At the other end of the spectrum, a plan in terms of behavioural module
calls, is much shorter, easier to understand and can be adapted to a new task without
much difficulty. Visualising a robot motion in three dimensional space to achieve
an assembly task reliably is a skill that can be acquired only after a lot of practice.
There are numerous surprises when one deals with real objects, since not everything
is exactly as one first expects. Using sensors can also be intriguing. When I was

trying to find a way to use information from a camera to guide a robot hand, 1
was puzzled about how to use 2 dimensional data to control 3 dimensional motions.
Only after 1 tried to control the robot manually while looking through the robot's
eye (the image from the camera displayed on a monitor), did 1 find the solution
presented in chapter 4. The behavioural module concept captures this sort of skill
quite nicely and also hides the complication of using sensors from a user. This
concept of purposeful modules, that contain sensing and action, is my answer to
the question of programming robots which I posed in the beginning of this chapter.
The next important question is how well it scales to a complex domain of assembly?
Maybe the only way to find out is to try.

Appendix A

Catalogue of behavioural modules

The appendix contains all robot programs used in this thesis. There are two parts:
the first part contains the listing of pseudo codes of behavioural modules, and the
second part lists the hierarchical structure of behavioural modules.

A.l Naming convention

The names of behavioural modules are given in the form Noun-Verb-Object and will
be unique for each module. Noun denotes the agent like hand, head, camera, when
there is no ambiguity it is omitted. A long name usually indicates that it is similar
to another module but with extra qualifications, for example, hand-move-above and
hand-move-above-stereo.

A.2 Pseudo code

SIIGLE CAMERA

reach(p)
;; hand moves to nominal position of a part p and then moves to it
meeting
head-follow-hand-to(p)
edge = find-part
hand-approach(edge)

meeting
;; move camera and hand to a meeting point

118

Appendix A. Catalogue of behavioural modules

;; x,y are meeting points in hand coordinate and head coordinate
hand-move-to(x)
head-move-to(y)
find-hand-marker ; ; check to see that camera can see hand

head-follow-hand-to(p)
;; move hand to p, camera follows and then looks at the part
loc * find-hand-marker
while hand-move-to(p)

head-follow
head-look-down

find-part
;; look for a part underneath the hand
p » find-hand
make window under hand to look for part at p
repeat 3 times or until get good edge

get-blocks
choose the one nearest to the hand

get two edges at top corner
edge = select edge that most parallel to fingertips
check good edge by size and slope

return(edge)

hand-approach(edge)
i; move hand close to a part
z = down half height
hand-move-track(z)
a * mid point
hand-move-above(a)

hand-rotate-to-parallel(edge)
z ■ down close to near point
hand-raove-track(z)
b « near point
hand-move-above(b)

hand-move-track(m)
;; move hand and keep tracking fingertips
p ■ find-fingertips
while hand-move(m)

camera-track-tips(p)

find-hand-marker

;; locate hand marker in the image
use camera red channel
find blobs with properties of hand marker
loc ■ centroid of blob
turn camera back to black and white channel
returnC loc)

find-hand

;; locate hand by difference two images which fingers move
close-fingers
take-picture
open-fingers
take-picture
w = subtract-pictures
p * find-fingertipsC w)
returnC p)

find-fingertipsC w)
;; locate left and right fingertips
make two windows correspond to two fingertips in w
find blobs with properties of white fingertips
p * centroid of two lowest blobs
returnC p)

head-follow

;; pan-tilt head to follow the moving hand
while hand-is-moving

loc " find-moving
m * the move to centre view on loc

Appendix A. Catalogue of behavioural modules 120

head-rotate(m)

head-look-down

;; pan-tilt head until hand-marker is at offset
loc * offset

repeat
x = find-hand-marker
m = the move to shift vies from x to loc
head-rotate(m)

until hand-marker is at loc

hand-move-above(dest)
;; move head, currently at p, to dest while keep camera tracking
;; p in image coordinate (x,y) T is transformation
repeat

v 3 p — dest
m = map(v, T)
hand-move-track(m)
vl = observed move of v

T = remap(vl , m)
until p near dest

hand-rotate-to-parallel(edge)
;; rotate hand until it is parallel to the edge, hand is empty
repeat

dr = small rotation to make hand parallel to edge
while hand-rotate(dr)

camera-track-tips(p) ;; p is current position
until hand paralle to edge

camera-track-tips(p)
;; tracking the location of p while hand move
while hand-is-moving

make small windows centred at each fingertips in p
find blobs with properties of white fingertips
choose the most similar to the previous blobs
p = centroid of blobs

STEREO VISIOI

stack-blocks

;; pick up and stack three blocks at a place
;; place, table, blockl, block2 are predefined
get-three-blocks(bl, b2, b3)
pick(bl)
hand-move-to(place)
put-on(table)
pick(b2)
hand-move-to(place)
put-on(blockl)
pick(b3)
hand-move-to(place)
put-on(block2)

pick(p)
;; pick up a block at p
find-hand-stereo
calibrate
hand-move-above-stereo(p)
hand-move-down-half-stereo(p)
hand-move-above-stereo(p)
edge = choose one camera and get a block edge
hand-rotate-to-parallel(edge)
z * vertical distance between hand and block

open-fingers
hand-move-down(z)
close-fingers
hand-move-up

find-hand-stereo

Appendix A. Catalogue of behavioural modules

calibrate
;; find the approximate mapping between hand motion and image
;; by move in 3 orthogonal directions and observe 3 vectors
;; calculate Jinv which map these 3 vectors to motions

hand-move-above-stereo(p)
;; move hand to point above p, no vertical motion
repeat

x * vector from hand to block p
v * Jinv • x

hand-move(v.x)
until no movement

hand-move-down-half-stereo(p)
;; z is height from hand to p, v is z converted to robot motion
v ■ Jinv ♦ z

hand-move-down(v.z/2)

put-on(h)
; ; put block down, by dead reckoning
hand-move-down(h)

open-fingers
hand-move-up

ACTIVE MOBILE VISIOI

stack-two-blocks

view-separate
view-facing
b 3 choose a block

pick(b)
view-closeup
head-vertical(y)
align-blocks
view-gap
hand-put-block-down

view-separate
;; move head to have a view which two objects are not overlapped
get-blocks
while see-one-object

s = calculate the axis of eccentricity of the object
d 3 motion in the direction according to the slope s
head-horizontal(d)
get-blocks

view-facing
;; move head to face two blocks squarely
;; by measuring the slope of line between centroids of two object
while | slope | > s ; ; s is a small constant

; ; use two cameras

; ; to increase tilt angle

view-closeup
i; move head closer until area of the block in hand > a

b ** choose the block in hand
head-centre
while b.area < a ; ; a is a constant

head-zoom(dr) ;; dr is a small movement

view-gap
;; move head while keeping object in the view until head is
;; almost horizontal, looking parallel to mating surfaces

align-blocks
find-hand-stereo
calibrate-with-block

hand-move-above-approximate
hand-with-block-rotate-to-parallel

Appendix A. Catalogue ol behavioural modules

head-horizontal(x)
;; move head left or right while keeping object in the vies
head-centre

repeat
head-move(dx) ;; dx is small step in x direction
head-centre

until head had moved x

head-vertical(y)
;; similar to head-horizontal, but move up or down

head-zoom(z)
;; similar to head-vertical, but move in or out

head-centre
;; pan-tilt head until target is in the centre of the view

head-move(d)
;; move head relate to the current position
;; along x or y or z reference to head coordinate

hand-move-above-approximate
;; move to above a block using shape-attractor to find translation
repeat

get-two-blocks
x * translation vector by shape attractor
v = Jinv ♦ x

hand-move(v.x)
until no-movement

hand-move-above-precise
;; same as hand-move-above-approximate but
;; use translation-use-vertical-edge
repeat

get-two-blocks
get-vertical-edges
x * translation vector by shape attractor
v = Jinv ♦ x

hand-move(v.x)
until no-movement

hand-put-block-down
;; put block down while monitoring the gap until blocks are mated
calibrate-with-block

hand-move-above-approximate
z * calculate gap
hand-move-down(z/2)
hand-move-above-precise
window at gap use right camera
mate-blocks

open-fingers
hand-move-up

mate-blocks

; ; move block in hand down until no gap
while hand-move-down-slowly

repeat
get-two-blocks
calculate gap

until gap < e ;; e is a small constant
hand-stop

hand-with-block-rotate-to-parallel
;; rotate hand until block in hand parallel to block on table
get-two-blocks
get slopes si , s2 ; ; si,s2 slopes of bottom edges of blocks
while I si - s2 | > e ; ; e is a small constant

dr = small rotation to reduce difference of slopes
hand-rotate(dr)

get-two-blocks
get slopes si, s2

Appendix A. Catalogue of behavioural modules

calibrate-with-block

i same as calibrate but use block in hand instead of the hand

A.3 Hierarchical structure

SIIGLE CAMERA

meeting
head-follow-hand-to

find-part
hand-approach

meeting
hand-move-to
head-move-to
find-hand-marker

find-hand

close-fingers
take-picture
open-fingers
subtreet-pictures
find-fingertips

head-follow

find-moving
head-rotate

head-follow-hand-to
find-hand-marker
hand-move-to
head-follow
head-look-down

find-part
find-hand

get-blocks

hand-approach
hand-move-track
hand-move-above
hand-rot ate-to-parallel

hand-move-track

find-fingertips
hand-move

camera-track-tips

head-look-down
find-hand-marker
head-rotate

hand-move-above
hand-move-track

hand-rotate-to-parallel
hand-rotate

camera-track-tips

STEREO VISIOI

stack-blocks

get-three-blocks
pick
hand-move-to

put-on

pick
f ind-hand-stereo
calibrate

hand-move-above-stereo
hand-move-down-half-stereo

hand-rotate-to-parallel
open-fingers
close-fingers
hand-move-down

hand-move-up

hand-move-above-stereo
hand-move

hand-move-down-half-stereo
hand-move-down

put-on
hand-move-down

open-fingers
hand-move-up

Appendix A. Catalogue of behavioural modules

ACTIVE MOBILE VISIOI

stack-two-blocks

view-separate
view-facing
view-closeup
pick
head-vertical

align-blocks
view-gap
hand-put-block-down

view-separate
get-blocks
head-horizontal

view-facing
head-horizontal

view-closeup
head-centre
head-zoom

head-vertical
han

align-blocks
find-hand-stereo
calibrate-with-block

hand-move-above-approximate
hand-with-block-rotate-to-parallel

-move-above-approximate
get-two-blocks
hand-move

l-move-above-precise
get-two-blocks
get-vertical-edges
hand-move

l-put-block-down
calibrate-with-block
hand-move-above-approximate
hand-move-down

hand-move-above-precise
mate-blocks

open-fingers
hand-move-up

i-blocks
hand-move-down-slowly
get-two-blocks
hand-stop

1-with-block-rotate-to-parallel
get-two-blocks
hand-rotate

head-vertical
head-centre
head-move

head-horizontal
head-centre
head-move

head-zoom
head-centre
head-move

head-centre
head-rotate

Bibliography

Agre, P.E., and D. Chapman. (1987). Pengi: an implementation of a theory of
activity. I'roc. of 01 li National Conf. on Artificial Intelligence, pp. 268-272.
Aloimonos J., I. Weiss and A. Bandyopadhyay. (1987). Active viuion. Eroc. of 1st
Int. Conf. on Computer Vision, London, IEEE computer uociety preao, pp. 35 51.

Ambler, A.P., II.G. Barrow, C.M. Brown, R.M. Burstall, and R.J. Popplestone.
(1975). A versatile system for computer controlled assembly. A rtificial Intelligence,
6:129-156.

Andersson, R.L. (1988). A robot ping-pong player. MIT Press.

Arbib, M.A., K.J. Overton, and D.T. Lawton. (1984). Perceptual systems for
robots. Interdisciplinary Science Reviews, 9:31-46.

Balch, P. (1992). Force sensing in an industrial assembly, unpublished manuscript.

Ballard, D.H. and C.M. Brown. (1982). Computer vision. Prentice Hall, NJ, p.
255.

Bentley, J. (1988). More programming pearls. Addison-Wesley, p. 63.

Brooks, R.A. (1982). Symbolic error analysis and robot planning. Int. Jour, of
Robotic Research, 1(4):29-68.

Brooks, 11.A. (1985). A robust layered control system for a mobile robot. MI T AI
Lab., AI memo 861.

Brooks, R.A. (1986). Achieving artificial intelligence through building robots. MIT
AI Lab., AI memo 899.

Brooks, R.A. (1987), A hardware retargetable distributed layered architecture for
mobile robot control. I'roc. IPEL' Int. Conf. on Robotics and Automation, Vol. 1,
pp. 196-1111.

Brooks, R.A. (1989). A robot that walk: emergent behaviours from a carelully
evolved network. MIT AI Lab., AI memo 1091.

Brooks, R.A., (1990). The behavior language: user's guide. MIT AI Lab., AI
memo 1227.

125

Bibliography 126

Brooks, R.A. (1991a). Challenges for complete creature architectures. In .1. Meyer,
and S.W. Wilson, (Eds.), Proc. of the first Int. Conf. on Simulation of Adaptive
Behaviour, pp. 434-443.
Brooks, R.A. (1991b). Intelligence without representation. Artificial Intelligence,
47:139-159.

Brooks, R.A., .J. Connell, and A.M. Flynn. (1986). A mobile robot with onboard
parallel processor and large workspace arm. Proc. of 5th National Con}, on Arti¬
ficial Intelligence, Philadelphia , Vol. 2, pp. 1096-1100.

Brooks, R.A., A.M. Flynn, and T. Marill. (1987). Self calibration of motion and
stereo vision for mobile robot navigation. MIT AI Lab., AI memo 984.

Brown, C'.M. (Ed.) (1988). Rochester robot. University of Rochester, Computer
Science, technical report 257.

Buckley, S.J. (1987). Planning and teaching compliant motion strategies. Ph.D.
thesis, MIT, MIT AI Lab., AI memo 936.

Cai, L. (1990). Scale-based surface understanding using diffusion smoothing.
Ph.D. thesis, University of Edinburgh.
Cameron, S.A. (1984). Modelling solids in motions. Ph.D. thesis, Department of
Artificial Intelligence, University of Edinburgh.

Canny, J.F. (1983). Finding edges and lines in images, MIT AI TR-720.
Chang, Y.L., and P. Liang. (1989). On recursive calibration of cameras for robot
hand-eye systems. Proc. of IEEE Int. Conf. on Robotics and Automation, Vol.2,
pp. 838-843.

Chongstitvatana, P., and A. Conkie. (1992a). Behaviour-based assembly experi¬
ments using vision sensing. In A. Colin, and E. Emil, (Eds.), Advances in Machine
Vision. World Scientific Press, Singapore, pp. 329-342, also DAI RP 466.

Chongstitvatana, P., and A. Conkie. (1992b). Active mobile stereo vision for
robotic assembly. Proc. of 23rd Int. Sym. on Industrial Robots, Barcelona, Spain,
pp. 393-397, also DAI RP 590.

Churchiand, P.M. (1986). Some reductive strategies in cognitive neurobiology.
Mind, 95:279-309.

Conkie, A., and P. Chongstitvatana. (1990). An uncalibrated stereo visual servo
system. Proc. of the British Machine Vision Conference, Oxford, pp. 277-280,
also DAI RP 475.

Connell, H.J. (1989). A colony architecture for an artificial creature. Ph.D. thesis,
MIT.

Curwen, R.M., A. Blake, and R. Cipolla. (1991). Parallel implementation of La-
grangian dynamics for real-time snakes. In P. Mawforth (Ed.), Proc. of British
Machine. Vision Conf., Springer Verlag, pp. 29-35.

Bibliography 127

Dennett, D.C. (1988). Cognitive wheels: the frame problem of AI. In The robot's
dilemma, Z.W. Pylyshyn, (Ed.), Ablex Publishing.

Domingo, J. (1991). Stereo part mating, M.Sc. thesis, Department of Artificial
Intelligence, University of Edinburgh.
Donald, B.R. (1987). Error detection and recovery for robot motion planning with
uncertainty, Ph.D. thesis, MIT, MIT AI Lab., AI-TR-982.

Donald, B.R. (1990). Planning multi step error detection and recovery strategies.
Int. Jour, of Robotics Research, 9(l):3-(i0.
Donald, D.E. (1908). The art of computer programming Vol.1: Fundamental al¬
gorithms, Addison-Wesley.

Erdmann, M.A. (1984). On motion planning with uncertainty. MIT AI Lab., AI-
TR 810.

Erdmann, M.A., and M.T. Mason. (1988). An exploration of sensorless manipu¬
lation. IEEE Jour, of Robotics and Automation, 4(4):369-379.

Fleming, A. (1987). Analysis of uncertainties and geometric tolerances in assem
blies of parts, Ph.D. thesis, University of Edinburgh.
Flook, J.P., and B.O. McGonigle. (1977). Serial adaptation to conflicting pris¬
matic. rearrangement effects in monkey and man. Perception, 0:15-29.

Gardner, M. (1972). Pleasurable problems with polyeubes. Scientific American,
Sept., p. 170.

Giralt, CL, R. Chatila, and M. Vaisset. (1984). An integrated navigation and
motion control system for autonomous multiscnsor mobile robot. In M. Brady,
and R. Paul (Eds.), Robotics research I. MIT Press, Cambridge, MA, pp. 191-
214.

Goethe, Johann Wolfgang von. (1890). Faust: a tragedy, translated in the original
meters, with copious notes by Bayard Taylor, edited by G.T. Bettany, 3rd ed.
London : Ward, Lock.

Gordon, S..I. (1980). Automated assembly using feature localization, Ph.D. thesis,
MIT, MIT AI Lab. AI-TR-932.

Hardy, N.W., H.R. Nicholls, and J.J. Rowland. (1992). The design of sensing
commands in the InFACT assembly machine. Proc. of 23rd Int. Sym. on Industrial
Robots, Barcelona, Spain, pp. 47-52.

Harris, M. (1992). Vision guided part alignment with degraded data. Proc. of
IFAC Sym. on Intelligent Components and Instruments for Control Applications,
Malaga, Spain.

Hayes, G.M. (1989). A real time kinetic depth system. M.Sc. thesis, Department
of Artificial Intelligence, University of Edinburgh.

Bibliography 128

Heikkila, T., T. Matsushita, and T. Sato. (1988). Planning of visual feedback
with robot-sensor co-operation. Proc. 1988 IEEE Inter. Workshop on Intelligent
Robots and Systems, Tokyo.

Horn, B.K., and K. Ikeuchi. (1983). Picking parts out of a bin. MIT AI Lab., A1
memo 746.

Horswill, I.I)., and If. A. Brooks. (1988). Situated vision in adynamic world: chas¬
ing objects. Proc. of 7th National Conf. on Artificial Intelligence, Minneapolis.
Hutchinson, S.A., and A.C. Kak. (1990). Spar: A planner that satisfies operational
and geometric goals in uncertain environments. AI magazine, 11 (1):31 -36.
Inoue, II. (1974). Force feedback in precise assembly tasks. MIT AI Lab., AI memo
308.

Inoue, IT, and M. Inaba. (1984). Hand-eye coordination in rope handling. In
Brady M., and If. Paul (Eds.), Robotics Research 1. MIT Press, pp. 163-174.

Inoue, H., and M. Inaba. (1985). Monitoring 3D pose of robot hand by real time
vision. 2nd Int. Conf. of Advanced Robotics, Tokyo.

Jennings, J., B.If. Donald, and I). Campbell. (1989). Towards experimental ver¬
ification of an automatic compliant motion planner based on a geometric theory
of error detection and recovery. Proc. of IEEE Inter. Conf. on Robotics and Au¬
tomation, pp. 632-637.

Jones, V. (1974). Tracking: an approach to dynamic vision and hand-eye coordi¬
nation. Ph.D. thesis, University of Illinois, Urbana Champaign.
Kaelbling, L.P. (1988). Coals as parallel program specifications. Proc. of 7th Na¬
tional Conf. on Artificial Intelligence, Minneapolis, pp. 60-65.

Kapur, J.N., P.K. Sahoo, and A.K.C. Wong. (1985). A new method for gray-
level picture thresholding using the entropy of the histogram. Computer Vision,
Graphics and Image Processing, 29:273-285.

Kass, M., A. Witkin, and D. Terzopoulos. (1987). Snakes: active contour models.
First Inter. Conf. on Computer Vision, London, IEEE Computer Society Press,
pp. 259-268.

Khatib, O. (1986). Real-time obstacle avoidance for manipulators and mobile
robots. Int. Jour, of Robotics Research, 5(l):90-98.
Kittler, J., and J. Illingworth. (1985). Threshold selection based on a simple image
statistic. Computer Vision, Graphics and Image Processing, 30:125-147.

Koutsou, A. (1986). Planning motion in contact to achieve parts mating. Ph.D.
thesis, University of Edinburgh.

Lee, S.U., and S.Y. Chung. (1990). A comparative performance study of several
global thresholding techniques for segmentation. Computer Vision, Graphics and
Image Processing, 52:171-190.

Bibliography 129

Lougheed, R.M., and R.E. Sampson. (1988). 3-D imaging systems and high-speed
processor for robot, control. Machine Vision and Applications, 1:41-57.

Loughlin, C., (Ed.). (1992). InFACT: project, concept, machine. MCB University
Press Limited, Bradford.

Lozano-Perez, T. (1970). The design of a mechanical assembly system. MIT AI
Lab., AI-TR 397.

Lozano-Perez, T. (1981). Automatic planning of manipulator transfer movements.
IEEE Trans, on Systems, Man, and Cybernetics, SMC-11(10):681 -698.
Lozano-Perez, T.(1982). Robot programming. MIT Al Lab., AI memo 098.
Lozano-Perez, T. (1983). Spatial planning: a configuration space approach. IEEE
Trans, on Computers, C-32(2):108-120.
Lozano-Perez, T., and M.A Wesley. (1979). An algorithm for planning collision-
free paths among polyhedral obstacles. Communications of the ACM, 22(10):560-
570.

Lozano-Perez, T., M.T. Mason, and R.IL Taylor. (1983). Automatic synthesis of
fine-motion strategies for robots. MIT AI Lab., AI memo 759.

Lozano-Perez, T., and R.A. Brooks. (1985). An approach to automatic, robot
programming. MIT Al Lab., Al memo 842.

Lozano-Perez, T., J.L. Jones, E. Mazer, P.A. O'Donnell, W.E.L Crimson, P.
Tournassoud, and A. Lanusse. (1987). Ilandey: a robot system that recognises,
plans, and manipulates. Proc.of IEEE Int. Conf. on Robotics and Automation,
Vol. 2, pp. 843-849.

Lyons, 11. (198fi) RS: a formal model of distributed computation for sensory based
robot control. Ph.D. thesis, U. of Massachusetts at Amherst, COINS tech. report
86-43.

Malcolm, O.A. (1983). The outline corner filter. Proc. of the 3rd Inter. Conf. on
Robot Vision and Sensory Controls, pp. 61 68, also DAI IIP 212.

Malcolm, C.A. (1987). Planning and performing the robot assembly of SOMA
cube constructions. M.Sc. thesis, Department of Artificial Intelligence, University
of Edinburgh.

Malcolm, C.A., and A.P. Fothergill. (1986). Some architectural implications of
the use of sensors, DAI RP 294.

Malcolm, C.A., and J. Howe. (1990). Behavioural modules: a new approach to
robotic assembly. ACME Grant GRIE 68075, Extend Report, Department of Ar¬
tificial Intelligence, University of Edinburgh.
Malcolm, C.A., and T. Sinithers. (1988a). Programming assembly robots in terms
of task achieving behavioural modules: first experimental results. Proc. of the

Bibliography 130

Inter. Advanced Itobotics Program: Second Workshop on Manipulators, Sensors
and Steps Towards Mobility, also DAI RP 410.

Malcolm, CI.A., and T. Smithers.(1988b). Symbol grounding via a hybrid architec¬
ture in an autonomous assembly system. Workshop on Knowledge Representation
and Learning in an Autonomous Agent, also DAI RP 420.

Malcolm, (.'.A., T. Smithers, and J. Hallam. (1989). An emerging paradigm in
robot architecture. Department of Artificial Intelligence, University of Edinburgh,
research paper 447.

Mason, M.T. (1984). Compliant motion. In M. Brady, J.M. Hollerbach, T.L. John¬
son, T. Lozano-Perez, and T.M. Mason, (Eds.), Robot motion: planning and con¬
trol. MIT Press, Cambridge, MA, pp. 305-322.

Mason, M.T. (1985). The mechanics of manipulation. Proc. IEEE Int. Conf. on
Robotics and A utomation, St Louis, pp. 544-548.

Mason, M.T. (1986). Mechanics and planning of manipulator pushing operations.
Int. Jour, of Robotics Research, 5(3):53-71.

McCarthy, J., and P.J. Hayes. (1969). Some philosophical problems from the
standpoint of artificial intelligence. In B. Meltzer, and D. Michie, (Eds.), Machine
Intelligence 4. Edinburgh University Press.

McCulloch, W.S. (1901). What is a number, that a man may know it, and a man,
that he may know a number. General Semantics Bulletin, Nos. 26 and 27, pp.
7-18.

Mead, C. (1989). Analog VLSI and neural systems. Reading, MA, Addison Wesley.

Mead, C., and M. Mahowald. (1988). A silicon model of early visual processing,
Neural Networks 1:91-97.

Minsky, M. (1987). The society of mind. London Heinemann.

Moravec, II.P. (1983). The Stanford cart and the CMU rover. Proc. of IEEE 71,
July, pp. 872-884.

Nilsson, N.J. (Ed.) (1984). Shakey the robot. SRI AI center tech. note 323.

Otsu, N. (1979). A threshold selection method from gray-level histogram. IEEE
Trans. Sys. Man Cybernetics, SMC-9:62-66.

Parnas, D.L. (1971). Information distribution aspects of design methodology. De¬
partment of Computer Science, Carnegie-Mellon University.

Parnas, D.L. (1972). On the criteria to be use in decomposing systems into mod¬
ules. Communication of the. ACM, 15(12): 1053-1058.

Paul, R.P. (1981). Robot manipulators: mathematics, programming, and control.
MIT Press, Cambridge, MA.

Bibliography 131

Pollard, S.B., T.P. Pridmore, J.E.W. Mayhew, and J.P. Frisby. (1989). Geometri¬
cal modelling from multiple stereo views. Int. J. of Robotics Research, 8('1):3 33.
Popplestone, R.J., A.P. Ambler, and I. Bellos. (1978). RAPT: a language for
describing assemblies. Industrial Robot, 5(3): 131-137.

Popplestone, R.J., A.P. Ambler, and 1. Bellos. (1980). An interpreter for a lan¬
guage for describing assemblies. Artificial Intelligence, 14(1):79-107.
Rosenfeld, A., and A.C. Kak. (1982). Digital picture processing, 2nd ed., London
Academic Press.

Salioo, P.K., S. Soltani, and A.K.C. Wong. (1988). A survey of thresholding tech¬
niques. Computer Vision, Graphics and Image Processing, 41:233-260.

Sakane, S., T. Sato, and M. Kakikura. (1987). Model-based planning of visual
sensors using a hand eye action simulation system: HEAVEN. Proc. of Int. Conf.
Advance Robotics, pp. 163-174.

Salmon, J.Ch (1989). Implementation of a generalised patting behaviour for the
SOMASS system. M.Sc. thesis, Department of Artificial Intelligence, University
of Edinburgh.

Sanderson, A.C., and L.E. Weiss. (1983). Adaptive visual servo control of robots.
In Pugh, A. (Ed.). Robot Vision. Springer-Verlag, pp. 107-116.

Sarachik, K.B, (1989). Characterising an indoor environment with a mobile robot
and uncalibrated stereo. Proc. of IEEE Int. Conf. on Robotics and Automation,
pp. 984-989.

Smith, S. (1992). A new class of corner finder. Proc. of the British Machine Vision
Conf., Leeds, Springer-Verlag, pp. 139-148.
Smithers, T., and C.A. Malcolm. (1989). Programming robotic assembly in terms
of task-achieving behavioural modules. Journal of Structured Learning, 10:137-
156, also DAI RP 417.

Steels, L. (1989). Cooperation between distributed agents through self-
organisation. AI memo 89-5, VUB AI Lab., Brussels.

Taylor, R.II. (1976). The synthesis of manipulator control programs from task
level specifications. AI Lab. Stanford, AIM-282.

Tsai, W.H. (1985). Moment preserving thresholding: a new approach. Computer
Vision, Graphics and Image Processing, 29:377-393.

Tsai, R.Y. (1987). A versatile camera calibration technique for high accuracy 3D
machine vision metrology using off-the-shelf TV cameras and lenses. IEEE Jour,
on Robotics and Automation, RA-3:323-344.

Udupa, S.M. (1977). Collision detection and avoidance in computor controlled
manipulators. Ph.D. thesis, California Institute of Technology.

Bibliography 132

Weiss, L.E. (1984). Dynamic visual servo control of robots: an adaptive, image
based approach. Ph.D. thesis, Carnegie Mellon University.

Weiss, L.E., A. Sanderson, and C. Neuman. (1987). Dynamic sensor-based control
of robots with visual feedback. IEEE Jour, of Robotics and Automation, I1A-
3(5) :404-417.

Whitney, D.E., and J.L. Nevins. (1979). What is the remote centre compliance
(RCO) and what can it do? Proc. of 9th Int. Symp. on Industrial Robots, Wash¬
ington DC, pp. 135-152.

Wilson, M.S. (1992). Achieving reliability using behavioural modules in a robotic
assembly system. Ph.D. thesis, University of Edinburgh.

Wolfe, D.F.H., and R.J. Richards. (1990). Eye to hand coordination for vision-
guided robotic pick-and-place operations. Advanced Manufacturing Engineering,
Vol. 2, July, pp. 123-132.

Wu, A.Y., T.H. Hong, and A. Rosenfeld. (1982). Threshold selection using
quadtrees. IEEE Trans. Pattern Anal. Much. Intell., PAMI-4:90-94.

Yin, B. (1984). Combining vision verification with a high level robot programming
language. Ph.D. thesis, University of Edinburgh.

Yin, B. (1987). Using vision data in an object-level robot language RAP T. Int.
Jour, of Robotics Research, 6(1):43-58.

Yourdon, E., and L.L. Constantine. (1979). Structured design: fundamentals of a
discipline of computer program and systems design, Prentice-Hall, NJ.

Zheng, J., Q. Chen, and S. Tsuji. (1991). Active camera guided manipulation.
Proc. of IEEE Int. Conf. on Robotics and Automation, California, pp. 632-G38.

