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ABSTRACT 

The results of three projects on substitutionally disordered 

magnetic systems are reported in this thesis. The first project in-

volved calculations by a computer simulation technique of magnetic 

excitation spectra in a diluted simple cubic ferromagnet with nearest 

neighbour Heisenberg exchange interactions. Spectra for low, inter-

mediate and high levels of dilution-induced disorder are compared. 

A comparison has also been made between calculated spectra and ex-

perimental data for the metallic diluted ferromagnet system Cr1_Fe 

with x = 0.27. 

The second project involved an investigation of the magnetic 

phase transitions and magnetic excitations in the d = 2 mixed 

magnetic system with competing spin anisotropies K Co Fe F 2 x l-x 4 

Neutron scattering experiments have been performed on samples with 

x = 0.6, x = 0.27 and x = 0.2. The x = 0.6 sample exhibits uniaxial 

antiferromagnetic long range order below a Nel temperature, TN.  The 

x = 0.2 and x = 0.27 both undergo two phase transitions. Below the 

higher temperature transition at TN  spin components order along the 

c-axis of the unit cell and below the lower phase transition at TL, 

the spin components perpendicular to the c-axis acquire long range 

order 	so that below TL  the magnetic structure of - both the 

x = 0.2 and the x = 0.27 samples corresponds to the Oblique Anti-

ferromagnetic (OAF) phase. The magnetic excitation spectra for all 

three samples have been investigated by inelastic neutron scattering 

techniques at T = 5K. Computer simulation calculations have been 

used to calculate the ground state and the magnetic excitation 

spectra for the system and the results are compared with experimental 



results. 

In In the third project neutron scattering measurements were made 

to investigate the magnetic phase transition and magnetic excitations 

in a sample of the mixed d = 2 system Rb2MnxCr1_xC24  with nominally 

x = 0.754. The system is of interest because. of competing ferromag-

netic and antiferromagnetic exchange interactions and for a range of 

concentration values there is expected to be a spin glass phase. 

The sample with = 0.754 was found to attain long-range antiferro-

magnetic order below TN = 32K. Results are also reported from 

inelastic neutron scattering measurements on the magnetic excita-

tions in this sample. 
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Values of Fundamental Constants and Relationships between Energy Units. 

The values of fundamental constants which are used in this thesis 

are listed below: 

Constant 	 Symbol 	 Value (S.I. Units) 

Planck's Constant divided 	
34 by 27r 	 1.054 x  10 	JS 

Boltzmann's Constant 	
k 	 1.381 x 1023 JK1 

The Bohr Magneton 	 11
B 	 9.274 x 1024 JT1 

The Mass of the Neutron 	MN 	 1.675 x  10- 27  kg. 

The Nuclear Magneton 	 11
N 	 5.051 x  10-27  JT 1  

The Gyromagnetic ratio 
of the neutron 	

1N 	 - 1.91 

In Chapters 3 and 5 the energy unit Terahertz (TH2) is used. In 

Chapter 4 the energy values are given in millielectron volts (meV), 

except in Section (4.5) where they are quoted in THz units. 

The relationships between millielectron volts, Terahertz and 

Joules (J) (the S.I. unit) are given below: 

1meV 	= 	1.60Z1Ic 2 T 

1 THz 	= 	4.15 0r (ne'./, 
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INTRODUCTION 

1.1 	Introduction 

This thesis presents the results of three effectively indepen-

dent projects in which the magnetic phase transitions and collective 

magnetic excitations (spin waves) of different substitutionally 

disordered magnetic systems were investigated. Each project has been 

assigned a separate chapter with a specific introduction explaining 

the particular background, motivation and details of that work. 

This chapter and the next therefore introduce some theoretical and 

experimental background which is common to these projects. 

The project reported in Chapter 3 utilised the "Equation-of-

Motion" technique (Alben et al. (1977)) to compute the spin wave 

spectra in a simple cubic diluted ferromagnet with nearest neigh-

bour Heisenberg exchange interactions. The results highlight 

features induced solely by the disorder and give some valuable 

information in interpreting data collected from neutron scattering 

experiments on metallic alloys such as Chromium-Iron. 

Chapter 4 reports work on K2CoFeiF4, a mixed magnetic 

system with competing spin anisotropies. Neutron scattering tech-

niques have been used to investigate the magnetic phase transitions 

and spin waves in single crystal samples with concentrations x = 0.6 

and x = 0.2. A further inelastic neutron scattering experiment to 

investigate the low temperature spin wave dispersion relation and 

the temperature dependence of the low energy, small reduced 
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wavevector spin waves in a sample with x = 0.27 is also featured. 

Comparison is made of the low temperature spin waves in all three 

samples with spectra calculated by the "Equation-of-Motion" tech- 

nique. 

The third project, reported in Chapter 5, concerns work on 

Rb 2Mn Cr1  C2.4 , a mixed magnetic system with competing ferromagnetic-

antiferroinagnetic exchange interactions. A "quasi-elastic" neutron 

scattering experiment was performed to study the magnetic phase tran-

sition and an inelastic neutron scattering experiment performed to 

investigate the spin wave dispersion relation close to the Brillouin 

zone centrefor a sample with x = 0.754. 

The remainder of this chapter and the next deals with the 

introductory material as follows. The next section describes the 

nature of the magnetic interactions and deals with some very 

general aspects of the disordered magnetic systems of interest. 

The second chapter reviews some background theory for thermal 

neutron scattering and also deals with the relevant experimental 

aspects, with particular emphasis being placed on the triple axis 

neutron spectrometer. The second chapter also introduces the 

idea of spectrometer resolution which is always important in 

interpreting the data from neutron scattering experiments and is 

vital in analysing some of the data presented in this thesis. 



- 

1.2 The Magnetic Systems: Some General Aspects 

K 
2 x l-x 4 	2 x l-x 4 Co Fe F and Rb Mn Cr CL are discussed in Chapters 

	

4 and S respectively. 	Both of these materials are iso- 

morphous with crystalline K 2NiF4  (Birgeneau et al. (1910)) which 

has the tetragonal unit cell in Figure (1.2.1). Ignoring the 

effect of spin-orbit coupling, the ground states of the free tran-

sition metal ions can be obtained from Hund's rules (Kittel (1976)). 

In a solid, the effect of the crystal field and spin-orbit coup-

ling on the electronic levels can be treated by perturbation theory 

since the resulting energy levels are close together in energy 

compared with the gap between excited electronic states. The 

magnetic excitations considered in this thesis involve only the 

lowest lying of those energy levels and they can be considered 

in terms of energy levels of a pseudospin operator i which is 

related to the total orbital angular momentum operator L. the 

total spin angular momentum operator 9 and the magnetic moment 

.3-' by the equations (1.2.1) 

=C s s. 	 ( 1.2.1a) 

L 	= 	C s 	 (1.2.1b) 

= 	B(L + 2S) 	= 	P g s 	. 	 (1.2.lc) 

a labels cartesian components, C: and C are proportionality 

constants and gC = (C + 2C 

Whilst the crystal field and spin-orbit coupling determine the 

energy levels of individual transition metal ions in the solid, a 

third perturbing term couples the spins of the magnetic ions. This 
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is the magnetic exchange interaction given by equation (1.2.2). 

H 	 = 	
1 

E J. J . S. S. 	 (1.2.2) exchange 	
.. 	

-1 -j 

where  this sum is over all pairs of sites, J. is the exchange interaction and 
and t are the total spin operators at the sites r. and r. 

respectively. With suitable proportionality constants the exchange 

Hamiltonian can be related to the pseudospin operators. Discussion 

2+ 	2+ 	2+ 	2+. of the pseudospin values for Co , Fe , Cr 	and Mn 	in 

K2N1F4  isomorphs are left to the appropriate chapters. 

In K2NIF4  isomorphs, the exchange interaction arises from over-

lap between the wavefunctions of the transition metal ions and the 

halide cations. Thus the transition metal ions are coupled via 

intermediate cations. This mechanism is called superexchange (Ziman 

(1971)).. The larger the number of cations between the two magnetic 

ions, the smaller the energy of the interaction. Consequently, the 

predominant exchange energy is that between nearest neighbour magnetic 

ions in the basal a - b plane which are separated by one cation. 

Two cations separate the magnetic ions in neighbouring planes and, 

for example, in K2CoF4  the interplane exchange is a factor of about 

1000 less than the intraplane exchange between nearest neighbour metal 

ions (Ikeda and Hirakawa (1974)). Additionally, with an exception of 

those systems in which the transition metal ion is Cr2+,  the mag-

netic exchange interactions lead to antiferromagnetic alignment 

below the Mel temperature, TN.  (In Rb 2CrC 4  a ferromagnetic 

phase occurs below the critical temperature, T). 

Since the late 1960's isomorphs of K2NiF4  have therefore 

been used as model systems in experiments designed to test the 

theory of cooperative phenomena in the spatial dimension d = 2, 

because of quasi two dimensional and predominantly nearest neighbour 



FIGURE (1.2.1): 	The crystallographic unit cell 

of K2NIF4 . The unit cell is 

tetragonal with a = b. 

corresponds to the divalent 

transition metal ion. 
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magnetic exchange interactions. Outstanding agreement has been 

obtained between theory and experiment in the case of pure systems 

(See, for example, Ikeda and Hirakawa (1974)), Cowley et al. (1984)). 

These types of system are also very suitable for studying coopera-

tive phenomena in d = 2 disordered magnetic systems. The di-

valent transition metal ions differ only in the number of 3d level 

electrons and so, although the magnetic properties of each type of 

these transition metal. --ions are 'different, their masses and sizes 

are similar as are many of their chemical properties. Hence sub-

stitutional disorder in which some host transition metal ions have 

been replaced by defect ions of another transition metal species 

allow effects solely due to (magnetic) site substitutional dis-

order to be investigated experimentally. Effects such as mechanical 

stress which would be induced if the size difference between the 

host and defect ions was significant are thus avoided. 

The specific properties of K2CoF4 , K2FeF4 , Rb 2MnCL4  and 

Rb2Cr C2 4  which make mixtures of the former two systems of interest 

in studying mixed magnetic systems with competing spin anisotropy 

and mixtures of the latter two systems suitable for studying systems 

with competing ferromagnetic-antiferromagnetic exchange interactions 

are discussed in Chapters 4 and 5 respectively. However, a brief 

discussion of the different types of site substitutional disorder, 

in the magnetic context, is given here. 

If, as in Chapter 2, the magnetic host sites are replaced by 

non-magnetic defect sites, the resulting random magnetic system is 

said to be diluted. In other systems the defects are also magnetic, 

leading to a mixed magnetic system. Single-ion anisotropy or 
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anisotropy in the exchange interaction usually determine the ordering 

direction of the magnetic moment in a pure system below the tran-

sition temperature, T. 	The phase transitions and magnetic ex- 

citations in diluted systems and in mixed magnetic systems, in which 

the favoured ordering directions for both magnetic species are the 

same, are fairly well understood. (A review of much of this work 

is given by Cowley (1982)). This understanding is possible because 

the magnetic ground state is, at least conceptually, known. How-

ever, in other systems such as those discussed in Chapters 4 and 5, 

the ground state is not obvious because of competing interactions 

and calculation of the ground state properties is in itself an 

interesting problem as well as a starting point for interpreting 

experimental data and modelling the spin waves in the systems. 

In systems henceforth referred to as mixed magnetic systems 

with competing spin anisotropy the anisotropy of defect ions 

favours a different ordering direction from that of the host system. 

Three ordered phases exist in the temperature (T), defect 

concentration (x) plane. Two of these correspond to the favoured 

ordering directions of the host and defect spins respectively and 

the third intermediate phase corresponds to an ordering direction 

oblique to both end member systems. This is discussed in more 

detail in the context of K2C0xFe1F4 in Chapter 4. Finally, 

another type of mixed magnetic system occurs when, for example 

magnetic defects, between which ferromagnetic alignment is preferred, 

replace the magnetic ions in an antiferromagnetic host. This shall 

be referred to in this thesis as a mixed magnetic system with com-

peting ferromagnetic-antiferromagnetic exchange interactions. As 
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discussed in Chapter 5, with respect to Rb2NnCr1C9,4,  the long 

range order can be ferromagnetic or antiferromagnetic below T  

depending on the concentrations of magnetic defects in the-system. 

For intermediate concentrations there exists the possibility of a 

so-called spin-glass phase. 



CHAPTER 2 

NEUTRON SCATTERING BACKGROUND 

2.1 Introduction 

The experimental measurements on disordered magnetic systems 

which are discussed mainly in Chapters 4 and 5 of this thesis employed 

neutron scattering techniques. The purpose of this chapter is to 

review the relevant theoretical and experimental background of thermal 

neutron scattering and so specific details of experiments are left to 

the appropriate chapters. 

Thermal neutrons are a very useful probe with which to investigate 

condensed matter systems for the following reasons. Firstly, the wave-

length of the thermal neutrons is comparable to the interatomic spacing 

in the systems and so scattered neutrons can produce interference 

effects. Secondly, collective excitations such as phonons or magnons 

often have an energy which is the same order of magnitude as the initial 

energy of the neutron, so that the change in energy of the neutron, 

caused either by creationor annihilation of an excitation, is resol-

vable and the detection of scattered thermal neutrons can be used to 

obtain information about the excitations and dynamics on an atomic 

scale. Thirdly, the neutron is an uncharged particle and consequently 

thermal neutrons are able to penetrate deeply into solid materials, 

unlike charged particles such as electrons. Finally, the neutron 

has a magnetic moment enabling information about the magnetic structure 

and dynamics of magnetic systems to be deduced from the scattered 

neutrons. In general, the interactions between the neutron and the 

system of interest consist of an interaction between the neutron 
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and the nucleus by nuclear forces and an interaction between the 

magnetic moment of the neutron and the magnetic moment of the 

electrons in the scattering system. Any interaction between the 

magnetic moment of the nucleus and the Coulombic field generated 

by the charged electrons and nuclei can be neglected since it is 

very small in comparison with these purely nuclear and magnetic 

interactions. 

The remainder of this chapter is set out as follows. In 

section (2.2), the theoretical background concerned mainly with 

thermal neutron scattering from magnetic systems is discussed, 

and the relationship between the spin-spin correlation function 

and the partial differential cross-section for scattered neutrons 

is arrived at. The experimental background with particular 

emphasis on the main features of the triple axis neutron spectro-

meter is given in section (2.3). Finally, in section (2.4), the 

resolution function of the triple-axis neutron spectrometer is 

discussed. Additionally two new developments, one of which I was 

involved in, which make resolution corrections more accessible, 

are briefly discussed. 

2.2 Thermal Neutron Scattering: Theoretical Background 

Consider a monochromatic neutron in a plane wave state with 

initial energy E i . wavevector k. and spin state a., scattered 

by a sample into a plane wave state with energy E f 9 wavevector kf  

and spin state 	Then in the Born Approximation, the partial 

differential cross-section, which defines the probability 
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of the neutron being scattered into a solid angle df with energy 

in the range E - E + dE is given by: (Marshall and Lovesey (1971)) 

m 2 

	

d2a - I—f' 	N 	 2 

	

dQdE - 1k I 	
m 	f f 	i 

E 	E P P I<k a nIVIk a i m>I 	m n 
w+E -E ) a 

	

—1 	TRanaf 	i 

(2.2.1) 

In equation (2.2.1), lm> is the initial state of the sample with 

energy Em  In> is the final state of the sample with energy E, 

Pm  is the probability of the sample being in the state IM> and 

Pai is the probability of the neutron being in the initial spin 

state a.. 	The Dirac delta function ensures conservation of energy 

in the overall system. t1w, the neutron energy transfer is then the 

difference between the energies of the initial and final states of 

the neutron and is given by: 

f1w = 	E. - E 	= 
1 	f 	2mN 1 	f (2.2.2) 

For a magnetic sample, the potential operator V, which re-

presents the interaction between the neutron and the sample is given 

by: 	- 

2A2V 	= 	 b. 6(r - R. - 	Hff(r) . 	 (2.2.3) 
3 	N 

The first term is the Fermi pseudopotential which models the 

interaction between the neutron and the nuclei in the sample as a 

sum of delta functions. The nuclei at positions R. are assigned 

a nuclear scattering length b which governs the strength of the 

interaction and can be positive or negative. The magnitude of b. 
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depends on the nucleus type and is different not only between nuclei 

of different elements but also between different isotopes of the 

same element. The size of b. also depends on the relative spin 

states of the incident neutron and the nucleus. Since this thesis 

is concerned with the scattering of thermal neutrons from disordered 

magnetic systems and because, for unpolarised neutrons, the magnetic 

part of the partial differential cross-section can be considered 

separately, no further discussion of nuclear neutron scattering 

theory will be given here. 

In equation (2.2.3), the second term gives that part of the 

potential operator which represents the interaction between the 

magnetic moment of the neutron 	and the effective magnetic 

field H ff (r) at the position r in the sample. 	N can be 

written as 	 where Y is the gyromagnetic ratio of the 

neutron, p is the nuclear magneton and vector a has the Pauli 

a matrices 	(c = x, y or z) as its elements. The effective 

magnetic field H ff (r) can be written as a sum Of the magnetic 

fields due to unpaired electrons and it can be shown that 

(Marshall and Lovesey (1971)): 

f d3 iQr " <k H 	(r)Ik.> 	= 	r e 	- {Qx [M(r) x]} —f eff— -i (2.2.4) 

In equation (2.2.4), Q = k. - k  is the wavevector trans-

ferred to the sample by the neutron in the scattering process, 

and M(r) is the magnetisation density operator. In 

magnetic samples which are also insulators, such as the materials 

mainly considered in this thesis, the magnetic electrons are 

localised at the magnetic ion sites and if QJ 	is much greater 
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than the mean electron orbital radius, then the following approxima-

tion can be made: 

- 	iQr "J 	 i•R. 
J d 3r e -- 	?< [ki(..) xQ] 	E e ---J f.()Qx [i.i.  x] 	(2.2.5) 

3 

In equation (2.2.5), the assumption has been made that the 

magnetisation in the vicinity of the magnetic ion can be represented 

by the total magnetic moment operator multiplied by the magnetic form 

factor f.(Q). The form factor f.() is the Fourier transform of 

the magnetic moment density, at the ion. 

Using the approximation given in equation (2.2.5) and substituting 

with equations (2.2.4) and (2.2.3), the equation (2.2.1) can be re-

written to give the partial differential cross-section for the 

scattering of neutrons from localised magnetic ions as: 

d 2a - lisf 	
2 	 j•R 

d2dE - 1k I 	1N'N E P 	E 	P 	E e 	3 f () m 

	

—1 	 nm 	 ii 	j 

	

<nafla.(qx [.j. x]) Ima.>I2Cw + E - E) 	(2.2.6) 

Expanding the matrix elements of equation (2.2.6) allows this equation 

to be written, for unpolarised neutrons, as: 

d2a -IjEf2 

dQdE - 
	

(- ) 
k I 	

; 	1N'N cz  E (6 
	

- Qa 	Z a 	
(-) f. 
	

* 

j —i 

P m <mIpIn><nIu8Im>tjw + E m - E n ) . 	 (2.2.7) 
mn 

To get (2.2.7) from (2.2.6), the results that E Iar><aI is a unit 
£ 

Gf 

operator and that E P 
a. 	1  <Y.IaaIa.1> = 6 	for unpolarised neutrons a 1.. 	 i 
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have been used. If s a is the cLth component of the pseudospin 

operator, then as shown in equation (1.2.1c) the magnetic moment 

CL operators can be replaced by gIJBS 	Equation (2.2.7) can be 

simplified even further by noting that 

<nIsIm>w + E - E ) = f d 	iwt <n(s m 	n 	te 	 (t) I M> 	 (2.2.8) 

where S Q (t) is the Heisenberg operator given by 

s(t) = exp ( - ) s exp() with H the Hamiltonian for the 

spins in the sample. Equation (2.2.8) then allows the partial dif-

ferential cross-section to be written in the form: 

d2o 	'kf' m 	2 
dadE 	- 	 'N1'N S(Q,w) 	 (2.2.9a) 

—1 

where 

S(Q,w) 	= 	( 	- QCLQ8)S(,w) 	 (2.2.9b) 
ct3 

and 

a 	 * 	iQ.(R.-R ) 
S(,w) = 	g. g f.()f(Q).e 	—J i 

f 	-'wt <s dte  

(2.2.9c) 

S(Q,w) is the dynamical structure factor, which is the spatial 

and temporal Fourier transform of the spin-spin correlation function. 

The S (,w) are called the partial dynamical structure factors. 

In uniaxial or isotropic magnetic systems, the number of partial 

dynamic structure factors is reduced by symmetry and S(,w) is 

given by 
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l+2 
S(,w) = (1 - 	) SZZ,w) + 	2 z )[ SOC(,w) + S,w)]. (2.2.10) 

In equation (2.2.10) it has been explicitly assumed that z is the 

direction of ordering. The first term measures correlations between 

spin components along the ordering direction and the second term 

measures correlations between spin components transverse to the 

ordering direction. This second term therefore gives information 

about the spin waves. 

2.3 Thermal Neutron Scattering: Experimental Background 

The instruments used in performing the thermal neutron scat-

tering experiments discussed in Chapters 4 and 5 were triple 

axis neutron spectrometers (Figure 2.3.1). This section sets out 

to discuss only the main features of that instrument and specific 

details of the way in which particular experiments were carried 

out are left to the appropriate chapters. 

Fast neutrons, which are produced in the core of the nuclear 

reactor, pass through a moderating material where by collision 

processes, the neutrons come into equilibrium with the moderator. 

The outgoing neutrons have a distribution of energies which is 

mainly Maxwell-Boltzmann in character but which has additional 

weight at very high energies (which do not concern us here). As 

an example, the thermal neutron flux at the Institut Laue Langevin, 

Grenoble, France is in equilibrium with a D 2 0 (Heavy Water) 

moderator at T = 300K. The peak in the Maxwellian distribution 
0 

corresponds to a neutron wavelength A 	1.2A. At the I.L.L., 



FIGURE (2.3.1): 	Plan view of the triple-axis neutron 

spectrometer (schematic). a, 8  are 

the horizontal and vertical collima-

tions respectively. 20 m , 20 
S  and 

20A are the scattering angles at the 

monochromator, sample and analyser. 
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the peak in the distribution is shifted in some of the beam and 

guide tubes by including a hot source or a cold source. The hot 

source Co 	 of Graphite at a temperature T = 2000K and the 

cold source consists of liquid Deuterium at 

source and the cold source give an enhancem 

tensity in the wavelength ranges 0.4 < A < 

respectively. (Neutron Research Facilities 

Flux Reactor (1983)). 

T = 25K. The hot 

nt of the neutron in- 

00 

 

0.8A and A < 4.OA 

at the I.L.L. High 

On reaching the instrument, a monochomator crystal selects a 

nominal wavevector k. 
1  for neutrons incident on the sample. — 

If 26'Y-is  the angle through which the neutrons are scattered by 

the monochromator crystal and if d   is the spacing between the 

Appropriate scattering planes of that crystal, then by Bragg's Law: 

= 	 IT 	 . 	
( 2.3.1) 

dM  51fl 0M 

Similarly, an analyser crystal is used to define a normal 

wavevector kf  for neutrons reaching the detector where: 

= Tr 
. 	 (2.3.2) 

dA sin  OA 

Clearly, arm 1 of the spetr2meter (cf. Figure 2.3.1) must be 

set at an angle 28 to the direction of the neutrons incident on 

the monochromator crystal and arm 3 of the spectrometer must be set 

at 26  to the direction of the neutrons incident on the analyser 

crystal. These spectrometer arms are fitted with collimators which 

restrict the divergence of the transmitted neutrons along the arms. 

Neutrons which reach the detector have thus transferred a wavevector 
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Ro and energy $iw to the sample, where: 

	

_Qo= 	i - if 	 (2.3.3) 

and 

	

= 	- (k. 2  - k 2) 	• 	 (2.3.4) 
1 0 	 2m, 	f 

Clearly, arm 2 of the spectrometer has to be set an an angle of 

20 5  to the direction of k., where —1 

20 
S 	

= 
	
cos-  (k. 2 + k f 2 - Q 2 )/2k.kf ] 	 (2.3.5) 

A computer sets the angles of the turntables on which the mono-

chromator, sample and analyser are mounted and also the angles of 

the three arms of the spectrometer, allowing scans to be made in 

reciprocal space (i.e. ,w space). However, for a desired 
Ro 

and w , there are an infinite number of possible k. and k 
0 	 —1 	 —f 

and it is common to fix k. or k , so that the other can be 
—1 	—f 

uniquely determined. 

Usually, a monitor is fitted on arm 1 of the spectrometer. The 

monitor is a fission chamber with a coating of metallic uranium 

on the counter wall. (Bacon (1975)). As the neutron beam passes 

through the monitor on its way along arm 1, the monitor produces 

electrical pulses, the number of which is proportional to the number 

of neutrons which pass through the monitor and thus the number of 

neutrons which reach the sample. The most practical way of per-

forming a scan is to count the number of neutrons in the detector 

for a fixed number of neutrons hitting the sample at each point in 

the scan. If there were fluctuations in the incident neutron flux 

from the reactor, then counting for a fixed time at each point in 
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the scan would not guarantee that a fixed number of neutrons would 

have have been incident on the sample. Consequently it is most common 

to count the number of neutrons which reach the detector for a fixed 

number of monitor counts. 

In performing elastic scans, defined by t1W = 0, 1k.1 and Ikf  I 
are fixed at the same value and from equation (2.2.9) it is obvious. 

that the partial differential cross-section is a direct measure of 

S(9,w = 0). For inelastic scans, tw 0 0, and either 1k . 1 or Ikf  I 
is fixed. For fixed JjSf j, the number of counts in the detector is 

proportional to S(Q,w) because the efficiency of the monitor is 

proportional to 	and this cancels the k1  factor in equation 
(2.2.9). When Ikj is fixed the partial differential cross-section 

is 	2a/dc2deA instead of 2a/dcdE. It can be shown 	that in this 

case the number of counts in the detector is proportional to 

kf 3 coteS(q,w). Irrespective of whether it is IkI or 	kf  I which 

is fixed, inelastic scans are usually performed with either Q fixed 

and iw varied or +i fixed and Q varied. 

Whilst the monochromator crystal reflects neutrons with wave-

vector lkI given.by  equation (2.3.1), it will also reflect neutrons 

with wavevector 1kH multiplied by a positive integer n. To pre-

vent these neutrons contributing to the number of counts measured by 

the detector, a filter can be fitted to arm 1 if Ikj is fixed and 

to arm 2 if Ikf  I is fixed. The type of filter used depends on the 

magnitude of the fixed neutron wavevector required. In the experiments 

discussed in Chapters 4 and 5 of this thesis, either a Pyrolytic 

Graphite filter or a cooled Beryllium filter was used as required. 

The Pyrolytic Graphite filter has a complicated transmission spectrum 
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with respect to the wavevector of thermal neutrons. However, if a 

0 1  fixed neutron wavevector Ik
1  -I or lkf j of 2.662A 	is required, 

then there are local minima in the transmission spectrum at twice and 

three times that wavevector. The Maxwellian distribution of the 

neutrons incident on the monochromator is such that the proportion of 

0 1 
neutrons with wavevector greater than three times 2.662A 	is small 

and so the Pyrolytic Graphite filter is very effective indeed. A 

Beryllium filter consists of a block of polycrystalline Beryllium 

and utilises the Bragg cut-off. The Bragg cut-off wavelength is the 

wavelength at which the Bragg reflection angle is 900.  This occurs 

at X = 2d, where dc  is the largest d-spacing in the material. 

For neutrons with wavelength greater than 2d, Bragg reflections 

cannot occur. For Beryllium, X = 3.97A (Windsor (1981)), so the 

filter transmits neutrons with A > 3.97A, but neutrons of smaller 

wavelength are scattered by Bragg reflection. The scattered neutrons 

could be Bragg reflected many times within a single Beryllium block 

(multiple scattering) and some of these neutrons could end up travel-

ling in the forward direction after leaving the filter, thus being 

transmitted. This multiple scattering can be almost completely re-

moved by absorbing slits which are inserted into the Beryllium block 

along the beam direction. The absorber separation and the filter 

length determine how effective the absorbers are. Whilst the neutrons 
0 

with wavelength larger than 3.97A cannot be Bragg reflected, they can 

be scattered by phonons. This can be overcome by cooling the filter to 

T = 77K (liquid nitrogen temperature), removing the neutron energy 

gain scattering from the thermally excited phonons. 

Further discussion of more detailed aspects of the actual 

experiments carried out will be given in Chapters 4 and 5. 
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2.4 	Spectrometer Resolution 

In the previous section, the triple axis neutron spectrometer 

was discussed, assuming that the wavevectors k and k  of the 

neutrons could be selected exactly, by an appropriate setting of 

the spectrometer. However, due to finite collimations on the 

spectrometer arms and finitq mosaic spreads on the monochromator and 

analyser crystals, neutrons are detected which have not transferred 

the nominal wavevector 0 and energy tw o . These neutrons have 

transferred a wavevector Q and an energy tw, where 

=-qo + 	 (2.4.1) 

and 

= tw 	 + S(iw) 	 (2.4.2) 

with 	and ô(iw) small but non zero. 

The resolution function of a triple axis neutron spectrometer 

is a function related to the probability of detecting neutrons which 

have transferred wavevector 	and energy $iw when the spectrometer 

has been set to detect neutrons which have transferred wavevector Q 
—o 

and energy two . The 'single' crystals used for the monochromator and 

analyser really consist of many small crystallites, slightly misaligned 

with respect to an average orientation. It is generally accepted that 

the distribution of the misalignment angles can be approximated by a 

Gaussian function. Assuming Gaussian transmission functions for the 

collimators and a Gaussian mosaic for the monochromator and analyser 

crystals, a general formulation of the resolution function of a 

triple axis neutron spectrometer was derived by Cooper and Nathans 
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(1967). It was shown that the resolution function could be written as 

where 

R(X) 	= 	R exp{- 2•&} 	 (2.4.3) 

= 	cS(tiw)) 	. 	 (2.4.4) 

The normalisation factor and the elements 	of the matrix 

M are functions of k,, W ', the monochroinator mosaic n., the 

analyser mosaic n 
A' dM ,  dA, the horizontal collimations a, a 1

2 

a2 , a3  and the vertical collimations 	
, 	' 82 

For any straight line through the coordinates w 0 , Q, the 

resolution function is Gaussian as a function of 6w and 6Q. In 

order to visualise the resolution function, it is useful to consider 

the locus of points for which the resolution function has the value 

R exp(-p/2). This ellipsoid is defined by: 

k=l.z=l 	
p =  (2.4.5) 

When p = 1.386, the surface of the ellipsoid defines the locus 

of points for which the resolution function has the valueR and 

this is generally referred to as the resolution elipsoid. 

The Cooper and Nathans formulation did not take into account the 

effect of the horizontal and vertical sample mosaic on the resolution 

function. Werner and Pynn (1971) showed how this could be incorporated. 

They relate modified matrix elements 	and normalisation factor 

R ' 
0 	

to the matrix elements M. 	and normalisation factor •R of 
K9 	 0 

Cooper and Nathans. In addition, detailed treatment of the normalisa-

tion factor has been carried out by Dorner (1972) and by Chesser and 

Axe (1973). 
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FIGURE (2.4.1): Pure spin wave scattering generated by the program 

discussed in Mitchell et al. (1983). (a), (b) and 

(c) differ only in configuration of the spectrometer 

with the vertical collimation the same for each, 

namely a o 
= ~ 1 = 	= 	= 4.00. 	(a) and (d) 

differ in vertical collimations but have the same 

configuration [the intensity shown for (d) has been 

amplified by a factor of eight. In labelling a 

configuration the three numbers c , c and c m 	s 	A 

each of which can take the values +1 or -1, refer 

to the scattering sense at the monochromator, sample 

and analyser respectively. 	c = +1 indicates scat- 

tering to the left and c = -1 indicates scattering 

to the right. Note that the arrows point to the 

0-1 nominal spin wave energy. In each case Q = 0.075A 

= 0 and D = 10 THz A2 . Horizontal collimation 

is (a) 30', (b) 20', (c) 20', and (d) 30'. 

0-1 	 0 
k F = 1.55 A , 20 	2.8 

s 
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angle limit, the Cooper Nathans formulation of the resolution function 

gives a singular resolution matrix. This singularity arises from 

the divergences of some of the elements of the resolution matrix 

because they contain terms in the reciprocal of the sine of the 

sample scattering angle. With the original program diagonalisa-

tion proved impossible. Using higher numerical precision (Double 

Precision in Fortran 77) diagonalisation could be achieved, but 

at the cost of additional computing time. 	In that standard pro- 

gram, the integration had to be carried out numerically with 

respect to three variables SQ', 6Q' and w' (in the diagonal 

frame of reference). This is because the verticalresolutionijs 

not coupled to the horizontal resolution and if the scattering 

function in the vertical is replaced by a Dirac delta function 

in the variable 5Q 2  the vertical resolution can be integrated 

out analytically. Recognising the origin of the singularity, an 

alternative derivation of the resolution matrix is given in the 

paper which avoids the difficulty of having to diagonalise a 

singular resolution matrix. in the new formalism, numerical 

integration over only two variables is required, so saving 

valuable computing time. The new formalism was incorporated 

into a program which could simply generate spin wave intensities 

and also into a fitting program which could be used to fit spin 

wave data. Figure (2.4.1) shows some purely spin wave scattering 

generated by the former of these two programs. The difference be-

tween the nominal spin wave energy, indicated by the arrows and 

the position of the peaks in the intensity illustrates the 

importance of taking the resolution into account if accurate 
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values for parameters such as the spin wave energy gap, tg' and 

the spin wave stiffness, D, are to be obtained. 

Although in the small angle scattering limit, and with the 

vertical resolution integrated out analytically, numerical integra-

tion over only two variables is required, in a general, case, numerical 

integration might have to be performed over all four variables 

Qy ' 	' and Sw'. 	To fit the data collected in a scan, 

using a non-linear regression fitting program, an integral such as 

that given in equation (2.4.6) would, in that case, have to be per-

formed for each point in the scan, during each iteration of the 

program. On a time sharing computer, such as the ICL 2900 series 

computers available at the University of Edinburgh, which often 

have over 100 users, such a program could not feasibly be run 

interactively from a terminal. Attempts to fit the data would have 

to be run in background (i.e. by submission of computer batch jobs). 

The time Interval between submitting large batch jobs and receiving 

the output can be up to several days, depending on the demand for 

computer C.P.U. (Central Processing Unit) time. In a successful 

attempt to overcome these problems, Mitchell and Dove (1985) have 

utilised the parallel architecture of the ICL DAP (Distributed 

Array Processor) computer in the program SHAMGAR'S OXGOAD. The 

DAP is a S.I.M.D (Single Instruction Multiple Data) computer 

with 4096 processing units, which is essentially capable of per-

forming a given operation on 4096 sets of numbers simultaneously. 

In SHANGAR'S OXGOAD, the integrals are performed numerically, 

several orders of magnitude faster than the speed which can be 

achieved on a serial computer such as the ICL 2976. The decrease 



-24- 

in C.P.U. time required is such that the data collected in spin 

wave scans can be fitted interactively. Further to this, if ,a 

model dispersion relation for the spin waves is used, as many 

scans as required, taken under similar resolution conditions, 

can be fitted at once, enabling resolution effects to be fully 

taken into account. SHANGAR'S OXGOAD was used to fit some of 

the spin wave data presented in Chapter 4. 
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CALCTJLATION OF MAGNETIC EXCITATION SPECTRA IN 

A DILUTED SIMPLE CUBIC FERROMAGNET 

3.1 	Introduction 

In this chapter results are reported of calculations of the mag-

netic excitation spectra for a diluted simple cubic ferromagnetic 

system with nearest neighbour Heisenberg interactions. The calcula-

tions were made using the "Equation-of-Motion" method. This tech-

nique was used successfully by Thorpe and Alben (1976) to calculate 

S(Q,E) spectra for the d = 2 mixed antiferromagnetic systems 

Rb 2 x l-x 4 Mn Ni F with x = 0.5 and the calculated spectra were in 

good agreement with the experimental results of Birgeneau et al. 

(1975) and Als-Nielsen et al. (1975). The results of calculations 

on d = 2 diluted antiferromagnetic systems also gave good agree-

ment with experimental results (Cowley et al. (1977), Cowley et al. 

(l980d)). 

Magnetic Excitation spectra in random d = 3 ferromagnets have 

previously been calculated by Alben et al. (1977). Their published 

work covered both mixed and diluted ferromagnetic systems but con-

centrated more on the calculation of density of states p(E) than 

on calculation of S(Q,E) spectra. The project discussed in this 

chapter involved' calculation of S(Q,E) spectra for the particular 

case of a diluted simple cubic ferromagnet. This was carried out 

in order to characterise the effects of dilution on the magnetic 

excitations from the point of view of what could be measured in 
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an inelastic neutron scattering experiment. 

The remainder of this chapter is set out as follows. In Section 

(3.2) the equation-of-motion method is discussed and in Section (3.3) 

general details of how the technique is implemented are given. 

Section (3.4) describes some of the specific programming details 

and Section (3.5) discusses the results of tests which were made 

to ensure that the computer program performed correctly and gave 

correct results for known cases. In Section (3.6) results are presen-

ted and compared from calculations for magnetic site concentration x 

in what was expected to be three different concentration regimes. 

Finally, in Section (3.7) comparison is made between results 

generated by the computer program and some inelastic neutron 

scattering results. 

3.2 The Equation-of-Motion Method 

In this section it is shown how S(Q,E) at T = OK for spin 

waves in a mixed magnetic system can be calculated numerically 

using the "Equation-of-Motion" method. This method will be 

developed specifically for a system with a simple cubic lattice 

randomly occupied by atoms labelled A and B. If A and B 

were both magnetic this. would lead to a mixed system. The 

system of interest in this chapter is diluted and this corres-

ponds to A being magnetic and B being non-magnetic. The mixed 

case will be described here since it is more general and the 

dilute case is easily obtained from it. 

The spins in the system are assumed to have only nearest 
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neighbour Heisenberg interactions and the Hamiltonian for the spin 

system is given by 

H 	= 	- 	Z 	J.. S.•S. 
1J -1 —J (3.2.1) 

where <ij> indicates a sum over nearest neighbour spins. J. is the 

exchange interaction between the neighbouring spins S and S.. 

The J 	 values are positive since the system is ferromagnetic.ij  

In the mixed system the exchange interaction between nearest neigh-

bours of the same species is assumed to be the same as in the pure 

system and the exchange interaction between neighbours of different 

species is given by JAB = 	AA BB )  ' which is known to be a 

good approximation for magnetic insulators (Cowley and Buyers 

(1972)). For a diluted system with nearest neighbour interactions 

there is clearly no interaction between two B neighbours or an 

A and a B neighbour, so that the only non-zero interaction is 

between two magnetic A-type neighbours. The Hamiltonian in equa-

tion (3.2.1) can be expanded in terms of the cartesian spin com- 

ponents SX,  S 	and S 2  to give: 	 - 

H = - 	Z 	J. . 
1  

(S. 
J  

ZS.Z + S. 	
1 

.X + S.YS.Y) . 	 (3.2.2) 
<ii> 1J 	 1 J 	 J 

Explicitly assuming that the ordered spin is along the z-

direction, the spin creation and annihilation operators S and 

S 	are defined by: 

	

S 	= 	Sx + iSY 	 (3.2.3(a) 

S 	= 	Sx - iSY 	 (3.2.3(b)) 
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From equation (3.2.3), Sx 
 and Sy  can be written in terms of 

S 
+

and S 	as: 

	

S 	= 	(S + S) 	 (3.2.4(a)) 

1 + 
= 	T(S - S) 	. 	 (3.2.4(b)) 

	

Substituting for Sx and S 	in equation (3.2.2) gives: 

H = - 	J. .(S S 	+ I (S . +S - + s.S.)) 	. 	(3.2.5) 
<ii> 

	

13 1 3 	1 j 	1 3 

Because the effects due to the disorder are of the most interest 

a linear spin wave approximation can be made which avoids the com-

plication of non-linear spin wave interactions. The linear spin 

wave approximation can be made, using the lowest-order Holstein-

Primakoff transformation given by equation (3.2.6). 

	

S 	(2S)a 	 (3.2.6(a)) 

I * 

	

S 	-- (2S) 2  a 	 (3.2.6(b)) 

	

S 	S - a*a 	
. 	 (3.2.6(c)) 

In equation (3.2.6), S is the value of the spin and a and a* 

are the Bose destruction and creation operators respectively. Re-

placing S, S 	and S  	in equation (3.2.5) by the expressions 

given in (3.2.6) gives: 

* 
H = - 	Z J. .S.S. + J. .(S.a.a. + S.a. a.) 13 1 3 	13 3 1 1 	1 3 J 

I 	*  
- J. .(S.S.) 2 (a.a. + a.

*
a.) 13 13 	13 	13 (3.2.7) 
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In the diluted case all the magnetic sites have the same spin 

S and the non-magnetic sites do not have a spin so that (3.2.7) 

simplifies to 

* 	* 	* 	* H = - 	J. .S 2  + J. .S(a.a. + a.a. - a.a. - a.a.) . 	(3.2.8) 
<ii> 1 J 	13 	1 1 	J 3 	1 3 	1 3 

The first term in (3.2.8) is just the ground state Hamiltonian H 0 ; 

the second part is the spin wave part of the Hamiltonian and can for 

the diluted case be written: 

* 	* 
H = 	E J. .S(a. a. - a. a.) 

(ii) 13 
	1 1 	1 J 

(3.2.9) 

where (i,j) indicates a sum which includes all pairs of nearest 

neighbours twice. 

A set of quantities g 10 (t) can be defined by (Alben et al. 

(1977)): 

Q (t) 	= 	<a.(t)E a. (0)e 	 (3.2.10) 

where R. is the position of the spin at site j and Q is the 

wavevector of interest. It can be shown 	(Alben et al. (1977)) 

that the g.Q  quantities obey the equation of motion 

it 
dgQ= 
	E S J1(g.Q - g. Q ) 
	

(3.2.11) 

In the dilute case the g-factors (Chapter 1) and spin values can be 

set to 1 since the S(Q,E) values calculated can be scaled for 

comparison with experimental data and the normalised form for the 
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scattering intensity is given by: 

CO 
ii ____ 	 -iQ.R. 	 iQ.R. 

S(Q,E) = 2rrNti J elthI(E a (t)e 	
1) (Z a*(0)e - J) > dt 

	

i 	 .j -00 	 i 	 J 
(3.2.12) 

Introducing a damping function e -xt2 and with initial con- 

ditions g Q (t=0) = e 	equation (3.2.12.) can be written: 

	

T 	-iQ.R. 	 -x2 S(Q,E) = urn urn 	Re J 	- E e 	g. Q (t)e h 	e 	dt 
A-*O T-.co 	 i 

0 
(3.2.13) 

The limits given correspond to infinitely good energy resolution. 

The effect of having a value A > 0 is to introduce a broadened 

spectrum. Because the Fourier transform of a Gaussian envelope is 

another Gaussian, the value of A can be chosen to give an energy 

resolution comparable or exactly matched with an instrumental energy 

resolution width, enabling comparison between calculated and ex-

perimentally obtained spectra. A finite value for A also means 

that the integral need only be performed up to a limit in time of 

T = T 	< Max 	. The criteria for choosing A and T Max  are dis- 

cussed in the next section. 

3.3 Implementation of the Equation-of-Motion Method 

In the previous section (Section (3.2)) the mathematical details 

of the equation-of-motion method were set out (with final emphasis 

placed on the case of diluted systems) and an equation (equation 

(3.2.13)) was arrived at which related S(Q,E) to the quantities 

g1Q (t). In practice, the implementation of the technique is as 
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follows. Initially, each magnetic site in the diluted system is 

assigned a g. 
iQ  value given by equation (3.3.1). 

iQ . R. 
= 	e 	. 	 (3.3.1) 

For each site, the equation-of-motion (equation (3.2.11)) is 

then used to calculate the derivative of g. 	at time t = 0. If 

the time step for the numerical integration of equation (3.2.13) 

is given by At, then: 

.dg. (t=0) 
giQ (t = t) = g.(t=O) + - 	 -At . 	 (3.3.2) 

dt 

So equation (3.3.2) allows the 

the first time step. To calculate 

more accurate method of calculating 

because g iQ is known at two or mo 

relationship between g 1Q (t ,= nit) 

t = (n-1)At and (n-2)t is taken 

values 

91Q (t = 

g. Q (t 

e previ 

and the 

to be: 

to be calculated after 

nat) where n 2, a 

= nat) can be used 

us time steps. The 

g. Q (t) at 

dg. Q (t=(n-l)At) 
Q(t=nt) = g1Q (t=(n-2)t) + 

	
2t 

dt 

(3.3.3) 

dg.(t=(n-1)it) 
At successive time steps, 	 is calculated from 

dt 
the equation-of-motion and then g. Q (t=nLt) is calculated from 

equation (3.3.3). At each interaction, the g 0 (t=nt) are summed 

over all magnetic sites. Finally the time integration in equation 

(3.2.13) is performed numerically according to the Trapezium Rule 

(Stephenson (1973)). 

As mentioned in Section (3.2), the time step, At, for the 
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numerical integration, the cut-off time T 
max  and the damping constant 

A have to be chosen to meet various requirements. The time step is 

determined by the highest possible energy in the band. If E 
max 

is expressed in Terahertz (THz), then At expressed in picoseconds 

(ps) is given by 

it(ps) 	-- 1 
	1 

 a E 
max  (THz) 

(3.3.4) 

In the classical picture of precessing spins E 
	

represents 
max 

the minimum time period for precession of a spin. That is to say, 

all spins take at least lIE 	picoseconds to precess once. The max 

time step has to be small enough that the g. Q (t) vary smoothly 

on that scale and that the numerical calculations are a good 

approximation. The factor a ensures that the spins have made 

less than one revolution between successive time steps, a = 10 

gave a small enough time step for the calculations reported in this 

chapter. 

In neutron scattering experiments the spectrum obtained in a fixed 

wavevector transfer scan to determine S(q,E) as a function of the 

energy transfer E (= t) is broadened by the spectrometer resolution. 

It is therefore the broadened spectrum of S(,E) which is of 

interest when comparing with experimental data. The damping function 

-xt 2  used for the calculations was a Gaussian e 	The effect of 

this in the calculations is to give a Gaussian shaped broadening 

-E 2  / 4t 2  x to the S(,E) spectrum, according to e 	(the Fourier trans-. 

-At2 i 
	

_E2/4t2A 
form of the Gaussian function e 	s e 	). Comparing 

-E2 /4 2 A e 	with e 	then a is related to A by a 2  = 

and so the energy resolution requirement, given by the value of a 
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determined the value of A. 

The value of T 	is determined by the acceptable noise level max 

in the S(Q,E) spectrum. If ii is the acceptable noise level, then 

T max  is determined by: 

- AT 2  
max 

e 	 = 	n (3.3.5) 

where r is a fraction such that if 1% was the acceptable noise 

level then n = 1/100. Equation (3.3.5) can be rearranged to give 

T max  in terms of A and 	: 

T 	= (log (l/n)/A) max (3.3.6) 

The number of time steps in the calculation is then given by: 

Mt = T /At t 	max (3.3.7) 

Computing details are given in the next section. 

3.4 Counputer Programming Details 

The program used to calculate S(Q,E) was written in Fortran 

77 and called MASIIEX. (This name is short for "MASter Magnetic 

Excitations" program.) This program was compiled and run on the 

VAX 11/750 computer belonging to the University of Edinburgh Physics 

Department. For a given job, the VAX 11/750 uses more C.P.U. 

(Central Processing Unit) time than the ICL 2900 series computers 

(which are also available) of the ERCC (Edinburgh Regional Computing 
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Centre). As discussed later in this section MASMEX was run for a 

finite size simple cubic lattice with dimensions LxLxL. 	The 

value of L was chosen to be as large as possible to avoid finite 

size effects. One of the. advantages of using the VAX was that the 

program could be compiled and run with L = 35 although this was 

later reduced to L = 30 after a new computer operating system 

was installed. (There seemed to be no discernible difference 

between the L = 35 and L = 30 spectra, so that L = 30 

appeared to be above the limit below which finite size effects 

become more important.) 	A 30 x  30 x  30 lattice was considerably 

larger than the largest finite sized system-for which MASMEX 

could be compiled on the ICL 2988. Another advantage was that 

whilst the VAX uses around 4 times the amount of C.P.U. time 

used by the ICL 2988 to run the same program, the demand for 

C.P.U. time on the VAX is very much less. Consequently the actual 

time taken between submitting a batch job on the VAX and receiving 

the results is less and this is particularly true for large batch 

jobs. 	In addition, there is an upper limit in terms of C.P.U. 

time of 7200 seconds for batch jobs on the ICL 2988, so that some 

of the jobs which ran on the VAX could not have been run on the 

ICL 2988 since they required more C.P.U. time than that upper limit. 

(A typical batch job to calculate the spin wave spectrum for an 

L = 30 lattice with magnetic concentration x = 0.34, averaging over 

5 configurations and with an energy resolution which was 1% of E max 

took around 8 12 hours of VAX C.P.U. time.) 

The program MASNEX sets up the model system on a finite size 

simple cubic lattice with the dimensions LxLxL. A random coordinate 
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i' c2 , c3) with 1 < c. 	L is generated and designated as a 

magnetic site. 	This procedure is repeated and if the random coor- 

dinate generated does not already correspond to a magnetic site, then 

it becomes a magnetic site. If- x is the desired concentration of 

magnetic sites in the diluted system then the procedure continues 

until N5  sites have been occupied by magnetic species, where: 

X 	= 	NIL3 . 	 (3.4.1) 

Depending on the value of x, the model system can contain 

isolated clusters of spins. The question then arises as to whether 

these isolated clusters should be allowed to contribute to the 

calculated scattering. In a real system with only nearest neigh-

bouring interactions, the clusters are completely isolated both 

from other clusters and from the infinite cluster. One would there-

fore expect the finite clusters to be randomly orientated so that 

no coherent scattering would be expected from them. It is there-

fore argued that only the.scattering from the spin deviations on 

the "infinite cluster" (which consists of all the spins which are 

not in isolated clusters) is of interest in these calculations and 

a subroutine was written which eliminated the isolated clusters. 

After this subroutine has been called, only magnetic sites which 

were linked to all six sides of the finite cubic system (which has 

to satisfy periodic boundary conditions) are retained. Figure 

(3.4.1) illustrates the "infinite cluster" for a d = 2, 16x16 

square lattice with the magnetic site concentration x close to 

but greater than the site percolation threshold x. (The 

"infinite cluster" does not exist for x < X. and the system 



FIGURE (3.4.1): 	Illustration of the "infinite 

cluster" of magnetic sites for a 

16 X  16 finite size system 

satisfying periodic boundary 

conditions. The filled circles 

indicate the magnetic sites and 

the lines link nearest neighbour 

magnetic sites. 



Figure (3.4.1) 
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consists only of finite clusters of magnetic sites, i.e. there is no 

long range order. This chapter is not concerned with the excitations 

in that concentration regime.) Labelling the concentration of mag- 

netic sites in the "infinite cluster" by x inf , thenthere are N. 
inf 

magnetic sites left after this procedure, where: 

x i 
	= N i IL3 nf 	nf (3.4.2) 

Clearly Xinf 	x and when x is close to xv, , the percola- 

tion concentration, then x 
inf  is considerably less than x be-

cause a substantial number of finite clusters have to be thrown away. 

After the random diluted system has been set up, the magnetic 

sites are labelled from 1 to N inf and the non-magnetic sites are 

labelled from N inf to L 3 . The six nearest neighbours of each 

spin are identified and stored for use with the equation-of-motion. 

The "Equation of Motion" method as described in Sections (3.2) 

and (3.3) is then followed. In the diluted system g 	 is onlyiQ  

non zero for the magnetic sites and so the values of g.Q  at each 

time step only need be calculated for the magnetic sites. In the 

final sum over sites in the calculation of S(Q,E) only the magnetic 

sites need be summed over so that the program requires progressively 

less C.P.U. time as x is reduced. In each calculation, S(Q,E) 

is calculated as a function of E for a specified but fixed value 

of 	. The range of E and the energy step AE were chosen 

according to where and how broad, as a function of energy, the 

interesting features were expected to be. 

The motivation behind calculating S(Q,E) in the diluted 

magnetic systems lies in being able to identify the features of real 
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systems which are truly associated with this kind of disorder. Any 

effects which occur purely because the model system is of finite 

size with periodic boundary conditions are of no physical interest 

because they would not be a feature of S(Q,E) in an effectively 

infinite real system. To allow for these potential problems, 

several steps have been taken. Firstly, the system has been made 

as large as possible and to the best of my knowledge has been run 

for the largest ever model system. Alben et al. (1977) used 

lattices with typically 8000 (20) sites. In the calculations 

reported in this chapter lattices with 27000 (30) sites have 

mainly been used but lattices of up to 42875 (353)  sites had 

also been used in programtests. Secondly, the program can 

generate S(Q,E) for several different random configurations, 

all of which have the same concentration x. (Particular configura-

tions are determined by the initial random number seed.) A program 

SPECAV (SPECTrum AVerage) was written to average a series of spectra 

which differ only in that they are generated by MASMEX for dif-

ferent random configurations. For each energy value, the program 

can calculate the standard deviation defined by equation (3.4.3), 

which is a measure of the spread of the distribution of S(Q,E) 

values at that energy value. 

n 

a(E) = 	 (S.(Q,E) - S(QE))2) 	 (3.4.3) 
C i=l 

where S(Q,E) is the mean of S(Q,E) obtained by averaging n 

configurations. If an uncertainty is to be attached to each S(Q,E) 

value then it can be argued (from the discussion about errors in 



-38- 

Squires (1976)) that this is given by the standard deviation in the 

mean defined by equation (3.4.4) and which is also calculated by 

program SPECAV. 

I 
a 	

C In 
(E) 	= 	a/(n - 1)2 . 	 ( 3.4.4) 

Whereas a is a measure of the spread in the values of S(Q,E), 

am gives the uncertainty in the mean value. a(E) can be reduced 

by averaging over progressively larger numbers of configurations. 

Table (3.4.1) summarises the procedures carried out by programs 

MASMEX and SPECAV. 

3.5 	Program Tests 

Before a new computer program is used to generate any new results, 

it is desirable to check that the program reproduces known results. 

It was straightforward to check MASMEX in two cases. Firstly, the 

program was used to generate S(Q,E) spectra for a simple cubic 

Heisenberg ferromagnet. Secondly, in previous work by Alben et al. 

(1977) a few graphs of S(q,E) for the simple cubic diluted system 

were given, and the program was used to generate similar spectra for 

comparison. 

Because the model system is finite with periodic boundary con-

ditions S(Q,E) was calculated for the pure system only at allowed 

wavevectors. The allowed wavevectors along the [1,0,0] direction 

are obtained from the following considerations. The periodic boundary 

conditions demand that: 
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Read in the parameters which 
specify the details of the 
calculation. 

Generate finite size randomly 
diluted simple cubic system with 
magnetic site concentration x.. 

Eliminate finite clusters of mag-
netic sites, retaining only the 
infinite cluster. Magnetic con- 
centration now x i . (x 	x). nf 	inf 

Use equation-of-motion technique 
to calculate g Q (t) for each mag- 

netic site at successive time steps, 
up to cut-off time T 

max 

Calculate S(Q,E) from equation 
(3.2.13) for a specified range of 
energies. 

CD 
(D(D 
'1 	CD 

GQ 	r 
(D3 

CD 
o 'I() 

(DO 
rt I-I N 
I 1. 

C) 
0 CD 

ao 
a 

CD 
rP 

0 

Cl) 

r1 
0 

Cl) 
CD 

Use SPECAV to average S(Q,E) 
spectra over the desired number of 
configurations 

Output S(Q,E), a(E), a(E) 

TABLE (3.4.1): 	Summary of the General Procedures carried 

out by MASNEX and SPECAV. 
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F((x+L)a) = 	F(xa) 
	

(3.5.1) 

where F(X) is a function which needs to satisfy the periodic boun-

dary conditions, a is the lattice parameter, L is the number of 

units along one side of the L x L x L system and x < L. A possible 

solution to equation (3.5.1) is: 

F(X) 	=. 	iqX 	 (3.5.2) 

For this solution to satisfy equation (3.5.1) then: 

ig(x+L)a = 	iqxa 
e 	. 	 (3.5.3) 

It follows that: 

iqLa 
e 	= 	1 	. 	 (3.5.4) 

Hence: 
2ir 

q 	
= 	L 	 (3.5.5) 

where, for wavevectors restricted to the first Brillouin zone: 

L/2 	 L/ 	 (3.5.6) 

if L is even. 

To test the program in the pure case, an L x L x L lattice with 

L = 10 was chosen and S(Q,E) generated as a function of E for 

2 = 	 at QX = 0, 0.1, 0.2, 0.3, 0.4 and 0.5. At each .Q 

Gaussian peaks were obtained, whose full width at half maximum 

height (FWH1I) was in accordance with the width expected from the 

	

chosen value of A. 	Figure (3.5.1) shows a typical peak. For a 

simple cubic ferromagnet with nearest neighbour Heisenberg inter-

actions Kittel (1976) shows that the spin wave dispersion relation 



FIGURE (3.5.1): 	Single resolution limited Gaussian peak 

obtained by running MASNEX for the pure 

case (x = 1) with Q = (0.3,0,0). 

The chosen energy resolution was 0.2 THz 

F.W.H.M. in this case. 
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is given by: 

1:1w 	= 	J S[z - Z cos(j.6)] 	 (3.5.7) 
6 

where J is the exchange interaction (a factor of 2 greater than the 

one given by Kittel due to a factor of 2 difference in the definition 

of the Hamiltonian), S is the spin, z is the number of nearest 

neighbours, 	is the wavevector of the spin waves and the vectors 

join any spin to its six nearest neighbour spins. In Figure 

(3.5.2(a)) comparison is made between the peak positions at the 

chosen wavevectors and the dispersion relation calculated from 

equation (3.5.7). The fact that the resolution limited peaks that 

were obtained were centred at the energies expected from theory, 

is strong evidence that the program worked in the pure system limit. 

Alben et al. (1977) considered not only S(9,E) but also the 

density of states P(E) for both mixed and diluted systems with the 

Heisenberg form of the Hamiltonian. Since the calculation of 

S(Q,E) for diluted systems comprised only a fraction of that work 

the number of published S(Q,E) spectra with which a comparison 

could be made was limited. Nevertheless, excellent agreement be-

tween spectra published by Alben et al. (1977) and those generated 

by MASNEX was found for the available wavevectors and concentrations. 

At x = 0.25 the spectra available had wavevectors at 

Q..=X9 QX9 QX)with QX  = 0.125, 0.25, 0.375, 0.5. At x = 0.5 

a comparison could only be made with a spectrum at Q = 

with QX  = 0.5. The agreement is very reassuring, especially when the 

fact that MASMEX generated the spectra for a larger (353  compared 

with 20) finite system is taken into account. Since these spectra 



a 

FIGURE (3.5.2): 	Comparison between energy values at the 

peak. positions in spectra generated by 

MASMEX for x = 1 and the spin wave dis-

persion relation calculated from 

equation for wavevectors along the 

E1 ,0,0 direction. 
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seem independent of the difference in lattice size, the spectra pre-

sented in the remainder of this chapter should not be dominated by 

intrinsic finite size effects, since they were obtained for L = 30. 

3.6 	Results 

In this section spectra are presented which were calculated for 

model systems with magnetic site concentration x in three poten-

tially different regimes. The motivation lies in being able to 

compare and contrast calculated spectra for what will be described 

as low, intermediate and high levels of magnetic site dilution. 

The three magnetic site concentrations for the calculated spectra 

were chosen to be x = 0.9, x = 0.5 and x = 0.34. Values of S = 1 

and 3 = 1 were chosen and so the highest possible energy in the 

spin wave band would be E 	= 12 THz. The energy resolution wasmax 

selected to be 0.12THz which is 1% of E max' The spectra were 
- 

generated for wavevector transfers along the [1,1,1] direction. 

In a simple cubic system each site has six nearest neighbours 

and for x = 0.9 only 10% of magnetic Sites have been replaced by 

non-magnetic sites so that many of the magnetic sites must be com-

pletely surrounded by other magnetic sites as in the pure system. 

The probability of any isolated clusters at this concentration is 

low enough to be negligible and so no isolated clusters are ex-

pected in the finite model system: in fact, for the calculations 

at x = 0.9, it was found that X. f  = x = 0.9. Since for 

x inf = 0.9 each magnetic site has on average less than one non- 
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magnetic nearest neighbour, it was anticipated that this level of 

disorder would not have a particularly drastic effect on the spectra 

compared with those expected for the pure system and the spectra in 

Figure (3.(ô.1) support this view. At Q = (0,0,0), which corres-

ponds to the centre of the first Brillouin zone, the spectrum con-

sists of a single resolution limited Gaussian peak centred on zero 

energy with a F.W.H.M. of 0.12 THz. At Q = (0.1, 0.1, 0.1) the 

peak has moved to higher energies, has broadened slightly and there 

is a hint of the spectrum changing shape with more weight in the 

wings of the peak. At Q = (0.2, 0.2, 0.2) the peak has a width 

of around 0.8 THz, which is. over 6 times the resolution width, so 

clearly as Q increases from the zone centre the peak width in-

creases. However, this broadening does not continue indefinitely. 

At Q = (0.3, 0.3, 0.3) the peak has broadened a little bit more 

but there is obvious weight in the spectrum all the way from 

E = 0 up to E = Em = 12 THz. At Q = (0.4, 0.4, 0.4) and 

Q = (0.5, 0.5, 0.5) the effects of the disorder became even more 

obvious although there is still a peak close to the energy ex-

pected in the pure system. The spectra are asymmetric with long 

tails of intensity down to zero energy. No excitations can exist 

in the system with energy greater than E 	= 12 THz and thismax 

imposes an upper cut-off on the spectra. Figure (3.6.2) shows 

the spectra for all six wavevectors on one graph. 

At x = 0.5 only half the sites are magnetic and when an 

average was made over 5 configurations, it was found that Xinf 

was 0.4894 so that just over 1% of magnetic sites had to be 

excluded from the calculation of the magnetic excitation spectra. 



FIGURE (3.6.1): 	S(Q,E) spectra generated by MASMEX with 

x = 0.9 for 

 Q 	= (0,0,0) 

 Q (0.1, 0.1, 0.1) 

 Q 	= (0.2, 0.2, 0.2) 

 Q 	= (0.3, 0.3, 0.3) 

 Q (0.4, 0.4, 0.4) 

 Q 	= (0.5, 0.5, 0.5). 
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FIGURE (3.6.2): 	Comparison of the S(Q,E) spectra generated by 

MSNEX with x = 0.9 for 

Q = (0, 0, 0) 

Q = (0.1, 0.1, 0.1) 

Q 	= 	(0.2, 0.2, 0.2) 

Q 	= 	(0.3, 0.3, 0.3) 

Q 	= 	(0.4, 0.4, 0.4) 

Q 	= 	(0.5, 0.5, 0.5). 
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The calculated spectra are shown in Figure (3.6.3). 

As with x = 0.9, the spectrum at Q = (0,0,0) for x = 0.5 con-

sisted of a resolution limited peak centred at zero energy. However 

the effects of disorder were far more pronounced as Q was increased 

from the zone centre value. At Q = (0.1, 0.1, 0.1) there was still 

a distinguishable peak with a width just over . 4 times that of the 

resolution width and there was weight in a tail of intensity which 

extended towards higher energies. Beyond this the spectra did not 

consist so much of a single peak but more as a broad distribution 

of intensity. As Q increases, the bulk of the intensity moves 

through to higher energies but compared with x = 0.9, the peaks 

of the distributions have moved down in energy at any particular 

Q. 

The third concentration chosen was x = 0.34, which is just 

over 3% above the magnetic site percolation threshold x = 0.31 

for a simple cubic system. The number of finite clusters diverges 

as the percolation threshold is approached from above and for 

x = 0.34, calculations revealed that x inf = 0.2431. This meant 

that only about two-thirds of the original magnetic sites generated 

in a configuration belonged to the "infinite cluster" and the one-

third of magnetic sites belonging to the finite clusters were ex- 

cluded from the calculations. Figure (3.6.4) shows spectra generated 

by MASMEX for x = 0.34. In common with the other two configurations 

chosen, the Q = (0,0,0) spectrum for x = 0.34 exhibited a resolu-

tion limited peak centred on zero energy. At larger Q, the spectrum 

consisted of broad distributions of intensity similar to the x = 0.5 

case but with energy shifted downwards, at a given. Q 



FIGURE (3.6.3): 	S(Q,E) spectra generated by MASNEX with 

x = 0.5 for 

(a) 	Q = (0,0,0) 

 Q 	= (0.1, 0.1, 0.1) 

 Q 	= (0.2, 0.2, 0.2) 

 Q 	= (0.3, 0.3, 0.3) 

 Q 	= (0.4, 0.4, 0.4) 

 Q 	= (0.5, 0.5, 0.5). 

The spectra were obtained by 

averaging over 5 configurations. 
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FIGURE (3.6.4): S(Q,E) spectra generated by MASNEX with 

0.34 for 

 Q = (0, 	0, 0) 

 Q 	= (0.1, 0.1, 0.1) 

 Q 	= (0.2, 0.2, 0.2) 

 Q 	= (0.3, 0.3, 0.3) 

 Q 	= (0.4, 0.4, 0.4) 

 Q 	= (0.5, 0.5, 0.5). 

The spectra were obtained by 

averaging over 5 configurations. 

4 



Pig (3.6.4(a)) 

2.50 
X=034 
Q=- Co. 0, 0. 0, 0. 0) 

225 

2.00 

1.75 

1.50 
>% 

0) 
C 1.25 

C 
II 

i.00 

0.75 

0.50 

0.25 

11.0 	13.0 01100_I . 1.0 	3.0 	.0 	,.0 

Energy TransFer / 1Hz 



Fig (3.6.4(b)) 

X=0.34 
Q=(0.1,0.1,0.11 

08 

0.7 

0.6 

0.5 
>.' 
4- 

(0 
c: 0.4 

-I- 

C 
I: 

0.3 

0.2 

0.1 

0.0 L 

I. 1.0 	3.0 	5.0 	7.0 	9.0 
Energy TransFer / 1Hz 

11.0 	13.0 



Pig (3.6.4(c)) 

0.16 

0.14 

0.12 

0.04 

0.02 

0.00 4  
IsV 

X=0.34 
(0. 2, 0. 2,0. 2) 

1.0 	3.0 	5.0 	7.0 	9.0 	11.0 	13.0 
Energy TransFer / 1Hz 

0.10 
>% 

.1 

0.08 
4- 

C 
II 

0.06 



Pig (3.6.4(d)) 

0. 10 
X=0.34 
Q=(0.3,0.3,0.3) 

0.09 

0.08 

0.07 

0.06 

•

.A- 

c 0.05 

C 
-4 

0.04 

0.03 

0.02 

0.01 

0.00 1.. 	1.0 	3.0 	5.0 	7.0 
	

11 .0 
	

3.0 
Energy TransFer / 1Hz 



fig 364 e 

d 

0.10 

0.09 

0.08 

0.07 

0.06 
>.- 

0.05 

C 

0.04 

0.03 

0.02 

0.01 

X=0.34 
(0. 4, 0. 4, 0. 4) 

0.00_I . 13.0 1.0 	3.0 	5.0 	7.1) 	.0 	ii.0 

Energy TransFer / 1Hz 



Pig (3.6.4(P)) 

01110 

X=0.34 
Q- (0. 5,.O. 5.0.5) 

0.09 

0.07 

0.06 
>% 

0.05 

C 

0.04 

0.03 

0.02 

0.01 

0 . 00 1 1.0 	3.0 	5.0 	7.0 	9.0 	11.0 	13.0 
Energy TransFer / 1Hz 



-45- 

3.7 Comparison with Experimental Data 

This section reports a comparison which was made between spectra 

generated by the computer program MASMEX and some experimental data, 

which was obtained from inelastic neutron scattering measurements on 

the system Cri_Fe x with x = 0.27 (Mitchell et al. (1985)). Body 

Centred cubic (b.c.c) Chromium-Iron is a diluted magnetic system 

because the Iron ions have magnetic moments but the Chromium ions 

behave non-magnetically (Aldred et al. (1981)). The real system 

differs from the model system in several ways. Firstly, the real 

system is b.c.c. whereas the model system has a simple cubic 

(s.c.) lattice, but this is not considered a serious problem since 

disorder induced phenomenological features should not be affected. 

(Plans are afoot to extend MASMEX so that it can model b.c.c. systems.) 

Secondly, the real system is metallic and since the magnetic moment 

is associated with the conduction electrons, the excitations might 

be influenced by single particle or Stoner excitations as well as 

the disorder. In the model system, only the disorder can affect 

the excitations and so comparison of the spectra generated from the 

model system with the experimental data from the real system should 

show whether single particle excitations significantly affect the 

spectra. 

The neutron inelastic scattering measurements were performed 

on a single crystal sample of Cr 1  Fe with x = 0.27 on the 1N3 

triple-axis neutron spectrometer at the I.L.L., Grenoble, France. 

This alloy composition is, in fact, just in the region where at low 

temperatures the small-wavevector spin waves appear to collapse 

(Shapiro et al. (1981)) and ferromagnetism gives way to a more 
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complicated structure. This is not of concern here since it seems 

unlikely that the large wavevector magnetic excitations would be 

effected by that transition. 

The experiments had to be performed at aroundT 	(in fact 

at T = lOOK compared with Tc = 195K) since at lower temperatures 

the intensity of the spin wave scattering was too weak to be dis-

tinguished from the background. Even at this temperature data was 

collected only in the range up to 2 THz because there appeared to 

be little intensity above background at higher energies. 

Pyrolytic graphite (0,0,2) Bragg reflections were used in 

both the monochromator and analyser. 	 The fixed final 

0-1 
 wavevector was fixed at k  = 2.662A 	and a pyrolytic graphite 

filter was used to eliminate higher order contamination. 

The real crystal, being b.c.c., had a value of x = 0.27 which 

is around 8% above the minimum concentration where ferromagnetism 

is observed (Burke et al. (1983)). 

Since only a qualitative comparison can be made between the 

experimental data for the b.c.c. system and the calculated spectra 

for the s.c. system, the magnetic site concentration was chosen to 

be x = 0.39 in the model system. That value of x is 8% above the 

magnetic site percolation threshold for a simple cubic lattice. 

With a spin S = 1 the exchange interaction was chosen to be 

J = 8.18 THz, corresponding to the observed spin wave stiffness 

in pure Iron. The energy resolution in the experiment was around 

0.3 THz and A was chosen so that the energy resolution in the 

calculated spectra matched this. . As discussed previously, the 

calculated spectra are essentially a calculation of S(Q,E) at 
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at T = 0. S(2,E)  is related to the imaginary part of the magnetic 

transverse susceptibility by: 
-I 

S(Q,E) 	= 	(n(E) + 1) X"(,E) 	 (3. 7.1) 

where n(E) is the Bose Einstein population factor, given by: 

n(E) 	= 	[exp(E/kT) - l] 	. 	 (3.7.2) 

In this definition of the population factor, E is positive 

for neutron energy loss processes and negative for neutron energy 

gain processes. Hence, for excitations with finite energy, n(E) = 1 

for neutron energy loss and n(E) = 0 for neutron energy gain at 

T = 0. (That makes physical sense because at T = 0 there are no 

excitations in the system from which the neutron could gain energy, 

but the neutrons can always lose energy by creating a magnetic excita-

tion.) Consequently x"(q,E) is the neutron energy loss part of 

S(Q,E) at T = 0. In comparing experimental data with calculated 

data then it was assumed that the only effect of increasing the 

temperature to T = lOOK was to populate the excitations such that 

S(Q,E) was given by equation (3.7.1) with x"(Q,E) replaced by 

S(g,E) at T =0. Hence to compare the spectra produced by 

MASNEX to the experimental data, S(Q,E) at T = 0 was simply 

multiplied by the population factor. 

Calculations were made for various wavevectors along the 

[1,0,0] direction. That direction was chosen because the experi-

mental data was collected for wavevectors along the [1,1,0] 

direction: the [1,0,0] direction in s.c. systems and [1 1 0] 

direction in b.c.c. systems are the directions for which Brillouin 
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zone boundary is closest to the Brillouin zone centre. Comparisons 

are shown in Figure (3.7.1) between experimental and calculated 

spectra with the same values of 	(where Q B indicates  thezB 

wavevector at the Brillouin zone boundary). Note that only a rough 

scaling has been performed on the intensity of the computer generated 

data and that the scale factor used was the same at each Q. 

Bearing in mind the qualitative nature of the comparison be-

tween the experimental and computer generated data, the pheno-

menological agreement is good enough to suggest that the main fea-

tures of the experimental spectra can be attributed to the random 

substitutional disorder. That is to say, there do not seem to be 

any features in the available experimental data which cannot be 

qualitatively explained in terms of the calculated spectra from 

the simple model system which takes only the disorder into account. 

The existence of single particle or Stoner modes do not seem 

necessary to explain the experimental data. However, a quantita-

tive comparison between the experimental spectra and the computer 

generated spectra for a model b.c.c. system would be even more 

informative and in the next stage of this project it is intended 

to extent the program MASMEX to dealwith b.c.c. systems. 

The calculated spectra in Figure (3.7.1) are for energies up 

to around 2THz because that was the range of neutron energy transfers 

for which experimental data was collected. However the calculated 

spectra were generated for energies up to about 30THz. Figure 

(3.7.2) shows a calculated spectrum for S(q,E) at T = OK and 

Figure (3.7.3) shows that spectrum multiplied by the population 

factor to give an S(q,E) at T = lOOK. A striking feature of the 



FIGURE (3.7.1): Experimental data for the system 

Cr l-x x Fe with x = 0.27 at T = lOOK 

for 

 Q 	= (0.3, 0.3, 	0 	) 

 Q 	= (0.4, 0.4, 	0 	) 

 Q 	= (0.5, 0.5, 	0 	) 

The solid line indicates calculated 

intensity obtained by the method 

described in the text. 
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FIGURE (3.7.2): 	Calculated S(Q,E) spectrum with 

x=O.39 at T=OK for 

Q = (0.5, 0 , 0 ). 
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FIGURE (3.7.3): 	Calculated S(Q,E) spectrum with 

x = 0.39 at T = lOOK for 

Q = (0.5, 0 , 0 ). 
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spectra is a resolution limited peak at 8.18 THz which is superim-

posed on the rest of the spectrum. This peak is also evident in 

spectra generated for other wavevectors and since S = 1 and 

J = 8.18 T1-Iz the peak may correspond to the lowest energy localised 

mode of the model system and is presumably a facet of the nearest 

neighbour interactions in the model system. However, the magnetic 

interactions in the real metallic alloy system Cr 
l-x x 

Fe with 

x = 0.27 are expected to have the RKKY mechanism. -With the RKKY 

mechanism, the conduction electron gas in the neighbourhood of a 

particular magnetic ion is magnetised with a spatial dependence 

shown on page 554 of Kittel (1976). Other maghetic Ions are in-

fluenced by that magnetisation so that there is an indirect 

exchange interaction between pairs of magnetic ions in the 

system. Since the RKKY mechanism involves the conduction 

electrons, it would seem at first sight that the magnetic in-

teractions in Cr 	Fe with x = 0.27 would therefore not be l-x x 

explained satisfactorily by a nearest neighbour model. But 

the system is highly disordered and scattering of the conduction 

electrons due to that disorder in the system might reduce the 

mean free path to an extent that the magnetic interactions 

could be described as approximately nearest neighbour. To 

test this hypothesis a proposal has been submitted to the I.L.L., 

Grenoble (P.W. Mitchell (1985)) for an experiment to determine 

whether or not the localised mode exists in the real system. 
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('UAVTVP I. 

K 
2 x 1-x 4 Co Fe F A MIXED MAGNETIC SYSTEM WITH 

ORTHOGONAL COMPETING SPIN ANISOTROPIES 

4.1 	Introduction 

In pure systems, the spin anisotropy determines the direction 

along which the magnetic moments of the constituent magnetic ions 

align below the magnetic phase transition temperature. The aniso-

tropy can arise from dipole-dipole interactions, single ion crystal 

field effects or there can be anisotropy in the exchange interaction. 

In theory, a mixed magnetic system with orthogonal competing spin 

anisotropies can be formed by randomly mixing two pure systems which 

differ only in the type of magnetic ion and in that the favoured 

ordering directions are orthogonal. These systems here received 

considerable theoretical and experimental attention in recent years 

(a review of much of this work has been given by Katsumata (1983)). 

Mean field (Matsubara and Inawashiro (1977)) and renormalisation 

group (Fishman and Aharony (1978)) calculations for these systems 

predict three ordered phases in the concentration-temperature plane: 

two phases in which there is long range order of the spin components 

in the directions favoured by the two end members and an intermediate 

phase in which there is long range order in both spin components. 

For antiferromagnetic systems. this phase is known as the Oblique 

Antiferromagnetic (OAF) phase (Matsubara and Inawashiro (1977)). 

A schematic phase diagram for such systems is shown in Figure (4.1.1). 



FIGURE (4.1.1): Schematic temperature T against concentration x 

phase diagram for a mixed magnetic system with 

competing spin anisotropies. 

P Indicates the paramagnetic phase. 

Li indicates a phase in which the spin ordering 

direction is that of one end member and L2 indicates 

that the spin ordering direction is that of the 

other end member. 

M indicates the mixed phase which for antiferro-

magnetic systems is known as the Oblique Antiferro-

magnetic (OAF) phase. 
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Both calculations predicted that the two phase boundaries (the 

boundary here being the locus of points in the concentration-

temperature plane below which a particular spin component orders) 

cross at a tetracritical point and that all of the phase transitions 

will be second order. The mean-field calculations predict that the 

ordering of one spin component affects the ordering of the spin com-

ponent orthogonal to it with the result that both phase boundaries 

change slope at the tetracritical point, whilst the renormalisa-

tion group calculatjons,whjch take spin fluctuations into account, 

suggest that each of the spin components order independently so 

that the phase boundaries pass through a decoupled tetracritical 

point without change of slope. Consequently the principal focus 

of theoretical and experimental attention has been the form of 

the phase diagram. Experiments on systems with the spatial dimen-

sion d = 3 (Ito et al. (1980), Ito et al. (1982), Someya et al. 

(1983) and Wong et al. (1983)) and d = 2 (Bevaart et al. (1978), 

Vlak et al. (1983) and Higgins et al. (1984)) have shown the ex-

istence of the OAF phase. Clearly, the experiments have to be 

performed on individual samples, each with a fixed concentration, 

and it is by investigating the order parameter and/or the response 

functions such as the specific heat and magnetic susceptibility as 

a function of temperature that the critical temperature and nature 

of the phase transition at that concentration can be found. If 

and x define the position of the intersection of the phase 

boundaries with the zero temperature (T = 0) axis then samples 

with a concentration x1  < x< x2  should undergo two phase tran-

sitions on cooling from the paramagnetic phase. As the temperature 

F 
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is lowered, there should be an onset of long range order in one of 

the spin components at TN  and at a lower temperature TL, the 

other spin component should order so that below TL the system 

attains the OAF magnetic structure. In a very detailed study of 

the mixed d = 3 antiferromagnet Fe 1-xCo CL 2  Wong et al. (1983) 

found that although the high temperature transition at TN  was 

well defined, the lower one at TL  was smeared. They suggested 

that this was because the ordering of one spin component generated 

a random field on the other, and that this random field inhibited 

the development of true long range order in the other spin component. 

The random fields were generated by off-diagonal coupling arising 

from the low local symmetry in the FeCL 2  structure. K2CoFe1 F4  

has a significantly higher local symmetry and so the nature of the 

transition at TL  is of particular interest for this system. 

The rest of this chapter is laid out as follows. In the next 

section (Section 4.2), the relevant properties of the pure systems 

(or 'end members') K2CoF4  and K2FeF4  will be discussed. In 

Section (4.3) the results of an investigation of the magnetic struc-

ture of a sample of K 
2 x l-x 4 Co Fe F with x = 0.6 and a sample with 

x = 0.2 are reported. The x = 0.6 sample is shown to exist in the 

uniaxial antiferromagnetic phase below TN = 92.2±0.1K. In the 

nominally x = 0.2 sample the uniaxial spin components order below 

TN = 66 ± 1K and below a well-defined transition at TL = 32± 2K 

the transverse components also order. In Section (4.4) measurements 

to determine the dispersion of the low temperature (T ' 5K) spin 

waves in the x = 0.6 and d = 0.2 samples are discussed. The 

properties of the spin wave excitations in the OAF phase and the 
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role they play in the phase transitions to the other two ordered 

phases have only recently begun to receive attention and in Section 

(4.5) the results of inelastic neutron scattering measurements of 

the spin waves in the OAF phase of a sample with a nominal concen-

tration x = 0.27 are reported. The magnetic structure of the 

sample had previously been investigated by Viak et al. (1983), who 

found the transition temperatures to be TN = 64.4±0.6K and 

TL = 27±2K. In Section (4.6), a computer program designed to 

calculate relevant parameters for the ground state (T = 0) mag-

netic structure in K2CoFe1_F4 across the complete range of 

concentrations (x) is discussed and some results presented with 

particular emphasis on the OAF phase which is of most interest. 

In Section (4.7) another computer program which calculates S(Q,w) 

at T = 0, using the "Equation-of-Motion" technique (Alben and 

Thorpe (1976)) is discussed and results are compared with the low 

temperature spin wave measurements for the x = 0.2, x = 0.6 and 

x = 0.27 samples. 
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4.2 The Pure Systems 

4.2 (i) The Pure Systems (Introductory Remarks) 

The pure systems (or end members) K2CoF4  and K2FeF4  crystal-

use in the K2NiF4  structure (Birgeneau et al. (1970)). The mag-

netic ions are in antiferromagnetic quadratic layers separated by 

two layers of KF. As discussed by Lines (1967) and in Chapter 1 of 

this thesis, the exchange interactions between nearest neighbour 

magnetic ions within the quadratic layers is much stronger than that, 

between magnetic ions in layers adjacent to each other, so that 

systems with the K2NiF4  structure are good d = 2 magnetic systems. 

The crystallographic unit cell of K 2NiF4  was shown in Figure 

(1.2.1) (Chapter 1). In discussing isomorphs of K 2NIF4  it is common 

to define a magnetic unit cell (Birgeneau et al. (1970)). Figure 

(4.2.1) shows the relationship between the crystallographic and mag-

netic unit cells. In this chapter reciprocal lattice vectors will 

be with respect to the magnetic unit cell rather than the crystal-

lographic unit cell. The c-axes of the two cells are identical 

but the magnetic am  and  b  - axes are rotated by 
450 

 relative to 

the a and b-axes of the crystallographic unit cell and are larger 

by a factor of V' 

4.2 (ii) 

Huñd's rules indicate that the ground state of the free Co 2+  

ion is 4F912 . 	In a cubic field, some of the degeneracy is lifted 

so that the ground state becomes an orbital triplet. The tetragonal 



FIGURE (4.2.1): 	Relationship between the crystallo- 

graphic (d.he line) and magnetic 

(old line) unit cells in the 

K2NIF4  structure. 

Note that only the magnetic ion 

sites are indicated. 
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component of the crystal field combined with spin orbit coupling, 

split the orbital triplet into six Kramers doublets so that the ground 

2+ 
state of the Co ion in the K2CoF4  structure is a doublet and 

the magnetic properties of K 2CoF4  at the sample temperatures 

and neutron energy transfer values of concern in this thesis, can 

be described in terms of a pseudospin s = 1/2. The magnetic 

susceptibility measurements of Breed et al. (1969) have shown that 

in the critical region, K 2CoF4  behaves like a d = 2 Ising 

Antiferromagnet. When the model Hamiltonian of equation (4.2.1) 

with pseudospin s = 1/2 is used to describe the spin inter-

actions, then J 
13  . .11 iJ  .. = 0.3. 

H = 	E 	I.. S Z Z 
+ 	.( S . X S.x + s)Ts.) . 	( 4.2.1) 13 i j 	13 1 	3 	i 3 <ii> 

<ij> indicates summation over nearest neighbours in the basal 

(a-b) plane.. (The ratio of the interplanar to intraplanar exchange 

interactions was estimated. to be less than 	and so only the 

intraplanar exchange interactions I.. 
13  and J 13  .. are required in 

the Hamiltonian). The paramagnetic to antiferromagnetic phase 

transition at TN = 107.85K (Ikeda and Rirakawa (1974)) can occur 

in this d = 2 system because of the Ising asymmetry in the ex-

change interaction and below TN  the spins acquire long range 

order with alignment along the c-axis. The ordered phase is thus 

Uniaxial Antiferromagnetic. 

The neutron diffraction experiments of Ikeda and Rirakawa 

(1974) obtained critical exponents 	, v, y and ri which coin- 

cided exactly (within experimental error) with the values obtained 

in the exact theoretical solution of the d = 2 Ising model 
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(Onsager (1944)). 

4.2.(iii) 

The ground state of the free Fe 
2+ 
 ion is 5D4 . In the system 

K2FeF4  (Thurlings et al. (1977)) the crystal field combined with spin-

orbit coupling causes a single-ion anisotropy. The crystal field 

Hamiltonian of the Fe ion in K2FeF4  can be separated into a cubic 

field term and two other terms which represent the tetragonal dis-

tortion (Thurlings et al. (1978)). The effect of the cubic crystal 

field term is to lift the degeneracy of the ground state' orbital 

levels (there are 2L+l = 5 of them) to give a r 3  triplet and a 

r5  doublet. The tetragonal distortion separates F 3  into a ground 

state singlet and a doublet. The magnetic properties of interest in 

this thesis can be described in terms of a pseudospin S = 2. 

Thurlings et al. (1978) show that if the in-layer and out-of-

layer single ion anisotropy terms are decoupled, then up to quadratic 

terms in the spin components, the spin Hamiltonian of K2FeF4  can be 

modelled by equation (4.2.2) 

H = 	Z J.. S. S. + Z [D S 2  + E(S2 - S2)] 	 (4.2.2) 
<ii> 1J -1 —.:i 

where <ii> indicates a sum over nearest neighbour spins in the 

basal plane. In contrast to the case of K2CoF4 , the exchange inter-

action, J ij,is isotropic. Below the Mel transition temperature 

(TN = 63.0K) long range order occurs with the spins antiferromag-

netically aligned in two domains. In one type of domain, the spins 
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are aligned along the a direction, and in the other domain, the 
IM 

spins align along the b direction. In terms of equation (4.2.2) 
U' 

the first domain corresponds to D negative and E positive and 

the second to D negative and E negative. By symmetry it is 

expected that both domains are equally populated and this has been 

found to be true experimentally. The ordered phase of K 2FeF4  is 

planar antiferromagnetic. The in-plane anisotropy represented by 

the third term in equation (4.2.2) is much smaller than the out-of-

plane anisotropy represented by the second term. 

4..2(iv) 	The Pure Systems (Concluding Remarks) 

As discussed in Chapter 1, the fact that the two pure systems 

K2CoF4  and K2FeF4  both have the K2NIF4  structure, the lat-

tice parameters are close and the magnetic ions Co 2+ and Fe 2+ 

are transition metal, means that single crystal samples of the mixed 

system K 2 x l-x 4 Co Fe F can be formed over the entire concentration 

range (0 <x<  1). From the point of view of forming a mixed magnetic 

system with competing spin anisotropies, the anisotropies are sig-

nificantly large in each of the pure systems but of comparable size, 

so that the OAF phase should extend over a range of concentrations 

and temperatures which are easily accessible experimentally. 

Fendler and von Eynatten (1984) estimate that at T nu 6K the OAF 

in K 2 x l-x 4 Co Fe F extends across the concentration range 

0.16<x<0.32. 	This makes K 
2 x l-x 4 
Co Fe F 	a more suitable system 

on which to study mixed systems with competing anisotropies than 



FIGURE (4.2.2): Proposed magnetic phase diagram for K 2 Co Fe F4 . 

x is the Co 
2+ 
 concentration and Tc indicates 

transition temperature. The solid lines indicate 

the phase boundaries calculated from mean-field 

theory and scaled so that the values of T   at 

x = 0 and x = 1 fitted the Nel temperatures 

for the pure systems K2FèF4  and K2CoF4  

(Fendler and von Eynatten (1984)). 

P indicates the paramagnetic phase, Pt indicates 

the Planar antiferromagnetic phase, U indicates 

the uniaxial antiferromagnetic phase and 0 in-

dicates the Oblique antiferromagnetic phase. 
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K2FeMn1 F4  (Bevaart et al. (1978)), in which the OAF phase ex-

tended over the approximate range 0.02<x<0.03 at T = 0. Figure 

(4.2.2) shows a proposed phase diagram for the system 

K 2 x 1-x 4 Co Fe F (Fendler and von Eynnatten (1984)). 

4'.3 	The Magnetic Structure of K Co Fe. 
2—x--i-x--4 

This section reports neutron scattering experiments to study the 

magnetic phase transitions and the magnetic structure of two samples 

of K 2 x l-x 4 Co Fe F ; one with x = 0.6 and the other with x = 0.2. 

4.3.(i) 	Experimental Details 

The neutron scattering measurements reported in this section and 

in Section 4.4 were performed on triple-axis neutron spectrometers 

at the National Laboratory, Ris$, Denmark and at the Pluto reactor, 

A.E.R.E. Harwell, U.K. 	The nominally x =-0.2 sample was plate- 

like with dimensions of lOtnmx lOmmx 2mm, while the x = 0.6 sample 

was approximately 1 cm 3  in volume. Both samples consisted of large 

grains of single crystal, but unfortunately these grains were mis-

orientated by about 5 °  to each other. The multicrystal character 

limited the accuracy of some of the experimental results presented 

in this section. The crystals showed no signs of any chemical 

ordering of the Co 
2+ 
 and Fe 2+  ions, i.e. the samples seemed to be 

randomly mixed. 

The crystals were mounted in variable-temperature cryostats 
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* 	* 
with the magnetic am  and cm  axes in the scattering plane. The 

elastic measurements at Ris$ were performed using a pyrolytic graphite 

monochromator and an incident neutron energy of 14 meV with a pyro-

lytic graphite filter to suppress higher order contaminant neutrons 

in the incident beam. A pyrolytic graphite analyser was used and the 

horizontal collimation from reactor to counter was 30' - 30' - 30' - 60'. 

In this configuration, the energy resolution was 0.8 meV. The inelastic 

experiments performed at Rise (Section 4.4) used a similar instru- 

mental configuration, but with an incident neutron energy of 5 meV 

and a cooled beryllium filter rather than a graphite filter. 

The experiments at Harwell were performed with a pyrolytic 

graphite analyser and a fixed final neutron energy E  of 13 or 

24 meV. The horizontal collimations were 100' - 30' - 30' - 60' and 

a pyrolytic graphite filter was used before the analyser in the 

measurements with fixed E  = 13 meV. 

4.3.(ii) 	The Magnetic Structure 

The intensity of the (1,0,0) magnetic Bragg reflection which is 

proportional to the square of the sublattice magnetisation, was 

measured as a function of temperature for both the x = 0.6 and the 

x = 0.2 samples and the results are shown in Figures (4.3.1(a)) 

and (4.3.2(b)) respectively. In the former case, the intensity 

rises rapidly below T = 90K and becomes constant below T = 50K. 

This indicates the ordering of the c-components of the spins below 

TN confirming that the X = 0.6 sample exhibits Uniaxial Antiferro-

magnetic order below TN as predicted by the phase diagram in 



FIGURE (4.3.1) (a) The intensity of the (1,0,0) magnetic Bragg peak 

1(1,0,0) as a function of temperature for the 

nominally x = 0.6 sample. 

The solid curve indicates the best fit to the 

expression given in equation (4.3.2). 

(Note that the Intensity axis should be multi-

plied by factor of 200 to give the number of 

counts per second). 

(b) The diffuse scattering intensity 1(1.035,0,0) 

at Q = (1.035,0,0) as a function of temperature 

for the nominally x = 0.6 sample. The solid 

curve is a guide to the eye. 

(Note that the intensity axis should be multi-

plied by a factor of 100 to give the number of 

counts per minute.) 
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FIGURE (4.3.2):(a) 	The full circles indicate the intensity of the 

(1,0,0) magnetic Bragg peak 1(1,0,0) as a 

function of temperature for the nominally 

x = 0.2 sample. The open circles indicate the 

(1,0,6) magnetic Bragg peak intensity (scaled). 

(The intensity axis for 1(1,0,0) should be 

multiplied by lO to give the number of counts 

per minute.) 

	

(b) 	The diffuse scattering intensity I(1,0,-0.4) 

at Q = (1,0,-0.4) as a function of temperature 

for the nominally x = 0.2 sample. (The inten-

sity axis should be multiplied by a factor of 

100 to give the number of counts - :per minute. 
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Figure (4.3). Measurements through the (1,0,0) Bragg reflection 

along the line (1,0,ri) showed that the width of the Bragg reflection 

is not limited by resolution and that it corresponds to the ordering 

of about four two-dimensional sheets. The intensity of the scattering 

in Figure (4.3.1(b)) does not decrease to zero below TN,  most pro-

bably because it contains a residual Bragg component corresponding to 

the lack of full three-dimensional ordering, even at the lowest tempera-

tures. 

The exact theoretical solution of the d = 2 Ising model 

(Onsager (1944)) predicts that the sublattice magnetisation as a 

function of temperature should be given by equation (4.3.1). 

M(T)/M(0) 	= 	[1 - sinh4(2J/kBT)] 	. 	 (4.3.1) 

Using the fact that M(T) is zero at the transition tempera-

ture so that TN = 2J/kB and that M(T) 2  is proportional to 

1100 (T) (the intensity of the (1,0,0) Bragg reflection at temperature T) 

the data of Figure (4.3.1(a)) was fitted to the form given in equation 

(4.3.2). 

= [1 - sinh4(TN/T)]2 	. 	 (4.3.2) 

The least squares fit gave a = 0.14. This value is consistent with 

the exact solution of the d = 2 Ising model which gives = 0.125. 

The fit also gave the transition temperature TN = 92.2±0.1K. 

The temperature dependence of the (1,0,0) magnetic Bragg 

reflection for the sample with x = 0.2 is shown in Figure (4.3.2(b)). 

On cooling, it increases from zero at a temperature TN = 66± 1K, 
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flattens off, then increases again at a lower temperature 

TL = 32 ±2K. This strongly suggests that between TN  and TL 

there is long range order in one spin component, while below TL 

the other component orders so that the system has the OAF struc-

ture below TL. The data shown in Figure (4.3.2(a)) between 

T = 35K and T = 67K was fitted to the form given in equation 

(4.3.2) and gave a good fit with 	= 0.19 ±0.02. That this is 

significantly larger than the exponent obtained for the x = 0.6 

sample, and that expected for a d = 2 Ising model, may be due 

to a rounding of the transition due to concentration fluctua-

tions. 

In an attempt to determine the magnetic structure of the 

nominally x = 0.2 sample as a function of temperature measure-

ments were made of the integrated intensities of the (1,0,L) 

Bragg reflections with ILl < 8 and the (3,0,L) reflections with 

LI <4 at various temperatures between T = 12K and T = 63K but 

mostly close to T = 30K. The observed intensities for T = 12K 

and T = 35K are listed in Table (4.3.1). The relative intensities 

of certain Bragg reflections are clearly different at the two 

temperatures. The Bragg peak intensity data was used to determine 

the magnetic structure at each of the temperatures in the range 

T = 12K to T = 63K by fitting three parameters to the experimental 

results. These parameters were an overall scale factor, propor-

tional to the square of the ordered moment, the angle between the 

direction and the c-axis, 0 '  and the relative proportion of the 

domains that give rise to the (1,0,0) and (1.0,1) Bragg reflections 

(see e.g. Thurlings et al. (1982)). The results for e 	and the 
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TABLE (4.3.1): Integral Intensity Values for Magnetic Bragg Peaks 
at T= 12K and T= 35K. 

(H,K,L) 
T 

Experimental 
12 

Calculated 
T 

Experimental 
35 

Calculated 

(1,0,0) 668 685 355 342 

(1 1 0 1 1) 374 367 344 342 

(1;0,1) 402 367 357 342 

(1,0,2) 321 309 127 128 

(1,0,2) 327 309 128 128 

(1,0,3) 100 118 63 80 

(1,0,3) 120 118 83 80 

(1,0,4) 98 101 24 28 

(1,0,4) 103 101 25 28 

(1,0,5) 29 42 14 18 

(1,0,5) 38 42 17 18 

(1,0,6) 55 39 8 7 

(1,0,6) 56 39 7 7 

14 18 11 5 

(1,0,7) 15 18 9 5 

19 18 6 2 

(1,0,8) 21 18 7 2 

(3,0,0) 90 105 64 52 

(3,0,1) 82 69 74 67 

(3,0,1) 86 69 73 67 

(3,0,2) 78 89 40 44 

(3,0,2) 79 89 43 44 

(3,0,3) 41 50 46 47 

(3,0,3) 44 50 46 47 

(3,0,) 37 56 21 26 

(3,0,4) 41 56 21 26' 
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square root of the overall scale factor which is proportional to 

the average ordered spin moment, are shown in Figures (4.3.3(a)) 

and (4.3.3(c)). The c-component of the spin, S cos 0 	 as a 

function of temperature is shown in Figure (4.3.3(b)). The re- 

suits show that S 
c 	 L is zero above T but that it increases 

rapidly below TL.  The c-component of the spin varies only slowly 

with temperature near T = 30K, whereas the total spin distinctly 

increases. These results show that for this sample the c-component 

of spin orders at TN  but that the perpendicular components order 

only below TL. 

The results for theangle 
0c  were fitted to the power law 

given in equation (4.3.3), treating 
0c  as an order parameter. 

E) c 	c 
(T) /e (0) 	= 	(1 - T/TL) 8 
	

(4.3.3) 

The best fit parameters were 13' = 0.32 -±0.04, e = 33±10 

and TL = 32 ±lL. The exponent 13' is characteristic of three-

dimensional ordering, unlike the exponent 13  found for the tran-

sition at TN.  The results for 0 	shown in Figure (4.3.3(c)) 

suggest that TL  is sharp as a function of temperature. This 

was also tested by measuring the temperature dependence of the 

(1,0,6) magnetic Bragg reflection which is shown in Figure 

(4.3.2(a)). This reflection is relatively weak in the upper 

(uniaxial antiferromagnetic) phase but increases rapidly in in- 

tensity on cooling below TL. 	These results also suggest that 

TL is sharp and that any smearing is over a temperature range 

of around 2K which is comparable with the smearing of the (1,0,0) 

reflection in this sample at TN. This smearing is most likely 



FIGURE (4.3.3): 	Results from fits to magnetic Bragg peak 

intensities described in the text. 

Average spin S (arbitrary units) 

against temperature. 

Average c-component of spin S  

(arbitrary units) against temperature 

CS = S cos 
The average cant angle 

0c  against 

temperature. 

\ 
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to arise from concentration fluctuations and the conclusion is drawn 

that,within the limitations of the experiments, both magnetic phase 

transitions (at TL  and  TN)  are well defined, unlike the results 

for CoFei_Ci2 (Wong et al. (1983)). As was found with the 

x = 0.6 sample, the Bragg peaks for the nominally x = 0.2 sample 

were not limited by resolution in scans along the line (1,0,), 

showing that full three dimensional order was not established. 

Due to both samples consisting of large grains of single crys-

tal, which were slightly misorientated relative to each other, 

measurements of the diffuse scattering are less reliable than 

measurements of the Bragg reflection intensities, which were 

made on a single large grain of crystal. Neverheless, the dif-

fuse scattering was measured in scans of the form (,0,-0.4) 

and the width in 	was found to decrease as T approached TN. 

At and below TN, the width of the scattering in these scans was 

limited by resolution. The intensity of the scattering at the 

reciprocal space coordinate (1.035,0,0) for the x = 0.6 sample 

and at (1,0,-0.4) for the x = 0.2 sample are shown in Figure 

(4.3.1(b)) and (4.3.2(b)) respectively. The results for both 

samples show a fairly symmetric peak at TN  but at low tempera-

tures the scattering does not decrease to zero. For the nominally 

x = 0.2 sample, the scattering intensity slowly increases on 

further cooling (below TN).  Figure (4.3.2(b)) shows that there 

is no significant sign of any two dimensional critical scattering 

around TL. 



FIGURE (4.4.1): (a) 

(b) 

A scan through the higher energy branch of 

spin waves, dispersion related for the 

nominally x = 0.6 sample. For this scan, 

the fixed wavevector transfer Q = (3.2,0,0) 

and the fixed final neutron energy was 

Ef  = 24 meV. The sample temperature was 

T = 4.5K. 

The counting time per data point was around 

16 minutes. 

A scan through the lower energy branch of 

the spin wave dispersion relation for the 

nominally x = 0.6 sample. For this scan, 

the fixed wavevéctor transfer was Q = (1.4,0,0), 

the fixed final neutron energy was 

E f  = 13.408 meV and the sample temperature was 

T = 4.5K. 

The counting time per data point was around 

20 minutes. 



Figure (4.4.1)(a). 

150 

.- 

100 
IZ 

C, 

C 
C 
C 

C 
C 

0 
U 

0 

50 

E 

U 

0 
0 

ni 

I 	I 	I 	I 	I 	I 	I 

Q = (3.2,0,0) 	 x = 0.6 - 

T = 4.5K 

law 

4 14 
$14 	44 

	

24 	28 	32 	36 

Energy transfer (meV) 



.-4 
E 

0 
C 
C 

C 
C 

0 

0 

4.J 

0 
C-) 

100 

50 

Figure (4.4.1)(b) 

- 	I 	I 	I 	I 	I 	I 	I 

150 - 
	Q = (1.4,0,0) 	 x = 0.6 

- 	 T=4.5K 
a 

-4 

rel 

5 	7 	 9 	11 

Energy transfer (meV) 



FIGURE (4.4.2): The experimentally determined higher- and 

lower-energy branches of the spin wave 

dispersion relation for the nominally 

x = 0.6 sample at T = 4.5K. The arrows 

at the Brillouin zone, boundary indicate 

calculated Ising 'spin-flip' frequencies. 

(See text). 
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FIGURE (4.4.3): 	A scan through the lower-energy branch of the 

dispersion relation for the nominally x = 0.2 

sample. The fixed wavevector transfer was 

Q = (1.2,0,0), fixed neutron energy was 

Ef  = 13.408 meV and the sample temperature 

was T= 4.5K. The counting time per data point 

was around 20 minutes. 
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FIGURE (4.4.4): 	The experimentally determined lower energy 

branch of the spin wave dispersion relation 

for x = 0.2 at T = 4.5K. The arrow at the zone 

boundary indicates the calculated Ising " spin—

flip" energy (see text). 

* 
is the reduced wavevector in units of a m 
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4.4 	Experimental Determination of The Spin Waves in K2CoFe1  

at Low Temperatures for Samples with x = 0.6 and 	x = 0.2 

The experiments discussed in this section were performed along 

with the experiments discussed in Section (4.3) and so the experi-

mental details discussed in Section (4.3) are not repeated here. 

The inelastic neutron scattering measurements were made on both 

the x = 0.6 sample and on the nominally x = 0.2 sample to deter -

mine the dispersion of the low temperature spin waves, but a more 

detailed study was made for the larger sample with x = 0.6. In 

the x = 0.6 sample, two branches of spin waves were observed with 

fairly well-defined neutron groups, as shown in Figures (4.4.1(a)) 

and (4.4.1(b)). The upper branch was almost dispersionless and 

the peak positions for constant Q scans were in the range 29.5 

meV to 32.5 meV, hilst the lower branch showed relatively more 

dispersion with a Brillouin zone centre energy of just over 4 meV 

and a zone boundary energy of just under 8 meV (see Figure (4.4.2)). 

These results are qualitatively similar to the results found in 

other mixed systems without competing anisotropy such as 

Rb 2Mn05N105F4 , Mn Co 1-xF2  and KMnCo 1 F3  (as reviewed by 

Cowley (1982)). 

Measurements of the spin waves in the nominally x = 0.2 sample 

were restricted to only the lower branch because of the smaller 

sample volume. The intensity as a function of energy transfer for 

a constant 	Q scan at Q = (1.2,0,0), is shown in Figure (4.4.3), 

to illustrate the typical quality of the data. The dispersion 

relation for the nominally x = 0.2 sample is shown in Figure (4.4.4). 



Measurements were also made under instrumental conditions giving 

higher resolution (these were the measurements with fixed 

E  = 5 meV) to examine whether the low-energy, small-wavevector 

spectrum was different in the uniaxial phase from that in the 

OAF phase. The results are illustrated in Figure (4.4.5) and 

in both phases only overdamped low-energy scattering was observed 

at small wavevectors, close to TL. 	However, since these measure- 

ments were made difficult by the mosaic structure of .the nominally 

x = 0.2 sample, a more detailed study of the low energy spin waves, 

particularly in the OAF phase, obviously required a better sample. 

When a sample with x = 0.27 became available later, more experi-

ments were carried out, and these are discussed in Section (4.5). 

An Ising model for the mean excitation energy of the Co 2+ 

spins and the Fe 
2+ 
 spins has been used to calculate zone boundary 

energies for the spin waves assuming that the spins are aligned 

along the c axis. For the Co 
2+  spins, this energy is given by 

equation (4.4.1) and for the Fe 
2+ 
 spins by equation (4.4.2). 

E 	=4[x(2I)ES 	S 	+ (lx)(21 	)SZ S] 	(4.4.1) Co 	 coc 	 CoFe Co Fe 

E 	= 4[x(21 	 5z + (1_X)(2I)iS 	e] Fe 	 CoVe Fe  Co 	 FF  

+ .D[(SZ )2 - (S) 	I 	. 	 ( 4.4.2) Fe f 	Fe i 

In equations (4.4.1) and (4.4.2), S 	and S 	refer to the Co 	Fe 

ground state values of S z for the Co 2+  and Fe 2+  spins ( 12  and 

2 respectively). 	In the case of an Fe2+/Co2+  spin being excited, 

(Se/Co 	
and 	

Fe/Co 	
are the initial and final 

.e/Co 
 values 

-I 



FIGURE (4.4.5): 	High resolution scans made at 

Q = (1.1,0,-0.4) 

Q =  (1.05,0,-0.4) 

Q = (1,0,-0.4) 

for the nominally x = 0.2 sample. 

Full circles indicate T = 36K and 

open circles indicate T = 24K. 
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and ASz 	(sZ)  
Fe/Co 	 - 	e/Coi 	

In this calculation, the ex- 

change parameters I Coco ,  FeFe 	CoFe 
I - 	and I 	were taken to be 

I CoCo = 7.48 meV, I FeFe = 0.709 meV (both from Macco et al. (1979)) 

I 
and I CoFe = (I CoCo FeFe 

I 	)2 	2.30 meV. The out-of-plane single-ion 

anisotropy D = 0.398 meV (Macco et al. (1978)). The energies obtained 

are shown by the arrows in Figures (4.4.2) and (4.4.4) and clearly this 

model gives a very reasonable description of the zone-boundary energies, 

showing that these are not greatly affected by the competing anisotropy. 

The data obtained from the inelastic measurements on the x = 0.6 and 

x = 0.2 samples is compared with calculated spectra in Section (4.7) 

of this chapter. 

4.5 More Detailed Measurements of the Spin Waves in the Oblique 

Antiferromagnetic Phase of K Co Fe F 2—x--l-x-4 

In Section (4.4) spin wave measurements on a nominally x = 0.2 

sample, in the OAF phase, were reported and from the results it was 

clear that to gain more detailed information on the spin waves in the 

OAF phase, particularly at low energy/small wavevector transfer, further 

experiments with higher instrumental resolution and a better quality 

sample were required. The measurements reported in this section were 

performed on a sample with nominally x = 0.27. Previous neutron dif-

fraction measurements (Viak et al. (1983)) using a two-axis neutron 

diffractor, showed that the sample exhibited two phase transitions on 

cooling from the paramnetic phase. At TN = 64.4±0.6K the system 

underwent a continuous phase transition to a state with two-dimensional 

uniaxial long-range order and at TL = 27± 2K, a second phase tran-

sition occurred in which the planar components established long- 

range order and the OAF phase was entered. 



In many ways, the behaviour of the x = 0.27 sample had been similar 

to that of the nominally x = 0.2 sample for which TN = 66± 1K and 

TL = 32±2K (Section (4.4)). One difference was that a rounded 

hump in the diffuse scattering around TL  was observed in the 

x = 0.27 sample using a two axis neutron spectrometer, but no such 

scattering was observed at TL  in the nominally x = 0.2 sample 

(cf. Figure 4.3.3(b)) for which the measurements were made with 

a triple axis neutron spectrometer set to record the elastic in-

tensity. For the inelastic measurements on the x = 0.2 sample, 

only the lower region of the spin wave spectrum, up to around 

12 meV was measured. In this range, scans at fixed wavevector 

transfer revealed single peaks in the energy spectrum, apparently 

indicating only a spin wave branch. This corresponds to excita-

tion propagating mainly on the Fe 2+  sites. However, by symmetry 

arguments, two branches of the excitations might have been ex-

pected and this may not have been observed because of problems 

(discussed earlier) with the sample quality, which only allowed 

relatively low resolution measurements to be made. 

Because of the recent interest in the magnetic excitations 

in the OAF ihase and the nature of the phase transition at TL, 

inelastic neutron scattering measurements were performed on the 

nominally x = 0.27 sample, firstly to establish the form of the 

dispersion relation at low temperatures, for the excitations in 

the energy range up to about 12 meV and secondly, to obtain an 

insight into the temperature dependence of these excitations as 

the phase transition at temperature TL  is approached from 

below. 



4.5(i) 	Experimental Details 

The neutron scattering measurements were performed at the 

Institut Laue-Langevin, Grenoble, France. The single crystal 

x = 0.27 sample was mounted in a variable-temperature Helium flow 

* 	* 
cryostat with the magnetic a and c directions in the scat-

-m 

tering plane. The 1N3 triple-axis spectrometer was used for most 

of the measurements but some supplementary work to gain information 

about the magnetic excitations near the Brillouin zone boundary 

was carried out on the 1N8 triple-axis spectrometer. In all the 

measurements reported here both the monochromator and the analyser 

utilised the pyrolytic graphite (0,0,2) Bragg reflections. The 

high resolution measurements on the low energy, small wavevector 

spin waves were performed using a Beryllium filter, cooled by 

liquid nitrogen, before the analyser, a fixed final wavevector of 

kf  = 1.571 A 1  and 60' - 60' - 60' horizontal collimation from-

monochromator to detector. For the other measurements, the instru-

ments had a pyrolytic graphite filter fitted before the analyser, 

a fixed k  = 2.662 A 	and 40' - 40' - 60' collimation from 

monochromator to detector. Due to the quasi two-dimensional nature 

of the magnetic interactions, there is no spin wave dispersion 

along the c direction and it is the spin wave dispersion along 

the magnetic a 
m 
 direction which is of interest. Labelling the 

— 
* 	 * 

magnetic a direction as [1,0,0] and the c 
m 
 direction as 

— 

[0,0,1], it was decided to make constant wavevector transfer 

scans with Q + (-(L+), 0,0.4) to determine the spin wave dis-

persion along the [1,0,0] direction. The wavevector (-1,0,0.4) 

corresponded to the quasi elastic position (Birgeneau et al. 

(1971)). 
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4.5(u) 	Experimental Results 

Initial measurements characterised the dispersion of the low 

energy spin waves at T = 5K. A typical scan is shown in Figure 

(4.5.1). The data sets from the constant wavevector (constant - 

scans were fitted to Gaussian envelopes at each of the Q values and 

the peak positions are shown in Figure (4.5.2). Two branches of 

excitations can clearly be distinguished. The energy difference 

between these branches is largest at the Brillouin zone centre 

and decreases as the reduced wavevector transfer increases. The 

two branches seem to meet at the zone boundary. Two branches of 

excitations also occur in K2FeF4  (Thurlings et al. (1982)) and 

in a classical model these were attributed to spins precessing 

on ellipsoidal cones with the long axes of the ellipses mutually 

perpendicular. The energies of the excitations in the present 

x = 0.27 sample are lower at corresponding Q - values than those 

in pure K2FeF4 . This is presumably due to the effects of disorder 

and that the x = 0.27 sample has the OAF structure, whereas K2FeF4  

has a planar antiferromagnetic structure at low temperatures. 

The behaviour of the lower branch of the spin wave dispersion 

at the phase boundary between the OAF phase and the higher sym-

metry uniaxial phase is of theoretical interest. The phase boun-

dary between the OAF phase and the uniaxial phase for the x = 0.27 

sample occurs at TL = 27± 2K and spin wave measurements were made 

at T = 5K, T = 19K, T = 25K (all below TL)  and at T = 32K 

(above TL) with particular emphasis on high resolution measurements 

on the low energy branch of the excitations near q = 0. 

In constant 	scans at T = 5K, the energy width was greater 



FIGURE (4.5.1): 	Constant wavevector transfer scan with 

Q = (-1.05, 0, 0.4) at T = 5K. Fixed 

0-1 
k  = 2.662A and 40-40-60 collimation 

from monochromator to detector. 

Monitor 200,000 corresponded to a counting 

time of approximately 10 minutes per point. 
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FIGURE (4.5.2): 	Spin wave dispersion relation at T = 5K 

for K 2 x l-x 4 Co Fe F with x = 0.27. The 

points indicate the peak positions obtained 

by simply fitting the constant wavevector 

transfer scans to Gaussian envelopes. The 

solid lines are a guide to the eye. 

is the reduced wavevector in units of a * 
in 
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than the instrumental resolution width. Moreover, the intrinsic 

width of the excitations apparently increased as the temperature 

approached TL from below. The effects of instrumental resolution 

are important in interpreting the data collected at low energy and 

small reduced wavevector transfer. These effects were accounted 

for by simultaneously fitting the scans in the range 0 	0.035 

to the form for S(q,w) given in equation (4.5.1), folded with the 

4-dimensional resolution function of the three axis neutron spectro-

meter (Cooper and Nathans (1967)). This folding with the resolution 

function was performed using a unique fitting program (Mitchell and 

Dove (1985)), which utilizes the parallel architecture of the 

I.C.L. D.A.P. computer to perform the normally time consuming 

numerical integration in a greatly reduced time. The chosen form 

for S(q,u) was that of a damped harmonic oscillator, given by:- 

wr S(q,w) = A(n(u) + 1) 	 (4.5.1) 
(w 2 _ w (q ))2 + w 2 F 2  

where A is an overall scale factor, n(v) is the Bose-Einstein 

population factor, r is an intrinsic energy width and w(q) 	is 

given by the model dispersion relation of equation (4.5.2): - 

= 	(E:...2 + (D5q)2) 	 (4.5.2) 

where Eg  is the spin wave energy gap for the lower branch, q is 

the reduced wavevector transfer (cam) and B 5  is the spin wave 

stiffness for the lower branch. Included in the fits were a flat 

background parameter and a Gaussian centred near zero energy to 

account for incoherent elastic scattering. 



Figure (4.5.3) (4.5.3) shows the result of a single fit to 5 scans 

with wavevector transfer Q = (-(i+), 0, 0.4) in the range 

0 < 	< 0.035 at T = 5K. Figure (4.5.4) compares scans at 	= 0 

for T = 5K, T = 19K and T = 25K and shows that the inelastic 

scattering signal moves to lower energies as the temperature increases. 

Table (4.5.1) shows the values for e  D, r and A obtained 
at the three chosen temperatures below TL. The number of scans 

fitted to obtain the values shown in Table (4..5...l) were 5, 4 and 3. 

at T = 5K, T = 19K, and T = 25K respectively. 

The small amount of dispersion in the wavevector range 

0 < 	< 0.035 leads to the large error bar on the values of D 

and the most that can be stated about the spin wave stiffness is 

that it seems to decrease slightly as the temperature increases 

towards TL.  However, the values of € g  and r obtained for the 

fits confirm the result obtained directly from the experimental 

data that the energy of the spin wave gap decreases and the intrinsic 

energy width of the excitations increases as the temperature 

tends towards TL  from below. 

Scans were made at T = 32K to study the low energy, small 

wavevector transfer inelastic scattering above TL.  These scans 

however did not reveal any spin wave "peaks" (Figure (4.5.5)) and 

any spin wave scattering present can only be described as over-

damped. 

In summary, it has been shown that the low temperature (T = 5K) 

spin wave dispersion relation for an x = 0.27 sample of K2Co Fe 1-xF4 

consists of two distinct branches which appear to come together at 

the Brillouin zone boundary. Previous experiments on the planar 



I 

FIGURE (4.5.3): 	The data at T = 5K obtained under high 

0_i 
resolution conditions: fixed k  = 1.571A 

and 60-60-60 collimation from monochromator 

to detector. 

 Q = (-1,0,0.4) 

 Q = (-1.01,0,0.4) 

 Q = (-1.02,0,0.4) 

 Q = (-1.027,0,0.4) 

 Q = (-1.035,0,0.4) 

Solid lines indicate the results of a single 

fit to the data described in the text. 

Monitor 100,000 corresponds to a counting 

time of approximately 10 mins. per point. 
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Fig (4.5.3(b)) 
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FIGURE (4.5.4): Data collected at 

T=5K 

T=l9K 

T=25K 

under high resolution conditions: 

fixed k  = 1.571A 1  and-60-60-60 

collimation from monochromator to 

to detector. Solid lines are from 

the fit to the data described in the 

text. 

Monitor 100,000 corresponds to a counting 

time of approximately 10 mins. per point. 
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T/K C g /THZ 
a 

D 5 /THz A r/THz A/THz 2  
Agreement 
Factor 

5 0.196 ± 0.025 5.6 ± 	1.4 0.068 ± 0.043 0.16 ± 0.04 1.16 

19 0.158 ± 0.037 5.0 ± 	1.8 0.145 ± 0.055 0.18 ± 0.04 1.16 

25 0.130 ± 0.049 4.4 ± 	1.5 0.238 ± 0.127 0.18 ± 0.08 1.18 

TABLE (4.5.1): 	Values of £ g  D5 , r and A obtained from fitting the data taken under high 

resolution conditions described in the text. 

The agreement factor is a goodness of fit parameter and is defined by 

Agreement Factor = ( x 2 /N) 

where N is the number of degrees of freedom and 

n (I 	-i 	)2 
2 	 caic 	obs 

i=l 	a 2  
caic 

where n is the number of data points, I 
caic  is the calculated value and 

I obs 	 calc 	calc 
is the experimental value for a particular data point. a 	= (I 	)2  here. 

-4 



FIGURE (4.5.5): 	Constant wavevector scan with 

Q = (-1.05,0,0.4) at T = 32K. 

Fixed kf = 2.662l and 40-40-60 

collimation from monochromator to 

detector. Solid line indicates fit 

to a Gaussian envelope. 
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antiferroinagnet K 2FeF4  had indicated two branches in the pure 

system; however, as expected, the energies at a given wavevector 

transfer were different (in fact lower) in the mixed system due to 

the disorder and that the mixed system has the OAF structure below 

TL. 

Measurements to investigate the changes in. the lower branch 

of the spin wo..1e dispersion relation as the temperature increased 

towards TL,  revealed that the energy of the spin wave gap, 

decreases and that the intrinsic width of the excitations in-

creases as TL  is approached from below. Mean field calculations 

at T = 0 by Matsubara (1981) predicted that, as a function of 

concentration, the spin wave energy gap should go to zero at the 

phase boundaries between the OAF phase and the other two ordered 

phases. Although in this experiment, the temperature was being 

varied, not the concentration, the results are consistent with a 

zero energy gap for the lower spin wave branch at the boundary 

between the OAF and Uniaxial Antiferromagnetic phases. 

It is now believed that these results resolve an apparent 

discrepancy between the results of two previous experiments. 

Measurements, using a two-axis neutron spectrometer, of the dif-

fuse scattering at Q = (1,0,0.4) in the same x = 0.27 sample 

(Viak et al. (1983)) revealed a rounded hump in the diffuse 

scattering around TL.  Similar measurements, but using a three 

axis neutron spectrometer with high resolution on a sample with 

nominally x = 0.2 (Higgins et al. (1984)) revealed no increase 

in the intensity at or near TL. In the former case the integrated 

intensity most probably included a contribution from the spin waves 
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near TL  whereas in the second case only "quasi-elastic" diffuse 

scattering was being observed. 

4.6 Calculations to Determine the Ground State in K Co Fe F 
2—x--l-x--4 

As discussed in Chapter 1 of this thesis one of the most diffi-

cult problems encountered in interpreting experimental data or cal-

culating excitation spectra for systems with competing spin aniso-

tropy is that the details of the ground state, especially for the 

mixed (or OAF phase) are largely unknown. Mean field calculations 

(see, for example, Matsubara (1977)) assume that each of the mag-

netic species is in the same average environment and so can only 

predict an average spin direction for each of the two magnetic 

species, as a function of concentration and temperature. However, 

in practice the spin at a particular site will have an orientation 

which depends on its local environment and intuitively a distri-

bution of spin orientation angles would be expected at a particular 

concentration. This section describes the details of and results 

from a computer program NEWSQR which was written to calculate the 

T = OK ground state configurations in K2CoFe1  F4  by minimising 

the internal energy U, of each spin in its local environment. 

Minimising the internal energy at T = OK is equivalent to 

minimising the Gibbs free energy, G, because G = U - TS, where 

S is the entropy. The purpose of the NEWSQR work was twofold. 

Firstly, calculation of the ground state characteristics should 

give a better insight into the magnetic structure at T = OK, which 

is physically interesting in itself. Secondly, the ground state has 
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to be known before the equation-of-motion technique can be used to 

calculate the low temperature spin wave spectra. Calculation of 

the low temperature spin wave spectra is discussed in Section (4.7). 

It was assumed that the system could be modelled by the following 

Hamiltonian: 

H = E D. 
1 1 
(S. 	

1 
Z)2 + E Ej(S . X) 2 - (S. 

1 
 Y)2}+ El 	S 	S 

. 	1 
i 	 1 	

ij ij i 	j 

+ J. .(S . X  S.x + s. Y  
1J 1 	3 	1 	3 

(4.6.1) 

where I 13  .. 	
1 

and J. J . depend on the species of the nearest neighbours 
-  

and D and E are non-zero only for Fe spins. The coordinates 

(x,y,z) refer to the crystallographic frame of reference. However, 

in general the axis of quantisation of a particular spin will not 

lie along the x, y or z directions. With E. <.O in the Hamiltonian 

of equation (4..1) the spin is confined to the x-z plane and it can 

beassumed that the local axis of quantisation labelled z' lies at 

an angle 0. to the z-axis. The operators in the crystallographic 

frame of reference can then be related to the operators in the local 

frame of reference through a rotation matrix: 

( X 	 x S. 	 cosO. 	0 	sinO. 	S. S
i 	 1 	 1 	 1 

S y 	= 	0 	1 	0 	 S 	 (4.6 .2) 

S
1  
.Z 	 -sinO. 	0 	cosO. 	S.z 

	

1 	 1 	 1 

This relationship can be written as: 

S. 	= 	U. -S. 	 (46 3) -1 	 =1 -1 

where U. is the rotation matrix whose elements are given by 
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(where a, B = x,y,z). The local spin operators can then be 

related to the spin deviation operators a  and a. by: 

-I 

S. 	= 	S 	
* 

- a. a. 	 (4.6.4(a)) i 	 i 	11 

= rc * 
i. 	JT

(a + a.) 	 (4. 6 .4(b)) 
1 

y' 	= 	(a - a ) 	. 	 (4.6.4(c)) 
* 

S. 
	 J2 	I 	i 

Using equations (4.6.4) to substitute for S 
i x  sY i . 	and 

in equation (4.6.3) then the operators in the crystallographic frame 

of reference can be related to the creation and annihilation operators. 

As an example: 

* 	

xx,J-c 	
* 

	

S . X = U.XZ(S -a a)+U 	- (a +a ) 1 	1 	 ii 	i 	2 	i 	I 

*-' 

	

+ U(-i(a. - a ) 1 	 (4.6.5) 
1 	I' 

This can be rewritten as: 

= U(S. - a .) + 	a. + (U 1X  a.)* 	 (4.6.6) 

where U 	 is given by: 

= (U 	- i U7 ,  ) 	 ( 4.6.7) 
1 	T-2 i. 	1 

The y and z components are obtained similarly. After some 

algebraic manipulation the Hamiltonian can be written as: 

I- 

H = 	H+H1 +H2 + 	 ( 4.6.8) 

where H is the n th  order term in the spin deviation operators. 

The zeroth order term is given by 
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H 
0 = 
	

1 1 
+ (D.-E. 1  )S. 

1 	 1 
(S.-)cos 2 0. .  

	

+ E .I 
13  
. . cos 0. 

1 
 cos0 

1  
. + 

j 13 
. . 	

1 
sin 0. 	

3 
sinO. 1}S.S. 	(4.6.9) 

ij 3 

where 
D. S 

= E 	
2 	+ E S (S - ii i i 

(4.6.10) 

is independent of 01.  The program NEWSQR finds the angles 0. 

at each site which minimise the H 0  term of the Hamiltonian. The 

first order term H 1  can be written as: 

311 

	

1 	 30 	1 	.:J 
1 

Because the program minimises the zeroth order term H then 

at each site 3H 
0 
/30 1  . = 0 and so the first order term drops out of 

the Hamiltonian leaving the ground state term H 
0 

and the second 

order spin wave term H 2  which is given by: 

* 	 * 

	

H 	= E A. a. a.. + B. a. a. + C. a. a. 

	

2 	. ii 1 	1 11 	1 1 

	

* 	* 	* * 

	

W. 
13 
.a 1  .a 3  

. + X 
13  
. . a 1  

.a. + Y 
13  
. . a. a 

3  
. + Z 

13  
. . a. a. 	(4.6.12) 

ij 

	

3 	1 	 1 3 

where A 1  ., B 
1  
., C 

1  
. 	

3 1
, W.., 13 X.., Yii  . and Z 

13  
.. are defined in Table 

	

(4.6.1). In NEWSQR a random Lx 	lattice is set up corresponding 

to a concentration x of Co 2+  ions and (1-x) of Fe 
2+ 
 ions in 

K 2 x l-x 4 Co Fe F . The internal energy at each site is calculated 

for the initial angles given to the program. The internal energies 

corresponding to the individual sites are then summed to give the 

total internal energy for the model system. Moving sequentially 

through the sites the angles are changed by an amount 6e so that 
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TABLE (4.6.1): 	Definition of Coefficients in Equation (4.6.12) 

= (_2){D.(U) 2  + E. (U . XZ )2 - (UYZ)2](s - 
1 

1 	 1 	
2 

 

+ D.
1

IU.
1

z 1 2  + E.1 (lU.1x12 - Iu.1Y1 2  

zz' 	
.(U. 	U . 	+ u  )z U . 

3 	
)} + 	I.. S U 	+U. zz' +J 	S 

13 j 1 	j 	Ij 3 1 	3 	1  
ii 

= D1 (U . Z)2 + E.(U1X)2 - (U)T ) 

* 
C.B.  B. 

1 	 1 

= I.. U. 
z  U.  z + J. .(U . X U.x + U. uY) 

13 	13 1 	3 	13 1 	3 	1 	3 

= I.. U 
Z  

. U 
Z  
. + J. . (U. 

X 
U 

X
. 	+ U 

I  
? U? 

13 	13 1 	3 	13 1 	3 	1 	3 

* 
Y 	= X. 

13 

* 
Z. = W. 

13 	13 

* indicates the complex conjugate 

E 1  ., 1 
	1 

D., I. 3  . and J 13  .. are the paremeters defined in the Hamiltonian of 

equation (4.6.1). 

(a = x, y, z) are the elements of the matrix U. defined by. 

equations (4.6.2) and (4.6.3), and U. °  are defined by 

1a =(U1 	- i Uiay 



rs 

the internal energy for that site is minimised in the local potential. 

The total internal energy is calculated again, as is the difference 

AU between the new total internal energy, U 
new , and the total 

internal energy at the previous step, U
old 	

The minimisation pro- 

cedure is iterated until AU becomes less than a specified value at 

which point it is considered that the model system has reached its 

ground state. To ensure that the results were independent of the 

particular randomly mixed finite system (configuration) used, the 

program was run for n different configurations at each chosen 

value of x and the results averaged over the n configurations. 

For, each configuration the Co spins were initially set at e = 0° 

and the Fe spins were initially set at 0. = 90 ° , corresponding 

to the values of 0 	in the pure systems. 

Parameters used in NEWSQR and in NEWSIM (discussed in 

Section (4.7)) :are listed in Table (4.6.2). 	To test for finite 

lattice size effects the program was run with x = 0.27 and the 

results averaged over 5 configurations for various values of L. 

Figure (4.6.1) shows the Internal Energy per spin as a function 

of L for the Co and Fe spins. Beyond L = 40 the values of 

Internal Energy are effectively constant. Figure (4.6.2) shows 

the mean angle between the spin direction and the c-direction for 

both Co and Fe spins. Again, for L > 40 the results seem to be 

independent of L. In addition, the distribution functions for 

the internal energy per spin, the angles 0., eos 01  and sin 0. 

were independent of LL for L > 40 as were spin wave spectra for 

x = 0.2 and x = 0.6. It was therefore assumed that beyond L = 40 2  

the results from NEWSQR and from NEWS IN (which are discussed in 
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Values of Parameters Used in NEWSQR and NEWSIM 

-ft 

Exchange Parameters 

I 	 = 
CoCo 

'FeFe - FeFe - 

I 	 = CoF e 

J 	 = CoCo 

J CoFe 	=  

7.48 meV 

0.709 meV 

I 
(ICC 1FF)2 = 2.30.rie.,7s! 

3.84 meV 

(J CoCo FeFe J 	) I = 1.65 meV 

Single Ion Anisotropies (Applicable only to Fe spins). 

D =  Fe 

E 	 = Fe 

g-factors 

x 	y 	z 
5Fe = 5Fe = 5Fe = 2.5 

x 	y 
gCo 

 
= g 	

= 3.13 

= 6.30 
Co 

(Values were derived from the work of Thurlings et al. (1978), 

Macco et al. (1978) and Macco et al. (1979)). 

0.49 meV 

-0.04 meV 



FIGURE (4.6.1): Internal energy per spin as a function of 

the length of the lattice side L for both 

Co and Fe spins. The concentration of 

Co spins was x = 0.27. 



Fig (4.6.1) 

10.5 

X=0.27 

10.0 

C 

. i 9.5  
Cr) 

> 
a-) 
L 9.0 

C 
uJ 

-58.5 
C 
C.. 

c8.0 

7.5 

7.0 	
10 	20 	30 	40 	so 60 	70 	80 

LengiK oF Lotice Side (L) 

Fe 

Co 



FIGURE (4.6.2): 	Mean angle between the spin-direction and 

the c-direction 0 	as a function of the - 	 c 

length of the lattice side L for both 

Co and Fe spins. The concentration of 

Co spins was x = 0.27. 
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Section (4.7)) are independent of the size of the finite lattice. 

To study the ground state of K 
2 x 1-x 4 Co Fe F as a function of 

concentration, NEWSQR•was run for a 64x64 lattice averaging over 

20 configurations at each of the chosen concentration values. 

Figure (4.6.3) shows the distribution of cant angles for both Co 

and Fe spins at x = 0.25. It has been expected that this concen-

tration would correspond to the OAF phase, and the figure confirms 

this. It shows that both the distributions have weight across a 

wide range of angles between 0 = 00 and U = 900. 	In Figure 

(4.6.4) the average angles are shown as a function of concentra-

tion for both Co and Fe spins. For 0 < x < 0.1 both the Co and 

Fe cant angles are 900, indicating that the system exists in the 

planar phase. In the concentration range 0.5 < x < 1.0 the 

average cant angle 0c is 00  for both species, which shows that 

the system has the uniaxial antiferromagnetic structure. For the 

intermediate concentration range 0.1 < x < 0.5 the 0 values 

are different for Co and Fe spins with the specific 6 values 

depending on x. This concentration range therefore corresponds 

to the OAF phase at T = OK. 

Table (4.6.3) compares available experimental values for the 

cant angles with 6 values calculated by NEWSQR. The agreement 

between the calculated values and the experimental values obtained 

by Mössbauer Spectroscopy and Nuclear Magnetic Resonance (NNR) is 

reasonable, especially when the fact that the values of x for the 

experimental samples are nominal values and that none of the measure-

ments were performed at temperatures with T < '8K, is taken into 

consideration. The effect of uncertainty in the actual concentration 



FIGURE (4.6.3): 	Distribution of cant angles 0 	as a 

function of Co concentration x for 

both Co and Fe spins, for L = 64 

and x = 0.25. The results were obtained 

by averaging over 20 configurations. 

The NEWSQR run which produced these 

results took around 13 hours of 

VAX11/750 C.P.U. time. 
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FIGURE (4.6.4): 	Average cant angles 0 	for both 

Co and Fe spins as a function of 

Co concentration x. The results 

were obtained by averaging over 20 

configurations with L = 64. 
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TABLE (4.6.3): Comparison of calculated and experimental values for 

the average cant angle in K 2 Co Fe 	F . 4 The calculated x 	l-x 
values are given in parenthesis beneath the experimental 

values. 	
8Co/Fe labels the average cant angle for Co/Fe). 

Nominal 0 
Fe Co 

0 Technique Source 
Concentration 

(x) 

0.06 90±2 
- 1 

(90) (90) 

0.12 90±5 90±5 1, 2 2 (86) (74) 

0.16 82±3 
- 1  ,2 2 (79) (60) 

0.18 90±5 90±5 1 1 (72) (51) 

	

0.2 	 55 ± 2 	- 

	

1 	 1 (66) 	(45) 

	

0.27 	 52±5 
(46) 

	

42±5 	23±6 

	

2 	 2 

	

(46) 	(25) 

	

0.55 	 0±5 	0±5 	 1,2 	 2 

Key: 	Techniques 	1: Mossbauer Spectroscopy. 

2: Nuclear Magnetic Resonance. 

Source of Ex-  Fendler et al. 	(1984) perimental 
Data  Viak et al. 	(1985). 

Neutron Diffraction Results 

x = 0.27 0 = 	27 ± 2 	 Vlak et al. 	(1983) c 
(40) 

= 0.2 0 = 	33 ± 1 	 Higgins et al. 	(1984) c 
(63) 
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of the sample would be greatest in the OAF phase where small dif-

ferences in concentration lead to significant changes in 0. 

Except for the x = 0.18 results, which are anomalous in the sense 

that OFe(X = 0.16) < 0(x = 0.18), which is not what would be 

expected, the predictions from the NEWSQR result that the OAF phase 

extends between x = 0.1 and x = 0.5 at T = OK are reasonably 

consistent with the experimental results. Neutron diffraction 

measurements measure the cant angle for the average magnetic moment. 

The values obtained by neutron diffraction measurements for the 

cant angles in x = 0.2 and x = 0.27 samples are not in as good 

agreement with the NEWSQR results. 
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4.7 Calculation of the Low Temperature Magnetic Excitation Spectra 

inKCoFe F 2—x----l-x--4 

In this section, results from calculations of the low tempera-

ture magnetic excitation spectra in K2CoFeiF4  are presented. 

The technique chosen was the "Equation-of-Motion" method which had 

been used in the past to calculate the dynamic structure factor 

S(,w) in d = 2 mixed antiferromagnetic systems such as 

Rb Mn Ni F 	(Thorpe and Alben (1976)). For Rb Mn Ni F 2 x l-x4 	 2 x l-x4 

application of the "Equation-of-Motion" method was straightforward 

because the spins of both the Mn and Ni ions favoured alignment 

along the c-axis of the magnetic unit cell so that the ground state 

was conceptually known. Labelling the ordering direction by z 

then only S ° (Q,w) had to be calculated since, by symmetry con-

siderations, SC(2,w) = S(,w) for that system. Good agreement 

was obtained between the calculated spectra and the spectra from 

inelastic neutron scattering experiments on Rb2MnNiiF4  with 

x = 0.5 (Birgeneau et al. (1975), Als Nielsen et al. (1975)). 

Application of the technique to K2Co Fe 
1-xF4 

 was a considerably 

more difficult problem because the results from the program 

NEWSQR (discussed in Section (4.6)) showed that in the OAF phase, 

the spins of both the Co and Fe ions have a distribution of cant 

angles O. It was shown in Section (4.6) that the second order 

(spin wave) term of the Hamiltonian, H 2 , (given by equation 

(4.6.12)) was a function not only of the spin deviation operators 

* 
a.1 , a. 

1 	
and the spins S 1  . 	

1 
but also of the cant angles 0.. 

Consequently, details of the ground state of the system, obtained 



by minimising the zeroth order term H 	(given by equation (4.6.9)), 

were required as a starting point for the calculations of the mag-

netic excitation spectra by the program NEWSIM. 

At T = OK, the dynamic structure factor is related to the 

imaginary part of the magnetic susceptibility by: 

S(,w) = E O aa  
- QaQ)S 8 (Q ,W ) 

- 

c 

	

= Im( E ( 	- QQ)x(Q,u)) 	 (4.7.1) 
cx3 

where the indices c 	can take the values x, y and z. 

(x labels the a-direction and z labels the c-direction in the mag-

netic unit cell for this case). The susceptibility x(,w) is 

given by 

00 

aa 	 iQ . R.. 
---ij c8 	iwt X (,w) = 	e 	 x 	(t)e 	dt 	 (4.7.2) 

ii 
0 

where 

Xij 	= g1  g 	i<OI[S.(t), S1(0)]lO> 	 (473) 

In this notation 10> represents the ground state. It was shown in 

Section (4.6) that for the cL-component of the spin at the site 

labelled by the index i then: 

S . cL 	U . 	a  = 	cLZ(S .  - .*a.) + U a*(U a.)* 
1 	 1 	1 	1 1 	1 1 1 1 

(4.7.4) 

Substituting for the S.a 
 in equation (4.7.3) gives: 
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a 8 
X (t) / (i8 g ) 

	

= <OI[(U.aa.(t) +(U.a)* 	CLJ.8a.(0) 	
* 	* 

1 	 1 	
a(t)}, 	 + (U. ) a. (0) 	O> 

* 

	

+ higher order terms in a and a . 	(4.7.5) 

The higher order terms in equation (4.7.5) are dropped in the linear 

spin wave approximation. By expansion of the commutators, equation 

(4.7.5) can be written as: 

xii 	l(ig  ag.) = 	1 
8 	U.a(U.8)*<0I [a. (t), a' i (0)1110> 

8* 	* 	* + (U. 
1  aU. ) < 01 [a.(t), a. (0)110> 3 	1 

* 	 * + (U.a) U 8. <0[a. (t), a.(0)1l0> 
1 	3 	1 

	

+ U. 
1 
 aU. 

3  8<01[a.(t), a.(0)Jl0> 	. 	(4.7.6) 

The energy loss part of the spectrum is then given by: 

xi(t) = i 
gag 8Ua(UB) * <0I[ a ( t ) a. * (0 )]j 0>  

8 	I 	
1 

	

a 8(U. 
1 	J 
a U. 	

* 
) <0I[a. * (t), a. * (0)110> . 	( 4.7.7) 

8 	 8 
If two functions K. (t) and L. (t) are given by: 

1 	 1 

-i.r. 
8 	8* 	 * 

K. 	= 	i e 	—J g. (U. ) <0I[a.(t), a. ( 0 )11 0 > 	(4.7.8) 
1 .  

3 

and 

L
i 

 
e 	g. (U. ) <01[a. (t), a. ( 0 )11 0> 	(4.7.9) .a 

= 	I 
  

3 
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then 	x(a,t) can be written as: 

X(.a,t) 	= 
i.a.r. 

e 	
1 	

K.8(t) 	+ 	(U.)* L(t)} 	. 	(4.7.10) 

To calculate the time transform of 	x(a,t) an equation-of-motion 

for K. 	8 (t) 	and 	L 	8 (t) 	has to be used to give 	K. 	(t) 	and 
k 

i q 	 l9 
L1F(t) at successive time steps. 	To calculate the equations of motion 

the commutators [a.,H] 	and 	[a.*,H] 	need to be known. 	With 	H 	given 

by H2 	defined in equation (4.6.12) then: 

[a.,H] 	= A.a. 	+ 2C.a.* 
	 * 
+ E 	2Z. .a. 	+ 	(X.. 	+ Y. .)a. 	(4.7.11) 1 11 	11 	 133 	13 	13 	3 

and 

* 
[a. 	,H] 	= 

* 
-A.a.

* 
 - 	2B.a. 	- E 	214..a. 	+ 	(X.. 	+ Y. .)a. 	. 	(4.7.12) 1 11 	11 	 133 	13 	13 	3 

The equation-of-motion for a Heisenberg operator 	A(t) 	is given by 

(Rae (1981)): 

dA(t) 	= - 	
<o[A.(t), 	H]10> 	 (4.7.13) 

IS The equations of motion for 	K. 	and 	L. 	(t) 	can then be shown 
is. 

to be: 

dK. 	(t) la 
= 

	

* 	 * 
A. 	K. 	(t) + 2B. 	L. 	$(t) + 2 	W. . 	L 	'(t) 

dt i 1 	 1 	19 	
. 	

13 	.a 

+ X.. 	K. 	(t)) 	 (4.7.14) 13 	jq 

and 

dL 	(t) 

= -A. 	L. 	'(t)-2B. 	K. 	' (t) 	- 	2 	(W.. 	K. 	(t) 
dt  1  

+ X1J  . . 	L. 	(t)). 	 (4.7.15) l .a 



-89- 

If equations (4.7.14) and (4.7.15) are converted to difference 

equations, then the following results are obtained: 

ia 
8 (t+At) = K. 

12. 

	

	 1  
8 (t- t) + (_2t)cA K. 2. 8(t) 

* 
+ 2B. L 

1
. 	( t) 

1 	2. 

+ 2 	(w.. L. 8 (t) + X.. K. 8 (t))} 	(4.7.16) 
1J 	 1J 1 

ii 

and 

8 (t+ Lt) = L. 8 (t- t) - (-2iit) 
12. 	 12. 

	

x {A. 
1 	 1 

L. 8 (t) + 2B. K. 8 (t) + 2 E(w1. .J 
KJ.9 8(t) 

12.  

+ X.. L.(t))} 	. 	 (4.7.17) 

To be able to start the iterative process in which K. Ct) 
12. 

and L.(t) are calculated at successive time steps then the values 
1a 

of these functions at times t = 0 and t = At have to be known. 

At t = 0 the functions are given by: 

8 	8  
ia 

 K. 8 (t=O) = i e 	g. (u. ) 
* 	

(4.7.18) 

and 

L. 8 (t=O) = 	0 	. 	 (4.7.19) 

The values of K. (tt) and L. (t=At) must be obtained 
12. 	 12. 

approximately by a Taylor expansion: 

K. 	(t=At) 	
()n 

n 	
(K. 8(t))l 	 (4.7.20) 

	

12. n 	dnl 	12. 
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and 

L. 	(t=4 t) 	
= 	(t) 	d 	

(L. 	(t)) 1 	. 	 ( 4.7.21) 
is 	 n 	dt 

The derivatives with respect to time in equations (4.7.20) and 

(4.7.21) were obtained by iteration from the values of K. (t0) 

and L.(t=0) respectively. The number of derivatives in the 

Taylor series expansion used to calculate K. (t=At) and 

L 8 (t=it) was 4 for the results presented in this section. 

The computer program NEWSTh calculated the K.(t) , L.(t) 

and hence X(,t) at successive time steps it, for t in the 

range 0 < t < t max 	 max (where t 	is determined by the highest 

energy resolution required.) After the x(9,t) were calculated, 

a program SQWCAL was used to perform the time Fourier transform 

which gave x(,w) and hence S(q.,w). (A damping factor 

e 	was included in the integrand before the Fourier transform 

with respect to time was performed, so that the energy resolution 

for the calculated spectra could be chosen according to requirements.) 

All the results presented in this section were calculated for an 

Lx L lattice with L = 60. 

Calculated S(Q,w) spectra with Q at the Brillouin zone 

centre are shown in Figure (4.7.1) for the concentration values 

x = 0.9 and x = 0.8. Both values of x correspond to the uni-

axial antiferromagnetic phase in which the ordered spin component 

is along the z-direction. As a result, there is no intensity in 

the calculated S Zz  (Q,w) spectra and also S xx (—OM(—OM Syy  (Q,w), 

so that only the 
Sxx (Q,W)  spectra are shown in the figure. In 
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K2CoF4 , at 	= (1,0,0) there was a single resolution limited peak 

in the SOC(Q,w)  spectrum at E nu 26 meV; Figure (4.7.1) shows 

that the effect of bringing Fe 2+  "defects" into the system was to 

introduce a peak in the S ° (,w) spectrum corresponding to excita-

tions propagating mainly on the Fe 2+  ions and to produce a distri-

bution of intensity corresponding to excitations propagating mainly 

on the Co 
2+ 
 ions. The effect of decreasing x was to reduce the 

peak energy for the lower energy excitations and to introduce more 

broadening in the intensity corresponding to the higher energy 

excitations. Also, the intensity of the lower energy peak increased 

relative to the intensity at higher energies. Figure (4.7.2) 

shows S(Q,w), S(,w) and SZZ(Q,w) spectra at Q = (1,0,0) 

for the concentration range 0.1 < x < 0.5. For x = 0.5, which 

corresponds approximately to the phase boundary between the uni-

axial and OAF phases, there appeared to be 5 peaks merged together 

at higher energies. The energies of these peaks correspond to the 

energy required to change the Co spin value by 1 unit in the 5 

possible nearest neighbour environments. (The 5 possible nearest 

neighbour environments correspond to 0, 1, 2, 3 and 4 Fe nearest 

neighbours.) 	Similar "cluster modes" have been observed in other 

mixed and diluted systems (Cowley (1980)). As x decreases from 

0.5 to 0.1, the average cant angle 6 	increases from 00  to 900, 

S 	increases 	 i 	
XX ncreases in intensity and S (,w) decreases in 

intensity, which is what one would intuitively expect since the 

ordered 2-component of spin decreases and the ordered x-component 

increases. (Note that the spin is confined to the x-z plane cor -

responding to one of two possible domains, which are equivalent 



FIGURE (4.7.1): 	Calculated SOC(Q,w) spectra at 

Q = ( 1,0,0) for K 2 x Co Fei_F4  with 

x=0.9 

x = 0.8. 

Both of these values of x corres-

pond to the Uniaxial antiferromag-

netic phase. 

As with all spectra presented in this 

section the chosen energy resolution 

was 1 meV F.W.H.M. (Any excess broadening 

of the spectra is due to the disorder.) 
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FIGURE (4.7.2): 	Calculated S(Q,w) spectra at Q = (1,0,0) 

for  2  Co  x l-x 4 Fe F with 

(a) 	x = 0.5 

 x = 	0.45 

 x = 	0.4 

 x = 	0.35 

 x = 	0.325 

 x = 	0.2 

 x = 	0.15 

 x = 	0.1. 

These values of x span the OAF phase at T = OK. 

The solid lines indicate S ° (Q,w) spectra. 

The dashed (larger mark to space ratio) lines 

indicate S(Q,w) spectra and the dotted line 

(smaller mark to space ratio) lines indicate 

S(Q,w) spectra. 
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Fig (4.7.2(c)) 
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Fig (4.7.2(e)) 
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Fig (4.7.2(g)) 
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FIGURE (4.7.3): 	Calculated S(Q,w) and S 
zz

(Q,w) 

spectra at Q = (1,0,0) for K Co Fe 	F 2 x l-x 4 

with x = 0.05. This value of x corres-

ponds to the planar antiferromagnetic - 

phase. 
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FIGURE (4.7.4)(a): 	The concentration dependence of the 

Brillouin zone centre (Q = (1,0,0)) 

energy gap f'or the lower energy band 

of excitations in K 2 x l-x 4 Co Fe F . The 

values were obtained from the peak 

positions in the S (Q,w) spectra. 

	

(b): 	The concentration dependence of the 

integrated S ° (Q,w) structure factors. 

In both (a) and (b) the circles corres-

pond to c = x, the crosses correspond 

to a = y and the triangles correspond 

to c = Z. 
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FIGURE (4.7.5): 	Calculated SC(Q,w)  spectra for the 

concentration x = 0.6 at 

The Brillouin zone centre (Q = (1,0,0)) 

The Brill'ouin zone boundary 

(Q = (1.5,0,0)). 

x = 0.6 corresponds to the nominal concen-

tration of the sample used for some of the 

experimental measurements described in 

Section (4.4). 
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FIGURE (4.7.6): 	Calculated S(Q,w) spectra for the concen- 

tration x = 0.27 at 

The Briliouin zone centre (Q = (1,0,0)) 

The Brillouin zone blundary 

(1.5,0,0)). 

The full lines correspond to c = x, the 

dashed lines to a = y and the dotted lines 

to a = Z. 

x = 0.27 corresponds to the nominal concen-

tration of the sample used for the experimental 

measurements described in Section (4.5). 
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FIGURE (4.7.7): 	Experimental data obtained from the measure- 

ments described in Section (4.4) for a scan 

through the lower energy branch of magnetic 

excitations with Q = (1.4,0,0) in the 

nominally x = 0.6 sample. 

The solid line indicates the calculated 

intensity fitted to the data, as described 

in the text. 
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FIGURE (4.7.8): Experimental data obtained from the 

measurements described in Section (4.4) 

for a scan through the higher energy 

branch of magnetic excitations with 

Q = (3.2,0,0) in the nominally x = 0.6 

sample. 

The solid line indicates the calculated 

intensity fitted to the data, as des-

cribed in the text. 
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FIGURE (4.7.9): 	Experimental data obtained from measure 

ments described in Section (4.5) for a 

scan with Q = (1.2, 0, -0.4) in the 

nominally x = 0.27 sample. This scan 

was performed on the 1N8 triple-axis 

neutron spectrometer with fixed 

0-1 
kf  = 2.662A 

The solid line indicates the calculated 

intensity fitted to the data, as des-

cribed in the text. 
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FIGURE (4.7.10): 	Experimental data obtained from the 

measurements described in Section 

(4.4) for a scan with 

Q = (1.2, 0, 0) in the nominally 

x = 0.2 sample. 

The solid line indicates the calculated 

intensity fitted to the data, as des-

cribed in the text. 
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FIGURE (4.7.11): 	Comparison between peak positions in the 

calculated S ° (Q,w) spectra, calculated 

with an energy resolution corresponding 

to the experimental energy resolution, 

and the experimental data points for the 

dispersion relations in K Co Fe F 2 x l-x 4 

with x = 0.6 for 

The higher energy branch of 

magnetic excitations, and 

The lower energy branch of 

magnetic excitations. 
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by symmetry.) 	Figure (4.7.3) shows the S(Q,w) and SZZ(,w) 

spectra at x = 0.05, a concentration which corresponds to the 

planar antiferromagnetic phase. S 
xx

(,w) is zero in that phase 

because the ordered component of spin is along the x-direction. 

Figure (4.7.4) summarises the concentration dependence of 

the zone centre energy and the integrated structure factor for 

the lower energy excitations. There are local minima in the 

zone centre energies between x = 0.4 and x = 0.5 for all three 

of the structure factors shown. There is also a local minimum 

for the zone centre energy associated with SZZ(,w)  just above 

x = 0.1. It is worth comparing these results with the results 

of Matsubara (1980) who performed mean-field calculations for 

K2Fe Mn1  SF4,  which is also a mixed magnetic system with ortho-

gonal competing anisotropies (evaart et al. (1978)). The mean 

field calculations predicted that the gap corresponding to the 

lowest energy mode should go to zero at the phase boundaries be-

tween the OAF and the other antiferromagnetic phrases. 

K 2 x 1-x 4 	 2 x l-x 4 Fe Mn F differs from K Co Fe F in that the exchange 

interactions are isotropic in the former system and anisotropic 

in the latter system; the difference from mean field theory 

predictions at x = 0.1 in K 2 x 1-x 4 Co Fe F might be connected with 

this. The energy of the peak in S(,w) at the zone centre 

is sensitive to the value of the in-plane single-ion anisotropy 

parameter E1 . 	Consequently the fact that the energy gap for 

S(Q,w) does not go to zero at x = 0.5 could be due to the 

value of E used in the calculations being slightly wrong. More 

calculations with a modified in-plane anisotropy might clarify this. 
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Spectra were also generated for the concentrations x = 0.6, 

x = 0.27 and x = 0.2, the nominal concentration values of the 

samples on which the experiments discussed in Sections (4.3), (4.4) 

and (4.5) were performed. The calculated zone centre and zone 

boundary spectra are shown for x = 0.6 in Figure (4.7.5), and for 

x = 0.27 in Figure (4.7.6). As discussed previously, x = 0.6 

corresponds to the uniaxial phase, so that 
szz(Q,) 

 is zero and 

S(Q,u>) = S(,w). The concentration x = 0.27 corresponds 

to the OAF phase so that S(Q,w), S(Q,w) and Szz(Q,W) are 

different. 

The partial dynamic structure factors were summed to give 

the dynamic structure factor for the concentrations x = 0.6, 

x = 0.27 and x = 0.2 and fits made to the experimental data for 

_Q-values across the entire Brillouin zone. The fits took into 

account the two domain structure and used calculated instru-

mental resolution widths. The free parameters in the fits were 

a flat background term and an overall scale factor. Figures 

(4.7.7), (4.7.8), (4.7.9) and (4.7.10) show experimental data 

with calculated spectra fitted. 

In Figures (4.7.11), (4.7.12) and (4.7.13) the measured 

dispersion relations for x = 0.6, x = 0.2 and x = 0.27 are 

shown with the peak positions from the calculated SOC(,w) 

S(Q,w) and Szz(Q,W) spectra superimposed. For x = 0.6 

the peak positions from the calculated S 
xx

(,w) spectra are 

in good agreement with the experimental values for both the low 

energy and high energy excitations. For x = 0.2 and x = 0.27 

only the low energy dispersion relations corresponding to excitations 
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FIGURE (4.7.12): 	Comparison between peak positions in the 

calculated S(Q,w) spectra and the ex-

perimental data points for the dispersion 

relation in K2  Co x  Fe  l-x  F  4  with nominally 

x = 0.2. 

The solid line corresponds to a = 

the dashed line corresponds to a = y 

and the dotted line corresponds to 

= Z. 
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FIGURE (4.7.13): 	Comparison between peak positions in the 

calculated S(Q,w) spectra and the ex-

perimental data points for the dispersion 

relation in K 2 x l-x 4 Co Fe F with x = 0.27. 

The solid line corresponds to a = x, the 

dashed line corresponds to c = y and 

the dotted line corresponds to a = z. 
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propagating mainly on the Fe 
2+ 
 ions were measured. For x = 0.2 one 

measured branch was obtained and for x'= 0.27 two such branches 

were deduced from the measurements. However the NEWSIM calculations 

predict 3 branches of excitations. For both concentrations, 

SC(Q,w) and S(Q,) are close to the measured higher energy 

branch near the zone centre, whilst S(Q,w) corresponds to the 

measured lower energy branch in the x = 0.27 case. The difference 

between calculated and experimental values for the energy of the 

excitations at particular reduced wavevector values could be due 

to uncertainties in the values for the exchange and single-ion 

anisotropy parameters obtained from the literature. Overall, the 

calculated results are in reasonable agreement with the results 

of the experiments. 
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PuAD'r'c'D 

Rb Mn Cr C2 	A MIXED MAGNETIC SYSTEM WITH COMPETING —2--x-1-x----4  

FERROMAGNETIC AND ANTIFERROMAGNETIC EXCHANGE INTERACTIONS 

5.1 	Introduction 

In recent years there has been considerable theoretical and ex-

perimental interest in mixed magnetic systems with competing ferro-

magnetic and antiferromagnetic exchange interactions. Such systems 

can in theory be formed by randomly mixing an antiferromagnetic 

system with a ferromagnetic system. Fishman and Aharony (1980) 

calculated x - T phase diagrams for this type of mixed magnetic 

system, using both Mean-field Theory and Renormalisation Group Theory. 

They found that if only nearest neighbour exchange interactions were 

assumed, then there were four magnetic phases in the x - T plane; 

a paramagnetic phase, a ferromagnetic phase, an antiferromagnetic 

phase and a spin glass phase. (In the spin-glass phase the magnetic 

moments have a local "frozen-in" component but there is no long-

range magnetic order.) 	A schematic phase diagram is shown 'in 

Figure (5.1.1). Katsumata (1983) has reviewed some of the recent 

experimental studies of the system Rb 2MnCr 1 C9 4 , an insulating 

mixed magnetic system which is a random mixture of the ferromagnetic 

system Rb 2CrCL 4  and the antiferromagnetic system Rb 2MnCZ4 . This 

system is of particular interest because it is the first example of 

a random mixture of an insulating ferromagnet and an insulating 

antiferromagnet with nearest neighbour interactions in which a 

spin-glass phase has been observed (Katsumata et al. (1982), Kohies 



FIGURE (5.1.1): 	Schematic concentration x against 

temperature T diagram for a mixed mag-

netic system with competing ferromag-

netic-antiferromagnetic exchange 

interactions. 

P indicates the paramagnetic phase, 

F indicates the ferromagnetic phase, 

AF indicates the antiferromagnetic 

phase and SC indicates the spin glass 

phase. 
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et al. (1982)). It is thus a unique physical representation of the 

kind of system considered by Fishman and Aharony (1980). There is 

another system EuSri_S  which also exhibits a spin-glass phase 

(Maletta and Felsch (1979)), However, the spin-glass behaviour 

arises from a different source. Eu x l-x Sr 	S is formed by dilution 

of the ferromagnet EuS with diamagnetic SrS. 	This creates an 

imbalance between the nearest neighbour ferromagnetic exchange 

interactions and the next nearest neighbour antiferromagnetic 

exchange interactions which leads to the spin-glass behaviour. 

In this chapter the results of neutron scattering measurements 

on the system Rb2MnCr1_Ci4,  with nominally x = 0.754, are 

reported. The rest of this chapter is set out as follows. In 

Section (5.2) the pure systems Rb 2MnCi4  and Rb 2CrC2,4  are dis-

cussed and in Section (5.3) general details of the experiments are 

given. The inelastic neutron scattering measurements which were 

performed in order to investigate the magnetic excitations in the 

sample are reported in Section (5.4). Section (5.5) discusses 

experiments which were performed to study the magnetic phase tran-

sition for x = 0.754, a concentration for which the sample was 

expected to exhibit antiferromagnetic long-range order below a 

Mel temperature TN. 

5.2 	The Pure Systems 

5.2(i) 	Introductory Remarks 

Rb Mn Cr Ci is a random mixture of the systems Rb MnCi 2 x l-x 4 	 2 	4 
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and Rb 2CrC2 4 , both of which are isomorphous with K 2NIF4  

(Birgeneau et al. (1970)). As discussed earlier in this thesis, 

for isomorphs of K2N1F4 , the predominant exchange interactions 

are between nearest spins in the basal a - b plane, so that the 

mixed magnetic system is quasi two dimensional. 

5.2(u) 	Rb2MnCL 4  

Hunds rules indicate that the ground state of the free Mn 2  

ion is 6 S 512 . The total angular momentum L = 0 for this ion 

because the 3d shell is half filled by the 5 electrons which 

occupy it. Consequently, to a good approximation, the ground 

state of the Mn 2  ion is not influenced by the crystal field 

in Rb 2NnC2 4  or by spin-orbit coupling. The spin Hamiltonian 

for Rb 2MnC9 4  can therefore be written in terms of a pseudo-

spin S = /2, which is equal to the actual spin. 

Neutron diffraction studies of Rb 2MnCZ4  by Epstein et al. 

(1970) showed that the system attains antiferromagnetic long 

range order below TN = 57K with the spins aligned along the 

c-axis of the unit cell. Schröder et al. (1980) determined 

the spin wave dispersion relation for Rb 2MnCi4  at T = 8K 

by inelastic neutron scattering measurements. They also cal- 

culated a form for the spin wave dispersion relation and fitted 

it to their experimental data points. The agreement between the 

calculated and experimental values was excellent across the 

entire Brillouin zone. The Hamiltonian for Rb 2MnCP., 4  was assumed 

to be given by: 



H 	E 	J1 . S..S. + g11{_H E 
Si'+  HA E 

S.Z} 	 (5.2.1) 
<1J> 	 1 	 j 

where <ij> indicates a sum over nearest neighbour spins S 1  and 

S 
j  
. 	

3 1, J.. 	
A 

is the nearest neighbour exchange interaction and H is 
.  

the magnitude of an anisotropy field. The anisotropy arises from 

magnetic dipole-dipole interactions. 

5.2(iii) 	Rb 2CrC2 

	

The free Cr 2 	ion has 4 electrons in the 3d shell and Hund 

rules therefore predict the ground state to be 5D0 . In Rb 2CrC2. 4  

the Cr 2  ions are attributed a pseudospin S = 2. Single crystal 

neutron diffraction studies by Day et al. (1979) showed that 

Rb 2CrC2. 4  crystallises effectively in the K 2N1F4  structure. How-

ever, the Ck 	ions in the basal plane are displaced by a small 

amount from the midpoint of the line joining the Cr2+  ions and the 

ferromagnetic exchange interactions between nearest neighbour Cr2+ 

ions in the a - b plane are attributed to this Jahn-Teller dis-

tortion of the CrCZ 6  octohedra. (With the exception of K 2CuF 4  

(T = 6.25K) all other known K2NiF4  isomorphs exhibit anti-

ferromagnetic ordering.) 

Neutron scattering studies of Rb2CrCZ4  (Fair et al. (1977)) 

have shown that below T  = 57 ± 2K the system orders ferromag-

netically with the spins aligned in the basal a - b plane. The 

spin wave dispersion relation at T = 4.5K was obtained by Hutchings 

et al. (1976) from inelastic neutron scattering experiments. Their 

data was well represented by the dispersion relation for a planar 

ferromagnét with Heisenberg exchange interactions. 
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5.2(iv) 	 Concluding Remarks. 

The magnetic properties of Rb 2MnC2., 4  and Rb 2CrC2. 4  suggest 

that Rb2MnCr1_CZ4  should be a good physical realisation of a 

d = 2 system with nearest neighbour competing ferromagnetic- 

antiferroniagnetic exchange interactions. Figure (5.2.1) illustrates 

the phase diagram for this system published by Kohies et al. (1982). 

It predicts that there exists an insulating spin-glass phase for the 

intermediate concentration range 0.41<x< 0.59. Al2 represents 

a uniaxial antiferromagnetic phase similar to the ordered phase in 

Rb 2MnC2 4  and AF1 represents an essentially planar antiferromag-

netic phase. Single crystal samples with 0.41<x<0.59 were not 

available to the author and the neutron scattering measurements 

discussed in the following sections were performed on a sample 

with x = 0.754, which was expected to be in the AF2 phase 

below a transition temperature TN.  The motivation behind the 

measurements was to study the effect of a substantial number of 

Cr2  defects (". 25%) on the phase transition and magnetic excita-

tions. 

5.3 	General Experimental Details 

The neutron scattering measurements reported in Sections (5.4) 

and (5.5) of this chapter were performed, using the 1N2 triple-axis 

neutron spectrometer at the Institut Laue-Langevin, Grenoble, France. 

A diagram of this instrument is given in Figure (5.3.1). 1N2 was 

fitted with two monochromator crystals both of which utilised the 

Pyrolytic Graphite (0,0,2) Bragg reflection. The effect of the 



FIGURE (5.2.1): 	Proposed phase diagram for the mixed magnetic 

system Rb2 x 1-x 4 Mn Cr 	CZ 	(Kohles et al. (1982)) 

P indicates the paramagnetic phase, 

F indicates the planar ferromagnetic phase, 

SG indicates the spin glass phase, 

AF1 indicates a planar antiferromagnetic phase 

and AF2 indicates a uniaxial antiferromagnetic 

phase with the spins aligned along the c-direction. 
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FIGURE (5.3.1): 	Diagram of 1N2 triple axis neutron 

spectrometer (taken from an I.L.L. 

User's Guide). 

Note the double monochromator 

arrangement. 
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double monochromator is to give improved spectrometer resolution. 

As shown by Pynn and Passel (1974) the resolution function for 

the spectrometer can still be calculated, using the Cooper-Nathans 

formalism,provided that the double monochromator is treated as a 

single monochromator with an effective horizontal mosaic spread 

n' given by: 
m 

	

l,2 	1 2 	1 2 
= 	In 	+ 	In 

	

m. 	m1 	m2  (5.3.1) 

where ri 	and r. 	are the horizontal mosaic spread values of the 
2 

individual monochromator crystals. 

For the inelastic neutron scattering measurements reported in 

Section (5.4) the spectrometer was used in a triple-axis mode with 

a pyrolytic %raphite analyser which made use of the (0,0,2). Bragg 
/ 

reflection. The horizontal collimation was chosen to be 

60' - 30' - 30' - 60' from reactor to detector and the incident 

o-1 
wavevector was fixed at k 1  = 2.662 A 	with apyrolyticraphite 

filter to eliminate higher order contaminant neutrons. 

For the diffuse scattering measurements reported in Section 

(5.5) the spectrometer was used in a two-axis mode. This was achieved 

by removing the analyser crystal and aligning arm 2 and arm 3 of the 

spectrometer so that they were effectively one arm. The collimation 

for this spectrometer configuration was 60' - 10' - 10' and the 

o_i 
wavevector transfer was fixed throughout at 2.662A 

The single crystal sample with rranganese concentration nominally 

x = 0.754 was mounted in a variable temperature kelium flow cryostat 

with the magnetic j1,0,0] and o,o,i] directions in the scattering 
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plane for both sets of measurements. The dimensions of the sample 

were approximately (15 x 8 x  4)inrn3 . 

5.4 Magnetic Excitation Measurements 

In this section an investigation by inelastic neutron scattering 

measurements of the magnetic excitation spectrum in a sample of 

Rb 2 x l-x 4 Mn Cr C2 with nominally x = 0.754 is reported. The measure-

ments consisted of a series of constant wavevector(constant-Q) and 

constant energy transfer (constant-E) scans. There is no spin wave 

dispersion along the c.-direction Eo,o,IJ in these quasi two 

dimensional systems and so all measurements were performed with Q 

along the magnetic a direction [l,o,ol. Well-defined spin 

wave peaks were found for wavevectors up to around two-fifths of 

the way to the Brillouin zone boundary. Measurements were made 

for reduced wavevector transfers beyond this but the excitation 

had become very broad and the scattering intensity had become too 

weak for any conclusions to be made as to the nature of the excita-

tions near-the zone boundary. Beam time has been allocated on the 

high-flux triple-axis spectrometer 1N8 at the Institut Laue-

Langevin to make further measurements for wavevectors close to the 

Brillouin zone boundary and this should enable a complete charac-

terisation of the magnetic excitation spectrum to be obtained. 

Figure (5.4.1) illustrates the data collected in one of the 

constant-Q scans and Figure (5.4.2) shows the data from one of 

the constant-E scans. These figures are representative of the 

typical quality of the data. The peak positions and the full widths 



FIGURE (5.4.1): 	The data obtained from a scan with 

constant Q = (1.15,0,0) for the 

sample of Rb2MnCriCi4  with 

nominally x = 0.754, indicating a 

spinwave peak corresponding to an 

energy of 0.85 THz. 
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FIGURE (5.4.2): The data obtained from a scan with 

constant energy transfer. E = 0.7 THz. 

The peaks at QX = 0.9 and QX = 1.1 

correspond to spin wave peaks with 

reduced wavevectors E = 0.1 

(where E is the reduced wave-

vector expressed in units of a ). 
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at half-maxima obtained from those scans, in which a peak in the 

scattering intensity could be distinguished, are indicated in Figure 

(5.4 .3) along with the spin wave dispersion relation for the pure 

system Rb2MnCL4 . The Rb2MnC2.4  dispersion curve passes through 

the experimental points, to a good approximation, for reduced wave-

vectors up to one-fifth of the Brillouin zone boundary value. At 

given reduced wavevectors between one-fifth and two-fifths of the 

Brillouin zone boundary value, the data points are at lower energy 

values than those given by the Rb 2MnCZ4  dispersion relation. 

The experimental evidence thus suggests that for the x = 0.754 

sample there is a single branch of the spin wave dispersion rela-

tion corresponding to excitations propagating mainly on the Mn 2  

ions. This branch is modified relative to that in the pure system 

Rb 2MnC9., 4  by the presence of ". 25% Cr 2  defects. 

Further inelastic neutron scattering measurements will be 

required before a complete picture can be obtained for the mag-

netic excitation spectrum in Rb 
4 2 x l-x Mn Cr 	CR. 	with x = 0.754. 

The zone centre energy gap 	C g  has to be determined at T = 5K, 

along with its dependence on temperature up to T = TN. The 

temperature dependence of e  is of particular interest because 

it is believed that spin wave scattering may have contributed to the 

observed intensity in the diffuse scattering measurements reported 

in Section (5.5) of this chapter. The measurements to determine 

as a function of T may require high resolution measurements 

similar to those reported in Section (4.5) of Chapter 4 for 

K 2 x l-x 4 Co Fe F with x = 0.27. The measurements to be made during 

the scheduled beam time on 1N8 discussed previously shall make 



FIGURE (5.4.3): 	The full circles indicate the spin wave 

peak positions obtained from the inelastic 

neutron scattering measurements on the 

x = 0.754 sample described in the text. 

The solid line corresponds to the dis-

persion relation for the pure antiferro- 

magnetic system Rb2MnC24. 



NJ 

>- 
0 

w 
z 
LU 

1.5 

1.0 

0.5 

fig 543 

2.5 

2.0 

0.0 0.1 0.2 0.3 Oh 0.5 
[,O,O] 



-103- 

use of the higher neutron flux, compared with 1N2, to investigate 

the magnetic excitation spectrum over the remaining three-fifths 

of the Brillouin zone where the excitations have so far been too 

weak to observe. 

5.5 	The Magnetic Phase Transition 

This section reports the results of neutron scattering measure-

ments which were performed to investigate the magnetic phase tran-

sition in Rb 2 x l-x Mn Cr C21 4 with x = 0.754. All measurements were 

performed with the spectrometer in the two-axis configuration dis-

cussed in Section (5.3). 

5.5(i) 	The Order Parameter 

Below T = 35K a resolution limited Bragg peak was observed at 

Q = (1,0,0). Peaks at Q = (l,O,L) and Q = (3,0,L) for 8L8 

were also observed. This suggested antiferromagnetic long range 

order existed below TN = 35K in this system. The intensity of 

the (1,0,0) Bragg reflection, which is then proportional to the 

square of the sublattice magnetisation, was measured as a function 

of temperature and the results are shown in Figure (5.5.1). Two 

features of this were surprising. Firstly, the intensity, rela-

tive say to K2CoFei_F4 with x = 0.6, rises very slowly as T is 

lowered from TN.  Secondly, the intensity continues to rise 

all the way down to the lowest temperature at which measurements 

could be made. In anticipation of the results from the diffuse 



I 

FIGURE (5.5.1): 	The intensity of the (1,0,0) antiferro- 

magnetic Bragg peak as a function of 

temperature for Rb 2 x 1-x 4 Mn Cr CL with 

nominally x = 0.754. 
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scattering measurements to be presented, further discussion of the 

temperature dependence of the sublattice magnetisation is delayed 

until the diffuse scattering measurements are discussed. 

5.5(u) 	Diffuse Scattering 

5.5(ii)(a) 	Theoretical Background 

It was shown in Chapter 2 that for scattering of unpolarised 

neutrons from N localised spins the magnetic partial differential 

cross-section is related to the partial dynamic structure factors 

by: 

d2a 	
Q)S(Q,w) . 	 (5.5.1) dQdE 

As discussed by Birgeneau et al. (1977) the partial dynamic 

structure factors are related to the wavevector dependent suscep-

tibility x(Q) and the normalised spectral shape function 

F(Q,w) by: 

S 	
x (Q)

a 8 (Q ,W ) 	= 	- 

X 
0 	l - e 

(5.5.2) 

where for any Q: 

fco 

Fa8(Q,W)dW 	= 	1 	 •(5.5.3) 
CO 

and x°  is the Curie susceptibility for non-interacting magnetic 

moments. Making use of the normalisation condition on F(Q,w) 

equation (5.5.2) may be rewritten: 

-w 	 (Q) J dw(1 	- )S 	
x 

(Q,w) = 	- 	. 	 (5.5.4) 
0 x 
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Providing that for the critical fluctuations hw <<  k  B 
 T then: 

(1 - e_hwa 
 ) Alwa = 1 
	

(5.5.5) 

and equation (5.5.4) can be written as: 

dw S8(Q,w) 	
x( 	

(5.5. 
CO 	 X 0 

Thus in theory, x(Q)  could be obtained by measuring S(Q,w) 

and then integrating the measured values with respect to w. In 

most cases, however, this proves to be impossible in practice. 

Instead, the instrument is used to perform the integral directly. 

This is achieved by removing the analyser from the triple-axis 

neutron spectrometer and using the instrument in a two-axis mode. 

All neutrons emerging at a given scattering angle 2e 	are then 
accepted by the detector. If A(k., k 

 f  ) is the proportionality 

constant in equation (5.5.1), then in that spectrometer configura- 

tion the measured quantity is 	fdk f A(k.kf )S(Q,w) which is pro- 

portional to the integral on the left hand side of equation (5.5.6) 

provided that: 

I 
 M, (~' O r /ki C] 	<< 	1 	 (5.5.7) 

where F is a characteristic frequency and K is the inverse 

correlation length. As discussed by Birgeneau et al. (1971) this 

imposes the requirement that the change in kf9  required, to inte-

grate over w, is much smaller than K. 

In magnetic systems with the K 2NF4  structure, the spins in 

adjacent basal planes are only weakly coupled and the dynamics and 
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phase transitions are effectively those of a two dimensional (d = 2) 

system so that the diffuse scattering builds up in ridges along the 
•1 

(1,0,n) direction as opposed to only around the Bragg peak position 

at Q = (1,0,0) as it would if the phase transition was three 

dimensional (d = 3). Whereas for a d = 3 system the susceptibility 

X (g)  would be dependent on the reduced wavevector q measured 

aa from the (1,0,0) position, for these d = 2 systems, 	x(Q)  is 

dependent only on the reduced wavevector q measured from the 

nearest point on the (1,0,n) ridge. That is to say, x()  is 

independent of q in these systems. It can be shown that for 

these systems equation (5.5.7) then becomes: 

[(Tt) 
P/k i  K] sin O f  << 1 
	

(5.5.8) 

where 6 is the angle between the vector k 	and the (1,0,n) ridge. 

Birgeneau et al. (1971) then point out that if the scattering geometry 

with Q = k. - k f  is arranged so that kf  is parallel to the 

(1,0,2) ridge, then the condition given in equation (5.5.8) is met. 

It is clear that with k f  parallel to the (1,0,Q) ridge, then the 

wavevector transfer within the planes does not change for the range 

of kf 'S accepted by the detector and so the integration with respect 

to energy is performed correctly by the instrument at each point in 

the scan. The wavevector transfer Q for which k  is exactly 

along the (1,0,n) ridge is called the "Quasi-elastic" position. 

Figure (5.5.2) shows a reciprocal space diagram for magnetic 

systems with the K 2NiF4  structure with the scattering geometry at 

the 9.iasi-e1astic position superimposed. The value of r for this 



FIGURE (5.5.2): 	Reciprocal space diagram for the 

K2NIF4  structure. The circles 

indicate the antiferromagnetic Bragg 

peaks and the crosses indicate the 

nuclear Bragg peaks. The scattering 

geometry for Q at the "Quasi-elastic" 

position is superimposed. 
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wavevector transfer can be calculated straightforwardly. By Bragg's 

Law: 

Q 	= 	2 k f 	S 
sin 0 	. 	 (5.5.9) 

But also from Figure (5.5.2) it is clear that: 

Q 	= 	(( a)2 + ( 11 
c*)2) 	 (5.5.10) 

* 	* 
where a 

in 	 in 
and c 	are the reciprocal lattice vectors along the 

and Cm  directions of the magnetic unit cell. Equating the right-

hand sides of equations (5.5.9) and (5.5.10), and rearranging gives: 

TI 	= 	[( 4k2  sin  2o - (a* ) 2 )/(c* ) 21 	(5.5.11) 

where: * 
es 	2 

= 	sin 	 (5.5.12) 

5.5(ii)(b) 	Specific Details of Diffuse Scattering Measurements 

For the lattice parameters of the nominally x = 0.754 sample of 

0-1 
Rb 2 x 1-x 

Mn Cr CP 
4  and fixed neutron wavevector of k = 2.662A the 

%uasi-elastic position was calculated to be at Q = (1,0 1 -0.392). 

Scans were performed in which the scattering intensity was recorded 

as a function of q 	along the direction (l+q ,0,-0.392) with 

in the range O.S<<O.S.  Even though the observed scattering 

intensity attributable to the magnetic susceptibility never ex-

tended beyond IJ = 0.25 the purpose of extending the scans out 

to II 	0.5 was to ensure a proper determination of the flat 
background at each of the 26 chosen temperatures in the range 
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4.42K<T<7l.5K. 	For all scans except those at T = 63.2K and 

T = 71.5K the step in q 	 was Aq = 0.05 for 0.2 	Iq J 0.5, 

= 0.01 for 0.08< Iq a 1< 0.18 and Aq = 0.005 for 0 	qJ < 0.075. 

These step sizes were chosen (after a preliminary survey) in order 

that small steps could be made in the small q region where the 

scattering is expected to be sharply peaked near TN. 	The number 

of counts in the detector was recorded over a period of just under 

3 minutes for each point in a scan. Since there were 67 points 

per scan, then a single scan lasted around 3 hours. Allowing up 

to half-an-hour to change and stabilise the temperature (which had 

to be done manually) it is worth emphasizing that a large portion 

of the allocated beam time had to be spent solely on these 26 scans. 

(In fact this prevented more spin wave measurements from taking 

place during the allocated beam time.) 	After these measurements 

had been completed, the vertical resolution of the spectrometer was 

measured by tilting the goniometer arcs manually and recording the 

intensity as a function of tilt angle with the instrument set to 

record the intensity at a Q corresponding to a resolution limited 

Bragg peak. This effectively scans a delta function through the 

resolution ellipsoid along the vertical directionand so gives the 

vertical resolution width. The importance of a correct treatment 

of the spectrometer resolution, both horizontal and vertical, will 

be discussed alongside the data analysis. 
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5.5(ii)(c) 	Diffuse Scattering Data Analysis 

It was initially assumed that only the longitudinal spin 

fluctuations contributed to the observed diffuse scattering inten-

sity. In the quasi-elastic approximation, the longitudinal suscep-

tibility is related to the partial dynamic structure factor for the 

spin ordering direction S"(Q,w) by: 

CO 

J 
 x"(g) 
dw S"(Q,w)  

0 
X- CO I 

It was assumed that x"()Ix °  had the Lorentzian'form: 

x"() 
a(Q) 

X 
0 	

+K"2 	- 

(5.5.13) 

(5.5.14) 

That is, the longitudinal susceptibility was assumed to be a Lorentzian 

function of the reduced wavevector q = q 2  + q 	 (where q is 

the reduced wavevector along the a -direction and q is the reduced 
b 

wavevector along the -direction. The susceptibility is independent 

of q C IO the reduced wavevector along the c-direction, because of 

the quasi two-dimensional nature of the magnetic interactions. 

(The Lorentzian approximation has been shown to hold in d = 2 

Ising systems for q < 10K by Tracy and McCoy (1975)). 

To interpret the data for a scan at a particular temperature, 

the cross-section of equation (5.5.14) was folded with the resolution 

of the spectrometer and the resultant calculated intensity fitted 

to the data in a least squares routine. The calculated intensity 

at a particular wavevector Q was: 

00 

I(Q

—o  

= I f(Q0)IJR 	+ Q)a(Q + Q)Q 	 (5.515) 
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where R(Q) was the resolution function and f() was the average 

form factor. (The form factors given by Watson and Freeman (1961) 

for the Mn 
2+ 
 and Cr 2+  ions were weighted according to their concen-

trations x and (l -x) to obtain f(Q)). 

In this particular case the cross-section varies only along the 

(horizontal) a-direction and the verticalb-direction. Further, 

	

rn 	 rn 

because the horizontal and vertical resolution of the spectrometer 

are decoupled, then equation (5.5.15) reduces to 

00 

= J 	+ 	a + 	ba 	b 	(5.5.16) 
- 

where 	 and Rv(tSQb)  are the horizontal and vertical com- 

ponents of the resolution function. Hagen (1982) has shown that 

for the cross-section given in equation (5.5.14) the integration 

over the vertical resolution could be performed analytically if a 

triangular vertical resolution function was assumed, so that: 

	

I(Q ) 	= 	I (Q )I (Q ) 	 (5.5.17) —o 	H—o V—o 

with '(g) calculated analytically and 	calculated 

numerically from: 	 -6Q2  
a 

	

CO 	

A" K" 	 2a H2  

== 	 e 	5Q 	(5.5.18) 

	

H ~O 	 H ao 	f 
 CO 

- 	 ac2 + K" 2 	
a 

where 6Q a 
= a - ao and 1 a = 	ao - 	

c allowed for 

any offset in the value of Q 
a  for which the scan (and hence the 

diffuse scattering) was centred. The integral of equation (5.5.18) 

was performed numerically by the Trapezium Rule, with 300 trapezoids 

between 3aH  and + 3cYH. 



FIGURE - (5.5.3): 	Scans through the ridge of diffuse scattering 

centred at Q = (1,0,-0.392) for x = 0.754 at 

T = 4.42K 

T = 29.4K 

T = 32.4K 

T = 34.2K 

T = 40.5K 

T = 55.8K. 

The dotted line indicates the constant back-

ground term of 119 counts. The solid line 

indicates the calculated intensity obtained 

from the fitting procedure described in the 

text. Note, by comparing Figures (5.5.3) 

(b), (c) and (d), that there is little change 

in the width or intensity.of the diffuse 

scattering over a temperature range of 5K. 
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Fig (5.5.3(e)) 
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The entire fitting procedure was performed using the computer 

program K2FIT which incorporated a least squares fitting program 

LSOFIT. Each of the 26 scans were fitted separately but in each 

case the same flat background value was used. There were three 

adjustable parameters for each fit corresponding to Q, A" and K". 

Since the scans were nominally centred on Q = (1,0,-0.392) then 

1 for all of the scans. The parameter K "  was expected to 

be the inverse correlation length and A" proportional to the 

staggered susceptibility: 

X" (q=0) A" c' 	 . 	 (5.5.19) X  

At the (L,o,o)  Bragg peak the resolution ellipse has its major 

axis almost along 1 1 0,0]. 	At Q = (1,0,-0.392) the long 

axis of the resolution function in the scattering plane is still 

almost parallel to the 	i,o,o] direction and so the full width 

half maximum AQ for the (Gaussian) hlorizontal part of the re-

solution function was taken to be thevalue obtained from a scan 

through the (1,0,0) Bragg peak along the 	1,0,0 	direction. The 

full width half maximum AQv for the vertical part of the resolution 

function was measured by the method discussed in the experimental 

* 
section. The values used were iQ = 0.0181a * and AQ V  = 0.0678b m 

* 	 * 	 0 
(note that a m = 27/am  , bm 

 = 2ir/b m 	m 	m and a = b = 7.0956A for 

Rb 2 x 1-x 4 Mn Cr C2 with x = 0.754. 

Figure (5.5.3) shows the experimental data ith the calculated 

intensity from the best fit superimposed at several temperatures. 
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The agreement between the calculated intensity and the experimental 

data was good at all 26 temperatures for which scans were performed. 

Figure (5.54) shows a graph of K" as a function of tempera-

ture and Figure (5.5.5) shows a graph of A" as a function of 

temperature over the entire temperature range. The behaviour of 

K"  and A" is not that which might be expected. A d=2 system 

with purely Heisenberg interactions is not expected to undergo a 

phase transition. However in d=2 systems with Heisenberg inter-

actions and a small single ion anisotropy it has been shown that 

a phase transition occurs and that the staggered susceptibility 

and correlation length have lower law divergences with exponents 

close to those of the d=2 Ising model.(Birgeneau et al. (1977)). 

The expected power laws for K" and x"(q=O)/x °  were given by: 

K 	- 	F(T/TN - 
	

(5.5.19) 

and 

x"(qO) 	= 	TN 'Y' 
C(l - 

0 
X 

(5.5.20) 

The results from the experiments on pure antiferromagnetic systems 

such as K2NIF4 , K2MnF4  and mixed antiferromagnetic systems such 

as Rb 2Mn05NI05F4  (Birgeneau et al. (1977)) showed that the suscep-

tibility decreased and K" increased so rapidly below TN  that 

scattering intensity was observable only down to a few degrees' 

below T N* The experimental 	x 1-x 4 
erimental data for Rb Mn Cr C2. with x = 0.754 

and the parameters obtained from it do not indicate that behaviour. 

Thorough checks were made in order to ensure that the correct 

resolution parameters had been used, particularly with regard to 

the horizontal resolution. A program TWOAXIS was written to calculate 
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FIGURE (5.5.4): 	Inverse correlation length K" as a function 

of temperature obtained by fitting a single 

Lorentzian function for the diffuse scattering 

as described in the text. The values of K" 

obtained from the graph should be divided 

by a factor of 1000 to obtain the value of 

K" expressed in terms of the reciprocal lat-

tice units along the [i,o,o] direction. 
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FIGURE (5.5.5): 	The staggered Susceptibility 

x" (q=O)  /x° 	A" as a function 

of temperature obtained by fitting 

a single Lorentzian function for 

the diffuse scattering, as des-

cribed in the text. The intensity 

is given in arbitrary units. 
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the resolution widths both along the length of the wavevector transfer 

and at right angles to it in the scattering plane. The program used 

the Cooper-Nathans formalism for the resolution function of.a two-

axis spectrometer (Cooper and Nathans (1968)). Assuming an effec-

tive horizontal mosaic spread for the monochromator of 	= 0 . 55 0  

and a horizontal mosaic spread for the sample of ns  = 0 . 332 0 ,  

excellent agreement was obtained between the calculated Bragg peak 

widths and the experimental values for both longitudinal and trans-

verse scans through the (0,0,2), (0,0,4), (0,0,6), (0,0,8), (2,0,0) 

and (4,0,0) nuclear Bragg peaks. Having established the correct 

values for ri' and n 5  by comparing calculated and experimental 

widths for these resolution limited nuclear Bragg peaks, the longi- 

tudinal width for the (1,0,0) magnetic Bragg peak was then cal-

culated. This calculated width was l% higher than the experi-

mental value. This difference was well within the typical dif-

ferences between the calculated and experimental values for the 

nuclear Bragg peaks, verifying that the (1,0,0) magnetic Bragg 

peak was effectively resolution limited. The assumption that 

- 	the Bragg peak widths for a longitudinal scan through the (1,0,0) 

Bragg peak was the best estimate of the horizontal resolution 

width for the scans through Q = (1,0,-0.392) was therefore 

entirely justified. (The effect of changing the horizontal and 

vertical resolution widths by small but significant amounts, was 

to change the absolute values for the parameters derived from the 

fits but not to change the qualitative features of the staggered 

susceptibility and inverse correlation length against temperature 

plots.) 
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Clearly, either there is an unusual type of magnetic phase tran-

sition around T = 32K or there must be some other explanation of 

the temperature dependence of the scattering around the (l,O,n) 

ridge. One possibility is that there may have been large concen-

tration fluctuations in the sample. The effect of this would be 

to smear the transition since the concentrations at different parts 

of the crystal would correspond to different values of TN. 

Secondly, there may have been contributions from the transverse 

susceptibility (which would not be expected to diverge at T = TN). 

Birgeneau et al. (1977) were able to fit two Lorentzian functions 

to their data, One corresponding to. the longitudinal wavevectOr 

dependent susceptibility and the other corresponding to the trans-

verse wavevector dependent susceptibility. Below the critical 

temperature region they found the scattering to correspond solely 

to the transverse susceptibility. They found the transverse sus-

ceptibility x(qO) to be constant, (this corresponds to the 

staggered susceptibility x (q=O)I x° varying linearly with the 

temperature) in that temperature region and were able to fix a 

Lorentzian function for the transverse susceptibility, then fit 

the additional scattering to a Lorentzian function for the longi-

tudinal susceptibility for temperatures up to and just above TN. 

An attempt was made to fit the Rb Mn Cr C 	(with 2 x 	4 

x = 0.754) data using two Lorentzians. The only way this could 

be achieved was to fix the Lorentzian parameters K-1--  and A-1-- for 

the transverse susceptibility for each scan. A1  was expected to 

vary linearly with temperature and K-1  was expected to remain 

constant up to TN.  No attempt was made to fit the data below 
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T = 22.9K because it was expected that the quasi-elastic approxi-

mation that kBT >> tiw was not being fulfilled in that temperature 

region, leading to non-linear behaviour of A -1--  with temperature. 

AL and a'- were set at the values obtained at T' = 22.9K in the 

previous single Lorentzian fit. At higher temperatures K1  'was 

fixed at this value and A1- was fixed at a value proportional to 

the temperature. Unfortunately with the parameters'of the 'fixed 

Lorentzian set at these values, another Lorentzian could not sen-

sibly be fitted to the additional scattering intensity. 

In conclusion, for the sample of Rb 2Mn Cr 1  CZ4  with x = 0.754, 

there was a magnetic phase transition at around TN = 32K. The 

evidence for this lies in the onset of Bragg scattering at the 

(1,0,0) position below TN and the decrease in width and increase 

in intensity of the diffuse scattering in scans through the (1,0,n) 

ridge, as TN  was approached from either above or below. The data 

from scans through the (1,0,n) ridge of diffuse scattering could be 

fitted to a single Lorentzian function for the wavevector dependent 

susceptibility, with good agreement between the experimental data 

and the calculated values at all temperatures. However, the para-

meters A" and K" obtained from the fitting do not behave, as 

a function of temperature, in a similar way to similar parameters 

obtained in mixed antiferromagnetic systems, such as Rb 2Mn05Ni05F4  

(Birgeneau et al. (1977)). This could be for physical reasons 

(there are competing exchange interactions in this system) or could 

be due to effects such as concentration fluctuations in the sample 

or a contribution to the observed intensity from the transverse 

susceptibility which cannot be quantified. Finally, it is noted 
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that the value of TN = 32K is approximately 8K lower than 

the value of TN=  40K implied by the phase diagram of Kohles 

et al. (1982). 



-117- 

CHAPTER 6 

('rMm TIC TC'PJC 

In Chapter 3 magnetic excitation spectra for a diluted simple 

cubic ferromagnet with nearest neighbour Heisenberg interactions 

were calculated by the " equation-of-motion" method. Spectra were 

obtained with reduced wavevector values along the 1,1,1 direction 

across the entire Brillouin zone for the magnetic site concentra-

tion values x = 0.9, x = 0.5 and- x = 0.34. The effects of disorder 

were expected to become more obvious as the reduced wavevector 

increased at a given value of x and this proved to be the case. 

The spectra consisted of broad distributions of intensity with the 

weight moving to higher energies as - the reduced wavevector increased. 

The effect of decreasing x was to move the weight in the spectra 

to lower energies at a given reduced wavevector, (except at q = 0, 

where at all three- concentrations resoluticn limited peaks were 

obtained). A comparison was made between calculated spectra and 

data from inelastic neutron scattering measurements on the metallic 

diluted ferromagnet Cr1_Fe x with x = 0.21. This comparison was 

of a qualitative nature but nevertheless suggested that the features 

observed in the inelastic neutron scattering experiments could be 

attributed mainly to the effects of the dilution-induced disorder. 

In addition, this work has stimulated more experimental interest 

in the system Cr1_Fe x with x = 0.27. A proposal has been submitted 

to the Institut Laue-Langevin, Grenoble, France (I.L.L.) to test 

whether a localised mode observed in the calculated spectra also 
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exists in the Cr l-x x Fe system. This could give valuable information 

as to the range of the exchange interactions in the Cr1_Fe x system 

for x = 0.27. 

In Chapter 4, the results of an investigation into the magnetic 

structure and magnetic excitations for the d = 2 mixed magnetic 

system with competing spin anisotropies K2CoxFei_xF4  were reported. 

Neutron scattering experiments for a sample with x = 0.6 showed that 

below a phase transition at TN = 92.2±0.1K the system exhibited 

uniaxial antiferromagnetic long-range order with the spins aligned 

along the c-axis of the unit cell, and the temperature dependence 

of the order parameter was well described by the two-dimensional 

Ising model. Inelastic neutron scattering measurements at T 5K 

revealed two bands of magnetic excitations. A lower energy band 

corresponding to excitations propagating mainly on the Fe ions and 

a higher energy band corresponding to excitations propagating mainly 

on the Co ions. 

Neutron scattering measurements were also performed on a sample 

with nominally x = 0.2. Below a phase transition at TN = 66±1K 

there was antiferromagnetic long-range order for the spin components 

along the c-axis. The critical exponent 	for the order parameter 

was slightly higher than that for the d = 2 Ising model but this 

was considered to be due to the fact that no account was taken of 

rounding of the transition due to concentration inhomogeneities in 

the sample. Below a second phase transition at TL = 32± 2K com-

ponents of spin in the basal a-b plane acquired long range order. 

The details of this lower transition are somewhat obscure since 

no two-dimensional critical scattering was observed at TL.  Never- 
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theless, the phase transition at TL was found to be sharp as a func-

tion of temperature, when allowances were made for sample inhomo-

geneity. This is different from the behaviour found by Wong et al. 

(1983) in CoFe1_C2.2,  where the lower transition was very smeared. 

They suggested that the lower transition at TL  in  CpFe1_C22  was 

smeared because the ordering of one spin component generated a random 

field on the other and this 	random field inhibited the develop- 

ment of true long-range order. This mechanism could occur in 

CoFei_C2.2 because of a Dzyaloshinsky type of interaction arising 

from the low local symmetry in the FeCZ 2  structure. The difference 

between the results at T 	 2 L 	x l-x for Co Fe C2. and K 2  Co  x  Fe  l-x 4 F with 

x = 0.2 may therefore be attributable to the fact that the local 

symmetry. in the latter structure is much higher. Inelastic neutron 

scattering measurements at T = 5K for K 2 x l-x 4 Co Fe F with x = 0.2 

revealed a single branch of magnetic excitations at energies below 

ru 12 meV. 

More detailed inelastic neutron scattering measurements of the 

magnetic excitations in the OAF phase were made on a sample with 

nominally x = 0.27, for which TN = 64.4±0.6K and TL = 27±2K 

(Vlak et al. (1983)). • These measurements revealed two branches of 

magnetic excitations which appeared to be degenerate at the Brillouin 

zone boundary. An investigation of the temperature dependence of the 

lower branch of the excitations at small reduced wavevector/low energy 

showed that the spin wave gap c decreased and the intrinsic width 

of the excitation increased as the temperature approached TL  from 

below. 

Calculations have also been presented of the magnetic structure 
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of K 
2 x 1-x 4 Co Fe F at T = OK. The results of these calculations predict 

that at T = OK, the OAF phase is in the concentration range 

0.1<x<0.5. The results from the calculations of the concentration 

range of the OAF phase and the average cant angle, between the spin 

and the c-axis, as a function of concentration are reasonably con-

sistent with the experimental results of other workers (Vlak et al., 

(1985), Fendler and van Eynatten (1984)). 

Magnetic excitation spectra for K 
2 x l-x 4 Co Fe F were calculated 

by the "equation-of-motion" technique. In the uniaxial antiferro-

magnetic phase Sxx(Q,W) = S(Q,w) and SZZ(Q,w) = 0, as expected 

by symmetry considerations. 	However in the OAF phase S
xx 
 (Q,w), 

S(Q,w) and S(Q,w) are different. There therefore may be three 

spin wave branches in the OAF phase. These would, however, be 

difficult to resolve by inelastic neutron scattering experiments 

on the x = 0.2 and x = - 0.27 samples, because they cross in the 

Brillouin zone and are close together, particularly at the Brillouin 

zone boundary. The results for x = 0.6, x = 0.27 and x = 0.2 are in 

reasonable agreement with the experimental results. Calculations of 

the concentration dependence of the SC(Q,w),  S(Q,w) and S(Q,w), 

at the Brillouin zone centre, revealed a minimum in the energy gaps 

for all three spectra at the phase boundary between the OAF and the 

uniaxial phases for T = 0. 

Finally, in Chapter 5 results were reported of an investigation 

into the magnetic phase transition and magnetic excitations in 

Rb2MnxCr1_xCL4, with x = 0.754. Measurements of the order parameer 

and the d = 2 diffuse scattering intensity revealed that there was 

a phase transition around TN = 32K below which antiferromagnetic 
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long-range order existed. The results of fitting a single Lorentzian 

function for the longitudinal susceptibility convoluted with the 

spectrometer resolution function, to the data from scans through the 

(l,O,) ridge of diffuse scattering, gave results which were unusual 

for both the longitudinal inverse correlation length K" and the 

longitudinal staggered susceptibility at q = 0.. It is believed that 

a combination of concentration fluctuations in the sample and trans-

verse susceptibility scattering, neither of which could be accounted 

for quantitatively, may have caused the transition to appear smeared 

out in temperature. Inelastic neutron scattering measurements on 

the magnetic excitations in this x = 0.754 sample at T = 5K revealed 

a single branch of excitations at slightly lower energy, compared 

with the energy of the excitations in Rb 2NnCZ4 , at a given reduced 

wavevector. 	The observed scattering intensity was very weak for 

reduced wavevector transfer values beyond two fifths of the way to 

the Brillouin zone boundary and further measurements are planned, 

using a higher flux instrument at the I.L.L. to investigate the 

magnetic excitations near the Brillouin zone boundary. 
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Abstract 

The Cooper—Nathans formulation of the resolution 
function of a triple-axis crystal spectrometer for 
neutron-scattering experiments gives a singular resol-
ution matrix when the scattering angle is small. The 
origin of this singularity is discussed and an alterna-
tive derivatioa of the resolution matrix given which 
avoids this difficulty. The results are illustrated by 
numerical calculations for several typical experiments 
showing that resolution corrections may be large and 
very significant for experiments at small scattering 
angles. 

1. Introduction 

A knowledge of the effects of the experimental resol-
ution in momentum and energy transfer is an impor-
tant part of any inelastic neutron-scattering experi-
ment. A general formulation of the resolution func-
tion of a triple-axis spectrometer was derived by 
Cooper & Nathans (1967), and discussed by Bjerrum 
MØller & Nielsen (1970), using a Gaussian approxi-
mation for all the contributing transmission functions 
and crystal mosaic distributions, and the normalisa-
tion of this function has been treated at length by 
Dorner (1972), and Chesser & Axe (1973). Computer 
programs are widely available for the calculation of 
this function, and it is known to provide a good 
representation of the instrumental resolution in many 
types of triple-axis measurement. 

This paper is concerned with one particular limit 
of the triple-axis resolution function, that of small 
scattering angle at the sample (small 20. in Fig. 1). 
Experiments performed at small scattering angles 
tend to suffer from high background counting rates, 

Reactor 

Anotyser 

MonochrOmotO 
129. : 	29, 

\ 
Detector 

Fig. 1. Plan view of three-axis spectrometer. a, 6 are horizontal, 
vertical collimations. 5M. C,  5A  take the values —1, +1 according 
as scattering at monochromator, sample, analyser is to the right, 
left. Configuration shown is 5M = = = — I. 

and severe restrictions imposed on the energy trans-
fers available by the conservation of momentum 
requirement (kinematic limits). In the measurement 
of low-energy magnetic excitations, however, par-
ticularly in ferromagnetic materials, such experiments 
have a number of advantages. Firstly, the magnetic 
form factor takes its maximum value near (0 0 0), the 
forward direction. Secondly, scattering from phonons 
is generally of low intensity, because of the 1Q1 2  factor 
(Q is the neutron wavevector transfer) in the phonon 
cross section. Thirdly, the effective resolution near 
(000) does not suffer from transverse or longitudinal 
broadening due to crystal mosaic spreads or lattice-
parameter distributions [for the effect of the former 
on resolution, see Werner & Pynn (1971)], and this 
allows, under some circumstances, the direct 
measurement of the magnetic excitations in powdered 
or polycrystalline materials [e.g. Passell, Dietrich & 
Ms-Nielsen (1976), on EuO and EuS] and even amor-
phous ferromagnetic materials (e.g. Axe, Shirane, 
Mizoguchi & Yamauchi, 1977). For these reasons, 
many experiments have been performed at small scat-
tering angles in weakly ferromagnetic materials, for 
which the magnetic scattering may generally be weak 
compared with the phonon scattering, and large crys-
tals may be difficult to grow. 

As the scattering angle tends to zero, both the 
efficiency factor and some elements of the resolution 
matrix diverge, since both contain terms in the 
reciprocal of the sine of the scattering angle, and 
extreme care is required to treat the limit correctly. 
The problem first became apparent to the authors 
when using a standard computer program to calculate 
the Cooper—Nathans function at small scattering 
angles (0.5-1 5°). The resolution matrix itself becomes 
singular in the limit of the scattering angle tending 
to zero, and numerical integration over the resolution 
matrix does not give reliable results unless performed 
with great care and a high degree of numerical pre-
cision. 

In the following section, we discuss this limit in 
the Cooper—Nathans formalism, and then in § 3 we 
give a moredirect formulation of the resolution func-
tion, which completely eliminates the problems 
associated with the Cooper—Nathans function. The 
results are illustrated by some applications in § 4. 

0108-7673/84/0201 52-09$01.50 © 1984 International Union of Crystallography 
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2. Small-angle limit of the Cooper–Nathans 
resolution function 

A triple-axis spectrometer (Fig. 1) uses Bragg reflec-
tion from a monochromator crystal to define a 
nominal incident neutron wavevector, k,, 

IT 
1k 1 1= 	 (2.1) 

dm  sin Om  

and reflection from an analyser crystal to define a 
nominal scattered wavevector, k, 

IT 
(2.2) 

dA 51fl °A 

where dMA is the appropriate plane spacing and 0M.A 
is the appropriate Bragg angle. The directions of 
incident and scattered beams are defined by the col-
limators before and after the sample, and the scattered 
intensity is measured as a function of nominal 
momentum transfer, Qo,  and nominal energy transfer, 
hi'0, where 

Q0 =k, –k F, 	 (2.3) 

hz'O=—(1k112–IkFI2). 	(2.4) 
2m 

Because of the non-zero angular divergences of the 
collimators and the mosaic spreads of the mono-
chromator and analyser crystals, neutrons are counted 
in the detector which have not suffered the nominal 
momentum and energy changes. The actual changes, 
Q and hi', are related to Q0 and hi'0  by 

QQo±8Q 	 (2.5) 

hi' = hi'0  + 5(hi'). 	 (2.6) 

It is convenient to write these deviations from the 
nominal as a four-component vector, X, 

X = [6Q, (hv)]. 	 (2.7) 

Cooper & Nathans (1967) showed that the instru-
mental resolution can be written in the Gaussian 
approximation as 

R(X)=R 0 exp{–X. M .X}. 	(2.8) 

R 0  and M are complicated functions of the angles 
defined by the collimators, the crystal mosaics and 
the nominal Ik,I and Ik F I (Chesser & Axe, 1973). R 0  
also includes terms due to the detector efficiency and 
the monochromator and analyser reflectivities, and 
some of the elements of M depend upon the senses 
of scattering (i.e. to the left or to the right) at the 
monochromator, sample and analyser, in addition to 
the dependence of both R 0  and M on the scattering 
angle at the sample. 

In detail, R0  contains the following terms which 
depend on 20, (20, is defined in Fig. 1), 

R0c A'
2  sin 20. 	

(2.9)  

(from Chesser & Axe, equation 6), where A' is as 
defined by Cooper & Nathans (equation 45a) (see, 
also Appendix A: A.43). In the limit, as 20, goes to 
zero, the angles between k, and Q0, and between kF 
and Qo,  4p j  and 2,  respectively (defined in Fig. 2), 
tend to the same value, , say, since 

(Pl - 2+ 2 Os 	 (2.10) 

(2.11) 

The quantity A' is the sum of six terms, two of which 
are proportional to 

Q cos 2  

k sin' 20, 

For the sake of simplicity, consider two possible cases 
in whch 20, tends to zero. Firstly, for elastic scattering 
(hv=0, Ik,I=Ik FD, this quantity decreases as 20, 
tends to zero (Q0= kF  sin 20,; cos' =sin 2  20,), A' 
tends to a constant value and R0  then diverges as 
1/sin 20,. Secondly, for inelastic scattering at constant 
Q0, A' behaves like 1/sin 2  20, as 20, tends to zero, 

22 and R 0  tends to a large (X k/ Q) constant value. 
The behaviour of the elements of the matrix M in 

the small 20, limit may be illustrated by considering 
only the in-plane (x and y) components of 8Q,' 
because the out-of-plane (z) momentum component 
is de-coupled from the rest and does not depend on 
20,. For simplicity, we illustrate the results by choos-
ing ô(hi') =0. This gives the section through the resol-
ution function in the x–y plane (the scattering plane) 
at zero energy deviation. Rotation by an angle, 0, in 
this plane diagonalizes this part of the matrix (see 
Appendix A for details), and the result is that 

(2.12) 

M 4.  
M x A ,i2 2O 	(2.13) 

(2.14) 

where the new x,y axes are related to the Cooper-
Nathans axes (parallel, perpendicular to Q 0) by the 
angle 0, and the m, are defined in Appendix A 
(equations A.6–A.13), and are constant as 20,-+0. 

Equation (2.12) shows that the rotation, 0, required 
from the Cooper–Nathans coordinates X to the eigen-
vectors of the section of the resolution matrix in the 

ki  

P2  
Fig. 2. Scattering triangle (momentum conservation) correspond- 

ing to Fig. I. 
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scattering plane is just the angle that Q0  makes with 
either k 1  or kF. This means that this section through 
the resolution function does not change its orientation 
with respect to k, in a constant-Q scan, although it 
rotates with respect to Q0. Equations (2.13) and (2.14) 
show that the component of M in the plane and 
parallel to kF is very much larger than the component 
perpendicular to k, This shows that only one of the 
eigenvalues of M becomes large as 2O becomes small, 
and that the resolution function is very thin in the 
direction parallel to kF when 6(hv) =0. 

It should be emphasized that the above is con-
cerned with a particularly simple case of the four-
dimensional resolution function, and illustrates the 
physical effect of the divergence found in the limit 
of small scattering angle. It suggests that a different 
approach to the formulation of the resolution func-
tion might eliminate the divergence and this is pur-
sued in the next section. 

3. Direct formulation for small-angle limit 

As may be seen from the results of § 2 above, that 
component of momentum deviation which is parallel 
to kF is highly correlated with the energy deviation. 
So, in the small-scattering-angle limit, simplification 
may be achieved by working in a frame of reference 
fixed with respect to kF, say. (Because the scattering 
angle is small, we could choose k, instead, but Q0  as 
chosen by Cooper & Nathans varies in direction with 
respect to kF rapidly as hz.'0  is varied.) 

The derivation of the resolution function proceeds 
as for the Cooper—Nathans form to the point where 
the instrument transmission is expressed in terms of 
deviations from the nominal k, and k, in each of 
three mutually orthogonal directions, in frames fixed 
with respect to k, and kF, (x parallel to k, and z out 
of scattering plane in each case). Cooper & Nathans 
then transform to the four components of X and two 
redundant variables, one in-plane and one out-of-
plane, which are then integrated out. In the limit 
considered here, we take k 1  and kF to be parallel 
(Fig. 3), and transform to three components of Sic 

k 

ZEY  

Fig. 3. Coordinates for calculating K. Note that, when relating to 
Q, it is still necessary to calculate , the angle between Qo  and 

k, or kF (see Fig. 2). 

(momentum deviations viewed in the frame fixed with 
respect to kF), and three redundant variables, which 
are integrated out. 

Explicitly, we put 

6,c=Sk,-6k1 	 (3.1) 

and transform from the space defined by (6k 1, 6k1 ) to 
that defined by (6k,, Sic). The energy deviation is given 
by 

3(hp) =—(2Ik,I8k —2Ik FJ5kfX ) 	 (3.2) 
2m 

or 
h2

1 (1 I ±IkFI)(ok_3) 

(lk,I _IkFI)(ok +ok1 )]. 	 (3.3) 
2 

At small wavevector transfers, the second term in (3.3) 
is much smaller than the first, so that the energy 
deviation is linearly dependent on the x component 
Of Sic, 

h2  
ô(hv)—(Ik i I+IkpI)SK, 	(3.4) 

2m 

This linear dependence of the energy deviation on 
one of the momentum-deviation components is the 
origin of the singularity of the Cooper—Nathans 
matrix in the limits of small Qo,  and the divergence 
of the Chesser & Axe efficiency terms. By inserting 
this dependence analytically at this stage in the deri-
vation, the resulting resolution function, now 
expressed in terms of three rather than four variables, 
does not have a singularity as 20 goes to zero. 

We now have the resolution matrix M expressed 
in terms of the three components of K, one of which 
(z) is not coupled to the other two. It is straightfor-
ward to diagonalize M by a simple rotation in the 
scattering plane by some angle 9. All the information 
about the resolution function is contained in the three 
eigenvalues of M, the angle 6, and the efficiency 
factor R0, all of which are derived in closed form in 
Appendix B. The energy deviation is given by (3.4). 
We have therefore eliminated the difficulties encoun-
tered at small 20 in the conventional approach. 

The expressions derived in Appendix B show that 
the slope of the resolution matrix varies rapidly with 
energy transfer and in particular that it is possible to 
focus both energy gain and energy loss at small scat-
tering angles (Axe et al., 1977), as can also be seen 
qualitatively without the use of algebra. It is possible 
to obtain further simplifications if the dispersion rela-
tion is a function of only IQI but these are sufficiently 
complex, as the resolution function is then no longer 
Gaussian, that quantitative calculations are just as 
readily performed with the expressions given in 
Appendix B. 
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4. Applications of the direct formulation 

The prediction of excitation line-widths and line-
shapes from model scattering laws may be accom-
plished very simply in many special cases (Cooper & 
Nathans, 1967; Haywood, 1971). However, when the 
scattering law varies rapidly or non-linearly over the 
volume of the resolution function, such predictions 
necessarily involve the use of numerical integration 
methods (Werner & Pynn, 1971; Samuelson, 1971). 

A typical ferromagnon dispersion law at small IQI 
may be written as 

hv= s8 +DIQ1 2 , 	 (4.1) 

where Eg  is the anisotropy gap, and is usually very 
small, and D is called the spin wave stiffness. Thus 
the excitation energy is a rapidly varying function of 
QI and, because of the population term in the cross 

section, the intensity of scattering is a function of JQJ. 
The problem is further accentuated by the design of 
triple-axis spectrometers, which usually use relaxed 
out-of-plane collimation to maximize the scattering 
intensity, but in an experiment where the nominal 
wavevector transfer, Q0,  is small, the out-of-plane 
deviations, 8Q, may be as large as, or larger than, 
IQol. Since 

	

I 2_ 	2 
iQi - Qol +(8Q)2  +(c5Q) 2  +(&Q)2  +21Q0 1 3Q, 

(4.2) 
the spin wave energies sampled in the resolution 
volume may be up to several times as large as the 
spin wave energy at the nominal wavevector. This 
means that the scattering observed in a constant-Q 
scan is broad in energy, and the peak of the scattering 
may be at some energy higher than the energy of the 
spin wave at the nominal wavevector. These effects 
are just the same as those observed for excitations 
near Bragg peaks at scattering angles other than zero 
(Samuelsen, Hutchings & Shirane, 1970; Hutchings, 
Als-Nielsen, Lingard & Walker, 1981). It is not 
difficult to show that, if the in-plane resolution were 
to be perfectly sharp, the scattering from spin waves 
in a constant-Q scan would appear as in Fig. 4. The 
intensity, 1(v), is given by 

{n(v)+±]exp {-_M [JhvHs Q2]} 

if Ih11Iag+DQ 	(4.3) 

	

0 	 otherwise, 

where +, - apply for neutron energy loss, gain and 
n(v) is the Bose—Einstein population factor. That such 
scattering in practice never takes this form indicates 
that the in-plane resolution must also be considered, 
with the effect of rounding the sharp edge at low 
frequencies, and moving the maximum intensity to 
higher frequency. 

The most satisfactory method of accounting for 
resolution effects in this case is to use a computer 
program to generate intensities by integrating an 
assumed dispersion relation over the calculated resol-
ution function. This has been done, using the direct 
formulation of § 3, for a number of different data sets, 
taken under different conditions in small-scattering-
angle experiments. Use of this method avoids the 
difficulties associated with the use of the Cooper-
Nathans formulation mentioned in the Introduction. 
Firstly, the resolution matrix is known exactly in 
diagonal form, and so the problems either of trying 
to integrate over a sharp function in the crystal coor-
dinates, or of trying to diagonlize a nearly singular 
matrix to transform to the natural resolution-function 
coordinates, are avoided. Secondly, the number of 
dimensions of the numerical integral is reduced by 
one, enabling a more accurate integral evaluation for 
a given amount of computing resources. 

Fig. 5 shows spin wave scattering intensities gener-
ated by numerical integration from the form derived 
in Appendix B (equation B. 13) utilizing the directly 
derived resolution matrix (equations B.4—B.9) and 
assuming a gapless quadratic spin wave dispersion 
relation. The figure shows the effects of changing 
spectrometer configuration and vertical collimation. 

Fig. 6 illustrates simulated intensities fitted by non-
linear regression analysis to some of the data of 
Bernhoeft, Lonzarich, Mitchell & Paul (1983) for 
Ni 3AI. The function form is defined by a flat back-
ground term, a Gaussian peak to represent elastic 
scattering, and the intensity due to spin wave scatter-
ing (dispersion defined by equation 4.1). This last 
term was simulated by performing a numerical 
integration over the resolution function, as derived 
in § 3, of a ô-function spin wave scattering law. The 
importance of an aácurate resolution correction for 
this data becomes clear from the effective shift of the 
nominal peak frequency by up to —33%, and an 

10- 

L c 6 0.1 02 

Frequency TransterTHz) 

Fig. 4. Intensity of scattering from spin waves which would be 
observed in a constant-Q scan if the only resolution contribution 
were the out-of-plane momentum component. Calculations were 
ma4e using equation (4.3) in the high-temperature limit, so that 
fl(P)+_k+ ka,T/hv. Values of parameters used were M 
500 A 2, Q, = 0-1 A, Eg  =0 and D = 10 THz A2. 

C 

0 

>' 
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I -i -i Configuration 
	

I 1-1 Configuration 
4.00  Vertical collimation 

	
400 Vertical cofhinration 

C 

0 

a 

C 

C 

1-11 Configuration 
400 Vertical collimation 

1-1-1 Configuration 
100  Vertical collimation 

Frequency Transfer (1Hz) 

Fig. 5. Pure spin wave scattering generated by the computer program. (a), (b) and (c) differ only in configuration of the spectrometer 
with the vertical collimation the same for each, namely = 131 = 132 = 163  = 40°. (a) and (d) differ in vertical collimation, but have 
the same configuration [the intensity shown for (d) has been amplified by a factor of eight]. Note that arrows point to the nominal 
spin wave energy.. In each, Q =0-075 A, 8g = 0 and D = 10 THz A. Horizontal collimation is (a) 30', (b) 20', (c) 20', (d) 30'. 
kF = 155 A', 20,:s 28°. 

Frequency Transfer (THh 

Fig. 6. Experimental data (0) and computer-generated least-
squares fit (solid line) showing spin wave scattering from Ni 3 AI 
at various wavevector transfers and temperatures (T 0 =40 K). 
20 s 13, 16, 18° for (a) and (b), (c), (d), respectively. kF= 
1.1 A'. See text for details. 

energy width in the spin wave peak generated by 
resolution effects which is comparable to the observed 
peak frequency, and roughly double the energy width 
observed for Q-independent elastic scattering. 

5. Conclusions 

We have investigated the Cooper—Nathans resolution 
function for triple-axis neutron spectrometers in the 
limit of small scattering angles and found that two 
of the four deviations from the nominal wavevector 
(three components) and from the nominal energy 
become linearly dependent, giving rise to a singular 
resolution matrix and efficiency factor. 

By treating this dependence analytically we have 
derived a resolution function for the small-scattering-
angle limit which is simpler and both easier and faster 
to compute than the general Cooper—Nathans func-
tion. Numerical simulation techniques have been 
employed which show that this direct formulation 
allows a detailed analysis of data from small-angle 
experiments. 

We emphasise that the use of standard' Cooper-
Nathans programs for the calculation of the resol-
ution effects does not give satisfactory results for 
small scattering angles, unless the resolution matrix 
is diagonalized and the numerical integrations per-
formed in the diagonlizéd frame of reference and 
unless a high degree of numerical precision is used 
to cope with the singularity of the matrix. The direct 
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analysis we have given allows the calculations to be 
performed more accurately and more speedily. 

This work was supported by the SERC. 

APPENDIX A 
Details of Cooper—Nathans at small angles 

In the Gaussian approximation, the resolution func-
tion may be written 

R=R0(X)exp{—X. M(X).X}, 	(A. 1) 

where X is the space defined by a set of deviations 
from nominal parameters, R0(X) is the efficiency fac- 
tor, and M(X) is the resolution matrix in the space X. 

The Cooper—Nathans function is expressed with 

X=[6Q, 6(hv)], 	 (A.2) 

where the axes of 6Q are fixed with respect to Q0. 
In the space defined by 

X = (8k 1, 8k1), 	 (A.3) 

where 

8k=3k, 3k J),5kJZ, 	 (A.4) 

the resolution matrix is 

M(8k 1, 6k1) = 
M11 m 12  0 0 0 0 
M12 m 22  0 0 0 0 
o 0 m 33  0 0 0 	, 	(A.5) 
o 0 0 M44 m 45  0 
o 0 0 m 45  m 55  0 
o 0 0 0 0 m 66  

where 

M 11  = (2 tan 0M )2 (ao 
 +_

1\1 

 (2llM)2)kb5 (A.6) 

M12 = 	2 M tan °M (1 	1 	

) 

1 
— EMbO  

(-L 11"1  
m 22 =+_+---)=b 

a 0 	a1 	
ki  

(p ' 2 m33 = 	+ 	
1 

 
(2 sin 0Mi)2 	

=  

M44 =(2 tan 04)2(!± 	 b3  \a 3 	(2 	)2)/2 (A. 10) 

I 	ll 
A tan 0A 7 )T 	—EA 

(a3  
M45 = 2 	 j+ 	

\ 
(A.11)  

11 ) 1  U_L
3 = b2 m55 =+ 2 	2 (A. 12) 

a2 	T1A 	k 

/1 	1 	\ 	I 
M66 = ( —i + 

(2 sin OA71A) 	
2 	a 2, 

\/3 2 
(A.13) 

where the 0's, e's, a's and /3's are defined in Fig. 1, 
k, and kF are defined by (2.1) and (2.2), 77MA, 771.A 
are the horizontal and vertical mosaics of mono-
chromator and analyser, and the b's and a's are those 
defined by Cooper & Nathans (1967), equations (44) 
and (55) (note the correction given by Dorner, 1972). 

The transformation to the space x', where 

x'= [8Q, 3(hv), 5k,,, 8k 1 ], 	 (A. 14) 

is given by the matrix U, so that 

x'=U.X. (A.15) 

If the inverse of U is V, then 

o o 0 0 V15 0 
V21 V22 0 V24 V25 0 

0 0 z36 	
(A. 16 o 0 0 V44 V45 0 

V51 v52  0 v 54  v 55  0 
o o v63  0 0 V66 

where 
v 15 =1 (A.17) 

V21 = — Es cos 	' 2/ sin 20 (A.18) 

= sin p2/sin 20 (A.19) 

V24 = —e 5 /(y sin 20) (A.20) 

V25 = —s5 (COS 20.— k,/k F)/sin 20. (A.21) 

= — s5Q0 cos cp I  1(kF  sin 20) (A.22) 

V36 = I (A.23) 

v44 =—l/y (A.24) 

v45 = k,/kF  (A.25) 

V51 = — e cos p 1 /sin 20. (A.26) 

V52 = sin 	1 /sin 20. (A.27) 

V54 = — es cos 20,/(y sin 20) (A.28) 

= —e[l - (k 1 / k F) cos 205 ]/sin 20. (A.29) 

= — e5Q0 cos go2/(kF sin 20) (A.30) 

v63 =1 (A.31) 

v66 =1, (A.32) 

where 	, 92 and 20 are defined in Fig. 2, and 

= kFh2/ M. (A.33) 

The dependence on 6k,, 5k 1, is irrelevant, so these 
parameters are removed by integrating over all poss- 
ible values. This leaves the Cooper—Nathans matrix, 
which has four components, one of which, that in 
ôQ, is uncoupled from the other three. 

Consider only 	6Q, with 8(hz.') set to zero; 

M=(M M

) \M 	
(A.34) 
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The elements are 

	

M. =(pv 1  +av1 —2rv 21 v 51 )/A' 	(A.35) 

Mi,, =[Pv21u22+av51v52—r(v21v52+v22u51)}/A' 
(A.36) 

	

Mi,, =(pv 2 ±rv 2 -2rv22 v 52)/A', 	(A.37) 

where 

P = m22 m 55 v 5  + m 7 v 5  + m 22mu 5  

+ 2 m 45  m 22  v45  v 	 (A.38) 

0= 

+2m55 m 12 v 15 v25 	 (A.39) 

7' =   m 22 m 55 v 25 v 55  +m45 m 22 v45 v25  

+m55m12v15v5+m 45 m 12 v45 v 5 	(A.40) 

with 

	

m 7 =m11 m 22 —m 2 	(A.41) 

	

M 8 8 = mm 55  - m 5 	(A.42) 

and 

A' = m 22 v 5  +mv 5  + m 55 v 5  + mt I V 2 

+2m12 v 1 025  ±2m45 v55 v45 . 	(A.43) 

[Compare (A.43) with Cooper & Nathans' equation 
(45a).} 

Diagonalization by rotation in the x—y plane 
through an angle 0 gives 

M'=( 	
M°) 	

(A.44) 
YY 

with 

Xxx 	±(x 2 ±'4' 2)"2] 	(A.45) 

	

M={w - (x 2 +'fr2Y" 21 	(A.46) 

where 

w =[p  +0-27 cos ( - p2)]/A'sin2  20, (A.47) 

X =[p  cos 2 2  +cy cos 

	

- 2r cos (q, 1  + 2)J/A' sin 2  20, 	(A.48) 

. , =[p sin 292 +cr sin 29, 

	

—2r sin (91 + 2)]/A' sin2  20. 	(A.49)  

and 

0 = 1  arc tan (-e5'/x). 	 (A.50) 

This is an exact result from the Cooper—Nathans 
matrix. Now, the approxiation of (2.11) gives 

(A.51) 

	

M=(p+0-2r)/A'sin2 20, 	(A.52) 

= /(p +cr-2r), 	 (A.53) 

where 

	

e = m 55 m 7 v + m 22 in 8 v 5 . 	(A.54) 

Note that, although p, 0 and r independently con-
tain divergent terms as 20,-0, the combination 
(p + 0 —  2r) does not diverge but tends to the limit 

p +cr-2r--*(m22  + m55)(m1 v 5  + mv 5) 

	

—(m 2 v 15  +m45 v45)2 . 	(A.55) 

The result (A.52) and (A.53) indicates that one of 
the three diagonal elements arising from the 5Q,  6Q, 
5(hp) terms in M behaves in the small 20,, lithit as 

M,,cc . 1 	 (A.56) 
AsLn 20. 

Dorner (1972) showed that the terms in R0  which 
depend on scattering at the sample must be derived 
from the determinant of the resolution matrix, since 

(A.57) 
4ir 

(Dorner's equation 22), where V, and VF  are primary 
and secondary spectrometer resolution volumes and 
are independent of scattering geometry at the sample. 
This is consistent with one diagonal element behaving 
as in (A.56), since IMI is the product of the diagonal 
elements, and R0  behaves as shown in (2.9). 

APPENDIX B 
Resolution matrix and efficiency factor in the direct 

formulation 

The derivation of the resolution function in this form 
follows that of the Cooper—Nathans form up to the 
point where the detection probability is expressed in 
terms of the deviations from the nominal incident 
and scattered wavevectors (A.3—A. 13). We transform 
to the three components of 8K (defined in 3.1) and 8k 1  

/ m + m m 12  + m 45  0 	\ I—m a  —m 45  0 
/ m 12  + m 45  m 22  + m 55  0 	\ I —m 45  _M55 0 
I M(6k1,8K) =1  0 0 m 33 +m66 I 0 0 —m 66  

- m - m 45  0 	j M44 m 45  0 
—m 45  —m 5  0 	I m45  m 55  0 

\ 	0 0 —m 6  /\O 0 m f,, 

(B. 1) 
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Now integrate over the three components of 6k 1. This gives 

/ (mm7+m 11 m 8)/s (rn45rn 7 +m12 rn 8)/s 	0 
M(6ic) 

= ( 

(m 45 m 7  + m 12 m 8)/s 2 2 2 (m5 5 rn 7  + rn22 rn 8)/s 	0 	 (B. 2) 
0 	rn33 m66/(rn33 +m66)) 0 

where 

s =(rn22  + rn55)(m 1  + m)—(rn 12  + rn45)2 . 	 (B.3) 

This matrix is diagonalized by a rotation through t9 in the x-y plane, 

0 	 0 
M(6.c') 	

(+(x2 + 2) h/2J 
= 	0 	 ffl—(X 2 +f'2)" 2J 	0 	, 	(B.4) 

0 	m33 m66/(rn33  + m66)) 0 

where 

'cosø 	—sine 	0\ or analyser at the appropriate wavevector, and other 
6.c'= 

( 

sinecost9 	0 8K 	(B.5) symbols are defined above. 

0 	0 	1 / 
In the same way, we may write the total flux incident 

on the sample, 0,, 
with 

& = arctan (I/ X) 	(B.6) (k,) 
= (21T) 312pM (k,)k, cot 0M 

and 

12 	 [(M44 
	+rn22)rn8]/s 	(B.7) 

]_l/2 xl +(2Msin9M\2 

X=[(rn-rn 55)m 7 +(m11 -m 22)m 8]/s 	(B.8) I-L 	
—1/2 

+ 	
1 

L 	$ +(2 77 	sin 0M )2 ] 
'=[2m45 m 7 +2m 12 m 8]/s. 	 (B.9) 

1 	1 	 —1/2 

In order to derive the pre-exponential term in the 
X 	+ 

a(2M)2 
 + 

a(2M)2] 
resolution function, it is necessary to include the  factors which arise from the elimination of 6k 1. To 
avoid 	ambiguity, 	the 	efficiency 	factor 	will 	be Under certain circumstances, it may be desirable 
expressed in terms of the ratio of the detector counting to move the fission-chamber monitor, which is usually 
rate, OD, to the flux per unit solid angle per unit used to measure the flux incident on the sample, away 
wavevector from the reactor, Q(k,), from the sample to before the monochromator-to- 

sample collimator, to cut down the background due 
OD 	2 v 

F)PM(kJ)pA(kI)7 
to small-angle scattering from the monitor. In this 
case, denote the horizontal, vertical collimation from 

I  monochromator to monitor by a, $. The counting 

[ 	

(2isin rate of the monitor, 	'M,  is then given by 
\ 	13o 	/ 

M 	EM 	3 
co(k,)k,2 	

M(jCI)j1 	cot °M 2sin OA) 2]"2 x [ l+
(271,' 

 I3  
x(rn33  +m66)'2s 2  

27,sin OM) 2 ]_I/2

go 
[i  + ( 

xJfJJ S(Q, v) exp {-8sc'M(6K)8K'} 
ui 13  +(2i, 	

0,411/2 
X 

dvd(&c) 
4irm 

1 	1 	1 
x 	

11-1/2 
I ----i+ 	+ 2 
Laoas 	a0 (277)22(2 	)2j 

(B. 10)  
where ED(kF) is the detector efficiency at kF, where EM  is the monitor efficiency at K, = 1, and the 
pM.A(k,, kF) is the peak reflectivity of monochromator efficiency is assumed to be proportional to (k,). 
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The experimentally measured quantity is D/ "M, 

	

OD  ED(kF) h 	pA(kF) 

M 	EM 'J2irm k cot 0M 

Sin 9)] 
-1/2 

L 
	( 277A' 

 /33 

[ 1 	 1  

Sfl 0M)]

1/2 

 

r1 	1 	 1 	11/2 
x 

a5 a 
0

(277m Y 	5(271m) 

X(m 33  + m)2 S  _I/2 .1515 S(Q, ii) 

x exp {-8ic'M(ôic')8ic'} 

X3 [3v - (Ik1I +IkFI)ôscx] dv d(Sic'). 
41Tm  

(B. 13) 

The integral involves three different ways of 
expressing the deviations from the nominal wavevec-
tor transfer (and so, by equation 3.4, from the nominal 
energy transfer). They are related by (B.5) and the 
following: 

cosç —e, sin 	0 
SQ= 	sin (pcos 	0 Sic 	 (B.14) 

0 	0 

or 

COS (9—sq,) sin (ø—e 5(p) 0 
SQ= —sin (e—e 5 ,) Cos (l9—e5 ) 0 Sic'. 

	

0 	 0 

(B.15) 

The effects of sample mosaic have not been incor-
porated into the resolution function here because, in 
the limit of small scattering angles, the three-
dimensional ferromagnetic systems considered here 
show isotropic spin wave scattering (equation 4.1). 
Thus mosaic effects are unimportant, even in 
powdered or polycrystalline samples. For systems 
which display anisotropic scattering at small angles, 
mosaic effects could be incorporated into the trans-
verse momentum components of the resolution func-
tion by performing the transformation (B. 14) on the 
matrix (B.2) and including the terms given by Werner 
& Pynn (1971). 

Note that the spectrometer focusing may be optim-
ized (R0  maximized) by making s smaller by suitable 
choice of configuration. In the small 20, limit, this 
may be achieved with EA = 
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Abstract. Neutron scattering techniques have been used to investigate the magnetic structure 
of K2CoFe 1 _174  with x = 0.2 and x = 0.6. The x = 0.6 sample exhibits only one magnetic 
phase transition, at TN = 92.2 ± 0.1 K. The x = 0.2 sample has two magnetic phase transi-
tions; below TN = 66 ± 1 K the axial spin components order, while below a well defined 
transition at TL = 32 ± 2 K the transverse components also order. The spin wave dispersion 
relations have been measured for both samples using inelastic neutron scattering techniques. 

1. Introduction 

Magnetic systems with competing anisotropies have recently attracted considerable 
attention. Mean-field-theory calculations of the phase diagrams of such systems by 
Matsubara and Inawashiro (1977) predicted four distinct magnetic phases as a function 
of concentration and temperature with an associated tetracritical point. These were a 
paramagnetic phase, a phase in which one spin component was ordered and the other 
disordered, a phase in which only the other component ordered and, finally, a phase in 
which both spin components ordered. 

In mean-field theory the ordering of one spin component affects the ordering of the 
other with the result that the phase boundaries change slope at the tetracritical point. 
More recent calculations including the fluctuations, using renormalisation-group theory 
(see, e.g., Fishman and Aharony 1978) suggest that the ordering of the different spin 
components is decoupled and that the phase boundaries have a constant slope through 
a decoupled tetracritical point. 

There have been several studies of magnetic systems in which there are competing 
anisotropies, as reviewed by Katsumata (1983). By far the most detailed study was made 
by Wong et al (1983) on the CoFe 1  _C12 system. They found that although the high-
temperature transition was well defined, the one at lower temperature was smeared. 
They suggested that this was because the ordering of one spin component generated a 
¶ Present address: Max-Planck-Institut für Biophysik, 6000 Frankfurt 70, Federal Republic of Germany. 
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random field on the other, and that this random field inhibited the development of true 
long-range order. This mechanism could occur in CoFei_C12 because of a Dzyalo-
shinsky type of interaction arising from the low local symmetry of the ions in the FeC1 2  
structure. 

K2CoFe1 _F4  is another system that has competing anisotropies. The end members 
K2CoF4  and K2FeF4  have the K2NiF4  structure (Birgeneau et a! 1970) in which the 
magnetic ions are at the corners and body centre of a tetragonal chemical unit cell. It has 
become conventional to define a magnetic unit cell in which the magnetic a and b axes 
are rotated by 450  relative to the a and b axes of the chemical unit cell and are larger by 
a factor of 2. The antiferromagnetic exchange interactions for the two systems are 
predominantly two-dimensional and the planes can stack in two ways relative to each 
other, leading to a two-domain structure. The competing anisotropy in K2CoFe1  _F4  
arises because in K 2CoF4  the pseudo-spin S = j is aligned along the crystallographic c 
axis owing to the anisqtropic exchange (Breed et al 1969), while in the K2FeF4 the 
single-ion anisotropy aligns the S = 2 spin perpendicular to the c axis (Macco eta! 1978). 
Both of these pure materials have been studied in detail and the exchange constants are 
known. Whilst the magnetic interactions are largely two-dimensional between nearest 
neighbours the order occurs at least partially in three dimensions at low temperatures. 

We have performed neutron scattering measurements on two samples of 
K2CoFe1 _F4  with x = 0.6 and x = 0.2 to study the magnetic phase transitions. In 
K2CoFe1 _F4, the local symmetry is higher than in CoFe i  _C12, so any random fields 
generated by the ordering of one spin component are expected to be very much smaller 
in K2CoFe1_F4 than in CoFe1_Cl2. 

Consequently we have particularly studied the structure and phase transitions of the 
sample with x = 0.2 which shows two transitions and at low temperatures is in the mixed 
phase shown in figure 1. 

Since we made these measurements we have learnt of similar measurements of 
K2CoFe1 _F4  by Vlak eta! (1983). Our results and conclusions are similar to theirs, but 
differ in some important respects. 

0 

1AF2 

t  
ti 

Figure 1. The phase diagram for K2CoFe 1  _F4 . Points shown indicate results from previous 
measurements (Fendler 1982). Note: M denotes the mixed antiferromagnetic phase; AR 

denotes the planar antiferromagnetic phase; AF7 denotes the uniaxial antiferromagnetic 
phase; and i' denotes the paramagnetic phase. 
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The theory of the spin waves in systems with competing anisotropies is not well 
understood despite the work of Matsubara (1981). We report on preliminary measure-
ments of the spin waves, which show a two-band behaviour very similar to that found in 
mixed magnetic systems without competing interactions (Cowley 1982). The results also 
give reasonable accord with the results of Raman scattering experiments (Fendler 1982) 
and with calculations based on a simple Ising model. 

Experimental details 

The neutron scattering measurements were performed on triple-axis crystal spec-
trometers at the National Laboratory, Risø, Denmark, and at the PLUTO reactor, 
AERE, Harwell, UK. The nominally x = 0.2 sample was plate-like with dimensions of 
10 mm x 10 mm x 2 mm while the nominally x = 0.6 sample had a volume of approxi-
mately 1 cm3 . Both samples consisted of large grains of single crystal, but unfortunately 
these grains were misoriented by about 5° with respect to each other. This multicrystal 
character limited the accuracy of some of the experimental results. The crystals showed 
no sign of any chemical ordering of the Co and Fe ions. 

The crystals were mounted in variable-temperature cryostats with the magnetic a *  

and c*  axes in the scattering plane. The elastic measurements at Risø were performed 
using a pyrolytic graphite monochromator and an incident neutron energy of 14 meV 
with a graphite filter to suppress unwanted contaminant neutrons in the incident beam. 
A pyrolytic graphite analyser was used to filter the scattered neutrons and the collimation 
was chosen to be 30', 30', 30' and 60' from reactor to counter. The energy resolution in 
this configuration was 0.8 meV. The inelastic experiments were performed with a similar 
configuration but with an incident neutron energy of 5 meV. 

The experiments at Harwell were performed with a pyrolytic graphite monochro-
mator and a pyrolytic graphite analyser and with a fixed neutron analyser energy of 13 
or 24 meV. The collimations were 100', 30', 30', and 60' and a pyrolytic graphite filter 
was used before the analyser in the 13 meV measurements. 

Experimental results 

3.1. Measurements of the structure 

The intensity of the (1, 0, 0) magnetic Bragg reflection was measured as a function of 
temperature for x = 0.6 and x = 0.2 and the results are shown in figures 2 and 3 respec-
tively. In the former case the intensity rises rapidly on cooling below 90 K and then 
becomes almost constant below 50 K. We believe this indicates the ordering of the 
components in the c direction of the spin below this temperature, in agreement with the 
phase diagram shown in figure 1. 

Measurements through the (1, 0, 0) Bragg reflection along the line (1, 0, i)  showed 
that the width of the Bragg reflection is not limited by the resolution and that it corre-
sponds to the ordering of around four two-dimensional sheets. The intensity of the 
scattering in figure 2(b) does not decrease to zero below TN, most probably because it 
contains a residual Bragg component corresponding to the lack of full three-dimensional 
ordering even at the lowest temperatures. 

The data shown in figure 2(a) were fitted to the form expected for a two-dimensional 
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(a) 
so 	 (a) 
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Figure 2. (a) The (100) Bragg peak inten-
sity as a function of temperature (for x = 
0.6). The full curve indicates the best fit to 
a d = 2 Ising model. (b) The diffuse scat-
tering at Q = (1.035,0,0) as a function of 
temperature (for x = 0.6). 

r  
Figure 3. (a) Full circles indicate the (1, 0, 0) Bragg peak 
intensity as a function of temperature (x = 0.2). The 
open circles indicate the (1, 0, 6) Bragg peak intensity 
(scaled). (b) The diffuse scattering at Q = (1, 0, 
—0.4) as a function of temperature. 

Ising model (Onsager 1944): 

1100(T)/1 100(0) = [1 - sinh-'(2J/kBT)]2fl 
	

(1) 

and a least-squares fit gave /3 = 0.14. This is consistent with the exact solution of the 
Ising model, which gives /3 = 0.125. The fit also gave the transition temperature TN = 
92.2 ± 0.1K. 

The temperature dependence of the (1, 0, 0) magnetic Bragg reflection for the sample 
with x = 0.2 is shown in figure 3. On cooling it increases from zero at a temperature TN 
of 66 ± 1 K and then increases again at a lower temperature TL of about 32 ± 2 K. We 
believe that between TN and TL only one component of the spin is ordered, while below 
TL the other component also orders and the sample is in the mixed phase shown in figure 
1. The data shown in figure 3(a) between 35 and 67 K were fitted to the form given as 
(1) and gave a good fit with ,3 = 0.19 ± 0.02. This is significantly larger than the exponent 
obtained for  = 0. 6, and that expected for ad = 2 Ising model. The difference may well 
arise because no account has been taken of the rounding of the transition due to 
concentration fluctuations. 

The structure of the x = 0.2 system was determined as a function of temperature by 
measuring the integrated intensities of the (1, 0, L) Bragg reflections with ILl <8 and 
the (3, 0, L) Bragg reflections with IL I <4 at various temperatures between 12 and 63 K, 
but mostly close to 30 K. The observed intensities are listed in table 1 for 12 and 35 K. 
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Table 1. Integrated intensity. 

(H, K, L) Experimental 

T= 12K 

Calculated Experimental 

T=35K 

Calculated 

(100) 668 685 355 342 
(101) 374 367 344 342 
(101) 402 367 357 342 
(10) 321 309 127 128 
(102) 327 309 128 128 
(10) 100 118 63 80 
(103) 120 118 83 80 
(10) 98 101 24 28 
(104) 103 101 25 28 
(105) 29 42 14 18 
(105) 38 42 17 18 
(10) 55 39 8 7 
(106) 56 39 7 7 
(107) 14 18 11 5 
(107) 15 18 9 5 
(ba) 19 18 6 2 
(108) 21 18 7 2 
(300) 90 105 64 52 
(301) 82 69 74 67 
(301) 86 69 73 67 
(30) 78 89 40 44 
(302) 79 89 43 44 
(30) 41 50 46 47 
(303) 44 50 46 47 
(30) 37 56 21 26 
(304) 41 56 21 26 

These results were used to determine the structure by fitting three parameters to the 
experimental results. These parameters were an overall scale factor, which is propor-
tional to the square of the ordered moment, the angle between the spin direction and 
the c axis, O, and the relative proportion of the domains that give rise to the (1, 0, 0) and 
(1, 0, 1) Bragg reflections (Thurlings et al 1982). The results for O, and the square root 
of the overall scale factor, which is proportional to the average ordered spin moment, 
are shown in figures 4(a) and (c). The c component of the spin, s cos O, is shown in 
figure 4(b). The results show that ec  is zero above TL but that it increases rapidly below 
TL. The c component of the spin varies only slowly with temperature near 30 K, whereas 
the total spin increases. These results show that for this sample the c axis spin component 
orders at TN but that the perpendicular component only orders at TL. 

The results for the angle 19c  were fitted to the form 

9(T)1e(0) = (1 - T/TL)/5' 	 (2) 

and the results were 

'=0.32±0.04 	(0)=33± 10 	TL= 32± 1K. 

The exponent fi' is characteristic of three-dimensional ordering, unlike that found for 
the transition at TN. 
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Figure 4. Results from fits to Bragg-peak intensities. (a) Average spin S against temperature. 
(b) Average component S against temperature. (c) Cant angle O, against temperature and 
a best fit described in the text. 

The results for O shown in figure 4(c) suggest that the transition at TL is sharp as a 
function of temperature. This was also examined by measuring the temperature depend-
ence of the (1, 0,6) Bragg reflection as shown in figure 3(a). This reflection is relatively 
weak in the upper phase and increases rapidly in intensity on cooling below TL.  These 
results also suggest that TL is sharp and that any smearing is only about 2 K which is 
comparable with the smearing of the (1, 0, 0) reflection at TN. This smearing is most 
likely to arise from concentration fluctuations and so we conclude that within the 
limitations of the experiments both transitions are well defined unlike the results found 
for CoFei _C12 (Wong et al 1983). 

As was found with the sample for x = 0.6, the Bragg peaks for x = 0.2 were not 
limited by resolution in scans along (1, 0, i) showing that full three-dimensional order 
was not established. 

3.2. The diffuse scattering 

Due to the mosaic structure of the specimens, measurements of the diffuse scattering 
are less reliable than measurements of the Bragg reflections, which can be made on a 
single crystal. Above TN the diffuse scattering was measured in scans of the form 
(, 0, —0.4) and the width in was found to decrease as Tapproached TN. At and below 
TN the width of the scattering in these scans was limited by resolution. The intensity of 
the scattering at (1.035, 0, 0) for x = 0.6 and (1, 0, —0.4) for  = 0.2 is shown in figures 
2(b) and 3(b) respectively. The results for both materials show a fairly symmetric peak 
at TN but at low temperatures it does not decrease to zero. For x = 0.2 the scattering 
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Figure 5. The intensity observed along (1, 0, i)  as a function of ij for x = 0.2 at values of T 
(K) of (a) 72, (b) 30, (c) 45 and (d) 12. The full curves are fits to the sums of longitudinal and 
transverse correlation functions. 

slowly increases on further cooling. There is no significant sign of any two-dimensional 
critical scattering at TL in figure 3(b). 

The form of the diffuse scattering forx = 0.2 was measured by scans with wavevectors 
Q along (1, 0, i) at four different temperatures; see figure 5. Below TN there is intense 
scattering near the integer values from the Bragg peaks and this has been omitted. Since, 
however, these peaks are wider than the resolution function it is somewhat uncertain 
how much of the scattering between the peaks is really two-dimensional Bragg scattering 
from the lack of order from one layer to the next rather than true diffuse scattering. 
Nevertheless the scattering was analysed into the longitudinal component, along the c 
axis, which varies as If(Q)1 2  (1 - cos2  q,) and the transverse component which varies as 
I f(Q  12 4(1 + cos2  q), where qq is the angle between the wavevector transfer, Q, and the 
c axis and f(Q) is the average form factor of the ions. 

The results of the fitting are shown in figure 5 and suggest that the scattering is largely 
of longitudinal character at all temperatures. The results gave only (0.15 ± 0.05), 
(0.14 ± 0.05), (0.26 ± 0.07) and (0.24 ± 0.06) of transverse scattering at 4.5,30,45 and 
72 K respectively. 

3.3. Inelastic scattering 

The inelastic scattering was measured in both samples but the more detailed study was 
made for the larger sample with  = 0.6. In this material two branches of the spin waves 
were observed with fairly well defined neutron groups as shown in figure 6. One of these 
branches was almost dispersionless with an energy of about 32 meV and the other 
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Figure 6. (a) A scan through the upper-frequency branch of the dispersion relation for x = 
0.6. Q = (3.2, 0,0) and EF = 24 meV while T = 4.5 K. (b) A scan through the lower-fre-
quency branch of the dispersion relation for x = 0.6. Q = (1.4, 0, 0) and EF = 13.408 meV 
while T= 4.5 K. 

showed more dispersion but had a zone-boundary energy of about 7.5 meV, as shown 
in figure 7. 

These results are qualitatively similar to the results found in other mixed systems 
without competing anisotropy such as Rb 2Mn05Ni05F4, MnCo1 _F2  and KMnCoj _F3  
(Cowley 1982). The upper branch corresponds to excitations propagating largely on the 
Co ions and the lower branch to ones propagating largely on the Fe ions. 

The results are in reasonable accord - with Raman scattering measurements (Fendler 
et al 1982). 

Measurements of the x = 0.2 sample were restricted to only the lower branch because 
of the smaller sample volume. A typical scan is shown in figure 8, and the dispersion 
relation in figure 9. Measurements were made under conditions giving higher resolution 
to examine whether the low-frequency/small-wavevector spectrum was different in the 
Ising phase from that in the mixed phase. The results are shown in figure 10 and in both 
phases only overdamped low-frequency scattering could be observed at small wave-
vectors close to TL.  This was surprising because although a gap is expected in the Ising 
phase it would be absent or much smaller in the mixed phase. Since, however, these 
results are made very difficult by the mosaic structure, a detailed study of the low-
frequency excitations in these phases requires a better sample. 

The Ising model for the mean excitation frequency of the Co and Fe atoms has been 
used to calculate the excitation frequencies assuming that the spins are aligned along the 
c axis. 

For the Co ions this frequency is given by 

= 4 [x(2Ic0) tSS + (1 - x) (2ICoFe) MoSe] 

and for the Fe ions by 

EFC = 4[x(2Icore)ASfSa + (1 X)(2IFeF e)L.Sf e S e] + D[(Se) - (S e)?1 
where SCzO  and SFz e  refer to the ground-state values of SZ  for Co and Fe neighbours 
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Figure 7. The upper- and tower-frequency 
branches of the dispersion relation for x = 0.6. 
Full circles indicate points obtained by inelastic 
neutron scattering. Open circles indicates 
measurements made previously (Fendler 1982). 
Arrows at the zone boundary indicate calculated 
Ising 'spin-flip' frequencies (see the text). 
Measurements were made at T = 4.5 K. 
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Figure 8. (a) A scan through the lower-frequency 
branch of the dispersion relation for x = 0.2. 
Q = (1.2,0,0), EF = 13.408 meV and T = 4.5 K. 
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respectively and (Se)t and (S e )i  are the final and initial values for the ion that is being 
excited and EiSfe =(Se)i - (Sf). 

The exchange parameters 'Co, 'Fe and 'COFC  were taken to be 'Co = 7.48 meV and 
'Fe = 0.709 meV (both from Macco et al 1979) and 'CoFe = (1CoIFe)' = 2.30 meV. The 
single-ion anisotropy is D = 0.398 meV (Macco et a! 1978). The frequencies obtained 
are shown by the arrows in figures 7 and 9 and this simple model gives a very reasonable 
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Figure 9. The lower branch of dispersion relation for  = 0.2. The arrow at the zone boundary 
indicates the calculated Ising 'spin-flip' frequency (see the text). Measurements were made 
at 4.5 K. 
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Figure 10. High-resolution inelastic scans made at (a) Q = (1.1, 0, —0.4), (b) Q = (1.05, 0, 
—0.4), (c) Q = (1, 0, —0.4). Full circles indicate T = 36.0K. Open circles indicate T = 

24.0K. 

description of the zone-boundary frequencies, showing that these are not greatly affected 
by the competing anisotropy. This type of model also gave a good account of the Raman 
scattering results. 

4. Conclusions 

We have studied the phase transitions and excitations of the system K2CoFei _F 4  which 
has competing anisotropies for the two values x = 0.6 and x = 0.2 using neutron scat-
tering techniques. The results for x = 0.6 show that at low temperatures the spins are 
ordered along the c axis and that the phase transition at TN = 92 ± 0.1 K is well described 
as a two-dimensional Ising model. The excitations in this sample have been measured 
and show two bands corresponding to excitations propagating largely on the Co or Fe 
ions and the frequencies of the bands are in good accord with Raman scattering measure-
ments and with a simple Ising model. No calculations have as yet been performed for 
the dispersion of these branches. 

The results for the sample with x = 0.2 are more complex because it undergoes two 
transitions at TN = 66 ± 1 K and TL = 32 ± 2 K. At TN the c component of the spin 
orders and the transition has essentially two-dimensional fluctuations although there is 
some ordering of a few of the two-dimensional sheets. The exponent and critical scat- 
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tering are also consistent with a two-dimensional Ising transition if allowance is made 
for rounding due to concentration inhomogeneity. 

Below the lower transition, TL, the in-plane spin components order and the mean 
spin direction deviates from the c axis by about 300  at low temperatures. This transition 
appeared to be sharp in temperature when allowance is made for the concentration 
inhomogeneity. This is different from the behaviour found (Wong et al 1983) in 
CoFei  _Cl2  where the lower transition was very smeared. The difference strongly 
supports the suggestion that the smearing arises from random fields generated by a 
Dzyaloshinsky type of interaction in CoFe1 _Cl2 as this would be expected to be much 
smaller in the high-symmetry K2CoFe1 _F 4. Since this work was performed we have 
learnt of similar work on CoFe1 _C1 2  2H20 which also shows two sharp transitions 
and in which the Dzyaloshinsky-type terms are expected to be small. 

The details of this lower transition are still somewhat obscure as we failed to observe 
any two-dimensional critical scattering (see figure 3(b)) and the exponent f3 = 0.32 is 
characteristic of a three-dimensional transition. Since ad = 2 XY system does not order 
at non-zero temperature, it is clear that three-dimensional effects must play an important 
role in this transition. Further theoretical and experimental effort is needed to under-
stand this behaviour. 

Since the experimental work described here was completed we have learnt of a 
similar study with x nominally equal to 0.27 in this system by Viak et al (1983). Despite 
the difference in the nominal concentrations their results are very similar to ours for 
x = 0.2 giving two transitions: TN = 64.4 ± 0.6 K and TL = 27 ± 2 K. Their results are 
very similar to ours for the structure of the two phases and for the critical scattering 
except that they observe a broad hump in the intensity for Q = (1, 0, 0.4) close to TL. 
Furthermore the wavevector dependence of the diffuse scattering shown in figure 5 is 
different from that found in their experiment. We do not understand the reason for this 
difference, but possibly it arises from the extent to which three-dimensional order is 
developed at TN,  modifying the behaviour close to TL. We do not understand their 
argument that at TL there is a first-order transition as it seems to be a contradiction to 
our data shown in figure 3 and their own data shown in their figure 3. 

Preliminary measurements have been made of the excitations in the sample with 
x = 0.2. The results are similar to the results for x = 0.6, for excitations close to the zone 
boundary. Little difference was observed in the low-frequency spin waves close to TL, 
which is surprising. Further experimental and eoretical work is needed to study the 
spin waves in the mixed phase close to TL.  We hope that this paper will help to stimulate 
this work. 
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