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ABSTRACT

The results of three projects on substitutionally disordered
magnetic systems are reported in this thesis. The first project in-
volved calculations by a computer simulation technique of magnetic
excitation spectra in a diluted simple cubic ferromagnet with nearest
neighbour Heisenberg exchange interactions. Spectra for low, inter-
mediate and high levels of dilution-induced disorder are compared.

A comparison has also been made between calculated spectra and ex-
perimental data for the metallic diluted ferromagnet system Crl_xFeX
with x = 0.27.

The second project involved an investigation of the magnetic
phase transitions and magnetic excitations in the d = 2 mixed
magnetic system with competing spin anisotropies KZCOXFel—xFA'
Neutron scattering experiments have been performed on>samp1es with
x = 0.6, x = 0.27 and x = 0.2. The x = 0.6 sample exhibits uniaxial

antiferromagnetic long range order below a Néel temperature, T The

N
x = 0.2 and x = 0.27 both undergo two phase tramnsitions. Below the
highér temperature transition at TN spin components order along the
c-axis of the unit cell and below the lowgr phase transition at TL’
the spin components perpendicular to the c-axis acquire long range
order so that below TL the magnetic structure of both the

x = 0.2 and the x = 0.27 samples corresponds to the Oblique Anti-
ferromagnetic (OAF) phase. The magnetic excitation spectra for all
three samples have been investigated by inelastic neutron scattering
techniqueg at T = 5K. Computer simulation calculations have been

used to calculate the ground state and the magnetic exeitation

spectra for the system and the results are compared with experimental
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results.

In the third project neutron scattering measurements were made
to investigate the magnetic phase transition and magnetic excitations
in a sample of the mixed d = 2 system szthCrl_;{Cl4 with nominally
x = 0.754. The system is of interest because of competing ferromag-
netic and antiferromagnetic exchange interactions and for a range of
concentration values there is expected to be a spin glass phase.

The sample withac = 0.754 was found to attain long-range antiferro-
magnetic order below TN = 3éK. Results_are.also reported from

inelastic neutron scattering measurements on the magnetic excita-

tions in this sample.
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Values of Fundamental Constants and Relationships between Energy Units.

The values of fundamental constants which are used in this thesis

are listed below:

Constant

Planck's Constant divided

by 27

Boltzmann's Constant

The Bohr Magneton

The Mass of the Neutron

The Nuclear Magneton

The Gyromagnetic ratio

of the neutron

Symbol

N

Value (S.I. Units)

1.054 x 10 -JS
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- 1.91

In Chapters 3 and 5 the energy unit Terahertz (THz) is used. 1In

Chapter 4 the energy values are given in millielectronvolts (meV),

except in Section (4.5) where they are quoted in THz units.

The relationships between millielectron volts, Terahertz and

Joules (J) (the S.I. unit) are given below:

1 mgV

1 THz

]

1.602i9 %1072 7

4.13541

meV,
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CHAPTER 1

INTRODUCTION

1.1 Introduction

This thesis presents the results of three effectively indepen-
dent projects in which the magnetic phase transitions and collective
magnetic excitations (spin waves) of different substitutionally
disordered magnetic systems were investigated. Each project has been
assigned a separate chapter with a specific introduction explaining
the particular background, motivation and details of that work.

This chapter and the nexf therefore introduce some theoretical and
experimental background which is common to these projects.

' The project reported in Chapter 3 utilised the "Equation-of-
Motion" technique (Alben et al. (1977)) to compute the spin wave
spectra in a simple cubic diluted ferromagnet with nearest neigh-
bour Heisenberg exchange interactions. The results highlight
features induced solely by the disorder and give some valuable
information in interpretiﬁg data collected from neutron scéttefing
experiments on metallic alloys such as Chromium-Iron.

Chapter 4 reports work on KZCOXFel—XF4’ a mixed magnetic
system with competing spin anisotropies. Neutron scattering tech-
niques have been used to investigate the magnetic phase transitions
and spin waves in single crystal samples with concentrations x = 0.6
and x = 0.2. A further inelastic neutron scattering experiﬁent to
investigate the low femperature spin wave dispersion relation and

the temperature dependence of the low energy, small reduced



wavevector spin waves in a sample with x = 0.27 is also featured.
Comparison is made of the low‘temperature spin waves in all three
samples with spectra calculated by the "Equation-of-Motion" tech-
nique.

The thifd»project, reported in Chapter 5, concerns work on
szMnxCrl_xC24, a mixed magnetic system with competing ferromagnetic-
antiferromagnetic exchange interactions. A "quasi-elastic" neutron
scattering éxperiment was performed to study the magnetic phase tran-
sition and an inelastic neutron scattering experiment performed to
investigate the spin-wa§e dispersion relation close to the Brillouin
zone centre. for a sample with x = 0.754.

The remainder of this chapter and the next deals with the
introductory material as follows. The next se;tion describes the
nature of the magnetic interactions and deals with some very
general aspects of the disordered magnetic systems of interest.

The second chapter reviews some background theory for thermal
neutron scattering and also deals with the relevant experimental
aspects, with particular emphasis being placed on the triple axis
neutron spectrometer. The second chapter also introduces the
idea of spectrometer resolution which is always important in
interpreting the data from neutron scattering experiments and is

vital in analysing some of the data presented in this thesis.



1.2 The Magnetic Systems: “Some General Aspects

K CoXFe F and Rb

2 1-x'4 MnxCrl_xCJL4 are discussed in Chapters

2
4 and S5 respectively. Both of these materials are iso-
morphous with crystalline K2NiF4 (Birgeneau et al. (1970)) which
has the tetragonal unit cell in Figure (1.2.1). Ignoring the
effect of spin-orbit coupling, the ground states of the free fnan-
sition metal ions can be obtained from Hund's rules (Kittel (1976)).
In a solid, the effect of the crystal field and spin-orbit coup-
ling on the electronic levels can be treated by perturbation theory
since the resulting energy levels are close together in energy
compared with the gap between excited electronic states. The
magnetic éxcitations considered in this thesis involve only the
lowest lying of thoée energy levels énd they can be considered

in terms of energy levels of a pseudospin operator é_ which is
related to thg total orbital angular momentum operator i, the

total spin angular momentum operator .S and the magnetic moment

M by the equations (1.2.1)

(1.2.1a)

(0 ~Q

S

S
L = cl‘i‘ s - (1.2.1b)
W=t +2s% = vy gt st (1.2.1c)

o labels cartesian componehts, Cz and Cg are proportionality
constants and ga c= (C; + 2C§ ).
Whilst the crystal field and spin-orbit coupling determine the

energy levels of individual transition metal ions in the solid, a

third perturbing term couples the spins of the magnetic ions. This



-

is the magnetic exchange interaction given by equation (1.2.2).

- ~ -~

H = I J,. S. S. (1.2.2)
exchange 1j ij =i =j
jwhere this sum is over all pairs of sites, Ji; 1is the exchange interaction and

.gi ‘and gj are the total spin operators 4t the sites r, and .Ej
respectively. With suitable proportionality constants the exchange
Hamiltonian can be related to thelpseudospin operators. Discussion
of the pseudospin values for C02+, Fe2+, Cr2+ and Mn2+ in
KzNiF4 isomorphs are left to the appropriate chapters.

In KZN:'LF4 isomorphs, the exchange interaction arises from over-
lap between the wavefunctions of the transition metal ions and the
halide cations. Thus the transition metal ions are coupled via
intermediate cations. This mechanism is called superexchange (Ziman
(1971)). The larger the‘number‘of cations between the two magnetic
ions, the smaller the energy of the interaction. Consequently, the
predominant exchange energy is that between nearest neighbour magnetic
ions in the basal a - b plane which are separated by one cation.

Two cations separate the magnetic ions in neighbouring planes and, .
for example, in K2C0F4 the interplane exchange is a factor of about
1000 less than the intrapiane exchange between nearest neighbour metal
ions (Ikeda and Hirakawa (1974)). Additionally, with an exception of
those systems in which the transition metal ion is Cr2+, the mag-

netic exchange interactions lead to antiferromagnetic alignment

below the Néel temperature, T,. (In Rb

N 2CrCQ4 a ferromagnetic

phase occurs below the critical temperature, TC).

Since the late 1960's isomorphs of KzNiF4 have therefore
been gsed as model systems in experiments designed to test the
theory of cooperative phenomena in the spatial'dimension d = 2,

because of quasi two dimensional and predominantly nearest neighbour



FIGURE (1.2.1):

The crystallographic unit cell
of KzNiFa. The unit cell is

. ' 2+
tetragonal with a = b. M

corresponds to the divalent

transition metal ion.
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magnetic exchange interactions. Outstanding agreement has been
obtained between theory and experiment in the case of pure systems
(See, for example, Ikeda and Hirakawg (1974)), Cowley et al. (1984)).
These types of system are also very suitable for studying coopera-
tive phenomena in d = 2 disordered magnetic systems. The di-
valent transition metal ions differ only in the number of 3d level
electrons and so, although the magnetic properties of each type of
these transitién metal-ions are different, their masses and sizes
are similar as are many of their chemical properties. Hence sub-
stitutional disorder in which some host transition metal ions have
been replaced by defect ions of another transition metal species
allow effects soleiy due to (magnetic) site substitutional dis-
order to be investigated experimentally. Effects such as mechanical
stress which would be induced if the size difference between the
host and defect ions was significant are thus avoided.

4 K2FeF4,

RbZCr 024 which make mixtures of the former two systems of interest

The specific properties of K2CoF R.sznCQ,4 and
in studying mixed magnetic systems with competing spin anisotropy
and mixtures of the lattef two systems suitable for studying systems
with competing ferromagnetic-antiferromagnetic ekchange interactions
are discussed in Chapters 4 and 5 respectively. However, a brief
discussion of the different types of site substitutional disorder,
in the magnetic context, is given here.

If, as in Chapter 2, the magne?ic host sites are replaced by
non-magnetic defect sites, the resulting random magnetic system is
said to be diluted. 1In othér systems the defects are also magnetic,

leading to a mixed magnetic system. Single-ion anisotropy or



anisotropy in the exchange interaction usually determine the ordering
direction of the magnetic moment in a pure system below the tran-
sition temperature, Tc' The phase transitions and magnetic ex-
citations in diluted systems and in mixed magnetic systems, in which
the favoured ordering directions for both magnetic species are the
samé, are fairly well understood. (A review of much of ;his work

is given by Cowley (1982)). This understanding is possible because
the magnetic ground state is, at least conceptually, known. How-
ever, in other systems such as those discussed in Chapters 4 and 5,
the ground state is not obvious because of competing interactions
and calculation of the ground state prdperties-is in itself an
interesting problem as well as a starting point for interpreting
experimental data and modelling the spin waves in the systems.

In systems henceforth referred to as mixed magnetic systems
with compefing spin anisotropy the anisotropy of defect ions
favours a different ordering direction from that of the host system.
Three ordered phases exist in the temperature (T), defect
concentration (x) plane. Two of these correspond to the favoured
ordering directions of thé host and defect spins respectively and
the third intermediate phase corresponds to an ordering direction
oblique to both end member systems. This is discussed in more
l—xf4 in Chapter 4. Finally,

detail in the context of K CoxFe

2
another type of mixed magnetic system occurs when, for example
magnetic defects, between which ferromagnetic alignment is preferred,
replace the magnetic ions in an antiferromagnetic host. This shall

be referred to in this thesis as a mixed magnetic system with com-

peting ferromagnetic-antiferromagnetic exchange interactions. As



discussed in Chapter 5,'wiﬁh respect to Rb,Mn Cr, C%,, the long
range order can be ferromagnetic or antiferromagnetic below Tc

depending on the concentrations of magnetic defects in the.system.
For intermediate concentrations there exists the possibility of a

so-called spin~glass phase.



CHAPTER 2

NEUTRON SCATTERING BACKGROUND

2.1 Introduction

The experimental measurements on disordered magnetic systems
which are discussed mainly in Chapters 4 and 5 of this thesis employed
neutron scattering techniques. The purpose of this chapter is to
review the relevant theoretical and experimental background of thermal
neutron scattering and so specific details of‘experiments are left to
the appropriate chapters.

Thermal neutrons are a very useful probe with which to investigate
condensed matter systems for the following reasons. Firstly, the wave-
length of the thermal neutrons is comparable to the interatomic spacing
in the systems and so scattered neutrons can produce interference
effects. Secondly, collective excitations such as phonons or magnons
often have an energy which is the same order of magnitude as the initial
energy of the neutron, so that the change in energy of the neutron,
caused eifher by creation or annihilation of an excitation, is resol-
vable and the detection of scattered thermal neutrons can be used to
obtain information about the excitations and dynamics on an atomic
scale. Thirdly, the neutron is an uncharged particle and consequently
thermal neutrons are able to penetrate deeply into solid materials,
unlike charged particles such as electrons. Finally, the neutron
has a magnetic moment enabling information about the magnetic structure
and dynamics of magnetic systems to be deduced from the scattered
neutrons. In general, the interactions between the neutron and the

system of interest consist of an interaction between the neutron
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and.the nucleus by nuclear forces and an interaction between the
magnetic moment of the neutron and the magnetic moment of the
electrons in the scattering system. Any interaction between the
magnetic moment of the nucleus and the Coulombic field generated
by the charged electrons and nuclei can be neglected since it is
very small in comparison with these purely nuclear and magnetic
interactions.

The remainder of this chapter is set out as follows. In
section (2.2), the theoretical background concerned mainly with
thermal neutron scattering from magnetic systems is discussed,
and the relationship between phe spin-spin correlation function
and the partial differential cross-section for scattered neutrons
is arrived at. The experimental background with particular
emphasis on the main features of the triple axis neutron spectro-
meter is given in section (2.3). Finally, in'section (2.4), the
resolution function of the triple-axis neutron spectrometer is
discussed. Additionally'two new developments, one of which I was
involved in, ﬁhich make resolution corrections more accessible,

are briefly discussed.

2.2 Thermal Neutron Scattering: Theoretical Background

Consider a monochromatic neutron in a plane wave state with
initial enefgy Ei’ wavevector gi and spin state 95 scattered
by a sample into a plane wave state with energy Ef, wavevector Ef
and spin state Op- Then in the Born Approximation, the partial

differential cross-section, which defines the probability
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of the neutron being scattered into a solid angle dQ with energy

in the range E + E + dE is given by: (Marshall and Lovesey (1971))

d20' l_fl mN 2 ~ 2
40dE — G I I PmP0_|<kfofn]v|kicim>| é(ﬁw-!-Em—En) .
|Ki| mo, no, i

(2.2.1)

In equation (2.2.1), |m> is the initial state of the sample with
energy 'Em, [n> is the final state of the sample with energy En’
is the probability of the sample being in the state |m> and

Pp

Pci is the probability of the neutron being in the initial spin
state oy The Dirac delta function ensures conservation of energy
in the overall system. ﬂm, the neutron energy transfer is then the

difference between the energies of the initial and final states of

the neutron and is given by:
hoe = E, -E, = +— (k2-1k%) . (2.2.2)

For a magnetic sample, the potential operator V, which re-

presents the interaction between the neutron and the sample is given

~ _ 271'h2 ~
v = Z - bj §(r - EJ) =y Eeff(E) . (2.2.3)

J o
The first term is the Fermi pseudopotential which models the
interaction between the neutron and the nuclei in the sample as a
sum of delta functions. The nuclei at positions Ej are assigned
a nuclear scattering length bj which governs the strength of the

interaction and can be positive or negative. The magnitude of bj
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depends on the nucleus type and is different not only between nuclei
of different elements but also between different isotopes of the
same element. The size of bj also depends on the relative spin
states of the incident neutron and the nucleus. Since this thesis
is concerned with the scattering of thermal neutrons from disordered
magnetic systems and because, for unpolarised neutrons, the magnetic
part of the partial differential cross-section can be considered
separately, no further discussion of nuclear neutron scattering
theory will be given here. |

In equation (2.2.3), the second term gives that part of the
potential operator which represents the interaction between the

~

magnetic moment of the neutron EN and the effective magnetic

field _Eeff(g) at the position r in the sample. ky can be

A~

written as YHUNS

where is the gyromagnetic ratio of the

N
neutron, My is the nuclear magneton and vector o has the Pauli
. "o . .

matrices o (o = X, y or z) as its elements. The effective
magnetic field Eeff(gj can be written as a sum o6f the magnetic

fields due to unpaired electrons and it can be shown that

(Marshall and Lovesey (1971)):

<5f|ﬁeff(£) |-1Si> = J a3r 1'Z f_ax [ﬁ(g) <31} . (2.2.4)

In equation (2.2.4), Q = gi - Ef is the wavevector trans-
ferred to the sample by the neutron in the scattering process,

_§ = Q/|Q] and .ﬁ(g) is the magnetisation density operator. In
magnetic samples which are also insulators, such as the materials

mainly considered in this thesis, the magnetic electrons are

. < s . . i
localised at the magnetic ion sites and if [Q is much greater
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than the mean electron orbital radius, then the following approxima-
tion can be made:

Jdér eI G M(r) xq] = 1 12y 3 (QQ [L]j. <] . (2.2.5)
J

In eduation (2.2.5), the assumption has been made that the
magnetisation in the vicinity of the magnetic ion can be represented
by the total magnetic moment operator multiplied by the magnetic form
factor fj(g). The form factor fj(g) is the Fourier transform of
the magnetic moment density at the ion.

Using the approximation given in equation (2.2.5) and substituting
with equations (2.2.4) and (2.2.3), the equation (2.2.1) can be re-
written to give the partial differential cross-section for the

scattering of neutrons from localised magnetic ions as:

k.| m, 2 iQ-R,
d?g _ l—f N =i ..
d0dE G Ya'n P I BjlTe £, @
k. | nm .6 i 3
=i i f
- A .
<noglo-@x [y 4D [mo > |26 Cho + E_ - E_) (2.2.6)

Expanding the matrix elements of equation (2.2.6) allows this equation

‘to be written, for unpolarised neutrons, as:

k.| m 2 iQ. (R.-R,)
d%g _ |-—f Py X VavB =j =2 *
3008 = | =) YNuNo:ZB (8, ~ Q0Q )jzsz e £,Q@f (@
=i
an Pm<m|u?|n><n|u28|m>6d§w +E -E) . (2.2.7)

To get (2.2.7) from (2.2.6), the results that I |of><of| is a unit
Of
operator and that I Po <0i|oaos|oi> = ¢ _,  for unpolarised neutrons

g.. i
i

of
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have been used. If s% is the oth component of the pseudospin

operator, then as shown in equation (1.2.1c) the magnetic moment

A

operators can be replaced by gauBsa. Equation (2.2.7) can be

simﬁlified even further by noting that !

<n|;l8|m>6(ﬁm +E -E) = Jdt e_iwt<n|sle(t)|m> (2.2.8)

where st(t) is the Heisenberg operator given by

A A
~

sls(t) = exp (iEE) slB exp(:%?E) with H the Hamiltonian for the

spins in the sample. Equation (2.2.8) then allows the partial dif-

ferential cross-section to be written in the form:

f;fE = % (%‘)ZYNUN 5(Q,w) (2.2.9a)
J=i
where _
S@u) = I - 0“5 (q,u) (2.2.95)
a
and
S“B(g,m) = & g? gg fj(g)f:(g)eigf(gj_gl) Jdt e-iwt<sja(o)slsft)>

(2.2.9¢)

S(Q,w) 1is the dynamical structure factor, which is-the spatial

and temporal Fourier transform of the spin-spin correlation function.
The Sas(g,w) are called the ﬁartial dynamical structure factors.

In uniaxial or isotropic magnetic systems, the number of partial
dynamic structure factors is reduced by symmetry and S(Q,w) is

given by
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1+ 82 :
5@ = (1 -0 + (B [FQw + T (Quw]. (2.2.10)
In equation (2.2.10) it has been explicitly assumed fhat z 1s the
direction of ordéring. The first term measures correlations between
spin components along the ordering direction and the second term
measures correlations betweeﬁ spin components transverse to the

ordering direction. This second term therefore gives information

about the spin waves.

2.3 Thermal Neutron Scattering: Experimental Background

The instruments used in performing the thermal neutron scat-
tering experiments discussed in Chapters 4 and 5 were triple
axis neutron spectrometers (Figure 2.3.1). This section sets out
to discuss only the main features of that instrument and specific
details of the way in which particular experiments were carried
out are left to the appropriate chapters.

Fast neutrons, which are produced in the core of the nuclear
reactor, pass through a moderating material where by collision’
processes, the neutrons come into equilibrium Qith the moderator.
The outgoing neutrons have a distribution of energies which is
mainly Maxwell-Boltzmann in character but which has additional
weight at very high energies (which do not concern us here). As
an example, the thermal neutron flux at the Institut Laue Langevin,
Grenoble, France is in equilibrium with a D20 (Heavy Water)

moderator at T = 300K. The peak in the Maxwellian distribution

o
corresponds to a neutron wavelength A = 172A. At the I.L.L.,



FIGURE (2.3.1):

Plan view of the triple-axis neutron
spectrometer (schematic). a, B are
the horizontal and vertiéal'collima—
tions respectively. 26m, ZGS and

26A are the scattering angles at the

monochromator, sample and analyser.
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the peak in the distribution is shifted in some of the beam and
guide tubes by including a hot source gf a cold source. The hot
source Consists of Graphite at a temperature T = 2000K and the
cold source consists of liquid Deuterium at T = 25K. The hot
source and the cold source give an enhancement of the neutron in-
tensity in the wavelength ranges 0.4 < X < 0.82 and A < 4.02
respectively. (Neutron Research Facilities at the I.L.L. High
Flux Reactor (1983)).

On reaching the instruﬁent, a monochomator crystal selects a
nominal wavevector Ei for neutrons incident on the sample.

If 26 is the angle through which the neutrons are scattered by

M
the monochromator crystal and if dM is the spacing between the

dppropriate scattering planes of that crystal, then by Bragg's Law:

k.| = —T— . : (2.3.1)
= dy, sin ©
u Sin 6y
Similarly, an analyser crystal is used to define a normal .

wavevector Ef for neutrons reaching the detector where:

m

kel = —— . (2.3.2)
dA_31n 6,

Clearly, arm 1 of the spegﬁrégeter (cf. Figure 2.3.1) must be
set at an angle ZQM to the direction of the neutrons incident on
the monochromator crystal and arm 3 of the spectrometer must be set
at 26A to the direction of the neutrons incident on the analyser
crystal. These spectrometer arms are fitted with collimators which
restrict the divergence of the transmitted neutrons along the arms.

Neutrons which reach the detector have thus transferred a wavevector
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Qo and energy ﬁwo to the sample, where:

Q = k; -k , (2.3.3)
and 'HZ
'hmo = —ng(ki2 - ku) . (2-.3.4)

Clearly, arm 2 of the spectrometer has to be set an an angle of

2es to the direction of Ei’ where
= cos Yrk 2 2 .2
20, = ‘cos [(k;*+ k.2 - Q2)/2k k] (2.3.5)

A computer sets the angles of the turntables on which the mono-
chromator, sample and analyser are mounted and also the angles of
the three arms of the spectrometer, éllowing scans to be madé in
reciprocal space (i.e. Quw spa;e). Howevér, for a desired go
and w_, there are an infinite number of possible k, and k¢
and it is common to fix Ei or gf, so that the other cén be
uniquely determined.

Usually,la monitor is fitted on arm l.ofvthe spectrometer. The
monitor is a fission chamber with a coating of metallic uranium
on the counter wall. (Bacon (1975)). As the neutron beam passes =
through the monitor on its way along arm 1, the monitor produces
electrical pulses, the number of which is proportional to the number
of neutrons which pass through the monitor and thus the number of
neutrons which reach the sample. The most practical way of per-
forming a scan is to count the number of neutrons in the detector
for a fixed number of neutrons hitting the sample at each point in
the scan. If there were fluctuations in the incident neutron flux

from the reactor, then counting for a fixed time at each point in
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the scan would not guarantee that a fixed number of neutrons would
have have been incident on the sample. Consequently it is most common
to count the number of neutrons which reach the detector for‘a fixed
number of monitér counts,

In performing elastic scans, defined by o = o, lgil and Igfl
are fixed at the same value and from equation (2.2.9) it is obvious.
ﬁhat the partiai differential cross-section is a direct measure of
S(Q,w = 0). For inelastic scans, fiw # O, and either Igil or |gf|
is fixed. For fixed kal, the number of counts in the detector is
proportional to S(Q,w) because the efficiency of the monitor is
proportional to l/ki and this cancels the ki factor in equation
(2.2.9). When lgil is fixed the partial differential cross-section
is azo/dgdeA instead of 3%29/dQdE. It can be shown that in this
case the number of counts in the detector is proportional to

kg3coe,5(Q,w). Irrespective of whether it is lk;| or |k.| which

el
is fixed, inelastic scans are usually performed with either Q fixed
and the varied or iy fixed and Q wvaried.

Whilst the monochromator crystal reflescts neutrons with wave-
vector Ikil given by eqﬁation (2.3.1), it will also reflect neutrons
with wavevector Igi| multiplied by a positive integer n. To pre—>
vent these neutrons contributing to the number of counts measured by
the detector, a filter can be fitted to arm 1 if lki' is fixed and
to arm 2 if Lgfl is fixed. The type of filter used depends on the
magnitude of the fixed neutron wavevector required. In the experiments
discussed in Chapters 4 and 5 of this thesis, either a Pyrolytic

Graphite filter or a cooled Beryllium filter was used as required.

The Pyrolytic Graphite filter has a complicated transmission spectrum
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with respect to the wavevector of thermal neutrons. However, if a

o—
or ka[ of 2.662A 1 is required,

fixed neutron wavevector Lgi
then there are local minima in the transmission spectrum at twice and
three times that wavevector. The Maxwellian distribution of the
neutrons incident on the monochromator is such that the proportion of
neutrons with wavevecfor greater than three times 2.662::&-1 is small
and so the Pyrolytic Graphite filter is very effective indeed._ A
Beryllium filter consists of a block of polycrystalline Beryllium

and utilises the Bragg cut-off. The Bragg cut-off wavelength is the
wavelength at which the Bragg reflection angle is 90°. This occurg
at AC = 2dc, where dc is the largest d-spacing in the material.

For neutrons with wavelength greater than 2d, Bragg reflections
cannot occur. For Beryllium, Ac = 3.972 (Windsor (1981)), so the
filter transmits neutrons with X > 3.972, but neutrons of smaller
wavelength are scattered by Bragg reflection. The scattered neutrons
could be Bragg reflected many times within a single Beryllium block
(multiple scattering) and some of these neutrons could end up travel-
ling in the forward direction after leaving the filter, thus being
transmitted. This multiple scattering can be almost completely re-
moved by absorbing slits which are inserted into the Beryllium block
along the beam direction. The absorber separation and the filter
length determine how effective the absorbers are. Whilst the neutrons
with anelength larger than 3.972 cannot be Bragg reflected, they can
be scattered by phonons. This can be overcome by cooling the filter to
T = 77K.(liquid nitrogen temperature), removing the neutron energy
~gain scattering from the thermally excited phonons.

Further discussion of more detailed aspects of the actual

experiments carried out will be given in Chapters 4 and 5.
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2.4 Spectrometer Resolution

In the previous section, the triple axis neutron spectrometer
was discussed, assuming that the wavevectors gi and gf of the
neutrons could be selected exactly, by an appropriéte setting of
the spectrometer; .However, due to finite collimations on the
spectrometer arms and finite mosaic spreads on the monochromator and
analyser erystals, neutrons are detected which have not transferred
the nominal wavevector Qo and energy Emo. These neutrons have

transferred a wavevector Q and an energy tw, where

o
1l

Q, + & | (2.4.1)

and

to

1

'Emo + st (2.4.2)

with |6Q| and 6&6Chw) small but non zero.
The resolution function of a triple axis neutron spectrometer

is a function related ‘to the probability of detecting neutrons which
have transferred wavevector Q and energy fw when the spectrometer
has been set to detect neutrons which have transferred wavevector go
and energy ’tmo' The 'single' crystals used for the monochromator and
analyser really consis£ of many small crystallites, slightly misaligned
with respect to an average orientation. It is generally accepted that
the distribution of the misalignment angles can be approximated by a
Gaussian function. Assuming Gaussian transmission functions for the
‘collimators and a Gaussian mosaic for the monochromator and analyser
crystals, a general formulation of the resolution function of a

triple axis neutron spectrometer was derived by Cooper and Nathans
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(1967). 1t was shown that the resolution function could be written as

R(X) = R_exp{-} X-M-X} (2.4.3)
where
X = (8Q, sthw)) . ' (2.4.4)
The normalisation factor and the elements M_ of the matrix

ke

M are functions of ki’ wys Qo, the monochromator mosaic Ny> the

anaiyser mosaic Ny o dM’ dA’ the horizontal collimations o s
az, aq and the vertical collimations Bo’ Bl’ 62, 63.

For any straight line through the coordinates Wg s 90, the
resolution function is Gaussian as a function of 68w and &8Q. In
order to visualise the resolution function, it is useful to consider

the locus of points for which the resolution function has the value

R exp(-p/2). This ellipsoid is defined by:

4 4

z T X = P - (2.4.5)
k=1 401 Meo X *y

When p = 1.386, the surface of the ellipsoid defines the locus
of points for which the resolution function has the value éRo and
this is generally referred to as the resolution elipsoid.

The Cooper and Nathans formulation did not take into account the
effect of the horizontal and vertical sample mosaic on the resolution
function. Werner and Pynn (1971) showed how this could be incorporated.
They relate modified matrix elements Mkl' and normalisation factor
RO' to the matrix elements ng and normalisation factor -Ro of
Cooper and Nathans. In addition, detailed treatment of the normalisa-
tion factor has been carried out by Dorner (1972) and by Chesser and

Axe (1973).



-21-

Computer programs based on the above work are used to calculate the
triple-axis neutron spectrometer resolution and, for most applications,
provide a very good representation. The observed intensity at a
nominal energy transfer 'ﬂwo and wavevector transfer 96 can be
obtained, in theory, by integrating the cross-section, o, over

the extent of the resolution. function:

I(go,wo) = J R(Qo + 8Q, wg + Sw)c(g0 + 8Q, W, + Sw)déQéw .
(2.4.6)

In many applications it is essential to be able to fit the data
collected in a scan to a model cross—section convoluted with the
spectrometer resolution in order to interpret the data properly. A
discussion of particular methods used to fit some of the experimental
data in Chapters 4 and 5 will be given in the appropriate places
within those chapters.

In the early stages of my research, I did some work on a project
led by Dr. P.W. Mitchell, which solved a problem encounteréd in
treating the resolution function of the triple-axis neutron spectro-
meter in the limit of smail scattering angles at the sample. A pub~
lished paper (Mitchell et al. (1983)), which is bound into the back
of this thesis, describes the outcome of that work, which is only
briefly discussed here. For sound technical reasons explaiﬁed in
th;; paper, it is sometimes necessary in making spin wave measure-
ments, to collect the data at very small sample scattering angles.
The most convénient way of performing an integration such as that
in equation (2.4.6) is to first transform to a coordinate system

in which the resolution matrix is diagonal. However, in the small



FIGURE (2.4.1):

Pure spin wave scattering generated by the program
discussed in Mitchell et al. (1983). (a), (b) and
(¢c) differ only in configura£ion of the spectrometer
with the vertical collimation the same for each, |
namely Bo = 61 = 62 = 63 = 4.00. (a) and (4d)
differ in vertical collimations but have the same
configuration [the intensity shown for (d) has been
amplified by a factor of eighﬁ]. In labelling a
configuration the three numbérs €n’  €g and EA"
each of which can take the values +1 or -1, refgr

to the scattering sense at the monochromator, sample
and analyser respectively. e = +1 indicates scat-

tering to the left and € = -1 1indicates scattering

to the right. Note that the arrows point to the

, o

nominal spin wave energy. In each case Q = 0.075A 1
o)

€y = O and D = 10 THz A2. Horizontal collimation

is (a) 30', (b) 20', (c) 20', and (d) 30'.

O—
k. = 1.55 & Y, 20 < 2.8°.
F S

’
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angle limit, the Cooper Nathans formulation of the resolution function
gives a singular resolution matrix. This singularity arisés from
the divergences of some of the elements of the resolution matrix
because they contain terms in the reciprocal of the sine of the
sample scattering angle.. With the original program diagonalisa-
tion proved impossible. Using higher numerical precision (Double
Precision in Fortran 77) diagonalisation could be achieved, but
at the cost of additional computing time. In that standard pro-
gram, the integration had to be carried out numerically with
respect to three variables GQX', de' and Sw' (in the diagomnal
frame of reference). This is because the vertical- resolutioniis
not coupled to the horizontal resolution and if the scattering
function in the vertical is replaced by a Dirac delta function

in thé variable GQZ, the vertical resolution can be integ?ated
out analytically._ Recognising the origin of the singularity, an
alternative derivation of the resolution matrix is given in the
paper which avoids the difficﬁlty of having to diagonalise a
singular resolution matrix. In the new formalism, numerical
integration over only twolvariables 1S required, so saving
valuable computing time. The new formalism was incorporated

into a program which could simply generate spiﬁ wave intensities
and also into a fitting program which could be used to fit spin
‘wave data. Figure (2.4.1) shows sdme purely spin wave scattering
generated by the former of these two programs. The difference be-
tween the nominal spin wave energy, indicated by the arrows and
the position of the peaks in the intensity illustrates the

importance of taking the resolution into account if accurate
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-

values for parameters such as the spin wave energy gap, €g, and
the spin wave stiffness, D, are to be obtained.

Although in the small angle scattering limit, and with the
vertical resolution integrated out analytically, numerical integra-
tion over only two variables is required, in a general case, numerical
integration might have to be performed over all four variables

Qx', Qy', Qzﬂ and dw'. To fit the data collected in a scan,
using a non-linear regression fitting program, an integral such as
that gives in equation (2.4.6) would, in that case, have to be per-
formed for each point in the scan, during each iteration of the
program. On a time sharing computer, such as the ICL 2900 series
computers available at the University of Edinburgh, which often
have o?er 100 users, such a progfam could not feasibly be run
interactively from a terminal. Attempts to fit the data would have
to be run in background (i.e. by submission of computer batch jobs).
The time interval between submicting large batch jobs and receiving
the output can be up to several days, depending on the demand for
computer C.P.U. (Central Processing Unit) time. In a successful
attempt to overcome theselpro?lems, Mitchell and Dove (1985) have
utilised the parallel architecture of the ICLlDAP (Distfibuted
Array Processor) computer in the program SHAMGAR'S OXGOAD. The
DAP is a S.I.M.D (Single Instruction Multiple Data) computer
with 4096 processing units, which is essentially capable of per-
forming a given operation on 4096 sets of numbers simultaneously.
In SHAMGAR'S OXGOAD, the integrals are performed numerically,
several orders of magnitude faster than the speed which can be

achieved on a serial computer such as the ICL 2976. The decrease
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in C.P.U. time required is such that tﬁe data collected in spin
wave scans can be fitted interactively. Further to this, if a
model dispersion relation for the spin waves is used, as many
scans as required, taken under similar resolution conditions,
can be fitted at once, enabling resolution effects to be fully
taken into account. SHAMGAR'S OXGOAD was used to fit some of

the spin wave data presented in Chapter 4.
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CHAPTER 3

CALCULATION OF MAGNETIC EXCITATION SPECTRA IN

A DILUTED SIMPLE CUBIC FERROMAGNET

3.1 Introduction

In this chapter results are reported of calculations of the mag-
netic excitation spectra for a diluted simple cubic ferromagnetic
system with nearest neighbour Heisenberg interactions. The calcula-
tions were made using the "Equation-of-Motion'" method. This tech-
nique was used succeséfully by Thorpe and Alben (1976) to calculate
S(Q,E) spectra for the d = 2 mixed antiferromagnetic systems
RbZManil-xF4 with x = 0.5 and the calculated spectra were in
good agreement with the experimental results of Birgeneau et al.
(1975) and Als—-Nielsen et al. (1975). The results of calculations
on d = 2 diluted antiferromagnetic systems also gave good agree-
ment with experimental results (Cowley et al. (1977), Cowley et al.
(19804d))..

Magnetic Excitation spectra in random d = 3 ferromagnets have
previously been calculated Ey Alben et al. (1977). Their published
work covered both mixed and diluted ferromagnetic systems but con-
centrated more on the calculation of depsity of states p(E) than
on calculation of S(Q,E) spectra. The project discussed in this
chapter involved calculation of S(Q,E) spectra for the particular
case of a diluted simple cubic ferromagnet. This was carried out
in order to characterise the effects of dilution on the magnetic

excitations from the point of view of what could be measured in



an inelastic neutron scattering experiment.

The remainder of this chapter is set out as follows. In Section
(3.2) the equation-of-motion method is discussed and in Section (3.3)
general details of how the technique»ié implemented are given.
Section (3.4) describes some of the specific programming details
and Section (3.5) discusses the results of tests which wereAmade
to ensure that the computer program performed correctly and gave
correct results for known cases. In Section k3.6) résults are>presen—

ted and compared from calculations for magnetic site concentration x
in what was expected to be three different concentration regimes.
Finally, in Section (3.7) comparison is made between results
generated by the computer program and some inelastic neutron

scattering results.

3.2 The Equation—of-Motion Method

In this section it is shown how S(Q,E) at T = OK for spin
waves in a mixed magnetic system can be calculated numerically
using the "Equation-of-Motion" method. This method will be
developed specifically for a system with a simple cubic lattice
randomly occupied by atoms labelled A and B. If A and B
were both magnetic this would lead to a mixed system. The
system of interést in this chapter is diluted and this corres-
ponds to A being magnetic and B being non-magnetic. The mixed
case will be described here since it is more general and the
dilute case is easily obtained from it.

The spins in the system are assumed to have only nearest
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neighbour Heisenberg interactions and the Hamiltonian for the spin
system is given by

H = - © J,_ S-S, (3.2.1)
<ij> T+

where <ij> indicates a sum over nearest neighbour spins. J is the

ij
exchange interaction between the neighbouring spins §i and §j'
The Jij values are positive since the system is ferromagnetic.

In the mixed system the exchange interaction between nearest neigh-
,bours of the same species is assumed tb be the same as in the pure
system and the exchange interaction between neighbours of different
species is given by JAB = (JAAJBB)i’ wﬁich is known to be a
good approximation for magnetic insulators (Cowley and Buyers
(1972)). For a diluted system with nearest neighbour interactions
there is clearly no interaction between two B neighbours or an

A and a B neighbour, so that the only non-zero interaction is

between two magnetic A-type neighbours. The Hamiltonian in equa-

tion (3.2.1) can be expanded in terms of the cartesian spin com-

ponents Sx, sY and S% .to give:
H= - & J.6.%%+5% *+s57%7) . (3.2.2)
<ij> +J J 1 3

Explicitly assuming that the ordered spin is along the z-
. . ; . iy . +
direction, the spin creation and annihilation operators S and

S~ are defined by:

st SX 4+ isY (3.2.3(a)

S = s¥ _ jg¥ (3.2.3())



From equation (3.2.3), s* and s¥ can be written in terms of

S+ and S  as:

+ -
S = (s +5s5) (3.2.4(a))
¥ = '%T(S+ - 8D . (3.2.4(b))
Substituting for Sx and Sy in equation (3.2.2) gives:
- _ Z o2 +o - -« T
H = z Jij(Si Sj + %(Si Sj + Si Sj ) . | (?.2.5)

<ij>

Because the effects due to the disorder are of the most interest
a linear spin wave appfoximation'can be made which avoids the com-
plication of:non—linear spin wave interactions. The linear spin
wave approximation can be made, using the lowest-order Holstein-

Primakoff transformation given by equation (3.2.6).

st L @2s)ia (3.2.6(a))
sT 5 (25)% &t (3.2.6(b))
s 5> s-aa . | (3.2.6(c))

In equation (3.2.6), S 1is the value of the spin and a and a*

are the Bose destruction and creation operators respectively. Re-
+ -

placing S , S and S® in equation (3.2.5) by the expressions

given in (3.2.6) gives:

% %
H = - % J..SiS. + Ji.(S.aiai + sia. a.)
<i,j> J J J J J

1 % %
-— 2 0
Jij(sisj) (aiaj + aiaj) . (3.2.7)



In the diluted case all the magnetic sites have the same spin
S and the non-magnetic sites do not have a spin so that (3.2.7)
simplifies to
> % * * * '
H = -2 J, .S+ Ji.S(a.ai + a.,a, < a,a, - a,a,) . (3.2.8)
<ij> j i i3 i7] i7j
The first term in (3.2.8) is just the ground state Hamiltonian HO;

the second part is the‘spin wave part of the Hamiltonian and can for

the diluted case be written:

% %

H = (ifj)Ji.S(ai a; - a; aj) (3.2.9)
where (i,j) indicates a sum which includes all pairs of nearest
neighbours twice.

A set of quantities gio(t) can be defined by (Alben et al.
(1977)):
iQ.R

. Q.R,
<a, (£)2 a, (0)e LN (3.2.10)
J

giQ(t)

where Rj is the positioh of the spin at site j and 0O 1is the
wavevector of interest. It can be shown (Alben et al. (1977))

that the giQ quantities obey the equation of motion

d

g.
; iQ -
iﬁ it ; S Ji.(g.

; (839 - ng) . (3.2.11)

In the dilute case the g-factors (Chapter 1) and spin values can be
set to 1 since the S(g,E) values calculated can be scaled for

comparison with experimental data and the normalised form for the

A}



scattering intensity is given by:

PO L -iQ.R, .  1iQ.R,
S(QGE) 2@5[ IEt/h (e HE aj@e N>ar
=00 i j
(3.2.12)
—1$+2
Introducing a damping function e At and with initial con-
iQ.R;,
ditions giQ(t=0) = e * equation (3.2.12) can be written:
T -iQ.R iEt 2
e R, = -At
S(Q,E) = 1lim 1lim ;%ﬁ Re J T e - g.Q(t)e h e dt
150 T i +
(3.2.13)

The limits given correspond to infinitely good energy resolutionm.

The effect of having a value A > 0 is to introduce a broadened
spectrum. Because the Fourier transform of a Gaussian envelope is
another Gaussian, the value of A can be closen to give an energy
resolution comparable or exactly matched with an instrumen£a1 energy
resolution width, enabling comparison between calculated and ex-
perimentally obtained spectra. A finite value for A also means
that the integral need only be performed up to a limit in time of
T=T < ©, The criteria for choosing )X and TMax are dis-

Max

cussed in the next section.

3.3 Implementation of thé Equation-of-Motion Method

In the previous section (Section (3.2)) the mathematical details
of the equation-of-motion method were set out (with final emphasis
placed on the case of diluted systems) and an equation (equation
(3.2.13)) was arrived at which related S(Q,E) to the quantities

giQ(t)' In practice, the implementation of the technique is as
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follows. 1Initially, each magnetic site in the diluted system is

assigned a giQ value given by equation (3.3.1).

1Q.R,
giQ(t=0) = e . (3.3.1)

For each site, the equation-of-motion (equation (3.2.11)) is
then used to calculate the derivative of 8,0 2at time t = 0. If
the time step for the numerical integration of equation (3.2.13)

is given by At, then: ~

(t = at) = (t=0) +ff§i9ﬁfigl At (3.3.2)
8iq 81q " . .3.

So equation (3.3.2) allows the values to be calculated after

the first time step. To calculate giQ(t-= nAt) where n x> 2, a

more accurate method of calculating 8, (t = nAt) can be used

Q

because giQ is known at two or more previous time steps. The

relationship between giQ(t,= nAt) and the giQ(t) at

t = (n-1)At and (n-2)At is taken to be:

dgiQ(t=(n—l)At)

-giQ(t=nAt) = giQ(t=(n-2)At) + " 20t
(3.3.3)
dg19(t=(n—l)At)
At successive time steps, 3 is calculated from
t

the equation-of-motion and then giQ(t=nAt) is calculated from
equation (3.3.3). At each interaction, the giQ(t=nAt) are summed
over all magnetic sites. Finally the time integration in equation
(3.2.13) is performed numerically according to the Trapezium Rule
(Stephenson (1973)).

As mentioned in Section (3.2), the time step, At, for the
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numerical integration, the cut-off time Tmax and the damping constant
A have to be chosen to meet various requirements. The time step is
determined by the highest possible energy in the band. If Emax

is expressed in Terahertz (THz), then At expresséd in picoseconds

(ps) is given by

= i _ 1
At (ps) = Emax(THz) (3.3.4)

Q|-

In the classical picture of precessing spins represents

max
the minimum time period for precession of a spin. That is to say,
.all spins take at least 1/EmaX picoseconds to precess once. The

time step has to be small enough that the (t) vary smoothly

giQ
on that scale and that the numerical calculations are a good
approximation. The factor a ensures that the spins have made

less than one revolution between successive time steps, a = 10

gave a small enough time step for the calculations reported in this
chapter.

In neutron scattering experiments the spectrum obtained in a fixed
wavevector transfer scan to determine S(Q,E) as a function of the
energy transfer E (='tm) is broadened by the spectrometer resolution.
It is therefore the broadened spectrum of S(Q,E) which is of
interest when comparing with experimental data. The damping function
used for the calculations was a Gaussian e—AtZ: The effect of
this in the calculations is to give a Gaussian shaped broadening

. -E2/4K2) . '
to the S(Q,E) spectrum, according to e (the Fourier trans-

-2 w242
form of the Gaussian function e t is e E*/4k A)
-E2/4R2) -E2/202
e e

. Comparing

with then o 1is related to A by o2 = 2h2)

and so the energy resolution requirement, given by the value of o
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determined the value of A.
The value of Tmax is determined by the acceptable noise level

in the S(Q,E) spectrum. If n is the acceptable noise level, then

T is determined by:
max A

—AT;
e ax 2 n (3.3.5)

where n 1is a fraction such -that if 1% was the acceptable noise

level then n = 1/100. Equation (3.3.5) can be rearranged to give

T in terms of X and n:
max :

T - <1oge(1/n)/x)5 . (3.3.6)

The number of time steps in the calculation is then given by:

N,y = Tmax/At . | (3.3.7)

Computing details are given in the next section.

3.4 Computer Programming Details

The program used to calculate S(Q,E) was written in Fortran
77 and called MASMEX. (This name is short for '"MASter Magnetic
EXcitations" program.) This program was compiled and run on the
VAX 11/750 computer belonging to the University of Edinburgh Physics
Department. For a given job, the VAX 11/750 uses more C.P.U.
(Central Processing Unit) time than the ICL 2900 series computers

(which are also availabie) of the ERCC (Edinbﬁrgh Regional Computing



Centre). As discussed later'in this section MASMEX was run for a
finite size simple cubic lattice with dimensions LxLxL. The
value of L was chosen to be as large as possible to avoid finite
size effects. One of the. advantages of using the VAX was that the
program could be compiled and run with L = 35 although this was
later reduced to L = 30 after a new computer operating system
was installed. (There seemed to be no discernible difference
between the L =35 and L = 30 spectra, so that L = 30
appeared to be above the limit below which finite size effects
become more important.) A 30x30x 30 1attiqe was considerably
larger than the largest finite sized system.for which MASMEX
could be compiled on the ICL 2988. Another advantage was that
whilst the VAX uses around 4 times the amount of C.P.U. time
used by the ICL 2988 to run the same program, the demand for
.C.P.U. time on the VAX is very much less. Consequently the actual
time taken between submitting a batch job on the VAX and receiving
the results is less énd this is partic;larly true for large batch
jobs. In addition, there is an upper limit in terms of C.P.U.
time of 7200 seconds for Batch jobs on the ICL 2988, so that some
of the jobs_which ran on the VAX could not have been run on the
ICL 2988 since they required more C.P.U. time than that upperllimit.
(A typical batch job to calculate the spin wave spectrum for an

L = 30 lattice with magnetic concentration x = 0.34, averaging over
5 configurations and with an energy resolution.which was 1% of Emax
took around 8% hours of VAX C.P.U. time.)

The program MASMEX sets up the model system on a finite size

simple cubic lattice with the dimensions LxLxL. A random coordinate
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(cl, Cys c3) with 1 ¢ c; € L 1is generated and designated as a
magnetic site. This procedure is repeated and if the random coor-
dinate generated does not already correspond to a magnetic site, then
it becomes a magnetic site. If. x 1is the desired concentration of

magnetic sites in the diluted system then the procedure continues

until NS sites have been occupied by magnetic species, where:

x = NS/L3 . (3._4.1)

Depending on the value of x, the model system can contain
isolated clusters of spins. The question then arises as to whether
these isolated clusters should be allowéd to contribute to the
calculated scattering. In a real system with only nearest neigh-
bouring interactions, the clusters are completely isolated both
from other clusters and from the infinite cluster. One would there-
fore expect the finite clﬁsters to be randomly orientaﬁed so that
no coherent scattering would be expected from them. It is there—
fore argued that only the scattering from the spin deviations on
the "infinite cluster" (which consists of all the spins which are
not in isolated.clusters) is of interest in these calculations and
a subroutine was written which'eliminated ;he isolated clusters.
After this subroutine has been called, only”magnetic sites which
were linked to all six sides of the finite cubic system (which has
to satisfy periodic boundary conditions) are retained. Figure
(3.4.1) illustrates the "infinite cluster" for a d = 2, 16x16
square lattice with the magnetic site concentration x close to
but greater than the site percolatioﬁ threshold Xp. (The

"infinite cluster" does not exist for x < xb and the system



FIGURE (3.4.1): Illustration of the "infinite

cluster" of magnetic sites for a
16 x16 finite size system
satisfying periodic boundary
conditions. The'filled circles
indicate the magnetic sites and
the lines link nearest neighbour

magnetic sites.



Figure (3.4.1)
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consists only of finite clusters of magnetic sites, i.e. there is no
long range order. This chapter is not concerned with the excitations
in that concentration regime.) Labelling the concentration of mag-

netic sites in the "infinite cluster'" by X, £ thenﬂtheré are Ninf

magnetic sites left after this procedure, where:

= 3
X £ Ninf/L (3.4.2)

Clearly Xip §X ‘and when X 1is close to Xp’ the percola-

tion concentration, then xinf is considerably less than # be-

cause a substantial number of finite clusters héve to be thrown away.
After the random diluted system has been set up, the magnetic

sites are labelled from 1 to Ninf and the non-magnetic sites are

labelled from Ninf to L3. The six nearest neighbours of each

spin are identified and stored for use with the equation-of-motion.

The "Equation of Motion'" method as described in Sections (3.2)

and (3.3) is then followed. In the diluted systeﬁ giQ is oﬁly

non zero for the magnetic site§ and so the values of giQ at each

time step only need be calculated for the magnetic sites. In the

final sum over sites in the calculation of S(Q,E) only the magnetic

sites need be summed over so that the program requires progressively

less C.P.U. time as x 1is reduced. In each calculation, S(Q,E)

is calculated as a functiqn of E for a specified but fixed value

of Q. The range of E and the energy step AE were chosen

according to where and how broad, as a function of energy, the

interesting features were expected to be.

The motivation behind calculating S(Q,E) in the diluted

magnetic systems lies in being able to identify the features of real
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systems which are truly associated with this kind of disorder. Any
effects which occur purely because the model system is of finite
size with periodic boundary conditions are of no physicai interest
because they would not be a feature of S(Q,E) in an effectively
infinite real system. To allow for these potential problems,
several steps have been taken. Firstly, the system has been made

as large as possible and to the best of my knowledge has been run
for the largest ever model system. Alben et al. (1977) used
lattices with typically 8000 (203 sites. In the calculations
reported in this ch;pter lattices with 27000 (303) sites have
mainly been used but lattices of up to.42875 (353) sites had

also been used in program-tests. Secondly, the program can
generate S(Q,E) for several different random configurationms,

all of which have the same'concentration x. (Particular configura-
tions are determined by the initial random number'seed.) A program
SPECAV (§§§g§rum;52erage) was written to average a series of spectra
which differ only in that they‘are generated by MASMEX for dif-
ferent ;andom configurations. For each energy value, the program
can calculate the standard deviation defined by equation (3.4.3),
which is a measure of the spread of thé distribution of S(Q,E)

values at that energy value.

n
(3

o(B) = (* 1 (s,(Q,E) —_S((_)_,?E))z)% (3.4.3)
ne i=1 *

where S(Q,E) is the mean of S(Q,E) obtained by averaging nc

configurations. If an uncertainty is to be attached to each E(Q,E)

value then it can be argued (from the discussion about errors in
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Squires (1976)) that this is given by the standard deviation in the
mean defined by equation (3.4.4) and which is also calculated by

program SPECAV.

ou® = of(a - ni . (3.4.4)

Whereas o 1is a measure of the spread in the values of S(Q,E),

o, gives the uncertainty in the mean value. cm(E) can be reduced

by averaging over progressively‘larger numbers of configurations.
Table (3.4.1) summarises the procedures carried out by programs

MASMEX and SPECAV.

3.5 Program Tests

Before a new computer program is used to generate any new results,
it is desirable to check that the program reproduces known results.

It was straightforward to check MASMEX in two cases. Firstly, the
program was used to generate S(Q,E) spectra for a simple cubic
Heisenberg ferromagnet. Secondly, in previous work by Alben et al.
(1977) a few graphs of S(Q,E) for the simple cubic diluted system
were given, and the program was used to generate similar spectra for
comparison. /

Because the model system is finite with periodic boundary con-
ditions S(Q,E) was calculated for the pure system only at allowed
wavevectors. The allowed wavgvectors along the {1,0,0] direction
are obtained from the following considerations; The periodic boundary

conditions demand that:
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Read in the parameters which
specify the details of the
calculation.

Generate finite size randomly
diluted simple cubic system with
magnetic site concentration x.

Eliminate finite clusters of mag-
netic sites, retaining only the
infinite cluster. Magnetic con-
centration now x, £ X).

inf’ (Xinf =
+

Use equation-of-motion technique
to calculate giQ(t) for each mag-

netic site at successive time steps,
up to cut-off time T .
max’

Y

Calculate S(Q,E) from equation
(3.2.13) for a specified range of

energies.

Use SPECAV to average S(Q,E)
spectra over the desired number of

configurations

Output S(Q,E), o(E), cm(E)

TABLE (3.4.1):

out by MASMEX and SPECAV.

|
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Summary of the General Procedures carried
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F((x+L)a) = F(xa) (3.5.1)

where F(X) is a function which needs to satisfy the periodic boun-
dary conditions, a is the lattice parameter, L is the number of
units along one side of the LxLxL system and x < L. A possible

solution to equation (3.5.1) is:

F(X) = 9% | (3.5.2)

For this solution to satisfy equation (3.5.1) then:

eiq(x+L)a - eiqxa (3.5.3)
It follows that:

etala g, (3.5.4)
Hence:

¢ = 25 | (3.5.5)
where, for wavevectors restricted to the first Brillouin zone:

L/ L/ (3.5.6)

-2 < p < 2
if L 1is even.

To test the program in the pure case, an LxLxL lattice with

L

10 was chosen and S(Q,E) generated as a function of E for

Il

Q

(QX,O,O) at Qx =0, 0.1, 0.2, 0.3, 0.4 and 0.5. At each .Q
Gaussian peaks were obtained, whose full width at half maximum
height (FWHM) was in accordance with the width expected from the
chosen value of. A, Figure (3.5.1) shows a typical peak. For a
simple cubic ferromagnet with nearest neighbour Heisenberg inter-

actions Kittel (1976) shows that the spin wave dispersion relation



FIGURE (3.5.1):

Single resolution limited Gaussian peak

obtained by running MASMEX for the pure

case (x = 1) with Q = (0.3,0,0).

The chosen energy resolution was 0.2 THz

F.W.H.M. 1in this case.
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is given by:

fo = JIS[z-zZcos(q.8)] | (3.5.7)
$

where J 1is the exchange interaction (a factor of 2 greater than the
one given by Kittel due to a factor of 2 difference in the definition
of the Hamiltonian), S is the spiny 2z is the number of nearest
neighbours, g 1is the wavevector of the spin waves and the vectors
$§ join any spin to its six nearest néighbour spins. 1In Figure
(3.5.2(a)) comparison is made between the peak positions at the
chosen wavevectors and the dispersion relation calculated from
equation (3.5.7). The fact that the resolution limited peaks that
were obtained were centred at the energies expected from theory,
is strong evidence that the program worked in the pure system limit.
Alben et al. (i977) considered not only S(Q,E) but also the
density of states P(E) for both mixed and diluted systems with the
Heisenberg form of the Hamiltonian. Since the calculation of
S(Q,E) for diluted systems comprised only a fraction of that work
ihe number of published S(Q)E) spectra with which a comparison
could be made was limited. Neveftheless, eicellent agreement be-
tween spectra published by Alben et al. (1977) and those generated
by MASMEX was found for the available wavevectors and concentrations.
At x = 0.25 the spectra available had wavevectors at
Q = (Qg Qp, Q) with Qg = 0.125, 0.25, 0.375, 0.5. At x = 0.5
a comparison could only be made with a spectrum at Q = (QX, QX’ QX)
with QX = 0.5. The agreement is very reassuring, especially when the
fact that MASMEX generated the spectra for a larger (353 compared

with 203) finite system is taken into account. Since these spectra



FIGURE (3.5.2):

Comparison between energy values at the
peak positions in spectra generated by
MASMEX for x = 1 and the spin wave dis-
persion relation calculated from
equation for wavevectors along the

a, 0,0] direction.
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seem independent of the difference in lattice size, the spectra pre-
sented in the remainder of this chapter should not be dominated by

intrinsic finite size effects, since they were obtained for L = 30.

3.6 Results

In this section spectra are presented which were calculated for
model systems with magnetic site concentration x in three poten-
_tially different regimes. The motivation lies in being able to
compare and contrast calculated spectra for what will be described
as low, intermediate and high levels of magnetic site dilution.
The three magnetic site concentrations for the calculated spectra
were chosen to be x = 0.9, x = 0.5 and x = 0.34. Values of § = 1
and J =1 were chosen and so the highest possible energy in the
spin wave band would be Emax = 12 THz. The energy resolution was
selected to be O.lZIHz which is 1% of Emax' The spectra were
generated for wavevector transfers along the [1,1,1] direction.

In a simple cubic system each site has six nearest neighbours
and for x = 0.9 only 10% of magnetic sites have been replaced by
non-magnetic sites so that many of the magnetic sites must be com-
pletely surrounded by other magnetic sites as in the pure syétem.
The probability of any isolated clusters at this concentration is
low enough to be negligible and so no isolated clusters are ex-—
pected in the finite model system: in fact, for the calculations
at x = 0.9, it was found that X g =X%X= 0.9. Since for

b4 = 0.9 each magnetic site has on average less than one non-

inf
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magnetic nearest neighbour, it was anticipated that this level of
disorder would not have a particularly drastic effect on the spectra
‘compared with those expected for the pure system and the spectra in
Figure (3.@.1) support this view. At Q = (0,0,0), which corres-
ponds to the centre of the first Brillouin zone, the spectrum con-
sists of a single resolution limited Gaussian peak centred on zero
energy with a F.W.H.M. of 0.12 THz. At Q = (Q.l, 0.1, 0.1) the
peak has moved to higher energies, has broadened slightly and there
is a hint of the spectrum changing shape with more weight in the
wings of the peak. At Q = (0.2, 0.2, 0.2) the peak has a width

of around 0.8 THz, which is. over 6 times the resolution width, so
clearly as Q increases from the zone centre the peak width in-
creases. However, this broadening does not continue indefinitely.
At Q = (0.3, 0.3, 0.3) the peak has broadened a little bit more
but there is obvious weight in the spectrum all the way frpm

E

Oup to E = Emax = 12 THz. At Q = (0.4, 0.4, 0.4) and

Q (0.5, 0.5, 0.5) the effects of the disorder became even more
obvious although there is still a peak close to the energy ex-
pected in the pure system. The spectra are asymmetric with long
tails of intensity down to zero energy. No excitations can exist
in the system with energy greater than Emax = 12 THz and this
imposes an upper cut-off on the spectra. Figure (3.6.2) shows
the spectra for all six wavevectors on one graph.

At x = 0.5 only half the sites are magnetic and when an
average was made over 5 configurations, it was found that Xof

was 0.4894 so that just over 1% of magnetic sites had to be

excluded from the calculation of the magnetic excitation spectra.



FIGURE (3.6.1):

S(Q,E) spectra generated
x = 0.9 for

(a) Q = (o, 0, 0)

() Q = (0.1, 0.1, O.
(¢) Q = (0.2, 0.2, 0.
(d) Q = (0.3, 0.3, 0.
(e) Q = (0.4, 0.4, O.
(£) Q = (0.5, 0.5, O.

by MASMEX with

9]
2)
3)
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Fig (3.6.1(b))
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Fig (3.6.1(d))
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FIGURE (3.6.2): Comparison of the S(Q,E) spectra generated by

MASMEX with x = 0.9 for

E (@ q = (0, 0, 0)
(b) Q = (0.1, 0.1, 0.1)
(¢) Q = (0.2, 0.2, 0.2)
(d) Q = (0.3, 0.3, 0.3)
(e) Q = (0.4, 0.4, 0.4)
(f) Q@ = (0.5, 0.5, 0.5).
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The calculated‘spectra are shown in Figure (3.6.3).

As with x = 0.9, the spectrum at Q = (0,0,0) for x = 0.5 con-
sisted of a resolution limited peak centred at zero energy. However
the effects of disorder were far more pronounced as Q was increased
from the zone centre value. At Q = (0.1, 0.1, O.i) there was still
a distinguishable peak with a width just over 4 times that of the
resolution width and there was weight in a tail of intensity which
extended towards higher energies. Beyond this the spectra did not
consist so much of a single peak but more as a broad distribution
of intensity. As Q increases, the bulk of the intensity moves
through to higher energies but compared with x = 0.9, the peaks
of the distributions have moved down in energy at any pérticular
Q.

The third concentration chosen was x = 0.34, which is just
over 3% above the magnetic site percolation threshold x = 0.31
for a‘simple cubic system. The number of finite clusters diverges
as the percolation threshold is approached from above and for

X = 0.34, calculations revealed that x, = 0.2431. This meant

' inf
that only about two-thirds of the original magnetic sites generated
.in a configuration belonged to the "infinite cluster" and the one-
third of magnetic sites belonging to the finite clusters were ex-
cluded from the calculations. Figure (3.6.4) shows spectra generated
by MASMEX for x = 0.34. In common with the other two configurations
chosen, the Q = (0,0,0) spectrum for x = 0.34 exhibited a resolu-
tion limited peak centred on zero energy. At larger Q, the spectrum

consisted of broad distributions of intensity similar to the x = 0.5

case but with energy shifted downwards, at a given. Q



FIGURE (3.6.3): S(Q,E) spectra generated by MASMEX with

x = 0.5 for

(a) Q = (0, 0, 0)

() Q = (0.1, 0.1, 0.1)
(¢) Q = (0.2, 0.2, 0.2)
d qQ = (013, 0.3, 0.3)
(e) Q = (0.4, 0.4, 0.4)
(£) Q = (0.5, 0.5, 0.5).

The spectra were obtained by

averaging over 5 configurations.
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FIGURE (3.6.4):

S(Q,E) spectra generated by MASMEX with

0.34 for

(a)
(b)
(e)
(d)
(e)
(£)

Q,

Q
Q
Q
Q
Q

(0, 0, 0)

(0.1,
(0.2,
(0.3,
(0.4,

(0.5,

0.1,
0.2,
0.3,
0.4,

0.5,

0.2)
0.3)
0.4)

0.5).

The spectra were obtained by

averaging over 5 configurations.
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3.7 Comparison with Experimental Data

This section reports a comparison which was made between spectra
generated by the computer program MASMEX and some experimental data;
which was obtained from inelastic neutron scattering measurements on
the system Crl_xFex with x = 0.27 (Mitchell et al. (1985)). Body

Centred cubic (b.c.c) Chromium-Iron is a diluted magnetic system
because the Iron ions have magnetic moments but the Chromium ions
Behave non-magnetically (Aldred et al. (1981)). The real system
differs from the model system in several ways. Firstly, the real
system is b.c.c. whereas the model system has a simple cubic

(s.c.) lattice, but this is not considered a serious problem since
disorder induced phenomenological features should not be affected.
(Plans are afoot to extend MASMEX so that it caﬁ model b.c.c. systems.)
Secondly, the real system is metéllic and since the magnetic moment
is associated with the conduction electrons, the excitations might
be influenced by single particle or Stoner excitations as well as
the disorder. In the model system, only the disorder can affect

—- .

the excitations and so comparison of the spectra generated from the
model system with the experimental data from the real system should
show whether single particle excitations significantly affect the
spectra.

The neutron inelastic scattering measurements were performed

on a single crystal sgmple of Crl_xFeX with x = 0.27 on the IN3
triple~axis neutron spectrometer at the I.L.L., Grenoble, France.
This alloy composition is, in fact, just in the region where at low

temperatures the small-wavevector spin waves appear to collapse

(Shapiro et al. (1981)) and ferromagnetism gives way to a more
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complicated structure. This is not of concern here since it seems
unlikely that the large wavevector magnetic excitations would be
effected by that transition.

The experiments had to be performed at around %Tc (in fact
at T = 100K compared with TC = 195K) since at lower temperatures
the intensity of the spin wave scattering was too weak to be dis-
tinguished from the background. Even at this temperature data was
collected only in the range up to 2 THz because there appeared to
be little intensity abovevbackground at higher energies.

Pyrolytic graphite (0,0,2) Bragg reflections were used in
both the monochromator and analyser, The fixed final
wavevector was fixed at kf = 2.662:&_l and a pyrolytic graphite
filter was used to eliminate higher order contamination.

The real crystal, being b.c.c., hadba value of x =AO.27 which
- is around 8% above the minimum concentration where ferromagnetism
is observed (Burke et al. (1983)).

Since only a qualitative comparison can be made between the
experimental data for the b.c.c. system and the calculated épectra
for the s.c. system, the magnetic site concentration was chosen to
be x = 0.39 in the model system. That value of x 1is 8% above the
magnetic site percolation threshold for a simple cubic lattice.
With a spin S =1 the exchange interaction was chosen to be
J = 8.18 THz, corresponding to the observed spin wave stiffness
in pure Iron. The energy resolution in the experiment was around
0.3 THz and X was chosen so that the energy resolution in the
calculated spectra matched this. . As discussed previously, the

calculated spectra are essentially a calculation of S(Q,E) at
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at T = 0. S(Q,E) 1is related to the imaginary part of the magnetic

transverse susceptibility by:

T

S(Q,E) = (n(E) + 1) x"(Q,E) (3.7.1)
where n(E) 1is the Bose Einstein population factor, given by:
n(E) = lexp(&/kT) - 1171 . (3.7.2)

In this definition of the population factor, E is positive
for neutron.energy loss processes and negative for neutron energy
gain processes. Hence, for excitations with finite energy, n(E) =1
for neutron energy loss and n(E) = 0 for neutron energy gain at
T = 0. (That makes physical sense because at T = 0 there are no
excitations in the system from which the neutron could gain energy,
but the neutrons can always lose energy by creating a magnetic excita-
tion.) Consequently x"(Q,E) 1is the neutron energy loss part of
S(Q,E) at T = O.' In compafing e#perimental data with calculated
data then it was assumed that the only effect of increasing the
temperature to T = 100K was to populate the excitations such that
S(Q,E) was given by equation (3.7.1) with x"(Q,E) replaced by
S(Q,E) at T = O. Hence to compare the spectra produced by
MASMEX to the experimental data, S(Q,E) at T = O was simply
multiplied by the population factor.

Calculations were made for various wavevectors along the
[1,0,0] direction. That direction was chosen because the éxperi—
mental data was collected for wavevectors along the [1,1,0]
direction: the {1,0,0] direction in s.c. systems and [1 1 O]

direction in b.c.c. systems are the directions for which Brillouin
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zone boundary is closest\to the Brillouin zone centre. Comparisons
are shown in Figure (3.7.1) between experimental and calculated
spectra with the same values of Q/QzB (where QzB indicates the
wavevector at the Brillouin zone boundary). Note that only a rough
scaling has been performed on the intensity of the computer generated
data and that the scale factor used was the same at each Q.

Bearing in mind the qualitative nature of the comparison be-
tween the experimental and computer generated data, the pheno-
menological agreement is good enough to suggest that the main fea-
tures of the experimental spectra can be attributed to the random
substitutional disorder. That is to say, there do not seem to be
any.features in the availablé experimental data which cannot be
qualitatively explained in terms of the calculated spectra frém
the simple model system which takes only the disorder into account.
The existence of single particle or Stoner modes do not seem
necessary to explain the experimental data. However, a quantita-
tive comparison between the experimental spectra and the éomputer
generated spectra for a model b.c.c. system would be even more
informative and in the next stage of this project it is intended
to extent the program MASMEX to deal with b.c.c. systems.

The calculated spectra in Figure (3.7.1) are for energies up
to around 2THz because that was the range of neutron energy transfefs
for which experimental data was collected. However the calculated
spectra were generated for energies up to about 30THz. Figure
(3.7.2) shows a calculated spectrum for S(Q,E) at T = OK and
Figure (3.7.3) shows that spectrum multiplied by the population

factor to give an S(Q,E) at T = 100K. A striking feature of the



FIGURE (3.7.1): Experimental data for the system

Cr Fex with x = 0.27 at T = 100K

1~x
for
(a) Q = (0.3, 0.3, 0 )
(b) Q = 7(0.4, 0.4, 0 )
(¢) Q = (9.5, 0.5, 0 )

The solid line indicates calculated
intensity obtained by the method

described. in the text.
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FIGURE (3.7.2): Calculated S(Q,E) spectrum with

X 0.39 at T = OK for

(0.5, 0 , 0 ).
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FIGURE (3.7.3): Calculated S(Q,E) spectrum with

X 0.39 at T = 100K for

Q=(0.5,0 , 0 ).
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spectra is a resolution limited peak at 8.18 THz which is superim-
posed on the rest of the spectrum. This peak is also evident in
spectra generated for other wavevectors and since S =1 and

J = 8.18 THz the peak may correspond to the lowest energy localised
mode of the model éystem and is presumably a facet of the nearest
neighbour interactions in the model system. However, the magnetic
interactions in the real metallic alloy system Crl_x FeX with

x = 0.27 are expected to have the RKKY mechanism. - With the RKKY
mechanism, the conduction electron gas in the neighbourhood of a
particular magnetic ion is magnetised with a spatial dependence
shown on page 554 of Kittel (1976). -Other maghetié ions are in-
fluenced by that magnetisation so that there is an indirect
exchange interaction between pairs of magnetic ions in the

system. Since the RKKY mechaniém involves the conduction
electrons, it would seem at first sight that the magnetic in-
teractions in Crl_X Fe with x = 0.27 would therefore not be
explained satisfactorily by a nearest neighbour modél. But

the system is highly disordered and scattering of the conduction
electrons due to that disorder in the system might reduce® the
mean free path to an extent that the magnetic interactions

could be described as approximately nearest neighbour. To

test this hypothesis a proposal has been submitted to the I.L.L.,

Grenoble (P.W. Mitchell (1985)) for an experiment to determine

whether or not the localised mode exists in the real system.
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CHAPTER 4

K,Co_ Fe F,: A MIXED MAGNETIC SYSTEM WITH
2 x 1-x' 4 ‘

ORTHOGONAL COMPETING SPIN ANISOTROPIES

4.1 " Introduction

In pure systems, the spin anisotropy determines the direction
along which the magnetip moments of the constituent magnetic ions
align below the magnetic phase transition temperature. The aniso-
tropy can arise from dipole~dipole interactions, single ion crystal
field effects or there can be anisotropy in the exchange interaction.
In theory, a mixed magnetic system with orthogonal competing spin
anisotropies caﬁ be formed by randomly mixing two pure‘systems which
differ only in the type of magnetic ion and in that the favoured
brdering directions are orthogonal. These systems here received
considerable theoretical and experimental atteng}on in recent years
(a review of much of this work has been given by Katsumata (1983)).
Mean field (Matsubara and Inawashiro (1977)) and renormalisation
group (Fishman and Aharony (1978)) calculations for these systems
predict three ordered phases in the concentration-temperature plane:
two phases in which there is long range order of the spin components
in the directions favoured by the two end members and an intermediate
phase in which there is long range order in both spin components.

For antiferromagnetic systems. this phase is known as the Oblique
Antiferromagnetic (OAF) phase (Matsubara and Inawashiro (1977)).

A schematic phase diagram for such systems is shown in Figure (4.1.1).



FIGURE (4.1.1): Schematic temperature T against concentration x

phase diagram for a mixed magnetic system with
competing spin anisotropies.

P Indicates the paramagnetic phase.

Ll indicates a phase in which the spin ordering
direction is that of one end member and L2 indicates
that the spin ordering direction is that of the
other end member.

M indicates the mixed phase which for antiferro-
magnetic systems is known as the Oblique Antiferro—

magnetic (OAF) phase.



fig 4.1.1
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Both calculations predicted that the two phase boundaries (the
boundary here being the locus of points in the goncentration—
temperature plane below which a particular spin component orders)
cross at a tetracritical point and that all of the phase transitions
will be second order. The mean—field.calculations predict that the
ordering of one spin component affects the ordering of the spin com-
ponent orthogonal to it with the result that both phase boundaries
change slope at the tetracritical point, whilst the renormalisa-
tion group calculations,which take spin fluctuations into account,
suggest that each of the spin components order independently so
that the phase boundaries pass through a decoupled tetracritical
point without change of slope. Consequently the principal focus

of theoretical and experimental attention has been the form of

the phase diagram. Experiments on systems with the spatial dimen-
sion d =3 (Ito et al. (1980), Ito et al. (1982), Someya et al.
(1983) and Wong et al. (1983)) and d = 2 (Bevaart et al. (1978),
Vliak et al. (1983) and Higgins et al. (1984)) have shown the ex-
istence of the OAF phase. Clearly, the experiments have to be
performed on individual samples, each with a fixed concentration,
and it is by investigating the order parameter and/or the response
functions such as the specific heat and magnetic susceptibility as
a function of temperature that the critical temperature and nature
of the phase transition at that concentration can be found. If

pd and x

1 2 define the position of the intersection of the phase

boundaries with the zero temperature (T = 0) axis then samples
with a concentration x <K<X, should undergo two phase tran-

1

sitions on cooling from the paramagnetic phase. As the temperature
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is lowered, there should be an onset of long range order in one of

the spin components at T and at a lower temperature T the

N

other spin component should order so that below T

L!

L the system

attains the OAF magnetic structure. In a very detailed study of

the mixed d = 3 antiferromagnet Fe CoxCJL2 Wong et al. (1983)

1-x

found that although the high temperature transition at TN was

well defined, the lower one at TL was smeared. They suggested

that this was because the ordering of one spin component generated
a random field on the other, and that this random field inhibited
the development of true long range order in the other spin component.
The random fields were generated by off-diagonal coupling arising

from the low local symmetry in the FeCl2 structure. KZCoxFel—xF4

has a significantly higher local symmetry and so the nature of the

transition at TL is of particular interest for this system.

The rest of this chapter is laid out as follows. In the next
section (Section 4.2), the relevant properties of the pure systems

(or 'end members') K2C0F4 and KzFeF4 will be discussed. In

Section (4.3) the results of an investigation of the magnetic struc—

ture of a sample of K CoxFe F

1-x7 4 with x = 0.6 and a sample with

2
x = 0.2 are reported. The x = 0.6 sample is shown to exist in the
uniéxial antiferromagnetic phase below TN = 92,2+ 0.1K. In the
nominally x = 0.2 sample the uniaxial spin components order below
TN = 66* 1K and below a well-defined transition at TL = 32+ 2K
the transverse components also order. In Section (4.4) measurements
to determine the dispersion of the low temperature (T ~ 5K) spin

waves in the x = 0.6 and d = 0.2 samples are discussed. The

properties of the spin wave excitations in the OAF phase and the
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role they play in the phase transitions to the other two ordered
phases have only recently begun to receive attention and in Section
(4.5) the results of inelastic neutron scattering measurements of
the spin waves in the OAF phase of a sample with a nominal concen-—
tration x = 0.27 are reported. The magnetic structure of the
sample had previously been investigated by Vlak et al. (1983), who
found the transition temperatures to be T, = 64.4+0.6K and

N

TL = 27+ 2K. 1In Section (4.6), a computer program designed to
calculate relevant parameters for the ground state (T = 0) mag-
netic structure in KzéoxFel_xF4 across the complete range of
concentrations (x) 1is discussed and some resulfs presented with
particular emphasis on the OAF phase which is of most interest.
In Section (4.7) another computer program which calculates S(Q,w)
at T = 0, wusing the "Equation-of-Motién" technique (Alben and
Thorpe (1976)) is discussed and results are compared with the low

temperature spin wave measurements for the x = 0.2, x = 0.6 and

x = 0.27 samples.
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4.2 The Pure Systems

4.2 (i) The Pure Systems (Introductory Remarks)

'Thé pure systems (or end members) K2CoF4 and K2FeF4 crystal-
lise in the KzNiF4 structure (Birgeﬁeau et al. (1970)). The mag-
netic ions are in antiferromagnetic quadratic layers separated'by
two layers of KF. As discussed by Lines (1967) and in Chapter 1 of
this thesis, the exchange interactions between nearest neighbour
magnetic ions within the ﬁuadratic layers is much stronger than that .
between magnetic ioné in layers adjacent to each other, so that
systems with‘the K2NiF4 structure are good d = 2 magnetic systems.

fhe crystallographic unit cell of K,NiF, was shown in Figure

2 4
(1.2.1) (Chépter 1). 1In discussing isomorphs of K

2NiF4 it is common
to define a magnetic unit cell (Birgeneau et al. (1970)). Figure
(4.2.1) shows the relationship between the crystallographic and mag-
netic unit cells. 1In this chaptef reciprocal lattice vectors will

be with respect to the magnetic unit cell rather than the crystal-
lographic unit cell. The c-axes of the two cells are identical

but the magnetic a and bm - axes are rotated by 456 rélative to

the a and b-axes of the crystallographic unit cell and are larger

by a factor of V2 .

4.2 (11) EZCOF}

Hund's rules indicate that the ground state of the free Co2+
ion is 4F9/2' In a cubic field, some of the degeneracy is lifted

so that the ground state becomes an orbital triplet. The tetragonal



FIGURE (4.2.1):

Relationship between the crystallo-
graphic (dached line) and magnetic
(solid  line) unit cells in the
K2N1F4 structure.

Note that only the magnetic ion

sites are indicated.



Figure (4.2.1)
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component of the crystal field combined with spin orbit coupling,
split the orbital triplet into six Kramers doublets so that the ground

+ .
state of the Co2 ion in the K_CoF structure is a doublet and

2 4
the magnetic properties of K2CoF4 at the sample temperatures
and neutron energy transfer values of concern in this thesis, can
be described in terms of a pseudospin S = 1/2.' The magnetic

susceptibility measurements of Breed et al. (1969) have shown that
in the critical region, K2CoF4 behaves like a d = 2 Ising
Antiferromagnet. When the model Hamiltonian of equation (4.2.1)
with pseudospin S = l/2 is used to describe the spin inter-

actions, then J,./I,., = 0.3.
1] 1] .

H = © 1I,.S8.%. +J..(siX

X Vo ¥
S.” +8,7s.7) . (4.2.1)
<ij> 13 i3 ij | i~]

<ij> indicates summation over nearest neighbours in the basal
(a-b) plane. (The ratio of the interplanar to intraplanar exchange
interactions was estimated. to be less than lO_3 and so only the
intraplanar exchange interactions Iij and Jij are required in
the Hamiltonian). The paramagnetic to antiferromagnetic phase
transition at TN = 107.85K (Ikeda and Hirakawa (1974)) can occur
in this d = 2 system because of the Ising asymmetry in the ex-

change interaction and below T the spins acquire long range

N
order with alignment along the c-axis. The ordered phase is thus
Uniaxial Antiferromagnetic.

The neutron diffraction experiments of Ikeda and Hirakawa
(1974) obtained critical exponents B8, v, vy and n which coin-

cided exactly (within experimental error) with the values obtained

in the exact theoretical solution of the d = 2 1Ising model
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(Onsager (1944)).

L 4.2.(ii1) K, FeF,

The ground state of the free Fe2+ ion is 5D4' In the system
K2FeF4 (Thurlings et al. (1977)) the crystal field combined with spin-
orbit coupling causes a single-ion anisotropy. The crystal field
Hamiltonian of the Fe2+ ion in K2FeF4 can be separated into a cubic
field term and two other terms which represent the tetragonal dis-
tortion (Thurlings et al. (1978)). The effect of the cubic crystal
field term is to 1lift the degeneracy of the ground state orbital
levels (there are 2L+l = 5 of them) to give a F3 triplet and a
Fs doublet. The tetragonal distortion separates F3 into a ground
state singlet and a doublet. The magnetic properties of interest in
this thesis can be described in terms of a pseudospin S = 2.

Thurlings et al. (1978) show that if the in-layer and out-of-
layer single ion anisotropy terms are decoupled, then up to quadratic
terms in the spin coﬁponents, the spin Hamiltonian of KzFeF4 can be
modelled by equation (4.2.2)

1= z2 X2 _ QY2
H 'z' Jij s, _s_j + z [D s;°+ E(Si si )] (4.2.2)
<13> 1 .

where <ij> indicates a sum over nearest neighbour spins in the

basal plane. In contrast to the case of K2C0F4, the exchange inter-
action, Jij’ is isotropic. Below the Néel transition temperature
(TN = 63.0K) long range order occurs with the spins antiferromag-

netically aligned in two domains. In one type of domain, the spins
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are aligned along the a direction, and in the other domain, the
spins align along the Em direction. 1In terms of equation (4.2.2)
the first domain corresponds to D negative and E positive and
the second to D negative and E .negative. By symmetry it is
expected’ that both domains are equally populated and this has been
found to be true experimentally. The ordered phase of K2FeF4 is
planar antiferromagnetic. The in-plane anisotropy represented by

the third term in equation (4.2.2) is much smaller than the out-of-

plane anisotropy represented by the second term.

4.2(iv) The Puré Systems (Conc¢luding Remarks)

As discussed in Chapter 1, the fact that the two pure systems
K2C0F4 and K2FeF4 both have the K2N1F4 structure, the lat-
tice parameters are close and the magnetic ions Co2+ and Fe2+
are transition metal, means that single crystal samples of the mixed

system K CoxFel—xF4 can be formed over the entire concentration

2 .
range (0<x<1). From the point of view of forming a mixed magnetic
system with competing spin anisotropies, the anisotropies are sig-
nificantly large in each of the pure systems but of comparable size,
so that the OAF phase should extend over a range of concentrations
and temperatures which are easily accessible experimentally.

Fendler and von Eynatten (1984) estimate that at T ~ 6K the OAF

in KZCOXFel-xF4 extends across the concentration range

0.16 <x<0.32. This makes K,Co_Fe,_ F, a more suitable system
277x T1-x 4

on which to study mixed systems with competing anisotropies than



FIGURE (4.2.2):

Proposed magnetic phase diagram for KZCOxFexFA'
x 1is the C02+ concentration and T, indicates
transition temperature. The solid lines indicate
the phase boundaries calculated from mean-field
theory and scaled so that the values of Tc at
Xx =0 and x =1 fitted the Néel temperatures

/
for the pure systems K,FeF and K,CoF

2774 27704
(Fendler and von Eynatten (1984)).
P indicates the paramagnetic phase, P2 indicates
the Planar antiferromagnetic phase, U indicates

the uniaxial antiferromagnetic phase and 0O in-

dicates the Oblique antiferromagnetic phase.
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KZFexM'nl_xF4 (Bevaart et al. (1978)), in which the OAF phase ex-
tended over the approximate range 0.02<x<0.03 at T = 0. Figure
(4.2.2) shows a proposed phase diagram for the system

choxFel-xF4 (Fendler and von Eynnatten (1984)).

4.3 The Magnetic Structure of KZCOAFei_XE4

This section reports neutron scattering experiments to study the
magnetic phase transitions and the magnetic structure of two samples

of K,Co Fe F,; one with x = 0.6 and the other with x = 0.2.
2°7x T1-x 4

4.3.(1) Experimental Details

The neutron scattering measurements reported in this section and
in Section 4.4 were performed on triple-axis neutron spectrometers
at the National Laboratory, Risd, Denmark and at the Pluto reactor,
A.E.R.E. Harwell, U.K. The nominally x = 0.2 sample was plate-
like with dimensions of 10mm x 10mm x 2mm, while the x = 0.6 sample

3 in volume. Both samples consisted of large

was approximately 1 cm
grains of single crystal, but unfortunately these grains were mis-
orientated by about 5° to each other. The multicrystal character
limited the accuracy of some of the experimental results presented
in this section. The crystals showed no signs of any chemical

. . 2+ 2+ .
ordering of the Co and Fe ions, i.e. the samples seemed to be

randomly mixed.

The crystals were mounted in variable-temperature cryostats
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with the magnetic a; and c; axes in the scattering plane. The
elastic measurements at Risd were performed using a pyrolytic graphite
;onochromator and an incident neutron energy of 14 meV with a pyro-
lytic graphite filter to suppress higher order contaminant neutrons
iﬁ thé incident beam. A pyrolytic graphite analyser was used and the
horizontal collimation from reactor to counter was 30' - 30' - 30' - 60'.
In this configuration, the energy resolution was 0.8 meV. The inelastic
experiments performed at Risd (Section 4.4) used a similar instru-
mental configuration, but with an incident neutron energy of 5 meV
and a cooled beryllium filter rather than a graphite filter.

The experiments at Harwell were performed with a pyrolytic

graphite analyser and a fixed final neutron energy E of 13 or

f
24 meV. The horizontal collimations were 100' - 30' - 30' - 60' and
a pyrolytic graphite filter was used before the analyser in the

measurements with fixed Ef = 13 meV.

4.3.(ii) The Magnetic Structure

The intensity of the (1,0,0) magnetic Bragg reflection which is
proportional to the square of the sublattice magnetisation, was
measured as a function of temperature for both the x = 0.6 and the
X = 0.2 samples and the results are shown in Figures (4.3.1(a))
and (4.3.2(5)) respectively. 1In tﬁe former case, the intensity
rises rapidly below T = 90K and becomes constant below T = 50K.
This indicates the ordering of the c-components of the spins below

T confirming that the X = 0.6 sample exhibits Uniaxial Antiferro-

N

magnetic order below TN as predicted by the phase diagram in



FIGURE (4.3.1) (a) The intensity of the (1,0,0) magnetic Bragg peak

I(1,0,0) as a function of temperature for the
nominally x = 0.6 sample.

The solid curve indicates the best fit to the
expression given in equation (4.3.2).

(Note that the Intensity axis should be multi-
plied by factor of 200 to give the number of

counts per second).

(b) The diffuse scattering intensity I(1.035,0,0)
at Q = (1.035,0,0) as a function of temperature
for the nominally x = 0.6 sample. The solid
curve is a guide to the eye.

(Note that the iﬁtensity axis should be multi-
plied by a factor of 100 to give the number of

counts per minute.)
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FIGURE (4.3.2): (a)

(b)

The full circles indiqate the intensity of the
(1,0,0) magnetic Bragg peak I(1,0,0) as a
function of temperature for the nominally
X = 0.2 sample. The open circles indicate the
(1,0,6) magnetic Bragg peak intensity (scaled).
(The intensity axis for I(1,0,0) should be
multiplied by 104 to give the number of counts

per minute.)

The diffuse scattering intensity I(1,0,~0.4)

at Q = (1,0,-0.4) as a function of temperature
for the nominally x = 0.2 sample. (The inten-
sity. axis should be multiplied by a factor of

100 to give the number of counts.per minute.
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Figure (4.3). Measurements through the (1,0,0) Bragg reflection
along the line (1,0,n) showed that the width of the Bragg reflection
is not limited by resolution and that it corresponds to the ordering
of about four two-dimensional sheets. The intensity of the séattering
in Figure (4.3.1(b)) does not decrease to zero below TN’ most pro-
bably because it contains a residual Bragg component corresponding to
the lack of full three-dimensional ordering, even at the lowest tempera-
tures.

The exact theoretical solution of the d = 2 Ising model
(Onsager (1944)) predicﬁs that the sublattice magnetisation as a

function of temperature should be given by equation (4.3.1).
M(TI/M(0) = [1 - sinh *(1/1D18 (4.3.1)

Using the fact that M(T) is zero at the transition tempera-
ture so that TN = 2J/kB and that M(T)? is proportional to
IlOO(T) (the intensity of the (1,0,0) Bragg reflection at temperature T)
the data of Figure (4.3.1(a)) was fitted to the form given in equation

(4.3.2).

LM /Ijge = [1- sinh'4(TN/T)j28 . (4.3.2)

The least squares fit gave B = 0.14. This value is consistent with
the exact solution of the d = 2 Ising model which gives 8 = 0.125.
The fit also gave the transition temperature TN = 92.2 +0.1K.

The temperature dependence of the (1,0,0) magnetic Bragg

reflection for the sample with x = 0.2 is shown in Figure (4.3.2(b)).

On cooling, it increases from zero at a temperature TN = 66 + 1K,
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flattens off, then increases again at a lower temperature
TL = 32 +2K. This strongly suggests that between TN and TL

there is long range order in one spin component, while below TL
the other component orders so that the system has the OAF struc-
ture below TL' The data shown in Figure (4.3.2(a)) between

T =l35K and T = 67K was fitted to the form given in equation
(4.3.2) and gave a good fit with B = 0.19 +0.02. That this is
significantly larger than the exponent obtained for the x = 0.6
sample, and that expected for a d = 2 1Ising model, may be due

to a rounding of the transition due to concentration fluctua-
tions.

In an attempt to determine the magnetic structure of the
nominally x = 0.2 sample as a function of temperature measure-
ments were made of the integrated intensities of the (1,0,L)

Bragg reflections with |L|<8 and the (3,0,L) reflections with
|L| <4 at various temperatures between T = 12K and T = 63K but
mostly close to T = 30K. The observed intensities for T = 12K
and T = 35K are listed in Table (4.3.1). The relative intensities
of certain Bragg reflections are clearly different at the two
temperatures. The Bragg peak intensity data was used to determine
the magnetic structure at each of the temperaturés in the range

T = 12K to T = 63K by fitting three parameters to the experimental
results. These parameters were an overall scale factor, propor-
tional to the square of the ordered moment, the angle between the
direction and the gfaxis, ec, and the relative proportion of the
domains that give rise to the (1,0,0) and (1.0,1) Bragg reflections

(see e.g. Thurlings et al. (1982)). The results for ec and the
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TABLE (4.3.1): 1Integral Intensity Values for Magnetic Bragg Peaks
at T = 12K and T = 35K.

T = 12K T = 35K
(H,K,L) Experimental Calculated Experimental Calculated
(1,0,0) 668 685 355 342
(1,0,1) 374 367 344 342
(1;0,1) 402 367 357 342
(1,0,2) 321 309 127 128
(1,0,2) 327 309 128 128
(1,0,3) 100 118 63 80
(1,0,3) 120 118 83 80
(1,0,4) 98 101 24 28
(1,0,4) 103 101 25 28
(1,0,5) 29 42 ‘ 14 18
(1,0,5) 38 42 17 18
(1,0,6) 55 39 8 7
(1,0,6) 56 39 7 7
(1,0,7) 14 18 : 11 5
(1,0,7) 15 18 | 5
(1,0,8) 19 18 6 2
(1,0,8) 21 18 7 2
(3,0,0) 90 105 64 52
(3,0,1) 82 69 74 67
(3,0,1) 86 69 73 67
(3,0,2) 78 89 40 44
(3,0,2) 79 89 43 44
(3,0,3) 41 50 46 47
(3,0,3) 44 50 46 47
(3,0,4) 37 56 21 26
(3,0,4) 41 56 21 26
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square root of the overall scale factor which is proportional to

the average ordered spin moment, are shown in Figures (4.3.3(a))

-~

and (4.3.3(c)). The c-component of the spin, S cos ec as a
function of temperature is shown in Figure (4.3.3(b)). The re-
sults show that ec is zero above TL but that it'increases
rapidly below TL. The c-component of the spin varies only slowly
with temperature near T = 30K, whereas the total spin distinctly
increases. These results show that for this sample the c-component
of spin orders at TN but that the perpendicular components order
only below TL'
The results for the. angle SC were fitted to the power law

given in equation (4.3.3), treating ec as an order parameter.

Bl
ec(T)/ec(O) a - T/TL) . (4.3.3)

The best fit parameters were B8' = 0.32%0.04, 6, = 33+1°

and TL = 32 *1L. The exponent B‘ is characteristic of three-

dimensiénal ordering, unlike the exponent B8 found for the tran-
sition at TN. The results for ec shown in Figure (4.3.3(c))
suggest that TL is sharp as a function of temperature. This
was also tested by measuring the temperature dependence of the
(1,0,6) magnetic Bragg reflection which is shown in Figure
(4.3.2(a)). This reflection is relatively weak in the upper
(uniaxial antiferromagnetic) phase but increases rapidly in in-

tensity on cooling below T These results also suggest that

L

TL is sharp and that any smearing is over a temperature range

of around 2K which is comparable with the smearing of the (1,0,0)

reflection in this sample at TN. This smearing is most likely



FIGURE (4.3.3):

Results from fits to magnetic Bragg peak

intensities described in the text.

(a) Average spin S (arbitrary units)
against temperature.

(b) Average c—component of spin Sc

(arbitrary units) against temperature

[SC = S cos eJ.

(¢) The average cant angle ec against

temperature.
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to arise from concentration fluctuations and the conclusion is drawn
that, within the limitations of the experiments, both magnetic phase
transitions (at TL and TN) are well defined, unlike the results

for CoxFe 022 (Wong et al. (1983)). As was found with the

1-x
x = 0.6 sample, the Bragg peaks for the nominally x = 0.2 sample
were not limited by resolution in scans along the line (1,0,n),
showing that full three dimensional order was not established.

Due to both samples consisting of large grains of single crys-
tal, which were slightly misorientated relative to each other,
measurements of the diffuse scattering are less reliable than
measurements of thé Bragg reflection intensities, which were
made on a single lagge grain of crystal. Neverheless, the dif-
fuse scattering was measured in scans of the form (£,0,-0.4)
and the width in £ was found to decrease as T approached TN'
At and below TN, the width of the scattering in these scans was
limited by resolution. The intensity of the scattering at the
reciprocal space coordinate (1.035,0,0) for the # = 0.6 sample
and at (1,0,-0.4) for thevx = 0.2 sample are shown in Figure
(4.3.1(b)) and (4.3.2(b)) respgctively. The results for both
samplesAshow a fairly symmetric peak at TN but at low tempera-
tures the scattering does not decrease to zero. For the nominally
x = 0.2 sample, the scattering intensity slowly increases on
further cooling (below TN). Figure (4.3.2(b)) shows that there

is no significant sign of any two dimensional critical scattering

around TL.



FIGURE (4.4.1):

(a)

(b)

A scan through the higher energy branch of
spin waves, dispersion related for the
nominally x = 0.6 sample. For this scan,
the fixed wavevector transfer Q = (3.2,0,0)
and the fixed final neutron energy was

Ef = 24 meV. The sample temperature was

T = 4.5K.

The counting time per data point was around

16 minutes.

A scan through the lower energy branch of

the spin wave dispersion relation for the
nominally x = 0.6 sample. For this scan,

the fixed wavevector transfer was Q = (1.4,0,0),
the fixed final neutron energy was

Ef = 13.408 meV and the sample temperature was
T = 4.5K.

The counting time per data point was around

20 minutes.
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FIGURE (4.4.2): The experimentally determined higher=~ and

lower—energy branches of the spin wave
dispersion relation for the nominaliy

x = 0.6 sample at T = 4.5K. The arrows
at the Brillouin zone boundary indicate
calculated Ising 'spin-flip' frequencies.

(See text).

£ 1is the reduced wavevector in units of

*®
a
m
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FIGURE (4.4.3):

A scan through the lower-energy branch of the
dispersion relation for the nominally x = 0.2

sample. The fixed wavevector transfer was

Q = (1.2,0,0), fixed neutron energy was

Ef = 13.408 meV and the sample temperature
was T= 4.5K. The counting time per data point

was around 20 minutes.
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FIGURE (4.4.4):

The experimentally determined lower energy
branch of the spin wave dispersion relation
for x = 0.2 at T = 4.5K. The arrow at the zone
boundary indicapes the calculated Ising '"spin-
flip" energy (see text).

*
£ 1s the reduced wavevector in units of am
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4.4 Experimental Determination of The Spin Waves in K.Co_Fe
& P2

1-x04
2

at Low Temperatures for Samples with x = 0.6 and x =0

The experimgnts discussed in this section were performed along
with the experiments discussed in Section (4.3) and so the experi-
mental details discussed in Section (4.3) are not repeated here.
The inelastic neutron scattering measurements were made on both
the x = 0.6 sample and on the nominally x = 0.2 sample to deter-
mine the dispersion of the low temperature spin waves, but a more
detailed study was made for the larger sample with x = 0.6. 1In
the x = 0.6 sample, two branches of spin waves were observed with
fairly well4defiﬁed neutron groups, as shown in Figures (4.4.1(a))
and (4.4.1(b)). The upper branch was almost dispersionless and
the peak positions for constant Q scans were in the range 29.5
meV to 32.5 meV, whilst the lower branch showed relatively more
dispersion with a Brillouin zone centre energy of just over 4 meV
and a zone boundary energy of just under 8 meV (see Figure (4.4;2)).
These results are qualitatively similar to the results found in
other mixed systems without competing anisotropy such as
RbZMnO.SNiO.5F4’ MnxCol_xF2 and KMnxCol_xF3 (as reviewed by
Cowley (1982)).

Measurements of the spin waves in the nominally x = 0.2 sample
were restricted to only the lower branch because of the smaller
sample volume. The intensity as a function of energy transfer for
a constant Q scan at Q = (1.2,0,0), is shown in Figure (4.4.3),
to illustrate the typical quality of the data. The dispersion

relation for the nominally x = 0.2 sample is shown in Figure (4.4.4).
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Measurements were also made under instrumental conditions giving
higher resolution (these were the measurements with fixed
Ef = 5 meV) to examine whether the low-energy, small-wavevector
spectrum wasAdifferent in the uniaxial phase from that in the
OAF phase. The'resuits are illustrated in Figure (4.4.5) and
in both phases only overdamped low-energy scattering was observed
at small wavevectors, close to TL. However, since these measure-
ments were made difficult by the mosaic structure of .the nominally
x = 0.2 sample, a more detailed study of the low energy spin waves,
particularly in the OAF phase, obviously required a better sample.
When a sample with x = 0.27 became available later, more‘experi—
ments were carried out, and these are discussed in Section (4.5)..
An Ising model for the mean excitation energy of the Co2+
spins and the Fe2+ spins has been used to calculate zone boundary
energies for the spin waves assuming that the spins are aligned

f

+
along the ¢ axis. For the Co2 spins, this energy is given by

equation (4.4.1) and for the Fe2+ spins by equation (4.4.2).

z z z z
= - 4
ECo 4[X(ZICOCO)ASCO SCo +Qa x)(ZICoFe)ASCo SFe] (4.4.1)
_ z z B z z
EFe - 4[X(ZICoFe)ASFe sCo +a x)(ZIFeFe)ASFe SFe]
+ z 2 z 2 4
.D[(SFe)f - (SFe)i ] . (4.4.2)

'

In equations (4.4.1) and (4.4.2), Séo and S;e refer to the

ground state values of s? for the Co2+ and Fe2+ spins (} and
. 2+ 2+ X . .
2 respectively). In the case of an Fe” /Co spin being excited,

. zZ
are the initial and final S values

VA
)y and (Spo/co)s .°Fe/Co

z
(SFe/Co i



FIGURE (4.4.5):

~

High resolution scans made at

(a) Q= (1.1,0,-0.4)
(b) Q = (1.05,0,-0.4)
(c) Q =

(1,0,-0.4)

for the nominally x = 0.2 sample.

Full circles indicate T 36K and

open circles indicate T = 24K.



Intensity (counts (6 min)-l)

Figure (4.4.5)

100 °

100

-
-
-

(a)
x = 0.2
0= (1.1,0,-0.4)
° °
o o °
[} 1
1 T
(b)
x = 0.2

Q = (1.05,0,-0.4)

2008

100

o0
o e %
} |
0 ]
(c)
x = 0.2

Q =(1,0,-0.4)

Energy transfer (meV)




_67_

Z z

and ASFe/Co = (Sfe/Co)f - (S;e/Co)i' In this calculation, the ex-
change parameters ICoCo’ IFéFe and ICoFe were taken to be

Tooco = 7.48 meV, IFeFe = 0.709 meV (both from Macco et al. (1979))
and ICoFe = (ICOCOIFeFe)é = 2,30 meV. The out-of-plane single-ion

anisotropy D = 0.398 meV (Macco et al. (1978)). The energies obtained
are shown by the arrows in Figures ¢.4.2) and (4.4.4) and clearly this
model gives a very reasonable description of the zone-boundary energies,
showing that these are not greatly affected by the competing anisotropy.
The data obtained from the inelastic measurements on the x = 0.6 and

x = 0.2 samples is compared with calculated spectra in Section (4.7)

of this chapter.

4.5 More Detailed Measurements of the Spin Waves in the Oblique

Antiferromagnetic Phase of K,Co Fe F
" - A X 1-x—4

In Section (4.4) spin wave measurements on a nominally x = 0.2
sample, in the OAF phase, were reported and from the results it was
clear that to gain more detailed informatioh on the spin waves in the'
OAF phase, particularly at low energy/small wavevector transfer, further
experiments with higher instrumental resolution and a better quality
sample were requi;ed. The measurements reported in this section were
performed on a sample with nominally x = 0.27. Previous neutron dif-
fraction measurements (Vlak et al. (1983)) using a two-axis neutron
diffractor, showed that the sample exhibited two phase transitions on
cooling from the paramagnetic phase. At TN = 64.4+ 0.6K the system
underwent a continuous phase transition to a state with two-dimensional
uniaxial long-range order and at TL = 27 +£ 2K, a second phase tran-

-sition occurred in which the planar components established long-

range order and the OAF phase was entered.

.
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In ﬁany ways,‘the behaviour of the x = 0.27 sample had been similar
to that of the nominally x = 0.2 sample for which TN = 66?t1K and
TL = 32+ 2Kk (Section (4.4)). One difference was that a rounded
hump in the diffuse scattering around TL was observed in the
x = 0.27 sample using a two axis neutron spectrometer, but no such
scattering was observéd at TL in the nominally x = 0.2 sample
(cf. Figure 4.3.3(b)) for which the measurements were made with
a triple axis neutron spectrometer set to recérd the elastic in-
tensity. For the inelastic measurements on the x = 0.2 sample,
only the lower region of the spin wave spectrum, up to around
12 meV was measured. In this range, scaﬁs at fixed wavevector
transfer revealed single peaks in the energy spectrum, apparently
indicating only a spin wave branch. This corresponds to excita-
tion propagating mainly on the Fe2+ sites. However, by symmetry
arguments, two branches of the excitations might have been'ex—
pected and this may not have been observed because of problems
(discussed earlier) with the sample quality, which only allowed
relatively low resolution_measurements to be made.

Because of the recent interest in the magnetic excitations
in the OAF ;Base and the nature of the phase transition at TL’
inelastic neutron scattering measurements were performed on the
nominally x = 0.27 sample, firstly to establish the form of the
dispersion relation at low temperatures, for the excitations in
the energy range up to about 12 meV and secondly, to obtain an
insight into the temperature dependence of these excitations as
the pﬁase transition at temperature T is approached from

L

below.
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4.5(1) Experimental Details

The neutron scattering measurements were performed at the
Institut Laue-Langevin, Grenoble, France. The single crystal
X = 0.27 sample was mounted in a variable-temperature Helium flow
cryostat with the magnetic gl and g: directions in the scat-
tering plane. The IN3 triple-axis spectrometer was used for most
of the measurements but some supplemenﬁary work to gain information
about the magnetic excitations near the Brillouin zone boundary
was carried out on the IN8 triple-axis spectrometer. In all the
measurements reported here both the monochromator and the anélyser
utilised the pyrolytic graphite (0,0,2) Bragg reflections. The
high resolution measurements on the low energy, small wavevegtor
spin waves were performed using a Beryllium filter, cooled by
liquid nitrogen, before the analyser, a fixed final wavevector of
k= 1.57L A" and 60' - 60' - 60' horizontal collimation from-
monochromator to detector. For the other measurements, the instru-
ments had a pyrolytic graphite filter fitted beforé the analyser,

a fixed k. = 2.662 A Y and 40' - 40' - 60' collimation from

f
monochromator to detector. Due to the quasi two-dimensional nature
of the magnetic interactions, there is no spin wave dispersion

%
along the 'Sm direction and it is the spin wave dispersion along

*

the magnetic a, direction which is of interest. Labelling the

* %
magnetic a direction as {[1,0,0] and the 'Sm direction as

m
[0,0,1], it was decided to make constant wavevector transfer
scans with Q + (-(+g), 0,0.4) to determine the spin wave dis-
persion along the [1,0,0] direction. The wavevector (-1,0,0.4)

corresponded to the quasi elastic position (Birgeneau et al.

(1971)).
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4,.5(4ii) Experimental Results

Initial measurements characterised the dispersion of the low
energy spin waves at T = 5K. A typical scan is shown in Figure
(4.5.1). The data sets from the constant wavevector (constant - Q)
scans were fitted to Gaussian envelopes at each of the Q values and
the peak positions are shown in Figure (4.5.2). Two branches of
excitations can clearly be distinguished. The energy difference
between these branches is largest at the Brillouin zone centre
and decreases as the reduced wavevector transfer increases. The_
two branches seem to meet at the zone boundary. Two branches of
excitations also occur in KzFeF4 (Thurlings et al. (1982)) and
in a classical model these were attributed to spins precessing
on ellipsoidal cones with the long axes of the ellipses mutually
perpendicular. The energies of the excitations in the present
x = 0.27 sample are lower at corresponding Q_- values than those
in pure KzFeFa. This is presumably due to the effects of disorder
and that the x = 0.27 sample has the OAF structure, whereas KZFeF4
has a planar antiferromagnetic structure at low temperatures.

The behaviour of the lower branch of the spin wave dispersion
at the phase boundary between the OAF phase and the higher sym-
metry uniaxial phase is of theoretical interest. The phase boun-
dary between the OAF phase and the uniaxial phaée for the x = 0.27
sample occurs at TL = 27+ 2K and spin wave measurements were made
at T = 5Kk, T= 19K, T = 25K (all below TL) and at T = 32K
(above TL) with particular émphasis on high resolution measurements

on the low energy branch of the excitations near q = O.

In constant Q@ scans at T = 5K, the energy width was greater



FIGURE (4.5.1):

Constant wavevector transfer scan with

Q= (-1.05, 0, 0.4) at T = 5K. Fixed
k

Q-
£ = 2.662A 1 and 40-40-60 collimation

from monochromator to detector.

Monitor 200,000 corresponded to a counting

time of approximately 10 minutes per point.
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FIGURE (4.5.2):

Spin wave dispersion relation at T = 5K

for K,Co_ Fe F with x = 0.27. The
27x 1-x 4

points indicate the peak positions obtained

"by simply fitting the constant wavevector

transfer scans to Gaussian envelopes. The
solid lines are a guide to the eye.

*
£ 1s the reduced wavevector in units of am.
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than the instrumental resolution width. Moreover, the intrinsic
width of the excitations apparently increased as the temperature

approached T from below. The effects of instrumental resolution

L
are important in interpreting the data collected at low energy and
small reduced wavevector transfer. These effects were accounted

for by simultaneously fitting the scans in the range O g £ g 0.035
.to the form for S(q,w) given in equation (4.5.1), folded with the
4-dimensional resolution function of the three axis neutron spectro~
meter (Cooper and Nathans (1967)). This folding with the resolution
function was performed using a unique fitting progfam (Mitchell and
Dove (1985)), which utilizes the parallel architecture of the

I.C.L. D.A.P. computer to perform the normally time consuming

numerical integration in a greatly reduced time. The chosen form

for S(q,w) was that of a damped harmonic oscillator, given by:-

wl
(wz-wi(q )? + w?r?

S(q,w) = A(n(w) + 1) (4.5.1)
where A 1is an overall scaie factor, n(v) 1is the Bose-Einstein
population factor, T is an intrinsic energy width and wo(q) is

given by the model dispersion relation of equation (4.5.2): -
= 2 2y 3
NO§Q) (€g + (Dsqa) ) (4.5.2)

where eg is the spin wave energy gap for the lower branch, q, is
the reduced wavevector transfer (gaZ) and DS is the spin wave
stiffness for the lower branch. Included in the fits were a flat
background parameter and a Gaussian centred near zero energy to

account for incoherent elastic scattering.
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Figure (4.5.3) shows the result of a single fit to 5 scans
with wavevector transfer Q = (-(1+8), 0, 0.4) in the range
0 < £ <0.035 at T = 5K. Figure (4.5.4) compares scans at £ = 0
for T = 5K, T = 19K and T = 25K and shows that the inelastic
scattering signal moves to lower energies as the temperature increases.
Table (4.5.1) shows the values for eg, Ds’ I''and A obtained
at the three chosen temperatures below TL' The number of scans
fitted to obtain the values shown in Table (4.5.1) were 5, 4 and 3.
at T = 5K, T = 19K, and T = 25K respectively.
The small amount of dispersion in the wavevector range
0 < £ < 0,035 leads to the large error bar on the values of Ds
and the most that can be stated about the spin wave stiffness is
that it seems to decrease slightly as the temperature increases
towards TL. However, the values of eg and T obtained‘for the
fits confirm the result obtained directly from the experimental
data that the energy of the spin wave gap decreases and the intrinsic
energy . width of the excitations increases as the temperature
tends towards TL from bglow.

Scans were made at T = 32K to study the low energy, small

wavevector transfer inelastic scattering above T These scans

L
however did not reveal any spin wave ''peaks" (Figure (4.5.5)) and
" any spin wave scattering present can only be described as over-
damped.

In summary, it has been shown that the low temperature (T = 5K)

spin wave dispersion relation for an x = 0.27 sample of K CoXFe F

2 1-x 4

consists of two distinct branches which appear to come together at

the Brillouin zone boundary. Previous experiments on the planar



FIGURE (4.5.3): The data at T = 5K obtained under high

0-
resolution conditions: fixed kf = 1.571A L

and 60-60-60 collimation from monochromator

to detector.

(a) Q = (-1,0,0.4)

() Q= (-1.01,0,0.4)

(¢) Q= (-1.02,0,0.4)

(d) Q= (-1.027,0,0.4)
(e) Q= (-1.035,0,0.4)

Solid lines indicate the results of a single

fit to the data described in the text.

Monitor 100,000 corresponds to a counting

time of approximately 10 mins. per point.
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Fig (4.5.3(d))
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FIGURE (4.5.4):

Data collected at

(a) T =5K
(b) T = 19K
(c) T = 25K

under high resolution conditions:

1

o-
fixed k. = 1.571A and- 60-60-60

f
collimation from monochromator to
to detector. Solid lines are from
the fit to the data described in the
text.

Monitor 100,000 corresponds to a counting

time of approximately 10 mins. per point.
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T/K

o Agreement
eg/THz DS/THz A T/THz A/THz? Factor

19

25

+

+

0.025 5.6 £+ 1.4 0.068 + 0.043 0.16 + 0.04
0.037 5.0 + 1.8 0.145 * 0.055 0.18 + 0.04
+

0.049 4.4 + 1.5 0.238 + 0.127 0.18 £ 0.08

TABLE (4.5.1):

Values of € Ds’ ' and A obtained from fitting the data taken under high
resolution conditions described in the text.
The agreement factor is a goodness of fit parameter and is defined by

Agreement Factor = (XZ/N)i

where N 1is the number of degrees of freedom and

n (I -I1.)2
XZ - 5 calc obs
. 2
=1 Ycale
where n 1is the number of data points, Icalc is the calculated value and
. . . . _ i
IobS is the experimental value for a particular data point. Seale = (Icalc)

-€/-



FIGURE (4.5.5):

Constant wavevector scan with
Q = (-1.05,0,0.4) at T = 32K.
Fixed k, = 2.6628 = and 40-40-60
collimation from monochromator to

detector. Solid line indicates fit

to a Gaussian envelope.
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antiferromagnet KzFeF4 had indicated two branches in the pure
system; however, as‘expected, the energies at a given wavevector
transfer were different (in fact lower) in the mixed system due to
the disordér and that the mixed system has the OAF structure below
TL'
Measurements to investigate the changes in the lower branch
of the spin wave dispersion relation as the temperature increased

towards T revealed that the energy of the spin wave gap, ¢

L’ g’
decreases and that the intrinsic width of the excitations in-
creases as TL is approached from below. Mean field calculations
at T = 0 by Matsubara (1981) predicted that, as a function of
concentration, the spin wave energy gap should go to zero at the
phase boundaries between the OAF phase and the othgr two ordered
phases. Although in this experiment, the temperature was being
varied, not the concentration, the results are consistent with a
zero energy gap for the lower spin wave branch at the boundary
between the OAF and Uniaxial Antiferromagnetic phases.

It is now beiieved that these results resolve an apparent
discrepancy between the results of two previous experiments.
Measurements, using a two—axis neutron spectrometer, of the dif-
fuse scattering at Q = (1,0,0.4) in the same x = 0.27 sample
(Vlak et al. (1983)) revealed a rounded hump in the diffuse

scattering around T Similar measurements, but using a three

L
axis neutron spectrometer with high resolution on a sample with
[]

nominally x = 0.2 (Higgins et al. (1984)) revealed no increase

in the intensity at or near T In the former case the integrated

L*

intensity most probably included a contribution from the spin waves
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near TL whereas in the second case only "quasi-elastic' diffuse

scattering was being observed.

4.6 Calculations to Determine the Ground State in K,Co Fe. . F,
A *—1-x—4

As discussed in Chapter 1 of this thesis one of the most diffi-
cult problems encountered in interpreting experimental data or cal-
_culating excitation spectra for systems with competing spin aniso-
troby is that the details of the ground state, especially for the
mixed (or OAF phase) are largely unknown. Mean field calculations
(see, for example, Matsubara (1977)) assume that each of the mag-
netic species is in the same average envirénment and so can only
predict an average spin direction for each of the two magnetic
species, as a function of concentration and temperature. However,
in practice the spin at a particular site will have an orientation
which depends on its local environment and intuitively a distri-
bution of spin orientation angleg would be expected at a particular
concentration. This section describes the details of and results
from a computer program NEWSQR which was written to calcﬁlate the
T = OK ground state configurations in K Coxfe F4 by minimising

2 1-x

the internal energy U, of each spin in its local environment.
Minimising the internal energy at T = OK 1is equivalent to
minimising the Gibbs free energy, G, because G = U - TS, where -
S 1is the entropy. The purpose of the NEWSQR work was twofold.
Firstly, calculation of the g;ound state characteristics should
give a better insight into the magnetic structure at T = OK, which

is physically interesting in itself. Secondly, the ground state has
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to be known before the equation-of-motion technique can be used to
calculate the low temperature spin wave spectra. Calculation of
the low temperature spin wave spectra is discussed in Section (4.7).

It was assumed that the system could be modelled by the following

Hamiltonian:
_ Z 2 Xy 2 Yo z z
= + -
H g Di(si ) g Ei{(Si ) (Si ) }+'Z,Iij Si Sj
i i ij
. X X y y
+
+ Jij (Si sj Si sj ) (4.6.1)

where Iij and Jij depend on the species of the nearest neighbours
and Di and Ei are non-zero only for Fe spins. The coordinates
(x,5,2z) refer to the crystallographic frame of reference. However,

in general the axis of quantisation of a particular spin will not

lie along the x, y or z directions. With Ei'<,0 in the Hamiltonian
of equation (4.6.1) the spin is confined to the x-z plane and it can
be "assumed thatlthe local axis of quantisation labelled z' 1lies at
an angle Bi to the z—axis._ The operators in the crystallographic
frame of'reference can then be related to the operators in the local

frame of reference through a rotation matrix:

1
rS.x cosf, 0 sinf, | S.x
i i i i
1
siy = 0 1 0 Sly (4.6 .2)
A
S,z -sinb, 0 cos6, S.z
i i i i
This relationship can be written as:
5 = U=l§1 (4.6.3)

where Qi is the rotation matrix whose elements are given by
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U:B (where o, B = X,y,z). The local spin operators can then be

) %
related to the spin deviation operators a; and a; by:

' *
Siz = Si - a; a; | (4.6.4(a))
xv Si * ‘
Si = T (ai + ai) (4.6.4(])))
1 Si *
Siy = l??'(ai - ai) . , (4.6.4(c))

\i
Using equations (4.6.4) to substitute for Six R

A\ 1

s.” and S,2
i i
in equation (4.6.3) then the operators in the crystallographic frame
of reference can be related to the creation and annihilation operators.

As an example:
s. ¥ = u *2'(s *)+Uxx"si (a, + a,°
i Tt i~ %03 i > (g +a;)

, ’s.
+ U (-1 - (a, - ai*)) (4.6.5)

* X X %*
(Si - aiai) + Ui a; + (Ui ai) (4.6.6)

This can be rewritten as:

|
p:d Xz
S, = U,

i i

where UiX is given by:
S,

x _ L= g
Ut o= > W - 107 ) (4.6.?)

The y and =z components are obtained similarly. After some

algebraic manipulation the Hamiltonian can be written as:
H = H +H +H,+...... (4.6.8)

. t . . : .
where Hn is the n h order term in the spin deviation operators.

The zeroth order term is given by
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= _F - 2
Ho A+ E(Di Ei)si(si ) cos ei
+ £ {I,. cos 6.cosf, + J.. sin 6.sinf.}S.S. (4.6.9)
ij ij i i ij i j i7j
where Di Si
A = I 5 + Eisi(si - . (4.6.10)

A is independent of ei. The program NEWSQR finds the angles ei
m
at each site which minimise the Ho term of the Hamiltonian. The

first order term H1 can be written as:

oH
1 e *
H = §f— — (a, + a, ) . (4.6.11)
1 V25, 28, o

Because the program minimises the zeroth order term HO then
at each site aHo/aei = 0 and so the first order term drops out of
the Hamiltonian leaving the ground state term Ho and the second

order spin wave term H

2 which is given by:
H2 = I A;a, a;, + B, a,a, + C, a, a,
1 i i i i
* * * %
£ W,.a,a, + X,.a,a, +Y..a, a, + 2..a, a. (4.6.12)
i3 1] ij7 i3 ij’i 7] ij’i 7j .
where A,, B,, C., W..,, X.., ¥Y,., and 2Z,., are defined in Table
i i i ij ij ij ij

(4.6.1). In NEWSQR a random LxL lattice is set up corresponding
. 2+ 2+ .
to a concentration x of Co ions and (1-x) of Fe ions in

K CoXFe F4' The internal energy at each site is calculated

2 1-x

for the initial angles given to the pfcgram. The internal energies
corresponding to the individual sites are then summed to give the
total internal energy for the model system. Moving sequentially

through the sites the angles are changed by an amount aei so that
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- - TABLE (4.6.1): Definition of Coefficients in Equation (4.6.12)
_ . ZZ' 2 'XZ' 2 yz' 2 _ 1
A, = (20, (U, )2 + B [(0,7)2 - .7 )5, - b
zy2 Xi2 _ Yi2
N RS R LR IAD
1 1 1 1 | 1
+ I I..S. U.2%2 +U0.2% +7.. 5.0 u.2% +u.7% u.7%y
TR j ij "ivi 3 i i
- zZ,2 Xy2 y
B, D; (u; 92 + E, [(1; (U, H7]
%
C. = B.
i i
.= L.U.2u.2+ g .wXu*ruY v
1] 1] 1 J 1] 1 J 1 J
z z* X x* y y*
.= I..U.20.2+J3..w.*u.* +u.7u.7)
ij ij i j i3vi 7j i i
%
Y = ..
1]
*
Z.. = W..
ij ij
* indicates the complex conjugate
Ei’ Di’ Iij and Jij are the paremeters defined in 'the Hamiltonian of

equation (4.6.1).
1]

u, %«

equations (4.6.2) and (4.6.3), and UiO( are defined by

v = fi R ax' _ . U ay')
i 077V e T

o =X, y, 2) are the elements of the matrix Ui defined by
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the internal energy for that site is minimised in the local potential.
The total internal energy is calculated again, as is the difference
AU between the new total internal energy, ’Unew’ and the total

internal energy at the previous step, Uold’ The minimisation pro-
cedure is iterated until AU becomes less than a specified value at
which point it is considered that the model system has reached its
ground state. To ensure that the results were independent of the
particular randomly mixed finite system (configuration) used, the
program was run for n different configurations at each chosen
value of x and che results averaged over the n configurations.
For, each configuration the Co spins were initially set at Gi = 0°
and the Fe spins were initially set at ei = 90°, corresponding

to the values of Gi in the pure systems.

Parameters used in NEWSQR and in NEWSIM (discussed in
Section (4.7)) -are listed in Table (4.6.2). To test for finite
lattice size effects the program was run with x = 0.27 and the
results averaged over 5 configurations for various values of L.
Figure (4.6.1) shows the Internal Energy per spin as a function
of L for the Co and Fe spins. Beyond L = 40 the values of
Internal Energy are effectively constant. Figure (4.6.2) shows
the mean angle between the spin direction and the c-direction for
both Co and Fe spins. Again, for L > 40 the results seem to be
independent of L. 1In addition, the distribution functions for
the internal energy per spin, the angles ei, eos ei and sin ei
were independent of I. for L > 40 as were spin wave spectra for

x = 0.2 and x = 0.6. It was therefore assumed that beyond L = 40,

the results from NEWSQR and from NEWSIM (which are discussed in
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Values of Parameters Used in NEWSQR and NEWSIM

ICoCo

IFeFe

ICoFe
JCoCo

JCoFe

Exchange

Parameters

FeFe

7.48 meV

0.709 meV

1
2
(ICoCoIFeFe)

3.84 meV

3
(JCoCoJFeFe)

2.30 meN

1.65 meV

Single Ion Anisotropies (Applicable only to Fe spins).

Fe

Fe

g-factors

y _ z
gFe

y =
gCo

6.30

0.49 meV:

-0.04 meV

2.5

(Values were derived from the work of Thurlings et al. (1978),

Macco et al.

(1978) and Macco et al.

(1979)).



FIGURE (4.6.1): 1Internal energy per spin as a function of

the length of the lattice side L for both
Co and Fe spins. The concentration of

Co spins was x = 0.27.
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FIGURE (4.6.2):

Mean angle between the spin-direction and
the c-direction 5; as a function of the
length of the lattice side L for both

Co and TFe spins. The concentration of

Co spins was x = 0.27.
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Section (4.7)) are independent of the size of the finite lattice.

To study the ground state of K CoxFe F4 as a function of

2 1-x

concentration, NEWSQR was run for a 64 x 64 lattice averaging over
20 configurations at each of the chosen concentration values.
Figure (4.6.3) shows the distribution of cant angleé for both Co
and Fe spins at x = 0.25. It has been expected that tHis concen-
tration would correspond to the OAF phase, and the figure confirms
this. It shows that both the distributions have weight across a
wide range of angles between 0 = 0° and 6 = 90°. In Figure
(4.6.4) the average angles are shown as a function of concentra-
tion for both Co and Fe spins. For O < x < 0.1 both the Co and
Fe cant angles are 90°, indicating fhat the system exists in the
planar phase. In the concentration range 0.5 < x < 1.0 the
average cant angle 5& is 0° for both species, which shows that
the system has the uniaxial antiferromagnetic structure; For the
intermediate concentration range 0.1 < x < 0.5 the 6; values
are different for Co and Fe spins with thé specific 'Eé values
depending on x. This concentration range therefore corresponds
to the OAF phase at T = OK.

Table (4.6.3) compares available experimental values.for the
cant angles with .gé Yalues calculated by NEWSQR. The agreement
between the calculated values and the experimental values obtained
by MOssbauer Spectroscopy and Nuclear Magnetic Resonance (NMR) is
reasonabie, especially when the fact that the values of x for the
experimental samples are nominal values and that none of the measure-

ments were performed at temperatures with T < 8K, 1is taken into’

consideration. The effect of uncertainty in the actual concentration



FIGURE (4.6.3):

Distribution of cant angles ec as a
function of Co concentration x for
both Co and Fe spins, for L = 64
and x = 0.25. The results were obtained
by averaging over 20 configuratioms.

The NEWSQR run which produced these
results took around 13 hours of

VAX11/750 C.P.U. time.



Probabi l ity P(0)

Fig (4.6.3)

. X=0.25 Co i
Fe
I N i
L Qo i
-
X ® Q&
8 @

L (@]

Y
L O

(@)
e kS

g

~~~~~~

1

20.0 40.0

Angle (Degrees]



FIGURE (4.6.4):°

Average cant angles ec for both
Co and Fe spins as a function of
Co concentration x. The results
were obtained by averaging over 20

configurations with L = 64,
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TABLE (4.6.3): Comparison of calculated and experimental values for

the average cant angle in KZCOXFe F4. The calculated

1-x

values are given in parenthesis beneath the experimental

Source of Ex-
perimental
Data

x = 0.27

1:
2:

values. (eCo/Fe labels the average cant angle for Co/Fe).
Nominal .—F ) Technique Source
. e Co
Concentration
(%)
0.06 90 £ 2 - 1 1
(90) (90)
0.12 90 + 5 90 = 5
(86) (74) 1,2 2
0.16 82 + 3 -
(79) (60) 1,2 2
0.18 90 £ 5 90 + 5 1 1
(72) (51)
0.2 55 + 2 -
(66) (45) 1 1
0.27 52 £ 5
(46)
42 £ 5 23 £ 6 2 2
(46) (25)
0.55 0+5 0O+5 . 1,2 2
Key: Techniques 1: Mossbauer Spectroscopy.

Nuclear Magnetic Resonance.

Fendler et al. (1984)

Vlak et al. (1985).

Neutron Diffraction Results

S
c

= 27 + 2 Vliak et al. (1983)
(40)
= 33+ 1 Higgins et al. (1984)

(63)
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of the sample would be greatest in the OAF phase where small dif-
ferences in concentration lead to significant changes in E;.
Except for the x = 0.18 results, which are anomalous in the sense
that 6.°(x = 0.16) < 8.°(x = 0.18), which is not what would be
expected, the predictions from the NEWSQR result that the OAF phase
extends between x = 0.1 and x = 0.5 at T = OK are reasonably
consistent with the experimental results. Neutron diffraction
measurements measure thg cant angle for the average magnetic moment.
The values obtained by neutron diffraction measurements for the
cant angles in x = 0.2 and x = 0.27 samples are not in as good

agreement with the NEWSQR results.
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4.7 Calculation of the Low Temperature Magnetic Excitation Spectra

in K2Co Fel_xg4

In this section, results from calculations of the low tempera-
ture magnetic excitation specfra in KZCOXFel—xF4 are presénted.
The technique chosen was the "Equation-of-Motion" method which had
been used in the past to calculate the dynamic structure factor
ng,w) in d = 2 mixed antiferromagnetic systems such as

RbZManil-xF4 (Thorpe and Alben (1976)). For Rb,Mn_ Ni

27x 1—xF4
application of the "Equation-of-Motion" method was straightforward
because the spins of both the Mn and Ni ions favoured alignment
along the c—axis of the magnetic unit cell so that the ground state
was conceptually known. Labelling the ordering direction by =z
then only Sxx(gjw) had to be calculated since, by symmetry con-
siderations, Sxx(g,w) = Syy(gjw) for that system. Good agreement
was obtained between the calculated spectra and the spectra from
inelastic neutron scattering experiments on RbZManil—xF4 with

x = 0.5 (Birgeneau et al. (1975), Als Nielsen et al. (1975)).
Application of the technique to KZCOXFel—xF4 was a considerably
more difficult problem because the results from the program

NEWSQR (discussed in Section (4.6)) showed that in the OAF phaée,
the spins of both the Co and Fe ions have a distributioﬁ of cant
angles ei. It was shown in Section (4.6) that the second order
(spin wave) term of the Hamiltonian, HZ’ (given by equation
(4.6.12)) was a function not only of the spin deviation operators
ai, ai* and the spins Si but also of the cant angles Gi.

Consequently, details of the ground state of the system, obtained
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by minimising the zeroth order term Ho (given by equation (4.6.9)),
were required as a starting point for the calculatioﬁs of the mag-
netic excitation spectra by 1he program NEWSIM.

At T = OK; the dynamic structure factor is related to tﬁe

imaginary part of the magnetic susceptibility by:

5@ = = (6, - "a"s*P(q,w
aB
= In(z (5, - QPP (Qu)) (4.7.1)
aB

where the indices «a,B can take the values x, y and z.
(x labels the a-direction and 2z labels the c-direction in the mag-

netic unit cell for this case). The susceptibility Xae(g,w) is

given by
iQ.R.. (. .
xas(g,w) = 1 e H J xijaB(t)elwt dt (4.7.2)
ij 5
where
< o B . o B
350 = 8 &y ?<°|[Si (), 8,7(0)1]o> 4.7.3

In this notation |0> represents the ground state. It was shown in
Section (4.6) that for the o-component of the spin at the site

labelled by the index. i then:

*

o _ az' * o o
U, (Si a; ai) + Ui a{(Ui ai) (4.7.4)

i i

Substituting for the Sia in equation (4.7.3) gives:
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<
xg; (0)/ Cig; %e,®)
*
= 0| [{u,%a, (6) +(u,) "} ()}, w,fa, 0 + @H" 2 @11]0>
+ higher order terms in a and a* . (4.7.5)

The higher order terms in equation (4.7.5) are dropped in the linear
spin wave approximation. By expansion of the commutators, equation

(4.7.5) can be written as:
x50 [g;%,H = v tw,H ol 1ay 0, 3 @11]0>
+ (Uiaujs)*<o|[ai*(t>, aj*c0)1|q>
+ (Uia)*UjB<O|[ai*(t), a;(0)1]0>
+ Ui“Uj3<o|[ai(c), a,(@1]0> . (4.7.6)

The energy loss part of the spectrum is then given by:

oB

XlJ

_ . o Boa, B* *
(t) = 1g; 85U (Uj ) <o|[ai(t), a (0)1]o>

. o 8 o B * * *
*ig e, (uy U, ) <o|[ai (v), a, o1lo0> . (4.7.7)

. B 8 . .
- If two functions Kiﬂ(t) and Li& (t) are given by:
b . ‘i&-Ej 8 B % *
Kig. = ? ie g; (Uj ) <0|[ai(t), a (0j)}o> (4.7.8)
and B ~iq.x
_ . =5 8 B * * *
Lig rie g; (Uj ) <o|[ai (v), ay (0)1]0> (4.7.9)

N
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then xas(g,t) can be written as:

iq.r,
of _ =i a

B

o B o *
Ki_q (£) + (Ui ) Li_q_(t)] . (4.7.10)

To calculate the time transform of xaB(g,t) an equation-of-motion
for K, B(t) and L, 8
1q iq

B
(t) has to be used to give Kig(t) and
iﬂ(t) at successive time steps. To calculate the equations of motion
*
the commutators [ai,H] and [ai ,H] need to be known. With H given

by H, defined in equation (4.6.12) then:

2
* *
[a,,H] = A,a, +2C,a, + L 2Z..a, + (X.. + Y..)a. (4.7.11)
i ii i"i P ij 3 ij ij7 ]
and
- * * *
[a, ,H] = -A.,a, - 2B,a, - £ 2W..a. + (X.. + Y..)a. . (4.7.12)
i i'i i'i X ij j ij ij” 3

3

The equation-of-motion for a Heisenberg operator A(t) is given by

(Rae (1981)):

dA(t)

A - & <o|[a,(t), H]|0> (4.7.13)

The equations of motion for K:;‘t) and Lig‘t) can then be shown

to be:
dK.b(t)
. 19 * % B
Y ——— = A, K, B(t) + 2B, L, B(t) + 2 I (W.. L, P(t)
dt 1 lg_ 1 l_CL . J 1] 1&
+ X.. K.b(t)) (4.7.14)
1j 149
and
dL;(t) .
L = AL B -28, k Be)-2zau. x, Bo)
dt i "iq A1 igq i ij Jg

+ xij Liﬂ(t)). ' (4.7.15)
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If equations (4.7.14) and (4.7.15) are converted to difference

equations, then the following results are obtained:

B ; _ B /. _ Coin, B
Ki_q (t+At) = Ki_q_ (t-at) + ( 21At){Ai Kig (t)

+ 2B * L B(
i Liq (B

+ 2% . By +x. kB (4.7.16)
Iy wij ja ij ig o

ij

and

B8 B, _ AP
Li_q_ (t+ At) Lig (t-At) (-2iat)

B B ' B
x {Ai Liﬂ (t) + 2B, Kig (t) + 2 g(wij Ki& (t)
+X,. L PNy . (4.7.17)
1] 349
To be able to start the iterative process in which KJ:(t)

and L;;(t) are calculated at successive time steps then the values
of these functions at times t =0 and t = At have to be known.

At t = 0 the functions are given by:

~ig.z; o By*

B = = i
Ki& (t=0) ie 8 (4.7.18)
and
Broo =
LiSL (t=0) 0 (4.7.19)
3 |2 .
The values of K, (t=At) and L, (t=At) must be obtained
ig iq
approximately by a Taylor expansion:
n n
K, F(e=a0) pat 4 g By (4.7.20)
4 ©at = t=0
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and

B, _ _ o)t "
L, (t=4t) = I o =

B
L. . -(4.7.21
q T IO ( )

t=0
The derivatives with respect to time in equations (4.7.20) and
(4.7.21) were obtained by iteration from the values of Kigs(t=0)
and Ligé(t=o) respectively. The number of derivatives in the
Taylor series expansion used to calculate Kigs(t=At) and
Li B(t=At) was 4 for the results presented in this section.

The computer prégram NEWSIM calculated the Kigs(t) s Ligs(t)
"and hence xas(g,t) at successive time steps At, for t in the
range O < ; < toax (where toax is determined -by the highest
energy resolution required.) After the)élﬁgﬁt) were calculated,
a program SQWCAL was used to perform the time Fourier transform
which gave xaB(g)w) and hence Sas(g,w). (A damping factor
e‘->‘t2 was included in the integrand before the Fourier transform
with respect to time was performed, so that the energy resolution
for the calculated spectra could be chosen according to requirements.)
All the results presented in this section were calculated for an
LxL lattice with L = 60.

Calculated SaB(Q}w) spectra with Q at the Brillouin zone
centre are shown in Figure (4.7.1) for the concentration values
x = 0,9 and x = 0.8. Both values of x correspond to the uni-
axial antiferromagnetic phase in which the ordered spin component
is along the z—directiqn. As a result, there is no intensity in

the calculated Szz(g,m) spectra and also Sxx(g,w) = Syy(g,w),

so that only the Sxx(Q,w) spectra are shown in the figure. 1In
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K2C0F4, at Q = (1,0,0) there was a single resolution limited peak
in the SXX(Q,w) spectrum at E ~ 26 meV; Figure (4.7.1) shows
that the effect of bringing Fe2+ "defects" into the system was to
introduce a peak in the sxx(g,m) spectrum corresponding to excita-
tions propagating mainly on the Fe2+ ions and to produce a distri-~
bution of intensity corresponding to éxcitations propagating mainly
on the Co2+ ions. The effect of decreasing x was to reduce the‘
peak energy for the lower energ} excitations and to introduce more
broadening in the intensity corresponding to the higher energy
excitations. Also, the intensity of the lower energy peak increased
relative to the intensity at higher energies. Figure (4.7.2)

shows Sxx(g,w), Syy(g,w) and Szz(g,w) spectra at Q = (1,0,0)
for the concentration range 0.1 < x < 0.5. For x = 0.5, which
corresponds approximately to the phase boundary between the uni=
axial and OAF phases, there appeared to be 5 peaks merged together
at higher energies. The energies of these peaks correspond to the
energy required to change the Co spin value by 1 unit in the 5
possible nearest neighbour environments. (The 5 possible nearest
neighbour environments correspond to 0, 1, 2, 3 and 4 Fe nearest
neighbours.) Similar "cluster modes' have been observed in other
mixed and diluted systems (Cowley (1980)). As x decreases from
0.5 to 0.1, the average cant angle' EE increases from 0° to 90°,
szz(g,w) increases in intensity and Sxx(g,w) decreases in
intensity, which is what one would intuitively expect since the
ordered z-component of spin decreases and the ordered x-component
increases. (Note that the spin is confined to the x-z plane cor-

responding to one of two possible domains, which are equivalent



FIGURE (4.7.1):

Calculated Sxx(g}m) spectra at

Q = (1,0,0) for K CoXFe F, with

2 1-x" 4

(a) x = 0.9
(b) x = 0.8.
Both of these values of x corres-
pond to the Uniaxial antiferromag-
netic phase.
As with all spectra presented in this
section the choéen energy resolution
was 1 meV F.W.H.M. (Any excess broadening

of the spectra is due to the disorder.)
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FIGURE (4.7.2): Calculated Saa(g,w) speétra at Q = (1,0,0)

for K,Co_ Fe F with
2%

1-x 4
(a) x = 0.5
(b) x = 0.45
(c) x = 0.4
(d) x = 0.35
(e) x = 0.325
() x = 0.2
(g) x = 0.15

(h) x = 0.1.

These values of x span the OAF phase at T = OK.
The solid lines indicate Sxx(g,m) spectra.

The dashed (larger mark to space ratio) lines

~
~

indicate Syy(g,w) spectra and the dotted line
(smaller mark to space ratio) lines indicate

Szz(g,m) spectra.
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Fig (4.7.2(8))
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Fig (4.7.2(g))
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FIGURE (4.7.3):

Calculated $7Y(Q,w) and $%%(Q,w)
spectra at Q = (1,0,0) for KZCOXFel-xFa
with x = 0.05. This value of x corres-

ponds to the planar antiferromagnetic

phase. .
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FIGURE (4.7.4)(a): The concentration dependence of the

Brillouin zone centre (Q = (1,0,0))

energy gap for the lower energy band

of excitations in K,Co_Fe F,. The
27x T1-x" 4

values were obtained from the peak

.. . o
positions in the s (Q,w) spectra.
(b): The concentration dependence of the
. oo
integrated S (g,w) structure factors.

In both (a) and (b) the circles corres-—

pond to o = X, the crosses correspond

to o =y and the triangles correspond

to a = 2.
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Fig (4.7.4(b))
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FIGURE (4.7.5): Calculated Sxx(g)w) spectra for the
| concentration x = 0.6 at
(a) The Brillouin zone centfe (Q = (1,0,0))
(b) The Brillouin zone'boundary
Q = (1.5,0,0)).
x = 0.6 corresponds to the nominal concen-
tration of the sample used for sbme of the
experimental measurements described in

Section (4.4).
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FIGURE (4.7.6):

Calculated Saa(g,w) spectra for the concen-
tration x = 0.27 at
(a) The Brillouin zone centre (Q = (1,0,0))
(b) The Brillouin zone'blundary

Q = (1.5,0,0)).
The full lines correspond to o = x, the
dashed lines to a = y and the dotted lines
to a = z.
x = 0.27 corresponds to the‘nominél concen-
tration of the sample used for the experimental

measurements described in Section (4.5).
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FIGURE (4.7.7): Experimental data obtained from the measure-

ments described in Section (4.4) for a scan
through the lowér energy branch of magnetic
excitations with Q = (1.4,0,0) in the

. nominally x = 0.6 sample.
The solid line indicates the calculated
intensity fitted to the data, as described

in the text.
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FIGURE (4.7.8):

Experimental data obtained from the
measurements described in Section (4.4)
for a scan through the higher energy
branch of magnetic excitations with

Q = (3.2,0,0) in the nominally x = Of6
sample. |

The solid line indicates the calculated
intensity fitted to the data, as des-

cribed in the text.
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FIGURE (4.7.9):

Experimental data obtained from measure

ments described in Section (4.5) for a

scan with Q (1.2, 0, -0.4) in the

nominally x = 0.27 sample. This scan

was performed on the IN8 triple-axis

neutron spectrometer with fixed

o-1
ke = 2.6624 .

The solid line indicates the calculated

intensity fitted to the data, as des-

cribed in the text.
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FIGURE (4.7.10): Experimental data obtained from the

measurements described in Section

(4.4) for a scan with

Q (1.2, 0, 0) 1in the nominally

b4 0.2 sample.
The solid line indicates the calculated

intensity fitted to the data, as des-

cribed in the text.
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FIGURE (4.7.11):

Comparison between peak positions in the
XX

calculated S7 Q,w) spectra, calculated

with an energy resolution corresponding

to the experimental energy resolution,

and the experimental data points for the

dispersion relations in KZCOXFel-xF4

with x =. 0.6 for

(a) The higher energy branch of
magnetic excitations, and

(b) The lower energy branch of

magnetic excitations.
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By symmetfy.) Figure (4.7.3) shows the Syy(g,w) and Szz(g,w)
spectra at i = 0.05, a concentration which corresponds to the
planar antiferromagnetic phase. Sxx(g,w) is zero in-that phase
because the ordered component of spin is along the x~direction.

Figure (4.7.4) summarises the concentration dependence of
the zonercentre energy and the integrated structure factor for
the lower energy excitations. There are local minima in the
zone centrg energies between x = 0.4 and x = 0.5 for all three
of the structure factors shown. There is also a local minimum
for the zone centre energy associated with Szz(gﬁw) just above
x = 0.1. It is worth comparing these results with the results
of Matsubara (1980) who performed mean-field calculatioﬁs for
K2Feanl_XF4, which is also a mixed magnetic system with ortho-
goqal competing anisotropies 7(Bevaart et al. (1978)). The mean
field calculations predicted that the gap corresponding to the
léwest energy mode should go to zero at the phase boundaries be-
tween the OAF and the other antiferromagnetic phrases.

K FeXMn F differs from K

12 4 CoxFel—xF4 in that the exchange

2 2

interactions are isotropic in the former system and anisotropic
in the latter system; Fhe difference from mean field theory
predictions at x = 0.1 in KZCOXFel—xF4 might be connected with
this. The energy of the peak in Syy(g,w) at the zone centre

is sensitive to the value of the in-plane single-ion anisotropy
parameter Ei' Consequently the fact that the energy gap for
s77(Q,w) does not go to zero at x = 0.5 could be due to the |

value of Ei used in the calculations being slightly wrong. More

calculations with a modified in-plane anisotropy might clarify this.
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Spectra were also generated for the concentrations x = 0.6,
X = 0.27 and x = 0.2, the nominal concentration values of the
samples on which the experiments discussed in Sections (4.3), (4.4)
and (4.5) were performed. The calculated zone centre and zone
boundary spectra are shown for x = 0.6 in Figﬁfe (4.7.5), and for
X = 0.27 in Figure (4.7.6). As discussed previously, x = 0.6
corresponds to the uniaxial phase, so that Szz(gjw) is zero and
Sxx(g,m) = Syy(g)w). The concentration x = 0.27 corresponds
to the OAF phase so that S (Q,w), Syy(g,w) and Szz(g,w) are
different.

The' partial dynamic structure factors were summed to give
the dynamic structure factor for the concentrations x = 0.6,
x = 0.27 and x = 0.2 and fits made to the experimental data for
Q-values across the entire Brillouin zone. The fits took into
account the two domain structure and used calculated instru-
mental resolution widths. The free parameters in the fits were
a flat background term and an overall scale factor. TFigures
(4.7.7), (4.7.8), (4.7.9) and (4.7.10) show experimental data
with éalculated spectra fitted.

In Figures (4.7.11), (4.7.12) and (4.7.13) the measured
dispersion relations for x = 0.6, x = 0.2 and x = 0.27 are
shown with the peak positions from the calculated Sxx(g)w)
Syy(g,w) and Szz(g)w) spectra superimposed. For x = 0.6
the peak positions from the calculated Sxx(g)w) spectra are
in good agreemeﬁt with the experimental values for both the low
energy and high energy excitations. For x = 0.2 and x = 0.27

only the low energy dispersion relations corresponding to excitations



FIGURE (4.7.12):

Comparison between peak positions in the
aa

calculated S (Q,w) spectra and the ex-

perimental data points for the dispersion

relation in K,Co_Fe, _F, with nominally
277k X 4

1_
x = 0.2.

The solid line corresponds to ¢ = x,
the dashed line corresponds to o =y

and the dotted line corresponds to

a = 2z.
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FIGURE (4.7.13):

Comparison between peak positions in the
0o

calculated S""(Q,w) spectra and the ex-

perimental data points for the dispersion

relation in K,Co_Fe F, with x = 0.27.
277x -x 4

1

The solid line corresponds to a X, the
dashed line corresponds to o = y and

the dotted line corresponds to a = z.
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propagating mainly on the Fe2+ ions were measured. For x = 0.2 one
measured branch was obtained and for x = 0.27 two such branches
were deduced from the measurements. However the NEWSIM calculations
predict 3 branches of excitations. ‘For both concentrations,
Sxx(g,m) and Szz(g,m) are close to the measured higher energy
branch near the zone centre, whilst Syy(g)m) corresponds to the
measured lower energy branch in the x = 0.27 case. The difference
betﬁeen calculated and experimental values for the energy>of the
excitations at particular reduced wavevector values could be due

to uncertainties in the values for the exchange and single-ion
anisotropy parameters obtained from the literature. Overall, the
calculated results are in reasonable agreement with the results

of the experiments.

;’-/
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CHAPTER 5

Rb,Mn Cr._ C&,: A MIXED MAGNETIC SYSTEM WITH COMPETING
——x——1-x—4

FERROMAGNETIC AND ANTIFERROMAGNETIC EXCHANGE INTERACTIONS

5.1 Introduction

In recent years there has been consideraﬁle theoretical and ex-
perimental interest in mixed magnetic systems with competing ferro-
magnetic and antiferromagnetic exchange interactions. Such systems
can in theory be formed by randomly mixing an antiferromagnetic
system with a ferromagnetic system. Fishman and Aharony (1980)
calculated x - T phase diagrams for this type of mixed magnetic
syste&, using both Mean-field Theory and Renormalisation Group Theory.
They found that if only nearest neighbour exchange interactions were
assumed, then there were four magnetic phases in the x - T plane;
a paramagnetic phase, a ferromagnetic phase, an antiferromagnetic
phase and a spin glass phase. (In the spin-glass phase the magnetic
moments have a local "frozen-in" component but there is no long-
range magnetic order.) A schgmatic phase diagram is shown ‘in
Figure (5.1.1). Katsumata (1983) has reviewed some of the recent
experimental studies of the system szMnxCrl_xCRA, an insulating
mixed magnetic system which is a random mixture of the ferromagnetic

system RbZCrCJL4 and the antiferromagnetic system Rb.,MnC%,. This

2 4
system is of particular interest because it is the first example of
a random mixture of an insulating ferromagnet and an insulating

antiferromagnet with nearest neighbour interactions in which a

- spin—glass phase has been observed (Katsumata et al. (1982), Kohles



FIGURE (5.1.1):

Schematic concentration x against
temperature T diagram for a mixed mag-
netic system with competing ferromag-
netic—-antiferromagnetic exchange
interactions.

P indicates the paramagnetic phase,

F indicates the ferromagnetic phase,
AF indicates the antiferromagnetic
phase and SG indicates the spin glass

phase.



Figure (5.1.1)
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et al. (1982)). 1It is thus a unique physical representation of the
kind of system considered by Fishman and Aharony (1980). There is
another system EuxSrl_xS which also exhibits a épin—glass phase
(Maletta and Felsch (1979)), However, the spin-glass behavipur
arises from a different soufce. EuxSrl_xS is formed by dilution
~of the ferromagnet EuS with diamagnetic SrS. This creates an
imbalance between the nearest neighbour ferromagnetic exchange
interactions and the next nearest neighbour antiferromagnetic
exchange interactions which leads to the spin-glass behaviour.

In this chapter the results of neutron scattering measurements
on the system szMnxCrl_xC24, with nominally x = 0.754, are
reported. The rest of this chapter is set out as follows. In
Section (5.2) the pure systems Rb.,MnC%

2 4

cussed and in Section (5.3) general details of the experiments are

and RbZCrC!L4 are dis-
given. The inelastic neutron scattering measurements which were
performed in order to investigate the magnetic excitations in the
sample are reported in Section (5.4). Section (5.5) discusses
experiments which weré?performed to study the magnetic phase tran-
sition for x = 0.754, a concentration for which the sample was
expected to exhibit antiferromagnetic long-range ordz} below a

Néel temperature TN'

5.2 The Pure Systems

5.2(1) Introductory Remarks

szMnXCrl_xC24 1s a random mixture of the systems szMnCR4



and Rb2Cr024, both of which are isomorphous with K2NiF4
(Birgeneau et al. (1970)). As discussed earlier in this thesis,
for isomorphs of KzNiFA, the predominant exchange interactions

are between nearest spins in the basal a - b plane, so that the

mixed magnetic system is quasi two dimensional.

5.2(ii)  Rb,MnCg,

Hundg rules indicate that the ground state of the free an+
ion is 655/2. The total angular momentum L = O for this ion
because the 3d sﬁell is half filled by the 5 electrons which
occupy it. Consequently, to a good approximation, the ground
state of the Mn2+ ion is not influenced by the crystal field
in szMnCJL4 or by spin-orbit coupling. The spin Hamiltonian
for szMnCJL4 can therefore be written in terms of a pseudo-
spin S = 5/2, which is.equal to the actual spin. |

Neutron diffraction studies of szMnCSL4 by Epstein et al.
(1970) showed that the system attains antiferromagnetic long
range order below TN = 57K with the spins aligned along the
c-axis of the unit cell. Schrdder et al. (1980) determined
the spin wave dispersion relation for szMnCJL4 at T = 8K
Ey inelastic neutron scattering measurements. They also cal-
culated a form for the spin wave dispersion relation and fitted
it to their experimental data points. The agreement between the
calculated and experimental values was excellént across the
entire Brillouin zone. The Hamiltonian for Rb

2Mn_CSL4 was assumed

to be given by:
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H = z J..s..s.+gﬁ'{—H £s.?+H 1s.%) 5.2.1)
<ij> 13T B~ A ; 1 A i 3 (5.2.1)
where <ij> indicates a sum over nearest neighbour spins S. and
, —-i
. §j’ Jij is the nearest neighbour exchange interaction and H, is

A

the magnitude of an anisotropy field. The anisotropy arises from

magnetic dipole-dipole interactions.

5.2(1iii) :532959&4

The free Cr2+ ion has 4 electrons in the 3d shell and Hundé
rules therefore predict the ground state to be 5D6. In RbZCrCJL4
the Cr2+ ions are attributed a pseudospin S = 2. Single crystal
neutron diffraction studies by Day et al. (1979) showed that
RbZCrCQ4 crystallises effectively in the KzNiFa- structure. How-
ever, the C& ionms in the_bagal plane are displace& by a small
amount from the midpoint of the line joining the Cr2+ ions and the
ferromagnetic exchange interactions between nearest neighbour Cr2+
ions in the a - b plane are attributed to this Jahn-Teller dis-—
tortion of the CrCZ6 octohedra. (With the exception of AKZCuF4
‘(Tc = 6.25K) all other known K2NiF4 isomorphs exhibit anti-
ferromagnétic ordering.) |

Neutron scattering studies of R,bZCrCZ4 (Fair et al. (1977))
have shown that below Tc = 57 £+ 2K the system orders ferromag-
netically'with the spins aligned in the basal . a - b plane. The
spin wave dispersion relation at T = 4.5K was obtained by Hutchings
et al. (1976) from inelastic neutron scattering experiments. Their

data was well represented by the dispersion relation for a planar

ferromagnet with Heisenberg exchange interactions.
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5.2(1iv) ) o Concluding Remarké,

The magnetic properties of R.bZMnCSL4 and RbZCrCJL4 suggest
that szMnxCrl_XC!I,4 should be a good physical realisation of a
d = 2 system with nearest neighbour competing ferromagnetic-
antiferromagnetic exchange interactions. Figure (5.2.1) illustrates
the phase diagram for this system published by Kohles et al. (1982).
It p;edicts that there exists an insulating spin-glass phase for the
intermediéte concentration range 0.41<x<0.59. AF2 represents
a uniaxial antiferromagnetic phase similar to the ordered phase in
szM'nCJZ,4 and AFl represents an essentially planar antiferromag-
netic phase. Single crystal samples with 0.41< x<0.59 were not
available to the author and the neutron scattering measurements
discussed in the following sections were performed on a sample
with x = 0.754, which was expected to be in the AF2 phase
below a transition temperature TN' The motivation behind the
measurements was to study the effect of a substantial number of

Cr2+ defects (v 257) on the phase transition and magnetic excita-

tions.

5.3 General Experimental Details

The neutron scattering measurements reported in Sections (5.4)
and (5.5) of this chapter were performed, using the IN2 triple-axis
neutron spectrometer at the Institut Laue-Langevin, Grenoble, France.
A diagram of this instrument is given in Figure (5.3.1). 1IN2 was
fitted with two monochromator crystals both of which utilised the

Pyrolytic Graphite (0,0,2) Bragg reflection. The effect of the



FIGURE (5.2.1):

Proposed phase diagram for the mixed magnetic

system Rb,Mn_Cr CcL (Kohles et al. (1982))
27x x 4

1-

P indicates the paramagnetic phase,

F indicates the planar ferromagnetic phase,
SG indicates the spin glass phase,

AF]1 indicates a planar antiferfomagnetic phase
and AF2 indicates a uniaxial antiferromagnetic

phase with the spins aligned along the c-direction.
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Figure (5.2.1)

AFl AF2

0.2 0.4 0.6 0.8 1

Manganese concentration (x)




FIGURE (5.3.1):

Diagram of IN2 triple axis neutron
spectrometer (taken from an I.L.L.
User's Guide).

Note the double monochromator

arrangement.
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double monochromator is to give improved spectrometer resolution.
As shown by Pynn and Passel (1974) the resolution function for
the spectrometer can still be calculated, using the Cooper-Nathans
fqrmaiisnyprovided that the double monochromator is treated as a
single monochromator with an effective horizontal mosaic spread

1] .
n given by:
m

/n' = /nmv + /nm, (5.3.1)

where N and ﬂm are the horizontal mosaic spread values of the
1 2
individual monochromator crystals.
For the inelastic neutron scattering measurements reported in

Section (5.4) the spectrometer was used in a triple-axis mode with

a pyrolytic graphite analyser which made use of the (0,0,2) Bragg
b g

. /
reflection. The horizontal collimation was chosen to be
60' - 30' - 30' - 60' from reactor to detector and the incident
, o1
wavevector was fixed at kI = 2.662 A with a pyrolytic Sraphite

filter to eliminate higher order contaminant neutrons.

For the diffuse scattering measurements reported in Section
(5.5) the spectrometer was used in a two—axis mode. This was achieved
by removing the analyser crystal and aligning arm 2 and arm 3 of the
sﬁectrometef so that they were effectively one arm. The collimation
for this spectrometer configuration was 60' - 10' - 10' and the
wavevector transfer was fixed throughout at 2.6622_ .

The single crystal sample with manganese concentration nominally
x = 0.754 was mounted in a variable temperature helium flow cryostat

with the magnetic '[1,0,0] and I:0,0,l:l directions in the scattering
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plane for both sets of measurements. The dimensions of the sample

were approximately (15 x 8 x 4)mm3.

5.4 Magnetic Excitation Measurements

In this section an investigation by inelastic neutron scattering
measurements of the magnetic excitation spectrum in a sample of

Rb MnXCrl_XCIL4 with nominally x = 0.754 1is reported. The measure-

2
ments consisted of a series of constant wavevector (constant-Q) and
constant energy transfer (constant-E) scans. There is no spin wave
&ispersion along the c#—direction [b,O,i[ in these quasi two
dimensional systems and so all measurements were performéd with Q
along the magnetic _a: direction [},O,Q]. Well*defined spin
wave peaks were found for wavevectors up to around two—fifths of
the way to the Brillouin zone boundary. Measurements were made
for reduced wavevector transfers beyond this but the excitation
had become very broad and the scattering intensity had become too
weak for any conclusions. to be made as to the nature of the excita-
tions near -the zone boundary. Beam time has been allocated on the
high-flux triple—-axis spectrometer IN8 at fhe Institut Laue-
Langevin to make further measurements for wavevectors close to the
Brillouin zone boundary and this should enable a complete charac-
terisation of the magnetic excitation spectrum to be obtained.
Figure (5.4.1) illustrates the data collected in one of the
constant-Q scans and Figure (5.4.2) shows the data from one of

the constant-E scans. These figures are representative of the

typical quality of the data. The peak positions and the full widths



FIGURE (5.4.1):

The data obtained from a scan with
constant Q = (1.15,0,0) for the
sample of szMnXCrl_xCSL4 with
nominally x = 0.754, indicating a
spinwave peak corresponding to an

energy of 0.85 THz.
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FIGURE (5.4.2):

The data obtained from a scan with
constant energy transfer. E = 0.7 THz.
The peaks at QX = 0.9 and QX = 1.1
correspond to spin wave peaks with
reduced wavevectors &£ = 0.1

(where £ 1s the reduced wave-

*.
vector expressed in units of a ).
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at half-maxima obtained from those scans, in which a peak in the
scattering intensity could be distinguished, are indicated in Figure
(5.4.3) along with the spin wave dispersion relation for the pure
system szMnC24. The RbZMnCQ,4 dispersion curve passes through
the experimental points, to a good approximation, for reduced wave-
vectors up to one-fifth of the Brillouin zone boundary value. At
given reduced wavevectors between one-fifth and two-fifths of the
Brillouin zone boundary value, the data points are at lower energy
values than those given by the R.sznCR,4 dispersion retationm.
The experimental evidence“thus suggests that for the x = 0.754
sample there is a single branch of the spin wave dispersion rela-
tion corresponding to excitations propagating mainly on the Mn2+
ions. This branch is modified relative to that iﬁ the pure system
szMnCR,4 by the presence of ~ 257 Cr2+ defects.

Further inelastic neutron scattering measurements will be
required before a complete picture can be obtained for the mag-

netic excitation spectrum in Rb thCr CL, with x = 0.754.

2 1-x774

The zone centre energy gap eg has to be determined at T = 5K,
along with 'its dependence on temperature up to T = TN. The
temperature dependence of eg is of particular interest because

it is believed that spin wave scattering may have contributed to the
observed inteﬁsity in the diffuse scattering measurements reported
in Section (5.5) of this chapter. The measurements to determine

eg as a function of T may require high resolution measurements
similar to those reported in Section (4.5) of Chapter 4 for

KZCOXFe F4 with x = 0.27. The measurements to be made.during

1-x

the scheduled beam time on IN8 discussed previously shall make



FIGURE (5.4.3):

The full circles indicate the spin wave
peak positions obtained from the inelastic
neutron scattering measurements on the

x = 0.754 sample described in the text.
The solid line corresponds to the dis-
persiop relation for the pure antiferro-

magnetic system szMhCQA.
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use of the higher neutron flux, compared with IN2, to investigate
the magnetic excitation spectrum over the remaining three-fifths
of the Brillouin zone where the excitations have so far been too

weak to observe.

5.5 The Magnetic Phase Transition

This section reports the results of neutron scattering measure-
ments which were performed to investigate the magnetic phase tran-
sition in Rb,Mn Cr;_  C%, with x = 0.754. All measurements were
performed with the spectrometer in the two-axis configuration dis-

cussed in Section (5.3).

5.5(1) The Order Parameter

Below T = 35K a resolution limited Bragg peak was observed at

Q = (1,0,0). Peaks at Q = (1,0,L) and Q = (3,0,L) for -8s5Lg38

N

were also observed. This-suggested antiferromagnetic long range
order existed below TN =~ 35K in this system. The intensity of
the (1,0,0) Bragg reflection, which is then proportional to the
square of the sublattice magnetisation, was measured as a function
of temperature and the results are shown in Figure (5.5;1). Two
features of this were surprising. Firstly, the intensity, rela-
tive say to KZCOXFel-xFa with x = 0.6, rises very slowly as T is
lowered from TN. Secondly, the intensity continues to rise

all the way down to the lowest temperature at which measurements

could be made. In anticipation of the results from the diffuse



FIGURE (5.5.1): The intensity of the (1,0,0) antiferro-

magnetic Bragg peak as a function of
temperature for Rb,Mn Cr,_ C%, with

nominally x = 0.754.
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scattering measurements to be presented, further discussion of the
temperature dependence of the sublattice magnetisation is delayed

until the diffuse scattering measurements are discussed.

5.5(i1i) Diffuse Scattering

5.5(ii) (a) Theoretical Background

It was shown in Chapter 2 that for scattering of unpolarised
neutrons from N  localised spins the magnetic partial differential

cross—section is related to the partial dynamic structure factors

by:
d?o

3548 (5.5.1)

_ Yo &B aB
Z(Gds Q" Q) (Q,w)
afB

A

As discussed by Birgeneau et al. (1977) the partial dynamic

structure factors are related to the wavevector dependent suscep-

tibility xas(g) and the normalised spectral shape function

r*f(Q,w) by:

(@
aB _ = Nwp aB /A
§ Q) = - Tt QW) (5.5.2)
where for any Q:
J FPQwde = 1 (5.5.3)

- OO

and xo is the Curie susceptibility for non-interacting magnetic
. . , . a
moments. Making use of the normalisation condition on F B(g,w)

-equation (5.5.2) may be rewritten:

S @
J dw(—~¥Eﬁ;————)S (Q,w) = — . (5.5.4)

o X
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Providing that for the critical fluctuations hw << kBT then:

(1 - e M98y /mig = 1 (5.5.5)

and equation (5.5.4) can be written as:

aB
() :
[t - 2@  (5.5.0)

o
*® X

Thus in theory, XaB(g) could be obtained by measuring Sae(g,w).
and then integrating the measured values with respect to w. In

- most cases, however, this proves to be impossible in practice.
Instead, the instruﬁent is used to perform the integral directly.
This is achieved by removing the analyser from the triple-axis
neutron spectrometer and using the instrument in a two-axis mode.
All neutrons emerging at a given scattering angle 26S are then
accepted by the detector. If A(ki’ kf) is the proportionality
constant in equation (5.5.1), then in that spectrometer configura-
tion the measured quantity is Jdké A(ki,kf)s(g,w) which is pro-
portional to the integral on the left hand side of equation (5.5.6)

provided that:

[(‘-',:—")r/kix] << 1 (5.5.7)

‘where I 1is a characteristic frequency and ¥ 1is the inverse
correlation length. As discussed by Birgeneau et al. (1971) this
imposes the ;equirement that the change in kf, required to inte-
grate over w, is much smaller than K,

In magnetic systems with the K

2N'@F4 structure, the spins in

adjacent basal planes are only weakly coupled and the dynamics and
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phase transitions are effectively those of a two dimensional (d = 2)
system so that the diffuse scattering'builds up in ridges along the
(1,0,n) direction as opposed to only around tﬁé Bragg peak position
at Q = (1,0,0) as it would if the phase transition was three
dimensional (d = 3). Whereas for a‘d'= 3>system the susceptibility
xas(g) would be dependent on the reduced wavevector q measured
from the (1,0,0) position, for these d = 2 systems, 'xae(g) is
dependent only on the reduced wavevector ¢q measured from the
nearest point on the (1,0,n) ridge. That is to say, xaB(g) is

independent of q, in these systems. It can be shown that for

these systems equation (5.5.7) then becomes:

e\éﬂ)f‘/ki\{ sin 8, << 1 . (5.5.8)

where ef is the angle between the vector ng and the (1,0,n) ridge.

Birgeneau et al. (1971) then point out that if the scattering geometry
with Q =k, - k. is arranged so that k; 1is parallel to the
(1,0,2) ridge, then the condition given in equation (5.5.8) is met.
It is clear that with kf parallel to the (1,0,%) ridge, then the
wavevector transfer within the planes does not change for the range
of kf's accepted by the detector and so the integration with respect
to energy is performed correctly by the instrument at each point in
the scan. The wavevector transfer Q for which Ef is exactly
along the (1,0,n) ridge is called the ''Quasi-elastic'" position.

Figure (5.5.2) shows a reciprocal space diagram for magnetic

systems with the KZNiF4 structure with the scattering geometry at

the qyasi-elastic position superimposed. The value of n for this



FIGURE (5.5.2):

Reciprocal space .diagram for the
KzNiF4 structure. The circles
indicate the antiferromagnetic Bragg
peaks and the crosses indicate the
nuclear Bragg peaks. The scattering
geometry for Q at the "Quasi-elastic"

position is superimposed.
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wavevector transfer can be calculated straightforwardly. By Bragg's
Law:
Q = 2 kf sin es . (5.5.9)

But also from Figure (5.5.2) it is clear that:

Q= (@02 + (n o (5.5.10)

* * . .
where ay and c, are the reciprocal lattice vectors along the
a and ¢ directions of the magnetic unit cell. Equating the right-

hand sides of equations (5.5.9) and (5.5.10), and rearranging gives:

3
1]

: )
[(4k23inzes - (a;)z)/(c:) 2] (5.5.11)

where:

@
I

*
| sin l(am/kf) : (5.5.12)

5.5(1ii) (b) Specific Details of Diffuse'Scattering Measurements

For the lattice parameters of the nominally x = 0.754 sample of

0-1
2.662A the

R.sznxCrl_xCJL4 and fixed neutron wavevector of k
ansi-elastic position was calculated to be at Q = (1,0,-0.392).
Scans were performed in which the scattering intensity was recorded
as a function of a, aloqg the direction (1+q;,0,—0.392) with q,
in the range =-0.5< qa< 0.5. Even though the observed scattering
intensity attributable to the magnetic susceptibility never ex-
tended beyond |qa| = 0.25 the purpose of extending the scans out
to lqal = 0.5 was to enmsure a proper determination of the flat

background at each of the 26 chosen temperatures in the range
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4.42K<T<71.5K. For all scans except those at T = 63.2K and
T = 71.5K the step in q, was Aqa = 0.05 for 0.2 < iqals.O.S,

Aq_ = 0.01 for 0.08 < Iqal <0.18 and Aq_ = 0.005 for Os Iqal £0.075.

These step sizes were chosen (after a preliminary survey) in order
that small steps could be made in the small q, region where the
scattering is expedted to be sharply peaked near TN. The number
of counts in the detector was recorded over a period of just under
3 minutes for eacﬁ point in a scan. Since there were 67 points
per scan, then a single scan lasted around 3 hours. Allowing up

to half-an-hour to change and stabilise the temperature (which had
to be done manually) it is worth emphasizing that a large portion
of the allocated beam time had to be spent solely on these 26 scans.
(In fact this prevented more spin wave measurements from taking
place during the allocated beam time.) After these measurements
had been completed, the vertical resolution of the spectrometer was
measured by tilting the goniometer arcs manually and recording the
intensity as a function of tilt angle with the instrument set to
record the intensity at a Q corresponding to a resolution limited
Bragg peak. This effectively scans a delta function through the
resolution ellipsoid along the vertical direction.and so gives the
vertical resolution width. The importancé of a'correct treatment
of the spectrometer resolution, both horizontal and vertical, will

be discussed alongside the data analysis.
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5.5(1i1) (e) Diffuse Scattering Data Analysis

It was initially assumed that only the longitudinal spin
fluctuations contributed to the observed diffuse scattering inten-—
sity. In the quasi-elastic approximation, the longitudinal suscep-
tibility is related to the partial dynamic structure factor for the
spinordering direction §"(Q,w) by:

[= ]

x"(Q)
J dw S”(g,w) = . (515.13)

[0}
-~ . X

It was assumed that x"(g)lxo had the Lorentzian 'form:

X"(_Q_) —
— = AKX = 0Q . (5.5.14)

. 2 2 n2
X q,° * 4 *+ K

That is, the longitudinal susceptibility was assumed to be a Lorentzian

-2

function of the reduced wavevector q = q,

+ qb2 (where q, is
the reduced wavevector élong the éﬁidirection and 9y, is the reduced
wavevector along the b —direction. The susceptibility is independent
of q.» the reduced wavevector along the c-direction, because of
the quasi two-dimensional nature of the magnetic interactions.
(The Lorentzian approximation has been shown to hold in d = 2
Ising systems for q < 10K by Tracy and McCoy (1975)).

To interpret the data for a scan at a particular temperature,
the cross-section of equation (5.5.14) was folded with the resolution
of the spectrometer and the resultant calculated intensity fitted

to the data in a least squares routine. The calculated intensity

at a particular wavevector 90 was:

(o o]

Q) = | f(Qo)IZJ R(Q, * sQ)o(Q, + 8Q)6Q (5.5.15)

-0
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where R(Q) was the resolution function and f(go) was the average
form factor. (The form factors given by Watson and Freeman (1961)
2+ 2+ . . .

for the Mn and Cr 1ons were weighted according to their concen-
trations x and (1~x) to obtain f(go)).

In this particular case the cross-section varies only along the
(horizontal) %idirection and the verticalbnrdirection. Further,
because the horizontal and vertical resolution of the spectrometer

are decoupled, then equation (5.5.15) reduces to

oo

1Q) = J Ry(8Q )R, (8Q)0(Q  + 8Q, + 6Q,)8Q, 6Q, (5.5.16)

-—C0

where RH(GQa) and RV(§Qb) are the horizontal and vertical com-
ponents of the resolution function. Hagen (1982) has shown that
for the cross-section given in equation (5.5.14) the integration
over the vertical resolution could be performed analytically if a

triangular vertical resolution function was assumed, so that:

1Q) = I4Q)Iy Q) . (5.5.17)

with Iv(go) calculated analytically and IH(QO) calculated

numerically from: —SQg'
25 2
A" K" 20y
I.AQ) = I1.(Q.) = J e 6Q_ (5.5.18)
H-o H" "ao (Q -Q )2 + K" 2 a
- “‘a “c
where an = (Qa - an) and q, = (an - Qc). Qc allowed for

any offset in the value of Qa for which the scan (and hence the
diffuse scattering) was centred. The integral of equation (5.5.18)

was performed numerically by the Trapezium Rule, with 300 trapezoids

between -30H and + 30H.



FIGURE- (5.5.3): Scans through the ridge of diffuse scattering

centred at Q = (1,0,-0.392) for x = 0.754 at

(a)
(b)
(c)
(d)
(e)
()

T

T

The dotted line

4.42K
29.4K
32.4K
34.2K
40.5K

55.8K.

indicates the constant back-

ground term of 119 counts. The solid line

indicates the calculated intensity obtained

from the fitting procedure described in the

text. Note, by comparing Figures (5.5.3)

(b), (c¢) and (d), that there is little change

in the width or intensity.of the diffuse

scattering over a temperature range of 5K.
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The entire fitting procedure was performed using the computer
program K2FIT which incorporated a least squares fitting program
LSOFIT. Each of the 26 scans were fitted separately but in each
case the same flat background value was used. There were three
adjustable parameters for each fit corresponding to Qc, A" and «".
Since the scans were nominally centred on Q = (1,0,-0.392) then

1

Q. =1 for all of the scans. The parameter «' was expected to

c
be the inverse correlation length and A" proportional to the
staggered susceptibility:
"
A o X(a=0) (5.5.19)

XO

At the (150,0) Bragg peak the resolution ellipse has its_major
axis almost along [i’O’QJ' At Q = (1,0,-0.392) the long
axis of the resolution function in the scattering plane is still
almost parallel to the [},o,d] direction and so the full width
half maximum AQH for the (Gaussian)ftorizontal part of the re-
solution function was taken to be the value obtained from a scan
through the (1,0,0) Bragg peak along the [},o;d] direction. The
full width half maximum AQV for the vertical part of the resolution
function was measured by the method discussed in the experimental
section. The values used were AQH = 0.0181a; and AQV = 0.0678b; '
(note that a: = 2w/am, b: = 21r/bm and a = bm = 7.09562 for
Rb MnxCr

1_XC24 with x = 0.754.

2
Figure (5.5.3) shows the experimental data with the calculated

intensity from the best fit superimposed at several temperatures.
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The agreement between the calculated intensity and the experiﬁental

data was good at all 26 temperatures for which scans were performed.
Figure (5.5.4) shows a graph of k" as a function of tempera-

ture and Figure (5.5.8) shows a graph of A" as’a function of

temperature over the entire temperature range. The behaviour of

"' and A" 1is not that which might be expected. A d=2 system

with purely Heisenberg interactions is not expected to undergo a

phase transition. However in d=2 systems with Heisenberg inter-

actions and a small single ion anisotropy it has been shown that

a phase transition occurs and that the staggered susceptibility

and correlation length have lower law divergences with exponents

close to those of the d=2 TIsing model.(Birgeneau et al. (1977)).

The expected power laws for «" and x"(q=0)/xo were given by:

€' = F(T/Ty - Y (5.5.19)

and
X"@0) . g -y
Xo . T

. (5.5.20)

The results from the experiments on pure antiferromagnetic systems
such as KzNiFa, K2MnF4 and mixed antiferromagnetic systems such
as szMho.leo.sFa (Birgeneau et al. (1977)) showed that the suscep-
tibility decreased and K" increased so rapidly below TN that
scattering intensity was observable only down to a few degrees

below TN. The experimental data for szMnXCr C%, with x = 0.754

1-x"74
and the parameters obtained from it do not indicate that behaviour.
= ‘Thorough checks were made in order to ensure that the correct

resolution parameters had been used, particularly with regard to

the horizontal resolution. A program TWOAXIS was written to calculate



FIGURE (5.5.4):

Inverse correlation length k" as a function
of temperature obtained by fitting a single
Lorentzian function for the diffuse scattering
as described in the text. The values of K"
obtained from the graph should be divided

by a factor of 1000 to obtain the value of

K" expressed in terms of the reciprocal lat-

tice units along the [i,o,d] direction.
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FIGURE (5.5.5):

The staggered Susceptibility
x"(q=0)/x° = A" as a function
of temperature obtained by fitting
a single Lorentzian function for
the diffuse scattering, as des-
cribed in the text. The iﬁtensity

is given in arbitrary units.
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the resolution widths both along the length of the wavevector transfer
and at right angles to it in the scattering plane. The program used
the Cooper-Nathans formalism for the resolution function of . a ;wo—
axis spectrometer (Cooper and Nathans (1968)).. Assuming an effec-
tive horizontal mosaic spread for the monochromator of né.= 0.55°

and a horizontal mosaic spread for the sample of ng = 0.3320,
excellent agreement was obtéined between the calculated Bragg peak
widths and the experimental values for both longitudinal and trans-
verse scans through the (0,0,2), (0,0,4), (0,0,6), (0,0,8), (2,0,0)
and (4,0,0) nuclear Bragg peaks. Having established the correct

values for n;

and Ng by comparing calculated and experimental
widths for these resolution limited nuclear Bragg peaks, the longi-
tudinal width for the (1,0,0) magnetic Bragg peak was then cal-
culated. This calculated width was 117 higher than the experi-
mental value. This difference was well within the typical dif-
ferences between the calculated and experimental values for the
nuclear Bragg peaks, verifying that the (1,0,0) magneti; Bragg
peak was effectively resolution limited. The assumptioﬁ that

the Bragg peak widths for a longitudinal scan through the (1,0,0)
Bragg peak was the best estimate of the horizontal resolution
width for the scans through Q = (1,0,-0.392) was therefore
entirely justified. (The effect of changing the horizontal and
vertical resolution widths by small but significant amounts, was
to change the absolute values for the parameters derived from the
fits but not to change the qualitative features of the staggered

susceptibility and inverse correlation length against temperature

plots.)
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Clearly, either there is an unusual type of magnetic phase tran-
sition around T = 32K or there must be some other explanation of
the temperature dependence of the scattering around the (1,0,n)
ridge. One possibility is that there may have been large concen-
tration fluctuations in the samble. The effect of this would be
to smear the transition since the concentrafions at different parts
of the crystal would correspond to different.values of TN.
Secondly, there may have been contributions from the transverse
susceptibility (which would not be expected to diverge at T = TN).
Birgeneau et al. (1977) were able to fit two Lorentzian functions
to their data, one corresponding to. the longitudinal wavevectoér
dependent susceptibility and the other corresponding to the trans-
verse wavevector dependent susbeptibility._ Below the critical
temperatﬁre region they found the scattering to correspond solely_
to the transverse susceptibility. They found the transverse sus-
ceptibility x+(q=0) to be constant, (this corresponds to the
staggered susceptibility xl(q=0)[x° varying linearly with the
temperature) in that temperature region and were able to fix a
Lorentzian function for the transverse susceptibility, then fit
the additional scattering to a Lorentzian function for the longi-
tudinal susceptibility for temperatures up to and just abové TN'

An attempt was made to fit the Rb,Mn Cr, _C2, (with
x = 0.754) data using two Lorentzians. The oniy way this could
be achieved was to fix the Lorentzian parameters Kl and Al for
the transverse susceptibility for each scan. Al was expected to

vary linearly with temperature and K& was expected to remain

constant up to TN. No attempt was made to fit the data below
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T = 22.9K because it was expected that the quasi-elastic approxi-
mation that kgT >> to was not being.fulfilled in that temperature
region, leading to non-linear behéviour of Al with temperature.

Al and gl were set at the values obtained at T = 22.9K in the
previous single Lorentzian fit. At higher temperatures K& ~was
fixed at this vaiue and At was fixed at a value proportional to

the temperature. Unfortunately with the parameters of the fixed
Lorentzian set at these values, another Lorentzian could not sen-
sibly be fitted to the additional scattering intensity.

In conclusion, for the sample of Rb MnxCr CL, with x = 0.754,

2 1-x774

there was a magnetic phase transition at around TN = 32K. The
evidence for this lies in the onsét of Bragg scattering at the
(1,0,0) poéition below TN and the decrease in width and increase
in intensity of the diffuse scattering in scans through the (1,0,n)
ridge, as TN was approached from either above or below. The data
from scans through the-(l,O,n) ridge of diffuse scattering could be
fitted to a single Lorentzian function for the wavevector dependent
susceptibility, with good agreement between the expgrimental data
and the calculated values at all temperatures. However, the para-
meters A" and K" obtained from the fitting do not behave, as

a function of temperature, in a similar way to similar parameters
obtained in mixed antiferromagnetic systems, such as szMn_o.SNio.SF4
(Birgeneau et al. (1977)). This could be for physical reasons
(there are competing exchange interactions in this system) or could
be due to effects such as concentration fluctuations in the sample

or a contribution to the observed intensity from the transverse

susceptibility which cannot be quantified. Finally, it is noted
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that the value of TN = 32K 1is approximately 8K lower than

the value of TN‘= 40K 1implied by the phase diagram of Kohles

et al. (1982).
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CHAPTER 6

CONCLUSIONS

In Chapter 3 magnetic excitation spectra for a diluted simple
cubic ferromagnet with nearest neighbour Heisenberg interactions
were calculated by the "equation—of—mdtion" method. Spectra were
obtained with reduced wavevector values along the [1,1,1] direction
across the entire Brillouin zone for the magnetic site concentra-
tion values x = 0.9, x = 0.5 and x = 0.34. The effects of disorder
were expected to become more obvious as the reduced wavevector
increased at a given value of x and this proved to be the case.
The spectra consisted of broad distributi;ns of intensity with the
weight moving to higher energies as the reduced wavevector increased.
The effect of decreasing x was to move the weight in the spectra
to lower energies at a given reduced wavevector, (except at q = O,
where at all three concentrations resoluticn limited peaks were
obtainedj. A comparison was made between calculated spectra and
data from inelastic neutron scattering measurements om the metallic
‘diluted ferfomagnet Crl_xFeX with x = 0.27. This comparison was

of a qualitative nature but nevertheless suggested that the features
observed in the inelastic neutron scattering experiments could be
attributed mainly to the effects of the dilution-induced disorder.

In addition, this work has stimulated more experimental interest

in the system Crl_xFex with x = 0.27. A proposal has been submitted
to the Institut Laue-Langevin, Grenoble, France (I.L.L;) to test

whether a localised mode observed in the calculated spectra also
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exists in the Crl-xFex system. This could give valuable information

as to the range of the exchange interactions in the Crl_XFex system
for x = 0.27.

In Chapter 4, the results of an investigation into the magnetic
structure and magnetic excitations for tﬁe d = 2 mixed magnetic

system with competing spin anisotropies KZCOXFe —xFy were reported.

1
Neutron scattering experiments for a sample with x = 0.6 showed that
below a phase transitibn at Ty = 92.2+ 0.1K the system exhibited
uniaxial antiferromagnetic long-range order with ‘the spins aligned
along the c-axis of the unit cell, and the temperature dependence

of the order parameter was well described by the two-dimensional
Ising model. Inelastic neutron scattering measurements at T n 5K
revealed two bands of magnetic excitations. A lower energy band
corresponding to excitations propagating mainly on the Fe ions and

a higher energy band corresponding to excitations propagating mainly
on the Co ions.

Neutron scatteripg measurements were also performed on a sample
with nominally x = 0.2. Below a phase transition at Ty = 66 = 1K
there was antiferromagnetic long-range order for the spin components
along the c-axis. The critical exponent B for the order parameter
was slightly higher than that for the d = 2 1Ising model but this
was considered to be due to the fact that no aceount was taken of
rounding of the transition due to concentration inhomogeneities in

the sample. Below a second phase transition at T, = 32 2k com-

L

ponents of spin in the basal a-b plane acquired long range order.
The details of this lower transition are somewhat obscure since

no two-dimensional critical scattering was observed at T Never-

L’
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theless, the phase transition at T. was found to be sharp as a func-

L
tion of temperature, when allowances were made for sample inhomo-
geneity. This is different from the behaviour found by Wong et al.

(1983) in CoxFel_xczz, where the lower transition was very smeared.

They suggested that the lower transition at TL in quFe CQZ was

1-x
smeared because the ordering of one spin component generated a random
field on the other and this " random field inhibited the develop-
ment of true long-range order. This mechanism could occur in
Co}'{Fel_xCZ2 because of a Dzyaloshinsky type of interaction arising
from the low local symmetry in the FeCl, structure. The difference

between the results at T for'CoxFe C and K CoXFe F with

L 1-x772 2 1-x" 4
x = 0.2 may therefore be attributable to the fact that the local
symmetry. in the latter structure is much higher. Inelastic neutron

scattering measurements at T = 5K for K2CoxFe F, with x = 0.2

1-x" 4
revealed a single branch of magnetic excitations at energies below
v 12 meV. .

More detailed inelastic neutron scattering measurements of the
magnetic excitations in the OAF phase were made on a sample with

nominally x = 0.27, for which T = 64.4 #(0.6K and TL = 27+ 2K

N
(Vliak et al. (1983)). VThese measurements revealed two branches of
magnetic excitations which appeared to be degenerate at the Brillouin
zone boundary. An investigation of the temperature dependence of the
lower branéh of the excitations at small reduced wavevector/low energy
showed that the spin wave gap .eg_ decreased and the intrinsic~width
of the excitation increased as the temperature approached TL from

below.

Calculations have also been presented of the magnetic structure
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of KZCOXFe xF4 at T = OK. The results of these calculations predict

1-
that at T = OK,'ihe OAF phase is in the concentration range
0.1<x<0.5. The results from the calculations of the concentration
range of the OAF phase and the average cant angle, between the spin
and the c-axis, as a function of concentration are reasonabl& con-
sistent with the experimental results of other workers (Vlak et al.,
(1985), Fendler and van Eydgtten (1984)).

Magnetic excitation spectra for KZCoxFe F4 were calculated

1-x
by the "equation-of-motion" technique. 1In the uniaxial antiferro-
magnetic phase Sxx(g,m) = Syy(g,w) .and Szz(g,w) = 0, as expected
by symmetry considerations. However in the OAF phase SXk(g,w);
, Syy(g,m) and szz(g;w) are different. There therefore may be three
spin wave branches in the OAF phase. These would, however, be
difficult to resolve by inelastic neutron scattering experiments
on the x = 0.2 and x = 0.27 samples, because they cross in the
Brillouin zone and are'glose together, particularly at the Brillouin
zone boundary. The results for x = 0.6, x = 6.27 and x = 0.2 are in
reasonable agreement with the experimental results. Calculations of.
the conceqtration dependence of the Sxx(g,w), Syy(g)w) and Sxx(g,w),
at ihe Brillouin zone centre, revealed a minimum in the energy gaﬁs
for all three'spectré at the phase boundary between the OAF and the
uniaxial phases for T = O. ’

Finally, in Chapter 5 results were reported of an investigation
into the magnetic phase transition and magnetic excitations in
RbZthcrl-xCQA’ with x = 0.754. Measurements of the order parameter

and the d = 2 diffuse scattering intensity revealed that there was

a phase transition around Ty = 32K below which antiferromagnetic
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long-range order existed. The results of fitting a gingle Lorentzian
function for the longitudinal susceptibility comvoluted with the
spectrometef resolution function, to the data from scans through the
(1,0,n) ridge of diffuse scattering, gave results which were unusual
for both the longitudinal inverse correlation length K" and the
longitudinal staggered susceptibility at q = 0. It is»beliéved that
a coﬁbination of concentration fluctuations in the sample and trans-
verse susceptibility scattering, neither of which could be accounted
for quantitatively, may have caused the transition to appear smeared
out in temperature. Inelastic neutron scattering measurements on

the magnetic excitations in this x = 0.754 sample at T = 5K revealed
a single branch of excitations at slightly lower energy, compared
with the energy of the excitations in szMncza, at a given reduced
wavevector, The observed scattering intensity was very weak for
reduced wavevector transfer values beyond two fifths of the way to
the Brillouin zone boundary and further measurements are planned,
using a higher flux instrument at the I.L.L. to investigate the‘

magnetic excitations near the Brillouin zone boundary.



-122-

REFERENCES

Alben, R., Kirkpatrick, S. and Beeman, D. (1977) Phys. Rev. B1l5, 346.

Aldred, A.T., Rainford, B.D., Konvel, J.S. and Hicks, T.J.
(1976) Phys. Rev. B1l4, 228.

Als-Nielsen, J., Birgeneau, R.J., Guggenheim, H.J. and Shirane, G.
(1975) Phys. Rev. B1l2, 4963.

Bacon, G.E. (1975) 'Neutron Diffraction', 3rd Ed., Clarendon Press, Oxford.

Bevaart, L., Frikee, E., Lebesque, J.Y. and de Jongh
(1978) Phys. Rev. B18, 3376.

Birgeneau, R.J., Guggenheim, H.J. and Shirane, G. (1970) Phys. Rev. Bl, 2211.
Birgeneau, R.J., Skalyo, Jr. J.. and Shirane, G.'(1971) Phys. Rev. B3, 1736.

Birgeneau, R.J., Walker, L.R., Guggenheim, H.J., Als-Nielsen, J. and
Shirane, G. (1975) J. Phys. C., 8, L328.

Birgeneau, R.J., Als-Nielsen, J. and Shirane, G. (1977) Phys. Rev. B16, 280.
Breed, D.J., Gilijamse, K. and Miedema, A.R. (1969) Physica, 45 (205).

Burke, S.K., Cywinski, R., Davis, J.R. and Rainford, B.D.
(1983) J. Phys. F, 13, 451.

Chesger, N.J. and Axe, J.D. (1973) Acta Cryst. vAgg, 160.
éooper, M.J. and Nathans, R. (1967) Acta Cryst. 23, 357.
Cooper, M.J. and Nathans, R. (1968) Acta Cryst. A24, 481.
Cowley, R.A. and Buyers, W.J.L. (1972) Rev. Mod. Phys. 44, 406.

Cowley, R.A., Shirane, G., Birgeneau, R.J. and Guggenheim, H.J.
(1977) Phys. Rev. B15, 4292.

Cowley, R.A., Birgeneau, R.J., Shirane, G., Guggenheim, H.J. and
Tkeda, H. (1980d) Phys. Rev. B21l, 4038.

Cowley, R.A. (1982) in 'Excitations in Disordered Systems',
ed. M.F. Thorpe, Plenum Press, New York.

Cowley, R.A., Hagen, M. and Belanger, D.P. (1984) J. Phys. C. 17, 3763.

Day, P., Hutchings, M.J..Janke, E. and Walker, P.J.
) (1979) J. Chem. Soc. Chem. Commun., 711.

Dorner, B. (1972) Acta Cryst. A28, 319.



-123-

REFERENCES (Contd.)

Epstein, A., Gurewitz, E., Makowsky, J. and Shaked, H. (1970)
~ Phys. Rev. B2, 3703.

Fair, M.J., Gregson, A.K., Day, P. and Hutchings, M.T. (1977)
Physica 86-88B, 657.

Fendler, K. and von Eynatten, E. (1984) Z. Phys. BS54, 313.

Fishman, S. and Aharony, A. (1978) Phys. Rev. B18, 3507.

Fishman, S. and Aharony, A. (1980) Phys. Rev. B21, 280.

Hagen, M. (1984) Ph.D. Thesis, University of Edinburgh, unpublished.

Higgins, S.A., Cowley, R.A. Hagen, M. Kjems, J.K., Diirr, U. and
Fendler, K. (1984) J. Phys. C 17, 3235.

Hutchings, M.T., Fair, M.J., Day, P. and Walker, P.J. (1976)
J. Phys. C,. 9, L55. '

Ikeda, H. and HMirakawa, K. (1974) Solid State Commun. 14, 529.

Ito, A., Morimoto, S., Someya, Y., Ikeda, H., Syono, Y. and Takei, H.
(1982) Solid State Commun. 41, 507.

Ito, A., Morimoto, S., Someya, Y., Syono, Y. and Takei, H.
(1982) J. Phys. Soc. Japan 51, 3173.

Katsumata, K., Nire, T., Tanimoto, M. and Yoshizawa, H.
(1982) Phys. Rev. B25, 428.

Katsumata, K. (1983) J. Magn. Magn. Mater. 31-34, 1435.

Kittel, C. (1976) 'Introduction to Solid State Physics', S5th Ed.,
Wiley, New York. '

Kohles, N., Theuerkaufer, H., Strobel, K., Geick, R. and Treutmann, W.
(1982) J. Phys. C 15, L137.

Lines, M.E. (1967) Phys. Letters 24A, 591.

Macco, F., Lehmann, W., Breitling, W., Slawska-Wariewska, A.E. and
‘Weber, R. (1978) Solid State Commun. 26, 429.

Macco, F., Lehmann, W. and Weber, R. (1979) J. Phys. C 12, 1L233.
Maletta, H. and Felsch, W. (1979) Phys. Rev. B20, 1245.

Marshall, W. and Lovesey, S.W. (1971) 'Theory of Thermal Neutron
Scattering', Oxford University Press, Oxford.



~-124-

REFERENCES (Contd.)

Matsubara, F. and Inawashiro, S. (1977) J. Phys. Soc. Japan 42, 1529.
Matsubara, F. (1981) J. Phys. Soc. Japan, 50, 1469.
Mitchell, P.W., Cowley, R.A. and Higgins, S.A. (1984) Acta Cryst. A40, 152.
Mitchell, P.W..(1985) Private communication.
Mitchell, P;W. and Dove, M.T. (1985) To be published in J. Appl. Cryst.
Mitchell, P.W., Higgins, S.A.and DMcK. Paul (1985). Paper submitted to
Proceedings of Int. Conf. on Neutron Scattering, Santa Fe,
New Mexico, August, 1985. To be published in Physica B and C.
Neutron Research Facilities at the I.L.L. High Flux Reactor (1983).
Onsager, L. (1944) Phys. Rev. 65, 117. A
Pynn, R. and Passel, L. (1974) B.N.L. Research Memo No. G-19.

Raeé, A.I.M. (1981) "Introduction of. Quantum Mechanics, McGraw-Hill, London.

Schroder, B., Wagner, V., Lehner, N., Kesharwani, K.M. and Ceick, R.
(1980) Phys. Stat. Sal. 97, 501.

Shapiro, S.M., Fincher, C.R., Palumbo, A.C. and Parks, R.D.
(1981) Phys. Rev. B24, 6661.

Someya, Y., Ito, A. and Katsumata,-K. (1983) J. Phys. Soc. Japan 52, 254.
Squires, G.L. (1976)>"Practica1 Physics 21le", McGraw-Hill, London.
Steﬁhenson, G. (1983) ”Mathematical Methods for Science Students'", London.
Thorpe, M.F. and Alben, R. (1976) J. Phys. C9, 2555.

Thurlings, M.P.H., van der Pol, A. and de Wijn, H.W. (1977)
Solid State Commun. 24, 829.

Thurlings, M.P.H., Frikee, E. and de Wijn, H.W. (1982) Phys. Rev. B25, 4750.
Tracy, C.A. and McCoy, B.M. (1975) Phys. Rev. Bl2, 368.

Vlak, W.A.H.M., Frikee, E., Arts, A.F.M. and de Wijn, H.W.
(1983) J. Phys. Cl6, L1O15.

Viak, W.A.H.M., Dikken, B.J., Arts, A.F.M. and de Wijn, H.W.
(1985) Phys. Rev. B31l, 4496.

Vliak, W.A.H.M., van Dort, M.J., Arts, A.F.M. and de Wijn, H.W.
(1985) Submitted to Phys. Rev. B. .

Watson, R.E. and Freemen, A.J. (1961) Acta Cryst. 14, 27.



-125-

REFERENCES (Contd.)

Werner, S.A. énd Pynn, R. (1971) J. Appl. Phys._ﬁg,‘4736.
Windsor,.C.G.'(1981) 'Pulsed Neutron Scattering', London.

Wong, P.Z., Horn, P.M., Birgeneau, R.J. and Shirane, G.
(1983) Phys. Rev. B27, 428.

Ziman, J.M. (1971) 'Principles of the Theory of Solids', 2nd Ed.,
Cambridge University Press, Cambridge.



PUBLISHED PAPERS




152

Acta Cryst. (1984). A40, 152-160

L4

The Resolution Function of Triple-Axis Neutron Spectrometers in the Limit of
Small Scattering Angles

By P. W. MitcHELL, R. A. CowLEY AND S. A. HIGGINS
Department of Physics, University of Edinburgh, Mayfield Road, Edinburgh EH9 3JZ, Scotland

(Received 16 May 1983; accepted 26 September 1983)

Abstract

The Cooper—Nathans formulation of the resolution
function of a triple-axis crystal spectrometer for
neutron-scattering experiments gives a singular resol-
ution matrix when the scattering angle is small. The
origin of this singularity is discussed and an alterna-
tive derivation of the resolution matrix given which
avoids this difficulty. The results are illustrated by
numerical calculations forseveral typical experiments
showing that resolution corrections may be large and
very significant for experiments at small scattering
angles.

1. Introduction

A knowledge of the effects of the experimental resol-
ution in momentum and energy transfer is an impor-
tant part of any inelastic neutron-scattering experi-
ment. A general formulation of the resolution func-
tion of a triple-axis spectrometer was derived by
Cooper & Nathans (1967), and discussed by Bjerrum
Mgiller & Nielsen (1970), using a Gaussian approxi-
mation for all the contributing transmission functions
and crystal mosaic distributions, and the normalisa-
tion of this function has been treated at length by
Dorner (1972), and Chesser & Axe (1973). Computer
programs are widely available for the calculation of
this function, and it is known to provide a good
representation of the instrumental resolution in many
types of triple-axis measurement.

This paper is concerned with one particular limit
of the triple-axis resolution function, that of small
scattering angle at the sample (small 26, in Fig. 1).
Experiments performed at small scattering angles
tend to suffer from high background counting rates,

Reactor

wal)

Monochromator

detector
Fig. 1. Plan view of three-axis spectrometer. , 8 are horizontal,
vertical collimations. £,,, &5 €4 take the values —1, +1 according
as scattering at monochromator, sample, analyser is to the right,
left. Configuration shown is g5, = +1, eg==1, 4 =—1.

0108-7673/84/020152-09801.50

and severe restrictions imposed on the energy trans-
fers available by the conservation of momentum
requirement (kinematic limits). In the measurement
of low-energy magnetic excitations, however, par-
ticularly in ferromagnetic materials, such experiments
have a number of advantages. Firstly, the magnetic
form factor takes its maximum value near (0 0 0), the
forward direction. Secondly, scattering from phonons
is generally of low intensity, because of the |Q|* factor
(Q is the neutron wavevector transfer) in the phonon
cross section. Thirdly, the effective resolution near
(00 0) does not suffer from transverse or longitudinal
broadening due to crystal mosaic spreads or lattice-
parameter distributions [for the effect of the former
on resolution, see Werner & Pynn (1971)], and this
allows, under some circumstances, the direct
measurement of the magnetic excitations in powdered
or polycrystalline materials [e.g. Passell, Dietrich &
Als-Nielsen (1976), on EuO and EuS] and even amor-
phous ferromagnetic materials (e.g. Axe, Shirane,
Mizoguchi & Yamauchi, 1977). For these reasons,
many experiments have been performed at small scat-
tering angles in weakly ferromagnetic materials, for
which the magnetic scattering may generally be weak
compared with the phonon scattering, and large crys-
tals may be difficult to grow.

As the scattering angle tends to zero, both the
efficiency factor and some elements of the resolution
matrix diverge, since both contain terms in the
reciprocal of the sine of the scattering angle, and

.extreme care is required to treat the limit correctly.

The problem first became apparent to the authors
when using a standard computer program to calculate
the Cooper—-Nathans function at small scattering
angles (0-5-1-5°). The resolution matrix itself becomes
singular in the limit of the scattering angle tending
to zero, and numerical integration over the resolution
matrix does not give reliable results unless performed
with great care and a high degree of numerical pre-
cision. .

In the following section, we discuss this limit in
the Cooper~Nathans formalism, and then in § 3 we
give a more direct formulation of the resolution func-
tion, which completely eliminates the problems
associated with the Cooper—Nathans function. The
results are illustrated by some applications in § 4.

© 1984 International Union of Crystallography
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2. Small-angle limit of the Cooper—Nathans
resolution function

A triple-axis spectrometer (Fig. 1) uses Bragg reflec-
tion from a monochromator crystal to define a
nominal incident neutron wavevector, k;,

k| = —— @.1)

dpg sin 8y,

and reflection from an analyser crystal to define a
nominal scattered wavevector, kg,

w

kej=—7——",
Ik dasin 0,4

2.2)
where dy, 4 is the appropriate plane spacing and 6y 4
is the appropriate Bragg angle. The directions of
incident and scattered beams are defined by the col-
limators before and after the sample, and the scattered
intensity is measured as a function of nominal
momentum transfer, Q,, and nominal energy transfer,
hv,, where

Qo=k; —kp (2.3)

2
o =2 (ks - K 249)
2m .

Because of the non-zero angular divergences of the
collimators and the mosaic spreads of the mono-
chromator and analyser crystals, neutrons are counted
in the detector which have not suffered the nominal
momentum and energy changes. The actual changes,
Q and hv, are related to Q, and hy, by

Q=Q,+3Q (2:5)
hv = hv,+ 8(hv). (2.6

It is convenient to write these deviations from the
nominal as a four-component vector, X,

X=[8Q, 5(hv)]. 2.7

Cooper & Nathans (1967) showed that the instru-
mental resolution can be written in the Gaussian
approximation as

R(X)=Roexp{—3iX.M.X}. (2.8)

R, and M are complicated functions of the angles
defined by the collimators, the crystal mosaics and
the nominal |k,| and |kx| (Chesser & Axe, 1973). R,
also includes terms due to the detector efficiency and
the monochromator and analyser reflectivities, and
some of the elements of M depend upon the senses
of scattering (i.e. to the left or to the right) at the
monochromator, sample and analyser, in addition to
the dependence of both R, and M on the scattering
angle at the sample.

In detail, R, contains the following terms which
depend on 26, (26, is defined in Fig. 1),

1

Ry ¢ ——m—
* A2 5in 20,

2.9)
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(from Chesser & Axe, equation 6), where A’ is as
defined by Cooper & Nathans (equation 45a) (see.
also Appendix A: A.43). In the limit, as 26, goes to
zero, the angles between k; and Q,, and between kg
and Qo, ¢, and ¢,, respectively (defined in Fig. 2),
tend to the same value, ¢, say, since

1=, +26, (2.10)

PL=p=0. (2.11)
The quantity A’ is the sum of six terms, two of which
are proportional to

Qi cos’ ¢
k% sin® 26,

For the sake of simplicity, consider two possible cases
in whch 20, tends to zero. Firstly, for elastic scattering
(hv =0, |k;|=|kg]), this quantity decreases as 20,
tends to zero (Qo= kg sin 26, ; cos® ¢ =1sin? 26,), A’
tends to a constant value and R, then diverges as
1/sin 26,. Secondly, for inelastic scattering at constant
Qo, A’ behaves like 1/sin® 26, as 26, tends to zero,
and R, tends to a large (¢ k%/ Q3) constant value.
The behaviour of the elements of the matrix M in
the small 26, limit may be illustrated by considering
only the in-plane (x and y) components of 8Q,
because the out-of-plane (z) momentum component
is de-coupled from the rest and does not depend on
20,. For simplicity, we illustrate the results by choos-
ing 8(hv) =0. This gives the section through the resol- -
ution function in the x—y plane (the scattering plane)
at zero energy deviation. Rotation by an angle, 6, in
this plane diagonalizes this part of the matrix (see
Appendix A for details), and the result is that

m2
M, o .
A’sin® 20, @13
M, m,?j, (2.14)

where the new x,y axes are related to the Cooper—
Nathans axes (parallel, perpendicular to Q) by the
angle 6, and the m; are defined in Appendix A
(equations A.6—A.13), and are constant as 26, - 0.
Equation (2.12) shows that the rotation, 6, required
from the Cooper—Nathans coordinates X to the eigen-
vectors of the section of the resolution matrix in the

K P
20, k. 9%
e,
Fig. 2. Scattering triangle (momentum conservation) correspond-
ing to Fig. 1.
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scattering plane is just the angle that Q, makes with
either k; or k. This means that this section through
the resolution function does not change its orientation
with respect to kg, in a constant-Q scan, although it
rotates with respect to Q,. Equations (2.13) and (2.14)
show that the component of M in the plane and
parallel to k¢ is very much larger than the component
perpendicular to ke This shows that only one of the
eigenvalues of M becomes large as 26, becomes small,
and that the resolution function is very thin in the
direction parallel to k- when 8(hv)=0.

It should be emphasized that the above is con-
cerned with a particularly simple case of the four-
dimensional resolution function, and illustrates the
physical effect of the divergence found in the limit
of small scattering angle. It suggests that a different
approach to the formulation of the resolution func-
tion might eliminate the divergence and this is pur-
sued in the next section.

3. Direct formulation for small-angle limit

As may be seen from the results of § 2 above, that
component of momentum deviation which is parallel
to kg is highly correlated with the energy deviation.
So, in the small-scattering-angle limit, simplification
may be achieved by working in a frame of reference
fixed with respect to kg say. (Because the scattering
angle is small, we could choose k; instead, but Q, as
chosen by Cooper & Nathans varies in direction with
respect to kr rapidly as hy, is varied.)

The derivation of the resolution function proceeds
as for the Cooper—Nathans form to the point where
the instrument transmission is expressed in terms of
deviations from the nominal k; and kg, in each of
three mutually orthogonal directions, in frames fixed
with respect to k; and kg, (x parallel to k, and z out
of scattering plane in each case). Cooper & Nathans
then transform to the four components of X and two
redundant variables, one in-plane and one out-of-
plane, which are then integrated out. In the limit
considered here, we take k; and ks to be parallel
(Fig. 3), and transform to three components of 8

Fig. 3. Coordinates for calculating x. Note that, when relating to
Q, it is still necessary to calculate ¢, the angle between Q, and
k, or kg (see Fig. 2).

TRIPLE-AXIS NEUTRON SPECTROMETERS

(momentum deviations viewed in the frame fixed with
respect to k), and three redundant variables, which
are integrated out.

Explicitly, we put

8k = 8k, — 8k, 3.0)

and transform from the space defined by (8k; dk,) to
that defined by (8k,, 8x). The energy deviation is given
by

2

h
8(hv)= 27;(2Ik;|5ku —2|kr|8ks) (3.2)
or
_ B[ (k] +]ke]) _
a(hu)—m[ 5 (8kix — 8ky)
o Ukl = ke ;'k"l)(aki, +5k,,‘)] . (33)

At small wavevector transfers, the second term in (3.3)
is much smaller than the first, so that the energy
deviation is linearly dependent on the x component
of dx,

2

h
8(hv)= Z_m(lkll +|kg|) 8k

(3.4)

This linear dependence of the energy deviation on
one of the momentum-deviation components is the
origin of the singularity of the Cooper—Nathans
matrix in the limits of small Q,, and the divergence
of the Chesser & Axe efficiency terms. By inserting
this dependence analytically at this stage in the deri-
vation, the resulting resolution function, now
expressed in terms of three rather than four variables,
does not have a singularity as 26, goes to zero.

We now have the resolution matrix M expressed
in terms of the three components of «, one of which
(z) is not coupled to the other two. It is straightfor-
ward to diagonalize M by a simple rotation in the
scattering plane by some angle @. All the information
about the resolution function is contained in the three
eigenvalues of M, the angle ©, and the efficiency
factor R, all of which are derived in closed form in
Appendix B. The energy deviation is given by (3.4).
We have therefore eliminated the difficulties encoun-
tered at small 26, in the conventional approach.

The expressions derived in Appendix B show that
the slope of the resolution matrix varies rapidly with
energy transfer and in particular that it is possible to
focus both energy gain and energy loss at small scat-
tering angles (Axe et al, 1977), as can also be seen
qualitatively without the use of aigebra. It is possible
to obtain further simplifications if the dispersion rela-
tion is a function of only |Q|, but these are sufficiently
complex, as the resolution function is then no longer
Gaussian, that quantitative calculations are just as
readily performed with the expressions given in
Appendix B. '
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4. Applications of the direct formulation

The prediction of excitation line-widths and line-
shapes from model scattering laws may be accom-
plished very simply in many special cases (Cooper &
Nathans, 1967; Haywood, 1971). However, when the
scattering law varies rapidly or non-linearly over the
volume of the resolution function, such predictions
necessarily involve the use of numerical integration
methods (Werner & Pynn; 1971; Samuelson, 1971).

A typical ferromagnon dispersion law at small |Q|
may be written as

hv = g, + D|QJ?, @.n

where ¢, is the anisotropy gap, and is usually very
small, and D is called the spin wave stiffness. Thus
the excitation energy is a rapidly varying function of
|Q| and, because of the population term in the cross
section, the intensity of scattering is a function of |Q].
The problem is further accentuated by the design of
triple-axis spectrometers, which usually use relaxed
out-of-plane collimation to maximize the scattering
intensity, but in an experiment where the nominal
wavevector transfer, Q,, is small, the out-of-plane
deviations, 8Q,, may be as large as, or larger than,
IQo|. Since

|QF =1Qol* +(8Q.)* +(8Q,)* +(8Q,)* +2|Qo| 5Q5
4.2)

the spin wave energies sampled in the resolution
volume may be up to several times as large as the
spin wave energy at the nominal wavevector. This
means that the scattering observed in a constant-Q
.scan is broad in energy, and the peak of the scattering
may be at some energy higher than the energy of the
spin wave at the nominal wavevector. These effects
are just the same as those observed for excitations
near Bragg peaks at scattering angles other than zero
(Samuelsen, Hutchings & Shirane, 1970; Hutchings,
Als-Nielsen, Lingard & Walker, 1981). It is not
difficult to show that, if the in-plane resolution were
to be perfectly sharp, the scattering from spin waves
in a constant-Q scan would appear as in Fig. 4. The
intensity, I(v), is given by

[n(V) +%i%] exXp {—%Mzz [ME—&— Q%]}
2
if |hv| = ¢, + DQ, 4.3)

0 otherwise,

I(v)=

where +, — apply for neutron energy loss, gain and
n(v)is the Bose-Einstein population factor. That such
scattering in practice never takes this form indicates
that the in-plane resolution must also be considered,
with the effect of rounding the sharp edge at low
frequencies, and moving the maximum intensity to
higher frequency.
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The most satisfactory method of accounting for
resolution effects in this case is to use a computer
program to generate intensities by integrating an
assumed dispersion relation over the calculated resol-
ution function. This has been done, using the direct
formulation of § 3, for a number of different data sets,
taken under different conditions in small-scattering-
angle experiments. Use of this method avoids the
difficulties associated with the use of the Cooper—
Nathans formulation mentioned in the Introduction.
Firstly, the resolution matrix is known exactly in
diagonal form, and so the problems either of trying
to integrate over a sharp function in the crystal coor-
dinates, or of trying to diagonlize a nearly singular
matrix to transform to the natural resolution-function
coordinates, are avoided. Secondly, the number of
dimensions of the numerical integral is reduced by
one, enabling a more accurate integral evaluation for
a given amount of computing resources.

Fig. 5 shows spin wave scattering intensities gener-
ated by numerical integration from the form derived
in Appendix B (equation B.13) utilizing the directly
derived resolution matrix (equations B.4-B.9) and
assuming a gapless quadratic spin wave dispersion
relation. The figure shows the effects of changing
spectrometer configuration and vertical collimation.

Fig. 6 illustrates simulated intensities fitted by non-
linear regression analysis to some of the data of
Bernhoeft, Lonzarich, Mitchell & Paul (1983) for
Ni;Al. The function form is defined by a flat back-
ground term, a Gaussian peak to represent elastic
scattering, and the intensity due to spin wave scatter-
ing (dispersion defined by equation 4.1). This last
term was simulated by performing a numerical
integration over the resolution function, as derived
in § 3, of a 8-function spin wave scattering law. The
importance of an accurate resolution correction for
this data becomes clear from the effective shift of the
nominal peak frequency by up to ~33%, and an

Intensity (Arbitrary Units)

[ L "
=z -0.1 0 0.1 0.2

Frequency Transfer(THz)

Fig. 4. Intensity of scattering from spin waves which would be
observed in a constant-Q scan if the only resolution contribution
were the out-of-plane momentum component. Calculations were
made using equation (4.3) in the high-temperature limit, so that
n(v) +3x3-> kgT/hv. Values of parameters used were M,, =
500 A%, Q,=0-1A~", ¢, =0and D=10THz A2
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Fig. 5. Pure spin wave scattering generated by the computer program. (a), (b) and (c) differ only in configuration of the spectrometer

with the vertical collimation the same for each, namely B,=8, =

B, =pB;=4:0° (a) and (d) differ in vertical collimation, but have

the same configuration [the intensity shown for (d) has been ampllﬁed by a factor of eight]. Note that arrows point to the nominal

spin wave energy. In each, Q=0-075A"", eg=0and D=
ke=1-55A"1, 26,<2-8
T - T T T 1
T=20K f ta} T, (b}
0=0.0258"' 0:00258°
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Fig. 6. Experimental data (O) and computer-generated least-
squares fit (solid line) showing spin wave scattering from Ni,Al
at various wavevector transfers and temperatures (7, =40 K).
20,=<1-3, 1-6, 1-8° for (a) and (b), (¢), (d), respectively. kp =
1-1 A~'. See text for details.

10 THz A2

Horizontal collimation is (a) 30, (b) 20', (c) 20', (d) 30"

energy width in the spin wave peak generated by
resolution effects which is comparable to the observed
peak frequency, and roughly double the energy width
observed for Q-independent elastic scattering.

5. Conclusions

We have investigated the Cooper~Nathans resolution
function for triple-axis neutron spectrometers in the
limit of small scattering angles and found that two
of the four deviations from the nominal wavevector
(three components) and from the nominal energy
become linearly dependent, giving rise to a singular
resolution matrix and efficiency factor.

By treating this dependence analytically we have
derived a resolution function for the small-scattering-
angle limit which is simpler and both easier and faster
to compute than the general Cooper—Nathans func-
tion. Numerical simulation techniques have been
employed which show that this direct formulation
allows a detailed analysis of data from small-angle
experiments.

We emphasise that the use of standard’ Cooper-
Nathans programs for the calculation of the resol-
ution effects does not give satisfactory results for
small scattering angles, unless the resolution matrix
is diagonalized and the numerical integrations per-
formed in the diagonlized frame of reference and
unless a high degree of numerical precision is used
to cope with the singularity of the matrix. The direct
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analysis we have given allows the calculations to be
performed more accurately and more speedily.

This work was supported by the SERC.

APPENDIX A
Details of Cooper—Nathans at small angles

In the Gaussian approximation, the resolution func-
tion may be written

R =Ry(X)exp{—3X.M(X).X]}, (A1)

where X is the space defined by a set of deviations

from nominal parameters, Ry(X) is the efficiency fac-

tor, and M(X) is the resolution matrix in the space X.
The Cooper—Nathans function is expressed with

X=[8Q, 5(hv)], (A.2)

where the axes of 8Q are fixed with respect to Q,.
In the space defined by

X = (8k;, 8k;), (A3)
where
8k, = 8k, 8k;, 8k, (A.4)
the resolution matrix is
M(8k; 8k,) =
m, mp; 0 0 0 0
my, My 0 0 0 0
0 0 ma; 0 0 0 |, (AS)
0 0 0 Mag  Mys 0
0 0 0 Mys  Mss 0
0 0 0 0 0 Mg
where
m,, =(2tan OM)Z(—lg+ l 2)—13=b5 (A.6)
ap (2mm)/ ki
m,; = —2&p tan Gy, iz+ 12 )—13= —emby (A7)
ay 2nm/ ki
m22=(_15+%+__12_)iz= i (A.8)
ay ai nm/ ki
ms3 = <L2+ : l 2 2)L2 =aj, (A.9)
Bi (2sinbamm)” +B3/ ki
my,=(2tan 0,)° (al§ +ﬁ> kli- = b, (A.10)
Mmys=2¢e4 tan 6, (%*‘%)Lz:—e,‘b‘, (A.11)
a3 2na/ kE
m55=(L2+L2+L2)L2=b2 (A.12)
a; a; na/ ke
Mes = (—s+ - l 3 2)—17=a$2, (A.13)
Bz (2sinbami)*+B3/ kr
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where the 0’s, €’s, a’s and B’s are defined in Fig. 1,

k; and kg are defined by (2.1) and (2.2), napa, TMa

are the horizontal and vertical mosaics of mono-

chromator and analyser, and the b’s and a’s are those

defined by Cooper & Nathans (1967), equations (44)

and (55) (note the correction given by Dorner, 1972).
The transformation to the space x’, where

x'=[8Q, 8(hv), bk, 6k;], (A.14)
is given by the matrix U, so that ‘
x=U.X. (A.15)
If the inverse of U is V, then
0 0 0 0 ovs O
v Uy O Vg U5 O
0 0 0 0 0 v
V=10 0 0 ovu o o |0 (A8
vs; U5, O Usa Uss O
0 0 v O 0 v
where \
vs=1 (A.17)
Uy = —€, COS ¢,/sin 20, (A.18)
U2 =sin ¢@,/sin 26, (A.19)
U2e=—¢,/(y sin 26,) (A.20)
Uys = —£,(cos 20, — k;/ kr)/sin 20,  (A21)
= —£,Qq cos ¢,/ (kg sin 26,) (A.22)
36 =1 (A.23)
Vaa=—1/7y (A.24)
vas=k;/ ke (A.25)
Us; = —€&, COS ¢,/sin 26, (A.26)
Vs> = sin ¢,/sin 286, (A.27)
Vsq = —€&, €08 26,/(y sin 26,) (A.28)
vss = —¢g,[1 —(k;/kg) cos 26,]/sin 26, (A.29)
= —¢g,Qp cos ¢,/ (kg sin 26,) (A.30)
Vg3 = 1 (A3D)
Vs = 1, (A32)
where ¢, ¢, and 26, are defined in Fig. 2, and
y=keh®/m. (A33)

The dependence on 8k;,, 8k;, is irrelevant, so these
parameters are removed by integrating over all poss-
ible values. This leaves the Cooper—Nathans matrix,
which has four components, one of which, that in
8Q,, is uncoupled from the other three.

Consider only 8Q,, 8Q,, with 8(hv) set to zero;

we(Me M)

(A34)
M., M,,
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The elements are

M, =(pv3, + 00}, — 270, 05,)/ A’ (A.35)
M., = [ pv2, 02 + V5 053 — T(V2, Vs, + V2205,))/ A’
(A.36)
M,, = (pv3 +ovi, - 270, vs2)/ A, (A,-37)
where |
P = Myymssvis + M3;05s + Myma,vis
+2my5myvasvss (A.38)
O = My mssvis + Migvis+ mssm, 01
+2mssm 050, (A.39)
T = MyMssVsVs5 + MysMaaUssUzs
+mMssm 0 15Vss + MysM 3045045 (A.40)
with
mgv“mumzz“‘mfz (A41)
mis = myamss — m3s (A.42)
and

, 2 2 2 2
A'=mpv5s + My 0is + mssvss + my, vis

+2m|2U|5025 +2m45055045. (A.43)

[Compare (A.43) with Cooper & Nathans’ equation
(45a).] )

Diagonalization by rotation in the x—-y plane
through an angle 8 gives

M:! 0
M’ = - A.44
("o ) s
with :
M=o +(x*+y¢*)"?] (A.45)
M}, =fo - +y)'7, (A.46)
where
w=[p+0—27cos (p,— ¢,)]/ A'sin’ 20, (A.47)
X =[pcos2¢,+0cos2gp,

—27cos (¢, +¢,)]/ A’ sin? 26, (A.48)

¢ =[psin2¢,+0osin ¢,

—27sin (¢, +@;))/ A’ sin? 28, (A.49)
mytmy  mp+ms
mp;+mys My +mss

0 0
M8k, k) =
My —Mys
~Mys —Mss
_ 0 0
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and
=jarctan (—&/ x). (A.50)

This is an exact result from the Cooper—-Nathans
matrix. Now, the approxiation of (2.11) gives

0=—cp (A.51)
M, =(p+0a—21)/ A sin’20, (A.52)
M., =¢/(p+a=27), (A.53)
where
£=mssm3; 075 + mymigvls. (A54)

Note that, although p, o and r independently con-
tain divergent terms as 26,-0, the combination
(p +o—27) does not diverge but tends to the limit

p +0 =27 (myy +mss)(my vis + mevis)
= (M 2015+ Mysvgs)’. (A.55)

The result (A.52) and (A.53) indicates that one of
the three diagonal elements arising from the §Q,, 5Q,,
8(hv) terms in M behaves in the small 26, lishit as

1
.
A ssin® 24,

Dorner (1972) showed that the terms in R, which
depend on scattering at the sample must be derived
from the determinant of the resolution matrix, since
_ViVe

472
(Dorner’s equation 22), where V; and Vg are primary
and secondary spectrometer resolution volumes and
are independent of scattering geometry at the sample.
This is consistent with one diagonal element behaving

as in (A.56), since |M| is the product of the diagonal
elements, and R, behaves as shown in (2.9).

(A.56)

un

R, IM|'/? (AST)

APPENDIX B
Resolution matrix and efficiency factor in the direct
formulation

The derivation of the resolution function in this form
follows that of the Cooper—Nathans form up to the
point where the detection probability is expressed in
terms of the deviations from the nominal incident
and scattered wavevectors (A.3—A.13). We transform
to the three components of 8« (defined in 3.1) and 8k;

0 —my,  — My 0
0 =-mys  —mss 0
M3z + Meg) . 0 0 ~ Mg
0 my, Mmys 0.
0 mys mss 0
— Mg 0 0 Mge

(B.1)
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Now integrate over the three components of 8k, This gives

(Masm3, +my mig)/ s (Masm3; +mmig)/ s 0
M(8x) = | (mysm3; +mymig)/s (mssm3, + myamgs)/ s 0 ) (B2)
0 0 my3mes/ (M33 + Mes)
where
§ = (Myy + mss)(my, +mys) — (mys + mys)’. (B3)
This matrix is diagonalized by a rotation through @ in the x-y plane,
{2 +(X?+¥)'?) 0 0 —
M) = 0 10 - (X*+ ¥/ 0 , (B4)
0 0 ms; m“/(ms:s + m66)
where
cos@ —sin@ 0 or analyser at the appropriate wavevector, and other
k' ={sin® cos® 06k (B.5) symbols are defined above.
Inthe same way, we may write the total flux incident
0 0 1
on the sample, &,,
with @
S \3/2 X
@=1arctan (¥/ X) (B6) ok, G Pmlkiks cot by
and r roas 27-1/2
| 1 +(217M sin GM) ]
Q =[(Mey+ms)m7; +(my, + my)mi)/ s (B.7) - Bo
[ 1 1 12
X = — mss)m3, +(my, — my)mig)/ s B3 x| —+ ]
[(mas :"ss) 77 (2 1 22)Msg)/ (B.8) |82 " B+ @nh, sin Onr)?
¥ =[2mysm3; +2m mgg)/ s. (B.9) BB 1 1 -1/2
. : . X| ==+ 3+t 2] .
In order to derive the pre-exponential term in the Lagat  ao(2m)” ai(mam)

resolution function, it is necessary to include the
factors which arise from the elimination of 8k, To
avoid ambiguity, the efficiency factor will be
expressed in terms of the ratio of the detector counting
rate, Pp, to the flux per unit solid angle per unit
wavevector from the reactor, ¢(k;), ~

ey

)

‘P(kl)

2mh 1
= ED(kF)7pM(kI)pA(kl)k_3
’ . 27 -1/2
x[l +(21;M sin OM) ]
Bo
' as 27-1/2
X[l +(21’A sin OA) ]
Bs

X(my;+mgg) ™"/ 2s71/2

xJfff S(Q, v) exp {~18x'M(5k")5xc’}

X & (Su gy (k| +|kF|)6K,) dvd(8«’),
(B.10)

where Ep(kg) is the detector efficiency at kg
Pm.a(ky, ke) is the peak reflectivity of monochromator

(B.11)

Under certain circumstances, it may be desirable
to move the fission-chamber monitor, which is usually
used to measure the flux incident on the sample, away
from the sample to before the monochromator-to-
sample collimator, to cut down the background due
to small-angle scattering from the monitor. In this
case, denote the horizontal, vertical collimation from
monochromator to monitor by as, Bs. The counting
rate of the monitor, @, is then given by

b E
;(':_) = 'k-M(ZW)J/ZPM(kI)kI cot 8y,
1 1
x' | +(2n;w sin 9M>2] -1/2
L Bo

rl l ]—1/2

_+ -

| B3 B3 +(2n} sin 6y,)°

[ 1 1 1 ]'”2

X + + s

L adal  aj2nm)’ @32nm)?

(B.12)

where E,, is the monitor efficiency at K, =1, and the
efficiency is assumed to be proportional to (k;)™".
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The experimentally measured quantity is @p/ @,,,

&___ Ep(ke) h Palke)

(DM EM v2mrm k% cot OM

’ o 27 -1/2

% (l +(27’A sin 04) ]

- 3

o 1 l 1/2

[ B2 B2 +(2n'n sin 0M)2]

[ 1 1 1 ]" 2
+ +

Lagad  adlnm)  ad@nm)’

X (my3+me)™? 572 [{ff S(Q, v)

X exp {—38k’M(8x')ok'}

X

(k| +IkF|)8Kx] dv d(8«).
(B.13)

X8| év—
[V41rm

The integral involves three different ways of
expressing the deviations from the nominal wavevec-
tor transfer (and so, by equation 3.4, from the nominal
energy transfer). They are related by (B.5) and the
following:

cosp —¢gsing 0
8Q = |g,singp cos @ 0|8k (B.14)
1 0 0 1
or
cos (@ —¢p) sin(@—ep) 0
8Q= |—sin(O—¢,p) cos(O=¢ep) 0|k
0 0 1

(B.15)
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The eftects of sample mosaic have not been incor-
porated into the resolution function here because, in
the limit of small scattering angles, the three-
dimensional ferromagnetic systems considered here
show isotropic spin wave scattering (equation 4.1).
Thus mosaic effects are unimportant, even in
powdered or polycrystalline samples. For systems
which display anisotropic scattering at small angles,
mosaic effects could be incorporated into the trans-
verse momentum components of the resolution func-
tion by performing the transformation (B.14) on the
matrix (B.2) and including the terms given by Werner
& Pynn (1971).

Note that the spectrometer focusing may be optim-
ized (R, maximized) by making s smaller by suitable
choice of configuration. In the small 26, limit, this

" may be achieved with €4 = —¢,,.
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Abstract. Neutron scattering techniques have been used to investigate the magnetic structure
of K;Co,Fe; -,F, with x = 0.2 and x = 0.6. The x = 0.6 sample exhibits only one magnetic
phase transition, at 7y = 92.2 + 0.1 K. The x = 0.2 sample has two magnetic phase transi-
tions; below Ty = 66 + 1K the axial spin components order, while below a well defined
transition at Ty, = 32 + 2 K the transverse components also order. The spin wave dispersion
relations have been measured for both samples using inelastic neutron scattering techniques.

1. Introduction

Magnetic systems with competing anisotropies have recently attracted considerable
attention. Mean-field-theory calculations of the phase diagrams of such systems by
Matsubara and Inawashiro (1977) predicted four distinct magnetic phases as a function
of concentration and temperature with an associated tetracritical point. These were a
paramagnetic phase, a phase in which one spin component was ordered and the other
disordered, a phase in which only the other component ordered and, finally, a phase in
which both spin components ordered.

In mean-field theory the ordering of one spin component affects the ordering of the
other with the result that the phase boundaries change slope at the tetracritical point.
More recent calculations including the fluctuations, using renormalisation-group theory
(see, e.g., Fishman and Aharony 1978) suggest that the ordering of the different spin
components is decoupled and that the phase boundaries have a constant slope through
a decoupled tetracritical point.

There have been several studies of magnetic systems in which there are competing
anisotropies, as reviewed by Katsumata (1983). By far the most detailed study was made
by Wong et al (1983) on the Co,Fe;_,Cl, system. They found that although the high-
temperature transition was well defined, the one at lower temperature was smeared.
They suggested that this was because the ordering of one spin component generated a
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random field on the other, and that this random field inhibited the development of true
long-range order. This mechanism could occur in Co,Fe;_,Cl, because of a Dzyalo-
shinsky type of interaction arlsmg from the low local symmetry of the ions in the FeCl,
structure.

K,;Co,Fe, _F4is another system that has competing anisotropies. The end members
K,;CoF, and K FeF, have the K;NiF, structure (Birgeneau et a/ 1970) in which the
magnetic ions are at the corners and body centre of a tetragonal chemical unit cell. It has
become conventional to define a magnetic unit cell in which the magnetic a and b axes
are rotated by 45° relative to the a and b axes of the chemical unit cell and are larger by
a factor of 2¥2. The antiferromagnetic exchange interactions for the two systems are
predominantly two-dimensional and the planes can stack in two ways relative to each
other, leading to a two-domain structure. The competing anisotropy in K,Co,Fe, -F,
arises because in K,CoF, the pseudo-spin S = } is aligned along the crystallographic ¢
axis owing to the anisotropic exchange (Breed et al 1969), while in the K;FeF, the
single-ion anisotropy aligns the § = 2 spin perpendicular to the c axis (Macco et al 1978).
Both of these pure materials have been studied in detail and the exchange constants are
known. Whilst the magnetic interactions are largely two-dimensional between nearest
neighbours the order occurs at least partially in three dimensions at low temperatures.

We have performed neutron scattering measurements on two samples of
K;Co,Fe;-,F4 with x = 0.6 and x = 0.2 to study the magnetic phase transitions. In
K;Co,Fe, -.F4, the local symmetry is higher than in Co,Fe, _,Cl,, so any random fields
generated by the ordering of one spin component are expected to be very much smaller
in K;Co,Fe, _ .F4than in Co,Fe; _,Cl,.

Consequently we have particularly studied the structure and phase transitions of the
sample with x = 0.2 which shows two transitions and at low temperatures is in the mixed
phase shown in figure 1.

Since we made these measurements we have learnt of similar measurements of
K,Co,Fe; -,F4 by Vlak et al (1983). Our results and conclusions are similar to theirs, but
differ in some important respects.

T, (K)

1
0 05 10

X

Figure 1. The phase diagram for K,Co.Fe, - .F4. Points shown indicate results from previous
measurements (Fendler 1982). Note: M denotes the mixed antiferromagnetic phase; AF1
denotes the planar antiferromagnetic phase; AF2 denotes the uniaxial antiferromagnetic
phase; and P denotes the paramagnetic phase.
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The theory of the spin waves in systems with competing anisotropies is not well
understood despite the work of Matsubara (1981). We report on preliminary measure-
ments of the spin waves, which show a two-band behaviour very similar to that found in
mixed magnetic systems without competing interactions (Cowley 1982). The results also
give reasonable accord with the results of Raman scattering experiments (Fendler 1982)
and with calculations based on a simple Ising model.

2. Experimental details

The neutron scattering measurements were performed on tripie-axis crystal spec-
trometers at the National Laboratory, Ris¢, Denmark, and at the PLUTO reactor,
AERE, Harwell, UK. The nominaily x = 0.2 sample was plate-like with dimensions of
10 mm X 10 mm X 2 mm while the nominally x = 0.6 sample had a volume of approxi-
mately 1 cm3. Both samples consisted of large grains of single crystal, but unfortunately
these grains were misoriented by about 5° with respect to each other. This multicrystal
character limited the accuracy of some of the experimental results. The crystals showed
no sign of any chemical ordering of the Co and Fe ions.

The crystals were mounted in variable-temperature cryostats with the magnetic a*
and c* axes in the scattering plane. The elastic measurements at Risg were performed
using a pyrolytic graphite monochromator and an incident neutron energy of 14 meV
with a graphite filter to suppress unwanted contaminant neutrons in the incident beam.
A pyrolytic graphite analyser was used to filter the scattered neutrons and the collimation
was chosen to be 30’, 30", 30" and 60’ from reactor to counter. The energy resolution in
this configuration was 0.8 meV. The inelastic experiments were performed with a similar
configuration but with an incident neutron energy of 5 meV.

The experiments at Harwell were performed with a pyrolytic graphite monochro-
mator and a pyrolytic graphite analyser and with a fixed neutron analyser energy of 13
or 24 meV. The collimations were 100’, 30’, 30’, and 60’ and a pyrolytic graphite filter
was used before the analyser in the 13 meV measurements.

3. Experimental results

3.1. Measurements of the structure -

The intensity of the (1, 0, 0) magnetic Bragg reflection was measured as a function of
temperature for x = 0.6 and x = 0.2 and the results are shown in figures 2 and 3 respec-
tively. In the former case the intensity rises rapidly on cooling below 90 K and then
becomes almost constant below 50 K. We believe this indicates the ordering of the
components in the ¢ direction of the spin below this temperature, in agreement with the
phase diagram shown in figure 1.

Measurements through the (1, 0, 0) Bragg reflection along the line (1, 0, n) showed
that the width of the Bragg reflection is not limited by the resolution and that it corre-
sponds to the ordering of around four two-dimensional sheets. The intensity of the
scattering in figure 2(b) does not decrease to zero below Ty, most probably because it
contains aresidual Bragg component corresponding to the lack of full three-dimensional
ordering even at the lowest temperatures.

The data shown in figure 2(a) were fitted to the form expected for a two-dimensional
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Figure 2. (a) The (100) Bragg peak inten- Figure 3. (a) Full circles indicate the (1, 0, 0) Bragg peak
sity as a function of temperature (for x = intensity as a function of temperature (x = 0.2). The
0.6). The full curve indicates the best fit to open circles indicate the (1, 0, 6) Bragg peak intensity
a d = 2 Ising model. (b) The diffuse scat- (scaled). (b) The diffuse scattering at Q@ =(1,0,
tering at Q = (1.035, 0, 0) as a function of —0.4) as a function of temperature.

temperature (for x = 0.6).

Ising model (Onsager 1944):
Lio(T)/Lioo(0) = [1 — sinh™*(2J/ksT)]* (1)

and a least-squares fit gave B = 0.14. This is consistent with the exact solution of the
Ising model, which gives 8 = 0.125. The fit also gave the transition temperature Ty =
92.2 +0.1K.

The temperature dependence of the (1, 0, 0) magnetic Bragg reflection for the sample
with x = 0.2 is shown in figure 3. On cooling it increases from zero at a temperature Ty
of 66 + 1 K and then increases again at a lower temperature T, of about 32 = 2 K. We
believe that between Ty and T only one component of the spin is ordered, while below
Ty the other component also orders and the sample is in the mixed phase shown in figure
1. The data shown in figure 3(a) between 35 and 67 K were fitted to the form given as
(1) and gave a good fit with 8 = 0.19 = 0.02. Thisissignificantly larger than the exponent
obtained for x = 0.6, and that expected for a d = 2 Ising model. The difference may well
arise because no account has been taken of the rounding of the transition due to
concentration fluctuations.

The structure of the x = 0.2 system was determined as a function of temperature by
measuring the integrated intensities of the (1, 0, L) Bragg reflections with |L| < 8 and
the (3, 0, L) Bragg reflections with |L| < 4 atvarious temperatures between 12and 63 K,
but mostly close to 30 K. The observed intensities are listed in table 1 for 12 and 35 K.
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Table 1. Integrated intensity.

T=12K T=35K

(H,K,L) Experimental Calculated Experimental Calculated

(100) 668 685 355 342
(101) 374 367 344 342
(101) 402 367 357 342
(102) 321 309 127 : 128
(102) 327 309 128 128
(103) 100 118 63 80
(103) 120 118 83 80
(104) 98 101 24 28
(104) 103 101 25 28
(105) 29 42 14 18
(105) 38 42 17 18
(108) 55 39 8 7
(106) 56 39 7 7
(107) 14 18 1 5
(107) 15 18 -9 5
(108) 19 18 6 2
(108) 21 18 7 2
(300) 90 105 64 52
(301) 82 69 74 67
(301) 86 69 73 67
(302) 78 89 40 4
(302) 79 89 43 4
(303) 41 <50 46 47
(303) 44 50 46 47
(303) 37 56 21 26
(304) 41 56 21 26

These results were used to determine the structure by fitting three parameters to the
experimental results. These parameters were an overall scale factor, which is propor-
tional to the square of the ordered moment, the angle between the spin direction and
the c axis, 6, and the relative proportion of the domains that give rise to the (1, 0, 0)and
(1, 0, 1) Bragg reflections (Thurlings ef al 1982). The results for 6, and the square root
of the overall scale factor, which is proportional to theaverage ordered spin moment,
are shown in figures 4(a) and (c). The ¢ component of the spin, s cos 6,, is shown in
figure 4(b). The results show that 6, is zero above T but that it increases rapidly below
T.. The ccomponent of the spin varies only slowly with temperature near 30 K, whereas
the total spin increases. These results show that for this sample the c axis spin component
orders at Ty but that the perpendicular component only orders at 7.

The results for the angle 6, were fitted to the form

8:(T)/6.0) = (1 - T/T)p ()
and the results were
' \

B =0.32=0.04 6.0)=33x1° T, =32+ 1K.

The exponent §' is characteristic of three-dimensional ordering, unlike that found for
the transition at 7.
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The results for 6, shown in figure 4(c) suggest that the transition at Ty is sharp asa
function of temperature. This was also examined by measuring the temperature depend-
ence of the (1, 0, 6) Bragg reflection as shown in figure 3(a). This reflection is relatively
weak in the upper phase and increases rapidly in intensity on cooling below T . These
results also suggest that T} is sharp and that any smearing is only about 2 K which is
comparable with the smearing of the (1, 0, 0) reflection at Tn. This smearing is most
likely to arise from concentration fluctuations and so we conclude that within the
limitations of the experiments both transitions are well defined unlike the results found
for Co,Fe;-,Cl, (Wong et al 1983).

As was found with the sample for x = 0.6, the Bragg peaks for x = 0.2 were not
limited by resolution in scans along (1, 0, n) showing that full three-dimensional order
was not established.

3.2. The diffusé scattering

Due to the mosaic structure of the specimens, measurements of the diffuse scattering
are less reliable than measurements of the Bragg reflections, which can be made on a
single crystal. Above Ty the diffuse scattering was measured in scans of the form
(&, 0, —0.4) and the width in { was found to decrease as T approached T. At and below
T the width of the scattering in these scans was limited by resolution. The intensity of
the scattering at (1.035, 0, 0) forx = 0.6 and (1, 0, —0.4) forx = 0.2 is shown in figures
2(b) and 3(b) respectively. The results for both materials show a fairly symmetric peak
at T but at low temperatures it does not decrease to zero. For x = 0.2 the scattering
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Figure 5. The intensity observed along (1, 0, 7) as a function of nforx = 0.2 at values of T
(K) of (a) 72, () 30, (c) 45 and (d) 12. The full curves are fits to the sums of longitudinal and
transverse correlatioq functions.

slowly increases on further cooling. There is no significant sign of any two-dimensional
critical scattering at 7 in figure 3(b).

The form of the diffuse scattering forx = 0.2 was measured by scans with wavevectors
Q along (1,0, 7) at four different temperatures; see figure 5. Below Ty there is intense
scattering near the integer values from the Bragg peaks and this has been omitted. Since,
however, these peaks are wider than the resolution function it is somewhat uncertain
how much of the scattering between the peaks is really two-dimensional Bragg scattering
from the lack of order from one layer to the next rather than true diffuse scattering.
Nevertheless the scattering was analysed into the longitudinal component, along the ¢
axis, which varies as f(Q)|? (1 — cos’ @) and the transverse component which varies as
|f(QI*% (1 + cos? ¢), where @ is the angle between the wavevector transfer, Q, and the
c axis and f(Q) is the average form factor of the ions.

The results of the fitting are shown in figure 5 and suggest that the scattering is largely
of longitudinal character at all temperatures. The results gave only (0.15 % 0.05),
(0.14 £ 0.05), (0.26 £ 0.07) and (0.24 + 0.06) of transverse scattering at 4.5, 30, 45 and
72 K respectively.

3.3. Inelastic scattering

The inelastic scattering was measured in both samples but the more detailed study was
made for the larger sample with x = 0.6. In this material two branches of the spin waves
were observed with fairly well defined neutron groups as shown in figure 6. One of these
branches was almost dispersionless with an energy of about 32 meV and the other

C18—G
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Figure 6. (@) A scan through the upper-frequency branch of the dispersion relation for x =
0.6. 9 =(3.2,0,0) and Er = 24 meV while T = 4.5 K. (b) A scan through the lower-fre-
quency branch of the dispersion relation for x = 0.6. Q = (1.4, 0, 0) and Ef = 13.408 meV
while T= 4.5 K.

showed more dispersion but had a zone-boundary energy of about 7.5 meV, as shown
in figure 7.

These results are qualitatively similar to the results found in other mixed systems
without competing anisotropy such as Rb,Mny sNig sF4, Mn,Co; _ ,F; and KMn,Co, _,F;
(Cowley 1982). The upper branch corresponds to excitations propagating largely on the
Co ions and the lower branch to ones propagating largely on the Fe ions.

The results are in reasonable accord with Raman scattering measurements (Fendler
etal 1982).

Measurementsof the x = 0.2 sample were restricted to only the lower branch because
of the smaller sample volume. A typical scan is shown in figure 8, and the dispersion
relation in figure 9. Measurements were made under conditions giving higher resolution
to examine whether the low-frequency/small-wavevector spectrum was different in the
Ising phase from that in the mixed phase. The results are shown in figure 10 and in both
phases only overdamped low-frequency scattering could be observed at small wave-
vectors close to 7. This was surprising because although a gap is expected in the Ising
phase it would be absent or much smaller in the mixed phase. Since, however, these
results are made very difficult by the mosaic structure, a detailed study of the low-
frequency excitations in these phases requires a better sample.

The Ising model for the mean excitation frequency of the Co and Fe atoms has been
used to calculate the excitation frequencies assuming that the spins are aligned along the
c axis.

For the Co ions this frequency is given by

Eco = 4[x(21co) ASELSEs + (1 = X) (2l core) ASELSEe]
and for the Fe ions by
EF: = 4[x(21CoFe)ASlz"eSéo + (1 - x)(leeFe) Aséeslz-‘e] + D[(Slz-'e)% - (Slz-‘e)lzj

where S% and Sg. refer to the ground-state values of S? for Co and Fe neighbours
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neutron scattering. Open circles indicates
measurements made previously (Fendler 1982).
Arrows at the zone boundary indicate calculated
Ising ‘spin-flip’ frequencies (see the text).
Measurements were made at T = 4.5K.

respectively and (Sf.)¢ and (S£); are the final and initial values for the ion that is being
excited and ASEe =(SEe)r — (SEe)i.

The exchange parameters Ic,, Ir. and Ic.r. Were taken to be Ic, = 7.48 meV and
Ire = 0.709 meV (both from Macco et al 1979) and Icore = (Icolre)? = 2.30 meV. The
single-ion anisotropy is D = 0.398 meV (Macco et al 1978). The frequencies obtained
are shown by the arrows in figures 7 and 9 and this simple model gives a very reasonable

T J 1 T L4 1

Figure9. The lower branch of dispersion relation forx = 0.2. The arrow at the zone boundary
indicates the calculated Ising ‘spin-flip’ frequency (see the text). Measurements were made
at4.5K.
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description of the zone-boundary frequencies, showing that these are not greatly affected

by the competing anisotropy. This type of model also gave a good account of the Raman
scattering results.

4. Conclusions

We have studied the phase transitions and excitations of the system K,Co,Fe, - ,F4 which
has competing anisotropies for the two values x = 0.6 and x = 0.2 using neutron scat-
tering techniques. The results for x = 0.6 show that at low temperatures the spins are
ordered along the c axis and that the phase transitionat Ty = 92 % 0.1 Kis well described
as a two-dimensional Ising model. The excitations in this sample have been measured
and show two bands corresponding to excitations propagating largely on the Co or Fe
ions and the frequencies of the bands are in good accord with Raman scattering measure-
ments and with a simple Ising model. No calculations have as yet been performed for
the dispersion of these branches.

The results for the sample with x = 0.2 are more complex because it undergoes two
transitions at Ty = 66 + 1 K and T = 32 = 2 K. At Ty the ¢ component of the spin
orders and the transition has essentially two-dimensional fluctuations although there is
some ordering of a few of the two-dimensional sheets. The exponent and critical scat-
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tering are also consistent with a two-dimensional Ising transition if allowance is made
for rounding due to concentration inhomogeneity.

Below the lower transition, T, the in-plane spin components order and the mean
spin direction deviates from the c axis by about 30° at low temperatures. This transition
appeared to be sharp in temperature when allowance is made for the concentration
inhomogeneity. This is different from the behaviour found (Wong et al 1983) in
Co,Fe;-.Cl, where the lower transition was very smeared. The difference strongly
supports the suggestion that the smearing arises from random fields generated by a
Dzyaloshinsky type of interaction in Co,Fe, - ,Cl, as this would be expected to be much
smaller in the high-symmetry K,Co,Fe; _.F. Since this work was performed we have
learnt of similar work on Co,Fe,; -,Cl, - 2H,0 which also shows two sharp transitions
and in which the Dzyaloshinsky-type terms are expected to be small.

The details of this lower transition are still somewhat obscure as we failed to observe
any two-dimensional critical scattering (see figure 3(b)) and the exponent 8 = 0.32 is
characteristic of a three-dimensional transition. Since ad = 2 XY system does not order
atnon-zerotemperature, itis clear that three-dimensional effects must play an important
role in this transition. Further theoretical and experimental effort is needed to under-
stand this behaviour.

Since the experimental work described here was completed we have learnt of a
similar study with x nominally equal to 0.27 in this system by Vlak et al (1983). Despite
the difference in the nominal concentrations their results are very similar to ours for
x = 0.2 giving two transitions: Ty = 64.4 = 0.6 K and 7 = 27 + 2 K. Their results are
very similar to ours for the structure of the two phases and for the critical scattering
except that they observe a broad hump in the intensity for @ = (1, 0, 0.4) close to 7y.
Furthermore the wavevector dependence of the diffuse scattering shown in figure 5 is
different from that found in their experiment. We do not understand the reason for this
difference, but possibly it arises from the extent to which three-dimensional order is
developed at Ty, modifying the behaviour close to T.. We do not understand their
argument that at T} there is a first-order transition as it seems to be a contradiction to
our data shown in figure 3 and their own data shown in their figure 3.

Preliminary measurements have been made of the excitations in the sample with
x = 0.2. The results are similar to the results for x = 0.6, for excitations close to the zone
boundary. Little difference was observed in the low-frequency spin waves close to Ty,
which is surprising. Further experimental and theoretical work is needed to study the
spin waves in the mixed phase close to 7. We hope that this paper will help to stimulate
this work.
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