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The Earth? I'm going to blow it up. It obstructs my view of Venus. 
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Abstract 	 I 

Abstract 

Observations of shear-wave splitting in signals from a controlled seismic source 

have never previously been used to parameterize a rockmass in a mine environment. 

In developing the necessary processing and modelling techniques and interpreting the 

final results, I demonstrate the usefulness of such a controlled-source shear-wave 

experiment to parameterize non-destructively a granite rockmass in situ and monitor 

non-destructively the effects of excavation. 

A Schmidt Hammer is used to pulse the free end of a nylon rod inserted down a 

40cm borehole to create the seismic signals. I show the resulting seismograms to be 

highly reproducible, with cross-correlation coefficients of 0.90 or greater resulting for 

repeated raypaths, and that the shear-wave motion produced matches that due to a 

directional point source in an isotropic medium. I demonstrate that the use of multiple 

source orientations of a known source for repeated raypaths greatly improves the 

reliability of picking shear-wave polarizations and time delays. Thus the use of 

multiple source orientations of a known source is highly desirable in any controlled 

source shear-wave experiment. 

I demonstrate the use of cross-correlation to be effective in detecting temporal 

changes and that particle motions need only be displayed on the planes perpendicular 

to the source-receiver directions when interpreting changes in shear-wave particle 

motions, which is convenient for large datasets. I identify temporal changes due to the 

advancement of the zone of excavation disturbance, which suggests that 

Extensive-Dilatancy Anisotropy is at least partially responsible for the in situ 

anisotropy. An increase in the strength of anisotropy suggests that excavation creates 

an anisotropic fabric of dry cracks with orientations governed by either the in situ 

stress field or mineral alignment. These results suggest that shear waves may be used 

to remotely monitor a rockmass. 



Abstract 	ii 

Inversion for the pattern of polarizations produces a best-fitting model to the 

observed polarizations of strike 023° and dip 35°, broadly agreeing with the 

orientation of strike 045 0  and dip 140  expected for Extensive-Dilatancy Anisotropy, 

and strike 024° and dip 25° expected for anisotropy due to the primary layering. Time 

delays are consistent with the in situ rockmass being intact. 

Excavation adds scatter to the measured time delays. I show that, even when 

accounting for excavation effects, time delay values do not have an obvious pattern 

and cannot be explained by either extensive-dilatancy anisotropy throughout the 

rockmass, or the primary layering in part of the rockmass. This prevents a definitive 

conclusion to the cause of the in situ anisotropy. 
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Introduction 

1.1 Introduction to. Anisotropy 

A rockmass is homogeneous when lithology does not vary with position. 

Homogeneity is therefore a question of scale. An igneous rockmass consists of 

discrete crystals, but when viewed on scales much larger than that of the grain sizes 

may appear homogeneous. Seismic homogeneity is also a question of scale. A 

sandstone rockmass may consist of alternating layers of different lithologies. The 

elastic deformations within the layers due to seismic waves of wavelengths less than 

the minimum thicknesses of the layers will be distinctively different, and therefore the 

rockmass is not seismically homogeneous. For wavelengths much greater than 

thicknesses of the alternating layers, the deformation involves the combined elastic 

response of the two layers and the rockmass is seismically homogeneous. 

Consider a homogeneous rockrnass. The rockmass is seismically isotropic if 

seismic properties do not vary with direction. In such cases there exist two types of 

seismic body wave. The faster wave is the compressional wave or P-wave where 

particle motion within the rockmass is parallel to the propagation direction. The 

slower wave is the transverse wave or shear-wave, where particle motion is 

orthogonal to the propagation direction. 

The rockmass is seismically anisotropic when seismic properties vary with 

direction. Seismic anisotropy is a three dimensional phenomenom. There is a 

three-dimensional pattern to the seismic wave propagation in an anisotropic rockmass. 

In an anisotropic medium, there exist three body waves. Similar to the P-wave is the 

quasi P-wave or qP-wave where particle motion is parallel or nearly parallel to the 

propagation direction. Rather than one body wave with shear-motion, there exist two 

shear waves. The faster shear-wave is the quasi-shear-wave-I or qSl-wave, and the 

slower wave quasi-shear-wave-2 or qS2-wave. Particle motions for qSi- and 

qS2-waves are generally nearly orthogonal to the propagation direction and orthogonal 
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or nearly orthogonal to each other. Any consistent pattern that affects wave 

propagation in an otherwise isotropic rockmass will result in the rockmass being 

anisotropic. I will use the term fabric to refer to such a pattern while making no 

implications as to its physical cause. Since all rocks are formed under the influence of 

gravity, it is likely that all rockmasses are to some degree anisotropic for seismic 

wavelengths greater than grain size. Anisotropy is therefore probably the rule rather 

than the exception (Tilmann and Bennett, 1973; Crampin, 1985; Zeng, 1994; and 

many others). 

A rough measure of the strength of the anisotropy is percentage of shear-wave 

velocity anisotropy, A, defined as: 

A 
= Vq1_Vq 

X100 	 (11) 
Vq51  

where Vqçj andVq,2  are the velocities of qSl- and qS2-waves respectively (Crampin, 

1989). Some authors use slightly different definitions of percentage anisotropy. The 

context of its use should inform the reader whether the value is expressed for a single 

seismic raypath or all raypaths or the maximum possible value of the medium. 

A more precise and detailed geological interpretation is obtained by accounting for 

anisotropy when processing seismic data in traditional seismic methods (Mueller, 

1992). Another approach is to invert detailed seismic measurements to parameterize 

the fabrics. Physical interpretations of properties of the rockmass, such as crack 

structure, may then be made from these values. This latter approach is that used in 

this dissertation. 

It is difficult to determine variations of qP-, qSl-, and qS2-wave velocities in an 

anisotropic material to the accuracy needed to parameterize accurately an anisotropic 

fabric when the anisotropy is weak and the change in velocity with direction is small. 

However, the directions of particle motion of the qSl -wave, also called the 

polarization, is sensitive to the anisotropic fabric and is measurable even when the 

strength of the fabric is weak. The difference between the arrival times of the two 

quasi-shear-waves can also be determined because the polarization direction of 

qS2-wave is usually nearly orthogonal to qSl-wave. This time difference is called the 

time delay. The time delay increases as qSl- and qS2-waves propagate through the 
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medium. The phenomenom of time delays increasing with propagation is known as 

shear-wave splitting (Figure 1.1). Polarizations and the time delays are convenient 

measurements to invert because they are determined mainly by the fabrics and because 

of the extreme sensitivity of shear-waves to the fabrics (Crampin, 1978). This 

dissertation focuses on the measurement of the polarizations and times delay and the 

use of these data as a tool to parameterize the fabrics of a rockmass and then making 

the subsequent physical interpretation of the fabrics. 

The remainder of this chapter summarizes the necessary background information 

on seismic anisotropy, including seismic theory, the display techniques for 

polarizations and time delays, and the modelling of seismic anisotropy. The 

terminology for describing anisotropy is that suggested by Crampin (1989). 

Note that geologists use 'strike' and 'dip' to express orientations of planes, and 

'trend' and 'plunge' for lines. In most geophysics literature, strike (or azimuth), and 

dip are used for both planes and lines. I will use strike and dip to describe the 

orientations of planes and azimuth and dip for lines. I will use the 'right-hand rule' 

when expressing the orientations of planes. The rule is that the strike is chosen so that 
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Figure 1.1a: A schematic illustration of shear-wave splitting. Initially there is only one shear-wave 
whose particle motion direction is determined by the source mechanism. The propagating shear wave 
enters an anisotropic region and immediately splits into qSl- and qS2-waves, with polarizations 
perpendicular or nearly perpendicular to each other. As the shear waves continue to propagate through 
the anisotropic region, the time delay between the two shear waves increases. 
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the dip of the plane is downwards to the right. For example, the orientation a plane 

striking east-west, but a 300  dip so that north is downwards will be notated 270/30. 

1.2 What Causes Anisotropy? 

The common physical causes of anisotropy have been described by Crampin et al. 

(1984b). To summarize, anisotropy in the upper crust has mainly been attributed to 

four possible causes: 

Mineral alignment: A preferential alignment of minerals in a rockmass. 

Aligned cracks and Fractures: A preferential alignment of cracks or fractures 

(considered to be EDA-cracks (defined below) if aligned by the contemporary 

stress field). 

Layering: Alternating layers of different compositions where the thickness of 

the layers is much less than the seismic wavelength (Postma, 1955). This is 

commonly referred to as periodic-thin-layering or PTL anisotropy (Crampin, 

1989). 

Extensive-Dilatancy Anisotropy (EDA): Stress-sensitive cracks, microcracks, 

and pore spaces. The stress field at any point in the earth is described by 

directions and magnitudes of the three mutually orthogonal stress axes 

consisting of the maximum principle compressive stress o, the intermediate 

compressive stress o, and the minimum compressive stress a. Stress may 

reorient or reshape pore spaces and fluid-filled cracks, open cracks oriented 

perpendicular to a3 , and close dry cracks not oriented perpendicular to a, 

creating a fabric oriented perpendicular to a 3 . I will refer to all such elements 

of a rockmass that contribute to this type of anisotropy as EDA -cracks. It is 

now understood that EDA is mainly due to fluid-filled, intergranular 

microcracks, and fluid-filled, intergranular pore space (Zatsepin and Crampin, 

1995a,b), and it is hypothesized that EDA exists in almost all rocks of the 

upper crust (Crampin, 1993a; Crampin, 1994). 

1.3 Phase and Group Velocity 

The behaviour of wave propagation in an anisotropic media is complicated and the 

following is a summary. For a detailed discussion, see Crampin (1981a). 
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The velocity sheets of constant phase for qP-, qSl-, and qS2-waves are easily 

calculated by solving the equation of motion and the sheets are analytically simple. 

The shear wave phase-velocity surfaces are analytically continuous over the whole 

wave surface and the polarizations of the shear-waves are mutually orthogonal. 

However, the velocity of seismic energy transport, or group velocity, is the velocity 

calculated from the initial arrival of seismic energy as recorded by seismometers in 

situ. Group-velocity sheets are not analytically simple, particularly for qSl- and 

qS2-waves. A given group velocity sheet can be calculated from the phase velocity 

sheet using the Kelvin-Christoffel equation (Musgrave, 1970). The general equation 

is of a complexity that it is usually solved numerically. The direction of group 

propagation diverges from the direction of phase velocity so that wave propagation 

directions are not generally normal to the surface of constant phase. The particle 

motion directions of the two shear-waves are not necessarily orthogonal, although 

deviation from orthogonality is only significant for strongly anisotropic materials. 

1.4 The Shear-Wave Window 

There exists a severe limitation to the analysis of shear-wave data recorded by 

geophones on the surface. Shear-wave raypaths that travel at greater than 

approximately 350  from vertical propagation are contaminated by interference with 

the internally reflected qP-wave (Booth and Crampin, 1985). The solid angle of 

directions for which shear-wave observations are useful is known as the shear-wave 

window (Liu and Crampin, 1990). This window of raypaths within approximately 35° 

severely restricts the number of useful measurements and the subsequent 

interpretation that can be made using data from earthquake sources or reverse vertical 

seismic profiles. 

1.5 Displaying Polarizations and Time Delays 

It is necessary to be able to display clearly the polarization vectors and time delays 

for all possible raypath azimuths and dips. Most past studies of anisotropy either 

involved only upward travelling waves such as in earthquake studies, or solely 

downward travelling waves as in vertical seismic profiles (VSP's). In these cases, it is 

sufficient to display raypaths on equal area polar projections where the splitting from 
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only upward or downward travelling raypaths could be shown clearly on a single polar 

projection. As I shall be plotting data from many azimuths and incidence angles, I 

will plot them using Plate Carée projections which are a type of cylindrical projection. 

These projections have been used for this purpose previously by Liu et al. (1989), 

Baptie et al. (1993), and Holmes etal. (1993). 

Figure 1.2 gives an example of a set of Plate Carée projections. The polarization 

is a vector in three dimensions. In using Plate Carée projections to display 

polarizations, it is necessary to use two plots by taking the components of the 

polarization vectors and projecting them onto two orthogonal planes. The two planes 

used are the radial-transverse (R-T) plane and the vertical-transverse (V-T) plane, 

where the radial is the horizontal source to receiver direction, transverse is the 

horizontal direction perpendicular to the source to receiver direction, and vertical is 

straight up-down. Note that this definition of radial is different from that used in the 

radial, transverse-sagittal, transverse-horizontal co-ordinate system (discussed in 

section 3.3), but is still used to keep diagrams in this dissertation comparable with 

those in the literature. 

1.6 Reciprocal Symmetry 

Figure 1.3a displays the 53 polarizations hand-picked from the Shear-Wave 

Experiment data set plotted on Plate Carée projections. These polarizations describe 

the pattern of shear-wave splitting primarily due to the in situ rockmass and 

determining the in situ anisotropy from these polarizations is the topic of Chapter 

Seven. 

For an elastic wave travelling through a uniform anisotropic medium, a ray 

travelling in the opposite direction along a seismic ray is expected to display 

reciprocal symmetry, so that shear-wave polarizations and time delays between the 

split shear-waves are preserved. On a Plate Carée projection, this inverted ray plots at 

an azimuth 1800  from the original direction, with the direction of polarization in the 

R-T plane the same as the original ray. The polarization in the V-T plane is the mirror 

image about the vertical direction of the polarization of the original ray. 

Reciprocal symmetry effectively doubles the data for visual comparison in an 

experiment with raypaths through a uniform rock mass. Application of such 
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reciprocal symmetry must be used with caution as it may imprint an apparent 

symmetry on the data that would be incorrect and misleading if the assumption of 

reciprocal symmetry does not hold. Nevertheless, reciprocal symmetry can be a useful 

aid to recognizing anisotropic symmetry patterns in sparse data sets. Figure 1.3b 

displays the 53 measured polarizations along with the 53 polarization from assuming 

reciprocal symmetry. 

1.7 Linear-Elastic Theory 

Most modelling of anisotropic wave propagation uses linear-elastic theory. This 

theory assumes Hooke's Law that stress depends linearly on strain, which is a valid 

assumption for small strains (<(1%). Stated as an equation: 

= c,klekl; 
	

(1.2) 

where a , is the stress in the i direction from direction j. e 1  is the strain in the k 

direction from direction 1. cykl is  the fourth order elastic tensor of eighty-one constants. 

Assuming wave propagation through a solid and ignoring body forces gives: 

UU13 

Uj =--; (1.3) 

where p is the density of the solid, ui  is the displacement in the i direction and x i  is 

the unit direction vector. Substituting the equation of Hooke's Law into Equation 1.2 

results in the most general form of the wave-equation of motion in a homogeneous, 

linear-elastic solid: 

= 	 (1.4)
axi 

(Musgrave, 1970), where only twenty-one of the eighty-one elastic constants are 

independent due to symmetries in stress, strain, and strain energy. Thus, variation of 

seismic properties of a homogeneous elastic solid can be fully described by 21 

independent elastic constants. 

Linear-elastic theory is commonly used because the assumptions are reasonable, 

the constants are physically meaningful, and because of its successful application to 
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seismology in general. Linear-elastic theory has also been successful in predicting and 

explaining anisotropic wave behaviour (e.g. Wild and Crampin, 1991; Liu et al., 

1993b). 

There are eight physically realizable symmetry systems and two sub-systems of 

anisotropic symmetry, including isotropic symmetry. Common systems are 

orthorhombic symmetry which has nine independent elastic constants, and hexagonal 

symmetry, with five independent elastic constants. An isotropic material can be 

described by only two independent constants such as the bulk modulus and shear 

modulus. 

1.8 Symmetry Systems and Singularities 

Shear-wave singularities are propagation directions of the phase-velocity sheets 

where the velocities of both shear waves are identical. There exists at least two 

singularities in any anisotropic material, and usually many more (Crampin and 

Kirkwood, 1981). There are three types of singularities. A point singularity results 

from the intersection of the phase-velocity sheets other than in a hexagonal symmetry 

system. A kiss singularity results when the two sheets meet tangentially. A line 

singularity results when two sheets intersecting in a circle about the symmetry axis. 

Line singularities can only occur in hexagonal symmetry systems (Figure 1.4). 

While singularities are comparatively simple geometrically in terms of phase 

velocity surfaces, the representation in group-velocity surfaces may be very 

complicated. Such singularities in group velocity may cause anomalies in shear-wave 

propagation. These anomalies may extend many degrees to either side of the direction 

of the point singularity in the phase-velocity surface (Crampin 1981b; Crampin, 

1991b). For propagation directions in such a disturbed region, polarization directions 

of the shear-waves and the time delays can vary rapidly for small changes in 

propagation. 

A common symmetry system is hexagonal symmetry, which is due to a single 

fabric within a rockmass. There are two possible types of singularities in the case of 

hexagonal symmetry. The two shear-wave velocity sheets may meet only along the 

symmetry axis and form two kiss singularities at these points with a region of 

disturbance around them. Alternatively, hexagonal symmetry may also result in two 
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Figure 1.4: Diagrams of the two shear-wave phase velocity slowness-surfaces showing the topology 
near the various types of singularity: 

Point singularity 
Kiss singularity 
Line singularity 

from Crampin and Yedlin (1981). 

line singularities. Line singularities exist for parallel fluid-filled cracks while a fabric 

of parallel dry cracks (e.g. Hudson Cracks, defined in section 1.12) will only have the 

two kiss singularities (Figures 1.2 and 1.5). There are no disturbances to wave 

propagation at or around a line singularity (Crampin, 1981b). 

Also common is orthorhombic symmetry, which is due to two fabrics oriented 

perpendicular to one another. This results in up to twenty point singularities (Crampin 

and Kirkwood, 1981; Wild and Crampin, 1991), depending on the relative strengths of 

the two fabrics and their crack contents (Figure 1.6). 

1.9 Non-Uniqueness 

There exists intrinsic non-uniqueness to shear-wave splitting studies where 

different fabrics may explain observations equally well and this is a fundamental 

problem. Also, data may contain seemingly anomalous polarization and time delay 

measurements result due to propagation near singularities. To limit the degree of 

non-uniqueness it is necessary to have observations for the greatest possible variety of 

propagation directions and use a priori information. 
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Figure 1.5: The behaviour of shear-wave splitting for the same distribution of cracks as in Figure 1.2 except that the cracks are dry rather than saturated with water 
Solid dots mark the directions of the kiss singularities. 
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1.10 Hudson's Theory 

One method of calculating the elastic constants for a medium from its physical 

parameters is using the theory of Hudson (1980; 1981; 1986; 1988). The theory is 

developed for calculating the effective elastic constants for seismic wave propagation 

through a sparse arrays of aligned cracks. It shows that the effective elastic constants 

for a material with parallel aligned cracks are: 

C zjkl = C,k1 + C :1k!  + jkl  

where Cyki is the fourth order tensor of elastic constants, Ckl are the elastic constants 

of the uncracked rock matrix. C/kl and Ctkl  are the first and second order 

perturbations due to the presence of the cracks. 

The initial assumptions for application are (adapted from Peacock et al., 1994): 

The cracks are much smaller than the seismic wavelength. 

Cracks are discrete oblate spheroids. 

Cracks are thin (aspect ratio, as defined below, of less than 0.3 (Douma, 1988; 

Crampin, 1991a)). 

Cracks are filled with a gas, liquid or soft solid with smaller bulk and shear 

moduli than the matrix rock. 

Cracks perfectly described by points one to four above will be referred to as 

Hudson Cracks. A set of Hudson Cracks is described by the parameters of orientation 

(e.g. strike and dip), crack content, and crack density and aspect ratio (defined below). 

The crack density £ is defined as: 

N(a3 ) 

E 	1)' 
(1.6) 

where N is the number of cracks in a volume D of rock and (a3 ) is the average of the 

cube of the crack radii. The formulations are valid for crack densities of less than 

about 0.1, which is also the approximate limit of crack density expected for crustal 

rock away from the near surface (Crampin, 1994). Conveniently, the percentage 

shear-wave velocity anisotropy is approximately £ x 100. Increasing crack density 

results in increased time delays but causes only minor changes in polarizations for 

most raypaths. Thus time delay measurements are necessary to determine the crack 
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density of a material. The aspect ratio (y) is the ratio of the thickness to the diameter 

of the cracks. The crack content is what material is contained in the cracks. Generally 

the approximation that the cracks are either gas-filled (dry), or saturated with water is 

valid. 

Hudson Cracks are used to create physically interpretable models. The fabrics 

causing anisotropy will not be perfect Hudson Cracks. However, the elastic constants 

of an anisotropic fabric can be modelled using Hudson's theory. In doing so, the 

equivalent set of Hudson Cracks to that fabric is also found and inferences can then be 

made about the real fabric. For example, a fabric of Hudson Cracks with a large crack 

density that explains the observations where the anisotropy is due to EDA may imply 

that the actual rockmass has a large crack density. 

Observations may be matched to models created using fewer restrictions than 

Hudson Cracks (e.g. Thomsen parameters (Thomsen, 1988), or elastic constants), but 

such generality can result in models which are physically unrealizeable or difficult to 

interpret geologically. Such generality also results in large non-uniqueness. Even the 

comparatively very restrictive parameterization of Hudson results in considerable 

non-uniqueness as expected because of intrinsic nonuniques in studies of shear-wave 

splitting. 

1.11 Introduction to The Shear-Wave Experiment 

Atomic Energy of Canada Limited is currently investigating excavation damage in 

highly stressed granite rock as part of the Canadian program in nuclear waste disposal. 

The experiments are being conducted at the Underground Research Laboratory 

(URL), a major research facility in south-eastern Manitoba. URL is situated within 

the roof zone of the Lac du Bonnet Batholith, a granite rockmass of 1800km 2  surface 

area that crystallized 2670M - 2100M years ago in the Superior Province of the 

Canadian Shield. It is considered to be representative of many granitic intrusions in 

the Canadian Precambrian shield (Martin, 1990). 

The Mine-by Experiment is the test excavation of a 46m-long, 3.5m-diameter 

tunnel at the 420-Level (420m below the surface) in an otherwise undisturbed granite 

rockmass (Figure 1.7). Excavation sequences in which the face was advanced by 

0.5m to im steps took place between October 1991 and August 1992 within a 



420 Vent Raise 	 URL Shaft 

Incline 
406 

408 

14 

Instrument Galleries _?/'405 415 

416 L V r__
~ Vent Raise 

Mine-by Tunnel 

;iF:Ii)  Decline 413 	

0 

-S 

Figure 1.7: The tunnel arrangement of the 420-Level (420m depth) of the Underground Research Laboratory. The room numbers of all outer tunnels and the Mine-by 
tunnel, Room 415, are marked on the diagram (Read and Martin, 1991). 
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rockmass monitored with a network of accelerometers, extensometers, strain cells, 

and thermistors, and convergence arrays measuring the changing shape of the tunnel. 

The objectives of the Mine-by Experiment include improving our understanding of the 

behaviour of the in situ rockmass, evaluating excavation damage around underground 

openings, developing and evaluating underground characterization methods, and 

developing monitoring instrumentation (Read and Martin, 1991). 

It was realized that the experimental design of the 420-Level and the deployed 

microseismic network could be used for a controlled source shear-wave experiment. 

Seismic signals could be produced near the walls of the outer tunnels of the 420-Level 

and then recorded using the microseismic network. This dissertation is primarily 

based on the processing and interpretation of data from this Shear- Wave Experiment. 

In the past, observations of in situ shear-wave splitting have usually been limited 

by the shear-wave window to raypaths within 35° of vertical in surface recordings 

above local earthquakes and seismic reflections surveys. Recently, shear-wave 

splitting has also been studied using data from crosshole surveys (Liu et al., 1991; 

1992) which offers records of more nearly horizontal raypaths but with severely 

limited ranges of azimuths. Similarly, subsurface recordings of VSP's also have a 

severely limited range azimuths. Thus, all previous recorded data sets showing 

shear-wave splitting have suffered from limitations in the propagation directions 

sampled and, in the case of earthquake data, very complicated geology. As a result, 

the scope for geological interpretation has been limited and the interpretation of the 

causes of the anisotropy somewhat speculative. 

In the Shear-Wave Experiment, actively produced signals in the outer galleries 

allow shear-wave splitting to be observed over the greatest variety of raypaths of any 

in situ experiment to date. There are also no limitations due to a shear-wave window 

because the signals were recorded by triaxial accelerometers cemented within the 

rockmass. Results can be combined and compared with other studies associated with 

the Mine-by Experiment including other seismic studies. This will allow the most 

detailed investigation of the causes of the anisotropy to date. 

Furthermore, the experiment was repeated as the excavation of the Mine-by tunnel 

progressed. This allows the observation of the effects of changes of stress upon 

shear-waves thereby investigating Extensive-Dilatancy Anisotropy (section 1.2) as a 
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possible fabric. Changes in shear-wave splitting can also be used to investigate the 

pattern and extent of the damage to the rockmass due to the tunnel excavation. 

My analysis and interpretation of the Shear-Wave Experiment data set will 

provide geological interpretations to the causes of in situ anisotropy and the effects of 

excavation. This is the first controlled shear-wave experiment in a mining 

environment. Therefore in this dissertation I will develop and assess the use of 

shear-wave splitting surveys as a technique to parameterize non-destructively a 

rockmass and monitor excavation effects in a mine environment. This has potential 

applications in mining engineering where potential planes of weakness need be 

identified, and in the long term non-destructive monitoring of nuclear waste 

repositories as a method to indirectly observe any penetration of fluids into the 

rockmass. It is also important to identify the cause of in situ anisotropy in granite for 

the interpretation of shear-wave splitting in earthquake studies where raypaths travel 

through granite or a similar lithology. The identification of EDA as a fabric suggests 

that changes in stress may be monitored using shear-wave splitting so that 

observations of shear-wave splitting are useful in earthquake prediction. 

The experiment was conceived by S. Crampin, P. Young, and myself. I chose the 

locations of the source stations (section 2.2) and designed the geometry of the four 

boreholes at the stations (section 2.4). D. Collins tested various ideas for a controlled 

source thought of by P. Young, S. Crampin, D. Collins, and myself. D. Collins 

performed the recording sequences of the experiment. 

1.12 Objectives 

The primary objectives of this dissertation are to; 

Use measurements of shear-wave splitting to determine the cause of the in situ 

anisotropy. 

Gain insight into the effects of tunnel excavation upon shear-wave splitting. 

Striving to achieve this primary objective facilitates consideration of three other 

objectives of more general importance. These objectives are to; 

Develop the methods and techniques necessary to process and interpret the 

data from the Shear-Wave Experiment such that the methods and techniques 

are applicable to any future studies of shear-wave splitting in a mine 
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environment. This requires considering shear-wave splitting measurements 

for a large variety of propagation directions that are not systematically 

distributed. 

Assess the practical value of using of controlled-source shear-wave 

experiments to test the rockmass non-destructively and monitor excavation 

effects in a mine environment. 

Provide insight into causes of seismic anisotropy in the granite rockmass. 

1.13 Dissertation Structure 

Chapters describing and developing measurement and processing techniques will 

be followed by the chapters that interpret the results from application of the 

techniques. 

In this chapter I have presented a brief overview of the theory of seismic 

anisotropy with an emphasis on the information and considerations necessary to 

interpret measurements of shear-wave splitting, and understand this dissertation. In 

Chapter Two I present a complete description of the Mine-by Experiment, including 

all background geological and geophysical information necessary to understand the 

further chapters. These first two chapters provide all the necessary background 

information. 

Interpretation of shear-wave splitting requires the precise measurement of 

polarizations and time delays. In Chapter Three I extend the method of hand-picking 

polarizations and time delays for cases where multiple seismograms are available for 

comparison and apply this to the Shear-Wave Experiment data set. In doing so, I 

show that shear-wave splitting clearly takes place within the rockmass and I 

demonstrate the effectiveness of the method and the desirability of using a controlled 

source and multiple source orientations. 

Time delays are more difficult to measure than polarizations. In Chapter Four 

presents I compare time delays determined by hand-picking the length of linearity 

after the qSl-wave arrival to time delays determined using the duration between 

arrivals of similar pulse shapes. Results support the method of hand-picking time 

delays described in Chapter Three. 
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Chapter Five is a detailed study of temporal changes in shear-wave particle motion 

due to tunnel excavation. I first describe methods of detecting possible temporal 

changes I have developed and then interpret the geological causes of the temporal 

changes. I show that changes in shear-wave particle motion clearly indicate effects of 

excavation upon the rockmass. 

The quantitative comparison of measurements of shear-wave splitting to models is 

desirable to reduce subjectivity and is necessary for automated inversion. Previously 

there has been no study into methods of quantitative comparison for a non-systematic 

distribution of propagation directions. In Chapter Six I develop an algorithm that is 

robust and produces a conveniently interpretable misfit value. 

In Chapter Seven I use the algorithm developed in Chapter Six in the automated 

inversion and modelling of the polarizations from the Shear-Wave Experiment and 

Velocity Survey data sets. I use the results to argue that the in situ anisotropy is due to 

either EDA-cracks or the faint primary layering and suggest that one effect of 

excavation is the escape of fluids from in situ. 

I develop a method of quantitatively comparing measured time delays to model in 

Chapter Eight. I then use this method and the results of inverting polarizations to gain 

further insight into the cause of the in situ anisotropy. I then show that two nearly 

identical rockmasses may have different in situ anisotropy. Most importantly, I 

present arguments for EDA-crack and the faint primary layering as the causes of the in 

situ anisotropy, but show that the data from this experiment cannot conclusively 

determine which fabric is responsible. 

Lastly, Chapter Nine summarizes the conclusions and suggests applications and 

useful further research work. 

I presented preliminary results of this dissertation at the Fifth International 

Workshop on Seismic Anisotropy at Banff, Canada, in May, 1992, which I 

subsequently published (Holmes et al., 1993). This paper is included attached to the 

back cover. Results of Chapters Three and Seven were presented at the Seventh 

United Kingdom Geophysical Assembly, at Oxford, United Kingdom, in April, 1993. 

A summary of the results of Chapters Three, Seven, and Eight was presented at the 

Sixth International Workshop on Seismic Anisotropy at Trondheim, Norway, in July, 

1994. 
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The Shear-Wave Experiment 
2 	 at URL's 420-Level 

2.1 Introduction 

This chapter describes the Shear-Wave Experiment upon which the majority of 

this dissertation is based. This is followed by descriptions of the geology, fractures, 

microcracks, and stress field of the granite rockmass involved in these experiments. 

The remainder of this chapter discusses previous studies of anisotropy in granite and 

granodiorite, possible causes of anisotropy in this rockmass, and a discussion of other 

relevant seismic studies of this rockmass. 

2.2 Experiment Procedure 

For each recording sequence of the Shear-Wave Experiment, four highly 

repeatable shear-wave signals (as quantified in section 5.3) were excited at end of 

40cm boreholes at thirteen different locations on the walls of the outer tunnels, and 

recorded by the fourteen triaxial accelerometers (Figure 2.1). I will refer to these 

thirteen different locations as source stations and the tunnels on which the source 

stations are located as the source tunnels. I chose the locations of the source stations 

in the outer tunnels by calculating the raypath directions that would result from 

seismic sources located at 0.5m intervals throughout every tunnel of the 420-Level as 

recorded by the fourteen triaxial accelerometers (see next section). I then selected the 

thirteen locations that would provide the largest coverage of raypath directions. This 

serves to limit non-uniqueness (section 1.8). It is believed that the Shear-Wave 

Experiment has the greatest variety of raypath directions of any in situ experiment 

investigating seismic anisotropy to date. The origin times of the seismic events were 

not recorded so the experiment could be performed quickly as schedules required. 

The excavation of the Mine-by tunnel began before the idea for this experiment 

was conceived. The first recording sequence of the Shear-Wave Experiments began 
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cy1>cY2 >c 3  
• Source Station 
A Triaxial Accelerometer 

Figure 2.1: Perspective view of the Mine-by Tunnel, coloured grey, and the outer tunnel. 

when the tunnel had already been excavated to 29m of the final 46m length. Ten 

recording sequences took place before the tunnel was completed (not every excavation 

sequence was monitored), and three additional sequences were recorded at intervals 

after completion to examine the possible longer-term effects of excavation damage on 

the rockmass. Excavation of the Mine-by tunnel was either for 3.5m tunnel diameter 

directly, or an initial 2.5m tunnel diameter followed by repeated excavation to 

increase the diameter to 3.5m. This was done to investigate the rockmass response to 

different diameters. Table 2.1 presents the length of the tunnel at each recording 

sequence for the lengths of both the 2.5m and 3.5m diameters of the tunnel. 
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Table 2.1: Length of Mine-by Tunnel at Each Recording Seciuence 
Recording 
Sequence 

Date of 
Recording 
Sequence 

Chainage* 
(Values in brackets 

(m) 
give limits) 

3.5m Diameter 2.5m Diameter 
(if greater than 

for 3.5m 
Diameter) 

I May 01 (30.100, 31.170)  

2 May 06 (31.170, 32.260)  

3 May 11 (32.260, 33.180)  

4 May11 (32.260, 33.180)  

5 May 14 (33.180, 34.280)  

6 June 01 34.280 39.020 

7 June 05 35.550 40.000 

8 June 15 40.000  

9 June 19 40.000 42.060 

10 June 30 40.000 (44.060, 45.050) 

11 July 22 46.140  

12 Aug. 04 46.140  

13 Aug. 25 46.140  

*chainage is 0.99m greater than the tunnel length 
(Information from Read et al., 1992) 

2.3 The Microseismic System and Accelerometer Network 

(Adapted from Collins and Young, 1993) The Mine-by Experiment used a 

full-waveform microseismic system designed by the Queen's University Engineering 

Seismology Laboratory. The geophone network of the microseismic system consisted 

of sixteen triaxial accelerometers distributed in the surrounding rockmass at locations 

chosen to provide full focal sphere coverage of the induced microseismic events and 

to optimize source location of these events (Talebi and Young, 1989) (Figure 2.1). 

Each triaxial accelerometer was cemented at the bottom of surveyed NQ-3 size 

(75.7mm diameter) boreholes diamond-drilled from the outer tunnels of the 

420-Level. Special non-reducing cement was used to ensure good coupling between 

the triaxial accelerometer and the borehole wall (Talebi and Young, 1989). Each 

triaxial accelerometer was accurately oriented using a mercury tilt switch contained 
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within the triaxial accelerometer. The triaxial accelerometers (Model 755G) are 

constructed by Wilcoxon Research. Each contains three orthogonal accelerometers, 

one in the direction down the borehole and two in the perpendicular plane to the 

borehole. The maximum separation between two accelerometers in one triaxial 

accelerometer is 2cm. The sensitivity of the accelerometers is 3 Volts/g with a low 

noise characteristic of 2.tg, where g is the acceleration due to gravity. 

When signals are received by the triaxial accelerometers, they are preamplified 

underground by a gain factor of 3, 30, 300, or 3000 and then transmitted to the surface 

by a fifty-pair shaft cable. The signals then pass through a differential amplifier and 

anti-aliasing filter board where they are band-pass filtered in the frequency range of 

50Hz or 500Hz to 10kHz (±3 dB) with a frequency roll-off rate outside this bandwidth 

of 72 dB per octave. Each seismic trace was sampled at 50kHz frequency for 4096 

sample points. This system allowed seismic events with magnitudes as small as 

ML=-4  (Feignier and Young, 1992) and seismic moments as small as M 0=-6 (Martin 

and Young, 1993) to be studied. 

Two of the sixteen triaxial accelerometers could not be used in this study. Triaxial 

Accelerometer 3 was replaced by a more distant accelerometer for the recording of 

larger magnitude seismic events. This more distant accelerometer was too far away 

from the shear-wave sources to record data useful for this shear-wave analysis. The 

particle motion recorded by Triaxial Accelerometer 6 was elliptical after both the qP-

and shear-wave arrivals regardless of the expected particle motion. It appears that this 

triaxial accelerometer suffered from resonance. It was concluded that data recorded 

by this triaxial accelerometer is only useful for travel-time studies and was not used in 

this shear-wave study. 

2.4 The Shear-wave Source 

I designed the shear-wave source to produce four distinct shear-wave radiation 

patterns for each source to receiver raypath. The shear-wave splitting can then be 

compared to improve the accuracy in measuring polarizations and time delays (see 

Chapter Three). Four 40cm-long 3.2cm-diameter boreholes were drilled at 450  to the 

surface at the corners of a 29.5cm x 29.5cm template on the walls of the tunnels at 

each location (Figure 2.2). A rod was inserted in turn into each borehole, and the free 
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Not To Scale 

Figure 2.2: The design of the source stations used in the Shear-Wave Experiment consisting of four 
40cm-long 3.2cm-diameter boreholes drilled at 45° to the surface at the corners of a 29.5cm x 29.5cm 
template on the wall of an outer tunnel. 
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end pulsed with a Schmidt Hammer (Model N, total impact energy 2.207Nm) (A 

Schmidt Hammer is a spring-load piston designed to test the compressive strength of 

concrete.). 

The orientations and lengths of the four boreholes are arranged so that: 

The source locations are close enough together that the source to receiver 

raypaths are virtually the same for all four source locations to any given 

triaxial accelerometer. 

The boreholes were not close enough to one another that the excavation 

damage around the boreholes combines to create a concentration of damage 

large enough to complicate the source radiation pattern. 

The ends of the source boreholes were surveyed to a precision of 2cm and the 

orientations of these boreholes were surveyed to a precision of 10  in both azimuth and 

dip. 

Figure 2.3 is a graph of frequency amplitude versus frequency for the shear-wave 

energy created using the nylon rod (see next section). As is typical, there are two 

distinct peaks at 3.7kHz and 4.9kHz and a relatively narrow frequency range 

(approximately 3.0kHz to 5.6kHz) contains most of the shear-wave energy. These 

frequencies correspond to wavelengths between 0.60m and Lim (The average raypath 

length is 35m.). The superposition of these frequencies results in the apparent 

dominant frequency of 4.2k}iz (wavelength 0.81m) for the shear-waves as calculated 

from the period of the shear-wave cycles displayed on the seismograms. Because the 

diameters of the source boreholes (3.2cm) are much less than the dominant 

wavelengths of the shear-waves, the effect of the damage around the boreholes on the 

seismic signal is expected to be negligible. 

2.5 Nylon Rod versus Steel Rod 

Rods made of both nylon and steel were tested in the first recording sequence. 

Figure 2.4 shows the three component seismograms for the same raypath for the 

shear-wave source created using the two rods. The first seismogram, from using the 

nylon rod, has relatively impulsive initial shear-wave motion and the maximum 

amplitude of the seismogram occurs as part of the first cycle of shear-wave motion. 

This is the desired situation for the study of shear-wave splitting because the arrival of 
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Frequency (kHz) 

Figure 2.3: Graph of normalized frequency amplitude versus frequency. The two main peaks are at 
3.7kHz and 4.9kHz. The seismic energy was created using the nylon rod. To calculate the amplitudes, 
a three-component seismogram that displayed no shear-wave splitting was rotated to isolate the 
shear-wave energy on a single channel. Only the seventy-three sample points (1 44OLLs) of this channel, 
starting at the shear-wave arrival, were used to prevent including any of the shear-wave coda. 
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Figure 2.4: Two three component seismograms for the same raypath. In Figure 2.4a, a nylon rod was 
used to produce to seismic signal. In Figure 2.4b, a steel rod was used. The time scale is given above 
each set of seismograms with the time interval of 2.5 milliseconds marked. 
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the first shear-wave is clear and the first shear-wave motion has the highest 

signal-to-noise ratio of the seismogram. The only advantage of using the steel rod is 

that it produces a seismic signal of approximately twice the amplitude. However, the 

steel rod resonates after being pulsed by the Schmidt hammer due to the low acoustic 

attenuation of steel. The resulting seismograms are contaminated by ringing as seen 

in the second seismogram. In addition the shear-wave arrival is emergent, having no 

clear start, and increases to a maximum amplitude after at least one full cycle. This is 

typical and makes the picking of qSl-wave arrivals and time delays unreliable. The 

ringing on the radial component, which should contain mostly qP-wave energy, shows 

that the motion of the ringing after the shear-wave arrival is not aligned with the qSl-

and qS2-waves. Often the ringing from the qP-wave arrival is of long enough 

duration to completely mask the arrival of shear-wave energy. This ringing appears 

coherent, but the seismogram cannot be easily processed to remove this ringing 

because the ringing is approximately the same frequency as the dominant shear-wave 

signal (A. Feustel, pers. comm.). Consequently, only seismic data created using the 

nylon rod are analyzed in this dissertation. 

2.6 System Calibration 

The analysis of shear-wave splitting assumes that all three channels of each 

triaxial accelerometer have identical system responses so that seismograms may be 

rotated into any desired co-ordinate system. It is therefore necessary to compare the 

frequency responses of all accelerometer-to-digitizer channels and determine whether 

deconvolution of seismic data for system response is necessary. Figure 2.5 shows a 

typical total system response (Feustel and Young, 1992). As can be seen, the 

frequency response is approximately flat until 7kHz, and falls off slowly between 

7kHz and 10kHz. Total system response did not vary significantly between channels 

and, as seen in Figure 2.3, the majority of shear-wave energy in seismograms from the 

Shear-Wave Experiment below this upper limit of a flat frequency response of 7kHz. 

It is therefore unnecessary to deconvolve the system response for the Shear-Wave 

Experiment data set. 
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Figure 2.5: The total system response for one channel for frequencies up to 10kHz and the curve of 
the best-fitting fourth order polynomial to the spectrum (Feustel and Young, 1992). 

2.7 Accelerometer Alignment 

Seismograms were rotated into the transverse-sagittal, transverse-horizontal, and 

radial (TS-TH-R) co-ordinate system for analysis (section 3.3). This was performed 

using the known orientations of all three accelerometers of each triaxial 

accelerometer. Orientations were measured using the direction of the borehole 

housing the triaxial accelerometer, and the mercury tilt switch built into the triaxial 

accelerometer that was used to orient the triaxial accelerometer before cementation. 

I discovered that the measured accelerometer directions for Triaxial 

Accelerometers 1 and 16 were incorrect. In this co-ordinate system the radial channel 

should contain the majority of qP-wave energy and the transverse-horizontal and 

transverse-sagittal channels should contain the majority of the shear-wave energy. 

Figure 2.6 is a seismogram recorded by Triaxial Accelerometer 16. Clearly the 

rotation to the TS-TI-I-R co-ordinate system was unsuccessful, indicating that the 

measured triaxial accelerometer orientation was incorrect. 

I calculated the correct triaxial accelerometer orientations of all triaxial 

accelerometers of the seismic network using the data from the Shear-Wave 

Experiment. I made the approximation that the linear qP-wave motion is in the exact 
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direction as the straight source to receiver raypath. This assumption is reasonable for 

this relatively homogeneous rockmass (section 2.10) with only weak anisotropy 

(section 8.8). The accelerometer orientations that maximized the qP-wave energy on 

the radial channel were then found for each raypath. If all assumptions are valid, there 

exists only one accelerometer orientation such that the qP-wave energy is solely on 

the radial channel for all possible raypath directions. This method requires a 

minimum of two distinctively different raypath directions for success and more 

raypaths are needed for greater accuracy and to evaluate the statistical error. 

The Shear-Wave Experiment data set was not ideal for this purpose because of the 

limited variety of raypath directions to some triaxial accelerometers. For example, 

there were only four source stations where the raypath to Triaxial Accelerometer 1 

would not intersect or pass within 2m of a tunnel. However, seismograms from this 

data set did display clear qP-wave arrivals with highly linear particle motion so that 

even with these restrictions this method should be highly successful. I chose the four 

raypaths that maximized the variety of raypath directions in calculating each triaxial 

accelerometer orientation. 

The results are presented in Table 2.2. The possible orientations as calculated for 

each of the four raypaths were compared to find the closest to a common orientation 

for a given triaxial accelerometer. The closest to a common orientation was 

considered to be the orientation with the minimal average difference between the 

directions of each of the three channel orientations for four possible orientations. This 

value of the minimal average difference also gives some idea of the error in 

calculating the orientation. There is also a significant round-off error in the 

orientations. The orientations were only measured to three significant digits (to the 

nearest 0.001) for each of the three co-ordinate directions for each of the three 

accelerometers of a given triaxial accelerometer. For comparability, the triaxial 

accelerometer orientations were also calculated to only three significant digits. The 

maximum error in calculating the difference in direction between two accelerometer 

orientations is 3•40  due to this precision. Therefore, any difference between measured 

and calculated triaxial accelerometer orientations less than 340 is insignificant. 

Similarly, any measurement of error less than 3.4° in calculating triaxial 

accelerometer orientations is also insignificant. 



Chapter Two: The Shear-Wave Experiment at URL 's 420-Level 	23a 

2.5ms 

Fi

TH  

gure 2.6: 2.6: Three component seismogram recorded by Triaxial Accelerometer 16 that has been rotated 
into the TS-TH-R co-ordinate system using the measured triaxial accelerometer orientation. The time 
scale is given above the seismogram with the time interval of 2.5 milliseconds marked. 
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Figure 2.7: The same three component seismogram as in Figure 2.6 rotated into the TS-TH-R 
co-ordinate system using the calculated triaxial accelerometer orientation. The time scale is given 
above the seismogram with the time interval of 2.5 milliseconds marked. 
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Table 2.2: 	Differences Between Measured and Calculated Triaxial 
Accelerometer Orientations 

Triaxial 
Accelerometer 

Difference Between Measured and 
Calculated Orientations 

Error* 
(degrees) 

Difference from 
Down Borehole 

Direction 
(degrees) 

Rotation in Plane 
Perpendicular to 
Down Borehole 

Direction 
(degrees)  

1 03 0  4580  ±550  
2 160  1300  ±12 0  
4 490  63 0  ±26 0  

5 1.00 8.5 0  ±1.20  

7 5.00  7.8 0  ±3 . 00  

8 1.90  7.8 0  ±3 . 00  

9 2.9 0  10.5 0  ±2.60  

10 1.3 0  5.70  ±1.2 0  

11 4.00  1.40  ±10.2 0  

12 1.00  17.3 0  ±3 . 00  

13 0.3 0  9.90  ±1.6 0  

14 2.90 9•50 ±5.70 

15 1.00  2.40  ±2.20  

16 2.8 0  29.3 0  ±1.90  

* Average angle difference between the orientations of the components 
calculated from the four raypaths for all three components. Note the 
orientations were calculated to three significant figures. This results in a 
round-off error of up to 3.4 0 . Only errors greater than this value are significant. 

Results show that the cause of triaxial accelerometer misorientation is rotation in 

the source boreholes after the triaxial accelerometers had been oriented using the 

mercury tilt switch. Of the three accelerometers of a triaxial accelerometer, one is 

oriented in the direction of the borehole housing the triaxial accelerometer, and the 

other two are perpendicular to this direction. The cylindrical shape of a housing 

ensures the alignment of one accelerometer with the borehole direction. The 

misalignment is due to a rotation of the triaxial accelerometer within the borehole that 

affects only the other two accelerometers. R. P. Young (pers. comm.) agrees with my 
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interpretation and elaborated that the triaxial accelerometers may have rotated while 

the rod used to install the triaxial accelerometer was removed. 

The calculated orientations show Triaxial Accelerometers 1 and 16 have rotated 

by 45.8° and 29.3° respectively. These are the largest rotations of the triaxial 

accelerometers and this explains the failure of rotation into the TS-TH-R. Figure 2.7 

shows the same seismogram as Figure 2.6 except that the calculated accelerometer 

orientations were used to successfully rotate the recorded seismogram to the TS-TH-R 

co-ordinate system. One of the accelerometers of Triaxial Accelerometer 1 had the 

exact opposite polarity expected. This triaxial accelerometer had been disconnected 

during an experiment and was probably wired in reverse when the triaxial 

accelerometer was reconnected. 

Only Triaxial Accelerometers 11 and 15 had not appreciably rotated. The 

rotations manifest themselves as errors in measuring polarization directions (section 

3.5), although errors as large as the rotation will only occur for raypaths parallel to 

source borehole directions. Measurement of polarizations and time delays were not 

made on data recorded by Triaxial Accelerometers 1 and 16 but otherwise no 

corrections were made for triaxial accelerometer rotations in the analysis of the data 

from the Shear-Wave Experiment. This is because much of the analysis of the 

shear-wave data had already been done before the true orientations of these triaxial 

accelerometers were calculated. Data from Tiiaxial Accelerometers 1 and 16 were 

used in the analysis of the Velocity Survey data set (section 2.13.1), and in examining 

the Shear-Wave Experiment data for temporal changes (Chapter Five). In doing so 

the calculated orientations of these two triaxial accelerometers were used. 

2.8 The Geology 

An in-depth analysis of the geology of the rockmass directly surrounding the 

Mine-by tunnel had not yet been published at the time of the writing of this 

dissertation. The discussion below is based on preliminary reports, laboratory studies, 

and personal communications. 

The Lac du Bonnet batholith consists of five main rock units: the pink (altered) or 

grey (unaltered) granite groundmass of the batholith, xenolithic inclusion of variable 

composition, low-dipping leucocratic granitic segregations, and subvertical 
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granodiorite and pegmatite dykes (Read and Martin, 1991). Figure 2.8 presents the 

generalized geological setting at URL. 

The average mineral composition of Lac du Bonnet granite is quartz: 30.6±3.9%, 

plagioclase 37.5±5.7%, potassium feldspar 27.3±6.8%, muscovite 0.5±0.3%, biotite 

and chlorite 3.5±1.5%, opaque minerals 0.4±0.3%, and other minerals 0.2±0.2% 

(Robertson and Chernis, 1987). The composition is plotted in the tertiary diagram of 

Figure 2.9 and clearly shows the average composition is that of granite according to 

the United States Geological Survey definition. The average density is 2.63gmIcm 3 , 

which is the same as that for Westerly granite (Touloukian and Ho, 1981). 

Figures 2.10, 2.11, and 2.12 present the geology of the 420-Level for the Mine-by 

Tunnel and vicinity. There are two distinct granites in the rockmass surrounding the 

Mine-by tunnel. The majority of the rockmass consists of unfractured and unaltered 

medium-grained gneissic grey granite with some coarse-grained porphyritic 

leucocratic grey granite. A major subvertical, autointrusive, dyke swarm of 

approximately lOOm thick, and striking north to north-west, is present throughout the 

420-Level and crosscuts the grey granite (Read and Martin, 1991). The granite of 

these dykes has a slightly higher density than the grey granite, has a finer grain size, 

contains a higher proportion of mafic minerals and consequently is darker in colour. 

It has a composition closer to that of granodiorite (R. P. Young, pers. comm.). For 

simplicity I will refer to the grey and leucocratic granites as simply granite and the 

granodioritic granite as granodiorite. Both the granite and the granodiorite have 

relatively uniform compositions and textures (Read and Martin, 1991), although the 

granite contains faint primary compositional layering (section 2.15). The 

geomechanical properties of the granite and granodiorite are summarized in Table 2.3 

and show the properties to be nearly identical. No differences in the seismic response 

of the granite and granodiorite had been observed prior to the Mine-by Experiment (D. 

Martin, pers. comm.). Some thin pegmatite dykes crosscut other rock types but are 

mostly confined to the larger granodiorite dykes (Read and Martin, 1991). 

2.9 The Stress Field at URL 

The stress field at the 420-Level from overcoring and hydraulic fracturing 

measurements (Martin, 1990) is given in Table 2.4. a and c 2  (as defined in section 
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Figure 2.8: The generalized geological setting of the Underground Research Laboratory (Read and 
Martin, 1991). 
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Figure 2.9: The modal composition of 932 core samples from Whiteshell Nuclear Research 
Establishment and the Underground Research Laboratory boreholes. The contents of each core sample 
in terms of quartz (Qtz), Potassium Feldspar (Kfs), and Plagioclase (P1) are marked by triangles on the 
tertiary diagram. The United States Geological Survey definition of a granite is a rock whose 
composition plots in region 3. The average composition is marked by a dot and is that of a granite 
(Robertson and Chernis, 1987). 
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Figure 2.10: Plan view of the Mine-by Experiment showing the projected geology (Read and Martin, 
1991). 
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Figure 2.11: Geological Plane of the 420-Level (R. Everitt, pers. notes). 
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Table 2.3: Geomechanical Properties for the 420 Level (Read and Martin, 1991) 

Measured Laboratory Properties 

Rock Type Density Unconfined Tangent Poisson's 
Wcm3) Compressive Young's Ratio* 

Strength Modulus 
(MPa) (GPa) 

Grey Granite 
Mean (n = 224) 2.63 171 58 0.28 
Standard Deviation 0.01 29 8 0.06 
Maximum 2.68 247 74 0.46 
Minimum 2.59 111 40 0.13 

Granodiorite 
Mean (n = 24) 2.66 225 66 0.28 
Standard Deviation 0.02 35 5 0.05 
Maximum 2.68 271 75 0.37 
Minimum 2.62 155 57 0.19 

Pink Granite 
Mean (n = 83) 2.63 187 69 0.25 
Standard Deviation 0.01 25 4 0.04 
Maximum 2.69 248 78 0.38 
Minimum 2.59 134 59 0.17 

Best Estimate of Undamaged Sample Properties (45-mm Diameter) 

Granite 
Mean 2.63 213 65 0.25 
Standard Deviation 0.01 20 5 0.05 

Granodiorite 
Mean 2.66 228 66 0.25 
Standard Deviation 0.02 20 5 0.05 

* Defmed at 50% of Uniaxial Compressive Slrigth 

Table 2.4: In-situ Stress State for the Mine-by Tunnel (after 
Read and Martin, 199 1) 
Principle stress 

component 
Magnitude 

(MPa)  
Trend (N°E) Plunge (°) 

55±5 135±10 10±5 

48±5 044±10 05±5 

14±1 290±25 79±5 

Stress Ratios a 1/o 2  cy 1/a3  cY 2/cY 3  

1.15±0.1 3.93±0.3 3.43±0.5 

Estimated Mean Value and 90% Confidence Interval 
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1.2) are nearly horizontal and almost equal at about 50MPa, with 	oriented to the 

south-east. Such high levels of stress are typically found between 500m and 1000m 

depth in the Canadian Shield (Herget, 1987). G3 is given in Table 2.4 as oriented 

110±50 from the vertical and is less than a third of the other two stresses in magnitude. 

It is now known that a is 14° from the vertical (D. Martin, pers. comm.). Note that 

the Mine-by Tunnel (Room 415) and Room 405 are orientated approximately parallel 

to o, and Rooms 408, 409, 410, and 413 are orientated approximately parallel to cy 2  

(Figure 2.1). It is expected that EDA-cracks will be oriented perpendicular to the 

direction of minimum stress (section 1.2) so any EDA should have orientation 045/14. 

To maximize potential excavation damage, the Mine-by Tunnel was excavated in 

the south-west direction, parallel to (72 . As expected, breakout notches occurred along 

the entire length of the Mine-by Tunnel as the excavation progressed (except for the 

last metre before the tunnel face immediately following each excavation sequence). 

Breakout notches are a common linear feature of boreholes and underground tunnels, 

generally forming parallel to the direction of weakest stress perpendicular to the 

length of the cavity (Bell and Gough, 1979). The breakout notches in the Mine-by 

tunnel generally occurred between 100  and 20° to the vertical towards the south-east, 

broadly agreeing with the measured direction of minimum stress, a, of 14° from the 

vertical with azimuth 1 1 0'±02 5'. 

2.10 In Situ Fractures 

Six significant natural fractures were encountered within the area of the Mine-by 

Experiment. All were closed and dry and confined to the granodiorite dyke swarm (R. 

Everitt, pers. comm.). Only one of the natural fractures was encountered in the 

Mine-by Tunnel. The fracture was oriented 040/84 and had a maximum extent of 

1 .5m horizontally and 0.5m vertically. The volumetric extent of the fractures is 

expected to be small (Read and Martin, 1991). From a high-resolution subsurface 

seismic reflection survey at URL, D. Gendzwill of the University of Saskatchewan 

found that there is the possibility of a splay from a fracture zone in the vicinity of the 

Mine-by tunnel (D. Gendzwill, pers. comm.). However, no such fractures have 
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intersected any of the tunnels of the 420-Level. With these exceptions, the in situ 

rockmass around the 420-Level appears to be massive and apparently unfractured. 

2.11 Natural Microcracks 

The in situ Lac du Bonnet granite of the 420-Level at URL exists in a far-field 

stress field that has a maximum horizontal compressive stress of 55MPa (Read and 

Martin, 1991). Extensive perturbations to the crack structure of the granite result 

when the magnitude of the stress field encompassing the granite is significantly 

released. Such stress-relief occurs by excavation or drilling when there is a zero-stress 

free-surface, or by complete removal of in situ stress in laboratory samples. Changes 

to structure include opening new microcracks (stress-relief microcracks) to form an 

additional crack fabric. In granite from the 420-Level, the stress-relief is large enough 

to break quartz grains (D. Martin, pers. comm.), and the effects of stress-relief alter 

the pattern of grain boundary cracks and transgranular cracks (cracks that cross grain 

boundaries) so that the in situ pattern of grain boundary cracks is not easily 

determined. Detailed reports on natural microcracks are being prepared but are not 

yet available. 

Chernis and Robertson (1987) in a laboratory study of microcracks in the Lac du 

Bonnet granite, found they could discriminate between natural and stress-relief 

microcracks. The natural microcracks not affected by stress-relief were less than 4tm 

in aperture with rough and irregular walls and often contain debris. Chernis and 

Robertson conclude that high pressure alone would not be sufficient to close the 

natural microcracks. Chernis and Robertson did not report dimensions of the faces of 

the cracks, but the largest dimensions of in situ microcracks are expected to be no 

more than a centimetre in diameter and possibly much smaller. The dominant seismic 

wavelength of the shear waves of 0.81m (section 2.6) is therefore much greater than 

crack size. 

They also reported that most grain boundary cracks form around quartz grains, and 

may have infillings of calcite, iron oxide, or clay. 90% of natural cracks occur along 

grain boundaries. The remaining cracks that could be distinguished from stress-relief 

cracks occur as intragranular cracks, chiefly in feldspars. Plagioclase typically 

contains large numbers of pores less than 5pm in diameter (Sprunt and Brace, 1974), 
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which may or may not be intersected by fine intragranular cracks. Intragranular cracks 

within potassium feldspar may be over lp.m in diameter. 

2.12 Past Studies of Seismic Anisotropy in Granite and Granodiorite 

Tables 2.5 and 2.6, below, summarize all laboratory and in situ studies known to 

this author on seismic anisotropy in granite or granodiorite excluding those based on 

the Mine-by Experiment. The 'Number of Source to Receiver Paths Examined' is in 

reference to the orientation of the rock sample rather the stress field. Many laboratory 

experiments referenced in Table 2.5 involve examining the velocity of a small number 

of raypaths under numerous stress magnitudes and directions. 

2.12.1 Laboratory Experiments 

With the exceptions of Thill et al. (1969; 1973) and Babuka and Pros (1984), the 

twelve laboratory studies employed no more than three source to receiver raypaths at 

any given stress direction and magnitude to examine the anisotropy. Three or fewer 

raypaths are entirely inadequate in studying the three dimensional behaviour of 

seismic wave propagation. Such studies can only provide broad inferences as to the 

cause of the anisotropic fabrics and cannot parameterize the fabrics in any detail. 

The major drawback to laboratory experiments is that the rock samples have been 

irreversibly altered from their in situ state. In removing a rock sample from in situ, 

the sample is altered not only from the excavation of the rocks, but from stress-relief 

cracking (section 2.11). Of the ten interpretations of the laboratory results presented 

in Table 2.5 that interpreted the causes of the anisotropy, all but Birch (1961), cited 

cracks or microcracks as a cause, but the observed fabrics may well have been 

stress-relief cracks. The change in pressure also alters the shape of pores, causes 

pre-existing cracks and microcracks to change in shape and increase in size, and 

allows the movement and possible escape of fluids contained in the rock. These 

changes in taking the rock from in situ to the laboratory permanently alter the rock. 

Returning the rock to its original in situ pressure may reduce or remove only some of 

these effects so that laboratory samples cannot be expected to have the same seismic 

characteristics as in situ rock. Therefore, the results of laboratory studies cannot be 

used to directly infer the causes of anisotropy in in situ rock at depth. 



Table 2.5: Published Laboratory Studies of Seismic Anisotropy in Granite and Granodiorite 

Rock Type Number of Source 
to Receiver Paths 

Examined 

Attributed Cause of the Anisotropy Reference 

River Sázava Granodiorite 133 mainly cleavage cracks in biotite and amphibole Babuka and Pros (1984) 

granite (source unknown), 
granulite from man, Finland 

3 microcracks orientation by grain boundaries, 
mineral orientation 

Kern (1978) 

Westerly Granite 2 mineral orientation, cracks Soga et al. (1978) 

Westerly Granite 2 cracks Lockner et al. (1977) 

Westerly Granite I stress-algined cracks (EDA*) Wang et al. (1975) 

Westerly Granite 2 orientation and dilation of cracks Bonner (1974) 

Bane Granite (granodiorite 
rock 

73 microcracks 
_originally _misnamed)  

Thill et al. (1973) 

Granite Gneiss, Cross Lake 3 
Granite Conglomerate  

none given Tilmann and Bennett (1973) 

Salisbury Granite 73 microfractures in quartz Thill et al. (1969) 

Bane Granite (granodiorite), 
Westerly Granite 

2 microcracks the only specific cause cited Nur and Simmons (1969) 

Gneiss from Torrington, 
Conn., U.S.A. 

3 pores, cracks, foliation, mineral orientation, 
 possibly gneissic banding  

Christensen (1965) 

Westerly Granite, Barriefield 
Granite, Quincy Granite 

3 mineral orientation Birch (196 1) 

* denotes extensive-dilatancy anisotropy (EDA) for studies published before the fabric of stress-alignment of cracks was formally 
recognized and given this name. te 



Table 2.6: Published In Situ Studies of Seismic Anisotropy in Granite and Granodiorite 

Recording Location Rock Type Number of Source to Attributed Cause of the Anisotropy Reference 
Geometry Receiver Paths 

Examined 

40 surface seismic Japan Many, including gneiss >180 - earthquake sources stress-aligned cracks (EDA), cracks or Kaneshima, 
stations and granite fractures, intrinsic rock anisotropy from S. (1990) 

preferred orientation of minerals in the 
granite -mainly foliation in the gneiss  

Same as Roberts Cornwall, Carnmenellis Granite 8 induced seismic events EDA Crampin 
and Crampin U.K. and the same 61 events as and Booth 

(1986) Roberts and Crampin (1989) 
(1986)  

VSP -same as Cajon Pass, granite, granodiorite, Reinterpretation of work fractures and microfractures probably Blenkinsop, 
Daley et al. (1988), California, magacrystic granite, of Daley et al. (1988), Li formed before late Miocene-Pliocene T.G. 

Liu et al. (1988) U.S.A. quartzite, orthogneisses et al. (1988) (below) (1990) 
(below), down 

borehole seismic 
log  

VSP -same as Cajon Pass, granite, granodiorite, Same dataset as Daley et EDA Li et al. 
Daley et al. (1988) California, magacrystic granite, al (1988) (below) (1988) 

(below) U.S.A. quartzite, orthogneisses  

VSP with two Cajon Pass, granite, granodiorite, 64 Stress-induced fracturing Daley et al. 
offsets, geophones California, magacrystic granite, (1988) 

every 10m over U.S.A. quartzite, orthogneisses 
590m 

I 
"C 



Recording 
Geometry 

Location Rock Type Number of Source to 
Receiver Paths 

Examined 

Attributed Cause of the Anisotropy Reference 

4 down borehole Cornwall, Carnmenellis Granite 61 induced seismic events EDA Roberts and 
seismometers U.K. Crampin 

(1986), 

down borehole Monticello, Granite and Continuous down mainly macroscopic fractures, but also Moos and 
seismic log and a South Granodiorite borehole seismic logs, microcracks, mineral orientation Zoback 

VSP Carolina, geophone at 30m (1983) 
U.S.A. intervals over 900m depth 

IC 
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Laboratory studies have been useful in determining possible causes of anisotropy. 

None of the twelve studies in Table 2.5 claimed the observed anisotropy would be the 

same as in situ. Christensen (1965), Nur and Simmons (1969), Bonner (1974), Wang 

et al. (1975), Lockner et al. (1977), Soga et al. (1978), and Babuka and Pros (1984) 

all found anisotropy increased with pressure at low confining pressure (<21 MPa) and 

attributed this to fracturing or the dilation or closure of cracks. Kern (1978) found 

that anisotropy decreased with pressure when rocks were under confining pressures of 

up to 600MPa. In this high stress, the observed decrease in anisotropy is likely due to 

the closure of cracks and fractures. These laboratory studies proved that cracks and 

microcracks can cause a significant fabric that is affected by pressure. 

Non-seismic laboratory experiments have also contributed understanding to the 

possible causes of in situ anisotropy. Scholz and Koczynski (1979), showed using 

strain gauges that dilatancy in a sample of Westerly Granite was controlled by 

microcracks, and that the pattern of dilatancy was anisotropic even under uniform 

confining pressure. Siesgesmund and Kruhl (1991) calculated theoretical seismic 

velocities for a granitic gneiss from the Alpine Roof Zone of the Western Alps. They 

found that the preferred orientation of plagioclase can explain up to 5% shear-wave 

anisotropy. This shows that mineral orientation may form an important fabric in situ. 

However, in a study of the velocity of various minerals, Babuka (1981), argued that 

the orientations of minerals and velocities in crustal crystalline rocks would only 

result in 'low' seismic anisotropy, although how low was not stated. The exception to 

this is where a metamorphic fabric, such as gneissic layering, exists. Birch (1961), 

Babuka (1981), and Siesgesmund and Kruhl (1991) all observe that micas were 

oriented parallel to the direction of gneissic layering. Gneissic layering is generally 

oriented so that the normal to the layer is perpendicular to the principle stress 

direction (Babuka, 1981; Siesgesmund and Kruhl, 1991). Micas are highly 

anisotropic and may also govern that nearby cracks be parallel to the micas as well as 

indicating the direction of gneissic layering (Babuka, 1981; Kern et al., 1991). 

However, it is unknown whether such anisotropy is primarily due to the elastic 

properties of the minerals, or the effects of cracks whose orientations are governed by 

the mineral alignments. Also, such mineral-oriented intragranular cracks may be 

opened or closed in situ by changes in stress directions and so may create EDA that is 
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not perfectly aligned with the stress field. Therefore laboratory experiments have 

demonstrated that cracks can cause significant anisotropy, and suggested that mineral 

alignments may correspond in orientation to anisotropic fabrics. 

2.12.2 In Situ Studies 

None of the seven in situ studies of four data sets has resulted in an unambiguous 

interpretation of the cause of the in situ anisotropy in granite or granodiorite. 

Kaneshima (1990) examined shear-waves from seismic signals created by 

earthquakes. This study involved complicated and varied geology and the 

uncertainties involved in determining source parameters of the earthquakes, as well as 

a limited variety of raypath directions because of the shear-wave window (section 

1.4). The primary cause of the anisotropy could not be determined because of the 

limited amount of data and the uncertainties. The studies of Roberts and Crampin 

(1986) and Crampin and Booth (1989) were based on a common data set from 

seismicity induced by hydrofracting. Anisotropy was attributed to EDA. However, 

polarizations directions also corresponded closely to pre-existing planes of weakness 

in the granite and scatter in the data and a limited variety of raypaths prevents a 

definitive interpretation. The exact cause of anisotropy observed in the Cajon Pass 

borehole studies may be due to EDA (Li et al., 1988), stress-induced fracturing (Daley 

et al.) or paleo-fractures and microfractures (Blenkinsop, 1990), so that the seismic 

anisotropy may not be clearly attributed to either stress-oriented microfractures or to 

fault-induced fracture fabric (Leary, 1991). The study of Moos and Zoback (1983) 

was a study relating acoustic wave velocities to macrofractures. It was demonstrated 

that shear-wave velocities decrease with increasing density of macrofractures but it 

could not be determined the effect of microfractures in the neighbourhood of 

macrofractures upon velocities. Despite these ambiguities, all studies but Kaneshima 

(1990) attributed the anisotropy to be due to cracks or fractures. 

2.13 Velocity and Attenuation Surveys 

The Attenuation Survey and the Velocity Survey are two seismic surveys 

performed as part of the Mine-by Experiment. Both were performed on August 10, 

1992, after the Mine-by tunnel had been excavated to its completed length. 
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Shear-waves of the Velocity Survey data set are analyzed in the dissertation, and the 

results of shear-wave splitting analysis are compared to travel time analysis of these 

surveys (Chapters Seven and Eight). 

2.13.1 Velocity Survey 

The main purpose of the Velocity Survey was to calibrate the velocity structure of 

the rockmass for the source location of the excavation-induced seismicity. After 

completion of the Mine-by Tunnel excavation, twenty-seven boreholes were drilled 

into the Mine-by Tunnel wall. The perpendicular distances of the ends of the 

boreholes to the Mine-by Tunnel varied between 30cm and 70cm. Also, nine 

four-orientation sets of source boreholes of the same geometry as the source stations 

of the Shear-Wave Experiment were drilled into the Mine-by Tunnel wall. All 

borehole diameters were 32mm as they were for the Shear-Wave Experiment. The 

locations of the boreholes are as shown on the perimeter map of Figure 2.13. 

Controlled seismic signals were created by Mark2 seismic caps and the Schmidt 

Hammer-Nylon Rod sources at the ends of these boreholes. The signals that were 

recorded by the microseismic system (section 2.3). The time of detonation for the 

Mark2 cap was accurately recorded for travel time analysis. The nine source stations 

and the Schmidt Hammer-nylon rod sources were used to provide additional 

measurements of polarizations and time delays that could be combined and compared 

with the Shear-Wave Experiment (Chapters Seven and Eight). 

2.13.2 Attenuation Survey 

The Attenuation Survey was a controlled seismic survey designed to measure the 

rate of attenuation of seismic signals travelling through the undisturbed rockmass of 

the 420-Level. In this survey, Mark2 seismic blasting caps and Schmidt 

Hammer-steel rod sources were used at the end of twelve im to 3.5m long boreholes 

at various locations in the 420-Level (Figure 2.14). The same microseismic system 

recorded the seismic signals (section 2.3). The primary purpose to this survey is to 

measure seismic attenuation in the undisturbed rockmass near the Mine-by Tunnel. 

The data from this survey is of limited use in studying shear-wave splitting because of 

the use of single source orientation and the use of the steel rather than the nylon rod. 
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Figure 2.14: Borehole locations for the Attenuation Survey (Young and Collins, 1993). 
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Consequently, this data set was not analyzed for shear-wave splitting. However, this 

data set has two distinct benefits. Firstly, the sources were located at the end of longer 

boreholes than the source boreholes in the Shear-Wave Experiment. The waveforms 

are therefore less affected by excavation around the source tunnels. Secondly, the 

raypaths were approximately three times longer on average than those of the 

Shear-Wave Experiment, so that any damage traversed by the raypaths are smaller 

proportions of the overall raypath lengths. The seismic signals of the Attenuation 

Survey will be much less effected by excavation for these reasons. 

2.14 Excavation-Induced Velocity Heterogeneity 

There have been two studies completed at the time of the writing of this 

dissertation of the velocity heterogeneities caused by the Mine-by Tunnel excavation. 

The first of these studies, Carlson and Young (1993), investigates the velocity 

structure of the granite within the first 1.2m of the free surface of the Mine-by tunnel. 

The survey used 1 MHz compressional transducers to measure P- and shear-wave 

travel times between four parallel 1.2m boreholes perpendicular to a 1m-side square 

on the tunnel wall. The borehole directions were parallel to 7 1 , which is 

approximately perpendicular to the Mine-by Tunnel side. 

The study included examining the change of velocity with distance from the free 

surface. P- and shear-wave velocities increase with distance away from the free 

surface, particularly within the first 0.40m to the free surface. 0.15m away from the 

free surface, P-wave velocities are within 10% of the in situ P-wave velocity of 

5880m1s as measured by Talebi and Young (1989). 0.75m away from the free surface 

and greater, P- and shear-wave velocities are unchanged from the in situ velocities. 

This is clear evidence that the source locations used in the Shear-Wave Experiment, 

located within 0.30m from the free surface are within the zone of rockmass affected 

by excavation and therefore the effects of excavation must be taken into account when 

interpreting the data from the Shear-Wave Experiment. The velocity changes are 

interpreted as the effects of cracking due to tunnel excavation. 

Compressional velocities are plotted on a lower hemisphere Schmidt stereonet in 

Figure 2.15. This stereonet indicates two crack fabrics. The direction of lowest 

velocity is of 1550  azimuth and 150  dip, approximately. This suggests there exists a 
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W 
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Figure 2.15: Lower hemisphere P-wave velocity stereonet Ultrasonic Velocity Survey (Carlson and 
Young 1993). 

fabric of approximately 245° strike and 750  dip. This fabric is parallel to the surface 

of the tunnel wall and perpendicular to c1  and is therefore likely to be cracking due to 

stress relief during excavation. This agrees with the observed fractures in the discing 

of core samples (R. Everitt, pers. comm.). The orientation of a second, weaker fabric 

is indicated by the band in intermediate velocities, indicating a fabric of orientation 

050/15. This is approximately the same orientation as the anisotropy expected by 

EDA, or the primary layering (discussed in the next section) and suggests that the 

stress field or mineral orientations govern the orientation of this crack set. 

The second study is that of Maxwell and Young (1994). It presents contoured 

equal-area stereographic plots of apparent P-wave velocities for data of the Velocity 

Survey and Attenuation Survey (previous section). Apparent P-wave velocity is 

defmed to be the travel time of the first arrival of P-wave energy divided by the 

straight-line raypath distance. Figure 2.16 presents the stereographic plots of apparent 

P-wave velocity from the Velocity Survey. The pattern of velocities implies the 

existence of two crack sets, one oriented at approximately 046/44, and the other 
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perpendicular at 224/46. The pattern is attributed to two observed crack sets with 

similar orientations (R. Everitt, pers. comm. referenced by Maxwell and Young, 

1994). The two crack sets are expected to exist in situ but may be enhanced by 

excavation (S. Maxwell, pers. comm.). 

Figure 2.17 is the stereographic plots of apparent P-wave velocities as calculated 

from the Attenuation Survey data set. Raypath coverage is sparse but there appears to 

be a plane of higher velocities of orientation approximately 045/32 indicated by higher 

velocities in directions parallel to this plane. The Attenuation Survey is expected to 

be more representative of the behaviour of the in situ rockmass (Section 2.13.2). 

Therefore the apparent P-wave velocities from the Attenuation Survey suggest that the 

in situ seismic anisotropy consists of a single fabric orientated approximately 045/32. 

Again, this is approximately the same orientation as the anisotropy expected by EDA, 

or the primary layering (next section). 

2.15 Possible Causes of Anisotropy 

Any consistent pattern that effects the elastic response of the rockmass will result 

in an anisotropic fabric. Table 2.7 summarises the known patterns in the rockmass at 

URL. The biotite and hematite alignment, and the faint gneissic banding are part of 

the primary compositional layering but are listed separated as they were stated by the 

references. This primary laying does not exist in the granodiorite dyke swarms. The 

dominant orientation of primary layering is 024/23, but orientation can be highly 

variable, particularly when disrupted by granodiorite dykes (R. Everitt, pers. comm.). 

There exists flow banding of variable orientation within the granodiorite. Two sets of 

aligned microcracks are believed to exist in situ (S. Maxwell, pers. comm.), but the 

results of Maxwell and Young (1994) (previous section) suggest that the anisotropic 

effects of the microcracks are not seen by raypaths travelling through the undisturbed 

rockmass. The stress field implies a fabric of EDA-cracks of orientation 045/14 

(section 2.9). 

The granodiorite differs from the granite only slightly in density and mineral 

composition (section 2.8). The interface between the two slightly different rock types 

is diffuse with the two rock types intermixing as is common with intrusive swarms. 
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Table 2.7: Known patterns in the Rockmass of the 420-Level 

Pattern Orientation Reference 
Strike/Dip_(°)  

Primary Layering 023/24 Personal Notes, R. Everitt 
035/23 Read et al. 

Granodiorite Dyke Swam 3401(60-70) Personal Notes, R. Everitt 

Biotite, Hematite Alignment 020/20 Personal Notes, R. Everitt 

Gneissic Banding 05 5/25 Read et al. 

Flow Banding 040/30 Read et al. 
Two sets of aligned microcracks striking two sets both striking NE with moderate Pers. Comm. with R. Everett referenced by 

NE, moderately dipping in opposite dips in opposite directions Maxwell and Young, 1994 
directions. One of the sets may consist of 

two subsets of cracks with slightly different 
strikes. 
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Therefore, the contact between the granite and granodiorite is not expected to cause 

detectable reflections. 

The two likely causes of any anisotropy within the rockmass are therefore the faint 

primary (gneissic) layering of dominant orientation 023/24 and EDA-cracks of 

orientation 045/14. This is supported (section 2.14) by the apparent P-wave velocities 

of the Attenuation Survey and the results of the microseismic study of Carlson and 

Young (1993). Note that these orientations of 023/24 and 045/14 differ by only 12°. 

Several studies have found that if two fabrics have similar orientations, then an 

analysis of shear-wave splitting is unlikely to resolve the separate fabrics. Instead an 

effective fabric that describes the combined effect of the two fabrics will be found 

(Winterstein, 1990; Liu et al., 1993b; Crampin, 1993b). Specifically, Liu et al. 

(1993b) showed models where two sets of biplanar cracks of orientation within 50° to 

each other form a pattern of polarizations almost indistinguishable from that of an 

medium containing a single set of cracks. Therefore the pattern of polarizations 

observed will appear to be that of a single set of cracks if both primary layering and 

EDA-cracks contribute significantly to the anisotropy. 

2.16 Summary and Conclusion 

This chapter presented a complete description of the Shear-Wave Experiment 

upon which this dissertation is based. This experiment is unique. It allows the 

observation of shear-wave splitting for a greater variety of raypath directions than any 

previous in situ study. The geology is that of a relatively homogenous, unfractured 

granite rockmass. 

I demonstrated that the measured triaxial accelerometer alignments were incorrect 

and calculated the correct orientations using qP-wave particle motion directions. 

Triaxial accelerometers 1 and 16 had rotated within their source boreholes by 29.3° 

and 45.8°, respectively, while the other triaxial accelerometers had rotated on average 

8.3° within their boreholes. 

I also presented a complete review of pass studies of anisotropy in granite and 

granodiorite. Pass laboratory studies have demonstrated that cracks can be a 

significant fabric and cracks can be aligned by stress. Past in situ studies primarily 
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attributed the seismic anisotropy to fractures, cracks, and EDA-cracks, but no study 

could unambiguously explain the cause of the anisotropy. 

The experiment is highly controlled. The source and triaxial accelerometer 

locations were surveyed to a precision of 2cm, and the method of actively producing 

the seismic signals is highly reproducible (section 5.3) and creates a clear, impulsive 

shear-wave arrival. Lastly, the experiment was repeated thirteen times as the Mine-by 

tunnel was excavated. This will help determine the effects of excavation and the 

changes in the stress field due to the excavation will help determine the importance of 

EDA as a fabric in the rockmass. This experiment will therefore allow the most 

detailed examination of the geological causes of anisotropy in a granite rockmass to 

date. 
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Measuring Shear-Wave 
3 	 Polarizations and Time Delays 

3.1 Abstract 

The use of a controlled source and multiple source orientations in the Shear-Wave 

Experiment allows the reliable hand-picking shear-wave polarizations and time 

delays. The initial shear-wave particle motion due to the controlled seismic source in 

the Mine-by Experiment matches that expected for a directional point source oriented 

by the source impact along the source borehole. The raypaths from the four source 

orientations at a given source station to a given accelerometer are virtually identical. I 

extend the method of hand-picking polarizations and time delays to include the 

comparison with four three-component seismograms and comparison to the particle 

motion expected for an isotropic rockmass. This greatly reduces the chance of 

mistakes in picking polarizations and time delays and allows the clear identification of 

raypaths where no splitting occurred. 

3.2 Introduction 

Chen et al. (1987) gave the first detailed description of how to hand-pick the 

qSl-wave arrival and the time delay using three-component seismograms and particle 

motion diagrams. The following is a summary for the ideal case where shear-wave 

splitting is recorded within the shear-wave window by a three-component geophone 

where the shear-wave energy is mostly contained on the horizontal components: 

Rotate the horizontal-component seismograms into components that are radial 

and transverse with respect to the line between epicentre and receiver. 

Identify the onset of the first shear-wave arrival. 

Determine the shear-wave polarization by measuring the angle of the first 

linear motion on the corresponding particle motion diagram. 
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4. The arrival of the qS2-wave is marked by an abrupt change in the direction of 

particle motion. Time delay is the duration for which particle motion is linear. 

This method has serious drawbacks. It is subjective and prone to human bias in 

what are often difficult judgements in attributing particle motion to be that of the qSl-

and qS2-waves. Applying this method to a large data set is tedious and so may lead to 

inconsistency in judgement. These problems are particularly acute in earthquake 

studies where typically complicated seismograms result from inhomogeneous 

geology. For example, there was a debate over the reliability of the time delay 

measurements for a data set recorded by the Anza three-component seismic network, 

California, U.S.A. (see Peacock et al., 1988; Crampin, 1990; Aster et al., 1990; Aster 

et al., 1991; and Crampin et al., 1991). 

The controlled source shear-wave data from the Mine-by Experiment has several 

advantages over earthquake data for hand-picking polarizations and time delays. 

These advantages are: 

Accurately known source and receiver locations. Source and receiver location 

co-ordinates are surveyed to an accuracy of better than 2cm where the straight 

source-receiver raypaths varied from 7.70m to 71.79m. 

A simple, impulsive, and repeatable source (as demonstrated in sections 3.4 

and 5.3). 

Shear-wave particle motion directions and amplitudes that can be calculated 

from a known source radiation pattern (as demonstrated in section 3.4). 

A uniform rockmass (section 2.10) so that there are no complications due to 

trapped waves, or major wave conversions from internal interfaces. 

The comparison of seismograms for shear-waves from different source 

orientations but propagated along virtually the same path (The straight 

source-receiver raypaths varied in direction by no more that 3.0°.). 

In this chapter I shall extend the method of Chen et al. (1987) to fully exploit these 

advantages. I demonstrate that these advantages greatly reduce the chances of 

misjudgement, inconsistency in judgement, and misinterpretation in hand-picking 

polarizations and time delays. As necessary preparation, I first introduce the dynamic 

co-ordinate system necessary for this method, demonstrate that the shear-wave motion 

due to the source can be determined. I then describe the method and give examples of 
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its effectiveness. Lastly I discuss complication due to reflected waves. I will use the 

term set of raypaths to refer to the four nearly identical raypaths from a given source 

station to a given triaxial accelerometer. 

3.3 Co-ordinate System for Measurement 

The raypaths of the Shear-Wave Experiment span a large variety of directions. No 

common static co-ordinate system, as commonly used in VSP data sets and 

earthquake studies, exists that can isolate the majority of shear-wave energy on two 

channels for all raypath directions. A dynamic co-ordinate system, where each 

three-component seismogram is rotated to a different set of directions relative to the 

source-receiver directions, must be used for this data set. 

I will use what I call the TS-TH-R co-ordinate system. The seismograms were 

rotated using the straight source to receiver raypaths into: the radial (R) component; 

the transverse-horizontal (TH);' and the transverse-sagittal (TS) component (Figure 

3.1). Because it can be assumed there are no significant internal interfaces within the 

rockmass (with the exception of the excavation damage), shear-waves are unlikely to 

be disturbed by interference with internal discontinuities (Liu and Crampin, 1990), 

and straight raypaths can be assumed. Thus the R component seismograms will 

predominantly contain the qP-wave energy while the TS and TH component 

seismograms will contain almost all the shear-wave energy. This dynamic co-ordinate 

system may be used for any study of shear waves including earthquake and VSP 

studies and therefore is a more general co-ordinate system for use. I expect it to be 

used more commonly in the future shear-wave studies where not all raypaths are 

subvertical, such as far-offset VSP's or other experiments in mines. 

3.4 Use of a Controlled Source 

I claim that the shear-wave source radiation pattern created by the nylon 

rod-Schmidt hammer source is approximately that of a directional point source in an 

isotropic medium so that the modelling of such a source can be used to predict particle 

motions where no shear-wave splitting occurs. 
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Figure 3.1: Diagram illustrating the co-ordinate system used in examining the seismograms. The 
radial (R) direction is the source to receiver and contains predominantly qP-wave energy. The 
transverse-horizontal (TH) and transverse-sagittal (TS) channels contain mainly shear-wave energy. 

The far-field shear-wave motion due to such a point source is: 

11'(x, i) 
= 41t 132 (8  ii - 11'y1)4X0 (t—  

(Aki and Richards, 1980), where u(x, z) is the shear-wave motion at co-ordinates 

x and time t and source to receiver distance r, and the rockmass has density p, and 

shear-wave velocity P. X is the source function in the direction of motion. y is the 

cosine of the angle between the direction of propagation and the direction of 

movement at the source, and 8# is the Kronecker delta function. 

Such a radiation pattern is expected because the Schmidt Hammer is designed to 

created on impulsive signal and direction of the source is expected to be parallel to the 

direction of the nylon rod as one end is pulsed. The approximation of a point source 

is valid because the area of contact between the nylon rod and the rockmass was no 

greater than 1.5cm. I calculated both the directions of particle motion and amplitudes 
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of the shear wave as would displayed on polarization diagrams if no splitting were to 

occur by using equation 3.1. The success of this modelling is demonstrated in section 

3.6. 

This modelling of the source assumes an isotropic media. The shear-wave source 

radiation pattern in an anisotropic medium differs substantially from an isotropic 

medium, as demonstrated by Gajewski (1993) assuming fluid-filled Hudson Cracks 

with anisotropic strength of 7%. I suggest the success in approximating the source as 

isotropic is due to the low anisotropic strength of the rockmass, as modelled using 

fluid-filled Hudson Cracks (section 8.8). 

3.5 Picking Polarizations and Time Delays Using Multiple Seismograms 

I now describe the general method for picking shear-wave polarizations and time 

delays using the comparison of seismograms from four source orientations and the 

calculated shear-wave particle motions for an isotropic rockmass. The method is an 

extension of that of Chen et al. (1987) and can be applied to any data set where 

multiple seismograms with predictable isotropic shear-wave particle motions can be 

compared. 

Figure 3.2 is a flow chart that describes the idealized method used in picking the 

shear-wave polarization and time delay using four seismograms. The arrival time of 

the first direct shear wave may be obscured by inference from sensor resonance or the 

p5-wave (section 3.7), which could result in an incorrect pick of the direct shear-wave 

arrival. Seismograms with such problems are not considered when picking. Also, 

shear-waves of low amplitudes due to propagation near nodal directions are more 

susceptible to noise and interference. Such cases are easily identified both by 

examination of the seismogram and the calculated shear-wave amplitudes, and slightly 

different apparent polarizations and time delays to the other seismograms of the set. 

Polarizations and time delays are not measured on such seismograms. 

A problem typical to most shear-wave studies using natural seismic sources is that 

no splitting occurs in an anisotropic rockmass if the shear-wave motion due to the 

source is aligned with the either the qSl- or qS2-wave motion. Consequently, if the 

initial linear motion matched that expected for an isotropic rockmass, then it cannot 

be determined whether the linear motion is the qSl-wave polarization, the qS2-wave 
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Only consider seismograms where: 
1. The first shear-wave arrival is impulsive. 

2. The reflected pS-wave does not interfer with the arrival. 
3. Ringing does not laterfer with the arrival 

Calculate the amplitude and direction of shear-wave 
particle motion if no splitting occurs. 

Compare the initial shear-wave motion to the calculated 
polarizations and amplitudes for each seismogram. 

There are 2 possibilities: 

1. 
Polarization direction and amplitude 

agree with that calculated. No splitting 
has taken place. 

2. 
The particle motion is within 90 degrees 

to the calculated direction and the 
amplitude is approximately the vector 
component of the predicted amplitude. 
Splitting hastaken place. Measure the 

polarization. 

Compare the polarization directions of seismograms that show 
splitting to the particle motion directions of the seismograms 

that do not. There are 3 possibilities: 

2. 
1. 	 3. Polarization directions 

No seismograms show are in the same or exact 	No seismograms show 
splitting and particle opposite directions. 	 splitting and particle 

motion directions are not For seismograms that do 	motion directions are in  
all in the same or not show splitting, the 	the same or perpendicular 

perpendicular direction, 	particle motion is parallel 	 direction. 

or perpendicular to the 
polarization direction. 

Case 1 
	

Case 2 
	

Case 3 

No splitting has occurred.J 	The particle motions of 	
The particle motion 

the seismograms that do 	
directions are the 

not show splitting are 	I directions of qSl or qS2 or 

aligned with the qsl. or 	
no splitting has occurred. 

No time delay 

directions. 
qS2-wave polarization 

	L measurements can be 
made. 

Measure the time delays for all seismograms showing splitting by 
counting the number of sample points from the onset ofthe qSi arrival 
to where particle motion becomes non-linear. The time delays should 

agree to within one sample point. 

Figure 3.2: Flow chart describing the idealized method used in picking the shear-wave polarizations 
and time delays using multiple seismograms for the same raypath but different source radiation 
directions, and expected shear-wave particle motion is there is no splitting. 
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polarization, or that no splitting has occurred. In such cases no time delay 

measurement can be made. The orientation of the four source boreholes ensured that 

this situation is not possible for all four seismograms in a set. Rather, this 

coincidental alignment is easily identified when the initial linear motion matches that 

expected for an isotropic rockmass, and this linear motion is parallel or perpendicular 

to the polarization direction indicated by other seismograms in the set. Polarizations 

and time delays are then measured using the other seismograms. 

I summarize the method as follows: 

Discard seismograms for which the initial shear-wave arrival is disturbed by 

the pS-wave or sensor resonance. 

Find the consistent explanation for the shear-wave particle motion. The initial 

linear motion from the remaining seismograms should either: 

Agree with each other, and the amplitudes of the first linear motion are 

approximately the vector component of the predicted isotropic linear 

motion (accounting for seismograms where the particle motion predicted 

for an isotropic rockmass coincidentally agrees with the qSl- or qS2-wave 

particle motion direction.). The initial linear motion is therefore the 

polarization direction of an anisotropic medium. The duration of linear 

motion after the initial shear-wave arrival should also agree, and therefore 

indicate the time delay. 

Agree with their calculated isotropic linear motion in direction and 

amplitude, thereby indicating either an isotropic medium or propagation 

near singularity directions. 

Qualitative decisions are inevitably involved. Questions not quantitatively 

specified include how closely must polarizations agree to conclude that the 

seismograms show consistent splitting, and how non-linear the initial shear-wave 

motion must become to signify the qS2-wave arrival. To quantify every decision 

would involve a flow diagram too complex to be applied in practice and too 

customized to apply to other data sets. Also, the approximation of an isotropic source 

(section 3.4) will be less successful when applied to media of greater anisotropic 

strengths and so predicted amplitudes and directions will not closely match observed. 

The key concept is that a consistent and plausible explanation for the shear-wave 
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behaviour of all seismograms must be found. The idealized flow diagram acts as a 

guide. 

Consistent and plausible explanations were found for all but two of the 156 sets of 

seismograms I examined. The two exceptions may be due to anomalous geology 

along the raypaths or propagation near singularity directions where polarizations vary 

rapidly for small changes in propagation direction (section 1.8). 

3.6 Examples 

In this section I present examples to illustrate the method of picking polarizations 

and time delays. In doing so, I demonstrate the effectiveness of the method. 

Figure 3.3 presents the simplest example. The initial linear motion is 

approximately 038° for a duration of 5 sample points (100ts), and the amplitude of 

the motion is approximately the vector component of the predicted isotropic 

amplitude for all four seismograms. I therefore conclude that the direction of linear 

motion is the polarizations and the duration is the time delay. 

In Figure 3.4 the effects of ringing, and the pS-wave reflections on the linear 

motion can be seen by comparing the four seismograms. The linear motion differs 

only slightly due to the ringing (seismograms 2 and 3) and the pS-wave reflections 

(seismograms 1 and 3) from that of the only seismogram not suffering from 

interference (seismogram 4). Seismogram 4 indicates a polarization of approximately 

067° and a time delay of three sample points (60p.$). 

Figure 3.5 is an example of a raypath where no splitting occurred. The directions 

and amplitudes of initial shear-wave motion agree with that of an isotropic rockmass 

for all seismograms except for seismogram 4, where the shear wave was of very low 

amplitude due to propagation near a nodal direction. 

Figure 3.6 is the most complex comparison encountered. Seismogram 2 displays 

clear splitting with a polarization direction of approximately 092° with a time delay of 

eight sample points (160ts) and is the only seismogram that can be used to measure 

splitting. In seismogram 1, the predicted isotropic shear-wave motion is parallel to 

the qSl-wave direction and no splitting takes place. Similarly, in seismogram 3, the 

initial shear-wave motion is parallel to the qS2-wave. Lastly, seismogram 4 suffers 
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Figure 3.3: The four 3-component seismograms from source station 2 to accelerometer 13. The 
direction and approximate amplitude for an isotropic medium are displayed in a single particle motion 
diagram (PD) below the seismograms. PD's of the TS-TH plane are displayed below this single PD for 
the 0.25ts time intervals marked above the shear waves on the seismograms. The numbers above the 
PD's are the numbered time intervals and the relative multiplication factors for scale. Ticks on the 
PD's are every 0.02ts. Large and small arrowheads denote estimated onsets of the qSI- and 
qS2-waves, respectively. All four seismograms show clear splitting with approximately the same 
polarizations and time delays as expected. In seismogram 4 the shear-wave particle motion from the 
source was nearly the same as the qS2-wave polarization direction. Consequently the amplitude of the 
qSi-wave arrival is relatively low and the polarization is less clearly display. The p5-wave arrives after 
the direct shear waves for all four seismograms. 
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Figure 3.4: The four 3-component seismograms from source station 12 to accelerometer 14. Notation 
as in Figure 3.3. Vertical lines mark the calculated times of arrival of the pS-wave before the direct 
shear wave assuming an isotropic rockmass. The pS.wave arrival can be clearly seen on seismograms 
1,2, and 3 and masks the exact arrival of the qSJ-wave. The pS-wave arrival is not seen on seismogram 
4 because the initial P-wave propagation direction was near a nodal direction in the P-wave radiation 
pattern. Consequently, the p5-wave does not affect seismogram 4 and this seismogram is used to 
measure polarization and time delay. 
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Figure 3.5: The four 3-component seismograms from source station 8 to accelerometer 15. Notation 
as in Figure 3.3. Shear-wave motion in seismograms 1, 2 and 3 agree with the calculated motion. The 
direction of the raypath of seismogram 4 was near a nodal direction of the shear-wave radiation pattern 
and the corresponding the shear wave displays anomalous behaviour. Clearly for this raypath no 
splitting occurred. The pS-wave arrived after the direct shear wave. 
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Figure 3.6: The four 3-component seismograms from source station 8 to accelerometer 14. Notation 
as in Figure 3.3. The p5-wave arrives within four sample points (80j.ts) after the qSl-waves. 
Seismogram 2 shows clear splitting. Seismogram I shows no qS2-wave because the shear-wave motion 
due to the source was parallel to the qSl-wave polarization. Similarly, seismogram 3 shows no 
qSJ -wave. Seismogram 4 is from a raypath direction near a node of the shear-wave radiation pattern 
and suffers from ringing. 
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interference from ringing and is of low amplitude because the direction of propagation 

was near a nodal direction, so that it must be discarded. 

Thus I have made a consistent and plausible explanation for the shear-wave 

behaviour in these examples. Clearly picking using multiple seismograms rather than 

just one prevents the misinterpretation due to interference, and greatly reduces the 

chances of miss-identifying arrivals. Therefore results are much more reliable. 

3.7 The pS-wave and sS-wave Reflections from Outer Tunnels 

The controlled seismic sources all took place at the end of 40cm boreholes drilled 

at 450  to walls of the outer tunnel so that all sources were within 29.5cm to a tunnel 

wall. Therefore waves reflected off source tunnels are of similar path lengths to the 

direction waves. I will refer to the P-wave reflected off an outer tunnel as the 

pP-wave, and the P-wave reflected as a shear-wave as the pS-wave. Similarly, I will 

refer to the shear-wave reflected as a P-wave as the sP-wave and the shear wave 

reflected as a shear wave as a 55-wave. I will not consider the splitting of the 

reflected shear-waves as their amplitudes are too small for splitting to be identified 

reliably. The pP- and sP-waves arrive just slightly after the direct P-wave and are of 

no concern in this study. 

3.7.1 Evidence of the Reflected Waves 

I claim that the behaviour expected for p5- and sS-waves is displayed on the 

seismograms. The amplitudes of the p5-waves are expected to be substantially 

smaller than the direct shear waves if this reflected wave is to interfere with the direct 

shear waves. This is mainly due to the geometry of the raypaths, for the incident angle 

of the P-wave to the tunnel must be substantial for the arrival time of the pS-wave 

reflection is to be equal or less than those of the direct shear waves. The amplitudes 

of the PS-  and sS-waves are expected to be smaller than the direct shear waves for 

three other reasons. Firstly, damage to the rockmass due to excavation is greater 

nearer the tunnel walls (Carlson and Young, 1993, R. Everitt, pers. comm.). The 

reflected waves will have travelled through the most damaged rockmass and will have 

loss greater energy through scattering and absorption. Secondly, the energy of the 

incident F- and shear waves will be divided among the reflected waves. Thirdly, the 
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curved and rough tunnel walls tend to defocus seismic energy. Therefore the reflected 

waves are expected to be masked by the direct shear waves and their codas except for 

the p5-wave when it arrives before the direct shear waves. 

Figure 3.4 presents an example where the p5-wave is calculated to arrive 20 

sample points (400.ts) before the direct shear-wave arrival. I calculated the arrival 

times of the PS-  and sS-waves relative to the shear-waves assuming an isotropic 

rockmass with the average velocities of Vp=5.763km1s and Vs=3.376km1s (Talebi 

and Young, 1989), and that the tunnels were perfect cylinders. Low amplitude 

arrivals corresponding to the expected p5-waves are clearly seen on seismograms 1 

and 3. No such arrivals are seen on seismograms 2 and 4 because of propagation 

directions of the corresponding incident P-waves were near nodal directions of the 

P-wave source radiation patterns. In contrast, the p5-waves of the seismograms of 

Figure 3.3 are calculated to arrive after the direct shear-waves by up to 7 sample 

points (140j.is). p5-wave arrivals are not apparent on either the seismograms or 

particle motion diagrams, suggesting that these arrivals are masked by the larger 

amplitudes of the direct shear waves, as is also the case for the sS-waves in Figures 

3.3 and 3.4. These examples are typical and show the expected consistency for 

arrivals of reflected waves with substantially lower amplitudes than the direct shear 

waves. 

3.7.2 Effects of Reflected Waves on Picking Polarizations and Time Delays 

I suggest that interference of direct shear waves with reflected did not cause 

significant errors in picking polarizations because the p5-wave is usually less than a 

fifth of the amplitude of the first direct shear-wave arrivals. A pS-wave of one fifth 

the amplitude of the qSl-wave arrival would only alter the polarization measured by 

11.30 in the extreme case where the particle motion of the p5-wave is perpendicular to 

that of the qSl-wave. This extreme case is unlikely. The maximum difference in 

raypath lengths between the direct and reflected waves is only 0.6m and a maximum 

difference in arrival direction is 2.2°, assuming straight-line raypaths. With such 

similar raypaths the direct and reflected shear waves are likely to have similar 

polarization directions. The direct and reflected waves may therefore constructively 
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interfere so that the direction of initial particle motion will be that of the qSl-wave 

polarizations. 

I also suggest that interference did not cause significant errors in picking time 

delays because multiple seismograms could be compared in picking the qSl- and 

qS2-wave arrivals. Occasionally the pS-wave interferes with the first direction 

shear-wave arrival so judgement of arrival of the direction shear waves, making 

judging of the arrival of the direct shear-wave more difficult. In such cases, the 

measurements of polarization and time delay are made from other seismograms of the 

same set (section 3.5). The arrival of reflected waves between the qSl- and 

qS2-arrivals may end the linear particle motion from the qSl-wave, which would 

result in a miss-picked time delay. Fortunately the typically consistent agreement in 

time delays among the four seismograms in a set such as seen in Figures 3.3, 3.4, and 

3.6 suggests that the sS- and pS-wave amplitudes are not great enough to noticeably 

end the linear motion. This is supported by the agreement of hand-picked time delays 

to those determined by cross-correlation (section 4.6), where reflected waves will 

have only minor influences on results because of their small contributions to the shape 

of the seismograms. 

3.8 Conclusions 

This chapter presented an extension of the method of Chen et al. (1987) of 

hand-picking polarizations. This extended method requires that there are 

seismograms from different source orientations at the same source locations, and that 

the source mechanism is known so that the initial particle motion for an isotropic 

rockmass can be calculated and compared to the observed shear-wave motion. 

Conclusions specific to the Shear-Wave Experiment are: 

The Schmidt Hammer-nylon rod source produced the initial shear-wave 

particle motion expected from an infinitesimal point source with a direction 

parallel to the source borehole. 

Reflected waves do not cause significant errors in picking polarizations and 

time delays. 

A flow chart was presented for the general method of picking. However, 

qualitative judgements are inevitable. The main objective is to find a consistent 
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explanation of the shear-wave behaviour for all seismograms of the same raypath. 

The general conclusions from the use of this method are: 

I. The method allowed the clear identification of raypaths where no splitting 

occurred. 

Seismograms where the recorded shear-waves may have suffered from 

significant interference, for example ringing or reflections, can conveniently 

be ignored because other seismograms are available. 

The method prevents the ambiguity of not being able to determine whether a 

shear-wave particle motion is that of the qSl- or qS2-wave, or an unsplit shear 

wave when the predicted particle motion matches that observed. 

The comparison of several seismograms greatly improves reliability in picking 

polarizations and time delays. 
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4 	 Are We Measuring Time Delays? 

4.1 Abstract 

Comparison of hand-picked time delays from the Shear-Wave Experiment data set 

to those found by cross-correlation shows that the duration of linear particle motion 

after the qSl-wave arrival is approximately the same the time lag between the particle 

motion of the qSl-wave arrival and that expected for the qS2-wave. This consistency 

strongly suggests that both methods are indeed measuring time delays. However, the 

measurement of time delays by cross-correlation is reliable for this data set only when 

the predicted ratio of the amplitudes of the qSl- and qS2-waves are between 0.4 and 

2.6 and the cross-correlation coefficient is greater than 0.71. 

4.2 Introduction 

In the previous chapter I described how time delays may be hand-picked from the 

seismograms by measuring the time between the arrival of the first direct shear wave 

and end of the initial linear motion as viewed on the particle motion plots. This seems 

a reasonable method since: 

This method is consistent with theory. If a wave that corresponds with the 

qSl-wave has been identified, then the qS2-wave is expected to follow as long 

as the particle motion direction due to the source orientation does not 

correspond to the qSl-wave particle motion direction (section 3.5). 

Seismograms of the same set had the same duration of linearity when 

shear-wave splitting was displayed (section 3.6). 

The time delay values picked suggest a reasonable strength of anisotropy 

(section 8.8). 

However, the hand-picking of time delays must be approached with objectivity. 

The end of the initial linear motion of the shear-wave may be the qS2-wave arrival or 

the arrival of some other phase, or the start of significant scattered energy (Chen et al., 
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1987; Gledhill, 1993a). For the Shear-Wave Experiment data set, there may be 

concern if the end of linearity is due to sensor resonance or the arrival of a reflected 

wave (section 3.7.2). I suggest it to be desirable to employ a second method of 

measuring time delays not based on measuring the duration of linear motion after the 

qSl-wave. The results of the two methods can then be compared for consistency to 

assess the success in picking the time delays. 

The other property of shear-wave splitting that may be conveniently used to 

measure time delays is the similarity in waveform shapes between the two shear 

waves. Assuming the effects of the different wavelengths and rates of attenuation 

between the two shear waves to be small, the qS2-wave should display the nearly 

identical particle motion as the qSl-wave when the two shear-waves are displayed on 

separate seismograms. Therefore time delays can be measured by comparing the 

particle motion of seismograms to find the time lag of qS2-wave seismograms relative 

to qSl-wave seismograms. 

In this chapter I demonstrate that the lag between the qSl- and qS2-waveforms 

agrees with the hand-picked duration of linear motion after the qSl-wave arrival. In 

preparation I show that the time lag cannot be picked by visual comparison, and I then 

describe the use of cross-correlation for quantitative comparison. Throughout this 

chapter I will only use the fifty-three sets of seismograms from the Shear-Wave 

Experiment data set that display shear-wave splitting and I assume I picked the 

polarizations successfully. 

4.3 Visual Comparison 

The most obvious and common approach to confirming time delays is to rotate the 

two seismograms containing the shear-wave energy, in this case TS and TH, so that 

the qSl-wave is solely one seismogram while the qS2-wave is solely on the other. 

The particle motion directions of the qSl- and qS2-waves are not strictly 

perpendicular nor mutually strictly perpendicular to the source-receiver directions, but 

this is a valid approximation for weak anisotropy, as expected for the intact rockmass 

of the 420-Level. 

Figure 4.1 are the seismograms rotated into the qSl- and qS2-waves using the 

assumptions described above for the same raypath as the seismograms in Figure 3.3 



Chapter Four: Are We Measuring Time Delays? 
	

50a 

2.5mg 
-U- 

1 2 

3 

qSJ 
	 qSI 
	

M~V~ 

Figure 4.1: The same four 3-component seismograms as in Figure 3.3 except the TS and TH channel 
have been rotated into the qSl and qS2-waves using the hand-picked polarization angle. 
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(The particle motion diagrams for these seismograms are not included because they 

are the same as those of Figure 3.3 with a 038° rotation.). The seismograms do not 

look at all similar. A lack of similarity may be expected after the first two cycles 

because, of the lower amplitudes of the shear-waves after the two cycles and 

interference from reflected waves, coda, sensor resonance, and possible head waves 

from the source tunnel. Visually comparing only the first cycles on the qSl- and 

qS2-seismograms does not produce a clear conclusion as to the similarity. Because of 

the narrow band width of the seismograms (section 2.6), the character of each 

waveform appears uniform throughout and it cannot be visually judged whether any 

agreement between the first cycles of the qSl- and qS2-seismograms is meaningful or 

just a coincidence. 

Other problems with visual comparison are: 

It is visually extremely difficult not to be influenced by the rest of 

seismograms when comparing only two cycles. 

The amplitudes of the qSl- and qS2-waves are different. This must be 

mentally accounted for during visual comparison. 

Attention is drawn to the visual differences in the shape of the two waves 

rather than similarities. A small extra peak in one of the two shear waves 

greatly influences opinion to conclude that the two waves are not similar even 

if the peak is small compared to the amplitudes of the two waves. Such small 

differences may result when the rotation into the qSl- and qS2-wave is not 

perfect. 

Visually comparison is very subjective and human judgement inconsistent. 

I conclude the method of visual comparison is not useful for judging the time lag 

for the Shear-Wave Experiment data set. 

4.4 Cross-correlation 

Similarities in the shapes of the qSl- and qS2-seismograms can be quantitatively 

compared using cross-correlation. This method has the benefits of being simple, 

robust and more sensitive than visual comparison to the shape of the wave. I now 

describe the use of cross-correlation to find time delays. 

,4. DIIj 

74 
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The normalized cross-correlation function between two time series is defined as: 

XN' 
	 (4.1) 

where X is the cross-correlation coefficient, x i  and yj  are data points from two time 

series, and N is the normalizing factor defined to be: 

N= [4I; 	(4.2) 

The cross-correlation coefficient X is a measure of agreement of the shapes of the 

two time series. Identical time series result in =l, two time series where one is the 

exact opposite of the other results in - 1, and completely random time series gives 

xO. The function does not depend the amplitude of the time series. If the value of a 

time series is doubled at every point of the series, it would still result in the same 

coefficient when correlated with the same seismogram as before. 

The general method of calculating time delays using cross-correlation is as 

follows: 

Rotate the seismograms (in this case, the TS and TH component seismograms) 

so that one seismogram contains the qSl-wave and another contains the 

qS2-wave. 

Extract the section of the time series containing the qSl-wave from the 

qSl-seismogram. 

Cross correlate the extracted section of the qSl-seismogram with all equal 

length sections of the qS2-seismogram starting from the time of the qSl-wave 

arrival. 

The basic assumption is that the extracted portion of the qSl-seismograms will 

correlate highest with the qS2-wave because of the similar pulse shapes. The time lag 

between the start time of the extracted portion of the qSl-wave seismogram and the 

start time of the qS2-wave seismogram giving the maximum value of X is then the 

time delay. This general method has been commonly applied in calculating time 

delays (Gledhill, 1993a; Yardley and Crampin, 1993; Liu et al., 1993a) and is part of 

many algorithms for the automatic estimation of polarizations and time delays such as 
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the Maximum Correlation Method (MacBeth and Crampin, 1991) and the Analytical 

Synchronous Source Geophone Rotation (Zeng and MacBeth, 1993). 

4.5 Practical Considerations and Refinements 

Cross-correlation is based on comparing two time series point by point. Two time 

series may be identical, sampled at a frequency greater than the Nyquist frequency but 

still not result in a cross-correlation coefficient of X=I because the exact points where 

the seismograms were sampled do not coincide. It is therefore desirable to use the 

shortest possible sample interval when cross-correlating two seismograms. A short 

sample interval also helps in preventing the maximum cross-correlation coefficient 

from occurring not at the arrival of qS2-wave but some other part of the seismogram 

such as the coda that coincidentally has a similar shape to qSl-wave. This is known 

as cycle skipping (Yardley and Crampin, 1993), to which narrow band data is 

particularly susceptible. Cycling skipping is less likely to occur with a shorter sample 

interval as the greater density of sample points outlines the shape of the seismogram 

in greater detail. Cross-correlation coefficients between seismograms did not increase 

significantly once the seismograms were resampled to one sixteenth the original 20j.ts 

sample interval (1.25.is) using the Sampling Theorem (section 5.3). All 

cross-correlation coefficients were determined using this shorter sample interval. 

A second problem with cross-correlation is determining the length of the time 

interval used in comparison. A small time interval of the qSl-seismogram, say of 

only one cycle, is likely to cross correlate well with many sections of the 

qS2-seismogram, giving spurious results from cycle skipping. A large interval may 

contain significant particle motion not due to a direct shear wave. It is obvious from 

examining the seismograms in Figures 3.5 and 3.6 that the particle motion of the shear 

waves seriously differs from that of the qSl- or qS2-wave after two cycles. This is 

equivalent to 385 sample points (480is) and this was the interval length used. 

Yardley and Crampin (1993) also used two cycles for cross-correlation to find time 

delays for the same reasons. 

The first attempt at using cross-correlation to determine time delays did not result 

in values that agreed with hand-picked values. Investigation showed that the 

cross-correlation method had failed for three reasons: 
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Cycle skipping. 

Low resolution of both qSl- and qS2-seismograms due to low amplifier 

settings for some triaxial accelerometers. 

Interference from sensor resonance on some seismograms. 

I added the following refinements into the cross-correlation method to help 

prevent these problems: 

The seismograms were rotated such that both the qSl- and qS2-wave must 

have positive first motions. This could be done because the particle motion 

directions for an isotropic rockmass could be calculated. The algorithm then 

sought the maximum (positive) coefficient rather than the maximum absolute 

coefficient. This prevents finding time lags due to a high correlation of the 

qSl -wave to particle motion opposite of that possible for the qS2-wave. 

A minimum time delay of sixteen sample points (20.ts) was assumed. This 

prevents finding zero time delays when the qSl- and qS2-waves were not 

perfectly separated onto two seismograms. 

Consideration of the theoretical ratio of the amplitudes of the qSl-wave to the 

qS2-wave. This was calculated for each seismogram using the shear-wave 

particle motion direction calculated for an isotropic rockmass and the 

hand-picked polarization. Values that differ greatly from unity indicate that 

either the qSl- or qS2-wave will have a very small amplitude relative to the 

other and is therefore more susceptible to interference. 

The time delay search was limited to a maximum of 129 sample points 

(1 8Ojts) to prevent cycle skipping. Only one of the fifty-three splitting 

measurements was hand-picked to have a time delay greater than this value so 

that this value of nine sample points should only rarely cause miss-picks. 

This fourth condition restricts what is measured using cross-correlation. The 

dominant cycle length of 240 I.Ls is greater than this maximum delay of 1 8O.ts. With 

this restriction, cross-correlation finds the time lag between the first two cycles of the 

qSl-seismogram and the first two cycles of the perpendicular particle motion isolated 

on the qS2-seismogram. By comparing the results of cross-correlation with the 

hand-picked values of time delay, it is being ascertained whether the end of the linear 
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particle motion after the qSl-wave arrival is the beginning of perpendicular particle 

motion similar to that of the first two cycles of the qSl-seismogram. 

4.6 Results and Comparison of Techniques 

I now compare the hand-picked time delays to those measured using the 

cross-correlation method with the refinements described in the previous section. I 

present a summary of this comparison in Table 4.1. 

From this comparison, it was determined that if; 

0.4>S>2.6, where Sr  is the ratio of the predicted amplitudes of the qSl-wave 

to the qS2-wave, and; 

The cross-correlation coefficient x>0 . 71 ; 

The maximum cross-correlation coefficient was not at the maximum allowable 

time lag; 

then for most sets of four seismograms the time delays determined by 

cross-correlation agree with the hand-picked values. 

More specifically, using these parameters thirty-six of the fifty-three time delays 

determined by cross-correlation were within thirty-two sample points (40.ts), and on 

average 14.7 sample points (18.4p.$), to the hand-picked time delays. For all sets of 

four three-component seismograms, the time delay was taken from the 

three-component seismogram resulting in the highest cross-correlation coefficient and, 

if available, within the acceptable amplitude ratio. The acceptable range for 

parameters Sr  and X were determined by comparison with the hand-picked time delays 

which biases comparison towards agreement. However, the resulting acceptable 

ranges for Sr  and X were reasonable and the boundaries between acceptable and 

unacceptable were distinct. This consistency suggests that these boundaries are 

essentially determined by the characteristics of the seismograms rather than arbitrarily 

chosen. The time delay for Station 12 to Accelerometer 12 was hand-picked to be 

eleven sample points (220p.$) and was therefore outside the allowable range of time 

delays from cross-correlation set to prevent cycle skipping. 

In fifteen cases, none of the four seismograms in a set were within the parameters. 

These cases were usually due to a coincidence of all four seismograms having either 

lack of qSl- or qS2-wave energy, noise, or ringing. Lack of qSl- or qS2-wave energy 
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Table 4.1: Comparison of Hand-Picked and Cross Correlated Time Delays 

Raypath 
Station to 
Acceler- 

meter 

Number of Sample 
Points Difference 

Between Time Delays 
(1 .25ts per point) 

Cross-correlation 
Coeffecient 

Calculated Ratio of 
the Amplitudes of the 

qSJ-wave to 
qS2-wave 

x 
Maximum 

Coeffe- 
cient at 

Boundary 
of Accept- 
able Time 

Delays 

Para- 
meters 
Within 
Accept- 

able 
Range 

At Least 
One 

Parameter 
Outside 
Range 

x 
Coeffe- 

cient 
Outside 
Range 

x 
Ratio 

Outside 
Range 

1-2 22 0.870 1.66 

1 -5 36 x 0.691 0.58 

1-9 10 0.829 0.59 

1 - Il 25 0.822 2.23 

1 - 13 3 0.749 0.40 

1 - 15 23 0.969 1.68 

2-2 8 0.767 1.41 

2-4 10 0.943 0.47 

2-5 31 0.853 2.25 

2-9 8 0.945 1.13 

2-11 30 0.722 1.01 

2-13 16 0.817 0.52 

2-15 7 0.930 1.39 

3-4 0 0.721 1.38 

3 - 5 64 0.878 0.62 x 

3 - 7 4 x 0.523 x 16.47 

3-10 4 0.741 1.81 

3 -  14 96 x 0.628 1.36 x 

4-2 16 0.898 x 0.28 

4-7 22 0.932 1.77 

4 - 12 96 0.880 x 3.79 x 

5-4 18 0.915 2.58 

5_13* 69 0.767 1.55 

6-13 1 96 x 0.619 x 0.32 

6 -  14 80 0.886 x 2.89 x 

7 - 2 96 x 0.570 1.30 x 

7-8 8 0.789 1.94 

7-9 5 0.799 0.84 

7- 13 6 0.795 0.47 

7 - 14  12 0.930 0.50 

8-8 11 0.948 2.10 

8-13 24 0.845 2.17  
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Raypath 

Station to 
Acceler- 

meter 

Number of Sample 
Points Difference 

Between Time Delays 
(1 .25.ts per point) 

Cross-correlation 
Coeffecient 

Calculated Ratio of 
the Amplitudes of the 

qSl-wave to 
qS2-wave 

x 
Maximum 

Coeffe-
dent at 

Boundary 
of Accept-
able Time 

Delays 

Para- 
meters 
Within 
Accept- 

able 
Range 

At Least 
One 

Parameter 
Outside 
Range 

x 
Coeffe- 

cient 
Outside 
Range 

x 
Ratio 

Outside 
Range 

9-8 0 0.794 1.94 

9-13 8 0.821 0.49 

9 -  14 32 0.727 1.47 

9-15 8 0.814 0.99 

10-8 24 0.817 1.09 

10-9 22 0.921 1.26 

10-12 19 0.880 x 0.32 

10-13 3 0.901 1.99 

10-14 25 0.953 1.47 

10-15 21 0.966 0.74 

11-12 25 x 0.396 0.68 

11-14 17 0.942 1.13 

11-15 31 0.929 1.68 

12-8 32 0.855 1.19 

12-9 96 x 0.654 x 3.51 x 

12 - 12** 70 0.893 0.60 

12-13 11 0.918 x 12.77 

12-14 19 0.917 2.08 

13-10 111 0.924 X 3.44 

13 - 15 1 0.993 0.91 

The minimum acceptable cross-correlation coeffecient was 0.708 and the acceptable ratios of 
amplitudes was between 0.386 and 2.592. Cross-correation was restricted to finding time 
delays of greater than 20ss and less than 180lis. The seismograms used are the one 
seismogram of each set of four with the largest cross-correlation coeffecient and, if available, 
was within the parameters. 
* Cross-correlation method failed 
** Time delay was hand-picked to be 220jss which was 4011s beyond the maximum time delay 

limit permitted in cross-correlation 
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was the most common reason and in five of these fourteen cases, the ratio S was 

outside the necessary parameters for least three of the four seismograms. There was 

only one case where the time delay from cross-correlation differed by more than 

thirty-two sample points (4011s) from the hand-picked value but was also within the 

parameters. For this raypath, there was significant ringing after the first shear-wave 

arrival on the only seismogram of the four within parameters. 

These results show that time delays measured using both methods are consistent 

for most raypaths, and a clear explanation exists for raypaths where the results of the 

two methods differ. It is therefore consistent with theory that both methods are 

measuring time delays. 

4.7 Precision in Measuring Time Delay 

In the previous section I argued that the measuring the duration of linearity after 

the qSl-arrival, and the comparison of wave shapes to find a time lag, both measured 

the same parameter of time delay. I now exploit this result to calculate an 

approximate precision in picking time delays as is necessary in determining the 

strength of the anisotropy in the rockmass (section 8.5). The fundamental assumption 

is that the different values of time delays measured by both methods are due to a limit 

in measuring precision common to both methods rather than a systematic difference 

between the two methods. I will only consider the time delays values where the time 

delays as measured by both methods were judged to agree, giving thirty-five pairs of 

time delays values for comparison. I will use the original sample interval of 20ts. 

Below are the statistics for the differences between the time delays values 

determined by the two methods for the thirty-five pairs of measurements: 

Average Difference: 	0.92 sample points (1 8.4s) 
Standard Deviation: 	0.66 sample points (13.2.ts) 
Maximum Difference: 	2.00 sample points (40.Op.$) 

For sixteen of these thirty-five sets of raypaths, the parameters for the 

cross-correlation method were within acceptable ranges on more than one of the four 

seismograms in a set. The different in the measured time delays using 
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cross-correlation for each of these sixteen raypaths can also be compared. This gives 

the following: 

Average Difference: 0.95 sample points (l9.Oj.is) 
Standard Deviation: 0.72 sample points (14.4 jis) 
Maximum Difference: 2.82 sample points (56.3 jis) 

These values are virtually the same as found by comparing delays from hand-picking 

and cross-correlation. This supports the assumption that both methods have the same 

precision in picking. It is likely that the precision is determine mainly by inference 

from reflected waves, sensor resonance, noise, and possible head waves from source 

tunnels. The 2cm separation between the furthest two accelerometers within a triaxial 

accelerometer can cause errors of up to 6ts. 

I now present two models of the distributions in measurement precision to explain 

these statistics. The first model is that time delays are measured to within a set 

interval about the true time delays and that the measured time delay is random within 

this interval. This model is therefore that of a uniform distribution over an interval. I 

propose this model because I find that there exists a distinct interval on particle 

motion diagrams within which linear motion ends, but the exact instance cannot be 

determine due to interference. The second model is that the measured time delays are 

of a normal (Gaussian) distribution about the true time delays. This distribution 

implies that there is no limit to the difference between measured and true time delays, 

but larger differences are less likely as would be expected. 

I numerically found the interval length for the uniform distribution and the 

standard deviation for the normal distribution that best predicted the average 

difference and standard deviation between the measured time delays. In doing this, I 

took into account that time delays were hand-picked to the nearest sample point and 

delays picked by cross-correlation to one-sixteenth of a sample point. The predicted 

statistics from the two methods are compared with those of the data in Table 4.2. The 

predicted statistics of uniform distribution of interval length 2.8 sample points, and 

the normal distribution with a standard deviation of 0.82 sample points both match the 

data closely. Most likely the true distribution is a compromise between the two 

models. 
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Table 4.2: Comparison of Statistic from Time Delay Measurements to 
Uniform and Normal Distributions 

Distribution Comparison of Time Delay 
Measurements 

(Number of Sample Points, 
1 sample point = 20pis) 

Average Standard 
Deviation 

From Comparison of Data 0.92 0.66 

Uniform 0.93 0.66 
Interval = 2.8_  sample _points  

Normal (Gaussian) 0.93 0.70 
Standard_DeviationO.82  

I suggest that the difference in true and measured time delays are usually less than 

1.0 sample points (20.0 j.ts). I would expect time delays are hand-picked to within 1.0 

sample points to the true time delay because the change from linear motion of the 

qSl-wave to motion due to both shear waves is seen to take place on particle motion 

diagrams within two sample points (40.0.ts) (Figures 3.3, 3.4, and 3.6). This is 

supported by the uniform and the normal distributions, which predict that only 

twenty-nine per cent and twenty-three per cent of time delay measurements, 

respectively, would differ from the true delay by more than 1.0 sample points. 

This analysis also shows that a shorter sample interval would not improve the 

precision in hand-picked time delays appreciably. It would seem beneficial to 

resample the seismograms to a shorter sample interval when hand-picking time delays 

because the end of linear motion might be identified to a finer graduation of time. 

The uniform distribution predicts that the average difference between picked and true 

time delay for resampled seismograms would remain unchanged at 0.70 sample 

points. The normal distribution predicts that this average would improve only slightly 

from 0.69 sample points to 0.59 sample points. Therefore, the limit to the precision in 

measurement is large enough that a shorter sample interval would not significantly 

improve the precision in hand-picking time delays. 
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4.8 Conclusions 

I have presented a study to assess the validity and precision of time delay 

measurements. I showed that visual comparison could not be used effectively to 

measure time delays, and I introduced cross-correlation as a practical, quantitative 

method. I conclude that the consistency of the time delays measured by cross 

correlation with hand-picked delays suggests that both methods are indeed measuring 

time delays. The effective use of cross-correlation required the refinements of: (1) 

rotations of the qSl- and qS2-seismograms so comparison results in a positive 

cross-correlation; (2) imposing a minimum time delay greater than zero; (3) rejecting 

measurements where one wave has a significantly lower amplitude than the other; (4) 

limiting the time delay search to a maximum of three-quarters of a cycle. These 

refinements were necessary because of the limited band width of the seismic signals 

and the low resolution of some seismograms, and to overcome the effects of 

interference from reflections, noise, sensor resonance, and possible head waves. From 

the results of statistical modelling, I argue that the time delays of the Shear-Wave 

Experiment data set are usually measured to within 1.0 sample points (20ts) to the 

true time delay. Statistical modelling also shows that reducing the sample interval of 

the seismograms would not significantly improve the precision in hand-picking time 

delays. 
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5 	 Temporal Changes 

5.1 Abstract 

Only three of the 728 sets of repeated raypaths of the Shear-Wave Experiment 

data set displayed temporal changes presumed to be due to the tunnel excavation. 

These three were the only raypaths that travelled within 3.Om of the Mine-by Tunnel 

(of diameter 3.5m) and for which the minimum separation between the raypaths and 

the tunnel decreased with excavation. Temporal changes are due to the advancement 

of the zone of excavation disturbance, implying that Extensive-Dilatancy Anisotropy 

(EDA) is a significant fabric of the in situ rockmass, although this result is speculative 

because of the limited number of raypaths showing temporal changes. The excavation 

appears to create a crack set with orientations governed by the in situ stress field or the 

primary layering. 

5.2 Introduction 

Section 2.12.2 summarized past studies of in situ anisotropy in granite and 

granodiorite. In summary, in situ anisotropy might be caused by EDA-cracks, 

fractures and cracks, mineral alignment, and intragranular cracks whose orientations 

are governed by mineral alignment, but there has never been an unambiguous 

interpretation as to the cause of in situ anisotropy. Any observations of changes in 

shear-wave splitting that can be solely attributed to changes of stress are evidence that 

EDA-cracks are at least partially responsible for anisotropy in the rockmass. Also, 

observations of changes are of importance in evaluating the use of shear-wave 

splitting as a new technique for parameterizing the stress effects and damage to a 

rockmass due to excavation and for the long term non-destructive monitoring of 

nuclear waste repositories. 

I demonstrate that the effects of tunnel excavation detected using shear waves are 

limited to within the known boundary of the zone of excavation disturbance of one 
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diameter from the Mine-by Tunnel. I begin by developing the method of 

cross-correlation to detect temporal changes. Following this, I introduce progressive 

particle-motion diagrams as the preferred technique for displaying shear-wave motion 

in the visual search and interpretation of temporal changes. Using these two 

techniques, I identify three situations that result in apparent temporal changes, the 

most important of which are temporal changes due to the advancement of the zone of 

excavation disturbance. 

I define a temporal change for this analysis as a change in the seismic signal for a 

repeated raypath due to some change in the rockmass through which the seismic 

waves propagated. I will confine my examination to the initial shear-wave arrivals 

because changes in shear-wave splitting should be very sensitive to any changes in the 

rockmass (Crampin, 1993b) and to avoid effects of randomly scattered energy. I will 

use the term excavation-induced anisotropy to refer to the anisotropy within the 

rockmass where excavation has created anisotropic fabrics or altered the in situ 

anisotropy. 

5.3 Reproducibility 

Sections 5.4 and 5.6 discuss the methods of visually and numerically searching for 

temporal changes. The level of reproducibility of seismograms from repeated 

raypaths must be established before any such search. Only if the changes in 

seismograms are beyond those expected from lack of reproducibility can the changes 

be attributed to changes in the rockmass. This conservative approach is necessary to 

avoid falsely identifying temporal changes where none exist. In this section I quantify 

the reproducibility using cross-correlation. 

The description for cross-correlation to find time delays (section 4.4) was for 

comparing single component seismograms. The cross-correlation coefficient for a 

three-component seismogram is given by the equation: 

N' 
	 (5.1) 

where X is the cross-correlation coefficient, x, and y, are the three component 

vectors expressed in Cartesian co-ordinates from two seismograms of equal length. N 

is the normalizing factor defined to be: 
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N= [(x1x)(Zyy1)]; 	 (5.2) 

It is desirable to use the shortest possible sample interval when cross-correlating two 

seismograms because of non-coincidental sampling of the two otherwise identical 

time series (section 4.5). In practice a limit is reached where cross-correlation does 

not improve with further reduction is the sample interval. This limit is due to 

in-coherent noise on the seismograms. 

I attempted to find this limit of the sampling interval using the repeated raypaths 

from Orientation 1 of Source Station 1 to Triaxial Accelerometer 2 and use the results 

to quantify reproducibility. Figure 5.1 compares the three component seismograms 

for this raypaths as recorded from the first recording sequence of May 01, the second 

sequence of May 06, and the final sequence of August 25. The three sets of 

seismograms are nearly identical suggesting that reproducibility is extremely good. 

This level of reproducibility is typical. The seismogram from the first recording 

sequence was used as the reference seismogram and was cross-correlated with all 

thirteen seismograms. This was repeated five times where each time the sampling 

interval was reduced to half using the Sampling Theorem, resulting in a final 

reduction of the sampling interval to 0.625xs, or 1/32 the sampling interval in 

recording, which I will refer to as a resampling factor of 32. The first 480.ts of the 

shear-wave arrival, corresponding to two wavelengths of shear wave, was used in the 

cross-correlation. The reference seismogram was time shifted by up to half the 

original sample interval (±lOps) to find the maximum cross-correlation value. 

The results are presented in Table 5.1. The table clearly shows the 

cross-correlation coefficients increased from the previous sampling rate even at a 

resampling factor of 32 so that the limit to the sampling rate was not found. A 

resampling factor of 32 is too computationally slow to be used in practice and resulted 

in cross-correlation coefficients only slightly greater than for a factor of 16 (! ~0.0001). 

Therefore a resampling factor of 16 is adequate and is practical in application. 

At this new sampling interval of 1 .25j.ts the minimum cross-correlation coefficient 

is 0.9585, and the second smallest is 0.9841. These are extremely high values 

showing that reproducibility was excellent throughout the Shear-wave experiment. 
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May 01 	1 2.5m 
II 

TS 	 I 

May 06 

TS 

TM 
	 TH 

Aug. 25 

TS 

Figure 5.1: Three seismograms from the first, second, and final thirteenth recording sequences for the 
raypath from Source Station 1, Orientation 1, to Triaxial Accelerometer 2. 
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Table 5.1: Cross Correlation Coeffecients for raypath from Source Station 1 
Orientation 1 to Triaxial Accelerometer 2. 

Recording 
Sequence 

Date   Resampling_Factor 

1 2 4 8 16 32 

I May 01 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 

2 May 06 0.963 8 0.9964 0.9964 0.9965 0.9967 0.9967 

3 May 11 0.9959 0.9959 0.9959 0.9960 0.9960 0.9960 

4 May 11 0.9934 0.9935 0.9935 0.9935 0.9941 0.9941 

5 May 14 0.9887 0.9887 0.9961 0.9961 0.9961 0.9962 

6 June 01 0.9660 0.9946 0.9946 0.9946 0.9951 0.9951 

7 June 05 0.99 19 0.9920 0.9966 0.9969 0.9974 0.9974 

8 June 15 0.9725 0.9911 0.9911 0.9932 0.9932 0.9932 

9 June 19 0.9839 0.9840 0.9841 0.9849 0.9850 0.9851 

10 June 30 0.9823 0.9825 0.9897 0.9897 0.9897 0.9898 

11 July 22 0.9777 0.9777 0.9841 0.9841 0.9841 0.9842 

12 Aug. 04 0.9855 0.9858 0.9859 0.9859 0.9861 0.9862 

13 Aug. 25 1 0.9272 1 0.9576 1 0.9579 0.9580 0.9585 0.9586 

The coefficient generally decreased as the experiment progressed. It is unknown 

whether this is due to a change in the performance of the Schmidt hammer, nylon rod, 

or microseismic system, or changes in the rockmass along the raypath. There is a 

significant decrease in cross-correlation coefficients starting from Recording 

Sequence 9 (June 19) and another from Recording Sequence 12 (August 04). I do not 

have an explanation for these sudden decreases in the reproducibility. 

5.4 Effects of Amplitude 

The data presented in Table 5.1 was for a raypath where the system gain factor 

was a constant 148 throughout the experiment, resulting in an approximately constant 

maximum amplitude of 220 units for all recording sequences. Unfortunately, the 

system gains of seven of the triaxial accelerometers were not kept constant but set to 

the lower gain setting of approximately 16 for most of the recording sequences. Path 

length and source orientation both affect seismogram amplitudes and consequently the 

amount of contamination by noise. The cross-correlation coefficient for seismograms 
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of different amplitudes must be considered before the cross-correlation method can 

confidently be employed to search for temporal variations. 

To demonstrate the effects of low amplification, I present two three-component 

seismograms from the same source-receiver raypath from the first (May 01) and 

second (May 06) recording sequences (Figure 5.2). The gain settings for the first and 

second seismograms were approximately 160 and 16, respectively. The second 

seismogram is appreciably contaminated by system noise unlike the first seismogram. 

This takes the forms of a less smooth seismogram that contains small, sudden, low 

amplitude changes. The effects of noise are more easily seen on the particle motion 

diagrams. The diagrams for the latter seismograms show a less linear initial 

shear-wave motion and the curve connecting sample points is less smooth. The 

overall visual impression of noise is that the particle motion diagrams appear jittery 

but it is visually apparent that the general particle motion is only subtly different for 

both seismograms. 

I evaluated the effects of amplitude upon reproducibility by cross-correlating the 

initial shear-wave arrivals of a variety of identical source-receiver raypaths chosen to 

present a large range of amplitudes. I used pairs of seismograms from the first and 

last recording sequences to account for any long term changes in reproducibility. The 

seismograms were resampled to sixteen times the original sampling rate. Results 

(Table 5.2) suggest that cross-correlation coefficients remain above 0.94 unless at 

least one of the pairs of seismograms has an amplitude of less than 60 units so that the 

value of 0.94 may be used as a cut-off value to search for temporal changes. This also 

suggests that random noise and poor resolution are appreciable for seismograms of 

amplitudes less than 60 units. Table 5.2 gives only a limited number of example. In 

practice a cut-off value of 0.90 was used as it showed to be the critical value when 

coefficients from all raypaths were examined. Therefore below 60 units, the 

seismograms resulting in a cross-correlation coefficient less than 0.90 must be 

examined visually to assess whether the low value truly due to a raypath effect or 

merely noise. 

The window length using in cross-correlation for the data of Table 5.2 was 240ts 

(one cycle) as opposed to the 480 p.s window used in Table 5.1. The shorter time 

interval was necessary to increase the sensitivity of the cross-correlation coefficients 
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Figure 5.2: Two three-component seismograms from the same source-receiver raypath. The upper 
seismogram is from the first recording sequence of May 01, as is marked on the seismogram. The 
lower seismogram is from the second seismogram (May 06). The maximum amplitudes of the first 
half-wavelength (240j.is) of the shear-waves are stated on the diagram. The time interval of 2.5 
milliseconds is marked. The particle motion diagrams below the seismograms are in the TS-TH plane 
and correspond to the five windows marked above shear-waves. Each motion diagram is for an interval 
of 2401.15. Sample points are marked by ticks. The large and small arrowheads mark the arrival of the 
qSl-wave and qS2-wave respectively. The lower seismogram was recorded with a gain setting 
approximately one-tenth that of the upper. 
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Table 5.2: 	Typical Cross-correlation Coeffecients for 
Shear-wave of a Variety of Different Amplitudes. Each set of 
shear-wave compared were for the same source to receiver 
raypaths where one seismogram was from the first recording 
seauence (May Ofl and the other from the last (August 25). 
Maximum 	 Shear Waves _Amplitudes _of Cross-correlation 

coeffecient Larger Amplitude Lesser Amplitude 

154.7 140.0 0.9966 

88.6 86.6 0.9946 

425.2 384.4 0.9938 

84.7 81.3 0.9878 

81.7 68.9 0.9853 

195.9 17.8 0.9844 

383.9 31.4 0.9796 

70.9 66.4 0.9761 

47.1 28.2 0.9712 

44.0 41.7 0.9695 

298.6 31.5 0.9654 

306.0 247.1 0.9619 

422.0 39.6 0.9609 

182.9 146.6 0.9445 

105.8 7.7 0.9440 

71.9 68.8 0.9429 

91.9 9.1 0.9425 

100.8 39.0 0.9357 

104.6 54.5 0.9214 

69.4 4.8 0.8842 

42.0 32.4 0.8790 

310.8 20.4 0.8539 

200.5 15.3 0.8245 

20.3 16.7 0.7963 

38.0 7.4 0.5931 

4.4 2.2 0.3758 

31.9 1 	2.2 0.2274 
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to changes in the initial shear-wave arrivals. Comparison of the results of Tables 5.1 

and 5.2 shows no appreciable difference of cross-correlation coefficients due to the 

shorter window length when there are no temporal changes. 

5.5 Displaying Data for Visual Examination 

In this section I describe my method of displaying data for the visual search of 

temporal changes. The visual search is an arduous task. It involves the comparison of 

seismograms and particle motion diagrams of identical source-receiver raypaths from 

all recording sequences. I estimate the total number of seismograms for visual 

examination to be about 7000. For each seismogram and corresponding set of particle 

motion diagrams, the initial shear-wave motion has to be identified, the effect of noise 

qualitatively assessed, and the particle motion compared to the other seismograms 

from the same source-receiver raypaths. Errors in human judgement are inevitable 

and the time involved makes such a method impractical. It is therefore desirable to 

minimize the amount of data needed for examination. 

I did this by first picking the initial shear-wave arrivals for one complete set of the 

728 source-receiver raypaths. The first arrival of a source-receiver raypath from any 

recording sequence could then automatically be found to within one sample point 

(20j.ts) by cross-correlation with the reference set. Temporal changes and general 

shear-wave behaviour are far easier to examine on particle motion diagrams than 

seismograms. I will only consider the TS-TH plane of the dynamic TS-TH-R 

co-ordinate system (section 3.3) as the shear-wave motion is almost entirely confined 

to this plane. Static co-ordinate systems would require the examination of more than 

one plane and hence be much slower. 

Figure 5.3 displays a set of particle motion diagrams for the same raypath as used 

to assess reproducibility (section 5.3). The particle motion diagrams on the TS-TH 

planes are displayed horizontally from left to right. The initial shear-wave arrival is 

the third sample point of the second particle motion diagram in the row. The first 

particle motion diagram of each row shows the motion before the shear-wave arrival 

and aids in interpreting the effect of noise and interference. The fourth diagram is the 

shear-wave motion well beyond any expected time delay and aids in interpreting the 

general shear-wave behaviour. The second and third diagrams give the initial 
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Figure 5.3: The shear-wave motion for the same raypath as in Figure 5.2 displayed on particle motion 
diagrams of the TS-TH plane. The corresponding diagrams for all recording sequences are displayed 
chronologically down the page. The relative scale of the diagrams is stated in the upper right corner of 
each diagram. Ticks mark the position of sample points. The sample interval is 20J.Ls. Arrowheads 
show the direction of motion at the end of the time window of each diagram. The large arrowhead on 
the first set of diagram marks the shear-wave arrival. No splitting was observed for this raypath. The 
maximum amplitudes stated is that for all four sequential diagrams as oppose to just the first half 
wavelength as in Figure 5.2. 
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shear-wave motions of the qSl- and qS2-waves if splitting occurs. Again, subtle 

changes do take place as was previously discussed with Figure 5.1. However it is 

quickly seen that no major temporal changes have taken place. I believe this to be the 

quickest and easiest method of visual examination for temporal changes in a large 

data set. I will refer to these diagrams as progressive particle motion diagrams. 

5.6 Visual Examination 

I will now demonstrate the necessity of the visual examination in determining the 

cause of low cross-correlation values and the convenient use of progressive particle 

motion diagrams to visually examine repeated raypaths for temporal variations. I 

claim visual examination of data is also helpful in gaining general insight on 

shear-wave behaviour and is necessary in interpreting any temporal changes found by 

any method. 

Figure 5.2 gives an example of seismograms and particle motion diagrams for a 

repeated raypath where the amplitude of the second seismograms was well below 60 

units. The minimum cross-correlation coefficient of this raypath is 0.8601, but visual 

examination is necessary to determine whether the low value is due to significant 

temporal changes or noise because the amplitude of the second seismogram is less 

than 60 units. The progressive particle motion diagrams for this raypath is shown in 

Figure 5.4. The particle motion diagrams differ noticeably between one another, but 

the differences between sets of motion diagrams are not coherent. This visual 

examination shows the differences causing the low values of cross-correlation are due 

to ringing, poor resolution, and possibly subtle changes in the rockmass rather than 

any significant temporal change. 

The particle motion diagrams for the first and the final recording sequences (May 

01 and August 25, respectively) are of high enough amplitudes that the differences are 

not due to poor resolution. The particle motion after the qS2-arrival is more elliptical 

for the August 25 recording sequence. This suggests a change in the qS2-wave, which 

suggests a change in the rockmass. The higher attenuation experience by the 

qS2-wave should make it more sensitive to excavation damage than the qSl-wave. 

These subtle changes are typical. Unfortunately, only the conclusion that the rockmass 

has undergone changes over the time spanned by the recording sequences can be made 
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Figure 5.4: The shear-wave motion for raypath from Orientation 3 of Source Station 2 to Triaxial 
Accelerometer 15. The notation is as in Figure 5.3 except the large arrowhead in the first set of particle 
motion diagrams marks the qSl-wave arrival and the smaller arrowhead marks the qS2-wave arrival. 
The jitteriness of the diagrams for the second (May 06) to second last (August 04) recording sequences 
is due to low amplitudes. It is easily seen that no coherent change in initial shear-wave motion has 
taken place. 
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from such small changes. The cross-correlation coefficient between the seismograms 

of the first and final recording sequences for the raypath of Figure 5.4 is 0.9296, 

which is above the cut-off value of 0.90 used in the automated search (next section). 

Therefore these common, subtle changes are not detected using cross-correlation. 

5.7 Searching for Temporal Changes 

I performed the search for temporal changes independently using both the visual 

and cross-correlation methods. For the visual search, the progressive particle motion 

diagrams were examined for all 728 raypaths created for the four source locations at 

all thirteen source stations and recorded by all triaxial accelerometers except Triaxial 

Accelerometers 3 and 6. Likewise, I performed an automated search for temporal 

variations using cross-correlation for all 728 repeated raypaths. The initial search was 

performed quickly using a resampling factor of only two. I repeated the 

cross-correlation using a larger resampling factor for any raypaths where the 

cross-correlation values were less than the cut-off value of 0.90. This procedure was 

repeated up to a resampling factor of sixteen. 

5.8 Results: Raypaths Showing Temporal Changes 

I found eleven raypaths of the 728 that showed temporal variations by visual 

examination and twenty-two using cross-correlation, including all those found by 

visual examination. The failure of the visual search to identify eleven raypaths of the 

twenty-two raypaths was due to inevitable human error. This shows cross-correlation 

to be more reliable and suggests that potentially all significant temporal variations 

could be found using cross-correlation if all seismograms had sufficient resolution. 

Visual.'.-examination would then only be needed for interpretation. The seismograms 

of only fifteen raypaths of the twenty-two had amplitudes above 60 units and visual 

interpretation was needed to determine if these were temporal changes. For some 

raypaths, particularly those from Source Station 13, the most remote of the source 

stations, the microseismic system did not trigger to record the seismic signals of most 

recording sequences. 
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5.9 Causes of the Changes 

5.9.1 Propagation Near Nodal Directions 

I determined the most common temporal variation to be due to raypath 

propagation direction near nodal directions of the shear-wave source radiation patterns 

(section 3.6). In these cases, only the one raypath in the set of four showed temporal 

variations. There were nine such raypaths. Seven of these nine raypaths are within 

20.3° to a nodal direction and all nine were within 31.50.  All seismograms from 

raypaths propagating within 20.8° to a nodal direction either showed these apparent 

changes or are of amplitudes too low to determine whether any apparent changes had 

taken place. 

Figures 5.5 and 5.6 show a typical example where the raypath is within 7.3° of the 

nodal direction. Changes are apparent on the seismograms and particle motion 

diagrams. The seismograms show the emergent, non-impulsive shear-wave arrival 

typical of all seismograms from raypaths propagating within 20.8° of a nodal 

direction. Cross-correlation coefficients (Table 5.3) fluctuate without an obvious 

pattern rather that monotonically decreasing as would be expected from an effect of 

excavation. The amplitudes are well above 60 units so the changes are not an artefact 

of poor resolution. 

I do not have a definite explanation for the changes, but I speculate it is due to the 

low amplitude ringing on many of the seismograms. The superposition of the ringing 

has a significant effect when the shear-wave is of relatively low amplitude and 

emergent. The other possibility is that much of what appears to be the direct 

shear-wave arrival is the p5-wave (section 3.7) masking the lower amplitude 

shear-wave. The pS-wave is expected to be less reproducible than the direct 

shear-wave because it travels through the most damage part of the rockmass and is 

therefore likely to be very sensitive to time dependent effects of excavation. 

These observations show that the level of reproducibility of seismograms is 

dependent upon propagation direction relative to the shear-wave source radiation 

pattern. Therefore the source radiation pattern should be taken into account in any 

study examining temporal changes. 
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Figure 5.5: Two three-component seismograms from the same source-receiver raypath. Notation is as 
in Figure 5.2. These seismograms are from a raypath that travelled 7•30  from a shear-wave nodal 
direction in the source radiation pattern. The emergent shear-wave arrival and slight ringing are typical 
of seismograms from raypaths that travelled within 20.8 °  to a nodal direction. The seismograms and 
particle motion diagrams clearly differ from one another. 
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Figure 5.6: The shear-wave particle motion diagrams for the same raypath as in Figure 5.5. Notation 
is as in Figure 5.3. Clearly the motion differs for different recording sequences, but there is no coherent 
chronological change. 
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Table 5.3: Cross Correlation Coeffecients for raypath from Source 
Station 4 Orientation 2 to Tnaxial Accelerometer 7. The resampling 
factor was 16. 
Recording 
Sequence 

Date Maximum 
Amplitude of 
Seismogram 

Within Window 
Used in Cross 
Correlation 

Cross-Correlation 
Coeffecient 

I May 01  

2 May 06 96.2 1.0000 

3 May 11 86.0 0.8690 

4 May 11 86.6 0.9034 

5 May 14 67.2 0.9297 

6 June 01 84.0 0.9128 

7 June 05 92.9 0.8878 

8 June 15 109.2 0.9079 

9 June 19 81.1 0.9435 

10 June 30 77.0 0.9268 

11 July 22 75.7 0.9299 

12 Aug. 04 1 	143.4 0.7762 

13 1 Aug. 25 1 	176.1 1 	0.8648 

5.9.2 Diffraction Around Source Tunnel 

I determined the second cause of temporal variation to be diffraction around 

source tunnels. For many raypaths the source tunnel directly intersects the 

straight-line path between source locations and the triaxial accelerometers. The 

seismic raypath recorded then comprises of seismic energy that diffracted around the 

source tunnel. Four such raypaths show temporal changes. Two of these raypaths are 

of the set of raypaths from Source Station 5 to Triaxial Accelerometer 7 and the other 

two are of the set from Source Station 6 to Triaxial Accelerometer 7. Their 

straight-line raypath lengths of between 10.5m and 15.7m are the shortest of raypaths 

that diffracted around their source tunnel. Two seismograms from one of the four 

raypaths (Orientation 4 of Source Station 5 to Triaxial Accelerometer 7) (Figure 5.7) 

show the distinctively complicated with non-impulsive qP- and shear-wave arrivals 
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Figure 5.7: Seismograms from the raypath of Source Station 5, Orientation 4, to Triaxial 
Accelerometer 7 showing temporal changes due to diffraction around its source tunnel. Notation is as 
in Figure 5.1. Note the emergent shear-wave arrival so that the precise determination of the shear-wave 
arrival is not possible. The complexity of the seismograms is attributed to the effects of diffraction 
around the source tunnel and reflections and scattering resulting in the seismic energy travelling through 
the zone of excavation damage. It is likely that the shear-wave is a conglomerate of shear-waves from 
travelling in different directions around the source tunnel and the effects of different velocities near the 
tunnel wall. 
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typical for all such raypaths. The progressive particle motion diagrams (Figure 5.8) 

show that the particle motion changes after the third recording sequence on May 11. 

This agrees with the results of cross-correlation where the coefficient decrease from 

0.9736 on May 06 to 0.8348 on May 11 and remained below 0.8800 for all later 

recording sequences. The results are similar for the other three raypaths. 

I do not know the cause of these changes. Raypaths from these to source stations 

to Triaxial Accelerometer 7 did not travel closer than 21.3m to the Mine-by tunnel so 

that the changes are not due to the Mine-by tunnel excavation. The changes are likely 

to be due to changes in the rockmass around Room 413, the source tunnel of Source 

Stations 5 and 6. Changes may be due to mining activity such as the scaling of loose 

rock from the tunnel, the installation of rock bolts, or the escape of in situ fluids 

(section 7.9). The changes may also be from longer term effects of excavation such as 

crack growth, stress redistribution, and the development of the breakout notches. It is 

an important observation that only half of the raypaths from these source stations to 

Triaxial Accelerometer 7 show changes. This suggests that either there is a consistent 

fabric in the rockmass due to these changes so that some shear-wave particle motion 

directions are less affected, or that changes in the rockmass are extremely localized so 

that the small differences in source locations are important. 

5.9.3 Changes Due to Excavation 

I identified the three sets of source stations to triaxial accelerometer raypaths 

where temporal variations are due to the effects of the Mine-by Tunnel excavation. 

These are Source Station 10 to Triaxial Accelerometer 15, Source Station 11 to 

Triaxial Accelerometer 16, and Source Station 12 to Triaxial Accelerometer 16. 

Evidence of temporal changes is sparse when only considering the results of 

cross-correlation (Tables 5.4, 5.5, and 5.6). The raypath lengths are all over 

thirty-nine metres and tn axial accelerometers 15 and 16 were set to the lower gain 

setting for most recording sequences. Consequently the microseismic system did not 

automatically trigger to record the data from many recording sequences for these 

raypaths, limiting the number of raypaths available for comparison. For Orientation 4 

of Source Station 12, data was only recorded in the final recording sequence and no 

comparison can be made. Also the amplitudes of the shear-waves are much less than 
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Figure 5.8: The shear-wave particle motion diagrams for the same raypath as in Figure 5.6. Notation 
is as in Figure 5.3. The initial shear-wave motion from the May 11 sequence clearly differs from that of 
the previous sequence. 



Table 5.4: Cross Correlation Coeffecients for all four raypaths from Source Station 10 to Triaxial Accelerometer 15. The 
resampling factor was 16. 

Recording 
Sequence and 

Date 

Minimum 
Separation of 

Straight Raypath 
to Mine-by 
Tunnel (m) 

Cross-Correlation Coeffecient (Coef.) and Maximum Amplitude (Amp.) of 
Seismogram Within Cross Correlation Window for All Four Source Orientations 

- 

Orientation 1  2 Orientation 3 Orientation 4 

Amp. Coef._ Amp. Coef. Amp. Coef. Amp. Coef. 

1 May 01 5.2  78.4 1.0000 117.1 1.0000 

2 May 06 4.4 10.8 1.0000 8.8 0.9367  17.2 1.0000 

3 May 11 3.7  

4 May 11 3.7  

5 May 14 2.8  9.7 0.9571 18.7 0.9571 17.3 0.9848 

6 June 01 0.7  5.5 0.8872 12.1 0.9504 

7 June 05 0.7  6.2 0.8370 11.6 0.9149 13.0 0.9605 

8 June 15 0.0  4.4 0.8557 9.5 0.9136  

9 June 19 0.0  3.9 0.5329  

10 June 30 0.0  12.0 0.7619 11.3 0.9509 

11 July 22 0.0  

12 Aug. 04 0.0  

13 Aug. 25 0.0 62.8 0.8713 38.7 0.6809 113.8 0.8853 124.1 0.9798 

I 



Table 5.5: Cross Correlation Coeffecients for all four raypaths from Source Station 11 to Triaxial Accelerometer 16. The 
resamnhinR factor was 16. 

Recording 
Sequence and 

Date 

Minimum 
Separation of 

Straight Raypath 
to Mine-by 
Tunnel (m) 

Cross-Correlation Coeffecient (Coef.) and Maximum Amplitude (Amp.) of 
Seismogram Within Cross Correlation Window for All Four Source Orientations 

Orientation 1 Orientation 2 Orientation 3 Orientation 4 

Amp. Coef._ Amp. Coef. Amp. Coef. Amp. Coef. 

I May 01 5.5 _____- ______ ______ _______ _______ ______  

2 May 06 4.6  15.6 1.0000 13.7 1.0000 

3 May 11 3.8  

4 May 11 3.8  14.0 0.9301  

5 May 14 2.9 16.1 1.0000  

6 June 01 0.0 10.6 0.9734 10.3 0.9435 11.4 0.8800  

7 June 05 0.0 12.8 0.9446 12.8 0.8926  

8 June 15 0.0  

9 June 19 0.0  8.6 1.0000 

10 June 30 0.0 6.9 0.669 1  

11 July 22 0.0  8.9 0.1348 

12 Aug. 04 0.0 6.0 0.6475 -  8.0 0.4850  

13 Aug. 25 0.0 56.0 0.7306 83.4 0.5292 57.6 0.5793 86.5 0.8938 
I 



Table 5.6: Cross Correlation Coeffecients for all four raypaths from Source Station 12 to Triaxial Accelerometer 16. The 
resamp1iigfactor was 16. 	-- 	 ------- 

Recording 
Sequence and 

Date 

Minimum 
Separation of 

Straight Raypath 
to Mine-by 
Tunnel (m) 

Cross-Correlation Coeffecient (Coef.) and Maximum Amplitude (Amp.) of 
Seismogram Within Cross Correlation Window for All Four Source Orientations 

Orientation 1 Orientation 2 Orientation 3 Orientation 4 

Amp. Coef. - Amp. Coef. Amp. Coef. Amp. Coef. 

I May 01 5.9  88.5 1.0000  

2 May 06 4.9 9.1 0.97 15 

3 May 11 4.2  

4 May 11 4.2  

5 May 14 3.3  11.1 0.8948 

6 June 01 0.0 7.2 0.9115 

7 June 05 0.0 7.5 1.0000 6.9 0.6731 8.5 1.0000  

8 June 15 0.0  

9 June 19 0.0  

10 June 30 0.0 

11 July 22 0.0  

12 Aug. 04 0.0  _______- 3.5 0.2483 

13 Aug. 25 0.0 47.6 0.3253 34.1 0.6683 66.2 0.9179 43.4 1.0000 

I 

-I 
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60 units for most of the recording sequences. In particular, the amplitude of the first 

recording sequence for the raypath of Orientation 1 of Source Station 12 was 

extremely low and suffered greatly from poor resolution. The final cross-correlation 

coefficients of three of the raypaths were 0.9179 or greater giving no clear indication 

of any temporal changes. The raypath from Orientation 4 of Source Station 10 to 

Triaxial Accelerometer 15 showed no temporal changes for reasons to be explained 

(section 5.11). Only one raypath both had coefficient less than 0.90 and amplitudes 

greater than 60 units. However, the coefficients do indicate possible temporal 

changes for nine raypaths of these twelve. 

Visual examination of the seismograms and particle motion diagrams give more 

concrete evidence. The seismograms for Orientations 2 and 3 of Source Station 10 to 

Triaxial Accelerometer 15 (Figures 5.9 and 5.10) and the progressive particle motion 

diagrams for all three sets of raypaths (Figures 5.11, 5.12, and 5.13) show that 

changes in the initial shear-wave motion has taken place for the ten raypaths where 

comparison is possible. The changes are not random jitter or the typical subtle 

fluctuations. 

There are common raypath characteristics of these three sets of raypaths that 

clearly indicate that the observed changes are directly due to the excavation of the 

Mine-by Tunnel and suggest that no other sets of raypaths should show temporal 

changes due to excavation. 53 of the 208 sets of raypaths travelled within five metres 

of the Mine-by tunnel. For 51 of the 208 sets of raypath the minimum distance 

between the Mine-by tunnel and the raypath decreased as the Mine-by tunnel was 

excavated. Only four sets of raypaths share both of these characteristics and three of 

these are these three sets showing temporal changes. The one set of raypaths of the 

four not showing temporal changes is from Source Station 10 to Triaxial 

Accelerometer 16. The straight-line raypath for this set of raypaths was never closer 

than 3.Om to the Mine-by Tunnel. The changes are therefore only seen in raypaths 

that propagated within 3.Om to the Mine-by Tunnel and propagated progressively 

closer as the excavation proceeded. This result is consistent with the zone of 

excavation disturbance extending to only one tunnel diameter from the tunnel wall 

(next section). Only these temporal changes will be discussed in the remainder of this 

chapter. 
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Figure 5.9: Seismograms from the first and last recording sequences the for raypath from Source 
Station 10, Orientations 2, to Triaxial Accelerometer 15. Notation is as in Figure 5.1. The shear-wave 
arrivals could not be picked because of the emergent shear-wave arrival and ringing. The large 
arrowheads mark only the approximate arrivals of shear-wave motion. 
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Figure 5.10: Seismograms from the first and last recording sequences the for raypath from Source 
Station 10, Orientations 3, to Triaxial Accelerometer 15. Notation is as in Figure 5.1. The shear-wave 
arrivals could not be picked because of the emergent shear-wave arrival and ringing. The large and 
small arrowheads mark the arrival of the qSl-wave and qS2-wave respectively. 
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Figure 5.11 (below): The shear-wave motion for all recording sequences for the raypaths from Source 
Station 10 to Triaxial Accelerometer 15 for (a) Orientation 1, (b) Orientation 2, (c) Orientation 3, and 
(d) Orientation 4. The notation is as in Figure 5.3. The large and small arrowheads mark the arrival of 
the qSl-wave and q52-wave respectively when these arrivals could be picked See text for discussion. 
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Figure 5.12 (below): The shear-wave motion for all recording sequences for the raypaths from Source 
Station 11 to Triaxial Accelerometer 16 for (a) Orientation 1, (b) Orientation 2, (c) Orientation 3, and 
(d) Orientation 4. The notation is as in Figure 5.3. The large marks the arrival of the qSl-wave where 
this could be picked arrival picked See text for discussion. 
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Figure 5.13 (below): The shear-wave motion for all recording sequences for the raypaths from Source 
Station 12 to Triaxial Accelerometer 16 for (a) Orientation 1, (b) Orientation 2, (c) Orientation 3, and 
(d) Orientation 4. The notation is as in Figure 5.3. The large marks the arrival of the qSl-wave where 
this could be picked arrival picked See text for discussion. 
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5.10 Distance of Observable Effects 

I will now compare the changes in the particle motions of raypaths affected by 

excavation with the separation between the raypaths and the Mine-by tunnel. I do this 

to gain insight into the distance of observable excavation effects. First I will introduce 

three terms. The zone of excavation damage around a tunnel is defined as the region 

where non-elastic deformation occurs because of tunnel excavation and is confined to 

a skin of 0.5m thickness around the Mine-by Tunnel (Maxwell and Young, 1994; R. 

Everitt, pers. comm.). The zone of excavation disturbance is the zone beyond the 

zone of excavation damage where elastic stress changes occur (Maxwell and Young, 

1994) and extends to a distance of at least a tunnel diameter from the Mine-by Tunnel 

(P. Young, pers. comm.). I define the distance of observable effects to be the 

maximum separation of the straight-line raypath perpendicular to the Mine-by Tunnel 

wall for the initial shear-wave motion to be detected due to the excavation-affected 

rockmass. The distance of observable effects is therefore less than the distance 

containing the zone of excavation disturbance, and is dependent upon the frequencies 

of the seismic signals. 

I suggest that the onset of temporal change for the raypaths from Source Station 10 

to Triaxial Accelerometer 15 was at Recording Sequences 9 (June 01) from the 
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comparison of cross-correlation coefficients and the particle motion diagrams. This is 

best seen on the particle motion diagrams for Orientation 2, although the exact onset 

of temporal changes is not conclusive because of the low amplitude of the 

seismograms. This suggests that the distance of observable effects to be between 

0.7m and 2.8m from the comparison of raypath separations for Recording Sequences 

8 and 9 (May 14 and June 01) (Table 5.4). Similarly, I suggest that the onset of 

temporal .changes for raypaths from Source Stations 11 and 12 to Triaxial 

Accelerometer 16 was at Recording Sequence 6 (June 01), indicating the distance of 

observable effects to be between 0.Om and 2.9m. This range entirely contains the 

range of 0.7m to 2.8m and so provides no additional constraints. The position of the 

Mine-by Tunnel relative to these three sets of raypaths for every recording sequence is 

presented in Figures 5.14 and 5.15. 0.7m is greater than the extent of the zone of 

excavation damage so that the initial changes in shear-wave motion are due to the 

advancement of the zone of excavation disturbance. 

Three sets of raypaths are not enough to consider asymmetries. The development 

of break-out notches shows that the zone of excavation damage is radially asymmetric 

so the distance of observable effects is also expected to be asymmetric. 

Microcracking due to excavation does occur ahead of the advancing tunnel face 

(Martin and Young, 1993) so that distance of observable effects is cylindrically 

asymmetric for raypaths that travel near the tunnel face. 

The true minimum separation of these three sets of raypaths from the Mine-by 

Tunnel will be greater than that calculated assuming straight-line raypaths because of 

diffraction around the Mine-by Tunnel. Often clear, impulsive qP-, qSl-, and 

qS2-arrivals, and relatively simple particle motion behaviour are seen on seismograms 

where the corresponding straight-line raypath intersects the Mine-by Tunnel, 

demonstrating that diffraction takes place. This has also been observed is other 

seismic data sets from the Mine-by Experiment. (Young and Collins, 1993; Maxwell 

and Young, 1994). Furthermore, diffraction must mainly take place in the zone of 

excavation disturbance rather than the zone of excavation damage. It is unreasonable 

that sufficient diffraction could take place mainly within the 0.5m skin of excavation 

damage (section 5.2) when the raypaths showing temporal changes were for 

straight-line raypath lengths between 39.3m and 43.0m. A similar argument was 
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Figure 5.14: Cross-section of the 420-Level around the Mine-by Tunnel looking horizontal and 
perpendicular to the tunnel drawn to the indicated scale. The location of the tunnel faces during each 
recording sequence is as marked on the diagram, with arrows denoting the possible ranges where the 
exact locations are not known. The straight-line raypaths for the Source Station 10 to Triaxial 
Accelerometer 15 and Source Stations 11 and 12 to Triaxial Accelerometer 16 are projected onto the 
plane of display. 
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Figure 5.15: Cross-section of the 420-Level around the Mine-by Tunnel looking horizontal and 
parallel to the tunnel drawn to the indicated scale. The two tunnel diameters used in excavation are 
shown the diagram. The straight-line raypaths for the Source Station 10 to Triaxial Accelerometer 15 
and Source Stations 11 and 12 to Triaxial Accelerometer 16 are projected onto the plane of display. 
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made by Maxwell and Young (1994). This is supported by the particle motions for 

the raypaths showing temporal changes. The particle motions of Source Stations 11 

and 12 to Triaxial Accelerometer 16 up to Recording Sequence 7 (June 05) and for 

Source Station 10 to Triaxial Accelerometer 15 for all recording sequences show clear 

arrivals and relatively simple particle motions despite some straight-line raypaths 

intersecting the Mine-by Tunnel (Figures 5.10, 5.11, 5.12, and 5.13). More 

complicated particle motion behaviour due to scattering would be expected if a 

significant portion of these raypaths traversed the zone of excavation damage, and 

clear arrivals would not be expected if a significant amount of seismic energy was 

blocked and reflected by the Mine-by Tunnel. Such behaviour is seen in the particle 

motions for Source Stations 11 and 12 to Triaxial Accelerometer 16 after Recording 

Sequence 7 (June 05) (Figures 5.12 and 5.13) where large proportions of the 

straight-line raypaths were directly through the Mine-by Tunnel (Figures 5.14 and 

5.15). 

5.11 Interpretation in Terms of Shear-Wave Splitting 

The analysis of temporal changes so far has considered observations of changes 

solely in the initial shear-wave motion between recording sequences. In this section I 

consider the observation and interpretation of changes in shear-wave splitting. 

Unfortunately, the initial particle motion directions of the direct shear-waves 

cannot be identified for nine of the twelve raypaths. This is mainly due to low gain 

settings for most recording sequences and the relatively long raypaths of 39.3m to 

43.0m. Also, for Recording Sequence 7 (June 05) onwards, a large proportion of the 

straight-line raypaths from Source Stations 11 and 12 to Triaxial Accelerometer 16 

were through the Mine-by Tunnel (Figures 5.14 and 5.15). Onwards from this 

recording sequence these raypaths display very complex behaviour (Figures 5.12 and 

5.13) due to the blocking and reflecting of seismic energy by the Mine-by Tunnel and 

the propagation of seismic energy through the zone of excavation damage. Also, 

interference from sensor resonance obscured the initial shear-wave arrivals for two of 

the four raypaths from Source Station 10 to Triaxial Accelerometer 15. 

I suggest that the main effect of excavation upon shear-wave splitting is an 

increase in time delays due to an overall increase in the strength of anisotropy 
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traversed by the raypaths without a change in fabric orientation. The initial particle 

motions can be identified on the raypaths from Orientations 3 and 4 of Source Station 

10 to Triaxial Accelerometer 15 and Orientation 1 of Station 11 to Trjaxial 

Accelerometer 16 (Figures 5.10, 5.11, and 5.12). For Orientation 3 of Source Station 

10, the particle motion of last recording sequence displays the same polarizations, but 

an increased time delay of five sample points (100.ts) from the original three sample 

points (60.ts) of the first recording sequence. This is the best example of a temporal 

change in this data set. For Orientation 4 of Source Station 10, there is no obvious 

change in particle motion for the first half-wavelength (12 sample points) and 

cross-correlation suggests no temporal changes throughout the tunnel excavation 

(section 5.9.3). The polarization direction is the same as for Orientation 3, but the 

time delay is much longer. I interpret this as an example where the qSl-polarization 

direction is the same as the initial shear-wave motion from the source. Therefore no 

change in the initial shear-wave motion results for an increase time delays without 

changing polarizations. The initial shear-wave particle motion for seismograms from 

Orientation 1 of Source Station 11 to Triaxial Accelerometer 16 is that due to the 

source orientation, but changes with later recording sequences (Figure 5.12) to the 

polarization direction expected for the in situ anisotropy (section 7.7). Again, this is 

consistent with an increase of the strength of anisotropy traversed by the raypath. 

With only three raypaths, it is possible that the changes in particle motions are 

being misinterpreted as changes in shear-wave splitting. However, such a simple and 

consistent interpretation would then be unlikely. Also, this interpretation is in 

agreement with the analysis of Maxwell and Young (1994) who concluded from a 

comparison of P-wave velocities of the Attenuation Survey and Velocity Survey data 

sets (section 2.15) that excavation amplified the in situ anisotropy. 

5.12 Geological Interpretation 

I suggest that the onset of temporal changes indicates that EDA is at least partially 

responsible for the in situ anisotropy. I argued that the onset of temporal changes is 

due to the advancement of the zone of excavation disturbance rather than the zone of 

excavation damage (section 5.10). The three mechanisms likely responsible for these 

changes are subcritical crack growth, fluid loss by migration to the free surface, and 
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changes in EDA due to changes in the stress field. However, the effects of sub-critical 

crack growth are likely to be insignificant because velocity changes due to excavation 

extend to only 0.75m from the Mine-by Tunnel wall (section 2.14). Changes due to 

fluid loss show there exists fluid-filled inclusions or microcracks in the in situ 

rockmass that may be stress-aligned and therefore suggest the presence of 

EDA-cracks. 

The onset of temporal changes may be due to changes in the aspect ratio of 

EDA-cracks. The directions of raypaths from Source Station 11 to Triaxial 

Accelerometer 16 are 64° from the vector normal to the plane of the in situ fabric 

(section 7.7). This is within the range of 45° to 75° where shear waves are most 

sensitive to changes in aspect ratios (Crampin et al., 1990), so that changes in time 

delays maybe be expected even for small to changes in the stress field. Zatsepin and 

Crampin (1995a) argue that fluid-migration along pressure gradients between 

neighbouring EDA-cracks at different orientations to the stress field can take place at 

very low values of differential stress. 

An increase in the strength of anisotropy due to excavation (previous section) 

suggests that excavation produces an anisotropic fabric with an orientation governed 

by similar processes as govern the orientation of the in situ anisotropy. This indicates 

that the orientations are governed either by the in situ stress field, or the primary 

layering. Crack growth is expected in the plane perpendicular to a 3  (Martin et al., 

1995). This interpretation is in agreement with the orientation of an 

excavation-induced crack set in the zone of excavation damage (section 2.14), and 

suggests that the temporal changes are primarily due to the development of dry cracks 

(section 7.9). 

5.13 Conclusions 

I have presented two methods of searching for possible temporal changes: 

cross-correlation and visual examination. As well as being automated, unbiased, and 

faster than visual examination, I demonstrated cross-correlation to be more reliable, 

and therefore the preferred method of searching for temporal changes. I established 

that resampling the seismic data to one-sixteenth its original sample interval was 

sufficient to avoid significant effects of non-coincidental sampling of the waveforms. 
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A cross-correlation coefficient of 0.90 or greater is expected when no temporal 

changes are present, proving the extreme reproducibility of this experiment. Visual 

examination allows greater insight into the cause of any perceived temporal change, 

and allows qualitative accounting for the effects of background noise and the ringing 

of the source. I demonstrated the use of progressive particle motion plots to be a fast 

and efficient method for the visual examination of temporal changes because only the 

necessary information of the initial shear-wave particle motion in the plane 

perpendicular to the source-receiver raypath direction is considered. 

All seismograms from raypaths that propagate within 20.8°, and some that 

raypaths propagate as much as 31.50,  from a nodal direction display either emergent 

shear-wave arrival, sensor resonance, or lower levels of reproducibility. These results 

show that the direction of propagation relative to radiation patterns should be 

considered in studies of temporal changes to prevent attributing changes in 

shear-wave motion as being due to significant changes in the rockmass. 

I found temporal changes in four of the eight shortest raypaths that diffracted 

around their source tunnel. Two raypaths of these four had a straight-line raypath 

length of 10.5m and two raypaths had a straight-line raypath length of 15.7m. The 

geological cause is unknown but must be due to localized changes in the rockmass 

around the source tunnel (Room 413). 

I observed changes in the initial shear-wave motion due to the Mine-by Tunnel 

excavation in three sets of source station to triaxial accelerometer raypaths. The three 

sets of raypaths are the only ones to travel within 3.Om of the Mine-by tunnel and have 

the minimum separation between the straight-line raypaths the Mine-by Tunnel 

decreased as the tunnel was excavated. Examination of the onset of temporal changes 

with straight-line raypaths separations to the advancing tunnel indicates the distance 

of observable effects to be between 0.7m and 2.8m, as is consistent with a limit to the 

zone of excavation disturbance of one tunnel diameter (3.5m). 

The onset of these temporal changes is due to the advancement of the zone of 

excavation disturbance rather than the zone of excavation damage. I argued this by 

considering the distance of observable effects, the spatial limit of the zone of 

excavation damage, and diffraction effects as implied by the clarity of seismic signals 

even after the Mine-by Tunnel intersected the straight-line raypaths. This result 
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demonstrates the potential use of monitoring changes in shear-wave particle motion as 

a non-destructive method to monitor tunnel excavation and possible longer term 

changes in a rockmass. I also argued that these initial temporal changes must be due 

to either the escape of fluids or changes in EDA-cracks, thereby suggesting EDA to be 

an anisotropic fabric in situ. 

I interpret the major changes in shear-wave splitting from tunnel excavation as 

being an increase in the strength of anisotropy due to excavation-induced and altered 

cracks and microcracks, as is consistent with the observed changes in shear-wave 

splitting. Therefore the orientations of these excavation-induced and altered cracks 

are governed by the in situ stress field or the primary layering within the rockmass. 

However, this result is somewhat speculative because shear-wave splitting could only 

be measured for three of the raypaths showing temporal changes from excavation. 
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6 	 The Judgement-of-Fitness 

6.1 Abstract 

Judgement-of-fitness algorithms comparing shear-wave polarization data to 

models should measure the number of observations that cannot be explained by the 

model. An automated inversion program finds the model that minimizes this misfit 

value. This value may then be used to ascertain whether the misfit is due to incorrect 

modelling assumptions, invalid physical assumptions, or miss-picked polarizations. 

The final algorithm presented performs this task quickly even for large data sets by 

calculating the model polarizations on a regularly spaced grid of orientations and 

comparing the observed polarization to the four nearest model polarizations of this 

grid. Rapidly varying polarizations due to singularities are then easily taken into 

account by determining the range of polarization angles of the four polarizations. 

6.2 Introduction: The Limitations of Visual Comparison 

The problems of visual comparison of data with models are the same as with any 

modelling: it is subjective, it does not allow quantitative judgement of accuracy or 

error, and patterns may be perceived in visual examination from biases judgement. 

Figures 6.1a and 6.1b illustrate this problem. Both figures display the pattern of 

polarizations resulting from a single fabric of Hudson Cracks. Superimposed are the 

fifty-three measured polarizations from the Shear-Wave Experiment data set and the 

fifty-three polarizations from assuming reciprocal symmetry (section 1.6). The first 

model is for saturated cracks and has the distinctive line singularity, whereas the 

second is for dry cracks and has no such line singularity (section 1.8). Despite the 

distinctive differences, it is not clear solely by visual comparison which model better 

matches the observed polarizations. Thus the judgement-of-fitness of models to data 

needs to be quantified. Also, the automated inversion of data requires a quantitative 

method of judging fitness. 
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Figure 6.1a: The group velocity polarizations of a model of saturated Hudson Cracks of orientation 
045/20, crack density E=0.020, and aspect ratio 0.050.  Superimposed are the fifty-three measured 
polarizations and the fifty-three polarizations from assuming reciprocal symmetry of the Shear-Wave 
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Figure 6.1b: The group velocity polarizations of a model of dry Hudson Cracks of orientation 059/23 

(azimuth 059° , dip 23 °) and crack density E=0.070 and aspect ratio =0.15. Superimposed are the 
fifty-three measured polarizations and the fifty-three polarizations from assuming reciprocal symmetry 
of the Shear-Wave Experiment. 
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In this chapter I develop a judgement-of-fitness algorithm that accounts for the 

effects of singularities and produces a conveniently interpretable misfit value. 

Furthermore, the algorithm allows for some picks of polarizations to be incorrect 

rather than treating possibly incorrect polarizations as statistical scatter in 

measurement. I first introduce the method of automated data inversion which requires 

a judgement-of-fitness algorithm and then describe the program to calculate group 

velocities as necessary background. I then describe some simple judgement-of-fitness 

algorithms and demonstrate the problems and drawbacks of their use. Lastly I present 

the final algorithm and demonstrate its effectiveness. Throughout the chapter I 

evaluate the algorithms using the polarizations of the Shear-Wave Experiment data 

set. 

6.3 Inversion for Seismic Anisotropy Using A Genetic Algorithm 

Automated inversion of shear-wave anisotropy is complicated by the nonlinearity 

of the problem, but is nevertheless desirable because it is unbiased and faster than 

visual comparison. I performed the automatic inversions of this data set using the 

genetic algorithm of Home and MacBeth (1994), followed by localized grid searches. 

The genetic algorithm was designed to invert observations of shear-wave polarizations 

and time delays to find the optimum model assuming fabrics of Hudson Cracks and 

has been successful in inverting two data sets (Home and MacBeth, 1994). 

6.4 Algorithm to Calculate Polarizations and Time Delays 

The inversion and modelling of anisotropic wave propagation requires the ability 

to calculate the polarizations and time delays for any given set of elastic constants. I 

use a program based on the subroutines of McGonigle and Crampin (1982), which 

performs this task for both phase and group velocity. The phase velocity wave fronts 

are calculated from the Kelvin-Christoffel equation, and the group velocity wavefronts 

are calculated from the envelope of the phase wave fronts (Musgrave, 1970). The 

program calculates phase velocities at regular 4.5° intervals of both azimuths and dips, 

resulting in a 81 by 41 regularly space grid of phase velocities. The group velocity 

vectors and their polarizations and time delays are calculated for each phase velocity 

vector of the grid. The propagation direction each group velocity vector is then 
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approximated to be that of its nearest point on the 81 by 41 grid. The program was 

modified for greater efficiency and clearer structure by B. Baptie, S. Home, and 

myself and I modified the program so the orientation of the fabrics can be 

conveniently specified. 

Unfortunately, the 81 by 41 grid samples propagation directions more densely as 

dip increases. For example, the nearest neighbour on the 81 by 41 grid for a 

horizontal phase propagation direction (dip of 000)  is 450  where the nearest 

neighbour for a phase propagation direction with a dip of 85.5° is 0.35°. Any 

quantitative judgement-of-fitness algorithm will be biased by the different angular 

separation of grid points for different dips. For example, polarizations vary rapidly 

for a small change in propagation direction near the kiss singularity in hexagonal 

symmetry systems. If the fabric being modelled is that of horizontal cracks, the 

nearest polarization calculated are no more than 0.35° near the singularity. If the 

fabric is vertical cracks, the nearest polarization can be up to 2.25° away. Such a bias 

may be overcome by with observations away from singularities where polarizations 

vary slowly with change in propagation direction. In hexagonal symmetry the line 

singularities cause no disturbances other than abrupt changes in polarization and there 

are only two kiss singularities so that this bias will not have an appreciable effect. 

65 Simple Judgement-of-Fitness Algorithms and Singularities 

A fundamental difficulty in quantitative judgement is considering the region of 

propagation directions near a singularity where polarizations vary rapidly with small 

changes in propagation directions (section 1.8). It would be convenient for simplicity 

and speed in a judgement-of-fitness algorithm if special treatment of propagation 

directions near singularities can be avoided. This would require that the number of 

polarizations not affected by singularities be sufficiently large that the same best 

fitting model be found as would be if the effects of singularities were taken into 

account. I address this question in developing and testing the simplest of the 

judgement-of-fitness algorithms. 

The first and simplest algorithm I tested measured the root-mean-square of the 

angles between the data and nearest model polarizations when considering the 

polarizations. No special treatment of propagation directions near singularities was 
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made. This method is similar to that of the only two publications known to this author 

describing judgement-of-fitness algorithms (MacBeth, 1991; Home and MacBeth, 

1994). Figure 6.2 shows the best model found using this judgement algorithm with 

the automated inversion followed by a grid search. Very few data polarizations 

greatly differ with those of the model, but few agree exactly. I estimate the error in 

the measurement of polarizations to be approximately ±10' based on the linearity of 

the qSl-wave particle motion, the precision in measurement, and that the effect of 

triaxial accelerometer misalignment is much less that 100  for most propagation 

directions (section 2.7). The normalized root-mean-square value of the angles 

between model and data is 34.7° and the average difference is 27.0°. These values are 

clearly too large for this model to be a plausible description of the rockmass unless 

this high value of misfit is due to a few anomalous polarizations. The standard 

deviation, of the difference between the data and model polarizations is the relatively 

low value of 21.8' which indicates that the high misfit is not due to just a few 

polarizations. I conclude that this algorithm did not result in an adequate model, as is 

supported by visual comparison between data and the model. 

The second algorithm I tested was identical to the first, except that it calculated 

the average angle rather than the root-mean-square angle. This made it more tolerant 

of outlying differences between model and data polarizations, but still treated possible 

anomalous polarizations as statistical scatter. The best model found (Figure 6.3) is 

nearly identical to that of Figure 6.2 and the average difference between model and 

data polarizations is 27.0° with a standard deviation of 22.1°, clearly showing this 

model is no better. I conclude that this modification gave no significant improvement. 

The third algorithm I tested was identical to the first except that special treatment 

was given to propagation directions near singularity directions. Specifically, any data 

polarization for a propagation direction within one grid spacing to a singularity of the 

model was ignored in the judgement-of-fitness. Singularities are easily found in 

models in the case of hexagonal symmetry. The kiss singularities are in the same 

direction as the normals to the crack strike, and the line singularities, if present, cause 

an abrupt change in polarization of close or equal to 90°. The propagation directions 

of thirteen polarizations of the best model found (Figure 6.4) were within one grid 

spacing to singularities. The root-mean-square value comparing the remaining forty 
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polarizations to the model was 27.8° and an average difference of 20.2 0  with a 

standard deviation of 20.00.  I suggest that this is the best model so far from visual 

comparison, and therefore that the effects of singularities should be taken into account 

when judging fitness. 

The root-mean-square value of the best model found from this third algorithm was 

expected be lower than that of the first algorithm because of the additional freedom to 

ignore polarizations corresponding propagation directions near singularities. 

Although this best model visually appears better than those found using the first two 

algorithms, it does not explain all observations. This raises the question whether the 

automated inversion using this third algorithm truly found a model that better 

described the rockmass, or found a model that merely had singularities conveniently 

located to ignore many of the polarizations. The results of the modelling using the 

final algorithm show that the former situation is true (section 6.7). 

I also suggest that singularities be taken into account for a more in-depth 

interpretation. It is unlikely any model will explain all polarizations of a large data set 

to within picking precision because of modelling assumptions and anomalous 

measurements. No insight is given into the minimum number of polarizations that 

cannot be explained by the best model found unless the effects of singularities are 

taken into account. Knowing the minimum number of polarizations that cannot be 

explained by any model under a given set of assumptions gives insight whether the 

misfit is mainly due to a few miss-picked polarizations or invalid assumptions. 

6.6 The Final Algorithm 

The fundamental shortcoming best model found using the third 

judgement-of-fitness algorithm (previous section) is that the majority of the observed 

polarizations do not agree to within measurement precision with the best model. 

However, no insight is given into the minimum number of polarizations that cannot be 

explained by modelling using the given set of modelling assumptions if misfit values 

are based solely on statistical scatter. I therefore propose that it is therefore preferable 

for a judgement-of-fitness algorithm to measure the number of observed polarizations 

that cannot be explained by a given model. An automated inversion would seek the 

model that minimizes this misfit value. This is the design of this final algorithm, 
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which is used in all further modelling and inversions of the data sets. I also designed 

this algorithm to take into account propagation directions where polarizations change 

rapidly with a change in propagation direction, to be applicable to symmetry systems 

other than hexagonal, and to not include the assumption of shear-wave motion 

orthogonal to propagation direction. 

In this algorithm, Model and data polarizations are projected onto the TS-TH 

plane for comparison, rather than comparing polarization vectors in three dimensions. 

The comparison of polarizations vectors requires calculating the data polarization 

vector from the angle measurement on the TS-TH by assuming shear-wave motion 

orthogonal to the source-receiver direction, which is not strictly true (section 1.1). 

Comparison of the angle on the TS-TH plane is preferable because this assumption of 

orthogonality is not made. 

This algorithm takes the conservative approach of examining the model 

polarization angles of all four of the neighbouring propagation directions of the 81 by 

41 grid to that of the data, rather than just the closest. Both model and data 

polarizations are restricted to within 00  and 1800.  The opposite polarization angles 

are taken for angles greater than 180°. The minimum range of angles that contains all 

four model polarization angles then represents a reasonable range of possible values 

of polarization angles. The measured polarization angle conflicts with the model if it 

is outside this range by more than the measurement precision of 10° (section 6.5). 

The best model is then the model that conflicts with the fewest data polarization 

angles. The ability to determined such a range demonstrates another advantage of 

comparing data on the TS-TH plane. 

The algorithm can be extended to include time delay measurements. The 

minimum and maximum value of time delays of the four surrounding grid points 

determine the range that must contain the observed time delay to within picking 

precision. Outside this range, the observed time delay is not explained by the model. 

To distinguish between nearly equal models, the minimum increase in the range of 

model polarization angles necessary to avoid confliction is determined for all 

conflicting polarizations. The average of these values is normalized by dividing by 

90° and this value is then added to the number of polarizations that conflict with the 

model. This is the misfit value returned by the algorithm. 
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Examining the ranges of model polarizations allows for a convenient method of 

accounting for singularities. Near singularities polarizations can vary rapidly with 

direction (section 1.8). I found by numerical experiments that if the minimum range 

of the four angles is greater than 74.5°, then the true change in polarization angle may 

be the complimentary angle of 1800  minus this angle due to propagation near a 

singularity direction. In these cases no observed polarization can be considered as 

conflicting with the model. The range of propagation directions where polarizations 

vary rapidly is dependent upon the strength and symmetry of the anisotropy and the 

type of singularity, but this method accounts for these difficulties solely by examining 

the polarizations so that the method is computationally fast. 

It would be desirable to find the model polarizations for the exact propagation 

direction of the observed polarizations. However, model and data polarizations may 

differ significantly even for a nearly perfect model because of the rapid variation of 

polarizations near singularities (section 1.8). Also, the use of the 81 by 41 grid will be 

computationally much faster for large data sets, which is desirable when an automatic 

inversion compares, in this case, over 40 000 models to the data. In addition, the 

approximation comparing data to the nearest neighbouring grid points of a model is 

valid away from directions of singularities. I found by numerical experiments that the 

maximum difference in propagation directions between observed polarizations and a 

neighbouring grid point is no greater than 9.5° and is usually much less than 4.9°, 

assuming anisotropy due to Hudson Cracks. 

6.7 The Best Model Found 

The model with the smallest misfit value as judged using this final algorithm is 

presented in Figure 6.5 with the polarization data and reciprocal polarizations 

superimposed. The model is for saturated cracks with a strike of 023°, dip of 35°, 

crack density of E0.020, and aspect ratio 7=0.025. The misfit value is 20.26, 

indicating twenty of the fifty-three observed polarizations were not within the 

acceptable ranges of model polarizations assuming a maximum error in measurement 

of 10°. These twenty polarizations were on average 23.4° outside of the acceptable 

ranges. The standard deviation of this average was 19.4° indicating that this average 
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Figure 6.5: As in Figure 6.5 but as judged by the final judgement-of-fitness algorithm (section 6.8). The misfit value was 20.26 meaning twenty of the fifty-three 

polarizations conflict with the model and are on average 0.26x90 0 23.4 °  outside the acceptable ranges of model polarizations. The model is of saturated Hudson Cracks 

of orientation 023/35, crack density E0.020 and aspect ratio 'j=0.025. 
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of 23.4° was not due principally to a few polarizations that greatly differed from the 

acceptable range. Therefore, assuming a slightly larger maximum error than 10 0  

would not have resulted in a significantly different model. Note also that this model is 

nearly identical to the model found using the third judgement-of-fitness algorithm 

(section 6.5). This is further shows that the approximation of comparing data to the 

nearest neighbouring grid point is usually valid (previous section). 

Visual comparison between the data and the model show that intuitively this 

model is the closest of those presented in this chapter. Visually it is more convincing 

to see many observed polarizations closely match those of the models and fewer 

polarizations clearly conflicting (Figure 6.5) than nearly all polarizations differing 

from the model by similar amounts (Figures 6.2 and 6.3). Visual judgement is 

therefore biased towards this final algorithm. 

There may be concern that inversion accounting for singularities may result in a 

model with singularities conveniently located to ignore many of the observed 

polarizations (section 6.5). The propagation directions of the majority of data 

polarizations are not near singularities. There is no doubt that the best fitting model is 

not one where the singularities are merely conveniently located. 

This algorithm can be used to compare models of any symmetry system to the data 

as long as the disturbances of all singularities are over a large enough range of 

propagation directions that rapid changes in polarizations are apparent on the 81 by 41 

grid. The algorithm was successfully applied to modelling assuming orthorhombic 

symmetry (section 7.5). Numerical experiments show that the grid spacing of 4.5° is 

not small enough to resolve all point singularities for this symmetry system. This is a 

fundamental problem that can only be resolved by performing the improvements to 

the algorithm such as a smaller grid spacing and a method of better resolving the zone 

of disturbance around a singularity. Time constraints prevented me from pursuing 

these improvements. Fortunately examination of the models found from automated 

inversion (section 7.5) shows that the zones of disturbance around the singularities are 

small enough that the effects of singularities were unlikely to be significant in the 

inversion. 
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6.8 Conclusions 

I have four conclusions based on this study: 

Comparison of the polarizations of model to data must be quantified because 

visual comparison is subjective and time consuming. A quantified comparison 

is a necessary component of any automated inversion technique. 

The most useful approach of a judgement-of-fitness algorithm is that it should 

minimize the number of observations that cannot be explained by a given 

model. Judgement-of-fitness algorithms should account for the possibility of 

anomalous polarizations rather than incorrectly treating such polarizations as 

statistical scatter. 

It is preferable for judgement-of-fitness algorithms to account for the effects of 

singularities. Observed data from propagation directions very close to a 

singularity are best ignored. 

Model polarizations should be compared to data on the same plane in which 

data polarizations were measured. This way the approximation that 

shear-wave motion is perpendicular to propagation direction is no long made. 

I developed a judgement-of-fitness algorithm that implemented the 

recommendations of conclusions one to four and gives an easily interpretable misfit 

value. I also designed this algorithm to be computationally fast by requiring the 

evaluation of model polarizations only for 81 by 41 points over a regularly spaced 

grid. This makes the algorithm practical for use in automated inversion methods. The 

algorithm was successfully applied to the data from the Shear-Wave Experiment 

assuming hexagonal (section 7.3) and orthorhombic symmetry (section 7.5). With 

some refinement, this algorithm may be applied to inversions assuming other 

symmetry systems. 
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7 	 Inverting Polarizations 

7.1 Abstract 

The inversion of shear-wave polarization measurements assuming seismic 

anisotropy due to Hudson Cracks results in the determination of all parameters except 

crack density. The fabric has an approximate orientation of 023° strike and 35° dip. 

This orientation roughly agrees with the expected orientation of 045° strike and 14° 

dip expected for a fabric of Extensive-Dilatancy Anisotropy (EDA), and 024° strike 

and 25° dip expected for anisotropy due to the primary layering. The best model 

assuming orthorhombic symmetry does not agree with nineteen of the fifty-three 

polarization measurements, which is not significantly less than that of that of the best 

hexagonal symmetry, and therefore does not support orthorhombic symmetry as the 

likely symmetry system. Inversions of polarizations from the Velocity Survey do not 

result in fabric orientations that agree with any observed or implied patterns in the 

rockmass, or agreement with the fabric orientations suggest from apparent P-wave 

velocities. The lack of agreement is attributed to most polarizations being determined 

by anisotropy induced or altered by tunnel excavation rather than the in situ 

anisotropy. 

7.2 Introduction 

Nearly all previous modelling of shear-wave polarizations and time delays has 

been performed using the subjective modelling technique of visual comparison 

(section 6.2) and severely restrictive a priori assumptions on fabric orientations. Such 

modelling has been successful for data sets recorded using the VSP geometry in 

sedimentary basins where anisotropy due to (section 1.4) horizontally orientated 

alternating thin layers (PTL anisotropy) and vertically orientated EDA-cracks has been 

assumed (Bush and Crampin, 1991; Yardley and Crampin, 1993). Success is partially 

due to the relatively simple layer-cake geology so that these assumed fabric 
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orientations are likely correct. Even so, a better fit of model to data should result from 

quantitative comparison, and modelling without the assumptions on fabric 

orientations would help test the existence of these fabrics. 

The modelling the shear-wave splitting displayed in earthquake generated data sets 

has only resulted in crude matches between model and data so that modelling results 

do not so clearly justify the a priori assumptions on fabric orientations. Earthquake 

data sets are usually from geologically complicated area and do not have precisely 

known source locations. The range of directions of propagation of the raypaths is 

more sparse and lacks the systematic distribution of the VSP recording geometry. 

Also, the seismograms are often of a complexity that time delays cannot be measured 

reliably. These complications are great enough that all such published studies to date 

make one of two independent a priori assumptions on fabric orientations to make 

modelling by visual comparison practical. Some studies assume the strike of the in 

situ fabric to be that of the dominant polarization direction (Kaneshima et al., 1988; 

Crampin and Booth, 1989; Kaneshima, 1990; Graham et al., 1991; Booth et al., 1992; 

Liu et al., 1993a; Booth et al., 1993; Rowlands et al., 1993; Graham and Crampin, 

1993). This assumption is not necessarily correct and will likely lead to the wrong 

conclusions in cases where the fabrics are not steeply dipping. Others assume the 

fabric orientation is similar to that of possible fabrics, such as the orientation of 

EDA-cracks inferred from the regional stress-field (Crampin and Booth, 1985; 

Roberts and Crampin, 1986; Kaneshima and Ando, 1989; Savage et al., 1990; 

Crampin et al., 1990; Yao et al., 1993; Xiong et al., 1993; Yao and Xiong, 1993; 

Gledhill, 1 993a,b). Assuming a fabric orientation biases the modelling, and precludes 

rigorous testing of the predicted cause of the anisotropy. 

In this chapter I use automated inversion (section 6.3) using the final 

judgement-of-fitness algorithm (section 6.6) to model the polarization data from the 

Shear-Wave Experiment data set without making subjective comparisons of data to 

models or a priori assumptions on fabric orientations. This is the first such inversion 

of an in situ data set using polarizations only. Time delays are not used because the 

time delays of the Shear-Wave Experiment data set are partially determined by the 

zones of excavation damage and disturbance (section 8.2). This method is suited to 
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earthquake data sets where the distribution of raypath directions is not systematic and 

time delays are commonly unreliable and ignored in modelling. 

I first invert the polarizations from the Shear-wave data set for hexagonal 

symmetry, and then orthorhombic symmetry, assuming anisotropy due to sets of 

Hudson Cracks and then present a preliminary geological interpretation as to the cause 

of the in situ anisotropy based on the results of the inversion. I then invert the 

polarizations of the Velocity Survey data set and compare these results to the apparent 

P-wave velocities of the Velocity Survey to gain insight into the effects of excavation. 

7.3 A Single Fabric of Hudson Cracks 

In this section I invert and model the polarization data from the Shear-Wave 

Experiment assuming the anisotropy has hexagonal symmetry (section 1.7) due to a 

single set of Hudson Cracks. It is reasonable first to invert assuming Hexagonal 

symmetry, which is characterized by five parameters using Hudson Cracks, because 

this avoids non-uniqueness by over-parameterization (section 1.11). Also, the known 

patterns within the undisturbed rockmass of the 420-Level likely to cause in situ 

fabrics are EDA and the primary layering (section 2.15). Individually either fabric 

would create a hexagonal symmetry system, and the observed patterns of polarizations 

would be approximately that of a single equivalent fabric should both fabrics be 

significant (section 2.15), which would also result in hexagonal symmetry. I will also 

use hexagonal symmetry to test the automated inversion technique before its 

application to more complicated symmetry systems, as this can be done conveniently 

because of the relatively few parameters. 

The automated inversion compared a total of 40 400 models to the data. A grid 

search was then performed with finer increments for values of strike, dip, crack 

density, and aspect ratio near those values of the best model found by automated 

inversion to find the model that best fitted the data. 

The best fitting hexagonal model (Figure 6.5) was discussed in section 6.7. I now 

investigate the success of the inversion by presenting the graphs of misfit values 

against strike, dip, crack density, and aspect ratio separately while holding the other 

variables constant. Figure 7.1 are the graphs of misfit value versus strike, dip, aspect 

ratio, and crack density. There is no need to graph misfit values against crack content 
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Chapter Seven: Inverting Polarizations 	91 

because there are only the two values of dry (unsaturated) or fluid-filled (saturated) 

and all models of dry Hudson Cracks resulted in misfit values significantly greater 

than that of the better fitting model. The graphs for aspect ratio, strike, and dip all 

show the global minima in misfit value occur at the parameters of the best model, 

demonstrating the success of the automated inversion and stability in the 

judgement-of-fitness. The graph of misfit value versus crack density shows that the 

misfit value remains almost constant throughout as expected because the pattern of 

polarizations does not appreciably differ for different values of crack density (section 

1.10). The maximum misfit value from varying aspect ratio is 28.320, only 8.06 

above that of the best fitting model and values of 'y=0.020 to 'y=0.069 give misfit 

values below 23. This demonstrates the limited sensitivity of this parameter. 

The two most sensitive parameters are the strike and dip of the Hudson Cracks, 

allowing me to obtain a more comprehensive judgement of the success of the 

inversion by simultaneously plotting misfit value against strike and dip on a contour 

plot (Figure 7.2). The contours are interpolated from 2880 data points where the 

values of crack density, aspect ratio, and crack content are those of the best model. 

The average misfit value is 36.342. From this plot that the best hexagonal model, 

with orientation 023/3 5, appears to be the global minimum. There are no local 

minima of misfit value less than thirty outside the depression containing the best 

hexagonal model, strongly suggesting that the best model has been found. 

The errors in determining the parameters of the Hudson Cracks are difficult to 

quantify. Misfit values of less than twenty-three only occur between strikes 0190  to 

033 0 ,  dips 32° to 39°, and aspect ratios 1=0.020 to y=0.069 where misfit values 

fluctuate apparently randomly. However, with only fifty-three polarization 

measurements, the misfit value is strongly dependent on each measurement. 

Therefore the true errors are probably larger and must be a judged qualitatively in 

absence of a much more detailed understanding of the errors in determining these 

parameters. 

7.4 Orthorhombic Symmetry 

There is a need to investigate orthorhombic symmetry for the Shear-Wave 

Experiment data set because apparent P-wave velocities suggest the rockmass to have 
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excavation-induced orthorhombic symmetry (section 2.14). In this section I briefly 

described orthorhombic symmetry in preparation interpreting the results of inversion 

(next section). Physically, orthorhombic symmetry possesses two perpendicularly 

oriented planar fabrics, and is described by nine independent elastic constants as 

opposed to five for hexagonal symmetry. Orthorhombic symmetry due to two sets of 

perpendicular Hudson Cracks is described by the eight parameters of the crack 

densities, aspect ratios, and crack contents of both set of cracks, and the orientation, 

such as strike and dip, of one crack set. As with hexagonal symmetry, crack densities 

can only be determined using time delays. Inversion using polarizations only can 

determine the ratio of the crack densities of the two crack sets. Inversion for 

orthorhombic symmetry is therefore undesirable without independent geological 

constraints because of the larger range of physically realizable models resulting in 

greater non-uniqueness (section 1.9). The inversion was performed by the same 

procedure as for hexagonal symmetry (previous section). 

7.5 Results of Inversion for Orthorhombic Symmetry 

The orientations of the two crack sets of the best model found (Figure 7.3) are 

060127 and 240/63 and the ratio of crack densities is 0.57 where is former crack set 

has the lower crack density. The misfit value was 19.248, which is only slightly better 

than the misfit value of 20.260 of the best fitting hexagonal model. With the 

additional freedom of three more parameters, only a significantly lower misfit value 

for the best orthorhombic model would suggest that the pattern of anisotropy has 

orthorhombic symmetry. Also, the former crack set is unsaturated whereas the latter 

is saturated. It is unlikely that the two sets should be so distinctly different if the 

geological causes are similar. 

I further investigate possible agreement between the fabric orientations inferred 

from this Shear-wave Experiment and those from the P-wave Velocity Survey by 

restricting modelling to cracks fabrics of the same orientations as those suggested by 

the P-wave velocities. I performed forward modelling by a grid search to find the best 

orthorhombic model with cracks orientations of 046/44 and 226/46. The misfit value 

of the best model (Figure 7.4) is 23.324. The fit is therefore significantly worse than 

that of the best hexagonal model and the comparison of data polarizations to the 
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Figure 7.3: The fifty-three polarizations from the Shear-Wave Experiment superimposed upon the best fitting orthorhombic model of Hudson Cracks. The misfit value 

is 19.248. The first crack set is of unsaturated cracks of strike 060 0, dip 27 0 , crack density E0.035, and aspect ratio y0.084. The second crack set is of saturated 

cracks of strike 2400,  dip 63 0 , crack density E0.061, and aspect ratio 0 • 0050• The ratio of the crack densities of the first crack set to the second is 0.57. 



—go 

—60 

—30 

.30 

60 

go 

—90 

—60 

—30 

.30 

60 

90 

R 	Azimuth (Degrees) 
t 	t 	flfl 	 4 an 	 11-7r 	 Irrn 

I 
\".------------ 	/11/ 	\\\"--------- -//// 	\\\\ 

.---..-----.=-.-------.-- / / I \ \ --.-_. -.---. 	--- ---- .- 	..- 	---.--..---- ----- .-, '-' -- - - __...._ - - -- - 	- - I . • '- :::: '-' r-• - 
S.. 	

- 

- -_----------t------- 
-.----_- , 'S.'•- 

'..---------/A//  

V 
t 

 

- 

-..r-------- ---- 	-- 
I 
 I 4//// 

/// 

= 	---- 

0 	 90 	180 	270 	360 
Azimuth (Degrees) 

I 
I 

0 

Figure 7.4: As in Figure 7.3, but for the best fitting orthorhombic model of Hudson Cracks with the orientations indicated by the apparent P-wave velocities from the 
Velocity Survey. The misfit value is 23.324. The first crack set is of saturated cracks of strike 046 0 , dip 44° , crack density 8=0.017, and aspect ratio '=0.0001. The 

second crack set is of saturated cracks of strike 226 0 , dip 460 , crack density 8=0.0064, and aspect ratio y--0.000 1. The ratio of the crack densities of the first crack set to 	"C 
the second is 2.7. 



Chapter Seven: Inverting Polarizations 	93 

model is unconvincing, particularly for polarizations near 000  dip and, 135° and 2150 

strike. 

I conclude that the observations do not support orthorhombic symmetry as the 

symmetry system that determined the polarizations. Orthorhombic symmetry is 

expected if the effects of excavation are significant. Otherwise hexagonal symmetry 

is expected (section 2.14). Therefore the lack of support for orthorhombic symmetry 

strongly suggests that the observed polarizations are due to the original in situ 

anisotropy rather than excavation-induced anisotropy. 

7.6 Monoclinic and Triclinic Symmetry Systems: Discussion 

It may seem desirable to try to invert the polarizations for two or more fabrics 

without the restriction of specific orientations of the fabrics relative to one another. 

Such situations are physically realizable. The automated inversion at the time of the 

writing of this dissertation had not yet been developed to consider symmetry systems 

other than hexagonal and orthorhombic. In practice, however, the results of such 

inversions may be of limited use. 

The problem with such inversions is the large number of parameters. Monoclinic 

symmetry is that possessingtwo fabrics that are not necessarily perpendicular to one 

another. It is described by thirteen elastic constants and by ten parameters as Hudson 

Cracks. Triclinic symmetry is that possessing three or more fabrics without 

restrictions on fabric orientations and is described by twenty-one elastic constants and 

by fifteen parameters as Hudson Cracks. These large numbers of parameters would 

result in considerable non-uniqueness. Many models may be found the match the 

observations and any well fitting model found that corresponded to observed 

geological patterns may due so only coincidentally. No modelling results assuming 

monoclinic or triclinic symmetries have been published either from in situ or highly 

controlled laboratory data sets. 

Inversion for these two symmetry systems may be practical if additional 

restrictions on parameters are included such as a priori restrictions on fabric 

orientations. The precise geological causes of anisotropy in the crust are not yet fully 

understood but I foresee that the causes will soon be understood well enough that 

geological survey of a rockmass will provide a list of all possible anisotropic fabrics 
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and their orientations. If the number of possible fabrics is small, inversion of 

shear-wave data may be performed assuming the fabric orientations from the survey 

and produce interpretable results. Until the causes of in situ anisotropy are well 

established it is preferable not to make such assumptions that may bias inversion. 

Therefore inversion for these symmetries is not yet practical. 

7.7 Geological Interpretation 

The results of inversions using polarizations already allow me to make some 

important geological interpretations that I present now in preparation for the latter 

sections of this chapter. The results of inversions assuming hexagonal and 

orthorhombic symmetry suggest that the in situ anisotropy is due to a single fabric of 

orientation approximately 023/3 5. This orientation differs with the fabric orientation 

of 045/32 suggested by the P-wave velocities from the Attenuation Survey (section 

2.14) by only 12°. This orientation of the best-fitting hexagonal model differs from 

the primary layering of orientation 024/25 by only 10° and from the expected 

orientation of EDA-cracks of 045/14 by only 23° (section 2.15) . These are the two 

fabrics most likely to cause the in situ anisotropy and there are no other patterns 

known within the rockmass of similar orientations (section 2.15). I conclude that this 

consistency shows that the dominant in situ anisotropy has hexagonal symmetry that is 

caused either by the primary layering or EDA or both. 

7.8 The Velocity Survey 

The results of P-wave travel time analysis using data from the Velocity Survey 

(section 2.13.1) suggested an orthorhombic symmetry (section 2.14). It is therefore 

desirable to analyze the shear-wave splitting of the Velocity Survey data set using the 

same procedure as for the Shear-Wave Experiment data set to compare results. 

7.8.1 Processing 

I examined the seismograms for all raypaths from the twenty-seven isolated 

boreholes and nine four-orientation source stations to the sixteen triaxial 

accelerometers. The method of measuring polarizations and time delays was exactly 

the same as described in Chapter Three with one major exception. The great benefit 
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of comparing seismograms when picking was not possible for signals created in the 

twenty-seven isolated boreholes. Therefore greater scatter is to be expected for 

measurements from this data set. Furthermore, many seismograms from signals 

created at these locations display initial shear-wave motion in the same direction as 

expected for an isotropic rockmass. For these cases, it was not possible to determine 

whether splitting had taken place (section 3.5). 

The Velocity Survey employs thirty-six source stations as opposed to thirteen in 

the Shear-Wave Experiment, resulting in much more data. However, the average 

raypath length is 30m as opposed to 35m for the Shear-Wave Experiment, and many 

raypaths travel sub-parallel to the axial direction of the Mine-by Tunnel. 

Consequently, the raypaths of the Velocity Survey are likely to traverse a greater 

proportion of rockmass affected by excavation and this is a fundamental difference 

between the two data sets. The two data sets may be combined to create a larger, 

more comprehensive data set accepting the greater effects of excavation damage and 

greater scatter in the data from the Velocity Survey. The correct orientations for 

Triaxial Accelerometers 1 and 16 had been calculated (section 2.7) prior to processing 

this data set so that I included data recorded by these triaxial accelerometers in this 

analysis. 

I measured a total of 146 polarizations and time delays from this data set, 

including forty-five from the nine four-orientation source stations. I found the 

best-fitting models of Hudson Cracks for hexagonal and orthorhombic symmetry 

using the automated inversion and grid searches (section 7.3). Again, time delays are 

partially determined by excavation so I only used polarizations in the inversion. 

7.8.2 Results of Inversions 

The misfit value of the best-fitting hexagonal model (Figure 7.5) is 74.360 for the 

146 polarizations so that just over half the polarizations conflict with the model. The 

misfit is proportionally significantly worse than the best fitting hexagonal model for 

the Shear-Wave Experiment polarizations where the misfit value is 20.260 for 

fifty-three polarizations. The best fitting orthorhombic model for the Velocity Survey 

data set (Figure 7.6) has misfit value of 72.329, which is only slightly lower than that 

of the best hexagonal model. 
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The fabric orientation suggested by the best hexagonal model does not agree with 

any that may be expected. The orientation of the cracks for the best hexagonal model 

of 160/64 clearly does not agree with 023/35 as found for the Shear-Wave Experiment 

(section 7.3) and there is no observed or implied consistent geological pattern of 

orientation near 160/64 (section 2.15). I performed a grid search with the restriction 

of a fabric orientation of 023/35. The lowest misfit value was 103.294 for the 146 

polarizations, showing that the pattern of polarizations is distinctly different from that 

inferred from the Shear-Wave Experiment. 

Similarly the fabric orientations suggested by the best orthorhombic model do not 

agree with any that may be expected. The orientations of crack sets for the best 

orthorhombic model of 070/87 and 230/03 differ significantly from 046/44 and 

226/46 as suggested by the P-wave velocities of the same data set (section 2.14) and 

from 060/27 and 240/63 of the best orthorhombic model of the Shear-Wave 

Experiment data set (section 7.5). The modelling for orthorhombic symmetry with 

fabric orientations restricted to 046/44 and 226/46 resulted in a minimum misfit value 

of 98.294. There are no observed or implied consistent geological patterns of 

orientations near 070/87 and 230/03 (section 2.15). 

7.9 Velocity Survey: Geological Interpretation 

The results of the inversions and modelling offer no clear interpretation. The 

polarizations (Figures 7.5 and 7.6) clearly form a pattern but the orientations of the 

cracks sets of the best hexagonal and orthorhombic models do not correspond to any 

fabric that may be expected including the orientation suggested by the best hexagonal 

model of the Shear-Wave Experiment data set. Furthermore there is a contradiction 

between the fabric orientations indicated by the inversion of polarizations for 

orthorhombic symmetry and those indicated by apparent P-wave velocities (This 

contradiction is the topic of the next section.). 

I suggest this unexpected result is primarily due to the effects of tunnel 

excavation. The raypaths of the Velocity Survey have traversed proportionally more 

of the zones of excavation damage and disturbance (section 7.7.1). Tunnel orientation 

may also be an important factor. The azimuthal orientation of the Mine-by Tunnel 

was chosen to be parallel to the direction of the intermediate stress axis G2.  In this 
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way, the maximum and minimum stress axes, a, and CT3  respectively, are 

perpendicular to the axis of the tunnel, causing the maximum possible excavation 

effects (section 2.9). In contrast, Rooms 409, 410, and 413, which are the source 

tunnels for eleven of the thirteen Shear-Wave Experiment source stations, have 

azimuthal orientations perpendicular to the directions of a 2  and a3 . Even though CT2  is 

only 7MPa less than CT 1  (section 2.9), the excavation effects are significantly less as 

indicated by much less developed breakout-notches in these tunnels. The difference 

pattern of apparent P-wave velocities of the Velocity and Attenuation Surveys shows 

that the seismic signals of the Velocity Survey have been significantly affected by 

excavation (section 2.14). Therefore the induced anisotropy is greater for the Mine-by 

Tunnel than for most of the source tunnels of the Shear-Wave Experiment, and I 

conclude that the shear-wave polarizations of the Velocity Survey data set do not 

represent the in situ rockmass. 

I suggest that the anisotropy determining the polarizations varies with propagation 

direction. Excavation effects are not cylindrically symmetric around the tunnel 

(section 5.10), and the strength and orientations of the fabrics will vary with direction 

radially away from the tunnel axis. Therefore the polarizations from the Velocity 

Survey data set are not those of a single set of fabric orientation. I interpret the 

apparent pattern of polarizations as evidence that the effects of excavation are 

consistent along the length of the tunnel for any given direction. 

The different results of the P-wave velocity analysis and the inversion of 

polarizations also strongly suggest that the in situ fluids escape as a consequence of 

excavation. Fluid-filled cracks have little effect on P-wave velocities, whereas dry 

cracks have a much greater affect on P-wave velocities than on shear-wave velocities 

(Crampin, 1993b). The P-wave velocities of the Velocity Survey clearly indicate two 

crack sets whereas the shear-wave polarizations of both the Velocity Survey and the 

Shear-Wave Experiment do not. The escape of fluid to cause dry cracks is expected. 

Fluid-filled microcracks causing EDA (section 5.12) are likely to be altered or burst 

(as pore fluids are possibly explosively released) near the free surface due to 

stress-relief and the additional excavation induced cracking. Any fluids in the 

rockmass may migrate towards the free surface due to diffusion along new pathways 

created by microcracking. Thus the excavation may alter the geometry of the cracks 
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and pore spaces and reduce the fluid content in both the zones of excavation damage 

and disturbance. The direction of one set of induced cracks in the zone of excavation 

damage is aligned with the stress direction and direction of primary layering (section 

2.14), so that these cracks form a network that aids fluid escape. I therefore suggest 

that the variations in P-wave velocities are due to dry cracks caused by excavation. 

7.10 F-wave Velocities and Polarizations 

I further explain the different results of the P-wave travel time analysis and the 

pattern of polarizations of both the Shear-Wave Experiment and Velocity Survey data 

sets by the fundamental differences of the two methods within heterogeneous 

rockmasses. P-wave travel times are determined by the integral sum of the P-wave 

slowness over the entire raypath. In this case, the zones of different and changing 

slownesses throughout the zones of damage and disturbance and the in situ rockmass 

all contribute to the P-wave travel times. Thus the dry cracks encountered by the 

seismic signals at the start of propagation have the greatest influence on the pattern of 

P-wave velocities (previous section). Polarizations are determined by the last set of 

fabrics traversed by the shear-waves for a long enough portion of the raypaths to cause 

measurable splitting. For the Shear-Wave Experiment data set, results of inversion 

are due to the in situ anisotropy (section 7.7). The majority of polarizations measured 

in the Velocity Survey data set are primarily due to cracks created or altered by 

excavation (previous section). 

7.11 Conclusions 

In this chapter I have inverted and modelled the polarizations of the Shear-Wave 

Experiment and Velocity Survey data sets and compared the results to the P-wave 

velocity analysis of the Velocity Survey. My main conclusions for geological 

interpretation are: 

1. The in situ anisotropy is consistent with hexagonal symmetry due to 

EDA-cracks, the primary layering, or both. Specifically, the best hexagonal 

model of Hudson Cracks is of saturated cracks of 023° strike, 35° dip, with an 

aspect ratio of 0.025. This conclusion is supported by the close 

correspondence of the model's fabric orientation to those expected (section 
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2.15), the stability of the inversion, and the consistency of this conclusion with 

the interpretation of all results. 

Fabrics in the zones of excavation damage and disturbance determine many of 

the polarizations of the Velocity Survey. This explanation is consistent with 

the failure of inversions and modelling to produce reasonable results, the 

disagreement with the inversion results of the Shear-Wave Experiment data 

set, and the evidence of excavation effects upon the P-wave velocities. 

Excavation has almost certainly resulted in the escape of fluids from the in situ 

rockmass. This is suggested by different results of the shear-wave inversions 

and the P-wave velocity analysis of the Velocity Survey data set. The P-wave 

velocity analysis indicates the presence of two crack sets, while the shear-wave 

inversions do not. 

This study is the first involving the inversion and detailed modelling solely using 

polarizations from a non-systematic distribution of propagation directions. 

Confidence in results required the testing of inversion and modelling techniques. My 

evaluation of the success in the inversion and modelling assuming a single fabric of 

Hudson Cracks is more thorough than any yet published. My conclusions of general 

importance to shear-wave studies are; 

Polarizations alone can be used to determine in situ fabric orientations. 

It is desirable to first test automated inversion and modelling techniques 

assuming hexagonal symmetry. The success of the inversion and the 

resolution of the modelling can be assessed more easily than symmetry 

systems of more elastic constants or parameters. 

Results strongly suggest that the automated inversion of Home and MacBeth 

(1994), followed by a grid search (as is now included as part of their 

inversion), does find the best-fitting models. This is supported by the 

convincing fit of data to models found by inversion and the detailed evaluation 

of the success in inverting the Shear-Wave Experiment data set for hexagonal 

symmetry. Such success is important because automated inversion is 

necessary for symmetry systems involving too many parameters for modelling 

by hand to be practical. I suggest that even modelling orthorhombic symmetry 

by hand is impractical without a priori restrictions on fabric orientations. 
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Time Delays and 
8 	 Geological Interpretation 

8.1 Abstract 

Time delay measurements are scattered but do indicate an in situ strength of 

differential shear-wave anisotropy consistent with an intact rockmass. However, 

seismic signals from nine raypaths do not display shear-wave splitting where splitting 

would be expected based on inversion results. Eight of these nine raypaths are wholly 

or almost wholly within granodiorite rather than the granite and indicate a lower in 

situ and excavation-induced anisotropy in the granodiorite. However, time-delay 

measurements do not indicate any differences of the seismic anisotropy between the 

two slightly different lithologies. This contradiction prevents a conclusion whether 

the in situ anisotropy is due to Extensive-Dilatancy Anisotropy, or the faint primary 

layering. 

8.2 Introduction 

Recent modelling strongly suggests that the geometry intergranular cracks are 

extremely sensitive to stress and that changes in differential stress affecting 

intergranular cracks will affect shear-wave propagation (Zatsepin and Crampin, 1995). 

Such sensitivity is beneficial for the monitoring of a rockmass, but also suggests that 

appreciable scatter to measurements of shear-wave splitting may result from 

inhomogenieties with a rockmass. 

There is strong evidence that the shear-wave splitting in the Shear-Wave 

Experiment and the Velocity Survey is affected by the zones of excavation damage 

and disturbance around the source tunnels. Results of inversion for polarizations give 

clear evidence that the in situ rockmass has hexagonal symmetry (section 7.7), but 20 

of the 53 polarizations from the Shear-Wave Experiment data set conflict with the 

best hexagonal model (section 7.3). Similarly, the polarizations of the Velocity 
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Survey data set suggests that the majority of these polarizations are not determined by 

the in situ anisotropy (section 7.9). Affects due to excavation are expected as the 

source locations of the Shear-Wave Experiment were 0.30m from the free surfaces of 

the source tunnels' walls, and between 0.30m and 0.70m for the Velocity Survey. The 

zone of excavation damage is limited to a skin of 0.5m thickness around the Mine-by 

Tunnel, while the zone of excavation disturbance extends to 3.5m from the Mine-by 

Tunnel (section 5.12). These zones are likely of similar extent around the source 

tunnels. Therefore, all seismic signals of these two experiments initially propagated 

through rockmass affected by excavation. 

Greater scatter is expected for time delays than for polarizations as time delays 

cumulate with propagation. The success in inverting polarizations suggests that most 

polarizations are determined by the in situ anisotropy (section 7.3). However, time 

delays cumulate with propagation and are therefore affected by the velocity 

heterogeneities around the source locations. Greater scatter of time delays also 

explains inversion results. Inversions were initially performed for both polarizations 

and time delays using the two first algorithms (section 6.5) as part of the development 

of the final algorithm (As discussed in section 6.5, the final algorithm did not consider 

time delays but could be modified to do so.). No model fitted the time delays well and 

the final anisotropic fabrics found were virtually identical to those found solely using 

polarizations and the failure to match the pattern of time delays produced high misfit 

values. 

In this chapter I use time delay measurements to find an approximate strength of 

the in situ differential shear-wave anisotropy by assuming that the scatter in time 

delays is due to the effects of excavation. I then use the result to gain further insight 

into the cause of the in situ anisotropy. I first show the inadequacies of contoured 

time delay diagrams and then develop a quantitative method of comparing time delay 

data to models that accounts for the effects of the zone of excavation damage. I then 

investigate why the seismic signals of several raypaths do not display shear-wave 

splitting. Lastly, I combine all observations in making the final geological 

interpretation. 
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8.3 Displaying Time Delays Using Plate Carée Projections 

The method of displaying polarization using Plate Carée projections (section 1.7) 

may also be used for plotting time delays. Only one plot is needed to display time 

delays because time delays are a scalar quantity as opposed to polarizations, which are 

vectors and require projection onto two planes. Figure 8.1 displays the contoured 

group velocity time delay plot for the best fitting hexagonal model with the 

polarizations as shown in Figure 6.5. Cross sections along lines of constant azimuth 

display profiles of the time delay behaviour. The contours were based upon a 81 by 

41 grid of model time delays. The grid spacing is fine enough that both the line 

singularities and kiss singularities are accurately mapped and visually easily seen both 

in the Plate Carée projections and in the cross sections. Clearly this technique is 

effective at displaying the pattern of time delays for models (e.g. Liu and Crampin, 

1990; Holmes et al., 1993; Baptie et al., 1993; and Liu, 1995). Creating such a 

contour plot using real data is not so simple. Data points are irregularly spaced and 

the spacing between data points will be large enough in many places that the locations 

of contours are not well restrained. This section describes my method of contouring 

real data to minimize these problems. 

The interpolation algorithm should be based on interpolating over a sphere rather 

than a plane as is conventionally assumed in interpolation algorithms. Interpolation 

on a sphere will account for the symmetries involved with raypath directions, such as 

an azimuth of 000° is the same as 360° and azimuth being undefined for vertical 

propagation directions. I searched for such an algorithm in three separate 

mathematical algorithm libraries (IMSL, 1987; Numerical Algorithm Group (NAG), 

1991; and Numerical Recipes (Press et al.), 1992) and made various inquires but 

found no such interpolation algorithm available. I did not consider the writing and 

refining of such an algorithm as an economical use of time. 

I instead based the contouring over a plane. The algorithm used was EO1SEF 

from the Numerical Algorithm Group library (1991). This algorithm creates a 

regularly space grid of interpolated data from irregularly spaced data. The function 

defining the grid is continuous and has a continuous first derivative. Interpolation for 

a given grid point is performed locally within a user defined radius. 
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Figure 8.1: Contoured time delays of group velocity (microseconds per metre, equivalent to 
milliseconds per kilometre) plotted on a Plate Carée projection with cross sections for constant 
azimuths. Contours are extrapolated from a grid of 41x81 data points. The contours are in ljis/m 

intervals. The model is of saturated Hudson Cracks of orientation 023/35, crack density 6=0.020 and 

aspect ratio '0.025. This is the best fitting model of a single set of Hudson Cracks found for the 
fifty-three polarizations of the Shear-Wave Experiment The plot of polarizations for this model is 
presented in Figure 6.5. 
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Contouring over a plane such as on a Plate Carée projection would not account for 

the symmetries of a sphere. Specifically, it would not account for the symmetry about 

0000  or the stretch of data point separations with increasing dip. Such stretch is seen 

on world maps where land masses near the poles are displayed as anomalously large 

compared to land masses near the equator. I account for symmetry about 0000  by 

repeating each data point three times, assigning data points the same dips, but 

equivalent azimuths within the range of 3600  to 000° and 360° to 720°. I also 

transformed data points closer together with increasing dip to exactly compensate for 

the north-south stretch. This method produces the approximate pattern expected if 

interpolation was performed over a spherical surface rather than a plane. It is not 

perfect because compensating for the stretch prevents perfect symmetry in the surface 

when accounting for symmetry about 000°. The approximation improves with larger 

data sets and greater varieties of propagation directions. 

The interpolation is improved by assuming reciprocal symmetry (section 1.8). 

This doubles the amount of data for interpolation and makes the data set less sparse. 

Also, time delays less than zero are by definition not possible. Interpolation resulting 

in grid points less than zero was prevented by determining all local minima less than 

zero of the interpolated grid. The interpolation was then repeated with added data 

points with values set to zero at the location of these minima. 

Figure 8.2 displays the contoured Plate Carée projections and cross sections of the 

fifty-three time delays measurements from the Shear-Wave Experiment. The contours 

were determined from a grid of 81 by 41 point which is the same size grid as using in 

the model (Figure 8.1). The grid was interpolated from time delay measurements by 

the method described in this section. 

8.4 The Shortcomings of Contouring Real Data 

An attempt to visually compared the model (Figure 8.2) to data (Figure 8.1) shows 

the shortcomings of this method of display. Visual comparison subjective and 

difficult and any pattern seen to roughly match between the two figures may only be 

coincidence. This display method does not indicate in which propagation directions 

data are sparse or contain gaps so that the contouring is less restrained by the observed 

time delays. 
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Figure 8.2: Contoured time delays (microseconds per metre) extrapolated from the fifty-three time 
delays measured from the Shear-Wave Experiment plotted on a Plate Carée projection. 
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These problems are fundamental to this method. Figure 8.3 is the contoured time 

delay plot where the time delay values are exactly those of the model of Figure 8.1. 

There are 166 data points for randomly generated propagation directions and the 166 

reciprocal directions (332 is presently the maximum number the program is capable of 

using in extrapolation). Even for this data that matches the model exactly, 

comparison is difficult because of the irregular shape of the contours particularly near 

the directions of singularities. 

Singularities are unlikely to be seen. Near zero time delays around singularities 

will only be interpolated if relatively small time delays are observed near the 

singularity. However, the closer the propagation direction is to a singularity, the less 

likely the time delay will be great enough for splitting to be observed. This problem is 

demonstrated in Figure 8.4, which displays the contour plot for fifty-three randomly 

generated propagation directions and corresponding reciprocal directions where the 

delays values are also exactly those of the model of Figure 8.1. Fifty-three is the same 

number as measured time delay in the Shear-Wave Experiment and is more realistic of 

the number of time delay measurements expected in studies. Only time delays where 

at least 1.5 sample points (30ts) delay time for a 30m raypath are included because 

this is realistic of the minimum time delay that can typically be measured in the 

Shear-Wave Experiment. Figure 8.4 does not indicate the locations of singularities, 

and again this figure is difficult to compare to Figure 8.1 despite the perfect match of 

the fifty-three values used in contouring to the model. 

The precision in time delay measurements is not displayed by this method. 

Precision for the Shear-Wave Experiment data set is approximately ±1 sample points 

(section 4.7). The average time delay measured is 4.7 sample points. Therefore the 

precision indicates very large relative errors, of which Figure 8.2 gives no indication. 

8.5 Quantitative Comparison of Time Delays 

The previous section demonstrated the inadequacies of plotting measured time 

delays on Plate Carée projections. I now develop a quantitative method of comparing 

time delays to models. 

Ideally an observed time delay can be compared to a model by dividing the 

observed time delay by the time delay of the model for the same propagation 



Chapter Eight. Time Delays and Geological Interpretation 	104a 

Azimuth (Degrees) 
90 	 180 	270 	360 

-90 

-60 

-30 

.2- 30 

60 

90 

Azimuth (Degrees) 
0 	 90 	 180 	270 	360 

-90 

-60 

-30 

.30 

60 

90 

-90 

-60 

.2 30 

60 

90 

0 20 0 	20 0 	20 0 	20 0 	20 

Time Delay (jis/m) 

Figure 8.3: Contoured plot of time delays extrapolated from 166 data points and the 166 reciprocal 
data points plotted on a Plate Carée projection. The data points are for the randomly chosen 
propagation directions denoted by the location of ticks on the upper projection. The values of time 
delays exactly match those of Figure 8.1. 
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Figure 8.4: Contoured plot of time delays extrapolated from fifty-three data points and the fifty-three 
reciprocal data points plotted on a Plate Carée projection. Only time delays of greater than I jis/m 
(equivalent to a time delay of 1.5 samples points (30jss) for a 30m raypath) are included. The data 
points are for the randomly chosen propagation directions denoted by the location of ticks on the upper 
projection. The values of time delays exactly match those of Figure 8.1. 
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direction. I define the resulting value as the normalized time delay. A perfect match 

between model and data would result in a value of '1' for all normalized time delays. 

Crack density cannot be determine solely from inverting polarizations (section 7.3), 

but crack density is approximately proportional to time delay (section 1.10). 

Therefore, a constant value for all normalized time delays would result if a model 

matches the data other than for crack density, and this value would be approximately 

the ratio of the true crack density to that of the model tested. In this way, models may 

be compared to observed time delays to determine if the model explains the time 

delays and to determine the crack density. 

In practice, there are complications in dividing the observed time delay by that 

predicted by the model. The algorithm used (section 8.3) does not determine time 

delays for a specified propagation direction, but over a grid. Small miss-orientations 

in determining propagation directions and small variations on fabric orientation also 

must be accounted. Also, time delays can only be measured to a limited precision. 

Therefore determining discrete values of normalized time delays is not practical. 

It is more useful to determine the range of possible values for the normalized time 

delays. These ranges are calculated using the minimum and maximum data time 

delays as determined by the measured time delays, the picking precision of ± I sample 

point, and the maximum and minimum model time delays as found from the 81 x4 1 

grid within 9° of the propagation direction. A common value to all ranges of 

normalized time delays indicates the ratio of the true crack density to that of the 

model. If there exist no value is common to all ranges of normalized time delays then 

either the model does not explain the observed time delays or there are anomalous 

time delay picks. 

8.6 Initial Comparison of Data to Model 

Twenty of the corresponding polarizations do not agree with the best hexagonal 

model. Assuming the hexagonal model to be correct, these twenty polarizations are 

not determined by the in situ anisotropy and are either determined by the 

excavation-induced anisotropy, or are anomalous. The time delays corresponding to 

these twenty polarizations should not be included when time delays are normalized by 

the best hexagonal model. The hand-picked and automatically picked time delays 
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agreed for twenty-three of the remaining thirty-three observations. I will only us these 

twenty-three time delay measurements to reduce the number of possible miss-picked 

time delays. 

Figure 8.5 is the graph of normalized time delay versus raypath length for the 

twenty-three measured time delays. The time delays were normalized using the best 

hexagonal model found (Figure 8.1) using a crack density of 0.017. Many 

normalized time delays are greater than the maximum of the time delays axis. These 

are observed time delays whose corresponding propagation directions were near 

singularities in the model. Consequently the measured time delays are divided by a 

value near zero to find the maximum normalized time delay values resulting in 

unreasonably large values. The maximum value of '4' for the Normalized Time 

Delay Axis of Figure 8.5 was chosen because the minimum values of all ranges of 

normalized time delays were less than '4' and a normalized time delay of '4' suggests 

an unreasonably large crack density of E=0.068. I chose Straight Raypath Length to 

be the other axis of Figure 8.5 to examine the data for greater scatter in shorter 

raypaths. The graph clearly shows there exists no common value within the ranges of 

all normalized time delays and this cannot be attributed to a few anomalous 

polarizations. All but four of the twenty-three ranges contain values between 0.50 and 

1.0, corresponding to crack densities of E=0.0085 to 0.018. These values are less than 

the maximum of £=0.045 expected for an intact rockmass (Crampin, 1994). 

The number of observations for this analysis can be increased by including time 

delays from the Velocity Survey data set, where the corresponding polarizations agree 

with the best hexagonal model. Additional scatter is expected because some 

polarizations may coincidentally agree with the hexagonal model even if the 

polarizations were determined by excavation-induced anisotropy, and the lower 

reliability of picks from the Velocity Survey data set (section 7.8.1). This resulted in 

sixty-five normalized time delays (Figure 8.6). 

8.7 Accounting for the Zone Of Damage 

The zone of damage can be taken into account by calculating the maximum and 

minimum effects of the zone of excavation damage upon time delays. To do this I 

will assume the maximum anisotropy to be no greater than ten per cent as this is the 
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Figure 8.5: The graph of normalized time delays versus raypath length corresponding to the 
twenty-three polarizations from the Shear-Wave Experiment that do not conflict with the best fitting 
hexagonal model of Hudson Cracks, and the values of hand-picked and automatically picked time 
delays agree. The model used to normalized the time delays is that of the best fitting model of a single 
set of Hudson Cracks (saturated Hudson Cracks of orientation 023/35, crack density 6--0.017 and aspect 

ratio r0-025).  The model is the same as that of Figure 8.1 except for a lower crack density ofE=0.017 
rather than E0.020. The shaded horizontal band indicates a range of normalized time delays from 0.5 
to 1.0 where values of all but four ranges are included. 
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Figure 8.6: The graph of normalized time delays versus raypath length corresponding to the twenty 
polarizations as in Figure 8.6, and the forty-five polarizations from the Velocity Survey that do not 
conflict with the best fitting hexagonal model of Hudson Cracks. The model used to normalize the time 
delays is that of the best fitting hexagonal model, as used in Figure 8.5. Some values of raypath lengths 
have been slightly altered (typically 0.30m) to prevent overlapping of ranges. 
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maximum strength expected for an intact rockmass (Crampin, 1994). I will also 

estimate the extent of the zone of excavation damage to be a skin of l.Om around each 

source tunnel despite a known limit of 0.5m around the Mine-by Tunnel. This is 

because Carlson and Young (1993) observed velocity changes up to 0.75m from the 

Mine-by Tunnel and the lesser care taken in excavating the source tunnels. 

The proportion of the total length of every raypath within one metre of its source 

tunnel was numerically calculated using the surveyed co-ordinates of the source and 

receiver locations and the interpolation of surveyed locations on the tunnel walls. I 

estimate the precision at determining this length to be ±0.1 m. The time delay through 

a homogeneous rockmass is given by; 

d 	d. 
Ti 	T/ 

q.Q 
(8.1) 

where Vq1  and Vq  are the velocities of the qSl- and qS2-waves respectively, d is the 

straight raypath length, and t is the time delay. Substituting equation 1.1 into equation 

8.1 gives; 

d 	d. 
- Vqi (lA) 	Vq' 

(8.2) 

where A is the percentage anisotropy. Ten per cent anisotropy results in a time delay 

of 32.9ts/m, assuming a qSl-wave velocity of 3376m1s as measured by Talebi and 

Young (1989). It is therefore assumed that the contribution of the zone of excavation 

damage to the total time delay measured is between 0j.is/m and 32.9ps/m for the 

length of raypath within 1 .Om to the source tunnel. These values are subtracted from 

the measured time delay for each raypath to find the range of time delays that can be 

solely attributed to shear-wave splitting outside of the zone of excavation damage. 

This is a very crude method that takes no account variation of damage with 

propagation direction. Breakouts in the Mine-by Tunnel show that the zone of 

damage is not cylindrical symmetric about the tunnel axis. However there is not 

enough known about the fabrics in the zone of excavation damage to confidently 

estimate their orientations, extent, or anisotropic effects. A maximum of ten per cent 

anisotropy is assumed in all directions so not to underestimate the effects of the zone 
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of damage and so place lower and upper bounds on the possible effects of the zone of 

excavation damage. 

8.8 Strength of In Situ Anisotropy 

Figure 8.7 displays the sixty-five normalized time delays as determined by the 

same method as for Figure 8.6 except for that the maximum and minimum effects of 

the zone of excavation damage have been accounted. Twenty of the sixty-five 

normalized time delays range from zero to over four. Most values greater than four 

are due to many raypaths of the Velocity Survey being subparallel to the Mine-by 

Tunnel so that large proportions of the raypaths are within 1 .Om to the tunnel. Values 

of zero result from being able to attribute all the measured time delay to splitting 

within the zone of excavation damage. Accounting for the zone of damage has also 

reduced the scatter in normalized time delay ranges for raypaths less than twenty-five 

metres in length. This result is consistent with the zone of damage contributing 

significantly to the time delays of these shorter raypaths. 

There is no value of time delay common to all sixty-five ranges, and scatter 

displayed in the time delay ranges prevents any detailed interpretation of the strength 

of the in situ anisotropy. However, normalized time delay values of less than 1.7 are 

common to all ranges. This corresponds to a crack density of E=0.029  as is consistent 

with the rockmass being intact (Crampin, 1984). 

No accounting for the effects of the zone of excavation disturbance upon time 

delays have been made because the effects are expected to be small compared to those 

from the zone of excavation damage. Changes in the stress field due to excavation 

will cause reorientation of EDA-cracks, but will not increase the overall strength of 

anisotropy assuming that EDA-cracks have the maximum possible alignment from the 

in situ stress field. Anisotropy due to primary layering will remain unchanged. 

Therefore, the anisotropy in the zone of excavation disturbance for a given raypath 

can range from 0% to 2.9% assuming the in situ crack density to be no greater than 

E=0.029. This is only a third of the range possible in the zone of excavation damage. 

Also, the differences in orientations and magnitude of the stress field in the zone of 

excavation damage from in situ decay rapidly with distance so that the effects of this 

zone are likely compensated by the overestimation of the effects of the zone of 
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Figure 8.7: The graph of normalized time delays versus raypath length for the same sixty-five values 
as in Figure 8.6, but the ranges calculated to included the effects of 0% to 10% anisotropy for the 
portion of each raypath within one metre to its source tunnel. The model used to normalize the time 
delays is that of the best fitting hexagonal model, as used in Figure 8.5. Some values of raypath lengths 
have been slightly altered (typically 0.30m) where necessary to prevent overlapping of ranges. 
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excavation damage (section 8.7). Effects of the zone of excavation disturbance will 

add some scatter to the ranges of normalized time delays and may partially explain the 

lack of a single common value to the time delays. 

8.9 No Shear-wave Splitting 

Polarizations and time delays could be clearly measured on the seismograms from 

fifty-three sets of raypaths of the Shear-Wave Experiment data set. There were also 

eighteen sets of raypaths where the corresponding seismograms clearly indicated that 

no shear-wave splitting had taken place. Seismograms recorded by Triaxial 

Accelerometer 16, originally ignored because of incorrect accelerometer alignments 

(section 2.7), were also examined using the calculated triaxial accelerometer 

orientation. Two raypaths to this accelerometer showed no splitting. Any large data 

set is expected to included seismograms that display no shear-wave splitting even in a 

strongly anisotropic fabric because of short raypaths or propagation near singularity 

directions. I show in this section that the lack of splitting for all twenty raypaths 

cannot be explain solely by raypath length and propagation direction. 

To be thorough I will compare these twenty raypaths to the time delays predicted 

for the best hexagonal and best orthorhombic models of the Shear-Wave data set 

(Figures 6.5 and 7.3, respectively) and the best orthorhombic model with the fabric 

orientations suggests by P-wave velocities of the Velocity Survey (Figure 7.4). The 

crack density 0.017 will be used for the best hexagonal model. I estimated a 

minimum likely crack density of the orthorhombic models to be the average of the 

minimums from the ranges of normalized time delays without accounting for the zone 

of excavation damage. The minimum likely crack densities for the best orthorhombic 

model are 0.010 and 0.017 for orientations 059/31 and 239/59 respectively. The 

minimum crack densities for third model are E=0.0082 and E=0.0030 for fabric 

orientations of 046/44 and 226/46, respectively. 

All three models predict clearly measurable splitting (time delays of least two 

sample points) for at least four of the twenty raypaths. I argue that the hexagonal 

model best represents the in situ anisotropy (section 7.7), which predicts that at least 

nine of the raypaths should show clear splitting and the crack density would have to 

be lower than E=0.0030 to explain the lack of splitting for all twenty raypaths. 
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8.10 Why the Lack of Splitting? 

The previous section established that the models do not explain the lack 

shear-wave splitting for nine raypaths. This section relates these raypaths to lithology. 

The lithology of the 420-Level consists mainly of the granite and granodiorite. 

Compositionally, these two rock types are very similar although the granodiorite has a 

slightly greater proportion of mafic minerals, a slightly higher density, and is finer 

grained (section 2.8). Examination of the three-dimensional lithology (Figure 8.8) 

and comparison of raypaths to the lithology on the plan view (Figure 8.9), and 

cress-sectional view (Figure 8.10) show a relationship of these raypaths to lithology. 

Specifically, eight of the nine raypaths predicted to show splitting are wholly or 

almost wholly within granodiorite as opposed to granite, the one exception being the 

raypath from Source Station 3 to Triaxial Accelerometer 2. This consistency suggests 

that the anisotropy in the granodiorite is different from that of the granite. 

Other studies also find the behaviour of the two rock types noticeably different 

despite similarities in strength and composition. Collins and Young (1994) measured 

the decay in the rate of seismic events with time after each excavation sequence. The 

rate of induced seismicity in the granodiorite is initially less than in the granite but 

decays at a much slower rate. Figure 8.11 is the perimeter maps of the induced 

seismicity source locations and the break out contours. Comparison of this figure to 

the geology of the Mine-by Tunnel (Figure 2.12) shows that there is less induced 

seismicity and a less developed breakout notch in the granodiorite (Young and 

Collins, 1993). 

These differences in the two lithologies may be due to the finer grain sizes of the 

granodiorite. The development of excavation-induced microcracks may be impaired 

by the greater number of grain boundaries that must be crossed (P. Young, pers. 

comm.). There may also be differences in the rate of fluid escape from the rockmass 

due to the different grain sizes and the possible differences in the excavation-induced 

crack structures. There may also be in situ differences in the seismic responses of the 

two lithologies, as investigated in the next two sections. 

I presented a preliminary study of the splitting of the Shear-Wave Experiment 

from data of the first recording sequence (Holmes et al., 1993). In this preliminary 

study the direction of shear-wave motion due to the source was not considered. The 
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Figure 8.8: Block diagram depicting the geological setting of the Mine-by Experiment (R. Everitt, pers. notes). 
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Figure 8.9: Plan view of the 420-Level around the Mine-by Tunnel showing the geology of the 
tunnels. Striped areas depict intermingling between the granite and granodiorite. The darker shading is 
used to indicate granodiorite for Room 413 where it is directly below Room 409. The twenty raypaths 
corresponding to the seismic signals without measurable splitting are shown. The nine raypaths 
denoted by darker shading are those where splitting is expected based on the best fitting hexagonal 
model. The line A to A' denotes the location of the cross section of Figure 8.11. Geology from R. 
Everitt, pers. notes. 
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Figure 8.10: Cross section of the Geology of the 420-Level near the Mine-by Tunnel. The twenty 
raypaths corresponding to the seismic signals without measurable splitting are shown. The nine 
raypaths denoted by darker shading are those where splitting is expected based on the best fitting 
hexagonal model. Modified from Read and Martin (1991). 
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observation was made that the seismic signals from many raypaths that were near the 

Mine-by Tunnel's face had anomalous shear-wave polarization directions. These 

polarizations have now been identified as the shear-wave particle motions where no 

splitting had taken place. The first recording sequence took place when the Mine-by 

Tunnel face was within the granodiorite. This coincidence of apparently anomalous 

polarizations and the location of the tunnel face led to the incorrect interpretation that 

the anomalous stresses around the tunnel face cause the anomalous polarizations 

rather than lack of splitting from raypaths within the granodiorite. 

8.11 Lower In Situ Anisotropy in Granodiorite 

I will investigate the possibility of lower in situ anisotropy in granodiorite by 

considering the time delays. Limited geological information of the in situ rockmass 

prevents determining the proportions of each raypath that are within the two 

lithologies. Instead, I used Figures 8.8, 8.9, and 8.10 to identify raypaths from both 

the Shear-Wave Experiment and Velocity Survey data sets that are predominantly in 

only one of the two lithologies and that the corresponding polarizations agree with the 

best hexagonal model. 

Figure 8.12 is the graph of normalized time delays accounting for the zone of 

excavation damage for the ten raypaths that are clearly predominantly in granite. The 

smallest range that includes values common to all ranges of normalized time delays 

corresponds to cracks densities between E=0.0094 and E=0.014. Figure 8.13 is the 

graph for eleven raypaths that are clearly predominantly in granodiorite, also 

accounting for the zone of damage. The smallest range of common values suggests a 

crack density between F-=0.013 and c=0.018. The crack density in the granodiorite 

appears to be slightly greater than in the granite, but this is probably due to the limit 

amount of data. There are no distinct differences between the pattern of normalized 

time delays of the two graphs. Therefore time delays do not suggest there exists any 

differences in the in situ anisotropy of the two lithologies. 

8.12 Less Excavation-induced Anisotropy in Granodiorite 

I now investigate whether there is less excavation-induced anisotropy in the 

granodiorite than the granite. Less excavation-induced anisotropy in the granodiorite 
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Figure 8.12: The graph of the ten of the sixty-five time delays of Figure 8.8 where the raypaths were 
predominantly within granite. The ranges were calculated to included the effects of 0% to 10% 
anisotropy for the portion of each raypath within one metre to its source tunnel. The model used to 
normalize the time delays is that of the best fitting hexagonal model, as used in Figure 8.5. The shaded 

band contains values from all ranges and corresponds to crack densities 8=0.0094 to 8=0.014. 
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Figure 8.13: The graph of the eleven of the sixty-five time delays of Figure 8.8 where raypaths were 
predominantly within granodiorite. The ranges were calculated to included the effects of 0% to 10% 
anisotropy for the portion of each raypath within one metre to its source tunnel. The model used to 
normalize the time delays is that of the best fitting hexagonal model, as used in Figure 8.5. Some 
values of raypath lengths have been slightly altered (typically 0.30m) where necessary to prevent 
overlapping of ranges. The shaded band contains values from all ranges and corresponds to crack 

densities E=0.0013 to 80.018. 
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may be expected because of possibly less excavation effects in the granodiorite 

(section 8.10). I will consider raypaths from both the Shear-Wave Experiment and 

Velocity Survey where the source locations are clearly within either granite or 

granodiorite. Only raypaths where the corresponding polarizations agree with the best 

hexagonal model are included so that the best hexagonal model can be used to 

normalize the time delays. 

Figures 8.14 and 8.15 show the normalized time delays for sixteen raypaths with 

source locations clearly within granite and twenty-three raypaths with source locations 

clearly within granodiorite, respectively. No accounting of the zone of damage is 

made. If there is less excavation-induced anisotropy in the granodiorite, then the 

normalized time delays for shorter raypaths would be less scattered and generally 

lower than for the granite. Such behaviour is not seen. The time delays therefore do 

not suggest that there is less excavation-induced anisotropy in the granodiorite. 

8.13 Geological Interpretation 

The examination time delays presented in the two previous sections failed to 

reveal differences due to lithology to explain the lack of splitting of raypaths expected 

to show splitting or explain the scatter in normalized time delays. Similar 

examinations of subsets of the Shear-Wave Experiment and Velocity Survey data sets 

based on raypath length, separation of raypaths to tunnels, raypath directions, time 

delay measurements, and source tunnel orientations, as well as lithology, failed to 

resolve the scatter or explain the lack of splitting for some raypaths. There are several 

explanations that may resolve these conflicting results, but not enough data to 

substantiate them. 

An, explanation consistent with all observations is that there is negligible in situ 

anisotropy where the rockmass consists wholly of granodiorite, but that even minor 

intermingling of granite with the granodiorite results in the same in situ anisotropy as 

in the granite. The impure granodiorite would also be more susceptible to excavation 

effects. The amount of splitting therefore depends on the proportion of the raypath 

within wholly granite or intermixed lithologies. This situation could be due to 

extragranular cracks (cracks outside of grains including grain-boundary or 

intergranular cracks) within the in situ granite which are fluid-filled and stress-aligned 
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Figure 8.14: The graph of the sixteen of the sixty-five time delays of Figure 8.8 where the source 
locations of the seismic signals were clearly within granite. The model used to normalize the time 
delays is that of the best fitting hexagonal model, as used in Figure 8.5. 
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Figure 8.15: The graph of the twenty-three of the sixty-five time delays of Figure 8.8 where the source 
locations of the seismic signals were clearly within granodiorite. The model used to normalize the time 
delays is that of the best fitting hexagonal model, as used in Figure 8.5. Some values of raypath lengths 
have been slightly altered (typically 0.30m) to prevent overlapping of ranges. 



ChapterEight: Time Delays and Geological Interpretation 	113 

and are primarily responsible for the in situ anisotropy (and are therefore 

EDA-cracks). The development of such cracks may be inhibited within the 

granodiorite by the finer grain sizes, but may form near where the two lithologies 

intermingle so that such cracks extend into the granodiorite for a finite distance before 

the rock matrix prevents their further development. There is no direct evidence to 

substantiate this explanation, although it is worthy of investigation. 

I proposed this may be investigated by using tomographic techniques by using 

normalized time delays rather than the more traditional P-wave travel times. The 

addition restriction would be made that there are only two types of grid cells in the 

inversion grid. One type of call would be wholly isotropic while all the second type of 

cells would contain the same anisotropy. Success in relating the tomogram of time 

delays to geology would introduce a new method of non-destructively parameterizing 

a rockmass in a mine environment. Unfortunately, sixty-five raypaths do not provide 

enough raypath coverage to produce a meaningful tomogram (S. Maxwell, pers. 

comm.). 

I suggest that the major reason for the lack of a precise explanation for the time 

delays is a combination of the assumptions in modelling, the complex pattern of 

excavation damage, and the extreme sensitivity of shear-waves. The modelling may 

not have resulted in the precise determination of the in situ fabric orientation and the 

fabric is unlikely to behave exactly as a set of Hudson Cracks. This creates errors in 

the normalization of time delays. It was also necessary to combine the data of the 

Shear-Wave Experiment with the less reliable data of the Velocity Experiment so 

there were enough observations for graphs such as Figure 8.7 to be meaningful 

(section 8.6). The most substantial complications are the extreme sensitivity of 

shear-wave splitting and the effects of excavation. The exact extend, symmetry, and 

pattern of zones of damage and disturbance are unknown and may differ between the 

two rock types. The intermingling between granite and granodiorite causes extreme 

reorientation of the primary layering, possibly causing anomalous polarizations and 

time delays, and there may exist differences in the anisotropy of the two lithologies. 

The rockmass also contains some smaller dykes and quartz veins and may contain 

other inhomogeneities that cause anomalous polarizations or time delays. These 
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effects may add enough scatter to data to mask fabrics that exist throughout the 

rockmass or within the zones of damage and disturbance. 

8.14 Cause of the In Situ Anisotropy 

8.14.1 Arguments for EDA 

The strongest argument for EDA as the cause is the consistency of the results to an 

in situ fabric of EDA-cracks. The orientation of the best hexagonal model differs 

from that predicted for EDA by only 23° (section 7.7). Time delays indicate the 

strength of differential shear-wave anisotropy of significantly less than the upper limit 

of 4.5% (Crampin, 1994). Temporal changes also suggest that the in situ anisotropy is 

at least partially due to EDA (section 5.12). 

Anisotropy due to extragranular EDA-cracks is also consistent with the porosity of 

the rockmass. The porosity of a rockmass, assuming all porosity is due to Hudson 

Cracks, is given by; 

(8.3) 

where CI is the porosity of the rockmass. Assuming a maximum crack density of 

F-=0.029 (section 8.8) results in an upper limit to the porosity of 0.3% using the aspect 

ratio of 0.025, although aspect ratio is a relatively insensitive parameter (section 

7.3) so this upper limit is poorly determined. This value of porosity agrees with the 

porosity of Lac du Bonnet granite of between 0.2% and 0.4% as measured in 

laboratory samples, accounting for the effects of stress-relief cracking (Chernis and 

Robertson, 1987). This method of calculating porosity is also likely to underestimate 

the true porosity because porosity likely exists in cracks not aligned by stress, and 

EDA-cracks will not be perfectly ellipsoidal. However, this near agreement is 

consistent with an in situ anisotropy due to extragranular EDA-cracks. 

There are two strong arguments against EDA as the in situ fabric. Firstly, the 

eight raypaths through granodiorite that are predicted to show splitting but do not 

suggest that the strength of the EDA anisotropy must be extremely weak in the 

granodiorite, but not the granite. This would make the granodiorite of the 420-Level 



Chapter Eight: Time Delays and Geological Interpretation 	115 

the second rockmass found to have negligible in situ crack-induced anisotropy, the 

only other one being 1200m of fine-grained shale or shaley clay in the Caucasus 

Basin, Russia (Slater et al., 1993). This contradicts the minimum strengths of 

anisotropy expected (previous paragraph). Secondly, EDA is aligned by the stress 

field and therefore should cause a very consistent anisotropic fabric throughout the 

undisturbed rockmass. The misfit value of 20.260 for fifty-three polarizations 

indicates the in situ anisotropy does not have this expected consistency. 

8.14.2 Arguments for Primary Layering 

There are three arguments that suggest the in situ anisotropy is due to the mineral 

alignments within the primary layering, or intergranular cracks whose orientations are 

governed by the primary layering (section 2.14.1). Firstly, it would explain the lack of 

splitting for the eight raypaths within the granodiorite expected to show splitting 

because the primary layering exists solely within the granite. Secondly, it explains the 

high number of polarizations that do not agree with the best hexagonal model. The 

orientation of the primary layering varies slightly throughout the granite and varies 

greatly when disrupted by the intermingling of the two lithologies (R. Everitt, pers. 

comm.). Thirdly, the orientation the best hexagonal model differs to the primary 

layering by only 10° as opposed to 23° to the orientation expected for EDA (section 

7.7). However, in situ anisotropy due to the primary layering would not explain the 

lack of observable differences in normalized time delays between raypaths 

predominantly in either the granite or granodiorite (sections 8.11). 

Interpretation of this explanation is severely restricted by the lack of knowledge of 

the possible effects of the primary layering. The effects of gneissic layering have 

never been theoretically deduced, although Babuka (198 1) argued that the 

orientations of minerals and velocities in crustal crystalline rocks would only result in 

'low' seismic anisotropy. The highly anisotropic platy minerals typical in gneissic 

layering, such as biotite, and the intergranular cracks whose orientations are governed 

by the mineral alignment, must cause some anisotropy. Kern et al. (199 1) attributed 

the anisotropy observed between 1610m to 3575m depth of the German Continental 

Deep Drilling Project (KTB) drill hole to the highly foliated paragneiss at those 

depths. By observational field geology standards, the gneissic primary layering is very 
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faint and hardly noticeable. I do not know whether the faint gneissic layering within 

the granite of the 420-Level is anisotropically strong enough to cause the observed 

time delays and polarizations. 

8.14.3 Summary and Alternative 

There are no clear conclusions as to the cause of the in situ anisotropy. It is also 

possible that gneissic layering and EDA anisotropy both contribute appreciably to the 

anisotropy and the orientations of the two fabrics are too similar for them to be 

resolved separately (section 2.15). I suggest that the anisotropy is primarily due to 

EDA, but the orientations of the EDA-cracks are influenced by the primary layering. 

This explains both the initial onset of temporal changes (section 5.10) and the closer 

agreement in orientation of the primary layering to the best-fitting hexagonal model 

(section 7.7). Peacock et al. (1994) observed in a laboratory study of Carrara marble 

that the stress alignment of cracks were partially governed by grain boundaries so 

crack normals were not exactly aligned with the minimum stress axis, . 

8.15 Conclusions 

T this chapter 1 used time delays gain further insight to the cause of the in situ 

anisotropy. I demonstrated that graphs of normalized time delays are a useful, 

quantitative method of comparing measured time delays to models that accounts for 

the precision in measuring time delays. This method of comparison is much 

preferable to qualitative, visual comparisons of contour plots. 

Time delays values are consistent with the rockmass being intact. The scatter in 

time delays prevents a determination of the in situ strength of differential shear-wave 

anisotropy. 

Examining the effects of two lithologies produced apparently contradicting results. 

Nine of the twenty raypaths where there was no measurable splitting (time delays 

greater than approximately 1.5 sample points, or 30ts) should show clear shear-wave 

splitting, as calculated using the best hexagonal model. Eight of these nine raypaths 

appear to be wholly or almost wholly within granodiorite, indicating that the 

excavation does not cause an appreciable fabric in granodiorite and the in situ 

anisotropy in granodiorite is negligible. In contrast, examination of the time delays 
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for raypaths predominantly within a single lithology, or for raypaths with source 

locations clearly within a single lithology, indicate no clear differences in the 

anisotropy between the granite and granodiorite. I speculate that this may be due to 

EDA-cracks within the granite whose development in granodiorite is impaired by the 

finer grain size so that they only occur in granodiorite near where the two lithologies 

intermingle. However, the scatter of time delays is at least partially due to the 

assumptions of modelling, the effects of the zone of excavation disturbance, and 

possibly small inhomogeneities in the rockmass. This scatter prevents more definite 

conclusions. 

The exact cause of the in situ anisotropy could not be determined because of the 

apparent contradiction as to whether there exist distinct differences in the two 

lithologies. All observations are entirely consistent with anisotropy due to 

EDA-cracks except that EDA-cracks are predicted to be significant fabric throughout 

virtually all the crust and the purely granodioritic rock appears not to have this 

expected fabric. The faint primary layering will be an anisotropic fabric, but it is 

unknown whether the strength of this fabric is significant. 
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Conclusions, Implications, 
9 	 and Further Research 

9.1 Conclusions 

I have used observations of shear-wave splitting from a controlled source 

shear-wave experiment to parameterize the in situ anisotropy of a granite rockmass, 

and gain insight into the cause of the anisotropy and the effects of excavation. In 

doing so, I have developed the necessary processing and interpretation techniques 

such that they may be applied to future shear-wave experiments in a mine 

environment. The greatest variety of raypath directions of any in situ experiment to 

date has been used for quantifying the anisotropy. I state my major conclusions: 

9.1.1 The In Situ Anisotropy 

The in situ anisotropy of the rockmass surrounding the Mine-by Tunnel is 

consistent with hexagonal symmetry. Described as Hudson Cracks, the fabric 

consists of saturated cracks of approximately 023° strike, and 35° dip. An 

aspect ratio of r0•025 best describes the observations, although the aspect 

ratio is not a sensitive parameter in inversion and aspect ratios between 

approximately 'r0•020 and 0.069 describe the observations almost equally 

well. 

Time delays are consistent with the in situ rockmass being intact. 

The in situ anisotropy is due to EDA-cracks, mineral alignment within the 

primary layering, or cracks whose orientations are governed by the mineral 

alignment. The orientations of these fabrics are too similar for them to be 

resolved separately and the lack of an explanation for the observed time delays 

prevents a definitive interpretation as to which of these potential fabrics is 

responsible. Temporal changes suggest that the in situ anisotropy is at least 
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partially due to EDA. I suggest that the anisotropy is primarily due to 

EDA-cracks whose orientations are influenced by the primary layering. 

4. It is inconclusive whether there exist distinct differences between the in situ 

anisotropy of the granite and granodiorite. The lack of shear-wave splitting for 

seismic signals propagating solely through granodiorite suggests that the 

granodiorite is the second ever rockmass identified to have negligible in situ 

anisotropy from EDA-cracks. In contrast, the time delays for raypaths that 

propagated predominantly through a single lithology do not indicate any 

differences in the in situ anisotropy between the lithologies. I speculate that 

this may be due to EDA-cracks within the granite whose development in 

granodiorite is impaired by the finer grain size so that they only occur in 

granodiorite near where the two lithologies intermingle. 

9.1.2 Excavation Effects 

Temporal changes due to tunnel excavation and the scatter in time delays of 

raypaths of less than 25m length clearly demonstrates that shear waves are 

sensitive to excavation effects. 

The maximum distance of observable effects from excavation is between 0.7m 

and 2.8m, as indicated by the onset of temporal changes. This range is 

consistent with a limit to the zone of excavation disturbance of about one 

tunnel diameter (3.5m). 

Increases in time delays suggest that tunnel excavation creates an anisotropic 

fabric of the same orientation as the in situ fabric, indicating that the 

orientation of the excavation-induced fabric is governed by the in situ stress 

field or the primary layering. This result is somewhat speculative because only 

three raypaths show clear changes in shear-wave splitting. 

There is no clear conclusion whether differences exist in the 

excavation-induced anisotropy in the granite and granodiorite. The lack of 

shear-wave splitting for seismic signals that propagated solely through 

granodiorite suggests less excavation-induced anisotropy in granodiorite. 

However, the time delays for raypaths with source locations predominantly 

within a single lithology do not indicate any differences. 
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9.1.3 Processing: Specific to the Shear-Wave Experiment 

The Schmidt Hammer-nylon rod source has the benefits of known orientations 

and high reproducibility, with a cross-correlation coefficient of 0.90 or greater 

expected for repeated raypaths. However, the limited band width of 3.0kHz to 

5.6kHz allows cycle skipping when cross-correlating. 

Although cross-correlation is a practical, quantitative method to measure time 

delays, the effective use of cross-correlation requires: (1) rotation of the qSl-

and qS2-seismograms so comparison results in a positive cross-correlation; (2) 

imposing a minimum time delay greater than zero; (3) rejecting measurements 

where one wave has a significantly smaller amplitude than the other; and (4) 

limiting the time delay search to a maximum of three-quarters of a shear-wave 

cycle. 

The consistency of the time delays measured by cross correlation with 

hand-picked delays strongly suggests that both methods are indeed measuring 

the actual time delays between split shear waves. 

9.1.4 Processing: General Importance 

The use of multiple source orientations of a highly repeatable source with a 

known source radiation pattern is highly desirable for any controlled-source 

shear-wave experiment. The advantages over a single, non-reproducible 

source demonstrated in this analysis included: (1) reliable identification of 

polarizations and time delays; (2) distinguishing between seismic signals 

displaying no splitting and coincidental alignment of qSI- and qS2-wave 

particle motion directions with motion due to the source; (3) identification of 

reflected waves; (4) reliable time delay measurements using cross-correlation 

by selecting seismograms with the ratio of qSl-wave to qS2-wave amplitude 

close to unity; and (5) distinguishing between temporal change due to 

significant changes in the rockmass from changes due to propagation near 

nodal directions or diffraction around source tunnels. 

Cross-correlation is more reliable than visual examination in searching for 

temporal changes for this particular dataset. I suggest the cross-correlation 
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will be more reliable for any dataset where the source is reproducible and the 

seismograms relatively uncomplicated. 

Polarizations alone can be used to determine in situ fabric orientation. This 

result is particularly important to earthquake studies where time delays are 

commonly unreliable. 

Comparison of the polarizations of model to data must be quantified because 

visual comparison is subjective and time consuming. 	Such a 

judgement-of-fitness algorithm should: 	(1) measure the number of 

observations that cannot be explained by a given model; (2) account for the 

effects of singularities; and (3) compare model polarizations to data on the 

same plane in which data polarizations were measured. 

The use of progressive particle motion plots is a fast and efficient method for 

the visual examination of temporal changes. 

9.2 Implications 

9.2.1 Determining Excavation Effects 

The observed temporal changes demonstrate that shear waves are sensitive to 

cracking induced by excavation so that shear-wave splitting can be used as method to 

help determine the extent of excavation disturbance and the orientation of 

excavation-induced cracks. Two possible applications are in minimizing excavation 

damage when building in nuclear waste repositories and in pillar and stope extractions 

in mines. 

Unfortunately a more detailed evaluation of the potential of using shear waves for 

these purposes is not possible because the design of the Shear-Wave Experiment was 

not ideal for the examination of temporal changes. Specifically, not enough raypaths 

travelled within the rockmass of the advancing zone of excavation disturbance. This 

was largely due to the late conception of the Shear-Wave Experiment. Two-thirds of 

the Mine-by Tunnel excavation had already been completed before the 

commencement of the first recording sequence. The minimum separation between 

raypaths and the advancing tunnel would have decreased to within 2.8m for an 
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additional twenty raypaths if the experiment had commenced with the start of 

excavation. 

However, this was the first experiment of its type. As such, one of the more 

useful aspects of the analysis is to gain insight into design improvement. It is now 

known that a detailed interpretation of the effects of excavation including the extent of 

the zone of excavation disturbance would have necessitated higher frequency seismic 

signals. Also a greater variety of raypath directions progressively affected by the 

excavation is needed to examine the asymmetries of the excavation effects. The 

results of a more ideal experiment could be combined with the results of other studies 

associated with tunnel excavation to provide a much more detailed knowledge of the 

effects of excavation. 

9.2.2 Remote Monitoring 

One purpose of this experiment was to investigate the possible use of observations 

of shear-wave splitting in the non-destructive remote monitoring of changes to a 

rockmass. This has direct applications in monitoring nuclear waste repositories. If 

shear-wave splitting can detect the development of cracks and the penetration of 

liquids into the rockmass, then it could be used to remotely monitor radioactive waste 

repositories where the escape of liquid carrying radioactive nuclei is to be prevented. 

No significant temporal changes are observed over 117 days spanned by the 

recording sequences except those associated directly with an excavation sequence of 

the Mine-by Tunnel or relatively short raypaths that diffracted around their source 

tunnel. This suggests that no changes to the crack fabrics or fluid content of the 

rockmass significant to the maximum frequency of the seismic signals occur to the 

rockmass over this relatively short time interval. 

However, the observed temporal changes due to the advancement of the zone of 

excavation disturbance suggest that longer term changes to the rockmass as subtle as 

small changes in the stress field may be observed. Also, changes in fluid saturation 

levels in the zone of excavation damage might be monitored by the comparison of 

P-wave velocities to changes in shear-wave splitting. An advantage of controlled 

source seismic monitoring is that path effects may be separated from source and 

receiver effects. The source or receiver devices may be replaced if worn out over 
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time, but the seismic wave propagation properties, such as the pattern of shear-wave 

splitting, will only indicate changes in a rockmass. Therefore, the use of controlled 

seismics for non-destructive remote monitoring of repositories over longer time 

periods is potentially extremely useful, and the possible role of shear-wave splitting 

observations as part of the continuous seismic monitoring has yet to be fully explored. 

9.2.3 Local Monitoring 

The temporal changes observed for raypaths that diffract around their source 

tunnel (section 5.9.2) suggest a possible method of monitoring changes to a rockmass 

immediately surrounding a tunnel. A controlled seismic source in the rockmass but 

near the free surface of a tunnel would produce seismic waves that travel around the 

edge of the tunnel through the most damaged part of the rockmass. A geophone 

within the rockmass in the radially the opposite direction from the centre of the tunnel 

would record the waves diffracted around the perimeter of the tunnel. The recorded 

wave would then have travelled through the most damaged part of the rockmass in 

diffracting around the perimeter of the tunnel. Changes to the rockmass near the free 

surface around the entire perimeter of the tunnel could then be monitored. This 

method would not allow detailed interpretation as to the cause of any changes, but 

would indicate that changes have taken place that might merit investigation. 

9.3 Further Research 

9.3.1 Using Induced Seismicity 

The next step in this research of shear-wave behaviour within the rockmass of the 

420-Level is combining the results presented in this dissertation with an analysis of 

shear-wave splitting in the seismic signals induced by the Mine-by Tunnel excavation. 

These measurements would increase the variety of raypath directions examined and 

allow a more detailed examination of the effects of excavation. Such a study would 

also allow a comparison to the effects of sources to identify any pitfalls with analyzing 

induced seismicity. Therefore the processing techniques and interpretation methods 

necessary for parameterizing anisotropy using induced seismicity would be developed. 
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This could be useful for any mine environment monitored by a three-component 

seismic network. 

9.3.2 Investigating the Geological Unknowns 

The analysis has revealed the many variables in this experiment that need further 

investigation for a fuller understanding of the in situ anisotropy and the effects of 

excavation. These include the asymmetries in excavation damage, effects of source 

tunnel orientation, and the precise distance from the Mine-by Tunnel of observable 

excavation effects. 

Investigation of possible differences between the granite and granodiorite is 

especially important. The possible existence of distinct differences in the anisotropy 

of the two lithologies despite their similar mineralogies offers the opportunity to 

isolate and investigate properties to which anisotropy may be very sensitive. Less 

excavation damage within granodiorite would provide insight as to how cracks 

nucleate and grow due to excavation. Differences in the in situ anisotropy would add 

greater insight to the effects of grain size and shape upon anisotropy, including the 

dependence of EDA on grain size and shape and mineral alignment. 

Also of particular importance is the need for a better understanding of anisotropy 

due to mineral alignment. Numerical modelling of the effects of mineral alignment 

should be possible using the known elastic properties of the minerals and detailed 

measurements of their shape, orientation, and fraction of the overall volume within the 

rockmass. The anisotropic effects may also be investigated using laboratory 

experiments where the mineral alignments in the rock samples have distinctly 

different orientations to any stress-relief cracking. This is needed both to determine 

the possible anisotropy due to mineral alignment and to more rigorously test EDA as a 

fabric. EDA-cracks are disturbed by excavation and therefore cannot be 

parameterized by direct measurements, but the anisotropy that cannot be attributed to 

mineral alignment may infer EDA. This modelling would be useful for any rockmass, 

but the development using Lac du Bonnet would be convenient because of the detailed 

studies of this rockmass presently taking place, its accessibility using the Underground 

Research Laboratory, and its homogeneity. 
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9.3.3 A Smaller Scale Experiment 

A smaller scale shear-wave experiment is needed to produce a more detailed 

interpretation of the effects of excavation and investigate differences in lithology. It 

would be convenient to use a VSP recording geometry where triaxial accelerometers 

are installed down a borehole drilled perpendicularly into the rockmass from the 

tunnel wall. Signals would be created along the tunnel wall. This would allow the 

changes in the rockmass with distance from the Mine-by Tunnel wall to be examined. 

This experiment could be repeated both in predominantly granite and granodiorite 

rock to examine differences between the lithologies. 

9.3.4 Alternative Rockmass 

A similar shear-wave experiment is needed in a second homogeneous rockmass. 

The unfortunately similar orientations of the implied EDA and the mineral alignment 

prevented a definitive interpretation of the cause of the in situ anisotropy. All other 

studies of anisotropy in granite and granodiorite have resulted in non-unique 

interpretations because of similarly oriented potential fabrics. A rockmass should be 

sought where the potential fabrics are few and of distinctly different orientations. 

9.3.5 Mine Safety 

To the mining industry, potentially important applications of monitoring changes 

in shear-wave splitting due to changes in stress and an increase in micro-cracking are 

the detection of pillar deterioration and the prediction of rock bursts. Travel-time 

tomography has already been applied for such purposes using natural, induced, and 

actively produced seismicity (e.g. Young and Maxwell, 1992). The only study of 

using shear waves for such an application is that of Graham (1995). Shear-wave 

splitting was measured for similar raypaths from natural seismic events with 

magnitudes ML~-1  .4 as recorded by a subsurface seismic system of the President 

Steyn Mine, South Africa, prior to and after a magnitude ML3.2  earth tremor. No 

changes in splitting were found, although data was restricted by the sporadic 

occurrence of natural seismicity, a limit variety of raypaths, and raypath lengths 

greater than 115m. Monitoring using a controlled source has the advantages of high 

reproducibility, regular monitoring, and precisely repeated raypaths chosen to travel 
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only through the volume of rockmass where surveillance is desired. Investigation of 

the effectiveness of such monitoring can be assessed more easily than for a nuclear 

waste repository as the collapse of a pillar can be induced. The cost of such an 

investigation would be minimal if a seismic system has previously been installed for 

seismic monitoring. 

9.3.6 An Automatic Anisotropic Estimation Technique 

The success in comparing seismograms to reliably pick polarizations and time 

delays shows that a reliable and robust algorithm could be developed for automatic 

picking. The seismograms of a set would be numerically compared with the condition 

that the seismograms of all shear waves must all show behaviour consistent with a 

given polarization and time delay, or the behaviour expected for an isotropic 

rockmass. Such an algorithm was not developed because my initial opinion was that 

any automatic routine designed for this data set would be too customized for 

application to other data sets. However, the benefits of using multiple source 

orientations show that multiple source orientations should be used in any future 

controlled source shear-wave experiments in a mine environment. Such an algorithm 

may therefore be useful in the future. 
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PRELIMINARY ANALYSIS OF SHEAR-WAVE SPLITTING IN GRANITE AT 
THE UNDERGROUND RESEARCH LABORATORY, MANITOBA 

GORDON M. HOLMES 1 , STUART CRAMPIN 1  AND R. PAUL YOUNG 2  

ABSTRACT 

The excavation of a test tunnel at a depth of 420 m in the Mine-
by Experiment at the Atomic Energy of Canada Limited's 
Underground Research Laboratory. Manitoba. Canada. has allowed 
shear-wave propagation to be examined in accurately controlled 
conditions in in-situ granite. This is a preliminary report of shear-
wave splitting in 4.2 kHz signals from controlled shear-wave 
sources at distances between 7.5 m and 63 m over a wide range of 
azimuths and angles of incidence. Preliminary analysis indicates that 
about 78% of the data show the three-dimensional pattern of 
behaviour expected from propagation through uniform distributions 
of EDA cracks [(E)xtensive-(D(ilatancy-(A)nisotropy crack: stress-
aligned, fluid-filled microcracks] aligned relative to the measured 
stress field. Some 17% of the data with raypaths near the tunnel 
have anomalous behaviour which is attributed to the effects of exca-
vation damage around the tunnel opening. This damage appears to 
be more extensive around the advancing face of the tunnel than 
around the length of the tunnel. The remaining 5% of data have 
anomalous behaviour which has not yet been interpreted. EDA 
cracks are the most compliant elements of the rock mass, and the 
sensitivity of shear waves to this internal crack geometry demon-
strated by this experiment shows that controlled-source shear-wave 
experiments may be used for monitoring cracking, including 
induced cracking, and excavation damage in radioactive waste 
repositories, mines, geothermal reservoirs and other subsurface oper-
ations. 

INTRODUCTION 

Shear-wave splitting, diagnostic of some form of seismic 

anisotropy, has been observed on almost all occasions that 

three-component records are available of impulsive, good 

signal-to-noise ratio, shear waves propagating in the Earth's 

upper crust (Crampin and Lovell, 1991). The azimuthal vari-

ation has been claimed to be caused by extensive-dilatancy 

anisotropy (EDA): distributions of stress-aligned fluid-filled 

cracks, microcracks and preferentially oriented pore space 

(Crampin and Lovell, 1991; Crampin, 1993a). Direct exami- 

nation of EDA cracks is difficult, as such fluid-filled inclu-

sions are the most compliant elements of the rock mass and 

in-situ configurations are disturbed when the rock is dis-

turbed by drilling or excavation. 

In the past, observations of in-situ shear-wave splitting 

have usually been limited to nearly vertical raypaths in sur-

face recordings above local earthquakes and seismic reflec-

tion surveys and in subsurface recordings of vertical seismic 

profiles (VSP5). Recently, shear-wave splitting has also been 

studied using data from crosshole surveys (Liu et al.. 1991, 

1992) which offer records of more nearly horizontal raypaths 

but with severely limited ranges of azimuths. Thus, all previ-

ous recorded data sets showing shear-wave splitting have 

suffered from limitations in the directions sampled and, in 

the case of earthquake data, very complicated geology. As a 

result, the scope for geological interpretation has been lim-

ited and the behaviour of EDA cracks under external condi-

tions is largely speculative. 

This paper presents a preliminary analysis of the first 

recording sequence of a controlled-source shear-wave exper-

iment as part of the Mine-by Experiment in the Lac du 

Bonnet granite batholith. The experimental work was per-

formed by the Queen's University Engineering Seismology 

Laboratory, Kingston. Ontario. at the Underground Research 

Laboratory (URL). Pinawa, Manitoba, of the Atomic Energy 

of Canada Ltd. The Mine-by tunnel was excavated in a rock 

mass specifically chosen for its homogeneity, uniformity and 

absence of fractures. As the excavation of the tunnel 

proceeded, the rock mass was monitored with arrays of 

geophysical and geotechnical instruments, including a 16-

triaxial sensor array of accelerometers. The locations of 

source and accelerometers were chosen to provide a compre-

hensive range of raypath azimuths and dips. The terminology 

for anisotropy is that suggested by Crampin (1989). 
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Natural microcracks 

The in-situ Lac du Bonnet granite of the 420 level at URL 
exists in a far-field stress field that has a maximum horizon-
tal compressive stress of 55 MPa (Read and Martin. 1991). 
Extensive changes to the crack structure of the granite result 
when the magnitude of the stress field encompassing the 
granite is significantly released. Such stress relief occurs by 
excavation or drilling when there is a zero-stress free surface. 
or by complete removal of in-situ stress in laboratory sam-
ples. Changes to structure include opening new microcracks 
(stress-relief microcracks) to form an additional crack fabric. 
In granite from the 420 level, the stress relief is large enough 
to break quartz grains (D. Martin. pers. comm.), and the 
effects of stress relief alter the pattern of grain boundary 
cracks and transgranular cracks (cracks that cross grain 
boundaries) so that the in-situ pattern of grain boundary 
cracks is not easily determined. Detailed reports on natural 
microcracks are being prepared but are not yet available. 

Chernis and Robertson (1987) in a laboratory study of 
microcracks in the Lac du Bonnet granite. found they could 
discriminate between natural and stress-relief microcracks. 
The natural microcracks not affected by stress relief were 
less than 4 pm in aperture with rough and irregular walls and 
often contain debris. Chernis and Robertson conclude that 
high pressure alone would not be sufficient to close the natu-
ral microcracks. Chernis and Robertson did not report 
dimensions of the faces of the cracks, but the largest dimen-
sions of in-situ microcracks are expected to be no more than 
a centimetre in diameter and possibly much smaller. 

They also reported that most grain boundary cracks form 
around quartz grains, and may have infillings of calcite, iron 
oxide or clay. Ninety percent of natural cracks occur along 
grain boundaries. The remaining cracks that could be distin-
guished from stress-relief cracks occur as intragranular 
cracks, chiefly in feldspars. Plagioclase typically contains 
large numbers of pores less than 5 gm  in diameter (Sprunt 
and Brace. 1974), which may or may not be intersected by 
fine intragranular cracks. Intragranular cracks within micro-
dine may be over I gm in diameter. 

EXPERIMENT 

In media with effective seismic anisotropy there are three 
body waves in every direction of propagation: a quasi-P-
wave, qP, with approximately radial motion, and two quasi-
shear waves, the faster qSl followed, after a time delay, by 
qS2. The polarizations of the three waves propagating in the 
same direction from a point source are approximately 
orthogonal [note that exact orthogonality is not expected in 
wave propagation from point sources in anisotropic solids 
(Crampin. 1981. 1989)]. The polarizations and time delays 
between the split shear waves can be estimated from polar-
ization diagrams (hodograms) of the three-component parti-
cle motion. The orientation and many details of the crack 
parameters can be estimated from the three-dimensional 
patterns of polarizations and time delays if the observations  

cover a sufficient range of raypath azimuths and angles of 
incidence. The shear-wave experiment was designed to esti-
mate these patterns of polarizations and time delays around 
the Mine-by tunnel by recording controlled shear-wave 
sources at the array of accelerometers. 

Four exactly repeatable shear-wave signals were excited at 
each of 13 locations on the walls of the outer tunnels after 
most excavation sequences and recorded by the 16 
accelerometers (Figure la). These shear-wave experiments 
began when the tunnel had been excavated to 27 m of the 
final 46 rn-length. and ten recording sequences took place 
before the tunnel was completed (not every excavation 
sequence was monitored). Six additional sequences were 
recorded at intervals after completion in order to examine the 
possible longer-term effects of excavation damage on the 
rock mass. 

The shear-wave experiment uses shear waves produced 
with a controlled and reproducible source at accurately 
known locations. Since there are believed to be no signifi-
cant internal interfaces within the rock mass (with the excep-
tion of the excavation damage), the shear waves are unlikely 
to be disturbed by interference with internal discontinuities 
(Liu and Crampin. 1990) and approximately straight ray-
paths can be assumed. However, all recorded raypaths will 
have passed through the damage surrounding the tunnels in 
which the sources were located and the possible excavation 
(drilling) damage surrounding the boreholes housing the 
accelerometers. Disturbances to shear-wave propagation near 
the source are likely to have less severe effects on the wave-
forms of the shear waves than disturbances along the raypath 
or near the recorders (Yardley and Crampin. 1991). Since the 
diameters of the boreholes (3.2 cm) are much less than the 
wavelengths of the P- and shear waves, about 140 cm and 80 
cm, respectively, the effect of the damage around the bore-
holes is expected to be negligible. However, the effects of 
such damage around the boreholes and the source tunnels 
will be assessed in future studies. With the possible excep-
tion of the minor effects of disturbances near source and 
accelerometers, the disturbance to the shear-wave propaga-
tion is expected to be due to the excavation damage around 
the Mine-by tunnel. 

The shear-wave source 

Four 40 cm-long 3.2 cm-diameter boreholes were drilled 
at 450  to the surface at the corners of a 29.5 cm x 29.5 cm 
template (Figure Ib) on the walls of the tunnels at each loca-
tion. A rod was inserted in turn into each borehole and the 
free end pulsed with a Schmidt Hammer (Model N. total 
impact energy 2.207 Nm). Both steel and nylon rods were 
tested in the first recording sequence of the shear-wave 
experiment. The steel rod gave larger amplitude but emer-
gent signals for both P- and shear waves and the recorded 
signals displayed ringing after the P-wave that often inter-
fered with the shear-wave arrivals. The nylon rod produced 
signals with about half the amplitude of those produced by 
the steel rod, but the signals were impulsive, had similar 
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signal-to-noise ratios and had much less ringing. 

Consequently, nylon rods were used for all further recording 

sequences. The dominant frequency of both the P- and shear 

waves recorded from this source, measured over 7.5 m to 63 

m raypaths. was about 4.2 kHz with corresponding wave-

lengths of 1.38 m ± 0.05 m for P-waves and 0.81 in ± 0.03 m 

for shear waves. 

 

0 
n 

- 	 OUTER TUOIEI. 413 

 

I 
3.2cm 

T 

Up 

 

I 	29.5cm 	INrI 
Fig. 1. (a) The Mine-by tunnel (Room 415) at the 420-rn level at the 
AECL Underground Research Laboratory (after Read and Martin, 
1991). Tnaxial accelerometers are located at the ends of the bore-
holes from the outer tunnels as indicated. (b) Schematic illustration of 
the four boreholes from the templates at each of 13 source locations 
in the walls of the outer tunnels. 

ANALYSIS OF SHEAR WAVES 

The source and receiver positions are known to better than 

10-cm accuracy, and each three-component signal was 

rotated into the dynamic axes assuming a straight raypath: 

the radial component (R) showing P-wave polarization and 

the transverse-sagittal (TS) and transverse-horizontal (TH) 

components showing the nearly transverse polarizations of 

shear waves. The approximation of straight raypaths appears 

valid since the P-wave and shear-wave waveforms are  

largely separated by these rotations, as is shown in Figures 2 

and 3. The seismograms and polarization diagrams (PDs) 

display shear-wave splitting typical of propagation through 

anisotropic or cracked solids (Crampin. 1981. 1993b). Figure 

2 shows typical examples of waveforms and PDs. 

Polarization angles and time delays between the split shear 

waves were measured from PDs in the TS-TH plane normal 

to the radial direction. Polarizations were measured from the 

takeoff direction of the initial shear-wave signal and dis-

played in Plate Carée cylindrical equal-area projections. 

Since the four source positions at each source location site 

are within 40 cm of each other, the four raypaths to a given 

accelerometer will be very close to each other and the effects 

of anisotropy along undisturbed raypaths are expected to be 

similar. This appears to be justified. as can be seen in Figure 

2 which shows a typical set of four shear-wave source orien-

tations recorded by an accelerometer. The signals show the 

same polarization directions for both split shear waves 

(although with some polarity reversals because of the differ-

ent source orientations) and the same delays between the 

split shear waves. We attribute this compatibility between 

the parameters of the split shear waves as indicating raypaths 

through undisturbed rock. The variation of source radiation 

pattern means that, whatever the direction of propagation. 

the four sources generate both pairs of split shear waves 

along at least two of the raypaths. This similarity in parame-

ters along nearly identical raypaths allows the shear-wave 

arrivals to be identified with great confidence and the degree 

of similarity provides a sensitive measure of excavation dis-

turbance along the raypath. . 
With four different source orientations, the polarization of 

the radiated shear wave is frequently parallel to one of the 

anisotropic shear-wave polarizations for a particular raypath 

so that the other split shear waves are not excited, and polar-

izations may be missing, even when the polarizations and 

time delays are otherwise compatible. Figure 3 shows such 

an example. The four records shOw: (a) a dominant qSl-

wave with a very low-amplitude qS2-wave component: (b) 

and (c) both split shear-waves polarizations: and (d) a small 

amplitude qSl-wave. so  that the motion is principally in the 

qS2-wave direction. Note that although some polarizations 

are absent, those present show compatible behaviour, which 

we attribute to an undisturbed raypath. 
Records with such missing polarizations would have been 

difficult to identify correctly without comparison with such 

multiple-source orientations along similar raypaths. 
Recognition of these missing events is important. 

Misidentifications would have led to anomalous delay times. 

In the case of qSl not being excited, as in Figure 3d, an 

anomalous polarization possibly almost perpendicular to the 

correct qSl polarization would have been identified. 

Anomalies could be caused by excavation damage near the 
source or the receiver, or by propagation near the directions 

of shear-wave point singularities where anomalous 

behaviour is expected for, possibly small, changes in raypath 

direction (Crampin. 1991; Wild and Crampin. 1991). 
although there are no point singularities to be expected in 

wholly hexagonal anisotropic symmetry (Crampin. 1989). 
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Fig. 2. 2. Four three-component seismograms from one source location with traces rotated into the dynamic axes: from the top, transverse-sagittal 
(IS) direction; transverse-horizontal (TH) direction: and radial (R) direction, such that the top two channels display predominantly transverse shear-
wave energy while the bottom channel displays predominantly P-wave energy. Time marks above the seismograms are every 2.5 gs. Polarization 
diagrams (POs) of the TS-IH plane are displayed below the seismograms for the 0.25 ps time intervals marked above the shear-wave seismograms. 
The numbers above the PD5 are the numbered time intervals and the relative multiplication factors and ticks on the POs are every 0.02 ts. TS is rep-
resented by the vertical component of motion on the PDs and TH by the horizontal motion. Large and small arrowheads denote estimated onsets of 
qSl - and q-waves. respectively. (a), (b), (C) and (d) Waveforms recorded at a triaxial accelerometer for four orientations of shear-wave excitation 
at one source location, showing similar polarization directions and time delays on all four waveforms. The path length was 25 m and the closest 
approach of the raypaths to the centre of the tunnel was 16 m. Waveforms (a) to (d) correspond to source orientations 1 to 4, respectively, as pre-
sented in Figure lb. 
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Fig. 3. Waveforms recorded at a triaxial accelerometer for four orientations of shear-wave excitation at one location where polarization directions 
and time delays were not similar. Notation as in Figure 3. (a) Minimal q-wave excitation; (b) and (C) both qSI - and q-waves excited; and (d) 
minimal qSi -wave excitation. The path length was 32 m and the closest approach of the raypaths to the centre of the tunnel was 7 m. Waveforms (a) 
to (d) correspond to source orientations 1 to 4, respectively, as presented in Figure lb. 
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Displaying data for qualitative judgment 

It is appropriate to use Plate Carée (equal-area cylindrical) 

projections to display polarization angles and time delays for 

raypaths with a wide range of azimuths and dips (Liu et al.. 

1989 Baptie et al.. 1993). Figure 4a shows Plate Carée maps 

of the theoretical effects of shear-wave propagation through 

distributions of thin parallel horizontal microcracks. with 

crack density E = 0.01 and an aspect ratio y = dla = 0.001. 

Crack density-is defined as C = jVa 3/v. where N is the number 

of cracks of radius a and half thickness d in volume i. 

Polarizations displayed in the (dynamic) TS-TH plane are 

projected onto the V-T and R-T planes and displayed on sep-

arate projections in Figure 4a. Time delays between the split 

shear waves are normalized to J.Is/m (equivalent to ms/km) 

using straight-line distance. 

Inversion symmetry 

For an elastic wave travelling through a uniform 

anisotropic medium, a ray travelling in the opposite direction 

along a seismic ray is expected to display inversion symme-

try. so  that shear-wave polarizations and time delays between 

the split shear waves are preserved. On a Plate Carëe projec-

tion. this inverted ray plots at an azimuth 180° from the orig-

inal direction, with the direction of polarization in the R-T 

plane the same as the original ray and with the polarization 

in the V-I plane the mirror image about the vertical direction 

of the polarization of the original ray. 

Inversion symmetry effectively doubles the data in an 

experiment with raypaths through a uniform rock mass. 

There are several phenomena, however, which may invali-

date this symmetry. Inversion symmetry must not be invoked 

if there are inhomogeneities associated with excavation dam-

age near the Mine-by tunnel, near the source or near the 

receiver. Application of such inversion symmetry must be 

used with caution as it may imprint an apparent symmetry on 

the data that would he incorrect and misleading if the 

assumption of inversion symmetry does not hold. 

Nevertheless, inversion symmetry can be a useful aid to rec-

ognizing anisotropic symmetry patterns in sparse data sets. 

QUALITATIVE INTERPRETATION or SHEAR-WAVE DATA 

Anisotropic symmetry of the undisturbed rock mass 

The initial rationale of the interpretation is that shear-wave 

splitting is an innate property of the intact rock mass. We 

seek two key results in this preliminary analysis: recognition 

of the underlying symmetry structure assumed to exist 

around the edge of the monitored volume away from the 

Mine-by tunnel and estimation of the extent and effects of 

the disturbance caused by excavation damage. Breakouts in 

the tunnel: and the distribution of acoustic events concen-

trated in the vicinity of the breakouts (Read et al.. 1992a, 

1992b), suggest that excavation damage is not radially sym-

metric about the tunnel. 

Signals from straight raypaths directly obstructed by the 

Mine-by tunnel are not analyzed here. One triaxial 

accelerometer (accelerometer No. 3) was defective and did 

not provide any data. Quality values of I to 3 were assigned 

depending on the noise levels and impulsiveness of the 

shear-wave arrivals and the compatibility of the four source 

orientations at each source location. Quality I readings were 

highest and quality 3 readings were omitted in the analysis 

presented here. Unfortunately, because the first recording 

sequence was also used to calibrate the microseismic system. 

40% of the signals created using the nylon rod were not 

recorded. For cases where the signal created by the nylon rod 

was not recorded, the signal created using the steel rod at the 

same location and orientation was substituted. This resulted 

in more quality 3 readings than would have resulted if all the 

signals analyzed had been created using the nylon rod. For 

all further recording sequences almost all signals were pro-

duced by the nylon rod. 

Figure 5a shows observed polarizations and time delays 

along the 107 source-to-receiver raypaths with quality I and 

2 observations. One reading is plotted from the four avail-

able from each source-to-accelerometer raypath when the 

readings agree and the reading with the highest quality is 

plotted when the four readings did not agree. Inversion sym-

metry has not been invoked. 

Examination of Figure 5a suggests that the symmetry in 

the data is a reasonable fit to the model for a distribution of 

parallel cracks (crack density e = 0.02. aspect ratio y = 0.05) 

oriented 045/20. The model is shown in Figure 4b and super-

imposed on the observed polarizations in Figure Sb. The 

crack density of E = 0.02 produces time delays that broadly 

match the average value of the observed time delays. The 

aspect ratio y = 0.05, which changes the position of the 

abrupt change in polarizations in the equal-area plots, pro-

duces patterns of polarizations which also broadly match the 

observations. These crack parameters give a porosity of 

about 0.42% (Crampin, 1993b), nearly agreeing with poros-

ity values of between 0.2 910 to 0.4% found by Wadden (1979) 

and Drury (1981) for the Lac du Bonnet granite. 

The orientation of 045/15 for parallel cracks is approxi-

mately the anisotropy predicted by the EDA hypothesis for 

microcracks oriented perpendicular to the minimum stress 

direction. This orientation is based on the stress directions as 

given in Table I with the modification that the breakout 

notches indicate that cT3  has a plunge (angle from horizontal) 

of about 15° rather than 11 0 . The model of crack planes ori-

ented 045/20 was a slightly better fit to the data than 045/I5 

and the angle from the vertical of the breakout notches was 

greater than 20 0  in some places along the tunnel so the orien-

tation of 045/20 may be perpendicular to the far-field stress. 

Note, however, that fitting of data to models in this prelimi-

nary analysis was by visual inspection only and an attempt at 

inverting the data including a goodness-of-fit evaluation is in 

progress. Note that near-source reflections from the walls of 

the outer tunnels are not considered here. The more robust 

analysis taking place will consider the effects of such 

reflections. 
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Fig. 4. The behaviour of shear-wave splitting displayed on Plate Carée (cylindrical equal-area) projections (after Baptie et al. 1993) for: (a) a distri-

bution of horizontal cracks in the granite rock mass with crack density 0.01 and aspect ratio -' 0.001; and (b) a distribution of parallel cracks in 
the granite rock mass with crack density r = 0.02 and aspect ratio y = 0.05, striking N450 E and dipping 200  to the SE (specified as 045/20). The top 
left diagram of each figure displays polarizations of the leading split shear wave projected on to the horizontal radial-transverse (R-T) plane. The bot-
tom left diagram displays the same polarizations projected on to the vertical-transverse (V-T) plane. The top right diagram displays contoured time 
delays between qSl - and q-wave arrivals normalized to 5 115/rn, and the bottom right diagrams display north-south sections of the contours at the 
indicated azimuths. Arrows mark the directions of line singularities and solid dots mark the directions of kiss singularities. 

usc 147 iiw 



(a) 
R 	 A2LSfl4 N 

o L T 	so 	10 	 270 	 390 

- 	-. 	- 

-90 

-60 

oi  

-90 

-60 

-30 

0 Z 
 

30 
0 

60 

90 

-90 

-60 

-30 

J) 
1/ I-0 

1-30 

go 
0 20 0 20 0 	20 0 20 0 20 

DELAY is/rn 

30 
a 

60 

a 
0 
a 

90 	 180 	 270 	 36 
AZ9JTH N O(GES 

A2IMUfl4 N DEMMS 
0 	 90 	 ISO 	 270 	 390 

G.M. HOLMES. S. CRAMPIN and R.P. YOUNG 

. 
oL 	0 	 ISO 	 270 	 390 

• I / / f-'-- \ 	 . I 	/ / 

' 	•• 

— 

, 
(l7////'-4 -'. -- ,,,.•.-.--.--1---_.c\ 	I,,- __-..__ •-____S\\\ 	 I/I ,  

V 

- - 

o 	 IN 	 2fl 
N MCAM 
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The contoured plot of time delays should be interpreted sparse data sets which contain gaps is not an appropriate dis- 

with caution. There are two difficulties. Time delays require play but does allow some information about time delays to 

identifying arrival times of both split shear waves. Both be compared with theoretical models. Improved displays for 

arrivals are on traces disturbed by coda. qSl arrives in the a qualitative visual comparison are being sought. 

coda of the P-wave, which in this data set is usually small We now attempt a preliminary analysis of stress and darn- 

and not likely to cause a problem, but qS2 arrives 0 to 400 j.ts age anomalies along raypaths by identifying polarizations 

(average 80 Ls) after qSl and is likely to be seriously dis- conflicting with the model in Figure 4b. We define a con- 

turbed. The other difficulty is that contouring irregular and flicting polarization as one which is more than 300  from 
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model polarizations in Figure 4b. within 200 of azimuth and 

dip of raypath directions, and would not fit a slight variation 

or small reorientation of the model. We recognize this is not 

an optimal technique but justify this preliminary procedure 

by the examination of the raypaths with conflicting polariza-

tions. 

The shear-wave parameters of 83 of the 107 observed 

polarizations in Figure 5 are compatible and suggest raypaths 

undisturbed, by excavation damage. Only 24 (22%) of the 

107 observed polarizations in Figure 5a conflict with the 

model in Figure 4b. Of these 24, at least 18 have raypaths 

that are probably disturbed by excavation damage. One con-

flicting polarization is from the shortest raypath in the exper-

iment (7.5 m) and its polarization is possibly modified by the 

damage around the tunnel where the source was located. 

Seventeen raypaths approached the Mine-by tunnel in vari-

ous ways. Two of these correspond to raypaths nearly paral-

lel and within 12 in of the tunnel for most of their length and 

are likely to have traversed effects of the tunnel to a greater 

degree than other raypaths. Fifteen were raypaths that trav-

elled subperpendicular to the axis of the tunnel and passed 

within 15 m of the excavation face of the tunnel. Stress 

anomalies and stress concentrations are likely to be larger in 

the vicinity of the excavation face than the approximately 

cylindrical walls of the tunnel behind the face. The 15 con-

flicting polarizations are likely to have been affected by the 

anomalous distribution of polarization directions near the 

face. There is also some indiciation that the effects, of the 

face are more apparent in some directions than others, which 

again might be expected for excavation in a deviatoric stress 

field. This directional dependence is currently being studied. 

Only six of the conflicting polarizations are not associated 

with presumed excavation damage. The contribution of pos-

sible stress concentrations and/or excavation damage associ-

ated with the outer tunnels where the sources were produced 

has not been examined at this stage. 

Figure 6a shows polarizations with the 24 conflicting data 

points omitted. The number of observation points has been 

doubled by assuming inversion symmetry along each ray-

path. Figure 6b shows the polarizations superimposed on the 

model given in Figure 4b. Figure 6c shows the time delays 

with the 24 conflicting data points omitted. The conflicting 

data points were removed in an attempt to more accurately 

display the time-delay pattern of the undisturbed rock mass. 

Symmetric points were included because inversion symme-

try is valid if the data represents the undisturbed rock mass 

and it results in a denser data set for contouring. 

Comparing the pattern of time delays of Figure 6c with the 

model in Figure 4b, there are some similarities in pattern 

with the maximum normalized time delays generally 

between 0 and 7 ts/m and the maximum time delays occur-

ring between dips of 4.0° and -40° with similar undulations 

with azimuth. However, the observed time delays in Figure 

6a show considerable scatter. This is expected to be because 

the stress-induced effects of the Mine-by tunnel and the 

outer tunnels are unlikely to be homogeneously distributed 

in space. EDA crack orientations (anisotropic symmetry),  

controlled by the overall stress field, are likely to be compar-

atively homogeneous. The EDA crack dimensions, particu-

larly the aspect ratios, are expected to vary with the stress 

anomalies around the tunnels. The overall symmetry will 

control the shear-wave polarizations, which Figures Sb and 

6b suggest has an overall consistency, but the varying crack 

dimensions will have the largest effect on the time-delays 

which display the expected scatter. It is also possible that 

some of the time delays do not represent the undisturbed 

rock mass. Very few anomalous points can greatly alter the 

pattern to the contoured time-delay Plate Carëe projection. 

Note also the caution suggested in interpreting contoured 

time delays in the discussion of Figure 5a. 

Arguments for EDA 

Both data and model are preliminary, and many investiga-

tions are necessary for a more robust analysis. We suggest 

that there is reasonable qualitative agreement between the 

polarization data and the preliminary model. Many of the 

discrepancies between data and model are at points near line 

singularities where the polarization may change by up to 90 0  

for a small change in raypath orientation, effective crack 

aspect ratio or crack orientation (Wild and Crampin. 1991). 

The line singularities in Figure 4 are where the theoretical 

polarizations show an abrupt change of direction (Crampin. 
1989.) 

We suggest that the observed polarizations are consistent 

with stress-aligned EDA cracks aligned perpendicular to the 

direction of minimum stress. Mineral fabric may also cause 

anisotropy. There are three very weak fabrics of similar ori-

entation to 045/20. There exists some mineral alignment of 

biotite and hematite oriented 020/20 (R. Everitt, pers. notes), 

faint gneissic banding oriented approximately 055/25 (Read 

et al., 1992a, 1992b) and flow banding oriented approxi-

mately 040/30 (Read et al.. 1992a. 1992b). Note, however, 

that the match of data and model polarizations in Figures Sb 

and 6b strongly indicates the presence of some form of 

hexagonal symmetry and very few natural fabrics possess 

sufficiently strong hexagonal symmetry to cause the 

observed shear-wave splitting. [Fluid-filled cracks are a very 

strong barrier to shear-wave propagation, so that compara-

tively weak concentrations of cracks can cause pronounced 

shear-wave splitting (Crampin, 1993b).] Consequently, we 

suggest that it is unlikely that fabric is the dominating influ-

ence aligning shear-wave polarizations, although this will 

need to be assessed in future investigations. 

In addition, the fact that the stress anomaly around the 

tunnel face, where there is expected to be a considerable con-

centration of stress, affects rays travelling in directions sub-

perpendicular to the tunnel's axis suggests that cracking and 

the stress-alignment of cracks is a dominating factor in deter-

mining the pattern of anisotropy. Polarizations corresponding 

to raypaths travelling within 2 m of the cylindrical opening 

of the tunnel, but not within 15 in of the face, are a reason-

able fit to the model. This suggests that the stress-anomaly or 

excavation damage near the advancing face of the tunnel in 

some sense mends once the tunnel has advanced further, so 

that it causes less disturbance to the shear waves. 
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The percentage of differential shear-wave anisotropy 

assuming straight-line raypaths ranged from 0% to 4.6%. 
with an average of 1.2%. We have not recognized. in this 

preliminary analysis, any clear correlation of percentage 

anisotropy with the closest approach of the raypath to the 

tunnel. The anisotropy along a particular raypath will vary 

with direction. For raypaths where the polarization did not 

conflict with the model, the maximum anisotropy was high 

(4.6%), as seen in the contour plot in Figure 6a. A range of 

anisotropy of 1% to 5% is typical of shear-wave splitting 

observed in a wide range of igneous, metamorphic and sedi-

mentary rocks in the crust (Crampin and Lovell. 1991; 

Crampin. 1993a). 

Fig. 6. (a) Polarizations measured from shear-wave splitting from the 
first recording sequence displayed in Plate Carée projections for ray-
paths not directly obstructed by the Mine-by tunnel, with data conflict-
ing with the model (as specified in the text) omitted but with inversion 
symmetry raypaths added. (b) Polarization data from (a), above, 
overlain on the Plate Carée projections of polarizations in Figure 4b. 
(c) Contoured Plate Carée projection of time delays for the same 
data set as described in Figure Ba. 

DISCUSSION 

This paper presents a preliminary report of the first study 

of shear-wave splitting along raypaths covering a compre-

hensive range of azimuths and angles of incidence in an ini-

tially homogeneous rock mass. There are many avenues of 

investigation to pursue before final results can be estab-

lished, but the following six conclusions are unlikely to 

change and are the justification for publication so soon after 

the completion of the experiment. 
I. Shear-wave splitting is clearly visible with 4.2 kHz sig-

nals (80-cm wavelengths) for the 107 azimuths and 

angles of incidence through the intact homogenous gran-

ite rock mass: 

2. There is qualitative agreement between approximately 

80% of the raypaths and the polarizations of the split 

shear waves and three-dimensional patterns of polariza-

tions expected for distributions of thin parallel fluid-

filled microcracks (EDA cracks) aligned perpendicular 

to the minimum stress direction (strike N45 ° E and dip 

20°SW from the horizontal). The degree of differential 

shear-wave anisotropy of between 0% and 4.6% is simi-

lar to that observed in a wide range of geological forma-

tions elsewhere (Crampin. 1993a). 

3. About 20% of the raypaths displayed polarizations 

that did not agree with the model, and of 

these, three quarters can be attributed to effects of 
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excavation damage around the tunnel, particularly 

around the face of the tunnel. The remaining 5% have 

not yet been interpreted. 

The anisotropy observed may be due to a combination of 

EDA and fabric anisotropy within the rock mass, 

although the contribution of fabric anisotropy is likely to 

be small. 

The polarizations that did not agree with the model sug-

gest that stress anomalies and excavation damage are 

more extensive around the face of the advancing tunnel 

than around the cylindrical opening of the tunnel. 

The sensitivity of shear waves and shear-wave splitting 

to stress-induced changes to the in-situ rock mass has 

been postulated and suggests there may be practical 

industrial and commercial applications including the 

monitoring of excavation damage and thermally induced 

cracking within radioactive waste repositories (Crampin 

and Lovell. 1991). 

These results are preliminary and many further investiga-

tions are indicated. The high quality of source signals, 

recording and known source-to-receiver geometry suggests 

that this experiment has the potential to answer many unre-

solved questions about the behaviour of EDA cracks and 

shear-wave splitting in crustal rocks, particularly the effects 

of stress on the internal structure of hard brittle rock. 

PRESENT WORK 

A more robust analysis of this shear-wave experiment is 

underway. Factors not considered in this study. such as the 

effects of the outer tunnels, the angle of the raypath to the 

source tunnel and examination of the quality 3 waveforms, 

will be studied. An attempt to invert the data that will also 

give a goodness-of-fit evaluation is underway. Most impor-

tantly, data from all 16 recording sequences will be exam-

ined, which should result in a much more detailed under-

standing of the effects of stress upon the rock mass and the 

effects of the excavation. 

REVISION OF THE EXTENT OF EXCAVATION DAMAGE 

The extent of the excavation damage to the Mine-by tun-

nel suggested by the preliminary interpretation in the main 

text must be revised. We have now examined repeated 

source-to-accelerometer raypaths as the tunnel advances and 

have developed a program to specify with greater precision 

the distance and inclination of each source-to-accelerometer 

raypath from the Mine-by tunnel using coordinates of the 

surveyed tunnel. 

Signals along identical raypaths, which pass near to the 

tunnel and are in some cases cut by the tunnel as it advances, 

show very little change in the waveforms of the shear waves. 

Thus, anomalies previously interpreted as being the result of 

excavation damage around the face of the tunnel are due to 

some other cause. 

There are several possible reasons for the lack of change 

of shear waveforms and shear-wave splitting around the 

advancing tunnel: 

I. The effects of excavation damage on shear waves may be 

too small to be observed by the comparatively unsophisti-

cated techniques used up to now. Reasonable estimates of 

excavation damage. say an increase of 10% velocity 

anisotropy over a distance of three metres. ought to cause 

recognizable changes to a 4.2 kHz shear wave, if the 

cracking due to excavation damage displays consistent 

alignments. This could lead to a change of nearly half a 

cycle in the shear-wave signal (5 sample points at the 

50 kHz sampling rate). The consistency of the shear 

waves suggests that excavation damage causes changes of 

less than a I sample (2% change in velocity anisotropy) 

but this needs to be investigated further. If the alignments 

are not consistent, as seems probable. the effects would be 

smaller. 

Body waves, including split shear waves, travel along 

minimum-time paths. Waves that would be slowed 

through a damaged volume will tend to take wider ray-

paths through faster undamaged rock to compensate for 

the slower speeds. If the excavation damage is small in 

volume, it is possible that such compensation is sufficient 

to hide any change caused by the damage, particularly as 

the path of the slower split shear wave is likely to com-

pensate so as to keep the change in the time delay 

between the split shear waves small. 

Combinations of the effects of items I and 2, above, are 

also possible and would be difficult to resolve. 

More sophisticated techniques to identify the effects of 

excavation damage are now being developed. Note that, with 

the exception of the extent of the excavation damage, the 

analysis and conclusions in the remainder of the paper are 

unchanged. 
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